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Definition of the Subject

In this part, we introduce the reader to a certain class
of nonlinear partial differential equations which are char-
acterized by solitary wave solutions of the classical non-
linear equations that lead to solitons. The classical non-
linear equations of interest show the existence of special
types of traveling wave solutions which are either solitary
waves or solitons. In this study, we will review a few so-
lutions arising from the analytic work of the Korteweg–de
Vries (KdV) equations, the generalized regularized long-
wave RLW equation, Kadomtsev–Petviashvili (KP) equa-
tion, the Klein–Gordon (KG) equation, the Sine-Gordon
(SG) equation, the Boussinesq equation, Pochhammer–
Chree (PC) equation and the nonlinear Schrödinger (NLS)
equation, the Fisher equation, Burgers equation, the Ko-
rteweg–de Vries Burgers’ equation (KdVB), the two-di-
mensional Korteweg-deVries Burgers’ (tdKdVB), the po-
tential Kadomtsev–Petviashvili equation, the Kawahara
equation, Generalized Zakharov-Kuznetsov (gZK) equa-
tion, the Sharma-Tasso-Olver equation, and the Cahn–
Hilliard equation.

Introduction

Nonlinear phenomena play a crucial role in applied math-
ematics and physics. Calculating exact and numerical solu-
tions, in particular, traveling wave solutions, of nonlinear
PDEs in mathematical physics plays an important role in
soliton theory. Moreover, these equations are mathemat-
ical models of complex physical occurrences that arise in
engineering, chemistry, biology, mechanics, and physics.

In this work, we give a brief history of the above-
mentioned nonlinear equations and how this type of equa-
tion has led to the soliton solutions; we then present an
introduction to the theory of solitons. Soliton theory is an
important branch of applied mathematics and mathemat-
ical physics. In the last decade this topic has become an
active and productive area of research, and applications of
the soliton equations in physical cases have been consid-
ered. These have important applications in fluid mechan-
ics, nonlinear optics, ion plasma, classical and quantum
fields’ theories etc.

The best introduction to the soliton is that contained
in J. Scott Russell’s (a Scottish naval engineer) seminal
1844 report to the Royal Society. Scott Russell’s report ti-
tled “Report on Waves” [62] was presented to the Royal
Society in the 18th Century and he wrote:

“I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped—not so the
mass of water in the channel which it had put inmo-
tion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assum-
ing the form of a large solitary elevation, a rounded
smooth and well-defined heap of water, which con-
tinued its course along the channel apparently with-
out change of form or diminution of speed. I fol-
lowed it on horseback, and overtook it still rolling
on at a rate of some eight or nine miles an hour, pre-
serving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height grad-



6454 P Partial Differential Equations that Lead to Solitons

ually diminished, and after a chase of one or two
miles I lost it in the windings of the channel . . . ”

Scott Russell’s experimental observations in 1834 were
followed by the theoretical scientific work of Lord Rayleigh
and Joseph Boussinesq around 1870 [60] and finally, two
Dutchmen, Korteweg and de Vries, developed a nonlin-
ear partial differential equation to model the propaga-
tion of shallow water waves applicable to the situation in
1895 [47]. This work was really what Scott Russell fortu-
itously witnessed. This famous classical equation is known
simply as the KdV equation. Korteweg and de Vries pub-
lished a theory of shallow water waves which reduced Rus-
sell’s observations to its essential features. The nonlinear
classical dispersive equation was formulated by Korteweg
and de Vries in the form

@u
@t
C c

@u
@x
C "

@3u
@x3
C � u

@u
@x
D 0

where c; "; � are physical parameters. This equation plays
a key role in soliton theory.

In the late 1960s, Zabusky and Kruskal numeri-
cally studied and then analytically solved the KdV equa-
tion [79]. They came to the result that stable pulse-like
waves could exist in a problem described by the KdV equa-
tion from their numerical study. A remarkable aspect is
that the discovered solitary waves retain their shapes and
speeds after collision. Zabusky and Kruskal called these
waves solitons as they resemble particles in nature. In
1967, this numerical development was placed on a settled
mathematical basis with Gardner et al.’s discovery of the
inverse-scattering-transform method [20].

The soliton concept is related with solutions for non-
linear partial differential equations. The soliton solution of
a nonlinear equation usually is used a single wave. If there
are several soliton solutions, these solutions are called soli-
tons. On the other hand, if a soliton is separated infinitely
from another soliton, this soliton is called a single wave.
Besides, a single wave solution can’t be sec h2 function for
equations other than nonlinear equations, such as the KdV
equation. But this solution can be sech or tan�1 (e˛x ).

At this stage, we could ask what the definition of the
soliton solutions is? It is not easy to define the soliton con-
cept. Wazwaz [69] describes solitons as solutions of non-
linear differential equations as follows:

(i) A long and shallow water wave should not lose its
permanent form;

(ii) A long and shallow water wave of the solution is lo-
calized, meaning either the solutions decay exponen-
tially to zero such as in the solitons admitted by the

KdV equation, or approach a constant at infinity such
as solitons provide by the SG equation;

(iii) A long and shallow water wave of the solution can
interact with other solitons preserving its character.

There is also a more formal definition of this concept, but
these definitions require substantial mathematics [17]. On
the other hand, the phenomena of the solitons doesn’t al-
ways follow these three properties. For example, there is
the concept of “light bullets” in the subject of nonlinear
optics which are often called solitons despite losing energy
during interaction. This idea can be found at an internet
web page of the Simon FraserUniversity British Columbia,
Canada [51].

SomeNonlinearModels that Lead to Solitons

In this section, we will deal with the fundamental ideas and
some nonlinear partial differential equations that lead to
solitons. These equations are the result of a huge amount
of research work and physical implementations which fo-
cus on the most diverse and active areas of applied mathe-
matics and mathematical physics.

Example 1 In various fields of science and engineer-
ing, nonlinear evaluation equations, as well as their an-
alytic and numerical solutions, are of fundamental im-
portance. One of the most attractive and surprising wave
phenomena is the creation of solitary waves or solitons.
It was approximately two centuries ago, that an ade-
quate theory for solitary waves was developed, in the form
of a modified wave equation known as the KdV equa-
tion [14,15,16,47,69,75]. The third-order KdV equation is
a classical nonlinear partial differential equation originally
formulated to model shallow water flow [47].

Herein, we are particularly interested in the original
third-order KdV equation [47] given by

ut C u ux C ˛ uxxx D 0 ;

respectively, and the generalized form

ut C upux C ˛ uxxx D 0 ;

where pmodels the dispersion and subscripts in t and x de-
note partial derivatives with respect to these independent
variables. The study of long waves, tides, solitary waves,
and related phenomena, leads to an equation referred
to as the generalized KdV equation. If p D 0; p D 1,
and p D 2, this equation becomes the linearized KdV,
nonlinear KdV, and modified KdV equations, respec-
tively [14,15,16,69,75]. The modified KdV equation has
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also found applications in many areas of physical situa-
tions, for instance the equation describes nonlinear acous-
tic waves in an anharmonic lattice [78].

Example 2 Consider the solution u(x; t) of the general-
ized RLW equation

ut C ux C ˛ u�x � ˇ uxx t D 0 ;

where � is a positive integer, and ˛ and ˇ are positive con-
stants. The generalized RLW equation was first put for-
ward as a model for small-amplitude long waves on the
surface of water in a channel by Peregrine [37,57] and later
by Benjamin et al. [2]. In physical situations such as uni-
directional waves propagating in a water channel, long-
crested waves in near-shore zones, and many others, the
generalized RLW equation serves as an alternative model
to the KdV equation [4,5].

Example 3 The nonlinear KG equations in one-dimen-
sional space

utt � uxx C
dV
du
D 0 ;

where V D V(u) is a general nonlinear function of u, but
not its derivatives. This equation is the most natural non-
linear generalization of the wave equation and first arose in
amathematical context, withV(u) D exp(u), in the theory
of surfaces of constant curvature. In addition, this equa-
tion appears in many different fields of application. For in-
stance, a polynomial nonlinearity can be used as a model
field theory, while a cos u term yields the sine-Gordon
equation and so on [14,15,16,69,75]. We will consider
a particular case of equation KG, the so-called sine-Gor-
don nonlinear hyperbolic equation, which has the form

utt � cuxx C � sin(u) D 0 ; �1 < x <1 ; t > 0 ;

where c and � are constants. The sine-Gordon equation
is firstly used in the work of differential geometry and for
investigation of the propagation of a ‘slip’ dislocation in
crystals [15].

The generalized one-dimensional KG equation

utt � kuxx C b1u C b2umC1 C b3u2mC1 D 0 ;

is given in [80]. The KG equation represents a nonlin-
ear model of longitudinal wave propagation of elastic rods
when m D 1 [12].

Example 4 In this example, we consider the generalized
Boussinesq-type equation [7]

utt � uxx C ıuxxxx D �( (u))xx ;
�1 < x <1 ; t > 0 ;

where ı � 0 is constant,  (u) D juj˛�1 u and ˛ > 1.
This equation represents a generalization of the classical
Boussinesq equation which arises in the modeling of non-
linear strings. The Boussinesq equation describes in the
continuous limit the propagation of waves in a one-di-
mensional nonlinear lattice and the propagation of waves
in shallow water [6,7,15,77]. A proof of the local well-
posedness of the Boussinesq equation has been showed
by Bona and Sachs [6]. In [13] the authors noticed that
the Boussinesq equation admits solitary solutions and the
existence of solitary wave solutions illustrates the perfect
balance between dispersion and the nonlinearity of the
Boussinesq equation. For the ˛ integer, solitary-wave solu-
tions have been shown to be stable under some restrictions
on the wave speed by Bona and Sachs [6].

Scott Russell’s study [62] of solitary water waves mo-
tivated the development of nonlinear partial differential
equations for the modeling of wave phenomena in flu-
ids, plasmas, elastic bodies, etc. The Boussinesq equation
is an important model that approximately describes the
propagation of long waves on shallow water like the other
Boussinesq equations (with uxxtt , instead of uxxxx). This
equation was first deduced by Boussinesq [7]. In the case
ı > 0 this equation is linearly stable and governs small
nonlinear transverse oscillations of an elastic beam [15]. It
is called the “good” Boussinesq equation, while the equa-
tion with ı < 0 received the name “bad” Boussinesq equa-
tion since it possesses linear instability.

Example 5 Consider the PC equation

utt �
1
p
u`xx � uxx � uttxx D 0 ;

where ` indicates different material with different values
of it. The PC equation is applied as a nonlinear model of
longitudinal wave propagation of elastic rods [15,16,75].
In the work of Bogolubsky [75], the author obtained ex-
act solitary wave solutions to the PC equation ` D 2; 3; 5;
respectively [15].

Example 6 In this paper, we consider the Burgers equa-
tion

ut C "uux � �uxx D 0

where " and � are parameters and the subscripts t and x
denote differentiation. The Burgers’ equation is a model of
flow through a shock wave in a viscous fluid [13] and in
the Burgers’ model of turbulence [9].

Example 7 The Fisher equation

ut � �uxx D ku


1 �

u
�

�
;
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is well known in population dynamics, where v > 0 is the
diffusion constant, k > 0 is the linear growth rate, and
� > 0 is the carrying capacity of the environment. The
right-hand side function ku

�
1 � u

�


represents a nonlin-

ear growth rate [15]. This well-known equation was first
proposed by Fisher [18] for a model of the advancement
of a mutant gene in an infinite one-dimensional habitat.
In recent years, the equation has been used as a basis for
a wide variety of models for the spatial spread of genes in
a population and for chemical wave propagation [18].

Example 8 Let us consider the (1C 1)-dimensional NLS
equation with two higher-order nonlinear terms in the
form

iut C 1
2uxx C ˛ juj


 u C ˇ juj2
 u D 0 ;

where � is a positive constant, ˛ and ˇ are constant pa-
rameters [15,16,69]. u D u(x; t) is a complex function that
represents the complex amplitude of the wave form, the
variable t should be interpreted as the normalized prop-
agation distance, x the normalized transverse coordinate
that represents a retarded time. The NLS equation, espe-
cially that with lower � values, appears in various branches
of contemporary physics [18,27,61,67,80,81] and has been
extensively investigated for the cases of � D 1 and � D 2,
its various solutions have been obtained. The NLS equa-
tion also arises in some form of ˛ D 0 and � D 1 in some
other physical systems such as nonlinear optic [3,26,38],
hydro magnetic and plasma waves [30,63] and the prop-
agation of solitary waves in piezoelectric semiconduc-
tors [55].

Example 9 In applied mathematics, the KP equation [36]
is a nonlinear partial differential equation. It is also
sometimes called the Kadomtsev–Petviashvili-Boussinesq
equation. The KP equation is usually written as:

(ut � 6uuxx C uxxx )x C 32uyy D 0 ;

where  D ˙1. This equation is implemented to de-
scribe slowly varying nonlinear waves in a dispersive
medium [58]. The above written form shows that the KP
equation is a generalization form of the KdV equation
which is like the KdV equation; the KP equation is com-
pletely integrable. The KP equation was first discovered in
1970 by Kadomtsev and Petviashvili when they relaxed the
restriction that the waves be strictly one-dimensional.

Example 10 Consider the solution u(x; t) of the nonlinear
partial differential equation

ut C "uux � �uxx C �uxxx D 0

where "; ( and � are positive parameters. This equation
is called the Korteweg–de Vries Burgers’ equation (KdVB)
which is derived by Su and Gardner [65]. KdVB is a model
equation for a wide class of nonlinear systems in the weak
nonlinearity and long wavelength approximations because
it contains both damping and dispersion. KdVB has been
constructed when including electron inertia effects in the
description of weak nonlinear plasma waves. The KdVB
equation possesses a steady-state solution which has been
demonstrated to model weak plasma shocks propagating
perpendicular to a magnetic field [24]. There are some
other implementation places to use the KdVB equation.
Examples are its use in the study of wave propagation
through a liquid-filled elastic tube [34] and for a descrip-
tion of shallow water waves on a viscous fluid [21,35].

Example 11 The nonlinear partial differential equation

(ut C uux � quxx C puxxx )x C ruyy D 0 ;

where p; q; r are real parameters. This equation is
called the two-dimensional Korteweg–deVries Burgers’
(tdKdVB) equation. The tdKdVB equation is a model
equation for a wide class of nonlinear wave models of flu-
ids in an elastic tube, liquids with small bubbles and tur-
bulence [52,53].

Example 12 In this example we consider in the (2C 1)-
dimension the potential Kadomtsev–Petviashvili equa-
tion,

uxt C 3
2uxuxx C

1
4uxxxx C

3
4uyy D 0 ;

where the initial conditions u(x; 0; t) and uy (x; 0; t) are
given. Nonlinear phenomena play a crucial role in applied
mathematics and physics. Obtaining the exact or approxi-
mate solutions of PDEs in physics and mathematics is im-
portant and it is still a hot spot to seek new methods to
obtain new exact or approximate solutions [14,15,16]. Dif-
ferent methods have been put forward to seek various ex-
act solutions of multifarious physical models described by
nonlinear PDEs.

Example 13 We consider the numerical solution to
a problem involving a nonlinear partial differential equa-
tion of the form

ut C u ux C uxxx � uxxxxx D 0 ;

this is called the Kawahara equation. The Kawahara equa-
tion occurs in the theory of magneto-acoustic waves in
plasmas [39] and in the theory of shallowwater waves with
surface tension [29].
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Example 14 A Generalized Zakharov–Kuznetsov (gZK)
equation [14,15,16,48,75] is proposed to understand the
physical and scientific mechanisms in different physical
and engineering problems. The gZK equation is as follows

utCb1u�uxCb2u2�uxCb3ux yCb4uxxxCb5ux yy D 0 ;

where b1; b2; b3; b4 ¤ 0; b5 ¤ 0 and � ¤ 0 are constant
parameters [48].When b1 D 6, b2 D b3 D 0, b4 D b5 D 1
and � D 1 the equation gZK is said to be Zakharov–
Kuznetsov (ZK) which can be derived for Alfvën waves
in a magnetized plasma at a special, critical angle to the
magnetic field by means of an asymptotic multi-scale
technique [8,56]. If b1 D 0, b2 D 1, b3 D 0, b4 D b5 D 1
and � D 1, then the equation gZK is said to be mod-
ified Zakharov–Kuznetsov (mZK) which represents an
anisotropic two-dimensional generalization of the KdV
equation and can be derived in a magnetized plasma for
a small amplitude Alfvën wave at a critical angle to the
undisturbed magnetic field. The radially symmetric pos-
itive solutions for the mZK equation have been com-
puted [54,82].

Example 15 Let’s consider the Sharma–Tasso–Olver
equation (STO) with its fission and fusion [76]

ut C 3˛u2x C 3˛u2ux C 3˛uuxx C ˛uxxx D 0 :

Attention has been focused on the STO equation in [50,68]
and the references therein due to its appearance in scien-
tific applications [74].

Example 16 Consider the Cahn–Hilliard equation

ut C uxxxx D
�
u3 � u


xx C ˇ ux :

The Cahn–Hilliard equation is related to a number of in-
teresting physical phenomena like spinodal decomposi-
tion, phase separation and phase-ordering dynamics. On
the other hand this equation is very hard and difficult to
solve. In this paper by considering a modified extended
tanh method, we found some exact solutions of the Cahn–
Hilliard equation. This equation is very crucial inmaterials
science [10,11,25]. Many articles have focused on mathe-
matical and numerical studies of this equation [1,19,49].

Future Directions

Nonlinear phenomena play a crucial role in applied math-
ematics and physics. Furthermore, when an original non-
linear equation is directly calculated, the solution will pre-
serve the actual physical characters of solutions. Explicit
solutions to the nonlinear equations are of fundamen-
tal importance. Various effective methods have been de-
veloped to understand the mechanisms of these physical

models, to help physicians and engineers and to ensure
knowledge for physical problems and its applications.

Many explicit exact methods have been introduced in
the literature [14,15,16,31,46,69,70,71,72,73,75]. These in-
clude the Bäcklund transformation, Hopf–Cole transfor-
mation, Generalized Miura Transformation, the Inverse
scattering method, Darboux transformation, Painleve
method, homogeneous balance method, similarity reduc-
tion method, tanh method, Exp-function method, sine–
cosine method and so on. There are also many numer-
ical methods implemented for these equations [22,23,28,
32,33,40,41,42,43,44,45,59,64,66]. These include the Fi-
nite elements method, finite difference methods and some
approximate methods such as the Adomian decompo-
sition method, Homotopy perturbation method, Varia-
tional perturbation method, Sinc-Galerkin method and so
on.

There is still much work to be done by researchers in
this field involving applications of nonlinear equations and
exact and numerical implementations.
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Books and Reviews
The following, referenced by the end of the paper, is intended to

give some useful for further reading.
For another obtaining of the KdV equation for water waves, see

Kevorkian and Cole (1981); one can see the work of the John-
son (1972) for a different water-wave applicationwith variable
depth, for waves on arbitrary shears in the work of Freeman
and Johnson (1970) and Johnson (1980) for a reviewof one and

two-dimensional KdV equations. In addition to these; one can
see the book of Drazin and Johnson (1989) for some numerical
solutions of nonlinear evolution equations. In the work of the
Zabusky, Kruskal and Deam (F1965) and Eilbeck (F1981), one
can see the motion pictures of soliton interactions. See a com-
parison of the KdV equation with water wave experiments in
Hammack and Segur (1974)

For further reading of the classical exact solutions of the nonlin-
ear equations can be seen in the works: the Lax approach
is described in Lax (1968); Calogero and Degasperis (1982,
A.20), the Hirota’s bilinear approach is developed in Matsuno
(1984), the Bäckland transformations are described in Rogers
and Shadwick (1982); Lamb (1980, Chap. 8), the Painleve prop-
erties is discussed by Ablowitz and Segur (1981, Sect. 3.8), In
the book of Dodd, Eilbeck, Gibbon and Morris (1982, Chap. 10)
can found review of the many numerical methods to solve
nonlinear evolution equations and shown many of their solu-
tions.
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Glossary

Interface An interface separates domains where different
stationary states or different patterns prevail. In the lat-
ter case, it is also called a domain wall. The interface
typically has a finite thickness comparable to a charac-
teristic intrinsic scale of the system but small compared
to the overall system size.

Stationary pattern A stationary pattern is formed as a re-
sult of an instability to perturbations with a finite
wavenumber. It may have any of various spatial struc-
tures (striped, square, hexagonal, or quasicrystalline in
2D, lamellar, crystalline or quasicrystalline in 3D) and
may slowly evolve in time.



6460 P Patterns and Interfaces in Dissipative Dynamics

Wave pattern Awave pattern is formed by a combination
of waves propagating in one or different directions.

Definition of the Subject

A pattern is an inhomogeneous state of a physical system
that arises spontaneously under spatially homogeneous
conditions. Spontaneous pattern formation has been first
observed by Faraday [1] in vibrated liquid layers and Bé-
nard [2] in fluids heated from below. Turing [3] envisaged
pattern formation as the mechanism of morphogenesis in
living Nature. Some patterns can be described as a collec-
tion of patches or domains where one of alternative homo-
geneous states prevails, separated by relatively narrow in-
terfaces. In their turn, moving interfaces may develop cor-
rugation patterns. Patterns can be stationary or wavelike;
they can be regular, interlaced by defects, or chaotic (tur-
bulent). In the latter part of 20th century, numerous pat-
tern formation phenomena have been observed in chem-
istry, biology, fluid mechanics, granular media, nonlinear
optics, and other applications, and common models de-
scribing these phenomena in physically dissimilar settings
have been formulated and studied. Understanding pattern
formation is important both for describing natural self-or-
ganization phenomena and for developing manufacturing
processes based on self-organization.

Introduction

A typical setup of a non-equilibrium system that may un-
dergo a symmetry-breaking transition is shown in Fig. 1.
A non-equilibrium stationary state homogeneous in the
“horizontal” plane is sustained by fluxes in the normal
(“vertical”) direction, along which an inhomogeneous

Patterns and Interfaces in Dissipative Dynamics, Figure 1
An open system isotropic in two dimensions. A truly two-
dimensional system (above) and a cut through a systemwith ver-
tical structure (below, shown symbolically by varied shading).Ar-
rows indicate the direction of external fluxes

“vertical structure” may be formed. This setup may be
realized as a layer of fluid or granular matter; a chem-
ically reacting system, such as an active layer or a cat-
alytic surface; an area where different populations spread
out and compete; a propagating interphase boundary, e.g
a melting or crystallizing solid; a slice of nonlinear op-
tical medium, etc. Under certain conditions, most com-
monly, under increased driving, this homogeneous state
may be destabilized, giving way to a stationary or mov-
ing pattern with a characteristic wavelength dependent on
physical properties of the system as well as on external
fluxes. In chemically reacting systems, three-dimensional
patterns can be also formed when a sufficient amount of
reactants is stored; such patterns may exist, of course, for
a limited time until the original cache is depleted. Math-
ematically, a pattern typically emerges as an inhomoge-
neous solution of a (system of) partial differential equa-
tion(s) with space-independent coefficients in the absence
of lateral fluxes.

Alternative states, corresponding to different phases,
may exist also in equilibrium systems. Following a fast
quench past a critical point, different states, separated by
domain boundaries, would be approached at spatially re-
moved locations. Typically, these domains would conse-
quently slowly coarsen to minimize the extent of an inter-
phase boundary and related energetic costs. A stationary
pattern with a finite wavelengthmay exist, however, also at
equilibrium, provided it minimizes the free energy of the
system. Such patterns are realized as “mesoscopic crystals”
in block-copolymers consisting of two kinds of mutually
repelling units [4].

In fluid mechanics, inhomogeneous states, most often
disordered but still retaining a measure of regularity, are
commonplace, as anybody observing wavy sea and cloud
patterns could have realized long before classical 19th
century experiments of Faraday and Bénard. Wave pat-
terns generated by oscillatory chemical reactions (which
long considered to be impossible due to thermodynamic
misconceptions) were demonstrated in 1960s [5], while
controlled experiments demonstrating persistent station-
ary chemical patterns in reaction-diffusion systems had to
wait till early 1990s [6]. Shell growth patterns [7], striped
and dotted animal skins [8], and desert vegetation pat-
terns [9] have been always here for anybody to observe, be-
fore finding rational explanation in terms of the same non-
linear models. Corrugated interfaces were observed and
described both as flame fronts in combustion theory [10]
and as dendrite forms of growing crystals [11]. More re-
cently, much attention has been drawn by nonlinear op-
tical patterns – spontaneous images emerging in optical
circuits and lasers [12].
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Stationary Patterns

Symmetry-Breaking Transitions

The most direct way to formation of stationary patterns is
a symmetry-breaking bifurcation. It can be demonstrated
in a straightforward way taking as an example a two-com-
ponent reaction-diffusion system (RDS)

@tu D D1r
2uC ��11 f (u; v) ; (1)

@tv D D2r
2vC ��12 g(u; v) ; (2)

where f (u; v); g(u; v) are source functions depending on
the variables u and v, D1, D2 are diffusivities, andr2 is the
Laplace operator. We suppose that the system has a ho-
mogeneous stationary state (HSS) u D us; v D vs satisfy-
ing f (us; vs) D g(us; vs) D 0; the factors �1; �2 are intro-
duced to scale the derivatives fu; gv computed at this HSS
to unity. Stability analysis of the chosen HSS to infinitesi-
mal perturbationseu;ev / exp(i k � x) with a wave vector k
shows that the most dangerous perturbations have the
wavenumber

jkj2 � k2 D
1
2

�
fu

�1D1
C

gv
�2D2

�
: (3)

This value should be positive, which is possible only in the
presence of positive feedback, or, in chemical terms, when
at least one of the species is “autocatalytic”, say, fu > 0.
Breaking of spatial symmetry preempts Hopf bifurcation,
which occurs at ��11 fu C ��12 gv D 0 and leads to homo-
geneous oscillations, provided only one of the species is
autocatalytic, so that gv < 0, and the autocatalytic species
is less diffusive. Thus, for spatial symmetry breaking in
a two-component system, one needs a combination of
a slowly diffusing “activator” and a rapidly diffusing “in-
hibitor”.

The development of a pattern can be understood qual-
itatively in the following way. A local upsurge of the ac-
tivator concentration increases also the concentration of
the inhibitor, which spreads out suppressing the activator
at neighboring locations. This, in turn, suppresses the in-
hibitor locally and, through inhibitor diffusion, enhances
the activator further along the line, so that the inhomo-
geneous state spreads out. This scheme works with the
roles of an activator and an inhibitor played, respectively,
by prey and predator in population dynamics, by grow-
ing plants and seeping moisture in ecology, or, rather less
directly, by buoyancy and heat conduction in natural con-
vection.

Pattern formation may also result from nonlocal inter-
actions. For example, a nonlocal extension of the nonlin-

ear Schrödinger equation (NLS) for a complex field u,

� i @tu D r2u � u(x)
Z

U(x � �)ju(�)j2d� ; (4)

generates a patterned state known as “supersolid”, as com-
pared and contrasted to superfluid solutions of the local
NLS [13]. It might be possible to derive nonlocal equa-
tions from a local RDS. Thus, if in Eq. (2) �2 
 �1, so that
the inhibitor is fast as well as diffusive, the time deriva-
tive can be neglected; then, if the function g(u, v) is linear
in v, Eq. (2) can be resolved with the help of an appropri-
ate Green’s function, and substituting it in Eq. (1) yields
a nonlocal activator equation.

Selection of Stationary Patterns

Symmetry breaking transitions in more than one dimen-
sion are degenerate due to spatial symmetries. In an
isotropic system, an arbitrary number of differently di-
rected modes with k D jkj D idem can be excited beyond
the bifurcation point. A combination of these modes can
give a variety of distinct planforms. Competition among
the modes that determines the pattern selection is de-
scribed by amplitude equations describing evolution of
complex amplitudes aj, which have a general form

da j

dt
D �

@V
@a j

;

V D ��
X
ja jj

2 C
X

�i jk ai a j ak

C
X

�i jk l ai a jak al C c:c:

(5)

Here the coefficient � is proportional to the deviation
from the bifurcation point; real coefficients �i jk ; �i jk l
characterize nonlinear interactions among the modes; the
summation is carried out over all closed polygons formed
by the wave vectors of extant modes. The product of the
amplitudes a j; ak , etc. (where the overline denotes the
complex conjugate) may appear in the equation for the
amplitude ai if the respective wave vectors add up to zero,
k i C k j C kk C � � � D 0. This condition ensures that the
modes in question are in resonance. Otherwise, the prod-
uct of these modes rapidly oscillates and is averaged out
when the amplitude equation is derived using a multiscale
expansion procedure. Stationary solutions, i. e. potential
minima of Eq. (5) with one, two, three, or more non-van-
ishing modes with a symmetric star of wave vectors cor-
respond, respectively, to a striped, square, hexagonal, or
quasicrystalline pattern.

The cubic term in the potential (5) generates the low-
est-order, hence, strongest nonlinear interactions. This
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term vanishes in the presence of inversion symmetry
a! �a, which exists, in particular, in the thoroughly
studied case of buoyancy-driven convection in the Boussi-
nesq approximation. Otherwise, it is dominant near the
bifurcation point, causing (in 2D) a subcritical transition
to a hexagonal pattern comprising modes forming a reg-
ular triangle. These three modes are in resonance, which
means that their phases are not independent but bound by
a linear relationship. The sum of phases always adjusts in
such a way that interactions are destabilizing. The remain-
ing two phase degrees of freedom correspond to transla-
tional symmetry in the plane.

In 3D, the preferred patterns, or crystalline structures,
comprise wave vectors forming a regular polyhedron with
triangular faces – tetrahedron, octahedron or dodecahe-
dron [14]. The former two correspond to a body-centered
cubic (bcc), and the last one, to a quasicrystalline structure
with fivefold symmetry. These lowest-order interactions
cannot, however, stabilize the pattern at a finite amplitude,
and next-order interactions generated by the quartic term
in Eq. (5) are necessary to saturate the pattern. Depend-
ing on respective interaction coefficients, various struc-
tures can be chosen.

A greater variety of patterns may arise if planforms
with different wavenumbers k are excited simultaneously.
This can be achieved in a most natural way in two-layer
systems where the wavelength of the excited pattern de-
pends on the thickness of each layer, as in convection [15],
or different diffusivities, as in a pattern-forming chemi-
cal system [16]. More possibilities arise in nonlinear op-
tics where spatial symmetry breaking may occur on dif-
ferent wavelengths at rather close values of a control pa-
rameter [17]. The resulting coupled amplitude equations
can generate a variety of composite planforms, which may
have a form of superstructures or quasicrystals. Lowest-or-
der interactions can generate various resonances; no rigid
fitting of wavenumbers is required for this, since resonant
modes can form an isosceles triangle. Dynamics of mode
interactions may be complicated [18], since the gradient
structure of Eq. (5) is, generally, lost.

Regular patterns may suffer various instabilities, which
limit the range of admissible wavelengths or lead to
a change of the planform through excitation of a non-
collinear mode or decay of an extant mode. Wavelength
changing instabilities, as a rule, do not saturate and lead to
formation of defects.

Modulated and Distorted Patterns

Natural patterns seen both in experiment and simulations
are never perfect: their amplitudes may be modulated at

Patterns and Interfaces in Dissipative Dynamics, Figure 2
Various forms of pattern defects. 1 – dislocation, 2 – concave
disclination, 3 – convex disclination, 4 – amplitude domain wall,
5 – phase domain wall ([19], reproduced with permission. Copy-
right by the American Physical Society)

distances large compared to the basic wavelength, and they
may have various defects: dislocations, disclinations, and
domain walls. An example of an imperfect striped pattern
is shown in Fig. 2. Variation of local wavelengths is pos-
sible because instability spreads out to a finite range of
wavenumbers, scaled as the square root of the paramet-
ric deviation from the bifurcation point. Other imperfec-
tions are a consequence of the rotational symmetry of the
system. Different orientations of stripes may be chosen at
different locations, either randomly or under influence of
boundary conditions or local inhomogeneities. The dis-
crepancies of local orientations are reconciled through for-
mation of disclinations and domain walls, while disloca-
tions reconcile discrepancies of local wavelengths.

Weak distortions, which do not contain defects, can be
described by means of either space-dependent amplitude
equations applicable to small-amplitude patterns near the
bifurcation point, or phase dynamics applicable also to fi-
nite-amplitude patterns but restricted to long-scale distor-
tions.

The amplitude equation must have an anisotropic
form in an isotropic system, the source of anisotropy being
the direction of the wave vector itself. Modulations of this
amplitude along and across the direction of the wave vec-
tor k should be scaled differently, since adding a small lon-
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gitudinal component, say, �qx changes k D jkj by O(�),
while adding a transverse component of the same mag-
nitude �qy changes k by O(�2) only; thus the stripes are
bent far more easily than they are compressed or extended.
This leads to the Newell–Whitehead–Segel (NWS) ampli-
tude equation [20,21], which can be written in a rescaled
universal form

@tu D
�
@x �

i
2k
@2y

�2
u C u � juj2u : (6)

The mixed-order differential operator entering this equa-
tion precisely accounts for the equivalence of all structures
with identical wavenumbers, independently of the direc-
tion of the wave vector.

TheNWS equation is ill-suited for computations, since
the orientation of the coordinate axes depends on the local
phase gradient, so that the differential operator is in fact
strongly nonlinear. Most model computations of striped
patterns are based on the Swift–Hohenberg (SH) equation

@tu D �(1Cr2)2u C u(� � u2) : (7)

In an anisotropic system where a certain direction of
stripes is preferred, the situation is easier, and the ampli-
tude equation can be reduced by rescaling to an isotropic
real Ginzburg–Landau (RGL) equation

@tu D r2u C u � juj2u : (8)

Phase Dynamics

The idea of phase dynamics [22] is to characterize a striped
pattern by means of a single variable – phase � , which
changes by 2� over the period of the pattern or, more
conveniently, by a rescaled phase 	 D �� . The deriva-
tives of the phase are the wave vector k D r� and fre-
quency ! D ��t , which vary on an extended scale exceed-
ing the wavelength of the underlying structure by a factor
��1 	 1. The general form of the phase equation in an

Patterns and Interfaces in Dissipative Dynamics, Figure 3
Hexagonal pattern containing a penta-hepta defect (left) and its three constituent modes obtained by Fourier filtering of the initial
image ([32], reproducedwith permission)

isotropic system is determined by scaling and symmetry
considerations alone:

@T	 D D1(n � br)2	 C D2br2	 ; (9)

where @T ;br are derivatives with respect to slow time and
extended spatial variables, n is the unit vector along k, and
D1; D2 are phase diffusivities that depend on a particu-
lar underlying problem and are, generally, functions of k.
This equation can be also presented in an elegant gradient
form [23].

The phase equation (9) is, in fact, strongly nonlinear
due to the dependence of both the diffusivities and the di-
rection of the unit vector n on the local phase gradient. It
can be linearized, yielding an anisotropic diffusion equa-
tion, only when deviations from a prevailing wave vector
k D k0 are arbitrary small. If the X- and Y-axes are drawn,
respectively, along and across k0, (9) reduces to

	T D Dk(k0)	XX C D?(k0)	YY ; (10)

where Dk D D1 C D2 and D? D D2 are, respectively, the
longitudinal and transverse phase diffusivities. The pattern
with the wavenumber k0 is stable to long-scale perturba-
tions when both phase diffusivities are positive. Vanishing
Dk corresponds to the Eckhaus instability and vanishing
D? to the zigzag instability. Eckhaus instability defines the
upper limit of stable wavenumbers. It never saturates, and
usually leads to formation of defects effectively increasing
the wavelength. Zigzag instability defines the upper limit
of stable wavenumbers; it causes bending of stripes effec-
tively decreasing the wavelength.

Dynamics of Defects

Dynamics of strongly distorted patterns is mostly gov-
erned by motion and interaction of defects. Defects are
topological objects [24]: a dislocation is characterized by
circulation of the phase around any enclosing contour
equal to an integer multiple of 2� , and a disclination, by
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circulation of the direction of the wave vector equal to an
integer multiple of � . A single dislocation climbing across
the direction of the wave vector of a striped pattern effects
a change of the wavenumber over an extended region. The
force driving the dislocation is due to the deviation from
the optimal wavenumber. Eckhaus instability of a striped
pattern leads to the formation of a dislocation pair. It is
notable that, although the far field of dislocations can be
described by phase equations, their interaction is deter-
mined by the dislocation core where these equations are
inapplicable [25,26].

Motion of dislocations in striped patterns is well un-
derstood and supported by experimental evidence [27] for
anisotropic patterns governed by Eq. (8). The structure of
dislocations in isotropic systems described by Eq. (6) is
more complicated, being strongly anisotropic [28]. Discli-
nations pose more difficulties for the analysis, even on the
topological level [24], see [29].

Paradoxically, defects enhance relaxation of the pat-
tern to a state of minimum energy corresponding to an
“optimal” wavelength. If a deviation of the control param-
eter from the symmetry breaking bifurcation point is of
O(�2), the width of the band of excited modes is of O(�),
but the band width actually observed in a natural patterns
containing defects is of O(�2) [19]. The band shrinks due
to motion of point defects and adjustments influenced by
domain walls.

The structure and interaction of dislocations in
a hexagonal pattern is strongly affected by the resonant
character of interactions among the constituent modes.
Dislocations in any two modes of the triplet forming
a hexagonal pattern, created originally at arbitrary loca-
tions, are always attracted to each other [30,31], eventu-
ally forming an immobile bound pair corresponding to
a penta-hepta defect (see Fig. 3).

Equations (6), (8) are derivable from an energy func-
tional that decreasesmonotonically in time until a station-
ary state of minimal energy is reached; this state may still
contain defects necessary to satisfy boundary conditions in
a confined region. In some cases, however, an additional
field, besides the amplitude, is necessary to adequately de-
scribe a physical system even close to the symmetry-break-
ing bifurcation point. A well known example is Bénard
convection in low Prandtl number fluids where the ad-
ditional factor is mean flow generated by pattern distor-
tions and advecting the entire pattern. In this case, the pat-
terns remains weakly turbulent indefinitely long, display-
ing labyrinthine structures, coexisting striped and hexago-
nal domains [33] or spiral defect chaos [30] (see Fig. 4).
Chaotic non-stationary patterns also typically appear at
higher amplitudes. In reaction-diffusion systems non-sta-

Patterns and Interfaces in Dissipative Dynamics, Figure 4
a Coexisting domains; b Spiral defect chaos [30] (reproduced
with permission)

tionary and chaotic patterns become more likely when the
inhibitor response is slowed down.

Moving Interfaces

Stationary and Propagating Fronts

Many physical systems, either at equilibrium or in a non-
equilibrium steady state sustained by external fluxes, may
exist in two ormore alternative states. If different states are
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Patterns and Interfaces in Dissipative Dynamics, Figure 5
A function f (u) with three zeros (a) and the respective double-
well potential (b)

attained at different spatial locations, they are separated by
an interface, carrying excess energy. The simplest model is
a single “reaction–diffusion” equation

@tu D Dr2u C f (u) ; (11)

where D is diffusivity and the function f (u) D �V 0(u)
(see Fig. 5) has three zeroes that correspond to two stable
(with f 0(u) < 0) and one unstable (with f 0(u) > 0) HSS.
This equation was first used in the context of phase equi-
libria [34] as a model of gas–liquid interface, with u de-
noting density. It was later extended to the solidification
problem, with u denoting a fictitious “phase field” assum-
ing its two stable values u D u˙s in the liquid and solid
phases [35]. The coefficientD is interpreted in this context
as rigidity. The “reaction-diffusion” interpretation applies
to non-equilibrium systems, such as a catalytic surface or
an ecological domain, with u denoting concentration and
f (u), the net production rate.

A straight-line or planar interface is stationary when
the potentials V(u˙s ) are equal. It carries then the interfa-
cial energy

� D D
Z 1

�1

u0(x)2dx D
Z uCs

u�s

p
2DV(u)du ; (12)

which is identified with surface tension.
If the potentials are unequal, the front moves in the di-

rection decreasing the total energy of the system. Assum-
ing that the motion is stationary and directed along the x
axis, (11) can be rewritten in the comoving frame propa-
gating with the front velocity c. The steadily propagating
solution depends on a single coordinate � D x � ct, and

Patterns and Interfaces in Dissipative Dynamics, Figure 6
Generic trajectories in thephaseplaneu;pD u0(x) (a) and a non-
generic set of trajectories containing a heteroclinic orbit (b)

(11) reduces to an ordinary differential equation

cu0(�)C Du00(�)C f (u) D 0 ; (13)

subject to the boundary conditions u D u˙s at � !˙1.
When both equilibria are stable, they are saddles when
viewed as equilibria of (13). The front solution corre-
sponds to a heteroclinic trajectory connecting the equi-
libria u D u˙s . The heteroclinic connection exists only at
unique value of c (see Fig. 6); thus, the propagation speed
is determined uniquely by solving a nonlinear eigenvalue
problem. Its value is proportional to the difference of
potentials of the two HSS:

c D
D
�

V ; 
V D V(u�s ) � V (uCs ) : (14)

The situation is different when the retreating state
u D u0s is unstable. This often happens in population dy-
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Patterns and Interfaces in Dissipative Dynamics, Figure 7
Trajectories in the phase plane connecting a stable and an un-
stable equilibrium

namics: a state where a competitively advantageous specie
is absent is formally unstable to infinitesimal perturbations
but will be nevertheless preserved at any location until this
specie is introduced there. An unstable state, viewed as
an equilibrium point of (13), is a stable node at propa-
gation speeds exceeding a certain threshold cmin, Thus,
a trajectory starting from the advancing stable HSS con-
nects generically to u0s at any c > cmin (see Fig. 7). Actual
propagation speed is selected dynamically at the leading
edge [37,38], and turns out to be equal to the minimum
speed cmin, which corresponds to the steepest front profile.
Under certain conditions (when overshoots are allowed)
a faster speed corresponding to a still steeper profile is
selected nonlinearly [38]. In the former case, the front
is “pulled” by perturbations growing at the leading edge
and described by linearized equations, while in the latter
case, it is “pushed” by nonlinear interactions favoring the
advancing state.

Interfacial Instabilities

The front solution is neutrally stable to translations along
the x-axis. This neutral (Goldstone) mode is weakly per-

Patterns and Interfaces in Dissipative Dynamics, Figure 8
Construction of the aligned coordinate frame. The coordinate
lines are shown in gray. Arrows show the local directions of the
normal n and the x-axis. Observe a singularity developing on the
concave side

turbed when the translation is weakly nonuniform, so that
the front becomes curvilinear but the curvature radius still
far exceeds the characteristic front thickness.

Propagation of a weakly curved front is best under-
stood in a coordinate frame aligned with its deformed
shape. The nominal front position is defined by replac-
ing a diffuse transitional region by a planar curve C drawn
along some intermediate level of the variable u. The coor-
dinate lines x D const are obtained by shifting the curve
along the normal by a constant increment, as shown in
Fig. 8. This shift causes the length to increase on convex,
and to decrease on concave side of the curve. Eventually,
a singularity develops in the latter direction, but, when
the curvature radius is much larger than the characteristic
front thickness, this will happen far away within the region
where one of the HSS is approached.

When (13) is rewritten in the aligned frame an ex-
panded viewing the curvature as a small parameter, the
local normal propagation speed of a curved front is ex-
pressed by the eikonal equation

c D c0 � D� D
D
�

(
V � ��) ; (15)

where c0 is the speed of a planar front and � is the Gaussian
curvature.

Since convex front segments propagate slower and
concave segments faster, the front tends to flatten, pro-
vided c0 is uniform everywhere. Instabilities may arise,
however, when c0 increases ahead of the front. This may
happen in the presence of an externally imposed gradient,
as in directional solidification [11], but most commonly is
caused by an additional “control” field. The control field
responsible for the Mullins–Sekerka instability of solidi-
fication fronts [11,39] is the concentration of a contam-
inant, which is rejected by the solid and slows down so-
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lidification by lowering the melting temperature. Since the
contaminant diffuses away more easily from convex seg-
ments, they tend to propagate faster, which causes instabil-
ity when the driving is strong enough to overcome surface
tension.

Another example is instability of a combustion front,
which separates hot burnt-out and cold fuel-rich do-
mains [10]. A thin front structure arises in this case be-
cause combustion requires both fuel and sufficient tem-
perature for its initiation, and both fuel concentration and
temperature play the role of control variables. When heat
transfer is the limiting factor, convex segments cool down
and propagate slower, and the front is stable. When, on
the opposite, propagation is limited by fuel supply, con-
vex segments accelerate and instability sets on, leading to
corrugated fronts.

Dynamics of weak deviations �(y) from a stable pla-
nar front spanned by a 2-vector y is described by expand-
ing the normal propagation speed, front curvature and the
control field in powers of a small parameter scaling both
the deviation � and its transverse derivative ry, as well as
time. For stable fronts, the appropriate scaling is � D O(1),
ry D O(�), @t D O(�2), leading to the Burgers equation

@t� D Dr2
y� �

1
2 c0jry�j

2 : (16)

The particular coefficients here correspond to (15), but
also in other cases the same universal form can be ob-
tained after the coefficients are removed by rescaling, pro-
vided the effective diffusivity D is positive. If the latter is
negative but small, jDj D O(�2), the appropriate scaling
is � D O(�), ry D O(�), @t D O(�4), and expanding to
a higher order yields, after scaling away the coefficients,
the Kuramoto–Sivashinsky equation [40]

@t� Cr
2
y � C (r2

y )
2� C 1

2 jry�j
2 D 0 : (17)

This equation, appearing also in phase dynamics [41], is
a paradigm of weak turbulence.

Front Interactions and Coarsening

Fronts of opposite polarity in a one-dimensional system
attract and eventually coalesce, thereby coarsening the dis-
tribution of domains, which may have been created ini-
tially in the process of phase separation or relaxation to
alternative HSS. The interaction is, however, very weak,
falling off exponentially with separation. In higher dimen-
sions, the principal cause of coarsening, or Ostwald ripen-
ing, is the curvature dependence of the propagation speed,
whereby small droplets with high curvature tend to shrink
and eventually disappear. This is a manifestation of the

Gibbs–Thomson effect relating the equilibrium conditions
with the radius of a droplet.

Coarsening most often occurs under conditions when
evolution is constrained by a conservation law, so that the
integral

R
u(x)dx expressing the total amount of material

in the system remains constant. Under these conditions,
fronts cannot move independently from each other. The
conservation law is accounted for when (11) is replaced by
the Cahn–Hilliard equation [35]

@tu D r2� ; � D �[Dr2u C f (u)] : (18)

The eikonal equation governing the front motion retains
the form (15), but the value c0 depends on chemical po-
tential �. The latter shifts in the course of coarsening in
such a way that the value of the critical radius R D ��1 of
a droplet that neither grows or shrinks, keeps growing as
smaller droplets disappear. Analytical theory [42] predicts
universal asymptotic droplet size distribution at late stages
of coarsening.

Structures Built up of Fronts

Coarsening can be precluded when changes in an addi-
tional control field arrest growth of large and shrinking of
small domains. This leads to formation of a variety of pat-
terns and solitary structures. The paradigmal system for
exploring these phenomena is the FitzHugh–Nagumo sys-
tem, which has the form (1), (2) with the function f (u, v)
cubic in u and linear in v and a linear function g(u, v). The
rescaled form suitable for the analysis of stationary struc-
tures is

�2 @tu D �2r2u C u � u3 � �v ; (19)

��1@tv D r2v � v � � C �u ; (20)

Here � D
p
�1D1/�2D2 
 1 is the ratio of the characteris-

tic lengths associated with the activator and the inhibitor,
� D D2/D1; the small coupling parameter " in (19) ensures
a balance between the effect of small interfacial curvature
and weak symmetry breaking between the alternative HSS
u˙s D ˙1C O(�); the remaining parameters� and � reg-
ulate the coupling stress and bias.

Structures generated by the system (19), (20) are built
up by assigning a region where the activator approaches
one of the alternative HSS, computing the respective in-
hibitor distribution, and finding stationarity conditions
for the fronts forming the boundaries of this region [43].
Possible stationary structures in two dimensions are a soli-
tary band, a solitary disk, a striped pattern, or a hexagonal
grid consisting of almost circular spots. The size of spots
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or stripes is determined by the parameters of the system,
but there is a considerable leeway in choosing the general
configuration. Under certain conditions, it even might be
possible to store information by creating or extinguishing
spots at chosen locations [44]. In other cases, splitting of
a solitary spot initiates a multiplication cascade [45], lead-
ing eventually to a hexagonal pattern filling the plane.

Instabilities of stationary structures are studied with
the help of the linearized eikonal equation (15) combined
with the inhibitor equation (20) where the last term is ex-
pressed through a shift of the front position. Both solitary
bands and disks can suffer zigzag (leading eventually to
splitting), oscillatory and traveling instabilities. The latter
two become prevalent as the parameter � decreases, so that
the inhibitor response to front displacements slows down.
For example, a solitary band is destabilized in the zigzag
mode at � > 1, while the traveling instability comes first at
smaller � (see Fig. 9). Oscillatory instability is always pre-
ceded by traveling one in this case, but may become rele-
vant for a solitary disk.

Traveling instability indicates transition to various
propagating structures and wave patterns. A solitary spot
tends to either dissolve or spread out sidewise after be-
ing immobilized; in the latter case, a spiral structure starts
to develop as the ends lag behind. A traveling spot can
be, however, stabilized if a second inhibitor, both fast and
long-range, is added [46].

Various patterns of propagating fronts can be gener-
ated beyond this limit by the same FitzHugh–Nagumo
system, which, however, should be scaled differently for
this purpose. Unlike stationary or slowly evolving patterns
where the characteristic length scale is set by the diffu-

Patterns and Interfaces in Dissipative Dynamics, Figure 9
Existence boundary (C) and loci of zigzag (Z) and traveling in-
stability for a solitary band. The loci of traveling instability are
marked by respective values of �. A stable band exists between
the line C and an applicable instability locus

sional range of the long-scale inhibitor, the wavelength
of a propagating pattern is tied to the propagation speed
and remains finite even when the inhibitor is nondiffu-
sive. The long scale should be redefined therefore on the
basis of the characteristic propagation speed of the acti-
vator front c� D

p
D1/�1 and the characteristic relaxation

time of the inhibitor �2. Using this “advective” length unit,
L� D �2

p
D1/�1 brings (1), (2) to the dimensionless form

�@tu D � 2r2u C f (u; v) ; (21)

@tv D ı2r2v C g(u; v) ; (22)

where � D �1/�2; ı D � /� D
p
�D2/D1. The “inner”

scale of the transitional layer, where the system switches
between the two alternative activator states, u D u˙s , is
now set exclusively by the capacitance ratio � , indepen-
dently of diffusivities, and, provided � 
 1, remains small
even when the inhibitor is less diffusive than the ac-
tivator. The parameters can be chosen in such a way
that ı 
 1, so that the inhibitor diffusion is negligi-
ble, provided � 
 D1/D2. Under these conditions, the
inhibitor diffusion can be neglected, reducing (22) to
@tv D g(u; v). Although this equation contains no mech-
anism for healing discontinuities in v, the inhibitor field
should remain smooth in the course of evolution, bar-
ring freaky initial conditions or strongly localized pertur-
bations. This opens the easiest way of constructing vari-
ous wave patterns, including such exotic objects as chaotic
wave trains [47].

Interfaces of Patterns

Interfaces between different patterns or different pattern
orientations (domain walls) can be described in the sim-
plest way on the level of amplitude equations. This may
give qualitatively correct results in static problems, even
though changes across a domain wall in patterns gener-
ated in simulations and experiments are usually effected
on a length comparable with the prevailing wavelength of
the pattern. One can expect that a stationary solution exists
only when the wavelengths are equal on both sides of the
wall; otherwise, the wall would propagate in the direction
decreasing the overall energy of the pattern. It turns out
that an even stronger restriction is true, and both wave-
lengths should be optimal [48]. In this way, domain walls,
alongside dislocations, enhance relaxation of the pattern
to the optimal wavelength.

Dynamic problems are strongly influenced by detailed
structure of the pattern, which is lost on the level of ampli-
tude equations. When a pattern advances into an unstable
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Patterns and Interfaces in Dissipative Dynamics, Figure 10
A scheme of depinning transitions showing crystallization (C)
and melting (M) thresholds for an infinite cluster, as well as the
corresponding limits for clusters of different sizes, terminating
in single-cell limits 1-C, 1-M

uniform state, the wavelength selected at the leading edge
is not identical to the wavelength of the full-grown pattern
formed behind the front, and neither one coincides with
the optimal wavelength [49].

In the case when a stable homogeneous solution coex-
ists with a stable periodic pattern, stable stationary fronts
between the two states exist within a finite parametric in-
terval [50], rather than at a single point where the ener-
gies of both states are equal, as amplitude equations would
predict. The motion of this front is affected by the discrete
structure of the pattern, which causes self-induced pinning
hindering the retreat of a metastable state. There are two
depinning transitions, corresponding to “crystallization”
or “melting” of the pattern, shown schematically by thick
lines in Fig. 10. Between the two limits, various metastable
stationary structures exist: a single cell (“soliton”), a fi-
nite patterned inclusion, sandwiched between semi-infi-
nite domains occupied by a uniform state, or a semi-in-
finite pattern, coexisting with a uniform state. To the right
of the crystallization threshold C, the pattern advances by
a periodic nucleation process which creates new elemen-
tary cells at the interface [51], while to the left of the melt-
ing limit M, the pattern recedes as elementary cells at the
interface are destroyed. A different, far more efficient de-
pinning mechanism works in two dimensions [52]. It is
initiated by a zigzag instability of the pattern followed by
nucleation of disclinations, which furthermove toward the
uniform state, as seen in Fig. 11. This generates stripes
extending in the normal direction, turning eventually the
original boundary into a domain wall separating striped
patterns rotated by �/2.

Patterns and Interfaces in Dissipative Dynamics, Figure 11
Depinning of striped pattern initiated by a zigzag instability [52]

Wave Patterns

PlaneWaves

A simplest propagating wave pattern is a periodic so-
lution depending on a moving coordinate � D x � ct,
where c D !/k is phase velocity, ! is frequency and k is
wavenumber. A waveform� exp[i(kx � ! t)] may emerge
directly by symmetry breaking bifurcation, but this is not
the most common mechanism. It is impossible, in partic-
ular, in a two-component RDS (1), (2), where other sce-
narios lead to wave patterns. One of them, mentioned in
the preceding Section, is traveling instability of stationary
structures. Another road to wave patterns, most amenable
to analytical tools, starts in the vicinity of a Hopf bifur-
cation, where small-amplitude oscillations weakly mod-
ulated in space are described by the complex Ginzburg–
Landau (CGL) equation. Its standard rescaled form is

@tu D (1C i�)r2u C u � (1C i�)juj2u : (23)

A plane wave solution of (23) with the wave vector k is

u D �0 exp[i(k � x � ! t)] ;

�0 D
p
1 � k2 ; ! D � C (� � �)k2 :

(24)

The waves are dispersive, and the group velocity is
v D 2k(� � �).

Instabilities of plane waves are studied most efficiently
with the help of the phase dynamics approach, since
the most dangerous perturbation modes can be viewed
as long-scale distortions of neutrally stable translational
modes. The longitudinal and transverse phase diffusivities
are

Dk D
1C ��� k2(3C ��C 2�2)

1 � k2
; D? D 1C��: (25)

Vanishing Dk marks the threshold of Eckhaus instability,
which limits the range of stable wavenumbers. Vanish-
ing D? signals Benjamin–Feir (self-focusing) instability,
independently of the wavelength. Both instabilities arising
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Patterns and Interfaces in Dissipative Dynamics, Figure 12
Limits of convective and absolute instabilities in the plane (; k)
for � D �3/2. The dot marks the limit of convectively unsta-
ble waves ([53], reproduced with permission. Copyright by the
American Physical Society)

at the respective thresholds are convective, which means
that growing perturbations are washed away with the pre-
vailing group velocity. The absolute instability condition
stipulating growth of perturbation at a particular location
is less restrictive (see Fig. 12). Numerical simulations [53]
show that transition to turbulence occurs only when the
absolute stability condition is violated, but the system is
very sensitive to noise in the convectively unstable region.

Besides uniform wave trains, there is a variety of non-
uniform one-dimensional solutions of the CGL equation
with a constant frequency and spatially varying modulus
and wavenumber, which are stationary in a frame propa-
gating with a certain speed c and depend on the comoving
coordinate � D x � ct only. The solutions approaching
asymptotically at � !˙1 either plane waves or the triv-
ial state can be also viewed as defects separating domains
where different uniform states prevail. Such solutions in-
clude pulses, approaching the trivial state at both extremes;
nonlinear fronts, separating the trivial state from an invad-
ing wave train, and domain boundaries separating plane
waves directed in the opposite sense and, possibly, having
different wavelength [53,54]. Interactions among various
defects dominate chaotic dynamics beyond the self-focus-
ing instability limit [55].

Amplitude equations for wave patterns emerging di-
rectly from an HSS through a symmetry breaking bifurca-
tion with ! ¤ 0; k ¤ 0 should account for competition
between waves with amplitudes u˙ propagating in the op-
posite directions, which may either suppress one another

or combine to a standing wave. The normalized form of
coupled equations for u˙ is

@tu˙ ˙ cu˙x D (1C i�)u˙xx C u˙ � (1C i�C)ju˙j2u˙

� g(1C i��)ju�j2u˙ ;
(26)

where g is a coupling parameter. The orders of magni-
tude of all terms of these equations can be balanced only
when the phase velocity c D !/k is of the same O(�)
as u˙. Generically, c D O(1), and the advective term cu˙x
is dominant. For a single wave, it can be removed by trans-
forming to the comoving frame. When both waves are
present, each wave, viewed in its own frame �˙ D x � ct
samples the average amplitude of its counterpart propa-
gating in this frame with a fast speed. The appropriate am-
plitude equations have then the form [56]

@tu˙ D (1C i�)u˙�
˙
�
˙

C u˙ � (1C i�C)ju˙j2u˙

� g(1C i��)hju�j2iu˙ : (27)

These equations retain only global coupling carried by the
spatial averages hju�j2i.

In two dimensions, the amplitude equations also in-
volve resonant interactions of pairs of waves propagating
in the opposite directions. This makes possible complex
dynamics evenwhen the amplitudes are uniform and obey
space-independent equations [57]

@tuC1 D uC1
�
� � �CjuC1 j

2 � ��ju�1 j
2

�ˇ
�
juC2 j

2 C ju�2 j
2�C �u�1 u

C
2 u�2 : (28)

Spiral and Scroll Waves

A ubiquitous and extensively studied waveform is a ro-
tating spiral wave. Its specific feature is the presence of
a phase singularity. An n-armed spiral wave can be con-
structed as a circularly symmetric vortex solution of (23)
with the topological charge n, i. e. phase circulation 2�n.
Unlike a symmetric defect in (8), the phase must also de-
pend on the radial coordinate, so that the vortex radi-
ates a wave with a certain uniquely selected asymptotic
wavenumber k1. This solution is obtained [58] in polar
cooordinates r; � by assuming an ansatz

u D �(r)ei� ; � D n� C  (r) � ! t : (29)

Using this ansatz brings (23) to the form

�00(r)C r�1�0(r)C (1 � k2 � n2/r2 � �2)� D 0 ; (30)

1
r�2

d
dr

(rk�2) D q(�21 � �
2) ; (31)
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Patterns and Interfaces in Dissipative Dynamics, Figure 13
Stability limits of a spiral wave solution in the parametric plane
(�; ). The curve EI shows the limit of convective instability and
AI, of absolute instability for the waves emitted by the spiral;OR
is the boundary of the oscillatory spatial decay for the emitted
waves, qD 0:845 (bound states exist to the right of this line).
BF indicates the Benjamin–Feir limit � D �1, L is the limit of
phase turbulence, and T corresponds to the transition to defect
turbulence for random initial conditions ([53], based on [59]; re-
producedwith permission). (Copyright by the American Physical
Society)

where k D  0(r) is the radial wavenumber. Stability anal-
ysis of plane waves applies also to far regions of spiral
waves; one could expect therefore a transition to a tur-
bulent state to occur under conditions when the selected
asymptotic wavenumber k1 falls into the range where the
corresponding plane wave solution of (23) is unstable. The
respective stability limits in the parametric plane (�; �) are
presented in Fig. 13.

Another approach to constructing rotating spiral
waves exploits kinematics of fronts of opposite polarity de-
scribed by RDS (21), (22) [60]. The inhibitor diffusion can
be neglected almost everywhere, except in the crucial tip
region where the two fronts meet. Behavior of the spiral
tip and its meandering instability has been elucidated an-
alytically using a multiscale technique matching different
approximations in overlapping regions [61]. Complex dy-
namics of a meandering tip, which exhibit quasiperiodic
and chaotic motion in some parametric domains, can be
well described with the help of a simpler phenomenolog-
ical model [62]. A similar instability of spiral waves de-
scribed by the CGL equation is the core acceleration in-
stability [53], which may serve as a trigger of transition to
spatio-temporal chaos alternative to instability of radiated
waves.

Patterns and Interfaces in Dissipative Dynamics, Figure 14
a A pair of period two spiral waves with the fundamental pe-
riod � and the average wavelength �. The white solid lines are
the synchronization defects. b A period two time series mea-
sured at the point marked by the white filled square ([63], repro-
duced with permission. Copyright by the American Physical So-
ciety)

A special kind of spiral wave patterns arises when the
underlying dynamical system undergoes a period doubling
transition. The period doubling causes the appearance of
synchronization defect (SD) lines, which serve to recon-
cile the doubling of the oscillation period with the period
of rotation of the spiral wave (see Fig. 14a). These lines are
defined as the loci of those points in the medium where
the two loops of the period two orbit exchange their posi-
tions in local phase space. The period two oscillations on
the opposite sides of a SD are shifted relative to each other
by 2� (i. e., a half of the full period), so that the dynamics
projected on the rotation direction is effectively of period
one, while it is of period two locally at any point in the
medium (Fig. 14b).

A three-dimensional extension of a rotating spiral is
a rotating scroll wave. The core filament of a scroll wave
is a line vortex. A scroll wave with a straight-line core di-
rected along the z-axis has identical spiral waves in each
cross-section. Even then, the structure can be nontriv-
ial if the spiral phases are given a phase twist, i. e. are
shifted along the z-axis. A curved core filament may also
close up into a ring or even form knots. A stable scroll
structure evolves to decrease the filament curvature [64].
This kind of dynamics is similar to curvature-driven mo-
tion of interfaces, but may be reversed when the filament
is unstable. The most dangerous perturbation modes are
long-scale modes associated with meandering or transla-
tional core deformations [65]. Meandering instability usu-
ally saturates as a distorted scroll wave with a twisted ro-
tating core (Fig. 15). Instability in the translation mode,
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Patterns and Interfaces in Dissipative Dynamics, Figure 15
a A restabilized helical vortex; b A doubly periodic “superhe-
lix” Isosurfaces of the modulus � D 0:6 shaded by phase field
are shown. (CGL simulations [66], reproduced with permission.
Copyright by the American Physical Society)

which causes spontaneous bending of the scroll axis, does
not saturate, but gives rise to a scroll wave with a con-
tinuously extending core (Fig. 16a). This leads to a tur-
bulent state visualized as a tangle of breaking wave fronts
(Fig. 16b).

Spiral Patterns and Turbulence

Interaction of spiral waves is dominated by shocks – do-
main boundaries where waves emanating from different
centers collide. The shocks effectively screen different spi-
ral domains from radiation emitted by other spiral cores.
A typical example of a spiral domain pattern in a sta-
ble parametric range obtained in a CGL simulation run
starting from random initial conditions [59] is shown in
Fig. 17. At the initial stage, the system tends to relax locally
to the stable state with unity real amplitude, but, as the
phases are random, the relaxation is frustrated, and a large
number of defects – vortices of unit charge – are formed.
At the following coarsening stage, oppositely charged vor-
tices annihilate, so that the density of defects decreases.
The coarsening process, however, stops halfway, leaving
a certain number of single-charged spiral vortices with ei-
ther sense of rotation. Vortices that failed to conquer a suf-
ficiently large domain are reduced to “naked cores”, left to
satisfy the topological condition of conservation of circu-
lation. The resulting stable spiral domain pattern is called
vortex glass. The waves always propagate outwards from
the vortex cores, so that the entire domain structure is
generated when local order spreads out from centers to
the periphery. Perturbations, also traveling outwards with
the prevailing group velocity, are absorbed at shocks, and

Patterns and Interfaces in Dissipative Dynamics, Figure 16
Transition to turbulence due to core filament extension and
breakup of scroll waves. a Snapshots of the core filament, start-
ing from a closed loop. b Respective snapshots of wave patterns
showing semitransparent visualization of the activator fronts
([67], reproduced with permission. Copyright by the American
Physical Society)

therefore the pattern may survive beyond the convective
instability threshold. The turbulent state takes over only
when the emanated waves become absolutely unstable,
i. e., when some perturbations grow locally in the labora-
tory frame.

The overall structure of the pattern changes in the
range of oscillatory spatial decay of waves emanated by
the spiral cores (below the line OR in Fig. 13). Under these
conditions, formation of stable bound spiral pairs becomes
possible (see Fig. 18). Unlike the monotonic range, spiral
domains may have in oscillatory range a wide size distri-
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Patterns and Interfaces in Dissipative Dynamics, Figure 17
Spiral domains. Left: levels of constant phase. Right: grayscale amplitude map showing enhanced amplitudes at the shocks (CGL
simulations [59], reproduced with permission from Elsevier Science)

Patterns and Interfaces in Dissipative Dynamics, Figure 18
Bound states of oppositely (left) and likely (right) charged spirals
(CGL simulations, � D 0;  D 1:5). The images show the mod-
ulus �(x; y) (top) and Re(u) (bottom) ([53], reproduced with per-
mission. Copyright by the American Physical Society)

bution, since shocks can be immobilized at different sepa-
rations.

“Frozen” glassy patterns actually evolve on a very long
time scale, as revealed in very long simulation runs [68]. In
the monotonic range, spiral cores perform very slow diffu-
sive motion; the apparent diffusivity increases with vortex
density. In contrast, in the oscillatory range, spiral popu-
lation spontaneously segregates after a very long transient
into two distinct phases: large and almost immobile spi-

rals and clusters of trapped small vortices. When the “liq-
uid fraction” is small, the resulting pattern exhibits slow
intermittent dynamics: bursts of activity separated by long
quiescent intervals. The system keeps evolving on an ex-
tremely slow scale, which is consistent with exponentially
weak repulsion between well separated spiral cores.

Another possibility, realized in a different parametric
region, is a dynamic chaotic state that shows no persis-
tent features. This state is attained under conditions when
either spiral waves or vortex cores, or both, are unstable.
One can distinguish between mild phase turbulence when
no phase singularities occur, and defect chaos character-
ized by persistent creation and annihilation of vortex pairs.
Phase turbulence may persist in the parametric region be-
tween the Benjamin–Feir line and the line L in Fig. 13 [59].
Beyond the line L, defects are created spontaneously, lead-
ing to defect chaos. Transition from vortex glass to de-
fect turbulence in simulations starting from random initial
conditions occurs at the numerically determined line T in
Fig. 13 [59]. The transition occurs somewhat prior to the
absolute instability limit determined by the linear stability
analysis of plane waves emitted by spirals. This limit can
be approached, however, by starting from carefully pre-
pared initial conditions in the form of large spirals. Prior
to the transition, one can observe transient defect turbu-
lence which is unstable to spontaneous nucleation of spi-
rals from the “turbulent sea”, leading eventually to a vortex
glass state.

Forced Systems

External forcing, including spatially as well as tempo-
rally variable inputs, can be used in a straightforward
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Patterns and Interfaces in Dissipative Dynamics, Figure 19
Frequency-locked regimes (experiment with light-sensitive reaction under periodic optical forcing [71], reproduced with permis-
sion). The axis above shows the ratio of the forcing to basic frequency. Patterns are shown in pairs, one above the other, at times
separated by the forcing period 2�/!c, except for the 1 : 1 resonance where the interval is�/!c

way to enhance or suppress spontaneously emerging pat-
terns [69]. Alternatively, it may enhance complexity by
introducing additional spatial and temporal resonances,
which may lead to formation of quasicrystalline struc-
tures [70]. Resonant forcing of oscillatory systems may
drastically change the structure of wave patterns through
phase locking. This happens when the CGL equation is
forced on a frequency !c commensurate with the basic
frequency !0 at the Hopf bifurcation. For an integer ratio
!c/!0 D n, the amplitude equation amending (23) can be
written by adding the forcing term possessing the required
symmetry:

@tu D (1C i�)r2uC(�C i!)u�(1C i�)juj2uC�un�1 ;

(32)

where � is the forcing amplitude and �2! is weak effec-
tive detuning, due to both parametric deviations from the
Hopf bifurcation point and weak mismatch between !c/n
and !0. The forcing term breaks the symmetry of the CGL
equation to phase rotations, reducing it to discrete sym-
metry u! ei	mu; m D 1; : : : ; n � 1. This changes the
character of defects: instead of vortices, one can observed
fronts separating alternative phase states.

Various patterns at different forcing frequencies,
which can be modeled by (32), were observed both in
experiments and simulations [71,72]. Some typical pat-
terns are shown in Fig. 19. For the case of strong res-
onance (n D 1), this system provides a convenient tool
for studying transitions between stationary and propagat-
ing fronts [73], labyrinthine patterns [74], and solitary
structures [75]. These structures are not unlike those ob-

served in the FitzHugh–Nagumo system, although they
represent standing waves with the alternative phases in-
terchanging within each domain. Higher resonances cre-
ate still more complex dynamics involving interactions of
different kinds of fronts [76].

Future Directions

The study of pattern formation is now a mature disci-
pline based on well-established general theory and wealth
of experimental evidence. The center of attention is turn-
ing to specific applications; among them, nonlinear optics
and studies of granular media come to the forefront. Forc-
ing and control of patterns, either enhancing or suppress-
ing the complexity of behavior, are studied in detail. As
a humble laptop turns into a supercomputer, more fasci-
nating patterns, envy of abstract expressionists, are gen-
erated by model equations of increased complexity. Pat-
terns showing dazzling mix of order and chaos are seen
as well in various experimental setups. The ultimate aim
of controlled creation of self-organized structures still re-
mains elusive, and new ideas are awaited as the new cen-
tury comes of age. The study of pattern formation, dealing
with ubiquitous problems of order and chaos, is bound to
find its way into basic curricula and wealth of practical ap-
plications.
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Glossary

Collective intelligence Emergent functional behavior of
a large number of people that results from interactions
of individuals rather than from individual reasoning or
global optimization.

Crowd Agglomeration of many people in the same area at
the same time. The density of the crowd is assumed to
be high enough to cause continuous interactions with
or reactions to other individuals.

Crowd turbulence Unanticipated and unintended irreg-
ular motion of individuals into different directions due
to strong and rapidly changing forces in crowds of ex-
treme density.

Emergence Spontaneous establishment of a qualitatively
new behavior through non-linear interactions of many
objects or subjects.

Evolutionary optimization Gradual optimization based
on the effect of frequently repeated randommutations
and selection processes based on some success func-
tion (“fitness”).

Faster-is-slower effect This term reflects the observation
that certain processes (in evacuation situations, pro-
duction, traffic dynamics, or logistics) take more time
if performed at high speed. In other words, waiting can

often help to coordinate the activities of several com-
peting units and to speed up the average progress.

Freezing-by-heating effect Noise-induced blockage ef-
fect caused by the breakdown of direction-segregated
walking patterns (typically two or more “lanes” char-
acterized by a uniform direction of motion). “Noise”
means frequent variations of the walking direction due
to nervousness or impatience in the crowd, e. g. also
frequent overtaking maneuvers in dense, slowly mov-
ing crowds.

Panic Breakdown of ordered, cooperative behavior of in-
dividuals due to anxious reactions to a certain event.
Often, panic is characterized by attempted escape of
many individuals from a real or perceived threat in
situations of a perceived struggle for survival, which
may end up in trampling or crushing of people in
a crowd.

Self-organization Spontaneous organization (i. e. forma-
tion of ordered patterns) not induced by initial or
boundary conditions, by regulations or constraints.
Self-organization is a result of non-linear interactions
between many objects or subjects, and it often causes
different kinds of spatio-temporal patterns of motion.

Social force Vector describing acceleration or decelera-
tion effects that are caused by social interactions rather
than by physical interactions or fields.

Definition of the Subject

The modeling of pedestrian motion is of great theoret-
ical and practical interest. Recent experimental efforts
have revealed quantitative details of pedestrian interac-
tions, which have been successfully cast into mathemati-
cal equations. Furthermore, corresponding computer sim-
ulations of large numbers of pedestrians have been com-
pared with the empirically observed dynamics of crowds.
Such studies have led to a deeper understanding of how
collective behavior on a macroscopic scale emerges from
individual human interactions. Interestingly enough, the
non-linear interactions of pedestrians lead to various com-
plex, spatio-temporal pattern-formation phenomena. This
includes the emergence of lanes of uniform walking di-
rection, oscillations of the pedestrian flow at bottlenecks,
and the formation of stripes in two intersecting flows.
Such self-organized patterns of motion demonstrate that
efficient, “intelligent” collective dynamics can be based
on simple, local interactions. Under extreme conditions,
however, coordinationmay break down, giving rise to crit-
ical crowd conditions. Examples are “freezing-by-heating”
and “faster-is-slower” effects, but also the transition to
“turbulent” crowd dynamics. These observations have im-
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portant implications for the optimization of pedestrian fa-
cilities, in particular for evacuation situations.

Introduction

The emergence of new, functional or complex collective
behaviors in social systems has fascinated many scientists.
One of the primary questions in this field is how cooper-
ation or coordination patterns originate based on elemen-
tary individual interactions. While one could think that
these are a result of intelligent human actions, it turns out
that much simpler models assuming automatic responses
can reproduce the observations very well. This suggests
that humans are using their intelligence primarily formore
complicated tasks, but also that simple interactions can
lead to intelligent patterns of motion. Of course, it is rea-
sonable to assume that these interactions are the result of
a previous learning process that has optimized the auto-
matic response in terms of minimizing collisions and de-
lays. This, however, seems to be sufficient to explain most
observations.

In this contribution, we will start with a short his-
tory of pedestrian modeling and, then, introduce a sim-
plified model of pedestrian interactions, the “social force
model”. Furthermore, we will discuss its calibration us-
ing video tracking data. Next, we will turn to the subject
of crowd dynamics, as one typically finds the formation
of large-scale spatio-temporal patterns of motion, when
many pedestrians interact with each other. These patterns
will be discussed in some detail before we will turn to evac-
uation situations and cases of extreme densities, where
one can sometimes observe the breakdown of coordina-
tion. Finally, we will address possibilities to design im-
proved pedestrian facilities, using special evolutionary al-
gorithms.

Pedestrian Dynamics

Short History of Pedestrian Modeling

Pedestrians have been empirically studied for more than
four decades [1,2,3]. The evaluation methods initially ap-
plied were based on direct observation, photographs, and
time-lapse films. For a long time, the main goal of these
studies was to develop a level-of-service concept [4], de-
sign elements of pedestrian facilities [5,6,7,8], or planning
guidelines [9,10]. The latter have usually the form of re-
gression relations, which are, however, not very well suited
for the prediction of pedestrian flows in pedestrian zones
and buildings with an exceptional architecture, or in chal-
lenging evacuation situations. Therefore, a number of sim-
ulation models have been proposed, e. g. queuing mod-

els [11], transition matrix models [12], and stochastic mod-
els [13], which are partly related to each other. In addition,
there are models for the route choice behavior of pedestri-
ans [14,15].

None of these concepts adequately takes into ac-
count the self-organization effects occurring in pedestrian
crowds. These are the subject of recent experimental stud-
ies [8,16,17,18,19,20]. Most pedestrian models, however,
were formulated before. A first modeling approach that
appears to be suited to reproduce spatio-temporal patterns
of motion was proposed by Henderson [21], who conjec-
tured that pedestrian crowds behave similar to gases or flu-
ids (see also [22]). This could be partially confirmed, but
a realistic gas-kinetic or fluid-dynamic theory for pedes-
trians must contain corrections due to their particular
interactions (i. e. avoidance and deceleration maneuvers)
which, of course, do not obeymomentum and energy con-
servation. Although such a theory can be actually formu-
lated [23,24], for practical applications a direct simula-
tion of individual pedestrian motion is favorable, since
this is more flexible. As a consequence, pedestrian re-
search mainly focuses on agent-based models of pedes-
trian crowds, which also allow one to consider local co-
ordination problems. The “social force model” [25,26] is
maybe the most well-known of these models, but we also
like to mention cellular automata of pedestrian dynam-
ics [27,28,29,30,31,32,33] and AI-based models [34,35].

The Social Force Concept

In the following, we shall shortly introduce the social force
concept, which reproduces most empirical observations in
a simple and natural way. Human behavior often seems to
be “chaotic”, irregular, and unpredictable. So, why and un-
der what conditions can we model it by means of forces?
First of all, we need to be confronted with a phenomenon
of motion in some (quasi-)continuous space, which may
be also an abstract behavioral space such as an opinion
scale [36]. Moreover, it is favorable to have a system where
the fluctuations due to unknown influences are not large
compared to the systematic, deterministic part of motion.
This is usually the case in pedestrian traffic, where people
are confronted with standard situations and react “auto-
matically” rather than taking complicated decisions, e. g. if
they have to evade others.

This “automatic” behavior can be interpreted as the
result of a learning process based on trial and error [37],
which can be simulated with evolutionary algorithms [38].
For example, pedestrians have a preferred side of walk-
ing, since an asymmetrical avoidance behavior turns out
to be profitable [25,37]. The related formation of a behav-
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ioral convention can be described bymeans of evolutionary
game theory [25,39].

Another requirement is the vectorial additivity of the
separate force terms reflecting different environmental in-
fluences. This is probably an approximation, but there is
some experimental evidence for it. Based on quantitative
measurements for animals and test persons subject to sep-
arately or simultaneously applied stimuli of different na-
ture and strength, one could show that the behavior in
conflict situations can be described by a superposition of
forces [40,41]. This fits well into a concept by Lewin [42],
according to which behavioral changes are guided by so-
called social fields or social forces, which has later on been
put into mathematical terms [25,43]. In some cases, social
forces, which determine the amount and direction of sys-
tematic behavioral changes, can be expressed as gradients
of dynamically varying potentials, which reflect the social
or behavioral fields resulting from the interactions of indi-
viduals. Such a social force concept was applied to opinion
formation and migration [43], and it was particularly suc-
cessful in the description of collective pedestrian behav-
ior [8,25,26,37].

For reliable simulations of pedestrian crowds, we do
not need to know whether a certain pedestrian, say, turns
to the right at the next intersection. It is sufficient to have
a good estimate what percentage of pedestrians turns to
the right. This can be either empirically measured or es-
timated by means of route choice models [14]. In some
sense, the uncertainty about the individual behaviors is av-
eraged out at the macroscopic level of description. Never-
theless, we will use the more flexible microscopic simula-
tion approach based on the social force concept. Accord-
ing to this, the temporal change of the location r˛(t) of
pedestrian ˛ obeys the equation of motion

dr˛(t)
dt

D v˛(t) : (1)

Moreover, if f ˛(t) denotes the sum of social forces influ-
encing pedestrian ˛ and if �˛(t) are individual fluctua-
tions reflecting unsystematic behavioral variations, the ve-
locity changes are given by the acceleration equation

dv˛
dt
D f ˛(t)C �˛(t) : (2)

A particular advantage of this approach is that we can take
into account the flexible usage of space by pedestrians, re-
quiring a continuous treatment of motion. It turns out that
this point is essential to reproduce the empirical observa-
tions in a natural and robust way, i. e. without having to
adjust the model to each single situation andmeasurement

site. Furthermore, it is interesting to note that, if the fluc-
tuation term is neglected, the social force model can be in-
terpreted as a particular differential game, i. e. its dynamics
can be derived from the minimization of a special utility
function [44].

Specification of the Social Force Model

The social force model for pedestrians assumes that each
individual ˛ is trying to move in a desired direction e0˛
with a desired speed v0˛ , and that it adapts the actual ve-
locity v˛ to the desired one, v0˛ D v0˛ e0˛ , within a certain
relaxation time �˛ . The systematic part f ˛(t) of the accel-
eration force of pedestrian ˛ is then given by

f ˛(t) D
1
�˛

(v0˛ e
0
˛�v˛)C

X

ˇ (¤˛)

f ˛ˇ (t)C
X

i

f ˛ i(t); (3)

where the terms f ˛ˇ (t) and f ˛ i (t) denote the repulsive
forces describing attempts to keep a certain safety distance
to other pedestrians ˇ and obstacles i. In very crowded sit-
uations, additional physical contact forces come into play
(see Subsect.“ Force Model for Panicking Pedestrians”).
Further forces may be added to reflect attraction effects be-
tween members of a group or other influences. For details
see [37].

First, we will assume a simplified interaction force of
the form

f ˛ˇ (t) D f
�
d˛ˇ (t)


; (4)

where d˛ˇ D r˛ � rˇ is the distance vector pointing from
pedestrian ˇ to ˛. Angular-dependent shielding effects
may be furthermore taken into account by a prefactor
describing the anisotropic reaction to situations in front
of as compared to behind a pedestrian [26,45], see Sub-
sect. “Angular Dependence”. However, we will start with
a circular specification of the distance-dependent inter-
action force,

f (d˛ˇ ) D A˛e�d˛ˇ /B˛
d˛ˇ
kd˛ˇk

; (5)

where d˛ˇ D kd˛ˇk is the distance. The parameter A˛ re-
flects the interaction strength, and B˛ corresponds to the
interaction range. While the dependence on ˛ explicitly
allows for a dependence of these parameters on the single
individual, we will assume a homogeneous population, i. e.
A˛ D A and B˛ D B in the following. Otherwise, it would
be hard to collect enough data for parameter calibration.

Elliptical Specification Note that it is possible to express
Eq. (5) as gradient of an exponentially decaying potential
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V˛ˇ . This circumstance can be used to formulate a gener-
alized, elliptical interaction force via the potential

V˛ˇ (b˛ˇ ) D ABe�b˛ˇ /B ; (6)

where the variable b˛ˇ denotes the semi-minor axis b˛ˇ
of the elliptical equipotential lines. This has been specified
according to

2b˛ˇ D

s
(kd˛ˇk C kd˛ˇ � (vˇ � v˛)
tk)2

�k(vˇ � v˛)
tk2 ; (7)

so that both pedestrians˛ andˇ are treated symmetrically.
The repulsive force is related to the above potential via

f ˛ˇ (d˛ˇ ) D �r d˛ˇV˛ˇ (b˛ˇ )

D �
dV˛ˇ (b˛ˇ )

db˛ˇ
r d˛ˇb˛ˇ (d˛ˇ ) ; (8)

where r d˛ˇ represents the gradient with respect to d˛ˇ .
Considering the chain rule, kzk D

p
z2, and r zkzk D

z/
p
z2 D z/kzk, this leads to the explicit formula

f ˛ˇ (d˛ˇ ) D Ae�b˛ˇ /B �
kd˛ˇk C kd˛ˇ � y˛ˇk

2b˛ˇ

�
1
2

 
d˛ˇ
kd˛ˇk

C
d˛ˇ � y˛ˇ
kd˛ˇ � y˛ˇk

!

(9)

with y˛ˇ D (vˇ � v˛)
t. We used
t D 0:5 s. For
t D
0, we regain the expression of Eq. (5).

The elliptical specification has two major advantages
compared to the circular one: First, the interactions de-
pend not only on the distance, but also on the relative ve-
locity. Second, the repulsive force is not strictly directed
from pedestrian ˇ to pedestrian ˛, but has a lateral com-
ponent. As a consequence, this leads to less confrontative,

Pedestrian, Crowd and Evacuation Dynamics, Figure 1
Video tracking used to extract the trajectories of pedestrians from video recordings close to two escalators (after [45]). a Illustration
of the tracking of pedestrian heads. b Resulting trajectories after being transformed onto the two-dimensional plane

smoother (“sliding”) evading maneuvers. Note that fur-
ther velocity-dependent specifications of pedestrian inter-
action forces have been proposed [7,26], but we will re-
strict to the above specifications, as these are sufficient to
demonstrate the method of evolutionary model calibra-
tion.

Evolutionary Calibration with Video Tracking Data

For parameter calibration, several video recordings of
pedestrian crowds in different natural environments have
been used. The dimensions of the recorded areas were
known, and the floor tiling or environment provided
something like a “coordinate system”. The heads were au-
tomatically determined by searching for round moving
structures, and the accuracy of tracking was improved by
comparing actual with linearly extrapolated positions (so
it would not happen so easily that the algorithm inter-
changed or “lost” close by pedestrians). The trajectories of
the heads were then projected on two-dimensional space
in a way correcting for distortion by the camera perspec-
tive. A representative plot of the resulting trajectories is
shown in Fig. 1. Note that trajectory data have been ob-
tained with infra-red sensors [47] or video cameras [48,49]
for several years now, but algorithms that can simultane-
ously handlemore than one thousand pedestrians have be-
come available only recently [87].

For model calibration, it is recommended to use a hy-
brid method fusing empirical trajectory data and micro-
scopic simulation data of pedestrian movement in space.
In corresponding algorithms, a virtual pedestrian is as-
signed to each tracked pedestrian in the simulation do-
main. One then starts a simulation for a time period T
(e. g. 1.5 s), in which one pedestrian ˛ is moved accord-
ing to a simulation of the social force model, while the
others are moved exactly according to the trajectories ex-
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tracted from the videos. This procedure is performed for
all pedestrians ˛ and for several different starting times t,
using a fixed parameter set for the social force model.

Each simulation run is performed according to the fol-
lowing scheme:

1. Define a starting point and calculate the state (position
r˛ , velocity v˛ , and acceleration a˛ D dv˛/dt) for each
pedestrian ˛.

2. Assign a desired speed v0˛ to each pedestrian, e. g. the
maximum speed during the pedestrian tracking time.
This is sufficiently accurate, if the overall pedestrian
density is not too high and the desired speed is constant
in time.

3. Assign a desired goal point for each pedestrian, e. g. the
end point of the trajectory.

4. Given the tracked motion of the surrounding pedes-
trians ˇ, simulate the trajectory of pedestrian ˛ over
a time period T based on the social force model, start-
ing at the actual location r˛(t).

After each simulation run, one determines the relative dis-
tance error

krsimulated
˛ (t C T)� rtracked˛ (t C T)k
krtracked˛ (t C T) � rtracked˛ (t)k

: (10)

After averaging the relative distance errors over the pedes-
trians ˛ and starting times t, 1 minus the result can be
taken asmeasure of the goodness of fit (the “fitness”) of the
parameter set used in the pedestrian simulation. Hence,
the best possible value of the “fitness” is 1, but any devia-
tion from the real pedestrian trajectories implies lower val-
ues.

One result of such a parameter optimization is that, for
each video, there is a broad range of parameter combina-
tions of A and B which perform almost equally well [45].
This allows one to apply additional goal functions in the
parameter optimization, e. g. to determine among the best
performing parameter values such parameter combina-
tions, which perform well for several video recordings, us-
ing a fitness function which equally weights the fitness
reached in each single video. This is how the parameter
values listed in Table 1 were determined. It turns out that,
in order to reach a good model performance, the pedes-
trian interaction force must be specified velocity depen-
dent, as in the elliptical model.

Note that our evolutionary fitting method can be also
used to determine interaction laws without prespecified
interaction functions. For example, one can obtain the dis-
tance dependence of pedestrian interactions without a pre-
specified function. For this, one adjusts the values of the

Pedestrian, Crowd and Evacuation Dynamics, Table 1
Interaction strength A and interaction rangeB resulting fromour
evolutionary parameter calibration for the circular and elliptical
specification of the interaction forces between pedestrians (see
main text). The calibration was based on three different video
recordings, one for low crowd density, one for medium, and one
for high density. The parameter values are specified as mean
value˙ standarddeviation. Thebest fitness value obtainedwith
the elliptical specification for the video with the lowest crowd
density was as high as 0.9

Model A B “Fitness”
Extrapolation 0 – 0.34
Circular 0:11˙ 0:06 0:84˙ 0:63 0.35
Elliptical 4:30˙ 3:91 1:07˙ 1:35 0.53

force at given distances dk D kd1 (with k 2 f1; 2; 3; : : :g)
in an evolutionary way. To get some smoothness, linear in-
terpolation is applied. The resulting fit curve is presented
in Fig. 2 (left). It turns out that the empirical dependence
of the force with distance can be well fitted by an exponen-
tial decay.

Angular Dependence

A closer study of pedestrian interactions reveals that these
are not isotropic, but dependent on the angle '˛ˇ of the
encounter, which is given by the formula

cos('˛ˇ ) D
v˛
kv˛k

�
�d˛ˇ
kd˛ˇk

: (11)

Generally, pedestrians show little response to pedestrians
behind them. This can be reflected by an angular-depen-
dent prefactor w('˛ˇ ) of the interaction force [45]. Em-
pirical results are represented in Fig. 2 (right). Reasonable
results are obtained for the following specification of the
prefactor:

w
�
'˛ˇ (t)


D

�
˛ C (1 � ˛)

1C cos('˛ˇ )
2

�
; (12)

where ˛ with 0 � ˛ � 1 is a parameter which grows
with the strength of interactions from behind. An evolu-
tionary parameter optimization gives values  � 0:1 [45],
i. e. a strong anisotropy. With such an angle-dependent
prefactor, the “fitness” of the elliptical force increases from
0.53 to 0.61, when calibrated to the same set of videos.
Other angular-dependent specifications split up the inter-
action force between pedestrians into a component against
the direction of motion and another one perpendicular to
it. Such a description allows for even smoother avoidance
maneuvers.
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Pedestrian, Crowd and Evacuation Dynamics, Figure 2
Results of an evolutionary fitting of pedestrian interactions. a Empirically determined distance dependence of the interaction force
between pedestrians (after [45]). An exponential decay fits the empirical data quite well. The dashed fit curve corresponds to Eq. (5)
with the parameters A D 0:53 and B D 1:0. b Angular dependence of the influence of other pedestrians. The direction along the
positive x-axis corresponds to the walking direction of pedestrians, y to the perpendicular direction

CrowdDynamics

Analogies with Gases, Fluids, and Granular Media

When the density is low, pedestrians can move freely, and
the observed crowd dynamics can be partially compared
with the behavior of gases. At medium and high densities,
however, the motion of pedestrian crowds shows some
striking analogies with the motion of fluids:

1. Footprints of pedestrians in snow look similar to
streamlines of fluids [15].

2. At borderlines between opposite directions of walking
one can observe “viscous fingering” [50,51].

3. The emergence of pedestrian streams through standing
crowds [7,37,52] appears analogous to the formation of
river beds [53,54].

At high densities, however, the observations have rather
analogies with driven granular flows. This will be elabo-
rated in more detail in Sects. “Force Model for Panick-
ing Pedestrians” and “Collective Phenomena in Panic Sit-
uations”. In summary, one could say that fluid-dynamic
analogies work reasonably well in normal situations, while
granular aspects dominate at extreme densities. Neverthe-
less, the analogy is limited, since the self-driven motion
and the violation of momentum conservation imply spe-
cial properties of pedestrian flows. For example, one usu-
ally does not observe eddies, which typically occur in reg-
ular fluids at high enough Reynolds numbers.

Self-Organization of Pedestrian Crowds

Despite its simplifications, the social force model of pedes-
trian dynamics describes a lot of observed phenomena

quite realistically. Especially, it allows one to explain var-
ious self-organized spatio-temporal patterns that are not
externally planned, prescribed, or organized, e. g. by traf-
fic signs, laws, or behavioral conventions. Instead, the spa-
tio-temporal patterns discussed below emerge due to the
non-linear interactions of pedestrians even without as-
suming strategical considerations, communication, or im-
itative behavior of pedestrians. Despite this, we may still
interpret the forming cooperation patterns as phenomena
that establish social order on short time scales. It is actu-
ally surprising that strangers coordinate with each other
within seconds, if they have grown up in a similar environ-
ment. People from different countries, however, are some-
times irritated about local walking habits, which indicates
that learning effects and cultural backgrounds still play
a role in social interactions as simple as random pedestrian
encounters. Rather than on particular features, however,
in the following we will focus on the common, interna-
tionally reproducible observations.

Lane Formation In pedestrian flows one can often ob-
serve that oppositely moving pedestrians are forming
lanes of uniform walking direction (see Fig. 3). This phe-
nomenon even occurs when there is not a large distance to
separate each other, e. g. on zebra crossings. However, the
width of lanes increases (and their number decreases), if
the interaction continues over longer distances (and if per-
turbations, e. g. by flows entering or leaving on the sides,
are low; otherwise the phenomenon of lane formationmay
break down [55]).

Lane formation may be viewed as segregation phe-
nomenon [56,57]. Although there is a weak preference for
one side (with the corresponding behavioral convention
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Pedestrian, Crowd and Evacuation Dynamics, Figure 3
Self-organization of pedestrian crowds. a Photograph of lanes formed in a shopping center. Computer simulations reproduce the
self-organization of such lanes very well. b Evaluation of the cumulative number of pedestrians passing a bottleneck from different
sides.One can clearly see that the narrowing is often passedbygroups of people in an oscillatoryway rather than one byone. cMulti-
agent simulation of two crossing pedestrian streams, showing the phenomenon of stripe formation. This self-organized pattern
allows pedestrians to pass the other stream without having to stop, namely by moving sidewards in a forwardly moving stripe.
(After [8])

depending on the country), the observations can only be
well reproduced when repulsive pedestrian interactions
are taken into account. The most relevant factor for the
lane formation phenomenon is the higher relative velocity
of pedestrians walking in opposite directions. Compared
to people following each other, oppositely moving pedes-
trians havemore frequent interactions until they have seg-
regated into separate lanes by stepping aside whenever an-
other pedestrian is encountered. The most long-lived pat-
terns of motion are the ones which change the least. It
is obvious that such patterns correspond to lanes, as they
minimize the frequency and strength of avoidancemaneu-
vers. Interestingly enough, as computer simulations show,
lane formation occurs also when there is no preference for
any side.

Lanes minimize frictional effects, accelerations, energy
consumption, and delays in oppositely moving crowds.
Therefore, one could say that they are a pattern reflect-
ing “collective intelligence”. In fact, it is not possible for
a single pedestrian to reach such a collective pattern of
motion. Lane formation is a self-organized collaborative

pattern of motion originating from simple pedestrian in-
teractions. Particularly in cases of no side preference, the
system behavior cannot be understood by adding up the
behavior of the single individuals. This is a typical feature
of complex, self-organizing systems and, in fact, a wide-
spread characteristics of social systems. It is worth noting,
however, that it does not require a conscious behavior to
reach forms of social organization like the segregation of
oppositely moving pedestrians into lanes. This organiza-
tion occurs automatically, although most people are not
even aware of the existence of this phenomenon.

Oscillatory Flows at Bottlenecks At bottlenecks, bidi-
rectional flows of moderate density are often characterized
by oscillatory changes in the flow direction (see Fig. 3). For
example, one can sometimes observe this at entrances of
museums during crowded art exhibitions or at entrances
of staff canteens during lunch time.While these oscillatory
flows may be interpreted as an effect of friendly behavior
(“you go first, please”), computer simulations of the social
force model indicate that the collective behaviormay again
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be understood by simple pedestrian interactions. That is,
oscillatory flows occur even in the absence of communica-
tion. Therefore, they may be viewed as another self-orga-
nization phenomenon, which again reduces frictional ef-
fects and delays. That is, oscillatory flows have features of
“collective intelligence”.

While this may be interpreted as result of a learning
effect in a large number of similar situations (a “repeated
game”), our simulations suggest an even simpler, “many-
particle” interpretation: Once a pedestrian is able to pass
the narrowing, pedestrians with the same walking direc-
tion can easily follow. Hence, the number and “pressure”
of waiting, “pushy” pedestrians on one side of the bottle-
neck becomes less than on the other side. This eventually
increases their chance to occupy the passage. Finally, the
“pressure difference” is large enough to stop the flow and
turn the passing direction at the bottleneck. This reverses
the situation, and eventually the flow direction changes
again, giving rise to oscillatory flows.

Stripe Formation in Intersecting Flows In intersection
areas, the flow of people often appears to be irregular or
“chaotic”. In fact, it can be shown that there are several
possible collective patterns of motion, among them ro-
tary and oscillating flows. However, these patterns contin-
uously compete with each other, and a temporarily dom-
inating pattern is destroyed by another one after a short
time. Obviously, there has not evolved any social conven-
tion that would establish and stabilize an ordered and effi-
cient flow at intersections.

Self-organized patterns of motion, however, are found
in situations where pedestrian flows cross each other only
in two directions. In such situations, the phenomenon of
stripe formation is observed [58]. Stripe formation allows
two flows to penetrate each other without requiring the
pedestrians to stop. For an illustration see Fig. 3. Like
lanes, stripes are a segregation phenomenon, but not a sta-
tionary one. Instead, the stripes are density waves mov-
ing into the direction of the sum of the directional vec-
tors of both intersecting flows. Naturally, the stripes ex-
tend sidewards into the direction which is perpendicular
to their direction of motion. Therefore, the pedestrians
move forward with the stripes and sidewards within the
stripes. Lane formation corresponds to the particular case
of stripe formation where both directions are exactly op-
posite. In this case, no intersection takes place, and the
stripes do not move systematically. As in lane formation,
stripe formation allows to minimize obstructing interac-
tions and to maximize the average pedestrian speeds, i. e.
simple, repulsive pedestrian interactions again lead to an
“intelligent” collective behavior.

EvacuationDynamics

While the previous section has focused on the dynamics of
pedestrian crowds in normal situations, we will now turn
to the description of situations in which extreme crowd
densities occur. Such situations may arise at mass events,
particularly in cases of urgent egress. While most evacu-
ations run relatively smoothly and orderly, the situation
may also get out of control and end up in terrible crowd
disasters (see Table 2). In such situations, one often speaks
of “panic”, although, from a scientific standpoint, the use
of this term is rather controversial. Here, however, we will
not be interested in the question whether “panic” actually
occurs or not. We will rather focus on the issue of crowd
dynamics at high densities and under psychological stress.

Evacuation and Panic Research

Computer models have been also developed for emer-
gency and evacuation situations [32,60,61,62,63,64,65,66,
67,68]. Most research into panic, however, has been of em-
pirical nature (see, e. g. [69,70,71,72]), carried out by social
psychologists and others.

With some exceptions, panic is observed in cases of
scarce or dwindling resources [69,73], which are either
required for survival or anxiously desired. They are usu-
ally distinguished into escape panic (“stampedes”, bank or
stockmarket panic) and acquisitive panic (“crazes”, specu-
lative manias) [74,75], but in some cases this classification
is questionable [76].

It is often stated that panicking people are obsessed
by short-term personal interests uncontrolled by social
and cultural constraints [69,74]. This is possibly a re-
sult of the reduced attention in situations of fear [69],
which also causes that options like side exits are mostly ig-
nored [70]. It is, however, mostly attributed to social con-
tagion [69,71,73,74,75,76,77,78,79,80,81], i. e., a transition
from individual to mass psychology, in which individuals
transfer control over their actions to others [75], leading to
conformity [82]. This “herding behavior” is in some sense
irrational, as it often leads to bad overall results like dan-
gerous overcrowding and slower escape [70,75,76]. In this
way, herding behavior can increase the fatalities or, more
generally, the damage in the crisis faced.

The various socio-psychological theories for this con-
tagion assume hypnotic effects, rapport, mutual excitation
of a primordial instinct, circular reactions, social facili-
tation (see the summary by Brown [80]), or the emer-
gence of normative support for selfish behavior [81].
Brown [80] and Coleman [75] add another explanation re-
lated to the prisoner’s dilemma [83,84] or common goods
dilemma [85], showing that it is reasonable to make one’s
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Pedestrian, Crowd and Evacuation Dynamics, Table 2
Incomplete list of major crowd disasters since 1970 after J. F. Dickie in [59], http://www.crowddynamics.com/Main/Crowddisasters.
html, http://SportsIllustrated.CNN.com/soccer/world/news/2000/07/09/stadium_disasters_ap/, and other internet sources, exclud-
ing fires, bomb attacks, and train or plane accidents. The number of injured people was usually a multiple of the fatalities

Date Place Venue Deaths Reason
1971 Ibrox, UK Stadium 66 Collapse of barriers
1974 Cairo, Egypt Stadium 48 Crowds break barriers
1982 Moscow, USSR Stadium 340 Re-entering fans after last minute goal
1988 Katmandu, Nepal Stadium 93 Stampede due to hailstorm
1989 Hillsborough, Sheffield, UK Stadium 96 Fans trying to force their way into the stadium
1990 New York City Bronx 87 Illegal happy land social club
1990 Mena, Saudi Arabia Pedestrian Tunnel 1426 Overcrowding
1994 Mena, Saudi Arabia Jamarat Bridge 266 Overcrowding
1996 Guatemala City, Guatemala Stadium 83 Fans trying to force their way into the stadium
1998 Mena, Saudi Arabia 118 Overcrowding
1999 Kerala, India Hindu Shrine 51 Collapse of parts of the shrine
1999 Minsk, Belarus Subway Station 53 Heavy rain at rock concert
2001 Ghana, West Africa Stadium > 100 Panic triggered by tear gas
2004 Mena, Saudi Arabia Jamarat Bridge 251 Overcrowding
2005 Wai, India Religious Procession 150 Overcrowding (and fire)
2005 Bagdad, Iraque Religious Procession > 640 Rumors regarding suicide bomber
2005 Chennai, India Disaster Area 42 Rush for flood relief supplies
2006 Mena, Saudi Arabia Jamarat Bridge 363 Overcrowding
2006 Pilippines Stadium 79 Rush for game show tickets
2006 Ibb, Yemen Stadium 51 Rally for Yemeni president

subsequent actions contingent upon those of others. How-
ever, the socially favorable behavior of walking orderly is
unstable, which normally gives rise to rushing by every-
one. These thoughtful considerations are well compatible
with many aspects discussed above and with the classical
experiments byMintz [73], which showed that jamming in
escape situations depends on the reward structure (“payoff
matrix”).

Nevertheless and despite of the frequent reports in the
media and many published investigations of crowd dis-
asters (see Table 2), a quantitative understanding of the
observed phenomena in panic stampedes was lacking for
a long time. In the following, we will close this gap.

Situations of “Panic”

Panic stampede is one of the most tragic collective behav-
iors [71,72,73,74,75,77,78,79,80,81], as it often leads to the
death of people who are either crushed or trampled down
by others. While this behavior may be comprehensible
in life-threatening situations like fires in crowded build-
ings [69,70], it is hard to understand in cases of a rush
for good seats at a pop concert [76] or without any ob-
vious reasons. Unfortunately, the frequency of such disas-
ters is increasing (see Table 2), as growing population den-

sities combined with easier transportation lead to greater
mass events like pop concerts, sport events, and demon-
strations. Nevertheless, systematic empirical studies of
panic [73,86] are rare [69,74,76], and there is a scarcity of
quantitative theories capable of predicting crowd dynam-
ics at extreme densities [32,60,61,64,65,68]. The following
features appear to be typical [46,55]:

1. In situations of escape panic, individuals are getting
nervous, i. e. they tend to develop blind actionism.

2. People try to move considerably faster than nor-
mal [9].

3. Individuals start pushing, and interactions among
people become physical in nature.

4. Moving and, in particular, passing of a bottleneck fre-
quently becomes incoordinated [73].

5. At exits, jams are building up [73]. Sometimes, inter-
mittent flows or arching and clogging are observed [9],
see Fig. 4.

6. The physical interactions in jammed crowds add up
and can cause dangerous pressures up to 4,500 New-
tons per meter [59,70], which can bend steel barriers
or tear down brick walls.

7. The strength and direction of the forces acting in
large crowds can suddenly change [87], pushing peo-

http://www.crowddynamics.com/Main/Crowddisasters.html
http://www.crowddynamics.com/Main/Crowddisasters.html
http://SportsIllustrated.CNN.com/soccer/world/news/2000/07/09/stadium_disasters_ap/
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Pedestrian, Crowd and Evacuation Dynamics, Figure 4
Panicking football fans trying to escape the football stadium in
Sheffield. Because of a clogging effect, it is difficult to pass the
open door

ple around in an uncontrollable way. This may cause
people to fall.

8. Escape is slowed down by fallen or injured people
turning into “obstacles”.

9. People tend to show herding behavior, i. e., to do what
other people do [69,78].

10. Alternative exits are often overlooked or not efficiently
used in escape situations [69,70].

The following quotations give a more personal impression
of the conditions during crowd panic:

1. “They just kept pushin’ forward and they would just
walk right on top of you, just trample over ya like you
were a piece of the ground.” (After the panic at “The
Who Concert Stampede” in Cincinnati.)

2. “People were climbin’ over people ta get in . . . an’ at one
point I almost started hittin’ ’em, because I could not
believe the animal, animalistic ways of the people, you
know, nobody cared.” (After the panic at “The Who
Concert Stampede”.)

3. “Smaller people began passing out. I attempted to lift
one girl up and above to be passed back . . . After sev-
eral tries I was unsuccessful and near exhaustion.” (Af-
ter the panic at “The Who Concert Stampede”.)

4. “I couldn’t see the floor because of the thickness of the
smoke.” (After the “Hilton Hotel Fire” in Las Vegas.)

5. “The club had two exits, but the young people had ac-
cess to only one”, said Narend Singh, provincial min-
ister for agriculture and environmental affairs. How-
ever, the club’s owner, Rajan Naidoo, said the club had
four exits, and that all were open. “I think the children
panicked and headed for the main entrance where they

initially came in,’ he said.” (After the “Durban Disco
Stampede”.)

6. “At occupancies of about 7 persons per square meter
the crowd becomes almost a fluid mass. Shock waves
can be propagated through the mass, sufficient to . . .
propel them distances of 3 meters or more. . . . People
may be literally lifted out of their shoes, and have cloth-
ing torn off. Intense crowd pressures, exacerbated by
anxiety, make it difficult to breathe, which may finally
cause compressive asphyxia. The heat and the ther-
mal insulation of surrounding bodies cause some to be
weakened and faint. Access to those who fall is impos-
sible. Removal of those in distress can only be accom-
plished by lifting them up and passing them overhead
to the exterior of the crowd.” (J. Fruin in [88].)

7. “It was like a huge wave of sea gushing down on the
pilgrims” (P. K. Abdul Ghafour, Arab News, after the
sad crowd disaster in Mena on January 12, 2006).

Force Model for Panicking Pedestrians

Additional, physical interaction forces f ph
˛ˇ

come into play
when pedestrians get so close to each other that they have
physical contact (i. e. d˛ˇ < r˛ˇ D r˛ C rˇ , where r˛
means the “radius” of pedestrian ˛). In this case, which is
mainly relevant to panic situations, we assume also a “body
force” k(r˛ˇ � d˛ˇ )n˛ˇ counteracting body compression
and a “sliding friction force” �(r˛ˇ � d˛ˇ )
vtˇ˛ t˛ˇ im-
peding relative tangential motion. Inspired by the formu-
las for granular interactions [89,90], we assume

f ph
˛ˇ

(t) D k	(r˛ˇ�d˛ˇ )n˛ˇC�	(r˛ˇ�d˛ˇ )
vtˇ˛ t˛ˇ ;
(13)

where the function 	(z) is equal to its argument z, if
z � 0, otherwise 0. Moreover, t˛ˇ D (�n2

˛ˇ
; n1
˛ˇ

) means
the tangential direction and 
vt

ˇ˛
D (vˇ � v˛) � t˛ˇ the

tangential velocity difference, while k and � represent large
constants. (Strictly speaking, friction effects already set in
before pedestrians touch each other, because of the psy-
chological tendency not to pass other individuals with
a high relative velocity, when the distance is small.)

The interactions with the boundaries of walls and
other obstacles are treated analogously to pedestrian in-
teractions, i. e., if d˛ i (t) means the distance to obstacle or
boundary i, n˛ i (t) denotes the direction perpendicular to
it, and t˛ i (t) the direction tangential to it, the correspond-
ing interaction force with the boundary reads

f ˛ i D
˚
A˛ exp[(r˛ � d˛ i )/B˛]C k	(r˛ � d˛ i )

�

� n˛ i � �	(r˛ � d˛ i )(v˛ � t˛ i)t˛ i : (14)
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Finally, fire fronts are reflected by repulsive social
forces similar those describing walls, but they are much
stronger. The physical interactions, however, are qualita-
tively different, as people reached by the fire front become
injured and immobile (v˛ D 0).

Collective Phenomena in Panic Situations

In panic situations (e. g. in some cases of emergency evac-
uation) the following characteristic features of pedestrian
behavior are often observed:

1. People are getting nervous, resulting in a higher level of
fluctuations.

2. They are trying to escape from the source of panic,
which can be reflected by a significantly higher desired
velocity v0˛ .

3. Individuals in complex situations, who do not know
what is the right thing to do, orient at the actions of
their neighbors, i. e. they tend to do what other people
do. We will describe this by an additional herding in-
teraction.

We will now discuss the fundamental collective effects
which fluctuations, increased desired velocities, and herd-

Pedestrian, Crowd and Evacuation Dynamics, Figure 5
aNormal leaving of a room, when the exit is well visible. b Escape from a roomwith no visibility, e. g. due to dense smoke or a power
blackout. (After [18])

ing behavior can have. In contrast to other approaches, we
do not assume or imply that individuals in panic or emer-
gency situations would behave relentless and asocial, al-
though they sometimes do.

Herding and Ignorance of Available Exits If people are
not sure what is the best thing to do, there is a tendency
to show a “herding behavior”, i. e. to imitate the behavior
of others. Fashion, hypes and trends are examples for this.
The phenomenon is also known from stock markets, and
particularly pronounced when people are anxious. Such
a situation is, for example, given if people need to escape
from a smoky room. There, the evacuation dynamics is
very different from normal leaving (see Fig. 5).

Under normal visibility, everybody easily finds an exit
and uses more or less the shortest path. However, when
the exit cannot be seen, evacuation is much less efficient
and may take a long time. Most people tend to walk rela-
tively straight into the direction in which they suspect an
exit, but in most cases, they end up at a wall. Then, they
usually move along it in one of the two possible directions,
until they finally find an exit [18]. If they encounter oth-
ers, there is a tendency to take a decision for one direction



Pedestrian, Crowd and Evacuation Dynamics P 6487

andmove collectively. Also in case of acoustic signals, peo-
ple may be attracted into the same direction. This can lead
to over-crowded exits, while other exits are ignored. The
same can happen even for normal visibility, when people
are not well familiar with their environment and are not
aware of the directions of the emergency exits.

Computer simulations suggest that neither individual-
istic nor herding behavior performs well [46]. Pure indi-
vidualistic behavior means that each pedestrian finds an
exit only accidentally, while pure herding behavior im-
plies that the complete crowd is eventuallymoving into the
same and probably congested direction, so that available
emergency exits are not efficiently used. Optimal chances
of survival are expected for a certain mixture of individ-
ualistic and herding behavior, where individualism allows
some people to detect the exits and herding guarantees that
successful solutions are imitated by small groups of oth-
ers [46].

“Freezing by Heating” Another effect of getting ner-
vous has been investigated in [55]. Let us assume the in-
dividual fluctuation strength is given by

�˛ D (1 � n˛)�0 C n˛�max ; (15)

where n˛ with 0 � n˛ � 1 measures the nervousness of
pedestrian ˛. The parameter �0 means the normal and
�max the maximum fluctuation strength. It turns out that,
at sufficiently high pedestrian densities, lanes are de-
stroyed by increasing the fluctuation strength (which is
analogous to the temperature). However, instead of the
expected transition from the “fluid” lane state to a disor-
dered, “gaseous” state, a solid state is formed. It is charac-
terized by an at least temporarily blocked, “frozen” situa-
tion so that one calls this paradoxical transition “freezing
by heating” (see Fig. 6). Notably enough, the blocked state
has a higher degree of order, although the internal energy
is increased [55].

The preconditions for this unusual freezing-by-heat-
ing transition are the driving term v0˛ e0˛/�˛ and the dis-
sipative friction �v˛/�˛ , while the sliding friction force
is not required. Inhomogeneities in the channel diameter

Pedestrian, Crowd and Evacuation Dynamics, Figure 6
Result of the noise-induced formation of a “frozen” state in
a (periodic) corridor used by oppositely moving pedestrians (af-
ter [55])

or other impurities which temporarily slow down pedes-
trians can further this transition at the respective places.
Finally note that a transition from fluid to blocked pedes-
trian counter flows is also observed, when a critical density
is exceeded [31,55].

Intermittent Flows, Faster-Is-Slower Effect, and “Phan-
tom Panic” If the overall flow towards a bottleneck is
higher than the overall outflow from it, a pedestrian queue
emerges [91]. In other words, a waiting crowd is formed
upstream of the bottleneck. High densities can result, if
people keep heading forward, as this eventually leads to
higher and higher compressions. Particularly critical situ-
ations may occur if the arrival flow is much higher than
the departure flow, especially if people are trying to get to-
wards a strongly desired goal (“acquisitive panic”) or away
from a perceived source of danger (“escape panic”) with an
increased driving force v0˛e0˛/� . In such situations, the high
density causes coordination problems, as several people
compete for the same few gaps. This typically causes body
interactions and frictional effects, which can slow down
crowd motion or evacuation (“faster is slower effect”).

A possible consequence of these coordination prob-
lems are intermittent flows. In such cases, the outflow
from the bottleneck is not constant, but it is typically in-
terrupted. While one possible origin of the intermittent
flows are clogging and arching effects as known from gran-
ular flows through funnels or hoppers [89,90], stop-and-
go waves have also been observed in more than 10 meter
wide streets and in the 44 meters wide entrance area to
the Jamarat Bridge during the pilgrimage in January 12,
2006 [87], see Fig. 7. Therefore, it seems to be important
that people do not move continuously, but have minimum
strides [25]. That is, once a person is stopped, he or she will
not move until some space opens up in front. However, in-
creasing impatience will eventually reduce the minimum
stride, so that people eventually start moving again, even
if the outflow through the bottleneck is stopped. This will
lead to a further compression of the crowd.

In the worst case, such behavior can trigger a “phantom
panic”, i. e. a crowd disaster without any serious reasons
(e. g., in Moscow, 1982). For example, due to the “faster-
is-slower effect” panic can be triggered by small pedestrian
counterflows [70], which cause delays to the crowd in-
tending to leave. Consequently, stopped pedestrians in the
back, who do not see the reason for the temporary slow-
down, are getting impatient and pushy. In accordance with
observations [7,25], one may model this by increasing the
desired velocity, for example, by the formula

v0˛(t) D [1 � n˛(t)]v0˛(0)C n˛(t)vmax
˛ : (16)
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Pedestrian, Crowd and Evacuation Dynamics, Figure 7
a Long-term photograph showing stop-and-go waves in a densely packed street. While stopped people appear relatively sharp,
people moving from right to left have a fuzzy appearance. Note that gaps propagate from right to left. b Empirically observed stop-
and-gowaves in front of the entrance to the Jamarat Bridge on January 12, 2006 (after [87]), where pilgrimsmoved from left to right.
Dark areas correspond to phases of motion, light colors to stop phases. c Illustration of the “shell model”, in particular of situations
where several pedestrians compete for the same gap, which causes coordination problems. d Stop-and-go waves resulting from the
alternation of forward pedestrianmotion and backward gap propagation

Herein, vmax
˛ is the maximum desired velocity and v0˛(0)

the initial one, corresponding to the expected velocity of
leaving. The time-dependent parameter

n˛(t) D 1 �
v˛(t)
v0˛(0)

(17)

reflects the nervousness, where v˛(t) denotes the aver-
age speed into the desired direction of motion. Altogether,
long waiting times increase the desired speed v0˛ or driving
force v0˛(t)e0˛/� , which can produce high densities and in-
efficient motion. This further increases the waiting times,
and so on, so that this tragic feedback can eventually trig-
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ger so high pressures that people are crushed or falling and
trampled. It is, therefore, imperative, to have sufficiently
wide exits and to prevent counterflows, when big crowds
want to leave [46].

Transition to Stop-and-Go Waves Recent empirical
studies of pilgrim flows in the area of Makkah, Saudi
Arabia, have shown that intermittent flows occur not
only when bottlenecks are obvious. On January 12, 2006,
pronounced stop-and-go waves have been even observed
upstream of the 44m wide entrance to the Jamarat
Bridge [87].While the pilgrim flows were smooth and con-
tinuous (“laminar”) over many hours, at 11:53 am stop-
and-go waves suddenly appeared and propagated over dis-
tances of more than 30m (see Fig. 7). The sudden transi-
tion was related to a significant drop of the flow, i. e. with
the onset of congestion [87]. Once the stop-and-go waves
set in, they persisted over more than 20min.

This phenomenon can be reproduced by a recent
model based on two continuity equations, one for for-
ward pedestrian motion and another one for backward
gap propagation [91]. Themodel was derived from a “shell
model” (see Fig. 7) and describes very well the observed al-
ternation between backward gap propagation and forward
pedestrian motion.

Transition to “Crowd Turbulence” On the same day,
around 12:19, the density reached even higher values and
the video recordings showed a sudden transition from
stop-and-go waves to irregular flows (see Fig. 8). These ir-
regular flows were characterized by random, unintended

Pedestrian, Crowd and Evacuation Dynamics, Figure 8
Pedestrian dynamics at different densities. a Representative trajectories (space-time plots) of pedestrians during the laminar, stop-
and-go, and turbulent flow regime. Each trajectory extends over a range of 8 meters, while the time required for this stretch is
normalized to 1. To indicate the different speeds, symbols are included in the curves every 5 seconds. While the laminar flow (top
line) is fast and smooth, motion is temporarily interrupted in stop-and-go flow (medium line), and backward motion can occur in
“turbulent” flows (bottom line). b Example of the temporal evolution of the velocity components vx (t) into the average direction of
motion and vy (t) perpendicular to it in “turbulent flow”, which occurs when the crowd density is extreme. One can clearly see the
irregular motion into all possible directions characterizing “crowd turbulence”. For details see [87]

displacements into all possible directions, which pushed
people around. With a certain likelihood, this caused them
to stumble. As the people behind weremoved by the crowd
as well and could not stop, fallen individuals were tram-
pled, if they did not get back on their feet quickly enough.
Tragically, the area of trampled people grew more and
more in the course of time, as the fallen pilgrims became
obstacles for others [87]. The result was one of the biggest
crowd disasters in the history of pilgrimage.

How can we understand this transition to irregular
crowd motion? A closer look at video recordings of the
crowd reveals that, at this time, people were so densely
packed that they were moved involuntarily by the crowd.
This is reflected by random displacements into all possible
directions. To distinguish these irregular flows from lami-
nar and stop-and-go flows and due to their visual appear-
ance, we will refer to them as “crowd turbulence”.

As in certain kinds of fluid flows, “turbulence” in
crowds results from a sequence of instabilities in the flow
pattern. Additionally, one finds a sharply peaked probabil-
ity density function of velocity increments

V�x D Vx (r; t C �)� Vx (r; t) ; (18)

which is typical for turbulence [92], if the time shift � is
small enough [87]. One also observes a power-law scaling
of the displacements indicating self-similar behavior [87].
As large eddies are not detected, however, the similarity
with fluid turbulence is limited, but there is still an anal-
ogy to turbulence at currency exchange markets [92]. In-
stead of vortex cascades like in turbulent fluids, one rather
finds a hierarchical fragmentation dynamics: At extreme
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Pedestrian, Crowd and Evacuation Dynamics, Figure 9
Left: Snapshot of the on-line visualization of “crowd pressure”. Red colors (see the lower ellipses) indicate areas of critical crowd con-
ditions. In fact, the sad crowd disaster during theMuslim pilgrimage on January 12, 2006, started in this area. Right: The “crowd pres-
sure” is a quantitative measure of the onset of “crowd turbulence”. The crowd disaster started when the “crowd pressure” reached
particularly high values

densities, individual motion is replaced by mass motion,
but there is a stick-slip instability which leads to “rupture”
when the stress in the crowd becomes too large. That is, the
mass splits up into clusters of different sizes with strong
velocity correlations inside and distance-dependent corre-
lations between the clusters.

“Crowd turbulence” has further specific features [87].
Due to the physical contacts among people in extremely
dense crowds, we expect commonalities with granular me-
dia. In fact, dense driven granular media may form den-
sity waves, while moving forward [93], and can display
turbulent-like states [94,95]. Moreover, under quasi-static
conditions [94], force chains [96] are building up, causing
strong variations in the strengths and directions of local
forces. As in earthquakes [97,98] this can lead to events of
sudden, uncontrollable stress release with power-law dis-
tributed displacements. Such a power-law has also been
discovered by video-based crowd analysis [87].

Some Warning Signs of Critical Crowd Conditions

Turbulent waves are experienced in dozens of crowd-in-
tensive events each year all over the world [88]. Therefore,
it is necessary to understand why, where and when po-
tentially critical situations occur. Viewing real-time video
recordings is not very suited to identify critical crowd con-
ditions: While the average density rarely exceeds values of
6 persons per square meter, the local densities can reach
almost twice as large values [87]. It has been found, how-
ever, that even evaluating the local densities is not enough
to identify the critical times and locations precisely, which
also applies to an analysis of the velocity field [87]. The de-
cisive quantity is rather the “crowd pressure”, i. e. the den-
sity, multiplied with the variance of speeds. It allows one
to identify critical locations and times (see Fig. 9).

There are even advance warning signs of critical crowd
conditions: The crowd accident on January 12, 2006
started about 10 minutes after “turbulent” crowd motion
set in, i. e. after the “pressure” exceeded a value of 0.02/s2

(see Fig. 9). Moreover, it occurred more than 30min af-
ter stop-and-go waves set in, which can be easily detected
in accelerated surveillance videos. Such advance warning
signs of critical crowd conditions can be evaluated on-line
by an automated video analysis system. In many cases,
this can help one to gain time for corrective measures like
flow control, pressure-relief strategies, or the separation
of crowds into blocks to stop the propagation of shock-
waves [87]. Such anticipative crowd control could increase
the level of safety during future mass events.

Evolutionary Optimization of Pedestrian Facilities

Having understood some of the main factors causing
crowd disasters, it is interesting to ask how pedestrian fa-
cilities can be designed in a way that maximizes the ef-
ficiency of pedestrian flows and the level of safety. One
of the major goals during mass events must be to avoid
extreme densities. These often result from the onset of
congestion at bottlenecks, which is a consequence of the
breakdown of free flow and causes an increasing degree of
compression. When a certain critical density is increased
(which depends on the size distribution of people), this po-
tentially implies high pressures in the crowd, particularly
if people are impatient due to long delays or panic.

The danger of an onset of congestion can be mini-
mized by avoiding bottlenecks. Notice, however, that jam-
ming can also occur at widenings of escape routes [46].
This surprising fact results from disturbances due to
pedestrians, who try to overtake each other and expand
in the wider area because of their repulsive interactions.
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Pedestrian, Crowd and Evacuation Dynamics, Figure 10
The evolutionary optimization based on Boolean grids [99] uses a two-stage algorithm. a In the randomization stage, obstacles are
distributed over the grid with some randomness, thereby allowing for the generation of new topologies. b In the agglomeration
stage, small nearby obstacles are clustered to form larger objects with smooth boundaries

These squeeze into the main stream again at the end of the
widening, which acts like a bottleneck and leads to jam-
ming. The corresponding drop of efficiency E is more pro-
nounced,

1. if the corridor is narrow,
2. if the pedestrians have different or high desired veloci-

ties, and
3. if the pedestrian density in the corridor is high.

Obviously, the emerging pedestrian flows decisively
depend on the geometry of the boundaries. They can be
simulated on a computer already in the planning phase of
pedestrian facilities. Their configuration and shape can be
systematically varied, e. g. by means of evolutionary algo-
rithms [28,100] and evaluated on the basis of particular
mathematical performance measures [7]. Apart from the
efficiency

E D
1
N

X

˛

v˛ � e0˛
v0˛

(19)

we can, for example, define the measure of comfort
C D (1 � D) via the discomfort

D D
1
N

X

˛

(v˛ � v˛)2

(v˛)2
D

1
N

X

˛

 

1 �
v˛2

(v˛)2

!

: (20)

The latter is again between 0 and 1 and reflects the fre-
quency and degree of sudden velocity changes, i. e. the
level of discontinuity of walking due to necessary avoid-
ance maneuvers. Hence, the optimal configuration regard-
ing the pedestrian requirements is the one with the highest
values of efficiency and comfort.

During the optimization procedure, some or all of the
following can be varied:

1. the location and form of planned buildings,
2. the arrangement of walkways, entrances, exits, stair-

cases, elevators, escalators, and corridors,
3. the shape of rooms, corridors, entrances, and exits,
4. the function and time schedule. (Recreation rooms or

restaurants are often continuously frequented, rooms
for conferences or special events are mainly visited and
left at peak periods, exhibition rooms or rooms for
festivities require additional space for people stand-
ing around, and some areas are claimed by queues or
through traffic.)

In contrast to early evolutionary optimization methods,
recent approaches allow to change not only the dimen-
sions of the different elements of pedestrian facilities, but
also to vary their topology. The procedure of such algo-
rithms is illustrated in Fig. 10. Highly performing designs
are illustrated in Fig. 11. It turns out that, for an emer-
gency evacuation route, it is favorable if the crowd does
not move completely straight towards a bottleneck. For
example, a zigzag design of the evacuation route can re-
duce the pressure on the crowd upstream of a bottleneck
(see Fig. 12). The proposed evolutionary optimization pro-
cedure can, of course, not only be applied to the design
of new pedestrian facilities, but also to a reduction of ex-
isting bottlenecks, when suitable modifications are imple-
mented.

Future Directions

In this contribution, we have presented a multi-agent ap-
proach to pedestrian and crowd dynamics. Despite the
great effort required, pedestrian interactions can be well
quantified by video tracking. Compared to other social
interactions they turn out to be quite simple. Neverthe-
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Pedestrian, Crowd and Evacuation Dynamics, Figure 11
Two examples of improved designs for cases with a bottleneck along the escape route of a large crowd, obtained with an evolution-
ary algorithmbased on Boolean grids. People were assumed tomove from left to right only. a Funnel-shaped escape route. b Zig-zag
design

Pedestrian, Crowd and Evacuation Dynamics, Figure 12
a Conventional design of a stadium exit in an emergency scenario, where we assume that some pedestrians have fallen at the end
of the downwards staircase to the left. The dark color indicates high pressures, since pedestrians are impatient and pushing from
behind. b In the improved design, the increasingdiameter of corridors can reducewaiting times and impatience (evenwith the same
number of seats), thereby accelerating evacuation. Moreover, the zigzag design of the downwards staircases changes the pushing
direction in the crowd. (After [8])

less, they cause a surprisingly large variety of self-orga-
nized patterns and short-lived social phenomena, where
coordination or cooperation emerges spontaneously. For
this reason, they are interesting to study, particularly as
one can expect new insights into coordination mecha-
nisms of social beings beyond the scope of classical game
theory. Examples for observed self-organization phenom-
ena in normal situations are lane formation, stripe for-
mation, oscillations and intermittent clogging effects at
bottlenecks, and the evolution of behavioral conventions
(such as the preference of the right-hand side in conti-
nental Europe). Under extreme conditions (high densities
or panic), however, coordination may break down, giving
rise to “freezing-by-heating” or “faster-is-slower effects”,
stop-and-go waves or “crowd turbulence”.

Similar observations as in pedestrian crowds are made
in other social systems and settings. Therefore, we expect
that realistic models of pedestrian dynamics will also pro-
mote the understanding of opinion formation and other
kinds of collective behaviors. The hope is that, based on
the discovered elementary mechanisms of emergence and
self-organization, one can eventually also obtain a better
understanding of the constituting principles of more com-
plex social systems. At least the same underlying factors
are found in many social systems: Non-linear interactions
of individuals, time-dependence, heterogeneity, stochas-
ticity, competition for scarce resources (here: Space and
time), decision-making, and learning. Future work will
certainly also address issues of perception, anticipation,
and communication.
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Glossary

Graph A set of nodes (sites) and edges (links or bonds)
connecting them.

Weighted graph A graph where each edge is assigned
a (usually non-negative) weight.

Random graph A graph selected from an ensemble
(probability space) of graphs.

Degree Number of edges emanating from a node.
Scale free network A network whose nodes’ degrees are

distributed according to a power law.
Shortest path The path with minimum number of edges

connecting two nodes.
Optimal path In a weighted graph – the path with mini-

mum total weight connecting two nodes.
Loop A path that start and ends at the same node.
Tree A connected graph (a graph consisting of a single

component) with no loops.
Minimum spanning tree In a weighted graph – the tree

subgraph of the graph with the minimum total weight.
Component The set of nodes reachable from a given

node. The nodes of a component are all reachable from
each other.
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Giant component The component of a graph with size
(number of nodes) of order of the number of nodes
in the graph.

Percolation theory The theory studying the connectivity
behavior of networks when a fraction of the nodes or
edges are removed. Site (or node) percolation involves
occupying a fraction, p, of the nodes of the graph, or
alternatively, removing a fraction q D 1 � p. In bond
(or edge) percolation edges are occupied, or removed,
with some probability. A combined site-bond perco-
lation, where both processes occur simultaneously, is
also considered.

Percolation threshold The fraction, pc of occupied nodes
or edges, under the graph is fragmented into small
components, and above which a giant component
emerges.

Definition of the Subject

In this chapter we survey the application of percolation
theory to several random network classes, and in partic-
ular, to scale free networks. We show how ideas from per-
colation theory can be applied to the study of robustness
and vulnerability of random networks. We show how per-
colation techniques can be applied also to understand phe-
nomena such as immunization and epidemic spreading in
populations and computer networks, minimum spanning
trees and communication paths and fragmentation in so-
cial networks.

Introduction

In recent years considerable interest has been given to
real world networks. The importance of technological net-
works such as the Internet andWWW, as well as the avail-
ability of large scale data sets on social, biological and tech-
nological networks made this subject approachable and
popular.

The main model used in the study of complex net-
works was Erdős–Rényi (ER) random graphs [19,20,21]
(also presented earlier by Rapaport [33]), which are graphs
having N nodes (that is, sites or entities) and M edges
(links, or connections between the nodes) distributed ran-
domly between them, or alternatively, the almost identi-
cal model, having every pair of nodes connect with a con-
stant probability. One of the key discoveries in recent years
was thatmany real world networks, including the Internet,
WWW and many biological and social networks, are not
described well by the ER model [1,18,28,32]. One of the
first deviations from the model to be noticed was the ten-
dency of many real world networks to have high cluster-
ing [28], i. e., neighbors of the same node tend to connect

between them (i. e., share an edge). This discovery has lead
to the presentation of the small world model [37].

The small world model is based on some lattice, such
as a one-dimensional ring or a higher dimensional grid, in
which rewiring occurs. Some (usually small) fraction, ' of
the links in the lattice are removed, and instead, new links
are added randomly between the nodes.When ' is moder-
ately small the generated graphs have the desired proper-
ties of high clustering, while the average distance between
nodes is small (of the order logN), as in random graphs
(as opposed to N1/d as in a d-dimensional grid).

The second deviation to be noticed was the devia-
tion of the degree sequence from the expectation of ran-
dom graph theory. The degree of a node is the number
of links (or edges) emanating from it, i. e., the number
of neighbors it has in the graph. The number of nodes
of degree k in a graph will be denoted n(k), and the de-
gree distribution, i. e., the probability that a random node
has degree k, is P(k) D n(k)/N . In an ER random graph
the expected degree sequence is a Poisson distribution [5],
P(k) D e�CCk /k!, where P(k) is the probability of a node
to have degree k, and c is the average degree (C D 2M/N).
In many real world networks, including the Internet and
WWW, it was observed that the degree distribution is ac-
tually a power law,

P(k) D ck�� ; m � k � U ; (1)

where c is a normalization factor, m and U are the mini-
mum and maximum degrees, respectively, and � is some
exponent characterizing the distribution. In most net-
works studied � has been found to lay in the range
2 < � < 3 [1,18,28,32]. These networks have become
known as scale free networks, due to the lack of typical
scale for the degree distribution. It should be noted that
while m must be supplied externally for the distribution
to be normalizable, U can be omitted, and will be deter-
mined naturally as the extreme value statistics of N vari-
ables, which gives U � mN1/(��1) in this case [13].

Several models have been developed for the under-
standing and study of scale free networks. The question
of the reason for these networks’ formation has been ad-
dressed by the Barabási–Albert model [3]. Many variants
on the model have been studied since (see, e. g., [23]). Here
we will focus on the configuration model, or the gener-
alized random graph model [4], which is an equilibrium
model for random graphs with a given degree distribution,
producing all graphs having a given degree distribution
with uniform probability. The model starts by having N
distinct nodes and randomly selecting the degree of each of
these nodes from the given degree distribution. Each node,
i is then fitted with ki “stubs”, where ki is its degree, drawn



Percolation in Complex Networks P 6497

from the distribution P(k). After all nodes’ degrees have
been selected, a random matching of the stubs is selected,
by choosing random pairs of stubs and pairing them (i. e.,
connecting the nodes by an edge and removing both stubs)
until no stubs are left. In some cases a single stub is left,
and also there may be edges connecting a node to itself
or more than one edge connecting a given pair of nodes.
These cases can be safely ignored as they only have a small
effect on the final graphs obtained.

Percolation Thresholds and Network Robustness

One of the fundamental questions regarding a network’s
structure is its connectivity properties, i. e., what are the
properties of the distinct components (or clusters) of the
network. A component of a graph is the set of nodes reach-
able from a single node by following edges in the graph.
Notice that in an (undirected) graph, the property of path
connectedness is symmetric and transitive, i. e., if a node a
is reachable from node b, then the inverse path also ex-
ists, and if c is reachable from a it is also reachable from b.
Therefore, a component is uniquely defined by any node
belonging to it. A network is said to be connected if all
nodes in it belong to a single component, that is, each node
is reachable from each other node.

Random graphs are locally tree-like, i. e., the number
of closing a loop for a set of less than orderN nodes is neg-
ligible. This also implies that below the percolation thresh-
old, where all components (clusters) are small, almost all
components are trees, i. e., posses of no loops.

To determine the percolation threshold it should be
noticed that at the critical point every node reached by
following a link from a previously visited node should
have, on average, exactly one more link through which
new nodes can be reached. If the average number of out-
going links is less than one, the uncovering process of
the component will quickly decay, and only small com-
ponents will be present. If the average number of outgo-
ing links if larger than one, the size of the largest compo-
nent will be proportional to that of the entire graph, i. e.,
a giant component, of size O(N) will exist. This may lead
to the conclusion that the average degree, hki, needs be
two or more for a giant component to exist. However, the
node reached by following a link is not chosen uniformly.
The probability of reaching a node by following a link is
proportional to its degree, Pi D ki /(Nhki). The average
outgoing degree of a node reached by following a link
is therefore,

P
(k � 1)n(k)Pi D hk(k � 1)i/hki D � � 1,

where � D hk2i/hki is the ratio of the first two moments
of the degree distribution. It is this quantity that should
be compared to one to determine whether a giant compo-

nent exists [13,26]. Therefore, a giant component exists if
and only if � > 2.

In a percolation setting the nodes or edges are removed
with probability q, or, alternatively, occupied with proba-
bility p D 1 � q. This model may represent random fail-
ures of nodes in the network, such as random failures of
routers or links in the Internet [2]. The average number
of outgoing links should be multiplied then by the proba-
bility, pb, that the link is occupied, and by ps, the prob-
ability that the node reached from the link is occupied,
or not deleted. Therefore, the condition for the existence
of a giant component becomes pbps(� � 1) > 1. Alterna-
tively, pc, the critical site or bond percolation threshold is
given by [13]

pc D
1

� � 1
: (2)

Notice that the critical threshold depends only on the
first two moments of the degree distribution. Further-
more, in a scale free network with � � 3 the second mo-
ment of the degree distribution diverges in the limit of infi-
nite network size. Therefore, the critical threshold for this
class of networks approaches 0, indicating that these net-
works are resilient to any finite fraction of random node
failures [13]. Figure 1 presents the results of random node
failure on the Internet as compared to an ER network.

Percolation in Complex Networks, Figure 1
Results of targeted removal of a fraction q of the nodes from
an ER graph (circles) and a partial Internet view (squares). Full
symbols represent the size of the second largest component and
empty symbols represent P1, the relative size of the largest com-
ponent. After [2]
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Percolation in Complex Networks, Figure 2
The relative size of the largest component, P1, as a function
of the fraction of tergeted removed nodes, for scale free net-
works with m D 1 and � D 2:5 (circles), � D 2:8 (squares), and
� D 3:3 (diamonds). After [14]

In case the node removal is not random this situation
may change drastically. The most well studied case is that
of removal of the highest degree nodes, modeling an in-
tentional, targeted attack on the most important nodes in
the network. In this case calculations similar to the above
lead to the conclusion that the percolation threshold is fi-
nite and small [2,9,14]. Figure 2 illustrates the results of
targeted removal of a fraction q in scale free networks.

Epidemics and Immunization

The spread of epidemics in a population can bemodeled as
a dynamical process in a network. Each node represents an
individual and the links represent interaction between in-
dividuals that allows transmission of the epidemic. Several
models exist for epidemic transmission, depending on the
type of epidemic. Themost commonly usedmodels are the
Susceptible-Infected-Susceptible (SIS) model and the Sus-
ceptible-Infected-Removed (SIR) model. In both models it
is assumed that nodes in the susceptible state are suscepti-
ble to the epidemic, i. e., may be infected when they come
in contact with an infected individual. In the infected state
the individual is infected by the epidemic and may infect
other individuals, and in the removed (or recovered) state
the individual is no more infected or infective and also is
no longer susceptible to the disease. This state may occur
due to recovery from the disease while the individual re-
mains immunized against the disease or due to death of
the infected individual. The SIS model assumes that recov-
ered individuals are again susceptible and the SIR model

assumes that each individual may only be infected once in
a lifetime.

In the SIS model an epidemic can either quickly de-
cay and vanish or prevail for a long period, during which
a large (finite) fraction of the population is infected. In the
SIS model it was shown that in scale free networks with
� � 3 the epidemic always prevails, regardless of the in-
fection rate [30].

Consider epidemic spreading in the SIR model. As-
sume each infected node infects each of its neighbors with
rate R, and has a constant infection time of T. For each
neighbor, the probability of the neighbor being infected
by an infected node is p D 1 � e�RT . This can be viewed
as the probability of the edge between the two nodes is
occupied, i. e., can actually be used for transmission of
the epidemic. Therefore, the SIR model can be mapped
to a bond percolation model (Notice that in non homoge-
neous cases of node dependent rates a more complicated
model is needed. See [27].)

The SIR model can therefore be solved by solving the
bond percolation problem in the network [22,27,34]. Ev-
ery edge is occupied with probability p, and the epidemic
can reach an endemic state (i. e., infect O(N) nodes with
finite probability) if p > pc, and will quickly decay, infect-
ing only a negligible portion of the population if p < pc.
Furthermore, the distribution of the size of the epidemic
outbreak is determined by the sizes of the graph compo-
nents. If a giant component exists, the probability of a sin-
gle infected individual to induce an endemic state of the
population is P1, the size of the giant component, and the
size of the outbreak is the size of the component to which
this individual belongs.

To prevent epidemic outbreaks it is usually desirable to
immunize the population and thus prevent the epidemic.
In many cases it is difficult to immunize the entire popu-
lation, and only a fraction is immunized. Each immunized
individual is no longer susceptible to the disease, and can
be viewed as removed from the network. The immuniza-
tion process can therefore be viewed as a site percolation
process, where each node is removed with probability q, or
occupied with probability p D 1 � q. The epidemic pro-
gression can then be mapped into a site-bond percolation
problem.

In order for the immunization to be highly efficient,
it is desirable to surpass the percolation threshold in the
immunization process, to ensure that the epidemic can
not reach an endemic state. Since, as stated above, ran-
domly immunizing a fraction of the population can be
a highly inefficient process, requiring immunization of
nearly 100% of the population, it has been suggested that
a more efficient method for immunization is devised. The
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Percolation in Complex Networks, Figure 3
Critical immunization threshold, qc, as a function of � in scale-
free networks (with m D 1), for the random immunization (ı),
acquaintance immunization (4), double acquaintance immu-
nization (˘), and targeted immunization (�) strategies. Curves
represent analytical results, while data points represent simula-
tion data, for a population N D 106 (Due to the population’s fi-
nal size qc < 1 for random immunization even when � < 3). Af-
ter [16]

simplest such method involves the immunization of the
highest degree nodes in the population [31]. In this case
immunizing a population will require vaccinating only
a finite, and relatively small, fraction of the population.

In case only partial knowledge of the population ex-
ists it is sometimes also possible to immunize the popula-
tion efficiently [17]. However, a different method, requir-
ing no global knowledge exists. In this method, “acquain-
tance immunization”, a fraction of randomly selected indi-
viduals are requested to point to one of their contacts, also
randomly selected. The pointed contacts are then immu-
nized. Although this is a seemingly random process a node
having a high degree is immunized with very high proba-
bility, and the process behaves effectively as a targeted im-
munization of high degree nodes. See [16] for analytical
treatment and Fig. 3 for illustration of the various immu-
nization thresholds.

The Generating FunctionsMethod

To allow the calculation of different properties of random
networks it was proposed in [9,29] to use the generating
function formalism (see, e. g., [38]). In this formalism a list
of numbers Ai is treated as the coefficients of a formal
power series A(x) D

P
i Ai x i . This treatment simplifies

many equations regarding the variables Ai, and, in many
cases, simplifies the calculation of the asymptotic behavior
of the coefficients for large i.

In [9,29] a power series is built for the degree distribu-
tion,

G0(x) D
X

k

P(k)xk ; (3)

and for the distribution of outgoing links from a node
reached by following a link,

G1(x) D
X

k

kP(k)
hki

xk�1 D
G00(x)
G00(1)

; (4)

where G00 D dG0/dx.
A branch in the network is a link, traversed in one di-

rection, and all the nodes reachable by following this link
in this direction. This includes the node reached by follow-
ing this link, and all the nodes reached by the branches em-
anating from the outgoing links of this node. An illustra-
tion of this recursive definition is in Fig. 4. A branch may
be either finite or infinite, in which case, for a finite graph,
it will reach O(N) nodes and have many loops (in which
case the branch description is no longer useful). A link and
the node reached by following it are occupied with proba-
bility pbps, and the generating function for the number of
descendants of the reached node isG1. Each of the descen-
dants is a new branch. Therefore, the generating function
for the size of a branch is given by

H1(x) D 1 � pspb C pspbG1(H1(x)) : (5)

A component in the graph is a node, and all the nodes
reachable from it. Each of the links of a node leads to
a branch. The generating function for the degree of a node
isG0, and the probability it is occupied is ps. Therefore, the
generating function for the component size distribution is,

H0(x) D 1 � ps C psG0(H1(x)) ; (6)

whereH1 is determined by Eq. (5). Again, as above, a com-
ponent may be finite or infinite. Since H0 is the gener-
ating function for the finite cluster distribution, its nor-
malization H0(1) is the total probability that a node be-
longs to a finite component, and therefore its complement

Percolation in Complex Networks, Figure 4
Illustration of the structure of a branch. A branch can contain
either a link leading to a node with no outgoing links, or to
a node having one or more outgoing links, each leading to an-
other branch. After [29]
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1 � H0(1) is the probability that a node belongs to the
giant component. Thus, the size of the giant component
(that is, the fraction of nodes belonging to the giant com-
ponent) is given by

P1 D 1 � H0(1) D 1 � ps C psG0(u) ; (7)

and u D H1(1) is given by the self consistent equation de-
rived from Eq. (5)

u D 1 � pspb C pspbG1(u) : (8)

Critical Exponents and Fractal Dimensions

Percolation problems, as well as other critical phenomena,
are known to present a universal behavior near and at the
critical point. That means that many properties of the crit-
ical structure behave as power laws and that near the criti-
cal point many sizes behave as powers of p � pc. The uni-
versality is pronounced by the fact that the exponents in
the different power laws do not depend on themicroscopic
details of the problem, but only on the large scale details,
in particular, the dimension of the space and the symme-
tries. In percolation, for example, it is known that slightly
above the critical point the size of the giant component
behaves as P1 � (p � pc)ˇ and that the number of com-
ponents of size s at criticality decays as n(s) � s�� . Both ˇ
and � depend only on the dimensionality and not on the
microscopic details (e. g., are the same for two dimensional
square and triangular lattices, etc.).

Networks can be considered infinite dimensional ob-
jects. As mentioned above, the number of nodes at a dis-
tance (number of hops) at most ` from a node behaves as
A` for some A > 1. For large values of ` this is larger than
`d , obtained for any finite dimension d. This property also
leads to the impossibility of embedding networks in any
finite dimension.

For percolation theory it is known [8,35] that the up-
per critical dimension is 6, i. e., percolation on grids of any
dimension larger than 6 behave similarly to percolation in
infinite dimension (also known as mean field percolation,
and usually studied using the Cayley tree model [8]). In
mean field percolation it is know that ˇ D 1 and � D 2:5.
For dimensions less than 6 it is known that ˇ < 1 and that
� < 2:5.

To determine the critical exponents for random net-
works one can use the generating function formalism pre-
sented above. The size of the giant component is given by
Eq. (7), where the value of u in this equation is the solu-
tion of Eq. (8). At and below the critical concentration, pc,
the size of the giant component is P1 D 0, since there are
only finite components. This corresponds to a solution in

which u D 1 and H0(1) D 1. At p D pc C ı it is expected
that u is close to 1, i. e., u D 1 � �. Substituting this into
Eq. (8) yields

1 � � D 1 � pc � ı C (pc C ı)G1(1 � �) : (9)

Expanding G1 into a power series yields

� D (pcCı)(1�G1(1)�G01(1)��G
00
1 (1)�

2/2�� � � ) : (10)

This equation is self consistent and gives a non trivial
solution only when pc D G01(1) D 1/(� � 1) as obtained
above. The solution obtained then is � / ı. The solu-
tion of Eq. (7) then is P1 / ı D (p � pc), similar to in-
finite dimensional percolation. Using similar expansions
of Eqs. (7) and (8), now at the critical point, p D pc it
can be shown that the probability of a node to belong to
a component of size s is proportional to, ps / s�3/2, im-
plying that the number of components of size s behaves
as n(s) / s�5/2. Both these exponents are the same as ob-
tained for infinite dimension percolation.

The above treatment is correct, however, only assum-
ing the sums in Eqs. (7) and (8) can be expanded in
a power series. This is true only if the degree distribution,
P(k) decays quickly enough, say exponentially. In the case
of a power law degree distribution, the series expansion is
incorrect, and one needs to resort to other methods of ob-
taining the asymptotic behavior. The main mechanism for
obtaining such asymptotics is using Abelian and Taube-
rian theorems. These theorems relate the decay of the co-
efficients of a power series and its behavior near a singular
point of the function in the complex plane. Using these
methods it can be shown [12] that the behavior of Eq. (8)
near criticality becomes

1 � � D 1 � pc � ı C (pc C ı)(G1(1)C G01(1)�

C G001 (1)�
2/2C � � � C C���1 C � � � : (11)

Thus, when � < 3 the nonanalytic term C���1 domi-
nates the linear term, and for 3 < � < 4 it dominates the
quadratic term.

In the most interesting case of 3 < � < 4 the perco-
lation threshold is finite, as seen from Eq. (2). However,
using the expansion in Eq. (11) it can be seen that near
the critical point P1 / (p � pc)1/(��3), so ˇ D 1/(� � 3).
Similarly, it can be shown that � D (2� � 3)/(� � 2) in
this regime. Both exponents return to their mean field
value for � > 4.

Another common characteristic of critical phenom-
ena is the fractal behavior at the critical point. For high
dimensional percolation at the critical dimension dc D 6
and above it is known that the fractal dimension of the
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largest components is df D 4. This implies that the size
of the largest component behaves as S � L4, where L is
the linear dimension of the grid. Since the total grid size
is N � L6 it follows that S � N2/3. Also, it is known that
each branch of the components at criticality behaves as
an independent random walk. Since random walks have
` � L2, where ` is the number of random walk steps, rep-
resenting the distance on the fractal itself, also known as
the chemical distance. This implies that S � `2. This di-
mension, dl D 2 is known as the chemical dimension [23],
and since in a network no embedding space is present, and
therefore L is not well defined, the chemical dimension is
the most appropriate measure to be used.

To deduce the critical dimensions of a percolating net-
work one can observe the survivability of a branch in the
network. Define

F(x) D 1 � pc C pcG1(x) ; (12)

to be the degree distribution at criticality, i. e., the distri-
bution of the number of occupied links leading to occu-
pied nodes. Denote the number of nodes at a distance `
along a branch by N`. The distribution of such values can
be fitted with a generating function N`(x). The generating
functions for different layers satisfy

N`C1(x) D F(N`(x)) : (13)

At criticality the average number of nodes on the `th
layer along a branch is 1, since a lower branching factor
will lead to fast extinction of all branches, and a higher
branching factor will give an infinite branch with a high
probability. Therefore, the number of nodes at a dis-
tance ` only along branches that survive at least ` lay-
ers equals the average number of nodes in the `th layer,
which is 1, divided by the fraction of branches surviv-
ing at least ` layers. This number can be obtained by
noticing that the probability of a branch to become ex-
tinct at the first ` layers is given by N`(0), the probabil-
ity of having 0 nodes in the `th layer. The average number
of nodes at the `th layer of surviving branches is there-
fore m` D 1/(1 � N`(0)), and the fractal dimension can
be obtained from the total number of nodes up to the `th
layer in surviving branches, M` D

P`
iD1 m`. The asymp-

totic behavior of N`(0) can again be obtained and leads to
M` / `

(��2)/(��3) for 3 < � < 4 and M` / `
2 for � > 4

and for ER networks. This implies

dl D

(
��2
��3 ; 3 < � < 4 ;
2 ; � > 4 :

(14)

The size of the largest component at criticality can be
obtained using the other critical exponents. As presented

above, the asymptotic behavior of the component size dis-
tribution is P(s) D s��C1, where P(s) is the probability of
a node to belong to a component of size s. There are N
nodes in the graph, and therefore it is expected that the
size of the largest component of a graph, S, will be such
that P(S) � N�1. This leads to S � N1/(��1) and to

S /

(
N (��2)/(��1) ; 3 < � < 4 ;
N2/3 ; � > 4 :

(15)

Optimal Paths andMinimum Spanning Trees

Communication in a network usually follows the shortest
path from source to destination. The network structure
and function usually depends only weakly on the space
the network exists in. Hence, the path length is usually de-
fined by the intrinsic properties of the network. The sim-
plest definition of the path length between two nodes, a
and b, in a network is the hop distance, i. e., the minimum
number of links that need to be traversed in order to arrive
from a to b. The average path length in networks has been
studied extensively, and is known to be logarithmic in the
size of the network for ER [5] and scale free graphs with
� > 3 [29] and of order log logN in scale free graphs with
� < 3 [15].

Another definition for the distance in a network can
be given in case each link has some intrinsic length, or
some intrinsic property (similar to energy in physics),
termed “weight”, measuring the cost of using it. When
the link length distribution is narrow (the “weak disor-
der” limit) the behavior of the optimal (lowest cost) path
is expected to be very similar to that of the shortest path.
However, when the distribution of link costs becomes very
wide (the “strong disorder” limit) the behavior of the opti-
mal path becomes very different from that of the shortest
path [12,38].

The limit of strong disorder is observed clearly when
the weight distribution is so wide, that the weight of each
link is expected to be at least twice as large as the next
highest link weight. This implies also that the weight of
each link is larger than that of all links with lower weight.
In this case paths can be compared by sorting the link
weights along each path, and then comparing the lists of
link weights by lexicographic order. It should be noted that
the graph of all shortest paths also called “optimal paths”
is a tree, i. e., has no loops. It is similar to the minimum
spanning tree (MST), which presents the same behavior
regardless of the weight distribution. Another similar case
is high bandwidth information transmission in commu-
nication networks, where it may be desirable to transmit
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through the path having the highest minimal bandwidth,
to avoid bottlenecks.

An alternative method for reaching the optimal path
tree is the bombarding method. In this method the links
in the network are removed one by one by order of de-
creasing weight. It is clear that removing a high weight link
will not change any of the optimal paths, unless it makes
the network disconnected, in which case it is not removed.
Since the order of the link weights is random, so is the or-
der of removal, and therefore this model is identical to ran-
dom percolation, with the difference of refraining from re-
moving links thatmake the network disconnected. Since at
criticality percolation disintegrates the network into a col-
lection of trees (or almost trees), the critical percolation
component (cluster) is a subgraph of the optimal path tree.

This mapping of the optimal path andminimum span-
ning tree to a (restricted) percolation problem is very use-
ful, since it allows the determination of the properties of
these objects, based upon their similarity to the network
at the critical point. From the results above in Sect. “Crit-
ical Exponents and Fractal Dimensions” the size of the
largest component in ER networks is S / N2/3. The chem-
ical dimension is dl D 2. Therefore, S / `2, leading to the
average hop distance between nodes on the critical com-
ponents being ` / N1/3. Similarly for scale free networks
with 3 < � < 4, ` / N (��3)/(��1). This presents a lower
bound on the length of the optimal path in ER and scale
free networks [7]. In fact, it is observed that the critical
components are connected in a compact way i. e., through
a small number of components in the optimal path tree (or
MST) and this lower bound is actually exact. See Fig. 5.

Percolation in Complex Networks, Figure 5
The optimal distance lopt as a function of N1/3 for ER graphs with
strong disorder. After [7]

Fragmentation of Social Networks

One of the most interesting questions in sociological net-
works is quantifying the collapse process of a network. Un-
der certain circumstances it may happen that a network
of friendship or acquaintance is fragmented into several
components. It is desirable in many cases to quantify the
fragmentation using a measure that is sensitive to the dif-
ferent possible partitions into fragments. Such a measure,
developed in [6] can distinguish between different parti-
tions of a network, based on the sizes of all components.
This is especially important in small and medium size net-
works, and in non random fragmentation processes, where
the fragments may contain several similarly sized compo-
nents.

Notice that the phenomenon of network fragmenta-
tion due to link removal (acquaintance separation) or
node removal (individuals leaving the social network) is
similar to bond and site percolation, respectively. One of
the main shortcomings of the percolation description in
this case is the focus of percolation theory on random pro-
cesses and in the limit of large system size (the “thermody-
namic limit”). Here we will discuss the proposed fragmen-
tation measure and its relation to the standard percolation
measures.

The suggested measure of fragmentation, F, is the
number of pairs of nodes not reachable from each other,
divided by the total number of pairs in the network [6].
Since nodes that are reachable from each other belong to
the same component, this is equivalent to the following
definition:

F D 1 �
Pn

iD1 si(si � 1)
N(N � 1)

� 1 � C ; (16)

where si is the size of the ith component and n is the num-
ber of components in the graph.

In [10] the relation between percolation theory and
this fragmentation measure was studied. As discussed
above, in the limit of N !1 above the percolation
threshold there is a large gap between the size of the gi-
ant component, which is of order N and the size of the
second largest component, which is usually of logarithmic
size. At the threshold, the size of the largest component is
of order N2/3 for ER networks and some power of N for
scale free networks, and the component size distribution
is continuous. Below the percolation threshold the distri-
bution is continuous again. However, the size of the largest
component is even smaller (logarithmic in ER networks).
Equation (16) therefore can be presented in the following
equivalent form in the limit of large N

F � 1� P21 �
P

s n(s)s(s � 1)
N2 � 1� P21 �

hsi
N
: (17)
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Percolation in Complex Networks, Figure 6
Comparison of P1 and C 	 1� F for random removal (a and c) and high degree removal (b and d) of links in a real social network of
working relations in Sweden. After [10]

Notice that hsi represents the average component sam-
pled over all nodes, rather then over all clusters. This gives
a larger weight to larger components. In fact, since � D 2:5
in ER networks, and � < 3 for all � > 3 and that P(s), the
probability of a node to belong to a component of size s
scales as P(s) � s��C1, it follows that hsi diverges similarly
to S at the threshold.

For finite networks in particular F has the advantage
the it presents some measure of the fragmentation process
both above and below the critical threshold. A comparison
of P1 and F as measures of fragmentation can be seen in
Fig. 6.

Future Directions

Different types of percolation can be defined and studied
on random networks. Random percolation has special fea-
tures in terms of the threshold and the critical exponents
in scale free networks. The percolation theory of networks
has many applications in epidemiology, network robust-
ness, social networks analysis, and communication net-
work efficiency.

Several open questions still remain regarding percola-
tion theory in networks and its applications. For scale free
networks with 2 � � � 3 it seems that a phase transition
still exists with a threshold that approaches zero as a func-
tion of N . Although some progress has been made in this

direction (see, e. g., [25]), the nature of this transition is
not completely well understood and understanding it may
enable the understanding of properties such as the optimal
path behavior in such networks (which, from numerical
results, seems to behave logarithmically).

Other important topics, which are not yet fully un-
derstood, is the question of optimal network design, and
optimized attack strategies. In optimal network design,
an attempt is made to find the parameters (such as de-
gree distribution, correlations, or clustering) that produce
a network class, with optimal percolation properties, in-
cluding minimum random or targeted percolation thresh-
olds, good near critical behavior, etc. Optimized attack
strategies attempt to bring the network to the percolation
threshold (or any other desired point) with the minimum
number of removed nodes or links. Targeted attacks are
usually very efficient in achieving percolation. However,
more efficient methods can be conceived.
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Glossary

Dimensionless density The dimensionless density is the
number of objects per excluded volume.

Excluded volume The excluded volume Vex of an object
is defined as the volume surrounding it, in which the
center of another object must be in order for them to
intersect.

Fracture network A fracture network is generally defined
as a set of individual fractures which may or may not
intersect.

Percolation and percolation threshold Percolation is
defined as the existence of a spanning connected
cluster in the fracture network. Percolation occurs
when the number of fractures per unit volume is equal
or larger than a certain value called the percolation
threshold.

Plane convex fractures A plane fracture is convex if for
any points A and B which belong to the fracture, all
the points of the segment AB belong to the fracture.

Definition of the Subject

The study of fractured porous media is of great practical
and theoretical importance. It has been first generated by
the fact that the presence of fractures can change com-
pletely the macroscopic properties of porous media which
are present for instance in oil reservoirs, aquifers or waste
repositories. The first contributions to this subject were
made from very different standpoints by Barenblatt and
coworkers [7], Conrad and Jacquin [13], andWitherspoon
and coworkers (see for instance [22]).

In the eighties, these studies were renewed by concepts
such as percolation and fractals. Fracture networks were
first addressed in the framework of continuum percolation
by [12] and [4].

Since the mid nineties, important progress have been
made in this field thanks to systematic numerical experi-

ments which can be rationalized by using the concept of
excluded volume.

Introduction

Knowledge of geometrical properties of fracture networks
is crucial to the understanding of flow and other transport
processes in geological formations, both at small and large
scales; introduction of fractures in a porous rock matrix
seriously alters the macroscopic properties of the forma-
tion. Moreover, studies of fracture geometries during the
last 30 years show that naturally occuring geological frac-
tures exist on scales ranging from a fewmm to several kilo-
meters [33]. Therefore, fracture networks are likely to in-
fluence the transports on a large range of scales. Because
of their importance, fracture networks are studied and ap-
plied in various areas such as oil and gas recovery, hy-
drology, nuclear waste storage and geothermal energy ex-
ploitation.

Geological fractures can be defined as discrete discon-
tinuities within a rock mass; these breaks are characterized
by the fact that their local aperture (defined as the local
distance between the two surfaces which limit the frac-
ture) is significantly smaller than their lateral extent; in
other words, when they are viewed from far away, frac-
tures can be assimilated to surfaces of discontinuity; in
most cases, these surfaces are relatively plane. Fractures
have varying degrees of aperture, and may in some cases
be completely closed either because of deposition of mate-
rial induced by fluid flow, or by displacements of the ma-
trix.

An important property of these fracture sets or frac-
ture network is their connectivity and their percolation
properties. If a network percolates, fluid can circulate only
through it and most likely much more rapidly than in the
surrounding porous medium itself. Connectivity studies
of fracture networks were initiated in 3D by Charlaix et
al. [12] and Balberg [4].

The purpose of this paper is to provide a complete and
updated view of the percolation properties of fracture net-
works in rocks. It is organized as follows. In Sect. “Fracture
Networks”, fractures are modeled as plane convex poly-
gons which enables the introduction of the concept of ex-
cluded volume Vex. This volume is a simple function of
the surface and perimeter of the fractures, and it enables
to introduce a dimensionless fracture density �0 which is
defined as the number of fractures per excluded volume.
The tools necessary for the numerical study of the perco-
lation thresholds are detailed and applied to mono- and
poly- disperse fracture networks. It is shown that when ex-
pressed in terms of �0, the percolation threshold does not



6506 P Percolation, and Faults and Fractures in Rock

depend anymore on the fracture shapes. This crucial prop-
erty is presented and discussed.

Section “Determination of the Dimensionless Density
from Experimental Data” is devoted to the determina-
tion of the dimensionless density from experimental data.
In most cases, these data are based on 1D and 2D mea-
surements of fracture traces along boreholes or on ex-
posed outcrops. These measurements necessitate extrap-
olation by stereological techniques to three dimensions.
Significant progress can be made for plane convex frac-
tures. Some recent applications of the methodology are
given.

Finally, the independence of the dimensionless perco-
lation threshold on the fracture shape can be extended to
other properties such as other geometric properties and
themacroscopic permeability of fractured rocks. These ex-
tensions are summarized in Sect. “Role of the Dimension-
less Density in Other Geometrical Properties and Perme-
ability”.

Fracture Networks

A fracture network is generally defined as a set of individ-
ual fractures which may or may not intersect.

On a scale large with respect to the fracture aperture,
fractures are usually modeled as convex, finite polygons
possibly based on an embedding disk as shown in Fig. 1a.
This is only a simplifying assumption which however pro-
vides a standard starting point for studying fracture net-
works. Convex polygons can be used to analyze shape and
area dependencies of geometrical and topological features
in the fracture systems in a systematic way.

The individual fractures are characterized by their ori-
entation. This orientation is usually given by two unit vec-
tors n and m (cf. Fig. 1). n is the normal to the fracture

Percolation, and Faults and Fractures in Rock, Figure 1
Notations. Convex polygons such as hexagons are created within a circle of radius R (a). This polygon requires two unit vectors n
and m to be oriented in space (b); l is a unit vector perpendicular to n and m. c illustrates the notations which are mostly used in
Sect. “Determination of the Dimensionless Density from Experimental Data”

plane; m gives the orientation of the polygon in the frac-
ture plane.

The simplest model consists of a network in which all
fractures have the same shape and are inscribed in a cir-
cle with a given radius R. The normal vectors n are uni-
formly distributed on the unit sphere. The density � of this
isotropic monodisperse network is defined as the number
of fractures per unit volume. An illustration of such a frac-
ture system is shown in Fig. 2a.

Next consider three-dimensional networks made up of
polydisperse fractures with plane polygonal shapes. These
polygons may be regular or not, but all their vertices are
supposed to lie on their circumscribed circle, whose radius
R provides ameasure of their size. In agreementwithmany
observations of fractured rocks [2], the statistical distribu-
tion of the fracture sizes is supposed to be given by a power
law

n(R) D ˛R�a (1)

where n(R)dR is the probability of fracture radii in the
range [R; RC dR]; ˛ is a normalization coefficient, and
the exponent a ranges between 1 and 5. In practice, Rmay
vary over a large interval which can span five orders of
magnitude, from the size Rm of the microcracks to the size
RM of the largest fractures in the system. The normaliza-
tion condition implies that ˛ verifies

˛ D
a � 1

R1�a
m � R1�a

M
(a ¤ 1) ;

˛ D
1

lnRM � lnRm
(a D 1) :

(2)

The definition of the network density � for polydis-
perse networks should be modified. To this end, we intro-
duce the volumetric number density of fracture per frac-
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Percolation, and Faults and Fractures in Rock, Figure 2
Examples of three-dimensional fracture networks. aMonodisperse network made of identical polygons. The volume of size L3 con-
tains 495 hexagons; L D 12Rwhere R is the radius of the circle in which the hexagon is inscribed. b Polydisperse network of hexag-
onal fractures, with L0 D 4, a D 1:5, R0

m D 0:1, which contains Nfr D 300 fractures (�0

21 D 1:25, �0

3 D 2:44). The unit for the coordi-
nates is RM

ture size F(R),

F(R) D � n(R) (3)

where F(R)dR is the number of fractures with radius in the
range [R; R C dR] per unit volume.

An example of such polydisperse networks is given in
Fig. 2b.

Percolationof Fracture Networks

General Considerations on Continuum Percolation

Continuum Percolation Percolation, i. e., the existence
of a spanning connnected cluster in the fracture network,
is a crucial topological property which conditions many
other geometrical or transport properties of the network.

Percolation of discrete sites or bonds lattices has been
closely studied (see, e. g. [32,37],). In these lattices, the sites
or bonds are occupied with a probability p, which can be
interpreted as a concentration. In large systems, percola-
tion occurs when p exceeds a critical value pc, known as
the percolation threshold, which depends on the underly-
ing lattice structure. For p close to pc, however, many ge-
ometrical or transport coefficients are known to scale as
power laws of the difference p � pc, according to the stan-
dard form

X /
�
p � pc

˛
: (4)

The quantity X may represent the correlation length, the
fraction of sites connected to the infinite cluster, or the

conductivity of the system. Different exponents are asso-
ciated with the various quantities, but each is generally be-
lieved to be universal, i. e., insensitive to the details of the
underlying lattice.

It is, of course, tempting to try to transpose this theo-
retical framework to the problem at hand. It is intuitively
obvious that a fracture network will start percolating if
some critical concentration is reached. The main difficulty
is to define an equivalent of the probability p in discrete
lattices. As shown below, this can be done by using the
concept of excluded volume, introduced by [6] in the con-
text of fracture networks.

Fracture networks belong to the general class of con-
tinuum percolation systems. Applications of continuum
percolation concepts to geophysical problems have been
reviewed by [9]. Continuum percolation differs from lat-
tice percolation in several respects. First, the occupancy
probability p in a discrete lattice ranges between 0 and 1,
which means that there is a maximal concentration; the
filling of the system can be defined relative to this upper
bound. In continuum percolation, there is generally no
such upper bound. For instance, there is ideally no upper
limit to the degree of fracturation of a piece of rock. Con-
sequently, the relative concentration p has to be replaced
by a volumetric density. Second, any site or bond in lat-
tice percolation cannot have more than a maximum num-
ber z of neighbors, called the lattice coordination num-
ber, whereas there is no limitation to the number of in-
tersections for a fracture in a network. Other differences
result from the variable lengths and orientations of the
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bonds, in contrast with the discrete set of values imposed
by a lattice, which may be significant for transport proper-
ties (see [5]).

Note that in this section we only consider “large” sys-
tems, i. e., the size of the objects in the percolation system
may have a broad distribution, but the overall domain ex-
tension is supposed to widely exceed the size of the largest
objects it contains. This condition may sometimes be diffi-
cult to fullfil; natural fracture networks often involve large-
scale faults, which may in themselves ensure percolation if
they cross the domain of investigation. [11] and later [24]
considered such broad size-distributions where the prob-
ability of a spanning single fracture is non-zero.

In view of the previous considerations, two definitions
of the system concentration appear possible. One is vol-
umetric, quantified by the average number of objects in
a reference volume; the other is topological, defined as the
average number of connections with surrounding objects.
These two definitions are nicely reconciled by the intro-
duction of the concept of excluded volume.

The excluded volume Vex of an object was defined
by [6] as the volume surrounding it, in which the center
of another object must be in order for them to intersect.
We first discuss the simplest case of populations of identi-
cal objects, with volumeV . For example, the excluded vol-
umes of a sphere with volume V in 3D and of disks with
area A in 2D are

Vex D 8 V for spheres ;
Aex D 4 A for disks in the plane :

(5)

These equations are also valid for any object with convex
shape, if all the objects in the population have identical ori-
entations.

If the objects are anisotropic and have distributed ori-
entations, the excluded volume has to be averaged over all
possible relative orientations of the intersecting objects.

Now suppose that the volumetric density of objects per
unit volume is �. It is natural to use Vex as a reference vol-
ume, and we may define the dimensionless density �0 as
the number of objects per volume Vex

�0 D � Vex : (6)

On the other hand, the definition of Vex implies that �0

is also the average number of intersections per object, if
they are randomly located according to a Poisson process.
Therefore, given the shape of the object and its orienta-
tion distribution (and thus Vex), the definition (6) incor-
porates both the volumetric and topologic aspects men-
tioned above.

It should be emphasized however, that the definition
of the excluded volume is meaningful only if the object lo-
cations are uniformly distributed in space. If there are spa-
tial correlations, they should be replaced by a spatial in-
tegral of the pair separation distribution function (see for
instance [14] for applications to the physics of liquids).

Calculation of the Excluded Volume for Plane Convex
Fractures A general expression for the excluded vol-
ume was established very early in the context of statisti-
cal mechanics by [19], for isotropically oriented objects.
For two three-dimensional convex objects A and B with
volumes VA and VB, areas AA and AB and surface aver-
aged mean radius of curvature RA and RB, [19] obtained
the mutual exclusion volume

Vex;AB D VA C VB C (AARB C ABRA) : (7)

This expression can then be averaged over the distribu-
tions of object shapes and sizes. For equal spheres, Eq. (5)
is obtained. For flat convex objects randomly oriented in
space with perimeters PA and PB, it is reduced to [12]

Vex;AB D
1
4
(AAPB C ABPA) : (8)

On averaging (8) over the size distribution of objects with
identical shapes, one obtains

Vex D
1
2
hAi hPi (9)

where h� i is the statistical average. If A and B are identi-
cal, (9) yields

V iso
ex D

1
2
AP : (10)

If the population of polygons is not isotropic and has
a probability distribution n(f ), which may involve the
shape or the size of the polygons, the average of (8) yields

V iso
ex D

1
4

“
n(F1) n(F2) (A1 P2 C A2 P1) dF1 dF2

D
1
2
hAi hPi (11)

where hAi and hPi are the average area and perimeter. Al-
ternatively, the polygon orientation may be incorporated
into n(f ) and a general expression of Vex can be obtained.

Determinations of Continuum Percolation Thresholds
The percolation thresholds of various simple continuous
systems have been determined, since the pionneering pa-
pers of [35] and [27]. These early works were reviewed
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Percolation, and Faults and Fractures in Rock, Table 1
Thresholds�0

c for various continuumpercolation systems ind di-
mensions

d Object type �0c d Object type �0c
2 Orthogonal sticks 3.2 3 Orthogonal elongated

rods
0.7

2 Randomly oriented
sticks

3.6 3 Randomly oriented
elongated rods

1.4

2 Disks or parallel
objects

4.5 3 Orthogonal squares 2.0

3 Randomly oriented
squares

2.46

3 Spheres or parallel
objects

2.80

by [6] and [5]. A few examples are given in Table 1, for
monodisperse objects in a d-dimensional space. The crit-
ical concentration is described in terms of the average
number �0c of connections per object.

The influence of the orientation distribution was in-
vestigated by [29,30], and [6]. For sticks with constant
length in the plane, [29] has shown that �0c is identical
for uniform orientation distributions in any angular sector
and equal to the value 3.6 for an isotropic distribution. On
the other hand, the value 3.2 for orthogonal sticks is also
valid for any bimodal orientation distribution. By consid-
ering three-dimensional systems [6], also conclude that
the total excluded volume at percolation is independent
of the degree of anisotropy. [4] proposed a set of bounds
which correspond to orthogonal and parallel object sys-
tems

3:2 � �0c � 4:5 d D 2; 0:7 � �0c � 2:8 d D 3: (12)

All these results were obtained by numerical simula-
tions. One should also mention the heuristic criterion de-
veloped by [3]. They define the average “bonding distance”
l as the mean distance between connected objects, which is
essentially the gyration radius of the excluded volume

l2 D
1
Vex

Z

Vex

r2 d3r : (13)

Note that l does not depend on the density of objects. They
then postulate that percolation occurs when the average
distance Ld between objects with at least two neighbors is
smaller than or equal to 2l. To evaluate Ld, they note that
the number k of connections to a given object corresponds
to a Poisson distribution

Pr(k) D
�0k

k!
e��
0

: (14)

Therefore, the density �2 of objects with at least two neigh-
bors is

�2 D �
h
1 �

�
1C �0


e��
0

i
: (15)

Thus, an estimate of Ld follows from

4
3
�

�
Ld
2

�3
D

1
�2
: (16)

An equation for the critical concentration �0c can be di-
rectly deduced from the statement that Ld D 2l. Although
the argument is not substantiated, it is quite successful. It
yields directly �0c D 2:80 for spheres. In two dimensions,
Ld is replaced by the average distance between objects with
at least 5 neighbors.

An interesting feature of this argument is that it can
be easily generalized to account for spatial correlations. If
�g(r) denotes the probability density of finding an object
center at a distance r from an object located at the origin,
the bonding distance is defined by the weighted average

l2 D

R
Vex

r2 g(r) d3r
R
Vex

g(r) d3r
: (17)

Similarly, the average number of bonds per object appears
as

�0 D �

Z

Vex

g(r)d3r : (18)

Using these two definitions, an equation for �0c can be ob-
tained. Its predictions were successfully compared by [3]
to numerical simulations for systems of hard-core spheres
with or without interaction potentials.

Only monodisperse objects have been addressed so
far in this subsection. For polydisperse populations, there
seems to be some confusion in the literature. For flat ob-
jects, the statistical derivation of the excluded volume in
Sect. “Calculation of the Excluded Volume for Plane Con-
vex Fractures” quite naturally yielded the averages (9)
or (11), which account for the sizes of the two intersect-
ing objects. For isotropic populations of segments with
length l in the plane or disks with radius R in space, for
instance, the averages can be expressed as

Vex D
2
�
hli2 segments, d D 2 (19a)

Vex D
�2

8
hR2i hRi disks, d D 3 : (19b)

However, another type of average has been proposed
by [6], namely,

Wex D
2
�
hl2i segments, d D 2 (20a)
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Wex D
�2

8
hR3i disks, d D 3 : (20b)

On the basis of the numerical simulations of [29,30], [6]
and others claim that the average bond number for poly-
disperse objects is not given by Eq. (6) but instead by

�00 D �Wex : (21)

However, a careful examination of [29]’s data shows that
they correspond very accurately to Eq. (6) with (19a). Fi-
nally, the derivations of [8] are based on (19b) and yield
consistent results.

Actually [29], and [30] showed that �0c is not invariant
for similar systems of segments in the plane with various
degrees of polydispersity, while �00c is. [11] also observed
that �00c is roughly constant for very broad power-law seg-
ment size distributions. The profound meaning of this ob-
servation is that continuum percolation is not determined
only by the average coordination, when connections over
various ranges may coexist. As suggested by [28], this is
probably because contacts between objects too close to
each other are redundant to percolation.

To summarize, the density �0 based on Vex resulting
from the averages (9), (11), or (19a) is always equal to the
mean number of intersections per object, but it cannot
be used to relate the percolation thresholds of mono- and
polydisperse systems. The alternative definition �00 in (21)
is very successful in this respect and is going to be general-
ized as �03 in (29).

Methods

The three main tools necessary for the numerical study of
the percolation properties of the fracture network models
are summarized in this section.

First, the medium is assumed to be spatially periodic
on a large scale. A detailed description of spatially periodic
media is given by [1], and only the main characteristics
of these models are briefly repeated here. The geometrical
and physical properties of the system under investigation
are invariant under the translations

Ri D i1l1 C i2l2 C i3l3 (22)

where i D (i1; i2; i3) 2 Z3, and where l1, l2 and l3 define
a unit cell where the system is studied. The entire space is
tiled by replicas of this unit cell, translated by Ri . All the
studies presented in this chapter are performed in cubic
unit cells where jl1j D jl2j D jl3j D L.

Spatial periodicity implies that fractures may cross the
imaginary unit cell boundaries, and reach the neighboring
cells of the periodic medium. Therefore, for polydisperse

fractures, RM should be at least smaller than L/2. More-
over, in order to represent a homogeneous medium by
a periodic model, one has to set the unit cell size much
larger than any finite characteristic length scale in the sys-
tem. Practically speaking, because of the finite size effects
which will be discussed in Sect. “Methods”, RM is at least
smaller than L/4.

Second, the networks are characterized by a graph
which provides all the necessary relations and informa-
tion. This graph, denoted by �1, consists of vertices which
correspond to the polygons, and edges which correspond
to the intersection between polygons. �1 will be used to
study network percolation as a function of fracture shape,
distribution and density, as well as to characterize the
topological features of the percolating components of the
networks.

The information relative to the intersections is stored
in the graph �1. Since the networks considered here are
spatially periodic, intersections of a polygon P1 with the
periodic replicas of a polygon P2 in the 26 neighboring
unit cells have to be checked as well. Once the intersections
have been identified, the edges of �1 are known, and �1
can be set up.

Third, in order to estimate the percolation thresholds,
the classical finite-size scaling method described in [37]
is used. The percolating system is studied for various cell
sizes L. For given values of L and �, the probability ˘L(�)
of having a percolating cluster is derived from numerous
realizations of the system. Then, the numerical data are
used to estimate �Lc (the value for which ˘L(�) D 1/2)
and an estimate of the width �L of the transition region
of ˘L(�). ˘L(�) was fitted with an error function of the
form

˘L(�) D
1

p
2��L

�Z

�1

exp
�
�
(� � �Lc)2

2(�L)2

�
d� (23)

where �Lc and�L are fit parameters. Once they have been
evaluated for several values of L, the asymptotic value �Lc
for infinite systems �c can be derived from the two scaling
relations

�Lc � �c / L�1/� �L / L�1/� : (24)

Monodisperse Fractures

This case was addressed by [18]. Since the computer time
increases proportionally to the square of the number N of
objects, L (measured in units of the disk radius R) was kept
below 16 in this early contribution. Despite the small cell
sizes, the scaling laws (24) are well verified, which justifies
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Percolation, and Faults and Fractures in Rock, Figure 3
a The probability of percolation˘L(�) vs the density � of fractures in fracture networks created by equal sized, regular hexagons.
Data are for sample sizes L/R D 4(ı), 6 (+), 10 (�), 20 (

�
). The solid lines are the fitted error functions. b The percolation thresholds

�c for regular polygons (ı) and rectangles with a/b D 0:5(C) vs (Ad/Ap � 1). The linear fit (� � � � �) yields �c D 0:231˙ 0:002 for
disks

the extrapolations of �c at L!1. The polygons were cre-
ated, and intersections identified. Percolation was checked
in all possible directions x, y and z. Periodic boundary con-
ditions were applied to the 3d graph during this search;
this means that a cluster must touch two opposite faces of
the unit cell, and in addition contain fractures intersecting
one another across the faces.

An example of the plots of the estimated ˘L(�) data
points is given in Fig. 3a, together with the fitted error
functions. Plots of ln(�L) vs ln(L/R) were used to ob-
tain the critical exponent �. The various polygons are ex-
pected to belong to the same universality class, and � was
expected to be the same in all cases. Values were in the
range � D 1:011˙ 0:044. The plots of �Lc vs �L were
extrapolated for �L ! 0 to find �c and these extrapola-
tions are shown in Fig. 3b as functions of the shape factor
Ad/Ap � 1 where Ad is the area �R2 of the circumscribed
disk.

These results can be analyzed in terms of the average
number of intersections per fracture �0. (10) can be applied
to networks made of identical polygons

Vex
R3 D �

2
�
Nv

�

�2
cos

�
�

Nv

�
sin2

�
�

Nv

�
;

(regular Nv-polygons) (25a)

Vex
R3 D

8a(aC 1)
�
a2 C 1

3/2 ; (rectangles with aspect ratio a)

(25b)

The resulting values of �0c are remarkably constant
(cf. [18]). For all the fracture networks, including the cases

of anisotropic (rectangular) polygons, �0c is within the
range

�0c D 2:26˙ 0:04 : (26)

Note that (26) concords with the limits (12) set up
by [4] for 3d systems.

To summarize, this set of numerical results suggests
that the percolation threshold of a network of identical
Poissonian polygons has a universal value, expressed as
Eq. (26).

Polydisperse Fractures

Since natural fracture networks are likely to have more
complex size and shape distributions, the extension of (26)
to these cases is of great interest. The key for this extension
is the definition of a proper averaging procedure for the
excluded volume.

The fracture size R is always supposed to follow the
power law (1). Moreover, fractures of various shapes S are
considered as well as mixtures of shapes. The three length
scales Rm, RM and L define two dimensionless ratios

R0m D
Rm

RM
; L0 D

L
RM

: (27)

Moreover, it will be shown below that global connec-
tivity (percolation) is no longer controled solely by the lo-
cal one (mean coordination), in the case of size polydisper-
sity, and the definition of the percolation parameter has to
be generalized. Since shape effects are well accounted for
by hVexi, it is useful to define the dimensionless shape fac-
tor hvexi, for a set of fractures with identical shapes, but
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possibly different sizes

hvexi D
hVexi
hRihR2i

: (28)

It can then be used to define two dimensionless densities,
with different weightings of the fracture sizes

�021 D � hvexi hR
2ihRi D �hVexi ;

�03 D � hvexi hR
3i :

(29)

The subscripts are reminders of the statistical moments of
R involved in each definition. �021 is the generalization of
�0 for monodisperse networks, since it can be shown that
it is still equal to the mean number of intersections per
fracture [2]. Both �021 and �

0
3 reduce of course to �

0 in case
of equal-sized fractures.

The main tools required to study the percolation of
polydisperse networks model are similar to the ones de-
scribed in Sect. “Methods”.

For given values of the parameters, the probability ˘
of having a percolating cluster which spans the cell along
the x-direction is derived from Nr random realizations of
the system; then, the value �0c for which ˘ D 0:5 is esti-
mated. ˘ and �0c depend on several parameters as sum-
marized by the formulae

˘ (R0m; L
0; a;S; �0) ; �0c(R

0
m; L
0; a;S) (30)

where �0 denotes any one of the dimensionless densities
defined in (29). For brevity, they will be often written as
˘ (L0; �0) and �0c(L0).

In practice, ˘ (L0; �0) was evaluated from sets of 500
realizations, for about 10 values of the network density,
evenly distributed in a range where ˘ varies from 0.05 to
0.95. Since there is a correspondance between �021 and �

0
3,

for given values of S, a and Rm, the same data sets can be
used to determine �021c(L) and �

0
3c(L). The 95% confidence

interval is estimated to be about˙0:04 in terms of �03c(L).
The influence on �0c of the four parameters in Eq. (30)

was systematically studied in [24]. We only state here
the main result, which is that in the range 1:5 � a � 4,
Rm 
 L and for (almost) any fracture shape, �0c depends
only on the domain size, and that in the limit of infinite
domains, a unique value of �0c(1) applies in all cases. The
independence on the various parameters is illustrated in
the following examples.

In the example of Fig. 4, L0 and a are kept constant,
but the range of size and the fracture shapes varied. The
networks contain hexagons, squares or triangles, or mix-
tures of hexagons with triangles or rectangles with a four

Percolation, and Faults and Fractures in Rock, Figure 4
The percolation thresholds �0

3c (open symbols, solid lines) and
�chR3i (black symbols, broken lines) for networkswith L0 D 6 and
a D 1:5 for regular hexagons (ı), squares (�), triangles (

�
), mix-

ture of hexagons and triangles, 50%–50% (
�
), and mixture of

hexagons and rectangles with aspect ratio 4, 50%–50% ( )

Percolation, and Faults and Fractures in Rock, Figure 5
The percolation threshold �0

3c(L
0; a) for networks of hexagonal

fractures with R0

m D 0:1, versus the exponent a, for various do-
main sizes L. The lower line is the extrapolation of the data for
a D 1:5 when L0 tends to infinity

to one aspect ratio. The upper set of curves shows that �0c is
indeed independent of Rm and S. Note that the rightmost
points are actually monodisperse networks. For compari-
son, the thresholds �chR3i, which do not include the shape
factor hvexi (see Eq. 29), are also shown in the same figure
and they are clearly much more scattered. It is the incor-
poration of hvexi in the definition of �03 which unifies the
results for the different shapes.

Conversely, the fracture shape (hexagonal) and the
range of size (R0m D 0:1) are kept constant in the example
of Fig. 5, whereas the exponent a and the domain size L are
varied. It is seen that �0c does not vary when a ranges from
1.5 to 4. However, a definite dependence on the domain
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Percolation, and Faults and Fractures in Rock, Figure 6
The percolation threshold �0

3c(L
0) for mono- or polydisperse networks of fractures with various shapes, versus the width�L of the

percolation transition. In a, the fractures are hexagons, squares or triangles. �0

3c(1) is the extrapolation for�L! 0, which falls in
the range of Eq. 31. Data for monodisperse networks of rectangles with aspect ratios from 1 to 16 are added in b

size is observed, which corresponds to the well known fi-
nite size effects.

The data for increasing L0 can be extrapolated for infi-
nite systems by use of a classical technique. The combina-
tion of (23) and (24) shows that �0c(L) � �0c(1) is propor-
tional to the width �L of the percolation transition zone.
Hence, �0c(1) can be read on the vertical axis of the plot
of �0c(L) versus�L , which is shown in Fig. 6. The data for
many cases, including various fracture shapes in monodis-
perse and polydisperse networks, are gathered in Fig. 6a. In
all cases, the extrapolated values �03c(1) fall in the narrow
range

�03c(R
0
m; a;S; L0 !1) D �03c(1) � 2:4˙ 0:1 : (31)

This applies for a variety of shapes, as well as for mixtures
of fractures with different shapes (see Fig. 4).

However, when the polygons become elongated,
�03c(L

0) varies with the aspect ratio. Data for rectangles
with aspect ratios Ar up to 16 are shown in Fig. 6b. It
appears that �03c(L

0) decreases significantly when Ar in-
creases.

This can be taken into account by using the shape fac-
tor � D 4R/P of the fractures. This ratio is minimum for
disks, with � D 2/� � 0:637, and it increases up to one
when the shape deviates from circularity. It turns out that
a quadratic correction in terms of � is very successful for
the representation of the data for very different and irreg-
ular fracture shapes.

All the thresholds obtained in cells with L0 D 6 and
mono- or polydisperse size distributions with a D 1:5 or
2 and Rm D 0:1 are plotted in Fig. 7 as functions of �. This
includes networks of hexagons, squares, triangles, mix-

Percolation, and Faults and Fractures in Rock, Figure 7
The percolation thresholds �0

3c(L
0 D 6) and �0

3c(1) for a variety
of fracture shapes and size distributions, in comparison with the
expressions (32), (33). Themarks on the right are the predictions
of [15,16,31] for infinitely elongated objects. The fracture shapes
are indicated by the icons above or below the data points

tures of hexagons with rectangles or triangles, and rect-
angles with h/w up to 16. The data are well fitted by the
expression

�03c(L
0) D 2:69

"

1 � 4
�
��

2
�

�2
#

(L0 D 6) : (32)

The extrapolated data for infinite systems are also pre-
sented in Fig. 7, in comparison with the corrected version
of Eq. (31),

�03c(1) D 2:41

"

1 � 4
�
��

2
�

�2
#

: (33)
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In both cases, the deviations never exceed ˙0:1. The cor-
rective term becomes significant, i. e., larger than the error
bar in (31), when � > 3/4, which corresponds for rectan-
gles to aspect ratios larger than 2.

It can be noted that Eq. (33) predicts a threshold value
1.14 when h/w tends to infinity (i. e., when �! 1), which
is in the range of the predictions 1.5 for prolate ellip-
soids [16], 1 for capped cylinders [15] and 1.3 for elon-
gated prisms [31], in the limit of infinite slenderness.

Determination of the Dimensionless Density
from Experimental Data

Since percolation properties are controlled by the dimen-
sionless density �0, it is theoretically and practically im-
portant to derive estimations of �0 from field data. In
most cases, these data are based on 1D and 2D measure-
ments of fracture traces along boreholes or on exposed
outcrops which necessitate extrapolation by stereological
techniques to 3D. Such extrapolations have already been
made for specific fracture shapes by Warburton [39,40],
Piggott [26], Berkowitz and Adler [8] and Sisavath et
al. [36] (see also the references therein).

Our general methodology which is detailed in [38] can
be illustrated by the intersection of a family of convex frac-
tures with a line of length L which is parallel to the unit
vector p. Consider a fracture of surface A, of normal n
and of in-plane orientation !; this object does not inter-
sect the line when its center is located out of a surface of
area A. Since this is valid for any in-plane orientation, the
excluded volume of the line and of the surface is equal to
ALjp:nj. Hence, the average number of intersections hnIi
per unit length between such a line and an isotropic net-
work of a monodisperse family of fractures is

hnIi D
1
2
A� : (34)

Of course, the major interests of this formula are that it
does not depend on the precise shape S of the fractures and
that � can be deduced from nI and A. However, it depends
in a crucial way on the convexity of the fractures.

Isotropic Networks

In order to derive the average number of intersections ˙t
of a family of convex fractures F(R) with a plane ˘ per
unit area of the plane, define in ˘ a large convex region
R of area A and perimeter P. The excluded volume of
F(R) andR is thus given by (8). The number of intersec-
tions d˙t of the fractures of size ranging from R to RC dR
is proportional to the volumetric density of such fractures

multiplied by the excluded volume of F(R) and R as ex-
pressed by (8); whenA!1,A	 P; therefore,

d˙t(R)!
1
4
�P(R)n(R)dR when A!1 : (35)

This relation can be averaged over the sizes R

˙t D

Z
d˙t(R) D

1
4
�hPi : (36)

The intersections of the fractures with a plane are
called traces or chords. Let c be the length of a trace as illus-
trated in Fig. 1c. Such an intersection of length c(z;n; !)
exists if the vertical coordinate z of the center verifies

zm(n; !) � z � zM(n; !) : (37)

For a given fracture of size R, the average trace length hciR
when the intersection exists, can be expressed as

hciR D

R
d!

R
dn
R zM
zm cdz

R
d!

R
dn
R zM
zm dz

: (38)

Surprisingly, the numerator NR of this fraction is eas-
ier to evaluate than its denominatorDR. The most internal
integral

R zM
zm cdz is equal to the area A of the fracture pro-

jected onto the plane perpendicular to ˘ which contains
the trace, i. e., A sin � . Therefore, NR is equal to �3A. The
derivation of DR is slightly more involved Santalo [34]; it
is proportional to the integral of the Feret (or caliper) di-
ameter over !. Frenet formulae are used to express this
integral. Finally,

hciR D �
A(R)
P(R)

: (39)

For polydisperse fractures, the overall average hci is
given by

hci D
R
dR˙t(R)hciRR
dR˙t(R)

D �
hAi
hPi

(40)

a formula which is again an obvious generalization of the
disk formula (cf. (24a) of Berkowitz and Adler [8]).

The density of trace intersections ˙p is defined as the
number per unit surface in the observation plane of the
points which are intersections of traces. Since the fractures
are randomly oriented and distributed in space, the same
properties are valid for the traces.Moreover, as a trivial ex-
tension of the concept of excluded volume, the excluded
surface Sex of two traces of random orientations and of
lengths c1 and c2 is equal to (cf. [2])

Sex D
2
�
c1c2 : (41)
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Let �t(R; c)dcdR be the surface density of traces of
length c ranging from c to c C dc, for the fractures of size
R ranging from R to RC dR. Hence, the surface density of
intersections of traces c1 corresponding to fractures of size
R1 and of traces c2 corresponding to fractures of size R2 is

� D
1
2
�t(R1; c1)�t(R2; c2)

2
�
c1c2 : (42)

As a direct consequence

˙p D

ZZZZ
� dc1 dR1 dc2 dR2 : (43)

This last expression can be split into a product of integrals
since the populations 1 and 2 are independent. According
to (35), (36), (43), ˙p can be expressed as

˙p D
1
�

�2

16
�2hAi2 D

�

16
�2hAi2 : (44)

Extensions

Let us now examine various possible extensions of the pre-
vious formulae.

The precise shape S of the fractures is never taken
into account. Therefore, all the previous formulae are valid
whatever the mixture of shapes S.

For anisotropic networks, the normal vector n is not
uniformly distributed over the unit sphere. Let � and '
be the two polar angles of n (cf. Fig. 1c); the probabil-
ity that the end of n for fractures of sizes in the interval
[R; RC dR] belongs to the interval [�; � C d�] � [�; � C
d�] is given by �n(R;n)d�d�dR. The statistical average h�i
can be calculated with this differential element.

The first quantity which can be easily generalized is
hnIi (cf. (34))

hnIi D �
•

n(R;n)A cos � d� d� dR D �hAjp � nji :

(45)

The other generalized formulae are summarized in Ta-
ble 2. ˛ is the angle between the normal � to the plane ˘
and n; in most cases, by choosing the z-axis perpendicular
to˘ , ˛ is equal to � ; ˇ12 is the angle between the normals
n1 and n2 to the two fractures 1 and 2.

These formulae can be specialized to networks of sub-
vertical fractures with a horizontal observation plane ˘ .
Then, ˛ is equal to �/2 and ˇ12 is equal to the angles be-
tween the two traces in˘ . Such networks can be either iso-
tropic (i. e., the directions of the traces in˘ are isotropic),
or anisotropic. The corresponding results are detailed in
Table 2.

Percolation, and Faults and Fractures in Rock, Table 2
The major relations for the various kinds of networks. B12 D
hA1A2j sinˇ12ji

Isotropic 3D Anisotropic 3D Subvertical
isotropic

Subvertical
anisotropic

hnIi 1
2�hAi �hAjp � nji 2



�hAi �hAjp � nji

˙t
1
4�hPi

�


hj sin˛jPi �



hPi �



hPi

hci 	 hAi
hPi 	 hAj sin˛ji

hPj sin˛ji 	 hAi
hPi 	 hAi

hPi

˙p


16�

2hAi2 1
2�

2A12
1


�2hAi2 �2

2 B12

Discussion

Discrete Families of Fractures In many practical cases,
the fractures are perpendicular to a finite set of nor-
mals fni ; i D 1; : : : ;mg with probabilities fn(R;ni); i D
1; : : : ;mg. The integrals over d�d� are thus replaced by
the following summation for a function f (R;ni)

�

mX

iD1

n(R;ni ) f (R;ni) : (46)

Practical Use of the Formulae The major interest of the
formulae summarized in Table 2 is to try to use them
to derive the macroscopic quantities �, hAi and hPi. It
is easy (and frustrating) to realize that only two of these
quantities can be obtained. For instance, (40) implies that
hAi D ��1hPihci; from (36), hPi D 4��1˙t ; therefore
hAi D 4��1��1˙thci. When these expressions are intro-
duced into (34) or (44), one obtains that the three follow-
ing ratios should be equal to one

�1 D
�

2
hnIi
˙thci

; �2 D
�˙p

˙2
t hci2

; �3 D
�

4
hnIi2

˙p
: (47)

The third relation is derived by eliminating˙thci between
�1 and �2. These relations provide consistency relations
between the data, but not �.

In other words, only two of the three quantities �, hAi
and hPi can be simultaneously derived from the average
measured data. Note also that �1 is insensitive to the spatial
organization, and that this is not true for �2 and �3 which
depend on trace intersections.

One can go further if some geometrical information is
available which could be hVexi. Here, we shall use a shape
factor � which is defined as hAihPi�2. For 3D isotropic
networks, this expression can be combined to (40) and
to (36) to yield hAi, hPi and �

hPi D
hci
��

; hAi D
hci2

�2�
; � D 4��

˙t

hci
(48)
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or for a set of fractures normal to ni

�i D
�2�i

j sin˛i j
˙t i

hcii
: (49)

There are many equivalent ways to derive �. The choice
of the adequate formula depends on the available data.
Note that formulae which contains ˙p cannot be applied
to families of parallel fractures.

When � and therefore hVexi (cf. (8)) are known by one
way or another, one can derive the dimensionless density
�0 D �hVexi for isotropic and anisotropic networks

�0 D
�

�
h(A1P2 C A2P1)j sinˇ12ji (50)

�0 D
�

2
hAihPi (3d) ; �0 D

4�
�2 hAihPi (2d) : (51)

Then, if the fracture network is not too polydisperse, one
can use a classical mean field argument and approximate
its properties by the properties of a monodisperse network
of density �0.

Applications

Several applications have already been made of the pre-
vious methodology and they can be summarized as fol-
lows. [36] showed that when data relative to fractures are
collected along a line (e. g. a road or a well), estimations
can be given to the major geometrical properties of the
corresponding fracture networks, such as the volumetric
density of fractures and their percolation character. [38]
used the two dimensional maps obtained by [25] for sub-
vertical fractures. Among other results, some of the con-
sistency relationships (47) are well verified by these data.
As previously, �0 is estimated.

Finally [17], reconstructed a three-dimensional frac-
ture network in a granite block from a series of experimen-
tal serial sections provided by [21]. It was visualized and
its most important geometrical characteristics were stud-
ied. Though the network mostly consists of two families of
fractures, it is interesting to note that a simple model of
randomly oriented, monodisperse hexagons often yields
a good order of magnitude for the various geometrical
properties, which have been measured on the real block.

Role of the Dimensionless Density
in Other Geometrical Properties and Permeability

Though this article is focused on percolation properties,
it is important to notice that the dimensionless densities

which were introduced, play a crucial role in other proper-
ties as well. [18] studied twomain other geometrical prop-
erties for monodisperse networks. Fracture networks par-
tition the solid space into blocks; the block density is de-
noted by �b . One can introduce the cyclomatic number of
the graph �1 which is the number of independent cycles
of this graph, and more precisely the number of cycles ˇ1
per unit volume. [18] showed that �b and ˇ1 when made
dimensionless by the excluded volume are independent of
the fracture shapes.

Similar properties are found for the macroscopic per-
meability of fracture networks [20] and of fractured
porous mediawhether they aremonodisperse [10] or poly-
disperse [23]. In a series of contributions, the correspond-
ing dimensionless quantities were shown to depend only
on the dimensionless density �0. This is illustrated in Fig. 8.
The porous medium has a local permeability Km and the
monodisperse fractures a conductivity � . Themacroscopic
permeability of this medium is denoted by Keff. Dimen-
sionless quantities denoted by primes can be defined as

� D R Km �
0 ; Keff D Km K0eff : (52)

Figure 8 shows that the average macroscopic permeability
hK0effi does not depend significantly on the fracture shape.
The two major parameters are �0 and � 0.

Percolation, and Faults and Fractures in Rock, Figure 8
Statistical averages of the permeability hK0

effi for samples con-
taining Nfr=16 or 32 fractures, with 4-, 6- or 20-gonal shapes,
as functions of the network density �0 and of the fracture con-
ductivity � 0 . The cell size is L D 4R. Data are for squares (�),
rectangles with aspect ratios two to one (�) or four to one (˘),
hexagons (lines) and icosagons (ı)
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Future Directions

The percolation properties of networks of random and
convex plane fractures are successfully addressed by
means of the excluded volume. Many important dimen-
sionless properties of isotropic fracture networks only de-
pend on the dimensionless density of fractures and not on
the fracture shapes and sizes which represents a significant
simplification.

These properties are not specific of fractures present
in rocks and the same methodology can be applied for any
other fracture system whatever the characteristic sizes and
the nature of the material where it occurs.

These results should be generalized in several direc-
tions. In most cases, real fractures are not isotropically ori-
ented and this feature should be incorporated in the next
studies on this subject. The same is true for the homoge-
neous character of the network.
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Why is percolation theory relevant to the analysis of com-
plex systems? The question can be answered only if we
first define what we mean by a complex system. I spent
a large amount of time in vain, searching for a “clean,”
generally-accepted definition of a complex system, until
I finally realized that there are probably as many defini-
tions as the number of scientists that deal with complex
systems – there is not a clean universal definition of a com-
plex system.

But, at the very least, we can agree that a complex sys-
tem consists of a large number of interacting components,
or parts. The interactions may be short- or long-ranged,
and may or may not change with time. One type of such
interactions is the connectivity, the way the components or
parts of a complex system are connected with each other.
Clearly, if the components or parts of a complex system
are not connected, they do not interact with each other, at
least not directly. Now, if the connectivity of the compo-
nents or parts of a complex system plays an important role
on the macroscopic, or effective, properties of the system,
then, percolation theory plays a prominent – and in fact
a decisive – role in quantifying the effect of the connec-

tivity on the effective properties of that complex system,
hence the inclusion of this section in the Encyclopedia.

Percolation processes are, in fact, the opposite of dif-
fusion processes. In the latter case, the diffusant decides
where to diffuse or move. The medium in which the dif-
fusant is moving does not have any influence on the mo-
tion. This explains why many diffusion processes can be
reduced to problems in essentially one-dimensional sys-
tems (all that matters is the distance r of the diffusant from
the origin of its motion) which are, therefore, amenable to
rigorous theoretical analysis and analytical solutions.

In a percolation process, on the other hand, it is the
medium that decides where a species can go. Therefore,
if the connectivity of the components or different parts of
the medium – the complex system – is poor, the species
cannot go far. If, on the other hand, the parts are well-con-
nected, then the species is free to go almost anywhere. In
political jargon, a complex system in which the connectiv-
ity of its different parts or components plays a decisive role
in determining its effective properties – i. e., a percolation
system – is like a corrupt society in which what matters
is the connectivity to the powerful people! If one is well
connected, one can advance rapidly; if not, there is little
prospect for advancement. Since most media of interest
are three- or at least two-dimensional systems, percolation
problems are far more difficult to solve than the diffusion
problems.

Why should the connectivity of a complex system be
poor? Because natural complex systems are disordered. In
fact, Nature, the most complex system that we know of, is
disordered. Pure and geometrically perfect (periodic) sys-
tems are nowhere to be found, except perhaps in books
and in our imaginations. One way that the disorder man-
ifests itself is in the connectivity of the parts or compo-
nents of a complex system. In some sectors of the system
the parts are well connected, while in other sectors they
are not. But, what matters most is the overall connectivity
of the system, so that a given phenomenon can take place
across the system.

An illuminating example is provided by porous mate-
rials. A piece of rock is a disordered porous medium: The
shapes, sizes, and orientations of the pores are not identi-
cal, but vary greatly. If we attempt to characterize their sta-
tistical distributions, we find them to be broad. Thus, such
a porous medium is a highly disordered and complex sys-
tem. Clearly, the way the pores are connected plays a cru-
cial role in flow of a fluid through the medium, which is
why percolation is relevant to the description of fluid flow
in disordered porous medium.

But, many of the man-made systems are also dis-
ordered, and the connectivity of their parts is a con-
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trolling factor in determining their effective properties.
For example, small molecules, or monomers, react, form
chemical (covalent) bonds between themselves, and create
a macromolecule. The structure of such a macromolecule
is highly disordered. Clearly, the effective properties of
the macromolecule is controlled by the connectivity of the
monomers or the small molecules that formed it. If each
monomer reacts with only two other monomers, its has
a connectivity of two. The macromolecule has, therefore,
no branches or loops. If, on the other hand, eachmonomer
reacts with several others and has a higher connectivity,
one obtains branched polymers and gels, the properties of
which are completely different from those of linear poly-
mers.

As another example, consider electrical conduction
through a composite material which is a mixture of con-
ducting and insulating phases. Assume that the two phases
are randomly distributed in the composite. For simplicity,
we model the composite material by a simple-cubic net-
work in which each bond is either conducting with a finite
conductivity, or insulating with zero conductivity. Sup-
pose that we impose a voltage difference between two op-
posite faces of the network. The question then is: what
fraction of the bonds must have a finite conductivity in or-
der for the electrical current to flow through the material,
so that it would have a nonzero macroscopic conductiv-
ity? This is clearly an important practical question, because
its answer tells us, for example, what (volume) fraction of
a composite material, such as carbon black composites that
are used in many applications, must be conducting in or-
der for the composite as a whole to be conducting.

If too many bonds are insulating, no macroscopic cur-
rent will flow through thematerial, whereas for sufficiently
large number of conducting bonds electrical current does
flow in the material, so that its macroscopic effective con-
ductivity is nonzero. If the fraction of the conducting
bonds is p, then, there must be a minimum or critical value
pc of p, such that for p � pc no electrical current would
flow through the material and, therefore, the material as
a whole is insulating, whereas for p > pc the material be-
comes conducting.

The quantity pc signals a phase transition: for p � pc
there is no sample-spanning path of conducting bonds,
so that the material is macroscopically insulating – the
conducting bonds are not macroscopically connected. For
p > pc , on the other hand, the system becomes macro-
scopically conducting – the conducting bonds are macro-
scopically connected. Hence, pc is the point at which
a geometrical phase transition from a disconnected to
a connected system takes place. Percolation theory, then,
quantities the phase transition and its effect on the macro-

scopic properties of a complex system. pc is called the per-
colation threshold of the medium.

Determination of the exact percolation thresholds of
many 2D and all the 3D lattices remains an unsolved prob-
lem. John Wierman’s article, � Percolation Thresholds,
Exact, describes and discusses the existing exact results
for the percolation thresholds. Robert Ziff’s article,� Per-
colation Lattices, Efficient Simulation of Large, describes
highly efficient numerical methods for estimating the per-
colation threshold and many other properties of perco-
lation lattices, while Dietrich Stauffer’s article, � Scaling
Properties, Fractals, and the Renormalization Group Ap-
proach to Percolation, describes the theoretical founda-
tions for many important percolation properties near the
percolation threshold.

The aforementioned articles describe percolation sys-
tems in which there is no correlations, and the complex
system is completely random. However, disorder in many
important heterogeneous materials is not completely ran-
dom. There usually are correlations with an extent that
may be finite but large. For example, in packing of solid
particles, there are short-range correlations. Moreover,
if the correlation function C(r) decays as r�d or faster,
where d is the Euclidean dimensionality of the system,
then many properties of the system are very similar with
those of random percolation. This is not totally unex-
pected because even in random percolation, as p decreases
toward pc, correlations begin to build up and, therefore,
the introduction of any type of correlation with a range
shorter than the percolation correlation length cannot
change the properties fundamentally. In many other cases,
e. g., in some disordered elastic materials, there are very
strong correlations. The article by Antonio Coniglio and
Annalisa Fierro, � Correlated Percolation, describes the
major differences between percolation in random and cor-
related systems.

A particular type of percolation model with extended
correlations is known as the bootstrap percolation. In this
problem the sites of a lattice are initially randomly occu-
pied. Then, those sites that do not have at least Zc nearest-
neighbor occupied sites are removed (note that Zc D 0 is
the usual random percolation). The interactions between
the sites are short-ranged, but the correlations between
them may build up as the distance between two occupied
sites also increases. It now appears that bootstrap percola-
tion possesses many unusual properties and, in fact, sim-
ulating and obtaining accurate estimates of this particular
type of percolation systems have proven to be very diffi-
cult. The article by Paolo De Gregorio, Aonghus Lawlor,
and Kenneth Dawson, � Bootstrap Percolation, describes
the progress in this important area of percolation prob-
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lems, which appears to have applications to many impor-
tant phenomena.

The example of conduction in composite materials
that we described earlier also provided a hint on how
complex percolation systems are modeled: They are rep-
resented by lattices or networks, such as the simple-cubic
lattice. However, percolation in continua is also of great
interest, since in most, if not all, of the practical applica-
tions one must deal with continuous systems. For exam-
ple, continuum percolation is directly applicable to char-
acterization andmodeling of the morphology and effective
transport properties of microemulsions, polymer blends,
sintered materials, sol-gel transitions, and many other im-
portant practical problems. The article by Isaac Balberg,
� Continuum Percolation, describes the advances that
have been made in understanding of the percolation ef-
fects in continuous systems.

Although percolation in lattice and continuous mod-
els has been studied extensively, in recent years another
type of lattice model has attracted wide attention, as it ap-
pears to be applicable to a wide variety of phenomena,
ranging from social dynamics to biological systems. These
are lattices in which a small fraction of the sites – called
the hubs – are highly connected, while a vast fraction of
the remaining sites are connected only sparsely. Thus, the
connectivity k of the nodes follows a statistical distribu-
tion. The connections are no longer necessarily between
nearest-neighbor nodes. In fact, in such models the usual
notion of nearest-neighbor nodes is not even useful or ap-
plicable. Some of such networks are scale-free. These are
lattices in which the distribution of the nodal connectiv-
ities are of power-law type, P(k) � k�� , where � can be
quite large. Percolation in such scale-free networks has
very unusual properties. The article by Reuven Cohen and
ShlomoHavlin,� Percolation in Complex Networks, pro-
vides a review of this rapidly developing field. They de-
scribe how the concepts of percolation can be used to study
not only the robustness and vulnerability of random net-
works, but also such problems as immunization and epi-
demic spreading in populations and computer networks,
communication paths, and fragmentation in social net-
works.

Other major applications of percolation theory include
modeling of transport in disordered materials, and in par-
ticular composite solids, and porous media. The transport
processes that have been studied include fluid flow, diffu-
sion, conduction, and deformation (stress transport), in-
cluding computation of the elastic moduli. One important
application of the percolation concepts is to two-phase
fluid flow in porous media. In such problems, one fluid
is injected into a porous medium – that is, it invades the

medium – in order to displace a second fluid already in
the medium. A well-known example, practiced by the oil
industry, is displacement of oil in an oil reservoir by wa-
ter which is injected into the reservoir through some in-
jection wells. Thus, this particular model is usually known
as the invasion percolation. The article by Mark Knack-
stedt and Lincoln Paterson, � Invasion Percolation, de-
scribes in detail how percolation is used to describe two-
phase flow in porous media, although invasion percola-
tion has proven to be relevant to many other phenomena.
Other aspects of the application of percolation to prob-
lems that deal with fluid flow through porous media are
described in the article by Peter King and Mohsen Masihi,
� Percolation in Porous Media.

The article by Barry Hughes, � Conduction and Dif-
fusion in Percolating Systems, provides a detailed descrip-
tion of diffusion and conduction in disordered and com-
posite materials, including porous media, and presents
a comprehensive account of the state-of-the-art of this im-
portant application of percolation to a problem of great
practical importance.

Natural porous media are often fractured. For exam-
ple, most oil reservoirs in the Middle East are fractured.
The fractures often a large connected network, without
which many oil reservoirs (such as those in Iran) could not
produce any oil. Fractures also play an important role in
fast transport and spreading of contaminants in ground-
water aquifers. At the same time, natural porous media of-
ten contain large faults (one of the most famous of which,
the San Andreas fault, is in California), which play the
primary role in earthquakes. It now appears that perco-
lation provides a powerful tool for modeling of the effect
of the connectivity of fractures and faults on fluid flow and
transport properties of rock, a highly complex set of phe-
nomena. Fracture and faults also affect other important
phenomena in rock, such as propagation of elastic
and seismic waves. In their article, � Percolation, and
Faults and Fractures in Rock, Pierre Adler, Jean-Fran-
cois Thovert, and Valeri Mourzenko describe the recent
progress in the application of percolation to this highly im-
portant set of problems.

Deformation and stress transport in disordered ma-
terials are important to a wide variety of phenomena in
science and technology, ranging from elastic properties of
solid materials, to viscoelastic properties of polymers and
gels, and rigidity of biological materials (cells, proteins,
bones, etc.). The application of percolation to modeling of
such phenomena has proven to be highly successful and
fruitful. The article by Phillip Duxbury, � Elastic Perco-
lation Networks, provides a comprehensive discussion of
the subject, and describes the theoretical foundations and
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computer simulation methods for stress transport in dis-
ordered percolation systems.

Two other articles expand on what Duxbury describes
in his article. In his article, � Networks, Flexibility and
Mobility in, Michael Thorpe describes recent advances on
generalization of the percolation model, and its applica-
tion to modeling of proteins and other biological materi-
als. The question of the rigidity of such materials is ad-
dressed. An important and well-established application of
percolation is to modeling of the rheology of polymers and
gels, particularly in the vicinity of the gelation point. Sev-
eral variants of the percolation models have been devel-
oped in order to address this important problem. The ar-
ticle by Muhammad Sahimi, � Percolation and Polymer
Morphology and Rheology, describes the advances that
have been made in this area.

Over the past three decades percolation theory has
been applied to modeling of a wide variety of phenomena
in disordered media and complex systems. It is impossible
to describe and discuss all such applications. The applica-
tions that are described in this section of the Encyclopedia
represent just the tip of the iceberg, but they do provide
the reader with a good understanding of the power of per-
colation theory for describing a wide variety of important
phenomena in complex systems. Have a good read!

Percolation Lattices,
Efficient Simulation of Large
ROBERT M. ZIFF
Department of Chemical Engineering,
University of Michigan, Ann Arbor, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Cluster Identification and Growth
Hull Walks and Hull-Generating Walks
Gradient Percolation
The Microcanonical-Canonical Method
Other Numerical Techniques
Conductivity and Backbones
Conclusions
Future Directions
Acknowledgments
Bibliography

Glossary

Hull The boundary of a percolation cluster, either inter-
nal or external.

Accessible hull The hull with pinched off “fjords” re-
moved.

Hull-generating walk A way to generate the hull of a per-
colation cluster by a type of kinetic self-avoiding walk.

Queue A computer list construct in which the events are
stored in such that the first in is the first out (also called
“FIFO” or “breadth-first searching”).

Stack A computer list construct in which the events are
stored in such a way that the last in is the first out (also
called “LIFO” or “depth-first searching”).

Recursion A programming method in which a procedure
calls itself, creating new local variables each time.

Tree A data structure in which points are connected in
a tree-like structure with branches but no loops.

Stochastic Loewner evolution (SLE) A theoretical way to
study conformally invariant random curves, includ-
ing the hulls of percolation clusters, through a trans-
formation of simple Brownian motion. Also called
Schramm–Loewner Evolution.

Leath algorithm A technique where individual percola-
tion clusters are “grown” from a seed by an epidemic
type of process.

Hoshen–Kopelman algorithm A technique where a lat-
tice (in 2d) is scanned one row at a time, and clusters
are identified using information from the previous row
only.

Newman–Ziff algorithm A way to efficiently generate
microcanonical (fixed occupancy) states and from
them to study all canonical (fixed p) states.

Definition of the Subject

Percolation is a simple model of the formation of long-
range connectivity in random systems. While it can be
solved exactly in a few cases of branched lattices, and while
many results in two dimensions (2d) can be found exactly,
most of the work in this field is intimately connected with
computer simulation. Various algorithms have been de-
veloped over the years, and this article surveys some of
them, especially related to cluster sizes and connectivity,
and the hull.

Introduction

Percolation was introduced by Flory in 1941 [13] for
branched networks (polymers) and Broadbent and Ham-
mersley in 1957 for lattice networks, and its study by com-
puter simulation began just a few years later [77]. The
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overall development of the percolation field in the ensu-
ing years has been intimately connected with advances in
simulation and computer algorithms. Specific computer
algorithms allow optimal simulation of different aspects of
the percolating system, and the results of these simulations
have provided information and ideas for theoretical de-
velopments and further understanding of this fundamen-
tal problem. Recent advances have allowed, for some ex-
amples, the determination of numerical thresholds to very
high precision, the demonstration (later confirmed by the-
ory) that universality applies to crossing and excess cluster
properties, and the universality of scaling functions and
their resulting amplitude ratios.

The basic percolation system is a lattice with sites (ver-
tices) and/or bonds (edges) occupied with a given proba-
bility p, and the computational problem is to identify and
characterize the clusters of adjacently occupied sites (site
percolation) or of sites connected by the bonds (bond per-
colation), and determine properties such as the size distri-
bution, conductivity, and crossing. In principle, these are
generally rather straightforward problems, but in practice,
the challenge is to do things efficiently so that large systems
can be simulated over many times to get good numerical
significance.

In this article, we will describe and summarize several
algorithms that have been developed to simulate percola-
tion. Explicit fragments of programming in C are given.
The emphasis of the article is on the computational meth-
ods, and we use some recent examples of application to
illustrate them. We do not address the large number of
advances that have been made recently in the percola-
tion field mainly by mathematicians, based upon Stochas-
tic Loewner Evolution (SLE) [61] and relatedmethods. For
a recent review, see [24].

Another area of recent interest related to percolation
is in the study of networks, including Erdős–Renyi ran-
dom graphs [11], scale-free and small world networks. For
these models, percolation corresponds to the formation of
a “giant component”. Because of the lack of loops over
large distances, the percolation properties can generally be
solved for analytically (i. e., [42,58]). Some of these results
are closely related to percolation on the branch-free Bethe
lattice, whose solution goes back to Flory and was analyzed
in detail by Fisher and Essam [12]. However, in this re-
view we will only consider regular lattices, and not the al-
gorithms and results related to these systems.

Cluster Identification and Growth

Consider a lattice, say square for simplicity, and suppose
that the sites have been “populated” by being made “oc-

cupied” (OCC) with probability p and empty or “vacant”
(VAC) with probability 1� p. (Here we are considering
site percolation.) A basic problem is to identify the clus-
ters, and to determine some property such as the size dis-
tribution ns (the number of clusters of size s, divided by
the total number of sites on the lattice) or whether cross-
ing exists between two intervals on the boundary. Here we
describe two neighbor-search methods to identify clusters:
the depth-first or last-in, first-out (LIFO)method using re-
cursion, and the breadth-first or first-in, first-out (FIFO)
method using a queue.

In the following programs, we use a simple two-di-
mensional array lat[x][y] to represent a rectangu-
lar W � H system with a square lattice. For many prob-
lems it is more efficient to use a one-dimensional array
and add 1;�1;W , and �W for the four directions (in
2d, for example), using wrap-around at the end to form
“helical” boundary conditions, which for a large system is
practically equivalent to a periodic one. (The helicity adds
a “twist” to the boundaries, which can have an effect on
some of the properties when it is large enough [93]). Later
on, in Sect. “The Microcanonical-Canonical Method”, we
will give an example of a program which uses a one-di-
mensional array and also a neighbor array that can be used
to program periodic boundary conditions precisely, with
a bit more programming overhead however.

Recursive Search (LIFO)

In the recursive search method, the lattice (say of dimen-
sions W � H) is first scanned for new, unchecked sites:

for (xo = 0; xo < W; ++xo)
for (yo = 0; yo < H; ++yo)

if (lat[xo][yo] == OCC)
{ lat[xo][yo] = TAGGED;
FindNeighbors(xo,yo); }

(P1)

where TAGGED means that the site has been checked and
won’t be checked again. Then the cluster belonging to
that site is found using the FindNeighbors subroutine,
which is given by

FindNeighbors(int x,y)
{ int dir;
for (dir = 0; dir < 4; ++dir)
{ xp = x + dx[dir];

yp = y + dy[dir];
if (lat[xp][yp] == OCC)
{ lat[xp][yp] = TAGGED;

FindNeighbors(xp,yp); } } }

(P2)

When an OCC neighbor is found for the first time,
it is checked by calling the same routine over again.
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Here we used the four nearest-neighbor direction vec-
tors dx[0]=1, dy[0] =0, dx[1] =0, dy[1] =1,
dx[2] =-1, dy[2] =0, dx[3] =0, dy[3] =-1. We
have not dealt with the boundaries in this example. Open
boundaries can be simulated by adding a perimeter of
VAC sites; periodic boundary conditions can be simulated
simply by writing lat[xp &(W-1)][yp &(H-1)] for
lat[xp][yp], where & is the bit-wise “and” operation,
if W and H are exactly powers of two. As the clusters are
identified, the number of occupied sites can be counted,
moments determined, etc. Crossing can be determined if
a single cluster touches two given boundaries. For periodic
b.c., one typically considers not crossing but wraparound.

The above FindNeighbors program uses recursion
and the compiler stores unchecked xp,yp and the lo-
cal dir in the stack; recursion uses a “last in, first out”
(LIFO) or “depth-first” [71] method that can cause prob-
lems (exhaust the available stack memory) for very large
clusters.

Making a Queue (FIFO)

A more memory-efficient method to search for neighbors
is to use a “queue” where one keeps a list of unchecked
sites, and visits them in a first-in, first-out (FIFO) fashion.
However, one must construct the list explicitly; the recur-
sive method won’t do it. We need functions to put and re-
move coordinates from the queue; here we use %define
statement functions (which creates in-line text) for effi-
ciency:

%define PutOnQueue(X,Y) \
{ xlist[putindex] = X; \
ylist[putindex] = Y; \
++putindex; }

(P3)

and

%define GetFromQueue(X,Y) \
{ X = xlist[getindex]; \
Y = ylist[getindex]; \
++getindex; }

(P4)

where we start the simulation with getindex =
putindex = 0. The way the above lists are written,
they must be dimensioned to be as large as the largest
possible cluster; however, by making the list size S ex-
actly a power of two, the list can be shortened and “re-
cycled” simply by writing xlist[putindex &(S-1)]
etc. The size S has only to be as large as the number
of growth sites of a cluster, which grows as roughly the
square root of the maximum size of the cluster. For exam-
ple, for a lattice of size 1024 � 1024, it is more than suffi-

cient to make S D 4096. To test for an error in the recy-
cled queue, the line if (putindex == getindex)
.... can be added after ++putindex; in (P3).

To make use of the queue, (P1) is kept the same except
that the last line is replaced by PutOnQueue(xo,yo),
followed by the loop

do
{ GetFromQueue(x,y)
for (dir = 0; dir < 4; ++dir)
{ xp = x + dx[dir];

yp = y + dy[dir];
if ((lat[xp][yp]) == OCC)
{ lat[xp][yp] = TAGGED;
PutOnQueue(xp,yp); } }

} while (getindex != putindex);

(P5)

When the two indices putindex and getindex are
equal to each other, there are no more occupied sites to
check and the search is complete.

Note that the lists xlist and ylist can also be used
for the LIFO method by treating them as a stack rather
than a queue – that is, by using only one index and to
decrement the index when a set of coordinates is taken off
the stack. This is a way to program the LIFOmethod with-
out using the recursive feature of the C language.

Generating Occupied Sites or Bonds as you go –
the Leath Method

In the above algorithms, the sites or bonds were made oc-
cupied or vacant ahead of time. An alternative scheme is to
start with all sites in an UNVISITED state, andmake them
OCC or VACwhen they are first encountered. For example,
in (P5), starting from the sixth line, we would write instead

if ((lat[xp][yp]) == UNVISITED)
if (random() < prob)
{ lat[xp][yp] = OCC;

PutOnQueue(xp,yp); }
else lat[xp][yp] = VAC;

(P6)

where random() is the random number generator and
prob is the probability. Here, the label TAGGED is not
needed, because a site is added to the queue as soon as it is
made occupied. Before putting the first site xo,yo on the
queue, one also has to call the random number generator
to determine whether that site is occupied.

When this program is applied to the growth of a sin-
gle cluster (that is, starting with just one xo and yo), it
is commonly called the Leath method, although it is not
carried out in the same way as in [37], where larger dia-
mond-shaped regions of the lattice around the cluster are
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successively probed. In fact, the idea of looking at clusters
wetting a single site was carried out in the earliest simula-
tions of percolation [77].

The above growth scheme works particularly nicely
in the case of bond percolation, especially when the clus-
ters are characterized solely by the sites they connect, and
not by the number or arrangement of the bonds that con-
nect them. In this case, (P6) is kept exactly the same ex-
cept the last line “else lat[xp][yp] = VAC;” is
removed. This is because one can consider bond perco-
lation as a spreading or epidemic process [18] from site to
site along the occupied bonds; if a bond is not occupied,
the fluid will not spread to the next site, but that does not
preclude fluid from another cluster to visit that neighbor-
ing unvisited site. Sites with no bonds are considered to be
clusters of size s D 1. Whether a bond is made occupied
or not, that bond will never be considered again, so it state
does not have to be remembered. Not all bonds of a clus-
ter are generated in this method – for example, the fourth
bond in a simple square arrangement will not be tested –
but the four sites of the cluster will be sampled with the
correct weight. In this process, one effectively generates
a minimum spanning tree (with no loops) that connects
every site on a cluster.

Note that this procedure checks (or grows) the cluster
one growth shell at a time. Each growth shell is at a suc-
cessive value of the minimum [50] or “chemical” [25] dis-
tance from the seed, so this method is useful for studying
minimum distance problems including the fractal dimen-
sion dmin. Like dB, its value is not known exactly even in
2d and has to be determined by simulation. In 2d, its value
is dmin D 1:1307(4) [20].

The Hoshen–Kopelman Algorithm

The Hoshen–Kopelman algorithm [29] has been a main-
stay of work on percolation and is fairly well-known. It is
described in some detail in the article of Stauffer in this
work� Scaling Properties, Fractals, and the Renormaliza-
tion Group Approach to Percolation and so will just be
described briefly here.

The main idea of this algorithm is that a percolating
system (say in two dimensions) can be examined or cre-
ated a row at a time, and the cluster statistics can be up-
dated just from the knowledge of the connections in the
previous row. In d-dimensions, one must remember the
state of the previous surface in (d � 1)-dimensions. The
connections can be remembered in a look-up table, or
a rooted-tree data structure can be used.

This algorithm can be used to analyze the clusters
statistics of a given, fully populated system, or it can be

used as a very memory efficient scheme (especially in 2d)
to generate and analyze on the fly a large system, since
only the previous row (in 2� d) needs to be remembered.
Using this scheme, Tiggemann has simulated a lattice of
4 000 0002 sites [73].

To actually identify all of the clusters on a given lat-
tice, it is faster to sweep across the lattice using one of
the neighbor-search algorithms above, because in the HK
method the lattice would have to be swept a second time
in order to get the most updated cluster labels.

Recently, Deng and Blöte [10] used a version of
the Hoshen–Kopelman algorithm to determine pc D
0:5927465(4) for site percolation on the square lattice, and
pc D 0:3116077(4) for site percolation on the simple cu-
bic lattice, using a novel method of analysis based upon
universal ratios of correlation functions and moment dis-
tributions. Tiggemann [73] has used a massively parallel
version to study percolation on lattices in two, three, and
four dimensions. A good discussion the the HK algorithm,
its antecedents in the computer science field, and some
of its modifications and extensions, is given by Martín–
Herrero [41].

Example: Critical Density Plots

As an example of an application of the above simulation
method, we show in Fig. 1 the average density of clus-
ters anchored to a single point and simultaneously to two
points at the boundary of a square system. Here the den-
sity is defined as the number of times a given site is con-
nected to the corresponding boundary point, divided by
the total number of realizations. We use bond percolation
with the growth algorithm and the FIFO (queue) method,
with xlist and ylist large enough to remember the
largest possible cluster. This allows us to transfer the co-
ordinates of the cluster to the appropriate array (touch-
ing one anchor, touching the other anchor, or touching
both anchors) after the cluster is grown. In this simula-
tion, we don’t have to scan the entire lattice, but just use
the two anchor points as seeds (xo,yo) for the cluster
growth/indentification.

To analyze this problem theoretically, it is convenient
to put the system on the complex plane, and consider
a half-infinite system y � 0, with the boundary placed
on the real axis, and anchors at xa and xb. The results
of this calculation can be transformed to a square by
a standard conformal map w(z), using the transformation
of the density �(w) D (dw/dz)�h (dw/dz)�h�(z) where
h D h D (2 � D)/2 D 5/96 for 2 � d percolation, andD is
the fractal dimension. Note that when the mesh size (lat-
tice spacing) goes to zero with the boundaries fixed, the ac-
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Percolation Lattices, Efficient Simulation of Large, Figure 1
Simulation results for the average density of clusters touching
the left anchor (top left), right anchor (bottom left), both anchors
simultaneously (lower right), and prediction from Eq. (2) (upper
right). From [35]

tual density of the clusters, being fractal, goes to zero. The
density we consider is effectively renormalized to remain
finite and non-zero in that limit.

For a single anchor placed at xa on the real axis, the
density at a point z D x C iy can be interpreted as the
probability that the point z is connected to the point xa –
in other words, it is the two-point correlation function,
P(z; xa). This quantity is predicted to be given by [35]

P(z; xa) D
c y11/48

jz � xaj2/3
(1)

where y D (z � z)/(2i) and c is a non-universal, lattice-de-
pendent constant. It turns out that this density is closely
related to that of a dipole in electrostatics – it is y�5/48

multiplied by the potential of a dipole, raised to the 1/3
power.

Figure 1 shows the density contours in a square for sin-
gle anchors P(z; xa) and P(z; xb), and and for two simul-
taneous anchors, which corresponds to the three-point
correlation function P(z; xa ; xb). Now, it was observed
that the three-point function is proportional to the square
root of the product of the two-point correlation functions
and the probability P(xa; xb) that xa and xb are connected
together [35]:

P(z; xa; xb) D C
p
P(xa; xb)P(z; xa)P(z; xb ) ; (2)

where C is a constant, valid as long as z is at least several
lattice spacing from the anchor points xa and xb. Near the
anchor points for a finite mesh, C is not constant but is
a function of xa; xb , and z. When z approaches an an-
chor point, say xa, it follows (for bond percolation) that
P(xa; xa ; xb) D P(xa ; xb), and P(xa; xa) D 1, so at this
point C is identically 1. However, when the mesh goes to
zero, C is constant greater than 1 everywhere else.

Furthermore, rather surprisingly it was found that
(away from the anchor points) C was the same for site and
bond percolation, with the valueD 1:030˙ 0:001, and so
appeared to be universal. After these numerical observa-
tions were made, it was shown theoretically that (2) in-
deed follows from conformal field theory using boundary
operators [35], and the constant C D C222 is universal and
given explicitly by [65]

C222 D

s
� (2/3)3� (5/3)2

� (1/3)� (4/3)3

D
27/2�5/2

33/4� (1/3)3/2
D 1:02992679 : : : : (3)

Excess Number of Clusters

Another example where precise simulations inspired
a theoretical result is given by the problems of the ex-
cess number of clusters [92,93]. At the critical point, the
number of clusters per lattice site nc is a well-defined, fi-
nite, non-universal quantity. This quantity is known ex-
actly for 2 � d bond percolation on the triangular and
square lattices; for the latter, Temperley and Lieb [72]
found an integral expression for nc which evaluates sim-
ply to (3

p
3 � 5)/2 D 0:098076211 : : : [92]. Counting the

critical clustersNc on finite lattices of sizeW � H with pe-
riodic boundary conditions, it was observed that

Nc D ncHW C b(W/H)C � � � (4)

where b(r) is a universal quantity that is a function of the
aspect ratio r D W/H but independent of the underlying
percolation type (in contrast to nc, which is not univer-
sal and varies from system to system). The universality of
b(r) was shown to follow as the singular part of the free
energy [1], and b(r) has been calculated exactly for some
geometries. For example, in the limit that r	 1, that is,
for a cylinder, b(r) is proportional to r and is given simply
by [34]

b(r) �
5

8
p
3
r : (5)

This result is valid for all forms of critical 2 � d percola-
tion, is reminiscent of (but not identical to [32]) the num-
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ber of wrapping critical clusters in a cylindrical system of
length r	 1:

Nwrap(r) �
1
p
3
r : (6)

The universality of the excess cluster number also ap-
plies in higher dimensions, although no theoretical results
are known there.

Finding pc from the Leath Method

The Leath method can be used to generate single clusters
in an empty lattice and find an unbiased measure of the
size distribution. Say the procedure is started on a single
seed. If the cluster grows to a size greater than or equal to
some cutoff value smax, it is stopped. The cutoff is chosen
sufficiently small so that the growth will always stop be-
fore the boundaries of the lattice are reached. In that case,
the statistics of the upper cumulative size distribution are
unbiased by any boundary effects, and the only finite-size
effects are those imposed by the cutoff value.

We define as usual

ns(p) D the number of clusters
containing s sites, per lattice site (7)

then it follows that

Ps (p) D sns (p)
D the probability that a given site

belongs to a cluster containing s sites (8)

and

P�s (p) D
X

s0�s

s0ns0 (p)

D the prob. that a given site belongs to
a cluster containing s or more sites : (9)

Here we are considering bond percolation; if it were site
percolation, there would be an extra factor of p in Ps and
P�s reflecting the probability that the selected site is an oc-
cupied one. The quantity P�s(p), unbiased for all s < smax,
is determined directly by the growth of single clusters.

According to the usual scaling theory, in the scaling
limit where s!1 and z D (p � pc)s
 is held constant,

ns(p) � c0s�� f (c1(p � pc)s
 ) (10)

where c0 and c1 are the non-universal metric factors, while
the exponents � and � , and the scaling function f (z), are
universal. (This scale variable z should not be confused
with the complex coordinate z above.) To define c0 and

c1 uniquely, one can assume for example f (0) D 1 andR1
�1 f (z)dz D 1. It follows from (10) that

P�s (p) �
c0
� � 2

s2�� g(c1(p � pc)s
 ) (11)

where g(z) D [(� � 2)/�]z(��2)/

R1
z �(2��)/
�1 f (�)d�

for p > pc, and similarly for p < pc. Now it follows that
if f (z) is analytic near z D 0, then g(z) is also, and we can
carry out a Taylor-series expansion, yielding

P�s (p) � s2�� (AC B(p � pc)s
 C � � � ) (12)

where A and B are constants. Thus, a plot of s��2P�s(p)
vs. s
 should give a straight line with a slope proportional
to p � pc.

pc for the hcp and fcc Lattices

We illustrate this method for 3-d site percolation on the
hcp and fcc lattices, from [40]. The lattice size was 20483,
created by using a virtual-memory scheme [89] that only
assigns physical memory to cubes of the space as the clus-
ters grows into them, which works well for the growth
method because only a small fraction of the lattice is ac-
cessed by an individual cluster. The cutoff was smax D

221 D 2 048 576. The exponents � and � are known ex-
actly in two dimensions but not three, and by fitting the
data to (12), those exponents can be found by this method
as well. In Fig. 2, we show a plot of s��2P�s(p) vs. s
 for
three close values of p, using � D 2:189 and � D 0:455.
These exponent values were consistent with this data and
also that of other 3-d systems, and compare with the val-

Percolation Lattices, Efficient Simulation of Large, Figure 2
Single-cluster growth statistics for site percolation on the hcp
lattice, with pD 0:1992600, 0.1992555, and 0.1992500 (top to
bottom). Here P(s; p) 	 P�s(p). From [40]
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ues 2:18906(8) and 0:4522(9) respectively found by Balles-
teros et al. [3], and 2.18958(9) and 0.4535(2) by Deng and
Blöte [10]. The plot slows clearly that for large s, the be-
havior predicted by (12) is well followed. For s less than
about 1000, there are significant deviations due to the fi-
nite-size effects of the lattice discreteness. These finite-size
effects at pc can be fit asymptotically by an equation of the
form P�s (pc) � s��2(AC Cs�˝ ) with˝ � 0:64 [39].

First the simulations were run at the two outside val-
ues of p, and then (12) was used to extrapolate pc D
0:1992555, which was then verified by a third run at
this value, which is seen to be horizontal (for large s) in
the plot. Analyzing the errors yields pc D 0:1992555(10).
A similar calculation for the closely related fcc lattice
yields the slightly but statistically significant lower value
pc D 0:1992365(10). For bond percolation, however, the
thresholds for these two lattices at this level of precision
are the same pc � 0:120164, although they are likely to be
different if measured to higher precision. Clearly, a very
sensitive method, like the one presented here, is needed to
distinguish such close thresholds.

Another application of single cluster growth has been
to find amplitude ratios of the mean cluster size an equal
distance below and above pc, yielding a value � �/� C D
163˙ 2 in 2 � d [33], much more precise than earlier de-
terminations, and confirmed by high-order series expan-
sions [33]. Finally, we note that a similar method of analy-
sis has been applied to directed percolation in 2+1 dimen-
sions [49] leading to the determination of the threshold
and critical exponents to higher accuracy than previous
works [22,74].

Hull Walks and Hull-GeneratingWalks

The hull in two-dimensional percolation is the boundary
between occupied and vacant “perimeter” sites of a per-
colation cluster. A typical cluster has both external and
internal hulls, and an infinite cluster at the critical point
has an infinite number of hulls within hulls. The fractal di-
mension of critical hulls was first conjectured (based upon
simulations) to be simply 7/4 [60], and then this conjec-
ture was proven theoretically first from field theory [59]
and more recently using Stochastic Loewner Evolution
(SLE) [67].

The “accessible” or Grossman–Aharony hull is the hull
(not necessarily external) in which closed-off inlets or
“fjords” are bridged and the hull shortened [23]. It turns
out that this hull is also a fundamental measure of perco-
lation clusters and at the critical point has a fractal dimen-
sion of 4/3, identical to self-avoiding walks and the hulls of
simple Brownian motion.

Hull-Walk Algorithm

Hulls can be identified on an existing percolation cluster
by carrying out a walk that follows the edges of the clus-
ter, as first studied by Voss [76]. On the other hand, just
like in the cluster growth algorithm, one can start with
an unvisited (undetermined) lattice and decide upon the
occupancy of the sites or bonds as they are encountered,
and thus generate the hull at the same time as it is being
identified. This idea was proposed for site percolation on
the square lattice in [89], site percolation on the triangular
lattice in [78], and bond percolation on the square lattice
in [19].

For bond percolation, the easiest formulation of the
walk is to follow a path that jumps between the centers
of the occupied and vacant bonds on the perimeter – or,
equivalently, between the bonds on the lattice and the dual
lattice. For bond percolation on a square lattice, the paths
also follow a square lattice, rotated at 45ı from the bond
lattice. When an occupied bond is encountered, the walk
turns clockwise, while when a vacant bond (or bond on the
dual lattice) is encountered, it turns counter-clockwise.

In the hull-generating procedure, when an UNVIS-
ITED bond is encountered, that bond is made OCC with
probability p and the walk turns clockwise, and made VAC
with probability 1� p, and the walk turns counter-clock-
wise. When an already visited site is encountered, the walk
turns in such a way that the path always avoids itself. Fol-
lowing is a piece of a program that carries out these steps:

dir = 100; x = xo; y = yo;
do
{ x += dx[dir & 3];
y += dy[dir & 3];
switch (lat[x][y])
{ case UNVISITED:

if (random() < prob)
{ lat[x][y] = OCC;

++nocc; --dir;
} else
{ lat[x][y] = VAC;

++nvac; ++dir;
} break;
case VAC: ++dir; break;
case OCC: --dir;

}
} while ((x != xo) && (y != yo)

&& ((dir&3) != 0));

(P7)

Here we have rotated the original lattice by 45ı so that the
walk moves in horizontal and vertical directions and the
bonds are effectively on the diagonals. The “& 3” con-
struction is equivalent to “% 4” (modulo 4). The walk
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ends when it returns to the starting point and it is going
the same directions as it started out.

For lattices other than the square one, it is gener-
ally convenient to transform the lattice so that it fits on
a square one. For example, a triangular lattice can be put
on a square lattice with one diagonal bond put in. Then
the hull walk has to be constructed between the centers
of these bonds, with is rather intricate. An alternative ap-
proach is to remain on the simple square lattice with the
walk moving in the four diagonal directions, but to make
some bonds permanently occupied and/or vacant to sim-
ulate the particular lattices. For example, to create a tri-
angular lattice, half of the horizontal bonds, alternating
on each row, can be made permanently occupied. Making
the same bonds permanently vacant gives the honeycomb
lattice, etc.

For site percolation, one can use a variation of the
above program in which the walk steps along occupied
perimeter sites, always keeping the vacant sites on one
side. Details are given in [89].

Finding pc Directly from the Hull-GeneratingWalk

Starting from an UNVISITED lattice and a single seed,
the hull-generating walk above will always close on itself,
forming either external or internal hulls, depending upon
the direction of closing. By making a simple hypothesis
that at the critical point the internal and external hulls are
equally likely (for large hulls), one can deduce an estimate
for the critical point. For site percolation on a square lat-
tice this method gave pc D 0:59275(3) in work from over
20 years ago [82]. This approach has not been pursued fur-
ther, nor have questions of its finite-size effects been ex-
plored.

For p away from pc, the statistics of the internal vs. ex-
ternal hulls will be much different. It was found that the
average number of occupied sites in a hull hsHi, for site
percolation on the square lattice, satisfies [89]

hsHi�ext �hsHi
C
int � Ajp � pcj�2

hsHi�int �hsHi
C
ext � Bjp � pcj�2

(13)

with A� 0:5 and B � 0:004, where “int” and “ext” repre-
sent internal and external hulls, respectively, and + and �
represent above and below pc, respectively. (The simple
exponent �2 above follows from scaling relations of the
hull exponents and DH D 7/4 [78,82].) These results im-
ply that the average hull size shows an amplitude ratio of
A/B � 125, reflecting the huge difference between the av-
erage size of these two kinds of hulls. While amplitude ra-
tios play an important role in statistical mechanics [52],
this ratio has not been studied further.

The Enclosed Area Distribution

A more recent application of the hull-generating method
has been to find the enclosed area distribution 2� d.
(Even though both the cluster and the hull are fractal,
with dimension 91/48 and 7/4, respectively, the area en-
closed by a hull is non-fractal and is proportional to the
radius squared.) A simple argument from the scaling rela-
tion ns � c0s�� , the fractal relation s � AD/d and the hy-
perscaling relation � � 1 D d/D implies that, in a critical
system of total area Atot, the number of clusters whose en-
closed area is greater than A is given by [6]

N�A � CAtot/A (14)

for A large compared to the mesh area A0 and small com-
pared to Atot. (For d > 2, A represents the volume of an
enclosing sphere or rectangular solid, and C is different.)
The area distribution can be found from an ensemble of
individual closed hulls (loops) generated by the hull-walk
algorithm, and it is a simple addition to the program to
calculate the enclosed area of the walk on the fly, while
the walk is carried out. The coefficient C was found from
simulations to be a universal constant 0:022976(5), and
proven theoretically to be simply [6]

C D 1/(8
p
3�) D 0:022972037 : : : (15)

via a conformal transformation to the problem of the
number of clusters wrapping a cylinder given above in (6).
Equation (14) represents a completely universal formula-
tion of the size distribution at criticality (in contrast to
ns � c0s� which involves both the non-universal c0, and
the non-universal measure of the size, s). Another way to
express (14) is in Zipf’s-law form: if you rank-order all the
hulls in the system by their enclosed area, then the area of
the nth ranked hull is inversely proportional to n and is
given by CAtot/n for large A. Other forms of the universal
size distribution are given in [93].

Applications of the Hull-Generating Walk
to Crossing Problems

Hull generating walks can be used to efficiently test for
crossing or spanning. For example, consider a rectangu-
lar system. A walk is started in the lower left-hand side,
and represents the boundary between the occupied bonds
above it and the vacant bonds below it. If the walk reaches
the right boundary before reaching the top boundary, then
there is horizontal crossing, while if it reaches the top be-
fore reaching the right-hand side, then there is no horizon-
tal crossing. This process is more efficient than filling the
entire lattice with clusters, because only the bonds along
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the hull are simulated. It allowed a sensitive test [83,86]
of the finite-size corrections to the crossing probability for
a rectangle, which in an important development in perco-
lation theory was found by Cardy to be given by [5]:

˘h(r; pc) D C2
112 

1/3
2F1(1/3; 2/3; 4/3;) ; (16)

with C2
112 D 2�

p
3/� ( 13 )

3 D 0:56604668 : : :, where 2F1
is the hypergeometric function and the subscript h sig-
nifies the horizontal crossing probability. Here r is the
aspect ratio of the rectangle, and is related to  by
 D ((1 � k)/(1C k))2 and r D 2K(k2)/K(1 � k2), where
K(m) is the elliptic integral. This parametrization can be
simplified to r D K(1 � )/K() and inverted explicitly
as [85]  D #4

2 (exp(��r))/#
4
3 (exp(��r)) where #n(q) are

elliptic theta functions. Finally, the parameter , which
represents the cross-ratio of the coordinates of the cor-
ners of the rectangle when mapped to the half plane, can
be eliminated to yield a closed-form explicit expression for
˘h(r; pc), differentiated with respect to r [85]:

@˘h(r; pc)
@r

D �
1
3
�C2

112#
0
1(e
�	r )4/3

D �
24/3

3
�C2

112�(ir)
4 (17)

where �(�) is theDedekind eta function. Equation (17) im-
plies the series

˘h(r; pc) D
24/3�C2

112
3

�
e�	r/3 �

4
7
e�7	r/3 : : :

�
: (18)

The prediction for ˘h(1; pc) D 1/2 the a system with
a square boundary for site percolation on a square lattice of
size L � L was verified in [83]. The hull-walk used in that
work is illustrated in Fig. 3, here rotated so that crossing
is considered in the vertical rather than horizontal direc-
tion. The behavior that crossing translates into the walk
hitting one boundary before the other is exactly analogous
to problems solved in SLE.

This work showed that the finite-size corrections to
˘h(1; pc) D 1/2 are for large systems described by

˘h(1; pc) D 1/2C 0:319/LC � � � : (19)

The numerical results were not consistent with a signif-
icant contribution from the “irrelevant” scaling variable
L�0:85 [84] and later it was shown that indeed because of
the symmetry of the square system, the irrelevant term
does not contribute here [30]. A consequence of (19) is
that several estimates of pc based upon measurements of
˘h(1; pc) do not converge with the usual scaling � L1/�

but instead with the scaling L�1�1/� [83].

Percolation Lattices, Efficient Simulation of Large, Figure 3
Hull walk for a test for vertical crossing for site percolation on the
square lattice. a all clusters connecting the bottom to the top.
b the equivalent hull that would be generated from the site-per-
colation hull-generating walk with the same probability. Solid
circles: occupied sites. Open circles: vacant sites. From [83]

The hull method also is very efficient for exact enu-
meration. Basically, by stepping through every possible
hull, one can determine the polynomials for ˘h(r; p) as
a function of p, for a fixed r and system size. This way
˘h(1; p) could be found for square system size L � L for L
up to 7, [83,94] which would be very difficult to do with
a complete exact enumeration, as this would require 249

realizations of the lattice. For the first few values of L,
˘

(L)
h (1; p), written as a series in pi qL2�i where q D 1 � p,

is given by

˘
(2)
h (1; p) D 2p2q2 C 4p3qC p4 (20)

˘
(3)
h (1; p) D 3p3q6 C 22p4q5 C 59p5q4

C 67p6q3 C 36p7q2 C 9p8qC p9 : (21)

Polynomials for L up to 4 are given in [56] and those for L
up to 7 can be found in [94]. These results can be used
for a variety of studies; for example, looking at the kertosis
of the distribution, it was shown [84] that the distribution
of first crossings (@/@p)˘h (r; p) is not a gaussian curve
as had been previously thought. This work was followed
by a more general mathematical proof [4] that the tails
behave like ln[(@/@p)˘h (r; p)] � �L/� � �Ljp � pcj4/3

where � � jp � pcj�� with � D 4/3 in 2d is the correla-
tion length.

In recent work [66], the hull-generating method was
used to test a generalization of Cardy’s formula that de-
scribes the probability density that crossing clusters have
lower edges at y D a and y D b on the left and right-
hand boundaries, respectively, with various conditions on
whether the cluster touches the bottom. Figure 4 shows
how this problem is simulated by a hull walk, here for
bond percolation with the bonds themselves horizontal
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Percolation Lattices, Efficient Simulation of Large, Figure 4
a The hull-generating walk (in black) used to test for a cluster, whose lower edge is half-way up the left-hand side, crossing to the
right-hand side, and to find the distribution of values y for where it hits on the right-hand side. b an additional walk (in yellow) to
check that there are no other clusters crossing below the given walk. From [66]

Percolation Lattices, Efficient Simulation of Large, Figure 5
Measurements (points) and theory (lines) for the distribution of the lower boundary on the right-hand side, of clusters whose lower
boundary on the left-hand side is at y D 1/2. a Clusters that touch the bottom, b no restriction on the crossing of the clusters, and
c clusters that cross from left to right but do not touch the bottom, and have no crossing clusters below them. From [66]

and vertical, and the steps along the diagonals. Figure 5
shows excellent agreement between the simulations and
the theory. The hull-generating walk proved very efficient
for this problem, since walks that hit one of the forbid-
den boundaries (used to enforce the crossing criteria) were
stopped without generating the rest of the hull. Thus, in
a few day’s of computer work, it was possible to simulate
3:3 � 1011 hulls on a lattice of 512 � 512 bonds, something
that would be nearly impossible to carry out if all lattice
bonds were considered in the simulation.

Gradient Percolation

Sapoval, Rosso and Gouyet [60] first considered percola-
tion in a gradient, and showed that in 2d it is an efficient
way to find that percolation threshold [57]. In this ap-
proach, a rectangular system is set up with a linear gradi-
ent in p, going from 0 to 1 as y goes from 0 to 1. There will
be a percolating cluster connected to the upper boundary,
and the hull of that cluster will sample values of p that are
close to pc. Sapoval et al. [60] showed that the hull will stay
within a relatively small region L4/7 of the lattice of inverse

gradient jrpj�1 D L. Therefore, as L!1, the “frontier”
will be localized about pc.

For a finite L, twomeasures of pc(L) are (i), the average
value of p of all the occupied+vacant sites (or bonds) of
the hull, or, (ii) just the fraction of occupied to total bonds
along the hull:

pestc (L) D
nocc

nocc C nvac
: (22)

For large systems (small gradients), these measures should
be asymptotically equivalent. Simulating system of size
up 1000 � 1000 for site percolation on the square lattice,
Rosso et al. found that the estimates fell on a straight line
when plotted as a function of the gradient 1/L, with as ex-
trapolated value of 0:592805(10), slightly higher than the
values we have seen above.

By combining gradient percolation with the hull-gen-
erating walk, one can create a very efficient and simple
method to determine percolation thresholds in two di-
mensions [90]. Basically, the program (P7) is used, with
prob now a function of y, and periodic boundary con-
ditions in the horizontal direction. The “front” (x coor-
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dinate) of the walk is kept track of, and when it reaches
a new value, the column (all values of y) with the value of x
mapped on to the periodic lattice is cleared out and re-
turned to the UNVISITED state. This is allowed because
the walk snakes back a maximum distance of the order of
its width in the y direction, so that sites or bonds behind
that can be forgotten. Thus the simulation runs continu-
ously, effectively simulating an infinitely wide system.

To start the walk, one has to make a vertical column
on the left of all occupied sites or bonds above the starting
point, and vacant ones below it. This will keep the walk
from closing on itself at the beginning. Data from the early
part of the simulation can be thrown away to eliminate any
bias that it causes.

This method was used to find precise thresholds, some
up to seven significant figures, for a variety of two-dimen-
sional lattices, including the Archimedean lattices for site
percolation [69], and the kagomé lattice for bond percola-
tion [91]. These results are useful for understanding how
thresholds depend upon the lattice structure, and to test
conjectures for the values of the thresholds (see [62]).

The question of the convergence of the estimates is
open: for many systems, the convergence behavior seems
to change from 1/L for smaller L to a different behavior
(or perhaps the same 1/L behavior but with a different co-
efficient) for larger L. In fact, for site percolation on the
square lattice, it turns out that the linear behavior seen by
Rosso et al. breaks down for L larger than about 1000, and
the curve levels off, extrapolating to a value � 0:5927465,
close found by other methods. The understanding of the
convergence of this method remains an open problem.

The errors can be determined easily by looking at
batches of results, and are proportional to (noccCnvac)�1/2.
The proportionality constant is of order 1, indicating
a very efficient method, and grows slowly with increas-
ing L, implying that with increasing L, somewhat more
work is needed to achieve the same level of precision.

Example: the Critical Surface
for the Checkerboard Lattice

As an example of this method, we consider the checker-
board lattice, that is a square lattice with four differ-
ent probabilities p1; p2; p3; and p4 around each colored
square. According to a conjecture by Wu concerning the
more general q-state Potts model, here specialized for
q D 1, the critical surface satisfies the formula [80]

1 � (p1p2 C p1p3 C p1p4 C p2p3 C p2p4 C p3p4)
C p1p2p3 C p1p2p4 C p1p3p4 C p2p3p4 D 0 : (23)

This result does not appear to follow directly from dual-
ity, in contrast to all other exact results known in perco-
lation [70,79,95]. However, it reduces to the known ex-
act results for the inhomogeneous honeycomb lattice (let-
ting p4 D 0), the inhomogeneous triangular lattice (letting
p4 D 1), and the dual checkerboard lattice (p2 D 1 � p1),
and duality in the sense that pi ! 1 � pi also satisfies this
formula. It is the most general relation of this form, linear
in all of the individual probabilites, that satisfies these re-
quirements, but there is no obvious reason why it has to be
linear in this way.

It seems that this result has not been tested numerically
in the past. Here we investigate one case p1 D 73/90 D
0:811111 : : :, and p2 D p3 D p4 D p using the hull-gra-
dient method. According to the conjecture (23), p should
equal 0.4 exactly.

In order to test this prediction, we fix the value of p1
on every fourth bond, while for the rest of the bonds we
allow p to follow the gradient, and use the nocc and nvac
for these bonds to estimate the critical value of p by (22).
Figure 6 shows the plot of pestc (L) that follows for different
values of the inverse gradient L. The lattice was 16 384 �
16 384, but we were able to go to inverse gradients as large
as L D 524 288 without having ymax � ymin or xfront � x
exceed 16 384. We also used a periodic scheme in the ver-
tical direction in order to have the walk automatically ad-
just to its own position. In this particular case, the linear
dependence of pestc upon the gradient 1/L seems to hold,
with an extrapolated value of 0.39999989(20). To achieve
these very small error bars, a total of nocc C nvac D 1014

random numbers were generated, one for each time the
walk encountered an unvisited bond whose state was not
previously determined. Thus, Wu’s conjecture is numeri-

Percolation Lattices, Efficient Simulation of Large, Figure 6
Results of gradient percolation study for the checkerboard lat-
tice with p1 D 73/90, and p2 D p3 D p4 predicted to be 0.4 by
(23). From [63]
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Percolation Lattices, Efficient Simulation of Large, Figure 7
Frontier (hull) of the percolating region for the continuum per-
colation of overlapping disks in a gradient in the horizontal di-
rection. From [53]

cally confirmed to high accuracy for this point. Additional
points are tested in [63].

The hull-gradientmethod has been generalized to con-
tinuum percolation, illustrated in Fig. 7, yielding the most
precise known value for the fractional critical coverage
�c D 0:6763475(6) [53,54].

Note, when doing work like this, it is imperative to use
a high-quality random number generator, and not ones
typically incorporated in computer languages or compil-
ers. For much of our own work reviewed here, we used
a four-tap shift-register sequence random number genera-
tor based upon the exclusive-or operation, with maximum
lag of 9689 and cycle 29689 � 1 [87].

Simulating the Grossman–Aharony Accessible Hull

It does not seem possible to make a random walk process
that generates the accessible hull of a percolation cluster
(the hull in which all “fjords” are closed off) directly, be-
cause of the long range correlations. However, it is possi-
ble to generate this hull by carrying out two walks: the first
to generate say the outside hull of a cluster, and then a sec-
ond walk that encircles the first, and can jump across the

fjords. In this way, samples of a walk that are equivalent to
the two-dimensional self-avoiding walk can be generated
easily.

In the same way, a second walk can be added to gradi-
ent percolation (delayed behind the first walk by the cor-
relation length), and the second walk will trace out the ac-
cessible hull of the frontier in the gradient. In this, way,
an infinitely long accessible hull can be made (essentially
one dimensional, however, because of the effect of the
gradient).

TheMicrocanonical-CanonicalMethod

Here we discuss the method of Newman and Ziff [44] to
simulate percolation that, unlike other methods consid-
ered so far, allows one to simulate problems for all values
of p through one simulation.

The idea is to start with an empty lattice, and add one
site or bond at a time, and update the cluster connectivity
on the fly, somewhat like the Hoshen–Kopelman method,
but applied to clusters rather than rows. The quantity of
interest is stored as a function of n, the number of added
sites or bonds. Call this quantity Qn, which represents the
fixed-n, or “microcanonical” value of Q. Then, for a given
probability, the “canonical” Q(p) follows from convolving
with the binomial distribution

Q(p) D
NX

nD0

 
N
n

!

pn(1 � p)N�nQn ; (24)

where N is the total possible number of sites or bonds in
the system. Note that these approaches have also been de-
scribed as “canonical” and “grand-canonical”, by consid-
ering s as representing the number of particles in the sys-
tem [64]. Here, we are thinking in energetic terms, along
the lines of the Potts model representation of percolation.

An example of this has already effectively been given
above in the pnqN�n series of ˘ (L)

h (1; p) (20) and (21),
with N D L2. Consider the case L D 2, and let Q(p) D
˘

(2)
h (1; p). The coefficients in (20) are precisely the num-

ber of ways of having horizontal crossing with n occupied
sites and N � n vacant sites. Because there are

�N
n

possi-

bilities of having n sites in the system, it follows that the
Qn are just these coefficients divided by

�N
n

. Therefore,

for this system Q0 D Q1 D 0, Q2 D 1/3, and Q3 D

Q4 D 1 (the latter reflecting the fact that with three or four
occupied sites, there will always be crossing). Then, the
convolution in (24) is formally identical to ˘

(2)
h (1; p)

given in (20).
The antecedents of this method in the literature are

many. The idea of extrapolating results of simulations
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to different values of p is reminiscent of the histogram
method [31]. The representation of clusters as a tree struc-
ture and some of the update bookkeeping steps are rem-
iniscent of the Hoshen–Kopelman method [29]. Similar
tree structure representations of clusters have been used in
kinetic gelation models [8]. Finally, the idea of adding one
occupied site or bond at a time was suggested in a problem
in [16]. But [44] seems to be the first place that all these
ideas were put together along with the convolution (24)
and used to find results for some quantity for all values
of p. These ideas been incorporated in an extensive discus-
sion of this method in are Gould, Tobochnik, and Chris-
tian [17].

For definiteness we consider bond percolation. Ini-
tially, no bonds exist, and all sites are clusters of size one
and each has a different label. (Again, the size is the num-
ber of sites the cluster contains). When a new bond is
added, it can either connect sites belonging to the same
cluster, in which case nothing needs to be done, or it can
connect sites from two different clusters. In the latter case,
these two clusters are combined into one by a union op-
eration. For efficiency, the smaller cluster is incorporated
into the larger one.

A simple approach to carry out this operation is to la-
bel each site of the lattice by an index representing the clus-
ter it belongs to, and having a look-up table that registers
the number of sites in each cluster. When a new bond con-
nects sites of two different indices, the look-up table tells
which of the two is smaller, and then a neighbor search
like (P2) or (P3) can be used to relabel all sites of the small

Percolation Lattices, Efficient Simulation of Large, Figure 8
Wrapping probabilities RL(p) 	˘wrap(pc) calculated using the
Newman–Ziff algorithm, for L� L tori with L D 32;64;128, and
256, for wrapping (a) along a specified axis, (b) along either axis,
(c) along both axes, and (d) along one axis but not the other. The
dotted lines denote the expected values of pc and˘wrap(pc). The
curves are sharper as L increases. From [44]

Percolation Lattices, Efficient Simulation of Large, Figure 9
Tree data structure, shown themerging off the cluster of six sites
on the left with the cluster of seven sites on the right, due to the
addition of the new bond (dashed bond). Arrows show the direc-
tions of the links. From [44]

cluster to the index of the larger cluster. The appropriate
updates to the look-up table are then made.

However, this method is somewhat slow because
a given site is relabeled several times, and it can be im-
proved by having a cluster remembered as a tree structure
and linking the root of the smaller cluster to that of the
larger one, as shown in Fig. 9.

Here we describe a recursive program to carry out the
“union-find” operation for bond percolation. More details
are given in [45], which discusses the algorithm for site
percolation.

First of all, in contrast to the programs given above,
here we use a one-dimensional array ptr[r] to repre-
sent a system of any dimensions. An array nn[i][dir]
is constructed ahead of time that tells the nearest-neigh-
bors of every point i in the system, and thus can be set
up for any boundary condition. This array is only used to
decide which pair of sites a given bond connects. Sites are
indexed with a single signed integer label for speed, taking
values from 0 to N � 1.

The array ptr[] serves triple duty: for non-root oc-
cupied sites it contains the label for the site’s parent in the
tree (the “pointer”); root sites are recognized by a negative
value of ptr[], and that value is equal to minus the size
of the cluster; for unoccupied sites ptr[] takes the value
EMPTY, which is defined as some value such as �N � 1
that is never reached by any of the roots.

We define a function which performs the “find” oper-
ation, returning the label of the root site of a cluster, as
well as accomplish path compression. The version we use
is recursive:

int findroot(int i)
{

if (ptr[i] < 0) return i;
return ptr[i] = findroot(ptr[i]);

}
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When the recursion is “unwound”, all the sites of the
links are relabeled to point to the new root. This seems
to result in an optimal amount of relabeling to make this
process run quickly.

The code to perform the actual algorithm is quite brief.
Ahead of time, an ordered list of all the bonds is made.
A given new bond connects the two neighboring sites s1
and s2. The function findroot() is called to find the
roots of each of the two sites. If amalgamation is needed, it
is performed in a weighted fashion, smaller clusters being
added to larger (bearing in mind that the value of ptr[]
for the root nodes is minus the size of the corresponding
cluster). Following is the main code to accomplish that:

r1 = findroot(s1);
r2 = findroot(s2);
if (r2!=r1)

if (ptr[r1] > ptr[r2]) {
ptr[r2] += ptr[r1];
ptr[r1] = r2;

} else {
ptr[r1] += ptr[r2];
ptr[r2] = r1;

}

There are also easy techniques to check for crossing or
wrapping during this process. One stores the number of
such events as a function of n, the number of bonds put
down, and then uses the convolution (24) to find the de-
sired quantity as a function of p. Of course, the procedure
must be repeatedmany times to get good statistics for all n.
The result of a test of wrapping around a torus is given in
Fig. 8.

The main point of this algorithm is that it can find the
Qn in a time that is very nearly linear in the number of lat-
tice sites. Once the Qn are found and stored in an appro-
priate array, they can be used to find various properties of
the system for any p.

Other Numerical Techniques

In this section we briefly mention some other numerical
techniques that have been applied to percolation.

The Binary Search Method

In this method, a random number pi uniform in (0; 1)
is assigned to each site (say) of the lattice. One chooses
a value of p such that sites with pi < p are assumed to be
occupied, and checks for percolation. By making a binary
search up and down in p (with the same pi assigned to each
site), in about 20 steps the probability where that particu-
lar sample first percolates can be found to six significant

digits. Repeating this for many samples and averaging the
results yields the average estimate for pc.

If horizontal crossing is used for the criterion for
percolation, then this average corresponds to

R1
0 p(@/

@p)˘h (p; r)dp. When systems of different sizes are sim-
ulated, finite-size scaling of this quantity can be used to
extrapolate the estimate to L!1. In general, finite-size
scaling implies that estimates converge to pc as L�1/� [68],
but for for certain symmetric systems, such as a square
boundary for site percolation on a square lattice, the con-
vergence goes as L�1/��1 [94] and even faster for wrapping
around a periodic system [45].

This method is quite efficient in finding pc since for
a lattice of N D L2 sites, the total amount of time to
measure one sample grows only as N ln N. It has been
used in numerous studies of percolation in various di-
mensions [68].

Lattice-Less Methods

Vollmayr [75] introduced the idea that by using a kind of
random number generator (effectively a very non-linear
function) that takes as an input the coordinates of a site,
and outputs a uniform random number that has no corre-
lations with the random numbers that results from one of
the neighbors, one does not have to remember the occu-
pancy state of a given site. However, for most problems,
one does have to remember whether that site has been
visited (or checked as in the cluster algorithms), so tech-
niques to remember the latter have to be used, some of
which are discussed in [48]. There are several problems
where one does not need to remember which sites have
been visited, so for these problems this technique is par-
ticularly memory efficient. One example is the problem of
finding the enclosed area of a hull-generating walk: here it
is not necessary to remember if a site have been visited or
not, and the method can be used to simulate any size sys-
tem.Another example is just finding the end-to-end length
of a very long walk, for a fractal measurement. One is only
limited by the computational time available.

A drawback of this method is that it requires this
special type of random number generator. Vollmayr uses
a generator related to data encryption, which evidently has
the necessary properties and is sufficiently uncorrelated
and fast (though not as fast as typical random number gen-
erators used forMonte Carlo simulations). However, more
work needs to be done to study this generator’s quality for
these types of problems.

Osterkamp, Stauffer and Aharony [46] introduced
a related idea, using the feature of congruential random
number generators that one can jump ahead or behind any
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number of steps in the random number sequence by mak-
ing an appropriate modification to the multiplier. Using
this they were able to simulate diffusion on percolation
clusters on high-dimensional (virtual) lattices as large as
4207 � 2:3 � 1018 sites. This is another problem for which
there is no need to remember which site has been visited
before, so no list is needed, and the program required very
little memory.

Conductivity and Backbones

An important application of percolation is to flow and re-
sistance problems. The conductivity of a percolating net-
work (say with occupied bonds replace by identical re-
sistors) goes to zero as the percolation threshold is ap-
proached from above, and much work has been done in
studying that process. The simulations are based upon
solving Kirchhoff’s equations around each vertex of the
lattice.

When considering conductivity of a percolation clus-
ter, the role of different bonds becomes evident. One
can define conductivity between two points far apart in
a cluster, or alternatively between two opposite edges of
a bounded system (the “bus-bar” problem). In either case
there will be a backbone that carries the current, and dan-
gling ends that are only singly connected to the backbone,
which can be removed. Within the backbone, bonds can
be classified into different categories, with the “red” bonds
being ones the “hottest” in that cutting any one of them
will break the flow of current [50].

To find the backbone, several methods have been used,
including Tarjan’s method [71], burning algorithms [27],
andmatching algorithms [43]. Grassberger has introduced
an efficient hull-walk based algorithm which however
works only in two dimensions [20]. Once the backbone is
found, the conductivity can be estimated efficiently in 2d
by the algorithm of Lobb and Frank [38], which reduces
the lattice by successive use of a star-triangle transforma-
tion, or in general by finite-element methods to solve the
Kirchhoff equations. Conductivity can also be studied by
considering the properties of random walks on the perco-
lation cluster [28].

In 2d at the critical point, the backbone has a fractal di-
mension Db D 1:6432(8) [21] or 1:6434(2) [9] such that in
a system of length scale L, the number of backbone bonds
grows as LDb . The red sites scale simply as the inverse
of the correlation-length exponent, Dred D 1/� [7], which
equals 3/4 in 2d. The conductivity at the critical point
scales with the system size as Lt with t/� D 0:9826(8) [21].
At one time there was a great deal of interest in studying
this exponent because of the Alexander–Orbach conjec-

ture [2] that t/� was equal to 1, which however was proven
(numerically) to be incorrect in five back-to-back papers
in Physical Review B in 1984 [26,28,38,55,81].

Conclusions

This article describes a number of algorithms and pro-
gramming techniques to study cluster statistics, crossing
problems, area distributions, etc. of percolation. By no
means did it cover all of them; having been a very active
field of research for 50 years, there are many other meth-
ods and techniques that have been proposed and studied.
Some applications of numerical techniques are also pre-
sented.

An example of the development of the substantial nu-
merical work done in this field is provided by the de-
termination of the threshold for site percolation on the
square lattice, whose value has not been derived theoret-
ically and must be found by simulation. After starting out
at 0:581(15) in 1961 in the first Monte-Carlo determi-
nation [14], and after dozens of advances in the follow-
ing three decades, by the early 1990s the six-digit value
0.592746 was achieved [83]. Yet, in the 16 years since then,
while that value has been confirmed, the seventh digit
still has not been agreed upon – the various determina-
tions, many quoted above, fall in the range 0.5927460–
0.5927466. Although one might think that with all the ad-
vances in computer power and algorithms that have oc-
curred over these years, it would have been fairly easy to
extend this result further, it turns out to be harder than
might have been anticipated, because of uncertainties in
the finite-size corrections and in the quality of random-
number generators, which seem to be significant at this
level of precision. Such high precision values are in fact
necessary for precise studies of critical behavior, where
simulations involving 1013–1014 sites are not uncommon,
and in 2d, site percolation on the simple square lattice re-
mains one of the most popular models for various rea-
sons, despite of the fact that exact thresholds are known
for other 2 � d system.

Future Directions

Work in this field remains quite active and there are many
interesting questions that are still unanswered. Conver-
gence of many of the estimates, precise values of sub-lead-
ing (including irrelevant) exponents, more accurate cal-
culation of the scaling functions and amplitude ratios are
some such questions. For percolation thresholds, contin-
ued study of thresholds can perhaps lead to new exact re-
sults and in any case can help advance the understand-
ing of why particular lattices have the thresholds that they
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do. The combination of the efficient techniques that have
been developed and improved upon over the years and the
availability of powerful computers should allow many of
these questions to be investigated fairly easily today. Here
is a sampling of some specific questions for future study
based upon the work discussed above:

� In the Newman–Ziff study of percolation around tori,
it was found that the wrapping probabilities (for vari-
ous situations, such as “either” of “one-way”) approach
their theoretical values [51] as L�2, implying that the
estimates for pc converge to the actual value as L�11/4.
However, no theoretical justification was found for this
result. Note that additional numerical work showing
fair agreement with this scaling for a variety of latties
was done recently by Parviainen [47].

� Asmentioned above, the estimate of pc for the hull-gra-
dient method seems to converge as the reciprocal of the
gradient for many systems (as in Fig. 6), while in oth-
ers it changes its behavior and even is non-monotonic.
Additional precise measurements, including tests with
different random number generators, on a variety of
systems can help elucidate this question. Another in-
teresting question is the effect of the angle of the gra-
dient with respect to the axis for various lattices. Some
work along these lines for the kagomé lattice was done
in [69].

� When written in terms of the enclosed area distri-
bution, the size distribution follows the Zipf’s-law
form (15) above which is an entirely universal form
with no metric factors. Only preliminary studies have
been made on this quantity away from pc, and a simple
exponential scaling curve is possibly seen [88]. Clari-
fication of this behavior (and in relation to the Kunz–
Souillard [36] form of the percolation scaling function
which predicts exponential behavior in the size, not the
area) is needed. Note there are other measures of the
area that can be used, such as that of the enclosing
Grossman–Aharony hull, that would also be interest-
ing to study.

Recent interest in percolation by mathematicians, follow-
ing the developments in Stochastic Loewner Evolution,
will undoubtedly lead to many more simulation studies
and new algorithms in percolation, such as [15] which
concerns geometry of clusters on the closely related Potts
model. It is interesting to note that in the percolation case,
SLE develops a theory for the continuum limit of pre-
cisely the hull walks which were first introduced as a com-
putational technique in this field more than two decades
ago [19,78,89].
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Glossary

Accessible bonds or sites The retained bonds or sites in
a percolation lattice that are connected to infinity via
at least one path.

Backbone The set of (retained) bonds or sites in the sam-
ple-spanning percolation cluster that are connected to
infinity by more than one independent path.

Bond percolation In a bond percolation model, a ran-
dom lattice is formed from an infinite lattice by retain-
ing each bond of the infinite lattice with probability p,
and deleting the rest. When a bond is retained, so also
are its two ends sites.

Cluster A connected set of bonds or sites that are retained
in a percolation lattice with probability p.

Correlation length The length scale below which a dis-
ordered percolation system cannot be regarded as
homogeneous.

Critical exponents At the percolation thresholds, many
percolation properties follow universal power laws,
and the exponents that characterize such power laws
are called critical exponents.

Percolation transition The connectivity or geometrical
transition between a system in which a sample-span-
ning cluster of retained sites (or bonds) exists, and one
in which no such cluster exists.
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Site percolation In a site percolation problem, a random
lattice is formed from an infinite lattice by retain-
ing each site of the infinite lattice with probability p
and deleting the rest. A bond connecting two retained
neighboring sites is also retained.

Definition of the Subject

This chapter describes the basic percolation problem. We
begin by noting that most systems of scientific and practi-
cal applications are, at least at some scale, disordered. In
such disordered media, then, the connectivity of the el-
ementary or microscopic elements has a profound effect
on the media’s macroscopic properties. The percolation
transition occurs at the percolation threshold, which is
the point at which the microscopic elements become con-
nected for the first time, and form a sample-spanning path
across the system. Percolation theory aims to describe the
effect of the connectivity of the microscopic elements on
the effective macroscopic properties of disordered media,
particularly in the vicinity of the percolation threshold.

Introduction

It is well known that Nature is disordered. Pure, perfectly
characterized, and geometrically immaculate systems are
nowhere to be found, except perhaps in books and papers
on theoretical physics. Although the concept of an infi-
nite, perfectly periodic crystal lattice is incredibly elegant,
it is as remote from experimental reality as possible. Even
the best experimentalist who focuses on the purest of sub-
stances, exemplified by carefully grown crystals, can hardly
ever escape the effects of defects, trace impurities, and fi-
nite boundaries. Thus, we must come to terms with dis-
ordered morphology: variations in the shape and constitu-
tion that are often so ill-characterized that we must deem
them to be random if we are to describe them, or have any
hope of doing so. The morphology of a medium has two
major aspects: the topology, the interconnectiveness of the
system’s individual microscopic elements, and the geome-
try – the shapes and sizes of the individual elements.

At the same time, we believe, at least above the quan-
tum mechanical level, in the doctrine of determinism, yet
important continua exist in which deterministic descrip-
tions of many phenomena are beyond hope. A well-known
example is diffusion where, at least over certain length
scales, one observes an apparent random process – or dis-
ordered dynamics. The two types of disorder – morpho-
logical and dynamical – are often coupled and present si-
multaneously. An important example is fluid flow through
a porous medium, where the interplay between the dis-
ordered morphology of the pore space and the dynam-

ics of fluid motion gives rise to a rich variety of phenom-
ena [6,8].

Research on understanding the macroscopic proper-
ties of materials did make remarkable progress by us-
ing statistical mechanics and taking advantage of periodic
structures, or through the application of such equations
as the Boltzmann’s equation. However, due to the rather
obvious randomness in Nature, and because, in the final
analysis, one always must confront the real world which is
disordered, it became apparent in the 1960s that a statisti-
cal physics of disordered media must be developed to pro-
vide methods for deriving macroscopic properties of such
media from the laws governing the microscopic world
or, alternatively, for deducing their microscopic proper-
ties from the macroscopic observations and experimental
measurements. Such a statistical physics of disorderedme-
dia must take into account the effect of both the topology
and geometry of the media. Although the role of the ge-
ometry was appreciated as early as the beginning of the
twentieth century, the effect of the topology was ignored
for many decades, or was treated in an ad hoc manner,
simply because it was thought to be too difficult to be taken
into account rigorously.

As the history of science indicates, progress in any
research field is not usually made with a constant rate,
but rather in a sporadic manner. There are periods when
a problem looks so difficult that we do not even know
where or how to start attacking it, and periods when some
seminal discoveries remove a great obstacle to progress
and, thus, enable us to make a great leap forward. An
excellent example is the discovery of a new class of su-
perconducting materials by Bednorz and Müller [1], who
showed that it is possible to have superconductivity in
certain Cu alloys at temperatures T > 30K. Since their
discovery (which brought them the physics Nobel Prize
in 1989), the field of superconductivity has advanced re-
markably (after not making much progress for decades),
so much so that we now have materials that can be super-
conducting at temperature well above 100K.

Over the past three decades, the statistical physics of
disordered media has been in a rapidly progressing phase,
the reason for which is fourfold:

(i) Rigorous theoretical methods for calculating the
macroscopic (average) properties of disordered me-
dia have been developed.

(ii) A large amount of accurate experimental data have
been accumulated, thanks to many novel experimen-
tal techniques and instruments.

(iii) Advances in computer technology and computa-
tional strategies have enabled us to use precise nu-
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merical simulations for obtaining accurate estimates
of many properties of disordered materials.

(iv) The fifth, and perhaps the most important, reason
for the rapid development of the statistical physics of
disordered media is that, the effect of the intercon-
nectivity of the microscopic elements of disordered
media on their macroscopic properties has been un-
derstood and appreciated. This has become possible
through the development and application of percola-
tion theory, the subject of this section of the Encyclo-
pedia.

What is Percolation?

Consider electrical (or thermal) conduction through
a composite material which is a mixture of conducting
and insulating constituents or phases. Assume also that
the two phases are randomly distributed. As an idealiza-
tion, we represent the composite material by a simple-cu-
bic network in which each bond is either conducting with
a finite conductivity, or insulating with zero conductivity.
Suppose also that we impose a voltage difference between
two opposite faces of the network. The question that we
ask is: what fraction of the bonds must have a finite con-
ductivity in order for the electrical current to flow through
the material, so that it has a nonzero macroscopic conduc-
tivity? This is clearly an important question, because its
answer tells us, for example, that what (volume) fraction
of a composite material, such as carbon black composites
that are routinely used in many applications, must be con-
ducting in order for the composite as a whole to be con-
ducting.

Consider a second example. Imagine that the bonds
of a simple-cubic network represent the pore throats of
a porous medium, e. g., an oil reservoir in porous rock.
The pore throats are the narrow passages that connect the
pore bodies. Most of the porosity of a porous medium (the
void volume fraction in the porous medium) resides in the
pore bodies. For brevity, we refer to the pore throats as
pores. In reality, no porous medium looks as ordered as
a simple-cubic network, but as an idealization the model is
useful. Now, suppose that the pores (bonds) are filled with
oil, and that there are two wells in the system, one at A on
one face, and a second one at B on the opposite face of the
network. We try to push the oil out of the network (porous
medium) by injecting water into the system at A – the in-
jection well – to produce oil at B – the production well.
Oil and water do not mix with each other and, therefore,
we assume that each pore is filled with either oil or water.
We also assume that water wets the surface of the pores
(the wetting fluid), whereas oil does not (the nonwetting

fluid). In many oil reservoirs, such as carbonate oil reser-
voirs of the Middle East, the opposite is true, but this does
not make any difference to our discussion.

When the water is injected and pushed into the reser-
voir, it tries, due to being the wetting fluid, to find the
smallest pores that it can reach and expel the oil from it.
In reality, the process is more complex than what we are
describing, but we ignore all the complications. The dis-
placed oil is produced at well B. The question that we ask
is: what fraction of the pores are filled with water when it
reaches the production well at B for the first time (this is
called the breakthrough point)? In other words, we would
like to know what fraction of the pores lose their oil and,
thus, how much oil is produced at well B at the break-
through point. This is clearly an important question, given
that the price of oil is now around $75/barrel.

The PercolationPhase Transition

In the example of composite materials described above, if
too many bonds (or too much of the materials) are insu-
lating, no macroscopic current will flow through the ma-
terials, whereas for sufficiently large number of conduct-
ing bonds electrical current does flow in the materials, so
that their macroscopic effective conductivity is nonzero.
Assume that the fraction of the conducting bonds is p.
Therefore, there must be a minimum or critical value pcb
of p, such that for p � pcb no electrical current would
flow through the material and, therefore, the materials as
a whole are insulating, whereas for p > pcb the materials
become conducting.

In the example of displacement of oil by water, p rep-
resents the fraction of pores from which oil has been ex-
pelled and replaced by water. Therefore, for p � pcb, wa-
ter flows only locally, and has not reached the production
wall, whereas for p > pcb water flows between the injec-
tion and production wells. Thus, at any given time, p rep-
resents the fraction of the total oil in the reservoir that has
been recovered, while pcb represents its value at the break-
through point.

Therefore, it should be clear that, in both examples, pc
signifies a phase transition: for p � pcb there is no sam-
ple-spanning path of conducting bonds, or pores filled by
water, so that the system is macroscopically disconnected
or closed (to electrical current or flow of water). But, for
p > pcb the system becomes macroscopically connected.
Hence, pcb is the point at which a geometrical phase tran-
sition from a disconnected to a connected system takes
place. Percolation theory, then, quantities the effect of the
interconnectivity of the microscopic elements of a dis-
ordered medium (the conducting elements, or the pores
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filled with water) on its macroscopic properties. pcb is
called the bond percolation threshold of the network.

We may also formulate the percolation problem in an-
other way. Recall that most of the porosity of a porous
medium resides in its pore bodies which connect the pore
throats, as several pore throats meet at a pore body. Thus,
in the pore network model of a porous medium described
above, the nodes or sites of the network, which connect
the pore throats or bonds, are the equivalent of the pore
bodies. Then, in the example of the displacement of oil by
water in a porous medium, the injected water pushes the
oil from the sites (into the bonds) toward the production
well. Since most of the porosity (the void space available
for the fluids) resides in the pore bodies, to obtain a more
accurate estimate of the volume of the oil recovered, we ask
the question: At the breakthrough point, what fraction of
the network’s sites (pore bodies) are filled with water? De-
noting this fraction by pcs, it should be clear that it is the
analogue of pcb. pcs is called the site percolation threshold
of the network. For all two- and three-dimensional (3D)
lattices, pcs > pcb.

Determination of exact percolation thresholds ofmany
2D and all the 3D lattices remains an unsolved problem.
The article by Wierman describes and discusses the exist-
ing exact results for the percolation thresholds. Ziff’s arti-
cle describes highly efficient numerical methods for esti-
mating the percolation threshold and many other proper-
ties of percolation lattices.

PercolationProperties

Some of the most important properties of percolation sys-
tems that describe their morphology are as follows. For
simplicity, we use pc to denote pcs or pcb.

1. The percolation probability P1(p) is the probability
that, when the fraction of occupied bonds is p, a given
site belongs to the sample-spanning (infinite) cluster
of occupied bonds.

2. The accessible fraction A(p) is that fraction of occupied
bonds (or sites) that belong to the infinite cluster.

3. The backbone fraction B(p) is the fraction of occupied
bonds in the infinite cluster which actually participate
in a transport process, such as conduction, since some
of the bonds in the infinite cluster are dead-end and
do not carry any current. Therefore, A(p) � B(p).

4. The correlation length �(p) is the typical radius of per-
colation clusters for p < pc, and the typical radius of
the “holes” above pc that are generated by the vacant
bonds or sites. For p > pc, � is the length scale over
which the system is macroscopically homogeneous.

5. The average number of clusters of size s (per lattice site)
ns(p) is an important quantity in many of the prob-
lems of interest here because it corresponds to, for
example, the number of conducting or insulating is-
lands of a given size in a conductor-insulator compos-
ite solid.

6. The probability that two sites, one at the origin and
another one at a distance r, are both occupied and be-
long to the same cluster of occupied sites, is p2P2(r),
where P2(r) is called the pair-connectedness function.

7. The mean cluster size S (also called the site-averaged
cluster number) is the average number of sites in the
cluster that contains a randomly-selected site, and is
given by,

S D
P

s s
2ns(p)P

s sns (p)
: (1)

Essam [4] showed that S and the pair-connectedness
function P2(r) are related through a simple relation:

S D 1C p
X

r
P2(r) : (2)

8. Because a major application of percolation theory has
been modeling of transport in disordered materials,
and in particular composite solids, we must also con-
sider the effective transport properties of percolation
systems, namely, their conductivity, diffusivity, elas-
tic moduli, and dielectric constant. We first consider
the conductivity of a two-phase composite material
modeled as a two-component network in which each
(randomly-selected) bond has a conductance g1 with
probability p or g2 with probability q D 1 � p. It is
straightforward to show that the effective electrical (or
thermal) conductivity �eff of the network is a homoge-
neous function and takes on the following form,

�eff(p; g1; g2) D g1F(p; h) ; (3)

where h D g2/g1. Due to the assumption of random-
ness of the material’s morphology, �eff is invariant
under the interchange of g1 and g2 (phase-inversion
symmetry) and we must, therefore, have

�eff(p; g1; g2) D �eff(q; g2; g1) ; and
F(p; h) D hF(q; 1/h) :

(4)

The limit in which g2 D 0 and g1 is finite corre-
sponds to a conductor-insulator mixture, already de-
scribed above. In this case, as p! pc, more and more
bonds are insulating, the conduction paths become
very tortuous and, therefore, �eff decreases; at pc one
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has �eff(pc) D 0, since no sample-spanning conduc-
tion path exists anymore.More generally, the conduc-
tance g1 may follow a certain statistical distribution,
which is in fact the case in most systems of practical
importance, such as porous materials and composite
solids.
The limit in which g1 D1 and g2 is finite a repre-
sents a conductor-superconductor mixture. All quan-
tum-mechanical aspects of real superconductors are
ignored in this definition, and we are concerned only
with the effect of the local connectivity of the material
on this conductivity. It is clear that the effective con-
ductivity �eff of this system is dominated by the super-
conducting bonds. If p < pc, then a sample-spanning
cluster of the superconducting bonds does not exist,
and �eff is finite. As p! p�c , �eff increases until a sam-
ple-spanning cluster of the superconducting bonds is
formed for the first time at p D pc, where �eff di-
verges. Note that both limits (g1 finite and g2 D 0, and
g1 D 1 and g2 finite) correspond to h D 0. There-
fore, the point h D 0 at p D pc is particularly impor-
tant. The article by Hughes elaborates on these as-
pects, and provides a full account of the state-of-the-
art of this problem.

9. In a similar manner, the elastic moduli of a two-phase
composite solid, modeled by a percolation network,
are defined. Consider a two-component network in
which each bond is an elastic element (a spring or
beam) which has an elastic constant e1 with proba-
bility p or e2 with probability q D 1 � p. The limit in
which e2 D 0 and e1 is finite corresponds to compos-
ites of rigid materials and holes (for example, porous
solids). In such networks, as p! pc, more bonds have
no rigidity, the paths for transmission of stress or elas-
tic forces become very tortuous and, therefore, the ef-
fective elastic moduli E (Young’s, bulk, or shear mod-
uli) decrease; at pc one has E(pc) D 0. In general, the
elastic constant e1 can be selected from a statistical dis-
tribution.
The limit in which e1 D1 and e2 is finite represents
mixtures of rigid-superrigid materials. In this case the
effective elastic moduli E of the system are dominated
by the superrigid bonds. If p < pc, then a sample-
spanning cluster of the superrigid bonds cannot form,
and E is finite. As p! p�c , the effective elastic moduli
increase until the percolation threshold pc of the rigid
phase is reached at which a sample-spanning cluster
of the superrigid bonds is formed for the first time,
and the effective elastic moduli diverge. The article by
Duxbury provides a comprehensive discussion of this
subject.

10. The effective dielectric constant " of a two-phase insu-
lating composite material, modeled by a percolation
network, may also be defined and, in fact, " is closely
related to the conductor-superconductor model de-
scribed above (see, for example, [9]).

11. Finally, the effective diffusivity D of a porous material
can also be defined in a similar manner; see the article
� Conduction and Diffusion in Percolating Systems
by Hughes.

Universal Scaling Properties of Percolation

One of the most important characteristics of percolation
systems is their universalproperties. The behavior of many
percolation quantities near pc is insensitive to the mi-
crostructure (for example, the coordination number) of
the network, and to whether the percolation process is
a site or a bond problem. The quantitative statement of
this universality is that many percolation properties follow
power laws near pc, and the critical exponents that charac-
terize such power laws are universal and depend only on
the Euclidean dimensionality d of the system. We first de-
scribe the universal properties of the quantities that char-
acterize the morphology of percolation systems, and then
present and discuss those of transport properties.

In general, the following power laws hold near pc,

P1(p) � (p � pc)ˇ ; (5)

A(p) � (p � pc)ˇ ; (6)

B(p) � (p � pc)ˇb ; (7)

�(p) � jp � pcj�� ; (8)

S(p) � jp � pcj�� ; (9)

P2(r) �

(
r2�d�� ; p D pc ;
exp(�r/�) ; otherwise ;

(10)

where r D jrj. For large clusters near pc, the cluster size
distribution ns(p) is described by the following scaling law,

ns � s�� f [(p � pc)s
 ] ; (11)

where � and � are two more universal critical exponents,
and f (x) is a scaling function such that f (0) is not singular.
The article by Stauffer elaborates further on these.

Similar power laws are also followed by the transport
properties of percolation composites. In particular,

�eff(p) � (p � pc)t ;
conductor-insulator composites

(12)
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�eff(p) � (pc � p)�s ;
conductor-superconductor composites

(13)

E(p) � (p � pc)T ;
rigid-soft composites

(14)

E(p) � (pc � p)�S ;
rigid-superrigid composites :

(15)

For length scales L < � , the resistance R between two
end points of a box of linear size L scales with L as R � L�̃ .
It is not difficult to show that

t D (d � 2)� C � ; (16)

where, � D �̃�. It has been shown [12] that in 2D, t D s.
The power law that characterizes the behavior of the

effective diffusivity D(p) near pc is derived from that of
�eff(p), and is shown to be given by

D(p) � (p � pc)t�ˇ : (17)

The implied prefactors in all the above power laws depend
on the type of lattice and are not universal.

Equations (12) and (13) can be unified by using the
two-component resistor network described above. In the
critical region, i. e., the region near pc, where both jp � pcj
and h D g2/g1 are small, the effective conductivity �eff fol-
lows the following scaling law [3,11]

�eff � g1jp � pcjt˚˙
�
hjp � pcj�t�s


: (18)

where ˚C and ˚� are two homogeneous functions cor-
responding, respectively, to the regions above and below
pc, and are, similar to t and s, universal. For any fixed and
non-zero h, �eff has a smooth dependence on p � pc. This
becomes clearer if we rewrite Eq. (18) as

�eff � g1ht/(tCs)�
h
jp � pcjh�1/(tCs)

i
; (19)

where � (x) D x�˚C(x�t�s ) D (�x)t˚�[(�x)�t�s ].
Since the function � (x) is universal, the implication
of Eq. (19) is that, if one plots �eff/[g1ht/(tCs)] versus
jp � pcjh�1/(tCs) for all networks (or randomly-disor-
dered materials) that have the same Euclidean dimension-
ality, all the results (or measurements) should collapse
onto a single universal curve. This provides a powerful
tool for estimating the conductivity of a composite for any
value of h, given the conductivities for two other values of
h (by which the universal curve is constructed). Somewhat
similar, but more complex, scaling equations can be devel-
oped for the elastic moduli, dielectric constant and other
properties of percolation composites.

No exact relation is known between the transport and
morphological exponents. This is, perhaps, because the
transport exponents describe dynamical properties of dis-
ordered materials and media, whereas the morphological
exponents characterize their static properties. In general,
there is no reason to expect a direct relation between the
two.

If two physical phenomena in heterogeneous media
that contain percolation-type disorder are described by
two different sets of critical exponents, then the physical
laws governing the two phenomena must be fundamen-
tally different. Thus, critical exponents help one to distin-
guish between different classes of problems and the phys-
ical laws that govern them. Moreover, since the numer-
ical values of the percolation properties are not univer-
sal and vary from one system to another, but the scal-
ing and power laws that they follow near pc are univer-
sal and do not depend on the details of the system, esti-
mates of the critical exponents for a certain phenomenon
are used for establishing the relevance of a particular per-
colation model to that phenomenon in disordered materi-
als.

Variants of PercolationProcesses
and Their Applications

In this section of the Encyclopedia, the theoretical aspects
of percolation theory are described first and, then, some
well-established applications are described.

It should be clear that a percolation network is created
when sites or bonds are blocked or removed and, there-
fore, the macroscopic connectivity of the system is grad-
ually lost. In the example of the composite materials, the
bonds or sites are blocked to the conducting phase. In
the example of displacement of oil by water in a porous
medium, the bonds or sites are blocked to oil (since it is
expelled from such sites or bonds). Therefore, percolation
networks are also useful as simple models of any disor-
dered medium in which the connectivity of the medium’s
microscopic elements influences its macroscopic proper-
ties. Moreover, as the articles by Stauffer and Ziff make
clear, the main concepts of percolation theory are sim-
ple and, therefore, writing computer program for simulat-
ing a percolation process is conceptually straightforward
and simple, if we do not wish to simulate very large net-
works. Thus, percolation networks may also serve as a sim-
ple tool for introducing students to computer simulation
of disordered media. Stauffer and Aharony [10], Bunde
and Havlin [2], and Hughes [5] emphasized the theoreti-
cal foundations of percolation theory, while Sahimi [7,8,9]
described its important applications.



6544 P Percolation Phase Transition

Although percolation in regular lattices – those in
which the coordination number Z (the number of bonds
connected to the same size) is the same everywhere –
has been extensively invoked for studying the morphol-
ogy and transport properties of many disordered materi-
als, percolation in continua and in topologically-random
networks – those in which the coordination number varies
from site to site – are also of great interest, since in many
practical situations one may have to deal with such ir-
regular and continuous systems. For example, continuum
percolation is directly applicable to characterization and
modeling of the morphology and effective transport prop-
erties of microemulsions, polymer blends, sinteredmateri-
als, sol-gel transitions, andmanymore. The article�Con-
tinuum Percolation by Balberg describes the advances that
have beenmade in understanding of the percolation effects
in continuous systems, and in random networks.

In the percolation phenomena described so far, no
correlations between various segments of the system (for
example, bonds and/or sites, or their transport proper-
ties) were assumed. However, disorder in many impor-
tant heterogeneous materials is not completely random.
There usually are correlations of some extent that may be
finite but large. For example, in packing of solid particles,
there are short-range correlations. The universal scaling
properties of percolation systems with finite-range corre-
lations are the same as those of random percolation, if the
length scale of interest is larger than the correlation length.
Moreover, if the correlation function C(r) decays as r�d or
faster, where d is the Euclidean dimensionality of the sys-
tem, then the scaling properties of the system are identical
with those of random percolation. This is not totally unex-
pected because even in random percolation, as p decreases
toward pc, correlations begin to build up and, therefore,
the introduction of any type of correlations with a range
shorter than the percolation correlation length � cannot
change its scaling properties. In many other cases, e. g.,
in some disordered elastic materials, there are long-range
correlations. The article by Coniglio describes the major
differences between percolation in random and correlated
systems.

A particular type of percolation model with extended
correlations is known as the bootstrap percolation. In this
problem sites of a lattice are initially randomly occupied.
Then, those sites that do not have at least Zc nearest-
neighbor occupied sites are removed (note that Zc D 0 is
the usual random percolation). The interactions between
the sites are short-ranged, but the correlations between
them may build up as the distance between two occupied
sites also increases. The original motivation for develop-
ing this model was to explain the behavior of some dis-

ordered materials in which magnetic impurities are ran-
domly distributed in a host of non-magnetic metals. It is
believed that in some of such materials an impurity atom
cannot sustain a localized magnetic moment unless it is
surrounded by a minimum number of magnetic neigh-
bors. Bootstrap percolation has proven to be a complex
problem with a rich variety of unusual properties that are
a strong function of the parameterZc. For example, an im-
portant question is the nature of the percolation transition
in this model. It now appears that for sufficiently high val-
ues of Zc � Z (where Z is the coordination number of the
lattice), the percolation transition is first-order, i. e., dis-
continuous, whereas for low values of Zc the transition
is continuous and second-order. If the phase transition is
first-order, then the percolation threshold of the system is,
in fact, pc D 1, the sample-spanning cluster is compact,
and power laws (5)–(15) are no longer valid. The article
� Bootstrap Percolation by De Gregorio et al. describes
this important area of percolation problems.

Over the past three decades percolation theory has
been applied to modeling of a wide variety of phenomena
in disordered media and systems. It is impossible to de-
scribe and discuss all such applications. In this section of
the Encyclopedia, several well-established and well-under-
stood applications are described and discussed.

The article � Invasion Percolation by Knackstedt and
Paterson describes in detail application of the percolation
model to two-phase fluid flow in porous media, a sim-
ple example of which was already described above. Since,
as described above, one fluid is injected into a porous
medium – that is, it invades the medium – in order to
displace the second fluid, this particular model is usually
known as the invasion percolation. Other aspects of the ap-
plication of percolation in problems on fluid flow through
porous media are described in the article� Percolation in
Porous Media by King and Masihi.

It appears that percolation provides a powerful tool
for modeling of the effect of the connectivity of fractures
and faults on fluid flow and transport properties of rock,
a highly complex set of phenomena. Thus, in their arti-
cle� Percolation, and Faults and Fractures in Rock, Adler
et al. describe the recent application of percolation to this
important problem.

The article � Networks, Flexibility and Mobility in by
Thorpe describes recent advances on generalization of the
percolation model, and its application to modeling of net-
work glasses and proteins. The question of the rigidity of
such materials is addressed. Thrope’s article is related to
Duxbury’s review � Elastic Percolation Networks which
describes elastic properties of percolation networks and
their applications.
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An important and well-established application of per-
colation is to modeling of the rheology of polymers and
gels, particularly in the vicinity of the gelation point. Sev-
eral variants of the percolation models have been devel-
oped in order to address this important problem. The arti-
cle by Sahimi describes the advances that have been made
in this area.

Finally, the article � Percolation in Complex Net-
works by Cohen and Havlin describes application of per-
colation to problems in complex networks, particularly
scale-free networks. They show how the concepts of per-
colation can be used to study not only the robustness and
vulnerability of random networks, but also such problems
as immunization and epidemic spreading in populations
and computer networks, communication paths, and frag-
mentation in social networks.

Future Directions
Theoretically, most aspects of percolation are well-under-
stood. Exact values of most of the critical exponents (in
2D), or their very accurate numerical estimates (in 3D),
are known. Exact values of the bond and site percolation
thresholds of several 2D lattices are also known, as are very
accurate numerical estimates of the percolation thresholds
of many 3D lattices, although we still do not know the ex-
act value of, for example, the site percolation threshold of
the square lattice. Thus, theoretically, the grand challenge
is to develop general methods for obtaining the exact per-
colation thresholds of 3D lattices, and the exact values of
the critical exponents for 3D systems, although the latter
challenge may well be beyond reach.

Therefore, aside from the theoretical challenges de-
scribed above, most of the future work on percolation will
be concentrated on its applications to problems of prac-
tical importance, examples of which are described in this
section of the Encyclopedia.
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Glossary

Branched polymers Large polymers below the gel point
with radii larger than the correlation length

Chemical gels Gel networks in which the monomers are
co-valently bonded.

Critical gels The gel networks at the gel point
Elastic networks Networks in which each bond is an elas-

tic element, such as a Hookean spring.
Gel point The point at which the critical gel network is

formed for the first time.
Lattice animals Large percolation clusters below the per-

colation threshold with radii larger than the correla-
tion length
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Physical gels Gel networks in which the monomers or
particles are connected through weak association.

Relaxation time spectrum The distribution of relaxation
times that describes the linear viscoelastic behavior of
liquids and solids.

Resistor networks Networks in which each bond is a re-
sistor with a given conductivity.

Rigidity percolation Percolation networks in which each
uncut bond is a Hookean spring, and there are no an-
gle-changing forces.

Sol The solvent + finite polymer clusters below the gel
point

Definition of the Subject

Elastic percolation networks described in the article by
Duxbury (see also below), random resistor networks de-
scribed in the articles by Hughes and Balberg, and a few
continuum models [58] of heterogeneous materials pro-
vide a comprehensive understanding of their transport
properties. The purpose of this chapter is to describe and
discuss applications of such percolation models to pre-
dicting the structure and rheolgy of an important class of
disordered materials, namely, polymers and gel networks,
and test their validity by comparing their predictions with
the relevant experimental data.

The formation of the polymeric materials that we con-
sider in this chapter is characterized by the existence of
a percolation-type transition point; see below. The rigid-
ity and linear elastic properties of disordered materi-
als, including polymers, that are far from their percola-
tion threshold are well-described and predicted by mean-
field theories, such as the effective-medium approxima-
tion [33,41]. However, the effective properties of poly-
meric materials that are near the percolation threshold de-
viate greatly from the predictions of mean-field theories
and other approximations. It is the description of various
properties of such polymeric materials that is best done by
the percolation models, and is the focus of this chapter.

Introduction

Polymeric materials have wide applications in many
branches of science and technology. In addition, they have
many interesting, and in many cases unusual, properties
that justify their study. One is that their relaxation modes
are described by a wide spectrum, which provides clues to
their structure (see below). Each mode is associated with
a particular “event” or motion. In particular, motion of
clusters of monomers or molecules is associated with the
long modes, with the longest relaxation modes being due
to the very large clusters. Such clusters are formed either

by the formation of chemical bonds or chemical crosslink-
ing between the monomers and also between monomers
and small molecules or clusters which, when large enough,
lead to phase-separation, or by physical association at the
molecular or particulate level. It is the formation of such
large clusters that is the root cause of an important class
of phase transitions, namely, the liquid–solid transition
(LST).

The significance of the LST cannot be over-empha-
sized, as it occurs in a wide variety of problems of prac-
tical importance. At the most basic level, it is important
to be able to predict the point at which the LST occurs.
The knowledge is sometimes necessary in order to design
better polymer processing operations. An example is in-
jection molding of semicrystalline polymers, the quality of
the surface of which is a strong function of the location of
the LST point. In other applications the knowledge of the
LST point is necessary in order to postpone it or avoid it al-
together. Since near the LST point the system is a mixture
of a liquid and solid clusters, one may be able to design
a wide variety of materials by changing the volume frac-
tion of each phase and, therefore, study of the LST is im-
portant. At the same time, crosslinked polymers near the
LST point are good adhesives, and have also been used as
materials for membranes, absorbers, and many other ap-
plications.

In addition to chemists and chemical and polymer en-
gineers who have traditionally studied polymers and their
properties, a seminal work in the early 1970s attracted
the attention of physicists, and opened the way to the ap-
plication of modern methods of statistical mechanics to
the study of polymers. De Gennes [71] demonstrated that
there is a close connection between linear polymers – those
in which the monomers have functionality or coordina-
tion number Z D 2 – and a statistical mechanical model,
namely, the n-vector model. Clearly, no two monomers
occupy the same point in space. If, in addition, there is
no closed loop in the structure of the polymer, then, the
result is a linear polymer which, as de Gennes showed,
corresponds to the limit n! 0 of n-vector model. The
most suitable model for such polymers is the path of a self-
avoiding walk in which a particle performs a random walk
in s pace with the restriction that it never visits any point
more than once (so that loop formation is avoided). De
Gennes’ discoverymade it possible to apply modernmeth-
ods of statistical mechanics, and in particular the renor-
malization group theory and the scaling concepts, to the
study of linear polymers and, later, to branched polymers
and gels.

The original work of de Gennes was restricted to linear
polymers. However, if the monomers have functionalities
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Z > 2, so that each of them may be connected with more
than two neighboring monomers, then at least two other
classes of polymers can be obtained:

(i) If the reaction time t is relatively short and below,
but close to, a characteristic time tg, then one obtains
branched polymers in the solution, usually called sol,
that form a viscous solution. It is called a sol because
it is soluble in good solvents. Such branched polymers
are large but finite clusters of monomers. tg is called
the gelation time.

(ii) If, however, the reaction time is larger than tg, an in-
finitely large solid network of reacted monomers ap-
pears which is usually called a chemical gel, or simply
a gel. There is clearly a LST as one passes from the sol
to the gel phase, and the process, called gelation, has
been described by the percolation models.

The gel can only swell, but not dissolve, in a solvent, even if
finite clusters of reactedmonomers still exist in the system.
The point at which the gel network appears for the first
time – which is, in fact, the point that signals the LST – is
called the gel point (GP).

The gel network has interesting structural, mechani-
cal, and rheological properties which are described in this
chapter. Most of us are already familiar with such sol–gel
transformations in our daily lives, since we all know about
milk-to-cheese transition, pudding, gelatine, etc. How-
ever, materials that contain gels, or use their specific prop-
erties, are numerous. In addition to the examples men-
tioned above, another important example is the eye hu-
mor. Moreover, gels play an important role in laboratory
technology (e. g., gel chromatography), in the fabrication
of a wide variety of products, such as glues, cosmetics, con-
tact lenses, etc., and in food technology. In addition, the
sol–gel transition is a general phenomenon that has been
utilized for producing a variety of ceramic materials [19].

Chemical reactions are responsible for the intercon-
nectivity of the monomers in chemical gels. In general,
there are three types of chemical gelation:

(i) Polycondensation, in which polymerization begins
with either bifunctional units A-A or trifunctional
ones B3, or more generallyZ-functional units BZ . The
A units are linked with the B units, with each ele-
mentary reaction being accompanied by the elimina-
tion of a molecule between units of A and B. Thus,
a polymer network is formed in which the polymer
chains are terminated by either A or B. No two units
of the same class can participate in a reaction with
each other and, therefore, there is always exactly one

bifunctional unit between polyfunctional units in the
polymer network.

(ii) Vulcanization begins with long linear polymer chains
in a solution. The chains are then crosslinked by small
units. An example is rubber, the elasticity of which is
due to the introduction of S–S bonds between poly-
isoprene chains. Only a small number of bonds are
needed to crosslink the chains and form an intercon-
nected polymer network.
De Gennes [70] argued that for volcanizing poly-
mers – those with high molecular weights – there ex-
ists only a very narrow region near the GP in which
the percolation model may be applicable. In other
words, such polymers exhibit the Flory–Stockmayer-
type behavior [34,63] which is of the mean-field type.
For this reason, we ignore volcanization in this chap-
ter.

(iii) Additive polymerization is similar to polyconden-
sation. The initial solution contains two types of
units. The A=A units that are bifunctional when
the double bond opens, and the B=D=B units that
are quadrifunctional when the two double bonds
open independently of each other. If the reaction
polymerizes A=A units, one obtains A–A–A–A–� � �
chains, whereas reaction between the A units and
the B=D=B units reticulates the network. The length
of the chains between two reticulation points is not
fixed, but depends crucially on the initiation pro-
cess and on the relative concentrations of the bi-and
quadrifunctional units.

In addition to such chemical gels, one may also have physi-
cal gels in which the monomers or particles are attached to
each other by relatively weak and reversible association, or
by such physical processes as entanglement. A well-known
example is silica aerogel. Another example is a solution of
gelatin in water below a certain critical temperature where
a coil-to-helix transition takes place, and bonds appear to
form by winding of helixes of two adjacent chains. Such
physical gels can be made and also destroyed by ther-
mal treatment. Other important examples include liquid
crystalline polymers at their nematic-to-smectic transi-
tion, suspensions and emulsions at the percolation thresh-
old, partially crystalline polymers, and microphase-sepa-
rating block copolymers.

In this chapter we describe modeling of structural,
mechanical and viscoelastic properties of the sol and
gel phases, especially near the GP. Modeling of gel net-
work formation was pioneered by Flory [34] and Stock-
mayer [63], whose theory is essentially equivalent to per-
colation on the Bethe lattice, an endlessly branching net-
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work without any closed loops. Stauffer [62] and de
Gennes [72] emphasized the importance of the deviations
from the Bethe lattice solution of Flory and Stockmayer,
and proposed to replace it by percolation on three-dimen-
sional (3D) lattices. This aspect of the problem, which can
be described by a random percolation model or a variant
of it, is now well-understood. De Gennes [72] also pro-
posed that the elastic and viscoelastic properties of the gel
and sol phases can be described by appropriate random
resistor network models (see below). His suggestion was
widely accepted for a long time, and was utilized for in-
terpreting the experimental data. It was recognized in the
1980s that, while de Gennes’ suggestion may be applica-
ble to certain classes of polymeric materials, more general
models are needed for several other important classes of
such materials. This realization gave rise to the develop-
ment of the elastic percolation models that are described
in the article by Duxbury. We shall come back to this point
shortly.

PercolationModels of Polymerization and Gelation

To see the connection between the sol–gel transition and
the percolation model, consider a solution of molecules or
monomers with functionality Z � 3. Suppose, for simplic-
ity, that the monomers occupy the sites of a periodic lat-
tice. With probability p, two nearest-neighbor monomers
(sites) react and form a chemical bond between them.
If p is small, only small polymers (clusters of reacted
monomers) are formed. As p increases, increasingly larger
polymers with a broad size distribution are formed. This
mixture of clusters of reacted monomers and the iso-
lated unreacted monomers represents the sol phase. For
p > pc, where pc is a characteristic value that depends on
the functionality Z (the number of nearest neighbors of
a monomer in the lattice), an infinite cluster of reacted
monomers is formed which represents the gel network de-
scribed above. The gel network at the GP is usually called
the critical gel. Near the GP the gel usually coexists with the
sol such that the finite polymers are trapped in the interior
of the gel. For p! 1, almost all the monomers react, and
the sol phase disappears completely. Thus, pc signals a con-
nectivity transition: For p > pc, an infinite cluster (the get
network), together (possibly) with a few finite-size clus-
ters, exist and, thus, the system is mainly a rigid gel. The
fraction of chemical bonds formed at the GP (which is re-
lated to the fraction of the reacted monomers at the GP)
is obviously the analogue of the bond percolation thresh-
old. Thus, it should be clear that the formation of branched
polymers and gels is very similar to a percolation pro-
cess.

In the earlier days of modeling the sol–gel transition, it
was generally believed that the properties of the polymeric
materials at the GP are independent of the structural de-
tails of the materials. But, despite decades of research, this
is still an unproven hypothesis for the critical gel. In ad-
dition, the monomers do not react randomly. There are
usually some correlations in the way the monomers react
with one another.

Structural Properties of Branched Polymers and Gels

Studies of the sol–gel transition usually proceed by mea-
suring the time evolution of the rheological (e. g., the vis-
cosity) or mechanical properties (e. g., the elastic moduli)
during the chemical reaction that leads to gelation, assum-
ing that the experimental parameter – time or frequency –
and the theoretical one – the number of crosslinks – are
linearly related in the vicinity of the GP. If true, then, near
the GP, jp � pcj is a measure of the distance from the GP.
All the properties of nearly critical gels (i. e., those that are
very near the GP) can be expanded in powers of jp � pcj.
This is completely similar to, for example, the vapor-liquid
phase transition for which all the properties of the system
near the critical temperature Tc can be expanded in pow-
ers of jT � Tcj. But, as the distance from the GP increases,
the expansions breakdown.

Experimental rheological measurements are usually
performed by using a cone and plate rheometer, or by
the more accurate magnetic sphere rheometer. The ranges
of shear rates, deformations, and times of measurements
of such devices allow the determination of the steady-
state zero-shear viscosity and the steady-state linear elastic
moduli up to the vicinity of the LST at the GP, but it has
proven to be almost impossible to do such measurements
at the GP (see below).

The correlation or connectivity length � , which repre-
sents the typical size of the branched polymers below pc,
diverges as pc is approached according to the power law

� � jp � pcj�� ; (1)

which is completely similar to �p, the correlation length of
percolation clusters. Below pc, however, the polymers with
radii much larger than � have completely different char-
acteristics than those with a typical radius � . Therefore, we
describe and discuss such polymers separately, and refer to
them as the branched polymers to distinguish them from
gel networks. Above the GP the correlation length of the
polymers is taken as the mesh size of the gel network. For
any length scale greater than � the gel network is homoge-
neous.
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Scaling Properties of the Structure
of Nearly Critical Gels

Several important structural properties of branched poly-
mers and gel networks can be measured directly or in-
directly. The gel fraction fg(p) is the fraction of the
monomers that are in the gel network, and is measured
by simply weighing the gel at different times during the
polymerization process. Clearly, fg(p) > 0 only if p > pc.
As far as the analogy with the percolation model is con-
cerned, f g is the analogue of percolation fraction or perco-
lation probability P(p) (see the article by Sahimi). Of par-
ticular interest to us is the behavior of fg(p) near pc. In this
region,

fg(p) / (p � pc)ˇ : (2)

The number distribution of the polymers, i. e., the
probability Q(s; �) that a polymer in the sol phase con-
tains s monomers at a distance � D jp � pcj from the GP,
is clearly the analogue of the cluster size distribution ns for
percolation clusters (see the article by Sahimi). Thus, we
may write

Q(s; �) � s�� h1(�s
 ) ; (3)

where h1 is a universal scaling function. Instead of writing
the distribution in terms of s, we may write down a power
law for the clustermass distribution, N(M), in terms of the
molecular weightM of the finite polymers. At the GP, one
has,

N(M) / M�� ; p D pc (4)

Then, near the GP, one has

N(M) / M�� h2(M/Mz) ; (5)

which is completely similar to Eq. (3), where h2 is another
scaling function, closely related to h1.

Using Q(s; �), we define two distinct mass averages.
One, the weight-average molecular weight, is defined by

Mw D

R
s2Q(s; �)ds
R
sQ(s; �)ds

� jp � pcj�� ; (6)

where � C 2ˇ D �d, with d being the dimensionality of
the material. In the analogy with the percolation model,
Mw is the analogue of themean-cluster size (see the articles
by Stauffer and Sahimi). In the polymer literature Mw is
also called the degree of polymerization. The second mass
average is defined by

Mz D

R
s3Q(s; �)ds

R
s2Q(s; �)ds

� ��1/
 � jp � pcj�1/
 ; (7)

where Mz is the same quantity as in Eq. (5), and,
� D (� � 2)/ˇ. Note, however, that the average

hMi D
R
sQ(s; �)ds
R
Q(s; �)ds

does not diverge at the GP. Note also that we may also ex-
pressMw in terms of � :

Mw / �
� /� : (8)

Recall (see the article by Stauffer) that percolation the-
ory predicts that for 3D systems, � ' 0:89, ˇ ' 0:41,
� ' 2:18, � ' 0:46, and � ' 1:82. The mean-field theory
of Flory and Stockmayer predicts the same type of power
laws, but with, ˇ D � D 1, � D � D 1/2, and � D 5/2.

At the GP the gel network is not homogeneous, but is
a self-similar fractal object with a fractal dimensionDf that
in d-dimensions is given by

Df D d � ˇ/� D d(� � 1)�1 ; (9)

Using numerical estimates of � and ˇ for the 3D percola-
tion model, we obtain, Df ' 2:53. On the other hand, the
Flory–Stockmayer theory predicts that, Df D 4, which is
unphysical since Df cannot be larger than 3.

Comparison of the Data with the Percolation Model

Since a main prediction of percolation is the existence of
universal critical exponents and the fractal dimension Df,
and because the numerical value of any polymer property,
such as it average molecular weight or the location of the
GP, is not universal and depends on the structure of the
polymer, we focus on a comparison between the measured
exponents, such as ˇ, � and � , and the predictions of the
percolation model.

In their experiments with irradiated polystyrene so-
lution in cyclopentane, Leibler and Schosseler [44] cou-
pled gel permeation chromatography and light scatter-
ing to deduce the polymer size distribution which pro-
vides a direct means of measuring the exponent � . Fig-
ure 1 presents their measurements from which one ob-
tains, � ' 2:3˙ 0:1, close to the percolation prediction of
2.18. Lapp et al. [43] further checked this result by carry-
ing out similar experiments in a system made by chemical
end-linking of polydimethylsiloxane, and Patton et al. [51]
performed experiments in a system in which polyester was
made by bulk condensation polymerization. Themeasure-
ments of both groups were consistent with the value of �
predicted by the percolation model.

Adam et al. [3] tested the validity of the percola-
tion model based on Eq. (6). They carried out static
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Percolation and Polymer Morphology and Rheology, Figure 1
Normalized polymer size distribution as a function of poly-
mer size s. Percolation theory predicts the slope to be
1� � ' �1:3˙ 0:1 (after Leibler and Schossler [44])

Percolation and Polymer Morphology and Rheology, Figure 2
Dependence of degree of polymerization Mw on pc � p for
a polyurethane sol. The slope of the curve is �� (after
Adam et al. [3])

light scattering measurements on a polyurethane sol. Can-
dau et al. [20] performed their experiments on polystyrene
systems crosslinked with divinylbenzene. Figure 2 displays
the results of Adam et al. [3] from which one obtains,
� ' 1:71˙ 0:06, only 5% smaller than the percolation

prediction of 1.82. A similar estimate of � was reported
by Candau et al. [20]. On the other hand, one can also ex-
press the weight-average molecular weight in terms of the
gel fraction near the GP, Mw � f�� /ˇg and, thus, a plot of
log(Mw) versus log( fg) yields an estimate of � /ˇ. Schmidt
and Burchard [61] carried out anionic copolymerization of
divinylbenzene with styrene and obtained both branched
polymers (see below) and gels. Light scattering was used to
measure the various properties of interest. When Schmidt
and Burchard [61] plotted log(Mw) versus log( fg), they ob-
tained a straight line with the slope, � /ˇ ' 4:5, in good
agreement with the percolation prediction, � /ˇ ' 4:44.

Branched Polymers

After a polymer is formed by crosslinking, the experimen-
talist usually analyzes its structure by diluting it in a good
solvent. As mentioned above, branched polymers in a di-
lute solution of a good solvent may swell and have a ra-
dius larger than their extent at the end of the crosslinking.
Thus, it is important to consider both typical polymers,
which we already described above, and the swollen ones
which we now consider.

Thus, consider a swollen branched polymer in a good
solvent with a radius larger than the polymer correla-
tion length � . The structural properties of such branched
polymers are described by lattice animals, which are, in
fact very large percolation clusters below the percolation
threshold. Their radii are larger than the percolation cor-
relation length �p. But, the interesting and important point
is that, although lattice animals are simply very large per-
colation clusters below pc, their statistics are completely
different from those of percolation clusters.

Statistics of Lattice Animals

To better understand the difference between percolation
clusters and lattice animals, let us first define a few key
statistics of lattice animals. Suppose that As (p) is the av-
erage number (per lattice site) of the clusters, and asm
the total number of geometrically different configura-
tions for a cluster of s sites and perimeter m. Thus,
As (p) D

P
m asm ps (1 � p)m . The asymptotic behavior of

As (p) for large values of s is described by the power law

As (p) � s�� ; (10)

where � is a universal exponent, independent of the coor-
dination number of the lattice. Moreover, for large values
of s a fractal dimension Df, defined by

s � RDf ; (11)
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describes the structure of the animals or the branched
polymers, where R is the radius of the lattice animal. Note
that the fractal dimension Df is distinct from that of criti-
cal gels given by Eq. (9). Lubensky and Isaacson [46] and
Family and Coniglio [31] showed that the exponents � and
Df are not related to any of the percolation exponents de-
fined above.Moreover, Parisi and Sourlas [50] showed that

� D
d � 2
Df
C 1 ; (12)

and that

Df D 2 ; d D 3 : (13)

One key difference between lattice animals and percola-
tion clusters is that, the exponents � and Df are defined
for any p < pc (recall that the percolation exponents are
defined for p ' pc), so long as R, the animals’ radius, is
much larger than the correlation length � . For this reason,
they are called non-critical exponents.

We may also define a pair correlation function C(r),
i. e., the probability that two monomers (or sites)that are
separated by a distance r belong to the same polymer (or
cluster). For a d-dimensional branched polymer and large
r, we expect the correlation function to decay as

C(r) � rDf�d : (14)

The Fourier transform of C(r) is proportional to the scat-
tered intensity I(q) in an X-ray or a neutron scattering ex-
periment, where q is the magnitude of the scattering vec-
tor, given by, q D (4�/�) sin(� /2), with � being the wave-
length of the radiation scattered by the material through
an angle � . Thus, by Fourier transforming Eq. (14), one
obtains

I(q) � q�Df : (15)

In practice, however, polymer solutions are almost al-
ways polydispersed and contain polymers of all sizes with
radii that may be smaller or larger than the correlation
length � . Thus, one must define average properties, where
the averaging is taken over the polymer size distribution.
An average polymer radius is defined by,

hRi D
P

s s
2R(s)Q(s; �)

P
s s2Q(s; �)

; (16)

which, when combined with Eqs. (3) and (11), yields a re-
lation between s and hRi [26]:

s � hRiDf(3��) ; (17)

so that, in analogy with Eq. (11), an effective fractal dimen-
sion, De

f D Df(3 � �), may be defined. Note that, Eq. (17)
mixes the branched polymers fractal dimension Df with
the gel exponent � . If a percolation description of polymer-
ization is correct (which the experiments described above
confirmed it to be the case), we should have,

De
f ' 1:64 ; d D 3 ; (18)

indicating that the effective fractal dimension is smaller
than that of a single branched polymer. Because an effec-
tive fractal dimension has been defined for a dilute poly-
disperse polymer solution, the scattering intensity for the
same solution should also be modified to

I(q) � q�Df(3��) : (19)

Comparison of the Data with the Lattice Animal Model

Experimental evidence for Eq. (13) is actually provided
through Eqs. (15) and (19). Bouchaud et al. [18] car-
ried out small-angle neutron scattering experiments on
a monodisperse polyurethane sample and measured the
scattered intensity as a function of q. Figure 3 presents
their data for the polymer from which one obtains,
Df D 1:98 ˙ 0:03, in excellent agreement with Eq. (19).
Bouchaud et al. [18] also synthesized a natural polydis-
perse polyurethane sample and carried out small-angle
neutron scattering on a dilute solution of it. Their data

Percolation and Polymer Morphology and Rheology, Figure 3
Small-angle neutron scattering data for branched polymers. The
upper curve is for a polydisperse polymer solution with a slope
�1.6. The lower curve is for a single polymer in a good dilute sol-
vent with a slope�1.98 (after Bouchaud et al. [18])
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yielded the estimate, De
f ' 1:6˙ 0:05, in good agreement

with the theoretical prediction given by (18).
Adam et al. [3] carried out static light scattering ex-

periments with dilute polydisperse polyurethane solu-
tions and reported that, De

f ' 1:62˙ 0:08, again in good
agreement with (18). Leibler and Schosseler [44] mea-
sured the average radius of polystyrene, crosslinked by
irradiation by elastic light scattering and found that,
De
f ' 1:72˙ 0:09, relatively close to the estimate obtained

from Eq. (18). Patton et al. [51] performed both quasi-elas-
tic and elastic light scattering experiments on branched
polyesters and reported that, De

f ' 1:52˙ 0:1, somewhat
lower than the prediction (18), but still consistent with it.

Rheology of Critical Gels

One way of understanding what happens to the polymers
as the GP is approached is through rheological experi-
ments. Such experiments have been described in details by
Winter and Mours [67] and, therefore, we provide only
brief description of them and discuss their implications.
In practice one imposes a small step shear strain �zx on
a sample near the GP and measures the shear stress �zx (t)
as a function of time t. The key property is then the shear
stress relaxation function, G(t) D �zx /�zx , which is also
referred to as the relaxation modulus. Unlike the elastic
moduli, G(t) can be measured for both liquids and solids
and, therefore, it is a very useful property for studying the
sol–gel transition and, more generally, any LST. Note that
t, the time of crosslinking reaction, corresponds to the ex-
tent p of the reaction, the key property in percolation the-
ory.

What happens to G(t) as the GP is approached? The
stress relaxes quickly at the early stages of crosslinking. As
more chemical bonds are formed between the monomers,
however, G(t) stretches out further, since the relaxation
process requires longer times. Exactly at the GP (and,
more generally, at any LST point), the material is neither
a liquid nor a solid yet (it has a tenuous fractal structure).
The relaxation modulus follows a power law:

G(t) D G0t�n ; t0 < t <1 (20)

where G0 is the gel stiffness. The parameters G0, n, and t0
all depend on the material structure at the GP. The expo-
nent n is closely related to the exponents that characterize
the power-law behavior of viscosity of the sol and the elas-
tic moduli of the gel network near the GP (see below).

As the polymerization proceeds further and the GP pc
is passed, the material becomes a solid which has a finite
relaxation modulus at long times, usually referred to as the

equilibrium modulus Ge:

Ge D lim
t!1

G(t) : (21)

Under such conditions, the stresses can no longer relax
completely.

The Relaxation Time Spectrum

Since the time dependence of a macroscopic relaxation
process is always indicative of the underlying microscopic
dynamics, one may look for kinetic equations that cor-
rectly describe the time-dependence of the observed re-
sponses of a material. In the simplest case, there is only
a single characteristic time � , the origin of which goes back
to Debye who proposed it in his seminal work on the di-
electric response of polar liquids. If we define a shear com-
pliance (the inverse of shear modulus) J(t) by

J(t) D
�zx

�0zx
;

then, applying an oscillatory shear stress

�zx (t) D �0zx exp(i! t) ;

on a polymer means imposing an oscillatory strain,
�zx (t) D 
J�zx (t). Here, 
J is the relaxation strength
of the material. The governing equation for �zx (t) is then
given by

d�zx (t)
dt

D �
1
�

�
�zx (t) �
J�0zx exp(i! t)

�
: (22)

Assuming a solution, �zx (t) D �0zx J�(!) exp(i! t), where
J�(!) is the complex shear compliance, substituting it into
Eq. (22) and solving it, yield

J�(!) D

J

1C i!�
; (23)

which is usually referred to as a Debye process.
As discussed above, however, the dynamics of poly-

mers and gels in the reaction bath cannot be described
by a single relaxation time, rather by a statistical distri-
bution of such characteristics times. For example, for the
shear properties, we write the dynamic compliance J�(!)
as a sum of the Debye processes with relaxation times �i
and relaxation strengths
Ji , so that

J�(!) D Ju C
X

i


Ji
1C i!�i

: (24)

The sum is usually replaced by an integral, so that

J�(!) D Ju C
Z R(�)

1C i!�
d� ; (25)
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where R(�) is called the retardation time spectrum of the
shear compliance J�. One may also write these results in
terms of the complex modulus G�eff(!) D 1/J�(!), which
then yields

G�(!) D Gu �

Z
H(�)

1C i!�
d� ; (26)

where H(t) is the relaxation time spectrum of the complex
modulus G�(!) [or G(t)]. In practice, H(t) cannot be di-
rectly measured, but is inferred only indirectly.

Dynamic Mechanical Experiments

The evolution of the molecular structure of a polymer
during the gelation process has a profound effect on the
molecular mobility, which can be monitored by probing
the changes in the viscosity and elastic moduli. The ini-
tial (p D 0) liquid system has a steady shear viscosity �
which increases with the extent of the reaction as the av-
erage molecular weight Mw increases. At the GP, the vis-
cosity and the longest relaxation time �max diverge. Beyond
pc, the equilibrium elastic moduli increase until they attain
their highest values, which is when the reaction is brought
to completion, i. e., when p! 1.

All the experimental data for the elastic moduli of the
nearly-critical gel network indicate that the effective elastic
moduli Geff follow a power law:

Geff � (p � pc)z ; p > pc : (27)

On the other hand, near the GP, the viscosity of the sol
phase also follows a power law, resulting in its divergence
at the GP:

� � (pc � p)�k ; p < pc ; (28)

while, as shown below, the longest relaxation time diverges
as

�max � jp � pcj�k�z ; jp � pcj 
 1 : (29)

The divergence of the viscosity at the GP is precisely due to
the divergence of themean polymer (cluster) size at the GP
which, near the GP, follows a power law similar to Eq. (6)
for the weight-averagemolecular weightMw with precisely
the same exponent � .

In practice, it is precisely the divergence of � that sig-
nals the formation of the critical gel network. Due to the
divergence of �max measurements of the viscosity and elas-
tic moduli fail at pc, since steady-state conditions cannot
be reached in a finite time. Another difficulty is that precise
measurement of the GP is often difficult. Such difficulties

are partially overcome by performing dynamic mechanical
experiments. In such experiments the sample is exposed to
a periodically varying stress field. For example, a tensile
stress �zz(t) is used

�zz(t) D �0zz exp(i! t) ; (30)

which results in a time-dependent longitudinal strain
�zz (t) that varies with the frequency of the stress, but
shows, in general, a phase-lag ', such that

�zz(t) D �0zz exp[�i(! t � ')] : (31)

We may then employ a dynamic tensile modulus G�(!),
defined as

G�(!) D
�zz(t)
�zz (t)

D G0(!)C iG00(!) : (32)

Analogous experiments can, of course, be carried out for
other types of mechanical loading. Of particular interest
are measurements under simple shear which determine
the relation between the shear strain �zx , yielding the dis-
placement along x per unit distance normal to the shear
plane z D constant, and the shear stress �zx that acts on
the shear plane along x.

In any case, such dynamic mechanical experiments
measure the small amplitude oscillatory shear behavior of
evolving gels. Under this condition, the gel evolution is
continuous (no singularity). But, even such experiments
cannot entirely overcome the difficulties in the determina-
tion of the exponent k of the viscosity, because the mea-
surements cannot be carried out at the GP and in the
limit of zero frequency. To estimate k one usually measures
the frequency-dependent complex modulus G�(!) at fre-
quency !. At the GP and for low frequencies, one has

G0 � G00 � !n ; p D pc ; (33)

with

n D
z

z C k
; (34)

where G0 (the storage modulus) and G00 (the loss modu-
lus) describe storage and dissipation in an oscillating strain
field of constant amplitude. Note that the exponent n in
Eq. (34) is the same as that in Eq. (20). Typical variations
of G0 and G00 with ! are shown in Fig. 4 for a polycon-
densed gel very close to the GP.

The complex modulus G�(!) is sometimes written as
G� D G C i!�, for which Durand et al. [29] proposed
that

G�(!; �) � �z h3
�
i!jp� pcjzCk ; (35)
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Percolation and Polymer Morphology and Rheology, Figure 4
Frequency-dependence of the storage modulus G0 and loss
modulus G00 for a polycondensed gel close to the gel point (af-
ter Durand et al. [29])

where h3(x) is a universal scaling function. The signifi-
cance of scaling Eq. (35) is that it enables one to collapse
the data for all values of jp � pcj and! onto a single curve,
usually called the master curve by polymer researchers. In
the low-frequency regime, we do not expect G�(!) to de-
pend on jp � pcj, but only on !, in which case one finds
that, G� � (i!)n , which is equivalent to Eq. (33). More-
over, there is a loss angle ı defined by, tan ı D G0/G00 .
The remarkable property of ı is that at the GP it takes on
a value ıc given by

ıc D
�

2
(1 � n) D

�

2
k

z C k
; (36)

so that, if the exponents z and k are universal, so will also
be the loss angle ıc.

Self-Similar Relaxation Time Spectrum

The observed power-law behavior of G0 and G00, Eq. (33),
implies a relaxation time spectrumwhich is self-similar (in
time):

H(t) D
G0

� (n)

�
t
�0

��n
; (37)

where G0 is the characteristic modulus, �0 is the charac-
teristic shortest relaxation time, and � is the gamma func-
tion. The modulus of a fully crosslinked polymer network
is typically 106–107 Pa, while the relaxation time of the net-
work strand is about 10�7–10�4 sec. The spectrum H(t)

extends from the shortest time, at which the strands are be-
ginning to be probed, to the infinite relaxation time of the
critical gel network. The parameters G0 and �0 are mate-
rial characteristics of the gel system.Most gel systems seem
to possess the same value of n. However, there are also
gels which exhibit no apparent universality in the value
of n.

Viscosity and elastic moduli are rheological and me-
chanical properties of branched polymers and gels which
characterize the dynamics of the polymerization, since we
may measure indirectly the distribution of the relaxation
times H(t) in the reaction bath. The moments of H(t) are
directly related to the viscosity and the elastic moduli. Us-
ing Eqs. (35) and (37), we can back-calculate H(t) [23]:

H(t) � t�nh4
�
tjp � pcjzCk ; (38)

where h4 is another universal scaling function. Equa-
tion (38), which indicates that in the scaling regime near
the GP the relaxation time distribution is a slowly decay-
ing power law, generalizes Eq. (37) to any value of p, the
extent of the polymerization. Equations (37) and (38) indi-
cate that any relaxation property in the intermediate time
or frequency range is not exponential, but follows a power
law. As pointed out by Daoud [23], two distinct averages
or characteristic times may be defined. One is

�1 D

R
H(t)dt

R
[H(t)/t]dt

� jp � pcj�k / � ; (39)

while the second one is given by

�2 D

R
tH(t)dt
R
H(t)dt

� jp � pcj�z�k : (40)

Note that �2 is in fact identical with �max, the longest re-
laxation time of the gel; see Eq. (29).

Determination of the Gel Point

As already mentioned above, an important problem in
polymerization and gelation is accurate determination of
the GP, either for avoiding it in order to prevent gelation
(so that a branched polymer with specific properties can be
prepared), or for making polymeric materials very close to
the GP, as they have unusual properties in that region. The
GP, which is the analogue of a percolation threshold, de-
pends on the functionality Z of the polymer – the analogue
of the coordination number in the lattice models – and de-
creases with increasing Z. Thus, polymers with crosslinks
of high functionality gel very early. Holly et al. [39] pro-
posed using the loss angle ı for locating the GP. They ar-
gued that, because as the GP is reached tan ı becomes in-
dependent of the frequency [see Eq. (36)], then, if one plots
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Percolation and Polymer Morphology and Rheology, Figure 5
Determination of gel point from data for loss angle ı. Time is in
minutes. The data are for frequencies 31.6 rad s�1 (diamonds),
1.0 rad s�1 (+) and 0.0316 rad s�1 (squares) (after Lin et al. [45])

tan ı versus time at different frequencies, the intersection
of all the curves should be at the GP. Figure 5 demonstrates
how this method is used for locating the GP for a physical
gel.

Resistor and Elastic PercolationNetworks

Experimental data for the scaling properties of the elastic-
ity and viscosity of gels are usually compared with those
of the conductivity and elasticity of percolation networks.
Thus, we first briefly summarize percolation models of the
conductivity of a percolation network. Consider a two-
component network in which each (randomly-selected)
bond has a conductance g1 with probability p or a conduc-
tance g2 with probability 1� p. The limit in which g2 D 0
and g1 is finite corresponds to a conductor-insulator mix-
ture. As p! pc, more and more bonds are insulating, the
conduction paths become very tortuous and, therefore, the
effective conductivity geff of the network decreases. At pc
one has, geff(pc) D 0, since no sample-spanning conduc-
tion path exists any more. In the critical region near pc the
effective conductivity follows a power laws:

geff(p) � (p�pc)t conductor-insulator networks: (41)

The limit in which g1 D 1 and g2 is finite a repre-
sents a conductor-superconductor mixture. All quantum-
mechanical aspects of real superconductors are ignored
in this definition, as we are concerned only with the ef-
fect of the local connectivity of the material on geff. It

should be clear that the effective conductivity geff of the
network is dominated by the superconducting bonds. If
p < pc, then a sample-spanning cluster of the supercon-
ducting bonds does not exist, and �eff is finite. As p! p�c ,
geff increases until a sample-spanning cluster of the super-
conducting bonds is formed for the first time at p D pc,
where geff diverges. As p! p�c , the effective conductivity
follows a power law in the critical region:

geff(p) � (pc � p)�s

conductor-superconductor networks : (42)

The exponents t and s are mostly universal. The article by
Balberg discusses the conditions under which they may be
non-universal.

In a similar manner, the elastic moduli of a two-phase
percolation network are defined. Consider a two-compo-
nent network in which each bond is an elastic element
(a spring or beam) with an elastic constant e1 with prob-
ability p or e2 with probability 1� p. The limit in which
e2 D 0 and e1 is finite corresponds to a mixture made of
rigid materials and holes (for example, porous solids), or
rigid and liquid materials. In such networks, as p! pc,
an increasingly larger fraction of the bonds have no rigid-
ity, the paths for transmission of stress or elastic forces
become very tortuous and, therefore, the effective elastic
moduliGeff (Young’s, bulk, or shear moduli) decrease.We
refer to this model as the elastic percolation network. At pc
one has, Geff(pc) D 0, while near pc in the critical region,

Geff(p) � (p�pc)T rigid-soft two-phase networks: (43)

The limit in which e1 D 1 and e2 is finite represents
mixtures of rigid-superrigid materials. We refer to the
model as the superelastic percolation network. In this case
the effective elastic moduli Geff of the network are domi-
nated by the superrigid bonds. If p < pc, then a sample-
spanning cluster of the superrigid bonds cannot form, and
Geff is finite. As p! p�c , the effective elastic moduli in-
crease until the percolation threshold pc of the rigid phase
is reached, at which a sample-spanning cluster of the su-
perrigid bonds is formed for the first time, and the effective
elasticmoduli diverge. In the critical region near pc one has

Geff(p) � (pc � p)�S rigid-superrigid networks: (44)

Unlike the exponents t and s for resistors networks, the
exponents T and Smay depend on the details and the type
of the forces that are active in the networks. Thus, in what
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follows, we first briefly describe various types of forces that
have been included in such networks.

The Born Model

The Born model [17] is described by the following elastic
Hamiltonian,

H D 1C P
1 � P

X

i j

�[(ui � u j) � Ri j]2

C
1 � 3P
4(1 � P)

X

i j

(ui � u j)2 ; (45)

where P is the Poisson’s ratio, � the shear modulus, ui
the displacement of site i, and Ri j the unit vector along
the line (lattice bond) that connects sites i and j. The
first term of Eq. (45) is the energy of a network of cen-
tral-force (CF) springs, i. e., Hookean springs that trans-
mit force only in the Rij direction, but do not transmit
shear forces. The second term is a contribution analogous
to, for example, the power dissipated in conduction, since
(ui � u j)2 represents the magnitude of the displacement
difference ui � u j . The Born model may be considered as
an analogue of a 3D solid in plane-stress with holes nor-
mal to the x � y plane, or as a 2D solid with the Pois-
son’s ratio defined as the negative of ratio of the strain in
the y�direction to that in the x�direction, when a stress
is applied in the x�direction but none is applied in the
y�direction. Results for a 3D solid in plane-strain can be
generated from those of this model using the transforma-
tion, P0 D P/(1C P), where P0 is the Poisson’s ratio for
the plain strain.

The Born model does suffer from some pecularities.
For example, it is not difficult to show (although it may
not be obvious at first glance) that, except for P D 1/3, the
elastic energyH defined by Eq. (45) is not invariant with
respect to arbitrary rigid body rotations, a fundamental re-
quirement for any reasonablemodel of elastic properties of
materials. In the limitP D 1/3 the model reduces to a net-
work of CF springs. When the elastic energy of a system is
written in terms of an expansion in the displacement field
u, its rotational invariance is not easy to see. To demon-
strate the lack of rotational invariance of the elastic energy,
one substitutes an infinitesimal rotation ! � Ri for the
displacement vector ui , whereRi is the position vector of i.
An arbitrary rotation of the solid should not contribute to
its energy, but Eq. (45) indicates that, while the contribu-
tion of the CF part would indeed be zero, that of the scalar-
like part would not be and, therefore,H is not rotation-
ally invariant. Moreover, although materials do exist that
have a Poisson’s ratio as high as 1/2 (P can theoretically

be as high as 1 in 2D materials [58]), the model fails to
have a strictly positive energy for P > 1/3 and, therefore,
violates the thermodynamic requirement that the poten-
tial energy be a minimum at zero strain. Another example
of displacements that contribute to the scalar-like portion
of the energyH of the model, but not to the CF portion,
arises when a significant fraction of the lattice’s bonds is
removed, i. e., a percolation network is generated. In such
a lattice a site that is connected to only one bond can have
an arbitrary displacement in the direction orthogonal to
the direction of the bond without affecting the CF part of
the elastic energy, as can a site which is connected to only
a set of two collinear bonds.

In his original formulation of this model, Born [17]
inserted the scalar-like part of the elastic energy (45) as
a substitute for themany-body, angular and bending terms
(see below) that normally arise in describing the elas-
tic properties of materials, because the expansion of such
scalar two-body terms is much simpler and more conve-
nient than expanding the many-body terms that they re-
place. When viewed in this way, the coefficients of the
model should be treated as fitting parameters. Hence, let
us rewrite Eq. (45) as

H D 1
2˛1

X

i j

[(ui�u j) �Ri j]2C 1
2˛2

X

i j

(ui �u j)2 ; (46)

where ˛1 and ˛2 now represent two adjustable parameters.
When introduced in this context, one may use the Born
model for modeling and fitting elastic properties of certain
materials.

Note that, so long as ˛2 > 0, the scalar-like term of
Eq. (45) or (46) is the dominating contributing factor to
the elastic energy H . This implies immediately that, al-
though the Born model is a vector model, the behavior
of the elastic moduli in this model near the percolation
threshold is effectively like that of a scalar (conductivity)
model and, therefore,

(i) the percolation threshold of the Born model, at
which the elastic moduli vanish or diverge, is the same as
that of random percolation models, and

(ii) near the percolation threshold the elastic moduli
of the Born model follow power law (43) or (44), but with
T D t and S D s. That is, the power-law behavior of the
elastic moduli in the Born model is the same as that of the
effective conductivity.

The Central-Force Model

Consider the limit P D 1/3 of Eq. (45), i. e., a network of
CF or Hookean springs. Since the elastic materials that we
wish to consider are heterogeneous, the local shear modu-
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lus� varies spatially. Thus, writing � D ei j˛/4 and taking
P D 1/3 reduce Eq. (45) to

H D 1
2˛
X

i j

[(ui � u j) � Ri j]2ei j (47)

where ˛ is the CF constant.
We can easily compute the elastic moduli of the CF

networks, if no percolation effect is present, i. e., if no bond
is broken and all the eij are equal. Suppose that each spring
has an unstretched length `0. Then, it is not difficult to
show that the bulk modulus K of a triangular network is
given by [58]

K D
p
3
2 ˛ triangular network ; (48)

whereas its shear modulus is given by [58]

� D
p
3
4 ˛ triangular network; (49)

and, therefore, the Poisson’s ratio of the network is,
P D (Ke � �e )/(Ke C �e ) D 1/3. Similarly, wemay show
that [58],

K D �p D
1
2˛ square network; (50)

where�p is the shearmodulus in pure shear (the network’s
shear modulus in simple shear is zero). As for the standard
3D cubic networks, one has [58]

Ke D

8
ˆ̂
<

ˆ̂:

1
3`0
˛ simple-cubic network ;

1p
3`0
˛ BCC network ;

2
p
2p

3`0
˛ FCC network:

(51)

A simple-cubic network does not possess a shear modu-
lus in simple shear. We emphasize that Eqs. (48)–(51) are
valid at zero temperature and when the external stress is
infinitesimally small.

In practice, however, all the experimental measure-
ments are carried out at temperatures above T D 0 and,
therefore, it is important to understand the temperature-
dependence of the elastic moduli, at least in the context of
the network models. In addition, in many practical situa-
tions, the material under study is exposed to a finite stress
or tension (as opposed to an infinitesimal stress or tension
considered above) and, thus, the role of such an external
driving force in determining the elastic properties of mate-
rials must be understood. In principle, the role of the tem-
perature can be understood by carrying out molecular dy-
namics simulations [54]. However, phenomenological cal-
culations of the type described above can also be carried

out for homogeneous networks at non-zero temperature.
Suppose, then, that a 2D isotropic tension �i is imposed on
a network at a non-zero temperature. One can show that
for the triangular network [58]

K D 1
2 (
p
3 ˛ � �i ) ; (52)

� D
p
3
4 (˛ C

p
3 �i ) ; (53)

which reduce to Eqs. (48) and (49) in the limit �i D 0.
Similar results are obtained for the square network [58]:

K D 1
2 (˛ � �i ) ; (54)

�p D
1
2 (˛ C �i ) ; (55)

�s D �i ; (56)

where �s is the shear modulus of the network in simple
shear.

Rigidity Percolation

If the elastic constants eij of the bonds of a CF network take
on either a finite value with probability p or vanish with
probability 1� p, then one obtains an elastic percolation
network. If eij is infinitely large with probability p or takes
on a finite value with probability 1 � p, then, one obtains
a superelastic percolation network. Percolation on such
networks of Hookean springs is called the rigidity perco-
lation. Such networks are of both theoretical and practical
interest. In addition to the polymeric materials described
in this chapter, they are also useful models for describing
the elastic properties of biological materials. Moreover, in
many engineering problems, structures composed of bars
or beams connected at nodes that are called trusses acquire
their rigiditymainly from the tensile and compressive stiff-
ness of the beams, and these are CF type of contributions.
For example, in the absence of friction between the par-
ticles of a granular packing, which is a reasonable model
of unconsolidated porous materials (such as powders), the
mechanical behavior of the packing is similar to those of
rigidity percolation. In contrast, those in which angular
forces, e. g., covalent bonds at the molecular level, are the
most important are usually referred to as frames. It is not
difficult to see that rigid systems in which angular forces
dominate their behavior support an applied stress, so long
as they are simply connected. In contrast, the CF systems
require higher degrees of connectivity. Therefore, the per-
colation thresholds of CF networks are much larger than
those of random percolation networks; see the articles by
Duxbury and Thorpe.
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The Bond-Bending Model

Consider an elastic percolation network in which there are
both central and bond-bending (angle-changing) forces,
with the latter type representing the three-body interac-
tions. One of the main advantages of such a model is that
their percolation threshold can be the same as that of ran-
dom percolation, if the many-body interactions are such
that any deformation of the lattice is done at some costs
to its elastic energy. In general, the elastic energy of such
models is given by [40]

H D 1
2˛
X

hi ji

[(ui�u j) �Ri j]2ei jC 1
2�
X

h ji ki

(ı� ji k)2ei j eik ;

(57)

where ˛ and � are, respectively, the central and bond-
bending (BB) force constants. Here, h jiki indicates that
the sum is over all triplets in which the bonds j-i and
i-k form an angle with its vertex at i. The first term on the
right-hand side of Eq. (60) represents the usual CF con-
tributions (see above), while the second term is due to the
BB (angle-changing) forces. The precise form of ı� ji k de-
pends on the microscopic details of the model. In the ver-
sion that is of interest to us, bending of the collinear bonds
is allowed, in which case [13,66]

ı� ji k D

8
ˆ̂<

ˆ̂
:

(ui j � Ri j � ui k � Ri k) �
(Ri j�Rik )
jRi j�Rik j

;

Ri j not parallel to Ri k ;

j(ui j C ui k) � Ri jj ; Ri j parallel to Ri k ;

(58)

where, ui j D ui � u j . For all 2D networks, Eq. (61) is sim-
plified to

ı� ji k D (ui � u j) � Ri j � (ui � uk) � Ri k : (59)

Percolation and Polymer Morphology and Rheology, Table 1
Estimates of the critical exponents of the conductivity and elastic moduli of percolation models in d-dimensions. Values of T and S
for the CFmodel refer to bond percolation, whereas those of t and s, the conductivity exponents, are independent of the model.  is
the critical exponent of the percolation correlation length. Value of  for the CF model is different from that of random percolation,
whereas it is the same as that of randompercolation for the BBmodel

d t/� s/� T/� S/� Model

2
0:9745˙ 0:0015 0:9745˙ 0:0015 2:97˙ 0:03 0:92˙ 0:03 Bond bending
— — 2:95˙ 0:25 0:92˙ 0:02 Central force

3
2:27˙ 0:01 0:835˙ 0:005 4:3˙ 0:1 0:74˙ 0:04 Bond bending

2:1˙ 0:1 0:80˙ 0:03 Central force

We refer to the model described by Eqs. (60)–(62) as the
BB model. For most materials to which the BB model is
applicable, one has, �/˛ � 0:3 [49]. Sahimi [57] suggested
that the critical exponent T of the elasticity in the BB
model is related to t, the critical exponent of conductivity
of percolation networks:

T D t C 2� ; (60)

where � is the correlation length exponent of percolation.
This relation is in excellent agreement with the available
numerical estimates (see Table 1 below). The articles by
Duxbury and Thorpe provide much more detailed discus-
sions of the CF and BB models and, therefore, we do not
discuss them any further.

Before embarking on a comparison between the exper-
imental data for the rheological properties of gels near the
GP, for convenience and as a basis for comparison with the
experimental data, we summarize in Table 1 the current
most accurate estimates of the various critical exponents
for the conductivity and elasticity of percolation models
near the percolation thresholds, including the CF and BB
models.

We are now in a position to compare the predictions of
the percolation models with the experimental data for the
viscosity of the nearly critical sol, and the elastic moduli of
the nearly critical gels.

Nearly-Critical Chemical Gels: Comparison
of the Data with the PercolationModels

There are numerous experimental measurements of the
elastic moduli of nearly-critical chemical gels and the as-
sociated exponent z. Examples include the measurements
for hydrolyzed polyacrylamide [9,11], tetraethylorthosili-
cate reactions [38,64], gelatin solutions [28], polyconden-
sation of polyoxypropylated trimethylolpropane with hex-
amethylenediisocyanate [29], and several other measure-
ments [2,30,35,37,65]. These measurements yielded esti-
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mates of z that are in the range 1.9–2.4, which do not
agree with the value of the critical exponent T for the 3D
BB model (see Table 1). In fact, if the size of a chemi-
cal gel network is large enough, the BB forces may not
play any important role in determining the elastic prop-
erties of nearly critical gels and, therefore, the only impor-
tant forces between the monomers are the central (stretch-
ing) forces. Therefore, these experimental data may be ex-
plained based on the elasticity exponent in the 3D CF per-
colation [14], T ' 2:1˙ 0:2.

However, a value of z in the range 1.9–2.4 may also be
interpreted in terms of two other models:

(i) As mentioned earlier, de Gennes [72] suggested that
the scaling properties of the elastic moduli of nearly criti-
cal gels are in the universality class of the conductivity of
percolation networks, implying that, z D t ' 2:0.

(ii) On the other hand, Alexander [7] argued that in
some gels and rubbers that are under internal or exter-
nal stresses, there are terms in their elastic energy that
are similar to the Born model. As discussed above, the
critical exponent of the elastic moduli in the Born model
is equal to that of the conductivity, t, and in partic-
ular in 3D, T D t ' 2:0, because near the percolation
threshold the contribution of the second term of the right
side of Eq. (45) or (46), which is a purely scalar term,
dominates that of the first term which is due to the
CFs.

While the data mentioned above are more or less con-
sistent with de Gennes’ hypothesis, most of them are not
precise enough to distinguish between t ' 2:0 for 3D per-
colation conductivity and T ' 2:1 for the CF percola-
tion. However, there are also a few relatively precise sets
of experimental data that seem to support de Gennes’
conjecture. For example, Axelos and Kolb [15] measured
the rheological properties of pectin biopolymers that con-
sist of randomly connected ˛(1 � 4)D-galacturonic acid
units and their methyl esters. If the methyl ester con-
tent is low, pectin forms thermoreversible gels upon ad-
dition of cations, such as calcium. Axelos and Kolb [15]
measured the frequency dependence of the storage mod-
ulus G0(!) and loss modulus G00(!) [see Eq. (33)] and
reported that, z ' 1:93, k ' 0:82, and n ' 0:71. Their
elasticity exponent is close to that of the conductivity,
t ' 2:0, for 3D resistor networks. Less precise data, but
still supportive of de Gennes’ proposal, were reported by
Adam et al. [5] for the complex modulus of end-linked
poly(dimethylsiloxane) pregel polymer clusters, quenched
at different distances from the gelation threshold. They re-
ported that, z ' 1:9˙ 0:15, consistent with the value of
the conductivity exponent t for 3D percolation. However,
the estimated error is large enough that one can easily in-

terpret such a value of z in terms of the CF percolation
model as well.

At first glance, de Gennes’ proposal that the critical
exponent of the effective moduli of gels, a vector trans-
port property, should be equal to that of a scalar prop-
erty, the effective electrical conductivity of a resistor net-
work, may seem incorrect. However, to justify his pro-
posal, de Gennes introduced the notion of an elastic chain
between neighboring nodes or monomers that are the ana-
logue of quasi-one-dimensional strands that percolation
clusters possess near the percolation threshold (see the ar-
ticle by Coniglio). He then argued that if such chains are
elongated, then their nodes carry an extra amount of en-
ergy. If we assume that the blobs – the multiply-connected
parts – of the large cluster of monomers do not contribute
significantly to the elastic moduli, then one must only con-
sider the energetics of the links or the chains. If the extra
energy of such chains is larger than kBT (kB is the Boltz-
mann’s constant), then, as Daoud [24] argued, one obtains
de Gennes’ proposal [72], t D z, although Daoud’s analy-
sis was a mean-field approximation, not a scaling one.

As for Alexander’s proposal [7], rubbers and gels dif-
fer from the Born model in several important ways, such
as the presence of non-linear terms in their elastic energy,
and the possibility of negative as well as positive Born co-
efficients ˛1 and ˛2 in Eq. (46). Therefore, as discussed
above, while one may use the Born model to fit the ex-
perimental data, it is not clear that, at a fundamental level,
the Born model can actually describe the elastic proper-
ties of such gels, since its elastic energy is not rotationally
invariant.

Enthalpic Versus Entropic Elasticity

There is yet another way of rationalizing the experimen-
tal data for the scaling properties of nearly critical gels.
To describe it, we mention that several measurements
of the elastic moduli of nearly critical gel and the asso-
ciated exponent z deviate significantly from all the data
described above. Examples include the measurements of
Adam et al. [1] for polycondensation, z ' 3:3˙ 0:5, those
of Martin et al. [47] and Adolf et al. [6] for gels made
from 89% (by weight) of the diglycidyl ether of bisphe-
nol A cured with 11% (by weight) of diethanolamine
which yielded, z ' 3:3˙ 0:3, and the data reported by
Colby et al. [22] for polyester gels, which have been ar-
gued to lie in themiddle of the static crossover between the
Flory–Stockmayer (Bethe lattice) model, which predicts
that, z D 3, and the 3D percolation model. Colby et al. [22]
reported that, z ' 3:0˙ 0:7, which is inconsistent with
both the CF percolation and the BB models, although one
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might argue that their estimate is agreement with z D 3,
the Flory–Stockmayer value of z. More recent measure-
ments of the shear modulus of an end-linking polymer gel
network by Takahashi et al. [64] yielded, z ' 2:7, which is
again in the range of the above data.

One possible explanation for such data is that the elas-
ticity of such gels is entropic rather than enthalpic. Plis-
chke and Joós [54], Plischke et al. [55], Farago and Kan-
tor [32], and Plischke [52,53] argued that the CF and the
BB models, described above, are applicable to gels at tem-
perature T D 0, and that for T ¤ 0 there is an important
contribution to the shear modulus that is entropic in na-
ture. In analogy with the physics of rubber elasticity, Plis-
chke et al. [55] argued that, near the percolation thresh-
old or the GP, the polymer network consists essentially
of long chains of singly-connected particles (monomers
or sites), linked to each other at various junction points.
Such chains are similar to the polymer chains that are
crosslinked in rubber in order to produce a rigid amor-
phous material. Deformation of the sample changes the
distance between the junctions points or crosslinks, as a re-
sult of which the entropy is generically decreased, result-
ing in an increase of free energy and, hence, a restoring
force. There would be a net shear-restoring force, when
the nearly critical gel is formed, implying that the connect-
ing chain of particles acts as a stretched spring. Molecular
dynamics simulations (for a review see, for example, [42])
of Plischke and co-workers, and computer simulations of
Farago and Kantor [32], who used a model that consisted
of hard spheres in which a fraction p of the neighbors are
tethered by inextensible bonds, both yielded, z ' t.

On the other hand, del Gado et al. [74] proposed a dif-
ferent model, also purported to be appropriate for en-
tropic gels, in which one begins with a random collec-
tion of monomers with concentration p. Each pair of the
monomers are then linked with a probability pb to form
permanent bonds. Varying pb produces a distribution of
clusters of the linked monomers and, hence, gives rise
to the possibility of forming a sample-spanning cluster.
Monomers and the clusters then diffuse according to the
bond fluctuation algorithm of Carmesin and Kremer [21].
In this algorithm, the monomers diffuse in the solution
randomly but obeying the excluded-volume interaction
(i. e., no two monomers can occupy the same point in
space). Due to this random motion, the bonds may have
to change their length in a set of allowed values and, thus,
they may have to bend and take on many different val-
ues of the angles between the bonds, which then gives rise
to a wide variety of polymer conformations. The mean-
square displacement hR2(t)i of the polymer’s center of
mass is then calculated which, due to the elastic potential

that reduces the fluctuations proportionally to the effective
elastic constant ˛, is given by

hR2(t)i / ˛�1 ; (61)

and, therefore, the elastic constant and its power-law be-
havior near the percolation threshold pc can be computed,
from which the exponent z is extracted. Two-dimensional
simulations of del Gado et al. [74] yielded the estimate,
z ' 2:7˙ 0:1, hence disagreeing with the results of Plis-
chke and co-workers, and Farago and Kantor.

How can one interpret these results? If the elasticity
of these gels is due to entropic effects, then, as Daoud and
Coniglio [25] argued (see alsoMartin et al. [47]), the elastic
free energyH per unit volume must be given by

H � ��dp ˛`�
2
p ; (62)

where �p is the correlation length of percolation, and ˛`
is the effective elastic constant of a long chain of length �p
connecting two nodes. Since ˛` � ��2p , we obtain

z D �d : (63)

Since for 2D percolation, � D 4/3, Eq. (66) predicts that,
z D 8/3 ' 2:66, quite different from the exponents T of
the CF and BBmodels, and also the conductivity exponent,
t ' 1:3 (see Table 1). However, it is in agreement with the
numerical simulations of del Gado et al. [74]. Daoud [24]
argued that Eq. (66) is valid when the energy of the chains
is of the same order of magnitude as the thermal energy
kBT .

Since, � ' 0:89 for 3D percolation, Eq. (66) predicts
that, z ' 2:67, consistent with the experimental data of
Adam et al. [1], Martin et al. [47], Adolf et al. [6],
Colby et al. [22] and Takahashi et al. [64] mentioned
above, all of whom reported estimates of the elasticity ex-
ponent z in the range 2.7–3.3˙0.5. Therefore, while these
experimental data may be explained by Eq. (66), the nu-
merical results of Plischke and co-workers [52,53,54,55],
as well as those of Farago and Kantor [32], do not agree
with the prediction of Eq. (66). Indeed, although the main
argument of Plischke et al. [55] was that, the entropic
effects are important at temperatures T ¤ 0, where one
should see a crossover to the value of the conductivity ex-
ponent, all of the above experiments were also carried out
at finite temperatures, yet they did not indicate that, z ' t.

More recently, Xing et al. [69] studied the scaling
of shear modulus near the gelation-vulcanization transi-
tion. They proposed that in a dense melt the sizes of the
effective chains of the critical gel scale sublinearly with
their counter length. The implication is that, the energy
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that each chain contributes is of the order of kBT , hence
leading to Eq. (66). However, in phantom networks –
those in which there is no repulsion between the parti-
cles (monomers) – the chains’ sizes scale linearlywith their
contour length, which means that the elasticity exponent z
crosses over to the conductivity exponent t. Thus, it may
be that some of the conflicts between the various experi-
mental estimates of z are due to the crossover effects, but
the issue remains unsolved.

Viscosity of Nearly Critical Sol: Comparison
of the Data with the Percolation Models

There is also a wealth of experimental data for the viscosity
of the nearly critical sol solution and the associated criti-
cal exponent k, defined by Eq. (28). An important question
that has been studied for over two decades is: how can one
explain the extensive experimental data for the scaling be-
havior of the viscosity � of the sol phase near the GP? To
begin with, it was proposed by Sahimi and Goddard [60]
(see also [12,59]) that the power-law behavior of � near the
GP is analogous to that of the shear modulus of a supere-
lastic percolation network near pc and, therefore, the same
critical exponent characterizes both. To proceed further,
we must first establish a rigorous relationship between the
linear elasticity and the theory of viscous fluids, thus con-
firming the proposal of Sahimi and Goddard [60].

We consider a general time-dependent system and
write down the equation of motion for a macroscopi-
cally-homogeneous material in terms of the displacement
field u:

(C �)r (r � u)C �r2uC F D �
@2u
@t2

; (64)

where � is the mass density, t the time,  and � the usual
Lamé coefficients, and F an external force. For an incom-
pressible material, i. e., one for which the bulk modulus K
and the Lamé coefficient  are both divergent, one has the
solenoidal condition,

r � u D 0 : (65)

Due to the incompressibility condition, the first term of
Eq. (67) is indeterminate. Equation (67) can be then writ-
ten in terms of the reactive hydrostatic pressure P,

� rP C �r2uC F D �
@2u
@t2

: (66)

On the other hand, let us write down the Navier–Stokes
equations of motion for an incompressible andNewtonian
viscous fluid,

� rP C �r2uC F D �
�
@v
@t
C v � rv

�
; (67)

where v is the fluid velocity field, and � the fluid’s dynamic
viscosity. For an incompressible fluid, the continuity equa-
tion is given by

r � v D 0 ; (68)

which is similar to Eq. (68). For slow fluid flow, i. e., when
the Reynolds number Re
 1, the non-linear inertial term,
v � rv, is very small and can be neglected, which means
that the Navier–Stokes equations reduce to

� rP C �r2vC F D �
@v
@t
: (69)

Thus, we see that, under steady-state condition, and when
the flow of the fluid is slow, the governing equations for
the displacement field u and the velocity field, v D @u/@t,
are exactly identical, provided that there is a one-to-one
correspondence between the shear modulus � and the dy-
namic viscocity �.

In addition, under certain conditions, the effective vis-
cosity � of a suspension of completely rigid spheres in
creeping (very slow) flow of an incompressible fluid of
viscosity �1 is related to the steady-state effective shear
modulus � of a two-phase material composed of the same
completely rigid spheres in an incompressible matrix with
shear modulus �1. In this case, the working equation is
given by

�e

�1
D
�e

�1
: (70)

Equation (70) is exact when, regardless of the configura-
tion of the particles, hydrodynamic interactions between
the particles can be neglected, which is the case when the
system is infinitely dilute so that the volume fraction of the
particles approaches zero. Even if the system is non-dilute,
Eq. (70) would still be exact, provided that the configura-
tions of the particles in the flow and the elasticity problems
are identical.

Having established a theoretical connection between
the viscosity � of a sol and the shear modulus of an appro-
priate two-phase material, the one-to-one correspondence
between � and the shear modulus of a superelastic perco-
lation network should be clear because,

(i) � and � both diverge at pc (the GP), and
(ii) the percolationmodels predict accurately the struc-

ture and elastic moduli of nearly critical gels.
On the other hand, de Gennes [73] (see also Al-

lain et al. [8]) suggested an analogy between � and the ef-
fective conductivity of a conductor-superconductor per-
colation networks, the effective conductivity of which di-
verges at pc according to power law (42), so that k D s.
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However, even a one-to-one correspondence be-
tween � and the shear modulus of a superelastic percola-
tion network is not nearly enough to explain the power
law behavior of the viscosity of gelling solutions near the
GP, because most of the experimental data indicate that
the value of k is either in the range 0.6–0.9 (see, for ex-
ample, [1,4,10,29]), or in the range 1.3–1.5 (see, for ex-
ample, [28,47,48]), whereas the power-law behavior of the
shear modulus of a 3D superelastic percolation network
near pc is characterized by a unique value of the exponent S
defined by Eq. (44). The reason for having two distinct val-
ues of k is [12,59] that the dynamics of the sol solutions,
that yield the two distinct values of k, may be completely
different.

In one case, the solution may be close to the Zimm
limit in which there is little or no polymer diffusion in the
reaction bath, because there are strong hydrodynamic in-
teractions between the monomers, and also between poly-
mers of various sizes, that prevent diffusion in a nearly
critical sol near the GP. Hence, a superelastic percolation
network – a static system with fixed rigid clusters – may
be suitable for simulating the Zimm regime. For this limit,
Arbabi and Sahimi [12] suggested that,

S D � � 1
2ˇ ; (71)

where � and ˇ are the standard percolation exponents.
Then, with � ' 0:89 and ˇ ' 0:41 for 3D percolation, one
obtains, S ' 0:68 for the divergence of the shear modulus
of 3D superelastic percolation networks at the percolation
threshold. Such a value of S seems to explain the estimates
of k for those gelling solutions that have a viscosity expo-
nent in the range 0.6–0.9, implying that the scaling behav-
ior of their viscosity near the GP may be described by the
shear modulus of a static superelastic percolation network.

On the other hand, the gelling solution may also be in,
or near, the Rouse regime – one in which there are no hy-
drodynamic interactions between the polymers of various
sizes – and, therefore, the finite polymers can diffuse essen-
tially freely in the reaction bath. To simulate this regime
the following model was proposed [12,59]. We consider
a superelastic percolation network in which every clus-
ter of the totally rigid bonds (the bonds in such clusters
are totally rigid in order to distinguish them from those
with a finite elastic constant) represents a finite polymer.
Due to randomness of percolation networks, there is, of
course, a wide distribution of such polymers or clusters in
the network. The “soft” bonds – those with a finite elastic
constant – represent the liquid solution in which the rigid
clusters move randomly, with equal probability, in any di-
rection of the network. The motion simulates diffusion of
the finite polymers in the reaction bath. Two rigid clusters

cannot overlap, but can temporarily join and form a larger
cluster, which may also be broken up again at a later time.
Thus, at every time step, a cluster and a direction for the
motion are picked at random, and the cluster is moved
by one step (one lattice bond) in that direction, taking
into account the excluded-volume effect. This is then a dy-
namic superelastic percolation network, the shear modu-
lus of which can be calculated at long times. Monte Carlo
simulations [12,59] indicated that the shear modulus of
such a dynamic superelastic percolation network diverges
with an exponent S0, which Arbabi and Sahimi [12] pro-
posed it to be given by

S0 D 2� � ˇ : (72)

Equation (72) predicts that in 3D, S0 ' 1:35, which ap-
pears to explain the viscosity exponent for those gelling
solutions that have an exponent k in the range 1.3–1.5,
hence implying that the scaling behavior of their viscos-
ity near the GP may be described by the shear modulus of
a dynamic superelastic percolation network.

Daoud [24] also argued that, similar to the case of
the elastic moduli of nearly critical gels described above,
one must consider two distinct regimes for explaining the
power-law behavior of the viscosity near the GP, except
that his arguments were based on the energetics of the
solution. According to him, if the elastic chains carry an
energy which is of the same order of magnitude as the
thermal energy kBT , then the exponent S should be given
by Eq. (71). On the other hand, if the elastic chains are
stretched and have an extra energy larger than kBT , then
one should recover Eq. (72), which had also been conjec-
tured by de Gennes [73], but based on the analogy between
the viscosity and the effective conductivity of supercon-
ducting percolation networks described above.

We should point out that, as in the case of the elas-
tic moduli of nearly critical gels discussed earlier, there are
some experimental data that indicate some deviations of k
from S or S0. However, as pointed out earlier, experimental
determination of k (and the elasticity exponent z) involves
(see, for example, [29]) measuring the complex modulus
G�(!) for a series of frequencies !. But, strictly speaking,
the power laws for the elastic moduli of the elastic and su-
perelastic percolation networks are valid only in the limit,
! ! 0, whereas in practice it is essentially impossible to
reach such a limit and, therefore, the measured values of k
may exhibit some deviations from S or S0. Thus, such de-
viations are probably due to transient effects that should
diminish as very low frequencies are accessed. Let us also
mention that, Bergman [16] suggested that, S D s, but his
suggestion is not currently supported by the estimates of
the two exponents listed in Table 1.
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Physical Gels: Comparison of the Data
with the PercolationModel

In physical gels both inter- and intramolecular bondings
are non-covalent. The presence of non-covalent bonding
means that their numbers and positions fluctuate with
time, as well as temperature, as such bonds are reversible.
Moreover, the nature of the (physical) crosslinks is not
completely understood. In many cases they involve hy-
drophobic, hydrogen bonding, and electrostatic interac-
tions, the combination of which make gaining a better un-
derstanding of the properties of physical gels a very com-
plex problem. This is particularly true for biopolymers.

Two well-known examples of physical gels are gelation
of silica particles in NaCl solutions and in pure water [36],
and silica aerogels [68]. As discussed above, the attach-
ment of the particles in such gels is by relatively weak as-
sociation. The BB forces are important in such gels since
touching particles that form long chains, when deformed,
roll on top of one another and this motion and the dis-
placement of the centers of any 3 mutually-touching par-
ticles create forces that are equivalent to the BB forces.

Despite the many complications, percolation theory
seems to be capable of providing rational explanations for
the scaling behavior of at least some of the experimental
data for the elastic moduli of physical gels near the GP.
For example, measurements [36,68] of the elastic moduli
of silica gels and aerogels yielded an estimate of the elas-
ticity exponent, z ' 3:8, which is in excellent agreement
with the critical exponent T for the 3D BB model (see Ta-
ble 1), as well as with Eq. (63).

More recent measurements by Devreux et al. [27]
indicate a crossover between the prediction of the BB
model and another regime with a much smaller value
of z. They measured the complex modulus G� of sil-
ica gels formed by hydrolysis-condensation of a silicon
alkoxide. For a restricted region near the GP they re-
ported that, z ' 2:0˙ 0:1, close to the exponent T of the
CF percolation, whereas beyond this region they found
z ' 3:6˙ 0:1, which is close to the elasticity exponent for
the 3D BB model. Devreux et al. interpreted their data
for the region near the GP in terms of an analogy be-
tween elastic percolation networks and random resistor
networks.

Future Directions

Percolation models explain qualitatively, and in many
cases quantitatively, the structure, rheology, and mechan-
ical behavior of branched polymers and gels. In particular,
such models provide a rational explanation for the power-
law behavior of many properties of such materials near the

percolation threshold, which mean-field theories and ef-
fective-medium approximations fail to predict.

Despite their success, there are still many issues to be
addressed. There is still doubt as to whether percolation
models can explain the behavior of many types of nearly
critical gels and branched polymers, particularly biopoly-
mers (see, for example, [56]). Several sets of puzzling data
on the elastic moduli of critical and nearly critical gels re-
main to be explained. If there is no unique universality
class for the elastic moduli and the viscosity, but there is,
instead, a few of them, the crossovers between the vari-
ous universality classes remain to be clarified. Our under-
standing of various properties of physical gels is not as ex-
tensive as what we now know about chemical gels. These
and other issues promise exciting research problems for
the foreseeable future.
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Glossary

Anisotropy There is anisotropy when the global physical
property of the system is direction dependent.

Breakthrough time The time for convection of a single
phase passive tracer between an injection well and
a production well.

Connectivity The fraction of occupied sites belonging to
the percolating clusters i. e. represents the strength of
the percolating cluster.

Continuum percolation Percolation on continuum
spaces with randomly distributed geometrical objects
where there is no lattice at all.

Capillary dominated flow A flow regime in which the
only dominant driving force is due to capillarity.

Fracture Any discontinuity within a rock mass which de-
veloped as a response to stress.

Field scale This represents large scale heterogeneities at
reservoir level or the kilometer scale.

Finite size scaling A scaling law within percolation the-
ory which deals with the effects of the finite bound-
aries.

Invasion percolation Another kind of percolation theory
appropriate for describing the structure and amounts
of two immiscible fluids at breakthrough.

Modeling Describing physical phenomena under na-
ture’s law in somemathematical relations, e. g. govern-
ing fluid flow, to better understand the system and to
predict its behavior.

Porous media A medium consists of rock grains and
disordered void spaces of approximately 10–100 μm
across usually occupied by oil, water and gas in a typi-
cal hydrocarbon reservoir and characterized by poros-
ity and permeability.

Pore scale This represents pore throat level or the micron
scale.

Permeability The “conductance” of the rock to fluid flow
determined from Darcy’s Law that the flow rate is pro-
portion to the applied pressure gradient and inversely
proportional to the fluid viscosity, the constant of pro-
portionality is the permeability.

Percolation threshold A particular value of occupancy
probability at which one large cluster spans the whole
region.

Simulation Numerical model for solution to the mathe-
matical equations which be able to predict the physical
behavior of the system.
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Uncertainty The estimated amount or percentage by
which an observed or calculated value may differ from
the true value.

Definition of the Subject

Porous media are important in many areas including hy-
drocarbon reservoir engineering, hydrology and environ-
mental engineering. They are also important in, for exam-
ple, fuel cells, many industrial process and biological sys-
tems (lungs, bones, capillary networks and termite nests
are all biological examples). Understanding the structure
of porous media and the physics of fluid flow in porous
media is of great interest. For example, choosing the effi-
cient recovery techniques by reservoir engineers requires
understanding of how different fluids and the porous me-
dia interact at different scales by simulating the fluid flow
in the reservoir under variety of conditions. The exchange
and transport of reagents in fuels cells governs their ef-
ficiency. Percolation theory which describes the connec-
tivity of a system mathematically [22,100] has also many
important applications from the spread of diseases and
forest fires to the connectivity of geological entities (e. g.,
sandbodies or fractures) in porous media used for nu-
clear waste disposal or for hydrocarbon recovery [94]. Per-
colation concepts have been used to model fluid move-
ment in porous media and fractured rocks at both pore
scale (mm) and reservoir scale (km). At the pore scale
a network of pore and throats is used to study the im-
miscible displacement and estimate the capillary pressure
and relative permeabilities. At the field scale, the per-
meability map is split into either permeable (flow units
e. g. good oil bearing sands) or impermeable (background
e. g. shale) and assumes that the connectivity of flow
units controls the flow movement. Then percolation the-
ory is directly used to estimate static behavior (connec-
tivity – i. e. connected fraction of good oil bearing sands)
and dynamic behavior (i. e. effective permeability across
the reservoir, breakthrough time between an injector and
a producer or post breakthrough behavior). In particu-
lar, the percolation approach is able to estimate the un-
certainty in the reservoir performance parameters which
is not possible with a single detailed conventional simula-
tion model.

Introduction

Percolation theory is a mathematical model of the con-
nectivity and conductivity in geometrically complex sys-
tems [100] first developed by Broadbent and Hammersley
in [22]. The full description of this theory and its applica-
tions to different disciplines can be found elsewhere [13,

94,100]. It links the global geometrical and physical prop-
erties of the system to the number density of geometri-
cal objects (representing geological entities, e. g., fractures)
placed randomly in space through algebraic universal laws.
By universality wemean the large scale behavior of the sys-
tem is independent of the small scale details of the system,
i. e. local geometries.

On the simplest example is an infinite lattice of sites
which are occupied with a probability p. Clusters are
formed as the neighboring sites are occupied and they are
identified by using standard algorithm [48]. The clusters
grow in size as the occupancy probability increases. Then,
at particular value of p, called the percolation threshold
p1c , one large cluster spans the whole region. There are
also other small clusters which get absorbed as p further in-
creases. For the infinite lattice there are some simple power
law or scaling laws which describe the behavior of the sys-
tem around the threshold p1c such as P(p) / (p � p1c )ˇ

and �(p) / jp � p1c j�v where P(p) is the probability that
an occupied site belongs to the spanning cluster (so called
connected fraction or connectivity) and �(p) is the corre-
lation length (which is a measure of the “typical” size of
the clusters, excluding the infinite cluster when above the
threshold). Note that the correlation length � is related to
the two point correlation function g(r), which is the prob-
ability that two sites separated by a distance r are in the
same cluster. The critical exponents ˇ and v are indepen-
dent of the kind of the lattice or even if there is a lattice
or not (continuum system) they only depends on the di-
mensionality of space (i. e. 2D or 3D). Values for ˇ D 5/36
and 0.4 (in 2 and 3 dimensions respectively), and v D 4/3
and 0.88 [100]. This is known as universality and is an im-
portant concept in percolation theory which enables us to
study and understand the behavior of a very wide range
of systems without needing to worry too much about the
small scale detail. However, the percolation threshold does
depend on the detail of the lattice.

This is the basic framework of percolation theory. To
be useful in the context of reservoir modeling we need to
address some issues. Everything so far has been defined
for an infinite lattice. What happens if there is no lattice at
all (i. e. continuum systems with randomly distributed ge-
ometrical objects) and when the system is finite. There is
also the issue of how to modify these percolation laws for
anisotropic systems, variable size and orientation distribu-
tion of objects and spatial correlation between objects.

PorousMedia

The flows of fluids in porous media are related to many
important industrial and geological applications, such
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as hydrocarbon recovery or ground water flow model-
ing [38,95]. The porous media are typically made from
rock grains and disordered void spaces and are usually
characterized by porosity � (i. e. the storage capacity of
a rock, in other words the volume fraction which is void
or pore space) and permeability k (i. e. the “conductance”
of the rock to fluid flow determined from Darcy’s Law
that the flow rate is proportion to the applied pressure
gradient and inversely proportional to the fluid viscos-
ity, the constant of proportionality is the permeability).
The pore spaces are approximately 10–100 μm across and
are usually occupied by oil, water and gas (in a typi-
cal hydrocarbon reservoir). However, the reservoir itself
may be several kilometers in extent. Fluid displacement
in porous media depends on the scale and can be con-
trolled by several forces including capillary forces (mostly
at the pore scale), viscous forces and gravity forces. Hence,
the type of displacement observed depends on the cap-
illary number, which is the ratio of the viscous pressure
drop at the pore scale to the capillary pressure, and the
Bond number, which is the ratio of the hydrostatic pres-
sure drop over a pore to the capillary pressure. It should
be noticed that the full description of displacement pro-
cess in porous media is very difficult due to the vari-
ety of physical phenomena. For example, the flow of two
immiscible fluids depends on the wetting properties of
the two fluids, their viscosity ratio, their respective den-
sities, and the displacement rate. Typical flow rates in
reservoirs are of order of a few feet (10’s of centime-
ters) a day. Hence, on the pore level the flow is con-
trolled almost entirely by capillary forces between im-
miscible oil and water. However, over large distances
viscous and buoyancy forces dominate [105]. To study
the efficient recovery techniques (e. g. water flooding), it
is necessary to simulate the fluid flow at the reservoir
scale. Even with the today’s modern computers, the sim-
ulation cannot be achieved at the pore scale (typically
there would be of the order of 1021 pores in a reser-
voir). The conventional approach is to establish the sim-
ulation on a grid of roughly 100m linear size which rep-
resents displacements occurring within millions of pores.
The small scale physics is then represented by parameters
in macroscopic partial differential equations to describe
the transport of fluid in the field scale simulation. These
parameters can be measured experimentally on represen-
tative core samples or they can be estimated from pore
and throat network models (e. g. percolation based mod-
els).

The basic equation at the continuum scale is Darcy’s
law, which states that the flow rate is proportional to the
applied pressure gradient and inversely proportional to the

fluid viscosity

v D �
K
�
rP (1)

whereK is the rock permeability. Some analysis shows that
it has dimensions of area and for typical reservoir rocks it
is of the order of 10�12 m2, which is about the cross sec-
tional area of a typical pore throat (althoughmore detailed
calculations are required to obtain better estimates than
this). The permeability can vary by orders of magnitude
over very short differences reflecting the heterogeneity in
pore size arising from the complex processes of geological
deposition. This law is used in conjunction with the as-
sumed incompressibility of the fluid to give an equation
for the fluid pressure.

r � v D r � KrP D 0 : (2)

When there are two or more fluid phases present this basic
law gets modified to,

vi D �
Kki (Si)
�i

rPi (3)

where the ki are the relative permeabilities of each phase
which are usually assumed to be functions of the fluid sat-
urations (S) only. Fluid saturation is the fraction of the vol-
ume of the pore space occupied by the phase. Along with
the incompressibility condition for the total flux we also
have a conservation law for each phase as,

�
@Si
@t
C vi � rSi D 0 (4)

where � is the porosity. This set of equations is the most
basic set of equations used to describe multi-phase flow in
porous media. Typically the parameters (such as porosity,
permeability and relative permeabilities) are determined
empirically. There is really no microscopic averaging of
the pore scale physics to determine these, although recent
studies using percolation as one approach are an attempt
to do this (as described in the next section). In reality more
complex equations incorporating further physics (such as
the phase behavior) are often included also.

The pore scale porous media can be simply mod-
eled as a network of bonds i. e. pore throats and sites
i. e. pore bodies to study the flow behavior. Then a se-
ries of displacement steps in each pore or throat are com-
bined to simulate the flow movement. The idea was first
used by Fatt [39] and since then, the capabilities of net-
work and percolation based models have improved enor-
mously [16,17,24,36,40,53,54,72,80,82,84,101,106]. Inva-
sion percolation is a typical example for modeling capillary
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dominated regime of flow in porous media [106] and will
be more fully described in the next section. The models are
then used to find capillary pressure and/or relative perme-
ability [16,35,46,62,70,99]. For example, Soll & Celia [99]
developed a pore scale capillary-dominated flow model by
neglecting the viscous forces but considering the gravity
effect (which modifies the local capillary pressures) to sim-
ulate capillary pressure-saturation relationships in a wa-
ter-wet system. Moreover, Paterson et al. [81] used a per-
colation model with trapping to study the effects of spatial
correlations in the pore size distributions on the relative
permeabilities and residual saturations. They found lower
residual saturations for correlated properties in compari-
son to uncorrelated ones.

At the field scale, heterogeneities which affect the flow
behavior appear on all length scales from microns to tens
of kilometers and have to be modeled tomake reliable pre-
dictions of future reservoir performance. However, there
exist very few direct measurements of the flow properties.
Core plugs directly measure the permeability but they rep-
resent a volume of roughly 10�13 of a typical reservoir.
Well logs and well tests measure large volumes (10�4 and
10�7 respectively) but the results have to be interpreted
to infer flow properties. The flow itself takes place on the
scale of the pores which are typically around 10�21 of the
volume of the reservoir. The consequence is a great deal
of uncertainty about the spatial distribution of the hetero-
geneities which influence the flow. The conventional ap-
proach to this is to build detailed reservoir models (note
that the largest of these has around 107 grid blocks so
they fall very short of the actual level heterogeneity that we
know about), upscale or coarse grain them to around 104

or 105 grid blocks and then run flow simulations. These
models need to be taken from a whole range of possi-
ble models with a suitable probability attached to each to
determine the uncertainty in performance. The problem
with this approach is that it is computationally very expen-
sive. Therefore, there is a great incentive to produce much
simpler models which can predict the uncertainty in per-
formance much quicker. These models must be based on
the dominant physics that control the displacement pro-
cess. The percolation approach based on the connectivity
of flow units is one very quick method to model flow and
predicts uncertainty in the reservoir performance parame-
ters. This will be further described in Sect. “Application of
Percolation to the Field Scale”.

Application of Percolation to Pore Scale

Let’s start with a simple case of displacement of a fluid
by second fluid in a two-phase system i. e. the problem

of oil/water flooding. Fluid movement can be governed by
viscous, gravity and capillary forces [8]. For systems with-
out gravity we expect different flow regimes depending on
the capillary number. Viscous forces in the two fluids may
be differentmainly because the viscosity of the fluids is dif-
ferent. The high viscosity of the displaced fluid can leads to
a highly unstable displacement pattern with a rapid break-
through of the non-wetting fluid into the wetting fluid
called viscous fingering [26,47]. We neglect this by con-
sidering the situation that the displacing fluid has a higher
viscosity or equal viscosity than the displaced fluid. Then,
for slow displacements the invasion percolation can be
used to describe the structure and amounts of fluids in
a two-phase displacement at breakthrough when the in-
vading fluid is completely nonwetting [24,106] [Lenor-
mand and Bories 1980]. The displacement in the network
(or model) is based on physical principles (i. e. the het-
erogeneity of the capillary pressures along the interface).
Consider a lattice with sites and bonds representing pores
and throats respectively (with the pores as spheres and
the throats as cylinders in three dimensions). The throats
can be classified into allowed (those can in principle be
invaded by that phase ignoring the effect of surrounding
bonds), occupied (those that are occupied by that phase)
and accessible (those that are allowed by the phase but
also the surrounding bonds will not inhibit the fluid to
try). Two processes can be considered for an immiscible
displacement. An event where a wetting phase (i. e. water)
is displaced by a non-wetting phase with a positive capil-
lary pressure is called drainage. The process where the wet-
ting phase (i. e. water) enters the porous medium and dis-
places the non-wetting phase is called imbibition. In prac-
tice, the capillary pressure for imbibition is lower than that
for drainage.

Here we will describe how invasion percolation works
for drainage. This is the simplest situation and the exten-
sion to other process can be found in the literature. First
consider a simple pore with a single interface between the
fluids (Fig. 1).

In order to overcome the pressure caused by the in-
terfacial pressure to drive the non-wetting phase (oil) into
the wetting phase (water) occupied pore we need to apply
a pressure of

Pc D
� cos �
rthroat

(5)

where � is the interfacial tension, � is the contact angle and
rthroat is the pore throat radius.We now imagine a network
of pores linked by throats of varying radii. As we increase
the pressure applied to the invading non-wetting phase it
can be seen that the pores will fill from the largest first
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Percolation in Porous Media, Figure 1
A schematic representation of a simple pore with a single inter-
face between the non-wetting phase (oil) and the wetting phase
(water)

Percolation in Porous Media, Figure 2
A simple illustrative network of pores linked by throats of vary-
ing radii. The numbers represent the filling order of pores

(as there the entry pressure to fill is lowest). However, the
pores can be filled only if they are connected to the inlet
face of in contact with the non-wetting phase. Hence, in
the simple network below (Fig. 2) the pores will fill in the
order 1, 2, 3 and so on where the labels are in order of the
throat radius (the invading fluid comes from the left).

If this process is continued we get a not fully occupied
structure (Fig. 3).

It can be seen that the displacement process is not very
efficient and there are large regions unswept. This process
has picked out the percolation cluster of the network. If the
bonds are ordered and a threshold applied such that (start-
ing with largest first) a fraction of bonds equal to the per-
colation threshold are occupied a pattern such as this will
be found, except that none of the clusters not connected
to the infinite cluster are found. This represents the fact
that the invading fluid cannot “jump” from a current oc-
cupied site to some other interior site. Flow can only take
place through sites already connected to the inlet. This is
the simple model of invasion percolation as introduced by
Koplik andWilkinson [54,106].

The main quantities of interest will be the fraction
of sites which become occupied by the invader, and the

Percolation in Porous Media, Figure 3
A typical percolation structure obtained from invasion percola-
tion simulations for drainage

distribution of random numbers of those sites. In inva-
sion percolation with no trapping the clusters exhibit frac-
tal character with fractal dimension (see [61] for fractals)
D D 1:89 and 2.52 in 2D and 3D respectively which are
similar to the results obtained from random percolation.
The faction of volume occupied by the invader is propor-
tional to the grid size to the power �0.11 and �0.48 for
2D and 3D cases respectively which are again consistent
with the universal values derived from random percola-
tion results. Hence, it has the same universality class as
random percolation. Invasion percolation with trapping
causes the phenomenon of residual oil. Fractal dimension
of invader cluster is 1.82 in 2D which is less than 91/48 of
random percolation with no significant difference in 3D.
The faction of volume occupied by the invader is propor-
tional to the grid size to power �0.18 in 2D. If we pur-
sue with the invasion process beyond the point of perco-
lation, a second percolation threshold is reached when the
defender consists of isolated clusters only and the process
stops. Then the system has reached saturation of resid-
ual oil. Properties of invasion percolation are believed to
be consistent with that of random percolation. However,
the spanning clusters are not precisely the same. Effects
of gravity were characterized through dimensionless Bond
number [15,71]. Percolation theory can then be used to
improve our understanding of relative permeability and
capillary pressure curves in porous media (e. g. [46]).
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Whilst this process is not what happens in the typical
oil recovery process it is a reasonable representation of the
filling of an oil reservoir when the drops of oil formed in
a source rock (typically some distance and much deeper
than the final reservoir rock) moves under gravity and
capillary forces to displace the water that originally in the
reservoir rock.

Application of Percolation to the Field Scale

Here we describe the application of percolation theory first
to low to intermediate net-to-gross conventional reser-
voirs and secondly to fractured reservoirs. Consider, for
example, a meandering river which deposits sand over
time as represented schematically in Fig. 4. The deposited
sand creates a sandbody which covers the meander belt.
Occasionally an event upstream, the river changes its path
(called an evulsion by geologists) and deposits a new sand-
body that may overlap a previous body. The process con-
tinues and forms a system of embedded sandbodies in an
impermeable background. Although there may be other
depositional and post-depositional events such as crevasse
splays, mud drapes and shale layers which may alter this
simple model, this simple model of overlapping sandbod-
ies has been used [50,75,76] as the basic model for low to
intermediate net-to-gross non fractured reservoirs.

Another example could be fracture networks. Field
data obtained from large scale investigations show that
the fracture network structure is close to the threshold
and displays strong channeling patterns which can be ex-
plained by percolation theory [23]. It was found that in
some natural fracture networks only a small percentage
of fractures contributed to the permeability of the sys-
tem ([95] and references therein). The large uncertainty
associated with data and the lack of distinction between

Percolation in Porous Media, Figure 4
A meandering river system deposits sandbodies over the
ages [75]

faults and joints makes it debatable whether or not nat-
ural fractures are well above the percolation threshold
(highly interconnected) or near the threshold (poorly con-
nected) ([14] and references therein). As pointed out by
Berkowitz [12], in some circumstances fracture networks
seems to be highly connected, whereas in many other
cases, where the fractures are created as a results of stress,
the network is poorly connected which indicates that it
is near the percolation threshold. These studies indicate
that the application of percolation theory in many fracture
networks is reasonable. Simple percolation models would
assume that the fractures are randomly oriented and in-
dependently located in space, however, in reality fractures
show different orientation distribution [1,9,95,108] result
from successive tectonic events and several length dis-
tributions such as power law [45,77,97,102], log normal
(e. g. [77,93]) or exponential (e. g. [86,93]). There also exist
spatial correlation between fractures ([18], and references
therein) and cross correlation between fracture parameters
such as correlation between aperture and the fracture size
(e. g. [79,103]) or cross correlation between the position of
a facture and its length (e. g. [21,29]). We shall first discuss
the very simple model of fractures [4,5,11,19,20,25,65,89]
made by constant length randomly oriented and/or or-
thogonal fractures (Fig. 5).

In these two examples, the objects (i. e. sandbodies and
fractures) are not restricted to points on a fixed lattice

Percolation in Porous Media, Figure 5
A randomly oriented fracture network (l D 5) at the threshold
with 2066 fractures where the spanning cluster shown in red
consists of 897 fractures
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so as there is no maximal concentration (notice that the
upper bound of the occupancy probability in simple lat-
tice percolation is one). In the case of fracture systems,
for instance, there is theoretically no end to the degree
of fracturing [95] and fractures can be of any shape with
variable length, direction and number of interconnected
bonds [11]. These lead us to use percolation on contin-
uum spaces for these cases instead of using percolation on
lattices.

Continuum Percolation

This is very straightforward because of the universality
principle. We can place geometrical objects (e. g. rectan-
gles representing sandbodies or line segments represent-
ing fractures in 2D space) randomly and independently
(so called a Poisson process) in space. In place of the oc-
cupancy probability p we have the volume fraction of
objects (or the probability that a point chosen at ran-
dom lies within one of the objects) with the same nota-
tion, p. We get the same threshold phenomenon of a sin-
gle cluster growing and dominating the system. The per-
colation threshold depends only on the shape of the ob-
jects, but for circles it is 0.678˙ 0.0024 and for squares
it is 0.668˙ 0.0026 (similarly in 3D for spheres it is
0.288˙ 0.0016 and for cubes 0.276˙ 0.0013) so the differ-
ence is not very large and numerical experiments indicate
that for reasonable convex (i. e. not very spiky) objects the
threshold is around the same value. This is known as con-
tinuum percolation. Examples of applying percolation the-
ory to uncorrelated (or even correlated) continuum sys-
tems that check the universality and determination of the
percolation threshold of different models can be found
elsewhere (e. g. [3,11,27,28,41,42,50,57,59,60,107]). Exten-
sive studies have shown that fracture systems, for exam-
ple, belong to the general class of continuum percolation
systems (e. g. [1,5,11,55]). From the principle of universal-
ity, the critical exponents are then fixed but the percola-
tion threshold depends on the network topology. Previous
estimations of critical exponents were successfully close
to those from lattice percolation (e. g. [1,5,19,20,25,90]).
Hence, from the principle of universality, we can use the
same scaling laws with the same numerical values of the
critical exponents as in lattice percolation. This is a re-
markable result that we can now use.

Finite Size Scaling

The problem of how to deal with finite size systems is
known as finite size scaling. The simple scaling laws de-
scribed in Sect. “Introduction to Percolation Theory” only
apply to infinite-size systems. In a finite system because

Percolation in Porous Media, Figure 6
A typical scatter with the curve and the lines represent respec-
tively themean P(p; L) and the standarddeviation	(p; L) of con-
nected fraction determined over all realizations at the same oc-
cupancy probability of a finite size system

of a sample-size uncertainty there may be a connection at
an occupancy very much less than the threshold value but
still no connection at very high p values (greater than the
threshold). This makes the definition of the percolation
threshold of a finite system unclear, as a spanning clus-
ter may appear in one realization and not in another at the
same p. Therefore, for a finite system, an apparent thresh-
old p̃c(L) which depends on the system size can be used.
There have been several definitions of the apparent thresh-
old in the literature [1,11,50,100] such as the occupancy
probability at which half of the realizations percolate. The
percolation probability (i. e. connectivity) P(p; L) can be
defined as the fraction of occupied sites belonging to the
spanning clusters. This is the finite size analogue of P(p).
If we plot P(p; L) as a function of p over a large number
of realizations for a particular system size (Fig. 6), we get
a scatter of points from which we can determine the mean
connected fraction P(p; L) (the same notation as before)
and the standard deviation
(p; L) (the fluctuations about
this mean value).

The effect of finite boundaries is to smear out the per-
colation transition (there is not a sharp transition in the
connectivity as was exist in infinite systems). Plotting the
mean connectivity P(p; L) and the standard deviation of
connectivity 
(p; L) results obtained from different sys-
tem sizes as a function of p gives different curves (Fig. 7a)
which can be related to each other through the finite-size
scaling law [100]:

P(p; L) D L�ˇ /vI
��
p � p1c


L1/v

�
(6)


(p; L) D L�ˇ /vR
��
p � p1c


L1/v

�
(7)

where I and R are two scaling functions for the
mean and standard deviation of connectivity, respectively.
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Percolation in Porous Media, Figure 7
Plot of the mean connected fraction P(p; L) showing: a the effects of finite boundaries on the percolation transition and b the data
collapse using finite size scaling transformations

This means that, for example, if we plot Lˇ /v P against
(p � p1c )L1/v all the mean connectivity curves found pre-
viously should lie on top of each other to form a single
universal curve I (Fig. 7b).

It has been shown that all of the curves lie nearly on top
of each other except as p approaches unity [65,75,76]. This
corresponds to the region where simple scaling breaks
down. This regionmay be small in some cases and could be
treated by using effective medium theory [43,50,52,87,98].
It should be noticed that the scaling laws in Eqs. (6) and (7)
are universal, but the scaling curves I and R depend on
the model. These are very useful results, because once we
get the two scaling curves from numerical simulations for
a specific model, we can quickly predict the mean con-
nectivity and its associated uncertainty for any other sys-
tem sizes without performing any explicit realizations. Ex-
amples of the scaling master curves for the mean connec-
tivity and the standard deviation of connectivity for frac-
ture model and sandbodies model were given in Masihi et
al. [65,66], and Nurafza et al. [75,76], respectively.

Anisotropy

The other problem that we have to deal with is due to
anisotropy. By isotropy we mean that the horizontal con-
nectivity is the same as the vertical connectivity on aver-
age if not for individual realizations. However, for many
realistic systems, the objects or their orientation are rarely
isotropic. For example in fractured rocks fracture sets with
particular orientations are typically formed as a result of
tectonic history [1,9,43,95,108]. This leads to the creation
of an easy direction for connected paths which is in the
short direction and a difficult direction which is along the
long axis.

Percolation in Porous Media, Figure 8
Ananisotropic fracturenetwork (l D 5) at the thresholdwith ran-
dom orientation in the range � 2 ��30o;30o�

around the hor-
izontal showing the easy direction for connection along x-axis
with 3802 fractures where the percolating cluster consists of 432
fractures. Connectivity along the y-axis, which is the difficult di-
rection for connection, needs much more fractures to be placed
in the regions

The question is how to apply finite size scaling
to anisotropic systems. This requires understanding the
anisotropic behavior in percolation. A survey of the lit-
erature shows few studies on the subject among which
areMonetti and Albano [73] who performedMonte-Carlo
simulations in an elongated geometry to obtain the de-
pendency of the horizontal and vertical finite size perco-
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lation threshold to the aspect ratio of the lattice; Marrink
and Knackstedt [63] who assumed that an elongated lat-
tice can be treated as a series of linked isotropic lattices;
Hovi and Aharonyt [49] who used renormalization group
theory and duality arguments; Langlands et al. [56] who
found numerically the dependency of the crossing proba-
bility on the aspect ratio of rectangular systems.

Recently, Masihi et al. [68], have shown that it is possi-
ble to account for moderate anisotropy in finite size scaling
within percolation by first using the apparent threshold p̃c
in the principal coordinate directions of the anisotropy as
the value of p when 50% of realizations connect in that
direction instead of the infinite percolation threshold and
then rescaling with the effective length Lx as,

P(p; Lx ; !) D L�ˇ /vx I
�
(p � p̃c)L1/vx

�
(8)


(p; Lx ; !) D !1/2L�ˇ /vx R
�
(p � p̃c)L1/vx

�
(9)

where aspect ratio ! D Lx /Ly represents the anisotropy.
The apparent threshold in each direction is given by,

p̃ic D p1c Cƒi(!)L�1/vx (10)

which has a symmetry property (see Fig. 9) where the
constant of proportionality is ƒ(!) D c(!1/v � 1) with
c � 0:92, 0.58 and 0.41 for respectively elongated lat-
tice [68], anisotropic fracture model [69] and anisotropic
sandbody model [75,76]. This means that we can use the
same isotropic universal curves (I and R) for predicting
connectivity of anisotropic cases.

Percolation in Porous Media, Figure 9
Plot of apparent threshold in both the x and the y directions
of anisotropic lattices as a function of L�1/v

x , showing that the
shift in the apparent thresholds is symmetrically placed about
the isotropic case (! D 1)

Size Distribution

Another key parameter affecting the connectivity is the
size distribution. In reality the sandbodies, for example,
may have different sizes based on the sedimentological en-
vironment in which the sands were deposited. Also frac-
tures usually have a length distribution depending on the
degree of rock deformation (e. g. [88]) from negative-
exponential and log-normal to power-law distributions
(e. g. [18,45,78,97,102]).

The analysis of the connectivity based on finite size
scaling that we have discussed so far assumes that objects
(i. e. fractures or sandbodies) all have the same lengths.
However the distribution of sizes introduces a new com-
plication. The idea behind the finite size scaling is that the
percolation behavior is controlled by two dimensionless
lengths, the system size, L, and the correlation length, �
(these are made dimensionless by scaling with the linear
dimension of the geometrical object). If there is a distri-
bution of lengths then this is changed. One might expect
that the connectivity behavior of such a system with a dis-
tribution of lengths is identical to the connectivity behav-
ior of a system with constant-length objects whose object
length (called the effective length, leff) can be defined in
an appropriate way. In the case of fracture model, for ex-
ample, using the concept of effective length introduced by
Robinson [89,90] and Balberg et al. [6], the two previously
determined universal connectivity curves for the constant
length fractures (I and R) can be applied to fracture sys-
tems with a distribution of fracture lengths. This represen-
tative length can be based on either the first moment hli
or the second moment

˝
l2
˛
of the fracture length distribu-

tion [6,11,19,66,74,89,91]. From numerical studies Masihi
et al. [66] found that the second moment gave a better fit
to the data. In the case of very wide distribution of lengths
(i. e. power law) the scaling exponents may be different
from the standard values as there is a possibility for a single
large fracture to connect both sides of the system and dom-
inates the connectivity. In other words, in this case there is
a break down in universality for the critical exponents. The
dependency of the scaling exponents of percolation theory
on the exponent of power law length distribution has been
investigated numerically [19,66].

Orientation Distribution

In reality the sandbodies, for example, are not all aligned in
one direction and are affected by the depositional process.
Note that the orientational disorder of the bodies which
is more relevant in three dimensions can greatly enhance
the connectivity of the system, particularly for the systems
with thin long bodies. In percolation terminology this is
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a reduction in threshold which is not due to the finite size
effects but a real shift in the infinite threshold. Very thin
and long bodies, for example, if they are aligned they will
not intersect so pc � 1 otherwise if they have an angu-
lar dispersion they will intersect at any fractional concen-
tration and so pc D 0. There will also be another shift in
apparent percolation due to finite size effects. Nurafza et
al. [75,76] studied these effects numerically and showed
that the only effect of the orientational disorder is to make
the bodies appear a bit larger than they are and a bit less
elongated. They defined a new aspect ratio and used the
reduced percolation thresholds to account for the effects of
orientation of sandbodies within the finite size scaling laws
which makes the previously determined universal curves
applicable for orientated sandbodies.

Spatial Correlation

The models discussed so far assumed the objects are dis-
tributed randomly and independently in the region (Pois-
son statistics). This is somehow in contradiction with the
known existence of, for example, fracture sets or observed
spatial correlation between natural fractures over scales
(e. g. [18]). A survey of the literature shows that there
has been little investigation of the percolation proper-
ties of systems with short- and long range correlations.
Harter [44] has shown that the percolation threshold in
Markov chain random field with short range correlation
decreases as the correlation scale increases but the criti-
cal exponents are unaffected (they belong to the same uni-
versality class as uncorrelated percolation). For systems
with long range correlations, on the other hand, it has
been shown that the percolation behavior is drastically
changed as even the critical exponents may become dif-
ferent [85,96].

In the study of fracture networks an investigation of
the spatial correlation of fractures has concentrated on the
long range fracture density correlations modeled by frac-
tal geometry [14,31,33] [Watanabe and Takahashi, 1995]
showed that the correlation pattern is likely to affect the
connectivity behavior. When dealing with fracture corre-
lation it is not straightforward to find the right percola-
tion parameter p which is able to measure the connec-
tivity of the fracture network. As pointed out by Darcel
et al. [31] neither the mean fracture density � D Nl2/L2,
proposed by Bour and Davy [19], nor the mean fractal
fracture density �D D NlD/LD , suggested by Berkowitz et
al. [14] are able to represent the connectivity state of con-
stant-length fractal fracture networks. Darcel et al. [31]
also emphasized that the transition width at the threshold
for a large system with fractal correlation remains fixed (it

does not vanish) which is in contrast to the second order
phase transitions of percolation theory. Recently, Masihi
and King [64] have presented a model of fractures which
used a simulated annealing algorithm (with an objective
function defined by the spatial correlation in the displace-
ment of fractures) to generate realizations of correlated
fracture networks and then used them in the percolation
approach to investigate the effects of fracture spatial cor-
relation. They have found that the scaling exponents of
the connectivity are different from the conventional, un-
correlated values (see Masihi et al. [64,66] for more de-
tails).

With this background we now describe the perco-
lation framework to model field scale reservoirs. We
start with conventional reservoirs. Hydrocarbon reser-
voirs have a complicated geometry due to the complex sed-
imentary processes deposited them over the years. They
consist of good sandstone (i. e. high permeability and
porosity) containing oil within their pores, and poorer silt-
stones, mudstones and shales (i. e. low permeability). The
main flow of oil during recovery is through these good
sands and flow through poorer rock being too slow to be of
economic consequence. Hence, connectivity of these sand-
bodies (also called flow units) across the reservoir or in be-
tween an injection and a production well is crucial. Note
that the total sands gives the total oil in place and the frac-
tion of connected sands between two wells shows the ex-
pected recoverable oil between the two wells. A part of the
connected sand fraction is dead end and cannot contribute
to the flow. The flowing part (backbone) of connected
sands controls the flow through sands and so affects the
effective permeability, sweep efficiency and breakthrough
and post break through time behavior. Many important
decisions for a given field can bemade based on the knowl-
edge of the connectivity and conductivity of these flow
units. For example, at the exploration and appraisal stage
decisions about initial well spacing and location can be
made based on oil volumes connected by the wells and
recovery factors; during plateau phase the decision about
the end of plateau and the rate of increases of water or gas
ratios depends on the knowledge of the geometry of the
backbone or during the decline phase decisions about tar-
geting infill wells to extend field life will be based on vol-
umes of unswept oil or uncontacted oil.

The conventional approach to address these entails
building detailed reservoir models which is very expensive
in terms of human and CPU times. It has long been under-
stood that flow in heterogeneous porous media is largely
controlled by continuity of permeability contrasts, either
flow barriers (e. g. shales or high permeability streaks) or
faults. Although there are other influences these are the
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Percolation in Porous Media, Figure 10
A comparison of connectivity scaling of three correlated fracture networks with the average fracture length 4, 3.5 and 3 with the
universal connectivity curves (solid and dotted curves are P and P˙	) using: a standard values for the exponent (1/v D 0:75 and
ˇ/v D 0:105) and bmodified values 1/v D 0:4 andˇ/v D 0:09

predominant features affecting flow. With this in mind we
look to model reservoir flow which concentrates on the
connectivity of permeability contrasts.

Imagine a typical reservoir model constructed with
an object based technique [34]. That is geometrical ob-
jects (representing geological entities, e. g. shales, frac-
tures, sand bodies etc.) are placed randomly in space. For
example, the reservoir may have been deposited by me-
andering river belts in which case the good sand occurs
as packages in a low permeability background. Then the
connectivity and conductivity can be estimated directly
by percolation theory. Note that the net to gross ratio is
the volume fraction of the good sand and is, therefore,
identical to the occupancy probability p. Suppose we have
a reservoir of size L and a pair of wells separated by a Eu-
clidean distance r. We can ask questions about the prob-
ability that the two wells are connected, or in percolation
terminology, in the same cluster. This is just the two point
correlation function defined previously. Suppose we want
to know what fraction of the sand in contact with the wells
is connected to both wells. This is just the connectivity
function P defined earlier. We can use finite size scaling to
estimate this fraction. Also we can use related scaling laws
to estimate the uncertainty. Note that these are algebraic
laws with no spare parameters. The percolation threshold
is defined by the shape of the objects, but it is largely unim-
portant whether we model the sand units as rectangles or
ellipsoids or other shapes (provided they are not too ex-
otic). The scaling laws and exponents are determined from
lattice models (and this has been done very extensively in
the literature) and can be straightforwardly applied.

The percolation framework can be used to find the
probability distribution for the breakthrough time for con-

vection of a single phase passive tracer between an in-
jector and a producer. Comparison of preliminary re-
sults [2,37,51,58] showed that the agreement between pre-
diction from scaling law and the numerical simulation
which is good enough for engineering purposes given the
fact that the prediction from the scaling law took a frac-
tion of a second of CPU times compared with the hours
required for the conventional detailed simulation. Hav-
ing estimated the breakthrough time, Roslien et al. [92]
showed that log-log plot of the mean and variance in pro-
duction results condition to any breakthrough time tbr
against (t � tbr) will lie on top of each other to produce
two universal curves. Now with these master curves, one
can make a rapid estimate of the mean and variance in fu-
ture production (e. g. the time taken for production to fall
by 50% or water cut to increase to 50%) good enough for
engineering purposes.

In fractured reservoirs with low matrix permeability
the flow behavior depends strongly on the spatial distribu-
tion of the fractures. In this case, the fractures are the flow
units which need to be distributed randomly in the imper-
meable background (i. e. matrix). Then again the connec-
tivity and conductivity can be estimated directly by per-
colation theory. The occupancy p can be interpreted as
the density of fractures e. g. number density or the critical
fracture length necessary to ensure percolation for a given
number of fractures in a domain [83]. Equivalent terms
to this can be volumetric base (i. e., average number of
fractures in the region), topological base [1] (i. e., aver-
age number of connections with surrounding fractures) or
a combination [67] based on average excluded area i. e., the
area around a fracture in which the center of another frac-
ture must lie in order for them to overlap over the distri-
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bution of the fracture orientation and [6] length. Extensive
studies have shown that constant-length fracture models
belong to the general universality class of continuum per-
colation systems [5,11,19,20,25,90]. Recently, Belayneh et
al. [10] have applied scaling laws from percolation theory
to predict the connectivity of mineralized fractures with
length distribution exposed on the southern margin of the
Bristol Channel Basin.

Future Directions

There is obviously a need for further development to turn
many concepts involved in this article into practical appli-
cation. One area is to look for connectivity between two
wells (represented by points or lines in 2D and 3D, respec-
tively) similar to the previous works on the structure of the
cluster connecting two given sites or lines of a 2D and 3D
lattices [7,32]. Clearly the connectivity between two points
will be lower than that between two sides. In determining
the connectivity between two points the correlation func-
tion, g(r) defined previously has a major role.

Percolation can do more than predict static connec-
tivity. There are scaling laws for the effective permeability
Keff(p � p1c )� for infinite size systems where the conduc-
tivity exponent � is about 1.3 and 2 in two and three di-
mensions respectively [100]. It is clear that only a subset of
the percolating cluster (called the backbone) can be swept
whereas the dead ends are stagnant. It would be expected
to see a similar finite size scaling and anisotropy effects to
those for the connectivity. However, the detailed develop-
ment for this is computationally very demanding as it re-
quires solving the flow equations.
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Glossary

Archimedean lattices A regular tiling is a tiling of the
plane which consists entirely of regular polygons.
(A regular polygon is one in which all side lengths
are equal and all interior angles are equal.) An
Archimedean lattice is the graph of vertices and edges
of a regular tiling which is vertex-transitive, i. e., for
every pair of vertices, u and v, there is a graph iso-
morphism that maps u to v. There are exactly 11
Archimedean lattices. A notation for Archimedean
lattices, which can also serve as a prescription for
constructing them, is given in Grünbaum and Shep-
hard [5]. Around any vertex (since all are equivalent,
by vertex-transitivity), starting with the smallest poly-
gon touching the vertex, list the number of edges of
the successive polygons around the vertex. For conve-
nience, an exponent is used to indicate that a number
of successive polygons have the same size.

Bond percolation In a bond percolation model, a ran-
dom subgraph is formed from an infinite graph G by
retaining each edge of G with probability p, indepen-
dently of all other edges.

Dual graph A graph is planar if it may be drawn in the
plane with no edges intersecting except at their end-
points, thus dividing the plane into faces. Every planar
graphG has a dual graph, denoted here by D(G). D(G)
may be constructed by placing a vertex of D(G) in each
face of G and connecting two vertices of D(G) by an
edge if the corresponding faces in G share a common
edge. Note that D(D(G)) D G.

Line graph The line graph, L(G), of a graph G is con-
structed by placing a vertex of L(G) on each edge of G

and connecting two vertices of L(G) if the correspond-
ing edges of G share a common endpoint.

Matching graphs A pair of matching graphs may be con-
structed from an underlying planar graph. Select a set F
of faces of the graph. Construct a graphG by adding an
edge in each face of F between any pair of vertices that
are not already connected by an edge. Construct the
matching graphM(G) ofG by adding an edge between
any pair of vertices in each face not in F that are not al-
ready connected by an edge. Note thatM(M(G)) D G.

Percolation threshold In a percolation model with pa-
rameter p, there is a retention probability pc, called the
percolation threshold, above which the random sub-
graph contains an infinite connected component and
below which all connected components are finite.

Periodic graph A periodic graph is an infinite graph that
can be represented in d-dimensional space so that it is
invariant under translations by all integer linear com-
binations of a fixed basis.

Site percolation In a site percolation model, a random
graph is formed from an infinite graph G by retaining
each vertex of G with probability p, independently of
all other vertices. An edge of G is retained in the ran-
dom graph if both its endpoint vertices are retained.

Definition of the Subject

Percolation models were introduced in the 1950s by
Broadbent and Hammersley [1] to model the flow of fluid
in a randommedium. Since both terms, fluid andmedium,
may be broadly interpreted, percolation has a wide vari-
ety of applications, including thermal phase transitions, oil
flow in sandstone, and the spread of epidemics. An impor-
tant motivation for the development of percolation mod-
els was to provide an alternative to diffusion models, in
which the randomness was associated with the fluid while
the medium is relatively homogeneous. Since percolation
models associate the randomness with the medium, it is
possible for the fluid either to become trapped or to flow
infinitely far. This presence of a phase transition is an im-
portant reason for the importance of percolation models.
The percolation threshold is a critical probability in the
percolation model which corresponds to the phase transi-
tion point. Since the emphasis in percolation theory is on
the effect of the medium on the behavior of the model, it
is important to understand how the percolation threshold
depends on the characteristics of the medium.

The medium is often, but not always, modeled by
a periodic graph, representing an atomic lattice structure.
In the bond percolation model, each edge of the graph
is retained with probability p, independently of all other
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edges, to create a random subgraph. In the site percolation
model, each vertex of the graph is retained with probabil-
ity p, independently of all other vertices, and each edge is
retained if and only if both its endpoints are retained. In
both models, the focus is on the properties – in particular,
the size – of the connected components, called clusters, of
the random subgraph.

The most common definition is that the percolation
threshold is a retention probability value pc such that if
p > pc there exists an infinite cluster in the graph and if
p < pc there are only finite clusters in the graph. How-
ever, there exist other interpretations, which correspond
to different definitions of the percolation threshold: (1)
A percolation threshold pH is the critical probability above
which a specific vertex v is in an infinite cluster with posi-
tive probability. The percolation threshold pH is indepen-
dent of the specific vertex v if the graph is connected. (2)
A percolation threshold pT is defined as the critical prob-
ability above which the expected cluster size containing
a specific vertex v is infinite, and is also independent of
the choice of v if the graph is connected. (3) For periodic
graphs, a percolation threshold pS may be defined in terms
of the limiting behavior of the probability that a cluster
connects opposite sides of a rectangle in a sequence of sim-
ilar rectangles whose areas are increasing to infinity. For
the periodic graphs discussed in this article, these defini-
tions provide equal values for the percolation threshold.

Due to the dependence of the percolation threshold on
the features of the lattice, since the origins of percolation
theory much research has been devoted to deriving ex-
act values, computing simulation estimates, and proposing
approximation formulas for the percolation threshold as
a function of the lattice. This article focuses on the extent
of knowledge of exact values of percolation thresholds for
bond percolation and site percolation on various graphs.

Introduction

Although the percolation threshold problem is simply de-
scribed and easily visualized, it has become recognized as
extremely intractable, with the result that, after 50 years of
research, exact percolation thresholds are known for few
graphs. Besides the trivial one-dimensional case, and infi-
nite regular trees, the only solutions are for two-dimen-
sional graphs. There are no exact solutions for periodic
graphs in three dimensions or higher.

We now provide a brief history of the development of
exact percolation thresholds and the mathematical tools
used.

The first major development was in 1960 by Harris [6],
who proved a lower bound of 1/2 for the square lattice

bond model threshold. The value was larger than simu-
lation estimates at that time, and was believed to be sharp.
Harris used the self-duality of the square lattice extensively
in the proof, and established a lemma regarding covariant
events which was later generalized by Fortuin, Kasteleyn,
and Ginibre [4] and played a crucial role in later exact per-
colation threshold proofs.

Recognizing the importance of duality in the study of
bond percolation, Sykes and Essam [15] developed a corre-
sponding concept of matching graphs for site percolation
models. Interpreting the percolation threshold as a singu-
larity of a clusters-per-site function, they derived values
of the bond percolation thresholds for the square, trian-
gular, and hexagonal lattices. Their methods implied that
site percolation thresholds of matching graphs sum to one,
and bond percolation thresholds of dual graphs sum to
one. A key transformation in the solutions for the triangu-
lar and hexagonal lattices was a star-triangle transforma-
tion relating the two graphs. However, their exact values
would not be given mathematically rigorous proofs until
much later.

Although they did not establish the exact percolation
thresholds, Seymour and Welsh [14], in the context of
the square lattice bond model, laid important ground-
work for the solution that followed. They recognized and
defined the pH , pT , and pS interpretations of the perco-
lation threshold, and proved relationships among them.
Russo [11,12] independently established similar results for
the square lattice site model.

In 1980, Kesten [7] rigorously established that the per-
colation threshold of the square lattice bond model is 1/2,
using the self-duality of the square lattice, and proving that
all versions of the percolation threshold are equal in this
case.

Percolation Thresholds, Exact, Figure 1
A portion of a Cayley tree with vertex degree four
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Percolation Thresholds, Exact, Figure 2
Portions of five self-dual periodic graphs. The square lattice is at the upper left. An example of the generalization to a family of self-
dual graphs is at the bottom

Using Kesten’s methods, the duality of the triangular
and hexagonal lattices, and the star-triangle transforma-
tion between them, in 1981 Wierman [17] proved that
the bond percolation threshold of the triangular lattice
is the root of 1 � 3pC p3 in the interval [0; 1], which
is equal to 2 sin(�/18) � :347296, and the bond percola-
tion threshold of the hexagonal lattice is the complemen-
tary value, approximately .652704. In 1984, Wierman [19]
discovered another pair of dual lattices for which the ex-

act bond percolation threshold could be determined us-
ing a version of the star-triangle transformation. The bond
threshold of the bowtie lattice is the root of the polynomial
1 � p � 6p2 C 6p3 � p5 in [0; 1], which is approximately
.404518, while the bond threshold of its dual graph is the
complementary value, approximately .595482.

These results were generalized by Kesten [8] in his
1982 monograph, where he proved that the site perco-
lation thresholds of a pair of periodic matching graphs
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Percolation Thresholds, Exact, Figure 3
Portions of the triangular (a) and hexagonal or honeycomb (b) lattices

Percolation Thresholds, Exact, Figure 4
Portions of the bow-tie lattice (a) and its dual lattice (b)

sum to one. Since it is fully-triangulated and therefore self-
matching, the triangular lattice has percolation threshold
equal to one-half. The duality result for bond percolation
thresholds is implied by this result via the bond-to-site
transformation.

In 2006, Scullard and Ziff [13,21,22] derived exact
bond percolation thresholds of additional periodic lattices
based on the star-triangle transformation.

Exact percolation thresholds can be derived for ad-
ditional graphs that are obtained by various transforma-
tions of graphs with exact solutions. Such solutions can
be established via the bond-to-site transformation, subdi-
vision of edges, and replacing edges with more complex
decorations.

Trees

A tree is a graph which is connected and has no cycles, or
equivalently, which has a unique path between every pair
of vertices. An infinite tree in which every vertex has the
same degree is called a Cayley tree or Bethe lattice.

The earliest non-trivial exact percolation threshold so-
lutions were for Cayley trees. Let Ck denote the Cayley tree

of degree k. Then, for all k � 3,

pc(Ck ) D
1

k � 1
;

for both bond percolation and site percolation.
It is easy to see that the bond and site percolation

thresholds are equal. In a bond model on a Cayley tree,
consider starting from a specific vertex, called the root, and
moving outward. For each edge, consider the vertex at the
end farthest from the root to be retained or not according
to whether the edge is retained or not. This creates a site
percolation model with the same parameter value as the
original bond percolation model, in which there is an infi-
nite cluster if and only if there is an infinite cluster in the
bond model. Thus, the percolation thresholds of the two
models are equal.

The values of the thresholds for Cayley trees can be de-
termined either by calculation of the probability that a ver-
tex is in an infinite component or by elementary theory of
branching processes.

Lyons [9] has shown that, for rooted trees in gen-
eral, an average number of branches per vertex, called
the branching number, may be defined. The percolation
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threshold of the tree is the reciprocal of the branching
number. However, the definition of the branching num-
ber is rather intricate, so exact percolation thresholds are
not easily computed.

Two-Dimensional BondModels

Planarity plays an important role in establishing exact
bond percolation thresholds in two-dimensional models.
A graph is planar if it may be drawn in the plane with no
edges intersecting except at their endpoints, thus dividing
the plane into faces. Every planar graphG has a dual graph,
denoted here by D(G). D(G) may be constructed by plac-
ing a vertex of D(G) in each face of G and connecting two
vertices of D(G) by an edge if the corresponding faces inG
share a common edge. Note that D(D(G)) D G.

The computational importance of dual graphs is that
the bond percolation thresholds of a pair of periodic
matching graphs sum to one, as implied via the bond-to-
site transformation by a result Kesten in 1982.

Without an additional relationship between the pair of
dual graphs, duality itself does not yield an exact perco-
lation threshold solution. However, if the two graphs are
isomorphic, the common graph is said to be self-dual, and
its bond threshold must be one-half. Thus, the bond per-
colation threshold of the square lattice is exactly one-half.

Besides the square lattice, there are other periodic self-
dual graphs, which, for the same reason, have a bond per-
colation threshold equal to one-half. Figure 2 shows addi-
tional self-dual graphs, and illustrates a construction of an
infinite family of periodic self-dual graphs, given in [20].

Essentially all other exact bond threshold solutions are
derived using a relationship called the star-triangle trans-
formation, first used by Sykes and Essam. Notice that the
set of edges of the triangular lattice may be decomposed
into triangles that are similarly oriented. If each triangle
is replaced by a three-pointed star with the points at the
vertices of the triangle, the resulting graph is the hexag-
onal lattice, which is the dual graph of the triangular lat-
tice. If retention probability parameters of the two lat-
tices can be found so that the probabilities of all possible
events involving connections of the three vertices on the
boundary of the triangle are equal, then the exact perco-
lation threshold can be determined. The solution is the
root of a polynomial involving the retention probability
of the triangular lattice: 1 � 3pC p3, giving the solution
2 sin(�/18) � :347296. By duality, the bond threshold for
the hexagonal lattice is 1 � 2 sin(�/18) � :652704. While
this solution was derived by Sykes and Essam in 1964,
mathematical methods to rigorously prove it were not de-

veloped until later, with the result being proved by Wier-
man in 1981.

Modified versions of the star-triangle transformation
were used to derive other exact bond percolation thresh-
olds.Wierman discovered a pair of lattices, called the bow-
tie lattice and its dual, which could be solved exactly.
The bond threshold of the bow-tie lattice is the root of
1 � p � 6p2 C 6p3 � p5, which is approximately .404518,
while the dual lattice has threshold approximately .595482.

Scullard and Ziff [13,21,22] used a modified star-trian-
gle approach to find values for a lattice that they named
the martini lattice, and applied the approach to other
planar two-dimensional graphs. They use a triangle-tri-
angle transformation in the derivation of their results.
While their approach does produce correct exact perco-
lation threshold results for some graphs, further study is
needed to determine the complete range of validity of their
method.

For any of the exact bond threshold solutions, ad-
ditional exact thresholds may be determined for certain
transformations of the graphs.

If each edge of a graph G is replaced by k edges in
series, the resulting graph is called a k-subdivision of G.
Since the k edges in series play the role of one edge of G,
the bond percolation threshold of a k-subdivision of G is
the kth root of the bond threshold of G.

More generally, instead of replacing each edge by a se-
ries of edges, one may replace it by some finite graph con-
necting only the two endpoints, which is called a decora-
tion by Ord and Whittington [10]. By calculating the edge
retention probability thatmakes the probability of connec-
tion through the decoration equal to the threshold of the
original graph, the percolation threshold of the decorated
graph may be exactly determined.

SiteModels in Two Dimensions

A key concept for the understanding of exact percolation
threshold solutions for two-dimensional site models is the
idea of a matching pair of graphs, introduced by Sykes and
Essam in 1964.

A pair of matching graphs is constructed from an un-
derlying planar graph. Select a set F of faces of the graph.
Construct a graph G by adding an edge between any pair
of vertices in each face of F that are not already connected
by an edge. Construct the matching graph M(G) of G by
adding an edge between any pair of vertices in each face
not in F that are not already connected by an edge. Note
that M(M(G)) D G. Note also that if the underlying pla-
nar graph has faces with more than three sides, then at
least one of the graphs in the matching pair is nonplanar.
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Percolation Thresholds, Exact, Figure 5
Portions of the martini lattice (a) andmartini-A lattice (b)

Percolation Thresholds, Exact, Figure 6
Portions of the 2-subdivision of the hexagonal lattice (a) and its line graph, the (3;122) lattice (b)

Percolation Thresholds, Exact, Table 1
Exact bond percolation thresholds of selected lattice graphs

Lattice Bond Threshold Equation
TriangularD (36) 2 sin	/18	 :347296 p3 � 3pC 1D 0
Bow-tie .414518 1� p� 6p2 C 6p3 � p5 D 0
SquareD (44) .500000 2p� 1 D 0
Self-dual .500000 2p� 1 D 0
D(Bow-tie) .595482 1� pc(Bow-tie)
Martini-A .625457 p5 � 4p4 C 3p3 C 2p2 � 1 D 0
HexagonalD (63) .652704 1� pc(36)
Martini 1/

p
2 	 :707107 (2p2 � 1)(p4 � 3p3 C 2p2 C 1) D 0

The importance of matching graphs is that the site per-
colation thresholds of a pair of periodic matching graphs
sum to one, as proved by Kesten [8] in 1982. In fact, this
result implied the result for bond percolation thresholds
for dual graphs, via the bond-to-site transformation.

In general, additional information besides the match-
ing property is needed to identify the exact percolation
thresholds of the pair of graphs. However, if the match-
ing graphs are identical, the graph is called self-matching,
and the percolation threshold is necessarily one-half. Note
that if a planar graph has all triangular faces, then it is self-

matching. Therefore, the site percolation threshold is ex-
actly one-half for the triangular lattice and the dual graphs
of the (4; 82), (4; 6; 12), and (3; 122) lattices. In addition,
there are self-matching graphs that are not fully-triangu-
lated, such as the line graph of the square lattice, shown
in Fig. 7.

As a caution, however, note that a fully-triangulated
graph may not have its site percolation threshold equal to
one-half if it is not a periodic graph. An example of a fully-
triangulated graph with site percolation threshold equal to
one was given by van den Berg [16], and further discussion
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Percolation Thresholds, Exact, Figure 7
Two self-matching lattices: the line graph of the square lattice (a) and the dual of the (4;82) lattice (b)

Percolation Thresholds, Exact, Figure 8
A portion of van den Berg’s counterexample: The graph is
fully-triangulated, and thus self-matching, but has percolation
threshold equal to one – not one-half

of similar counterexamples is provided in Wierman [18].
Scullard and Ziff [13,21,22] have also proposed exact

site percolation thresholds for additional two-dimensional
lattices.

Additional exact site percolation threshold solutions
have been obtained by transformations of bond models
with exact solutions. The line graph, L(G), of a graph G
is constructed by placing a vertex of L(G) on each edge
of G and connecting two vertices of L(G) if the corre-
sponding edges of G share a common endpoint. If there
is a bond percolation model on G with each edge retained
with probability p independently of the other edges, one
may define a site percolation model on L(G) in which each
vertex is retained if and only if the corresponding edge ofG
is retained. Then, an infinite cluster in the bond model
on G corresponds to an infinite cluster in the site model
on L(G), so the percolation thresholds of the two mod-
els are equal. This construction and relationship is called

Percolation Thresholds, Exact, Figure 9
A portion of the Kagomé lattice, which is the line graph of the
hexagonal lattice

Percolation Thresholds, Exact, Table 2
Exact bond percolation thresholds of selected lattice graphs

Lattice Site Threshold Equation
TriangularD (36) .500000 2p� 1D 0
Self -matching .500000 2p� 1D 0
KagoméD (3; 6; 3; 6) .652704 p D pc(63bond)
(3; 122) .807901 p D

p
pc(63bond)

the bond-to-site transformation, and allows translation of
all exact bond percolation threshold solutions into exact
site percolation threshold solutions on line graphs. For ex-
ample, the line graph of the hexagonal lattice, called the
Kagomé lattice, has a site percolation threshold of exactly
1 � 2 sin(�/18) � :652704, while its matching graph, the
line graph of the triangular lattice, has exact site percola-
tion threshold 2 sin(�/18) � :347296. As another exam-
ple, the site percolation threshold of the (3; 122) lattice
is exactly

p
1 � 2 sin(�/18) � :807901, since it is the line

graph of the 2-subdivision of the hexagonal lattice.
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RandomVoronoi Percolation

In 2006, Bollobás and Riordan [2] provided the first exact
percolation threshold solution for a continuum percola-
tion model.

Consider the set of points P in a two-dimensional ho-
mogeneous Poisson point process. For a point p 2 P, the
Voronoi polygon of p is the set of all points in the plane
that are closer to p than to any other point in P. Each
Voronoi polygon is a convex polygon, and two Voronoi
polygons either intersect in an edge or not at all. The edges
of the collection of Voronoi polygons form an infinite pla-
nar graph called the Voronoi tessellation corresponding
to P.

The dual of the Voronoi tessellation is called the De-
launay triangulation, since with probability one all faces
are triangles. The remarkable result of Bollobás and Rior-
dan [2] is that the site percolation threshold of the Delau-
nay triangulation is exactly one-half.

Multiparameter Critical Surfaces

For some applications, multi-parameter percolation mod-
els are considered. For example, in a bond percolation
model, edges in different directions may have different
retention probability parameters, giving a multi-dimen-
sional parameter space. In such a parameter space, the role
of the percolation threshold is played by the boundary be-
tween regions of the parameter space where infinite clus-
ters occur and where all clusters are finite, called the criti-
cal surface.

Some multi-parameter bond percolation models are
exactly solved. Two notable examples are: (1) In the square
lattice with vertical edges retained with probability p and
horizontal edges retained with probability q, the critical
surface is the line segment pC q D 1. (2) For the triangu-
lar lattice with retention probabilities r; s, and t for bonds
in the three different directions, the critical surface is the
surface given by 1 � r � s � t C rst D 0.

Future Directions

As seen above, the exact bond or site percolation threshold
is known for relatively few lattices, with the exact solutions
restricted to infinite trees and two-dimensional periodic
graphs. Although they have been studied extensively, exact
thresholds are not known for such common graphs as the
square lattice site model, the hexagonal lattice site model,
and the Kagomé lattice bond model. Although there are
tools such as duality and matching, there is no general
method available for providing exact threshold values. The

grand challenge is to find the exact bond or site percolation
threshold for a lattice in three dimensions or higher.
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Glossary

Hamiltonian are called all those dynamical systems
whose equations of motion form a vector field XH de-
fined on a symplectic manifold (P; !), and XH is given
by iXH! D dH, where H : P ! R is the Hamiltonian
function.

Poisson systems These are dynamical systems whose vec-
tor field XH can be described through a Poisson struc-
ture (Poisson brackets) defined on the ring of differen-
tiable functions on a given manifold that is not neces-
sarily symplectic (see “Hamiltonian Equations”). Note
that on any symplectic manifold there is a natural Pois-
son structure such that any Hamiltonian system ad-
mits a Poisson formulation, but the contrary is false.
The Poisson formulation of the dynamics is a general-
ization of the Hamiltonian one.

A periodic orbit �(:) is a solution of the equations of mo-
tion that repeats itself after a certain time T > 0 called
a period, that is, �(t C T) D �(t) for every t.

Poincaré section/map Given a periodic orbit �(:)
a Poincaré section is a hyperplane S intersecting the
curve f�(t) : t 2 [0; T)g transversely. The associated

Poincaré map ˘ maps neighborhoods of S into itself
by following the orbit �(:) (see Definition 10).

AHamiltonian system with symmetry is a Hamiltonian
system in which there is a group G acting on P, i. e.,
there is a map ˚ : G � P 7! P, with ˚ preserving the
Hamiltonian and the symplectic form.

Relative periodic orbit Let G be a symmetry group for
the dynamics. A path �(:) is a relative periodic orbit
if solves the equations of motion and repeats itself up
to a group action after a certain time T > 0, that is,
�(t C T) D ˚g(�(t)) for every t and for some g 2 G.

Continuation Continuation is a procedure based on the
implicit function theorem (IFT) that allows one to ex-
tend the solution of an equation for different values
of the parameters. Let f (x; �) D 0 be an equation in
x 2 Rn where f is differentiable and � � 0 a param-
eter. Assume that f (x0; 0) D 0; a curve x(�) is called
a continued solution if x(0) D x0 and f (x(�); �) D 0
for some � � 0. In general x(�) exists whenever the
IFT can be applied, that is, if Dx f (x; �) is invertible at
(x0; 0).

Liapunov–Schmidt reduction Let f be a function on
a Banach space. Liapunov–Schmidt reduction is a pro-
cedure that allows one to study f (x; �) D 0 under the
condition that the kernel of Df is not empty but it is
finite-dimensional.

Variational principles The principles which aim to
translate the problem of solving the equations of mo-
tion of a dynamical system (e. g., Hamiltonian systems)
into the problem of finding the critical points of certain
functionals defined on spaces of all possible trajecto-
ries of the given system.

Definition

The study of periodic motions is very important in the
investigations of natural phenomena. In particular the
Hamiltonian formulation of the laws of motion has been
able to formalize and solvemany fundamental problems in
mechanics and dynamical systems. This paper is focused
on a selection of results in the study of periodic motions
in Hamiltonian systems. We shall consider local problems
(e. g., stability and continuation/bifurcation) and also the
application of variational methods to study the existence
in the large. Throughout the paper we give some details of
the methods and proofs.

Introduction

Periodic motions and behaviors in Nature have always
been of interest to mankind. All phenomena that have
some cyclic nature have captured our attention because
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they are a sign and a clue for regularity. Therefore, they
are indications of the possibility of understanding the laws
of Nature. Since the second century BC, Greek philoso-
phers and astronomers have looked into the possibility of
describing the motions of celestial bodies through the the-
ory of epicycles, which are combinations of circular peri-
odic motions. Notably from a modern point of view this
theory can be interpreted as a clever geometrical applica-
tion of Fourier expansions of the observed motions [23].
The development of mechanics, the discovery that the laws
of Nature can be written in the language of calculus and
that laws of motion can be described in terms of differ-
ential equations opened up the study of periodic solu-
tions of equations of motion. In particular, since New-
ton and then Poincaré [46], the main interest has been
the understanding of the planetary motions and the so-
lution of the so-called N-body problem, the reader should
refer to � n-Body Problem and Choreographies in this
encyclopedia. The interest in periodic motions has not
been restricted to celestial mechanics but became a sort
of paradigm in all areas where mechanics was successfully
applied. In this article we shall illustrate some general as-
pects of the results regarding the theory of periodic orbits
in Hamiltonian systems. Such systems are the modern for-
mulation of those mechanical systems which are described
by second-order differential equations and have an energy
function. As an example the reader could think of New-
ton’s equations for a point mass in potential field. The
equations read

m ẍ(t) D �rV(x(t)) ; with x(t) 2 R3

for every t ; m is the mass
(1)

V(x) is the potential and r D (@/@x1; @/@x2; @/@x3). The
energy function

E D
m
2
kẋ(t)k2 C V (x(t))

is conserved along the trajectories solving (1). It is impor-
tant to say that most of the systems of interest in physics
can be naturally written in Hamiltonian form. The plan of
this article is as follows. First we introduce the Hamilto-
nian formulations of the equations of motion for a classi-
cal mechanical system. It is well known that in many ap-
plications Hamiltonian systems derive from a Lagrangian
formulation; therefore, this is also presented. Furthermore
we introduce the Poisson formulation that is essentially
the first generalization to the Hamiltonian point of view.
Then we turn to the study of the properties of periodic so-
lutions. In particular we focus on their “local properties”,
persistence and stability. In this analysis the main tool will

be the implicit function theorem (IFT). In order to empha-
size the utility of the IFT we present some of the proofs
that contain typical calculations often scattered in the lit-
erature. Then we consider the problem of periodic orbit
for Hamiltonian systemswith symmetries, where we intro-
duce the notion of relative equilibrium and relative peri-
odic orbit. Inevitably we have also a short excursion about
symmetry reduction, which is the natural theoretical set-
ting to study systems with symmetries. The second part of
the article is devoted to the exposition of the study of peri-
odic orbits by variational methods. The discovery that the
equations of motion of mechanical systems can be derived
by a variational principle, the so-called least action prin-
ciple, is usually attributed to Maupertuis (eighteenth cen-
tury). According to this principle, the motions are critical
points of a functional called the action defined in a suit-
able space of paths. Variational methods turned out to be
one of the most effective methods to prove the existence of
periodic orbits; notable is the case of the N-body problem
(see [2] and� n-Body Problem and Choreographies). The
valuable feature of the variational methods is the possibil-
ity to study the existence problem by looking at the topol-
ogy and geometry of the space of periodic paths without
further restrictions. In the presentation of the results some
elements of the proofs are illustrated in order to clarify the
main ideas. In the final section there are some open prob-
lems and further directions of investigation, in particular
a simple example of the so-called multisymplectic struc-
tures that has extended the possibility of applying the fi-
nite-dimensional Hamiltonian approach to multiperiodic
problems for a large class of partial differential equations
is presented. For centuries the study of periodic orbits has
been one of the main centers of mathematical investiga-
tions and developments and still presents challenges and
the capacity for producing new interesting mathematical
ideas to understand the complexity of Nature.

Hamiltonian Equations

A Hamiltonian system is given by specifying a symplec-
tic manifold (P; !), where P is a differentiable manifold
of even dimension, ! is a closed differential two-form and
a function H : P ! R is called a Hamiltonian. In the lan-
guage of the differential forms the Hamiltonian vector XH
field on P is written as

iXH! D dH : (2)

In the case P D R2n , the symplectic structure is !0 DPn
iD1 dxi ^ dyi and the Hamiltonian vector field is

XH(z)
:
D J rzH(z) ; (3)
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where z D (x; y) 2 R2n and J is the symplectic matrix

J D
�

0 idn
�idn 0

�
: (4)

The Hamiltonian equations are then

dz(t)
dt
D XH(z(t)) : (5)

In the case P D R2n (5) reads

ż(t) D (ẋ(t); ẏ(t)) D
�
ryH(x(t); y(t));�rxH(x(t); y(t))


:

For a mechanical systems described by (1) the Hamilto-
nian function is

H D
kyk2

2m
C V (x) ; where (x; y) 2 R6 ;

and its Hamiltonian equations read
8
<̂

:̂

ẋ(t) D
y(t)
m

ẏ(t) D �rV(x(t)) :

Note that the first equation corresponds to the classi-
cal definition of momentum in mechanics (here denoted
with y) and the Hamiltonian functionH coincides with the
energy E. For more details the reader could consult [1,5]
and also � Dynamics of Hamiltonian Systems in this en-
cyclopedia.

Lagrangian Formulation In many applications in
physics and in particular in mechanics Hamiltonian
systems arise from the Lagrangian description. In such
a setting a mechanical system is described by pre-
scribing a differentiable manifold M (the configuration
space) and a Lagrangian function L defined on the tan-
gent bundle TM. Let L : TM! R be a Lagrangian on
a manifold M of dimension n. If L is hyperregular (i. e.,
rank(D2

vq L(vq ; q)) D n), then the Hamiltonian function is
naturally constructed on the cotangent bundle T�M by
using the Legendre transform [1,5] as follows:

pi D
@L
@viq

;

H(p; q) D
nX

iD1

viq(p) qi � L(vq(p; q); q) :
(6)

The Hamiltonian system is then defined on the cotan-
gent bundle of M that is P D T�M, which is en-
dowed with the canonical symplectic form ! D d� , where

� D
Pn

iD1 pidqi . In the Lagrangian description the equa-
tions of motion are

d
dt
@L(vq(t); q(t))

@vqi
�
@L(vq(t); q(t))

@qi
D 0 ;

i D 1; : : : ; n where vqi (t) D q̇i (t) ; i D 1; : : : ; n :
(7)

Note that (7) contains second order time-derivatives. For
more details see [1,5].

Poisson Formulation Let F(P) be the space of differ-
entiable functions on (P; !). On F(P) can be introduced
a product f:; :g [1,5,16]. The Poisson brackets

!(X f ; Xg) D f f ; gg for f ; g 2 F(P) : (8)

In terms of the Poisson brackets the Hamiltonian equa-
tions can be written as a derivation acting on F(P):

XH( f ) D f f ;Hg for f 2 F(P) : (9)

The Poisson brackets satisfy the following properties. For
all f ; g 2 F(P)

f f ; gg is bilinear with respect to f and g ;
f f ; gg D �fg; f g
f f g; hg D f fg; hg C gf f ; hg
ff f ; gg; hg C ffh; f g; gg C ffg; hg; f g D 0 Jacobi identity

(10)

An easy consequence of (9) and (10) is

Proposition 1 The Hamiltonian function H is a constant
of motion.

A manifold P endowed with the brackets f:; :g is called
a Poisson manifold. Any symplectic manifold is a Poisson
manifold [1,27] but the contrary is false. In fact Poisson
brackets on a symplectic manifold are always nondegen-
erate, namely, the condition fk; f g D 0 for all f 2 F(P)
implies that k is identically zero. In a general Poisson
manifold there might exists nonvanishing k, which are
then called Casimir functions. This is related to the fact
that symplectic manifolds are always even-dimensional,
whereas Poisson manifolds can be odd-dimensional. We
can look at Poisson manifolds as a useful generalization
of Hamiltonian systems; in fact in order to define Pois-
son brackets it is sufficient to have the ring of functions
F(P). For a general and complete description of the Pois-
son structure the reader could see [1,5,16,27].
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Periodic Solutions

Given a Hamiltonian vector fieldXH(z) on (P; !), one can
consider the following Cauchy problem:

8
<̂

:̂

dz(t)
dt
D X(z(t))

z(0) D z0 :
(11)

Equation (11) is meant to be defined on a local chart in P.

Definition 1 We call flow or integral flow the map
t 7! �(t; z0) where z(t) D �(t; z0) solves problem (11).

Some simple consequences follow [36].

Remark 1 If XH is complete, then the flow is defined for
all t 2 R.

Remark 2 If the Hamiltonian vector field is autonomous,
(that is, not explicitly dependent on time), then �(:; z0)
satisfies the composition property �(t; �(s; z0)) D �(t C
s; z0) and �(:; :) is called Hamiltonian flow.

Let us now introduce the main object of this exposition.

Definition 2 A flow � : R! P, z(t) D �(t; z0) is said to
be a T-periodic solution of (11) if there exists T > 0 such
that �(t C T; z0) D �(t; z0) for all t.

Remark 3 Note that if �(:; z0) is a T-periodic solution,
then �(:; z0) is n T-periodic for any n 2 N. In fact from
the definition �(T; z0) D z0 and using Remark 2, one can
iterate

�(t C n T; z0) D �(tC (n � 1)T; �(T; z0))
D �(tC (n � 1)T; z0)

and find �(t C nT; z0) D �(t; z0):

Definition 3 T is called a minimal period of �(t; z0) if
T D min�2RCf� : �(t C �; z0) D �(t; z0) for all tg.

Definition 4 A point z� 2 P such that J rzH(z�) D 0 is
called an equilibrium solution.

Obviously any equilibrium solution can be seen as a peri-
odic solution with T D 0. One can easily show

Lemma 1 �(t; z0) is periodic of period T if and only if
�(T; z0) D z0.

Stability of Periodic Orbits

Given a periodic orbit the first natural question is to
study its stability. There are three possible stability crite-
ria [1,36]:

Definition 5 (Liapunov-stable) A periodic orbit �(:; z0)
is Liapunov-stable if for all � > 0 there is ı(z0; �) such that
kz0 � z0k � ı(z0; �) implies that k�(t; z0) � �(t; z0)k � �
for all t � 0.

The previous definition is natural for a non-Hamiltonian
system but in a Hamiltonian context it is very strong, since
in the Hamiltonian systems periodic orbits are not iso-
lated. It is useful though to compare Liapunov stability
with the following weaker notions.

Definition 6 (Spectrally stable) A periodic orbit �(t; z0)
is spectrally stable if the eigenvalues of DXH(z0) lie all on
the unit circle.

Definition 7 (Linearly stable) A periodic orbit �(t; z0) is
linearly stable if it is spectrally stable and DXH(z0) can be
diagonalized.

One can show that spectral stability is implied by either
linear stability or Liapunov stability. A natural notion of
stability can be introduced by using the Poincaré map and
will be presented in Sect. “Poincaré Map and Floquet Op-
erator”. The following results describe the structure of lin-
ear Hamiltonian systems, namely, systems whose Hamil-
tonian function is H(z) D 1

2 hz;Azi and the equations of
motion read ż(t) D J A z(t).

Theorem 1 ([36]) Let A be time-independent. The char-
acteristic polynomial of J A is even and if  is an eigenvalue
then so are �; ;�.

A consequence of the previous result is that linear stabil-
ity is equivalent to spectral stability for linear autonomous
Hamiltonian systems.

Linear systems can depend on parameters; it is there-
fore interesting to have a notion of stability with respect to
parametric changes.

Definition 8 A linear stable Hamiltonian system
H(z) D 1

2 hz;Azi is said to be parametrically stable if for
every symplectic matrix B such that kA� Bk < � the sys-
tem ż D J B z is linearly stable.

We finally give a characterization of linear Hamiltonian
systems which are parametrically stable.

Theorem 2 ([36]) If the HamiltonianH is positive (or neg-
ative) definite or all the eigenvalues are simple, then A is
parametrically stable.

Continuation and Bifurcation of Equilibrium Solutions

Let H(z; �) be a Hamiltonian function depending on a pa-
rameter � � 0. Let

Z0 D fz� : JrH(z�; 0) D 0g
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be the set of equilibrium positions. An interesting problem
is to study how Z0 is modified when � > 0. The local prop-
erties of Z0 depend on the spectrum of J D2H(z�; 0). If
z� 2 Z0 is such that JD2H(z�; 0) has nonzero eigenvalues,
then by the IFT there exists a curve z�(�) of equilibrium
points for " positive and sufficiently small. If J D2H(z�; 0)
has at least one zero eigenvalue then bifurcation can occur,
but the interesting point is that bifurcations are possible
also when J D2H(z�; 0) is not degenerate. In fact in Hamil-
tonian systems generically the spectrum of the lineariza-
tion of the vector field contains couples of complex con-
jugated eigenvalues [5]. In such a case there is a theorem
due to Liapunov which shows the existence of periodic or-
bits – so-called nonlinear normal modes in a neighborhood
of z�. Let us now present Liapunov’s theorem. This result
describes how a nondegenerate equilibrium can be con-
tinued into a periodic orbit. The types of orbits are called
nonlinear normal modes.

Theorem 3 (Liapunov’s center theorem [1,18]) If
the Hamiltonian system has a nondegenerate equilib-
rium at which the linearized vector field has eigenvalues
˙i!; 3; : : : ; n with k/! … Z then there exists a one-pa-
rameter family of periodic orbits emanating from z�. The
period tends to 2�/! when the orbit radius tends to zero
and the nontrivial multipliers tend to exp(2�k /!) with
k D 3 : : : n.

Proof Without loss of generality the nondegenerate equi-
librium can be fixed at the origin. In a neighborhood of
the origin the Hamiltonian vector field can be written as
follows:

ż(t) D JA z(t)C r(z) ;

where kr(z)k D o(kzk); that is, kr(z)k is infinitesimal with
respect to kzk.

The spectrum of JA is Spec(JA) D f˙i!; 3; : : : ; ng.
Let y D � z with � 2 [0; 1], then

ẏ(t) D JA y(t)C r(y; �) ;

with r(y; �) infinitesimal for � ! 0 uniformly for kyk
bounded. For � D 0 the system becomes

ẏ(t) D JA y(t) (12)

and admits a periodic solution with period T D 2�/!:

y0(t) D exp(t JA) y0; JA y0 D v0 y0 :

Equation (12) is linear, and thereby coincides with its lin-
earization. The Floquet multipliers are therefore

(1; 1; exp(2� 3/!); : : : ; exp(2� n /!))

with exp(2� k /!) ¤ 1 by hypothesis. Now we look for
a solution of

�
d
dt
� JA

�
y(t) D r(y(t); �) : (13)

On the space C1([0; T];R2n) with periodic boundary con-
dition the operator d/dt � JA has a two-dimensional ker-
nel. Therefore, one could solve (13) by looking for a solu-
tion in the form

y(t; �) D exp(t JA)y0 C u(t) ;

where u(t) 2 rank(d/dt � JA). By the IFT one can show
that ku(t)k D o(1) and therefore the solution can be con-
tinued for small � as

y(t; �) D exp(t JA)(1C o(1)) y0 ;

that is,

z(t; �) D � exp(t JA)(1Co(1)) y0 with lim
�!0
kz(t; �)k D 0:

�

Remark 4 The analysis of the operator d/dt � JA used to
prove the previous result is known as Liapunov–Schmidt
reduction. In Sect. “Continuation of Periodic Orbits as
Critical Points” we shall give an application of it in the
study of critical points.

Normal Form Analysis Near Equilibrium Points
In [55] Liapunov’s theoremwas generalized to cases where
the condition /! 2 Z might hold. This corresponds to
the so-called resonance condition.

Definition 9 (Resonance) The set of eigenvalues f!l g
k
lD1

of the linearization DXH(z0) are said to be resonant if
R(!i ) D 0 for all i and there exist fnl gklD1 � Z such that

kX

lD1

!l nl D 0 :

In [55] it is shown that around z0 there are at least n peri-
odic orbits. Because of the possible presence of resonance
not all the orbits are a continuation of periodic orbits of
the linearized vector field. In order to study this case one
has to go beyond the linear approximation and analyze the
Hamiltonian system in a neighborhood of the equilibrium
taking into account the structure of terms of order higher
than 2 in the canonical coordinates. To achieve this objec-
tive there is a general method, the normal form theory, to
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expand the Hamiltonian functionH using suitable coordi-
nates in an �-neighborhood of z0. A given Hamiltonian H
can be expanded as

H(z) D H0(z)C
X

mD1

�m Hm(z) ; (14)

where

H0(z) D
X

jD1

!i

2
kz j � z0; jk2

D
X

jD1

!i

2
[(x j � x0; j)2 C (y j � y0; j)2]

andHm(z) are polynomials of degreemC 2 in the canon-
ical coordinates. Normal form theory allows us to clas-
sify the possible form of expansions (14) according to the
resonance condition. This classification is also very im-
portant in the study of small perturbations of integrable
Hamiltonian systems (KAM theory) where it is still the
resonance condition that causes the main difficulties [5].
For a detailed account of normal form theory and its ap-
plications the reader could refer to [49,54] and to � Dy-
namics of Hamiltonian Systems for an introduction. Once
the Hamiltonian is in normal form, one can study the
bifurcation occurring when the resonance holds. Partic-
ularly interesting is to understand what conditions the
frequencies have to fulfill in order for a system to have
a number of periodic orbits exceeding the estimation given
in [55]. There have been further generalizations to the re-
sults given in [55] and the reader could refer to [40,41].

PoincaréMap and Floquet Operator

To study a periodic orbit one could consider looking at it
in a hyperplane which is transverse to its direction. This
can be done locally and by constructing the Poincaré map.

Definition 10 Let �(:; z0) be a T-periodic orbit. A Poin-
caré cross section of �(:; z0) is

Sa D fz 2 P : ha; (z�z0)i D 0; with ha; JrH(z0)i ¤ 0g:

Let U � Sa , a neighborhood of z0 sufficiently small such
that the first return time is

T : U ! RC; �(T (z); z) 2 Sa with T (z0) D T :

The Poincaré map˘ : U ! Sa is defined as

U 3 z! ˘ (z) :D �(T (z); z) 2 Sa :

Using the regularity properties of �(t; z0), one can show

Periodic Orbits of Hamiltonian Systems, Figure 1
Sa is Poincaré section for �(t; z0), in this case a D XH(z0). The
continuation produces a new orbit with initial data z0

0 close to
z0

Proposition 2 ([36]) Let �(t; z) :D ha; �(t; z)� zi be de-
fined for z 2 Sa. For U � Sa sufficiently small the re-
turn times T : U ! RC defined by the implicit equation
�(T (z); z) D 0 and˘ : U ! Sa are smooth functions.

Using this result, one can think of characterizing peri-
odic orbits as fixed points of˘ (z) D �(T (z); z). In fact if
there exists z� 2 Sa such that ˘ (z�) D z�, then the flow
�(t; z�) is a periodic orbit with period T (z�). An example
of a Poincaré section is given in Fig. 1.

Definition 11 Let �(t; z0) be a periodic solution of (5).
The Floquet operator

V(t) :D
@�(t; z0)
@z0

solves the variational equation

V̇(t) D DzXH(�(t; z0))V (t) (15)

with V(0) D id. The matrix V(T) is called a monodromy
matrix and its eigenvalues are termed Floquet multipliers.

For a general discussion about Floquet theory one can
refer to [36,49,59]. In general, the construction of the
Poincaré map is not explicit. But knowledge of the mon-
odromy matrix and Proposition 2 with the equation
�(T (z); z) D 0 allow us to compute the Taylor expansion
of ˘ (z) in a neighborhood of z0 in Sa. We shall examine
this idea in the next section, where we also see the con-
sequences of the fact that periodic orbits in Hamiltonian
systems are not isolated. In fact the following result holds
true:
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Proposition 3 ([36]) Periodic solutions are never isolated
andC1 is always a multiplier whose eigenvector is JrH(z).
If F : P ! R is a first integral, then rF is a left eigenvector
of the monodromy matrix with eigenvalueC1.

Note that a consequence is that since in a Hamiltonian sys-
tem the HamiltonianH is always conserved, the multiplier
C1 has algebraic multiplicity of at least 2.

In the presence of an integral of motion like the Hamil-
tonian, the Poincaré map can be restricted to the level set
of H. The map ˘ turns out to be symplectic [5,36]. The
stability of a periodic orbit can now be defined in terms of
the stability of the fixed points of the Poincaré map. Let
˘ n(z) denote the nth iteration of the Poincaré map ap-
plied to z 2 Sa . We can define

Definition 12 ([1,36,49]) A periodic orbit �(:; z0) is sta-
ble for all � > 0 if there exists ı(�; z0) such that

kz�z0k < ı implies k˘ n(z)�z0k < � for all n > 0 :

This stability criterion is difficult to verify. A weaker crite-
rion is obtained by considering the linearization of ˘ (z)
at z D z0:

Definition 13 ([1,36]) A periodic orbit �(:; z0) is spec-
trally stable if the associated Poincaré map˘ , which is re-
stricted to the manifold defined by the integrals of motion,
has a linearization Dz˘ (z0) with a spectrum on the unit
circle.

By a local change of coordinates one can show that the
eigenvectors of Dz˘ (z0) are equal to the eigenvectors
of V(T0) different from XH(z0) D JrH(z0) [36]. The
Poincaré map removes the degeneracy of the monodromy
matrixV(T). To illustrate this point let us consider x 2 Rn

and an autonomous system

ẋ(t) D f (x(t)) (16)

with f : Rn 7! Rn differentiable. Let �(t; x0) be a T-peri-
odic solution of (16) emanating from x0. To study the tra-
jectories near x0 one can construct a local diffeomorphism
h : Rn 7! Rn , y D h(x) such that y0 D h(x0) with (16) in
the form

ẏ(t) D Dh(h�1(y(t))) f (h�1(y(t))) D f̃ (y(t))

with f̃ (y0) D (1; 0; : : : ; 0) :
(17)

In y coordinates the periodic orbit �(t; x0) reads  (t;
y0) D h(�(t; h�1(y0))) and we can define a map � as

�(t; y) D h f̃ (y0);  (t; y0) � yi : (18)

The form of f̃ (y0) implies �(y; t) D  1(t; y) � y0;1 D
h1(�(t; h�1(y0))) � y0;1. An easy calculation shows that

@�

@t

ˇ̌
ˇ̌
(0;y0)

D

nX

lD1

@h1
@xl

fl (x)

ˇ
ˇ̌
ˇ
ˇ
(0;y0)

D 1 ;

which implies the existence of a return time �(y) satisfying
�(�(y); y) D 0 for y in a sufficiently small neighborhood
of y0. Now we define the map ˘ (y) D  (�(y); y). By ap-
plying the IFT, we can compute

@�

@y j
D ı1 j �

X

l ;m

@h1
@xl

@�l

@xm
@xm
@y j

(19)

and also the Jacobian of˘ :

@˘i(y)
@y j

D f̃ i(y)
@�

@y j
C
X

l ;m

@yi
@xl

@�l

@xm
@xm
@y j

: (20)

Using (19), one can easily say that the matrix @˘i (y)/@y j
at y D y0 has the first column equal to f̃ (y0) D
(1; 0; : : : ; 0). The diffeormophism h allowed us to “isolate”
the direction of the vector field f at x0. This implies that the
map ˘S f̃ (z0)

, the restriction of ˘ on the Poincaré section
S f̃ (z0) D fy : h f̃ (y0); y � y0i D 0g ' Rn�1, maps S f̃ (z0)
into S f̃ (z0) and its linearization has no eigenvectors in the
direction of f̃ (y0). The map ˘ f̃ (z0) describes the stability
of the periodic orbit �(t; x0). A similar construction can
be carried out when f is a Hamiltonian vector field. In that
case it is necessary to take into account the existence of in-
tegrals of motion and construct the Poincaré map on the
manifold where the integral of motions are fixed. A more
complete study of the Poincaré map will be presented in
the next section.

Let us now present some properties of the Floquet op-
erator. Let us consider a Hamiltonian system with imag-
inary multipliers. In the linear time-independent case the
monodromy matrix is given by

V(T0) D exp(T0 JA) ;

where T0 D 2�/jj, with  an imaginary eigenvalue of
JA. Now let H D 1

2 hz;Azi C h(z) be a Hamiltonian with
h(z) D o(kzk2) near z D 0. The equation for the mon-
odromy matrix is (15). Let �0(t) be another periodic orbit,
then (15) can be written as follows:

dV (s)
ds

D
T�
T0

DXH( 0(s))V (s) ;
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where t D T0 s/T� and  0(s) D �0(T0 s/T�). Then one
can show

Proposition 4 ([39]) The Floquet operator V (t) is C1

in  and T� .

Corollary 1 ([39]) If �0(t) is sufficiently close to z D 0,
then V� (T�) is arbitrarily close to exp(T0 JA).

Corollary 1 is interesting because it allows us to use lin-
earized dynamics. Now the analysis of the nonlinear sta-
bility can be carried out by using Krein’s theory. For this
typical references are [21,59]. Here we recall

Theorem 4 (Krein) Let V(T) be a spectrally stable mon-
odromy matrix. Let Q� be a quadratic form Q�(v) D
hV(T) v; J vi where v belongs to the  eigenspace of V(T).
Then V(T) is in an open set of spectrally stable matrices if
and only if the quadratic Q� has definite sign.

By combining Corollary 1 and Theorem 4, we could show
that a solution �0(t) close enough to z D 0 is spectrally
stable.

Continuation of Periodic Orbits
in Hamiltonian Systems

In general it is difficult to prove the existence of and then
construct periodic orbits. Sometimes, for certain specific
values of the parameters characterizing the system it is
possible to find particular solutions. Typically these are the
equilibria and relative equilibria. In these cases the contin-
uation method can be a useful approach. The idea is to
look at how a given periodic orbit changes according to
a small modification of the parameters. The method re-
duces the research of periodic orbits to the problem of
finding fixed points of the Poincaré map that can be con-
tinued as a function of the parameters; see Fig. 1.

Definition 14 (Continuation of an orbit) Given a dy-
namical system and �0(t) one of its orbits, we say that
�0(t) can be continued if there exists a family of orbits
�(t; ˛) smoothly dependent on parameters ˛’s and such
that �(t; 0) D �0(t).

Let us consider a Hamiltonian vector field XH(z; ˛) where
z 2 P and ˛ 2 Rk are k parameters. We now write the
equations of motion in a form where the period T appears
explicitly. After t! t/T the equations read

ż(t) D T J rH(z(t); ˛) D T XH(z(t); ˛) ; (21)

with t 2 [0; 1].

Definition 15 Let �(t; z; T; ˛) be a solution of (21). The
map

R(z; T; ˛) :D �(1; z; T; ˛) � z (22)

is called a return map.

The orbit �(t; z0; ˛0) is T0-periodic if R(z0; T0; ˛0) D 0.
Now we are interested to see what is the fate of the orbit
when z0, T0 and ˛0 are varied; therefore, it is useful to de-
termine the local behavior of the map R. This is collected
in the following proposition.

Proposition 5 ([42]) Let �0(t; z0) be a periodic orbit with
period T0 and ˛ D 0, then the following relations hold

� DzR(z0; T0; 0) D V (1) � id,
� XH(z0; 0) 2 ker(V (1) � id),
� DTR(z0; T0; 0) D XH(z0; 0),
� D˛R(z0; T0; 0)
D T0 V(T)

R 1
0 V�1(s)D˛XH(�0(s; z0))ds,

together with the differential map

DR(z0; T0; 0)(�; T; ˛)
D (V(1) � id) � � C T XH(z0; 0)C D˛R(z0; T0; 0) � ˛ ;

where (�; T; ˛) 2 R2nCkC1.

Initially let us consider a non-Hamiltonian dynamical sys-
tem in Rn:

ẋ(t) D f (x(t); �) ; � 2 R : (23)

We now illustrate how the IFT is used to construct a new
solution from a given one, i. e., by continuation. We
present a detailed proof for the reader’s convenience.

Proposition 6 ([3,42]) Let �0 D f�T0(t; x0); t � 0g be
a periodic orbit of period 1 of ẋ(t) D T0 f (x(t); �) for
� D 0. If 0 is an eigenvalue of DxR(x0; T0; 0) with multi-
plicity 1, then orbit �0 can be continued.

Proof Let us consider the map G : Rn � RC � [0; 1] !
RnC1 defined by

G(x; T; �) D (R(x; T; �); h f (x0; 0); x � x0i) : (24)

Note that h f (x0); x � x0i D 0 is the equation of the
Poincaré section S f (x0). Since �0 is a periodic orbit with
period T0 emanating from x0, then G(x0; T0; 0) D 0. As
already stated the strategy is to employ the IFT to derive
the continuation of �0. Thus, it is necessary to compute
Dx;TG at (x0; T0; 0):

Dx;TG(x0; T0; 0) D
�

DxR(x0; T0; 0) f (x0; 0)
f (x0; 0) 0

�
:
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In order to show that Dx;TG(x0; T0; 0) is invertible one
notes that the equation

Dx;TG(x0; T0; 0)(X; a) D (0; 0)

is equivalent to the system
(
DxR(x0; T0; 0)(X)C f (x0; 0) a D 0
h f (x0; 0); Xi D 0 :

(25)

Assume X ¤ 0. The multiplicity of the 0 eigenvalue of
DxR(x0; T0; 0) is 1 and

DxR(x0; T0; 0) f (x0; 0) D 0 :

Now from (25) we derive (DxR(x0; T0; 0))2 X D 0. There-
fore, DxR(x0; T0; 0)(X)C f (x0; 0) a D 0 would be satis-
fied only for a D 0 and X D c f (x0; 0) with c 2 R. But
this would imply c h f (x0; 0); f (x0; 0)i D 0, which is pos-
sible only for c D 0. The kernel of Dx;TG is empty at
(x0; T0; 0) and therefore the map is invertible and the ap-
plication of the IFT provides the existence of T(�) and
x(�) for � in a neighborhood of zero such that x(0) D x0,
T(0) D T0 and G(x(�); T(�); �) D 0. This corresponds to
the existence of a new periodic orbit close to �0. Upon
the assumption of sufficient regularity for the vector field,
the IFT provides also the possibility of approximating
x(�) and T(�) by constructing a Taylor expansion in �.
Let x(�) D x0 C �(�) and T(�) D T0 C �(�), then (25)
can be evaluated along the continuation curve defined by
(�(�); �(�); �):

8
ˆ̂
<̂

ˆ̂
:̂

DxR(x0; T0; 0)(� 0(�))C f (x0; 0) � 0(�)

CT0V(1)
Z 1

0
V(s)

d f (�T0(s; x0); 0)
d�

ds D 0

h f (x0; 0); � 0(�)i D 0 :

(26)

This set of equations allows us to compute an approxima-
tion for �(�) and �(�). �
For a general dynamical system in Rn (23) the possibility
of constructing a Poincaré section is related to the notion
of a nondegenerate periodic orbit.

Definition 16 A periodic orbit �(t; z0) is called nonde-
generate if

rank(V(1) � id)˚R f (z0) D Rn :

Now for Hamiltonian systems the time evolution is con-
tained in the level set determined by the the Hamiltonian
function (the energy) and all integrals of motion fFigkiD1

XH(Fi ) D fH; Fig D 0 ; i D 1; : : : ; k :

This requires a modification of the notion of nondegen-
eracy. In fact note that the set of integrals of motions
(F1; : : : ; Fk) define a map F : P 7! Rk and span W D

frFi ; i D 1 : : : kg. Nowwe haveW? D ker(DzF(z)). One
can show rank(V (1)� id) � ker(DzF(z)) and XH(F) D 0.
The last condition is equivalent to XH(z) 2 ker(DzF(z)).
Suppose that dimW? D 2n � k, if dim(ker(V(1) �
id)) D k then dim(rank(V (1) � id) D 2n � k and hence
rank(V (1) � id) D W?. Therefore, in the Hamiltonian
case the natural notion of nondegeneracy has to involve
the presence of integrals of motion. This is obtained by us-
ing the following definition.

Definition 17 ([42]) A periodic orbit �(t; z0) is called
normal if

rank(V (1) � id)˚R XH(z0) D W? ; (27)

where all the gradients frH;rF1; : : : ;rFkg are linearly
independent.

Lemma 2 ([42]) If the algebraic multiplicity of the zero
eigenvalue of V(1) � id is ma D k C 1, then condition (27)
is satisfied.

Finally we present how to construct the continuation of
nontrivial periodic orbits in Hamiltonian systems.

Theorem 5 ([42]) Let �0 D f�T0(t; z0) : t 2 [0; 1)g be an
orbit of the Hamiltonian system H0 on the energy level e0.
Let the algebraic multiplicity of eigenvalue 0 of V(1) � id
be 2. Let H� D H0 C � H1 be a smooth perturbation of H0,
then there exists a two-dimensional family of normal peri-
odic orbits �(t; z0; �; e) where �(t; z0; e0; 0) D �(t; z0).

Proof Let us consider the map G : R2n � RC � [0; 1] !
R2nC1 defined by

G(x; T; e; �) D (R(z; T; �); hXH (z0; 0); z�z0i;H�(z)�e):
(28)

Since �0 is a periodic orbit with period T0 emanating from
z0 then G(z0; T0; e0; 0) D 0. The strategy is always to em-
ploy the IFT to derive the continuation of �0. Thus, it is
necessary to compute Dz;TG at (z0; T0; e0; 0). A straight-
forward calculation gives

Dz;TG(z0; T0; 0) D

0

@
DzR(z0; T0; 0) XH(z0; 0)
XH(z0; 0) 0
rH0(z0) 0

1

A :

In order to show that Dz;TG(z0; T0; h0; 0) is invertible one
notes that the equation

Dz;TG(z0; T0; h0; 0)(X; a; 0) D (0; 0; 0)
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is equivalent to the system
8
<̂

:̂

DzR(z0; T0; e0; 0)(X)C XH(z0; 0) a D 0
hXH(z0; 0); Xi D 0
hrH0(z0); Xi D 0 :

(29)

Since XH(z0) 2 kerDzR(z0; T0; e0; 0) then from (29) we
derive (DzR(z0; T0; e0; 0))2(X) D 0 and therefore a D 0.
Now Lemma 2 implies that X 2 W?; therefore, the
third equation in (29) is satisfied and the first implies
X D b XH(z0; 0) for some b 2 R. But this would contra-
dict b hXH(x0; 0); XH(x0; 0)i D 0 unless b D 0. This im-
plies that that kernel of Dx;TG is empty at (x0; T0; e0; 0)
and therefore the map G is invertible. The application of
the IFT provides the existence of T(e; �) and z(e; �) for �
in a neighborhood of 0 and e in a neighborhood of e0 such
that z(e0; 0) D z0, T(e0; 0) D T0. The functions T(e; �)
and z(e; �) satisfy G(z(e; �); T(e; �); e; �) D 0. This corre-
sponds to the existence of a new periodic orbit close to � .
Upon the assumption of sufficient regularity for the vec-
tor field, the IFT provides also the possibility of approx-
imating z(e; �) and T(e; �) by following the same line of
argument seen in Proposition 6. This concludes the Proof.
�

Numerical Studies The analysis of periodic orbits is
very important for its concrete applications, hence for the
construction of numerical algorithms to construct peri-
odic orbits and their continuation. Here we do not con-
sider explicitly this problem but the reader is invited to
consult, for example, [31,32]. Moreover there is some free
and open-source software available, for example, AUTO
(see http://indy.cs.concordia.ca/auto/ and [19,20]).

Example

On P D R4 with coordinates z D (p; q) and the standard
symplectic form, we consider the Hamiltonian

H D
1
2
kpk2CV0(q);V0(q) D

1
2
kpk2�



2
kqk2C

1
4
kqk4

(30)

with  > 0. The reader could check that V0(q) has the
shape of a “Mexican-hat.” The Hamilton equationHamil-
tonians of motion read

(
q̇ D p
ṗ D ( � kqk2)q :

(31)

Let e(t) be a unit vector with e(t C 2�/�0) D e(t), then
there is a periodic orbit of the form q0(t) D A0 e(t);

p0(t) D A0 ė(t). This orbit is a relative equilibrium (see
below for a formal definition). The initial conditions de-
termine A0; �0 and in particular the energy E, which in
turn can be used to parameterize A0; �0 : A2

0 D
2
3 ( Cp

2 C 3E); �20 D
1
3 (� C

p
2 C 3E); here E � 0.

Note that an easy calculation shows that the admissible
values of the energy are E � minqfV0(q)g D �2/4. Let
�(t; z0) D (p0(t); q0(t)) be the periodic solution, then the
Floquet operator is

V(t) D
@�(t; z0)
@z0

and the linearized equations can be written as

dV(t)
dt
D M(t)V(t) ; where M(t) is a 4 � 4 matrix:

M(t) D
�

0 id
�D2V0(q0(t)) 0

�
:

Now if we perform the transformation

W(t) D S(t)V(t) D
�

R(t) 0
0 R(t)

�
X(t)

where R(t) D
�

cos �0t � sin �0t
sin �0t cos �0t

�

we obtain

dW(t)
dt

D M̂W(t) ;

where

M̂ D Ṡ(t) S�1(t)C S(t)M(t) S�1(t) :

M̂ is not time-dependent. In fact M̂ is the following ma-
trix:

M̂ D
�

˝ id
�RT (t)D2V0(q0(t)R(t) ˝

�
;

where

˝ D

�
0 ��0
�0 0

�
and

� RT (t)D2V0(q0(t)R(t) D
�
�3A2

0 C  0
0 �A2

0 C 

�
:

Now at t D T0

V(T0) D S�1(T0)W(T0) D exp(M̂ T0) :

The matrix M̂ has spectrum

Spec(M̂) D
�
0; 0;˙i

q
6A2

0 � 4
�

http://indy.cs.concordia.ca/auto/
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and the corresponding multipliers are:

exp(Spec(M̂)) D
�
1; 1; exp

�
˙i T0

q
6A2

0 � 4
��

D
n
1; 1; exp



˙i T0

4
p
2 C 3E

�o
;

where T0 D 2�/�0. The matrix V(T0) � id has a zero
eigenvalue with multiplicity 2, and the periodic orbit
�0(t; z0) can be continued by using Theorem 5.

Remark 5 Note that using the expression for �0, one can
check that for E D En , where

En D
2

3

�
�1C

n4

(n2 � 12)2

�
with n 2 Z ;

the third and the fourthmultipliers coalesce to 1 and there-
fore q0(:) loses its linear stability in the directions trans-
verse to itself.

Hamiltonian Systems with Symmetries

In many applications there are Hamiltonian systems
with symmetries, the best known example of which is
the N-body problem (see [1,5] and � n-Body Problem
and Choreographies). A simpler example is (31), which
is symmetric with respect the linear action of SO(2). For
such systems the Hamiltonian function is invariant un-
der the action of a Lie group G. We shall see that sym-
metries can greatly simplify the study of the dynamics.
A Hamiltonian system with symmetry is a quadruple
(P; !;H;G) [1,5,48], where
� (P; !) is a symplectic manifold,
� H : P ! R is a Hamiltonian function,
� G is a Lie group that acts smoothly on P according to

G � P 3 (g; z) 7! ˚g (z) 2 P. The map ˚g preserves
the Hamiltonian (G-invariance) that is H(˚g (z)) D
H(z).

� The action ˚ is semisymplectic, namely, ˚�g ! D

�(g)!, with �(g) D ˙1. �(:) is called temporal char-
acter.

In the sequel we consider symplectic actions whereby
�(g) D 1 for all g 2 G. One can show that for a system
(P; !;H;G) the vector field XH(z) is equivariant [1], that
is,

XH(˚g (z)) D Dz˚g(z) XH(z) : (32)

With any element � in the Lie algebra g of G we can asso-
ciate a infinitesimal generator �P(z) of the action defined
by

�P(z) D
d˚exp(� t)(z)

dt

ˇ̌
ˇ̌
tD0

: (33)

Remark 6 In many applications Hamiltonian systems are
constructed from Lagrangian systems; therefore, a sym-
metry appears usually as a group action on the config-
uration space M. The Hamiltonian symmetry is then
the lifted action to the cotangent bundle T�M. For in-
stance, if SO(2) acts linearly onM D R2 by �R (q) D R q
with R 2 SO(2), then its lifted action on T�M ' R4 is
˚R(q; p) D (R q; RT q), where RT is the transpose of R.
For more details see [1,36,48].

Symmetry and Reduction

Given a symplectic action of a group G there is a map
J : P ! g� defined by

hdJ(v(z)); �i D !(v(z); �P(z))
for all z 2 P; v 2 TzP and � 2 g :

(34)

The map J is called a momentum map. This always exists
locally, and its global existence requires conditions on G
and the topology of P [27]. The crucial property of the
momentum map is its encoding of the conserved quanti-
ties associated with the G action. This is the content of the
famous Noether’s theorem that reads in modern formula-
tion as follows.

Theorem 6 (Noether [1,5]) Let H be a G-invariant
Hamiltonian on P with momentum map J. Then J is con-
served on the trajectories of the Hamiltonian vector field
XH.

For instance, in a system like (30) with a SO(2) symme-
try action the momentummap is the classical angular mo-
mentum

J(p; q) D p ^ q :

The momentum map J has also the property of being
equivariant with respect to the coadjoint action associated
with G. In the case of G being semisimple or compact the
result is as follows.

Theorem 7 (Souriau [27])

J(˚g(z)) D Ad�g J(z) :

The level sets of the momentummap are invariant with re-
spect to the Hamiltonian flow; thus, it is natural to restrict
the motion to J�1(�). The construction of the dynamics
reduced to the manifold defined by the conserved quanti-
ties is the origin of the theory of symmetry reduction. The
first important result is the following.

Theorem 8 (Marsden–Weinstein) Let (P; !;H;G) be
a Hamiltonian system with a symplectic action of the Lie
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Periodic Orbits of Hamiltonian Systems, Figure 2
A simple example: the reduction of S1 group action on the plane
is singular. There are two strata r D 0 and r 2 (0;1)

group G, then the triple (P�; !�;H�) is called a reduced
Hamiltonian system where

� : P ! P� D J�1(�)/G� ; ��! D !� ; H� D H ı�

and

G� D fg 2 G : Ad�g (�) D �g :

The manifold P� is symplectic with symplectic form !�.
The Hamiltonian flow on P� is induced by the Hamilto-
nian vector field XH� defined by

iXH�!� D dH� :

Remark 7 Note that the reduced vector field XH� is now
defined on a manifold whose dimension is dimP� D
dimP � dimG � dimG�.

For a detailed discussion of this theorem the reader should
refer to [1,16,38]. In many cases it can be more useful to
perform the reduction through a dual approach using the
description of the dynamics in terms of functions on P,
namely, through the Poisson approach. This permits us to
consider also cases whereP� is not a smooth manifold but
rather a stratified space. A very simple example is shown in
Fig. 2.

The theory of singular reduction can be found in [4].
A recent exposition and generalization is given in [45].
The reader could, in particular, consider the expositions
given in [16,17], where it is shown through several exam-
ples that invariant theory and algebraic methods can be
applied to describe reduced dynamics on spaces with sin-
gularities. The singular reduction can be summarized in
the following result:

Theorem 9 (Singular reduction [45]) Let (P; f:; :g) be
a Poisson manifold and let ˚ : G � P ! P be a smooth
proper action preserving the Poisson bracket. Then the fol-
lowing holds:

(i) The pair (F(P/G); f:; :gP/G ) is a Poisson algebra,
where the Poisson bracket f:; :gP/G is characterized by
f f ; ggP/G D f f ı �; g ı �g; for any f ; g 2 F(P/G);
� : P ! P/G denotes the canonical smooth projec-
tion.

(ii) Let h be a G-invariant function on M. The Hamilto-
nian flow �(t; :) of Xh commutes with the G-action, so
it induces a flow �P/G(:; :) on P/G which is a Poisson
flow and is characterized by �(t; z) D �P/G(t; �(z)).

(iii) The flow �P/G(:; :) is the unique Hamiltonian flow
defined by the function [h] 2 F(P/G) defined by
[h](�(z)) D h(z). We will call HP/G D [h] the re-
duced Hamiltonian.

Relative Equilibria, Relative Periodic Orbits
and their Continuation

In a Hamiltonian system with symmetry there are orbits
that originated just from the symmetry invariance. These
are the relative equilibria.

Definition 18 (Relative equilibria) A curve ze(t) in P is
a relative equilibrium of (P; !;H;G) if ze (t) D ˚g(t)(we),
where g(t) is a curve in G and we is such that
XH(ze ) D że (t).

Note that if g(t) D g(t C T) then ze(t) becomes a T-pe-
riodic orbit. For instance in the system (30) there
is ze (t) D R(t)we D (A0 e(t);A0 ė(t)) with R 2 SO(2).
There are orbits that can be considered closed up to a
G-action, i. e., they are closed on P/G�. These are the rel-
ative periodic orbits.

Definition 19 (Relative periodic orbit) A curve z(t) inP
is a relative periodic orbit of (P; !;H;G) with period T if
z(t C T) D ˚g(z(t)), where g 2 G and g ¤ id.

An illustration is given in Fig. 3.
The reduction theory allows us to redefine the relative

equilibrium. Let � 2 g and z 2 P� be an equilibrium for
XH� . Then z gives rise to a relative equilibrium in P, for
a closed curve g(t) inG� and definew(t) D ˚g(t)(we) with
we 2 �

�1
� (z). If z(t) is a relative equilibrium then�(z(t)) is

an equilibrium of the reduced flow [1]. In general there are
two possible ways to study the relative equilibrium. The
first approach is to construct the reduction of the Hamil-
tonian system and then to study

XH�(z) D 0 (35)

in Hamiltonian form and

fHG ; f gP/G(z) D 0 for all f 2 F(P/G) (36)
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Periodic Orbits of Hamiltonian Systems, Figure 3
A relative periodic orbit. After a relative period T the orbit z(:)
closes onto the group orbit. The projection of z(:) on P/G is
closed

in the Poisson description. The second approach is to ob-
serve that if z(t) D ˚g(t)(z�) is a relative equilibrium, then
the condition ż(t) D XH(z(t)) implies

dH(z�) � dhJ(z�); �i D 0 ;

with; �P(z�) D
d˚g(t)(z�)

dt

ˇ
ˇ̌
ˇ
tD0

: (37)

On the three formulations, (35), (36) and (37), one can ap-
ply all the standard continuation techniques based on the
IFT. The possible difficulty in the study of the continua-
tion of relative equilibria and relative periodic orbits can
be seen by looking at the linearization of (37). The sym-
metry contributes to the degeneracy of the linearized equa-
tions, in fact one can show

Proposition 7 ([37]) Let X(z) be an equivariant vector
field with respect to a Lie group G. Then a relative equi-
librium has multiplierC1 with multiplicity at least equal to
dimg; and a relative periodic orbit has multiplierC1 with
multiplicity at least equal to dimgC 1.

In [39] relative periodic orbits are defined by looking at the
fixed points of the action of G � S1 on the space of T-pe-
riodic paths. This reads

(g; �) � z(t) D ˚g (z(t C � T)) : (38)

Remark 8 Note that (38) depends on T and it is easy to
verify that T/k is a minimal period if the intersection of
the isotropy subgroup of the action G � S1 with S1 is equal
to Zk .

Theorem 10 ([39]) Let (P; !;H;G) be a symmetric
Hamiltonian system. Let ze 2 P such that

1. d2H(ze) is a nondegenerate quadratic form
2. d2H(ze) is positive-definite if restricted to V�, which is

the real part of the eigenspace associated with the eigen-
value i ,  2 R.

Then for every isotropy subgroup � of the G � S1-action on
V� and � sufficiently small there exist at least Fix(�;V�)
periodic trajectories with period near 2�/jj, a symmetry
group contained in � and jH(z(t)) � H(ze)j D �2.

This result has been proved using a combination of a vari-
ational approach and the IFT, and will be considered in
“Hamiltonian Viewpoint”. We have seen that the Poincaré
section is a useful construction to analyze the local struc-
ture of a periodic orbit. A very similar approach can be
introduced for relative periodic orbits. A relative periodic
orbit can be seen as a combination of motions in P and in
the symmetry group G. It is therefore natural to look for
a suitable decomposition of the motion. In [39] following
decomposition was introduced:

TzP D W ˚ X ˚ Y ˚ Z ; (39)

where

W D kerDzJ(z) \ Tz(G � z); G � z D f˚g(z) : g 2 Gg ;
X D Tz(G � z)/W ;

X D kerDzJ(z)/W ;

Z D TzP/(kerDzJ(z)C Tz(G � z)) :

Let Gz D fg 2 : ˚g(z) D zg and G� D fg 2 G :
Ad�g (�) D �g be the isotropy subgroups. It turns out
that

� kerDzJ(z) and Tz(G � z) are !-orthogonal,
� ! restricted kerDzJ(z)C Tz(G � z) is singular andW is

the kernel,
� ! induces a Gz-invariant symplectic form !X on X and
!Y on Y ,

� ! defines a Gz-invariant isomorphism betweenW and
Z� the dual of Z.

The splitting (39) allows us to decompose the vector field
XH and to analyze the motion along the group orbit and
along the transverse directions. This is a tool used in [39]
to study the Floquet operator in a neighborhood of the rel-
ative periodic orbit. For applications in the study of non-
linear normal modes and stability see [40,41]. In [58] it
is shown that such a construction can be used to decom-
pose the Poincaré section in a part which is tangent to the
conserved momentum, another part which is tangent to
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shape and a part parameterizing the momentum. This ap-
proach has also been applied to the study of the geometry
of mechanical systems defined on the cotangent bundle of
a differentiable manifold; for this see [50] and references
therein.

The Variational Principles and Periodic Orbits

The idea behind variational principles is to transform
a problem in differential equations into a question about
critical points of a certain functional called action, whose
domain is formed by trajectories of interest. Now in the
study of T-periodic orbits we are interested in finding tra-
jectories � solving the equations of motion and satisfying
�(t) D �(tC T). This is a periodicity condition. The vari-
ational approach is particularly useful in the study of pe-
riodic problems because the periodicity condition is in-
cluded in the definition of the space where the action is
defined. Furthermore the method enables us to prove re-
sults not restricted to small perturbations. LetA : � 7! R
be a functional on a space of loops usually modeled on
a Banach or Hilbert space. We shall see that the condition
of vanishing of the first derivative ofA is equivalent, in an
appropriate sense, to solving the equations of motion. In
order to describe the properties ofA let us introduce

Definition 20 (Critical points) Let A[:] be a differen-
tiable functional on�. A path q(:) is a critical point ofA[:]
if

DA[q](v) D 0 for all v(:) 2 T� :

Definition 21 (Critical set) The set K D fq(:) 2
� : DA[q] D 0g is the critical set ofA[:].

Definition 22 (Critical value) A real number c is called
a critical value if Kc

:
DA�1[c] \ K ¤ ;.

Lagrangian Viewpoint

A typical way to write Newton’s equations in a varia-
tional form is by using Lagrange’s equations which are
formulated through the least action principle. This can be
achieved for all mechanical systems that have potential
forces. Consider a mechanical systemwhose configuration
space is a Riemannian manifold M of dimension n. We
denote with (q; vq) the local coordinates in TM and with
L : TM! R the Lagrangian functionLagrangian. In par-
ticular in the case of the so-called natural mechanical sys-
tem [1] the Lagrangian has the form

L(q; vq) D
1
2
hvq ; vqi � V(q) ; (40)

where h:; :i is themetric on TM andV : M! R is the po-
tential. Given a path q : [0; T]!M with integrable time
derivative one can define

Definition 23 (Action functional in Lagrangian form)

AL[q] D
Z T

0
dt L(q(t); q̇(t)) : (41)

In what follows we will be mostly interested in closed
paths. Let C2([0; T];Rn ) be the space of a closed path of
period T with two continuous time derivatives. One can
easily show that

Proposition 8 ([1,5]) Let L be a smooth Lagrangian
function on M of the form (40). Let AL be defined over
� D C2([0; T];M). Then

DAL[q](v) D 0 for every v(:) 2 T� ' C2([0; T]; TM)

is equivalent to Newton’s equations with q(0) D q(T). In
particular the equations of motion in local coordinates are
the Euler–Lagrange equations

d
dt
@L(q̇(t); q(t))

@q̇i
�
@L(q̇(t); q(t))

@qi
D 0 ; i D 1; : : : ; n :

Remark 9 For historical reasons the condition DAL[q]
(v) D 0 is called least action although it is only a condition
for stationary points ofAL[:] in�.

In general the Lagrangian contains a quadratic form in vq;
in turn the action has a time integral of a quadratic form
in q̇(t). This essentially shows that the natural domain for
AL[:] is the Sobolev spaceH1([0; T];Rn). Actually the ac-
tion is defined on H1([0; T];M), which is a Hilbert man-
ifold [8,29]. This is locally described by absolutely contin-
uous functions with the time derivative in the Lebesgue
space L2 [28]. The interest in variational methods is related
to the possibility of using critical point theory to find criti-
cal points corresponding to certain type of trajectories and
then to show that such trajectories are solutions of New-
ton’s equations [2,21,33]. In particular this approach has
been very successful in studying the problem of periodic
orbits. Here is a general result in the Lagrangian setting:

Theorem 11 ([8]) LetM be compact Riemannian mani-
fold and let L : TM! R be a Lagrangian of the form (40)
with V 2 C1(M;R). Then there exists a periodic orbit in
any free homotopy class.

We illustrate the ideas of the proof by considering
the special case where M is the n-dimensional torus
T n ' Rn/Zn . The problem is now to show that the ac-
tionAL[:] attains a critical point, a minimum, in�(M) D
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˚
q(:) 2 H1([0; T];M) : q(:) is not null homotopic

�
. Let us

consider the sublevel of the action Ak D fq(:) 2
�(M) : AL[q] � kg. Now since V is smooth there exists
minM V(q) D m > �1 and therefore

AL[q] �
1
2

Z T

0
dt kq̇(t)k2 � m :

SinceM is compact, the norm of q(:) in �(M) is equiva-
lent to kq̇k2. This allows us to show that the actionA[:] is
coercive, namely:

Definition 24 (Coercivity) A : �! R is coercive in �
if for all qn(:) such that limn!1 kqnk� D 1. Then
limn!1A[qn] D 0.

Moreover in Ak necessarily we have

kq̇k22 D
Z T

0
dt kq̇(t)k2 � 2(k C m) :

This condition guarantees thatAk is weakly compact in the
topology of � [2,33,53] and using the coercivity, one can
obtain the existence of a minimizer q�(:). The minimizer
q�(:) is attained in Ak and it is a weak solution of the equa-
tions of motion. IndeedA[q�] D min�A[q] and

DA[q�](v) D 0 8v(:) 2 �(TRn) ;

namely,

Z T

0
dt

nX

iD1

�
@L(q̇�(t); q�(t))

@qi
vi (t)

C
@L(q̇�(t); q�(t))

@q̇i
v̇i(t)

�
D 0 : (42)

Using the fact that q�(:) is absolutely continuous and
that L is regular, one can integrate by parts

Z T

0
dt

nX

iD1

�
@L(q̇�(t); q�(t))

@q̇i

�

Z t
ds
@L(q̇�(s); q�(s))

@qi

�
v̇i (t) D 0 ;

(43)

and obtain

@L(q̇�(t); q�(t))
@q̇i

�

Z t
ds
@L(q̇�(s); q�(s))

@qi
D ci ;

where ci is constant in L2([0; T];Rn) :

By differentiating with respect to t, we obtain the Euler–
Lagrange equations:

d
dt
@L(q̇�(t); q�(t))

@q̇i
�
@L(q̇�(t); q�(t))

@qi
D 0 a.e. 8i : (44)

It turns out that the equality in (44) holds for all times t
because L is smooth. The reader should observe that the
derivations of (42) and (44) are part of the proof of
Proposition 8. It is necessary to note that constant paths
are not in �(M); indeed the number of minimizers is
bounded from below by the Lusternik–Schnirelman cat-
egory Cat(M) D nC 1 [15,33]. Thus, we exclude possi-
ble minimizers which would be trivial periodic orbits. In
this very simple example we can therefore appreciate the
role of the definition of the space of paths �(M) and its
topology. More interesting cases can be found in the study
of the N-body problem and in particular in the article
� n-Body Problem and Choreographies in this encyclo-
pedia.

The result in [8] can be generalized to Lagrangian
systems with symmetries. Assume there is a group ac-
tion on the configuration space G �M 7!M – de-
noted by (g;m) 7! g:m – which preserves the Lagrangian
L : TM! R and consider the problem of finding relative
periodic paths � (:) as critical points of the action AL[:].
We need to study the topology of

�g(M) D f� (:) 2 H1([0; T];M) : � (tC T) D g:� (t)g :
(45)

In fact if the action AL[:] is bounded from below on
�g(M), then each connected component would contain at
least a minimum that is a critical point and therefore a pe-
riodic orbit. The following analysis was presented in [35].
In what follows for notational simplicity we denote a path
and its homotopy class by the same symbol and use  to
denote both concatenation of paths and the induced oper-
ations on homotopy classes. Assume thatM is connected.
Choose a base point m 2M and let

�
g
m(M) :

D f� 2 �g(M) : � (0) D mg ;

the space of continuous paths from m to gm. Let
�m(M) :D �id

m(M) denote the space of continuous loops
based at m. Note that the space of connected components
of�m(M) is the fundamental group ofM: �0(�m(M)) D
�1(M;m). Fix a particular path ! 2 �g

m(M). The map
˚!(� ) D !�1  � is a bijection

˚! : �0(�
g
m(M))! �0(�m(M)) D �1(M;m) ;

where !�1 is the path obtained by traversing ! “back-
wards.” This bijection depends (only) on the homotopy
class of ! in �g

m(M). For any ˛ 2 �m(M) let g:˛ be
the loop in �gm(M) obtained by applying the diffeomor-
phism g to ˛ and define an automorphism of �1(M;m)
by

˛ 7! ˛g D !�1  g:˛  ! :
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Again this depends (only) on the homotopy class of ! in
�

g
m(M). Now define the g-twisted action of �1(M;m) on

itself by

˛ � ˇ D ˛g  ˇ  ˛
�1 ˛; ˇ 2 �1(M;m) : (46)

The number of connected components of the relative loop
space is given by the following result:

Theorem 12 The map ˚! induces a bijection

�0(�g(M)) Š �1(M;m)
g
;

where �1(M;m)
g
is the set of orbits of the g-twisted action

of �1(M;m) on itself.

Remark 10 If g is homotopic to the identity then�g(M)
is homotopy-equivalent to the loop space �(M) :

D

�id(M) and the g-twisted action of �1(M;m) on itself
is just conjugation. This is therefore the well-known re-
sult that the connected components of the loop space map
bijectively to the conjugacy classes of the fundamental
group [29].

Remark 11 The g-twisted action of �1(M;m) on itself in-
duces an affine action of the first homology group H1(M)
on itself:

h˛i � hˇi D g:h˛i � h˛i C hˇi ;

where the brackets h:i denote the homology class and
g:h˛i denotes the natural action of g on H1(M). When
�1(M;m) is Abelian this is the same as the action of
�1(M;m) on itself. More generally it is easier to calcu-
late than the �1(M;m) action and in typical applications
may be used to describe relative periodic orbits in terms of
winding numbers.

The analysis gives explicit results for systems whose con-
figuration space has the property that all its homotopy
groups except the fundamental group are trivial. In this
caseM is said to be K(�; 1); for more details see [12,57].
Examples of K(�; 1) spaces include tori, the plane R2

with N points removed, and the configuration spaces of
planar N-body problems.

Theorem 13 Assume M is a K(�; 1). Then for any
� 2 �

g
m(M) the connected component of �g(M) contain-

ing � , denoted�g
� (M), is also a K(�; 1) with

�1(�
g
� (M)) Š Zg

	1(M)(˚!(� ));

where

Zg
	1(M)(˚!(� ))

:
D f˛ 2 �1(M) : ˛g  ˚!(� )  ˛�1 D ˚!(� )g

i. e., the isotropy subgroup (or centralizer) at ˚!(� ) of
the g-twisted action of �1(M;m) on itself.

We note that all K(�; 1)’s with isomorphic fundamen-
tal groups are homotopy-equivalent to each other [12,57],
and so this result determines the homotopy types of con-
nected components of relative loop spaces. The homol-
ogy groups can be computed algebraically as the homology
groups of the fundamental group [14].

A Simple Example Let M D T1, the circle, and con-
sider first the loop space �(T1). The “g-twisted action” of
�1(T1) on itself is just conjugation, and since �1(T1) Š Z
is Abelian this is trivial. So �0(�(M)) Š Z, the homotopy
classes of loops being specified precisely by their winding
numbers. Since T1 is a K(�; 1), Theorem 13 says that each
component of relative loop space is also a K(�; 1) with
a fundamental group isomorphic to Z, and therefore has
the homotopy type of a circle.

Now consider �g(T1) where g : T1 ! T1 is a reflec-
tion. Choose one of the two fixed points of the reflection
to be the base point m. We may choose ! to be the triv-
ial path fromm to g:m. Then for each ˛ 2 �1(T1;m) Š Z
we have ˛g D �˛ and so the “g-twisted action” (46) is the
translation

˛:ˇ D ˇ � 2˛: (47)

This has two orbits, �1(T1)
g
Š Z2, and the isotropy sub-

groups are trivial. It follows from Theorems 12 and 13 that
the space of relative loops �g (T1) has two components,
each of which is contractible.

Numerical Studies In many interesting problems, typ-
ically in celestial mechanics, the action functional is
bounded from below and therefore the expected critical
points are minimizers. In recent years, in connection with
the discovery of the so-called choreographic periodic orbits,
Simó [52] developed an algorithm to study how to per-
form a numerical minimization of the action in classes of
loops with a definite symmetry type. The idea is based on
the description of the orbit in terms of its Fourier coeffi-
cients and defining the action AL[:] as a function on the
Fourier space. The actionAL[:] is then minimized on the
space of Fourier coefficients. The interested reader should
consult� n-Body Problem and Choreographies in this en-
cyclopedia. It would be very interesting to generalize this
method to different actions and to see whether one can im-
pose constraints not only on the symmetry type but also on
the topology of the space of loops.
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Hamiltonian Viewpoint

The Hamilton principle gives a variational characteriza-
tion to the Hamiltonian equation. For Hamiltonian sys-
tems in R2n the formulation of the principle is very sim-
ple. Let H : R2n ! R be the Hamiltonian function, then
the action functional is

Definition 25 (Action functional in Hamiltonian form)

AH[� ]
:
D

Z T

0
dt

nX

iD1

pi (t) q̇i (t)

�

Z T

0
dt H(q(t); p(t)) ; (48)

where � (t) D (q(t); p(t)).

It is worth recalling that if the Lagrangian function is hy-
perregular, then the system can be transformed through
the Legendre transform into a Hamiltonian system on the
cotangent bundle of the configuration space. In any case,
givenAH[:] one can show [1,5]

Proposition 9 Let H a smooth Hamiltonian function on
R2n. LetAH be defined over C2([0; T];R2n ); then

DAH[q; p](v) D 0 for every v(:) 2 C2([0; T];R2n)

is equivalent to Hamiltonian equations with q(0) D q(T),
p(0) D p(T).

Recall that in the Hamiltonian context p and q are in-
dependent variables and therefore to prove the preced-
ing proposition it is necessary to compute the variations
with respect to q’s and p’s independently. From the ana-
lytical point of view the functionalAH[:] is a difficult ob-
ject to study since it is unbounded from below and above,
namely, it is indefinite [33]. It is not difficult to give an ex-
ample, consider n D 1 and a Hamiltonian like H D p2/2.
For indefinite functionals a whole theory has been devel-
oped to apply the mountain pass theorem [47]. There is
also a generalization of the Legendre transform [21]. The
new transform [21] can be applied directly to the action
functionalAH[:] rather than to H. This allows us to work
with a convex functional. We do not enter into the details
but we want to recall one result which describes the condi-
tions for the existence of at least n periodic orbits.

Theorem 14 ([21]) Suppose that H 2 C1(R2n ;R) and for
some ˇ > 0, assume that C D fz 2 R2n : H(z) � ˇg is
strictly convex, with boundary @C D fz 2 R2n : H(z) D
ˇg satisfying hz;rH(z)i > 0 for all z 2 @C. Suppose
that for r; R > 0 with r < R <

p
2 r there are two

balls Br(0); BR (0) centered at the origin of R2n such that
Br(0) � al lowbreakC � BR(0), then there are at least n

distinct periodic solutions on @C of the Hamilton system
ż D J rH(z).

The functional AH[:] has been defined for Hamiltonian
systems onR2n , but it admits a generalization to symplec-
tic manifolds which are not tangent bundles:

Definition 26 Let (P; !) be a symplectic manifold
and H : P ! R a smooth Hamiltonian function, let
� : P ! R be a closed path which is the boundary of
a two-dimensional connected region˙ , then

AH[� ]
:
D

Z

˙

! �

Z T

0
dt H(z(t)) : (49)

The functional (49) is a very interesting object. It is nat-
urally defined on closed paths which bound two-dimen-
sional regions. The functional can be defined on “paths”
but then it would become multivalued. In fact in M
one has to introduce a 1-form ˛ such that ! D d˛. The
1-form ˛ is not unique and depends on the co-homology
ofM. AlthoughAH is multivalued the differential DAH
is single-valued [34]. Let '(s) be a finite variation with
d'(s)
ds jsD0 D � , then

DAH[z](�) D
dAH['(s)

ds

ˇ
ˇ̌
ˇ
sD0

D

Z

˙

L� (!)�
Z T

0
dthrH(z); �i ;

where L� is the Lie derivative with respect to � . Now since
d! D 0 one can show that

DAH[z](�) D
Z T

0
i� iXH! �

Z T

0
dthrH(z); �i ;

which is single-valued. The theory for such multivalued
functionals has been developed by many authors; here we
would like to cite [22,43,56]. Note that functionals of the
form (49) can result from symmetry reduction. In fact as
shown in [34] a Lagrangian system with a non-Abelian
symmetryG has a reduced dynamics determined by a vari-
ational principle of the form

AR[� ]
:
D

Z T

0
dt R(q(t); q̇(t))�

Z

˙

ˇ�(q(t); q̇(t)) ; (50)

where R is the so-called Routhian and ˇ� is a 2-form de-
pendent on the conserved momentum �. The construc-
tion of the Routhian and of the reduced actionAR[:] can
be found in [34].
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Fixed-Energy Problem, Hill’s Region

Let us consider Hamiltonian systems (P; !;H) where the
phase space a cotangent bundle P D T�M ' R2n . The
symplectic form is then given by ! D d� , where � is the
canonical form, and the Hamiltonian is

H(p; q) D
1
2
hp; pi C V(q) (51)

h:; :i is a Riemannian metric on T�qM. The Hamiltonian
flow preserves the Hamiltonian function; therefore, a nat-
ural problem is to restrict the dynamics to the manifold
defined by a fixed constant value of the Hamiltonian that
physically corresponds to fixing the energy. Letting E be
the energy value, one can define this natural constraint
by constructing the following submanifold of the phase
space P:

˙E D f(p; q) 2 P : H(p; q) D Eg :

From ˙E it is possible to construct a new manifold that
corresponds to the image of the projection of˙E onto the
configuration space M. To obtain such a projection it is
sufficient to look at (51) and observe that the norm of p on
T�q M cannot be negative. From this, the new space, Hill’s
region, turns out to be defined as follows:

Definition 27 (Hill’s region)

PE
:
D fq 2M : E � V(q) � 0g

Remark 12 The manifold PE depends on the values
of E and may have boundaries. For instance, consider the
Hamiltonian

H D
1
2
kpk2 �



2
kqk2 C

1
4
kqk4 with  > 0 ;

which has a Hill region defined by

PE
:
D

�
q 2M : E C



2
kqk2 �

1
4
kqk4 � 0

�
:

First note that PE is a subset of R2 and that there are the
following cases:

� PE D ; for E < �2/4,
� PE is a circle for E D �2/4,
� PE is an annulus for �2/4 < E < 0,
� PE is a disk minus its center for E D 0,
� PE is a disk for E > 0.

Note that if PE is not empty, then the boundary of @PE is
given by

@PE
:
D

�
q 2M : E C



2
kqk2 �

1
4
kqk4 D 0

�

and is not empty. The boundary corresponds to the set of
points where all momenta p vanish.

The Hill region has a topology which changes according to
the values of the energy; hence, it is a natural problem to
search for periodic orbits in it. What are the possible orbits
in PE? Assuming there is a generic Hill region with a non-
empty boundary, there are two possible types of orbits:

(A) Orbits joining two points of the boundary, the brake
orbits,

(B) Orbits not intersecting the boundary, the internal pe-
riodic orbits.

In general given a Hamiltonian system with a nonempty
Hill region PE we define

Definition 28 (Brake orbit) A solution q(:) of the Hamil-
ton equation is a brake orbit of period T if q(tCT) D q(t),
q(t) 2 PEn@PE for all t 2 (0; T/2) and q(0) 2 @PE ,
q(T/2) 2 @PE .

Definition 29 (Internal periodic orbit) A solution q(:)
of the Hamilton equation is an internal periodic orbit of
period T if q(t C T) D q(t) and q(t) 2 PEn@PE for all t.

Remark 13 In principle one could think that brake orbits
could havemore than two intersections with the boundary
@PE . This is not possible in systems with Hamiltonian (51)
because the velocity on @PE is zero and the Hamiltonian
equations are “reversible”, that is, if q(t) is a solution then
q(�t) is a solution. These two properties imply that any
solution q(t) such that q(ti ) 2 @PE follows the trajectory
q(�t) for t > ti with reversed velocity [24,30].

An example of Hill’s region with brake orbits and internal
periodic orbit is given in Fig. 4.

Jacobi Metric and Tonelli Functional The general ap-
proach to study the periodic orbits of type A or B is to use

Periodic Orbits of Hamiltonian Systems, Figure 4
Example of a compact nonsimply connected Hill region with two
brake orbits �brake and one internal orbit �internal that cannot be
deformed into a point
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a variational principle which is naturally defined on paths
in PE. Let us consider

Definition 30 (Jacobi metric)

JE [q] D
1
2

Z 1

0
ds(E � V(q(s))

���
�
dq(s)
ds

���
�

2
: (52)

The domain of JE [:] is �(PE ) :D fq(:) 2 H1([0; 1];Rn) :
q(sC1) D q(s) q(s) 2 PEg, and the following result holds:

Proposition 10 Let q(:) be a path in �(PE ) where JE [:]
is differentiable and let q(:)C � v(:) 2 �(PEn@PE ) for all �
sufficiently small, then

DJE [q](v) D 0 for all v(:) 2 T�(PE )

is equivalent to

dq(t)
dt
D �rV(q(t))

after a time rescaling defined by

dt
ds
D

���
�
dq(s)
ds

���
�

1
p
E � V(q(s))

:

The proof of this proposition is quite standard and can be
found in [1,8,11,30,51]. Let us observe that in the regions
where E � V(q) > 0 the functional JE [:] can be derived
from the Riemannian metric

d2` D (E � V(q))
X

i; j

ıi jdqi ˝ dqj (53)

and indeed from this its name originated. From the Jacobi
metric a length can be defined

`[q] :D
Z 1

0
ds
q
(E � V (q(s))kq̇(s)k2 :

The Jacobi metric (53) transformed the study of the clas-
sical Newton equations into the study of the geodesics on
PE. It is crucial to note that the Jacobi metric is vanishing
on @PE and therefore cannot be complete in PE whenever
the boundary is not empty. There is another functional
that can be used to study periodic orbits in PE. This is de-
fined as follows:

Definition 31 (Tonelli functional)

TE[q] D
1
2

Z 1

0
ds(E � V(q(s))

Z 1

0
ds
����
dq(s)
ds

����

2
:

Tonelli’s functional is a product of two integrals and there-
fore does not have a natural geometrical interpretation like

(53). One can observe that (by Schwartz inequality) the
Tonelli functional is bounded from below by Jacobi length:
(`[q])2 � 2TE[q]. Note that also TE [:] vanishes on @PE .
The functional TE [:] is defined on �(PE ) and provides
another possible variational description of Newton’s equa-
tions. Indeed one can easily show [2].

Proposition 11 Let q(:) be a path in �(PE ) where TE [:]
is differentiable and let q(:)C � v(:) 2 �(PEn@PE ) for all �
sufficiently small, then

DTE[q](v) D 0 for all v(:) 2 T�(PE )

is equivalent to

dq(t)
dt
D �rV(q(t))

after time rescaling defined by

�
dt
ds

�2
D

Z 1

0
ds
�
���
dq(s)
ds

�
���

2

Z 1

0
ds(E � V(q(s))

:

Remark 14 Observe that in both the Jacobi and the
Tonelli formulation there is a reparameterization of the
time and therefore one can always restrict the consider-
ation to trajectories with unit period.

In variational methods we aim to show that the critical
set is not empty and, if possible, to estimate its cardinal-
ity. This is certainly affected by the topology of the space,
where the paths are defined. Let us now consider the Ja-
cobi metricJE [:]. This functional depends on the energyE,
which affects the properties of PE and �(PE ). There are
four possible cases:

� PE is compact and @PE D ;,
� PE is compact and @PE ¤ ;,
� PE is not compact and @PE D ;,
� PE is not compact and @PE ¤ ;.

In the next section we shall illustrate some results regard-
ing the preceding four cases.We shall see that themain ap-
proaches have much in common with Riemannian geom-
etry. For more details on variational methods the reader is
encouraged to consult [2,15,28,33,53].

Orbits in Compact Hill’s Regions Without a Bound-
ary Let us consider a region PE without a boundary for
E > supq2M V (q). If M is compact, then the previous
condition can be satisfied for some finite E. In this case



6606 P Periodic Orbits of Hamiltonian Systems

PE 'M and the Jacobi metric JE [:] becomes a Rieman-
nian metric onM; therefore, the problem of periodic or-
bits inM translates into the problem of closed geodesics
in the Riemannian manifoldM. This is solved by

Theorem 15 (Lusternik and Fet) Each compact Rieman-
nian manifold contains a closed geodesic.

For a proof see [28,29]. The main tool for proving the the-
orem is the so-called curve shortening. The manifold PE is
Riemannian with metric (53). A base for the topology is
given by Br(q) D fq0 2M : d(q; q0) < rg, where

d(q; q0) D inf f`[� ]; � (:) is a piecewise smooth curve
such that � (0) D q and � (1) D q0

�
:

Remark 15 The reader may observe that if PE has a non-
empty boundary then d(:; :) turns into a pseudometric be-
cause d(q; q0) D 0 for all q; q0 2 @PE . Certainly d(:; :) is
still a metric restricted to the open set PEn@PE .

Let us now give a sketch of the curve-shortening method.
A standard result in Riemannian geometry guarantees that
given a point q0 and a neighborhood Bı (q0), there ex-
ists ı such that any point in @Bı (q0) can be joined to
q0 by a unique geodesic [28]. Since M is compact one
can use a finite family of such neighborhoods to join
any two points q0; q1 2M with a piecewise geodesic � (:).
Now consider on M the space of closed paths of class
H1([0; 1];M) and consider a sequence 0 � t(k)0 < t(k)1 <

� � � < t(k)n�1 < t(k)n � 1 such that tiC1 � ti < ı2/(2c). Take
a curve � (:) 2 H1([0; 1];M) with JE [� ] � c then define

S(k)(� ) D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

is a piecewise geodesic curve
where S(k)(� )(t) is restricted to t(k)i ; t(k)iC1;

is a geodesic joining � t(k)i to � t(k)iC1

for i D 1 : : : n :

Now clearly JE [S(k)(� )] � JE [� ]; `[S(k)(� )] � `[� ]. The
map S(kC1)(:) is constructed by taking a new partition of
[0; 1] such that t(k)i < t(kC1)

i < t(k)iC1. Since one can easily
verify

`[S(kC1)(� )] � `[S(k)(� )] (54)

the iteration of S(k)(:) is called curve shortening. In [24,28],
it is shown that S(k)(� ) converges uniformly to a geodesic.
The limit could be just a point curve. To show that this
cannot be the case one uses the fact that on a com-
pact manifold of dimension n there is always a map
h : Sd 7!M (with 1 � d � n) which is not homotopic to
a constant map.

There have been many generalizations of Lusternik–
Fet theorem and the reader is invited to refer to [29].

Brake Orbits in Hill’s Regions with a Boundary
Let PE be a region with boundary for infq2M V(q) < E <
infq2M V(q). In this case there is the following result:

Theorem 16 ([11]) Suppose that PE is compact and there
are no equilibrium positions in @PE . Then the number of
brake orbits in PE is at least equal to the number of genera-
tors of �1(PEn@PE ).

Since the Jacobi metric is singular on @PE it is necessary
to analyze the geodesic motion near the boundary. This
type of analysis goes back to earlier works [9,10,51]. The
main point is to construct a new region PE�� � PE on
which JE [:] is positive-definite. The next step is to con-
struct a geodesic joining two points on the new bound-
ary @PE�� . Finally the construction on PE�� is used to
show that the geodesic q�(:) becomes a brake orbit in the
limit �! 0. In the case of noncompact PE, the existence
of a brake orbit was proved in [44]. This result is based on
two assumptions:

(i) @PE is not empty and it is formed by two con-
nected components A1 and A2 such that if xn 2 A1
and yn 2 A2 with kxnk ! 1, kynk ! 1 then
kxn � ynk ! 1.

(ii) Let Rı D fq 2M : E � ı < V(q) < Eg for ı > 0. If
either A1 or A2 is not compact, there is a num-
ber r > 0 with the following property: if r0 > r then
there exist r1 > r0 and ı > ı� > 0 such that for ev-
ery q 2 Rı \ fq : kqk > r1g and (q; p) 2 H�1(E) im-
plies that the Hamiltonian flow �(t; q; p) stays in
fq : kqk > r1g for all t � 0 where defined.

Theorem 17 ([44]) Suppose that PE is connected,
infq2@PE krV(q)k > 0 and conditions i and ii hold true.
Then there exists a periodic solution which is a brake orbit.

In this result the lack of compactness of PE does not al-
low us to use the curve shortening. For this reason in [44]
the direct minimization was employed. First a new re-
gion PE�ı � PE is defined for ı > 0. Such region now has
a boundary with two different connected components, Aı1
and Aı2, respectively. In [44] the following minimization
problem was studied

min JE [q] where q(:) 2 H1

and boundary conditions q(0) 2 Aı1; q(0) 2 Aı1 :



Periodic Orbits of Hamiltonian Systems P 6607

Condition i is able to control the lack of compactness
of PE and to show that the minimization problem admits
a solution qı (:). Condition ii allows us to take the limit
ı ! 0 to obtain a brake orbit in PE.

Orbits in Closed, Nonsimply Connected Hill’s Regions
with Boundaries Let us now consider a general Hill re-
gion which is not necessarily compact, with a boundary
and with nontrivial homotopy group �1(PE ). The natu-
ral problem is to determine under which condition it is
possible to prove the existence of a internal periodic orbit
within a specific homotopy class of PE. A partial answer is
given by

Theorem 18 ([6,7]) Suppose that PE is closed and
bounded and that rV(q) ¤ 0 for all q 2 @PE . Then there
exists a periodic orbit q(s) 2 PE for all s. The orbit q(:) can
be either a brake orbit or an internal periodic orbit.

As we have already seen, the Jacobi metric (but also the
Tonelli functional) is degenerate on the boundary @PE ,
i. e., JE [� ] is identically zero on every closed path � (:)
such that � (s) 2 @PE for every s 2 [0; 1]. In order to
avoid this problem, in [6,7], a modified functional was
introduced:

J�[q] :D JE [q]C
Z 1

0
ds U�[q(s)] :

The functional J�[:] is called penalized. If qn(:) is a se-
quence of curves in �(PE ) (the closure of �(PE )) weakly
converging to a curve q�(:) intersecting the boundary,
then the form of U�(:) implies that J(�)[qn] ! C1

whenever � > 0. This type of penalization is similar to the
so-called strong force potential used in the N-body prob-
lem (see [2,26] and also � n-Body Problem and Chore-
ographies). In this case there are two kinds of difficul-
ties: PE is no longer compact and the boundary @PE is
not empty. The strategy is as follows: prove that the crit-
ical level sets of J�[:] are precompact. This is obtained by
a generalization of the Palais–Smale condition. This pre-
vents the sequences from converging on the boundary,
and it is realized by taking a functional � : C1(�(PE )) !
RC such that if qn(:) converges to a path intersecting the
boundary, then �(qn) ! C1. This allows us to intro-
duce:

Definition 32 (Weighted Palais–Smale condition [6])
The action J�[:] satisfies the weighted Palais–Smale con-
dition if any sequence qn(:) fulfills one of the following al-
ternatives:

1. �(qn ) and J�[qn] are bounded and DJ�[qn]! 0 and
qn has a convergent subsequence,

2. J�[qn] is convergent and �(qn)!C1 and there ex-
ists � > 0 such that kDJ�[qn]k � � kD�(qn)k for n
sufficiently large.

The verification of the weighted Palais–Smale condition
guarantees that the set Kc \ fq : �(q) � Mg is compact for
every M > 0. The next step in the proof is to construct
a mini-max structure [47] that allows us to identify the
critical values. This is achieved by constructing two mani-
folds Q and S such that:

(i) S \ @Q D ;,
(ii) If u 2 C0(Q; �(PE )) such that u(q(:)) D q(:) for every

q(:) 2 @Q then h(Q) \ S ¤ ;.

The manifolds Q and S are defined such that the critical
level

c D inf
u2U

sup
q2Q

J�(h(q))

is finite. Here U D fu 2 C0(Q; �(PE )) : u(q(:)) D
q(:) if J�[q] � 0g. Then the weighted Palais–Smale con-
dition allows us to construct a gradient flow and to prove
the existence of a critical point q�(:). In [7] it is shown also
that there exists ˛ � ˇ independent of � such that

˛ � J�[q�] � ˇ :

This uniform estimates make it possible to prove that for
� ! 0 the path q�(:) converges uniformly to a closed path
q0(:) such that the set I :D ft 2 [0; 1] : q0(t) 2 PEn@PEg is
not empty. Since q0(:) is continuous then the interval I has
connected components. Note that q0(:) has the same ho-
motopy type as q�(:), but in general this is no longer true
for the solution of the equations of motion. In fact q0(:) is
a solution only on the connected component of I. Let �
be one connected component of I. On � the path q0(:)
solves the equations of motion. Therefore, the topologi-
cal characterization of the periodic orbit depends on �. If
� � [0; 1] then q0(:) is a brake orbit, if � D [0; 1] then
q0(:) is an internal periodic orbit. The problem of finding
internal periodic orbits in any prescribed homotopy class
is still open.

Continuation of Periodic Orbits as Critical Points

Variational methods can also be very useful to study the
problem of continuation of periodic orbits. Here we re-
strict ourselves to a few examples.
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Lagrangian Variational Principle Let us consider a dy-
namical system inRn that can be written in the Lagrangian
form:

L(vq ; q) D
1
2
kvqk � V(q) :

Let us assume

(i) There exists a > 0 such that V( q) D �a V(q) for
any  > 0,

(ii) There exists a 1-periodic orbit q1(:).

The orbit q1(:) is a critical point of AL[q] DR 1
0 dsL(q̇(s); q(s)). Now let us consider another potential
termW(q) such that

W( q) D �b W(q) with b > a :

Let us look for periodic orbits of period T for the system
whose Lagrangian is

L(vq ; q) D
1
2
kvqk � V(q) �W(q) :

This suggests searching for critical points x(:) of the func-
tional

AT
L [x] D

Z T

0
dt
�
kẋ(t)k2

2
� V (x(t)) �W(x(t))

�
: (55)

The scaling properties ofV andW can be used to construct
a perturbation argument. Define

x(t) D T�p q(t/T) ; where q(s) is defined
for s 2 [0; 1] ; and p D 2/(a C 2) :

(56)

The dynamical equations for x(:) are equivalent to the La-
grangian equation for

AL[q; �] D
Z 1

0
ds
�
kq̇(s)k2

2
� V(q(s)) � �W(q(s))

�
;

(57)

where

�
:
D T

�2(b�a)
aC2 :

The scaling properties of the potential allow us to trans-
form the given problem into a perturbation problem.
Note that there is the following correspondence: a small

perturbation for the scaled action (57) corresponds to
large periods for (55). NowAL[:; 0] DA1

L[:] and in gen-
eral the critical point q1(:) is not isolated and therefore
D2AL[q1; 0] has some degeneracy. If the manifold of crit-
ical points is degenerate along normal directions (nor-
mal degeneracy), then it is possible to continue the criti-
cal point q1(:) into a T-periodic orbit by decomposing the
continuation procedure. This approach is the so-called Li-
apunov–Schmidt reduction; it is used to generalize the IFT
to situations where it cannot be applied directly. An exam-
ple will be illustrated in the last part of this section in the
study of Hamiltonian systems. For details about normal
degeneracy the reader could consult [15].

Hamiltonian Variational Principle Hamiltonian equa-
tions can be thought of as a vector field on a space of loops.
The geometrical construction was described in [56]. Let
us consider the space C1([0; 1];Rn) of differentiable loops.
We can define

X(z) :D �
dz(s)
ds
�JrH(z(s)); z(:) 2 C1([0; 1];R2n): (58)

The zero set of X(z) is formed by loops z(:) such that

�
dz(s)
ds
D JrH(z(s)) :

This corresponds to a periodic orbit z(:) with period 2�/�.
It turns out that X(:) is a Hamiltonian vector field whose
Hamiltonian on C1([0; 1];R2n ) [25,56] is given by

H [z] D
1
2�

Z 2	

0
ds fh� Jż(s); z(s)i � H(z(s))g (59)

and with symplectic form

˝[z;w] D
1
2�

Z 2	

0
dshJz(s);w(s)i : (60)

Indeed a simple calculation shows that

˝(X(z);w) D dH [z](w) :

Let us now suppose there is a periodic orbit z0(:). We want
to illustrate how to study the continuation and bifurca-
tion when the Hamiltonian is perturbed. In order to use
the formulation in the loop space we can introduce the Li-
apunov–Schmidt reduction. In fact, in general, Hamilto-
nian vector fields at a periodic orbit have a linearization
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with a nonempty kernel. The construction we now present
is a very well known approach in the infinite-dimensional
setting.

Liapunov–Schmidt Reduction for Hamiltonian Sys-
tems [3,25] Let (H ;P;˝) be a Hamiltonian system
with P D C1([0; 1];R2n). Let X : P ! Y be the Hamil-
tonian vector field such that z0(:) is a zero ofX(:) and

(i) L D DX(z0) is Fredholm,
(ii) J(ker(L)) D ker(L).

Condition i implies that it is possible to make the following
decomposition

1. P D ker(L)˚W ,W closed subspace,
2. Y D rank(L)˚ N , N closed subspace.

In fact any z can be written as z D k C w with k 2 ker(L)
and w 2 W . This allows us to reduce X(z) D 0 to solving
the following system of equations:

(
˘ X(k C w) D 0 2 rank(L)
(I �˘ )X(k C w) D 0 2 N

(61)

where ˘ : Y 7! rank(L). The first equation in (61) can be
solved with respect to w by the IFT. The second equation
becomes the so-called bifurcation equation:

Xg(k) D (I �˘ )X(k C w(k)) D 0 : (62)

Note that since L is Fredholm dim ker(L) <1, (62) is a fi-
nite-dimensional problem. Now condition ii implies that
Xg can be thought of as a map from ker(L) into itself. Fur-
thermore this allows us to show that Xg is a Hamiltonian
vector field with Hamiltonian

g(k) DH (k C w(k))

and symplectic form ˝(:; :). If condition ii does not hold
a further condition has to be included in order to guaran-
tee that Xg is a Hamiltonian vector field. The bifurcation
equation becomes therefore

˝(Xg(k); u) � dH (k C w(k))(u) D 0 8u : (63)

In [56] the loop space approach and the reduction were
used to show that if a Hamiltonian system has a mani-
fold ˙ of periodic orbits whose tangent space coincides
with the kernel of D2AH (nondegeneracy condition) then
small perturbations of the Hamiltonian cannot destroy all
the periodic orbits:

Theorem 19 ([56]) Let ˙ be a compact, nondegener-
ate manifold of periodic orbits for a Hamiltonian system
(P; !;H). Given any neighborhood U of ˙ there exists
�0 > 0 such that for j�j < �0, the number of periodic orbits
in U for (P; !;H C � H1) is no less than the Lusternik–
Schnirelman category Cat(˙ /S1). If ˙ satisfies the addi-
tional condition that the algebraic multiplicity of 1 as an
eigenvalue of the Poincaré map is uniformly equal to the
dim˙ , then Cat(˙ /S1) � (1C dim˙)/2.

In [25] Liapunov–Schmidt reduction was used to prove
the Liapunov center theorem and also the Hamiltonian
Hopf bifurcation.

Further Directions

This article has focused on periodic orbits in Hamiltonian
systems. This problem can be seen as an organizing center
in the history of the development of modernmathematics.
In fact it is related to many theoretical aspects: bifurca-
tion theory, symmetry reduction, variational methods and
topology of closed curves on manifolds. Still, open prob-
lems remain, for example, one would like to prove the ex-
istence of internal periodic orbits in every homotopy class
of a Hill region. Another interesting direction is the ana-
lytical study of the action functional that results from sym-
metry reduction. A further generalization of the Hamilto-
nian formalism is the study of the so-called multiperiodic
patterns. Here is an example. Let �; p be two functions
defined on the two-dimensional torus T 2 and valued in
R. The functions �; p are 2-periodic because they satisfy
p(x C �1; y C �2) D p(x; y), �(x C �1; y C �2) D �(x),
where (x; y)C (�1; �2) ' (x; y) in T 2. One can pose the
problem to solve a couple of partial differential equations
of the form

r2� C
@

@�
V(�; p; x; y) D 0 and

r2pC
@

@p
V(�; p; x; y) D 0 :

(64)

Here V : R2 7! R is a smooth potential function. Note
that the periodicity of � and p is partial, that is why the
term “multiperiodic patterns” is used. It has been shown
that Eqs. (64) admits a description in terms of finite-di-
mensional multi-symplectic structure and the equations of
motion can be cast into a general Hamiltonian variational
principle. In fact one can define Z D (�; u1; u2; p) defined
as functions on T 2 and the Hamiltonian

S(Z; x; y) D
1
2
(u21 C u22)C V(�; p; x; y) :



6610 P Periodic Orbits of Hamiltonian Systems

Then Eqs. (64) turn out to be equivalent to the variational
equation

DL(Z) D 0 ; (65)

where L is the action functional

L(Z) D
Z �1

0
dx
Z �2

0
dy

 
1
2

�
J1
@Z
@x
C J2

@Z
@y
; Z
	

� S(Z; x; y)

!

(66)

defined on 2-periodic maps Z : T 2 7! R4. The matrices J1
and J2 are two symplectic structures and form amultisym-
plectic structure. In this example J1 and J2 read

J1 D

0

BB
@

0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

1

CC
A and

J2 D

0

BB
@

0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

1

CC
A :

(67)

For Eqs. (64) one can pose the problem of finding so-
lutions as “multiperiodic” critical points of the action L,
which is a generalization of the Hamiltonian action func-
tional (48). An interesting reference for this problem
is [13].
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Glossary

Banach fixed point theorem If M is a complete metric
space with distance d, and f : M ! M is contractive,
i. e. d( f (u); f (v)) � ˛d(u; v) for some ˛ 2 [0; 1) and
all u; v 2 M, then f has a unique fixed point u� and
u� D limk!1 f k(u0) for any u0 2 M.

Brouwer degree An integer dB[ f ;˝] which ‘alge-
braically’ counts the number of zeros of any continu-
ous mapping f : ˝ � Rn ! Rn such that 0 62 f (@˝),
and is invariant for sufficiently small perturbations of
f . If f is of class C1 and its zeros are non degenerate,
then dB[ f ;˝] D

P
x2 f�1(0) sign det f 0(x).

Brouwer fixed point theorem Any continuous mapping
f : B! B, with B is homeomorphic to the closed unit
ball inRn , has at least one fixed point.

Leray–Schauder degree The extension dLS [I � g;˝] of
the Brouwer degree, where˝ is an open bounded sub-
set of the Banach space X, and g : ˝ ! X is continu-
ous, g(˝) is relatively compact and 0 62 (I � g)(@˝).
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Leray–Schauder–Schaefer fixed point theorem If X is
a Banach space, g : X ! X is a continuous mapping
taking bounded subsets into relatively compact ones,
and if the set of possible fixed points of "g (" 2 [0; 1])
is bounded independently of ", then g has at least one
fixed point.

Ljusternik–Schnirelmann category The Ljusternik–
Schnirelmann category cat (M) of a metric space
M into itself is the smallest integer k such that M can
be covered by k sets contractible inM.

Lower and upper solutions A lower (resp. upper) solu-
tion of the periodic problem u00 D f (t; u), u(0) D
u(T), u0(0) D u0(T) is a function ˛ (resp. ˇ) of class
C2 such that ˛00(t) � f (t; ˛(t)), ˛(0) D ˛(T), ˛0(0) �
˛0(T)

�
resp:ˇ00(t) � f (t; ˇ(t)); ˇ(0) D ˇ(T); ˇ0(0) �

ˇ0(T)

.

Palais–Smale condition for a C1 function ' : X ! R

Any sequence (uk )k2N such that ('(uk ))k2N is
bounded and limk!1 '

0(uk ) D 0 contains a con-
vergent subsequence.

Poincaré operator The mapping defined in Rn by
PT : y 7! p(T ; y), where p(t; y) is the unique solution
of the Cauchy problem x0 D f (t; x); x(0) D y.

Schauder fixed point theorem If C is a closed bounded
convex subset of a Banach spaxe X, any continuous
mapping g : C ! C such that g(C) is relatively com-
pact has at least one fixed point.

Sobolev inequality For any function u 2 L2(0; T) such
that u0 2 L2(0; T) and

R T
0 u(t)dt D 0, one has

maxt2[0;T] ju(t)j � (T1/2/2
p
3)[
R T
0 ju

0(t)j2dt]1/2.
Wirtinger inequality For any function u 2 L2(0; T) such

that u0 2 L2(0; T) and
R T
0 u(t)dt D 0, one has

R T
0 ju(t)j

2dt �
�
T2 ı4�2  R T

0 ju
0(t)j2dt.

Definition of the Subject

Many phenomena in nature can be modeled by systems
of ordinary differential equations which depend periodi-
cally upon time. For example, a linear or nonlinear oscil-
lator can be forced by a periodic external force, and an im-
portant question is to known if the oscillator can exhibit
a periodic response under this forcing. This question orig-
inated from problems in classical and celestial mechan-
ics, before receiving important applications in radioelec-
tricity and electronics. Nowadays, it also plays a great role
in mathematical biology and population dynamics, as well
as in mathematical economics, where the considered sys-
tems are often subject to seasonal variations. The general
theory originated with Henri Poincaré’s work in celestial

mechanics, at the end of the XIXth century, and has been
constantly developed since.

Introduction

To motivate the problem and its difficulties, let us start
with the simple linear oscillator with forcing (or input)
h 2 L2(0; 2�)

L�u :D �u00 � u D h(t) ; (1)

where  2 R. We are interested in discussing the exis-
tence or non-existence, and the uniqueness or multiplicity
of a 2�-periodic solution u of (1). Let

h(t) � c0 C
1X

kD1

[ck cos kt C dk sin kt] ;

u(t) � a0 C
1X

kD1

[ak cos kt C bk sin kt] ;

with

c0 D
1
2�

Z 2	

0
h(t)dt ;

�
ck
dk

�
D

1
�

Z 2	

0
h(t)

�
cos kt
sin kt

�
dt (k D 1; 2; : : :)

and similarly for u, be the Fourier series of h and u. If u
is a possible 2�-periodic solution of (1), u is of class C1

and u00 2 L2(0; 2�), so that Fourier series of u and u0 con-
verge uniformly on [0; 2�] to u and u0. Furthermore, from
Parseval equality

khk22 :D
1
2�

Z 2	

0
h2(t)dt D c20 C

1
2

1X

kD1

[c2k C d2k] ;

and, as u00 2 L2(0; 2�), u00(t) � �
P1

kD1 k
2[ak cos kt C

bk sin kt]. Therefore, finding the 2�-periodic solutions
of (1) is equivalent to solving the infinite-dimensional lin-
ear system in l2 with unknowns (a0; a1; b1; : : :)

� a0 D c0 ; (k2 � )ak D ck ;

(k2 � )bk D dk (k D 1; 2; : : :) : (2)

Letting

˙ :D fk2 : k D 0; 1; 2; : : :g ;

we see that if  62 ˙ (non-resonance), system (2) has the
unique solution

a0 D �
c0

; ak D

ck
k2 � 

; bk D
dk

k2 � 
(k D 1; 2; : : :);
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which gives the unique 2�-periodic solution of (1)

u(t) D (L�1� h)(t)

D �
c0

C

1X

kD1

1
k2 � 

[ck cos kt C dk sin kt]:

Furthermore, using Parseval equality,

kuk22 D kL
�1hk22 D

c20
2
C

1
2

1X

kD1

1
(k2 � )2

[c2kCd2k ] (3)

�
1

[dist(;˙)]2

"

c20 C
1
2

1X

kD1

(c2k C d2k)

#

D
1

[dist(;˙)]2
khk22 :

(4)

Now, if  D j2 2 ˙ (resonance) and if c j ¤ 0 or dj ¤ 0,
then (2) has no solution and (1) has no 2�-periodic solu-
tion. If c j D dj D 0, then (1) has the infinite family of
2�-periodic solutions

u(t) D ˛ C
1X

kD1

1
k2

[ck cos kt C dk sin kt] (˛ 2 R)

if j D 0 and

u(t) D ˛ cos jt C ˇ sin jt �
c0
j2

C

1X

kD1
k¤ j

1
k2 � j2

[ck cos kt C dk sin kt]

(˛; ˇ 2 R) if j ¤ 0.
For the nonlinear oscillator

� u00 D g(u)C h(t) (5)

where g : R ! R is continuous, a nonlinear version of
the non-resonant linear situation can be obtained. Indeed,
assume that there exist numbers 0 < ˛ � ˇ such that, for
all u ¤ v 2 R one has

˛ �
g(u) � g(v)

u � v
� ˇ ; [˛; ˇ]\˙ D ; (6)

which means that there exists j2 2 ˙ such that

j2 < ˛ � ˇ < ( jC 1)2 : (7)

If � :D (˛ C ˇ)/2, so that � 62 ˙ , we can write (5) in the
equivalent form

� u00 � �u D g(u) � �uC h(t) ; (8)

and, if we define F� : L2(0; 2�) ! L2(0; 2�) by [F� (u)]
(t) D g(u) � �u(t)C h(t), it follows from (6) that

kF� (u) � F� (v)k2 � ıku � vk2 ; (9)

with ı D (ˇ �˛)/2. Furthermore, finding the 2�-periodic
solutions of (8) is equivalent to solving the equation in
L2(0; 2�)

u D L�1� F� (u) : (10)

Now, using estimates (3), (7) and (9), we get, for all u; v 2
L2(0; 2�),

kL�1� [F� (u) � F� (v)]k2 �
ı

dist(�;˙)
ku � vk2 ;

with ı/dist(�;˙) < 1. Banach fixed point theorem implies
the existence of a unique fixed point u of L�1� F� , and hence
of a unique 2�-periodic solution of (5).

Such a result, proved in 1949 by Dolph [14] for Dirich-
let boundary conditions and in 1976 in [31] for the pe-
riodic problem, has been extended in various directions.
For example, it was proved in [8], using sophisticated
topological methods and delicate a priori estimates, that
if G(u) D

R u
0 g(s)ds, the forced nonlinear oscillator (5)

has at least one 2�-periodic solution for each continuous
h : [0; 2�] ! R if g is odd, ug(u) � �G(u) > 0 for some
� � 1 and all large juj, and if
"

lim inf
u!C1

2G(u)
u2

; lim sup
u!C1

2G(u)
u2

#

¤ fk2g

for any positive integer k. However, it is still an open prob-
lem to know if the natural generalization of (6)

j2 < lim inf
juj!C1

2G(u)
u2

� lim sup
juj!C1

2G(u)
u2

< ( jC 1)2

is sufficient for the existence of a 2�-periodic solution
to (5). The problem of obtaining nonlinear versions of
the resonance situation is more difficult and also requires
more sophisticated tools. It will be considered in Sects.
“Lower and Upper Solutions” to “Critical Point Theory”

Poincaré Operator and Linear Systems

Let T > 0 be fixed, f : R �Rn ! Rn ; (t; x) 7! f (t; x) be
locally Lipschitzian in x and continuous. For each y 2 Rn ,
there exists a unique solution x(t) D p(t; y) of the Cauchy
problem

x0 D f (t; x) ; x(0) D y ;
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defined and continuous on a maximal open set G D f(t;
y) 2 R � Rn : ��(y) < t < �C(y)g, for some �1 �
��(y) < 0 < �C(y) � C1.

A T-periodic solution of the differential system

x0 D f (t; x) (11)

is a solution of (11) defined at least over [0; T] and such
that x(0) D x(T). If we assume in addition that f (t; x) D
f (tCT; x) for all t 2 R and x 2 Rn , a T-periodic solution
of (11) can be continued as a solution defined over R and
such that x(t) D x(t C T) for all t 2 R. Poincaré already
observed at the end of the XIXth century [43] that p(t; y) is
a T-periodic solution of (11) if and only if y 2 Rn is such
that �C(y) > T and y D p(T ; y), i. e. y is a fixed point
of Poincaré operator PT defined by PT (y) D p(T ; y) for
y 2 Rn such that �C(y) > T .

A simple application is the case of a linear system

x0 D A(t)x (12)

where A : [0; T] ! L(Rn ;Rn) is a continuous (n � n)-
matrix-valued function. Given y 2 Rn , the solution of (12)
such that x(0) D y can be written x(t) D X(t)y for some
n � n matrix such that X(0) D I, the fundamental ma-
trix of (12). The corresponding Poincaré operator, given
by PT (y) D X(T)y, has non-trivial fixed points if and only
if I � X(T) is singular. If h : [0; T] ! Rn is continuous,
the solution of the forced linear system

x0 D A(t)x C h(t) (13)

such that x(0) D y being given by

p(t; y) D X(t)y C
Z t

0
X(t)X�1(s)h(s)ds ; (14)

the corresponding Poincaré operator is

PT (y) D X(T)y C
Z T

0
X(T)X�1(s)h(s)ds : (15)

Consequently, if I � X(T) is non singular, i. e. if (12) only
has the trivial T-periodic solution x(t) � 0, (15) has the
unique fixed point

y D [I � X(T)]�1
Z T

0
X(T)X�1(s)h(s)ds

and, by inserting this value of y in (14), (13) has the unique
T-periodic solution

x(t) D
Z T

0
G(t; s)h(s)ds ; (16)

where G(t; s) is the Green matrix explicitly given by

G(t; s)

D

(
X(t)[I � X(T)]�1X�1(s) if 0 � s � t � T
X(t)[I � X(T)]�1X(T)X�1(s) if 0 � t < s � T

(17)

The situation is more complicated when I � X(T) is
singular, which always happens in the simple case where
A(t) � 0, to which we restrict ourself. In this case, X(t) �
I, and PT (y) D y C

R T
0 h(s)ds. It has fixed points if and

only if h has mean value zero, namely

h :D
1
T

Z T

0
h(s)ds D 0 ;

in which case (13) with A(t) � 0 has the family of T-
periodic solutions

x(t) D y C
Z t

0
h(s)ds (y 2 Rn) :

Boundedness and Periodicity

When n D 1 and f : R � R ! R is T-periodic with re-
spect to t, the local uniqueness assumption implies that
two solutions p(t; y) and p(t; z) with y < z are such that
p(t; y) < p(t; z) for all t were they are defined. Hence, if
p(t; y) is defined for all t � 0, p(t C nT ; y) is the solution
of (11) equal to yn D p(nT ; y) at t D 0 for any integer
n � 1. If y1 D y, p(t; y) is T-periodic; if, say, y1 < y,
then p(t C T ; y) D p(t; y1) < p(t; y) for all t � 0, and
hence, p(t C (n C 1)T ; y) < p(t C nT ; y) for all t � 0.
Thus, for any t � 0, the sequence (p(t C nT ; y))n2N is
monotone. If p(t; y) is bounded in the future, i. e. if there
exists M > 0 such that jp(t; y)j � M for all t � 0, the
sequence above, monotone, bounded and equicontinuous
(as (p0(t C nT ; y))n2N is bounded), converges uniformly
on each bounded interval to a continuous function �(t). It
follows from the identity

p(t C nT ; y) D p(nT ; y)C
Z t

0
f (s; p(sC nT ; y))ds

that �(t) is a solution of (11) defined for t � 0 and that

�(T) D lim
n!1

p((nC 1)T ; y) D lim
n!1

p(nT ; y) D �(0) :

This gives a result proved by Massera [29] in 1950: if
n D 1 and f is T-periodic in t, locally Lipschitzian in x,
and continuous, then (11) admits a T-periodic solution if
and only if it admits a solution bounded in the future. Of
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course, the same statement holds if we replace ‘in the fu-
ture’ by ‘in the past’. The result needs not to be true for
n � 2, but, using delicate arguments of two-dimensional
topology, Massera [29] has proved that if n D 2, f is T-
periodic in t, locally Lipschitzian in x, continuous, if all
solutions of (11) exist in the future and if one of them is
bounded in the future, then (11) admits a T-periodic so-
lution. Again, the same statement holds if we replace ‘in
the future’ by ‘in the past’. An important consequence of
Massera’s results is that the absence of T-periodic solu-
tions in a one or two-dimensional T-periodic system im-
plies the unboundedness of all its solutions in the past and
in the future.

By reinforcing Massera’s conditions, one can find cri-
teria for the existence of T-periodic solutions valid for any
n. A set G is a positively invariant set for (11) if, for each
y 2 G, p(t; y) 2 G for all t 2 [0; �C(y)]. In particu-
lar, if G is bounded, then �C(y) D C1. Now, if G is in-
variant, and homeomorphic to the unit closed ball B[0; 1]
in Rn , Poincaré operator maps continuously G into itself,
and Brouwer fixed point theorem implies that (11) has at
least one T-periodic solution with values in G.

Such a result, which can be traced to Lefschetz [24] and
to Levinson [25] in the early 1940s has been widely used
to study the periodic solutions of the periodically forced
Liénard differential equation

y00 C h(y)y0 C g(y) D e(t); (18)

written as a two-dimensional first order system, under
various conditions upon the friction coefficient h(y), the
restoring force g(y) and the forcing term e(t). Some of
Levinson’s results have been at the origin of the theory of
chaos.

Fixed Point Approach: Perturbation Theory

Formula (16) suggests another approach for finding peri-
odic solutions, which is independent of Cauchy’s problem
and requires less regularity. Consider the nonlinear differ-
ential system

x0 D A(t)x C f (t; x) (19)

where A : [0; T] ! L(Rn ;Rn) and f : [0; T] � Rn !

Rn are continuous, and the corresponding linear system
x0 D A(t)x only has the trivial T-periodic solution. Us-
ing formula (16), finding the T-periodic solutions of (19)
is equivalent to solving the nonlinear integral equation

x(t) D
Z T

0
G(t; s) f (s; x(s))ds :D [H (x)](t)

(t 2 [0; T]) ; (20)

withG(t; s) defined in (17), in the Banach space C#
T of con-

tinuous functions such that x(0) D x(T), i. e. to finding
the fixed points of the nonlinear operatorH : C#

T ! C#
T

defined in (20). Consider now the family of problems

x0 D A(t)xC " f (t; x) ; x(0) D x(T) (" 2 R) ; (21)

where x0 D A(t)x only has the trivial T-periodic solution.
Solving (21) is equivalent to solving the equation in C#

T

K(x; ") :D x � "H (x) D 0 :

Trivially,K(x; 0) D 0 if and only if x D 0. If f 0x (t; x)
exists and is continuous, the Fréchet derivative K0x (x; ")
at x 2 C#

T is given by K0x (x; ") D I � "H 0(x), so that
K0x (0; 0) D I is invertible. It follows from the implicit
function theorem in Banach spaces that for some "0 > 0
and each j"j � "0, (21) has a unique solution x" such
that x" ! 0 as " ! 0. Such a result can be traced to
Poincaré [43], who proved it using the associated Cauchy
problem. From the proof of the implicit function theorem
or from Banach fixed point theorem, it follows that x" can
be obtained as the limit of the sequence of successive ap-
proximations given by

x0" D 0 ; xkC1
" (t) D "

Z T

0
G(t; s) f (s; xk" (s))ds

(k D 0; 1; 2; : : :) :

The situation is more complicated when x0 D A(t)x has
nontrivial T-periodic solutions, and again we restrict our-
self to the important special case where A(t) � 0, i. e. to
the family of problems

x0 D " f (t; x) ; x(0) D x(T) (" 2 R) ; (22)

which admits, for " D 0, the n-parameter family of T-
periodic solutions x(t) D c (c 2 Rn). To reduce (22)
to a fixed point problem, one can first notice that, as easily
verified, the linear problem

Lx :D x0 C x(0) D h(t) ; x(0) D x(T)

has, for each continuous h : [0; T] ! Rn , the unique so-
lution

[L�1h](t) D hC
Z t

0
[h(s) � h]ds : (23)

In particular, L�1h D h. Now, for " ¤ 0, problem (22) is
equivalent to

x0 D (1� ") f (�; x(�))C " f (t; x) ; x(0) D x(T) ; (24)
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which, using (23), is equivalent to the fixed point problem
in C#

T

x(t) D x(0)C f (�; x(�))

C "

Z t

0
[ f (s; x(s)) � f (�; x(�))]ds

:D [M(x; ")](t)

introduced by Mawhin in 1969 [30], i. e. to the equation
in C#

T

N (x; ") :D x �M(x; ") D 0 :

N (x; 0) D 0 is equivalent to x(t) D x(0)C f (�; x(�)), and
hence to x(t) � c, with c 2 Rn such that

F(c) :D
1
T

Z T

0
f (s; c)ds D 0: (25)

If c0 is a solution of (25) satisfying condition

Jac F(c0) :D det

"
1
T

Z T

0
f 0x (s; c0)ds

#

¤ 0; (26)

the Fréchet derivativeN 0x (c0; 0) is invertible, and the im-
plicit function theorem in Banach spaces implies the ex-
istence of "0 > 0 such that, for each j"j � "0, equation
N (x; ") D 0 has a unique solution x" such that x" ! c0
as "! 0, and the same conclusion holds for (22).

This result is also a consequence of other perturbation
methods for periodic solutions based upon Poincaré, av-
eraging, Lyapunov–Schmidt or Cesari–Hale methods, and
described in some of the books given in the Bibliography.
The proof by iteration of the implicit function theorem im-
plies that x" can be obtained as the limit of the sequence of
successive approximations given by

x0" D c0 ;

xkC1
" D c C "[I �M0x (c0; 0)]�1

�
h
M(xk" ; ")�M(c0; 0) �M0x (c0; 0)(xk" � c)

i

(k D 0; 1; 2; : : :) :

For example, the search of positive periodic solutions of
Verhulst equation with seasonal variations in population
dynamics

y0 D "[a(t)y � b(t)y2] (" > 0) ; (27)

where a; b : R ! (0;C1) are continuous and have pe-
riod T, is equivalent, through the transformation y D eu ,
to the problem

u0 D "[a(t) � b(t)eu] ; u(0) D u(T)

for which F(c) D a � bec . This equation has the unique
solution c0 D log a/b, and F 0(c0) D �a ¤ 0. Hence, for
sufficiently small " > 0, Verhulst equation with seasonal
variations (27) has at least one positive T-periodic solution
y" such that y" ! a/b when "! 0.

Fixed Point Approach: Large Nonlinearities

The use of more sophisticated fixed point theorems pro-
vides existence results which are not of perturbation type.
If f is continuous, H defined in (20) is continuous, and,
using Arzelá-Ascoli theorem,H takes bounded sets into
relatively compact sets, i. e. H is completely continuous
on C#

T . Using Schauder fixed point theorem,H has at least
one fixed point if it maps a closed ball of C#

T into itself. It is
the case in particular when f satisfies the growth condition

k f (t; x)k � ˛kxk C ˇ ((t; x) 2 [0; T] �Rn) ;

with ˇ � 0 and j˛j
R T
0 jG(t; s)jds < 1 for all t 2 [0; T],

and, in particular, when f is bounded on [0; T] �Rn .
More general existence conditions can be deduced

from Leray–Schauder–Schaefer fixed point theorem,
which, applied toH , implies that (19) has at least one T-
periodic solution if there exists R > 0 such that any possi-
ble solution x of the family of problems

x0(t) D A(t)x C " f (t; x) ; x(0) D x(T) (" 2 [0; 1])

is such that maxt2[0;T] kx(t)k < R. Special cases of this
result, for particular equations, can be traced to Stop-
pelli [49], and the general form was first given by Reis-
sig [46] and Villari [50].

For example, coming back to the equivalent form of
the problem of positive periodic solutions of Verhulst
equation with seasonal variations

u0 D a(t)� b(t)eu ; u(0) D u(T) ; (28)

where a; b : R ! (0;C1) are continuous and have pe-
riod T, we associate to (28) the family of problems

u0 C u D "[a(t)C b(t)eu C u]; u(0) D u(T);
(" 2 [0; 1]) ; (29)

which reduces to (28) for " D 1, and only has the trivial so-
lution for " D 0. If, for some " 2 [0; 1], a possible solution
u of (29) reaches a positive maximum at � , then

0 D u0(�) D "[a(�)� b(�)eu(�)] � (1 � ")u(�) ;

so that "[a(�) � b(�)eu(�)]D (1 � ")u(�) � 0 and

u(�) � log
a(�)
b(�)

� log
max[0;T] a
min[0;T] b

:
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Similarly, if u reaches a negative minimum at � 0, then

u(� 0) � log
a(� 0)
b(� 0)

� log
min[0;T] a
max[0;T] b

:

The existence of at least one T-periodic solution u for (27)
follows from the previous theorem with

R > max
�
log

max[0;T] a
min[0;T] b

;� log
min[0;T] a
max[0;T] b

�
;

and it gives the positive solution y(t) D eu(t) for the
original Verhulst equation with seasonal variations y0 D
a(t)y � b(t)y2, which reduces to the positive equilibrium
y(t) � a

b in the non-seasonal case where a and b are con-
stant.

In the case of system (22), Schauder or Leray–
Schauder–Schaefer fixed point theorems may be difficult
to apply to M(x; ") because of the presence of the x(0)
term. A generalization is required, based upon the concept
of topological degree of some mappings F defined on the
closure ˝ of a bounded open set ˝ of a Banach space X,
and such that F(x) ¤ 0 for x 2 @˝ . This topological
degree, an integer counting ‘algebraically’ the number of
zeros of F in ˝ , is equal, for F D I to 1 or 0 accord-
ing to 0 2 ˝ or 0 62 ˝, implies the existence of a zero
of F in ˝ when it is nonzero, and the topological degree
of F(�; ") is independent of " when F(x; ") ¤ 0 for all
(x; ") 2 @˝ � [0; 1].

Applied to the family of mappings I �M(x; ") intro-
duced in (22), Leray–Schauder and Brouwer degree the-
ory implies the following continuation theorem, proved by
Mawhin in 1969 [30] : if one can find an open bounded set
˝ � C#

T such that

(i) for each " 2 (0; 1], problem (22) has no solution on
@˝ ,

(ii) system F(c) D 0 defined in (25) has no solution on
@˝ \Rn , withRn identified with constant functions
in C#

T ,
(iii) the Brouwer degree dB[F;˝ \Rn] is different from

zero,

then system (11) has at least one T-periodic solution in˝ .
If condition (i) is dropped, the conclusion remains valid
for (22) with " sufficiently small. Notice that in the con-
ditions of the perturbation result described above, con-
dition (ii) holds for ˝ a sufficient small open neighbor-
hood of the zero c0 of F, and condition (26) implies that
dB[F;˝ \Rn] D sign Jac F(c0) D ˙1.

For example, consider the complex-valued Riccati-
type equation

z0 D p(t)C q(t)z C r(t)bz Cbz 2 (30)

where bz denotes the complex conjugate of z, and p; q;
r : [0; T] ! C are continuous. It is nothing but a con-
cise writing for a system of two real differential equations.
If " 2 (0; 1] and z(t) is a possible T-periodic solution of

z0 D "[p(t)C q(t)z C r(t)bz Cbz 2] ; (31)

then, multiplying each member of (31) by z2 and integrat-
ing over [0; T], we get

0 D
1
T

Z T

0

�
z3

3

�0
dt D

1
T

Z T

0
z2(t)z0(t)dt

D "

(
1
T

Z T

0

�
p(t)z2(t)C q(t)z3(t)

Cr(t)bz(t)z2(t)C jz(t)j4
�
dt

)

:

Hence letting, for p � 1,

kukp D

"
1
T

Z T

0
ju(t)jpdt

# 1
p

;

kuk1 D max
t2[0;T]

ju(t)j ;

and using Hölder inequality, we obtain

kzk44 � kpk2kzk
2
4 C [kqk4 C krk4]kzk34

so that kzk4 � R1, where R1 is the positive root of equation
r2 D [kqk4 C krk4]r C kpk2. From (31) follows then that

kz0k1 � kpk1 C [kqk4/3 C krk4/3]R1 C R2
1 D R2 :

Inequalities upon kzk4 and kz0k1 imply that kzk1 < R for
some R D R(R1; R2). Now, for c 2 C,

F(c) D pC qc C rbc Cbc 2

and hence, if F(c) D 0, we have

jcj2 � (kqk1Ckrk1)jcjCkpk1 � (kqk4Ckrk4)jcjCkpk2

so that jcj � R1 < R. Finally, dB[F; B(0; R)] D �2.
Hence all conditions of the second existence theorem hold
for ˝ D B(0; R), and (30) has at least one T-periodic
solution, a result first proved, using a different approach,
by Srzednicki [48] in 1994, the present proof being given
in [35]. Notice that this result could not have been deduced
from Leray–Schauder–Schaefer theorem, whose assump-
tions imply that the associated Leray–Schauder degree has
absolue value one, although, for (30), its has absolue value
two. The perturbed problem

z0 D "[p(t)C q(t)z C r(t)z C z2] ; z(0) D z(T)
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satisfies conditions (ii) and (iii) of Mawhin’s continuation
theorem for˝ D B(0; R) with R sufficiently large, and has
at least one T-periodic solution for j"j sufficiently small.
But Lloyd [28] and Campos–Ortega [6] have shown by ex-
amples that the problem

z0 D p(t)C q(t)z C r(t)z C z2 ; z(0) D z(T) ;

in contrast to (30), may have no T-periodic solution for
some choice of p; q; r.

Finally, notice that the examples developed here il-
lustrate two fundamental approaches to obtain a priori
bounds for the possible T-periodic solutions : maximum
principle-type argument and integral estimates.

Guiding Functions

A useful variant of Mawhin’s continuation theorem given
in Sect. “Fixed Point Approach: Large Nonlinearities” has
been proved in 1992 by Capietto, Mawhin and Zanolin [6],
with another proof in [5] based upon degree theory for
S1-equivariant mappings. It states, for g : Rn ! Rn and
f : [0; T] � Rn ! Rn continuous, that if there exists an
open bounded set ˝ � C#

T such that the family of prob-
lems

x0 D (1�")g(x)C" f (t; x) ; x(0) D x(T) (" 2 [0; 1])

has no solution on @˝ , and if dB[g;˝ \ Rn] ¤ 0, then
the problem

x0 D f (t; x) ; x(0) D x(T) (32)

has at least one solution in˝ . The proof is based upon the
fact that jdLS[I �M;˝]j D jdB[g;˝ \Rn]j, withM the
fixed point operator associated to the autonomous system
x0 D g(x). Now a guiding function on G � Rn for (32)
is a function V : Rn ! R of class C1 such that, with (ujv)
the inner product of u and v inRn ,

kV 0(x)k ¤ 0 and (V 0(x)j f (t; x)) � 0
when (t; x) 2 [0; 1] � G :

This is an extension due to Mawhin–Ward [37] of a slight
generalization given in [32] of a concept introduced in
1958 by Krasnosel’skii and Perov (see [22]) in the case
where G D Rn n B(0; �) for some � > 0. For exam-
ple V (x) D (1/2)kxk2 is a guiding function on @B(0; r)
if (xj f (t; x)) � 0 for (t; x) 2 [0; T] � @B(0; r). We set
Vr D fx 2 Rn : V(x) < rg. It is proved in [37] that
if there exists a C1 function V : Rn ! R such that V0

is non-empty and bounded, V is a guiding function on
V�1(f0g) for (32), and dB[V 0;V0] ¤ 0, then problem (32)

has at least one solution with values in V0. The proof can
be based upon the continuation theoremmentioned above
with g(x) D �V 0(x) and ˝ D fx 2 C#

T : x(t) 2 G (t 2
[0; T])g, and its essential ingredient consists in showing
that, for  2 [0; 1), the family of problems

x0 D �(1 � ")V 0(x)C " f (t; x) ; x(0) D x(T) ;

has no solution on @˝ , which is done by studying themax-
imum of V(x(t)). In particular, if one takes G D Rn n

B(0; �) for some � > 0, andV coercive, i. e. limkxk V(x) D
C1, one can show that dB[V 0;V 0] D 1, and the existence
follows. This generalizes the result about positively invari-
ant sets mentioned in Sect. “Boundedness and Periodic-
ity”.

The following generalization of the concept of guiding
function is also given in [37]. An averaged guiding func-
tion on G � Rn for (32) is a function V : G ! R of class
C1 such that

kV 0(x)k ¤ 0 and
Z T

0
(V 0(x(t))j f (t; x(t))dt) � 0

when x 2 C#
T and x(t) 2 G for all t 2 [0; T]. It is proved

in [37] that problem (32) has at least a solution if there
exists a C1 function V : Rn ! R such that V0 is non-
empty, Vr is bounded for

r D max
�
T max

u2V�1(f0g)
kV 0(u)k2 ;

max
u2V�1(f0g)

Z T

0
j(V 0(u)j f (t; u))jdt

)

;

V is an averaged guiding function onRn nV0 for (32) and
dB[V 0;V 0] ¤ 0.

Of course, any guiding function is an averaged guiding
function, but the converse is false. On the other hand, any
V such that (V 0(x)j f (t; x)) � ˛(t) for some nonnegative
˛ 2 L1(0; T), all (t; x) 2 [0; T] �Rn , and such that

Z T

0
lim sup
kxk!1

(V 0(x)j f (t; x)))dt < 0

is an averaged guiding function. In particular, taking
V (x) D kxk � log(1 C kxk), so that V 0(x) D x

1Ckxk ,
it is easy to see that (32) has at least one solution if


x
kxk j f (t; x)

�
� ˛(t) and

Z T

0
lim sup
kxk!1

�
x
kxk
j f (t; x)

�
dt < 0 :
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Lower and Upper Solutions

A powerful way of proving the existence of T-periodic so-
lutions for first or second order scalar differential equa-
tions is the method of lower and upper solutions (or
sub- and supersolutions), introduced by Scorza Drag-
oni [47] in 1931 for Dirichlet boundary conditions and by
Knobloch [21] in 1967 for periodic solutions. We describe
it here, following the approach initiated in [33], for prob-
lem

u00 D f (t; u) ; u(0) D u(T) ; u0(0) D u0(T) ; (33)

where f : [0; T] � R ! R is continuous. The function
˛ (resp. ˇ) 2 C2([0; T]) is a lower (resp. upper) solution
for (33) if

˛00(t) � f (t; ˛(t)) (t 2]0; T[) ;
˛(0) D ˛(T) ; ˛0(0) � ˛0(T)

(resp. ˇ00(t) � f (t; ˇ(x)) (t 2]0; T[) ;
ˇ(0) D ˇ(T) ; ˇ0(0) � ˇ0(T)) :

The method of lower and upper solutions reduces the ex-
istence of a T-periodic solution to that of an ordered cou-
ple of lower and upper solutions: if there exists a lower
solution ˛ and an upper solution ˇ for (33), such that
˛(t) � ˇ(t) for all t 2 [0; T], then (33) has as least one
solution u such that ˛(t) � u(t) � ˇ(t) for all t 2 [0; T].

To prove such a result, one first introduce a modified
problem whose solutions are solutions of (33), namely

u00 � u D f (t; � (t; u)) � � (t; u) ;
u(0) D u(T) ; u0(0) D u0(T) ; (34)

where � (t; u) D ˛(t); u or ˇ(t) according to u < ˛(t);
˛(t) � u � ˇ(t) or u > ˇ(t). Notice that (33) and (34)
coincide when ˛(t) � u � ˇ(t), that its linear part only
has the trivial T-periodic solution, and that its right-hand
member is continuous and bounded everywhere. A result
in Sect. “Fixed Point Approach: Large Nonlinearities” im-
plies that (34) has at least one solution, sayeu. A contra-
diction argument, based upon simple characterizations of
a maximum or a minimum, implies that ˛(t) � eu(t) �
ˇ(t) for all t 2 [0; T], so thateu is a solution of (33).

A simple consequence is an elegant necessary and suf-
ficient existence condition first proved by Kazdan and
Warner [20] in 1975 in the Dirichlet case : if f (t; c) is non-
decreasing in c for each fixed t, problem (33) has at least
one solution if and only if 1

T
R T
0 f (t; c)dt D 0 for some c 2

R. Indeed, if (33) has a solution u, with um :D min[0;T] u,
uM :D max[0;T] u, integrating both members of (33) over

[0; T] and using the monotonicity of f (t; �) gives
Z T

0
f (t; um)dt � 0 �

Z T

0
f (t; uM)dt ;

and the necessity follows. For the sufficiency, if
R T
0 f (t; c)

dt D 0, and v(t) is the unique solution of the linear prob-
lem

v00 D f (t; c) ; v(0) D 0 D v(T) ; v0(0) D v0(T) ;

then ˛(t) :D c � max[0;T] v C v(t) � c � ˇ(t) :D c
�min[0;T] vC v(t) are ordered lower and upper solutions
for (33).

In particular, the problem

u00 C g(u) D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

with g : R ! R continuous non increasing and h : [0;
T] ! R continuous, has at least one solution if and only
if h 2 g(R). This is a first nonlinear generalization of res-
onance at the first eigenvalue zero. For example, the prob-
lem

u00 � arctan u D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

has at least one solution if and only if �	2 < h < 	
2 , and

the problem

u00 � uC D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

has at least one solution if and only if h � 0. This last prob-
lem is an example of differential equation with asymmet-
ric or jumping nonlinearities. Since the pioneering work
of Fučik [18] in 1978, the study of problems of the type

u00 C ˛uC � ˇu� C g(u) D h(t) ;
u(0) D u(T) ; u0(0) D u0(T)

where the linear part in the nonlinear oscillator is replaced
by a piecewise linear one, has been intensively studied. See
for example [17] for references.

Combined with degree arguments, the method of
lower and upper solutions also allows to obtain multiplic-
ity results for T-periodic solutions. For example, Fabry,
Mawhin and Nkashama [16] have proved in 1986 for the
problem (with c 2 R; s 2 R)

u00 C cu0 C g(u) D h(t)C s ;
u(0) D u(T) ; u0(0) D u0(T) (35)

with limjuj!1 g(u) D C1, the existence of s0 2 R such
that problem (35) has no solution for s < s0, at least
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one solution for s D s0 and at least two solutions for
s > s0. Such a result is generally refered as an Ambrosetti–
Prodi problem, after the pioneering work of Ambrosetti
and Prodi [4], in 1969, for elliptic boundary value prob-
lems. Ortega has studied the stability of the T-periodic so-
lutions when c > 0 (see [40]).

The example of

u00 C u D sin t ; u(0) D u(2�) ; u0(0) D u0(2�)

which has no solution (resonance at the second eigen-
value 1) and has the (unordered) lower and upper solution
˛ � 1 and ˇ � �1 shows that the method of lower and
upper solutions fails in general in the case of unordered
lower and upper solutions. However, Amann, Ambrosetti
and Mancini [2] have proved in 1978, for some elliptic
boundary value problems, that existence may still hold un-
der further conditions, using the following approach. For
eacheh 2 eC#

T D fh 2 C#
T : h D 0g, the linear problem

eLu :D u00 Deh(t) ; u(0) D 0 D u(T) ; u0(0) D u0(T)

has the unique solution

u(t) D [eL�1h](t) D
Z T

0
K(t; s)eh(s)ds ;

where K(t; s) D �s/T(T � t) if 0 � s � t � T and
K(t; s) D �t/T(T � s) if 0 � t < s � T . Hence u is a T-
periodic solution of (33) if and only if u 2 C#

T is a solution
of

u(t)� u(0) D
Z T

0
K(t; s)[ f (s; u(s))� f (�; u(�))]ds (36)

f (�; u(�)) D 0 : (37)

Letting c D u(0); y(t) D u(t) � u(0), so that y 2
bC #

T D fx 2 C#
T : x(0) D 0g, the first equation in (36)

becomes

y(t) D
Z T

0
K(t; s)[ f (s; c C y(s)) � f (�; c C y(�))]ds

:D [R(y; c)](t) ; (38)

with R is completely continuous in bC#
T � R. Assuming

now in addition that j f j is bounded on [0; T] � R, say by
M, Leray–Schauder degree theory applied to (38) as a fixed
point problem in y with c as a parameter implies that the
set (y; c) 2 bC#

T �R satisfying (38) contains a continuum C
whose projection onbC#

T is contained in a ball B[0; R] with

R depending only upon T andM, and whose projection on
R isR. On C, we have, differentiating (38),

y00 D f (t; c C y)� f (�; c C y(�)) ;
y(0) D y(T) ; y0(0) D y0(T) : (39)

Hence, if there exists (c; y) 2 C such that f (�; c C y(�)) D
0, the second equation in (36) is also satisfied and c C
y is a solution of (33). If not, by connexity, either
f (�; c C y(�)) < 0 or f (�; c C y(�)) > 0 for all (c; y) 2 C.
Assume now that (33) has a lower solution ˛ and an up-
per solution ˇ which are not ordered, and consider, say
the case where f (�; cC y(�)) < 0 on C, the other one being
similar. For each c 2 R, it follows from (39) that c C y
is a lower solution for (33) whenever (c; y) 2 C. Taking c
such that cC y(t) � ˇ(t) for all t 2 [0; T] gives a couple of
ordered lower and upper solution, and hence a T-periodic
solution of (33). Proceeding like in the ordered case, we
deduce from this result that if f is bounded and f (t; �) non-
increasing for each fixed t 2 [0; T], then (33) has at least
one solution if and only if 1/T

R T
0 f (t; c)dt D 0 for some

c 2 R. In particular, the problem

u00 C g(u) D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

with g : R! R continuous, bounded and non decreasing,
and h : [0; T] ! R continuous, has at least one solution
if and only if h 2 g(R). This is another nonlinear general-
ization of resonance at the first eigenvalue 0. For example,
the problem

u00C arctan u D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

as at least one solution if and only if �	2 < h < 	
2 , and

the problem

u00C
uC

1C juj
D h(t) ; u(0) D u(T) ; u0(0) D u0(T)

has at least one solution if and only if 0 � h < 1. Notice
that the boundedness condition upon f can be replaced by
suitable linear growth conditions.

The case of constant lower and upper solutions gives
a simple but useful existence condition: if f (t; ˛) � 0 �
f (t; ˇ) for some˛ � ˇ and all t 2 [0; T], problem (33) has
at least one solution u with ˛ � u(t) � ˇ for all t 2 [0; T].
The same conclusion holds for f bounded and f (t; ˇ) �
0 � f (t; ˛) for all t 2 [0; T]. For example, taking ˇ D
R D �˛ for sufficiently large R > 0, the problem

u00 D p(u)C h(t) ; u(0) D u(T) ; u0(0) D u0(T)
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has at least one solution for each continuous h, when p is
a real polynomial of odd order whose highest order term
has a positive coefficient. This result can be traced to Licht-
enstein [26], who proved it in 1915 using a variational
method, and can be applied to the original Duffing’s equa-
tion (with a > 0)

u00 C a
�
u �

u3

6

�
D h(t) ;

u(0) D u(T) ; u0(0) D u0(T)

introduced in 1918 by Duffing [15] as a nonlinear approx-
imation to the forced pendulum equation.

However, for the exact pendulum equation

u00 C a sin u D h(t) ; u(0) D u(T) ; u0(0) D u0(T)
(40)

a necessary condition for the existence of a solution is
�a � h � a, as follows from integrating both mem-
bers over [0; T]. To obtain a necessary and sufficient ex-
istence condition for (40), Dancer [12] has used in 1982
an approach similar to the one described for the case of
unordered lower and upper solutions. Writing h D hCeh,
he has proved, for eacheh, the existence of a (possibly de-
generate) closed interval Ieh � [�a; a] such that (40) has
at least one solution if and only if h 2 Ieh . In 1984, using
degree theory, Mawhin and Willem [38] have proved the
existence of at least two solutions for (40) when h 2 int I .
The same authors have proved that the set ofeh for which
Ieh has a non-empty interior is open and dense in the space
of continuous functions with mean value zero, but it is still
an open problem to know if there exists or not someeh such
that Ieh is a singleton. See [36] for a survey of the various
results related to the forced pendulum equation.

Direct Method of the Calculus of Variations

When a differential equation or system can be written as
the Euler–Lagrange equations of a problem of the calcu-
lus of variations, the direct method can be used to prove
the existence of periodic solutions. Its fundamental result
is that if X is a reflexive Banach space and if a weakly lower
semi-continuous (w.l.s.c.) function ' : X ! (�1;C1]
has a bounded minimizing sequence, then it has a mini-
mum on X. Recall that ' is weakly lower semi-continuous
at a 2 X if lim infk!1 '(uk) � '(u) whenever uk *
u, and that (uk )k2N is a minimizing sequence for ' if
'(uk )! infX '. Another result, valid for an arbitrary Ba-
nach space X, is that a function ' : X ! R of class C1,

bounded from below and satisfying the Palais–Smale con-
dition has a minimum on X. The Palais–Smale condition
was introduced by Palais and Smale [42] in 1964.

For simplicity, only the case of Lagrangian systems of
differential equations of the type

u00 D F 0u(t; u)Ceh(t) ; u(0) D u(T) ; u0(0) D u0(T)
(41)

will be considered, where F : [0; T]�Rn ! R is continu-
ous together with F 0u : [0; T]�Rn ! Rn ,eh : [0; T]! Rn

is continuous with
R T
0
eh(t)dt D 0. We denote by H1

T the
Sobolev space

fu 2 L2([0; T];Rn) : u has a weak derivative

u0 2 L2([0; T];Rn); u(0) D u(T)g;

with the inner product and norm

hu; vi D
Z T

0
[(u(t); v(t))C (u0(t); v0(t))]dt ;

kuk1;1 D hu; ui
1
2 :

It is easy to show that the action functional associated
to (41) given by

'(u) :D
Z T

0

�
ku0(t)k2

2
C F(t; u(t))C (eh(t); u(t))

�
dt

(42)

D

Z T

0

�
ku0(t)k2

2
C F(t; u(t))C (eh(t);eu(t))

�
dt (43)

is well defined, w.l.s.c. and of class C1 on H1
T , with

'0(u)[v]

D

Z T

0

h
(u0(t); v0(t))C (F 0u(t; u(t))Ceh(t); v(t))

i
dt

for all u; v 2 H1
T . Furthermore, if u is a critical point of ',

i. e. if '0(u) D 0, then u 2 C2([0; T];Rn) and satisfies (41).
As a first application, following Mawhin–Willem [39],

assume that kF 0uk is bounded, say by M, on [0; T] � Rn

and that F satisfied the condition

lim
kuk!1

1
T

Z T

0
F(t; u)dt D C1 ; (44)

first introduced by Ahmad–Lazer–Paul [1] in 1976 for el-
liptic boundary value problems. Writing u D u Ceu, and
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using Wirtinger’s inequality, we obtain

'(u) D
Z T

0

ku0(t)k2

2
dt C

Z T

0
F(t; u)dt

C

Z T

0

Z 1

0
(F 0u(t; u C seu(t))Ceh(t);eu(t))dt

�

Z T

0

ku0(t)k2

2
dt �

M0T
3
2

2�

"Z T

0

ku0(t)k2

2
dt

# 1
2

C

Z T

0
F(t; u)dt

with M0 D M C kehk1, which implies that '(u) ! C1
as kuk1;1 ! 1. Hence all minimizing sequences for '
are bounded and the minimum of ' is reached at some
u 2 H1

T , and is a solution of (41).
For example, consider the problem

u00 C g(u) D h(t) ; u(0) D u(T) ; u0(0) D u0(T) ;

where h : [0; T]! R is continuous, g : R! R is contin-
uous, bounded and, with G(u) D

R u
0 g(s)ds, is such that

bg(˙1) :D lim
u!˙1

G(u)
u

(45)

exist. For this problem

lim
juj!1

Z T

0
F(t; u)dt D lim

juj!1
u
�
h �

G(u)
u

�
D C1

if bg(C1) < h < bg(�1). Such a condition, first intro-
duced by Alonso and Ortega [2] in 1996, generalizes the
one introduced by Lazer and Leach [23] in 1969 (with g(u)
instead of G(u)/u in (45)), but usually refered as a Landes-
man–Lazer condition. For example the problem

u00 � arctan u C a sin u D h(t) ;
u(0) D u(T) ; u0(0) D u0(T)

with a 2 R has at least one solution if �	2 < h < 	
2 .

As a second application, due to Willem [51], consider
the case of a spatially periodic F, i. e. such that

F(t; uC Ti ei) D F(t; u) (1 � i � n) (46)

for some Ti > 0 and all (t; u) 2 [0; T] � Rn , where the ei
denote the unit vectors inRn(1 � i � n). As F is bounded
over [0; T]�Rn , it is easy to see, using Sobolev inequality,
that

'(u) �
1
2

Z T

0
ku0(t)k2dt

� C1

"Z T

0
ku0(t)k2dt

# 1
2

� C2

for some C1;C2 � 0, which implies the existence of C3 >

0 such that any minimizing sequence (uk)k2N for ' sat-
isfies

R T
0 kuk (t)k

2dt � C3. On the other hand, it follows
from (46) that ' is such that

'(u C Ti ei) D '(u) (u 2 H1
T ; 1 � i � n) (47)

and hence (uk C vk)k2N with vk;i D kiTi , (ki 2 Z; 1 �
i � n) is also a minimizing sequence. So there is always
a minimizing sequence uk such that 0 � uk;i � Ti(1 �
i � n), and hence a bounded minimizing sequence in
H1

T , implying the existence of a T-periodic solution of (41)
when (46) holds. In particular, this result implies that the
periodic problem for the forced pendulum equation (40)
has at least one solution for each a 2 R and each h with
h D 0, so that 0 2 Ieh . Such a result, already proved
by Hamel [19] in 1922 using calculus of variations, was
independently rediscovered by Willem [51] in 1981 and
Dancer [12] in 1982. Notice that, for n D 1, Dancer and
Ortega [13] have proved in 2004 that if the minimum is
isolated as a critical point of the action functional, then it
is unstable in the sense of Lyapunov.

In this case of a periodic potential, multiplicity results
can be proved using more sophisticated tools of the cal-
culus of variations. Property (47) shows that one can con-
sider naturally ' on the manifold T n � eH 1

T , where T
n de-

notes the n-torus and eH 1
T the subspace of H1

T of functions
with mean value zero. In such a case, a result of Palais [41]
implies that if ' is bounded from below and satisfies the
Palais–Smale condition, then ' has at least cat(T n � eH 1

T )
critical points. In this statement, cat(M) denotes the Lus-
ternik–Schnirelmann category of the set M in itself, i. e.
the least integer k such that M can be covered by k con-
tractible subsets in M, a concept introduced by Ljusternik
and Schnirelmann in 1934 [27]. Now it can be shown that

cat(T n � eH 1
T ) D cat(T n) D nC 1 ;

and hence, under condition (46), system (41) has at least
n C 1 geometrically distinct T-periodic solutions. In par-
ticular, when h D 0, the forced pendulum equation (40)
has at least two T-periodic solutions, a result first obtained
in 1984 by Mawhin and Willem [38], using another vari-
ational approach. For other results in the spirit of Lus-
ternik–Schnirelmann category, see [9,34,45]. Using, in-
stead of Ljusternik–Schnirelmann category, another varia-
tional technique, namely Morse theory (see [10]), one can
prove the existence of at least 2n geometrically distinct T-
periodic solutions when they are non-degenerate.

In the case of a spatially periodic Hamiltonian system

Ju0 D H0u(t; u) ; u(0) D u(T) ;
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whereH : [0; T]�R2n ! R, H0u : [0; T]�R2n ! R2n are

continuous, and J D
�
0 �I
I 0

�
is the symplectic matrix,

a similar result, namely the existence of at least 2n C 1 T-
periodic solutions, has been proved by Conley and Zehn-
der [11] in 1984 using some finite-dimensional reduction
and Conley’s index. It solves a conjecture of Arnold in
symplectic geometry (see e. g. [10]).

Critical Point Theory

A function ' unbounded from below and from above
needs not to have a minimum or a maximum, but may
have a critical point of saddle point type. Many existence
theorems for critical points of saddle point type of some
functionals defined on a Banach space or a Banach mani-
fold have been developed in the last thirty years, and have
found many applications in the study of periodic solutions
of differential systems having a variational structure, like
Lagrangian or Hamiltonian systems. One such result, both
simple and useful, is the saddle point theorem proved in
1978 by Rabinowitz [44]. Let ' : X ! R be of class C1 on
a Banach space X which can be splitted as a direct sum of
closed subspaces X� ˚ XC, with XC finite-dimensional.
Assume that, for some R > 0, sup@B[0;R]\X� ' < infXC ',
and let

M :D fg : B[0; R] \ X� ! X�; continuous;
g(s) D s on @B[0; R] \ X�g :

If ' satisfies a Palais–Smale condition on X, ' has at
least one critical point u such that '(u) D c D
infg2M sups2B[0;R]\X� '(g(s)).

As a simple application, we return to problem (41)
with F 0u bounded over [0; T] � Rn , and we now assume
instead of (44) that

lim
kuk!1

Z T

0
F(t; u)dt D �1: (48)

It is easy to see that' is unbounded from below on the sub-
space of constant functions and bounded from below but
unbounded from above on the subspace of functions with
mean value zero. Hence, in particular, infeH 1

T
' > �1,

and, for all sufficiently large R > 0, sup
@B[0;R]\H1

T
' <

infeH 1
T
', where H1

T is the subspace of constant functions,
so that H1

T D H1
T ˚

eH 1
T . The verification of the Palais–

Smale condition follows from getting first a bound oneuk
using the boundedness of F 0u and then a bound for uk us-
ing condition (48). Hence (41) has at least one T-periodic
solution. In particular, the problem

u00 C g(u) D h(t) ; u(0) D u(T) ; u0(0) D u0(T) ;

where h : [0; T] ! R is continuous and g : R ! R is
continuous, bounded and such that (withbg(˙1) defined
in (45))bg(�1) < h < bg(C1), has at least one solution.
For example, problem

u00 C arctan u C a sin u D h(t) ;
u(0) D u(T) ; u0(0) D u0(T) ;

has a solution if a 2 R and �	2 < h < 	
2 . This is another

example of nonlinear generalization of the resonance con-
dition at zero eigenvalue.

Using topological degree, variational methods, or sym-
plectic techniques, existence results have also been ob-
tained in the case of resonance at a nonzero eigenvalue.
For example, the problem

u00 C k2u C g(u) D h(t) ;
u(0) D u(2�) ; u0(0) D u0(2�)

with g : R ! R continuous and bounded and k a pos-
itive integer, has at least one solution for all continuous
h : [0; 2�]! R such that the real function

˚(�) :D 2
�
bg(C1) �bg(�1)

�
�

Z 2	

0
h(t) sin k(tC�)dt

has no zero or more than two zeros, all simple, in [0; 2�/
k[ . See [17] for the proof and references to earlier contri-
butions of Lazer–Leach, Dancer, and Fabry–Fonda.

Future Directions

In the whole XXth century, the study of periodic solutions
of non-autonomous ordinary differential equations has
been highly influential in the creation and development of
fundamental parts of present mathematics, like functional
analysis (operator theory, iterative methods,: : :), algebraic
topology (fixed point theorems, topological degree, Con-
ley index,: : :), variational methods (dual action principle,
minimax theorems, Morse theory,: : :), symplectic tech-
niques (Poincaré-Birkhoff-type fixed point theorems,: : :).
One can expect that further topological tools will be useful
or developed in searching new existence and multiplicity
theorems for periodic solutions.

The difficult problem of discussing the stability of
those periodic solutions, still in infancy, is fundamental
for the applications and must be developed. Most earlier
studies of special differential equations have been devoted
to models coming from mechanics and electronics, which
are far from being completely understood, but the recent
applications to biology, demography and economy will in-
troduce new classes of differential equations and systems
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with periodic time dependence, requiring the use of new
analytical and topological tools. In this respect, the study
of periodic solutions of nonlinear nonautonomous differ-
ence equations is of increasing importance.

Even if periodic solutions are not the easiest objects
to be found numerically with a large degree of certitude,
numerical methods and computers will play an increasing
role in detecting the presence of periodic solutions. Some
efficient softwares have already been developed in this re-
spect.

An enormous gap still exists between the methods of
approach and the results about what seems to be the natu-
ral generalization of periodic solutions, namely the almost
periodic solutions. It is a paradoxal fact that some state-
ments are true both for periodic solutions and for solu-
tions bounded on the whole real line, but false for the in-
termediate case of almost periodic solutions!

Finally, like the equilibria in autonomous systems, the
study of periodic solutions of non-autonomous equations
will remain the unavoidable first step in trying to under-
stand the complexity of the set of all solutions, and much
remains to be done in this direction. Poincaré’s famous
sentence

‘What renders these periodic solutions so precious is
that they are, so to speak, the only breach through which
wemay try to penetrate a stronghold previously reputed to
be impregnable’

keeps its full significance in the beginning of the XXIth
century.
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18. Fučik S (1976) Boundary value problems with jumping nonlin-
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Glossary

Coexistence The special case when all the independent
solutions of a linear, T-periodic ODE are T-periodic.

Hill’s equation A second order ODE of the form
ẍ C p(t)x D 0, with p(t) T-periodic.

Instability pockets Finite domains, usually intersections
of instability tongues, where the trivial solution of lin-
ear, T-periodic ODEs is unstable.

Instability tongues Domains in parameter space where
the trivial solution of linear, T-periodic ODEs is un-
stable.

Mathieu equation An ODE of the form ẍ C (a C
b cos(t))x D 0.

Parametric resonance Resonance excitation arising for
special values of coefficients, frequencies and other pa-
rameters in T-periodic ODEs.

Quasi-periodic A function of the form
Pn

iD1 fi(t) with
fi(t) Ti -periodic, n finite, and the periods Ti indepen-
dent overR.

Sum resonance A parametric resonance arising in the
case of at least three frequencies in a T-periodic ODE.

Definition of the Subject

Parametric resonance arises in mechanics in systems with
external sources of energy and for certain parameter val-
ues. Typical examples are the pendulum with oscillating
support and a more specific linearization of this pendu-
lum, the Mathieu equation in the form

ẍ C (aC b cos(t))x D 0 :

The time-dependent term represents the excitation. Tra-
dition has it that parametric resonance is usually not con-
sidered in the context of systems with external excitation
of the form ẋ D f (x)C �(t), but for systems where time-
dependence arises in the coefficients of the equation. Me-
chanically this means usually periodically varying stiffness,
mass or load, in fluid or plasma mechanics one can think
of frequency modulation or density fluctuation, in math-
ematical biology of periodic environmental changes. The
term ‘parametric’ refers to the dependence on parameters
and certain resonances arising for special values of the pa-
rameters. In the case of the Mathieu equation, the param-
eters are the frequency ! (a D !2) of the equation with-
out time-dependence and the excitation amplitude b; see
Sect. “Parametric Excitation of Linear Systems” for an ex-
plicit demonstration of resonance phenomena in this two
parameters system.

Mathematically the subject is concerned with ODEs
with periodic coefficients. The study of linear dynamics of

this type gave rise to a large amount of literature in the first
half of the 20th century and this highly technical, classi-
cal material is still accessible in textbooks. The standard
equations are Hill’s equation and the Mathieu equation
(see Subsect. “Elementary Theory”). We will summarize
a number of basic aspects. The reader is also referred to
the article � Dynamics of Parametric Excitation by Alan
Champneys in this Encyclopedia.

Recently, the interest in nonlinear dynamics, new ap-
plications and the need to explore higher dimensional
problems has revived the subject. Also structural stabil-
ity and persistence problems have been investigated. Such
problems arise as follows. Suppose that we have found
a number of interesting phenomena for a certain equation
and suppose we embed this equation in a family of equa-
tions by adding parameters or perturbations. Do the ‘in-
teresting phenomena’ persist in the family of equations? If
not, we will call the original equation structurally unsta-
ble. A simple example of structural instability is the har-
monic equation which shows qualitative different behav-
ior on adding damping. In general, Hamiltonian systems
are structurally unstable in the wider context of dissipative
dynamical systems.

Introduction

Parametric resonance produces interesting mathematical
challenges and plays an important part in many applica-
tions. The linear dynamics is already nontrivial whereas
the nonlinear dynamics of such systems is extremely rich
and largely unexplored. The role of symmetries is essential,
both in linear and in nonlinear analysis. A classical exam-
ple of parametric excitation is the swinging pendulumwith
oscillating support. The equation of motion describing the
model is

ẍ C
�
!2
0 C p(t)


sin x D 0 ; (1)

where p(t) is a periodic function. Upon linearization – re-
placing sin x by x –we obtain Hill’s equation (Subsect. “El-
ementary Theory”):

ẍ C
�
!2
0 C p(t)


x D 0 :

This equation was formulated around 1900 in the pertur-
bation theory of periodic solutions in celestial mechanics.
If we choose p(t) D cos! t, Hill’s equation becomes the
Mathieu equation. It is well-known that special tuning of
the frequency !0 and the period of excitation (of p(t))
produces interesting instability phenomena (resonance).
More generally we may study nonlinear parametric equa-
tions of the form

ẍ C kẋ C (!2
0 C p(t))F(x) D 0 ; (2)
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where k > 0 is the damping coefficient, F(x) D x C
bx2 C cx3 C � � � and time is scaled so that p(t) is a �-pe-
riodic function with zero average. We may also take for
p(t) a quasi-periodic or almost-periodic function. The
books [48] cover most of the classical theory, but for a nice
introduction see [38]. In [36], emphasis is placed on the
part played by parameters, it contains a rich survey of bi-
furcations of eigenvalues and various applications. There
are many open questions for Eqs. (1) and (2); we shall dis-
cuss aspects of the classical theory, recent theoretical re-
sults and a few applications.

As noted before, in parametric excitation we have an
oscillator with an independent source of energy. In exam-
ples, the oscillator is often described by a one degree of
freedom system but of course many more degrees of free-
dom may play a part; see for instance in Sect. “Applica-
tions” the case of coupled Mathieu-equations as studied
in [33]. In what follows, " will always be a small, positive
parameter.

Perturbation Techniques

In this section we review the basic techniques to han-
dle parametric perturbation problems. In the case of
Poincaré–Lindstedt series which apply to periodic solu-
tions, the expansions are in integer powers of ". It should
be noted that in general, other order functions of " may
play a part; see Subsect. “Elementary Theory” and [46].

Poincaré–Lindstedt Series

One of the oldest techniques is to approximate a peri-
odic solution by the construction of a convergent series in
terms of the small parameter ". The method can be used
for equations of the form

ẋ D f (t; x)C "g(t; x)C "2 � � � ;

with x 2 Rn and (usually) assuming that the ‘unper-
turbed’ problem ẏ D f (t; y) is understood and can be
solved. Note that the method can also be applied to per-
turbed maps and difference equations. Suppose that the
unperturbed problem contains a periodic solution, under
what conditions can this solution be continued for " > 0?
The answer is given by the conditions set by the implicit
function theorem, see for formulations and theorems [30]
and [44]. Usually we can associate with our perturbation
problem a parameter space and one of the questions is
then to find the domains of stability and instability. The
common boundary of these domains is often character-
ized by the existence of periodic solutions and this is where
Poincaré-Lindstedt series are useful. We will demonstrate
this in the next section.

Averaging

Averaging is a normalization method. In general, the
term“normalization” is used whenever an expression or
quantity is put in a simpler, standardized form. For in-
stance, a n � n-matrix with constant coefficients can be
put in Jordan normal form by a suitable transformation.
When the eigenvalues are distinct, this is a diagonal ma-
trix.

Introductions to normalization can be found in [1,
15,19] and [13]. For the relation between averaging and
normalization in general the reader is referred to [34]
and [44]. For averaging in the so-called standard form it
is assumed that we can put the perturbation problem in
the form

ẋ D "F(t; x)C "2 � � � ;

and that we have the existence of the limit

lim
T!1

1
T

Z T

0
F(t; x)dt D F0(x) :

The analysis of the averaged equation ẏ D F0(y) produces
asymptotic approximations of the solutions of the original
equation on a long timescale; see [34]. Also, under certain
conditions, critical points of the averaged equation corre-
spond with periodic solutions in the original system. The
choice to use Poincaré-Lindstedt series or the averaging
method is determined by the amount of information one
wishes to obtain. To find the location of stability and insta-
bility domains (the boundaries), Poincaré-Lindstedt series
are very efficient. On the other hand, with somewhat more
efforts, the averagingmethodwill also supply this informa-
tion with in addition the behavior of the solutions within
the domains. For an illustration see Subsect. “Elementary
Theory”.

Resonance

Assume that x D 0 is a critical point of the differential
equation and write the system as:

ẋ D Ax C f (t; x; ") ; (3)

with x 2 Rn , A a constant n � n-matrix; f (t; x; ") can be
expanded in a Taylor series with respect to " and in homo-
geneous vector polynomials in x starting with quadratic
terms. Normalization of Eq. (3) means that by successive
transformation we remove asmany terms of Eq. (3) as pos-
sible. It would be ideal if we could remove all the nonlinear
terms, i. e. linearize Eq. (3) by transformation. In general,
however, some nonlinearities will be left and this is where
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resonance comes in. The eigenvalues1; : : : ; n of thema-
trix A are resonant if for some i 2 f1; 2; : : : ; ng one has:

nX

jD1

mj j D i ; (4)

withmj � 0 integers andm1 C m2 C � � � C mn � 2. If the
eigenvalues of A are non-resonant, we can remove all the
nonlinear terms and so linearize the system. However, this
is less useful than it appears, as in general the sequence of
successive transformations to carry out the normalization
will be divergent. The usefulness of normalization lies in
removing nonresonant terms to a certain degree to sim-
plify the analysis.

Normalization of Time-Dependent Vectorfields

In problems involving parametric resonance, we have
time-dependent systems such as equations perturbing the
Mathieu equation. Details of proofs and methods to com-
pute the normal form coefficients in such cases can be
found in [1,18] and [34]. We summarize some aspects.
Consider the following parameter and time dependent
equation:

ẋ D F(x; �; t) ; (5)

with x 2 Rm and the parameters � 2 Rp .
Here F(x; �; t) : Rm�Rp�R! Rm is C1 in x and�

and T-periodic in the t-variable. We assume that x D 0 is
a solution, so F(0; �; t) D 0 and, moreover assume that
the linear part of the vectorfield DxF(0; 0; t) is time-in-
dependent for all t 2 R. We will write L0 D DxF(0; 0; t).
Expanding F(x; �; t) in a Taylor series with respect to x
and � yields the equation:

ẋ D L0x C
kX

nD2

Fn(x; �; t)C O(j(x; �)jkC1) ; (6)

where the Fn(x; �; t) are homogeneous polynomials in x
and � of degree n with T-periodic coefficients.

Theorem 1 Let k 2 N. There exists a (parameter- and
time-dependent) transformation

x D x̂ C
kX

nD2

Pn(x̂; �; t) ;

where Pn(x̂; �; t) are homogeneous polynomials in x and�
of degree n with T-periodic coefficients, such that Eq. (6)
takes the form (dropping the hat):

ẋ D L0x C
kX

nD2

F̃n(x; �; t)C O(j(x; �)jkC1) ;

�̇ D 0 :

(7)

The truncated vectorfield:

ẋ D L0x C
kX

nD2

F̃n(x; �; t) D F̃(x; �; t) ; (8)

which will be called the normal form of Eq. (5), has the fol-
lowing properties:

1. d
dt e

L�0 t F̃(e�L
�

0 t x; �; t) D 0, for all (x; �) 2 RmCp ;

t 2 R.
2. If Eq. (5) is invariant under an involution (i. e. SF(x;
�; t) D F(Sx; �; t) with S an invertible linear opera-
tor such that S2 D I), then the truncated normal form
(8) is also invariant under S. Similarly, if Eq. (5) is
reversible under an involution R (i. e. RF(x; �; t) D
�F(Rx; �; t)), then the truncated normal form (8) is
also reversible under R.

For a proof, see [18].
The theorem will be applied to situations where L0 is

semi-simple and has only purely imaginary eigenvalues.
We take L0 D diagfi1; : : : ; im)g. In our applications,
m D 2l is even andlC j D � j for j D 1; : : : ; l . The vari-
able x is then often written as x D (z1; : : : ; zl ; z̄1; : : : ; z̄l ).

Assume L0 D diagfi1; : : : ; im)g then:

� A term x�11 : : : x�nm ei
2

T kt is in the jth component of the

Taylor–Fourier series of F̃(x; �; t) if:

�  j C
2�
T

k C �11 C � � � C �mm D 0 : (9)

This is known as the resonance condition.
� Transforming the normal form through x D eL0 tw

leads to an autonomous equation for w:

ẇ D
kX

nD2

F̃n(w; �; 0) : (10)

� An important result is this: If Eq. (5) is invariant (re-
spectively reversible) under an involution S, then this
also holds for Eq. (10).

� The autonomous normal form (10) is invariant under
the action of the group G D fgjgx D e jL0T x; j 2 Zg,
generated by eL0T . Note that this group is discrete if the
ratios of the i are rational and continuous otherwise.

For a proof of the last two statements see [31].
By this procedure we can make the system au-

tonomous. This is very effective as the autonomous nor-
mal form (10) can be used to prove the existence of peri-
odic solutions and invariant tori of Eq. (5) near x D 0. We
have:
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Theorem 2 Let " > 0, sufficiently small, be given. Scale
w D "ŵ.

1. If ŵ0 is a hyperbolic fixed point of the (scaled)
Eq. (10), then Eq. (5) has a hyperbolic periodic solution
x(t) D "ŵ0 C O("kC1).

2. If the scaled Eq. (10) has a hyperbolic closed orbit, then
Eq. (5) has a hyperbolic invariant torus.

These results are related to earlier theorems in [3], see also
the survey [45]. Later we shall discuss normalization in the
context of the so-called sum-resonance.

Remarks on Limit Sets

In studying a dynamical system the behavior of the so-
lutions is for a large part determined by the limit sets of
the system. The classical limit sets are equilibria and peri-
odic orbits. Even when restricting to autonomous equa-
tions of dimension three, we have no complete classifi-
cation of possible limit sets and this makes the recogni-
tion and description of non-classical limit sets important.
In parametrically excited systems, the following limit sets,
apart from the classical ones, are of interest:

� Chaotic attractors. Various scenarios were found,
see [31,32,42].

� Strange attractors without chaos, see [27]. The natural
presence of various forcing periods in real-life models
make their occurrence quite plausible.

� Attracting tori. These limit sets are not difficult to find;
they arise for instance as a consequence of a Neimark–
Sacker bifurcation of a periodic solution, see [19].

� Attracting heteroclinic cycles, see [20].

A large number of these phenomena can be studied both
by numerics and by perturbation theory; using the meth-
ods simultaneously gives additional insight.

Parametric Excitation of Linear Systems

As we have seen in the introduction, parametric excita-
tion leads to the study of second order equations with pe-
riodic coefficients. More in general such equations arise
from linearization near T-periodic solutions of T-peri-
odic equations of the form ẏ D f (t; y). Suppose y D �(t)
is a T-periodic solution; putting y D �(t)C x produces
upon linearization the T-periodic equation

ẋ D fx (t; �(t))x : (11)

This equation often takes the form

ẋ D Ax C "B(t)x ; (12)

in which x 2 Rm ; A is a constant m � m-matrix, B(t)
is a continuous, T-periodic m � m-matrix, " is a small
parameter. For elementary studies of such an equation,
the Poincaré-Lindstedt method or continuation method is
quite efficient. The method applies to nonlinear equations
of arbitrary dimension, but we shall demonstrate its use
for equations of Mathieu type.

Elementary Theory

Floquet theory tells us that the solutions of Eq. (12) can be
written as:

x(t) D ˚(t; ")eC(")t ; (13)

with ˚(t; ") a T-periodic m � m-matrix, C(") a constant
m � m-matrix and both matrices having an expansion in
order functions of ". The determination of C(") provides
us with the stability behavior of the solutions. A particular
case of Eq. (12) is Hill’s equation:

ẍ C b(t; ")x D 0 ; (14)

which is of second order; b(t; ") is a scalar T-periodic
function. A number of cases of Hill’s equation are stud-
ied in [23]. A particular case of Eq. (14) which arises fre-
quently in applications is the Mathieu equation:

ẍ C (!2 C " cos 2t)x D 0; ! > 0 ; (15)

which is reversible. (In [23] one also finds Lamé’s, Ince’s,
Hermite’s, Whittaker–Hill and other Hill equations.)
A typical question is: for which values of ! and " in
(!2; ")-parameter space is the trivial solution x D ẋ D 0
stable?

Solutions of Eq. (15) can be written in the Floquet
form (13), where in this case ˚(t; ") will be �-periodic.
The eigenvalues 1, 2 of C, which are called characteris-
tic exponents and are "-dependent, determine the stability
of the trivial solution. For the characteristic exponents of
Eq. (12) we have:

nX

iD1

i D
1
T

Z T

0
Tr(AC "B(t))dt ; (16)

see Theorem 6.6 in [44]. So in the case of Eq. (15) we have:

1 C 2 D 0 : (17)

The exponents are functions of ", 1 D 1("), 2 D 2(")
and clearly 1(0) D i!, 2(0) D �i!. As 1(") D �2("),
the characteristic exponents, which are complex conju-
gate, are purely imaginary or real. The implication is
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that if !2 ¤ n2, n D 1; 2; : : : the characteristic exponents
are purely imaginary and x D 0 is stable near " D 0. If
!2 D n2 for some n 2 N , however, the imaginary part of
exp(C(")t) can be absorbed into˚(t; ") and the character-
istic exponents may be real. We assume now that !2 D n2

for some n 2 N, or near this value, and we shall look for
periodic solutions of x(t) of Eq. (15) as these solutions de-
fine the boundaries between stable and unstable solutions.
We put:

!2 D n2 � "ˇ ; (18)

with ˇ a constant, and we apply the Poincaré-Lindstedtj
method to find the periodic solutions; see Appendix 2
in [44]. We find that periodic solutions exist for n D 1 if:

!2 D 1˙
1
2
"CO("2) :

In the case n D 2, periodic solutions exist if:

!2 D 4 �
1
48
"2 CO("4) ;

!2 D 4C
5
48
"2 CO("4) :

(19)

The corresponding instability domains are called Flo-
quet tongues, instability tongues or resonance tongues, see
Fig. 1.

On considering higher values of n, we have to calculate
to a higher order of ". At n D 1 the boundary curves are
intersecting at positive angles at " D 0, at n D 2 (!2 D 4)

Perturbation Analysis of Parametric Resonance, Figure 1
Floquet tongues of the Mathieu Eq. (15); the instability domains
are shaded

they are tangent; the order of tangency increases as n � 1
(contact of order n), making instability domains more and
more narrow with increasing resonance number n.

Higher Order Approximation and an Unexpected
Timescale The instability tongue of the Mathieu equa-
tion at n D 1 can be determined with more precision by
Poincaré expansion. On using averaging, one also charac-
terizes the flow outside the tongue boundary and this re-
sults in a surprise. Consider Eq. (15) in the form

ẍ C (1C "aC "2bC " cos 2t)x D 0;

where we can choose a D ˙ 1
2 to put the frequency with

first order precision at the tongue boundary. The eigen-
values of the trivial solution are from first order averaging

1;2 D ˙
1
2

r
1
4
� a2;

which agrees with Poincaré expansion; a2 > 1
4 gives sta-

bility, the < inequality instability. The transition value
a2 D 1

4 gives the tongue location. Take for instance theC
sign. Second order averaging, see [46], produces for the
eigenvalues of the trivial solution

1;2 D ˙

vuu
t � 1

4
� 1
32 C b


"3 C

� 1
64 C

1
2b


�
� 7
64 �

1
2b

"4

:

So, if 1
32 C b > 0 we have stability, if 1

32 C b < 0 instabil-
ity; at b D � 1

32 we have the second order approximation
of this tongue boundary. Note that near this boundary the
solutions are characterized by eigenvalues of O("

3
2 ) and

accordingly the time-dependence by timescale "
3
2 t.

The Mathieu Equation with Viscous Damping In real-
life applications there is always the presence of damping.
We shall consider the effect of its simplest form, small
viscous damping. Eq. (15) is extended by adding a linear
damping term:

ẍ C � ẋ C (!2 C " cos 2t)x D 0 ; a; � > 0 : (20)

We assume that the damping coefficient is small, � D
"�0, and again we put !2 D n2�"ˇ to apply the Poincaré-
Lindstedt method.

We find periodic solutions in the case n D 1 if:

!2 D 1˙
r

1
4
"2 � �2 : (21)

Relation (21) corresponds with the curve of periodic so-
lutions, which in (!2; ")-parameter space separates sta-
ble and unstable solutions. We observe the following phe-
nomena. If 0 < � < 1

2", we have an instability domain
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Perturbation Analysis of Parametric Resonance, Figure 2
First order approximation of instability domains without and
with damping for Eq. (20) near!2 D 1

which by damping has been lifted from the !2-axis; also
the width has shrunk. If � > 1

2" the instability domain has
vanished. For an illustration see Fig. 2.

Repeating the calculations for n � 2 we find no insta-
bility domains at all; damping of O(") stabilizes the system
for " small. To find an instability domain we have to de-
crease the damping, for instance if n D 2 we have to take
� D "2�0.

Coexistence Linear periodic equations of the form (12)
havem independent solutions and it is possible that all the
independent solutions are periodic. This is called ‘coexis-
tence’ and one of the consequences is that the instability
tongues vanish. An example is Ince’s equation:

(1C a cos t)ẍ C � sin tẋ C (!2 C " cos t)x D 0 ;

see [23]. An interesting question is whether this phe-
nomenon persists under nonlinear perturbations; we re-
turn to this question in Subsect. “Coexistence Under Non-
linear Perturbation”.

More General Classical Results

The picture presented by the Mathieu equation resulting
in resonance tongues in the !; "-parameter space, stabil-
ity and instability intervals as parametrized by ! shown in
Fig. 1, has been studied for more general types of Hill’s
equation. The older literature can be found in [39], see
also [43].

Consider Hill’s equation in the form

ẍ C (!2 C " f (t))x D 0 ; (22)

with f (t) periodic and represented by a Fourier series.
Along the !2-axis there exist instability intervals of size

Lm , where m indicates the mth instability interval. In the
case of the Mathieu equation, we have from [16]

Lm D O("m ) :

The resonance tongues become increasingly narrow.
For general periodic f (t) we have weak estimates, like

Lm D O("), but if we assume that the Fourier series is fi-
nite, the estimates can be improved. Put

f (t) D
sX

jD0

f j cos 2 jt ;

so f (t) is even and �-periodic. From [22] we have the fol-
lowing estimates:

� If we can write m D sp with p 2 N , we have

Lm D
8s2

((p � 1)!)2

�
j fs"j
8s2

�p
C O("pC1) :

� If we can not decompose m like this and sp < m <

s(pC 1), we have

Lm D O("pC1) :

In the case of Eq. (22) we have no dissipation and then it
can be useful to introduce canonical transformations and
Poincaré maps. In this case, for example, put

ẋ D y; ẏ D �
@H
@x

;

with Hamiltonian function

H(x; y; t) D
1
2
y2 C

1
2
(!2 C " f (t))x2 :

We can split H D H0 C "H1 with H0 D
1
2 (y

2 C !2x2)
and apply canonical perturbation theory. Examples of this
line of research can be found in [6] and [10]. Interesting
conclusions can be drawn with respect to the geometry of
the resonance tongues, crossings of tongues and as a possi-
ble consequence the presence of so-called instability pock-
ets. In this context, the classical Mathieu equation turns
out to be quite degenerate.

Hill’s equation in the case of damping was considered
in [35]; see also [36] where an arbitrary number of degrees
of freedom is discussed.

Quasi-Periodic Excitation

Equations of the form

ẍ C (!2 C "p(t))x D 0 ; (23)
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with parametric excitation p(t) quasi-periodic or almost-
periodic, arise often in applications. Floquet theory does
not apply in this case but we can still use perturbation the-
ory. A typical example would be two rationally indepen-
dent frequencies:

p(t) D cos t C cos � t ;

with � irrational. As an interesting example, in [7],
� D 1

2 (1C
p
5) was chosen, the golden number. It will

be no surprise that many more complications arise for
large values of ", but for " small (the assumption in this
article), the analysis runs along similar lines producing
resonance tongues, crossings of tongues and instability
pockets. See also extensions in [11]. Detailed perturba-
tion expansions are presented in [49] with a comparison
of Poincaré expansion, the harmonic balance method and
numerics; there is good agreement between the methods.
Real-lifemodels contain dissipation which inspired the au-
thors of [49] to consider the equation

ẍ C 2�ẋ C (!2 C "(cos t C cos � t))x D 0; � > 0 ;

� irrational. They conclude that

� The instability tongues become thinner and recede into
the !-axis as � increases.

� High-order resonance tongues seem to be more af-
fected by dissipation than low-order ones producing
a dramatic loss of ‘fine detail’, even for small �.

� The results of varying the parameter � certainly needs
more investigation.

Parametrically Forced Oscillators in Sum Resonance

In applications where more than one degree of freedom
plays a part, many more resonances are possible. For
a number of interesting cases and additional literature
see [36]. An important case is the so-called sum resonance.
In [17] a geometrical explanation is presented for the phe-
nomena in this case using ‘all’ the parameters as unfold-
ing parameters. It will turn out that four parameters are
needed to give a complete description. Fortunately three
suffice to visualize the situation. Consider the following
type of differential equation with three frequencies

ż D Az C " f (z; !0t;); z 2 R4;  2 Rp ; (24)

which describes a system of two parametrically forced cou-
pled oscillators. Here A is a 4 � 4 matrix, containing pa-
rameters, and with purely imaginary eigenvalues ˙i!1
and ˙i!2. The vector valued function f is 2�-periodic in
!0t and f (0; !0t;) D 0 for all t and . Equation (24) can

be resonant in many different ways. We consider the sum
resonance

!1 C !2 D !0 ;

where the system may exhibit instability. The parameter 
is used to control detuning ı D (ı1; ı2) of the frequencies
(!1; !2) from resonance and damping � D (�1; �2). We
summarize the analysis from [17].

� The first step is to put Eq. (24) into normal form by
normalization or averaging. In the normalized equa-
tion the time-dependence appears only in the higher
order terms. But the autonomous part of this equation
contains enough information to determine the stabil-
ity regions of the origin. The linear part of the normal
form is ż D A(ı; �)z with

A(ı; �) D
�

B(ı; �) 0
0 B(ı; �)

�
; (25)

and

B(ı; �) D
�

iı1 � �1 ˛1
˛2 �iı2 � �2

�
: (26)

Since A(ı; �) is the complexification of a real matrix,
it commutes with complex conjugation. Furthermore,
according to the normal form Theorem 1 and if !1 and
!2 are independent over the integers, the normal form
of Eq. (24) has a continuous symmetry group.

� The second step is to test the linear part A(ı; �) of the
normalized equation for structural stability i. e. to an-
swer the question whether there exist open sets in pa-
rameter space where the dynamics is qualitatively the
same. The family of matrices A(ı; �) is parametrized
by the detuning ı and the damping �. We first identify
the most degenerate memberN of this family and then
show that A(ı; �) is its versal unfolding in the sense
of [1]. The family A(ı; �) is equivalent to a versal un-
folding U() of the degenerate member N.

� Put differently, the family A(ı; �) is structurally stable
for ı; � > 0, whereas A(ı; 0) is not. This has interest-
ing consequences in applications as small damping and
zero damping may exhibit very different behavior, see
Sect. “Rotor Dynamics”. In parameter space, the stabil-
ity regions of the trivial solution are separated by a crit-
ical surfacewhich is the hypersurface where A(ı; �) has
at least one pair of purely imaginary complex conjugate
eigenvalues. This critical surface is diffeomorphic to the
Whitney umbrella, see Fig. 3 and for references [17]. It
is the singularity of the Whitney umbrella that causes
the discontinuous behavior of the stability diagram in
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Perturbation Analysis of Parametric Resonance, Figure 3
The critical surface in (�C;��; ıC) space for Eq. (24). �C D
�1C�2,�� D �1��2, ıC D ı1Cı2. Only the part�C > 0
and ıC > 0 is shown. The parameters ı1; ı2 control the detun-
ing of the frequencies, the parameters �1;�2 the damping of
the oscillators (vertical direction). The base of the umbrella lies
along the ıC-axis

Sect. “Rotor Dynamics”. The structural stability argu-
ment guarantees that the results are ‘universally valid’,
i. e. they qualitatively hold for generic systems in sum
resonance.

Nonlinear Parametric Excitation

Adding nonlinear effects to parametric excitation strongly
complicates the dynamics. We start with adding nonlinear
terms to the (generalized) Mathieu equation. Consider the
following equation that includes dissipation:

ẍ C � ẋ C (!2 C "p(t)) f (x) D 0 ; (27)

where � > 0 is the damping coefficient, f (x) D xC bx2C
cx3 C � � � , and time is scaled so that:

p(t) D
X

l2Z

a2l e2i l t ; a0 D 0; a�2l D ā2l ; (28)

is an even �-periodic function with zero average. As we
have seen in Sect. “Parametric Excitation of Linear Sys-
tems”, the trivial solution x D 0 is unstable when � D 0
and !2 D n2, for all n 2 N . Fix a specific n 2 N and as-
sume that !2 is close to n2. We will study the bifurcations
from the solution x D 0 in the case of primary resonance,
which by definition occurs when the Fourier expansion of
p(t) contains nonzero terms a2ne2int and a�2ne�2int . The
bifurcation parameters in this problem are the detuning
� D !2 � n2, the damping coefficient � and the Fourier
coefficients of p(t), in particular a2n . The Fourier coeffi-
cients are assumed to be of equal order of magnitude.

The Conservative Case, � D 0

An early paper is [21] in which Eq. (27) for � D 0 is asso-
ciated with the Hamiltonian

H(x; ẋ; t) D
1
2
ẋ2 C

!2

2
x2 C p(t)

Z x

0
f (s)ds :

After transformation of the Hamiltonian, Lie transforms
are implemented by MACSYMA to produce normal form
approximations to O("2). A number of examples show in-
teresting bifurcations.

A related approach can be found in [5]; as p(t) is even,
the equation is time-reversible. After construction of the
Poincaré (timeperiodic) map, normal forms are obtained
by equivariant transformations. This leads to a classifica-
tion of integrable normal forms that are approximations
of the family of Poincaré maps, a family as the map is
parametrized by ! and the coefficients of p(t).

Interestingly, the nonlinearity ˛x3 is combined with
the quasi-periodic Mathieu equation in [50] where global
phenomena are described like resonance bands and chaos.

Adding Dissipation, � > 0

Again time-periodic normal form calculations are used
to approximate the dynamics; see [31], also [32] and the
monograph [42]. The reflection symmetry in the normal
form equations implies that all fixed points come in pairs,
and that bifurcations of the origin will be symmetric (such
as pitchfork bifurcations). We observe that the normal
form equations show additional symmetries if either f (x)
in Eq. (27) is odd in x or if n is odd. The general normal
form can be seen as a non-symmetric perturbation of the
symmetric case. One finds pitchfork and saddle-node bi-
furcations, in fact all codimension one bifurcations; for de-
tails and pictures see Chap. 9 in [42].

Coexistence Under Nonlinear Perturbation

A model describing free vibrations of an elastica is de-
scribed in [26]:



1 �

"

2
cos 2t

�
ẍ C " sin 2tẋ C cx C "˛x2 D 0 :

For ˛ D 0, the equation shows the phenomenon of co-
existence. It is shown by second order averaging in [26]
that for ˛ ¤ 0 there exist open sets of parameter values for
which the trivial solution is unstable.

An application to the stability problem of a family of
periodic solutions in a Hamiltonian system is given in [29].



6634 P Perturbation Analysis of Parametric Resonance

Other Nonlinearities

In applications various nonlinear terms play a part. In [25]
one considers

ẍC(!2C" cos(t))C"(Ax3CBx2 ẋCCxẋ2CDẋ3) D 0 ;

where averaging is applied near the 2 : 1-resonance. If
B;D < 0 the corresponding terms can be interpreted as
progressive damping. It turns out that for a correct de-
scription of the bifurcations second-order averaging is
needed.

Nonlinear damping can be of practical interest. The
equation

ẍ C (!2 C " cos(t))C �jẋjẋ D 0 ;

is studied with � also a small parameter. A special fea-
ture is that an acceptable description of the phenomena
can be obtained in a semi-analytical way by using Math-
ieu-functions as starting point. The analysis involves the
use of Padé-approximants, see [28].

Applications

There are many applications of parametric resonance,
in particular in engineering. In this section we consider
a number of significant applications, but of course with-
out any attempt at completeness. See also [36] and the ref-
erences in the additional literature.

The Parametrically Excited Pendulum

Choosing the pendulum case f (x) D sin(x) in Eq. (27) we
have

ẍ C � ẋ C (!2 C "p(t)) sin(x) D 0 :

It is natural, because of the sin periodicity, to analyze the
Poincaré map on the cylindrical section t D 0 mod 2�Z.
This map has both a spatial and a temporal symmetry. As
we know from the preceding section, perturbation theory
applied near the equilibria x D 0; x D � , produces inte-
grable normal forms. For larger excitation (larger values
of "), the system exhibits the usual picture of Hamiltonian
chaos; for details see [12,24].

The inverted case is intriguing. It is well-known that
the upper equilibrium of an undamped pendulum can be
stabilized by vertical oscillations of the suspension point
with certain frequencies. See for references [8,9] and [37].
In [8] the genericity of the classical result is studied for
(conservative) perturbations respecting the symmetries of

the equation. In [9] genericity is studied for (conservative)
perturbations where the spatial symmetry is broken, re-
placing sin x by more general 2�-periodic functions. Sta-
bilization is still possible but the dynamics is more compli-
cated.

Rotor Dynamics

When adding linear damping to a system there can be
a striking discontinuity in the bifurcational behavior. Phe-
nomena like this have already been observed and de-
scribed in for instance [48] or [40]. The discontinuity is
a fundamental structural instability in linear gyroscopic
systems with at least two degrees of freedom and with
linear damping. The following example is based on [41]
and [33].

Consider a rigid rotor consisting of a heavy disk of
massM which is rotating with rotationspeed˝ around an
axis. The axis of rotation is elastically mounted on a foun-
dation; the connections which are holding the rotor in an
upright position are also elastic. To describe the position
of the rotor we have the axial displacement u in the ver-
tical direction (positive upwards), the angle of the axis of
rotation with respect to the z-axis and around the z-axis.
Instead of these two angles we will use the projection of the
center of gravitymotion on the horizontal (x; y)-plane, see
Fig. 4. Assuming small oscillations in the upright (u) posi-

Perturbation Analysis of Parametric Resonance, Figure 4
Rotor with diskmassM, elasticallymountedwith axial (u) and lat-
eral directions
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tion, frequency 2�, the equations of motion become:

ẍ C 2˛ ẏ C (1C 4"�2 cos 2�t)x D 0 ;

ÿ � 2˛ẋ C (1C 4"�2 cos 2�t)y D 0 :
(29)

System (29) constitutes a system of Mathieu-like equa-
tions, where we have neglected the effects of damping. Ab-
breviating P(t) D 4�2 cos 2�t, the corresponding Hamil-
tonian is:

H D
1
2
(1C˛2C"P(t))x2C

1
2
p2xC

1
2
(1C˛2C"P(t))y2

C
1
2
p2y C ˛xpy � ˛ypx ;

where px ; py are the momenta. The natural frequencies of
the unperturbed system (29), " D 0; are !1 D

p
˛2 C 1C

˛ and !2 D
p
˛2 C 1 � ˛. By putting z D x C iy, system

(29) can be written as:

z̈ � 2˛ iż C (1C 4"�2 cos 2�t)z D 0 : (30)

Introducing the new variable:

v D e�i˛t z ; (31)

and putting �t D � , we obtain:

v00 C
�
1C ˛2

�2
C 4" cos 2�

�
v D 0 ; (32)

where the prime denotes differentiation with respect to
� . By writing down the real and imaginary parts of this
equation, we get two identical Mathieu equations. We
conclude that the trivial solution is stable for " small
enough, providing that

p
1C ˛2 is not close to n�, for

some n D 1; 2; 3; : : :. The first-order interval of instability,
n D 1; arises if:
p
1C ˛2 � � : (33)

If condition (33) is satisfied, the trivial solution of Eq. (32)
is unstable. Therefore, the trivial solution of system (29) is
also unstable. Note that this instability arises when:

!1 C !2 D 2� ;

i. e. when the sum of the eigenfrequencies of the unper-
turbed system equals the excitation frequency 2�. This is
known as a sum resonance of first order. The domain of in-
stability can be calculated as in Subsect. “Elementary The-

ory”; we find for the boundaries:

�b D
p
1C ˛2 (1˙ ")C O("2) : (34)

The second order interval of instability of Eq. (32), n D 2,
arises when:
p
1C ˛2 � 2� ; (35)

i. e. !1 C !2 � �. This is known as a sum resonance of
second order. As above, we find the boundaries of the do-
mains of instability:

2� D
p
1C ˛2

�
1C

1
24
"2
�
C O("4) ;

2� D
p
1C ˛2

�
1 �

5
24
"2
�
C O("4) :

(36)

Higher order combination resonances can be studied in
the same way; the domains of instability in parameter
space continue to narrow as n increases. It should be
noted that the parameter ˛ is proportional to the rotation
speed ˝ of the disk and to the ratio of the moments of
inertia.

Instability by Damping We add small linear damping
to system (29), with positive damping parameter� D 2"�.
This leads to the equation:

z̈ � 2˛ iż C (1C 4"�2 cos 2�t)z C 2"� ż D 0 : (37)

Because of the damping term, we can no longer reduce the
complex Eq. (37) to two identical second order real equa-
tions, as we did in the previous section. In the sum res-
onance of the first order, we have !1 C !2 � 2� and the
solution of the unperturbed (" D 0) equation can be writ-
ten as:

z(t) D z1ei!1 t C z2e�i!2 t ; z1; z2 2 C ; (38)

with !1 D
p
˛2 C 1C ˛; !2 D

p
˛2 C 1 � ˛. Applying

variation of constants leads to equations for z1 and z2:

ż1 D
i"

!1 C !2



2�
�
i!1z1 � i!2z2e�i(!1C!2)t



C 4�2 cos 2�t
�
z1 C z2e�i(!1C!2)t

�
;

ż2 D
�i"

!1 C !2



2�
�
i!1z1ei(!1C!2)t � i!2z2



C 4�2 cos 2�t
�
z1ei(!1C!2)t C z2

�
:

(39)

To calculate the instability interval around the value
�0 D

1
2 (!1 C !2) D

p
˛2 C 1, we apply perturbation the-
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ory to find for the stability boundary:

�b D
p
1C ˛2

 

1˙ "

s

1C ˛2 �
�2

�20
C � � �

!

;

D
p
1C ˛2

0

@1˙

s

(1C ˛2)"2 �
�
�

�0

�2
C � � �

1

A :

(40)

It follows that the domain of instability actually becomes
larger when damping is introduced. The most unusual as-
pect of the above expression for the instability interval,
however, is that there is a discontinuity at � D 0. If � ! 0,
then the boundaries of the instability domain tend to the
limits �b !

p
1C ˛2(1˙ "

p
1C ˛2) which differs from

the result we found when � D 0 : �b D
p
1C ˛2(1˙ ").

In mechanical terms, the broadening of the instability-
domain is caused by the coupling between the two degrees
of freedom of the rotor in lateral directions which arises in
the presence of damping. Such phenomena are typical for
gyroscopic systems and have been noted earlier in the lit-
erature; see [2,4] and [36]. The explanation of the discon-
tinuity and its genericity in [17], see Subsect. “Parametri-
cally Forced Oscillators in Sum Resonance”, is new. For
hysteresis and phase-locking phenomena in this problem,
the reader is referred to [33].

Autoparametric Excitation

In [42], autoparametric systems are characterized as vi-
brating systems which consist of at least two consisting
subsystems that are coupled. One is a Primary System that
can be in normal mode vibration. In the instability (pa-
rameter) intervals of the normal mode solution in the full,
coupled system, we have autoparametric resonance. The
vibrations of the Primary System act as parametric excita-
tion of the Secondary System which will no longer remain
at rest. An example is presented in Fig. 5.

In actual engineering problems, we wish sometimes
to diminish the vibration amplitudes of the Primary Sys-
tem; sometimes this is called ‘quenching of vibrations’. In
other cases we have a coupled Secondary System which we
would like to keep at rest. As an example we consider the
following autoparametric system studied in [14]:

x00 C x C "


k1x0 C �1x C a cos 2�x C

4
3
x3 C c1y2x

�

D 0

y00 C y C "


k2y0 C �2y C c2x2y C

4
3
y3
�
D 0

(41)

Perturbation Analysis of Parametric Resonance, Figure 5
Two coupled oscillators with vertical oscillations as Primary Sys-
tem and parametric excitation of the coupled pendulum (Sec-
ondary System)

where �1 and �2 are the detunings from the 1 : 1-reso-
nance of the oscillators. In this system, y(t) D ẏ(t) D 0
corresponds with a normal mode of the x-oscillator.

The system (41) is invariant under (x; y)! (x;�y),
(x; y)! (�x; y), and (x; y)! (�x;�y). Using the
method of averaging as a normalization procedure we
investigate the stability of solutions of system (41). To
give an explicit example we follow [14] in more detail.
Introduce the usual variation of constants transformation:

x D u1 cos �Cv1 sin � ; x0 D �u1 sin �Cv1 cos � (42)

y D u2 cos �Cv2 sin � ; y0 D �u2 sin �Cv2 cos � (43)

After rescaling � D "
2 �̃ the averaged system of (41) be-

comes:

u01 D �k1u1 C
�
�1 �

1
2
a
�
v1 C v1

�
u21 C v21



C
1
4
c1u22v1 C

3
4
c1v22v1 C

1
2
c1u2v2u1

v01 D �k1v1 �
�
�1 C

1
2
a
�
u1 � u1

�
u21 C v21



�
3
4
c1u22u1 �

1
4
c1v22u1 �

1
2
c1u2v2v1

u02 D �k2u2 C �2v2 C v2
�
u22 C v22


C

1
4
c2u21v2

C
3
4
c2v21v2 C

1
2
c2u1v1u2

v02 D �k2v2 � �2u2 � u2
�
u22 C v22


�

3
4
c2u21u2

�
1
4
c2v21u2 �

1
2
c2u1v1v2 :

(44)

This system is analyzed for critical points, periodic and
quasi-periodic solutions, producing existence and stabil-
ity diagrams in parameter space. The system also con-
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Perturbation Analysis of Parametric Resonance, Figure 6
The strange attractor of the averaged system (44). The phase-
portraits in the (u2; v2; u1)-space for c2 < 0 at the value
�2 D 5:3. The Kaplan–Yorke dimension for �2 D 5:3 is 2.29

tains a sequence of period-doubling bifurcations leading
to chaotic solutions, see Fig. 6.

To prove the presence of chaos involves an application
of higher dimensional Melnikov theory developed in [47].
A rather technical analysis in [14] shows the existence of
a Šilnikov orbit in the averaged equation, which implies
chaotic dynamics, also for the original system.

Future Directions

Ongoing research in dynamical systems includes non-
linear systems with parametric resonance, but there are
a number of special features as these systems are non-au-
tonomous. This complicates the dynamics from the out-
set. For instance a two degrees of freedom system with
parametric resonance involves at least three frequencies,
producing many possible resonances. The analysis of such
higher dimensional systems with many more combina-
tion resonances, has begun recently, producing interest-
ing limit sets and invariant manifolds. Also the analysis of
PDEs with periodic coefficients will play a part in the near
future. These lines of research are of great interest.

In the conservative case, the association with Hamilto-
nian systems, KAM theory etc. gives a natural approach.
This has already produced important results. In real-life
modeling, there will always be dissipation and it is im-
portant to include this effect. Preliminary results suggest
that the impact of damping on for instance quasi-periodic
systems, is quite dramatic. This certainly merits more re-
search.

Finally, applications are needed to solve actual prob-
lems and to inspire new, theoretical research.
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Glossary

Evolutionarily stable equilibria (ESS) An ESS is a set of
frequencies of different types of individuals in a popu-
lation that can not be invaded by the evolution of a sin-
gle mutant. It is the evolutionary counterpart of a Nash
equilibrium.

Fitness landscape A metaphorical description of fitness
as a function of individual’s genotypes or phenotypes
in terms of a multivariable function that does not de-
pend on any external influence.

Genetic locus The position of a gene on a chromosome.
The different variants of the gene that can be found at
the same locus are called alleles.

Nash equilibrium In classical game theory, a Nash equi-
librium is a set of strategies, one for each player of the
game, such that none of them can improve her benefits
by unilateral changes of strategy.

Scale free network A graph or network such that the de-
grees of the nodes are taken from a power-law distri-
bution. As a consequence, there is not a typical degree
in the graph, i. e., there are no typical scales.

Small-world network A graph or network of N nodes
such that the mean distance between nodes scales as
log N. It corresponds to the well-known “six degrees
of separation” phenomenon.

Definition of the Subject

The importance of evolution can hardly be overstated. As
the Jesuit priest Pierre Teilhard de Chardin put it,

Evolution is a general postulate to which all theories,
all hypotheses, all systems must hence forward bow
and which they must satisfy in order to be think-
able and true. Evolution is a light which illuminates
all facts, a trajectory which all lines of thought must
follow – this is what evolution is.

Darwin’s evolution theory is based on three fundamen-
tal principles: reproduction, mutation and selection, which
describe how populations change over time and how new
forms evolve out of old ones. Starting with W. F. R. Wel-
don, whom at the beginning of the 20th century realized
that “the problem of animal evolution is essentially a statis-
tical problem”, and blooming in the 30’s with Fisher, Hal-
dane andWright, numerous mathematical descriptions of
the resulting evolutionary dynamics have been proposed,
developed and studied. Deeply engraved in these frame-
works are the mathematical concepts of equilibrium and
stability, as descriptions of the observed population com-
positions and their lifetimes. Many results have been ob-
tained regarding the stability of equilibria of evolutionary
dynamics in idealized circumstances, such as infinite pop-
ulations or global interactions. In the evolutionary con-
text, stability is peculiar, in the sense that it is entangled
with collective effects arising from the interaction of indi-
viduals. Therefore, perturbations of the idealized mathe-
matical framework representing more realistic situations
are of crucial importance to understand stability of equi-
libria.

Introduction

The idea of evolution is a simple one: Descent withmodifi-
cation acted upon by natural selection. Descent with mod-
ification means that we consider a population of replica-
tors, entities capable of reproducing themselves, in which
reproduction is not exact and allows for small differences
between parents and offspring. Natural selection means
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that different entities reproduce in different quantities be-
cause their abilities are also different: some are more re-
sistant to external factors, some need less resources, some
simply reproduce more... While in biology these replica-
tors are, of course, living beings, the basic ingredients of
evolution have by now trascended the realm of biology
into the kingdom of objects such as computer codes (thus
giving rise, e. g., to genetic algorithms).

The process of evolution is often described in short as
“the survival of the fittest”, meaning that those replicators
that succeed and thrive are more fit than those which pro-
gressively disappear. This statement is not very appropri-
ate, because evolution does not imply making organisms
or entities more fit; it is simply a consequence of differen-
tial reproduction in the face of selection pressure. On the
other hand, it leads to a tautology: The question of which
are the fittest organisms is answered by saying that they are
those that survive. It is then clear that a correct use of the
concept of fitness is at the crux of any attempt to formalize
mathematically evolution theory.

In this article we are going to discuss two manners
to deal mathematically with the concept of fitness. The
first and simplest one is to resort to a fitness landscape,
whose basic feature is that the fitness of a given individ-
ual depends only on the individual’s characteristics and
not on external factors. We will present this approach in
Sects. “Evolution on a Fitness Landscape” and “Stability of
Equilibria on a Fitness Landscape” below, to subsequently
discuss the effect of perturbations on the equilibria de-
scribed by this picture in Sect. “Perturbation of Equilibria
on a Fitness Landscape”. To go beyond the fitness land-
scape picture one has to introduce frequency-dependent
selection, i. e., to remove the independence of the fitness
from external influences. In Sects. “Frequency Dependent
Fitness: Game Theory” and “Equilibria in Evolutionary
Game Theory” we consider the evolutionary game the-
ory approach to this way to model evolution and, as be-
fore, analyze the perturbations of its equilibria in Sec “Per-
turbations of Equilibria in Evolutionary Game Theory”.
Sect. “Future Directions” summarizes the questions that
remain open in this field.

Evolution on a Fitness Landscape

The metaphor of evolution on a “fitness landscape”
reaches back at least to [26]: Drawing on the connection
between fitness and adaptation, fitness is defined as the ex-
pected number of offspring of a given individual that reach
adulthood, and thus represents a measure of its adapta-
tion to the environment. In this context, fitness landscapes
are used to visualize the relationship between genotypes

Perturbation of Equilibria in the Mathematical Theory of Evolu-
tion, Figure 1
Sketch of a fitness landscape

(or phenotypes) and reproductive success. It is assumed
that every genotype has a well defined fitness, in the sense
above, and that this fitness is the “height” of the landscape.
Genotypes which are very similar are said to be “close”
to each other, while those that are very different are “far”
from each other. The two concepts of height and distance
are sufficient to form the concept of a “landscape”. The
set of all possible genotypes, their degree of similarity, and
their related fitness values is then called a fitness landscape.

Fitness landscapes are often conceived of as ranges of
mountains. There exist local peaks (points from which all
paths are downhill, i. e. to lower fitness) and valleys (re-
gions from which most paths lead uphill). A fitness land-
scape with many local peaks surrounded by deep valleys
is called rugged. If all genotypes have the same replica-
tion rate, on the other hand, a fitness landscape is said
to be flat. A sketch of such a fitness landscape, showing
the dependence of the fitness on two different “character-
istics” or “genes”, is shown in Fig. 1. Of course, the true
fitness landscape would need a highly multidimensional
space for its representation, as it would depend on all the
characteristics of the organism, even those it still does not
show. Therefore, the sketch is an extreme oversimplifica-
tion, only to suggest the structure of a rugged fitness land-
scape.

Given the immense complexity of the genotype-fitness
mapping, theoretical models have to make a variety of
simplifying assumptions. Most models in biological liter-
ature focus on the effect of one or a few genetic loci on
the fitness of individuals in a population, assuming that
each of the considered loci can be occupied by a limited
number of different alleles that have different effects on
the fitness, and that the rest of the genome is part of the
invariant environment. This approximation, the first at-
tempt to obtain analytical results for changes in the gene
pool of a population under the influence of inheritance,
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selection and mutation is the pioneering work of Fisher,
Haldane and Wright, who founded the field of population
genetics. Their method of randomly drawing the genes of
the daughter population from the pool of parent genes,
with weights proportional to the fitness, proved to be very
successful at calculating the evolution of allele frequencies
from one generation to the next, or the chances of a new
mutation to spread through a population, even taking into
account various patterns of mating, dominance effects,
nonlinear effects between different genes, etc. Population
genetics has since then developed into a mature field with
a sophisticated mathematical apparatus, and with wide-
ranging applications.

Stability of Equilibria on a Fitness Landscape

The simplified pictures we have just described lead to a de-
scription in terms of dynamical systems, and therefore the
stability of its equilibria can be studied by means of stan-
dard techniques. In principle, one can envisage the evo-
lution of a population on a fitness landscape in the usual
frame of particle dynamics on a potential. Every individ-
ual is a point in the space of phenotypes or genotypes, and
evolves towards the maxima of the fitness; in the potential
picture, the potential is given by minus the fitness. Fur-
thermore, the dynamics is overdamped, i. e., there are no
oscillations around the equilibria. Maxima of the fitness
are therefore the equilibria of the evolutionary process.
That this is so is a consequence of Fisher’s theorem [3],
whose original derivation is very general but quite compli-
cated. Following [2] and [4], we prefer here to present two
simpler situations: an asexual population, and a sexually
reproducing population where the fitness is determined by
a single gene with two alleles.

For an asexually reproducing population, the deriva-
tion of Fisher’s theorem is straightforward: Let yi be the
number of genes i in the population, and y the total num-
ber of genes; then pi � yi /y is the frequency of genotype
i in the population. IfWi is gene i’s fitness, sticking to the
interpretation of fitness in terms of offspring, the num-
ber of individuals carrying gene i in the next generation
is Wi yi and, subsequently, the change in the frecuency pi
from one generation to the next is


pi D pi(Wi � W̄)/W̄ ;

leading to a change in mean fitness


W̄
W̄
D

P
i Wi
pi
W̄

D

P
i pi(W

2
i � W̄2)

W̄2 ;

which is proportional to the genetic variance in fitness.
If the fitness changes from one generation to the next are
small, this becomes an equation which states that the rate
of change in fitness is identical to the genetic variance in
fitness.

When reproduction is sexual, we note that pi is the fre-
quency of gene i. Assuming for simplicity that only two
alleles are possible at the genetic locus of interest, the fit-
ness of type 1 is w11p1 C w12p2, where wij is the fitness of
an individual carrying alleles i and j, and hence the num-
ber of 1 genes will be y1(w11p1 C w12p2). We then have
the differential equation

ẏ1 D y1(w11p1 C w12p2) : (1)

It is enough then to differentiate the identity ln p1 D
ln y1 � ln y and use a little algebra to show that y1 obeys
the replicator equation:

ṗ1 D p1(w1 � w̄) (2)

Fisher’s theorem then states that fitness increases along
trajectories of this equation: Indeed, by noting that the av-
erage fitness is

w̄ D
X

i; jD1;2

wi j pi p j ; (3)

differentiating and using the replicator equation we arrive
at the final result

˙̄w D 2
X

i

pi (wi � w̄)2 : (4)

Fisher’s theorem thus means that an evolving popu-
lation will typically climb uphill in the fitness landscape,
by a series of small genetic changes, until a local optimum
is reached. This is due to the fact that the average fitness
of the population always increases, as we have just shown;
hence the analogy with overdamped dynamics on a (in-
verted) potential function. Furthermore, because of this
result, the population remains there, at the equilibrium
point, because it cannot reduce its fitness. We then realize
that all equilibria in a fitness landscape within the inter-
pretation of fitness as the reproductive success are stable.

Perturbation of Equilibria on a Fitness Landscape

In order to understand the possible breakdowns of stabil-
ity in the fitness landscape picture, one has to look care-
fully at the hypothesis of Fisher’s theorem. We have not
stated it in a formal manner, hence it is important to sum-
marize here the main ones:
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� Population is infinite.
� There are no mutations (i. e., the only source of every

gene or species is reproduction).
� There is only one population (i. e., there are no popula-

tion fluxes or migrations between separate groups).
� Fitness depends only on the individual’s genotype and

not on the other individuals.

It is then clear that, even if it is mathematically true, the
applicability of Fisher’s theorem is a completely different
story, and as a consequence, the conclusion that maxima
of the fitness landscape are stable may be wrong when dis-
cussing real systems. A detailed discussion of all these is-
sues can be found in [2], and we refer the reader to her
paper for a thorough discussion of all these factors. For
our present purposes, namely to show that these perturba-
tions can change the stability of the equilibria, it will suffice
to present a few ideas about the case of finite population
size. Afterwards, the rest of the paper will proceed along
the idea of fitness depending on other individuals, giving
up the paradigm of a fixed fitness landscape.

The subject of finite size populations is the subject of
fluctuations and its main consequences, genetic drift and
stochastic escape. Regarding the first concept, as compared
to natural selection, i. e., to the tendency of beneficial alle-
les to become more common over time (and detrimental
ones less common), genetic drift is the fundamental ten-
dency of any allele to vary randomly in frequency over
time due to statistical variation alone, so long as it does not
comprise all or none of the distribution. In other words,
even when individuals face the same odds, they will dif-
fer in their success. A rare succession of chance events can
thus bring a trait to predominance, causing a population
or species to evolve (in fact, this idea is at the core of the
neutral theory of evolution, first proposed by [10]). On
the other hand, stochastic escape refers to the situation in
which a population of individuals placed at a maximum
of the fitness landscape may leave this maximum due to
fluctuations. Obviously, both genetic drift and stochastic
escape affect the stability of the maxima as predicted by
Fisher’s theorem.

One consequence of finite population sizes and fluc-
tuations in the composition of a population is that genes
get lost from the gene pool. If there is no new genetic in-
put through mutation or migration, the genetic variability
within a population decreases with time. After sufficiently
many generations, all individuals will carry the same allele
of a given gene. This allele is said to have become fixed. In
the absence of selection, the probability that a given allele
will become fixed is proportional to the number of copies
in the initial population. Thus, if a new mutant arises that

has no selective advantage or disadvantage, this mutant
will spread through the entire population with a probabil-
ity 1/M, M being the population size. If the individuals of
the population are diploid, each carries two sets of genes,
and M must be taken as the number of sets of genes, i. e.,
as twice the population size. On the other hand, it can be
shown [2] that the probability that a mutant that conveys
a small fitness increase by a factor 1C s has as probability
of the order s to spread through a population. In popula-
tions of sizes much smaller than 1/s, this selective advan-
tage is not felt, because mutations that carry no advantage
become fixed at a similar rate. In the same manner, a mu-
tation that decreases the fitness of its carrier by a factor
1 � s, is not felt in a population much smaller than 1/s.
An interesting consequence of these results is that the rate
of neutral (or effectively neutral) substitutions is indepen-
dent of the population size. The reason is that the proba-
bility that a new mutant is generated in the population is
proportional toM, while its probability of becoming fixed
is 1/M.

Frequency Dependent Fitness: Game Theory

In the preceding sections we have considered the case
when the fitness depends on the genotype, but is indepen-
dent of the composition of the population, i. e., the pres-
ence of inviduals of the same genotype or of other geno-
types does not change the fitness of the focal one. This as-
sumption, that allows for an intuitive picture in terms of
a fitness landscape, is clearly an over-simplification, as was
alreadymentioned above. For instance, consider an homo-
geneous population in a closed environment. The popu-
lation will grow at a pace given by the fitness of its indi-
viduals until it eventually exhausts the available resources
or even physically fills the environment. Therefore, even
if the individuals are all equal, their fitness will not be the
same if there are only a few of them or if there are very
many. Another trivial example is the effect on the fitness
of the presence or absence of predators of the species of
interest; clearly, predators will reduce the fitness (under-
stood as above in a reproductive sense) of their prey.

Therefore, individuals will evolve subject not only to
external influences but also to their mutual competition,
both intra-specific and inter-specific. This leads us to con-
sider frequency-dependent selection, which can be de-
scribed by very many, different theoretical approaches.
These include game theory as well as discrete and con-
tinuous genetic models, and the concepts of kin selection,
group selection, and sexual selection. Among the possible
dynamical patterns arising, there are single fixed points,
lines of fixed points, runaway, limit cycles, and chaos. A re-
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view of all these descriptions, whose use to model evolu-
tion depends on the specific issues one is interested in, is
clearly far beyond the scope of this article and, hence, we
have focused on evolutionary game theory as a particularly
suited case study to show the effects of perturbations on
equilibria.

Before going into the study of evolutionary game the-
ory, we need to summarize briefly a few key concepts
about its originating theory, namely (classical) game the-
ory. Pioneered in the early XIX century by the economist
Cournot, game theory was introduced by the brilliant,
multi-faceted mathematician John von Neumann in 1928,
and it was first presented as a specific subject in von Neu-
mann’s book (with Oskar Morgenstern) Theory of Games
and Economic Behavior in 1944. Since then, game theory
has been used to model strategic situations, i. e., situations
in which actors or agents follow different strategies (mean-
ing that they choose among different possible actions or
behaviors) to maximize their benefit, usually referred to as
payoff . These arise in very many different contexts, from
biology and psychology to philosophy through politics,
economics or computer science.

The central concept of game theory is the Nash equi-
librium [14], introduced by the mathematician John Nash
in 1955, awarded with a Nobel Prize in Economics almost
forty years later for this work. A set of strategies, one for
each participant in the game, is a Nash equilibrium if every
strategy is the best response (in terms of maximizing the
player’s payoff) to the subset of the strategies of the rest of
the players. In this case, if all players use strategies belong-
ing to a Nash equilibrium, none of them will have any in-
centive to change her behavior. In this situation we indeed
have the equivalent of the traditional concept of equilib-
rium in dynamical systems: players keep playing the same
strategy as, given the behavior of the others, they follow the
optimal strategy (note that this does not mean the strategy
is optimal in absolute terms: it is only optimal in view of
the actions of the rest).

Equilibria in EvolutionaryGame Theory

In the seventies, game theory, which as proposed by von
Neumann and Nash was to be used to understand eco-
nomic behavior, entered the realm of biology through
the pioneering work of John Maynard-Smith and George
Price [12], who introduced the evolutionary version of
the theory. The key contribution of their work was a new
interpretation of the general framework of game the-
ory in terms of populations instead of individual play-
ers. While traditional game theoretical players behaved
following some strategy and could change it to improve

their performance, in the picture of Maynard-Smith and
Price individuals had a fixed strategy, determined by their
genotype, and different strategies were represented by sub-
populations of individuals. In this representation, changes
of strategies correspond to the replacement of the individ-
uals by their offspring, possibly with mutations. Payoffs
obtained by individuals in the game are accordingly un-
derstood as fitness, the reproductive rate that governs how
the replacement occurs.

There is a large degree of arbitrariness as to the evo-
lutionary dynamics of the populations. All we have said
so far is that fitness, obtained through the game, deter-
mines the composition of the population at the next time
step (or instant, if we think of continuous time). Probably
the most popular choice (but by no means the only one,
see [18] for different evolutionary proposals and their re-
lationships, see also [9] for other dynamics) is to use the
replicator equation we have previously found to describe
the evolution of the frequency yi of strategists of type i:

ẏ i D yi (wi � w̄) : (5)

It is important to note that the steps leading to the deriva-
tion of this equation are the same as above, and therefore
for it to be applicable in principle one must keep in mind
the same hypotheses. The difference is that now the fitness
is not a constant but rather it is determined by a game,
which enters the equation in the following way.

Let us call A the payoff matrix of the game (for sim-
plicity, we will consider only symmetric games), whose
entries aij are the payoffs to an individual using strategy
i facing another using strategy j. Assuming the frequencies
yi(t) are differentiable functions, if individuals meet ran-
domly and then engage in the game, and this takes place
very many (infinite) times, then (Ay)i is the expected pay-
off for type i individuals in a population described by the
vector y, whose components are the frequencies of each
type. By the same token, the average payoff in the popu-
lation is w̄ D yTAy, so substituting in (5) we are left with

ẏ i D yi
�
(Ay)i � yTAy

�
; (6)

where we now see explicitly how the game affects the evo-
lution. Nevertheless, it is also clear that this rule is arbi-
trary, and there are many other options one can use to
postulate how the population evolves. We will come back
to this issue when considering perturbations of the equi-
libria.

If Nash equilibrium is the key concept in game the-
ory, evolutionarily stable strategy is the relevant one in its
evolutionary counterpart. [11] defined evolutionarily sta-
ble strategy (ESS) as a strategy such that, if every individual
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in the population uses it, no other (mutant) strategy could
invade the population by natural selection. It is trivial to
show that, in terms of the payoffs of the game, for strategy
i to be an ESS, one of the following two conditions must
hold:

ai i > ai j 8 j ¤ i ; or (7)

ai i D ai j for some j and ai j > a j j : (8)

If the first condition is fulfilled, we speak of strict ESS. It is
important to realize that this concept is absolutely general
and, in particular, it does not depend on the evolutionary
dynamics of choice (in so far as it favors the strategies that
receive the best payoffs).

Of course, the two concepts, Nash equilibrium and
ESS, are related. This is in fact one of the reasons why
evolutionary game theory ended up appealing to the
economists, who faced the question as to how individu-
als ever get to play the Nash equilibrium strategies: They
now had a dynamical way that might precisely describe
that process and, furthermore, to decide which Nash equi-
librium was selected if there were more than one. To show
the connection, one must decide on a dynamical rule, for
which we will stay within the framework of the replicator
dynamics. For this specific evolutionary dynamics, it can
be rigorously shown that (see, e. g., [7,9])

1. if y0 is a Nash equilibrium, it is a rest point (a zero of
the rhs of (5);

2. if y0 is a strict Nash equilibrium, it is asymptotically sta-
ble;

3. if y0 is a rest point and is the limit of an interior orbit
for t !1, then it is a Nash equilibrium; and

4. if y0 is a stable rest point, it is a Nash equilibrium.

This means that there indeed is a relationship between
Nash equilibria and ESS, butmore subtle that could appear
at first. Probably, the most important non trivial aspect of
this result is that not all ESS are Nash equilibria, as stability
is required in addition.

Perturbations of Equilibria
in EvolutionaryGame Theory

The evolutionary viewpoint on game theory allows to
study Nash equilibria/ESS within the standard framework
of dynamical systems theory, by using the concepts of sta-
bility, asymptotical stability, global stability and related
notions. In fact, one can do more than that: the problem
of invasion by a mutant, the biological basis of the ESS
concept of Maynard-Smith, can always be formulated in

terms of a dynamical coupling of the mutant and the in-
cumbent species and hence studied in terms of the stability
of a rest point of a dynamical system. In principle, the same
idea can be generalized to simultaneous invasion by more
than one mutant and, although the problem may be tech-
nically much more difficult, the basic procedure remains
the same.

As we did with the fitness landscape concept, when
considering perturbations of equilibria, our interest goes
beyond this traditional stability ideas, and once again,
we need to focus on the deviations from the framework
that allows to derive the replicator equation. There are
a number of such deviations. The simplest ones are the
inclusion of mutations or migrations, leading to the so-
called replicator-mutator equation [18], that can be sub-
sequently studied as a dynamical system. Other devia-
tions affect much more, and in a way more difficult to
aprehend, to the evolutionary dynamics and its equilib-
ria, such as considering finite size populations, alternative
learning/reproduction dynamics, or the non-universality
of interactions among individuals. In this section we will
choose this last point as our specific example, and ana-
lyze the consequences of relaxing the hypothesis that every
player plays every other one. This hypothesis is needed to
substitute the payoff earned by a player by what she would
have obtained facing the average player of the population
(an approach that has been traditionally used in physics
under the name of mean-field approximation). However,
interactions may not be universal after all, either because
of spatial or temporal limitations. We will address both in
what follows. The reader is referred to [15] for discussions
of other perturbations.

Spatial Perturbations

One of the reasons why maybe not all individuals inter-
act with all others is that they could not possibly meet. In
biological terms this may occur because the population is
very sparsely distributed and every individual meets only
a few others within its living range, or else in a very numer-
ous population where it is impossible in practice to meet
all individuals. In social terms, an alternative view is the
existence of a social network or network or contacts that
prescribes who interacts with whom.

This idea was first introduced in a famous paper
by [16] on the evolutionary dynamics of the Prisoner’s
Dilemma on a square lattice. In the Prisoner’s Dilemma
two players simultaneously decide cooperate or to defect.
Cooperation results in a benefit b to the recipient but in-
curs costs c to the donor (b > c > 0). Thus, mutual co-
operation pays a net benefit of R D b � c whereas mutual
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defection results in P D 0. However, unilateral defection
yields the highest payoff T D b and the cooperator has
to bear the costs S D �c. It immediately follows that it
is best to defect regardless of the opponents decision. For
this reason defection is the evolutionarily stable strategy
even though all individuals would be better of if all would
cooperate (mutual cooperation is better than mutual de-
fection because R > P). Mutual defection is also the only
Nash equilibrium of the game. All this translates into the
following payoff matrix:

C D
C
D

�
R
T

S
P

�
: (9)

For this matrix to correspond to a Prisoner’s Dilemma
game, the ordering of payoffs must be T > R > P > S. As
we will see below, other orderings define different games.

What Nowak and May did was to set the individuals
on the nodes of a square lattice, where they played the
game only with their nearest and next-nearest neighbors
(Moore neighborhood). They ran simulations with the fol-
lowing dynamics: every individual played the game with
her neighbors and collected the corresponding payoff, and
afterwards she updated her strategy by imitating that of
her most successful (in terms of payoff) neighbor. In their
simulations, Nowak and May found that if they started
with a population with a majority of cooperators, a large
fraction of them remained cooperators instead of chang-
ing their behavior towards the ESS, namely, defection. The
reason is that the structured interaction allowed cooper-
ators to do well and avoid exploitation by defectors by
grouping into clusters, inside which they interactedmostly
with other cooperators, whereas defectors at the bound-
aries of those clusters, interacting mostly with other de-
fectors, did not fare as well and therefore did not induce
cooperators to defect.

This result is partly due to the imitation dynamics,
which, if postulated to rule the evolution of a population
of individuals that interact with all others, does not lead to
the replicator equation. As we mentioned in the preced-
ing section, the update rule for the strategies is arbitrary
and can be chosen at will (preferrably with some specific
modelling in my mind). To reproduce the behavior of the
replicator equation, a probabilistic rule has to be used [4],
and with this rule the equilibrium is not changed and the
population evolves to full defection. However, [16] opened
the door to a number of more detailed studies that con-
sidered also different dynamical rules including the one
corresponding to the replicator dynamics in which it was
shown that the structure of a population definitely had
a strong influence on the game equilibria.

One such study, perhaps the most systematic to date,
was carried out by [5], who compared the equilibrium
frequencies of cooperators and defectors in populations
with and without spatial structuring (square lattices), find-
ing two important results: First, including spatial exten-
sion has indeed significant effects on the equilibrium fre-
quencies of cooperators and defectors. In some parameter
regions spatial extension promotes cooperative behavior
while inhibiting it in others; and, second, differences in the
initial frequencies of cooperators are readily leveled out
and hardly affect the equilibrium frequencies except for
T < 1, S < 0. This choice is not the Prisoner’s Dilemma
anymore, it corresponds to the so-called Stag Hunt game
[22], and in the replicator dynamics is a bistable system
where the initial frequencies determine the long term be-
havior, a feature that is generally preserved for the spa-
tial setting. Of course, [5] also observed that the size of
the neighborhood obviously affects the spreading speed of
successful strategies. Interestingly, although the message
seems to be that the strategy of cooperation is favored over
the strategy of defection by the presence of a spatial struc-
ture, this is not always the case, and in games where the
equilibrium population has a certain percentage of both
types of strategists, the network of interactions makes the
frequency of cooperators decrease [6]. Therefore, the ef-
fect of this perturbation is not all trivial and needs careful
consideration.

All the results discussed so far correspond to a square
lattice as substrate to define the interaction pattern, but
this is certainly a highly idealized setup that can hardly
correspond to any real, natural system. Recent studies have
shown that the results also depend on the type of graph
or network used. Thus, [21] have shown that in more re-
alistic, heterogeneous populations, modeled by random
graphs of different types, the sustainability of cooperation
(implying the departure of the equilibrium predicted by
the replicator equation) is simpler to achieve than in ho-
mogeneous populations, a result which is valid irrespec-
tive of the dilemma or game adopted as a metaphor of
cooperation. Therefore, heterogeneity constitutes a pow-
erful mechanism for the emergence of cooperation (and
consequently an important perturbation of the dynamics),
since even for mildly heterogeneous populations it leads
to sizeable effects in the evolution of cooperation. The
overall enhancement of cooperation obtained on single-
scale and scale-free graphs [1] may be understood as re-
sulting from the interplay of two mechanisms: The ex-
istence of many long-range connections in random and
small-world networks [25], which precludes the forma-
tion of compact clusters of cooperators, and the hetero-
geneity exhibited by these networks, which opens a new
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route for cooperation to emerge and contributes to en-
hance cooperation (which increases with heterogeneity),
counteracting the previous effect. This result depends also
on the intricate ties between individuals, even for the same
class of graphs, features absent in the replicator dynam-
ics.

We have thus seen that removing the hypothesis of
universal interaction is a strong perturbation to equilib-
rium as understood from the replicator dynamics. There
have been many other studies following those we can pos-
sibly review here; a recent, very comprehensive summary
can be found in [23]. It must be realized that, intermixed
with the effect of the network of interactions, the different
dynamical rules one can think of have also a relevant influ-
ence on the equilibria.While we have not considered them
as perturbations of the replicator dynamics here, because
they do not behave as described by that equation even in
the presence of universal interactions, it must be kept in
mind that they do affect the equilibria and therefore they
must be properly specified in any serious study of evolu-
tionary game theory.

Time Scales

Let us now come back to the situation in which there is
no spatial structure, and every agent can in principle play
the game against every other one. Afterwards, reproduc-
tion proceeds according to the payoff earned during the
game stage. As we have already said, for large populations,
this amounts to saying that every player gains the payoff of
the game averaged in the current distribution of strategies.
In terms of time scales, such an evolution corresponds to
a regime in which reproduction-selection events take place
at a much slower rate than the interaction between agents.
However, these two time scales need not be different in
general and, in fact, for many specific applications they can
arguably be of the same order [7].

To study different rates of selection we can consider
the following new dynamics [19,20,24]. There is a popu-
lation with N players. A pair of individuals is randomly
selected for playing, earning each one an amount of fitness
according to the rules of the game. This game act is re-
peated s times, choosing a new random pair of players in
each occasion.

Afterwards, selection takes place. Following [17], we
have chosen Moran dynamics [13] as the most suitable to
model selection in a finite population. This is necessary be-
cause the replicator equation is posed for continuous val-
ues of the populations and here we need to consider dis-
crete values, i. e., individual by individual, in order to pin-
point the existing time scales. However, it can be shown

[19] that the equilibria of Moran dynamics are the same
as those of the replicator equation, and in fact, the whole
evolution is the same except for a rescaling of time. Moran
dynamics is defined as follows: One individual among the
population of N players is chosen for reproduction pro-
portionally to its fitness, and its offspring replaces a ran-
domly chosen individual. As the fitness of all players is set
to zero before the following round of s games, the over-
all result is that all players have been replaced by one de-
scendant, but the player selected for reproduction has had
a reproductive advantage of doubling its offspring a the
expense of the randomly selected player. It is worth noting
that the population size N is therefore constant along the
evolution.

The parameter s controls the time scales of the model,
i. e. reflects the relation between the rate of selection and
the rate of interaction. For s
 N selection is very fast and
very few individuals interact between reproduction events.
Higher values of s represent proportionally slower rates of
selection. Thus, when s	 N selection is very slow and
population is effectively well-mixed and we recover the be-
havior predicted by the replicator equation.

The most striking example of the influence of the se-
lection is the so-called Harmony game, a trivial one that
has henceforth never been studied, and that is determined
by R > T > S > P. The only Nash equilibrium or ESS of
this game is mutual cooperation, as it is obvious from the
payoffs: The best option for both players is to cooperate,
which yields the maximum payoff for each one. Let us de-
note by 0 � n � N the number of cooperators present in
the population, and look at the probability xn of ending up
in state n D N (i. e., all players cooperate) when starting
in state n < N. For s D 1 and s!1, an exact, analytical
expression for xn can be obtained [19]. For arbitrary val-
ues of s, such a closed form cannot be found; however, it is
possible to carry out a combinatorial analysis of the possi-
ble combinations of rounds and evaluate, numerically but
exactly, xn.

In Fig. 2a, we show that the rationally expected out-
come of a population consisting entirely of cooperators is
not achieved for small and moderate values of s, our se-
lection rate parameter. For the smallest values, only when
starting from a population largely formed by cooperators
there is some chance to reach full cooperation; most of
the times, defectors will eventually prevail and invade the
whole population. This counterintuitive result may arise
even for values of s comparable to the population size,
by choosing suitable payoffs. Interestingly, the main re-
sult that defection is selected for small values of s does not
depend on the population size N; only details such as the
shape of the curves (cf. Fig. 2b) are modified by N.
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Perturbation of Equilibria in the Mathematical Theory of Evolution, Figure 2
Probability of ending up with all cooperators starting from n cooperators, xn for different values of s. a For the smallest values of s,
full cooperation is only reached if almost all agents are initially cooperators. Values of s of the order of 10 show a behavior much
more favorable to cooperators. In this plot, the population size is N D 100. b Taking a population of N D 1000, we observe that the
range of values of s for which defectors are selected does not depend on the population size, only the shape of the curves does.
Parameter choices are: Number of games between reproduction events, s, as indicated in the plots; payoffs for the Harmony game,
R D 11, S D 2, T D 10, P D 1. The dashed line corresponds to a probability to reach full cooperation equal to the initial fraction of
cooperators and is shown for reference

Perturbation of Equilibria in the Mathematical Theory of Evolution, Figure 3
Left: Same as Fig. 2 for the Stag-Hunt game. The probability of ending upwith all cooperators starting from n cooperators, xn, is very
low when s is small, and as s increases it tends to a quasi-symmetric distribution around 1/2. Payoffs for the Stag-Hunt game, R D 6,
S D 1, T D 5, P D 2. Right: Same as Fig. 2 for the Snowdrift game. The probability of ending up with all cooperators starting from
n cooperators is almost independent of n except for very small or very large values. Small s values lead once again to selection of
defectors, whereas cooperators prevail more often as s increases. Payoffs for the Snowdrift game, R D 1, S D 0:35, T D 1:65, P D 0.
Other parameter choices are: Population, N D 100; number of games between reproduction events, s, as indicated in the plot

In the preceding paragraph we have chosen the Har-
mony game to discuss the effect of the rate of selection,
but this effect is very general and appears in many other
games. Consider the example of the already mentioned
Stag-Hunt game [22], with payoffs R > T > P > S. This
is the paradigmatic situation of game with two Nash equi-
libria in pure strategies, mutual cooperation and mutual
defection, each one with its own basis of attraction in the

replicator equation framework (in general, which of these
equilibria is selected has been the subject of a long ar-
gument in the past, and rationales for both of them can
be provided [22]). As Fig. 3 (left) shows, simulation re-
sults for finite s are largely different from the curve ob-
tained for s!1: Indeed, we see that for s D 1, all agents
become defectors except for initial densities close to 1.
Even for values of s as large as N evolution will more
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likely lead to a population entirely consisting of defec-
tors.

Yet another example of the importance of the selec-
tion rate is provided by the Snowdrift game, with payoffs
T > R > S > P. Figure. 3 (right) shows that for small val-
ues of s defectors are selected for almost any initial fraction
of cooperators. When s increases, we observe an interme-
diate regime where both full cooperation and full defec-
tion have nonzero probability, which, interestingly, is al-
most independent of the initial population. And, for large
enough s, full cooperation is almost always achieved.

With these examples, it is clear that considering inde-
pendent interaction and selection time scales may lead to
highly non-trivial, counter-intuitive results. [19] showed
that out of the 12 possible different games with two play-
ers, six were severely changed by the introduction of the
game time scale, whereas the other six remained with the
same equilibrium structure. Of course, the extent of the
modifications of the replicator dynamics picture depends
on the structure of the unperturbed phase space. Thus,
rapid selection perturbations show up in changes of the
asymptotically selected equilibria, i. e., of the asymptoti-
cally stable one, to changes of the basins of attraction of
equilibria, or to suppression of long-livedmetastable equi-
libria. As in the case of spatial perturbations, we are thus
faced with a most relevant influence on the equilibria of
the evolutionary game.

Future Directions

As we have seen in this necessarily short excursion, the
simplest mathematical models of evolution allow for a de-
tailed, analytical study of their equilibria (which are sup-
posed to represent stable states of populations) but, when
leaving aside some of the hypothesis involved in the
derivation of those simple models, the structure of equilib-
ria may be seriously modified and highly counter-intuitive
results may arise. We have not attempted to cover all pos-
sible perturbations but we believe we have provided ev-
idence enough that their effect is certainly very relevant.
When trying to bridge the gap between simple models and
reality, other hypotheses will be broken, maybe more than
one simultaneously, and subsequently the equilibria will
be severely affected.

In the future, we believe that this line of research will
undergo very interesting developments, particularly in the
framework of evolutionary game theory, as the fitness
landscape picture seems to be rather well understood and,
on the other hand, is felt to be a much too simple model.
In the case of evolutionary games, while some of the re-
sults we have collected here are analytical, there are many

others which are only numerical, in particular when per-
turbations depending on space (evolutionary game theory
on graphs) are considered. A lot of research needs to be
devoted in the next few years to understand this prob-
lem analytically, more so because there is now a “zoo” of
results that are even hard to classify or interpret within
a common basis. This will probably require a combined ef-
fort from different mathematical disciplines, ranging from
discrete mathematics to dynamical systems through, of
course, graph theory.

On the other hand, our examples have consisted of
two-player, two-strategy, symmetric games, i. e., the sim-
plest possible scenario. There are practically no results
about games with more than two strategies or, even worse,
with more than two players. In fact, even the classifica-
tion of the phase portraits within the replicator equations
for those situations is far from understood, the more so
the higher the dimensionality of the problem. Much re-
mains to be done in this direction. Asymmetrical games
are a different story; for those, the replicator equation is
not (6) anymore but rather one has to take into account
that payoffs when playing as player 1 or player 2 are not
the same, and the corresponding equation is more com-
plicated. Again, this line of research is still in its infancy
and awaiting for dedicated work.

Finally, a very interesting direction is the application
of the results to problems in social or biological contexts.
The evolutionary game theory community has been rely-
ing strongly on the predictions from the replicator equa-
tion which we now see may not agree with reality or at
least with what occurs when some of its hypotheses are not
fulfilled. This has led to a number of conundrums, partic-
ularly prominent among those being the problem of the
emergence of cooperation. A recent study [24] have shown
that, in a scenario described by the so-called Ultimatum
game, taking into consideration the possible separation of
time scales leads to results compatible with the experimen-
tal observations on human subjects, observations that the
replicator equation is not able to reproduce. We envis-
age that similar results will be ubiquitous when trying to
match the predictions of the replicator equation with ac-
tual systems or problems. Understading the effect of per-
turbations in a comprehensivemanner will then be the key
to the fruitful development of the theory as a “natural” or
“physical” one.
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Glossary

Perturbation Typically, one starts with an “initial” sys-
tem S0, which is usually simple and/or well under-
stood. We perturb the system by adding a (small) per-
turbation R so that the new object becomes S0 C R. In
our context the typical examples for S0 will be systems
of linear ordinary differential equations with constant
coefficients inRn or the associated linear vector fields.

Nilpotent linear transformation Let A : Kn 7! Kn be
a linear map, where K D R or K D C. We call A
nilpotent if there exists a positive integer r such that
the rth iteration Ar become the zero map, in short
Ar D 0.

Gevrey spaces Let ˝ be an open domain in Rn and let
� � 1. The Gevrey space G
 (˝) stands for the set of
all functions f 2 C1(˝) such that for every compact
subset K �� ˝ one can find C D CK; f > 0 such that

sup
x2K
j@˛x f (x)j � Cj˛jC1˛!
 (1)
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for all ˛ D (˛1; : : : ; ˛n) 2 Zn
C, ˛! D ˛1! : : : ˛n !,

j˛j :D ˛1 C : : :C ˛n . If � D 1 we recapture the space
of real analytic functions in ˝ while the scale G
 (˝),
� > 1, serves as an intermediate space between the
real analytic functions and the set of all C1 functions
in ˝ . By the Stirling formula one may replace ˛!
 by
j˛j!
 , j˛j
 j˛j or � (� j˛j), where � (z) stands for the
Euler Gamma function cf. the book of Rodino [41] for
more details on the Gevrey spaces.
One associates also Gevrey index to formal power se-
ries, namely, given a (formal) power series

f (x) D
X

˛

f˛x˛

this is in the formal Gevrey space G
f (K
n) if there exist

C > 0 and R > 0 such that

j f˛j � Cj˛jC1j˛j!
�1 (2)

for all ˛ 2 Zn
C.

In fact, one can find in the literature another definition
of the formal Gevrey spaces G�f of index � , namely re-
placing � � 1 by � (see e. g. Ramis [40]).

Definition of the Subject

The main goal of this article is to dwell upon the influ-
ence of the presence (explicit and/or hidden) of nontrivial
real nilpotent perturbations appearing in problems in Dy-
namical Systems, Partial Differential Equations andMath-
ematical Physics. Under the term nilpotent perturbation
we will mean, broadly speaking, a classical linear algebra
type setting: we start with an object (vector field or map
near a fixed point, first-order singular partial differential
equations, system of evolution partial differential equa-
tions) whose “linear part”A is semisimple (diagonalizable)
and we add a (small) nilpotent part N. The problems of
interest might be summarized as follows: are the “relevant
properties” (in suitable functional framework) of the ini-
tial “object” stable under the perturbationN. If not, to clas-
sify, if possible, the novel features of the perturbed systems.

Broadly speaking, the cases when the instabilities occur
are rare, they form some kind of exceptional sets. How-
ever, they appear in important problems (both in mathe-
matical and physical contests) when degeneracies (bifur-
cations) occur.

Introduction

We will focus our attention on topics where the presence
of nontrivial Jordan blocks in the linear parts changes the
properties of the original systems (i. e., instabilities occurs
unless additional restrictions are imposed):

(i) Convergence/divergence issues for the normal form
theory of vector fields and maps near a singular
(fixed) point in the framework of spaces of analytic
functions and Gevrey classes.

(ii) (Non)solvability for singular partial differential equa-
tions near a singular point.

(iii) Cauchy problems for hyperbolic systems of partial
differential equations with multiple characteristics.

Some basic features of the normal form theory for vec-
tor fields near a point will be recalled with an emphasis
on the difficulties appearing in the presence of nontriv-
ial Jordan blocks in the classification and computational
aspects of the normal forms. For more details and var-
ious aspects of perturbation theory in Dynamics we re-
fer to other articles in the Perturbation Theory Section
of this Encyclopedia: cf. Bambusi � Perturbation The-
ory for PDEs, Gaeta � Non-linear Dynamics, Symme-
try and Perturbation Theory in, Gallavotti� Perturbation
Theory, Broer � Normal Forms in Perturbation Theory,
Broer and Hanssmann � Hamiltonian Perturbation The-
ory (and Transition to Chaos), Teixeira � Perturbation
Theory for Non-smooth Systems, Verhulst� Perturbation
Analysis of Parametric Resonance, Walcher � Perturba-
tive Expansions, Convergence of.

We start by outlining some motivating examples.
Consider the nilpotent planar linear system of ordi-

nary differential equations

ẋ D
�

0 "

0 0

�
x ; x(0) D x0 2 R2 ;

where " 2 R. The explicit solution is given by x1(t) D x01C
x02"t, x2(t) D x02 and clearly the equilibrium (0; 0) is not
stable if " ¤ 0. On the other hand, ifU(x1) is a smooth real
valued analytic function, satisfying U(0) D 0, U(x1) > 0
for x1 ¤ 0, then it is well known that for " > 0 the Newton
equation

ẋ D
�

0 "

0 0

�
x �

�
0

U 0(x1)

�

is stable at (0; 0).
Another example, which enters in the framework con-

sidered here, is given by a conservative (i. e. Hamiltonian)
dynamical system perturbed by a friction term.

Next, we illustrate the influence of the real nilpotent
perturbations in the realm of the normal form theory and
in the general theory of singular partial differential equa-
tions. Consider the linear PDE

(x1 C "x2)@x1u C x2@x2u �
p
2x3@x3u � u D f (x) ;
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where " 2 R, and f stands for a convergent power series
in a neighborhood of the origin ofR3, at least quadratic at
x D 0. Such equations appear in the so-called homological
equations for the reduction to Poincaré–Dulac linear nor-
mal form of systems of analytic ODEs having an equilib-
rium at the origin. It turns out that in the semisimple case
" D 0 we can solve the equation in the space of convergent
power series while for " ¤ 0 (i. e., when a nontrivial Jor-
dan block appears) the equation is solvable only formally,
namely, divergent solutions appear. One is led in a natural
way to study the Gevrey index of divergent solutions.

Complex and Real Jordan Canonical Forms

We start by revisiting the notion of complex and real
canonical Jordan forms.

Recall that each linear map is decomposed uniquely
into the sum of a semisimple map and a nilpotent one. We
state a classical result in linear algebra

Lemma 1 Let A be an n � n matrix with real or complex
entries. Then it is uniquely decomposed as

AD As C Anil ; (3)

where As is semisimple (i. e., diagonalizable over C) and
Anil is nilpotent, i. e., Ar

nil D 0n�n for some positive inte-
ger r. Here 0n�n stands for the zero n � n matrix.

Denote by spec(A) D f1; : : : ; ng � C the set of all
eigenvalues of A counted with their multiplicity.

The complex Jordan canonical form (JCF) is defined
by the following assertion cf. Gantmacher [21]:

Theorem 2 Let A be an n � n matrix over K, K D C or
K D R. Then there exist positive integers m; k1; : : : ; km,
m � n, k1 C : : : C km D n and a matrix S 2 GL(n;C)
such that

S�1AS D JA :D
0

BB
@

�A
1 Ik1 C Nk1 0k1�k2 : : : 0k1�kp
0k2�k1 �A

2 Ik2 C Nk2 : : : 0k2�k3
:
:
:

:
:
:

:
:
:

:
:
:

0km�k1 0km�k2 : : : �A
mIkm C Nkm

1

CC
A

(4)

where A1 ; : : : ; 
A
m are the eigenvalues of A, which need not

all be distinct, and Nr, when r � 2, stands for the square
r � r matrix

0

B
BBB
B
@

0 1 0 : : : 0 0
0 0 1 : : : 0 0
:::

:::
:::

:::
:::

:::

0 0 0 : : : 0 1
0 0 0 : : : 0 0

1

C
CCC
C
A

(5)

with the convention N1 D 0. Moreover, if Anil ¤ 0, i. e.,
k j � 2 for at least one j 2 f1; : : : ;mg, then for every
" 2 C n 0 the matrix S(") 2 GL(n;C) D diagfS1("); : : : ;
Sm(")g, S j(") D 1 if k j D 1, S j(") D diagf1; : : : ; "k j�1g,
provided k j � 2, j D 1; : : : ;m, satisfies the identity

S�1(")AS(") D JA(") D
0

BB
@

�A
1 Ik1 C "Nk1 0k1�k2 : : : 0k1�kp
0k2�k1 �A

2 Ik2 C "Nk2 : : : 0k2�k3
:
:
:

:
:
:

:
:
:

:
:
:

0km�k1 0km�k2 : : : �A
mIkm C "Nkm

1

CC
A :

(6)

One may define in an obvious way another JCF (lower tri-
angular) replacing J by its transposed JT.

Note that Ak , k D 1; : : : ;m, are not necessarily dis-
tinct.

If � is an eigenvalue of A with algebraic multiplicity d,
i. e., it is a zero of multiplicity d of the characteristic poly-
nomial

PA() D jA� Ij ;

one can have different Jordan block structures. For exam-
ple, a 3 � 3 matrix with a triple eigenvalue � can be re-
duced to one of the three JCF:

� the matrix�I3, i. e.,� does not admit nontrivial Jordan
blocks;

�

0

@
� 1 0
0 � 1
0 0 �

1

A;

�

0

@
� 0 0
0 � 1
0 0 �

1

A

For higher dimensions the description of all JCF be-
comes more involved, cf. [3,21].

Remark 3 We can choose j"j arbitrarily small but never
zero if the nilpotent part is nonzero. The columns of the
conjugating matrix S are formed by eigenvectors and gen-
eralized eigenvectors. The smallness of j"j leads in a natu-
ral way to view the presence of nontrivial nilpotent parts
as a perturbation.

Next, if A is a real matrix, using the real and the imaginary
parts of the eigenvectors for the complex eigenvalues, one
introduces the real JCF.

Theorem 4 Let A 2 Mn�n(R). Then there exist nonnega-
tive integers p; q, 1 � pC 2q � n, p (if p � 1) positive in-
tegers k1; : : : ; kp, q (if q � 1) positive integers `1; : : : ; `q
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satisfying k1 C � � � C kp C 2(`1 C � � � C `q) D n, and S 2
SL(n;R), such that

S�1AS D
�

JRA 0k�2`
02`�k JCA

�
(7)

with

JRA D
0

B
B
@

�A
1 Ik1 C "

A
1 Nk1 0k1�k2 : : : 0k1�kp

0k2�k1 �A
2 Ik2 C "

A
2 Nk2 : : : 0k2�k3

:
:
:

:
:
:

:
:
:

:
:
:

0kp�k1 0kp�k2 : : : �A
p Ikp C "Ap Nkp

1

C
C
A ;

(8)

for some  j 2 R, j D 1; : : : ; p, and

JCA D

0

B
BBB
@

DA
1 02`1�2`2 : : : 02`1�2`q

02`2�2`1 DA
2 : : : 02`2�2`q

:::
:::

:::
:::

02`q�2`1 02`q�2`2 : : : DA
q

1

C
CCC
A
; (9)

with DA
� being 2`� � 2`� matrices, written as `� � `�

block matrices of 2 � 2matrices of the following 2 � 2 block
matrix form:

DA
� D

�
˛� �ˇ�
ˇ� ˛�

�
I`�(2)C

�
�A� �ıA�
ıA� �A�

�
N�(2) ;

(10)

for some ˛�; ˇ� 2 R, ˇ� ¤ 0, with ˛k ˙ ˇk i 2 spec(A).
Here, Ik(2) D diagfI2; : : : ; I2g denotes the 2k � 2k matrix
written as a k � k matrix with 2 � 2 block matrices while
Nk(2) stands for the following 2k � 2k nilpotent matrix
written as k � k matrix with 2 � 2 block matrices as entries:

Nk(2) D

0

BBB
BB
@

02�2 I2 02�2 : : : 02�2
02�2 02�2 I2 : : : 02�2
:::

:::
:::

:::
:::

02�2 02�2 02�2 : : : I2
02�2 02�2 02�2 : : : 02�2

1

CCC
CC
A

(11)

and 0r�s stands for the zero r � s matrix.

The smallness of the parameter " and the explicit form of
the conjugating matrices S(") are instrumental in show-
ing some useful estimates for the study of the dynam-
ics of the linear maps A which are not semisimple. Let
r(A) :D maxfjj :  2 spec(A)g (the spectral radius of A).
Then the following estimate, useful in different branches
of Dynamical Systems, holds (cf. [27])

Lemma 5 For every � > 0 there exists a norm in Rn such
that kAk � r(A)C �. Moreover, if

f 2 spec(A) : jj D r(A) do not admit Jordan blocksg

one has kAk D r(A) for some norm. In particular, if A is
semisimple, the last conclusion holds.

Next, consider the linear autonomous systems of ordinary
differential equations

ẋ D Ax : (12)

where A 2 Mn(R). We recall that if x(0) D � 2 Rn , then
the unique solution is defined by

x(t) D exp(tA)� :D
1X

kD0

tkAk

k!
� ; (13)

e. g., cf. Arnold [3], Coddington and Levinson [14].
We exhibit an assertion where the structure of the real

nilpotent perturbation Anil in the linear part plays a cru-
cial role for the stability for t � 0 of the solutions of the
linear system (12). We recall that the origin is stable if for
every " > 0 one can find ı > 0 such that k�k < ı implies
k exp(tA)�k < " for t � 0.

Proposition 6 The zero solution of (12) is stable for t � 0
if and only if the following two conditions hold:

i) spec(A) � f 2 C; Re � 0g;
ii) if  2 spec(A) and Re D 0 then  does not admit

a nontrivial Jordan block.

On the other hand, the origin is asymptotically stable for
t !C1 if and only if

spec(A) � f 2 C; Re < 0g :

The proof is straightforward in view of the explicit formula
for the exponent of the matrix exp(tA) by means of the
Jordan canonical form.

In particular, we get

Corollary 7 Let A be a real matrix such that all eigenval-
ues lie on the pure imaginary axis. Then the zero solution
of (12) is stable if and only if A is semisimple (i. e., Anil D 0).

Nilpotent Perturbation and Formal Normal Forms
of Vector Fields andMaps Near a Fixed Point

Normal form theory (originating back to Poincaré’s thesis)
has proven to be one of the most useful tools for the local
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analysis of dynamical systems near an equilibrium (singu-
lar) point x0 for autonomous systems of ODE

ẋ D X(x) (14)

or the associated vector field

eX(x) D hX(x); @x i D
nX

jD1

Xj(x)@x j (15)

(see [3,7,9,12,19,20,43], and the references therein). With-
out loss of generality (after a translation) one may assume
that x0 coincides with the origin and write

X(x) D Ax C R(x) ; AD rX(0) ;

R(x) D O
�
jxj2


; jxj ! 0 : (16)

Denote by spec(A) D f1; : : : ; ng the spectrum of A. The
basic idea, going back to Poincaré, is to find a (formal)
change of the coordinates defined as a (at least) quadratic
perturbation of the identity

x D u(y) D y C v(y) ; (17)

which transformseX into a new vector fieldeY(y) which has
a “simpler” form (Poincaré–Dulac normal form).

The original idea of Poincaré regards the possibility to
linearize eX, i. e., eY(y) D Ay. Straightforward calculations
show that the linearization of eX means that v(y) satisfies
(at least formally) a system of first order semilinear partial
differential equations, called the system of the homological
(difference) equations

LAv(y) D R(y C v(y)) (18)

In fact, it is the system above where the first substantial
technical difficulty appears if the nilpotent part Anil is not
zero, i. e., the matrix A is not diagonalizable. Indeed, if A
is diagonalizable and we choose (after a linear change of
the variables in Cn) AD diagf1; : : : ; ng, then the sys-
tem (18) is written as

nX

kD1

k@yk v j(y)� jv j D Rj(yC v(y)) ; j D 1; : : : ; n

(19)

We recall thateX (or specA) is said to be in the Poincaré
domain (respectively, Siegel domain) if the convex hull of
f1; : : : ; ng in the complex plane does not contain (re-
spectively, contains) 0. Further, spec(A) is called nonreso-
nant iff

h; ˛i �  j ¤ 0 ; j D 1; : : : ; n; ˛ 2 Zn
C(2) ; (20)

where h; ˛i D
Pn

jD1  j˛ j , Zn
C(2) :D f˛ D (˛1; : : : ;

˛n) 2 Zn
C : j˛j :D ˛1 C � � � C ˛n � 2g.

By the Poincaré–Dulac theorem, if spec(A) is in the
Poincaré domain, then there are at most finitely many res-
onances and there exists a convergent transformation (in
some neighborhood of the singular point) which reduces
eX to a (finitely resonant) normal form.

Theorem 8 Let the linear part A of the complex (respec-
tively, real) field above be nonresonant. Then the vector
field is formally linearizable by a complex (respectively, real)
transformation.

Denote by

ResAj D f˛ 2 Zn
C(2) :  j D h; ˛ig ; j D 1; : : : ; n :

Clearly the nonresonance hypothesis is equivalent to
ResAj D ; for j D 1; : : : ; n.

Additional technical complications appear if we con-
sider real vector fields.

Theorem 9 Every formal vector field with a singular point
at the origin is transformed by a formal complex change of
variables to a field of the form

hJAz; @zi C
nX

jD1

X

˛2ResAj

q j;˛z˛@z j (21)

The coefficients q j;˛ may be complex even though the origi-
nal vector field is real.

We note that if the linear part is nilpotent, i. e., spec(A) D
f0g, then the theorem above gives no simplification. In that
case Belitskii [7] has classified completely the formal nor-
mal forms.

Let A be a nilpotent matrix (i. e. the semisimple part
As is the zero matrix). The Poincaré–Dulac NF does not
provide any information. The following theorem is due to
Belitskii [7] (see also Arnold and Ilyashenko [4]).

Theorem 10 Let A be a nilpotent matrix and let X(x) be
a formal vector field with a linear part given by Ax. Then X
is transformed by a formal complex change of variables
x 7! z to a field of the form

hJAz; @zi C hB(z); @zi (22)

with B(z) being at least quadratic near the origin, where the
nonlinear vector field hB(z); @z i commutes with hJ�Az; @zi.
(Here � stands for the Hermitian conjugation).

We point out that another important problem is the com-
putation of the normal form. Here the presence of the Jor-
dan blocks leads to substantial difficulties.
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The description and the computation of nilpotent nor-
mal forms, based on an algebraic approach and the system-
atic use of the theory of invariance, with particular empha-
sis on the equivalence between different normal forms, has
been developed in a body of papers (see [16,36,37], and the
references therein).

Finally, we mention that nilpotent perturbations ap-
pear in the classification and Casimir invariants of Lie–
Poisson brackets that are formed by Lie algebra extensions
for physical systems admitting Hamiltonian structure to
such brackets (e. g. cf. Thiffeault and Morison [49]).

Loss of Gevrey Regularity in Siegel Domains
in the Presence of Jordan Blocks

The convergence question in the Siegel domain is more
difficult since small divisors appear. In a fundamental pa-
per Bruno [9] succeeded in proving a deep result of the
following type: a formal normal form is convergent un-
der an (optimal) arithmetic condition on the small divi-
sors jh; ˛i �  j j

�1 and a condition on the formal normal
form, called the A condition. It should be pointed out that
while in the original paper [9] the condition A allows in
some cases nontrivial Jordan blocks of the linear part, in
the subsequent works the linear part A is required to be
semisimple (diagonalizable).

We recall that for the finitely smooth and C1 local
normal forms the presence of the real nilpotent part does
not influence the convergence: e. g., in the Sternberg theo-
rem (cf. [45]) the small divisors and the presence of Jordan
blocks play no role (cf. [7], where many other references
can be found).

Little is known about convergence–divergence prob-
lems in the analytic category if spec(A) is in the Siegel do-
main and A is not semisimple.

Even in the cases where the presence of the nilpotent
part does not influence the assertions, the proofs become
more involved. Here we outline various aspects of normal
forms when nilpotent perturbations are present. We stress
especially the real case.

The combined influence of the Jordan blocks and the
small divisors on the convergence of the formal lineariz-
ing transformation for analytic vector fields inR3 has been
studied in Gramchev [23] (see also [53] for some exam-
ples). Let n D 3 and consider a nonsemisimple linear part
A 2 GL(3;K) satisfying spec(A) D f;�;�g,  ¤ �. This
means that we can reduce A to the " Jordan normal form

A" D

0

@
 0 0
0 � "

0 0 �

1

A ; " ¤ 0 : (23)

We recall that one can make j"j arbitrarily small by lin-
ear change of the variables (but never 0). Then spec(A) is
nonresonant and in the Siegel domain iff

� :D


�
< 0 ; � 62 Q : (24)

The typical example is a real vector field with a linear part
given by

A0
" D

0

@
� 0 0
0 1 "

0 0 1

1

A ; " ¤ 0 : (25)

One observes that such real vector fields are nonresonant
and hyperbolic and therefore, by the Chen theorem, lin-
earizable by smooth transformations.

We recall that an irrational number � is said to be dio-
phantine of order � > 0, and write � 2 D(�), if there exist
C > 0 such that

min
p2Z
jq�C pj �

C
q�
; q 2 N : (26)

By a classical result in number theory D(�) ¤ ; iff � � 1.
An irrational number � is called Liouville iff it is not dio-
phantine.

Given an irrational number � we set

�0 D �0(�) D
inff� > 0 : such that � 2 D(�)g ; before (27)

with the convention �0 D C1 if � is a Liouville number.

Theorem 11 Let spec(A) be in the Siegel domain. Then
LA is not solvable in the space of convergent power series,
namely, we can find RHS f which is analytic but the unique
formal power series solution is divergent. Moreover, we can
always find a convergent RHS f such that the unique formal
solution u satisfies

u 62
[

1�
<2C�0

G
f (K
3) (28)

In particular, if �0 D C1, then

u 62 G
 ; � � 1 : (29)

In case a diophantine condition is satisfied, estimates on
the Gevrey character of the divergent power series are de-
rived.

The nonsolvability of the LHE in the spaces of the
convergent power series does note exclude a priori that
the vector field is linearizable by analytic transformations.
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However, using a fundamental result of Pérez Marco [39]
one can state the following assertion for hyperbolic vector
fields which are not in the Poincaré domain.

Theorem 12 Let A be a real n � n matrix which is hyper-
bolic, not semisimple and is not in the Poincaré domain. Let
R(x) D (R1(x); : : : ; R(x)) be a real valued analytic func-
tion near the origin, at least quadratic near x D 0, i. e.
R(0) D 0, rR(0) D 0. Then there exists �0 > 0 such that
for almost all � 2]0; �0] in the sense of the Lebesgue mea-
sure, the vector field defined by

X"(x) D Ax C �R(x) (30)

is not linearizable by convergent transformations.

Remark 13 In fact, the result can be made more precise,
using the notion of capacity instead of the Lebesgue mea-
sure and allowing polynomial dependence on � (cf. [39]).

Another direction where the presence of real nilpotent
perturbations in the linear parts presents challenging ob-
stacles is the study of the dynamics in a neighborhood of
a fixed point carried out via a normalization up to finite
order and the issue of optimal truncation

X

j˛j�Nopt

u˛x˛

of normal form transformations for analytic vector fields.
In an impressive work Iooss and Lombardi [33] demon-
strate in particular that for large classes of real analytic vec-
tor fields with semisimple linear parts one can truncate the
formal normal form transformation for jxj � ı, ı0 > 0 ar-
bitrarily small, in such a way that the reminder in the nor-
mal form R(x) satisfies the following estimates

sup
jxj�ı
jRNopt (x)j � Mı2 exp



�
w
ıb

�
(31)

where b D 1C � . Here either � > n � 1, in which case
� ¤ 0 is the diophantine index of the small divisor type es-
timates modulo the resonance set, namely for some � > 0
the following estimates hold for the eigenvalues1; : : : ; n
of A

jh; ˛i �  j j �
�

j˛j�
; if h; ˛i �  j ¤ 0 (32)

for j D 1; : : : ; n, ˛ 2 Zn
C(2), or � D 0 and  satisfies the

nonresonant type estimates

jh; ˛i �  j j � � ; if h; ˛i �  j ¤ 0 (33)

for j D 1; : : : ; n, ˛ 2 Zn
C(2).

The question of the validity of such results for analytic
vector fields with nonsemisimple linearization is far more
intricate. Iooss and Lombardi [33] give two examples of
non-semisimple linearizations (nilpotent perturbations of
size 2 and 3) for which the result is still true. The question
remains totally open for other non-semisimple lineariza-
tions.

First-Order Singular Partial Differential Equations

This section deals with the study of formal power series
solutions to singular linear first-order partial differential
equations with analytic coefficients of the form

dX

jD1

a j(x)@x j u(x)C b(x)u(x) D f (x) ; (34)

where a j(x) (with j D 1; : : : ; d), b(x) and the right-hand
side f (x) are analytic in a neighborhood of the origin of
Cd , and a j(0) D 0 for j D 1; : : : ; d.

In an interesting paper Hibino [29] allows a Jacobian
matrix ra(0) without a Poincaré condition. More pre-
cisely, the Jacobi matrix at the origin can be reduced via
a conjugation with a nonsingular matrix S to the following
form: for some nonnegative integers, m, d, p, and d posi-
tive integers k j � 2 (with j D 1; : : : ; d), if d � 1, such that
mC r1 C : : : rd C p D n, one can write as follows:

S�1ra(0)S D

0

BB
BBB
@

A
Nr1

:::

Nrd
0p�p

1

CC
CCC
A

(35)

where Nr, r � 2, stands for the r � r nilpotent Jordan
block (5) and A is an m � m satisfying the Poincaré con-
dition (the convex hull inC of the eigenvalues 1; : : : ; m
of A does not contain the origin, provided m � 1).

One observes that the hypothesis d � 1 implies that
ra(0) does not satisfy the Poincaré condition.

The fundamental hypothesis on the zero order term
b(x) reads as follows

ˇ̌
ˇ̌
ˇ

mX

rD1

˛r C b(0)

ˇ̌
ˇ̌
ˇ
¤ 0; ˛ 2 Zm

C if m � 1 (36)

jb(0)j ¤ 0 if m D 0 (37)

In particular, by (37) one gets that necessarily b(0) ¤ 0.
It should be stressed that the classes of singular par-

tial differential equations above do not capture the systems
of homological equations when small divisors occur, but
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they outline some interesting features in the presence of
nontrivial Jordan blocks even in the lack of small divisors
phenomena.

Set �0 D max`D1;:::;d r` if d � 1. Then the main result
in [29] reads as follows

Theorem 14 Under the conditions (35)–(37) for every
RHS

f (x) D
X

˛2Zn
C

f˛x˛

which converges in a neighborhood of the origin the equa-
tion (34) has a unique formal solution which belongs to the
formal Gevrey space G
f (K

n) with

� D

8
<̂

:̂

2�0 if d � 1
2 if d D 0; p � 1
1 if d D p D 0

: (38)

The Gevrey index is determined by a Newton polyhedron,
a generalization of the notion of the Newton polygon for
singular ordinary differential equations. The arguments of
the proof rely on subtle Gevrey combinatorial estimates.

Extensions for first-order quasilinear singular partial
differential equations are done by Hibino [31].

It should be pointed out that the loss of Gevrey reg-
ularity comes not only from the nilpotent Jordan blocks,
but from the nonlinear (at least quadratic) terms in a(x) as
well. Indeed, for the equation

(1 � x21@x1 � x22@x2 )u(x) D x1 C x2

the unique formal solution is defined as follows

u(x) D
1X

jD0

( j � 1)!(x j
1 C x j

2)

cf. [29]. For further investigations on the loss of Gevrey
regularity for solutions of singular ordinary differential
equations of irregular type see Gramchev and Yoshi-
no [26]. For characterizations of the Borel summability of
a divergent formal power series solution of classes of first-
order linear singular partial differential equation of nilpo-
tent type see [30] and the references therein.

Solvability in classical Sobolev spaces and Gevrey
spaces for linear systems of singular partial differential
equations with real coefficients in Rn with nontrivial real
Jordan blocks are derived by Gramchev and Tolis [24].

Normal Forms for Real Commuting Vector Fields
with Linear Parts AdmittingNontrivial Jordan Blocks

The main goal of this section is to exhibit the influence of
nontrivial linear nilpotent parts for the simultaneous re-
duction to convergent normal forms of commuting vector
fields with a common fixed point.

Consider a family of commuting n � n matrices
A1; : : : ;Ad . If all matrices are semisimple, then they can
be simultaneously diagonalized overC or put into a block-
diagonal form over R, if A1; : : : ;Ad are real, by a linear
transformation S (e. g., [12,21]). This property plays a cru-
cial role in the study of the normal forms of commuting
vector fields with semisimple linear parts (cf. [46,47]).

However, if the matrices have nontrivial nilpotent
parts, then it is not possible to transform simultaneously
A1; : : : ;Ad in Jordan canonical forms. This is a conse-
quence of the characterization of the centralizer of a ma-
trix in a JCF (see [3,21]).

Apparently the first examples of simultaneous reduc-
tion to (formal) normal forms of commuting vector fields
with nonsemisimple linear parts are due to Cicogna and
Gaeta [12]) for two commuting vector fields using the set
up of the symmetries. More precisely, first, the definition
of Semisimple Joint Normal Form (SJNF) is introduced:
let

X D h f (x); @x i ; Y D hg(x); @x i ;

A D r f (0), B D rg(0) and f (x) D Ax C F(x), g(x) D
Bx C G(x). Then X and Y are said to be in SJNF if both F
and G belong to Ker(As)

T
Ker(Bs). HereAs stands for

the homological operator associated to the semisimple
part As of A.

Next, X;Y are in X-Joint NF iff

F 2 Ker(AC)
\

Ker(Bs) ;

and g 2 Ker(As)
\

Ker(Bs) :

Clearly in Y-JNF the role of f and g is reversed.
The main assertion is:

Theorem 15 Let [X;Y] D 0. Then X and Y can be re-
duced to a SJNF by means of a formal change of the
variables. They can also be reduced (formally) to X-Joint
or Y-Joint NF.

Example 16

AD

0

@
 0 0
0  "

0 0 

1

A B D

0

@
p 0 q
r s t
0 0 s

1

A ; (39)
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where ; "; p; q; r; s; t 2 C n 0. Then A and B commute
but it is impossible, in general, to reduce B to the Jordan
block structure of A, preserving that of A.

We point out that the problem of finding conditions
guaranteeing simultaneous reduction of commuting ma-
trices to Jordan normal forms is related to questions in the
Lie group theory (e. g., see Chap. IV of [12] and the refer-
ences therein).

Next, we outline recent results on simultaneous reductions
to normal forms of commuting analytic vector fields ad-
mitting nontrivial Jordan blocks in their linear parts fol-
lowing Yoshino and Gramchev [54].

Let K be K D C or K D R, and B D 1, B D ! or
B D k for some k > 0. Let Gn

B denote a d-dimensional Lie
algebra of germs at 0 2 Kn of CB vector fields vanishing at
0. Let � be a germ of singular infinitesimal Kd -actions of
class CB (d � 2)

� : Kd �! Gn
B : (40)

Denote by ActB(Kd : Kn) the set of germs of singular
infinitesimal Kd -actions of class CB at 0 2 Kn . By choos-
ing a basis e1; : : : ; ed 2 Kn , the infinitesimal action can be
identifiedwith a d-tuple of germs at 0 of commuting vector
fields X j D �(e j), j D 1; : : : ; d (cf. [18,46,47,55]). We can
define, in view of the commutativity relation, the action

e� : Kd �Kn �! Kn ;

e�(s; z) D X1
s1 ı � � � ı X

d
sd (z) D X
1s�1 ı � � � X


d
s�d

(z) ;

s D (s1; : : : ; sd ) ;

(41)

for all permutations � D (�1; : : : ; �d ) of f1; : : : ; dg, where
X j
t denotes the flow of Xj. We denote by �lin the linear ac-

tion formed by the linear parts of the vector fields defin-
ing �.

A natural question is to investigate necessary and suffi-
cient conditions for the linearization of � (allowing nilpo-
tent perturbations in the linear parts) namely, whether
there exists aCB diffeomorphism g preserving 0 such that g
conjugatese� and f�lin

e�(s; g(z)) D g(f�lin(s; z)) (s; z) 2 Kd �Kn : (42)

It is well known (e. g., cf. [35]) that there exists a pos-
itive integer m � n such that Kn is decomposed into
a direct sum of m linear subspaces invariant under all
A` D rX`(0) (` D 1; : : : ; d):

Kn D Is1 C � � � C Ism ; dim Is j D s j ; j D 1; : : : ;m;
s1 C � � � C sm D n:

(43)

The matrices A1; : : : ;Ad can be simultaneously brought
into upper triangular form, and we write again A` for the
matrices

A` D

0

BBB
@

A`1 0s1�s2 : : : 0s1�sm
0s2�s1 A`2 : : : 0s2�sm
:::

:::
:::

:::

0sm�s1 0sm�s2 : : : A`m

1

CCC
A
;

` D 1; : : : ; d : (44)

IfK D C, the matrix A`j is given by

A`j D

0

B
BBB
@

`j A`j;12 : : : A`j;1s j
0 `j : : : A`j;2s j
:::

:::
:::

:::

0 0 : : : `j

1

C
CCC
A
; (45)

with `j ;A
`
j;�� 2 C, ` D 1; : : : ; d, j D 1; : : : ;m. On the

other hand, if K D R, then we have, for every 1 � j � m
two possibilities: firstly, all A`j (` D 1; : : : ; d) are given
by (45) with `j 2 R. Secondly, s j D 2es j is even and A`j is
aes j � es j square block matrix given by

A`j D

0

B
BBB
B
@

R2(�`j ; �
`
j ) A12

`; j : : : A
1es j
` j

0 R2(�`j ;�
`
j ) : : : A

2es j
` j

:
:
:

:
:
:

:
:
:

:
:
:

0 0 : : : R2(�`j ; �
`
j )

1

C
CCC
C
A
;

` D 1; : : : ; d ; (46)

where

R2(;�) :D
�

 �

�� 

�
; ; � 2 R ; (47)

and Ars
` j are appropriate real matrices.

Following the decomposition (45) (respectively, (46))
we define e j by

e
k D t(k1 ; : : : ; 

k
m ) 2 Km ; k D 1; : : : ; d : (48)

Then we assume

e1; � � � ;fd are linearly independent in Km : (49)

One can easily see that (49) is invariantly defined.
By (44) we define

E j D
t(1j ; � � � ; 

d
j ) 2 Kd ; j D 1; : : : ;m ; (50)
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and

�m :D f E1; : : : ; Emg : (51)

We define the cone � [�m] by

� [�m] D
8
<

:

mX

jD1

t j E j 2 Kd ; t j � 0; j D 1; : : : ;m;
mX

jD1

t j ¤ 0

9
=

;
:

(52)

Definition 17 A Kd -action � is called a Poincaré mor-
phism if there exists a basis�m � Km such that � [�m] is
a proper cone inKm , namely it does not contain a straight
real line. If the condition is not satisfied, then, we say that
theKd -action is in a Siegel domain.

Note that the definition is invariant under the choice of the
basis�m.

Remark 18 The geometric definition above is equivalent
to the notion of Poincaré morphism given by Stolovitch
(Definition 6.2.1 in [46]).

Next, we need to introduce the notion of simultaneous
resonance. For ˛ D (˛1; : : : ; ˛m) 2 Km , ˇ D (ˇ1; : : : ;
ˇm) 2 Km , we set h˛; ˇi D

Pm
�D1 ˛�ˇ� . For a positive

integer k we defineZm
C(k) D f˛ 2 Zm

C; j˛j � kg. Put

! j(˛) D
dX

�D1

jhe� ; ˛i � �j j ; j D 1; : : : ;m ; (53)

!(˛) D minf!1(˛); : : : ; !m(˛)g : (54)

Definition 19 The cone�m is called simultaneously non-
resonant (or, in short � is simultaneously nonresonant), if

!(˛) ¤ 0 ; 8˛ 2 Zm
C(2) : (55)

If (55) does not hold, then�m is said to be simultaneously
resonant.

Clearly, the simultaneously nonresonant condition (55) is
invariant under a change of the basis�m.

The next assertion provides a geometrically invariant
condition guaranteeing that the simultaneous reduction to
normal form does not depend on (small) nilpotent pertur-
bation of the linear part.

Theorem 20 Let � be a Poincaré morphism. Then � is con-
jugated to a polynomial action by a convergent change of
variables.

Remark 21 As a corollary of Theorem 20 for vector fields
having linear parts with nontrivial Jordan blocks one ob-
tains generalizations of results for the existence of con-
vergent normal forms for analytic vector fields admitting
symmetries cf. [5,12,13].

Example 22 Let � be a R2-action in Rn , n � 4 with
m D 3. Choose a basis�2 ofR3 such that

�2 D
˚t(1; 1; �); t(0; 1; �)

�
; �; � 2 R : (56)

By (52), � [�2] is generated by the set of vectors f(1; 0);
(1; 1); (�; �)g. Hence the action is a Poincaré morphism if
and only if these vectors generate a proper cone, namely
(�; �) is not in the set f(�; �) 2 R2; � � � � 0g. We note
that the interesting case is � < � � 0, where every gener-
ator in (56) is in a Siegel domain.

Next, given a two-dimensional Lie algebra, choose a ba-
sis X1, X2 with linear parts Aj 2 GL(4;C) satisfying
spec(A1) D f1; 1; �; �g and spec(A2) D f0; 1; �; �g, re-
spectively, where � < � < 0, (�; �) 62 Q2, and

A1 D

0

BB
@

1 0 0 0
0 1 0 0
0 0 � 0
0 0 0 �

1

CC
A ; A2 D

0

BB
@

0 0 0 0
0 1 0 0
0 0 � "

0 0 0 �

1

CC
A ;

(57)

where " ¤ 0.
We show a refinement of the divergence result in

Gevrey classes in [54] for the solution v of the overde-
termined systems of linear homological equations Ljv :D
rv(x)Ajx � Ajv D f j ( j D 1; 2), with the compatibility
conditions for the RHS (see [54] for more details).

Theorem 23 Let 1/2 � �0 <1. Then there exists

E0 � f(�; �) 2 (R nQ)2; � < � < 0 ;
� does not satisfy the Bruno conditiong

with the density of continuum such that for every (�; �) 2
E0, there exists analytic f D t( f 1; f 2) 2 (C4

2fxg)
2, satisfy-

ing the compatibility condition for the overdetermined sys-
tem and such that the unique formal solution v(x) is not inS

1�
<2C� G

 (C4). Moreover, for every analytic f we can

find C > 0 such that the unique formal solution satisfies the
anisotropic Gevrey estimates

jv˛j � Cj˛jC1(˛3 C ˛4)(1C�)˛4 ; ˛ 2 Z4
C(2) ; (58)
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Analytic Maps near a Fixed Point
in the Presence of Jordan Blocks

As for the real analytic local diffeomorphisms preserving
the origin in Rn , one has in fact to deal necessarily with
hyperbolic maps (cf. [4]).

Recall first the complex analytic case cf. [3,4]. Let
˚(x) be a biholomorphic map of Cn preserving the ori-
gin and ˚ 0(0) the Jacobian matrix at the origin. Denote
by spec(˚ 0(0)) D f1; : : : ; ng the spectrum of ˚ 0(0).
Clearly  j ¤ 0 for all j D 1; : : : ; n. We define the set of
all resonance multiindices of ˚ (actually it depends only
on spec(˚ 0(0))) as follows:

Res[1; : : : ; n] D
n[

jD1

Res j[1; : : : ; n]

Res j[1; : : : ; n] D f˛ 2 Zn
C(2) : 

˛ �  j D 0g ;

(59)

where Zn
C(k) :D f˛ 2 Zn

C : j˛j � kg,  D (1; : : : ; n)
and ˛ D ˛11 : : : 

˛n
n for ˛ D (˛1; : : : ; ˛n) 2 Zn

C.
Given � 2 GL(n;C) define O[�] as the germ of all

local complex analytic diffeomorphisms (biholomorphic
maps) ˚(x) of Cn with 0 as a fixed point and such that
˚ 0(0) is in the GL(n;C)-conjugacy class of �. We stress
that if � is diagonalizable (semisimple) then the germ is
determined by the spectrum of�, i. e., by n nonzero com-
plex numbers 1; : : : ; n .

We will say that ˚(x) is formally linearizable if there
exists a formal series u(x) D x C

P
˛2Zn

C
(2) u˛x

˛ such
that

u�1 ı ˚ ı u D ˚ 0(0) formally in (C[x])n ; (60)

where C[x] stands for the set of all formal power series
with complex coefficients. It is well known (the Poincaré–
Dulac theorem, cf. [3]) that under the nonresonance hy-
pothesis Res[1; : : : ; n] D ;, i. e.,

˛ �  j ¤ 0 ; ˛ 2 Zn
C(2) ; j D 1; : : : ; n ; (61)

˚ is formally linearizable. In fact, (61) is a necessary
and sufficient condition in order that every holomorphic
˚(x) with spec˚ 0(0) D f1; : : : ; ng is formally lineariz-
able. We refer to Gramchev and Walcher [25] for formal
and algebraic aspects of normal forms of maps.

The formal solution of (60) involves expressions of the
form (˛ �  j)�1; so when inf˛ j˛ �  jj D 0 for some
j 2 f1; : : : ; ng, the convergence of u becomes a subtle
question.

One of the main problems, starting from the pioneer-
ing work of Siegel [44], has been (and still is) to find
general conditions which guarantee that u(x) converges,

i. e., that ˚(x) is linearizable. We recall the state of the
art of this subject. If the linear part ˚ 0(0) is semisimple
(i. e., ˚ 0(0) has no nontrivial Jordan blocks), then it is
well known that for convergence we need arithmetic (Dio-
phantine) conditions on

!(m) :D min
2�j˛j�m;1� j�n

j˛ � j j ; m 2 ZC(2) : (62)

We refer for the history and references to the survey paper
by Herman [28]. The best condition that implies lineariz-
ability for all maps with a given semisimple linear part is
due to Bruno [9], and can be expressed as (following Her-
man, p. 143 in [28])

1X

kD1

2�k ln(!�1(2kC1)) <1 : (63)

If one assumes the Poincaré condition

max
1� j�n

j j j < 1 or min
1� j�n

j jj > 1 ; (64)

then ˚ is always analytically equivalent to its linear part
˚ 0(0), provided the nonresonance hypothesis holds. More
generally, (64) implies that there are finitely many reso-
nances and, according to the Poincaré–Dulac theorem, we
can find a local biholomorphic change of the variables u
bringing ˚ to normal form

(u�1 ı ˚ ı u)(x) D ˚ 0(0)x C Pres(x) ; (65)

where the remainder Pres(x) is a polynomial map contain-
ing only resonant terms.

Little is known about the (non)linearizability of ˚
in the analytic category if the Poincaré condition doesn’t
hold and the matrix ˚ 0(0) has at least one nontrivial Jor-
dan block. When n D 2 and A has a double eigenvalue
1 D 2, j1j D 1 and a nontrivial Jordan block, then
in general ˚ is not linearizable. This result is contained
in Proposition 3, p. 143 in [28], which is a consequence of
results of Ilyashenko [32] and Yoccoz (the latter proved in
1978; for published proofs we refer to Appendix, pp. 86–
87 in [52]). It is not difficult to extend this negative result
toCn , n � 3.

In a recent paper of DeLatte and Gramchev [17] bi-
holomorphic maps in Cn , n D 3 and n D 4 having a sin-
gle nontrivial Jordan block of the linear part have been
studied. We mention also the paper of Abate [1], where
nondiagonalizable discrete holomorphic dynamical sys-
tems have been investigated using geometrical tools.

One observes that in the real case, as the matrix ˚ 0(0)
is real, the nonresonance condition excludes eigenvalues
on the unit circle, i. e., the map is hyperbolic.
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As a corollary from results of Delatte and Gram-
chev [17] on nonsolvability of the LHE in the presence of
Jordan blocks in the linear parts of biholomorphic maps
preserving the origin ofC3 and the fundamental results of
Pérez Marco [39] one gets readily the following assertion
for hyperbolic analytic maps preserving the origin in Rn

and having nondiagonalizable linear parts at the origin.

Theorem 24 Let A be a real n � n matrix such that
its eigenvalues are nonresonant and lie outside the unit
circle in C, and A is neither expansive nor contractive
(i. e., the Poincaré condition (64) is not satisfied). Let
R(x) D (R1(x); : : : ; R(x)) be a real valued analytic func-
tion near the origin, at least quadratic near x D 0, i. e.
R(0) D 0, rR(0) D 0. Then there exists �0 > 0 such that
for almost all � 2]0; �0] in the sense of the Lebesgue mea-
sure, the local analytic diffeomorphism defined by

˚(x) D Ax C �R(x) (66)

is not linearizable by convergent transformations.

Weakly Hyperbolic Systems
and Nilpotent Perturbations

The presence of nondiagonalizable matrices appear as
a challenging problem in the framework of the well-posed-
ness of the Cauchy problem for evolution partial differen-
tial equations. In order to illustrate the main features we
focus on linear hyperbolic systems with constant coeffi-
cients in space dimension one

@tu C A@xu C Bu D 0 ; t > 0; x 2 R (67)

u(0; x) D u0(x) (68)

where A and B are real m �m matrices, u D (u1; : : : ; um )
stands for a vector-valued smooth function. One is in-
terested in the C1 well-posedness of the Cauchy prob-
lem (67), (68), namely, for every initial data u0 2

(C1(R))m there exists a unique solution u 2 C1(R2)
of (67), (68).

We recall that the system is hyperbolic if the character-
istic equation

jA� Ij D 0 (69)

has m real solutions 1; : : : ; m . If the roots are distinct,
the system is called strictly hyperbolic. The strict hyperbol-
icity implies that A is diagonalizable, which in turn implies
that, after a linear change of variables, one can assume A
to be diagonal and reduce essentially the problem to m
first-order scalar equations. In that case the Cauchy prob-
lem is well-posed in the classical sense, namely for every

smooth initial data u0 (it is enough u0 2 C1(R)) there ex-
ists a unique smooth solution u(t; x) to the Cauchy prob-
lem. In fact, it is enough to require that A is semisimple
(i. e., allowing multiple eigenvalues but excluding nilpo-
tent parts) in order to have well-posedness (e. g., cf. the
book of Taylor [48] and the references therein for more
details on strictly hyperbolic systems with variable coeffi-
cients, and more general set-up in the framework of pseu-
dodifferential operators).

If the system is hyperbolic but not strictly hyperbolic
(it is called also weakly hyperbolic), it means that the ma-
trix A has multiple eigenvalues. Here the influence of the
Jordan block structure is decisive and one has non exis-
tence theorems in the C1 category unless one imposes ad-
ditional restrictions on the lower-order term B. In many
applications one encounters weakly hyperbolic systems.
One example is in the so-called water waves problem, con-
cerning the motion of the free surface of a body of an in-
compressible irrotational fluid under the influence of grav-
ity (see [15] and the references therein), where for the lin-
earized system one encounters a 2 � 2 matrix of the type

AD
�
c ~

0 c

�
;

where c stands for the velocity, and ~ is a nonzero real
number.

The assertions, even in the seemingly simple model
cases, are not easy to state in simple terms. The first results
on such systems are due to Kajitani [34]. The classifica-
tion problem was completely settled for the so-called hy-
perbolic systems of constant multiplicities by Vaillant [50]
using subtle linear algebra arguments withmultiparameter
dependence if the space dimension is greater then 1.

We illustrate the assertions for m D 2 and m D 3,
where the influence of the nilpotent part is somewhat eas-
ier to describe in details. In what follows we rewrite the
results in [34,50] by means of the Jordan block structures.

The case m D 2 is easy.

Proposition 25 Let

AD
�
0 1
0 0

�
; (70)

for some 0 2 R. Then the Cauchy problem is C1 well
posed iff b21 D 0, with

B D
�

b11 b12
b21 b22

�
:

Let the 3 � 3 real matrix A have a triple eigenvalue 0 and
be not semisimple. Then we are reduced (modulo conju-
gation with an invertible matrix) to two possibilities: either
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the JCF of A is a maximal Jordan block
0

@
0 1 0
0 0 1
0 0 0

1

A ; (71)

or the degenerate case of one 2 � 2 and one 1 � 1 elemen-
tary Jordan blocks

AD

0

@
0 1 0
0 0 0
0 0 0

1

A ; (72)

Proposition 26 Let n D 3. Then the following assertions
hold:

(i) let A be defined by (71). Then the Cauchy problem is
well-posed in C1 iff the entries of the matrix

B D

0

@
b11 b12 b13
b21 b22 b23
b31 b32 b33

1

A

satisfy the identities

b31 D b21 C b32 D b11 � b13 D 0 ; (73)

(ii) suppose that A is given by (72). The well-posedness in
C1 holds iff

b21 D b21b32 D 0 : (74)

In an interesting work, Petkov [38], using real Jordan
block structures depending on parameters and reduction
to normal forms of matrices depending on parameters
(cf. [2]), derived canonical microlocal forms for the full
symbol of a pseudodifferential system with real character-
istics of constantmultiplicity and applies them to study the
propagation of singularities of solutions of certain systems.

More generally, the Cauchy problem for hyperbolic
systems with multiple characteristics have been studied
by various authors where (implicitly) conditions on the
nilpotent perturbations and the lower order term are im-
posed (e. g., cf. [8,34,51], and the references therein).

It would be interesting to write down such conditions
in terms of conditions on the nilpotent perturbations on
the principal part and the lower-order terms.

Finally, we mention also the work of Ghedamsi, Gour-
din, Mechab, and Takeuchi [22], concerned with the
Cauchy problem for Schrödinger-type systems with char-
acteristic roots of multiplicity two admitting nontrivial
Jordan blocks.
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Glossary

Formal power series a power series, giving the value of
a function f (") of a parameter ", that is derived assum-
ing that f is analytic in ".

Renormalization group method for multiscale analysis
and resummation of formal power series. Usually ap-
plied to define a systematic collection of terms to orga-
nize a formal power series into a convergent one.

Lindstedt series an algorithm to develop formal power
series for computing the parametric equations of in-
variant tori in systems close to integrable.

Multiscale problem any problem in which an infinite
number of scales play a role.

Definition of the Subject

Perturbation Theory:Computation of a quantity depend-
ing on a parameter " starting from the knowledge of its
value for " D 0 by deriving a power series expansion in
", under the assumption of its existence, and if possible
discussing the interpretation of the series. Perturbation
theory is very often the only way to get a glimpse of the
properties of systems whose equations cannot be “explic-
itly solved” in computable form.

The importance of Perturbation Theory is witnessed
by its applications in Astronomy, where it led not only
to the discovery of new planets (Neptune) but also to the
discovery of Chaotic motions, with the completion of the
Copernican revolution and the full understanding of the
role of Aristotelian Physics formalized into uniform rota-
tions of deferents and epicycles (today Fourier represen-
tation of quasi periodic motions). It also played an essen-
tial role in the development of Quantum Mechanics and
the understanding of the periodic table. The successes of
Quantum Field Theory in Electrodynamics first, then in
Strong interactions and finally in the unification of the el-
ementary forces (strong, electromagnetic, and weak) are
also due to perturbation theory, which has also been es-
sential in the theoretical understanding of the critical point
universality. The latter two themes concern the newmeth-
ods that have been developed in the last fifty years, mark-
ing a kind of new era for perturbation theory; namely deal-
ing with singular problems, via the techniques called, in
Physics, “Renormalization Group” and, in Mathematics,
“Multiscale Analysis”.

Introduction

Perturbation theory, henceforth PT, arises when the value
of a function of interest is associated with a problem de-
pending on a parameter, here called ". The value has to be

a simple, or at least explicit and rigorous, computation for
" D 0 while its computation for " ¤ 0, small, is attempted
by expressing it as the sum of a power series in "which will
be called here the “solution”.

It is important to say since the beginning that a real PT
solution of a problem involves two distinct steps: the first
is to show that assuming that there is a convergent power
series solving the problem then the coefficients of the nth
power of " exist and can be computed via finite computa-
tion. The resulting series will be called formal solution or
formal series for the problem. The second step, that will be
called convergence theory, is to prove that the formal series
converges for " small enough, or at least find a “summa-
tion rule” that gives a meaning to the formal series thus
providing a real solution to the problem. None of the two
problems is trivial, in the interesting cases, although the
second is certainly the key and a difficult one.

Once Newton’s law of universal gravitation was es-
tablished it became necessary to develop methods to find
its implications. Laplace’s “Mécanique Céleste” [19], pro-
vided a detailed and meticulous exposition of a general
method that has become a classic, if not the first, exam-
ple of perturbation theory, quite different from the parallel
analysis of Gauss which can be more appropriately consid-
ered a “non perturbative” development.

Since Laplace one can say thatmany applications along
his lines followed. In the XIX century wide attention was
dedicated to extend Laplace’s work to cover various astro-
nomical problems: tables of the coefficients were dressed
and published, and algorithms for their construction were
devised, and planets were discovered (Neptune, 1846).
Well known is the “Lindstedt algorithm” for the compu-
tation of the nth order coefficients of the PT series for the
non resonant quasi periodic motions. The algorithm pro-
vides a power series representation for the quasi periodic
motions with non resonant frequencies which is extremely
simple: however it represents the nth coefficient as a sum
of many terms, some of size of the order of a power on n!.
Which of course is a serious problem for the convergence.

It became a central issue, known as the “small de-
nominators problem” after Poincaré’s deep critique of the
PT method, generated by his analysis of the three-body
problem. It led to his “non-integrability theorem” about
the generic nonexistence of convergent power series in
the perturbation parameter " whose sum would be a con-
stant of motion for a Hamiltonian H", member of a fam-
ily of Hamiltonians parametrized by " and reducing to
an integrable system for " D 0. The theorem suggested
(to some) that even the PT series of Lindstedt (to which
Poincaré’s theorem does not apply) could be meaningless
even though formally well defined [23].
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A posteriori, it should be recognized that PT was in-
volved also in the early developments of Statistical Me-
chanics in the XIX century: the virial theorem application
to obtain the Van der Waals equation of state can be con-
sidered a first-order calculation in PT (although this be-
came clear only a century later with the identification of "
as the inverse of the space dimension).

Poincaré’s Theorem and Quanta

With Poincaré begins a new phase: the question of con-
vergence of series in " becomes a central one in the Math-
ematics literature. Much less, however, in the Physics lit-
erature where the new discoveries in the atomic phenom-
ena attracted the attention. It seems that in the Physics re-
search it was taken for granted that convergence was not
an issue: atomic spectra were studied via PT and early
authoritative warnings were simply disregarded (for in-
stance, explicit by Einstein, in [1], and clear, in [3], but
“timid” being too far against themainstream, for his young
age). In this way quantum theory could grow from the
original formulations of Bohr, Sommerfeld, Eherenfest re-
lying on PT to the final formulations of Heisenberg and
Schrödinger quite far from it. Nevertheless, the triumph
of quantum theory was quite substantially based on the
technical development and refinement of the methods of
formal PT: the calculation of the Compton scattering, the
Lamb shift, Fermi’s weak interactions model and other
spectacular successes came in spite of the parallel recog-
nition that some of the series that were being laboriously
computed not only could not possibly be convergent but
their very existence, to all orders n, was in doubt.

The later Feynman graphs representation of PT was
a great new tool which superseded and improved earlier
graphical representations of the calculations. Its simplicity
allowed a careful analysis and understanding of cases in
which even formal PT seemed puzzlingly failing.

Renormalization theory was developed to show that
the convergence problems that seemed to plague even the
computation of the individual coefficients of the series,
hence the formal PT series at fixed order, were, in real-
ity, often absent, in great generality, as suspected by the
earlier treatments of special (important) cases, like the
higher-order evaluations of the Compton scattering, and
other quantum electrodynamics cross sections or anoma-
lous characteristic constants (e. g. the magneticmoment of
the muon).

Mathematics and Physics. Renormalization

In 1943 the first important result on the convergence of the
series of the Lindstedt kind was obtained by Siegel [25]:

a formal PT series, of interest in the theory of complex
maps, was shown to be convergent. Siegel’s work was
certainly a stimulus for the later work of Kolmogorov
who solved [18], a problem that had been considered
not soluble by many: to find the convergence conditions
and the convergence proof of the Lindstedt series for
the quasi periodic motions of a generic analytic Hamilto-
nian system, in spite of Poincaré’s theorem and actually
avoiding contradiction with it. Thus, showing the sound-
ness of the comments about the unsatisfactory aspects of
Poincaré’s analysis that had been raised almost immedi-
ately by Weierstrass, Hadamard and others.

In 1956 not only Kolmogorov theorem appeared but
also convergence of another well known and widely used
formal series, the virial series, was achieved in an unno-
ticed work by Morrey [21], and independently rediscov-
ered in the early 1960’s.

At this time it seems that all series with well-defined
terms were thought to be either convergent or at least
asymptotic: for most Physicists convergence or asymp-
toticity were considered of little interest and matters to be
left to Mathematicians.

However, with the understanding of the formal aspects
of renormalization theory the interest in the convergence
properties of the formal PT series once again became the
center of attention.

On the one hand mathematical proofs of the existence
of the PT series, for interesting quantum fields models, to
all orders were investigated settling the question once and
for all (Hepp’s theorem [16]); on the other hand it was ob-
vious that even if convergent (like in the virial or Meyer
expansions, or in the Kolmogorov theory) it was well un-
derstood that the radius of convergence would not be large
enough to cover all the physically interesting cases. The
sum of the series would in general become singular in the
sense of analytic functions and, even if admitting analytic
continuation beyond the radius of convergence, a singu-
larity in "would be eventually hit. The singularity was sup-
posed to correspond to very important phenomena, like
the critical point in statistical mechanics or the onset of
chaotic motions (already foreseen by Poincaré in connec-
tion with his non convergence theorem). Thus, research
developed in two direction.

The first aimed at understanding the nature of the sin-
gularities from the formal series coefficients: in the 1960s
many works achieved the understanding of the scaling
laws (i. e. some properties of the divergences appearing at
the singularities of the PT series or of its analytic contin-
uation, for instance in the work of M. Fisher, Kadanoff,
Widom and may others). This led to trying to find resum-
mations, i. e. to collect terms of the formal series to trans-
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form them into convergent series in terms of new parame-
ters, the running couplings.

The latter would be singular functions of the original
" thus possibly reducing the study of the singularity to the
singularities of the running couplings. The latter could be
studied by independent methods, typically by studying the
iterations of an auxiliary dynamical system (called the beta
function flow). This was the approach or renormalization
group method of Wilson [10,29].

The second direction was dedicated to finding out the
real meaning of the PT series in the cases in which con-
vergence was doubtful or a priori excluded: in fact already
Landau had advanced the idea that the series could be
just illusions in important problems like the paradigmatic
quantum field theory of a scalar field or the fundamental
quantum electrodynamics [4,15].

In a rigorous treatment the function that the series
were supposed to represent would be in fact a trivial func-
tion with a dependence on " unrelated to the coefficients
of the well defined and non trivial but formal series. It
was therefore important to show that there were at least
cases in which the perturbation series of a nontrivial prob-
lem had a meaning determined by its coefficients. This
was studied in the scalar model of quantum field the-
ory and a proof of “non triviality” was achieved after
the ground-breaking work of Nelson on two-dimensional
models [22,26]: soon followed by similar results in two di-
mensions and the difficult extension to three-dimensional
models by Glimm and Jaffe [14], and generating many
works and results on the subject which took the name of
“constructive field theory” [6].

But Landau’s triviality conjecture was actually dealing
with the “real problem”, i. e. the 4-dimensional quantum
fields. The conjecture remains such at themoment, in spite
of very intensive work and attempts at its proof. The prob-
lem had relevance because it could have meant that not
only the simple scalar models of constructive field theory
were trivial but also the QED series which had received
strong experimental support with the correct prediction
of fine structure phenomena could be illusions, in spite of
their well-defined PT series: which would remain as mi-
rages of a non existing reality.

The work ofWilsonmade clear that the “triviality con-
jecture” of Landau could be applied only to theories which,
after the mentioned resummations, would be controlled
by a beta function flow that could not be studied perturba-
tively, and introduced the new notion of asymptotic free-
dom. This is a property of the beta function flow, imply-
ing that the running couplings are bounded and small so
that the resummed series are more likely to have a mean-
ing [29].

This work revived the interest in PT for quantum fields
with attention devoted to new models that had been be-
lieved to be non renormalizable. Once more the appar-
ently preliminary problem of developing a formal PT se-
ries played a key role: and it was discovered that many
Yang–Mills quantum field theories were in fact renormal-
izable in the ultraviolet region [27,28], and an exciting pe-
riod followed with attempts at using Wilson’s methods to
give a meaning to the Yang–Mills theory with the hope of
building a theory of the strong interactions. Thus, it was
discovered that several Yang–Mills theories were asymp-
totically free as a consequence of the high symmetry of
the model, proving that what seemed to be strong evidence
that no renormalizable model would have asymptotic free-
domwas an ill-founded belief (that in a sense slowed down
the process of understanding, and not only of the strong
interactions).

Suddenly understanding the strong interactions, un-
til then considered an impossible problem became possi-
ble [15], as solutions could be written and effectively com-
puted in terms of PT which, although not proved to be
convergent or asymptotic (still an open problem in di-
mension d D 4) were immune to the argument of Landau.
The impact of the new developments led a little later to
the unification of all interactions into the standard model
for the theory of elementary particles (including the elec-
tromagnetic and weak interactions). The standard model
was shown to be asymptotically free even in the presence
of symmetry breaking, at least if a few other interactions
in the model (for instance the Higgs particle self interac-
tion) were treated heuristically while waiting for the dis-
covery of the “Higgs particle” and for a better understand-
ing of the structure of the elementary particles at length
scales intermediate between the Fermi scale (� 10�15 cm
(the weak interactions scale)) and the Planck scale (the
gravitational interaction scale, 15 orders of magnitude be-
low).

Given that the very discovery of renormalizability of
Yang–Mills fields and the birth of a strong interactions
theory had been firmly grounded on experimental re-
sults [15], the latter “missing step” was, and still is, con-
sidered an acceptable gap.

Need of Convergence Proofs

The story of the standard model is paradigmatic of the
power of PT: it should convince anyone that the analysis of
formal series, including their representation by diagrams,
which plays an essential part, is to be taken seriously. PT is
certainly responsible for the revival and solution of prob-
lems considered by many as hopeless.
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In a sense PT in the elementary particles domain can
only, so far, partially be considered a success. Different is
the situation in the developments that followed the works
of Siegel and Kolmogorov. Their relevance for Celestial
Mechanics and for several problems in applied physics
(particle accelerator design, nuclear fusion machines for
instance) and for statistical mechanics made them too the
object of a large amount of research work.

The problems are simpler to formulate and often very
well posed but the possibility of existence of chaotic mo-
tions, always looming, made it imperative not to be con-
tent with heuristic analysis and imposed the quest ofmath-
ematically complete studies. The lead were the works of
Siegel and Kolmogorov. They had established convergence
of certain PT series, but there were other series which
would certainly be not convergent even though formally
well defined and the question was, therefore, which would
be their meaning.

More precisely it was clear that the series could be used
to find approximate solutions to the equations, represent-
ing the motion for very long times under the assumption
of “small enough” ". But this could hardly be considered
an understanding of the PT series in Mechanics: the es-
timated values of " would have to be too small to be of
interest, with the exception of a few special cases. The real
question was what could be done to give the PT series the
status of exact solution.

As we shall see the problem is deeply connected with
the above-mentioned asymptotic freedom: this is perhaps
not surprising because the link between the two is to be
found in the “multiscale analysis” problems, which in the
last half century have been the core of the studies in many
areas of Analysis and in Physics, when theoretical develop-
ments and experimental techniques became finer and able
to explore nature at smaller and smaller scales.

Multiscale Analysis

To illustrate the multiscale analysis in PT it is convenient
to present it in the context of Hamiltonian mechanics, be-
cause in this field it provides us with nontrivial cases of
almost complete success.

We begin by contrasting the work of Siegel and that of
Kolmogorov: which are based on radically different meth-
ods. The first being much closer in spirit to the devel-
opments of renormalization theory and to the Feynman
graphs.

Most interesting formal PT series have a common fea-
ture: namely their nth order coefficients are constructed
as sums of many “terms” and the first attempt to a com-
plete analysis is to recognize that their sum, which gives

the uniquely defined nth coefficient is much smaller than
the sum of the absolute values of the constituent terms.
This is a property usually referred to as a “cancellation”
and, as a rule, it reflects some symmetry property of the
problem: hence one possible approach is to look for ex-
pressions of the coefficients and for cancellations which
would reduce the estimate of the nth order coefficients,
very often of the order of a power of n!, to an expo-
nential estimate O(%�n) for some % > 0 yielding conver-
gence (parenthetically in the mentioned case of Yang–
Mills theories the reduction is even more dramatic as it
leads from divergent expressions to finite ones, yet of or-
der n!).

The multiscale aspect becomes clear also in Kol-
mogorov’s method because the implicit functions theo-
rem has to be applied over and over again and deals with
functions implicitly defined on smaller and smaller do-
mains [5,7]. But the method purposedly avoids facing the
combinatorial aspects behind the cancellations so much
followed, and cherished [28], in the Physics works.

Siegel’s method was developed to study a problem in
which no grouping of terms was eventually needed, even
though this was by no means clear a priori [24]; and to
realize that no cancellations were needed forced one to
consider the problem as a multiscale one because the ab-
sence of rapid growth of the nth order coefficients be-
came manifest after a suitable “hierarchical ordering” of
the terms generating the coefficients. The approach estab-
lishes a strong connection with the Physics literature be-
cause the technique to study such cases was independently
developed in quantum field theory with renormalization,
as shown by Hepp in [16], relying strongly on it. This is
very natural and, in case of failure, it can be improved by
looking for “resummations” turning the power series into
a convergent series in terms of functions of " which are
singular but controllably so. For details see below and [8].

What is “natural”, however, is a very personal notion
and it is not surprising that what some consider natural is
considered unnatural or clumsy or difficult (or the three
qualifications together) by others.

Conflict arises when the same problem can be solved
by two different “natural” methods and in the case of PT
for Hamiltonian systems close to integrable ones (close-
ness depending on the size of a parameter "), the so-called
“small denominators” problem, the methods of Siegel and
Kolmogorov are antithetic and an example of the just
mentioned dualism.

The first method, that will be called here “Siegel’s
method” (see below for details), is based on a careful anal-
ysis of the structure of the various terms that occur at
a given PT order achieving a proof that the nth order co-
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efficient which is represented as the sum of many terms
some of which might have size of order of a power of n!
has in fact a size of O(%�n) so that the PT series is con-
vergent for j"j < %. Although strictly speaking the original
work of Siegel does not immediately apply to the Hamilto-
nian Mechanics problems (see below), it can nevertheless
be adapted and yields a solution, as made manifest much
later in [2,8,24].

The second method, called here “Kolmogorov’s
method”, instead does not consider the individual coef-
ficients of the various orders but just regards the sum of
the series as a solution of an implicit function equation
(a “Hamilton–Jacobi” equation) and devises a recursive al-
gorithm approximating the unknown sum of the PT series
by functions analytic in a disk of fixed radius % in the com-
plex "-plane [5,7].

Of course the latter approach implies that no matter
how we achieve the construction of the nth order PT se-
ries coefficient there will have to be enough cancellations,
if at all needed, so that it turns out bounded by O(%�n).
And in the problem studied by Kolmogorov cancellations
would be necessarily present if the nth order coefficient
was represented by the sum of the terms in the Lindstedt
series.

That this is not obvious is supported by the fact that
it was considered an open problem, for about thirty years,
to find a way to exhibit explicitly the cancellation mech-
anism in the Lindstedt series implied by Kolmogorov’s
work. This was done by Eliasson [2], who proved that the
coefficients of the PT of a given order n as expressed by the
construction known as the “Lindstedt algorithm” yielded
coefficients of size of O(%�n): his argument, however, did
not identify in general which term of the Lindstedt sum for
the nth order coefficient was compensated by which other
term or terms. It proved that the sum had to satisfy suit-
able relations, which in turn implied a total size of O(%�n).
And it took a few more years for the complete identifica-
tion [8], of the rules to follow in collecting the terms of the
Lindstedt series which would imply the needed cancella-
tions.

It is interesting to remark that, aside from the exam-
ple of Hamiltonian PT, multiscale problems have dom-
inated the development of analysis and Physics in re-
cent time: for instance they appear in harmonic analysis
(Carleson, Fefferman), in PDE’s (DeGiorgi, Moser, Caf-
farelli–Kohn–Ninberg), in relativistic quantum mechan-
ics (Glimm, Jaffe, Wilson), in Hamiltonian Mechanics
(Siegel, Kolmogorov, Arnold, Moser), in statistical me-
chanics and condensed matter (Fisher, Wilson, Widom)
. . . Sometimes, although not always, studied by PT tech-
niques [10].

A Paradigmatic Example of PT Problem

It is useful to keep in mind an example illustrating tech-
nically what it means to perform a multiscale analysis in
PT. And the case of quasi periodic motions in Hamilto-
nian mechanics will be selected here, being perhaps the
simplest.

Consider the motion of ` unit masses on a unit circle
and let ˛ D (˛1; : : : ; ˛`) be their positions on the circle,
i. e. ˛ is a point on the torusT ` D [0; 2�]`. The points in-
teract with a potential energy " f (˛) where " is a strength
parameter and f is a trigonometric even polynomial, of
degree N : f (˛) D

P
2Z`;jj�N fei�˛; f D f� 2 R,

where Z` denotes the lattice of the points with integer
components inR` and j�j DP j j� jj.

Let t ! ˛0 C !0 t be the motion with initial data,
at time t D 0, ˛(0) D ˛0; ˙̨ (0) D !0, in which all par-
ticles rotate at constant speed with rotation velocity
!0 D (!01; : : : ; !0`) 2 R`. This is a solution for the equa-
tions of motion for " D 0 and it is a quasi periodic solu-
tion, i. e. each of the angles ˛ j rotates periodically at con-
stant speed !0 j , j D 1; : : : ; `.

The motion will be called non resonant if the compo-
nents of the rotation speed !0 are rationally independent:
this means that !0 � � D 0 with � 2 Z` is possible only if
� D 0. In this case the motion t ! ˛0 C!0t covers, 8˛0,
densely the torus T ` as t varies. The PT problem that we
consider is to find whether there is a family of motions
“of the same kind” for each ", small enough, solving the
equations of motion; more precisely whether there exists
a function a"('); ' 2 T `, such that setting

˛(t) D 'C !0t C a"('C !0t) ; for ' 2 T ` (1)

one obtains, 8' 2 T ` and for " small enough, a solution
of the equations of motion for a force �"@˛ f (˛): i. e.

¨̨ (t) D �"@˛ f (˛(t)) : (2)

By substitution of Eq. (1) in Eq. (2), the condition becomes
(!0 � @')2a('C !0 t) D �@˛ f ('C !0t). Since !0 is as-
sumed rationally independent 'C !0 t covers densely the
torus T ` as t varies: hence the equation for a" is

(!0 � @')2a"(') D �" @˛ f ('C a"(')) : (3)

Applying PT to this equation means to look for a solu-
tion a" which is analytic in " small enough and in ' 2 T `.
In colorful language one says that the perturbation effect
is slightly deforming a nonresonant torus with given fre-
quency spectrum (i. e. given !0) on which the motion de-
velops, without destroying it and keeping the quasi peri-
odic motion on it with the same frequency spectrum.
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Lindstedt Series

As it follows from a very simple special case of Poincaré’s
work, Eq. (3) cannot be solved if also!0 is considered vari-
able and the dependence on ";!0 analytic. Nevertheless
if !0 is fixed and non resonant and if a" is supposed an-
alytic in " small enough and in ' 2 T `, then there can
be at most one solution to the Eq. (3) with a"(0) D 0
(which is not a real restriction because if a"(') is a solu-
tion also a"('C c")C c" is a solution for any constant c").
This so because the coefficients of the power series in ",P1

nD1 "
nan('), are uniquely determined if the series is

convergent. In fact they are trigonometric polynomials of
order� nN which will be written as

˛n(') D
X

0<jj�Nn

˛n;ei�' : (4)

It is convenient to express them in terms of graphs. The
graphs to use to express the value an; are

(i) trees with n nodes v1; : : : ; vn ,
(ii) one root r,
(iii) n lines joining pairs (v 0i ; vi) of nodes or the root and

one node, always one and not more, (r; vi);
(iv) the lines will be different from each other and distin-

guished by a mark label, 1; : : : ; n attached to them.
The connections between the nodes that the lines
generate have to be loopless, i. e. the graph formed by
the lines must be a tree.

(v) The tree lines will be imagined oriented towards the
root: hence a partial order is generated on the tree
and the line joining v to v 0 will be denoted v 0v and
v 0 will be the node closer to the root immediately fol-
lowing v, hence such that v 0 > v in the partial order
of tree.

The number of such trees is large and exactly equal to
nn�1, as an application of Cayley’s formula implies: their
collection will be denoted T0

n .
To compute an; consider all trees in T0

n and attach
to each node v a vector �v 2 Z`, called “mode label”, such
that fv ¤ 0, hence j�vj � N. To the root we associate one
of the coordinate unit vectors �r � er . We obtain a set Tn
of decorated trees (with � (2N C 1)`nnn�1 elements, by
the above counting analysis).

Given � 2 Tn and  D (v 0; v) 2 � we define the cur-
rent on the line  to be the vector �() � �(v 0; v) def

DP
w�v �w : i. e. we imagine that the node vectors �vi rep-

resent currents entering the node v i and flowing towards
the root. Then �() is, for each , the sum of the currents
which entered all the nodes not following v , i. e. current
accumulated after passing the node v .

Perturbation Theory, Figure 1
A tree � with mv0 D 2;mv1 D 2;mv2 D 3;mv3 D 2;mv4 D
2;mv12 D 1 lines entering the nodes v i , k D 13. Some labels
or decorations explicitly marked (on the lines�0;�1 and on the
nodes v1; v2); the number labels, distinguishing the branches,
are not shown. The arrows represent the partial ordering on the
tree

The current flowing in the root line � D
P

v �v will be
denoted �(�).

Let T�n be the set trees in Tn in which all lines carry
a non zero current �() ¤ 0. A value Val(�) will be de-
fined, for � 2 T�n , by a product of node factors and of line
factors over all nodes and

Val(�) D
i(�1)n

n!

Y

v2�

fv
Y

�D(v 0;v)

�v 0 � �v

(!0 � �(v 0; v))2
: (5)

The coefficient an; will then be

an; D
X

�2T�n
(�)D

Val(�) (6)

and, when the coefficients are imagined to be con-
structed in this way, the formal power series

P1
nD1 "

n
P
jj�Nn an; is called the “Lindstedt series”. Eq. (5) and

its graphical interpretation in Fig. 1 should be considered
the “Feynman rules” and the “Feynman diagrams” of the
PT for Eq. (3) [9,10].

Convergence. Scales. Multiscale Analysis

The Lindstedt series is well defined because of the non res-
onance condition and the nth term is not even a sum of
too many terms: if F def

D max j fj, each of them can be
bounded by Fn/n!

Q
�2� N

2/(!0 � �()2); hence their sum
can be bounded, ifG is such that ((2NC1)`nnn�1Fn)/n! �
Gn , by Gn Q

�2� N
2/(!0 � �()2).
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Thus, all an are well defined and finite but the problem
is that j�()j can be large (up to Nn at given order n) and
therefore !0 � �() although never zero can become very
small as n grows. For this reason the problem of conver-
gence of the series is an example of what is called a small
denominators problem. And it is necessary to assumemore
than just non resonance of !0 in order to solve it in the
present case: a simple condition is the Diophantine condi-
tion, namely the existence of C; � > 0 such that

j!0 � �j �
1

C j�j�
; 80 ¤ � 2 Z` : (7)

But this condition is not sufficient in an obvious way: be-
cause it only allows us to bound individual tree-values by
n!a for some a > 0 related to � ; furthermore it is not dif-
ficult to check that there are single graphs whose value is
actually of “factorial” size in n. Although non trivial to see
(as mentioned above) this was only apparently so in the
earlier case of Siegel’s problem but it is the new essential
feature of the terms generating the nth order coefficient in
Eq. (6).

A resummation is necessary to show that the tree-val-
ues can be grouped so that the sum of the values of each
group can be bounded by %�n for some % > 0 and 8n,
although the group may contain (several) terms of fac-
torial size. The terms to be grouped have to be ordered
hierarchically according to the sizes of the line factors
1/(!0 � �())2, which are called propagators in [8,12].

A similar problem is met in quantum field theory
where the graphs are the Feynman graphs: such graphs
can only have a small number of lines that converge into
a node but they can have loops, and to show that the
perturbation series is well defined to all orders it is also
necessary to collect terms hierarchically according to the
propagators sizes. The systematic way was developed by
Hepp [16,17], for the PT expansion of the Schwinger func-
tions in quantum field theory of scalar fields [6]. It has
been used on many occasions later and it plays a key role
in the renormalization group methods in Statistical Me-
chanics (for instance in theory of the ground state of Fermi
systems) [10,11].

However, it is in the Lindstedt series that the method
is perhaps best illustrated. Essentially because it ends up
in a convergence proof, while often in the field theory or
statistical mechanics problems the PT series can be only
proved to be well defined to all orders, but they are sel-
dom, if ever, convergent so that one has to have recourse
to other supplementary analytic means to show that the
PT series are asymptotic (in the cases in which they are
such).

The path of the proof is the following.

(1) Consider only trees in which no two lines C and �,
with C following � in the partial order of the tree,
have the same current �0. In this case the maximum
of the

Q
� 1/(!0 � �())2 over all tress � 2 T�n can be

bounded by G1
n for some G1.

This is an immediate consequence and the main result
in Siegel’s original work [25], which dealt with a dif-
ferent problem with small denominators in its formal
PT solution: the coefficients of the series could also be
represented by tree graphs, very similar too the ones
above: but the only allowed � 2 Z` were the non zero
vectors with all components � 0.
The latter property automatically guarantees that the
graphs contain no pair of lines C; � following each
other as above in the tree partial order and having the
same current. Siegel’s proof also implies a multiscale
analysis [24]: but it requires no grouping of the terms
unlike the analogue Lindstedt series, Eq. (6).

(2) Trees which contain lines C and �, with C fol-
lowing �, in the partial order of the tree, and having
the same current �0 can have values which have size
of order O(n!a) with some a > 0. Collecting terms is
therefore essential.
A line  of a tree is said to have scale k if 2�k�1 �
1/Cj!0 � �j < 2�k . The lines of a tree � 2 T�n can then
be collected in clusters.1

A cluster of scale p is a maximal connected set of lines
of scale k � p with at least one line of scale p. Clus-
ters are connected to the rest of the tree by lines of
lower scale which can be incoming or outgoing with
respect to the partial ordering. Clusters also contain
nodes: a node is in a cluster if it is an extreme of a line
contained in a cluster; such nodes are said to be inter-
nal to the cluster.
Of particular interest are the self energy clusters. These
are clusters with only one incoming line and only one
outgoing line which furthermore have the same cur-
rent �0.
To simplify the analysis the Diophantine condition
can be strengthened to insure that if in a tree graph
the line incoming into a self energy cluster and end-
ing in an internal node v is detached from the node
v and reattached to another node internal to the same
cluster which is not in a self-energy subcluster (if any)
then the new tree nodes are still enclosed in the same
clusters. Alternatively the definition of scale of a line
can be modified slightly to achieve the same goal.

1The scaling factor 2 is arbitrary: any scale factor > 1 could be
used.
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(3) Then it makes sense to sum together all the values of
the trees whose nodes are collected into the same fam-
ilies of clusters and differ only because the lines enter-
ing the self energy clusters are attached to a different
node internal to the cluster, but external to the inner
self energy subclusters (if any). Furthermore, the value
of the trees obtained by changing simultaneously sign
to the �v of the nodes inside the self energy clusters
have also to be added together.
After collecting the terms in the described way it is
possible to check that each sum of terms so collected
is bounded by %�n0 for some %0 (which can also be
estimated explicitly). Since the number of addends
left is not larger than the original one the bound onP
 jan;j becomes� (Fn(2NC 1)`nnN2n)/n!%�n0 �

%�n , for suitable %0; %, so that convergence of the for-
mal series for a"(') is achieved for j"j < %, see [8].

Non Convergent Cases

Convergence is not the rule: very interesting problems
arise in which the PT series is, or is believed to be, only
asymptotic. For instance in quantum field theory the PT
series are well defined but they are not convergent: they
can be proved, in the scalar '4 theories in dimension 2 and
3 to be asymptotic series for a function of " which is Borel

Perturbation Theory, Figure 2
An example of three clusters symbolically delimited by circles,
as visual aids, inside a tree (whose remaining branches and clus-
ters are not drawnand are indicated by the bullets); not all labels
are explicitly shown. The scales (not marked) of the branches
increase as one crosses inward the circles boundaries: recall,
however, that the scale labels are integers � 1 (hence typically
� 0). The  labels are not drawn (but must be imagined). If the
 labels of (v4;v5) add up to 0 the cluster T00 is a self-energy
graph. If the  labels of (v2;v4;v5;v6) add up to 0 the clus-
ter T0 is a self-energy graph and such is T if the  labels of
(v1;v2;v3;v4; v5; v6; v7) add up to 0. The cluster T0 is maximal
in T

summable: this means in particular that the solution can
be in principle recovered, for " > 0 and small, just from
the coefficients of its formal expansion.

Other non convergent expansions occur in statistical
mechanics, for example in the theory of the ground state
of a Fermi gas of particles on a lattice of obstacles. This
is still an open problem, and a rather important one. Or
occur in quantum field theory where sometimes they can
be proved to be Borel summable.

The simplest instances again arise in Mechanics in
studying resonant quasi periodic motions. A paradigmatic
case is provided by Eqs. (1),(2) when !0 has some vanish-
ing components: !0 D (!1; : : : ; !r ; 0; : : : ; 0) D (e!0; 0)
with 1 < r < `. If one writes ˛ D (ę; ě) 2 T r � T `�r

and looks motions like Eq. (1) of the form

ę(t) D e'C e!0t Cea"(e'C e!0t)
ě(t) D ˇ0 C

eb"(e'C e!0t)
(8)

whereea"(e');eb"(e') are functions of e' 2 T r , analytic in "
ande'.

In this case the analogue of the Lindstedt series can be
devised provided ˇ0 is chosen to be a stationary point for
the functionef (ě) D

R
f (ę; ě) dę

(2	)r , and provided e!0 sat-
isfies a Diophantine property je!0 �e�j > 1/(Cje�j� ) for all
0 ¤e� 2 Zr and for �;C suitably chosen.

This time the series is likely to be, in general, non con-
vergent (although there is not a proof yet). And the terms
of the Lindstedt series can be suitably collected to improve
the estimates. Nevertheless, the estimates cannot be im-
proved enough to obtain convergence. Deeper resumma-
tions are needed to show that in some cases the terms of
the series can be collected and rearranged into a conver-
gent series.

The resummation is deeper in the sense that it is not
enough to collect terms contributing to a given order in
" but it is necessary to collect and sum terms of different
order according to the following scheme.

(1) The terms of the Lindstedt series are first “regular-
ized” so that the new series is manifestly analytic in "
with, however, a radius of convergence depending on
the regularization. For instance one can consider only
terms with lines of scale� M.

(2) Terms of different orders in " are then summed to-
gether and the series becomes a series in powers of
functions  j(";M) of " with very small radius of
convergence in ", but with an M-independent ra-
dius of convergence % in the  j(";M). The labels
j D 0; 1; : : : ;M are scale labels whose value is deter-
mined by the order in which they are generated in
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the hierarchical organization of the collection of the
graphs according to their scales.

(3) One shows that the functions  j(";M) (“running cou-
plings”) can be analytically continued in " to anM-in-
dependent domain D containing the origin in its clo-
sure and where they remain smaller than % for all M.
Furthermore,  j(";M) ����!

M!1
 j("), for " 2 D.

(4) The convergent power series in the running couplings
admits an asymptotic series in " at the origin which
coincides with the formal Lindstedt series. Hence in
the domain D a meaning is attributed to the sum of
Lindstedt series.

(5) One checks that the functionsea";eb" thus defined are
such that Eq. (8) satisfies the equations of motion Eq.
(2).

The proof can be completed if the domainD contains
real points ".

If ě0 is a maximum point the domainD contains a cir-
cle tangent to the origin and centered on the positive real
axis. So in this case theea";eb" are constructed inD \RC,
RC def
D (0;C1).
If instead ě0 is a minimum point the domain D ex-

ists but D \RC touches the positive real axis on a set of
points with positive measure and density 1 at the origin. So
ea";eb" are constructed only for " in this set which is a kind
of “Cantor set”[13].

Again the multiscale analysis is necessary to iden-
tify the tree values which have to be collected to define
 j(";M). In this case it is an analysis which is much closer
to the similar analysis that is encountered in quantum field
theory in the “self energy resummations”, which involve
collecting and summing graph values of graphs contribut-
ing to different orders of perturbation.

The above scheme can also be applied when r D `,
i. e. in the case of the classical Lindstedt series when it is
actually convergent: this leads to an alternative proof of
the Kolmogorov theorem which is interesting as it is even
closer to the renormalization groupmethods because it ex-
presses the solution in terms of a power series in running
couplings [Chaps. 8, 9 in 12].

Conclusion and Outlook

Perturbation theory provides a general approach to the so-
lution of problems “close” to well understood ones, “close-
ness” being measured by the size of a parameter ". It natu-
rally consists of two steps: the first is to find a formal solu-
tion, under the assumption that the quantities of interest
are analytic in " at " D 0. If this results in a power series
with well-defined coefficients then it becomes necessary to

find whether the series thus constructed, called a formal
series, converges.

In general the proof that the formal series exists (when
it really does) is nontrivial: typically in quantum mechan-
ics problems (quantum fields or statistical mechanics) this
is an interesting and deep problem giving rise to renor-
malization theory. Even in classical mechanics PT of inte-
grable systems it has been, historically, a problem to obtain
(in wide generality) the Lindstedt series (of which a simple
example is discussed above).

Once existence of a PT series is established, very of-
ten the series is not convergent and at best is an asymp-
totic series. It becomes challenging to find its meaning (if
any, as there are cases, even interesting ones, on which
conjectures exist claiming that the series have no mean-
ing, like the quantum scalar field in dimension 4 with “'4-
interaction” or quantum electrodynamics).

Convergence proofs, in most interesting cases, require
a multiscale analysis: because the difficulty arises as a con-
sequence of the behavior of singularities at infinitely many
scales, as in the case of the Lindstedt series above exempli-
fied.

When convergence is not possible to prove, the multi-
scale analysis often suggest “resummations”, collecting the
various termswhose sums yields the formal PT series (usu-
ally the algorithms generating the PT series give its terms
at given order as sums of simple but many quantities, as
in the discussed case of the Lindstedt series). The collec-
tion involves adding together terms of different order in
" and results in a new power series, the resummed series,
in a family of parameters  j(") which are functions of ",
called the “running couplings”, depending on a “scale in-
dex” j D 0; 1; : : :.

The running couplings are (in general) singular at
" D 0 as functions of " but C1 there, and obey equations
that allow one to study and define them independently
of a convergence proof. If the running couplings can be
shown to be so small, as " varies in a suitable domain D
near 0, to guarantee convergence of the resummed series
and therefore to give a meaning to the PT for " 2 D then
the PT program can be completed.

The singularities in " at " D 0 are therefore all con-
tained in the running couplings, usually very few and the
same for various formal series of interest in a given prob-
lem.

The idea of expressing the sum of formal series as sum
of convergent series in new parameters, the running cou-
plings, determined by other means (a recursion relation
denominated the beta function flow) is the key idea of the
renormalization group methods: PT in mechanics is a typ-
ical and simple example.
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On purpose attention has been devoted to PT in the
analytic class: but it is possible to use PT techniques in
problems in which the functions whose value is studied
are not analytic; the techniques are somewhat different
and new ideas are needed which would lead quite far away
from the natural PT framework which is within the ana-
lytic class.

Of course there are many problems of PT in which the
formal series are simply convergent and the proof does not
require any multiscale analysis. Greater attention was de-
voted to the novel aspect of PT that emerged in Physics
and Mathematics in the last half century and therefore
problems not requiring multiscale analysis were not con-
sidered. It is worth mentioning, however, that even in sim-
ple convergent PT cases it might be convenient to perform
resummations. An example is Kepler’s equation

` D � � " sin � ; �; ` 2 T1 D [0; 2�] (9)

which can be (easily) solved by PT. The resulting series
has a radius of convergence in " rather small (Laplace’s
limit): however if a resummation of the series is performed
transforming it into a power series in a “running coupling”
0(") (only 1, because no multiscale analysis is needed, the
PT series being convergent) given by [Vol. 2, p. 321 in 20]

0
def
D

" e
p
1�"2

1C
p
1 � "2

; (10)

then the resummed series is a power series in 0 with ra-
dius of convergence 1 and when " varies between 0 and
1 the parameter 0 corresponding to it goes from 0 to 1.
Hence in terms of 0 it is possible to invert by power series
the Kepler equation for all " 2 [0; 1), i. e. in the entire in-
terval of physical interest (recall that " has the interpreta-
tion of eccentricity of an elliptic orbit in the 2-body prob-
lem). Resummations can improve convergence properties.

Future Directions

It is always hard to indicate future directions, which usu-
ally turn to different paths. Perturbation theory is an ever
evolving subject: it is a continuous source of problems and
its applications generate new ones. Examples of outstand-
ing problems are understanding the triviality conjectures
of models like quantum '4 field theory in dimension 4 [6];
or a development of the theory of the ground states of
Fermionic systems in dimensions 2 and 3 [11]; a theory
of weakly coupled Anosov flows to obtain information of
the kind that it is possible to obtain for weakly coupled
Anosov maps [12]; uniqueness issues in cases in which PT
series can be given a meaning, but in a priori non unique

way like the resonant quasi periodic motions in nearly in-
tegrable Hamiltonian systems [12].

Bibliography
1. Einstein A (1917) Zum Quantensatz von Sommerfeld und Ep-

stein. Verh Dtsch Phys Ges 19:82–102
2. Eliasson LH (1996) Absolutely convergent series expansions for

quasi-periodic motions. Math Phys Electron J (MPEJ) 2:33
3. Fermi E (1923) Il principio delle adiabatiche e i sistemi che non

ammettono coordinate angolari. Nuovo Cimento 25:171–175.
Reprinted in Collected papers, vol I, pp 88–91

4. Frölich J (1982) On the triviality of �'4
d theories and the ap-

proach to the critical point in d (� 4) dimensions. Nucl Phys B
200:281–296

5. Gallavotti G (1985) Perturbation Theory for Classical Hamilto-
nian Systems. In: Fröhlich J (ed) Scaling and self similarity in
Physics. Birkhauser, Boston

6. Gallavotti G (1985) Renormalization theory and ultraviolet sta-
bility for scalar fields via renormalization group methods. Rev
Mod Phys 57:471–562

7. Gallavotti G (1986) Quasi integrable mechanical systems. In:
Phenomènes Critiques, Systèmes aleatories, Théories de jauge
(Proceedings, Les Houches, XLIII (1984) vol II, pp 539–624)
North Holland, Amsterdam

8. Gallavotti G (1994) Twistless KAM tori. Commun Math Phys
164:145–156

9. Gallavotti G (1995) Invariant tori: a field theoretic point of view
on Eliasson’s work. In: Figari R (ed) Advances in Dynamical Sys-
tems and Quantum Physics. World Scientific, pp 117–132

10. Gallavotti G (2001) Renormalization group in Statistical Me-
chanics and Mechanics: gauge symmetries and vanishing beta
functions. Phys Rep 352:251–272

11. Gallavotti G, Benfatto G (1995) Renormalization group. Prince-
ton University Press, Princeton

12. Gallavotti G, Bonetto F, Gentile G (2004) Aspects of the ergodic,
qualitative and statistical theory of motion. Springer, Berlin

13. Gallavotti G, Gentile G (2005) Degenerate elliptic resonances.
Commun Math Phys 257:319–362. doi:10.1007/s00220-005-
1325-6

14. Glimm J, Jaffe A (1981) Quantum Physics. A functional integral
point of view. Springer, New York

15. Gross DJ (1999) Twenty Five Years of Asymptotic Free-
dom. Nucl Phys B (Proceedings Supplements) 74:426–446.
doi:10.1016/S0920-5632(99)00208-X

16. Hepp K (1966) Proof of the Bogoliubov–Parasiuk theorem on
renormalization. Commun Math Phys 2:301–326

17. Hepp K (1969) Théorie de la rénormalization. Lecture notes in
Physics, vol 2. Springer, Berlin

18. Kolmogorov AN (1954) On the preservation of conditionally
periodic motions. Dokl Akad Nauk SSSR 96:527–530 and in:
Casati G, Ford J (eds) (1979) Stochastic behavior in classical
and quantum Hamiltonians. Lecture Notes in Physics vol 93.
Springer, Berlin

19. Laplace PS (1799) Mécanique Céleste. Paris. Reprinted by
Chelsea, New York

20. Levi-Civita T (1956) Opere Matematiche, vol 2. Accademia
Nazionale dei Lincei and Zanichelli, Bologna

21. Morrey CB (1955) On the derivation of the equations of hydro-
dynamics fromStatistical Mechanics. CommunPureApplMath
8:279–326



Perturbation Theory in Celestial Mechanics P 6673

22. Nelson E (1966) A quartic interaction in two dimensions. In:
Goodman R, Segal I (eds) Mathematical Theory of elementary
particles. MIT, Cambridge, pp 69–73

23. Poincaré H (1892) Les Méthodes nouvelles de la Mécanique
céleste. Paris. Reprinted by Blanchard, Paris, 1987

24. Pöschel J (1986) Invariant manifolds of complex analytic
mappings. In: Osterwalder K, Stora R (eds) Phenomènes Cri-
tiques, Systèmes aleatories, Théories de jauge (Proceedings,
Les Houches, XLIII (1984); vol II, pp 949–964) North Holland,
Amsterdam

25. Siegel K (1943) Iterations of analytic functions. Ann Math
43:607–612

26. Simon B (1974) The P(')2 Euclidean (quantum) field theory.
Princeton University Press, Princeton

27. ’t Hooft G (1999) When was asymptotic freedom discovered?
or The rehabilitation of quantum field theory. Nucl Phys B
(Proceedings Supplements) 74:413–425. doi:10.1016/S0920-
5632(99)00207-8

28. ’t Hooft G, Veltman MJG (1972) Regularization and renormal-
ization of gauge fields, Nucl Phys B 44:189–213

29. Wilson K, Kogut J (1973) The renormalization group and the
"-expansion. Phys Rep 12:75–199

Perturbation Theory
in Celestial Mechanics
ALESSANDRA CELLETTI
Dipartimento di Matematica, Università
di Roma Tor Vergata, Roma, Italy

Article Outline

Glossary
Definition of the Subject
Introduction
Classical Perturbation Theory
Resonant Perturbation Theory
Invariant Tori
Periodic Orbits
Future Directions
Bibliography

Glossary

KAM theory Provides the persistence of quasi-periodic
motions under a small perturbation of an integrable
system. KAM theory can be applied under quite gen-
eral assumptions, i. e. a non-degeneracy of the inte-
grable system and a diophantine condition of the fre-
quency of motion. It yields a constructive algorithm to
evaluate the strength of the perturbation ensuring the
existence of invariant tori.

Perturbation theory Provides an approximate solution
of the equations of motion of a nearly-integrable sys-
tem.

Spin-orbit problem A model composed of a rigid satel-
lite rotating about an internal axis and orbiting around
a central point-mass planet; a spin-orbit resonance
means that the ratio between the revolutional and ro-
tational periods is rational.

Three-body problem A system composed by three celes-
tial bodies (e. g. Sun-planet-satellite) assumed to be
point-masses subject to the mutual gravitational at-
traction. The restricted three-body problem assumes
that the mass of one of the bodies is so small that it
can be neglected.

Definition of the Subject

Perturbation theory aims to find an approximate solution
of nearly-integrable systems, namely systems which are
composed by an integrable part and by a small pertur-
bation. The key point of perturbation theory is the con-
struction of a suitable canonical transformation which re-
moves the perturbation to higher orders. A typical exam-
ple of a nearly-integrable system is provided by a two-body
model perturbed by the gravitational influence of a third
bodywhosemass ismuch smaller than themass of the cen-
tral body. Indeed, the solution of the three-body problem
greatly stimulated the development of perturbation theo-
ries. The solar system dynamics has always been a testing
ground for such theories, whose applications range from
the computation of the ephemerides of natural bodies to
the development of the trajectories of artificial satellites.

Introduction

The two-body problem can be solved by means of Kepler’s
laws, according to which for negative energies the point-
mass planets move on ellipses with the Sun located in one
of the two foci. The dynamics becomes extremely compli-
cated when adding the gravitational influence of another
body. Indeed Poincaré showed [34] that the three-body
problem does not admit a sufficient number of prime in-
tegrals which allow to integrate the problem. Neverthe-
less, the so-called restricted three-body problem deserves
special attention, namely when the mass of one of the
three bodies is so small that its influence on the others
can be neglected. In this case one can assume that the
primaries move on Keplerian ellipses around their com-
mon barycenter; if the mass of one of the primaries is
much larger than the other (as it is the case in any Sun-
planet sample), the motion of the minor body is governed
by nearly-integrable equations, where the integrable part
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represents the interaction with the major body, while the
perturbation is due to the influence of the other primary.
A typical example is provided by the motion of an asteroid
under the gravitational attraction of the Sun and Jupiter.
The small body may be taken not to influence the mo-
tion of the primaries, which are assumed to move on el-
liptic trajectories. The dynamics of the asteroid is essen-
tially driven by the Sun and perturbed by Jupiter, since
the Jupiter-Sun mass-ratio amounts to about 10�3. The
solution of this kind of problem stimulated the work of
many scientists, especially in the XVIII and XIX centuries.
Indeed, Lagrange, Laplace, Leverrier, Delaunay, Tisserand
and Poincaré developed perturbation theories which are
the basis of the studies of the dynamics of celestial bod-
ies, from the computation of the ephemerides to the recent
advances in flight dynamics. For example, on the basis of
perturbation theory Delaunay [16] developed a theory of
the Moon, providing very refined ephemerides. Celestial
Mechanics greatly motivated the advances of perturbation
theories as witnessed by the discovery of Neptune: its po-
sition was theoretically predicted by John Adams and by
Jean Urbain Leverrier on the basis of perturbative com-
putations; following the suggestion provided by the the-
oretical investigations, Neptune was finally discovered on
23 September 1846 by the astronomer Johann Gottfried
Galle.

The aim of perturbation theory is to implement
a canonical transformation which allows one to find the
solution of a nearly-integrable system within a better
degree of approximation (see Sect. “Classical Perturba-
tion Theory” and references [3,6,20,24,32,37,38]. Let us
denote the frequency vector of the system by ! (see
“Normal Forms in Perturbation Theory”, “Kolmogorov–
Arnol’d“Moser (KAM Theory)”), which we assume to be-
long to Rn , where n is the number of degrees of freedom
of the system. Classical perturbation theory can be imple-
mented provided that the frequency vector satisfies a non-
resonant relation, which means that there does not exist
a vector m 2 Zn such that ! � m �

Pn
jD1 ! jmj D 0. In

case there exists such commensurability condition, a res-
onant perturbation theory can be developed as outlined
in Sect. “Resonant Perturbation Theory”. In general, the
three-body problem (and, more extensively, the N-body
problem) is described by a degenerateHamiltonian system,
which means that the integrable part (i. e., the Keplerian
approximation) depends on a subset of the action vari-
ables. In this case a degenerate perturbation theory must
be implemented as explained in Subsect. “Degenerate Per-
turbation Theory”. For all the above perturbation theories
(classical, resonant and degenerate) an application to Ce-
lestial Mechanics is given: the precession of the perihelion

of Mercury, orbital resonances within a three-body frame-
work, the precession of the equinoxes.

Even if the non-resonance condition is satisfied, the
quantity ! � m can become arbitrarily small, giving rise to
the so-called small divisor problem; indeed, these terms
appear in the denominator of the series defining the
canonical transformations necessary to implement per-
turbation theory and therefore they might prevent the
convergence of the series. In order to overcome the small
divisor problem, a breakthrough came with the work of
Kolmogorov [26], and was later extended to different
mathematical settings by Arnold [2] and Moser [33]. The
overall theory is known as the acronym KAM theory. As
far as concrete estimates on the allowed size of the pertur-
bation are concerned, the original versions of the theory
gave discouraging results, which were extremely far from
the physical measurements of the parameters involved in
the proof. Nevertheless the implementation of computer-
assisted KAM proofs allowed one to obtain results which
are in good agreement with reality. Concrete estimates
with applications to Celestial Mechanics are reported in
Sect. “Invariant Tori”.

In the framework of nearly-integrable systems, a very
important role is provided by periodic orbits, which might
be used to approximate the dynamics of quasi-periodic
trajectories; for example, a truncation of the continued
fraction expansion of an irrational frequency provides
a sequence of rational numbers, which are associated to
periodic orbits eventually approximating a quasi-periodic
torus. A classical computation of periodic orbits using
a perturbative approach is provided in Sect. “Periodic Or-
bits”, where an application to the determination of the li-
bration in longitude of the Moon is reported.

Classical Perturbation Theory

The Classical Theory

Consider a nearly-integrable Hamiltonian function of the
form

H(I; ') D h(I)C " f (I; ') ; (1)

where h and f are analytic functions of I 2 V (V is an open
set of Rn) and ' 2 Tn (Tn is the standard n-dimensional
torus), while " > 0 is a small parameter which measures
the strength of the perturbation. The aim of perturbation
theory is to construct a canonical transformation, which
allows to remove the perturbation to higher orders in the
perturbing parameter. To this end, let us look for a canon-
ical change of variables (i. e., with symplectic Jacobian ma-
trix) C : (I; ')! (I0; '0), such that the Hamiltonian (1)
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takes the form

H0(I0; '0) D H ı C(I; ') � h0(I0)C "2 f 0(I0; '0) ; (2)

where h0 and f 0 denote the new unperturbed Hamiltonian
and the new perturbing function, respectively. To achieve
such a result we need to proceed along the following steps:
build a suitable canonical transformation close to the iden-
tity, perform a Taylor series expansion in the perturbing
parameter, require that the unknown transformation re-
moves the dependence on the angle variables up to second
order terms, and expand in a Fourier series in order to get
an explicit form of the canonical transformation.

The change of variables is defined by the equations

I D I0 C "
@˚(I0; ')
@'

'0 D ' C "
@˚(I0; ')
@I0

;

(3)

where ˚(I0; ') is an unknown generating function, which
is determined so that (1) takes the form (2). Decompose
the perturbing function as

f (I; ') D f0(I)C f̃ (I; ') ;

where f 0 is the average over the angle variables and f̃ is the
remainder function defined through f̃ (I; ') � f (I; ') �
f0(I). Define the frequency vector ! D !(I) as

!(I) �
@h(I)
@I

:

Inserting the transformation (3) in (1) and expanding in
a Taylor series around " D 0 up to the second order, one
gets

h

 

I0 C "
@˚(I0; ')
@'

!

C " f

 

I0 C "
@˚(I0; ')
@'

; '

!

D h(I0)C !(I0) � "
@˚(I0; ')
@'

C " f0(I0)

C " f̃ (I0; ')C O("2) :

The new Hamiltonian is integrable up to O("2) provided
that the function ˚ satisfies:

!(I0) �
@˚(I0; ')
@'

C f̃ (I0; ') D 0 : (4)

In such case the new integrable part becomes

h0(I0) D h(I0)C " f0(I0) ;

which provides a better integrable approximation with re-
spect to (1). The solution of (4) yields the explicit expres-
sion of the generating function. In fact, let us expand ˚
and f̃ in Fourier series as

˚(I0; ') D
X

m2Znnf0g

ˆ̊m(I0)eim�' ;

f̃ (I0; ') D
X

m2I
f̂m(I0)eim�' ;

(5)

where I denotes the set of integer vectors corresponding
to the non-vanishing Fourier coefficients of f̃ . Inserting
the above expansions in (4) one obtains

i
X

m2Znnf0g

!(I0) � m ˆ̊m(I0)eim�' D �
X

m2I
f̂m(I0)eim�' ;

which provides

ˆ̊m(I0) D �
f̂m(I0)

i!(I0) � m
:

Casting together the above formule, the generating func-
tion is given by

˚(I0; ') D i
X

m2I

f̂m(I0)
!(I0) � m

eim�' : (6)

We stress that this algorithm is constructive in the sense
that it provides an explicit expression for the generating
function and for the transformed Hamiltonian. We re-
mark that (6) is well defined unless there exists an integer
vector m 2 I such that

!(I0) � m D 0 :

On the contrary, if ! is rationally independent, there are
no zero divisors in (6), though these terms can become ar-
bitrarily small with a proper choice of the vector m. This
problem is known as the small divisor problem, which can
prevent the implementation of perturbation theory (see
“Normal Forms in Perturbation Theory”, “Kolmogorov–
Arnol’d–Moser (KAM Theory)”, “Perturbation Theory”).

The Precession of the Perihelion of Mercury

As an example of the implementation of classical pertur-
bation theory we consider the computation of the pre-
cession of the perihelion in a (restricted, planar, circu-
lar) three-body model, taking as a sample the planet
Mercury. The computation requires the introduction of
Delaunay action-angle variables, the definition of the
three-body Hamiltonian, the expansion of the perturbing
function and the implementation of classical perturbation
theory (see [7,39]).
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Delaunay Action-Angle Variables We consider two
bodies, say P0 and P1 with masses, respectively, m0, m1;
let M � m0 C m1 and let � > 0 be a positive parameter.
Let r be the orbital radius and ' be the longitude of P1 with
respect to P0; let (Ir ; I') be the momenta conjugated to
(r; '). In these coordinates the two-body problem Hamil-
tonian takes the form

H2b(Ir ; I' ; r; ') D
1
2�

 

I2r C
I2'
r2

!

�
�M
r
: (7)

On the orbital plane we introduce the planar Delaunay ac-
tion-angle variables (�;�; ; � ) as follows [12]. Let E de-
note the total mechanical energy; then:

Ir D

s

2�E C
2�2M

r
�

I2'
r2
:

Since (7) does not depend on ', setting � D I' and
� D

p
�(�3M2)/(2E), we introduce a generating func-

tion of the form

F(�;�; r; ') D
Z r

�
�4M2

�2 C
2�2M

r
�
� 2

r2
drC� ' :

From the definition of � the new Hamiltonian H2D be-
comes

H2D(�;�; ; � ) D �
�3M2

2�2 ;

where (�;� ) are the Delaunay action variables; by Ke-
pler’s laws one finds that (�;� ) are related to the semi-
major axis a and to the eccentricity e of the Keplerian orbit
of P1 around P0 by the formula:

� D �
p
Ma; � D �

p
1 � e2 :

Concerning the conjugated angle variables, we start by in-
troducing the eccentric anomaly u as follows: build the
auxiliary circle of the ellipse, draw the line through P1 per-
pendicular to the semi-major axis whose intersection with
the auxiliary circle forms at the origin an angle u with the
semi-major axis. By the definition of the generating func-
tion, one finds

 D
@F
@�
D

Z
�4M2

�3
q
��

4M2

�2 C
2�2M

r � � 2

r2

dr

D u � e sin u ;

which defines the mean anomaly  in terms of the eccen-
tric anomaly u.

In a similar way, if f denotes the true anomaly related
to the eccentric anomaly by tan f /2 D

p
(1C e)/(1 � e)

tan u/2, then one has:

� D
@F
@�
D ' �

Z
�

r2
q
��

4M2

�2 C
2�2M

r � � 2

r2

dr

D ' � f ;

which represents the argument of the perihelion of P1, i. e.
the angle between the perihelion line and a fixed reference
line.

The Restricted, Planar, Circular, Three-Body Problem
Let P0, P1, P2 be three bodies with massesm0, m1, m2, re-
spectively. We assume that m1 is much smaller than m0
and m2 (restricted problem) and that the motion of P2
around P0 is circular. We also assume that the three bod-
ies always move on the same plane. We choose the free
parameter � as � � 1/m2/3

0 , so that the two-body Hamil-
tonian becomes H2D D �1/(2�2), while we introduce the
perturbing parameter as " � m2/m2/3

0 [12]. Set the units of
measure so that the distance between P0 and P2 is one and
so that m0 C m2 D 1. Taking into account the interaction
of P2 on P1, the Hamiltonian function governing the three-
body problem becomes

H3b(�;�; ; �; t) D �
1

2�2

C "

0

B
@r1 cos(' � t) �

1
q
1C r21 � 2r1 cos(' � t)

1

C
A ;

where r1 is the distance between P0 and P1. The first term
of the perturbation comes out from the choice of the refer-
ence frame, while the second term is due to the interaction
with the external body. Since ' � t D f C � � t, we per-
form the canonical change of variables

L D � ` D 

G D � g D � � t ;

which provides the following two degrees-of-freedom
Hamiltonian

H3D(L;G; `; g) D �
1
2L2
� G C "R(L;G; `; g) ; (8)

where

R(L;G; `; g)

� r1 cos(' � t)�
1

q
1C r21 � 2r1 cos(' � t)

(9)
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where r1 and ' � t must be expressed in terms of the De-
launay variables (L;G; `; g). Notice that when " D 0 one
obtains the integrable Hamiltonian function h(L;G) �
�1/(2L2) � G with associated frequency vector ! D (@h/
@L; @h/@G) D (1/L3;�1).

Expansion of the Perturbing Function We expand the
perturbing function (9) in terms of the Legendre polyno-
mials Pj obtaining

R D �
1
r1

1X

jD2

Pj(cos(' � t))
1

r j1
:

The explicit expressions of the first few Legendre polyno-
mials are:

P2(cos(' � t)) D
1
4
C

3
4
cos 2(' � t)

P3(cos(' � t)) D
3
8
cos(' � t)C

5
8
cos 3(' � t)

P4(cos(' � t)) D
9
64
C

5
16

cos 2(' � t)

C
35
64

cos 4(' � t)

P5(cos(' � t)) D
15
64

cos(' � t)C
35
128

cos 3(' � t)

C
63
128

cos 5(' � t) :

We invert Kepler’s equation ` D u � e sin u to the second
order in the eccentricity as

u D `C e sin `C
e2

2
sin(2`)C O(e3) ;

from which one gets

' � t D g C `C 2e sin `C
5
4
e2 sin 2`C O(e3)

r1 D a
�
1C

1
2
e2 � e cos ` �

1
2
e2 cos 2`

�
C O(e3) :

Then, up to inessential constants the perturbing function
can be expanded as

R D R00(L;G)C R10(L;G) cos `C R11(L;G) cos(`C g)
C R12(L;G) cos(`C 2g)C R22(L;G) cos(2`C 2g)
C R32(L;G) cos(3`C 2g)C R33(L;G) cos(3`C 3g)
C R44(L;G) cos(4`C 4g)C R55(L;G) cos(5`C 5g)
C : : : ;

(10)

where the coefficients Rij are given by the following ex-
pressions (recall that e D

p
1 � G2/L2):

R00 D �
L4

4

�
1C

9
16

L4 C
3
2
e2
�
C : : : ;

R10 D
L4e
2

�
1C

9
8
L4
�
C : : :

R11 D �
3
8
L6
�
1C

5
8
L4
�
C : : : ;

R12 D
L4e
4
�
9C 5L4


C : : :

R22 D �
L4

4

�
3C

5
4
L4
�
C : : : ;

R32 D �
3
4
L4e C : : :

R33 D �
5
8
L6
�
1C

7
16

L4
�
C : : : ;

R44 D �
35
64

L8 C : : :

R55 D �
63
128

L10 C : : : :

(11)

Computation of the Precession of the Perihelion We
identify the three bodies P0, P1, P2 with the Sun, Mer-
cury, and Jupiter, respectively. Taking " as perturbing pa-
rameter, we implement a first order perturbation theory,
which provides a new integrable Hamiltonian function of
the form

h0(L0;G0) D �
1

2L02
� G0 C "R00(L0;G0) :

From Hamilton’s equations one obtains

ġ D
@h0(L0;G0)
@G0

D �1C "
@R00(L0;G0)

@G0
;

neglecting O(e3) in R00 and recalling that g D � � t, one
has

�̇ D "
@R00(L0;G0)

@G0
D

3
4
"L02G0 :

Notice that to the first order in " one has L0 D L;
G0 D G. The astronomical data are m0 D 2 � 1030 kg,
m2 D 1:9 � 1027 kg, which give " D 9:49 � 10�4; setting to
one the Jupiter–Sun distance one has a D 0:0744, while
e D 0:2056. Taking into account that the orbital period of
Jupiter amounts to about 11.86 years, one obtains

�̇ D 154:65
arcsecond
century

;

which represents the contribution due to Jupiter to the
precession of perihelion of Mercury. The value found by
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Leverrier on the basis of the data available in the year 1856
was of 152.59 arcsecond/century [14].

Resonant Perturbation Theory

The Resonant Theory

Let us consider an Hamiltonian system with n degrees of
freedom of the form

H(I; ') D h(I)C " f (I; ')

and let ! j(I) D (@h(I))/(@I j) ( j D 1; : : : ; n) be the fre-
quencies of the motion, which we assume to satisfy `,
` < n, resonance relations of the form

! � mk D 0 for k D 1; : : : ; ` ;

for suitable rational independent integer vectors m1,
. . . , m`. A resonant perturbation theory can be imple-
mented to eliminate the non-resonant terms. More pre-
cisely, the aim is to construct a canonical transformation
C : (I; ') ! (J0; # 0) such that the transformed Hamilto-
nian takes the form

H0(J0; # 0) D h0(J0; # 01; : : : ; #
0
`)C "

2 f 0(J0; # 0) ; (12)

where h0 depends only on the resonant angles # 01; : : : ; #
0
`
.

To this end, let us first introduce the angles # 2 Tn as

# j D mj � ' j D 1; : : : ; `

#k D mk � ' k D `C 1; : : : ; n ;

where the first ` angle variables are the resonant angles,
while the latter n � ` angle variables are defined as suitable
linear combinations so to make the transformation canon-
ical together with the following change of coordinates on
the actions J 2 Rn :

I j D mj � J j D 1; : : : ; `

Ik D mk � J k D `C 1; : : : ; n :

The aim is to construct a canonical transformation which
removes (to higher order) the dependence on the short-pe-
riod angles (#`C1; : : : ; #n), while the lowest order Hamil-
tonian will necessarily depend upon the resonant angles.
Let us decompose the perturbation as

f (J; #) D f (J)C fr(J; #1; : : : ; #`)C fn(J; #) ; (13)

where f is the average of the perturbation over the an-
gles, f r is the part depending on the resonant angles and f n

is the non-resonant part. In analogy to the classical pertur-
bation theory, we implement a canonical transformation
of the form

J D J0 C "
@˚

@#
(J0; #)

# 0 D # C "
@˚

@J0
(J0; #) ;

such that the newHamiltonian takes the form (12). Taking
into account (13) and developing up to the second order in
the perturbing parameter, one obtains:

h
�
J0 C "

@˚

@#

�
C " f (J0; #)C O("2)

D h(J0)C "
nX

kD1

@h
@Jk

@˚

@#k
C " f (J0)C " fr(J0; #1; : : : ; #`)

C " fn(J0; #)C O("2) :

Equating same orders of " one gets that

h0(J0; # 01; : : : ; #
0
`) D h(J0)C" f (J0)C" fr(J0; # 01; : : : ; #

0
`) ;
(14)

provided that

nX

kD1

! 0k
@˚

@#k
D � fn(J0; #) ; (15)

where ! 0k D !
0
k(J
0) � (@h(J0))/(@J0k ). The solution of (15)

gives the generating function, which allows one to reduce
the Hamiltonian to the required form (12); as a conse-
quence, the conjugated action variables, say J`C10 , . . . , J0n ,
are constants of the motion up to the second order in ".
We conclude by mentioning that using the new frequen-
cies ! 0k , the resonant relations take the form ! 0k D 0 for
k D 1; : : : ; `.

Three-Body Resonance

We consider the three-body Hamiltonian (8) with per-
turbing function (10)–(11) and let ! � (!`; !g) be the
frequency of motion. We assume that the frequency vec-
tor satisfies the resonance relation

!` C 2!g D 0 :

According to the theory described in the previous section
we perform the canonical change of variables

#1 D `C 2g J1 D
1
2
G

#2 D 2` J2 D
1
2
L �

1
4
G :
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In the new coordinates the unperturbed Hamiltonian be-
comes

h0(J) � �
1

2(J1 C 2J2)2
� 2J1 ;

with frequency vector ! 0 � @h0(J)
@J , while the perturbation

takes the form

R(J1; J2; #1; #2) � R00(J)C R10(J) cos
�
1
2
#2

�

C R11(J) cos
�
1
2
#1 C

1
4
#2

�
C R12(J) cos(#1)

C R22(J) cos
�
#1 C

1
2
#2

�
C R32(J) cos(#1 C #2)

C R33(J) cos
�
3
2
#1 C

3
4
#2

�
C R44(J) cos(2#1 C #2)

C R55(J) cos
�
5
2
#1 C

5
4
#2

�
C : : :

with the coefficients Rij as in (11). Let us decompose
the perturbation as R D R(J) C Rr (J; #1) C Rn(J; #),
where R(J) is the average over the angles, Rr(J; #1) D
R12(J) cos(#1) is the resonant part, while Rn contains all
the remaining non-resonant terms. We look for a canon-
ical transformation close to the identity with generating
function ˚ D ˚(J0; #) such that

! 0(J0) �
@˚(J0; #)
@#

D �Rn(J0; #) ;

which is well defined since ! 0 is non-resonant for the
Fourier components appearing in Rn. Finally, according
to (14) the new unperturbed Hamiltonian is given by

h0(J0; # 01) � h(J0)C "R00(J0)C "R12(J0) cos # 01 :

Degenerate Perturbation Theory

A special case of resonant perturbation theory is ob-
tained when considering a degenerate Hamiltonian func-
tion with n degrees of freedom of the form

H(I; ') D h(I1; : : : ; Id )C " f (I; '); d < n ; (16)

notice that the integrable part depends on a subset of the
action variables, being degenerate in IdC1, . . . , In. In this
case we look for a canonical transformation C : (I; ') !
(I0; '0) such that the transformed Hamiltonian becomes

H0(I0; '0) D h0(I0)C"h01(I; '
0
dC1; : : : ; '

0
n)C"

2 f 0(I0; '0) ;
(17)

where the part h0 C "h01 admits d integrals of motion. Let
us decompose the perturbing function in (16) as

f (I; ') D f (I)C fd (I; 'dC1; : : : ; 'n)C f̃ (I; ') ; (18)

where f is the average over the angle variables, f d is inde-
pendent on '1, . . . , 'd and f̃ is the remainder. As in the
previous sections we want to determine a near-to-identity
canonical transformation ˚ D ˚(I0; ') of the form (3),
such that in view of (18) the Hamiltonian (16) takes the
form (17). One obtains

h(I01; : : : ; I
0
d )C "

dX

kD1

@h
@Ik

@˚

@'k
C " f (I0)

C " fd (I0; 'dC1; : : : ; 'n)C " f̃ (I0; ')C O("2)

D h0(I0)C "h01(I
0; 'dC1; : : : ; 'n)C O("2) ;

where

h0(I0) D h(I01; : : : ; I
0
d )C " f (I

0)
h01(I
0; 'dC1; : : : ; 'n) D fd (I0; 'dC1; : : : ; 'n) ;

while ˚ is determined solving the equation

dX

kD1

@h
@Ik

@˚

@'k
C f̃ (I0; ') D 0 :

Expanding ˚ and f̃ in Fourier series as in (5) one obtains
that ˚ is given by (6) where ! � m D

Pd
kD1 mk!k , being

!k D 0 for k D d C 1; : : : ; n. The generating function is
well defined provided that! � m 6D 0 for anym 2 I , which
is equivalent to requiring that

dX

kD1

mk!k 6D 0 for m 2 I :

The Precession of the Equinoxes

An example of the application of the degenerate perturba-
tion theory in Celestial Mechanics is provided by the com-
putation of the precession of the equinoxes.

We consider a triaxial rigid body moving in the gravi-
tational field of a primary body. We introduce the follow-
ing reference frameswith a common origin in the barycen-
ter of the rigid body: (O; i(i)1 ; i

(i)
2 ; i

(i)
3 ) is an inertial ref-

erence frame, (O; i(b)1 ; i(b)2 ; i(b)3 ) is a body frame oriented
along the direction of the principal axes of the ellipsoid,
(O; i(s)1 ; i

(s)
2 ; i

(s)
3 ) is the spin reference frame with the verti-

cal axis along the direction of the angular momentum. Let
(J; g; `) be the Euler angles formed by the body and spin
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frames, and let (K; h; 0) be the Euler angles formed by the
spin and inertial frames. The angle K is the obliquity (rep-
resenting the angle between the spin and inertial vertical
axes), while J is the non-principal rotation angle (repre-
senting the angle between the spin and body vertical axes).

This problem is conveniently described in terms of the
following set of action-angle variables introduced by An-
doyer in [1] (see also [17]). LetM0 be the angular momen-
tum and let M0 � jM0j; the action variables are defined
as

G � M0 � i
(s)
3 D M0

L � M0 � i
(b)
3 D G cos J

H � M0 � i
(i)
3 D G cos K ;

while the corresponding angle variables are the quantities
(g; `; h) introduced before.

We limit ourselves to consider the gyroscopic case in
which I1 D I2 < I3 are the principal moments of inertia
of the rigid body E around the primary S; let mE and mS
be their masses and let jEj be the volume of E. We assume
that E orbits on a Keplerian ellipse around S with semi-
major axis a and eccentricity e, while E and rE denote the
longitude and instantaneous orbital radius (due to the as-
sumption of Keplerian motion E and rE are known func-
tions of the time). The Hamiltonian describing the motion
of E around S is given by [15]

H (L;G;H; `; g; h; t)

D
G2

2I1
C

I1 � I3
2I1I3

L2 C V(L;G;H; `; g; h; t) ;

where the perturbation is implicitly defined by

V � �
Z

E

G̃mSmE

jrE C xj
dx
jEj

;

G̃ being the gravitational constant. Setting rE D jrE j and
x D jxj, we can expandV using the Legendre polynomials
as

V D �
G̃mSmE

rE

Z

E

dx
jEj

"

1 �
x � rE
r2E
C

1
2r2E

�

�
3
(x � rE )2

r2E
� x2

�#

C O

 �
x
rE

�3
!

:

We further assume that J D 0 (i. e. G D L) so that E ro-
tates around a principal axis. Let G0 and H0 be the ini-
tial values of G and H; if ˛ denotes the angle between rE
and i(b)3 , the perturbing function can be written as

V D
3
2
�!

G2
0

H0

(1 � e cos E )3

(1 � e2)3
cos2 ˛

with � D (I3 � I1)/I3 and ! D (G̃mS )/a3I3H0/G2
0 . Ele-

mentary computations show that

cos ˛ D sin(E � h)

s

1 �
H2

G2 :

Neglecting first order terms in the eccentricity, we approx-
imate (1 � e cos E )3/(1 � e2)3 with one. A first order de-
generate perturbation theory provides that the new unper-
turbed Hamiltonian is given by

K(G;H) D
G2

2I3
C

3
2
�!

G2
0

H0

G2 � H2

2G2 :

Therefore the average angular velocity of precession is
given by

ḣ D
@K(G;H)

@H
D �

3
2
�!

G2
0

H0

H
G2 :

At t D 0 it is

ḣ D �
3
2
�! D �

3
2
�!2

y!
�1
d cos K ; (19)

where we used ! D !2
y!
�1
d cos K with !y being the fre-

quency of revolution and !d the frequency of rotation.
In the case of the Earth, the astronomical measure-

ments show that � D 1/298:25, K = 23.45°. The con-
tribution due to the Sun is thus obtained by inserting
!y D 1 year, !d D 1 day in (19), which yields ḣ(S) D
�2:51857 � 10�12 rad/sec, corresponding to a retrograde
precessional period of 79 107.9 years. A similar computa-
tion shows that the contribution of the Moon amounts to
ḣ(L) D �5:49028 � 10�12 rad/sec, corresponding to a pre-
cessional period of 36 289.3 years. The total amount is ob-
tained as the sum of ḣ(S) and ḣ(L), providing an overall
retrograde precessional period of 24 877.3 years.

Invariant Tori

Invariant KAM Surfaces

We consider an n-dimensional nearly-integrable Hamilto-
nian function

H(I; ') D h(I)C " f (I; ') ;

defined in a 2n-dimensional phase space M � V � Tn ,
where V is an open bounded region of Rn . A KAM torus
associated to H is an n-dimensional invariant surface on
which the flow is described parametrically by a coordi-
nate � 2 Tn such that the conjugated flow is linear, namely
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� 2 Tn ! � C ! t where ! 2 Rn is a Diophantine vector,
i. e. there exist � > 0 and � > 0 such that

j! � mj �
�

jmj�
; 8m 2 Znnf0g :

Kolmogorov’s theorem [26] (see also “Kolmogorov–
Arnol’d–Moser (KAM Theory)”) ensures the persis-
tence of invariant tori with diophantine frequency, pro-
vided " is sufficiently small and provided the unperturbed
Hamiltonian is non-degenerate, i. e. for a given torus
fI0g � Tn �M

det h00(I0) � det
�
@2h
@Ii@I j

(I0)
�

i; jD1;:::;n
¤ 0 : (20)

The condition (20) can be replaced by the isoenergetic
non-degeneracy condition introduced by Arnold [2]

det
�
h00(I0) h0(I0)
h0(I0) 0

�
¤ 0 ; (21)

which ensures the existence of KAM tori on the energy
level corresponding to the unperturbed energy h(I0), say
M0 � f(I; ') 2M : H(I; ') D h(I0)g. In the context of
the n-body problem Arnold [2] addressed the question of
the existence of a set of initial conditions with positive
measure such that, if the initial position and velocities of
the bodies belong to this set, then the mutual distances re-
main perpetually bounded. A positive answer is provided
by Kolmogorov’s theorem in the framework of the pla-
nar, circular, restricted three-body problem, since the in-
tegrable part of the Hamiltonian (8) satisfies the isoen-
ergetic non-degeneracy condition (21); denoting the ini-
tial values of the Delaunay’s action variables by (L0;G0),
if " is sufficiently small, there exist KAM tori for (8) on
the energy level M0 � fH3D D �1/(2L20) � G0g. In par-
ticular, the motion of the perturbed body remains for-
ever bounded from the orbits of the primaries. Indeed,
a stronger statement is also valid: due to the fact that the
two-dimensional KAM surfaces separate the three dimen-
sional energy levels, any trajectory starting between two
KAM tori remains forever trapped in the region between
such tori.

In the framework of the three-body problem, Ar-
nold [2] stated the following result: “If the masses, eccen-
tricities and inclinations of the planets are sufficiently small,
then for the majority of initial conditions the true motion
is conditionally periodic and differs little from Lagrangian
motion with suitable initial conditions throughout an infi-
nite interval time�1 < t <1”. Arnold provided a com-
plete proof for the case of three coplanar bodies, while the
spatial three-body problem was investigated by Laskar and

Robutel in [27,35] using Poincaré variables, the Jacobi’s
“reduction of the nodes” (see, e. g., [11]) and Birkhoff’s
normal form [3,4,38]. The full proof of Arnold’s theorem
was provided in [19], based on Herman’s results on the
planetary problem; it makes use of Poincaré variables re-
stricted to the symplectic manifold of vertical total angular
momentum.

Explicit estimates on the perturbing parameter en-
suring the existence of KAM tori were given by M. Hé-
non [25]; he showed that direct applications of KAM the-
ory to the three-body problem lead to analytical results
which are much smaller than the astronomical observa-
tions. For example, the application of Arnold’s theorem
to the restricted three-body problem is valid provided the
mass-ratio of the primaries is less than 10�333. This result
can be improved up to 10�48 by applyingMoser’s theorem,
but it is still very far from the actual Jupiter-Sunmass-ratio
which amounts to about 10�3. In the context of concrete
estimates, a big improvement comes from the synergy be-
tween KAM theory and computer-assisted proofs, based
on the application of interval arithmetic which allows to
keep rigorously track of the rounding-off and propaga-
tion errors introduced by the machine. Computer-assisted
KAM estimates were implemented in a number of cases in
Celestial Mechanics, like the three-body problem and the
spin-orbit model as briefly recalled in the following sub-
sections.

Another interesting example of the interaction be-
tween the analytical theory and the computer implementa-
tion is provided by the analysis of the stability of the trian-
gular Lagrangian points; in particular, the stability for ex-
ponentially long times is obtained using Nekhoroshev the-
ory combined with computer-assisted implementations of
Birkhoff normal form (see, e. g., [5,13,18,21,22,23,28,36]).

Rotational Tori for the Spin-Orbit Problem

We study the motion of a rigid triaxial satellite around
a central planet under the following assumptions [8]:

i) The orbit of the satellite is Keplerian,
ii) The spin-axis is perpendicular to the orbital plane,
iii) The spin-axis coincides with the smallest physical axis,
iv) External perturbations as well as dissipative forces are

neglected.

Let I1 < I2 < I3 be the principal moments of inertia;
let a, e be the semi-major axis and eccentricity of the Ke-
plerian ellipse; let r and f be the instantaneous orbital ra-
dius and the true anomaly of the satellite; let x be the angle
between the longest axis of the triaxial satellite and the pe-
riapsis line. The equation of motion governing the spin-
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orbit model is given by:

ẍ C
3
2
I2 � I1
I3


 a
r

�3
sin(2x � 2 f ) D 0 : (22)

Due to assumption i, the quantities r and f are known func-
tions of the time. Expanding the second term of (22) in
Fourier–Taylor series and neglecting terms of order 6 in
the eccentricity, setting y � ẋ one obtains that the equa-
tion of motion corresponds to Hamilton’s equations asso-
ciated to the Hamiltonian

H(y; x; t) �
y2

2
� "

��
�
e
4
C

e3

32
�

5
768

e5
�
cos(2x � t)

C

�
1
2
�

5
4
e2 C

13
32

e4
�
cos(2x � 2t)

C

�
7
4
e �

123
32

e3 C
489
256

e5
�
cos(2x � 3t)

C

�
17
4
e2 �

115
12

e4
�
cos(2x � 4t)

C

�
845
96

e3 �
32525
1536

e5
�
cos(2x � 5t)

C
533
32

e4 cos(2x � 6t)

C
228347
7680

e5 cos(2x � 7t)
�
;

(23)

where " � 3/2(I2 � I1)/I3 and we have chosen the units
so that a D 1, 2�/Trev D 1, where Trev is the period of
revolution. Let p, q be integers with q 6D 0; a p : q reso-
nance occurs whenever hẋi D p

q , meaning that during q
orbital revolutions, the satellite makes on average p rota-
tions. Since the phase-space is three-dimensional, the two-
dimensional KAM tori separates the phase-space into in-
variant regions, thus providing the stability of the trapped
orbits. In particular, let P( pq ) be the periodic orbit asso-
ciated to the p : q resonance; its stability is guaranteed by
the existence of trapping rotational tori with frequencies
T (!1) and T (!2) with !1 < p/q < !2. For example, one
can consider the sequences of irrational rotation numbers

�
(p/q)
k �

p
q
�

1
k C ˛

; �
(p/q)
k �

p
q
C

1
k C ˛

;

k 2 Z; k � 2

with ˛ � (
p
5 � 1)/2. In fact, the continued fraction ex-

pansion of 1/(k C ˛) is given by 1/(k C ˛) D [0; k; 11].
Therefore, both � (p/q)

k and �(p/q)
k are noble numbers (i. e.

with continued fraction expansion definitely equal to one);

by number theory they satisfy the diophantine condition
and bound p

q from below and above.
As a concrete sample we consider the synchronous

spin-orbit resonance (p D q D 1) of the Moon, whose
physical values of the parameters are " � 3:45 � 10�4 and
e D 0:0549. The stability of the motion is guaranteed by
the existence of the surfaces T (� (1)

40 ) and T (�(1)
40 ), which

is obtained by implementing a computer-assisted KAM
theory for the realistic values of the parameters. The re-
sult provides the confinement of the synchronous periodic
orbit in a limited region of the phase space [8].

Librational Tori for the Spin-Orbit Problem

The existence of invariant librational tori around a spin-
orbit resonance can be obtained as follows [9]. Let us con-
sider the 1:1 resonance corresponding to Hamilton’s equa-
tions associated to (23). First one implements a canon-
ical transformation to center around the synchronous
periodic orbit; after expanding in Taylor series, one diag-
onalizes the quadratic terms, thus obtaining a harmonic
oscillator plus higher degree (time-dependent) terms. Fi-
nally, it is convenient to transform the Hamiltonian using
the action-angle variables (I; ') of the harmonic oscilla-
tor. After these symplectic changes of variables one is led
to a Hamiltonian of the form

H(I; '; t) � !IC "h(I)C "R(I; '; t);

I 2 R; ('; t) 2 T2 ;

where ! � !(") is the frequency of the harmonic oscilla-
tor, while h(I) and R(I; '; t) are suitable functions, pre-
cisely polynomials in the action (of order of the square
of the action). Then apply a Birkhoff normal form (see –
Normal Forms in Pertubation Theory–) up to the order k
(k D 5 in [9]) to obtain the following Hamiltonian:

Hk(I0; '0; t) D !I0C "hk(I0; ")C "kC1Rk(I0; '0; t) :

Finally, implementing a computer-assisted KAM theorem
one gets the following result: consider the Moon–Earth
case with "obs D 3:45 � 10�4 and e D 0:0549; there exists
an invariant torus around the synchronous resonance cor-
responding to a libration of 8:79ı for any " � "obs/5:26.
The same strategy applied to different samples, e. g. the
Rhea–Saturn pair, allows one to prove the existence of li-
brational invariant tori around the synchronous resonance
for values of the parameters in full agreement with the ob-
servational measurements [9].
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Rotational Tori for the Restricted Three-Body Problem

The planar, circular, restricted three-body problem has
been considered in [12], where the stability of the asteroid
12 Victoria has been investigated under the gravitational
influence of the Sun and Jupiter. On a fixed energy level
invariant KAM tori trapping the motion of Victoria have
been established for the astronomical value of the Jupiter–
Sun mass-ratio (about 10�3). After an expansion of the
perturbing function and a truncation to a suitable order
(see [12]), the Hamiltonian function describing the mo-
tion of the asteroid is given in Delaunay’s variables by

H(L;G; `; g) � �
1
2L2
� G � " f (L;G; `; g) ;

where setting a � L2, e D
p
1 � G2/L2, the perturbation

is given by

f (L;G; `; g) D 1C
a2

4
C

9
64

a4 C
3
8
a2e2

�

�
1
2
C

9
16

a2
�
a2e cos `

C

�
3
8
a3 C

15
64

a5
�

cos(`C g)

�

�
9
4
C

5
4
a2
�
a2e cos(`C 2g)

C

�
3
4
a2 C

5
16

a4
�
cos(2 `C 2 g)

C
3
4
a2e cos(3 `C 2 g)

C

�
5
8
a3 C

35
128

a5
�

cos(3 `C 3 g)

C
35
64

a4 cos(4 `C 4 g)

C
63
128

a5 cos(5`C 5g) :

For the asteroid Victoria the orbital elements are
aV ' 2:334 AU, eV ' 0:220, which give the observed
values of the Delaunay’s action variables as LV D 0:670,
GV D 0:654. The energy level is taken as

E(0)
V � �

1
2LV2

� GV ' �1:768 ;

E(1)
V � �

˝
f (LV ;GV ; `; g)

˛
' �1:060 ;

EV(") � E(0)
V C "E

(1)
V :

The osculating energy level of the Sun–Jupiter–Victoria
model is defined as

E�V � EV("J) D E(0)
V C "JE

(1)
V ' �1:769 :

We now look for two invariant tori bounding the observed
values of LV and GV . To this end, let L̃˙ D LV ˙ 0:001
and let

!̃˙ D

 
1
L̃3˙
;�1

!

� ( ˜̨˙;�1) :

To obtain diophantine frequencies, the continued fraction
expansion of ˜̨˙ is modified adding a tail of ones after the
order 5; this procedure gives the diophantine numbers ˛˙
which define the bounding frequencies as!˙ D (˛˙;�1).
By a computer-assisted KAM theorem, the stability of the
asteroid Victoria is a consequence of the following re-
sult [12]: for j"j � 10�3 the unperturbed tori can be an-
alytically continued into invariant KAM tori for the per-
turbed system on the energy level H�1

�
EV(")), keeping

fixed the ratio of the frequencies. Therefore the orbital el-
ements corresponding to the semi-major axis and to the
eccentricity of the asteroid Victoria stay forever "-close to
their unperturbed values.

Planetary Problem

The dynamics of the planetary problem composed by
the Sun, Jupiter and Saturn is investigated in [29,30,31].
In [29] the secular dynamics of the following model is
studied: after the Jacobi’s reduction of the nodes, the 4-di-
mensional Hamiltonian is averaged over the fast angles
and its series expansion is considered up to the second
order in the masses. This procedure provides a Hamil-
tonian function with two degrees of freedom, describing
the slow motion of the parameters characterizing the Ke-
plerian approximation (i. e., the eccentricities and the ar-
guments of perihelion). Afterwards, action-angle coordi-
nates are introduced and a partial Birkhoff normalization
is performed. Finally, a computer-assisted implementation
of a KAM theorem yields the existence of two invariant
tori bounding the secular motions of Jupiter and Saturn
for the observed values of the parameters.

The approach sketched above is extended in [31] so
to include the description of the fast variables, like the
semi-major axes and the mean longitudes of the plan-
ets. Indeed, the preliminary average on the fast angles is
now performed without eliminating the terms with degree
greater or equal than two with respect to the fast actions.
The canonical transformations involving the secular coor-
dinates can be adapted to produce a good initial approxi-
mation of an invariant torus for the reduced Hamiltonian
of the three-body planetary problem. This is the starting
point of the procedure for constructing the Kolmogorov’s
normal form which is numerically shown to be conver-
gent. In [30] the same result of [31] has been obtained for
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a fictitious planetary solar system composed by two plan-
ets with masses equal to 1/10 of those of Jupiter and Sat-
urn.

Periodic Orbits

Construction of Periodic Orbits

One of the most intriguing conjectures of Poincaré con-
cerns the pivotal role of the periodic orbits in the study of
the dynamics; more precisely, he states that given a partic-
ular solution of Hamilton’s equations one can always find
a periodic solution (possibly with very long period) such
that the difference between the two solutions is small for
an arbitrary long time. The literature on periodic orbits
is extremely wide (see, e. g., [4,7,24,38,39] and references
therein); here we present the construction of periodic or-
bits implementing a perturbative approach (see [10]) as
shown by Poincaré in [34]. We describe such a method
taking as an example the spin-orbit Hamiltonian (23) that
we write in a compact form asH(y; x; t) � y2/2 � " f (x; t)
for a suitable function f D f (x; t); the corresponding
Hamilton’s equations are

ẋ D y
ẏ D " fx (x; t) :

(24)

A spin-orbit resonance of order p : q is a periodic solution
of period T D 2�q (q 2 Znf0g), such that

x(t C 2�q) D x(t)C 2� p
y(t C 2�q) D y(t) :

(25)

From (24) the solution can be written in integral form as

y(t) D y(0)C "
Z t

0
fx (x(s); s)ds

x(t) D x(0)C y(0)t C "
Z t

0

Z �

0
fx (x(s); s)ds d�

D x(0)C
Z t

0
y(s)ds ;

combining the above equations with (25) one obtains
Z 2	q

0
fx (x(s); s)ds D 0

Z 2	q

0
y(s)ds � 2� p D 0 :

(26)

Let us write the solution as the series

x(t) � x C yt C "x1(t)C : : :
y(t) � y C "y1(t)C : : : ;

(27)

where x(0) D x and y(0) D y are the initial conditions,
while x1(t), y1(t) are the first order terms in ". Expanding
the initial conditions in power series of ", one gets:

x D x0 C "x1 C "2x2 C : : :

y D y0 C "y1 C "
2y2 C : : :

(28)

Inserting (27) and (28) in (24), equating same orders in "
and taking into account the periodicity condition (26),
one can find the following explicit expressions for x1(t),
y1(t), y0, y1:

y1(t) D y1(t; y; x) D
Z t

0
fx (x0 C y0s; s)ds

x1(t) D x1(t; y; x) D
Z t

0
y1(s)ds

y0 D
p
q

y1 D �
1

2�q

Z 2	q

0

Z t

0
fx (x0 C y0s; s)dsdt :

Furthermore, x0 is determined as a solution of
Z 2	q

0
fx (x0 C y0s; s)ds D 0 ;

while x1 is given by

x1 D �
1

R 2	q
0 f 0xxdt

�

�
y1

Z 2	q

0
t f 0xxdt C

Z 2	q

0
f 0xx x1(t)dt

�
;

where, for shortness, we have written f 0xx D fxx (x0 C
y0t; t).

The Libration in Longitude of the Moon

The previous computation of the p : q periodic solution
can be used to evaluate the libration in longitude of the
Moon. More precisely, setting p D q D 1 one obtains

x0 D 0
y0 D 1

x1(t) D 0:232086t � 0:218318 sin(t)

� 6:36124 � 10�3 sin(2t) � 3:21314 � 10�4 sin(3t)

� 1:89137 � 10�5 sin(4t) � 1:18628 � 10�6 sin(5t)
y1(t) D 0:232086� 0:218318 cos(t) � 0:0127225 cos(2t)

� 9:63942 � 10�4 cos(3t)� 7:56548 � 10�5 cos(4t)

� 5:93138 � 10�6 cos(5t)
x1 D 0
y1 D �0:232086 ;
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where we used e D 0:05494, " D 3:45 � 10�4. Therefore
the synchronous periodic solution, computed up to the
first order in ", is given by

x(t) D x0 C y0 t C "x1(t) D t � 7:53196 � 10�5 sin(t)

� 2:19463 � 10�6 sin(2t)� 1:10853 � 10�7 sin(3t)

� 6:52523 � 10�9 sin(4t)� 4:09265 � 10�10 sin(5t)

y(t) D y0t C "y1(t) D 1 � 7:53196 � 10�5 cos(t)

� 4:38926 � 10�6 cos(2t) � 3:3256 � 10�7 cos(3t)

� 2:61009 � 10�8 cos(4t) � 2:04633 � 10�9 cos(5t) :

It turns out that the libration in longitude of the Moon,
provided by the quantity x(t) � t, is of the order of 7 � 10�5

in agreement with the observational data.

Future Directions

The last decade of the XX century has been greatly marked
by astronomical discoveries, which changed the shape of
the solar system as well as of the entourage of other stars.
In particular, the detection of many small bodies beyond
the orbit of Neptune has moved the edge of the solar sys-
tem forward and it has increased the number of its pop-
ulation. Hundreds objects have been observed to move
in a ring beyond Neptune, thus forming the so-called
Kuiper’s belt. Its components show a great variety of be-
haviors, like resonance clusterings, regular orbits, scat-
tered trajectories. Furthermore, far outside the solar sys-
tem, the astronomical observations of extrasolar planetary
systems have opened new scenarios with a great variety of
dynamical behaviors. In these contexts classical and reso-
nant perturbation theories will deeply contribute to pro-
vide a fundamental insight of the dynamics and will play
a prominent role in explaining the different configurations
observed within the Kuiper’s belt as well as within extraso-
lar planetary systems.
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Perturbation Theory, Introduction to
GIUSEPPE GAETA
Dipartimento di Matematica,
Università di Milano, Milan, Italy

The idea behind Perturbation Theory is that when we are
not able to determine exact solutions to a given prob-
lem, we might be able to determine approximate solu-
tions to our problem starting from solutions to an approxi-
mate version of the problem, amenable to exact treatment.
Thus, in a way, we use exact solutions to an approximate
problem to get approximate solutions to an exact problem.

It goes without saying that many mathematical prob-
lems met in realistic situations, in particular as soon as
we leave the linear framework, are not exactly solvable–
either for an inherent impossibility or for our insufficient
skills. Thus, Perturbation Theory is often the only way to
approach realistic nonlinear systems.

It is implicit in the very nature of perturbation theory
that it can only worke once a problem which is both solv-
able–one also says “integrable”–and in some sense “near”
to the original problem can be identified (it should be
mentioned in this respect that the issue of “how near is
near enough” is a delicate one).

Quite often, the integrable problem to be used as
a starting point is a linear one–maybe obtained as the first-
order expansion around a trivial or however known so-
lution–and nonlinear corrections can be computed term
by term via a recursive procedure based on expansion in
a small parameter (usually denoted as " by tradition); the
point is that at each stage of this procedure one should only
solve linear equations, so that the procedure can–at least in

principle–be carried over up to any desired order. In prac-
tice, one is limited by time, computational power, and the
increasing dimension of the linear systems to be solved.

But limitations are not only due to the limits of the hu-
mans–or the computers–performing the actual computa-
tions: in fact, some delicate points arise when one consid-
ers the convergence of the " series involved in the compu-
tations and in the expression of the solutions obtained by
Perturbation Theory.

These points–i. e. the power of Perturbation Theory,
its basic features and tools, and its limitations in particular
with regard to convergence issues–are discussed in the ar-
ticle� Perturbation Theory by Gallavotti. This article also
stresses the role which problems originating in Physics had
in the development of Perturbation Theory; and this not
only in historical terms (the computation of planetary or-
bits), but also in more recent times through the work of
Poincaré first and then via Quantum Theory.

The modern setting of Perturbation Theory was laid
down by Poincaré, and goes through the use of what is to-
day known as Poincaré normal forms; these are a corner-
stone of the whole theory and hence, implicitly or explic-
itly, of all the articles presented in this section of the En-
cyclopedia. But, they are also discussed in detail, together
with their application, in the article � Normal Forms in
Perturbation Theory by Broer.

The latter deals with the general problem, i. e. with
evolution differential equations (Dynamical Systems) with
no special structure; or, in applications originating from
Physics or Engineering one is often dealing with systems
that (within a certain approximation) preserve Energy and
can be written in Hamiltonian form. In this case, as em-
phasized by Birkhoff, one can more efficiently consider
perturbations of the Hamiltonian rather than of the equa-
tions of motion (the advantage originating in the fact that
the Hamiltonian is a scalar function, while the equations
of motion are a system of 2n equations in 2n dimensions).
The normal form approach for Hamiltonian systems, and
more generally Hamiltonian perturbation theory, is dis-
cussed in the article � Hamiltonian Perturbation Theory
(and Transition to Chaos) by Broer and Hanßmann. This
also discusses the problem of transition–as some control
parameter, often the Energy, is varied–from the regular
behavior of the unperturbed system to the chaotic (“tur-
bulent” if we deal with fluid motion) behavior displayed
bymany relevantHamiltonian as well as non-Hamiltonian
systems.

As mentioned above, in all the matters connected with
Perturbation Theory and its applications, convergence is-
sues play an extremely important role. They are discussed
in the article � Perturbative Expansions, Convergence of
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by Walcher, both in the general case and for Hamiltonian
systems.

The interplay between perturbations–and more gener-
ally changes in some relevant parameter characterizing the
system within a more general family of system–and qual-
itative (not only quantitative) changes in its behavior is of
course of general interest not only in the “extreme” case
of transition from integrable to chaotic behavior, but also
when the qualitative change in the behavior of the system
is somehow more moderate. Such a change is also known
as a bifurcation. Albeit there is no article specifically de-
voted to these, the reader will note the concept of bifurca-
tion appears in many, if not most, of the articles.

The behavior of a “generically perturbed” system de-
pends on what is meant by “generically”. In particular if we
deal with an unperturbed systemwhich has some degree of
symmetry, this may be an “accidental” feature–maybe due
to the specially simple nature of integrable systems such as
the one chosen as an unperturbed one–but might also cor-
respond to a requirement by the very problemwe aremod-
eling; this is often the case when we deal with problems
of physical or engineering origin, just because the funda-
mental equations of Physics have some degree of symme-
try. The presence of symmetry can be quite helpful–e. g.
reducing the effective degrees of freedom of a given prob-
lem–and should be taken into account in the perturbative
expansion. Moreover, the perturbative expansions can be
made to have some degree of symmetry which can be used
in the solution of the resulting equations. These matters
are discussed at length in the article�Non-linear Dynam-
ics, Symmetry and Perturbation Theory in by Gaeta.

A special–but widely applicable and very interesting–
framework for the occurrence of bifurcation is provided
by systems exhibiting parametric resonance. This is, for
example, the case for an ample class of coupled oscillator
systems, which would per se suffice to guarantee the phe-
nomenon is of special interest in applications, beside its
theoretical appeal. The analysis of parametric resonance
from the point of view of Perturbation Theory is discussed
in the article� Perturbation Analysis of Parametric Reso-
nance by Verhulst.

As mentioned above, the transition from fully regu-
lar (integrable) to chaotic behavior is discussed in general
terms in the article � Hamiltonian Perturbation Theory
(and Transition to Chaos) by H. Broer and H. Hanßmann.
However, quite remarkably, in some cases a perturbation
will only moderately destroy the integrable behavior. This
should be meant in the following sense: integrable behav-
ior is characterized by the fact that whatever the initial
conditions of the system, we are able to predict its behav-
ior after an arbitrary long time. It may happen that albeit

this is not true, we are still able to predict either (a) the ar-
bitrarily long time behavior for a dense subset of all the
possible initial conditions; or (b) the exponentially long
time behavior for a subset of full measure of possible initial
conditions (usually, those “sufficiently near” to the exactly
integrable case).

In the first case, the meaning of the statement is
that any possible initial condition is “near” to an initial
condition leading to an integrable-type behavior over all
times (which does not imply its behavior will be near to
integrable over arbitrary times, but only for sufficiently
small–albeit this “small” could be extremely long on hu-
man scale–times). This kind of situation is investigated
by the KAM theory (named after the initials of Kol-
mogorov, Arnold, and Moser), discussed in the article
� Kolmogorov–Arnold–Moser (KAM) Theory by Chier-
chia.

In the second case, the statements about stable be-
havior are valid only for a finite (albeit exponentially
long, hence again often extremely long on human scale)
time, but apply to an open set of initial conditions. This
approach was taken by Nekhoroshev, and is presently
known–together with the results obtained in this direc-
tion–asNekhoroshev theory; this is the subject of the article
� Nekhoroshev Theory by Niederman.

As mentioned above, the problem of planetary mo-
tions was historically at the origin of Perturbation Theory,
since Ancient Greece; actually more recent results, includ-
ing those due to the work of Poincaré–and those embodied
in KAM and Nekhoroshev theories–also have roots in Ce-
lestialMechanics (albeit then being used in completely dif-
ferent fields, e. g. in the study of electron motion in a crys-
tal). The application of Perturbation Theory in Celestial
Mechanics is a very active field of research, and the subject
of the article � Perturbation Theory in Celestial Mechan-
ics by Celletti.

In this context, one often considers reduced problems
where not all the planets are taken into account; this is
the origin of the “three-body problem,” the three bodies
being, for example the Sun, Jupiter, and the Earth; or the
Earth, the Moon, and an artificial satellite. Much effort has
been recently devoted to the study of special solutions for
the N-body problem (that is, N bodies mutually attract-
ing via potential forces) after the discovery of remarkable
special solutions–termed “choreographies”–in which the
bodies move along one or few common trajectories. This
theory has not yet found applications in concrete physical
systems or technology, but on the one hand these special
solutions provide an organizing center for general nonlin-
ear dynamics, and on the other the applicative potential
of such collective motions (say in micro-devices) is rather
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obvious. The N-body problem and these special solutions
are discussed in the article� n-Body Problem and Chore-
ographies by Terracini.

The reader has probably noted that all these problems
correspond to smooth conservative systems, or at least to
perturbation of such systems. When this is relaxed–which
is not appropriate in studying the motion of planetary ob-
jects, but may be appropriate in a number of contexts–the
situation is both different and less well understood. The
article� Perturbation of Systems with Nilpotent Real Part
by Gramchev studies perturbation of linear systems with
a nilpotent linear part, which is the case for dissipative
unperturbed systems. The article � Perturbation Theory
for Non-smooth Systems by Teixeira discusses the case
of nonsmooth systems, which is the case–quite relevant
in real-world engineering applications–of systems with
impacts.

It was also mentioned that Quantum Theory was an-
other major source of motivation for the development of
Perturbation Theory, both historically and still in recent
times. As for the latter, one should remark how a stan-
dard tool in quantum perturbation theory, i. e. the tech-
nique of Feynman diagrams–or more generally, diagram-
matic expansions–was incorporated into classical pertur-
bation theory only in relatively recent times. The use of di-
agrammatic expansions in classical perturbation theory is
discussed in the article � Diagrammatic Methods in Clas-
sical Perturbation Theory by Gentile.

Apart from this, knowledge of the perturbation-theo-
retic techniques developed in the framework of quantum
theory–both in general and for the study of atoms and
molecules–is of general interest, both as a source of in-
spiration for tackling problems in different contexts and
for the intrinsic interest of microscopic systems; while well
known to physicists, this theory is maybe less known to
mathematicians and engineers. The articles provided in
this section of the Encyclopedia can be an excellent entry
point for those not familiar with this theory.

In the article� Perturbation Theory in QuantumMe-
chanics by Picasso, Bracci, and D’Emilio, the general set-
ting and results are described, together with some selected
special topics; the role of symmetries–and hence degenera-
cies–within quantum perturbation theory is paramount
and also discussed here.

The article � Perturbation Theory and Molecular Dy-
namics by Panati focuses instead on the specific aspects
of the perturbative approach to the quantum dynamics
of molecules; this is a remarkable example of how taking
into account the separation between slow and fast degrees
of freedom allows one to deal with seemingly intractable
problems.

A bridge between quantum and classical Perturbation
Theory is provided by the semiclassical case, correspond-
ing to taking into account the smallness of the energy scale
set by Planck’s constant h with respect to the energy scale
involved in many (macro- or meso-scopic) problems. This
is discussed in the article � Perturbation Theory, Semi-
classical by Sacchetti.

The quantum framework is also very interesting in
connection with Bifurcation Theory; in this framework
the “qualitative changes in the dynamics” which charac-
terize bifurcations corresponds to qualitative changes in
the spectrum. This in turn is related to monodromy on
the mathematical side; and to the problem of an atom in
crossed magnetic and electric fields on the physical side.
These matters, strongly related to several of those men-
tioned above, are discussed in the article � Quantum Bi-
furcations by Zhilinskii.

From the mathematical point of view, in the quan-
tum case one deals with a Partial Differential Equation–
the Schrödinger equation–rather than with a system of
Ordinary Differential Equations (it should be noted that
when dealing with the spectrum only, one is actually not
requiring to study the full set of solutions to the concerned
PDE).

Needless to say, this is not the only case where one has
to deal with PDEs in the applications, continuummechan-
ics providing a classical framework where one is obliged to
deal with PDEs. Rigorous results in Perturbation Theory
for PDEs are not at the same level as for ODEs (and the in-
sight provided by the quantum case is henceforth specially
valuable); research in this direction is very active, and faces
rather difficult problems despite the progresses obtained in
recent years.

Some of these results, together with an overview of the
field, are described in the article� Perturbation Theory for
PDEs by Bambusi. Quite appropriately, this article ends up
stating that in several applied fields a sound understanding
of PDEs rigorous Perturbation Theory would be relevant
for applications, mentioning in particular the water wave
problem, quantummechanics, electromagnetic theory and
magnetohydrodynamics, and elastodynamics.

This could also be a convenient way to conclude this
Introduction, but in this case the reader would unavoid-
ably remain with the impression that Perturbation Theory
is mainly dealing with nonlinear problems originating in
Physics or Engineering. While this is historically the ori-
gin of the most striking developments of the theory–and
the realm in which it proved most successful–such charac-
terization is by no means a built-in restriction.

Perturbation Theory can also deal effectively with
problems originating in different fields and having a rather
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different mathematical formulation, such as those arising
in certain fields of Biology (beside fields where the mathe-
matical formulation is anyway in terms of Dynamical Sys-
tems). This is shown concretely in the article � Pertur-
bation of Equilibria in the Mathematical Theory of Evo-
lution by Sanchez; in this case the problem is formu-
lated in terms of Evolutionary Game Theory. It should
be noted that this is interesting not only for the intrinsic
interest of the Darwin theory of Evolution, but also be-
cause Game Theory is increasingly used in rather diverse
contexts.

Finally, I would like to warmly thank all the Au-
thors for providing the remarkable articles making up this
section of the Encyclopedia, as well as the Referees who
checked them anonymously and in several cases gave sug-
gestions leading to improvements.

Perturbation Theory
andMolecular Dynamics
GIANLUCA PANATI
Dipartimento di Matematica, Università di Roma
“La Sapienza”, Roma, Italy
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Glossary

Adiabatic decoupling In a complex system (either clas-
sical or quantum), the dynamical decoupling between
the slow and the fast degrees of freedom.

Adiabatic perturbation theory A mathematical algo-
rithm which exploits the adiabatic decoupling of de-
grees of freedom in order to provide an approximated
(but yet accurate) description of the slow part of the
dynamics. In the framework of QMD, it is used to
approximately describe the dynamics of nuclei, the
perturbative parameter " being related to the small
electron/nucleus mass ratio.

Electronic structure problem The problem consisting in
computing, at fixed positions of thenuclei, the ener-

gies (eigenvalues) and eigenstates corresponding to the
electrons. An approximate solution is usually obtained
numerically.

Molecular dynamics The dynamics of the nuclei in
a molecule. While a first insight in the problem can
be obtained by using classical mechanics (Classical
Molecular Dynamics), a complete picture requires
quantum mechanics (Quantum Molecular Dynamics)
� Perturbation Theory in Quantum Mechanics. This
contribution focuses on the latter viewpoint.

Definition of the Subject

In the framework of Quantum Mechanics the dynam-
ics of a molecule is governed by the (time-dependent)
Schrödinger equation, involving nuclei and electrons cou-
pled through electromagnetic interactions. While the
equation is mathematically well-posed, yielding the exis-
tence of a unique solution, the complexity of the prob-
lem makes the exact solution unattainable. Even for small
molecules, the large number of degrees of freedom pre-
vents from direct numerical simulation, making an ap-
proximation scheme necessary.

Indeed, one may exploit the smallness of the elec-
tron/nucleus mass ratio to introduce a convenient com-
putational scheme leading to approximate solutions of the
original time-dependent problem. In this article we review
the standard approximation scheme (dynamical Born–
Oppenheimer approximation) together with its ramifica-
tions and some recent generalizations, focusing on math-
ematically rigorous results.

The success of this approximation scheme is rooted
in a clear separation of time-scales between the motion of
electrons and nuclei. Such separation provides the proto-
typical example of adiabatic decoupling between the fast
and the slow part of a quantum dynamics. More gener-
ally, adiabatic separation of time-scales plays a fundamen-
tal role in the understanding of complex system, with ap-
plications to a wide range of physical problems.

Introduction

Through the discovery of the Schrödinger equation the
theoretical physics and chemistry community attained
a powerful tool for computing atomic spectra, either ex-
actly or in perturbation expansion. Born and Oppen-
heimer [2] immediately strived for a more ambitious
goal, namely to understand the excitation spectrum of
molecules on the basis of the new wave mechanics. They
accomplished to exploit the small electron/nucleus mass
ratio as an expansion parameter, which then leads to
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the stationary Born–Oppenheimer approximation. Since
then it has become a standard and widely used tool in
quantum chemistry, now supported by rigorous mathe-
matical results [4,5,18,19,27].

Beyondmolecular structure and excitation spectra, dy-
namical processes have gained in interest. Examples are
the scattering of molecules, chemical reactions, or the de-
cay of an excited state of a molecule through tunneling
processes. Such problems require a dynamical version of
the Born–Oppenheimer approximation, which is the topic
of this article. At the leading order, the electronic energy
at fixed positions of the nuclei serves as an effective po-
tential between the nuclei. We call this the zeroth order
Born–Oppenheimer approximation. The resulting effec-
tive Schrödinger equation can be used for both statical and
dynamical purposes. The input is an electronic structure
calculation, which for the purpose of our article we regard
as given by other means.

While there are many physical and chemical prop-
erties of molecules explained by the zeroth order Born–
Oppenheimer approximation, there are cases where
higher order corrections are required. Famous examples
are the dynamical Jahn–Teller effect and the dynamics of
singled out nuclear degrees of freedom near the conical in-
tersection of two energy surfaces. The first order Born–
Oppenheimer approximation involves geometric phases,
which are of great interest also in other domains of Quan-
tum Mechanics ([41],� Quantum Bifurcations).

Finally, we mention that some dynamical processes
can be modeled as scattering problems. In such cases it
is convenient to combine the Born–Oppenheimer scheme
together with scattering theory, a topic which goes beyond
the purpose of this contribution (see [28,29] and refer-
ences therein).

A complete overview of the vast literature on the sub-
ject of the dynamical Born–Oppenheimer approximation
is provided in [24].

The Framework

We consider a molecule consisting of K nuclei, whose po-
sitions are denoted as x D (x1; : : : ; xK) 2 R3K D: X,
and N electrons, with positions y D (y1; : : : ; yN ) 2
R3N D: Y . The wavefunction of the molecule is there-
fore a square-integrable function � depending on all these
coordinates.

Molecular dynamics is described through the Schrö-
dinger equation

ı„
d
ds
�s D Hmol�s ; (1)

where s denotes time measured in microscopic units and
the Hamiltonian operator is given by

Hmol D �

KX

kD1

„2

2Mk

xk �

NX

iD1

„2

2me

yi

C Ve(y)C Vn(x)C Ven(x; y) : (2)

Here „ is the Planck constant, me is the mass of the elec-
tron and Mk the mass of the kth nucleus, and the interac-
tion terms are explicitly given by

Vn(x) D
KX

kD1

KX

l¤k

e2ZkZl

jxk � xl j
; Ve(y) D

NX

iD1

NX

j¤i

e2

jyi � y jj
;

and

Ven(x; y) D
KX

kD1

NX

iD1

�
e2Zk

jxk � yi j
;

where eZk , for Zk 2 Z, is the electric charge of the kth nu-
cleus. In some cases, to obtain rigorous mathematical re-
sults one needs to slightly smear out the charge distribu-
tion of the nuclei. This is in agreement with the physical
picture that nuclei are not point like but extended objects.
Hereafter we will assume, for sake of a simpler notation,
that all the nuclei have the same massM. The subsequent
discussion is still valid in the general case, with the appro-
priate choice of the adiabatic parameter indicated below.

As mentioned above, the large number of degrees of
freedommakes convenient to elaborate an approximation
scheme, exploiting the smallness of the parameter

" :D
r

me

M
D 10�2 � � � 10�3 : (3)

In the general case, one has to choose " D maxf
p
me/Mk :

1 � k � Kg.
By introducing atomic units („ D 1;me D 1) and

making explicit the role of the adiabatic parameter ", the
Hamiltonian Hmol reads (up to a change of energy scale)

H" D�
KX

kD1

"2

2

xk C Vn(x)

C

NX

iD1

�
1
2

yi C Ve(y)C Ven(x; y)

„ ƒ‚ …
Hel(x)

: (4)

Notice that, for each fixed nuclei configuration x D
(x1; : : : ; xK) 2 X, the operatorHel(x) is an operator acting
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on the Hilbert space Hel corresponding to the electrons
alone.

If the kinetic energies of the nuclei and the electrons
are comparable, as it happens in the vast majority of phys-
ical situations in view of energy equipartition, then the ve-
locities scale as

jvnj �
r

me

M
jvej D "jvej ; (5)

where vn and ve denotes respectively the typical velocity of
nuclei and electrons. Therefore, in order to observe a non-
trivial dynamics for the nuclei, one has to wait a micro-
scopically long time, namely a time of order O("�1). This
scaling fixes the macroscopic time scale t, together with
the relation t D "s, where s is the microscopic time ap-
pearing in Eq. (1). We are therefore interested in the be-
havior of the solutions of the equation

ı"
d
dt
� (t) D H"� (t) (6)

in the limit "! 0.
We assume as an input a solution of the electronic

structure problem, i. e. that for every fixed configuration
of the nuclei x D (x1; : : : ; xK) one knows the solution of
the eigenvalue problem

He(x)� j(x) D Ej(x)� j(x) ; (7)

with Ej(x) 2 R and � j(x) 2Hel. Since electrons are
fermions, one has Hel D SaL2(R3N ) with Sa projecting
onto the antisymmetric wave functions. The eigenvectors
in Eq. (7) are normalized as

h� j(x) ; �`(x)iHel �

Z

Y
��j (x; y)�`(x; y)dy D ı j`

with respect to the scalar product in Hel. Note that the
eigenvectors are determined only up to a phase # j(x).
Generically, in addition to the bound states, He(x) has
continuous spectrum. We label the eigenvalues in Eq. (7)
as

E1(x) � E2(x) � � � � ; (8)

including multiplicity. The graph of Ej is called the jth en-
ergy surface or energy band, see Fig. 1.

Generically, in realistic examples such energy bands
cross each other, and the possible structures of band cross-
ing have been classified [22,35]. Figure 2 illustrates a real-
istic example of energy bands, showing in particular the
typical conical intersection of two energy surfaces.

Perturbation Theory andMolecular Dynamics, Figure 1
A schematic representation of energybands. At each fixed nuclei
configuration x D (x1; : : : ; xK ) the electronic Hamiltonian Hel(x)
exhibits point spectrum (corresponding to states with all the
electrons bound to the nuclei) and continuous spectrum (corre-
sponding to states inwhich one ormore electrons are quasi-free,
i. e. the molecule is ionized)

Let  (x) be a nucleonic wave function,  2Hn , the
Hilbert space corresponding to the nuclei. For simplicity
we take Hn D L2(X), remembering that to impose the
physically correct statistics for the nuclei requires extra
considerations [33]. States � of the molecules with the
property that the electrons are precisely in the jth eigen-
state are then of the form

� (x; y) D  (x)� j(x; y) : (9)

We can think of � either as a wave function in the to-
tal Hilbert space H DHn ˝Hel, or as a wave function
for the electrons (i. e. an element ofHel) depending para-
metrically on x. In the common jargon, a state in the form
Eq. (9) is said a state concentrated on the jth band. We de-
note as Pj the projector on the subspace consisting of states
of the form Eq. (9); since the f� j(x)g j2N are orthonormal,
Pj is indeed an orthogonal projection inHn ˝Hel.

The Leading Order Born–Oppenheimer
Approximation

We focus now on an a specific energy band, say En, assum-
ing that it is globally isolated from the rest of the spectrum
(the behavior of the wavefunction at the crossing points
will be addressed later).

Under such assumption, a state � 0 which is initially
concentrated on the nth band will stay localized in the
same band up to errors of order O("): more specifically,
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Perturbation Theory andMolecular Dynamics, Figure 2
The first two energy bands for the hydrogen quasi-molecule H3, i. e. the system consisting of three protons and three electrons.
The picture shows the restriction of such bands over a 2-dimensional subspace of the configuration space. Two hydrogen nuclei are
located on the x-axis with a fixed separation of 1.044 Angstrom Å, and the energy bands are plotted as a function of the relative
position (x; y) of the third nucleus. Notice the conical intersection between the ground and the first excited state, which appears at
equilateral triangular geometries. (© Courtesy of Eckart Wrede, Durham University. The plot is generated using the analytic repre-
sentation of the H3 energy bands obtained in [40])

one shows that
��(1 � Pn) e�ıH" t/" Pn�0

��
H D O(") : (10)

The space Ran Pn , consisting of wavefunctions in the
form Eq. (9), is usually called the adiabatic subspace cor-
responding to the nth band.

Since Ran Pn is approximately invariant under the dy-
namics, one may wonder whether there is a simple and
convenient way to approximately describe the dynamics
inside such subspace. Indeed, one may argue that for an
initial state in Ran Pn the dynamics of the nuclei is gov-
erned by the reduced Hamiltonian

PnH"Pn D �
"2

2

KX

kD1


xk CVn(x)C En(x)CO(") (11)

acting in Ran Pn ŠHn D L2(X). The dynamical Born–
Oppenheimer approximation consists, at the leading or-

der, in replacing the original Hamiltonian Eq. (4) by the
Hamiltonian

HBO D �
"2

2

KX

kD1


xk C Vn(x)C En(x) (12)

acting in L2(X), getting thus an impressive dimensional
reduction. In other words: let � (t; x; y) be the solution of
Eq. (6) with initial datum �0(x; y) D '0(x)�n(x; y); then
� (t; x; y) D '(t; x)�n(x; y)C O(") where '(t; x) is the
solution of the effective equation

ı
d
dt
'(t) D HBO'(t) (13)

with initial datum '0.
To prove mathematically the previous claim, one has

to bound the difference
�
e�iH" t/" � e�iPnH"Pn t/" Pn :
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A proof of this fact is not immediate as one might ex-
pect. Indeed, the Duhamel method (consisting essentially
in rewriting a function as the integral of its derivative)
yields
�
e�iH" t/" � e�iPnH"Pn t/" Pn

D ie�iH" t/"
Z t/"

0
ds eiH"s (PnH"Pn � H") e�iPnH"Pns Pn

D ie�iH" t/"
Z t/"

0
ds eiH"s (PnH"Pn � H") Pn e�iPnH"Pns

D ie�iH" t/"
Z t/"

0
ds eiH"s [Pn ;H"] Pn„ ƒ‚ …

O(")

e�iPnH"Pns :

The commutator appearing in the last line is estimated as

[Pn ;H"]Pn D
�
j�n(x)ih�n(x)j;�

"2

2

x

�
Pn D O(") ;

(14)

but the integration interval diverges as O("�1). Thus the
naïve approach fails. A rigorous proof has been provided
in [39], elaborating on [26], exploiting the fact that the in-
tegral in Eq. (14) is, roughly speaking, an oscillatory oper-
ator integral. A more direct approach, based on the evo-
lution of generalized Gaussian wavepackets, has been fol-
lowed in the pioneering papers by Hagedorn [17,20].

Beyond the LeadingOrder

The dynamics of a state initially concentrated on an iso-
lated energy band is described, up to errors of order O("),
by the Born–Oppenheimer dynamics Eq. (13). It is phys-
ically interesting to find an effective dynamics which ap-
proximates the original dynamics with an higher degree of
accurancy. At first sight one might think that this goal can
be simply reached by expanding the operator Pn H" Pn to
the next order in ". (Notice that the first term appearing
in Eq. (11) does contribute as a term of O(1), since we are
considering states such that the kinetic energy of the nuclei
is not vanishing, i. e. k � "2
x�k D O(1), in agreement
with the mentioned energy equipartition). However such
naïf expansion has no physical meaning since it makes no
sense to compute the operator appearing in Eq. (11) with
greater accuracy if the space Ran Pn itself is invariant only
up to terms of order O(").

To get a deeper insight in the problem, one has to
investigate the origin of the O(") term appearing in the
Eq. (10): either (a) there is a part of the wavefunction of
order O(") which is scattered in all the directions in the
Hilbert space, or (b) still there is a subspace invariant up

to smaller errors, which is however tilted with respect to
Ran Pn by a term of orderO(").

Therefore, two natural questions arise:

(i) Almost-invariant subspace: is there a subspace of
H DHn ˝Hel which is invariant under the dynam-
ics up to errors "N , for N > 1 ?

(ii) Intra-band dynamics: in the affirmative case, is there
any simple and convenient way to accurately describe
the dynamics inside this subspace?

As for the first question, one may show that to any
globally isolated energy band En corresponds a subspace
of the Hilbert space which is almost-invariant under the
dynamics. More precisely, one constructs an orthogonal
projector ˘n; " 2 B(H ), with ˘n; " D Pn CO("), such
that for any N 2 N there exists CN such that

��(1 �˘n; ") e�ıH" t/" ˘n; "�0
��

� CN"
N(1C jtj)(1C E)k�0k : (15)

Here E denotes a cut-off on the kinetic energy of the nu-
clei, which corresponds to the physical assumption that
the kinetic energies of nuclei and electrons are compara-
ble. Equation (15) shows that if the molecule is initially
in a state �0 2 Ran˘n; ", then after a macroscopic time t
the molecule is in a state which is still in Ran˘n; " up to
an error smaller than any power of ", with the error scal-
ing linearly with respect to time and to the kinetic energy
cut-off. For this reason the space Ran˘n; " is called super-
adiabatic subspace or almost-invariant subspace.

We emphasize that the adiabatic decoupling, as formu-
lated in Eq. (15), holds on a long time-scale, as opposed to
the semiclassically limit which is known to hold on a time
scale of order O(ln "). Indeed the adiabatic decoupling is
a pure quantum phenomenon, conceptually and mathe-
matically independent from the semiclassical limit.

Perturbation Theory andMolecular Dynamics, Figure 3
A schematic illustration of the superadiabatic subspace
Ran˘n;" , tilted by a correction of order " with respect to the
usual adiabatic subspace Ran Pn
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The previous result is based on a long history of math-
ematical research, starting with pioneering ideas of Sjös-
trand [3,9,31,32,34,37,38]. It has been formulated in the
form above in [36].

As for question (ii), one has to face the problem that
there is no natural identification between the super-adia-
batic subspace Ran˘n; " andHn Š L2(X), and therefore
no evident reduction in the number of degrees of freedom.
This difficulty can be circumvented by constructing a uni-
tary operator which intertwines the previous two spaces,
namely

Un; " : Ran˘n; " !Hn Š L2(X) : (16)

Notice that such a unitary operator is not unique. With
the help of Un; " we can map the intraband dynamics to
the nuclei Hilbert space, obtaining an effective Hamilto-
nian Ĥeff; " :D Un; "˘n; " H"˘n; " U�1n; " acting in L2(X). It
follows from Eq. (15) that for every N 2 N there exist CN
such that

���


e�iH" t/" � U�1n; " e

�iĤeff;" t/" Un; "

�
˘n; "�0

���
H

� CN "
N (1C jtj)(1C E)k�0k :

However, with an arbritary choice of Un; " the ef-
fective Hamiltonian Ĥeff; " does not appear simpler than
˘n; " H"˘n; " . On the other side, the non-uniqueness
of Un; " can be conveniently exploited to simplify the
structure of the effective Hamiltonian. It has been proved
in [36] that the unitary operatorUn; " can be explicitly con-
structed in such a way that Ĥeff; " has a simple structure,
namely it is (close to) the "-Weyl quantization of a func-
tion

Heff;" : X �R3K ! R ; (q; p) 7! Heff;"(q; p) ;

defined over the classical phase space. We recall that
the "-Weyl quantization maps a (smooth) function over
X �R3K into a (possibly unbounded) operator acting
in L2(X). The correspondence is such that any function
f (q) is mapped into the multiplication operator times f (x),
and any function g(p) is mapped into g(ı"rx ); for a generic
function f (q; p) the ordering ambiguity is fixed by choos-
ing

eı˛�qeıˇ �p 7! eı(˛�xCˇ �(ı"rx )) :

For readers interested in the mathematical structure of
Weyl quantization, we recommend [15].

Equipped with this terminology, we come back to the
effective Hamiltonian. It turns out that, with the appropri-
ate choice of Un; ", Ĥeff; " is the "-Weyl quantization of the

function

Heff;"(q; p) D h0(q; p)C "h1(q; p)C "2h2(q; p)CO("3)
(17)

where

h0(q; p) D 1
2 p

2 C En(q)C Vn(q)
h1(q; p) D �ıp �

˝
�n(q);rq�n(q)

˛
D: �p �An(q)

(18)

and

h2(q; p) D 1
2A

2
n(q)C

1
2
˝
rq�n(q); (1 � Pn(q))

� rq�n(q)
˛
Hel

�
˝
p � rq�n(q) ;

�
Hel(q) � En(q)

�1�1 � Pn(q)


� p � rq�n(q)
˛
Hel

:

The Weyl quantization of h0 provides the leading order
Born–Oppenheimer Hamiltonian Eq. (13). The term h1
has a geometric origin, involving the Berry connection
An(x), a quantity appearing in a variety of adiabatic prob-
lems [41]; this term is responsible for the screening of
magnetic fields in atoms [42]. Geometric effects in molec-
ular systems (and more generally in adiabatic systems)
are an active field of research [10,11,12], see � Quan-
tum Bifurcations and references therein. As for the second
order correction h2, the first term completes the square
(p �An(x))2 showing that the dynamics involves a co-
variant derivative; the second term is known as the Born–
Huang term; the last term contains the reduced resol-
vent (i. e. the resolvent in the orthogonal complement of
Ran Pn) and is due to the fact that the superadiabatic sub-
space Ran˘n; " is tilted with respect to Ran Pn .

The third term in h2, namely

M(q; p) D
˝
p � r�n(q); (Hel(q) � En(q))�1

� (1 � Pn(q)) p � r�n(q)
˛
Hel

; (19)

appeared firstly in [36], as a consequence of the rigor-
ous adiabatic perturbation theory developed there. This
term is responsible for an O("2)-correction to the effec-
tivemass of the nuclei. Indeed, since different quantization
schemes differ by a term of orderO("), we may replace the
Weyl quantization with the simpler symmetric quantiza-
tion, namely we consider

(bM )(x) D
3KX

`;kD1

1
2



m`k(x)(�i"@x` )(�i"@xk )

C (�i"@x` )(�i"@xk )m`k(x)
�
 (x) ; (20)
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where m is the x-dependent matrix

m`k(x) D
˝
@`�n(x); (He(x) � En(x))�1

� (1 � Pn(x)) @k�n(x)
˛
Hel

:

It is clear from Eq. (20) that this term induces a correction
of order O("2) to the Laplacean, i. e. to the inertia of the
nuclei.

Finally, we point out that the effective Hamiltonian
Ĥeff; " can be conveniently truncated at any order in ",
getting corresponding errors in the effective quantum dy-
namics: if we pose

Ĥeff; " D

NX

jD0

" j ĥ jCO("NC1) D: ĥ(N);"CO("NC1) ; (21)

then there exist a constant C̃N such that
�
��


e�iH" t/" � U�1n; " e

�iĥ(N);" t/" Un; "

�
˘n; "�0

�
��
H

� C̃N "
NC1 (1C jtj) (1C E)k�0k :

The determination of the effective Hamiltonian, here de-
scribed following [36,40], has been investigated earlier
in [31,41] with different but related techniques. The re-
sult in [36] is based on an iterative algorithm inspired by
classical perturbation theory (see�Kolmogorov–Arnold–
Moser (KAM) Theory and � Normal Forms in Perturba-
tion Theory).

Future Directions

Generically energy surfaces cross each other (see Fig. 2),
and a globally isolated energy band is just a mathemat-
ical idealization. On the other side, if the initial datum
�0(x; y) D '0(x)�n(x; y) contains a nucleonic wavefunc-
tion '0 localized far away from the crossing points, the
adiabatic approximation is still valid, up to the time when
the wavefunction becomes relevant in a neighborhood of
radius

p
" of the crossing points. This “hitting-time” can

be estimated semiclassically, as done for example in [39].
When the wavefunction reaches the region around the

crossing point a relevant part of it might undergo a transi-
tion to the other crossing band. (The simultaneous cross-
ing of more than two bands is not generic, see [35], so we
focus on the crossing of two bands). The understanding of
the dynamics near a conical crossing is a very active field
of research.

The first step is a convenient classification of the pos-
sible structures of band crossings. Since the early days of
Quantum Mechanics [35], it has been realized that eigen-
value crossings occurs on submanifolds of various codi-
mension, according to the symmetry of the problem. In

the case of a molecular Hamiltonian in the form Eq. (2),
generic crossings of bands with the minimal multiplic-
ity allowed by the symmetry group have been classified
in [22].

The second step consist in an analysis of the propa-
gation of the wavefunction near the conical crossing, as-
suming that the initial state is concentrated on a single
band, say the nth band. A pioneering work [23] shows
that the qualitative picture is the following: for crossings
of codimension 1 the wavefunction follows, at the leading
order, the analytic continuation of the nth band, as if there
was no crossing. In the higher codimension case, a part
of the wavefunction of order O(1) undergoes a transition
to the other band. More recently, propagation through
conical crossings has been investigated with new tech-
niques [6,7,8,13,14] opening the way to future research.

Alternatively, one may consider a family of energy
bands which cross each other, but which are separated by
an energy gap from the rest of the spectrum. Indeed, in
amolecular collision or in excitations through a laser pulse
only a few energy surfaces take part in the subsequent dy-
namics. Thus we take a set I of adjacent energy surfaces
and call

PI D
X

j2I

Pj (22)

the projection onto the relevant subspace (or subspace of
physical interest). To ensure that other bands are not in-
volved, we assume them to have a spectral gap of size
agap > 0 away from the energy surfaces in I, i. e.

sup
x2X
jEi (x)�Ej(x)j � agap for all j 2 I ; i 2 Ic : (23)

Also the continuous spectrum is assumed to be at least
agap away from the relevant energy surfaces. Under such
assumption, the multiband adiabatic theory assures that
the subspace Ran PI is adiabatically protected against tran-
sitions, i. e.

k(1 � PI) e�iH" t/" PI�0kH D O(") :

Analogously to the case of a single band, one may con-
struct the corresponding superadiabatic projector. The
effective Hamiltonian bHeff;" corresponding to a family
of m bands becomes, in this context, the "-Weyl quanti-
zation of matrix-valued function over the classical phase
space [36,40].

A deeper understanding of nuclear dynamics near
conical crossings and a further developments of multiband
adiabatic perturbation theory are, in the opinion of the au-
thor, two of the main directions for future research.



6696 P Perturbation Theory and Molecular Dynamics

Bibliography

Primary Literature

1. Berry MV, Lim R (1990) The Born–Oppenheimer electric gauge
force is repulsive near degeneracies. J Phys A 23:L655–L657

2. Born M, Oppenheimer R (1927) Zur Quantentheorie der
Molekeln. Ann Phys (Leipzig) 84:457–484

3. Brummelhuis R, Nourrigat J (1999) Scattering amplitude for
Dirac operators. Comm Partial Differ Equ 24(1–2):377–394

4. Combes JM (1977) The Born–Oppenheimer approximation.
Acta Phys Austriaca 17:139–159

5. Combes JM, Duclos P, Seiler R (1981) The Born–Oppenheimer
approximation. In: Velo G, Wightman A (eds) Rigorous Atomic
and Molecular Physics. Plenum, New York, pp 185–212

6. de Verdière YC (2004) The level crossing problem in semi-clas-
sical analysis. II. The Hermitian case. Ann Inst Fourier (Greno-
ble) 54(5):1423–1441

7. de Verdière YC, Lombardi M, Pollet C (1999) The microlocal
Landau–Zener formula. Ann Inst H Poincaré Phys Theor 71:95–
127

8. de Verdière YC (2003) The level crossing problem in semi-clas-
sical analysis. I. The symmetric case. Proceedings of the inter-
national conference in honor of Frédéric Pham (Nice, 2002).
Ann Inst Fourier (Grenoble) 53(4):1023–1054

9. Emmrich C, Weinstein A (1996) Geometry of the transport
equation in multicomponent WKB approximations. Commun
Math Phys 176:701–711

10. Faure F, Zhilinskii BI (2000) Topological Chern indices inmolec-
ular spectra. Phys Rev Lett 85:960–963

11. Faure F, Zhilinskii BI (2001) Topological properties of the Born–
Oppenheimer approximation and implications for the exact
spectrum. Lett Math Phys 55:219–238

12. Faure F, Zhilinskii BI (2002) Topologically coupled energy
bands in molecules. Phys Lett 302:242–252

13. Fermanian–Kammerer C, Gérard P (2002) Mesures semi-clas-
siques et croisement demodes. Bull Soc Math France 130:123–
168

14. Fermanian–Kammerer C, Lasser C (2003)Wignermeasures and
codimension 2 crossings. J Math Phys 44:507–527

15. Folland GB (1989) Harmonic analysis in phase space. Princeton
University Press, Princeton

16. Hagedorn GA (1980) A time dependent Born–Oppenheimer
approximation. Commun Math Phys 77:1–19

17. Hagedorn GA (1986) High order corrections to the time-de-
pendent Born–Oppenheimer approximation. I. Smooth poten-
tials. AnnMath (2) 124(3):571–590

18. Hagedorn GA (1987) High order corrections to the time-inde-
pendent Born–Oppenheimer approximation I: Smooth poten-
tials. Ann Inst H Poincaré Sect. A 47:1–16

19. Hagedorn GA (1988) High order corrections to the time-
independent Born–Oppenheimer approximation II: Diatomic
Coulomb systems. CommMath Phys 116:23–44

20. Hagedorn GA (1988) High order corrections to the time-de-
pendent Born–Oppenheimer approximation. II. Coulomb sys-
tems. CommMath Phys 117(3):387–403

21. Hagedorn GA (1989) Adiabatic expansions near eigenvalue
crossings. Ann Phys 196:278–295

22. Hagedorn GA (1992) Classification and normal forms for quan-
tum mechanical eigenvalue crossings. Méthodes semi-clas-
siques, vol 2 (Nantes, 1991). Astérisque 210(7):115–134

23. Hagedorn GA (1994) Molecular propagation through electron
energy level crossings. Mem Amer Math Soc 111:1–130

24. Hagedorn GA, Joye A (2007) Mathematical analysis of Born–
Oppenheimer approximations. Spectral theory and mathe-
matical physics: a Festschrift in honor of Barry Simon’s 60th
birthday, In: Proc Sympos PureMath 76, Part 1, AmerMath Soc,
Providence, RI, pp 203–226

25. Herrin J, Howland JS (1997) The Born–Oppenheimer approxi-
mation: straight-up andwith a twist. Rev Math Phys 9:467–488

26. Kato T (1950) On the adiabatic theorem of quantum mechan-
ics. Phys Soc Jap 5:435–439

27. Klein M, Martinez A, Seiler R, Wang XP (1992) On the Born–
Oppenheimer expansion for polyatomic molecules. Commun
Math Phys 143:607–639

28. Klein M, Martinez A, Wang XP (1993) On the Born–
Oppenheimer approximation of wave operators in molecular
scattering theory. CommMath Phys 152:73–95

29. Klein M, Martinez A, Wang XP (1997) On the Born–
Oppenheimer approximation of diatomic wave operators
II. Sigular potentials. J Math Phys 38:1373–1396

30. Lasser C, Teufel S (2005) Propagation through conical cross-
ings: an asymptotic transport equation and numerical exper-
iments. Commun Pure Appl Math 58:1188–1230

31. Littlejohn RG, Flynn WG (1991) Geometric phases in the
asymptotic theory of coupled wave equations. Phys Rev
44:5239–5255

32. Martinez A, Sordoni V (2002) A general reduction scheme
for the time-dependent Born–Oppenheimer approximation.
Comptes Rendus Acad Sci Paris 334:185–188

33. Mead CA, Truhlar DG (1979) On the determination of Born–
Oppenheimer nuclear motion wave functions including com-
plications due to conical intersections and identical nuclei.
J Chem Phys 70:2284–2296

34. Nenciu G, Sordoni V (2004) Semiclassical limit for multistate
Klein–Gordon systems: almost invariant subspaces and scat-
tering theory. J Math Phys 45:3676–3696

35. von Neumann J, Wigner EP (1929) Über das Verhalten von
Eigenwerten bei adiabatischen Prozessen. Phys Z 30:467–470

36. Panati G, Spohn H, Teufel S (2003) Space-adiabatic perturba-
tion theory. Adv Theor Math Phys 7:145–204

37. Sjöstrand J (1993) Projecteurs adiabatiques du point de vue
pseudodifferéntiel. Comptes Rendus Acad Sci Paris, Série I
317:217–220

38. Sordoni V (2003) Reduction scheme for semiclassical operator-
valued Schrödinger type equation and application to scatter-
ing. Comm Partial Differ Equ 28(7–8):1221–1236

39. Spohn H, Teufel S (2001) Adiabatic decoupling and time-
dependent Born–Oppenheimer theory. Commun Math Phys
224:113–132

40. Varandas AJC, Brown FB, Mead CA, Truhlar DG, Blais NC (1987)
A double many-body expansion of the two lowest-energy po-
tential surfaces and nonadiabatic coupling for H3. J ChemPhys
86:6258–6269

41. Weigert S, Littlejohn RG (1993) Diagonalization of multicom-
ponent wave equations with a Born–Oppenheimer example.
Phys Rev A 47:3506–3512

42. Yin L, Mead CA (1994) Magnetic screening of nuclei by elec-
trons as an effect of geometric vector potential. J Chem Phys
100:8125–8131



Perturbation Theory for Non-smooth Systems P 6697

Books and Reviews
Bohm A,Mostafazadeh A, Koizumi A, NiuQ, Zwanziger J (2003) The

geometric phase in quantum systems. Texts and monographs
in physics. Springer, Heidelberg

Teufel S (2003) Adiabatic perturbation theory in quantum dynam-
ics. Lecture notes in mathematics, vol 1821. Springer, Berlin

Perturbation Theory
for Non-smooth Systems
MARCO ANTÔNIO TEIXEIRA
Department of Mathematics, Universidade Estadual
de Campinas, Campinas, Brazil

Article Outline

Glossary
Definition of the Subject
Introduction
Preliminaries
Vector Fields near the Boundary
Generic Bifurcation
Singular Perturbation Problem in 2D
Future Directions
Bibliography

Glossary

Non-smooth dynamical system Systems derived from
ordinary differential equations when the non-unique-
ness of solutions is allowed. In this article we deal with
discontinuous vector fields in Rn where the disconti-
nuities are concentrated in a codimension-one surface.

Bifurcation In a k-parameter family of systems, a bifur-
cation is a parameter value at which the phase portrait
is not structurally stable.

Typical singularity Are points on the discontinuity set
where the orbits of the system through them must be
distinguished.

Definition of the Subject

In this article we survey some qualitative and geometric as-
pects of non-smooth dynamical systems theory. Our goal
is to provide an overview of the state of the art on the
theory of contact between a vector field and a manifold,
and on discontinuous vector fields and their perturbations.
We also establish a bridge between two-dimensional non-
smooth systems and the geometric singular perturbation
theory. Non-smooth dynamical systems is a subject that
has been developing at a very fast pace in recent years due

to various factors: its mathematical beauty, its strong rela-
tionship with other branches of science and the challenge
in establishing reasonable and consistent definitions and
conventions. It has become certainly one of the common
frontiers between mathematics and physics/engineering.
We mention that certain phenomena in control systems,
impact in mechanical systems and nonlinear oscillations
are the main sources of motivation for our study concern-
ing the dynamics of those systems that emerge from differ-
ential equations with discontinuous right-hand sides. We
understand that non-smooth systems are driven by appli-
cations and they play an intrinsic role in a wide range of
technological areas.

Introduction

The purpose of this article is to present some aspects of the
geometric theory of a class of non-smooth systems. Our
main concern is to bring the theory into the domain of
geometry and topology in a comprehensive mathematical
manner.

Since this is an impossible task, we do not attempt
to touch upon all sides of this subject in one article. We
focus on exploring the local behavior of systems around
typical singularities. The first task is to describe a generic
persistence of a local theory (structural stability and bi-
furcation) for discontinuous systems mainly in the two-
and three-dimensional cases. Afterwards we present some
striking features and results of the regularization process
of two-dimensional discontinuous systems in the frame-
work developed by Sotomayor and Teixeira in [44] and
establish a bridge between those systems and the funda-
mental role played by the Geometric Singular Perturbation
Theory (GSPT). This transition was introduced in [10]
and we reproduce here its main features in the two-di-
mensional case. For an introductory reading on the meth-
ods of geometric singular perturbation theory we refer
to [16,18,30]. In Sect. “Definition of the Subject” we in-
troduce the setting of this article. In Sect. “Introduction”
we survey the state of the art of the contact between a vec-
tor field and a manifold. The results contained in this sec-
tion are crucial for the development of our approach. In
Sect. “Preliminaries” we discuss the classification of typi-
cal singularities of non-smooth vector fields. The study of
non-smooth systems, via GSPT, is presented in Sect. “Vec-
tor Fields near the Boundary”. In Sect. “Generic Bifurca-
tion” some theoretical open problems are presented.

One aspect of the qualitative point of view is the prob-
lem of structural stability, the most comprehensive of
many different notions of stability. This theme was stud-
ied in 1937 by Andronov–Pontryagin (see [3]). This prob-
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lem is of obvious importance, since in practice one obtains
a lot of qualitative information not only on a fixed system
but also on its nearby systems.

We deal with non-smooth vector fields in RnC1 having
a codimension-one submanifoldM as its discontinuity set.
The scheme in this work toward a systematic classification
of typical singularities of non-smooth systems follows the
ideas developed by Sotomayor–Teixeira in [43] where the
problem of contact between a vector field and the bound-
ary of a manifold was discussed. Our approach intends to
be self-contained and is accompanied by an extensive bib-
liography. We will try to focus here on areas that are com-
plimentary to some recent reviews made elsewhere.

The concept of structural stability in the space of non-
smooth vector fields is based on the following definition:

Definition 1 Two vector fields Z and Z̃ are C0 equivalent
if there is an M-invariant homeomorphism h : RnC1 !

RnC1 that sends orbits of Z to orbits of Z̃.

A general discussion is presented to study certain unsta-
ble non-smooth vector fields within a generic context. The
framework in which we shall pursue these unstable sys-
tems is sometimes called generic bifurcation theory. In [3]
the concept of kth-order structural stability is also pre-
sented; in a local approach such setting gives rise to the
notion of a codimension-k singularity. In studies of classi-
cal dynamical systems, normal form theory has been well
accepted as a powerful tool in studying the local theory
(see [6]). Observe that, so far, bifurcation and normal form
theories for non-smooth vector fields have not been exten-
sively studied in a systematic way.

Control Theory is a natural source of mathematical
models of these systems (see, for instance, [4,8,20,41,45]).
Interesting problems concerning discontinuous systems
can be formulated in systems with hysteresis ([41]), eco-
nomics ([23,25]) and biology ([7]). It is worth mentioning
that in [5] a class of relay systems in Rn is discussed. They
have the form:

X D Ax C sgn(x1)k

where x D (x1; x2; : : : ; xn), A 2 MR(n; n) and k D (k1;
k2; : : : ; kn) is a constant vector in Rn. In [28,29] the
generic singularities of reversible relay systems in 4D were
classified. In [54] some properties of non-smooth dynam-
ics are discussed in order to understand some phenomena
that arise in chattering control. We mention the presence
of chaotic behavior in some non-smooth systems (see for
example [12]). It is worthwhile to cite [17], where themain
problem in the classical calculus of variations was car-
ried out to study discontinuous Hamiltonian vector fields.

We refer to [14] for a comprehensive text involving non-
smooth systems which includes many models and appli-
cations. In particular motivating models of several non-
smooth dynamical systems arising in the occurrence of
impacting motion in mechanical systems, switchings in
electronic systems and hybrid dynamics in control sys-
tems are presented together with an extensive literature
on impact oscillators which we do not attempt to survey
here. For further reading on some mathematical aspects
of this subject we recommend [11] and references therein.
A setting of general aspects of non-smooth systems can be
found also in [35] and references therein. Our discussion
does not focus on continuous but rather on non-smooth
dynamical systems and we are aware that the interest in
this subject goes beyond the approach adopted here.

The author wishes to thank R. Garcia, T.M. Seara and
J. Sotomayor for many helpful conversations.

Preliminaries

Now we introduce some of the terminology, basic con-
cepts and some results that will be used in the sequel.

Definition 2 Two vector fields Z and Z̃ on Rn with
Z(0) D Z̃(0) are germ-equivalent if they coincide on some
neighborhood V of 0.

The equivalent classes for this equivalence are called germs
of vector fields. In the same way as defined above, we may
define germs of functions. For simplicity we are consider-
ing the germnotation and wewill not distinguish a germ of
a function and any one of its representatives. So, for exam-
ple, the notation h : Rn ; 0! R means that the h is a germ
of a function defined in a neighborhood of 0 in Rn. Refer
to [15] for a brief and nice introduction of the concepts of
germ and k-jet of functions.

Discontinuous Systems

Let M D h�1(0), where h is (a germ of) a smooth function
h : RnC1; 0 �! R having 0 2 R as its regular value. We
assume that 0 2 M.

Designate by �(nC 1) the space of all germs of Cr vec-
tor fields on RnC1 at 0 endowed with the Cr-topology with
r > 1 and large enough for our purposes. Call#(nC1) the
space of all germs of vector fields Z in RnC1; 0 such that

Z(q) D

(
X(q) ; for h(q) > 0 ;
Y(q) ; for h(q) < 0 ;

(1)

The above field is denoted by Z D (X;Y). So we are con-
sidering#(n C 1) D �(n C 1) � �(n C 1) endowed with
the product topology.
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A discontinuous system and its regularization

Definition 3 We say that Z 2 #(n C 1) is structurally
stable if there exists a neighborhood U of Z in #(n C 1)
such that every Z̃ 2 U is C0-equivalent with Z.

To define the orbit solutions of Z on the switching sur-
faceM we take a pragmatic approach. In a well character-
ized open set O of M (described below) the solution of Z
through a point p 2 O obeys the Filippov rules and on
M � O we accept it to be multivalued. Roughly speaking,
as we are interested in studying the structural stability in
#(nC1) it is convenient to take into account all the leaves
of the foliation in RnC1 generated by the orbits of Z (and
also the orbits of X and Y) passing through p 2 M. (see
Fig. 1)

The trajectories of Z are the solutions of the au-
tonomous differential system q̇ D Z(q).

In what follows we illustrate our terminology by pre-
senting a simplified model that is found in the classical
electromagnetism theory (see for instance [26]):

ẍ � «x C ˛signx D 0 :

with ˛ > 0.
So this system can be expressed by the following ob-

jects: h(x; y; z) D x and Z D (X;Y) with X(x; y; z) D
(y; z; z C ˛) and Y(x; y; z) D (y; z; z � ˛).

For each X 2 �(nC 1) we define the smooth function
Xh : RnC1 ! R given by Xh D X � rh where � is the
canonical scalar product in RnC1.

We distinguish the following regions on the disconti-
nuity setM:

(i) M1 is the sewing region that is represented by h D 0
and (Xh)(Yh) > 0;

(ii) M2 is the escaping region that is represented by h D 0,
(Xh) > 0 and (Yh) < 0;

(iii) M3 is the sliding region that is represented by h D 0,
(Xh) < 0 and (Yh) > 0.

We set O DSiD1;2;3 Mi .
Consider Z D (X;Y) 2 #(nC 1) and p 2 M3. In this

case, following Filippov’s convention, the solution � (t) of
Z through p follows, for t � 0, the orbit of a vector field
tangent to M. Such system is called sliding vector field as-
sociated with Z and it will be defined below.

Definition 4 The sliding vector field associated to Z D
(X;Y) is the smooth vector field Zs tangent to M and de-
fined at q 2 M3 by Zs(q) D m � q withm being the point
where the segment joining q C X(q) and q C Y(q) is tan-
gent toM.

It is clear that if q 2 M3 then q 2 M2 for �Z and then we
define the escaping vector field onM2 associated with Z by
Ze D �(�Z)s . In what follows we use the notation ZM for
both cases.

We recall that sometimes ZM is defined in an open re-
gion U with boundary. In this case it can be Cr extended
to a full neighborhood of p 2 @U inM.

When the vectors X(p) and Y(p), with p 2 M2
S

M3
are linearly dependent then ZM(p) D 0. In this case we say
that p is a simple singularity of Z. The other singularities
of Z are concentrated outside the set O.

We finish this subsection with a three-dimensional ex-
ample:

Let Z D (X;Y) 2 #(3) with h(x; y; z) D z, X D
(1; 0; x) and Y D (0; 1; y). The system determines four
quadrants around 0, bounded by �X D fx D 0g and
�Y D fy D 0g. They are: QC1 D fx > 0; y > 0g,
Q�1 D fx < 0; y < 0g, Q2 D fx < 0; y > 0g (sliding
region) and Q3 D fx > 0; y < 0g (escaping region). Ob-
serve that M1 D QC1

S
Q�1 .

The sliding vector field defined in Q2 is expressed by:

Zs(x; y; z) D (y � x)�1
�
x C y;

y C x
8

; 0
�
:

Such a system is (in Q2) equivalent to G(x; y; z) D (xC y;
yCx
8 ; 0)). In our terminology we consider G a smooth ex-

tension of Zs, that is defined in a whole neighborhood of
0. It is worthwhile to say that G is in fact a system which is
equivalent to the original system in Q2.

In [50] a generic classification of one-parameter fami-
lies of sliding vector fields is presented.
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Singular Perturbation Problem

A singular perturbation problem is expressed by a differ-
ential equation z0 D ˛ (z; ") (refer to [16,18,30]) where
z 2 RnCm , " is a small non-negative real number and ˛ is
a C1 mapping.

Let z D
�
x; y


2 RnCm and f : RmCn ! Rm ;

g : RmCn ! Rn be smooth mappings. We deal with equa-
tions that may be written in the form

(
x0 D f (x; y; ")
y0 D "g(x; y; ")

x D x(�); y D y(�) : (2)

An interesting model of such systems can be obtained
from the singular van der Pol’s equation

"x00 C (x2 C x)x0 C x � a D 0 : (3)

The main trick in the geometric singular perturbation
(GSP) is to consider the family (2) in addition to the family

(
"ẋ D f (x; y; ")
ẏ D g(x; y; ")

x D x(t); y D y(t) (4)

obtained after the time rescaling t D "� .
Equation (2) is called the fast system and (4) the slow

system. Observe that for " > 0 the phase portrait of fast
and slow systems coincide.

For " D 0, let S be the set of all singular points of (2).
We call S the slow manifold of the singular perturbation
problem and it is important to notice that Eq. (4) defines
a dynamical system on S called the reduced problem.

Combining results on the dynamics of these two lim-
iting problems (2) and (4), with " D 0, one obtains in-
formation on the dynamics for small values of ". In fact,
such techniques can be exploited to formally construct ap-
proximated solutions on pieces of curves that satisfy some
limiting version of the original equation as " goes to zero.

Definition 5 Let A; B � RnCm be compact sets. The
Hausdorff distance between A and B is D(A; B) D
maxz12A;z22Bfd(z1; B); d(z2;A)g.

The main question in GSP-theory is to exhibit conditions
under which a singular orbit can be approximated by regu-
lar orbits for " # 0, with respect to the Hausdorff distance.

Regularization Process

An approximation of the discontinuous vector field Z D
(X;Y) by a one-parameter family of continuous vector
fields will be called a regularization of Z. In [44], So-
tomayor and Teixeira introduced the regularization proce-
dure of a discontinuous vector field. A transition function

is used to average X and Y in order to get a family of con-
tinuous vector fields that approximates the discontinuous
one. Figure 1 gives a clear illustration of the regularization
process.

Let Z D (X;Y) 2 #(nC 1).

Definition 6 A C1 function ' : R �! R is a transition
function if '(x) D �1 for x � �1, '(x) D 1 for x � 1
and '0(x) > 0 if x 2 (�1; 1). The �-regularization of Z D
(X;Y) is the one-parameter family X" 2 Cr given by

Z"(q) D
�
1
2
C
'"(h(q))

2

�
X(q)C

�
1
2
�
'"(h(q))

2

�
Y(q):

(5)

with h given in the above Subsect. “Discontinuous Sys-
tems” and '"(x) D '(x/"), for " > 0.

As already said before, a point in the phase space which
moves on an orbit of Z crosses M when it reaches the
region M1. Solutions of Z through points of M3, will re-
main in M in forward time. Analogously, solutions of Z
through points of M2 will remain in M in backward time.
In [34,44] such conventions are justified by the regulariza-
tion method in dimensions two and three respectively.

Vector Fields near the Boundary

In this section we discuss the behavior of smooth vector
fields in RnC1 relative to a codimension-one submanifold
(say, the above defined M). We base our approach on the
concepts and results contained in [43,53]. The principal
advantage of this setting is that the generic contact be-
tween a smooth vector field andM can often be easily rec-
ognized. As an application the typical singularities of a dis-
continuous system can be further classified in a straight-
forward way.

We say that X;Y 2 �(nC 1) areM-equivalent if there
exists an M-preserving homeomorphism h : RnC1; 0 �!
RnC1; 0 that sends orbits of X into orbits of Y . In this way
we get the concept ofM-structural stability in �(nC 1).

We call �0(n C 1) the set of elements X in �(n C 1)
satisfying one of the following conditions:

0) Xh(0) ¤ 0 (0 is a regular point of X). In this case X is
transversal toM at 0.

1) Xh(0) D 0 and X2h(0) ¤ 0 (0 is a 2-fold point of X;)
2) Xh(0) D X2h(0) D 0, X3h(0) ¤ 0 and the set
fDh(0);DXh(0);DX2h(0)g is linearly independent (0
is a cusp point of X;)
. . .

n) Xh(0) D X2h(0) D � � � D Xnh(0) D 0 and
XnC1h(0) ¤ 0. Moreover the set fDh(0);DXh(0);
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DX2h(0); : : : ;DXnh(0)g is linearly independent, and 0
is a regular point of the mapping XhjM .

We say that 0 is anM-singularity of X if h(0) D Xh(0) D
0. It is a codimension-zeroM-singularity provided that X 2
�0(nC 1).

We know that �0(n C 1) is an open and dense set in
�(n C 1) and it coincides with the M-structurally stable
vector fields in �(nC 1) (see [53]).

Denote by �X � M theM-singular set of X 2 �(nC1);
this set is represented by the equations h D Xh D 0. It
is worthwhile to point out that, generically, all two-folds
constitute an open and dense subset of �X . Observe that if
X(0) D 0 then X 62 �0(nC 1).

The M-bifurcation set is represented by �1(n C 1) D
�(nC 1)� �0(nC 1)

Vishik in [53] exhibited the normal forms of a codi-
mension-zero M-singularity. They are:

I) Straightened vector field

X D (1; 0; : : : ; 0)

and

h(x) D xkC1
1 C x2xk�11

C x3xk�21 C � � � C xkC1 ; k D 0; 1; : : : ; n

or
II) Straightened boundary

h(x) D x1

and

X(x) D (x2; x3; : : : ; xk ; 1; 0; 0; : : : ; 0)

We now discuss an important interaction between vector
fields nearM and singularities of mapping theory. We dis-
cuss how singularity-theoretic techniques help the under-
standing of the dynamics of our systems.

We outline this setting, which will be very useful in the
sequel. The starting point is the following construction.

A Construction

Let X 2 �(n C 1). Consider a coordinate system x D
(x1; x2; : : : ; xnC1) in RnC1; 0 such that

M D fx1 D 0g

and

X D (X1; X2; : : : ; XnC1)

Assume that X(0) ¤ 0 and X1(0) D 0. Let N0 be any
transversal section to X at 0.

By the implicit function theorem, we derive that:

for each p 2 M; 0 there exists a unique t D t(p) in
R; 0 such that the orbit-solution t 7! � (p; t) of X
through p meets N0 at a point p̃ D � (p; t(p)).

We define the smooth mapping �X : Rn ; 0 �! Rn ; 0 by
�X(p) D p̃. This mapping is a powerful tool in the study
of vector fields around the boundary of a manifold (refer
to [21,42,43,46,53]).We observe that �X coincides with the
singular set of �X .

The late construction implements the following
method. If we are interested in finding an equivalence be-
tween two vector fields which preserve M, then the prob-
lem can be sometimes reduced to finding an equivalence
between �X and �Y in the sense of singularities of map-
pings.

We recall that when 0 is a foldM-singularity of X then
associated to the fold mapping �X there is the symmetric
diffeomorphism ˇX that satisfies �X ı ˇX D �X .

Given Z D (X;Y) 2 #(n C 1) such that �X and �Y
are fold mappings with X2h(0) < 0 and Y2h(0) > 0 then
the composition of the associated symmetric mappings ˇX
and ˇY provides a first return mapping ˇZ associated to Z
andM. This situation is usually called a distinguished fold-
fold singularity, and the mapping ˇZ plays a fundamental
role in the study of the dynamics of Z.

Codimension-one M-Singularity
in Dimensions Two and Three

Case n D 1 In this case the unique codimension-
zero M-singularity is a fold point in R2; 0. The codimen-
sion-one M-singularities are represented by the subset
�1(2) of �1(2) and it is defined as follows.

Definition 7 A codimension-one M-singularity of X 2
�1(2) is either a cusp singularity or anM-hyperbolic criti-
cal point p inM of the vector fieldX. A cusp singularity (il-
lustrated in Fig. 2) is characterized by Xh(p) D X2h(p) D
0, X3h(p) ¤ 0. In the second case this means that p is
a hyperbolic critical point (illustrated in Fig. 3) of X with
distinct eigenvalues and with invariant manifolds (stable,
unstable and strong stable and strong unstable) transversal
toM.

In this subsubsection we consider a coordinate system in
R2; 0 such that h(x; y) D y.

The next result was proved in [46]. It presents the nor-
mal forms of the codimension-one singularities defined
above.
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The cusp singularity and its unfolding

Perturbation Theory for Non-smooth Systems, Figure 3
The saddle point in the boundary and its unfolding

Theorem 8 Let X 2 �1(2). The vector field X is M-struc-
turally stable relative to �1(2) if and only if X 2 �1(2).
Moreover, �1(2) is an embedded codimension-one sub
manifold and dense in �1(2). We still require that any one-
parameter family X�, ( 2 (�"; ")) in �(1) transverse to
�1(2) at X0, has one of the following normal forms:

0.1: X�(x; y) D (1; 0) (regular point);
0.2: X�(x; y) D (1; x) (fold singularity);
1.1: X�(x; y) D (1; C x2) (cusp singularity);
1.2: X�(x; y) D (ax; x C by C ); a D ˙1; b D ˙2;
1.3: X�(x; y) D (x; x � y C );
1.4: X�(x; y) D (x C y;�x C y C ).

Case n D 2

Definition 9 A vector field X 2 �(3) belongs to the set
�1(a) if the following conditions hold:

(i) X(0) D 0 and 0 is a hyperbolic critical point of X;
(ii) the eigenvalues of DX(0) are pairwise distinct and the

corresponding eigenspaces are transversal toM at 0;
(iii) each pair of non complex conjugate eigenvalues of

DX(0) has distinct real parts.

Definition 10 A vector field X 2 �(3) belongs to the set
�1(b) if X(0) ¤ 0; Xh(0) D 0; X2h(0) D 0 and one of the
following conditions hold:

(1) X3h(0) ¤ 0; rankfDh(0);DXh(0);DX2h(0)g D 2
and 0 is a non-degenerate critical point of XhjM .

(2) X3h(0) D 0; X4h(0) ¤ 0 and 0 is a regular point of
XhjM .

The next results can be found in [43].

Theorem 11 The following statements hold:

(i) �1(3) D �1(a)[�2(b) is a codimension-one subman-
ifold of �(3).

(ii) �1(3) is open and dense set in �1(3) in the topology
induced from �1(3).

(iv) For a residual set of smooth curves � : R; 0 ! �(3); �
meets �1(3) transversally.

Throughout this subsubsection we fix the function h(x; y;
z) D z.

Lemma 12 (Classification Lemma) The elements of
�1(3) are classified as follows:
(a11) Nodal M-Singularity: X(0) D 0, the eigenvalues of

DX(0); 1; 2; and3, are real, distinct, 1 j > 0;
j D 2; 3 and the eigenspaces are transverse to M at 0;

(a12) Saddle M-Singularity: X(0) D 0, the eigenvalues of
DX(0); 1; 2 and 3, are real, distinct, 1 j < 0;
j D 2 or 3 and the eigenspaces are transverse to M
at 0;

(a13) Focal M-Singularity: 0 is a hyperbolic critical point
of X, the eigenvalues of DX(0) are12 D a˙ ib; 3 D
c, with a; b; c distinct from zero and c ¤ a, and the
eigenspaces are transverse to M at 0.

(b11) Lips M-Singularity: presented in Definition 8, item
1, when Hess(Fh/S(0)) > 0:

(b12) Bec to Bec M-Singularity: presented inDefinition 8,
item 1, when Hess(Fh/S(0)) < 0;

(b13)Dove’s Tail M-Singularity: presented in Definition
8, item 2.

The next result is proved in [38]. It deals with the normal
forms of a codimension-one singularity.

Theorem 13 i) (Generic Bifurcation and normal forms)
Let X 2 �(3). The vector field X is M-structurally stable
relative to �1(3) if and only if X 2 �1(3). ii) (Versal unfold-
ing) In the space of one-parameter families of vector fields
X˛ in �(3); ˛ 2 (�"; ") an everywhere dense set is formed
by generic families such that their normal forms are:

� X˛ 2 �0(3)
0.1: X˛(x; y; z) D (0; 0; 1)
0.2: X˛(x; y; z) D (z; 0;˙x)
0.3: X˛(x; y; z) D (z; 0; x2 C y)
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� X0 2 �1(3)
1.1: X˛(x; y; z) D (z; 0; �3x

2Cy2C˛
2 )

1.2: X˛(x; y; z) D (z; 0; �3x
2�y2C˛
2 )

1.3: X˛(x; y; z) D (z; 0; 4ıx
3CyC˛x
2 ), with ı D ˙1

1.4: X˛(x; y; z) D (axz; byz; axCbyCcz2C˛
2 ), with

(a; b; c) D ı(3; 2; 1), ı D ˙1
1.5: X˛(x; y; z) D (axz; byz; axCbyCcz2C˛

2 ), with
(a; b; c) D ı(1; 3; 2), ı D ˙1

1.6: X˛(x; y; z) D (axz; byz; axCbyCcz2C˛
2 ), with

(a; b; c) D ı(1; 2; 3), ı D ˙1
1.7: X˛(x; y; z) D (xz; 2yz; xC2y�cz2C˛

2 )
1.8: X˛(x; y; z) D ((�x C y)z; (�x � y)z;

�3x�yCz2C˛
2 )

Generic Bifurcation

Let Z D (X;Y) 2 #r(n C 1). Call by ˙0(n C 1) (resp.
˙1(nC1)) the set of all elements that are structurally stable
in #r(n C 1) (resp. #r

1(n C 1) D #r(n C 1)n˙0(nC1)) in
#r(nC 1). It is clear that a pre-classification of the generic
singularities is immediately reached by:

If Z D (X;Y) 2 ˙0(n C 1) (resp. Z D (X;Y) 2
˙1(nC1)) then X and Y are in�0(nC1) (resp. X 2 �0(nC
1) and Y 2 �1(n C 1) or vice versa). Of course, the case
when both X and Y are in �1(n C 1) is a-codimension-two
phenomenon.

Two-Dimensional Case

The following result characterizes the structural stability
in#r(2).

Theorem A (see [31,44]): ˙0(2) is an open and dense set
of#r(2). The vector field Z D (X;Y) is in˙0(2) if and only
one of the following conditions is satisfied:

i) Both elements X and Y are regular. When 0 2 M is
a simple singularity of Z then we assume that it is a hy-
perbolic critical point of ZM.

ii) X is a fold singularity and Y is regular (and vice-versa).

The following result still deserves a systematic proof. Fol-
lowing the same strategy stipulated in the generic classifi-
cation of anM-singularity, Theorem 11 could be very use-
ful. It is worthwhile to mention [33] where the problem of
generic bifurcation in 2D was also addressed.

Theorem B (Generic Bifurcation) (see [36,43]) ˙1(2) is
an open and dense set of#r

1(2). The vector field Z D (X;Y)
is in ˙1(2) provided that one of the following conditions is
satisfied:

Perturbation Theory for Non-smooth Systems, Figure 4
M-critical point for X,M-regular for Y and its unfolding

i) Both elements X and Y are M-regular. When 0 2 M
is a simple singularity of Z then we assume that it is
a codimension-one critical point (saddle-node or a Bog-
danov–Takens singularity) of ZM.

ii) 0 is a codimension-one M-singularity of X and Y is
M-regular. This case includes when 0 is either a cusp
M-singularity or a critical point. Figure 4 illustrates the
case when 0 is a saddle critical point in the boundary.

iii) Both X and Y are fold M-singularities at 0. In this case
we have to impose that 0 is a hyperbolic critical point of
the Cr-extension of ZM provided that it is in the bound-
ary of M2 [ M3 (see example below). Moreover when
0 is a distinguished fold-fold singularity of Z then 0 is
a hyperbolic fixed point of the first return mapping ˇZ.

Consider in a small neighborhood of 0 in R2, the system
Z D (X;Y) with X(x; y) D (1 � x3 C y2; x), Y(x; y) D
(1CxC y;�xCx2) and h(x; y) D y. The point 0 is a fold-
fold-singularity of Z with M2 D fx < 0g and Zs(x; 0) D
(2x � x2)�1(2x � x4 C x5). Observe that 0 is a hyperbolic
critical point of the extended system G(x; y) D 2x � x4 C
x5.

The classification of the codimension-two singularities
in #r(2) is still an open problem. In this direction [51]
contains information about the classification of codimen-
sion-twoM-singularities.

Three-Dimensional Case

Let Z D (X;Y) 2 #r(3).
The most interesting case to be analyzed is when both

vector fields, X and Y are fold singularities at 0 and the
tangency sets �X and �Y in M are in general position at
0. In fact they determine (in M) four quadrants, two of
them are M1-regions, one is an M3-region and the other
is an M2-region (see Fig. 5). We emphasize that the slid-
ing vector field ZM can be Cr-extended to a full neighbor-
hood of 0 in M. Moreover, ZM(0) D 0. Inside this class
the distinguished fold-fold singularity (as defined in Sub-
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The distinguished fold-fold singularity

sect. “A Construction”) must be taken into account. De-
note by A the set of all distinguished fold-fold singulari-
ties Z 2 #r(3). Moreover, the eigenvalues of DˇZ(0) are
 D a ˙

p
(a2 � 1). If  2 R we say that Z belongs to

As . Otherwise Z is in Ae . Recall that ˇZ is the first return
mapping associated to Z and M at 0 as defined in Sub-
sect. “A Construction”.

It is evident that the elements in the open set Ae are
structurally unstable in#r(3). It is worthwhile to mention
that in Ae we detect elements which are asymptotically sta-
ble at the origin [48]. Concerning As few things are known.

We have the following result:

Theorem C The vector field Z D (X;Y) belongs to˙0(3)
provided that one of the following conditions occurs:

i) Both elements X and Y are regular. When 0 2 M is
a simple singularity of Z then we assume that it is a hy-
perbolic critical point of ZM.

ii) X is a fold singularity at 0 and Y is regular.
iii) X is a cusp singularity at 0 and Y is regular.
iv) Both systems X and Y are of fold type at 0. Moreover:

a) the tangency sets �X and �Y are in general position
at 0 in M; b) The eigenspaces associated with ZM are
transverse to �X and �Y at 0 2 M and c) Z is not in A.
Moreover the real parts of non conjugate eigenvalues
are distinct.

We recall that bifurcation diagrams of sliding vector fields
are presented in [50,52].

Singular Perturbation Problem in 2D

Geometric singular perturbation theory is an important
tool in the field of continuous dynamical systems. Need-
less to say that in this area very good surveys are avail-
able (refer to [16,18,30]). Here we highlight some results
(see [10]) that bridge the space between discontinuous sys-
tems in#r(2) and singularly perturbed smooth systems.

Definition 14 Let U � R2 be an open subset and " �
0. A singular perturbation problem in U (SP-Problem) is
a differential system which can be written as

x0 D
dx
d
� D f (x; y; ") ; y0 D

dy
d
� D "g(x; y; ") (6)

or equivalently, after the time re-scaling t D "�

"ẋ D "
dx
d
t D f (x; y; ") ; ẏ D

dy
d
t D g(x; y; ") ; (7)

with (x; y) 2 U and f ; g smooth in all variables.

Our first result is concerned with the transition between
non-smooth systems and GSPT.

Theorem D Consider Z 2 #r(2); Z" its '-regularization,
and p 2 M. Suppose that ' is a polynomial of degree k
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in a small interval I � (�1; 1) with 0 2 I. Then the tra-
jectories of Z" in V" D fq 2 R2; 0 : h(q)/" 2 Ig are in
correspondence with the solutions of an ordinary differen-
tial equation z0 D ˛(z; "), satisfying that ˛ is smooth in
both variables and ˛(z; 0) D 0 for any z 2 M. Moreover,
if ((X � Y)hk )(p) ¤ 0 then we can take a Cr�1-local coor-
dinate system f(@/@x)(p); (@/@y)(p)g such that this smooth
ordinary differential equation is a SP-problem.

The understanding of the phase portrait of the vector field
associated to a SP-problem is the main goal of the geomet-
ric singular perturbation-theory (GSP-theory). The tech-
niques of GSP-theory can be used to obtain information
on the dynamics of (6) for small values of " > 0, mainly in
searching minimal sets.

System (6) is called the fast system, and (7) the slow
system of the SP-problem. Observe that for " > 0 the phase
portraits of the fast and the slow systems coincide.

Theorem D says that we can transform a discontinu-
ous vector field in a SP-problem. In general this transition
cannot be done explicitly. Theorem E provides an explicit
formula of the SP-problem for a suitable class of vector
fields. Before the statement of such a result we need to
present some preliminaries.

Consider C D f� : R2; 0 ! Rg with � 2 Cr and
L(�) D 0 where L(�) denotes the linear part of � at (0; 0).

Let#d � #
r(2) be the set of vector fields Z D (X;Y)

in#r(2) such that there exists � 2 C that is a solution of

r�(X � Y) D ˘i(X � Y) ; (8)

wherer� is the gradient of the function and˘ i denote the
canonical projections, for i D 1 or i D 2.

Theorem E Consider Z 2 #d and Z" its '-regulariza-
tion. Suppose that ' is a polynomial of degree k in a small
interval I � R with 0 2 I. Then the trajectories of Z" on
V" D fq 2 R2; 0 : h(q)/" 2 Ig are solutions of a SP-prob-
lem.

We remark that the singular problems discussed in the
previous theorems, when " & 0, defines a dynamical sys-
tem on the discontinuous set of the original problem. This
fact can be very useful for problems in Control Theory.

Our third theorem says how the fast and the slow sys-
tems approximate the discontinuous vector field. More-
over, we can deduce from the proof that whereas the fast
system approximates the discontinuous vector field, the
slow system approaches the corresponding sliding vector
field.

Consider Z 2 #r(2) and � : R2; 0 �! R with �(x; y)
being the distance between (x; y) andM. We denote bybZ
the vector field given bybZ(x; y) D �(x; y)Z(x; y).

In what follows we identify bZ" and the vector field on
ffR2; 0g nM � Rg � R3 given by bZ(x; y; ") D (bZ"(x; y);
0).

Theorem F Consider p D 0 2 M. Then there exists an
open set U � R2; p 2 U, a three-dimensional manifold M,
a smooth function ˚ : M �! R3 and a SP-problem W on
M such that˚ sends orbits of Wj˚�1(U�(0;C1)) in orbits of
bZj(U�(0;C1)).

Examples

1. Take X(x; y) D (1; x);Y(x; y) D (�1;�3x), and
h(x; y) D y. The discontinuity set is f(x; 0) j x 2 Rg.
We have Xh D x;Yh D �3x, and then the unique
non-regular point is (0; 0). In this case we may apply
Theorem E.

2. Let Z"(x; y) D
�
y/"; 2xy/" � x


. The associated partial

differential equation (refer to Theorem E) with i D 2
given above becomes 2(@�/@x)C 4x(@�/@y) D 4x. We
take the coordinate change x D x; y D y � x2. The
trajectories of X" in these coordinates are the solutions
of the singular system

"ẋ D y C x2 ; ẏ D �x :

3. In what follows we try, by means of an example,
to present a rough idea on the transition from non-
smooth systems to GSPT. Consider X(x; y) D (3y2 �
y�2; 1), Y(x; y) D (�3y2�yC2;�1) and h(x; y) D x.
The regularized vector field is

Z"(x; y) D
�
1
2
C

1
2
'

 x
"

��
(3y2 � y � 2; 1)

C

�
1
2
�

1
2
'

 x
"

��
(�3y2 � y C 2;�1) :

After performing the polar blow up coordinates
˛ : [0;C1) � [0; �] � R ! R3 given by x D r cos � and
" D r sin � the last system is expressed by:

r�̇ D � sin �(�yC'(cot �)(3y2�2)) ; ẏ D '(cot �) :

So the slow manifold is given implicitly by '(cot �) D
y/(3y2 � 2) which defines two functions y1(�) D (1 Cp
1C 24'2(cot �))/(6'(cot �)) and y2(�) D (1 �p
1C 24'2(cot �))/(6'(cot �)). The function y1(�) is

increasing, y1(0) D 1; lim�!	/2� y1(�) D C1;

lim�!	/2C y1(�) D �1 and y1(�) D �1. The function
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y2(�) is increasing, y2(0) D �2/3; lim�!	/2 y2(�) D 0
and y2(�) D 2/3. We can extend y2 to (0; �) as a differen-
tial function with y2(�/2) D 0.

The fast vector field is (� 0; 0) with � 0 > 0 if (�; y) be-
longs to

h

0;
�

2

�
� (y2(�); y1(�))

[
�
2
; �
�
� (y2(�);C1)

[
�
2
; �
�
� (�1; y1(�))

i

and with � 0 < 0 if (�; y) belongs to

h

0;
�

2

�
� (y1(�);C1)

[

0;
�

2

�
� (�1; y2(�))

[
�
2
; �
�
� (y1(�); y2(�))

i
:

The reduced flow has one singular point at (0; 0) and
it takes the positive direction of the y-axis if y 2 (� 2

3 ; 0)[
(1;1) and the negative direction of the y-axis if y 2
(�1;�1) [ (0; 23 ).

One can see that the singularities (�; y; r) D (0; 1; 0)
and (�; y; r) D (0;�1; 0) are not normally hyperbolic
points. In this way, as usual, we perform additional blow
ups. In Fig. 6 we illustrate the fast and the slow dynam-
ics of the SP-problem. We present a phase portrait on the
blowing up locus where a double arrow over a trajectory
means that the trajectory belongs to the fast dynamical sys-
tem, and a simple arrow means that the trajectory belongs
to the slow dynamical system.

Future Directions

Our concluding section is devoted to an outlook. Firstly we
present some open problems linked with the setting that
point out future directions of research. The main task for
the future seems to bring the theory of non-smooth dy-
namical systems to a similar maturity as that of smooth
systems. Finally we briefly discuss the main results in this
text.

Some Problems

In connection to this present work, some theoretical prob-
lems remain open:

1. The description of the bifurcation diagram of the codi-
mension-two singularities in #(2). In this last class we
find some models (see [37]) where the following ques-
tions can also be addressed. a) When is a typical sin-

Perturbation Theory for Non-smooth Systems, Figure 6
Example of fast and slow dynamics of the SP-Problem

gularity topologically equivalent to a regular center? b)
How about the isochronicity of such a center? c) When
does a polynomial perturbation of such a system in
#(2) produce limit cycles? The articles [9,13,21,22,47]
can be useful auxiliary references.

2. Let #(N) be the set of all non-smooth vector fields on
a two-dimensional compact manifold N having a codi-
mension-one compact submanifold M as its disconti-
nuity set. The problem is to study the global generic
bifurcation in #(N). The articles [31,33,40,46] can be
useful auxiliary references.

3. Study of the bifurcation set in #r(3). The arti-
cles [38,40,43,50] can be useful auxiliary references.

4. Study of the dynamics of the distinguished fold-fold sin-
gularity in #r(n C 1). The article [48] can be a useful
auxiliary reference.

5. In many applications examples of non-smooth systems
where the discontinuities are located on algebraic va-
rieties are available. For instance, consider the system
ẍ C xsign(x) C sign(ẋ) D 0. Motivated by such
models we present the following problem. Let 0 be
a non-degenerate critical point of a smooth mapping
h : RnC1; 0 ! R; 0. Let ˚(n C 1) be the space of all
vector fields Z on RnC1; 0 defined in the same way as
#(nC1).We propose the following. i) Classify the typ-
ical singularities in that space. ii) Analyze the elements
of ˚(2) by means of “regularization processes” and the
methods of GSPT, similarly to Sect. “Vector Fields near
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the Boundary”. The articles [1,2] can be very useful aux-
iliary references.

6. In [27,29] classes of 4D-relay systems are considered.
Conditions for the existence of one-parameter families
of periodic orbits terminating at typical singularities are
provided. We propose to find conditions for the exis-
tence of such families for n-dimensional relay systems.

Conclusion

In this paper we have presented a compact survey of the
geometric/qualitative theoretical features of non-smooth
dynamical systems. We feel that our survey illustrates that
this field is still in its early stages but enjoying growing
interest. Given the importance and the relevance of such
a theme, we have pointed above some open questions and
we remark that there is still a wide range of bifurcation
problems to be tackled. A brief summary of the main re-
sults in the text is given below.

1. We firstly deal with two-dimensional non-smooth vec-
tor fields Z D (X;Y) defined around the origin in R2,
where the discontinuity set is concentrated on the line
fy D 0g. The first task is to characterize those systems
which are structurally stable. This characterization is
a starting point with which to establish a bifurcation
theory as indicated by the Thom–Smale program.

2. In higher dimension the problem becomes much more
complicated. We have presented here sufficient condi-
tions for the three-dimensional local structural stability.
Any further investigation on bifurcation in this context
must pass through a deep analysis of the so called fold-
fold singularity.

3. We have established a bridge between discontinuous
and singularly perturbed smooth systems. Many simi-
larities between such systemswere observed and a com-
parative study of the two categories is called for.
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Glossary

Perturbation theory The study of a dynamical systems
which is a perturbation of a system whose dynamics
is known. Typically the unperturbed system is linear
or integrable.

Normal form The normal form method consists of con-
structing a coordinate transformation which changes
the equations of a dynamical system into new equa-
tions which are as simple as possible. In Hamiltonian

systems the theory is particularly effective and typically
leads to a very precise description of the dynamics.

Hamiltonian PDE AHamiltonian PDE is a partial differ-
ential equation (abbreviated PDE) which is equivalent
to the Hamilton equation of a suitable Hamiltonian
function. Classical examples are the nonlinear wave
equation, the Nonlinear Schrödinger equation, and the
Kortweg–de Vries equation.

Resonance vs. Non-Resonance
A frequency vector f!kg

n
kD1 is said to be non-resonant

if its components are independent over the relative in-
tegers. On the contrary, if there exists a non-vanishing
K 2 Zn such that ! � K D 0 the frequency vector is
said to be resonant. Such a property plays a fundamen-
tal role in normal form theory. Non-resonance typi-
cally implies stability.

Actions The action of a harmonic oscillator is its energy
divided by its frequency. It is usually denoted by I. The
typical issue of normal form theory is that in nonres-
onant systems the actions remain approximatively un-
changed for very long times. In resonant systems there
are linear combinations of the actions with such prop-
erties.

Sobolev space Space of functions which have weak
derivatives enjoying suitable integrability properties.
Here we will use the spaces Hs, s 2 N of the functions
which are square integrable together with their first s
weak derivatives.

Definition of the Subject

Perturbation theory for PDEs is a part of the qualitative
theory of differential equations. One of the most effective
methods of perturbation theory is the normal form the-
ory which consists of using coordinate transformations
in order to describe the qualitative features of a given or
generic equation. Classical normal form theory for ordi-
nary differential equations has been used all along the last
century in many different domains, leading to important
results in pure mathematics, celestial mechanics, plasma
physics, biology, solid state physics, chemistry and many
other fields.

The development of effective methods to understand
the dynamics of partial differential equations is relevant in
pure mathematics as well as in all the fields in which par-
tial differential equations play an important role. Fluido-
dynamics, oceanography, meteorology, quantummechan-
ics, and electromagnetic theory are just a few examples
of potential applications. More precisely, the normal form
theory allows one to understand whether a small nonlin-
earity can change the dynamics of a linear PDE or not.
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Moreover, it allows one to understand how the changes
can be avoided or forced. Finally, when the changes are
possible it allows to predict the behavior of the perturbed
system.

Introduction

The normal form method was developed by Poincaré and
Birkhoff between the end of the 19th century and the
beginning of the 20th century. During the last 20 years
the method has been successfully generalized to a suitable
class of partial differential equations (PDEs) in finite vol-
ume (in the case of infinite volume dispersive effects ap-
pear and the theory is very different. See e. g. [58]). In this
article we will give an introduction to this recent field. We
will almost only deal with Hamiltonian PDEs, since on
the one hand the theory for non Hamiltonian systems is
a small variant of the one we will present here, and on the
other hand most models are Hamiltonian.

We will start by a generalization of the Hamiltonian
formalism to PDEs, followed by a review of the classical
theory and by the actual generalization of normal form
theory to PDEs.

In the next section we give a generalization of the
Hamiltonian formalism to PDEs. The main new fact is
that in PDEs the Hamiltonian is usually a smooth func-
tion, but the corresponding vector field is nonsmooth (it
is an operator extracting derivatives). So the standard for-
malism has to be slightly modified [10,29,45,49,52,61].
Here we will present a version of the Hamiltonian for-
malism which is enough to cover the models of inter-
est for local perturbation theory. To clearly illustrate the
situation we will start the article with an introduction
to the Lagrangian and Hamiltonian formalism for the
wave equation. This will lead to the introduction of the
paradigm Hamiltonian which is usually studied in this
context. This will be followed by a few results on the
Hamiltonian formalism that are needed for perturbation
theory.

Subsequently, we shortly present the standard Birkhoff
normal form theory for finite dimensional systems. This is
useful since all the formal aspects are equal in the classical
case and the case of PDEs.

Then we come to the generalization of normal form
theory to PDEs. In the present paper we will concentrate
almost only on the case of 1-dimensional semilinear equa-
tions. This is due to the fact that the theory of higher di-
mensional and quasilinear equations is still quite unsatis-
factory.

In PDEs one essentially meets two kinds of difficulties.
The first one is related to the existence of non smooth vec-

tor fields. The second difficulty is due to the fact that in
the infinite dimensional case there are small denominators
which are much worse than in the finite dimensional one.

We first present the theory for completely resonant
systems [10,14] in which the difficulties related to small de-
nominators do not appear. It turns out that it is quite easy
to obtain a normal form theorem for resonant PDEs, but
the kind of normal form one gets is usually quite poor. In
order to extract dynamical informations from the normal
form one can only compute and study it explicitly. Usu-
ally this is very difficult. Nevertheless in some cases it is
possible and leads to quite strong results. We will illustrate
such a situation by studying a nonlinear Schrödinger equa-
tion [2,25].

For the general case there is a theorem ensuring that
a generic system admits at least one family of “periodic
like trajectories” which are stable over exponentially long
times [15]. We will give its statement and an application to
the nonlinear wave equation

utt � uxx C �2u C f (u) D 0 ; (1)

with � D 0 and the Dirichlet boundary conditions on
a segment [55].

Then we turn to the case of nonresonant PDEs. The
main difficulty is that small denominators accumulate to
zero already at order 3. Such a problem has been over-
come in [4,6,9,12,43] by taking advantage of the fact that
the nonlinearities appearing in PDEs typically have a spe-
cial form. In this case one can deduce a very precise de-
scription of the dynamics and also some interesting re-
sults of the kind of almost global existence of smooth solu-
tions [46]. To illustrate the theory we will make reference
to the nonlinear wave Eq. (1) with almost any�, and to the
nonlinear Schrödinger equation.

Another aspect of the theory of close to integrable
Hamiltonian PDEs concerns the extension of KAM the-
ory to PDEs. We will not present it here. We just re-
call the most celebrated results which are those due
to Kuksin [48], Wayne [60], Craig–Wayne [34], Bour-
gain [24,26], Kuksin–Pöschel [50], Eliasson–Kuksin [39].
All these results ensure the existence of families of
quasiperiodic solutions, i. e. solutions lying on finite di-
mensional manifolds. We also mention the papers [21,57]
where some Cantor families of full dimension tori are con-
structed. We point out that in the dynamics on such 1-
dimensional tori the amplitude of oscillation of the lin-
ear modes decreases super exponentially with their in-
dex. A remarkable exception is provided by the paper [27]
where the tori constructed are more “thick” (even if of
course they lie on Cantor families).
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On the contrary, the results of normal form theory
describe solutions starting on opens subsets of the phase
space, and do not have particularly strong localizations
properties with respect to the index. The price one has to
pay is that the description one gets turns out to be valid
only over long but finite times.

Finally we point out a related research stream that has
been carried on by Bourgain [21,22,23,25] who studied in-
tensively the behavior of high Sobolev norms in close to
integrable Hamiltonian PDEs (see also [28]).

The Hamiltonian Formalism for PDEs

The Gradient of a Functional

Definition 1 Consider a function f 2 C1(Us ;R),Us �

Hs(T ) open, s � 0 a fixed parameter and T :D R/2�Z is
the 1-dimensional torus. We will denote byr f (u) the gra-
dient of f with respect to the L2 metric, namely the unique
function such that

hr f (u); hiL2 D d f (u)h ; 8h 2 Hs (2)

where

hu; viL2 :D
Z 	

�	

u(x)v(x)dx (3)

is the L2 scalar product and d f (u) is the differential of f
at u. The gradient is a smooth map from Hs to H�s (see
e. g. [3]).

Example 2 Consider the function

f (u) :D
Z 	

�	

u2x
2
dx ; (4)

which is differentiable as a function from Hs ! R for any
s � 1. One has

d f (u)h D
Z 	

�	

ux hxdx D
Z 	

�	

�uxx hdx D h�uxx ; hiL2

(5)

and therefore in this case one has r f (u) D �uxx .

Example 3 LetF : R2 ! R be a smooth function and de-
fine

f (u) D
Z 	

�	

F(u; ux )dx (6)

then the gradient of f coincides with the so called func-
tional derivative of F :

r f �
ıF
ıu

:D
@F
@u
�
@

@x
@F
@ux

: (7)

Lagrangian and Hamiltonian Formalism
for theWave Equation

Until Subsect. “Basic Elements of Hamiltonian Formalism
for PDEs” we will work at a formal level, without specify-
ing the function spaces and the domains.

Definition 4 Let L(u; u̇) be a Lagrangian function, then
the corresponding Lagrange equations are given

ruL �
d
dt
ru̇ L D 0 (8)

where ruL is the gradient with respect to u only, and sim-
ilarly ru̇ is the gradient with respect to u̇.

Example 5 Consider the Lagrangian

L(u; u̇) :D
Z 	

�	

�
u̇2

2
�

u2x
2
� �2 u

2

2
� F(u)

�
dx : (9)

then the corresponding Lagrange equations are given
by (1) with f D �F 0.

Given a Lagrangian system with a Lagrangian function L,
one defines the corresponding Hamiltonian system as fol-
lows.

Definition 6 Consider the momentum v :D ru̇ L conju-
gated to u; assume that L is convex with respect to u̇, then
the Hamiltonian function associated to L is defined by

H(v; u) :D
�
hv; u̇iL2 � L(u; u̇)

�
u̇Du̇(u;v) : (10)

Definition 7 Let H(v; u) be a Hamiltonian function, then
the corresponding Hamilton equations are given by

v̇ D �ruH ; u̇ D rvH : (11)

As in the finite dimensional case, one has that the Lagrange
equations are equivalent to the Hamilton equation of H.

An elementary computation shows that for the wave
equation one has v D u̇ and

H(v; u) D
Z 	

�	

�
v2 C u2x C �2u2

2
C F(u)

�
dx (12)
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Canonical Coordinates

Consider a Lagrangian system and let ek be an orthonor-
mal basis of L2, write u D

P
k qkek and u̇ D

P
k q̇kek ,

then one has the following proposition.

Proposition 8 The Lagrange Eqs. (8) are equivalent to

@L
@qk
�

d
dt
@L
@q̇k
D 0 (13)

Proof Taking the scalar product of (8) with ek one gets

hek ;ruLiL2 �
d
dt
hek ;ru̇ LiL2 D 0

but one has hek ;ruLi D @L
@qk

and similarly for the other
term. Thus the thesis follows. �

This proposition shows that, once a basis has been intro-
duced, the Lagrange equations have the same form as in
the finite dimensional case.

In the Hamiltonian case exactly the same result holds.
Precisely, denoting v :D

P
k pkek one has the following

proposition.

Proposition 9 The Hamilton equations of a Hamiltonian
function H are equivalent to

ṗk D �
@H
@qk

; q̇k D
@H
@pk

: (14)

In the case of the nonlinear wave equation, in order to get
a convenient form of the equations, one can choose the
Fourier basis. Such a basis is defined by

êk :D

8
ˆ̂<

ˆ̂
:

1p
	
cos kx k > 0

1p
2	

k D 0
1p
	
sin�kx k < 0

(15)

Thus the Hamiltonian (12) takes the form

H(p; q) D
X

k2Z

p2k C !
2
kq

2
k

2
C

Z 	

�	

F

 
X

k

qk êk(x)

!

dx ;

(16)

where !2
k :D k2 C �2. For the forthcoming developments

it is worth to rescale the variables by defining

p0k :D
pk
p
!k

; q0k :D
p
!kqk ; (17)

so that, omitting primes, the Hamiltonian takes the form

H(p; q) D
X

k

!k
p2k C q2k

2
C HP(p; q) (18)

where HP has a zero of order higher than 2. In the follow-
ing we will always study systems of the form (18). More-
over, by relabeling the variables and the frequencies it is
possible to reduce the problem to the case where k varies
inN � f1; 2; 3 : : : g. This is what we will assume in devel-
oping the abstract theory.

Example 10 An example of a different nature in which
the Hamiltonian takes the form (18) is the nonlinear
Schrödinger equation

� i ̇ D  xx C f (j j2) ; (19)

where f is a smooth function. Eq. (19) has the conserved
energy functional

H( ;  ̄) :D
Z 	

�	

�
j j2 C F(j j2)


dx ; (20)

where F is such that F 0 D f . Introduce canonical coordi-
nates (pk ; qk) by

 D
X

k2Z

pk C iqk
p
2

êk ; (21)

then the energy takes the form (18) with !k D k2 and the
NLS is equivalent to the corresponding Hamilton equa-
tions.

Example 11 Consider the Kortweg–de Vries equation

ut C uxxx C uux D 0 ; (22)

in the space of functions with zero mean value. The con-
served energy is given by

H(u) D
Z 	

�	

�
u2x
2
C

u3

6

�
dx ; (23)

which again is also the Hamiltonian of the system. Canon-
ical coordinates are here introduced by

u(x) D
X

k>0

p
k(pk êk C qk ê�k) ; (24)

in which the Hamiltonian takes the form (18) with
!k D k3.
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Remark 12 It is also interesting to study some of these
equations with Dirichlet boundary conditions (DBC), typ-
ically on [0; �]. This will always be done by identifying
the space of the functions fulfilling DBC with the space
of the function fulfilling periodic boundary conditions on
[��; �] which are skew symmetric. Similarly, Neumann
boundary conditions will be treated by identifying the
corresponding functions with periodic even functions. In
some cases (e. g. in Eq. (1) with DBC and an f which does
not have particular symmetries) the equations do not ex-
tend naturally to the space of skew symmetric and this has
some interesting consequences (see [7,13]).

Basic Elements of Hamiltonian Formalism for PDEs

A suitable topology in the phase space is given by a Sobolev
like topology.

For any s 2 R, define the Hilbert space `2s of the se-
quences x � fxkgk�1 with xk 2 R such that

kxk2s :D
X

k

jkj2sjxkj2 <1 (25)

and the phase spacesPs :D `2s ˚ `2s � z 3 (p; q) � (fpkg;
fqkg). In Ps we will sometimes use the scalar product

h(p; q); (p1; q1)is :D hp; p1i`2s C hq; q
1i`2s : (26)

In the following we will always assume that

j!kj � Cjkjd (27)

for some d.

Remark 13 Defining the operator A0 : D(A0)! Ps by
A0(p; q) D (!k pk ; !kqk) one can write H0 D

1
2 hA0z; zi0,

D(A0) � PsCd .

Given a smooth Hamiltonian function � : Ps � Us ! R,
Us being an open neighborhood of the origin, we
define the corresponding Hamiltonian vector field
X� : Us 7! P�s by

X� �
�
�
@�

@qk
;
@�

@pk

�
: (28)

Remark 14 Corresponding to a function � as above we
will denote by r� its gradient with respect to the `2 � `20
metric. Defining the operator J by J(p; q) :D (�q; p) one
has X� D Jr�.

Definition 15 The Poisson Bracket of two smooth func-
tions �1, �2 is formally defined by

f�1;�2g :D d�1X�2 � hr�1; Jr�2i0 : (29)

Remark 16 As the example �1 D
P

k kqk , �2 :D
P

k kpk
shows, there are cases where the Poisson Bracket of two
functions is not defined.

For this reason a crucial role is played by the functions
whose vector field is smooth.

Definition 17 A function � 2 C1(Us ;Ps ), Us � Ps
open, is said to be of class Gens , if the correspond-
ing Hamiltonian vector field X� is a smooth map from
Us ! Ps . In this case we will write � 2 Gens

Proposition 18 Let �1 2 Gens . If �2 2 C1(Us ;R) then
f�1; �2g 2 C1(Us ;R). If �2 2 Gens then f�1; �2g 2
Gens .

Definition 19 A smooth coordinate transformation
T : Ps � Us ! Ps is said to be canonical if for any
Hamiltonian function H one has XHıT D T �XH �

dT �1XH ı T , i. e. it transforms the Hamilton equations
of H into the Hamilton equations of H ı T .

Proposition 20 Let �1 2 Gens, and let ˚ t
�1

be the cor-
responding time t flow (which exists by standard theory).
Then ˚ t

�1
is a canonical transformation.

Normal Form
for Finite Dimensional Hamiltonian Systems

Consider a system of the form (18), but with finitely many
degrees of freedom, namely a system with a Hamiltonian
of the form (18) with

H0(p; q) D
nX

kD1

!k
p2k C q2k

2
; !k 2 R (30)

and HP which is a smooth function having a zero of order
at least 3 at the origin.

Definition 21 A polynomial Z will be said to be in normal
form if fH0; Zg � 0.

Theorem 22 (Birkhoff) For any positive integer r � 0,
there exist a neighborhoodU(r) of the origin and a canoni-
cal transformation Tr : R2n � U(r) ! R2n which puts the
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system (18) in Birkhoff Normal Form up to order r, namely
s.t.

H(r) :D H ı Tr D H0 C Z(r) CR(r) (31)

where Z(r) is a polynomial of degree r C 2 which is in nor-
mal form,R(r) is small, i. e.

jR(r)(z)j � CrkzkrC3 ; 8z 2 U(r) ; (32)

moreover, one has

kz � Tr(z)k � C0rkzk
2 ; 8z 2 U(r) : (33)

An inequality identical to (33) is fulfilled by the inverse
transformation T �1r .

If the frequencies are nonresonant at order r C 2,
namely if

! � K 6D 0 ; 8K 2 Zn ; 0 < jKj � r C 2 (34)

the function Z(r) depends on the actions

I j :D
p2j C q2j

2

only.

Remark 23 If the nonlinearity is analytic and the frequen-
cies are Diophantine, i. e. there exist � > 0 and � such that

j! � Kj �
�

jKj�
; 8K 2 Zn � f0g ; (35)

then one can compute the dependence of the constant Cr
(cf. Eq. (32)) on r and optimize the value of r as a function
of kzk. This allows one to improve (32) and to show that
there exists and ropt such that (see e. g. [40])

jR(ropt)(z)j � C exp
�
�

c
kzk1/(�C1)

�
: (36)

In turn, such an estimate is the starting point for the proof
of the celebrated Nekhoroshev’s theorem [53].

The idea of the proof is to construct a canonical trans-
formation putting the system in a form which is as sim-
ple as possible, namely the normal form. More precisely
one constructs a canonical transformation T (1) pushing
the non normalized part of the Hamiltonian to order four
followed by a transformation T (2) pushing it to order
five and so on, thus getting Tr D T (1) ı T (2) ı � � � ı T (r).
Each of the transformationsT ( j) is constructed as the time
one flow of a suitable auxiliary Hamiltonian function say

�j (Lie transform method). It turns out that �j is deter-
mined as the solution of the Homological equation

Zj :D f� j;H0g C H( j) (37)

where H( j) is constructed recursively and Zj has to be de-
termined together with �j in such a way that fZj ;H0g D 0
and (37) holds. In particular H(1) coincides with the first
non vanishing term in the Taylor expansion of HP.

The algorithm of solution of the Homological Eq. (37)
involves division by the so called small denomina-
tors i! � K, where K 2 Zn � f0g, fulfills jKj � jC 2 and
! � K 6D 0.

The above construction is more or less explicit: pro-
vided one has at disposal enough time, he can explicitly
compute Z(r) up to any given order. In the case of nonres-
onant frequencies this is not needed if one wants to under-
stand the dynamics over long times. Indeed its features are
an easy consequence of the fact that Z(r) depends on the
actions only. A precise statement will be given in the case
of PDEs. It has to be noticed that the normal form can be
used also as a starting point for the construction of invari-
ant tori through KAM theory. To this end however one
has to verify a nondegeneracy condition and this requires
the explicit computation of the normal form.

In the resonant case the situation is more complicated,
however, it is often enough to compute the first non van-
ishing term of Z(r) in order to get relevant information
on the dynamics. This usually requires only the ability to
compute the function Z1, defined by (37) with H(1) coin-
ciding with the first non vanishing term of the Taylor ex-
pansion of HP. For a detailed analysis we refer to other
sections of the Encyclopedia.

A particular case where one can use a coordinate inde-
pendent formula for the computation of Zj and �j is the
one in which the frequencies are completely resonant.

Assume that there exists � > 0 and integer numbers
`1; ::; `n such that

!k D �`k 8k D 1; : : : ; n : (38)

Remark 24 Denote by � t the flow of the linear system
with Hamiltonian H0, then one has

� tCT D � t ; T :D
2�
�
; t 2 R : (39)

Moreover in this case one has ! � K 6D 0 H) j! � Kj �
� > 0, so there are no small denominators.

In this case one has an interesting coordinate independent
formula for the solution of the homological Eq. (37).
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Lemma 25 Let f be smooth function, defined in neighbor-
hood of the origin. Define

Z(z) � h f i (z) :D
1
T

Z T

0
f (� t(z))dt ;

�(z) :D
1
T

Z T

0
t
�
f (� t(z)) � Z(� t(z))

�
dt ;

(40)

then such quantities fulfill the equation fH0; �g C f D Z.

Normal Form for Hamiltonian PDEs:
General Comments

As anticipated in the introduction there are two problems
in order to generalize Birkhoff’s theorem to PDEs: (1) the
existence of nonsmooth vector fields and (2) the appear-
ance of small denominators accumulating at zero already
at order 3.

There are two reasons why (1) is a problem. The first
one is that if the vector field of �1 were not smooth then
it would be nontrivial to ensure that it generates a flow,
and thus that the normalizing transformation exists. The
second related problem is that, if a transformation could
be generated, then the Taylor expansion of the trans-
formed Hamiltonian would contain a term of the form
fH1;�1g D dH1X�1 , which is typically not smooth if X�
is not smooth. Thus one has to show that the construction
involves only functions which are of class Gens for some s
(see Definition 17).

The difficulty related to small denominators is the fol-
lowing: In the finite dimensional case, f! � K 6D 0; jKj �
r C 2g implies j! � Kj � � > 0. Thus division by ! � K is
a harmless operation in the finite dimensional case. In the
infinite dimensional case this is no longer true. For exam-
ple, when !k D

p
k2 C �2 one already has

inf
0 6DjKj�3

j! � Kj D 0 :

In order to solve such a problem one has to take advan-
tage of a property of the nonlinearity which typically holds
in PDEs and is called having localized coefficients. By also
assuming a suitable nonresonance property for the fre-
quency vector, one can deduce a normal form theorem
identical to Theorem 22. The main difficulty consists in
verifying the assumptions of the theorem. We will show
how to verify such assumptions by applying this method
to some typical examples.

Normal Form for Resonant Hamiltonian PDEs
and its Consequences

In the case of resonant frequencies and smooth vector field
it is possible to obtain a normal form up to an exponen-
tially small remainder.

Consider the system (18) in the phase space Ps with
some fixed s. Assume that the frequencies are completely
resonant, namely that (38) holds (with k 2 N); assume
that HP 2 Gens and that its vector field extends to a com-
plex analytic function in a neighborhood of the origin. Fi-
nally assume that HP has a zero of order n � 3 at the ori-
gin. Then we have the following theorem.

Theorem 26 ([10,14]) There exists a neighborhood of the
origin Us � Ps and an analytic canonical transformation
T : Us ! Ps with the following properties: T is close to
identity. Namely, it satisfies

kz � T (z)ks � Ckzkn�1s : (41)

T puts the Hamiltonian in resonant normal form up to an
exponentially small remainder, namely one has

H ı T D H0 C hHPi C Z2 CR (42)

where hHPi is the average (defined by (40)) of HP with re-
spect to the unperturbed flow; Z2 is in normal form, namely
fZ2;H0g � 0, and has a zero of order 2n � 2 at the origin;
R is an exponentially small remainder whose vector field is
estimated by

kXR(z)ks � Ckzkn�1s exp
�
�

C
kzkn�2s

�
:

Example 27 The nonlinear Schrödinger equation (19).
Here one has `k D k2 and � D 1. The Sobolev embedding
theorems ensure that the vector field of the nonlinearity
is analytic if f is analytic in a neighborhood of the origin.
Thus Theorem 26 applies to the NLS. To deduce dynam-
ical consequences it is convenient to explicitly compute
hHPi. Assuming f (0) D 0 and f 0(0) D 1 this was done
in [2] using formula (40) which gives

hHPi(z) D
1
2

 
X

k

Ik

!2

�
1
8

X

k

jIkj2 (43)

where Ik D (p2k C q2k)/2 are the linear actions. Thus one
has that H0 C hHPi is a function of the actions only, and
thus it is an integrable system. It is thus natural to study the
system (42) as a perturbation of such an integrable system.
This was done in [2] and [25] obtaining the results we are
going to state. For simplicity we will concentrate here on
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the case of Dirichlet boundary conditions, thus the func-
tion  will always be assumed to be skew symmetric with
respect to the origin. Define

�s :D
�
1
2

Z 	

�	

j@sx 
(0)(x)j2

�1/2
; (44)

i. e., the Hs norm of the initial datum  (0), s � 0, and de-
note by Ik(0) the initial value of the linear actions.

Theorem 28 ([2]) Fix N � 1, then there exists a constant
��; with the property that, if the initial datum  (0) is such
that

�1 < �� ;
X

k�NC1

Ik(0)2 � C�41�
2�1/N
1 ; (45)

then along the corresponding solution of (19) one has
X

k�1

jIk(t) � Ik(0)j2 � C0�4C1/N
1 (46)

for the times t fulfilling

jtj � C00 exp
�
��

�1

�1/N
:

This result in particular allows one to control the distance
in energy norm of the solution from the torus given by the
intersection of the level surfaces of the actions taken at the
initial time.

Theorem 29 ([25]) Fix an arbitrarily large r, then there
exists sr such that for any s � sr there exists ��s , such
that the following holds true: most of the initial data with
�s < ��s give rise to solutions with

k (t)ks � C�s ; 8jtj �
C
�rs
: (47)

For the precise meaning of “most of the initial data,” we
refer to the original paper. The result is based on the proof
that the considered solutions remain close in theHs topol-
ogy to an infinite dimensional torus. In particular the uni-
form estimate of the Sobolev norm is relevant for applica-
tions to numerical analysis [30,44].

Example 30 Consider the nonlinear wave Eq. (1) with
� D 0. Here the frequencies are given by jkj and thus
they are completely resonant. Again the smoothness of the
nonlinearity is ensured by Sobolev embedding theorem.
In the case of DBC in order to ensure smoothness one
has also to assume that the nonlinearity is odd, namely
that f (�u) D � f (u), then Theorem 26 applies. However

in this case the computation of hHPi is nontrivial. It has
been done (see [55]) in the case of f (u) D ˙u3 C O(u4)
and Dirichlet boundary conditions. The result however is
that the function hHPi does not have a particularly simple
structure, and thus it is not easy to extract informations on
the dynamics.

In order to extract information on the dynamics, consider
the simplified system in which the remainder is neglected,
namely the system with Hamiltonian

HS :D H0 C hHPi C Z2 : (48)

Such a system has two integrals of motion, namelyH0 and
hHPi C Z2. Let �� be the set of the z’s at which hHPi C Z2
is restricted to the surface S� :D fz : H0(z) D �2g has an
extremum, say a maximum. Then �� is an invariant set
for the dynamics of HS. By the invariance under the flow
of H0, one has that �� is the union of one dimensional
closed curves, but generically it is just a single closed
curve. In such a situation it is also a stable periodic orbit
of (48) (see [35]). Actually it is very difficult to compute
(hHPi C Z2)jS� , but a maximum of such a function can be
easily constructed by applying the implicit function theo-
rem to a non degenerate maximum of hHPijS� . The addi-
tion of the remainder then modifies the dynamics only af-
ter an exponentially long time. We are now going to state
the corresponding theorem.

First remark that a critical point of hHPijS1 is a solu-
tion za of the system

aA0za CrhHPi(za ) D 0 ; H0(za) D 1 (49)

where we used the notations of Remarks 13 and 14. Here
a is clearly the Lagrange multiplier. The closed curve
�a :D

S
t �

t(za) is (the trajectory of) a periodic solu-
tion of H0 C hHPi. Consider now the linear operator
Ba :D d(rhHPi)(za).

Definition 31 The critical point za is said to be non de-
generate if the system

aA0hC Bah D 0 ; hA0za ; hi0 D 0 (50)

has at most one solution.

Under the assumptions of Theorem 32 below it is easy to
prove that �a is a smooth curve and that its tangent vector
ha :D d

dt�
t(za )

ˇ
ˇ
tD0 is a solution of (50).

Theorem 32 ([14,15]) Assume that HP 2 Gens for any s
large enough, assume also that there exists a non degenerate
maximum za of hHPijS1 , then there exists a constant ��,
such that the following holds true: consider a solution z(t)
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of the Hamilton equation of (18) with initial datum z0; if
there exists � < ��, such that

dE (��a ; z0) � C�n ; (51)

then one has

dE (��a ; z(t)) � C0�n ; (52)

for all times t with jtj � C
�r�1

exp
�
��
�

n�1. Here dE is the
distance in the energy norm.

Such a theorem does not ensure that there exist periodic
orbits of the complete system, but just a family of closed
curves with the property that starting close to it one re-
mains close to it for exponentially long times. Some re-
sults concerning the existence of true periodic orbits close
to such periodic like trajectories can also be proved (see
e. g. [16,19,20,42,51]).

Example 33 In the paper [55] it has been proved that
the non degeneracy assumption (50) of Theorem 32 holds
for the Eq. (1) with f (u) D ˙u3Chigher order terms and
Dirichlet boundary conditions. In the case of such an
equation an extremum of hHPijS1 is given by

u(x) D Vmsn(wx;m) ; v(x) � 0 ;

with Vm, w and m suitable constants, and sn the Jacobi el-
liptic sine. Therefore the curve �a is the phase space trajec-
tory of the solution of the linear wave equation with such
an initial datum. There are no other extrema of hHPijS1 .
Thus the Theorem 32 ensures that solutions starting close
to a rescaling of such a curve remain close to it for very
long times.

Normal Form for Nonresonant Hamiltonian PDEs

A Statement

We turn now to the nonresonant case. The theory we will
present has been developed in [6,9,43], and is closely re-
lated to the one of [4,11,37]. First we introduce the class of
equations to which the theory applies. To this end it is use-
ful to treat the p’s and the q’s exactly on an equal footing
so we will denote by z � (zk)k2Z̄, Z̄ :D Z � f0g the set of
all the variables, where

z�k :D pk ; zk :D qk k � 1 :

Given a polynomial function f : P1 ! R of degree r one
can decompose it as follows

f (z) D
X

k1;:::;kr

fk1;:::;kr zk1 : : : zkr : (53)

We will assume suitable localization properties for the
coefficients fk1;:::;kr as functions of the indexes k1; : : : ; kr .

Definition 34 Given a multi-index k � (k1; : : : ; kr ), let
(ki1 ; ki2 ; ki3 : : : ; kir ) be a reordering of k such that

jki1 j � jki2 j � jki3 j � � � � � jkir j :

We define �(k) :D jki3 j and

S(k) :D �(k)C jjki1 j � jki2 jj : (54)

Definition 35 Let f : P1 ! R be a polynomial of de-
gree r. We say that f has localized coefficients if there exists
� 2 [0;C1) such that 8N � 1 there exists CN such that
for any choice of the indexes k1; : : : ; kr , the following in-
equality holds:

ˇ
ˇ fk1;:::;kr

ˇ
ˇ � CN

�(k)�CN

S(k)N
: (55)

Definition 36 A function f 2 Gens for any s large
enough, is said to have localized coefficients if all the terms
of its Taylor expansion have localized coefficients.

Some important properties of functions with localized co-
efficients are given by Theorem 37.

Theorem 37 Let f : P1 ! R be a polynomial of degree r
with localized coefficients, then there exists s0 such that for
any s � s0 the vector field Xf extends to a smooth map from
Ps to itself; moreover the following estimate holds:

kX f (z)k � Ckzkskzkr�2s0 : (56)

In particular it follows that a function with localized coef-
ficients is of class Gens for any s � s0.

Theorem 38 The Poisson Bracket of two functions with
localized coefficients has localized coefficients.

In order to develop perturbation theory we also need
a quantitative nonresonance condition.

Definition 39 Fix a positive integer r. The frequency vec-
tor ! is said to fulfill the property (r-NR) if there exist
� > 0; and ˛ 2 R such that for any N large enough one
has

ˇ̌
ˇ̌
ˇ
ˇ

X

k�1

!kKk

ˇ̌
ˇ̌
ˇ
ˇ
�

�

N˛
; (57)

for any K 2 Z1, fulfilling 0 6D jKj :D
P

k jKkj � r C 2,P
k>N jKkj � 2.
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It is easy to see that under this condition one can solve the
homological equation and that, if the known term of the
equation has localized coefficients, then the solution also
has localized coefficients.

Theorem 40 ([9,12]) Fix r � 1, assume that the frequen-
cies fulfill the nonresonance condition (r-NR); assume that
HP has localized coefficients. Then there exists a finite sr,
a neighborhood U(r)

sr of the origin in Psr , and a canoni-
cal transformation T : U(r)

sr ! Psr which puts the system
in normal form up to order r C 3, namely

H(r) :D H ı T D H0 C Z(r) CR(r) (58)

where Z(r) has localized coefficients and is a function of the
actions Ik only;R(r) has a small vector field, i. e.

kXR(r) (z)ksr � CkzkrC2
sr ; 8z 2 U(r)

sr ; (59)

thus, one has

kz � Tr(z)ksr � Ckzk2sr ; 8z 2 U
(r)
sr : (60)

An inequality identical to (60) is fulfilled by the inverse
transformation T �1r . Finally for any s � sr there exists
a subset U(r)

s � U(r)
sr open in Ps such that the restriction

of the canonical transformation to U(r)
s is analytic also as

a map from Ps ! Ps and the inequalities (59) and (60)
hold with s in place of sr.

This theorem allows one to give a very precise description
of the dynamics.

Proposition 41 Under the same assumptions of Theo-
rem 37, 8s � sr there exists ��s such that, if the initial da-
tum fulfills � :D kz0ks < ��s , then one has

kz(t)ks � 4� ;
X

k

k2s jIk(t) � Ik(0)j � C�3 (61)

for all the times t fulfilling jtj � ��r . Moreover there exists
a smooth torus T0 such that, 8M � r

ds (z(t);T0) � C�(MC3)/2 ; for jtj �
1

�r�M
(62)

where ds (:; :) is the distance in Ps .

A generalization to the resonant or partially resonant case
is easily obtained and can be found in [11].

Verification of the Property
of Localization of Coefficients

The property of localization of coefficients is quite ab-
stract. We illustrate via a few examples some ways to verify
it.

Example 42 Consider the nonlinear wave Eq. (1) with
Neumann boundary conditions on [0; �]. We recall that
the corresponding space of functions will be considered as
a subset of the space of periodic functions.

Consider the Taylor expansion of the nonlinearity, i. e.
write F(u) D

P
r�3 cr

R 	
�	u

r . Then one has to prove that
the functions fr(u) �

R 	
�	u

r have localized coefficients.
The coefficients fk1;:::;kr are given by

fk1;:::;kr D
Z 	

�	

cos(k1x) cos(k2x) : : : cos(kr x)dx : (63)

One could compute and estimate such a quantity directly,
but it is easier to proceed in a different way: to show that
f 3 has localized coefficients and then to use Theorem 38 to
show that each f r has localized coefficients for any r. This
is the path we will follow. Consider

fk1;k2;k3 D
Z 	

�	

cos(k1x) cos(k2x) cos(k3x)dx : (64)

Since the estimate (55) is symmetric with respect to the in-
dexes, we can assume that they are ordered, k1 � k2 � k3,
so that (64)D �ık2Ck3

k1 /2, �(k) D k3, S(k) D k3C k1 � k2
from which one immediately sees that (55) holds with
� D 0. As a consequence one also gets that the function
g3 :D

R 	
�	vu

2 has localized coefficients. Since fg3; frg D
r frC1, by induction Theorem 38 ensures that f r has local-
ized coefficients for any r.

Often it is impossible to explicitly compute the coefficients
fk1;:::;kr , so one needs a different way to verify the prop-
erty.

Example 43 Consider the nonlinear wave equation

utt � uxx C Vu D f (u) (65)

with Neumann boundary conditions. Here V is a smooth,
even, periodic potential. The Hamiltonian reduces to the
form (18) by introducing the variables qk by u(x) DP

k qk'k(x) where 'k(x) are the eigenfunctions of the
Sturm Liouville operator �@xx C V , and similarly for v.
In such a case one has

fk1;k2;k3 D
Z 	

�	

'k1 (x)'k2 (x)'k3 (x)dx : (66)

Here the idea is to consider (66) as the matrix element
Lk1;k2 of the operator L of multiplication by 'k3 (x) on the
basis of the eigenfunctions of the operator S :D �@xxCV .
The key idea is to proceed as follows.

Let L be a linear operator which maps D(Sr ) into itself
for all r � 0, and define the sequence of operators

LN :D [S; LN�1] ; L0 :D L : (67)
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Lemma 44 Let S be as above, then, for any N � 0 one has

ˇ̌
Lk1;k2

ˇ̌
D
ˇ̌˝
L'k1 ;'k2

˛ˇ̌
�

1
jk1 � k2 j

N

ˇ̌˝
LN'k1 ;'k2

˛ˇ̌

(68)

where k j is the eigenvalue of S corresponding to 'k j .

Then, in order to conclude the verification of the property
of localization of the coefficients, one has just to compute
LN and to estimate the scalar product product of the r.h.s.
All the computations can be found in [6].

Example 45 A third example where the verification of the
property of localization of coefficients goes almost in the
same way is the nonlinear Schrödinger equation

i ̇ D � xx C V C
@F( ;  ̄)
@ ̄

(69)

with Dirichlet Boundary conditions on [0; �]. Here one
has to assume that V is a smooth even potential and that F
is smooth and fulfills F(� ;� ̄) D F( ;  ̄) (this is re-
quired in order to leave the space of skew symmetric func-
tions invariant, see Remark 12). Here the variables (p; q)
are introduced by

 D
X

k2Z

pk C iqk
p
2

'k ; (70)

where  k are the eigenfunctions of S with Dirichlet
boundary conditions. Here the Taylor expansion of the
nonlinearity has only even terms. Thus the building block
for the proof of the property of localization of coefficients
is the operator L of multiplication by 'k3'k4 . Then, mu-
tatis mutandis the proof goes as in the previous case.

Verification of the Nonresonance Property

Finally in order to apply Theorem 40 one has to verify the
nonresonance property (r-NR). As usual in dynamical sys-
tems, this is done by tuning the frequencies using param-
eters. In the case of the nonlinear wave Eq. (1) one can use
the mass �.

Theorem 46 ([4,12,36]) There exists a zero measure set
S � R such that, if � 2 R � S, then the frequencies !k Dp
k2 C �2, k � 1 fulfill the condition (r-NR) for any r.

Thus the Theorem 40 applies to the Eq. (1) with almost
any mass.

A similar result holds for the Eq. (65), where the role
of the mass is played by the average of the potential.

The situation of the nonlinear Schrödinger is more dif-
ficult. Here one can use the Fourier coefficients of the po-
tential as parameters.

Fix � > 0 and, for any positive R define the space of
the potentials, by

VR :D

(

V (x) D
X

k�1

vk cos kx j v0k :D vkR�1e
 k

2

�
�
1
2
;
1
2

�
for k � 1

)

(71)

Endow such a space with the product normalized proba-
bility measure.

Theorem 47 ([12], see also [21]) For any r there exists
a positive R and a set S � VR such that property (r-NR)
holds for any potential V 2 S and jVR � Sj D 0.

So, provided the potential is chosen in the considered set,
Theorem 40 also applies to the Eq. (69).

We point out that the proof of Theorem 46 and of The-
orem 47 essentially consists of two steps. First one proves
that for most values of the parameters one has

ˇ̌
ˇ
ˇ̌
ˇ

X

k�1

!kKk

ˇ̌
ˇ
ˇ̌
ˇ
�

�

N˛
; 8K 2 Z1 ;

with 0 6D jKj :D
X

k

jKkj � r C 2 : (72)

Then one uses the asymptotic of the frequencies, namely
!k � akd with d � 1, in order to get the result.

Non Hamiltonian PDEs

In this section we will present some results for the non
Hamiltonian case.

It is useful to complexify the phase space. Thus, in this
section we will always denote the space of the complex se-
quences fzkg whose norm (defined by (25)) is finite by Ps .

In the space Ps consider a system of differential equa-
tions of the form

żk D kzk C Pk(z) ; k 2 Z � f0g (73)

where k are complex numbers and P(z) � fPk(z)g has
a zero of order at least 2 at the origin. Moreover we will
assume P to be a complex analytic map from a neighbor-
hood of the origin ofPs toPs . The quantities k are clearly
the eigenvalues of the linear operator describing the linear
part of the system, and for this reason they will be called
“the eigenvalues”.
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Example 48 A system of the form (18) with HP having
a vector field which is analytic. The corresponding Hamil-
ton equations have the form (73) with k D ��k D i!k ,
k � 1.

Example 49 Consider the following nonlinear heat equa-
tion with periodic boundary conditions on [��; �]:

ut D uxx � V(x)u C f (u) : (74)

If f is analytic then it can be given the form (73) by
introducing the basis of the eigenfunctions  k of the
Sturm Liouville operator S :D �@xx C V , i. e. denoting
u D

P
k zk'k . In this case the the eigenvalues k are the

opposite of the periodic eigenvalues of S. Thus in particu-
lar one has k 2 R and k � �k2.

In this context one has to introduce a suitable concept of
nonresonance:

Definition 50 A sequence of eigenvalues is said to be res-
onant if there exists a sequence of integer numbers Kk � 0
and an index i such that

X

k

kKk � i D 0 : (75)

In the finite dimensional case the most celebrated results
concerning systems of the form (73) are the Poincaré the-
orem, the Poincaré–Dulac theorem and the Siegel theo-
rem [1]. The Poincaré theorem is of the form of Birkhoff’s
Theorem 22, while the Poincaré–Dulac and Siegel theo-
rems guarantee (under suitable assumptions) that there
exists an analytic coordinate transformation reducing the
system to its normal form or linear part (no remainder!).

At present there is not a satisfactory extension of the
Poincaré–Dulac theorem to PDEs (some partial results
have been given in [41]). We now state a known extension
of the Siegel theorem to PDEs.

Theorem 51 ([54,63]) Assume that the eigenvalues fulfill
the Diophantine type condition
ˇ
ˇ̌
ˇ
ˇ

X

k

kKk � i

ˇ
ˇ̌
ˇ
ˇ
�

�

jKj�
; 8i;K with2 � jKj ; (76)

where � > 0 and � 2 R are suitable parameters; then there
exists an analytic coordinate transformation defined in
a neighborhood of the origin, such that the system (73) is
transformed into its linear part

żk D kzk : (77)

The main remark concerning this theorem is that the con-
dition (76) is only exceptionally satisfied. If  2 Cn then

condition (76) is generically satisfied only if � > (n � 2)/2.
Nevertheless some examples where such an equation is
satisfied are known [54].

The formalism of Sect. “Normal Form for Hamilto-
nian Nonresonant PDEs” can be easily generalized to the
non Hamiltonian case giving rise to a generalization of
Poincaré’s theorem, which we are going to state.

Given a polynomial map P : P1 ! P�1 one can ex-
pand it on the canonical basis ek of P0 as follows:

P(z) D
X

k1;::;kr;i

Pi
k1;::;kr zk1 : : : zkrei ; Pi

k1;::;kr 2 C : (78)

Definition 52 A polynomial map P is said to have lo-
calized coefficients if there exists � 2 [0;C1) such that
8N � 1 there exists CN such that for any choice of the in-
dexes k1; : : : ; kr ; i following the inequality holds:

ˇ̌
ˇPi

k1;:::;k ir

ˇ̌
ˇ � CN

�(k; i)�CN

S(k; i)N
; (79)

where (k; i) D (k1; ::; kr ; i). Amap is said to have localized
coefficients if for any s large enough, it is a smooth map
from Ps to itself and each term of its Taylor expansion has
localized coefficients.

Definition 53 The eigenvalues are said to be strongly
nonresonant at order r if for any N large enough, any
K D (Kk1 ; : : : ;Kkr ) and any index i such that jKj � r and
there are at most two of the indexes k1; ::; kr ; i larger
than N the following inequality holds:

ˇ̌
ˇ̌
ˇ

X

k

kKk � i

ˇ̌
ˇ̌
ˇ
�

�

N˛
: (80)

Theorem 54 Assume that the nonlinearity has localized
coefficients and that the eigenvalues are strongly nonreso-
nant at order r, then there exists an sr and an analytic co-
ordinate transformation Tr : Usr ! Psr which transforms
the system (73) to the form

żk D kzk CRk(z) ; (81)

where the following inequality holds

kR(z)ksr � Ckzkrsr : (82)

Extensions and Related Results
The theory presented here applies to quite general semi-
linear equations in one space dimension. At present a sat-
isfactory theory applying to quasilinear equations and/or
equations in more than one space dimensions is not avail-
able. The main difficulty for the extension of the theory to
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semilinear equations in higher space dimension is related
to the nonresonance condition. The general theory can be
easily extended to the case where the differences !k � !l
between frequencies accumulate only at a set constituted
by isolated points.

Example 55 Consider the nonlinear wave equation on
the d-dimensional sphere

utt �
guC �2u D f (x; u) ; x 2 Sd (83)

with
g the Laplace Beltrami operator; the frequencies are
given by !k D

p
k(k C d � 1)C �2 and their differences

accumulate only at integers. A version of Theorem 40 ap-
plicable to (83) was proved in [9]. As a consequence in par-
ticular one has a lower bound on the existence time t of the
small amplitude solutions of the form jtj � ��r , where " is
proportional to a high Sobolev norm of the initial datum.
An extension to utt �
gu C Vu D f (x; u) is also known.

Example 56 A similar result was proved in [11] for the
nonlinear Schrödinger equation

� i ̇ D �
 C V  C f (j j2) ; x 2 T d ; (84)

where the star denotes convolution.

The only general result available at present for quasilinear
system is the following theorem.

Theorem 57 ([5]) Fix r � 1, assume that the frequency
vector fulfills condition (72) and that there exists d1 such
that the vector field of HP is a smoothmap fromPsCd1 toPs
for any s large enough. Then the same result of Theorem 40
holds, but the functions do not necessarily have localized co-
efficients and, for any s large enough the remainder is esti-
mated by

kXR(r) (z)ks � CkzkrC2
sCdr ; 8z 2 U

(r)
s ; (85)

where dr is a large positive number.

The estimate (85) shows that the remainder is small only
when considered as an operator extracting a lot of deriva-
tives. In particular it is non trivial to use such a theorem
in order to extract information on the dynamics. Follow-
ing the approach of [8] and [5] this can be done using the
normal form to construct approximate solutions and suit-
able versions of the Gronwall lemma to compare it with
solutions of the true system. This however allows to con-
trol the dynamics only over times of the order of ��1,
" being again a measure of the size of the initial datum.
Such a theory has been applied to quasilinear wave equa-
tions in [5] and to the Fermi Pasta Ulam problem in [17].

Among the large number of papers containing related re-
sults we recall [41,47,56,59]. A stronger result for the non-
linear wave equation valid over times of order ��2 can be
found in [36].

Future Directions
Future directions of research include both purely theoret-
ical aspects and applications to other sciences.

From a purely theoretical point of view, the most im-
portant open problems pertain to the validity of normal
form theory for equations in which the nonlinearity in-
volves derivatives, and for general equations in more than
one space dimension.

These results would be particularly important since the
kind of equations appearing in most domains of physics
are quasilinear and higher dimensional.

Concerning applications, we would like to describe
a few of them which would be of interest.

� Water wave problem. The problem of description of
the free surface of a fluid has been shown to fit in the
scheme of Hamiltonian dynamics [62]. Normal form
theory could allow one to extract the relevant informa-
tions on the dynamics in different situations [31,38],
ranging from the theory of Tsunamis [32] to the theory
of fluid interface, which is relevant e. g. to the construc-
tion of oil platforms [33].

� Quantum mechanics. A Bose condensate is known to
be well described by the Gross Pitaevskii equation.
When the potential is confining, such an equation is
of the form (18). Normal form theory has already been
used for some preliminary results [18], but a systematic
investigation could lead to interesting new results.

� Electromagnetic theory and magnetohydrodynamics.
The equations have a Hamiltonian form; normal form
theory could help to describe some instability arising in
plasmas.

� Elastodynamics. Here one of the main theoretical open
problems is the stability of equilibria which are a min-
imum of the energy. The problem is that in higher di-
mensions the conservation of energy does not ensure
enough smoothness of the solution to ensure stability.
Such a problem is of the same kind as the one solved
in [9] when dealing with the existence times of the non-
linear wave equation.
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Glossary

Hilbert space A Hilbert space H is a normed com-
plex vector space with a Hermitian scalar product. If
';  2H the scalar product between ' and is writ-
ten as ('; ) � ( ; ')� and is taken to be linear in  
and antilinear in ': if a; b 2 C, the scalar product be-
tween a ' and b is a�b('; ). The norm of  is
defined as k k �

p
( ; ). With respect to the norm

k � k,H is a complete metric space. In the followingH
will be assumed to be separable, that is any complete
orthonormal set of vectors is countable.

States and observables In quantum mechanics the states
of a system are represented as vectors in a Hilbert space
H , with the convention that proportional vectors rep-
resent the same state. Physicists mostly use Dirac’s
notation: the elements of H are represented by j � i
(“ket”) and the scalar product between j ' i and j i
is written as h' j  i (“braket”). The observables, i. e.
the physical quantities that can be measured, are rep-
resented by linear Hermitian (more precisely: self-ad-
joint) operators onH . The eigenvalues of an observ-
able are the only possible results of the measurement
of the observable. The observables of a system are gen-
erally the same of the corresponding classical system:
energy, angular momentum, etc., i. e. they are of the
form f (q; p), with q � (q1; : : : ; qn); p � (p1; : : : ; pn)
the position and momentum canonical variables of the
system: qi and pi are observables, i. e. operators, which
satisfy the commutation relations [qi ; qj] � qi q j �
qjqi D 0, [pi ; p j] D 0, [qi ; p j] D i„ ıi j , with „ the
Planck’s constant h divided by 2� .

Representations Since separable Hilbert spaces are iso-
morphic, it is always possible to represent the el-
ements of H as elements of l2, the space of the
sequences fuig; ui 2 C, with the scalar product
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(v; u) �
P

i v
�
i ui . This can be done by choosing an or-

thonormal basis of vectors ei inH : (ei ; e j) D ıi j and
defining ui D (ei ; u); with Dirac’s notations jA i !
faig; ai D h ei j A i. Linear operators � are then rep-
resented by f�i jg; �i j D (ei ; � e j) � h ei j � j e j i.
The � ij are called “matrix elements” of � in the repre-
sentation ei. If �� is the Hermitian-conjugate of � , then
(��)i j D ��ji . If the ei are eigenvectors of � then the
(infinite) matrix � ij is diagonal, the diagonal elements
being the eigenvalues of � .

Schrödinger representation A different possibility is to
represent the elements of H as elements of L2[Rn],
the space of the square-integrable functions on Rn ,
where n is the number of degrees of freedom of the
system. This can be done by assigning how the op-
erators qi and pi act on the functions of L2[Rn]: in
the Schrödinger representation the qi are taken to
act as multiplication by xi and the pi as �i„@/@xi : if
jA i !  A(x1; : : : ; xn), then

qi jAi ! xi A(x1; : : : ; xn) ;
pi jAi ! �i„@ A(x1; : : : ; xn)/@xi :

Schrödinger equation Among the observables, the Ha-
miltonianH plays a special role. It determines the time
evolution of the system through the time dependent
Schrödinger equation

i„
@ 

@t
D H ;

and its eigenvalues are the energy levels of the sys-
tem. The eigenvalue equation H D E is called the
Schrödinger equation.

Definition of the Subject

In the investigation of natural phenomena a crucial role is
played by the comparison between theoretical predictions
and experimental data. Those practicing the two arts of the
trade continuously put challenges to one another either
presenting data which ask for an explanation or propos-
ing new experimental verifications of a theory. Celestial
mechanics offers the first historical instance of this inter-
play: the elliptical planetary orbits discovered by Kepler
were explained by Newton; when discrepancies from the
elliptical paths definitely emerged it was necessary to add
the effects of the heavier planets to the dominant role of
the sun, until persistent discrepancies between theory and
experiment asked for the drastic revision of the theory of
gravitation put forth by Einstein, a revision which in turn
offered a lot of new effects to observe, some of which have
been verified only recently.

In this dialectic interaction between theory and experi-
ment only the simplest problem, that of a planetmoving in
the field of the sun within Newton’s theory, can be solved
exactly. All the rest was calculated by means of perturba-
tion theory. Generally speaking, perturbation theory is the
technique of finding an approximate solution to a problem
where to a dominant factor, which allows for an exact so-
lution (zeroth order solution), other “perturbing” factors
are added which are outweighed by the dominant factor
and are expected to bring small corrections to the zeroth
order solution.

Perturbation theory is ever-pervasive in physics, but
an area where it plays a major role is quantum mechan-
ics. In the early days of this discipline, the interpreta-
tion of atomic spectra was made possible only by a heavy
use of perturbation theory, since the only exactly soluble
problem was that of the hydrogen atom without external
fields. The explanation of the Stark spectra (hydrogen in
a constant electric field) and of the Zeeman spectra (atom
in a magnetic field) was only possible when a perturba-
tion theory tailored to the Schrödinger equation, which
rules the atomic world, was devised. As for heavier atoms,
in no case an exact solution for the Schrödinger equa-
tion is available: they could only be treated as a pertur-
bation of simpler “hydrogenoid” atoms. Most of the es-
sential aspects of atomic and molecular physics could be
explained quantitatively in a few years by recourse to suit-
able forms of perturbation theory. Not only did it ex-
plain the position of the spectral lines, but also their rel-
ative intensities, and the absence of some lines which
showed the impossibility of the corresponding transitions
(selection rules) found a convincing explanation when
symmetry considerations were introduced. When later
more accurate measurements revealed details in the hy-
drogen spectrum (the Lamb shift) that only quantum field
theory was able to explain, perturbation theory gained
a new impetus which sometimes resulted in the antic-
ipation of theory (quantum electrodynamics) over ex-
periment as to the accuracy of the effect to be mea-
sured.

An attempt to describe all the forms that perturbation
theory assumes in the various fields of physics would be
vain. We will limit to illustrate its role and its methods
in quantum mechanics, which is perhaps the field where
it has reached its most mature development and finds its
widest applications.

Introduction

An early example of the use of perturbation theory which
clearly illustrates its main ideas is offered by the study of
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the free fall of a body [29]. The equation of motion is

Ėv D Eg C 2Ev � E̋ C E̋ � (Er � E̋ ) (1)

where Eg is the constant gravity acceleration and E̋ the an-
gular velocity of the rotation of the earth about its axis.
˝ is the parameter characterizing the perturbation. If we
wish to find the eastward deviation of the trajectory to first
order in ˝ we can neglect the third term in the RHS of
Eq. (1), whose main effect is to cause a southward devia-
tion (in the northern hemisphere). The ratio of the second
term to the first one in the RHS of Eq. (1) (the effective per-
turbation parameter) is ˝

p
h/g ' 10�4 for the fall from

a height h � 100m, so we can find the effect of˝ by writ-
ing Ev D Ev0 C Ev1 in Eq. (1), where Ev0 is the zeroth order
solution (Ev0 D Egt if Ev0(0) D 0) and Ev1 obeys

Ėv1 D 2Ev0 � E̋ D 2t Eg � E̋ : (2)

The solution is Er D EhC 1
2 Egt

2 C 1
3 t

3 Eg � E̋ . The eastward
deviation is the deviation in the direction of Eg � E̋ and its
value is ı D 1

3 t̄
3g˝ cos � , where � is the latitude and t̄ the

zeroth order time of fall, t̄ D
p
2gh.

While the above example is a nice illustration of the
main features of perturbation theory (identification of
a perturbation parameter whose powers classify the con-
tributions to the solution, existence of a zeroth order ex-
act solution) the beginning of modern perturbation theory
can be traced back to the work of Rayleigh on the theory
of sound [33]. In essence, he wondered how the normal
modes of a vibrating string

�(x)
@2v
@t2
D
@2v
@x2

; v(0; t) D v(�; t) D 0 (3)

are modified when passing from a constant density � D 1
to a perturbed density �C ��(x). To solve this problem he
wrote down most of the formulae [10,33] which are still in
use to calculate the first order correction to non-degener-
ate energy levels in quantum mechanics.

The equation for the normal modes is

u00(x)C �(x)u(x) D 0 ; u(0) D u(�) D 0 : (4)

Let u(0)n �
p
2/� sin nx be the unperturbed solution for

the nth mode, n D n2, and u(0)n C �u
(1)
n the perturbed so-

lution through first order, corresponding to a frequency
n C ��n . By writing the equation for u(1)n

d2u(1)n

dx2
C nu(1)n C �nu(0)n C n�u

(0)
n D 0 ;

u(1)n (0) D u(1)n (�) D 0 (5)

after multiplying by u(0)r and using Green’s theorem he
found

�n D �n

Z 	

0
�(x)



u(0)n

�2
dx ; (6)

arn �
Z 	

0
u(0)r u(1)n dx D

n

r � n

Z 	

0
�u(0)r u(0)n dx

(r ¤ n) (7)
Z 	

0
u(0)n u(1)n dx D 0 : (8)

As an application Rayleigh found the position �/2 C
ıx � �/2 C �� of the nodal point of the perturbed
mode n D 2 when the perturbation to the density is � D
�ı(x � �/4). The vanishing of u(0)2 C �u

(1)
2 determines

2
p
2/�� D u(1)2 (�/2). By Eq. (7) the function u(1)2 has

an expansion u(1)2 D
P

n¤2 an2u
(0)
n , an2 D 4�

n2�4 sin n�/4.
The result for � is

� D �
2�
�
p
2

�
1C

1
3
�

1
5
�

1
7
C

1
9
C

1
11
� � � �

�

D �
�

2
:

(The series in brackets is equal to
R 1
0 (1Cx2)/(1Cx4)dx D

1/2
R1
0 (1 C x2)/(1 C x4)dx, which can be calculated by

contour integration.)
Perturbation theory was revived by Schrödinger, who

introduced it into quantum mechanics in a pioneering
work of 1926 [44]. There, he applied the concepts and
methods which Rayleigh had put forth to the case where
the zeroth order problem was a partial differential equa-
tion with non-constant coefficients, and he wrote down,
in the language of wave mechanics, all the relevant for-
mulae which yield the correction to the energy levels and
to the wave functions for the case of both non-degenerate
and degenerate energy levels. As an application he calcu-
lated the shift of the energy levels of the hydrogen atom
in a constant electric field by two different methods. First
he observed that in parabolic coordinates the wave equa-
tion is separable also with a constant electric field, which
implies that in the subspace of the states with equal zeroth
order energy the perturbation is diagonal in the basis of
the parabolic eigenfunctions, thus circumventing the in-
tricacies of the degenerate case. Later, he used the spheri-
cal coordinates, which entails a non diagonal perturbation
matrix and calls for the full machinery of the perturbation
theory for degenerate eigenvalues.

It is of no use to repeat here Schrödinger’s calcula-
tions, since the methods which they use are at the core of
modern perturbation theory, which is referred to as the
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Rayleigh–Schrödinger (RS) perturbation theory. It rapidly
superseded other approaches (as that by Born, Heisenberg
and Jordan [7], who worked in the framework of the ma-
trix quantum mechanics), and will be presented in the fol-
lowing sections.

Presentation of the Problem and an Example

The most frequent application of perturbation theory in
quantum mechanics is the approximate calculation of
point spectra. The Hamiltonian H is split into an ex-
actly solvable partH0 (the unperturbed Hamiltonian) plus
a term V (the perturbation) which, in a sense to be spec-
ified later, is small with respect to H0: H D H0 C V . In
many cases the perturbation contains an adjustable pa-
rameter which depends on the actual physical setting. For
example, for a system in an external field this parameter
is the field strength. For weak fields one expects the spec-
trum of H to differ only slightly from the spectrum of H0.
In these cases it is convenient to single out the dependence
on a parameter by setting

H() � H0 C V : (9)

Accordingly we will write the Schrödinger equation as

H() () D E() () : (10)

We will retain the form Eq. (9) of the Hamiltonian even
whenH does not contain a variable parameter, thereby un-
derstanding that the actual eigenvalues and eigenvectors
are the values at  D 1.

The basic idea of the RS perturbation theory is that the
eigenvalues and eigenvectors of H can be represented as
power series

 () D
1X

0

n (n) ; E() D
1X

0

n�n ; (11)

whose coefficients are determined by substituting expan-
sions Eq. (11) into Eq. (10) and equating terms of equal
order in . Generally, only the first few terms of the series
can be explicitly computed, and the primary task of the
RS perturbation theory is their calculation. The practicing
scientist who uses perturbation theory never has to tackle
themathematical problem of the convergence of the series.
This problem, however, or more generally the connection
between the truncated perturbation sums and the actual
values of the energy and the wave function, is fundamen-
tal for the consistency of perturbation theory and will be
touched upon in a later section.

Before expounding the technique of the RS perturba-
tion theory we will consider a simple (two-dimensional)

problem which can be solved exactly, since in its discus-
sion several features of perturbation theory will emerge
clearly, concerning both the behavior of the energy E()
and the behavior of the Taylor expansion of this function.
From the physical point of view a system with two-dimen-
sional Hilbert spaceC2 can be thought of as a particle with
spin 1/2 when the translational degrees of freedom are ig-
nored.

Let us write the Hamiltonian H D H0 C V in a rep-
resentation whereH0 is diagonal:

H D
�

E0
1 0
0 E0

2

�
C 

�
V11 V12
V21 V22

�

D

�
E0
1 C V11 V12
V�12 E0

2 C V22

�
: (12)

We consider first the case E0
1 ¤ E0

2 ;V12 ¤ 0. The exact
eigenvalues E1;2() of H are found by solving the secular
equation:

E1;2()

D
1
2

� �
E0
1 C V11


C
�
E0
2 C V22


˙
p

()

�
;

(13)


() �
��
E0
1 C V11


�
�
E0
2 C V22

2
C42jV12j2: (14)

The corresponding eigenvectors, in the so called interme-
diate normalization defined by ( (0);  ()) D 1, are

 1() D

 

1;
p

() �

�
E0
1 � E0

2

�  (V11 � V22)

2V12

!

(15)

 2() D

 

�

p

() �

�
E0
1 � E0

2

�  (V11 � V22)

2V21
; 1

!

:

(16)

Expanding E1;2() through order 3 we get:

E1() D E0
1 C V11 C 

2 jV12j
2

E0
1 � E0

2

� 3
jV12j2(V11 � V22)
�
E0
1 � E0

2
2 C O(4) (17)

E2() D E0
2 C V22 � 

2 jV12j
2

E0
1 � E0

2

C 3
jV12j2 (V11 � V22)
�
E0
1 � E0

2
2 C O(4) : (18)

At order 1 only the diagonal matrix elements of V con-
tribute to E1;2. The validity of the approximation re-
quires jV12j 
 jE0

1 � E0
2j. If this condition is not satis-

fied, that is if the eigenvalues E0
1; E

0
2 are “quasi-degener-

ate”, all terms of the expansion can be numerically of the
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Perturbation Theory in QuantumMechanics, Figure 1
The behavior of the exact eigenvalues E1;2(�) when V12 D 0
(blue lines) and when V12 ¤ 0 (red lines)

same order of magnitude and no approximation of finite
order makes sense.

Note that, within the first order approximation, “level
crossing” (E1() D E2()) occurs at

̄ D �
�
E0
1 � E0

2

/ (V11 � V22) : (19)

On the other hand Eq. (13) shows that level-crossing is im-
possible, unless V12 D 0, in which case the first order ap-
proximation yields the exact result. IfV12 ¤ 0 the behavior
of the levels E1() and E2() near ̄ is shown in Fig. 1: the
two levels “repel” each other [49].

At first order the eigenvectors  1;2() are

 
[1]
1 D

�
1; �V21/

�
E0
2 � E0

1


(20)

 
[1]
2 D

�
�V12/

�
E0
1 � E0

2

; 1

: (21)

The expectation value ( [1]
1 ;H [1]

1 )/( [1]
1 ;  

[1]
1 ) of the

Hamiltonian over  [1]
1 , for example, is

E0
1 C V11 C 

2 jV12j
2

E0
1 � E0

2
� 3
jV12j2(V11 � V22)
�
E0
1 � E0

2
2

� 4
jV12j4

�
E0
1 � E0

2
3 C O(5) (22)

which agrees with E1() up to the 3 terms (the correct
fourth order term contains also jV12j2(V11 � V22)2/(E0

1 �

E0
2)

3). This is an example of Wigner’s (2n C 1)-theo-
rem [52], see Subsect. “Wigner’s Theorem”.

The power expansions of E1;2() and 1;2() converge
in the disk jj < jE0

1 � E0
2j/
p
(V11 � V22)2 C 4jV12j2. The

denominator is just twice the infimum over a of the op-
erator norm of V � aI. Since adding to V a multiple of

the identity does not affect the convergence properties of
the Taylor’s series of E(), we see that the convergence
domain always contains the disk jj < jE0

1 � E0
2 j/2kVk,

a property which holds true for any bounded perturbation
in Hilbert space (see Sect. “Problems with the Perturbation
Series”).

If H0 is degenerate, that is E0
1 D E0

2 � E0, then the
eigenvalues are obtained by diagonalizingV . The degener-
acy is removed and the corrections to the eigenvalues are
of first order in :

E1;2() D E0 C
1
2



V11 C V22

˙
p
(V11 � V22)2 C 4jV12j2

�
(23)

while the eigenvectors are  independent.
The infinite dimensional case is much more involved.

In particular, in most cases the perturbation series does
not converge at all, that is its radius of convergence van-
ishes. However, we shall meet again the three situations
discussed above: the case of non-degenerate eigenvalues
E0
n such that jE0

n � E0
m j 	 jVnm j, the case of degener-

ate eigenvalues and finally the case of “quasi-degener-
ate” eigenvalues, i. e. groups of eigenvalues E0

ni
such that

jE0
ni
� E0

n j
j . jVni n j j. As discussed above, in this last

case Hnin j must be diagonalized exactly prior to applying
perturbation theory.

Perturbation of Point Spectra: Nondegenerate Case

In this section we consider an eigenvector  0 of H0 be-
longing to a non-degenerate eigenvalue E0 and apply the
RS theory to determine the power expansions Eq. (11)
such that Eq. (10) is satisfied, the Hamiltonian H() be-
ing given by Eq. (9). The case of a degenerate eigenvalue
will be considered in Sect. “Perturbation of Point Spec-
tra: Degenerate Case”. For both cases the starting point is
the substitution of the expansions Eq. (11) into Eq. (10),
which, upon equating terms with equal powers, yields the
following system of equations

(H0 � E0) (n) C V (n�1) D

n�1X

kD0

 (k)�n�k ;

n D 1; 2; : : : (24)

A perturbative calculation of the energy and the wave
function through order h amounts to calculating �n and
 (n) up to n D h and truncating the series in Eq. (11) at
n D h.
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Corrections to the Energy and the Eigenvectors

In the following let  k, Ek be the normalized eigenvec-
tors and the eigenvalues of H0, and let 
Ek0 � Ek � E0,
Vhk � ( h;V k). The correction �n is recursively defined
in terms of the lower order corrections to the energy and
the wave function: by left multiplying Eq. (24) by  0 we
find

�n D


 0;V (n�1)

�
�

n�1X

hD1



 0;  

(h)
�
�n�h : (25)

Similarly, the components ( k ;  
(n)); k ¤ 0, are found

by left-multiplying by  k ; k ¤ 0:


 k ;  

(n)
�
D �



 k ;V (n�1)

�

Ek0

�1

C

n�1X

hD1



 k ;  

(h)
�
�n�h
Ek0

�1 : (26)

Note that, even if the functions  (k)’s for k < n were
known, still ( 0;  

(n)) is intrinsically undefined, since to
any solution of Eq. (24) we are allowed to add anymultiple
of 0. The reason of this indeterminacy is that Eq. (10) de-
fines () only up to a multiplicative factor ˛(). Even the
normalization condition ( ();  ()) D 1 leaves  ()
undetermined by a phase factor exp(i'()); '() 2 R.
On the contrary, the corrections �n as well as all the ex-
pectation values (up to order n) are unaffected by these
modifications of the wave function  () [16].

We can turn to our advantage the indeterminacy
of ( 0;  

(n)) by requiring that in the expression of �n,
Eq. (25), the dependence on the values of ( 0;  

(k)),
k � n � 1, disappears. For example, after writing



 0;V (n�1)

�

D V00


 0;  

(n�1)
�
C
X

h¤0

V0h


 h ;  

(n�1)
�

the independence of ( 0;  
(n�1)) implies �1 D V00. Next,

requiring �n to be independent of ( 0;  
(n�2)) deter-

mines �2 and so on, until finally Eq. (25) gives �n. As an
example we carry through this procedure for n D 3. Start-
ing from

�3 D V00


 0;  

(2)
�
C
X

k¤0

V0k


 k ;  

(2)
�

� �1



 0;  

(2)
�
� �2



 0;  

(1)
�

we first find

�1 D V00 : (27)

Next, from Eq. (26) for n D 2, we get

�3 D �
X

k¤0

jV0k j2


Ek0



 0;  

(1)
�

�
X

h;k¤0

V0k

Ek0

Vkh



 h;  

(1)
�

C
X

k¤0

V0k

Ek0



 k ;  

(1)
�
�1 � �2



 0;  

(1)
�
:

The independence of ( 0;  
(1)) implies

�2 D �
X

k¤0

jV0k j2


Ek0
: (28)

Finally, by using Eq. (26) for n D 1 we find

�3 D
X

h;k¤0

V0k

Ek0

Vkh


Eh0
Vh0 � �1

X

k¤0

jV0k j2


Ek0
2 : (29)

Note that if �n is required, the lower order corrections
being known, one can use a simplified version of Eqs. (25)
and (26) where the terms ( 0;  

(k)) are omitted since the
beginning. Once the values of �k ; k � n, have been deter-
mined, Eq. (26) yields ( k ;  

(n)). For example, for the first
order correction to the wave function we have



 k ;  

(1)
�
D �

Vk0


Ek0
: (30)

By suitably choosing the arbitrary factor ˛() we re-
ferred to after Eq. (26) we can impose ( 0;  ()) D 1.
With this choice (known as the “intermediate normaliza-
tion”, since  () is not normalized) we have ( 0;  

(k)) D
0 for any k > 0. As a result, for the wave function through
order n we find

 [n] �  0 C

nX

kD1

k (k) �  0 C ın (31)

with
�
 0;  

[n] D 1 : (32)

Using the intermediate normalization the expression of �n
is

�n D


 0;V (n�1)

�
; (33)

while the value of ( k ;  
(n�1)) can be read immediately in

the expression of �n: ( k ;  
(n�1)) is obtained from �n by

omitting in each term the factor V0k and the sum over k.
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For example the wave function [2] �  0C 
(1)C2 (2)

in the intermediate normalization by Eqs. (28) and (29) is

 [2] D  0 � 
X

kD1

 k
Vk0


Ek0

C 2
X

h;kD1

 k
Vkh


Ek0

Vh0


Eh0

� 2�1
X

kD1

 k
Vk0


Ek0
2 : (34)

In order to calculate expectation values, transition proba-
bilities and so on one needs the normalized wave function

 
[n]
N D N1/2 ( 0 C ın ) (35)

with N�1 D 1C (ın ; ın ). N can be chosen real. Note
that the wave function  [1] is correctly normalized up to
first order.

From the above equations one sees in which sense the
perturbation V must be small with respect to the unper-
turbed Hamiltonian H0: the separation between the un-
perturbed energy levels must be large with respect to the
matrix elements of the perturbation between those levels
and the total correction ıE to E0 should be small with re-
spect to jEi � E0j, Ei standing for any other level of the
spectrum of H0.

Wigner’s Theorem

From Eq. (24) it follows that

H [n] D E[n] [n] C O
�
nC1 ;

whence one should infer that, if E is the exact energy,
E � ( [n]

N ;H [n]
N ) D O(nC1). It is therefore remark-

able Wigner’s result that the knowledge of  [n] allows the
calculation of the energy up to order 2nC 1 (Wigner’s
2nC 1 theorem) [52]. Indeed, he proved that, if E is the
exact energy,

E �
�
 [n];H [n]

�
 [n];  [n]

 D O
�
2nC2 :

To this purpose, let

�(nC1) D  �
 [n]

q�
 [n];  [n]



where  is the normalized exact wave function, H D
E . Then

�(nC1) D O
�
nC1 ;



 ;�(nC1)

�
C


�(nC1);  

�

D �


�(nC1); �(nC1)

�
D O

�
2nC2 :

As a consequence
�
 [n];H [n]

�
 [n];  [n]

 � ( ;H ) D O
�
2nC2 :

Wemake explicit this point with an example. Since

 
[1]
N D

 0 C  
(1)

q
1C 2

�
 (1);  (1)

 ;

by using Eq. (30) and recalling Eq. (28) and Eq. (29) we
have



 

[1]
N ;H 

[1]
N

�
D E0 C �1 C

2�2 C 
3�3

1C 2
�
 (1);  (1)



D E0 C �1 C 2�2 C 3�3 C O
�
4

:

The Feynman–Hellmann Theorem

The RS perturbative expansion rests on the hypothesis that
both the eigenvalues E() and the corresponding eigen-
vectors () admit a power series expansion, in short, that
they are analytic functions of  in a neighborhood of the
origin. As we shall see in Sect. “Problems with the Pertur-
bation Series”, as a rule it is not so and the perturbative ex-
pansion gives rise only to a formal series. For this reason it
is advisable to derive the various terms of the perturbation
expansion without assuming analyticity. If we need E()
and  () through order n it is sufficient to assume that,
as functions of , they are CnC1, that is continuously dif-
ferentiable (n C 1) times. The procedure consists in taking
the derivatives of Eq. (10) [15,28]: at the first step we get

H 0()C V () D E0() ()C E() 0() (36)

and by left multiplication by (), with ( ();  ()) D 1,
we get

E0() D
�
 ();V ()


; (37)

which is a special case of the Feynman–Hellmann theo-
rem [17,23]:

@E
@
D

�
 ();

@H
@
 ()

�
: (38)

For  D 0 we find

E0(0) D V00 ; (39)

whence �1 D V00, in agreement with Eq. (27). Next, after
left multiplying Eq. (36) by  k and taking  D 0 we get

�
 k ;  

0

D �

Vk0


Ek0
(40)
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which, again, agrees with Eq. (30). Taking now the deriva-
tive of (37) at  D 0 and using Eq. (40) we obtain

E00(0) D 2
X

kD1

V0k
�
 k ;  

0

D �2

X

kD1

jV0k j2


Ek0
(41)

whence �2 D 1
2E
00(0), in agreement with Eq. (28).

It is clear that the procedure can be pursued to any
allowed order, and that the results for the energy correc-
tions, as well as for the wave functions, are the samewe ob-
tained earlier by the RS technique. However, the concep-
tual difference, that no analyticity hypothesis is required,
is important since in many cases this hypothesis is not sat-
isfied.

As to the relation of E[n] � E0 C �1 C � � � C n�n
with E() we recall that, since by assumption E() isCnC1,
we can write Taylor’s formula with a remainder:

E() D
nX

0

E(p)

p!
pC

E(nC1)(�)
(n C 1)!

nC1 ; 0 < � < 1 :

(42)

As observed in [28], since for small  the sign of the re-
mainder is the sign of E(nC1)(0)nC1, Eq. (42) allows to
establish whether the sum in Eq. (42) underestimates or
overestimates E(). Moreover, if two consecutive terms,
say q and qC 1, have opposite sign, then (for sufficiently
small ) E() is bracketed between the partial sums in-
cluding and excluding the qth term. It is a pity that no one
can anticipate how small such a  should be. (Of course
these remarks apply to the RS truncated series as well.)

Perturbation of Point Spectra: Degenerate Case

The case when the unperturbed energy E0 is a degener-
ate eigenvalue of H0, i. e. in the Hilbert space there ex-
ists a subspace W0 generated by a set f (i)

0 g; 1 � i � n0,
of orthogonal normalized states, such that each  0 in W0
obeys (H0 � E0) 0 D 0, deserves a separate treatment.
Themain problem is that, if () is an eigenstate of the ex-
act Hamiltonian H D H0 C V , we do not know before-
hand which state ofW0  (0) is.

In order to use a more compact notation it is conve-
nient to introduce the projection P0 onto the subspaceW0
and its complement Q0

P0 D
n0X

iD0

 
(i)
0



 

(i)
0 ;  

�
; Q0 � I � P0 ; (43)

where  (i)
0 ; 1 � i � n0, is any orthonormal basis of W0.

The Hamiltonian H D H0 C V can be written as

H D (P0 C Q0)(H0 C V)(P0 C Q0)
D E0P0 C VPP C VPQ C VQP C VQQ

C Q0H0Q0 ; (44)

where

VPP D P0VP0 ; VPQ D P0VQ0 ;

VQP D Q0VP0 ; VQQ D Q0VQ0 :
(45)

After projecting the Schrödinger equation ontoW0 and its
orthogonal complementW?0 , we find

(E0 C VPP )P0 C VPQQ0 D EP0 (46)

VQPP0 C Q0H0Q0 C VQQQ0 D EQ0 : (47)

Letting

HQQ D Q0HQ0 D Q0H0Q0 C VQQ (48)

Q0 can be extracted from Eq. (47):

Q0 D (E � HQQ )�1VQPP0 : (49)

Note that in Eq. (47) the operator HQQ acts on vectors
ofW?0 and that E � HQQ does possess an inverse inW?0 .
Indeed, the existence of a vector � inW?0 such that

(HQQ � E)� D 0 (50)

contradicts the assumptions which perturbation theory
is grounded in: the separation between E() and E(0)
should be negligible with respect to the separation between
different eigenvalues of H0. Actually, if  k is such that
H0 k D Ek k ; Ek ¤ E0, by left multiplying Eq. (50) by
 k we would find

(E � Ek)( k ; �) D ( k ;V�)

where the LHS is of order 0 in , whereas the RHS of or-
der 1.

By substituting Eq. (49) into Eq. (46) we have

(E0 C VPP )P0 C 2VPQ (E � HQQ )�1VQPP0 
D EP0 : (51)

The energy shifts 
E � E � E0 appear as eigenvalues of
an operator A(E) acting inW0

A(E) � VPP C 
2VPQ (E � HQQ )�1VQP (52)

which however still depends on the unknown exact en-
ergy E. A calculation of the energy corrections up to
a given order is possible, starting from Eq. (52), provided
we expand the term (E � HQQ )�1 as far as is necessary to
include all terms of the requested order.
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Corrections to the Energy and the Eigenvectors

The contributions �i are extracted from Eq. (51) by ex-
panding

E D E0 C �1 C 2�2 C � � �

P0 D '0 C '1 C 2'2 C � � �

and equating terms of equal order. At the first order, since
the second term in the LHS of Eq. (51) is of order 2 or
larger, we have

VPP'0 D �1'0 : (53)

The first order corrections to the energy are the eigenval-
ues of the matrix VPP and the corresponding zeroth order
wave function is the corresponding eigenvector.

In the most favorable case the eigenvalues of VPP are
simple, and the degeneracy is completely removed since
the first order of perturbation theory. In this case, in or-
der to get the higher order corrections, we can avail our-
selves of the arbitrariness in the way of splitting the ex-
act Hamiltonian into a solvable unperturbed Hamiltonian
plus a perturbation by putting

H D (H0 C VPP )C (V � VPP ) � H00 C V
0 : (54)

The eigenvectors of H00 are the solutions of Eq. (53),
with eigenvalues E0 C �

(i)
1 ; 1 � i � n0, plus the eigen-

vectors  j of H0 with eigenvalues Ej ¤ E0. Since the
eigenvalues E0 C �(i)1 are no longer degenerate, the for-
malism of non-degenerate perturbation theory can be ap-
plied, but a warning is in order. When in higher pertur-
bation orders a denominator 
Ek0 occurs with the in-
dex k referring to another vector of the basis of W0, this
denominator is of order  and consequently the order of
the term containing this denominator is lower than the
naive V-counting would imply. In each such term, the ef-
fective order is the V-counting order minus the number
of these denominators. As shown below, this situation oc-
curs starting from terms of order 4 in the perturbation V .
Note that, also in the case of non-complete removal of the
degeneracy, the procedure outlined above, with obvious
modifications, can be applied to search the higher order
corrections to those eigenvalues which at first order turn
out to be non-degenerate.

If a residual degeneracy still exists, i. e. an eigenvalue �1
of Eq. (53) is not simple, we must explore the higher order
corrections until the degeneracy, if possible, is removed.
First of all we must disentangle the contributions of differ-
ent order in  from (E � HQQ )�1. Since

E � HQQ D (E � Q0H0Q0)

�
�
1 � (E � Q0H0Q0)�1VQQ

�
;

we have

(E � HQQ )�1 D
1X

0

n
�
(E � Q0H0Q0)�1VQQ

�n

� (E � Q0H0Q0)�1 : (55)

As the energy E still contains contributions of any order,
the operator (E � Q0H0Q0)�1 must in turn be expanded
into a series in . To make notations more readable, we
define

Q0

an
� (E0 � Q0H0Q0)�n : (56)

The second order terms from Eqs. (51) and (55) give

VPP'1 C VPQ
Q0

a
VQP'0 D �2'0 C �1'1 : (57)

Let P(i)0 be the projections onto the subspaces W (i)
0 of W0

corresponding to the eigenvalues �(i)1 :

P0 D
X

i

P(i)0 ; VPP D 
X

�
(i)
1 P(i)0 ;

P1 � P(1)0 ; �1 � �
(1)
1 :

(58)

By projecting onto W1 � W (1)
0 and recalling that '0 is

inW1 we get

P1VPQ
Q0

a
VQP'0 D �2'0 ; (59)

whence �2 is an eigenvalue of the operator

V1 � P1VPQ
Q0

a
VQPP1 D P1V

Q0

a
VP1 : (60)

Again, if the eigenvalue �2 is non-degenerate, we can
use the previous theory by splitting the Hamiltonian as

H D (H0 C VPP C V1)C (V � VPP � V1)
� H000 C V

00 : (61)

The vectors which make V1 diagonal belong to non-de-
generate eigenvalues ofH000 , hence the non-degenerate the-
ory can be applied. If, on the contrary, the eigenvalue �2 of
V1 is still degenerate, the above procedure can be carried
out one step further, with the aim of removing the resid-
ual degeneracy. We work out the calculation for �3, since
a new aspect of degenerate perturbation theory emerges:
a truly third order term which is the ratio of a term of or-
der 4 in the potential and a term of first order (see Eq. (67)
below).
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From Eq. (51) and (55) we extract the contribution of
order 3:

VPP'2 C VPQ
Q0

a
VQP'1 � �1VPQ

Q0

a2
VQP'0

C VPQ
Q0

a
VQQ

Q0

a
VQP'0 D �1'2 C �2'1 C �3'0 :

(62)

We want to convert this equation into an eigenvalue prob-
lem for �3. In analogy with Eq. (58) we have

P1 D
X

i

P(i)1 ; V1 D
X

�
(i)
2 P(i)1 ;

P2 � P(1)1 ; �2 � �
(1)
2 :

(63)

Since P2VPP D �1P2, first we eliminate '2 by applying P2
to Eq. (62):

P2VPQ
Q0

a
VQP'1 � �1P2VPQ

Q0

a2
VQP'0

C P2VPQ
Q0

a
VQQ

Q0

a
VQP'0 D �3P2'0 C �2P2'1 :

(64)

Writing '1 D
P

i P
(i)
0 '1, since P2V1 D �2P2 the contribu-

tion with i D 1 of the first term in the LHS of Eq. (64) is
P2V1'1 D �2P2'1. Hence, Eq. (64) reads

X

i¤1

P2VPQ
Q0

a
VQPP(i)0 '1 � �1P2VPQ

Q0

a2
VQP'0

CP2VPQ
Q0

a
VQQ

Q0

a
VQP'0 D �3P2'0C�2

X

i¤1

P(i)0 '1 :

(65)

Finally, P(i)0 '1, i ¤ 1, is extracted from Eq. (57) by project-
ing with P(i)0 ; i ¤ 1, and recalling that P(i)0 '0 D 0 if i ¤ 1:

P(i)0 '1 D P(i)0 VPQ
Q0

a
VQP'0/



�1 � �

(i)
1

�
; i ¤ 1 : (66)

Substituting into Eq. (65) we see that �3 is defined by the
eigenvalue equation for the operator

V2 � P2V
Q0

a
V
Q0

a
VP2 � �1P2V

Q0

a2
VP2

C
X

i¤1

P2V
Q0

a
V

P(i)0

�1 � �
(i)
1

V
Q0

a
VP2 : (67)

Despite the presence of four factors in the potential, the
last term is actually a third order term due to the denomi-
nators �1 � �

(i)
1 .

The procedure outlined above, which essentially em-
bodies the Rayleigh–Schrödinger approach, can be pur-
sued until the degeneracy is (if possible, see below
Sect. “Symmetry and Degeneracy”) completely removed,
after which the theory for the non-degenerate case can be
used. Rather than detailing the calculations, we present an
alternative iterative procedure due to Bloch [4] which al-
lows amore systematic calculation of the corrections to the
energy and the wave function.

Bloch’s Method

In equations Eq. (51) and (52) we have seen that the en-
ergy corrections 
E and the projections onto W0 of the
vectors  k() are eigenvalues and eigenvectors of an op-
erator acting in W0. This observation is not immediately
useful since the operator depends on the unknown exact
energy E(). However, it is possible to produce an opera-
tor B(), which can be calculated in terms of known quan-
tities and has the property that, if Ek();  k() are eigen-
values and eigenvectors of Eq. (10) such that Ek(0) D E0,
then

B()P0 k() D 
EkP0 k() : (68)

First of all, note that the vectors P0 k() are a basis
for the subspace W0. Indeed, it is implicit in the assump-
tion that perturbation theory does work that the perturb-
ing potential should produce only slight modifications of
the unperturbed eigenvectors of the Hamiltonian, so that
the vectors P0 k() are linearly independent (although
not orthogonal). Since their number equals the dimension
ofW0, they are a basis for this subspace.

Following [4], we define a  dependent operator U in
this way:

UP0 k() D  k() ; UQ0 D 0 : (69)

As a consequence we have

U D UP0 ; P0U D P0 ; (70)

U k() D  k() : (71)

The former of Eq. (70) follows immediately from the defi-
nition of U. Hence P0U D P0UP0, which implies the latter
of Eq. (70). Equation (71) is verified by applying the for-
mer of Eq. (70) to  k().

Let

B() � P0VU : (72)

We verify that, if
Ek � Ek � E0, then

B()P0 k() D 
EkP0 k() : (73)
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Indeed, by Eq. (69) we have P0VUP0 k() D P0V k().
Writing Eq. (10) as

(H0 � E0 C V ) k() D 
Ek k()

and multiplying by P0 we find

P0V k() D 
EkP0 k() ; (74)

hence Eq. (73) is satisfied.
A practical use of Eq. (73) requires an iterative defi-

nition of U in terms of known quantities. From Eqs. (69)
and (70) we have

U D P0U C Q0U D P0 C Q0UP0 : (75)

We calculate the latter term of Eq. (75) on the vectors
P0 k(). Since

(V �
Ek) k D (E0 � H0) k ;

recalling Eq. (69) we have

Q0UP0 k() D Q0 k()

D
Q0

a
(V �
Ek ) k()

D 
Q0

a
VU k() �
Ek

Q0

a
U k()

D 
Q0

a
VU k() �
Ek

Q0

a
UP0 k() :

By Eq. (74)

Q0UP0 k() D 
Q0

a
VU k() � 

Q0

a
UP0V k()

D 
Q0

a
VU k() � 

Q0

a
UP0VU k()

D 
Q0

a
�
VU � UVU


P0 k() :

As a consequence the desired iterative equation for U is

U D P0 C 
Q0

a
(VU � UVU) : (76)

Equation (76) in turn allows an iterative definition of
the operator B() of Eq. (72) depending only on quan-
tities which can be computed in terms of the known
spectral representation of H0. Knowing U through or-
der n � 1 gives B[n]() �

Pn
iD1 B

(i)(), whose eigenval-
ues are the energy corrections through order n. In fact, if
B D

P1
iD1 B

(i) and P0 k D
P1

sD0 
s's , the order r con-

tribution to Eq. (73) is

rX

iD1

B(i)'r�i D

rX

iD1

�i'r�i : (77)

Defining P0 
[n]
k �

Pn
0 

r'r � '
[n], 
E[n] �

Pn
1 

r�r ,
we see that the sum of Eq. (77) for values of r through n
gives

B[n]'[n] D 
E[n]'[n] C O(nC1) : (78)

Once P0 [n]
k () has been found, Eq. (69) gives the compo-

nent of k() inW?0 through order nC 1. As an example,
for n D 3 we have

U [2] D P0 C 
Q0

a
VP0 C 2

Q0

a
V
Q0

a
VP0

� 2
Q0

a2
VP0VP0 ; (79)

B[3] D P0VP0C2P0V
Q0

a
VP0C3P0V

Q0

a
V
Q0

a
VP0

� 3P0V
Q0

a2
VP0VP0 : (80)

IfW0 is one dimensional, Eq. (80) gives for �1 C 2�2 C
3�3 the same result as Eqs. (27), (28) and (29).

The main difference between the RS perturbation the-
ory and Bloch’s method is that within the former the en-
ergy corrections through order n are calculated by means
of a sequential computation starting from �1, with the con-
sequence that at each step the dimension of the matrix
to be diagonalized is smaller. Conversely, within Bloch’s
method one has to diagonalize the matrix B[n](), which
has the dimension of W0. However, as noted above,
for n > 1 the eigenvalues of B[n]() are different from
�1 C 

2�2 C � � � C 
n�n by terms of order at least nC 1.

Similarly, the eigenvectors of Eq. (78) differ from the com-
ponent in W0 of  [n] D  0 C  

(1) C � � � C n (n) by
terms of order larger than n.

It is instructive to reconsider the calculation of �2 and
�3 in the light of Bloch’s method. If P0 D P1 C P01, then
P0VP0 D �1P1 C P01VP01 and

B[2]() D �1P1 C P01VP01 C 
2P1V

Q0

a
VP1

C2P01V
Q0

a
VP01C

2P1V
Q0

a
VP01C

2P01V
Q0

a
VP1 :

The last two terms represent off-diagonal blocks which can
be omitted for the calculation of �1 C 2�2, since the low-
est order contribution to the eigenvalues of a matrix X
from the off-diagonal terms Xij is jXi jj

2/(Xii � Xj j). For
a second order expansion as B[2] this yields third order
contributions of the type

3P1V
Q0

a
V

P01
�1 � �

0
1
V
Q0

a
VP1 :
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These are just the contributions to �3 which we met in the
RS approach: the expression of V2 given in Eq. (67) com-
bines the block-diagonal term of order 3 with the off-diag-
onal terms of order 2 giving a third order contribution.

The Quasi–Degenerate Case

There are cases, in both atomic and molecular physics,
where the energy levels of H0 present a multiplet struc-
ture: the energy levels are grouped into “multiplets” whose
separation 
E is large compared to the energy separation
ıE between the levels belonging to the same multiplet. For
instance, in atomic physics this is the case of the fine struc-
ture (due to the the so called spin–orbit interaction) or
of the hyperfine structure (due to the interaction of the
nuclear magnetic moment with the electrons); in molec-
ular physics typically this is the case of the rotational levels
associated with the different and widely separated vibra-
tional levels.

If a perturbation V is such that its matrix elements be-
tween levels of the same multiplet are comparable to ıE,
while being small with respect to
E, then naive perturba-
tion theory fails because of the small energy denominators
pertaining to levels belonging to the same multiplet. To
solve this problem, named the problem of quasi-degener-
ate levels, once again we can exploit the arbitrariness in the
way of splitting the Hamiltonian H into an unperturbed
Hamiltonian and a perturbation. Let

E(1)
0 � E0 C ıE(1) ; E(2)

0 � E0 C ıE(2) ; : : : ;

E(n)
0 � E0 C ıE(n) ;

be the unperturbed energies within a multiplet, with E0
any value close to the E(i)

0 ’s (for instance their mean
value), and P(i)0 the projections onto the corresponding
eigenspaces. Let

H0
0 � H0 �

X

i

ıE(i)P(i)0 ; eV � V C
X

i

ıE(i)P(i)0 ;

so that

H D H0
0 C

eV : (81)

We consider H0
0 as the unperturbed Hamiltonian and

eV as the perturbation. From the physical point of view
this procedure, if applied to all multiplets, is just the in-
clusion into the perturbation of those terms of H0 that are
responsible for the multiplet structure. With the splitting
of the Hamiltonian as in Eq. (81) we can apply the meth-
ods of degenerate perturbation theory. The most efficient

of these techniques is Bloch’s method, which yields a sim-
ple prescription for the calculation of the corrections of
any order. If for example we are content with the lowest
order, we must diagonalize the matrix P0eVP0, or equiva-
lently P0HP0, that is the energies through first order are
the eigenvalues of the equation

P0HP0 D EP0 ; (82)

where P0 D
P

i P
(i)
0 is the projection onto W0, the

eigenspace of H0
0 corresponding to the eigenvalue E0.

These eigenvalues are algebraic functions of , and no fi-
nite order approximation is meaningful, since all terms
can be numerically of the same order, due to the occur-
rence of small denominators (ıE(i) � ıE( j))n .

The Brillouin–WignerMethod

Equations (52) and (55) yield an alternative approach to
the calculation of the energy shift 
E due to a pertur-
bation to a non-degenerate energy level E0, the so called
Brillouin–Wigner method [9,22,52]. In this case W0, the
space spanned by the unperturbed eigenvector  0, is one-
dimensional. The correction
E obeys the equation


E D ( 0;A(E) 0) ; (83)

where the operator A(E) is defined in Eq. (52).
Substituting into the expression of A the expansion

Eq. (55) for (E � HQQ )�1 and noting that, if fEkg is the
spectrum of H0,

�
 0;VPQ (E � Q0H0Q0)�1VQP 0


D
X

k¤0

jV0k j2

E � Ek
;

�
 0;VPQ (E � Q0H0Q0)�1VQQ (E � Q0H0Q0)�1

VQP 0

D

X

k;h¤0

V0k (E � Ek)�1Vkh(E � Eh)�1Vh0

and so on, we find the following implicit expression for the
exact energy E:

E D E0 C ( 0;V 0)C 2
X

k¤0

jV0k j2

E � Ek

C 3
X

k;h¤0

V0k
E � Ek

Vkh

E � Eh
Vh0 C � � � : (84)

Consistently with the assumption that perturbation
theory does work, the denominators in Eq. (84) are non-
vanishing. The equation can be solved by arresting the ex-
pansion to a given power n in the potential and searching
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a solution iteratively starting with E D E0. However, the
result differs from the energy E[n] D E0 C �1 C 2�2 C
� � �Cn�n , calculated bymeans of the RS perturbation the-
ory, by terms of order n C 1 in the potential. The result
of the RS perturbation theory can be recovered from the
Brillouin–Wigner approach by substituting in the denom-
inators E D E0C�1C2�2C � � �Cn�n , expanding the
denominators in powers of k�k/E0 and equating terms of
equal orders in both sides of Eq. (84).

As for the perturbed wave function, if the intermediate
normalization is used, by Eq. (49) we have:

 D  0 C Q0 D  0 C (E � HQQ )�1VQP 0 : (85)

Again, using the expansion Eq. (55) we find

 D  0 C 
X

k¤0

 k
Vk0

E � Ek

C 2
X

k;h¤0

 k
Vkh

E � Ek

Vh0

E � Eh
C � � � : (86)

As for the energy, if we arrest this expression to order n
and substitute for E the value calculated by using Eq. (84),
the result will differ from the one of Rayleigh–Schrödinger
perturbation theory by terms of order nC 1.

A major drawback of the Brillouin–Wigner method is
its lack of size-consistency: for a system consisting of non-
interacting subsystems, the perturbative correction to the
energy of the total system is not the sum of the perturba-
tive corrections to the energies of the separate subsystems
through any finite order. This is best illustrated by the sim-
ple case of two systems a, bwith unperturbed eigenvectors,
energies and interactions  a

0 ; E
a
0 ; V

a and  b
0 ; E

b
0 ; V

b

respectively. If for example the expansion Eq. (84) is ar-
rested at order 2, by noting that the matrix elements V0;i j
between the unperturbed state and the states  a

i  
b
j are

V0;i j �


 a
0  

b
0 ;


Va C Vb

�
 a

i  
b
j

�

D
�
 a
0 ;V

a a
i

ı0 j C



 b
0 ;V

b b
j

�
ı0i ;

for the second order equation defining E we find

E D Ea
0 C Eb

0 C �
a
1 C �

b
1 C 

2
X

j

ˇ̌
ˇVb

0 j

ˇ̌
ˇ
2

E � Ea
0 � Eb

j

C 2
X

i

ˇ̌
Va
0i

ˇ̌2

E � Eb
0 � Ea

i
: (87)

On the other hand, for the energy of each system at second
order we find

Ea D Ea
0 C �

a
1 C 

2
X

i

ˇ̌
Va
0i

ˇ̌2

Ea � Ea
i
;

Eb D Eb
0 C �

b
1 C 

2
X

j

ˇ̌
ˇVb

0 j

ˇ̌
ˇ
2

Eb � Eb
j
:

(88)

It is apparent that the sum of the expression reported
in Eq. (88) does not equal the expression of the en-
ergy reported in Eq. (87). This pathology is absent in the
RS perturbation theory, where for non-interacting sys-
tems E() D Ea() C Eb(), hence, for any j, � j D
(1/ j!)DjE()j�D0 D �

a
j C �

b
j .

Symmetry and Degeneracy

In Sect. “Perturbation of Point Spectra: Degenerate Case”
we applied perturbation theory to the case of degenerate
eigenvalues with special emphasis on the problem of the
removal of the degeneracy at a suitable order of pertur-
bation theory. The main problem is to know in advance
whether the degeneracy can be removed completely, or
a residual degeneracy is to be expected. The answer is
given by group theory [21,51,53].

The very existence of degenerate eigenvalues of
a Hamiltonian H is intimately connected with the sym-
metry properties of this operator. Generally speaking,
a group G is a symmetry group for a physical sys-
tem if there exists an associated set fT(g)g of transfor-
mations in the Hilbert space of the system such that
j(T(g)'; T(g) )j2 D j('; )j2; g 2 G [53]. It is proven
that the operators T(g) must be either unitary or antiu-
nitary [2,53]. We will consider the most common case that
they are unitary and can be chosen in such a way that

T(g1)T(g2) D T(g1g2) ; g1; g2 2 G ; (89)

so that the operators fT(g)g are a representation of G.
A system described by a Hamiltonian H is said to be

invariant under the group G if the time evolution opera-
tor commutes withT(g). Under fairly wide hypotheses this
implies

�
H; T(g)

�
D 0 ; g 2 G : (90)

A consequence is that, for any g 2 G,

H D E ) HT(g) D ET(g) ; (91)

that is the restrictions T(g)jW of the operators T(g) to the
space W corresponding to a given energy E are a repre-
sentation of G. Given an orthonormal basis f ig inW, we
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have

T(g) i D
X

j

t ji (g) j (92)

and the vectors  i are said to transform according to the
representation of G described by the matrices tji.

This representation, apart from the occurrence of the
so called accidental degeneracy (which in most cases ac-
tually is a consequence of the invariance of the Hamilto-
nian under additional transformations) is irreducible: no
subspace of W is invariant under all the transformations
of the group. As a consequence, knowing the dimensions
dj of the irreducible representations of G allows to pre-
dict the possible degree of degeneracy of a given energy
level, since the dimension of W must be equal to one of
the numbers dj. If the group of invariance is Abelian, all
the irreducible representations are one dimensional, and
degeneracy can only be accidental.

Two irreducible representations are equivalent if there
are bases which transform with the same matrix t ji(g).
Otherwise they are inequivalent. The following orthogo-
nality theorems hold. If a and b are inequivalent represen-
tations and (a)

i , '(b)j transform according these represen-
tations, then



 

(a)
i ; '

(b)
j

�
D 0 (93)

while, if ar and as are equivalent, for the basis vectors (ar)
i ,

'
(as)
j we have


 

(ar)
i ; '

(as)
j

�
D K(a)

rs ıi j : (94)

Moreover, if Ars is a matrix which commutes with all
the matrices t(a)i j of an irreducible representation b, then
Ars D aırs (Schur’s lemma).

Symmetry and Perturbation Theory

If H D H0 C V , let G0 be the group under which H0
is invariant. Although it is not the commonest case, we
start with assuming that also the perturbation V com-
mutes with T(g) for any element g of G0. As a rule W0,
the space of eigenvectors of H0 with energy E0, hosts an
irreducible representation T(g) of G0. In this case the de-
generacy cannot be removed at any order of perturbation
theory. While this follows from general principles (for any
value of ,  () and T(g) () are eigenvectors of H(),
and by continuity the eigenspace W� will have the same
dimension asW0), it is interesting to understand how the
symmetry properties affect themechanism of perturbation
theory.

If f 0
i g is a basis of W0 transforming according to

an irreducible representation a of G0, then the matrix
Vi j D ( 0

i ;V 
0
j ) commutes with all the matrices t(a)ji (g)

and, according to Schur’s lemma, ( 0
i ;V 

0
j ) D vıi j D

�1ıi j . No splitting occurs at the level of first order per-
turbation theory, neither can it occur at any higher order.
Indeed, when V commutes with the operators T(g), then
Bloch’s operator U, and consequently the operator B()
of Eq. (72), both commute with the T(g)’s too. Again by
Schur’s lemma, the operator B() is a multiple of the iden-
tity. At any order of perturbation the degeneracy of the
level is not removed.

In most of the cases, however, the perturbation V does
not commute with all the operators T(g). The set

G D
˚
g : g 2 G0;

�
T(g);V

�
D 0

�

is a subgroup G of G0 and the group of invariance for
the Hamiltonian H is reduced to G. W0 generally con-
tains G-irreducible subspaces Wi ; 1 � i � n: the oper-
ators T(g)jW0 are a reducible representation of G. The
decomposition into irreducible representations of G is
unique up to equivalence.

The crucial information we gain from group theory is
the following: the number of energy levels which the en-
ergy E0 is split into is the number of irreducible repre-
sentations of G which the representation of G0 in W0 is
split into. The degrees of degeneracy are the dimensions
of these representations. What is relevant is that we only
need to study the eigenspaceW0 ofH0, which is known by
hypothesis.

In fact, letW() be the space spanned by the eigenvec-
tors  k() of H() such that  k(0) 2 W0. W() is invari-
ant under the operators T(g); g 2 G, since Bloch’s opera-
torU commutes with the operators T(g), g 2 G.W() can
be decomposed into G-irreducible subspaces Wk(), and
in each of them by Schur’s lemma the Hamiltonian H()
is represented by a matrix Ek()IWk (�). The projections
P0Wk() span the space W0 and transform with the same
representation of G as Wk(), since P0 commutes with
T(g) for any g in G0, hence for any g in G. Thus, the
space W0 hosts as many irreducible representations of G
as W(). Assuming that the eigenvalues Ek() are differ-
ent from one another, we see that the decomposition of
the representation of G0 in W0 into irreducible represen-
tations of G determines the number and the degeneracy
of the eigenvalues of H() such that the corresponding
eigenvectors  () are in W0 for  D 0. The possibility
that some of the Ek() are equal will be touched upon in
the next subsection.

Examples where the above mechanism is at work are
common in atomic physics. When an atom, whose unper-
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turbed Hamiltonian H0 is invariant under O(3), is sub-
jected to a constant electric field EE D Eẑ (Stark effect), the
invariance group G of its Hamiltonian is reduced to the
rotations about the z axis (SO(2)) and the reflections with
respect to planes containing the z axis. The irreducible
representations of this group have dimension at most 2,
and the G-irreducible subspaces of W0 (the space gener-
ated by the eigenvectors  E0 lm of H0 corresponding to
the energy E0) are generated by  E0 l0 (one dimensional
representation) and  E0 l˙m (two dimensional represen-
tations). Hence, the level E0 is split into l C 1 levels, the
states with m and �m remaining degenerate since reflec-
tions transform a vector with a given m into the vector
with oppositem. Instead, if the atom is subjected to a con-
stant magnetic field EB D Bẑ (Zeeman effect), the surviv-
ing invariance group G consists of SO(2) plus the reflec-
tions with respect to planes z D z0. G being Abelian, the
degeneracy is completely removed and this occurs at the
first order of perturbation theory.

In the rather special case that W0 contains subspaces
transforming according to inequivalent representations
of G0, also a G0-invariant perturbation V can separate
in energy the states belonging to inequivalent representa-
tions. For example, the spectrum of alkali atoms can be cal-
culated by considering in a first approximation an electron
in the field of the unit charged atomic rest, which is treated
as pointlike. In this problem the obvious invariance group
of the Hamiltonian of the optical electron is O(3), the
group of rotations and reflections, and the space W0 cor-
responding to the principal quantum number n > 1 con-
tains n inequivalent irreducible representations which are
labeled by the angular momentum l � n � 1. When the fi-
nite dimension of the atomic rest is taken into account as
a perturbation, its invariance under O(3) splits the levels
with given n and different l into n sublevels. A more care-
ful consideration, however, shows that also the Lenz vector
commutes with the unperturbedHamiltonian [5], and that
the spaceW0 is irreducible under a larger group, the group
SO(4) [18], which is generated by the angular momentum
and the Lenz vector. As a consequence the l degeneracy is
by no means accidental: a space irreducible under a given
group can turn out to be reducible with respect to one of
its subgroups.

Group theory is a valuable tool in degenerate pertur-
bation theory to search the correct vectors  k(0) which
make the operator P0VP0 diagonal. In fact, let 

(a)
i be vec-

tors which reduce the representation T of G inW0 into its
irreducible components T(a). The vectors  (a)

i and V (a)
i

transform according to the same irreducible representa-
tion T(a). Hence, by Eqs. (93) and (94) we find that the
P0VP0 is a diagonal block matrix with respect to inequiva-

lent representations:


 

(ar)
i ;V (bs)

j

�
D K(a)

rs ıi jıab ; (95)

with ıab D 1 if representations a and b are equivalent,
ıab D 0 otherwise. The matrices K(a)

rs are generally much
smaller than the full matrix of the potential. Thus, the
operation of diagonalizing V is made easier by finding
the G-irreducible subspaces Wa. Conversely, the reduc-
tion of an irreducible representation of a group G0 in
a space W0 into irreducible representations of a sub-
group G can be achieved by the following trick: find an
operator V whose symmetry group is just G and interpret
W0 as the degeneracy eigenspace of a Hamiltonian H0.
The G-irreducible subspaces of W0 are the eigenspaces of
P0VP0.

Level Crossing

As shown in the foregoing section, the existence of a non-
Abelian group of symmetry for the Hamiltonian entails
the existence of degenerate eigenvalues. The problem nat-
urally arises as to whether there are cases when, on the
contrary, the degeneracy is truly “accidental”, that is it can-
not be traced back to symmetry properties. The problem
was discussed by J. Von Neumann and E.P. Wigner [49],
who showed that for a generic n � nHermitian matrix de-
pending on real parameters 1; 2; : : :, three real values of
the parameters have to be adjusted in order to have the
collapse of two eigenvalues (level crossing).

When passing to infinite dimension, arguments valid
for finite dimensional matrices might fail. Moreover, of-
ten the Hamiltonian is not sufficiently “generic” so that
level crossing may occur. As a consequence, we look for
necessary conditions in order that, given the Hamilto-
nian H() D H0 C V , two eigenvalues collapse for some
(real) value ̄ of the parameter : E1(̄) D E2(̄) � Ē. In
this case, if  1(̄) and  2(̄) are any two orthonormal
eigenvectors of H(̄) D H0 C ̄V belonging to the eigen-
value Ē, the matrix

Hi j
�
̄

�
�
 i
�
̄

;
�
H0 C ̄V


 j
�
̄

; i; j D 1; 2

must be a multiple of the identity:

H11
�
̄

D H22

�
̄

; (96)

H12
�
̄

D 0 : (97)

Equations (96) and (97) are three real equations for the
unknown ̄; hence, except for special cases, level crossing
cannot occur.
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Perturbation Theory in QuantumMechanics, Figure 2
The effect of amagnetic field on the doublet 2p1/2;2p3/2 of the lithiumwhose degeneracies, in the absence of themagnetic field, are
respectively 2 and 4.� is the magnetic moment of the electron and�B/ıE D 1 for B � 1:4T

The condition expressed by Eq. (97) is satisfied if the
states corresponding to the eigenvalues E1() and E2()
possess different symmetry properties, that is if they be-
long to inequivalent representations of the invariance
group of the Hamiltonian or, equivalently, if they are
eigenvectors with different eigenvalues of an operator
which for any  commutes with the Hamiltonian H()
(hence it commutes with both H0 and V). In this case
H12 D 0 and the occurrence of level crossing depends on
whether Eq. (96) has a real solution. This explains the
statement that level crossing can occur only for states with
different symmetry, while states of equal symmetry repel
each other. Indeed, if Eq. (97) is not satisfied, the behav-
ior of two close eigenvalues as functions of  is illustrated
in Fig. 1 (Sect. “Presentation of the Problem and an Exam-
ple”).

Figure 2 illustrates the behavior of the quasi-degener-
ate energy levels 2p1/2; 2p3/2 of the lithium atom in the
presence of an external magnetic field EB. In the absence of
the magnetic field they are split by the spin-orbit interac-
tion, with a separation ıE � E3/2 � E1/2 D 0:4 � 10�4 eV,
to be compared with the separation in excess of 1 eV from
the adjacent 2s and 3s levels. This justifies treating the ef-
fect of the magnetic field by means of the first order per-
turbation theory for quasi-degenerate levels.

When the magnetic field is present, the residual sym-
metry is the (Abelian) group of rotations about the di-
rection of EB. Hence, the Hamiltonian commutes with the
component of the angular momentum along the direc-
tion of EB, whose eigenvalues are denoted with m. In Fig. 2
the energies of states with equal symmetry, that is with
the same value of m, are depicted with the same color.
No crossing occurs between states with equal m, while

the level with m D �3/2 does cross both the levels with
m D 1/2 and with m D �1/2 which the 2p1/2 level is split
into.

Problemswith the Perturbation Series

So far we have assumed that all the power expansions ap-
pearing in the calculations were converging for jj � 1,
that is we assumed analyticity in  of E(). Actually, it is
only for rather special cases that analyticity can be proved.
For most of the cases of physical interest, even if the terms
of the perturbation series can be shown to exist, the se-
ries does not converge, or, when it converges, the limit is
not E(). In spite of this, special techniques have been de-
vised to extract a good approximation to E() from the
(generally few) terms of the perturbation series which can
be computed. We will outline the main results existing in
the field, without delving into mathematical details, for
which we refer the reader to the books of Kato [25] and
Reed–Simon [34] and the references therein.

The most favorable case is that of the so called regular
perturbations [36,37,38,39], where the perturbation series
does converge to E(). More precisely, if E0 is a nondegen-
erate eigenvalue ofH0, for  in a suitable neighborhood of
 D 0 the Hamiltonian H D H0 C V has a nondegener-
ate eigenvalue E() which is analytic in  and equals E0 for
 D 0. The same property holds for the eigenvector  ().
A sufficient condition for this property to hold is expressed
by the Kato–Rellich theorem [26,36,37,38,39], which es-
sentially states that if the perturbation V is H0-bounded,
in the sense that constants a; b exist such that

kV k � akH0 k C bk k (98)
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for any  in the domain of V (which must include the
domain of H0) then the perturbation is regular. A lower
bound to the radius r such that the perturbation series con-
verges to the eigenvalue E() for jj < r can be given in
terms of the parameters a; b appearing in Eq. (98) and the
distance ı of the eigenvalue E0 from the rest of the spec-
trum of H0. We have

r D
�
aC

2
ı

�
bC a

�
jE0j C

ı

2

����1
: (99)

It must be stressed, however, that the constants a and b
are not uniquely determined by V andH0. If the perturba-
tion V is bounded (a D 0; b D kVk) condition Eq. (99)
reads r D ı/(2kVk), which implies that the perturbation
series for H D H0 C V with V bounded converges if
kVk < ı/2 (Kato bound [26]). The analysis of the two-
level system (Sect. “Presentation of the Problem and an
Example”) shows that the figure 1/2 cannot be improved.
Still, Kato bound is only a lower bound to r.

A similar statement holds for degenerate eigenval-
ues [34]: if E0 has multiplicity m there are m single
valued analytic functions Ek(); k D 1; : : : ;m such that
Ek(0) D E0 and, for  in a neighborhood of 0, Ek() are
eigenvalues of H() D H0 C V . Some of the functions
Ek() may be coincident, and in a neighborhood of E0
there are no other eigenvalues of H().

Regular perturbations are in fact exceedingly rare,
a notable case being that of helium-like atoms [47]. Actu-
ally, there are cases where, although on physical grounds
H0 C V does possess bound states, the relationship be-
tween E() and the RS expansion is far more compli-
cated than for regular perturbations. As pointed out by
Kramers [27], with an argument similar to an observation
by Dyson [12] for quantum electrodynamics, the quartic
anharmonic oscillator with Hamiltonian

H D H0 C V �
p2

2m
C

m!2x2

2
C 

m2!3

„
x4 (100)

is such an example. In fact, on the one hand bound states
exist only for  � 0; on the other hand, if a power series
converges for  > 0, then the series should converge also
for negative values of . But for  < 0 no bound state ex-
ists. Still worse, by estimating the coefficients of the RS ex-
pansion it has been proved that the series has vanishing
radius of convergence [3].

In spite of this negative result, in this case it has been
proved [46] that the perturbation series is an asymptotic
series. This means that, for each n, if

Pn
0 �k

k is the sum
through order n of the perturbation series, then

lim
�!0

Pn
0 �k

k � E()
n

D 0 : (101)

We recall the difference between an asymptotic and an ab-
solutely converging series, such as occurs with regular per-
turbations. For the latter one, given any  in the conver-
gence range of the series, the distance j

Pn
0 �k

k � E()j
can be made arbitrarily small provided n is sufficiently
large (so that a converging series is also an asymp-
totic series). On the contrary, for an asymptotic series
j
Pn

0 �k
k � E()j is arbitrarily small only if  is suffi-

ciently near 0, but for a definite value of  the quantity
j
Pn

0 �k
k � E()jmight decrease to aminimum, attained

for some value N, and then it could start to oscillate for
n > N (this is indeed the case for the anharmonic oscilla-
tor). As a consequence, for asymptotic series it is not ex-
pedient to push the calculation of the terms of the series
beyond the limit where wild oscillations set in.

Any C1 function has an asymptotic series, as can be
seen by inspection of the Taylor’s formula with a remain-
der (see Eq. (42)). By this means Krieger [28] argued that,
if �k (or equivalently the kth derivative of E()) exists for
any k, the RS series is asymptotic. However, generally there
is not a range where the series converges to E(), that is
E() is not analytic. An asymptotic series may fail to con-
verge at all for  ¤ 0, as noted for the anharmonic os-
cillator. The asymptotic series of a function, if it exists,
is unique, but the converse is not true. For example, for
the C1 function defined for real x as f (x) D exp(�1/x2)
if x ¤ 0, f (0) D 0, the asymptotic series vanishes. There
are also cases when the perturbation series is asymptotic
for arg lying in a range [˛; ˇ]. This occurs for example
for the generalized anharmonic oscillator with perturba-
tion V / x2n . It has been proved that its perturbation se-
ries is asymptotic for j argj � � < � [46] (note that the
domain does not include negative values of ). The result
was later extended to multidimensional anharmonic oscil-
lators [19]. General theorems stating sufficient hypotheses
for the perturbation series to be asymptotic can be found
in the literature. As a rule, however, they do not covermost
of the cases of physical interest.

Even in the felicitous case when the perturbation se-
ries is asymptotic, it is only known that a partial sum ap-
proaches E() asmuch as desired provided  is sufficiently
small. This is not of much help to the practicing scien-
tist, who generally is confronted with a definite value of
the parameter , which can always be considered  D 1
by an appropriate rescaling of the potential V . Recalling
that different functions can have the same asymptotic se-
ries, it seems hopeless to try to recover the function E()
from its asymptotic series, but this is possible for the so
called strong asymptotic series. A function E() analytic
in a sectorial region (0 < jj < B; j argj < �/2C ı) is
said to have strong asymptotic series

P1
0 akk if for all 
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in the sector
ˇ̌
ˇ
ˇ̌E() �

nX

0

akk
ˇ̌
ˇ
ˇ̌ � C� nC1jjnC1(nC 1)! (102)

for some constants C; � . For strong asymptotic series it
is proved that the function E() is uniquely determined
by the series. Conditions that ensure that the RS series is
a strong asymptotic series have been given [34].

The problem of actually recovering the function E()
from its asymptotic series can be tackled by several meth-
ods. The most widely used procedure is the Borel summa-
tion method [6], which amounts to what follows. Given
the strongly asymptotic series

P1
0 akk , one considers

the series F() �
P1

0 (ak/k!)k . This is known as the
Borel transform of the initial series, which, by the hypoth-
esis of strong asymptotic convergence, can be proved to
have a non-vanishing radius of convergence and to possess
an analytic continuation to the positive real axis. Then the
function E() is given by

E() D
Z 1

0
F(x) exp(�x) dx : (103)

The above statement is Watson’s theorem [50]. Roughly
speaking, it yields the function E() as if the following ex-
change of the series with the integral were allowed:

E() �
1X

0

akk D
1X

0

ak
k!

Z 1

0
exp(�x)xk dxk

D

Z 1

0
exp(�x)

1X

0

ak
k!

(x)kdx

D

Z 1

0
F(x) exp(�x)dx :

A practical problem with perturbation theory is that,
apart from a few classroom examples, one is able to calcu-
late only the lower order terms of the perturbation series.
Although in principle it is impossible to divine the rest of
a series by knowing its terms through a given order, a tech-
nique which in some cases turned out to work is that of
Padé approximants [1,32]. A Padé [M;N] approximant to
a series is a rational function

RMN(z) D
PM(z)
QN (z)

(104)

whose power expansion near z D 0 is equal to the first
M C N terms of the series. It has been proved [31] that
the Padé [N;N] approximants converge to the true eigen-
value of the anharmonic oscillator with x4 or x6 pertur-
bation. The Padé [M;N] approximant to a function f (z)

is unique, but its domain of analyticity is generally larger.
Even for asymptotic series whose first terms are known
one can write the Padé approximants. One can either use
directly the Padé approximant as the value of E() for the
desired value of , or can insert it into the Borel summa-
tion method. For the case of the quartic anharmonic oscil-
lator (Eq. (100)) both methods have been proved to work
(at the cost of calculating some tens of terms of the series).

Another approach to the problem is the method of
self-similar approximants [55], whereby approximants to
the function E() for which the asymptotic series is known
are sought by means of products

f2p() D
pY

iD1

(1C Ai)ni : (105)

The 2p parameters Ai ; ni ; 1 � i � p, are determined by
equating the Taylor expansion of f2p() with the asymp-
totic series through order 2p (a0 D 1 can be assumed, with
no loss of generality, see [55]). Also, odd order approx-
imants f2pC1 are possible. For the anharmonic oscillator
(Eq. (100)) the calculations exhibit a steady convergence
to the correct value of the energy of both the even order
and the odd order approximants also for  D 200.

The problem with the above approaches is that their
efficiency seems limited to toy models as the anharmonic
oscillator. For realistic problems it is difficult to establish in
advance that the method converges to the correct answer.

Perturbation of the Continuous Spectrum

In this section we consider the effect of a perturbing po-
tential V on states belonging to the continuous spectrum.
Since the problem is interesting mainly for the theory of
scattering, we will assume that the unperturbed Hamilto-
nian H0 is the free Hamiltonian of a particle of mass m.
Also, assuming that the potential V(Er) vanishes at infinity,
the spectrum of the free HamiltonianH0 and the continu-
ous spectrum of the exact Hamiltonian H D H0 C V are
equal and consist of the positive real semi-axis. Given an
energy E D „2k2/2m, the problem is how the potential V
affects that particular eigenfunction 0 ofH0 which would
represent the state of the system if the interaction potential
were absent.

Letting D  0 C ı , the Schrödinger equation reads

(E � H0)ı D V( 0 C ı ) : (106)

In the spirit of the perturbation approach, ı can be cal-
culated by an iterative process provided we are able to find
the solution of the inhomogeneous equation

(E � H0)ı D � (107)
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in the form

ı D eG0� ; (108)

eG0 being the Green’s function of Eq. (107). Assuming that
eG0 is known, we find

ı D eG0V 
D eG0V 0 C eG0Vı 
D eG0V 0 C eG0V(eG0V 0 C eG0Vı )

D eG0V 0 C 
2eG0VeG0V 0 C 

2eG0VeG0Vı 
D � � � ;

(109)

that is ı is written as a power expansion in  in terms of
the free wave function  0.

Scattering Solutions and Scattering Amplitude

One has to decide which eigenfunction of H0 must be in-
serted into the above expression, and which Green func-
tion eG0 must be used, since, of course, the solution of
Eq. (107) is not unique. The questions are strongly in-
terrelated, and the answers depend on which solution of
the exact Schrödinger equation one wishes to find. Since
the study of the perturbation of the continuous spectrum
is relevant mainly for the theory of potential scattering,
we will focus on this aspect. In the theory of scattering it
is shown [24] that, for a potential V (Er) vanishing faster
than 1/r for r !1, a wave function  which in the
asymptotic region is an eigenfunction of the momentum
operator plus an outgoing wave

 
r!1
�! exp



iEk � Er

�
C fEk (�; ')

exp(ikr)
r

(110)

(�; ' being the polar angles with respect to the Ek axis) is
suitable for describing the process of diffusion of a beam
of free particles with momentum Ek which impinge onto
the interaction region and are scattered according the am-
plitude fEk(�; '). (The character of outgoing wave of the
second term in Eq. (110) is apparent when the time fac-
tor exp(�iEt) is taken into account.) The differential cross
section d� /d˝ is the ratio of the flux of the probability
current density due to the outgoing wave to the flux due to
the impinging plane wave. One finds

d�
d˝
D
ˇ
ˇ̌ fEk (�; ')

ˇ
ˇ̌2
: (111)

In conclusion, we require that 0 is a plane wave, and that
the Green functioneG0 has to be chosen in such a way as to
yield an outgoing wave for large r.

Thus we need to solve the equation



Ek2 C


�
ı D 

2m
„2

V


exp



iEk � Er

�
C ı 

�

� U
�
Er
 


exp


iEk � Er

�
C ı 

�
(112)

with the asymptotic condition ı ! fEk exp(ikr)/r for
r !1. In terms of the Green’s function G0(Er; Er 0), which
satisfies the equation




C Ek2

�
G0
�
Er; Er 0


D ı

�
Er � Er 0


; (113)

the solution of Eq. (112) can be written as

ı 
�
Er

D

Z
G0
�
Er; Er 0


U
�
Er 0


h
exp



iEk � Er 0

�
C ı 

�
Er 0
i

dEr 0 ; (114)

which is a form of the Lippmann–Schwinger equa-
tion [30]. The integral operator G0 with kernel G0(Er; Er 0) is
connected to the operator eG0 of Eq. (108) by the equation
eG0 D 2mG0/„2.

The leading term of ı for r!1 is determined by
the leading term of G0(Er; Er 0), so we look for a solution of
Eq. (113) with the behavior of outgoing wave for r!1.
Due to translation and rotation invariance (if both the in-
coming beam and the scattering potential are translated
or rotated by the same amount, the scattering amplitude
fEk(�; ') is unchanged), we require for the solution a de-
pendence only on jEr � Er 0j.

Recalling that
1/r D �4�ı(Er), we look for a solution
of Eq. (113) with Er 0 D 0 of the form �F(r)/(4�r), with
F(0) D 1. The function G0(Er; Er 0) then will be

G0
�
Er; Er 0


D

F
�ˇˇEr � Er 0

ˇ
ˇ

ˇ
ˇEr � Er 0

ˇ
ˇ : (115)

The equation for F(r) is

F 00 C k2F D 0 ; (116)

whose solutions are exp(˙ikr) (outgoing and incoming
wave respectively). In conclusion for G0 we find

G0(Er; Er 0) D �
1
4�

exp
�
ik
ˇ
ˇEr � Er 0

ˇ
ˇ

ˇ
ˇEr � Er 0

ˇ
ˇ : (117)

The solution of the Schrödinger equation with the Green
function given in Eq. (117) is denoted as  C

Ek
and obeys

the integral equation known as the Lippmann–Schwinger
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equation [30]:

 C
Ek

�
Er

D exp



iEk � Er

�
�

1
4�

Z exp
�
ik
ˇ̌
Er � Er 0

ˇ̌
ˇ̌
Er � Er 0

ˇ̌

U
�
Er 0

 C
Ek

�
Er 0

dEr 0 : (118)

The behavior for r !1 can be easily checked to be as
in Eq. (110) by inserting the expansion

ˇ
ˇEr � Er 0

ˇ
ˇ D r �

Er � Er 0

r
C O(1/r) (119)

into the Green function G0. We find (r̂ � Er/r)

�
1
4�

exp
�
ik
ˇ̌
Er � Er 0

ˇ̌
ˇ̌
Er � Er 0

ˇ̌

r!1
�! �

1
4�

exp
�
ik
�
r � r̂ � Er 0

�

r

�
1C
Er � Er 0

r2

�
; (120)

which yields for  C
Ek
(Er) (Ek f � kr̂)

 C
Ek

�
Er
 r!1
�! exp



iEk � Er

�
�

1
4�

exp(ikr)
rZ

exp


�iEk f � Er 0

�
U
�
Er 0

 C
Ek

�
Er 0

dEr 0: (121)

The solutions C
Ek
(Er) are normalized as the plane waves

exp(iEk � Er):


 C
Ek
;  C
Ek 0

�
D (2�)3ı



Ek � Ek 0

�
: (122)

In addition, they are orthogonal to any possible bound
state solution of the Schrödinger equation with the Hamil-
tonian H D H0 C V . Together with the bound state so-
lutions they constitute a complete set. On a par with the so-
lutions  C

Ek
(Er) one can also envisage solutions  �

Ek
(Er) with

asymptotic behavior of incoming wave. They are obtained
using for H (see Eq. (116)) the solution exp(�ikr). The
normalization and orthogonality properties of the func-
tions  �

Ek
(Er) are the same as for the  C

Ek
(Er) functions.

From Eq. (121) we derive an implicit expression for the
scattering amplitude fEk(�; '):

fEk(�; ') D �
1
4�

Z
exp



�iEk f � Er 0

�

U
�
Er 0

 C
Ek

�
Er 0

dEr 0 (123)

where the unknown function  C
Ek
(Er) still appears. Letting

' f � exp (iEk f � Er), Eq. (123) can also be written as

fEk(�; ') D �
1
4�



' f ;U CEk

�
: (124)

The Born Series and its Convergence

Equations (118) and (124) are the starting point to ob-
tain the expression of the exact wave function  C

Ek
(Er)

and the scattering amplitude fEk(�; ') as a power series
in , in the spirit of the perturbation approach. Recalling
that U D (2m/„2)V (see Eq. (112)), if 'Ek � exp(iEk � Er) for
 C
Ek
(Er) we find

 C
Ek
D 'EkCG0

2m
„2

V'EkC
2G0

2m
„2

VG0
2m
„2

V'EkC� � �

D exp


iEk � Er

�
C 

Z
G0
�
Er; Er 0

 2m
„2

V
�
Er 0


exp


iEk � Er 0

�
dEr0 C 2

Z
dEr 0

Z
dEr 00G0

�
Er; Er 0

 2m
„2

V
�
Er 0

G0
�
Er 0; Er 00

 2m
„2

V
�
Er 00

exp



iEk � Er 00

�
C � � � :

(125)

Inserting the above expansion into Eq. (124), for the
scattering amplitude fEk(�; ') we find

fEk(�; ') D
1X

nD1

f (n)
Ek

(�; ') (126)

where f (n)
Ek

, the contribution of order n in  to fEk(�; '),

is obtained by substituting  C
Ek

in Eq. (124) with the con-
tribution of order n � 1 of the expansion Eq. (125). The
term of order 1 is called the Born approximation [8], and
is given by

f B
Ek
(�; ') � f (1)

Ek
(�; ') D �

1
4�

�
2m
„2

�

Z
exp

h
i


Ek � Ek f

�
� Er 0
i
V
�
Er 0

dEr 0 : (127)

The term of order 2 is

f (2)
Ek

(�; ') D �
1
4�

�
2m
„2

�2
(' f ;VG0V'Ek) (128)

and the general term of order n is

f (n)
Ek

(�; ') D �
1
4�

�
2m
„2

�n
(' f ;VG0V � � �G0V'Ek )

(n times V ) : (129)

The scattering amplitude through order n is

f [n]
Ek

(�; ') D
nX

iD1

f (i)
Ek
(�; ') (130)
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with f (1)
Ek

(�; ') � f B
Ek
(�; '), and the series

P1
1 f (i)
Ek
(�; ')

is known as the Born series [8]. Of course, when us-
ing Eq. (130) for calculating the differential cross section
d� /d˝ only terms of order not exceeding n should be
consistently retained.

For a discussion of the range of validity and the con-
vergence of the expansions Eqs. (125) and (126) it is con-
venient to pose the problem in the framework of integral
equations in the Hilbert space L2 [40,54], which provides
a natural notion of convergence. To this purpose, since
 C
Ek
(Er) is not square integrable, we start assuming that the

potential V(Er) is summable
Z ˇ
ˇV
�
Er
ˇˇ dEr <1 (131)

and multiply Eq. (118) by jV(Er)j
1
2 [20,41,45]. Letting

�V (Er) � V (Er)/jV (Er)j (�V (Er) � 0 if V(Er) D 0) and defining

�C
Ek

�
Er

�
ˇ
ˇV
�
Er
ˇˇ

1
2  C
Ek

�
Er


(132)

K0
�
Er; Er 0


� �

2m
„2

G0
�
Er; Er 0

 ˇ̌
V (Er)

ˇ̌ 1
2
ˇ̌
V(Er 0)

ˇ̌ 1
2 �v

�
Er 0

;

(133)

Eq. (118) reads:

�C
Ek

�
Er

D
ˇ̌
V(Er)

ˇ̌ 1
2 exp



iEk � Er

�

C 

Z
K0
�
Er; Er 0


�C
Ek

�
Er 0

dEr 0 : (134)

Now the function in front of the integral is square in-
tegrable and the kernel K0(Er; Er 0) is square integrable too

Z
dEr
Z

dEr 0
ˇ̌
K0(Er; Er 0)

ˇ̌2

D

Z
dEr
Z

dEr 0
ˇ̌
V
�
Er
ˇ̌ ˇ̌

V
�
Er 0
ˇ̌

ˇ̌
Er � Er 0

ˇ̌2 <1 (135)

provided the potential V(Er) obeys the additional condition
Z

dEr 0
ˇ̌
V
�
Er 0
ˇ̌

ˇ̌
Er � Er 0

ˇ̌2 <1 : (136)

Equation (134) can be formally written as

�C
Ek
D �0CK̂0�CEk ; �0 �

ˇ̌
V(Er)

ˇ̌ 1
2 exp



iEk � Er

�
; (137)

K̂0 being the integral operator with kernel K0 given in
Eq. (133). The function �C

Ek
is formally given as

�C
Ek
D
�
I � K̂0

�1
�0 (138)

where the inverse operator (I � K̂0)�1 exists except for
those values of  (singular values) for which I � K̂0 has
the eigenvalue 0.

Since by Eq. (135) K̂0 is a compact operator, the sin-
gular values are isolated points which obey the inequality
jj � kK̂0k�1, since the spectrum of an operator is con-
tained in the closed disc of radius equal to the norm of
the operator. Thus, when kK̂0k < 1 the inverse operator
(I � K̂0)�1 exists and is given by the Neumann series
�
I � K̂0

�1
D ICK̂0C2K̂02C� � � � ICRK0

� ; (139)

which is clearly norm convergent. By the inequality

�
�K̂0

�
�2 � 2 Tr



K̂0 �K̂0

�

D 2
Z

dEr
Z

dEr 0
ˇ̌
K0
�
Er; Er 0

ˇ̌2 (140)

we see that, if

2
m2

4�2„4

Z
dEr
Z

dEr 0
ˇ
ˇV (Er)

ˇ
ˇ
ˇ
ˇV
�
Er 0
ˇˇ

ˇ̌
Er � Er 0

ˇ̌2 < 1 ; (141)

the condition kK̂0k < 1 is satisfied and consequently the
inverse operator (I � K̂0)�1 exists. In conclusion, a suffi-
cient condition for the convergence of the expansion

�C
Ek
D �0 C K̂0�0 C 2K02�0 C � � � (142)

in the L2 norm is that Eq. (141) holds [43]. Since
kK̂0k4 � Tr(K̂0 �K̂0K̂0 �K̂0), by the Riemann–Lebesgue
lemma it is possible to prove [56] that for any given 
the condition kK̂0k < 1 is satisfied provided the energy
„2k2/2m is sufficiently large.

The implications for the convergence of the expansion
Eq. (126) of the scattering amplitude are immediate, once
Eq. (124) is written in the form

fEk (�; ') D �
m

2�„2
ˇ
ˇV
�
Er
ˇˇ

1
2 ' f

�
Er

�V
�
Er

;
ˇ
ˇV
�
Er
ˇˇ

1
2  C
Ek

�
Er
�
: (143)

The Born series converges whenever the iterative solu-
tion of Eq. (137) converges, that is if Eq. (135) is satisfied.
As noted above, for any given  this happens for suffi-
ciently large energy. An additional useful result is that the
Born approximation f B

Ek
(�; ') (or the expansion f [n]

Ek
(�; ')

through any n) converges to the exact scattering ampli-
tude fEk(�; ') when the energy grows to infinity. More pre-
cisely [48], if Eq. (131) holds then

ˇ̌
ˇ fEk(�; ') � f [n]

Ek
(�; ')

ˇ̌
ˇ
k!1
�! 0 : (144)
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If kK̂0k � 1 the Neumann series Eq. (139) does not
converge and the perturbation approach is no longer vi-
able. However, if  is not a singular value Eq. (137) can be
solved by reducing it to an integral equation with a ker-
nel D of norm less than 1 plus a problem of linear alge-
bra [54]. In fact, for any positive value L the operator K̂0

can be approximated by a finite rank operator F

F� D
nX

iD1

˛i
�
Er
 �
ˇi
�
Er 0

; �
�
Er 0


(145)

such that, if D � K̂0 � F , kDk < 1/L. Equation (137) then
reads

(I � D)�C
Ek
D �0 C F�CEk : (146)

Since for jj < L we have kDk < 1, �C
Ek

can be written

in terms of the appropriate Neumann series I C RD
�
(see

Eq. (139)):

�C
Ek
D �0 C RD

� �0 C F�C
Ek
C RD

� F�
C
Ek
: (147)

The unknown quantities (ˇi ; �
C
Ek
) which appear in the RHS

of Eq. (147) are determined by solving the linear-alge-
braic problem obtained by left-multiplying both sides of
the equation by ˇr ; 1 � r � n. The values of  in the
range jj < L for which the algebraic problem is not solu-
ble are the singular values of Eq. (137) in that range. Thus,
Eq. (137) can be solved for any non-singular value.

Time Dependent Perturbations

A rather different problem is presented by the case that
a time independent Hamiltonian H0, for which the spec-
trum and the eigenfunctions are known, is perturbed by
a time dependent potential V(t). This occurs, for exam-
ple, when an atom or a molecule interacts with an ex-
ternal electromagnetic field. For the total Hamiltonian
H D H0 C V (t) stationary states no longer exist, and the
relevant question is how the perturbation affects the time
evolution of the system. We assume that the state  is
known at a given time, which can be chosen as t D 0, and
search for  (t). Obviously, any time t0 prior to the setting
on of the perturbation V(t) could be chosen instead of
t D 0.

The time dependent Schrödinger equation reads

i„
@ 

@t
D H (t) D H0 (t)C V (t) (t) : (148)

At any t,  (t) can be expanded in the basis of the eigen-
functions 'n(t) of H0:

H0'n(t) D En'n(t) (149)

'n(t) D 'n(0) exp(�iEn t/„) � �n exp(�iEn t/„) : (150)

For the sake of simplicity we treat H0 as if it only had dis-
crete spectrum, but the presence of a continuous compo-
nent of the spectrum does not create any problem.

We can write [11,42]

 (t) D
X

n
an(t)'n(t) : (151)

Note that the basis vectors 'n(t) are themselves time de-
pendent (by the phase factor given in Eq. (150)), whereas
the vectors �n are time independent. The isolation of the
contribution of H0 to the time evolution as a time depen-
dent factor allows a simpler system of equations for the
unknown coefficients an(t).

Substituting expansion Eq. (151) into Eq. (148) we find

i„
X

n
ȧn(t)'n(t)C

X

n
an(t)En'n(t)

D
X

n
an(t)En'n(t)C 

X

n
an(t)V (t)'n(t) :

By left multiplying by 'k(t), for the coefficients ak(t)
we find the system of equations

i„ȧk(t) D 
X

n
an(t)('k (t);V (t)'n(t))

� 
X

n
V I
kn(t)an(t) ; (152)

where we have defined

VI
kn(t) D ('k(t);V (t)'n(t)) : (153)

The matrix elements VI
kn(t) are the matrix elements of

an operator VI(t) between the time independent vectors
�k ; �n . Indeed, since

'n(t) D �n exp(�iEn t/„) D exp(�iH0t/„)�n ; (154)

Eq. (153) can be written as

VI
kn(t) D (exp (�iH0t/„) �k ;V (t) exp (�iH0t/„) �n)

�
�
�k ;VI(t)�n


;

(155)

where the operator VI(t) is defined as follows:

VI(t) � exp(iH0t/„)V(t) exp(�iH0t/„) : (156)

System Eq. (152) must be supplemented with the ap-
propriate initial conditions, which depend on the particu-
lar problem. The commonest application of time depen-
dent perturbation theory is the calculation of transition
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probabilities between eigenstates of H0. Thus, we assume
that at t D 0 the system is in an eigenstate of the un-
perturbed Hamiltonian H0, say the state '1. In this case
a1(0) D 1; an(0) D 0 if n ¤ 1.

In the spirit of perturbation theory, each an is ex-
panded into powers of 

a1(t) D 1C
X

rD1

r a(r)1 (t) ;

an(t) D
X

rD1

r a(r)n (t) n ¤ 1 ;
(157)

and terms of equal order are equated. For a(r)k we find

i„ȧ(r)k D
X

n
V I
kna

(r�1)
n ; r > 0 : (158)

By Eq. (157), for any r > 0, a(r)n (0) D 0. As a consequence,
for r D 1 we have

a(1)k D
�i
„

Z t

0
VI
k1(t1)dt1

D
�i
„

Z t

0
(�k ;V (t1)�1) exp (i
Ek1t1/„) dt1 ; (159)

where
Ek1 � Ek � E1. For r D 2 we find

i„ȧ(2)k D
X

n
V I
kn(t)a

(1)
n (t)

D
�i
„

X

n
V I
kn(t)

Z t

0
VI
n1(t1)dt1

whose solution is

a(2)k (t) D
�
�i
„

�2 Z t

0
dt2

Z t2

0
dt1

X

n
V I
kn(t2)V

I
n1(t1)

D

�
�i
„

�2 Z t

0
dt2

Z t2

0
dt1

X

n
(�k ;V (t2)�n)

exp(i
Ekn t2/„)(�n ;V(t1)�1) exp(i
En1 t1/„) :
(160)

It is clear how the calculation proceeds for higher values
of r. The general expression is

a(r)k (t) D
�
�i
„

�r Z t

0
dtr

Z tr

0
dtr�1 � � �

Z t3

0
dt2

Z t2

0
dt1

X
VI
knr

(tr )VI
nrnr�1

(tr�1) � � �

VI
n3n2 (t2)V

I
n21(t1) : (161)

By the completeness of the vectors �n, the sums over the
intermediate states can be substituted by the identity and
the expression of a(r)k is simplified into

a(r)k (t) D
�
�i
„

�r Z t

0
dtr

Z tr

0
dtr�1 � � �

Z t3

0
dt2

Z t2

0
dt1

�
�k ;VI(tr )VI(tr�1) � � �VI(t2)VI(t1)�1


:

(162)

It is customary to write Eq. (162) in a different way.
The r-dimensional cube 0 � ti � t; 1 � i � r, can be
split into r! subdomains

0 � tp1 � tp2 � � � � � tpr�1 � tpr � t ; (163)

with fp1; p2; : : : ; pr�1; prg a permutation of f1; 2; : : : ; r�
1; rg. The time ordered product of r (non-commuting)
operators VI(tp1 );VI(tp2 ); : : : ;VI(tpr ) is introduced ac-
cording to the definition

T
�
VI(tp1 ) � � �V

I(tpr )
�
� VI(tr) � � �VI(t1) ;

t1 � t2 � � � � � tr : (164)

If (�i/„)r(�k ; T
�
VI(tp1 ) � � �VI(tpr )

�
�1) is integrated

over the r-cube, then each of the r! subdomains defined by
Eq. (163) yields the same contribution. As a consequence
Eq. (161) can be written as

a(r)k (t) D
1
r!

�
�i
„

�r Z t

0
dtr

Z t

0
dtr�1 � � �

Z t

0
dt2

Z t

0
dt1

�
�k ; T

�
VI(tr )VI(tr�1) � � �VI(t2)VI(t1)

�
�1

:

(165)

The amplitudes ak(t) can then be written as

ak(t) D
�
�k ; T

�
exp

�
�i
„

�Z t

0
VI(t0)dt0

�
�1

�
(166)

with obvious significance of the T-exponential: each
monomial in the VI operators which appear in the expan-
sion of the exponential is to be time ordered according to
the T-prescription. If the initial state is given at time t0 the
integral appearing in the T-exponential should start at t0.
We define

UI(t; t0) � T
�
exp

�
�i
„

�Z t

t0
VI(t0)dt0

�
: (167)

The expansion of the T-exponential intomonomials in the
VI operators is called the Dyson series [13,14]. It is exten-
sively employed in perturbative quantum field theory.
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From Eqs. (166) and (167) it is easy to derive an ex-
pression for the time evolution operator U(t; t0) such that

U(t; t0) (t0) D  (t) : (168)

Indeed,  (t) and  (t0) can be expanded in the basis of
the vectors 'n(t) and 'n(t0) respectively as in Eq. (151).
By the linearity of the Schrödinger equation it suffices to
determine ('k (t);U(t; t0)'n(t0)), which we already know
to be (�k ;UI(t; t0)�n). We have

('k (t);U(t; t0)'n(t0))
D (exp(�iH0t/„)�k ;U(t; t0) exp(�iH0t0/„)�n)
D (�k ; exp(iH0t/„)U(t; t0) exp(�iH0t0/„)�n) :

As a consequence we find the equation

U (t; t0)

D exp (�iH0t/„) T
�
exp

�
�i
„

�Z t

t0
VI �t0


dt0
�

exp (iH0t0/„) ; (169)

which provides the perturbation expansion of the evolu-
tion operator U(t; t0) in powers of .

It can be proved that if the operator function V(t) is
strongly continuous and the operators V(t) are bounded,
then the expansion which defines the T-exponential is
norm convergent to a unitary operator, as expected [35].
The restriction to bounded operatorsV(t) does not detract
from the range of applications of Eqs. (166) and (169),
since time dependent perturbation theory is almost exclu-
sively used for treating interactions of a system with exter-
nal fields, which generate bounded interactions.

Future Directions

The long and honorable service of perturbation theory in
every sector of quantum mechanics must be properly ac-
knowledged. Its future is perhaps already in our past: the
main achievement is its application to quantum field the-
ory where, just to quote an example, the agreement be-
tween themeasured value and the theoretical prediction of
the electron magnetic moment anomaly to ten significant
digits has no rivals.

Despite its successes, still perturbation theory is con-
fronted with fundamental questions. In most of realistic
problems it is unknown whether the perturbation series is
convergent or at least asymptotic. In non-relativistic quan-
tummechanics this does not represent a practical problem
since only a limited number of terms can be calculated, but
in quantum field theory, where higher order terms are in

principle calculable, this calls for dedicate investigations.
There, in particular, conditions for recovering the exact
amplitudes from the first terms of the series by such tech-
niques as the Padé approximants or the self similar ap-
proximants, and the estimate on the bound of the error,
deserve further investigation.

Somewhat paradoxically, it can be said that the fu-
ture of perturbation theory is in the non-perturbative re-
sults (analyticity domains, large coupling constant behav-
ior, tunneling effect . . . ) – an issue where much work has
already been done – since they have proved to be comple-
mentary to the use of perturbation theory.
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Glossary

Agmon metric In the classically forbidden region where
the potential energy V(x) is larger than the to-
tal energy E, i. e. V(x) > E, we introduce a notion
of distance based on the Agmon metric defined as
[V (x) � E]dx2, where dx2 is the usual Riemann met-
ric. We emphasize that such an Agmon metric is the
“semiclassical” equivalent of the “classical” Jacobi met-
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ric [E � V(x)]dx2 introduced in classical mechanics in
the classically permitted region where V(x) < E.

Asymptotic series The notion of asymptotic series goes
back to Poincaré. We say that a formal power seriesP

r arz
�r is taken to be the asymptotic power series for

a function f (z), as jzj ! 1 in a given infinite sector
S D fz 2 C : ˛ � arg z � ˇg, if for any fixedN the re-
mainder term

RN (z) D f (z) �
N�1X

rD0

arz�r

is such that RN (z) D O(z�N ), that is

jRN (z)j � CN
ˇ̌
z�N

ˇ̌
; 8z 2 S ;

for some positive constant CN depending on N.
Classically allowed and forbidden regions – turning
points We distinguish two different regions: the region

V (x) < E where the classical motion is allowed and the
region V (x) > E where the classical motion is forbid-
den. The points that separate these two regions, that is
such that V(x) D E, will play a special role and they
are named turning points.

Semiclassical limit Cornerstone of Quantum Mechanics
is the time-dependent Schrödinger equation

i„
@ 

@t
D �

„2

2m
� C V(x) ; (1)

where V(x) is assumed to be a real-valued function,
usually it represents the potential energy, and m is the
mass of the particle. The solution of this equation de-
fines the density of probability j (x; t)j2 to find the
particle in some region of space. The parameter ¯ in
Eq. (1) is related to Planck’s constant h

„ D
h
2�
D 1:0545 � 10�27erg sec

D 6:5819 � 10�22 MeV sec :

According to the correspondence principle, when
Planck’s constant can be considered small with re-
spect to the other parameters, such as masses and
distances, then quantum theory approaches classical
Newton theory. Thus, roughly speaking, we expect that
classical mechanics is contained in quantum mechan-
ics as a limiting form (i. e. „ ! 0). The limit of small ¯,
when compared with the other parameters, is the so-
called semiclassical limit. We should emphasize that
making Planck’s constant small in Eq. (1) is a rather
singular limit and many difficult mathematical prob-
lems occur.

Stokes lines There is some misunderstanding in the liter-
ature concerning the name of the curves =

�
�(z)

�
D 0,

where =(�) denotes the imaginary part of

�(z) D
i
„

zZ

xE

p
E � V(q)dq ; z 2 C ;

and xE 2 R is a turning point (i. e. V(xE ) D E), the
potentialV is assumed to be an analytic function in the
complex plane. As usually physicists do, and in agree-
ment with Stokes’ original treatment, we adopt here
the convention to name as Stokes line any path com-
ing from the turning point xE such that =[�(z)] D 0;
reserving the name of anti-Stokes lines, or regular lines,
for the curves such that <[�(z)] D 0, where <(�) de-
notes the real part of � (we should emphasize thatmost
mathematicians adopt the opposite rule, that is they
call Stokes lines the paths such that<[�(z)] D 0).

Tunnel effect At a real (simple) turning point xE where
E D V(x) (and V 0(x) ¤ 0), classical particles incident
from an accessible region [where E > V(x)] reverse
their velocity and return back; the adjacent region
[where E < V(x)] is forbidden to these particles ac-
cording to classical mechanics. In fact, quantum me-
chanically exponentially growing or damped waves
can exist in forbidden regions and a quantum parti-
cle can pass through a potential barrier. This is the so-
called tunnel effect.

WKB The WKB method, named after the contributions
independently given by Wentzel, Kramers and Bril-
louin, consists of connecting the approximate solu-
tions of the time independent Schrödinger equation
across turning points.

Definition of the Subject

Several kinds of perturbationmethods are commonly used
in quantummechanics� Perturbation Theory andMolec-
ular Dynamics, � Perturbation Theory in Quantum Me-
chanics, � Perturbation Theory. This chapter deals with
semiclassical approximationswhere expressions for energy
levels and wave functions are obtained in the limiting case
of small values of Planck’s constant.

We emphasize that wave functions are highly singular
as the parameter ¯ goes to zero. In fact the semiclassical
limit is a singular perturbation problem; namely, Eq. (1)
suffers a reduction of order setting ¯ equal to zero and
the resulting equation is not a differential equation and
does not give the classical limit correctly. Therefore, ordi-
nary perturbation methods, which usually give energy lev-
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els and wave-functions as convergent power series of the
small parameter, cannot be applied.

The main goal of semiclassical methods consists of ob-
taining asymptotic series, in the limit of small ¯, for the
quantum-mechanical quantities. For instance, semiclassi-
cal methods permit us to solve the eigenvalues problem

�
„2

2m

 C V(x) D E ; x 2 Rn ; n � 1 ; (2)

where the energy levels E and the wave-functions (x) are
given by means of asymptotic series in the limit of vanish-
ing ¯, or to obtain a direct link between the time evolution
of a quantum observable and the Hamiltonian flux of the
associated classical quantity.

Introduction

The first contributions to this theory, in the framework of
QuantumMechanics, go back toWentzel (1926), Kramers
(1926) and Brillouin (1926). In their papers they indepen-
dently developed the determination of connection formu-
las linking exponential and oscillatory approximations of
the solution of Eq. (2) in dimension n D 1 across a turn-
ing point. This method, explained in Sect. The WKB Ap-
proximation, is usually calledWKB approximation, or also
JWKB method to acknowledge that the approximate con-
nection formula was previously discovered by Jeffrey. Ac-
tually, oscillatory and exponential approximation formu-
las, obtained far from turning points, were independently
used by Green (1837) and Liouville (1837) and they can be
already found in an investigation on the motion of a planet
in an unperturbed elliptic orbit by the Italian astronomer
Carlini (1817). For historical notes on the WKB-method
we refer to [7,11,23].

The WKB method can be also applied to three-di-
mensional problems only under some particular circum-
stances; for instance when the potential is spherically sym-
metric and the radial differential equation can be sepa-
rated.

In general WKB approximation is not suitable for
problems in dimension n higher than 1. Actually, semi-
classical methods in higher dimension require new sophis-
ticated tools such as the Agmon metric, microlocal calcu-
lus and ¯-pseudodifferential operators. These tools have
been developed by Agmon, Hörmander and Maslov in the
1970s and since then a large number of mathematicians
have contributed to this subject. In Sects. “Semiclassical
Approximation in Any Dimension” and “Propagation of
Quantum Observables” we briefly introduce the reader to
the basic concepts of these theories and we resume the
most important results such as the exponential decay of

wave-functions and the Egorov Theorem, which asymp-
totically describes the quantum evolution of an observable
by means of the classical evolution of its classical counter-
part.

Actually, these methods may be applied to many other
fields, where ¯ is a small quantity not related to the Planck
constant but it may represent a different small physical
quantity such as the adiabatic parameter in adiabatic prob-
lems, the (square root of the) inverse of the heavy mass in
the Born–Oppenheimer approximation, etc.

Notation

Hereafter, for the sake of definiteness, let us fix 2m D 1.

TheWKB Approximation

If the potentialV(x) does not have a very simple form then
the solution of the time-independent Schrödinger equa-
tion even in one dimension

� „2 00 C V(x) D E ; x 2 (x1; x2) ; (3)

is a quite complicated problem which requires the use of
a sort of approximation method (hereafter 0 D d

ı
dx de-

notes the derivative with respect x); here (x1; x2) is a given
finite or infinite one-dimensional interval.

We distinguish different regions: the classically al-
lowed regions where V(x) < E and the classically forbid-
den regions whereV(x) > E. Approximation formulas for
the solution of Eq. (3) in these separate regions have been
studied since Carlini, Green, Liouville and Jacobi. The
problem to connect these approximated solutions across
the turning points was raised in the framework of Quan-
tumMechanics and it was independently solved by Jensen,
Wentzel, Kramers and Brillouin. For the general treatment
of semiclassical approximation in dimension one and for
physical applications we refer to [2,3,10,21,24,25,33].

Semiclassical Solutions
in the Classically Allowed Region

The basic idea is quite simple: if V D const. is a constant
smaller than E then Eq. (3) has solutions e˙i kx/„ for a suit-
able real-valued constant k. This fact suggests to us that if
the potential, while no longer constant, varies only slowly
with x and it is such thatV(x) < E for any x 2 (x1; x2), we
might try a solution of the form

 (x) D a(x)ei S(x)/„ ; (4)

except that the amplitude a(x) is not constant and the
phase S(x) is not simply proportional to x. Substituting (4)
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into (3) and separating the real and imaginary parts of the
coefficients of ei S(x)/„, then we get a system of equations
for the x-dependent real-valued phase S(x) and amplitude
a(x):
�

u2 � p2(x) D „2a00/a
(a2u)0 D 0

where we set

u(x) D S0(x) and p(x) D
p
E � V(x) :

Hence, a(x) D C[u(x)]�1/2 for some constant C.
Since the complex conjugation a(x)e�i S(x)/„ of (4) is

a solution of the same equation and the Wronskian be-
tween these two solutions is not zero then the general so-
lution of Eq. (3) can be written as

 (x) D bC C(x)C b� �(x) ;

 ˙(x) D
1

p
u(x)

e˙i/„
R
u(x)dx :

(5)

Here, b˙ are arbitrary constants and u D u(x;„) is a real-
valued solution, depending on the variable x and on the
semiclassical parameter ¯, of the nonlinear ordinary dif-
ferential equation

F(u) D u2 � p2 � „2u f (u) D 0 (6)

where

f (u) D u�1/2
�
u�1/2

00
:

The fact that (6) is a nonlinear equation, whereas the
Schrödinger equation (3) is linear, would be usually re-
garded as a drawback, but we shall take advantage of the
nonlinearity to develop a simple approximation method
for solving (6).

Taking the limit of ¯ small in (6) then it turns out that
the leading order of u is simply given by p. Actually, it is
possible to prove that (3) has twice continuously differen-
tiable solutions ˙ satisfying the following asymptotic be-
havior

 ˙(x) D
1

p
p(x)

e
˙i/„

xR

a
p(q)dq �

1C ı˙(x)
�
;

x 2 (x1; x2) ; (7)

where a is an arbitrary point in (x1; x2) and where

jı˙(x)j � e
1
2„

ˇ
ˇ
ˇ
ˇ
xR

a
j f [p(q)]jdq

ˇ
ˇ
ˇ
ˇ
� 1 D O(„) :

Henceforth, the dominant term of the solution (5) has an
oscillating behavior of the form

 (x) D bC
e
i/„

xR

a

p
E�V (q)dq

4pE � V(x)

C b�
e
�i/„

xR

a

p
E�V (q)dq

4pE � V(x)
C O(„) :

In order to compute also the other terms of the asymp-
totic expansion of the solutions  ˙(x) we formally solve
the nonlinear Eq. (6) by means of the formal power series
in „2:

u D u(x;„) D
1X

nD0

„2nu2n(x) : (8)

The functions u2n(x) are determined explicitly, order by
order, by formally substituting (8) into (6) and requiring
that the coefficients of the same terms „2n are zero for any
n � 0. In such a way and assuming that the potential V(x)
admits derivatives at any order then we obtain that

u0(x) D p(x)

u2(x) D �
1
4
p00(x)
p2(x)

C
3
8
[p0(x)]2

p3(x)

u4(x) D
1
16

p0000(x)
p4(x)

�
5
8
p000(x)p0(x)

p5(x)
�

13
32

�
p00(x)

�2

p5(x)

C
99
32

p00(x)
�
p0(x)

�2

p6(x)
�

297
128

�
p0(x)

�4

p7(x)
;

and so on. Thus, the asymptotic behavior (7) can be im-
proved up to any order. In particular, let

 N;˙(x) D
1

p
pN (x)

e
˙i/„

xR

a
pN (q) dq

; x 2 (x1; x2) ;

where a 2 (x1; x2) is arbitrary and fixed and pN(x) DPN
nD0 u2n(x)„

2n , in particular p0(x) D p(x), let us intro-
duce the error-control function

�N (x) D
1

„pN (x)
F
�
pN (x)

�
D O(„2NC1)

where �0(x) D „ f [p(x)]; then the two functions  N;˙(x)
approximate the solutions ˙(x) of Eq. (3) up to the order
2N C 1, that is

j ˙(x) �  N;˙(x)j �

2

4exp

0

@1
2

ˇ
ˇ̌
ˇ
ˇ̌

xZ

a

j�N (q)j dq

ˇ
ˇ̌
ˇ
ˇ̌

1

A � 1

3

5

D O(„2NC1) ; 8x 2 (x1; x2) :
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Weunderline that this result is valid whether or not x1 and
x2 are finite, also whether or not V(x) is bounded: it suf-
fices that the error-control function is absolutely integrable:
�N 2 L1(x1; x2).

Semiclassical Solutions
in the Classically Forbidden Region

The previous asymptotic computation of the solutions
 ˙ applies also in the classically forbidden region where
V(x) > E, provided that p(x) is one of the two purely
imaginary determination of

p
E � V(x). By assuming that

=p(x) < 0 then Eq. (3) has twice continuously differen-
tiable solutions of the form

 ˙(x) D
1

p
jp(x)j

e
˙1/„

xR

a
jp(q)jdq �

1C ı˙(x)
�
;

x 2 (x1; x2) ; (9)

where a is an arbitrary point in (x1; x2) and where the re-
mainder terms ı˙ are bounded as follows

jı˙(x)j � e
1
2„

ˇ
ˇ
ˇ
ˇ
ˇ

xR

a
˙

j f [p(q)]jdq

ˇ
ˇ
ˇ
ˇ
ˇ
� 1 D O(„)

where aC D x1 and a� D x2. In particular, if V(x) > E
for any x 2 (�1; x2), that is x1 D �1 (and similarly we
can consider the case where x2 D C1), and the error-
control function f [p(x)] 2 L1(�1; x2) then the above
asymptotic estimate holds for any x 2 (�1; x2). We also
emphasize that the asymptotic behavior (9) could be also
improved up to any order, as done for the approximated
solutions in the classically allowed regions.

We underline that the two solutions  ˙ play here
a different role. Indeed, solution  �(x) is an exponen-
tially decreasing function as x > a grows, while  C(x)
is exponentially increasing. The first solution is usu-
ally called recessive solution and it is uniquely deter-
mined by the asymptotic power expansion as „ ! 0. The
other solution is called dominant solution and it is not
uniquely determined by the asymptotic expansion; in fact,
 C(x)C c �(x), x > a, is still a solution of Eq. (3) which
has the same asymptotic behavior of C(x) for any c 2 C.

Connection Formula

It is not possible to use the semiclassical solutions (7) and
(9) at turning points xE since the term 1/p diverges and
there is no guarantee that the same combination of simple
semiclassical solutions will fit the same particular solution
on both sides of the turning point. This is the so-called
connection problem: if the values b˙ of the semiclassical

solution are known in a given region then the problem
consists of computing the values of b˙ in a different region
separated from the first region by one (or more) turning
points.

The main two methods used to treat this problem are
the following ones:

� The complex method, where the two regions surround-
ing the turning point are joined by a path in the com-
plex plane which is sufficiently far from the turning
points. In such a case the semiclassical solutions in
different regions are connected by means of holomor-
phic extension arguments. Thus, in order to apply this
method we have to assume that the potential V(x) can
be holomorphically extended to the complex plane.

� The second method employs the technique of the uni-
form approximation, where the required solution is
mapped on the solution of a simpler and suitable equa-
tion which has the same disposition of turning points
as the original one. As well as enabling the connec-
tion problem to be solved, this method also provides
the wave function in the neighborhood of the turning
points, which was bypassed in the complex method.

We are going now to explain these methods in detail.

The Complex Method By assuming that V (x) is the re-
striction on the real axis of a holomorphic function V(z),
z 2 C, we turn now to the approximate solution of the dif-
ferential equation

�„2
d2 (z)
dz2

D
�
E � V (z)

�
 (z)

in a complex domainD in which V(z) is holomorphic and
p2(z) D E � V(z) does not vanish. Then, this equation has
two holomorphic solutions

 ˙(z) D
1

p
p(z)

e
˙i/„

zR

a
p(q)dq �

1C O(„)
�
; z 2 D; (10)

where a is an arbitrary point; in particular, for our pur-
poses it is convenient to choose it coinciding with the
turning point, i. e.: a D xE . Actually, this asymptotic be-
havior holds under a technical assumption: given a refer-
ence point aC (respectively a�) then (10) is true for C(z)
(resp.  �(z)) for any z such that there exists a progressive
(resp. regressive) path �C (resp. ��) contained in D and
connecting z with aC (resp. a�); that is as q passes along
�C (resp. ��) from aC (resp. a�) to z then<[�(z)] is non-
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decreasing (resp. nonincreasing) where

�(z) D
i
„

zZ

xE

p(q)dq :

Now, we denote as a Stokes line any path coming from
the turning point xE such that =[�(z)] D 0; we denote as
an anti-Stokes line, or principal line, any path coming from
the turning point xE such that <[�(z)] D 0. Classically
forbidden (resp. allowed) regions are particular cases of
Stokes (resp. anti-Stokes) lines, which lie on the real axis.

Let us consider now the case, as in Fig. 1, where the
turning point xE is simple (that is V 0(xE ) ¤ 0), p2(x) < 0
for x < xE and p2(x) > 0 for x > xE . Since the turning
point xE is simple then in a neighborhood of the turning
point we have that p(z) � c [z � xE ]

1
2 , for some c 2 RC,

and �(z) � 2i c
3„ [z � xE ]

3
2 . Thus, Stokes lines are three dif-

ferent paths coming from the turning point and with
asymptotic directions arg(z � xE) D 1

3�; �;
5
3� ; while the

asymptotic directions of the anti-Stokes lines are given by
arg(z � xE) D 0; 23�;

4
3� .

Perturbation Theory, Semiclassical, Figure 1
Stokes and anti-Stokes lines in a neighborhood of a simple turn-
ing point xE where the left-hand side of the turning point is clas-
sically forbidden and the right-hand side is classically allowed.
The wavy line denotes the cut of the multi-valued function p(z)

Along the three anti-Stokes lines �1, �2 and �3 the so-
lution  can be written as

 (z) D bC; j C; j(z)Cb�; j �; j(z); z 2 � j ; j D 1; 2; 3;

where  ˙; j have the asymptotic behavior given by (10)
and where the coefficients b˙; j are asymptotically fixed
along the anti-Stokes lines. Let Fj be the 2 � 2 matrix
which connects the coefficients:
�

bC; jC1
b�; jC1

�
D Fj

�
bC; j
b�; j

�
:

In the region I, with boundaries given by the anti-
Stokes lines �1 and �2, the solution  C is dominant and
thus the coefficient bC cannot change in this region, simi-
larly in the region III with boundaries �3 and the cut. In
contrast, in the region II, with boundaries given by the
anti-Stokes lines �2 and �3, the solution  � is dominant
and thus the coefficient b� cannot change in this region.
Then the matrices Fj can be written as

F1 D
�

1 0
r 1

�
; F2 D

�
1 s
0 1

�

and F3 D
�

1 0
t 1

�

where r, s and t have to be determined. To this end let
us consider the closed anti-clockwise path � surrounding
the simple turning point xE; along this path the exponen-
tial term gains a phase � D 1

„

H
� p(z)dz and the argument

of p(z), which appears in (10), decreases of � . Hence, the
holomorphic extension of ˙, around this closed path, are
thus proportional to the solution  �:

 C ! iei� � and  � ! ie�i� C :

Therefore, the numbers r, s and t are such that

F1 F2 F3 D
�

1C st s
r C (rs C 1)t rs C 1

�

�

�
0 ie�i�

iei� 0

�

from which it follows that

s D ie�i� ; r D t D iei� :

In particular, since
R
p(z)dz does not diverge at xE then

we can take � in a small neighborhood of xE and � � 0.
Thus, the Stokes’ rule follows: the connection between the
two coefficients from one Stokes line to the (anti-clockwise)
adjacent one follows the following rule

bdominant! bdominant and
brecessive ! brecessive C ibdominant :
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TheMethod of Comparison Equations With this meth-
od we obtain a local approximate solution, in a neighbor-
hood of the turning points, in terms of the known solu-
tions of an equivalent equation

d2�
dy2
C q(y)�(y) D 0 ; (11)

where q(y) is chosen to be similar in some way to p2(x),
but simpler in order to have an explicit solution. For the
sake of definiteness, we restrict here our analysis to the
case of a simple turning point xE.

In order to get an approximate solution to Eq. (3) in
a small neighborhood of a simple zero xE of p2(x) we in-
troduce the following changes of variable

x ! y(x) D
�
3
2
�(x)

� 2
3
; �(x) D

i
„

xZ

xE

p(q)dq :

Equation (3) takes the form of the approximate Eq. (11)
where q(y) � �y in a neighborhood of the turning
point, which admits solutions given by the Airy functions
Ai(y) and Bi(y). Then, the approximate solution of the
Schrödinger equation (3) in a neighborhood of the turn-
ing point has the form

 (x) � ˛
�
�2y(x)
p2(x)

� 1
4

fcos(�)Ai[y(x)]C sin(�)Bi[y(x)]g

where ˛ and ˇ are constants. The Airy functions are well
understood and exact connection formulas can be estab-
lished obtaining that

 (x)!
˛

2
p
jp(x)j

h
cos(�)e�j�j C 2 sin(�)ej�j

i

from the turning point to the classically forbidden region,
and

 (x)!
˛

p
jp(x)j

cos
�
j�j C � �

1
4
�

�

from the turning points to the classically allowed region.
Thus, we have established a connection between oscil-
latory and exponentially increasing and decreasing solu-
tions. Clearly, this entire approach breaks down if the en-
ergy is too close to a value corresponding to a stationary
point of the potential. In this case a different approxima-
tion must be implemented. For instance, in the case of
a turning point with multiplicity 2 then the approximate
solution of the Schrödinger equation (3) is given by means
of Weber parabolic cylinder functions.

Perturbation Theory, Semiclassical, Figure 2
Stokes and anti-Stokes lines in a neighborhood of the bottom of
a single well

Bound States for a Single Well Potential

We apply now the previous techniques in order to com-
pute the stable states, that is normalized solutions of the
Eq. (2), when the potential V (x) has a single well shape;
that is it has a simple minimum point xmin, with mini-
mum value Vmin such that V(x) > Vmin for any x ¤ xmin
and lim infjxj!C1 V(x) > Vmin. Then, for E > Vmin close
enough to the bottom of the well, equation p(x) D 0 has
only two simple solutions x1 < xmin < x2 and the typi-
cal picture of the Stokes lines appears as in Fig. 2. Here,
 ˙;x1 (resp.  ˙;x2 ) denotes the fundamental solutions
with asymptotic behaviors (7) and (9) in a neighborhood
of x1 (resp. x2). Since we are looking for normalized solu-
tions then in the classically forbidden region x > x2, con-
tained in the region I, the dominant term  C;x2 of the so-
lution  should have coefficient bIC;x2 exactly zero, that is

 (z) D  �;x2 (z) ; z 2 I ;

where the coefficients b�;x2 of the recessive solution  �;x2
is chosen equal to 1. Turning around the turning point x2
and crossing the anti-Stokes line it follows that the coeffi-
cients of the solution D bIIC;x2 C;x2(x)CbII�;x2 �;x2 (x)
in the region II take the form

�
bIIC;x2
bII�;x2

�
D F2

�
0
1

�
;



6754 P Perturbation Theory, Semiclassical

where

F2 �
�

1 i
0 1

�

according to the Stokes’ rule.
In order to study the matching condition around the

other turning point x1 we have to transport the origin of
integration at x1 obtaining

 (z) D bIIC;x1 C;x1(z)C bII�;x1 �;x1 (z)

where

bIIC;x1 D  C;x2 (x1)b
II
C;x2 and bII�;x1 D  �;x2 (x1)b

II
�;x2 :

On the other hand, also in region III the dominant
term C;x1 of the solution should have coefficient bIIIC;x1
exactly zero; from this fact and from the Stokes’ rule ap-
plied to the turning point x1 it follows that the equation
for the dominant term of the bound states is

 C;x2(x1)C  �;x2 (x1) D 0 ;

which implies

cos

2

4 1
„

0

@
x2Z

x1

p(x)dx CO(„)

1

A

3

5 D 0 :

Hence, we obtain the well known Bohr–Sommerfeld rule

x2Z

x1

p(x)dx D „
�
1
2
� C n�

�
C O(„2) ; n 2 N :

Double Well Model: Estimate of the Splitting
and the “Flea of the Elephant”

We consider now the case of a symmetric double well
potential; that is V (�x) D V(x) and it has two simple
minima at xC > 0 and x� D �xC separated by a bar-
rier, we assume also that the minimum value Vmin <

lim infjxj!1 V(x). For instance, V(x) D x4 � 2˛x2 for
some ˛ > 0; in this case the shape of the potential has two
symmetric wells where x˙ D ˙

p
˛ and Vmin D �˛

2 < 0,
the two wells are separated by an energy barrier with top
Vmax D 0 at x D 0. The semiclassical double well model is
not only a very enlightening pedagogical problem, but it is
also the basic argument explaining many relevant physical
questions, see, e. g., [5,12,16,32,34].

In the interval (Vmin;VM), where

VM D min
�
Vmax; lim inf

jxj!1
V(x)

�
;

the stable states appear as doublets E˙ whose distance !,
named splitting, is quite small. The associated eigenvectors
are even and odd (real-valued) wave-functions, that is

 ˙(�x) D ˙ ˙(x) : (12)

The splitting ! D E� � EC can be computed as

! D „2
 C(0) 0�(0)

1R

0
 �(x) C(x)dx

and it turns out to be exponentially small as „ ! 0. More
precisely, if EC is the ground state then ! D O(e�S0/„)
where

S0 D

xCZ

x�

p
V(x) � Vmindx

is the Agmon distance between the two wells.
We would emphasize that the eigenvectors  ˙ are

asymptotically localized on both wells because of the sym-
metry property (12). The effect on the ground state of
a small perturbation W(x) that breaks the symmetry is
worth mentioning. In such a case the property (12) does
not work and, even if the small perturbation W(x) is sup-
ported only on one side and far from the bottom of the
well, the ground state, instead of being asymptotically sup-
ported on both wells, may be localized on just one well.
According to Barry Simon we may state that the pertur-
bation W(x) is a small flea on the elephant V(x). The flea
does not change the shape of the elephant – in the sense that
the splitting is still exponentially small – but it can irritate
the elephant enough so that it shifts its weight – in the sense
that the ground state is localized on just one well.

Semiclassical Approximation in Any Dimension

Here we consider the eigenvalue problem (2) in any di-
mension n � 1 where the potential V is assumed to be
a multi-well potential [6,17,18,31]. More precisely, we as-
sume that

Vmin :D infV (x) < V1 D lim inf
jxj!C1

V(x)

and for any E 2 (Vmin;V1) we can write the decomposi-
tion of

V�1 ((�1; E]) D [N
jD1Uj

as the union of N disjoint, compact and connected setsUj.
Inside these sets, named wells, the classical motion is al-
lowed; outside the classical motion is forbidden.
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From well-known results we have that for energies in
the interval (Vmin;V1) the eigenvalue problem (2) admits
only discrete spectrum, that is we have only isolated eigen-
values with finite multiplicity. In order to compute these
eigenvalues we’ll consider, at first, the solutions of Eq. (2)
inside any single well and then we’ll take into account the
tunneling effect among the adjacent wells as a perturba-
tion.

Actually, it is also possible to consider the case where
E > V1. In such a case we don’t expect to have iso-
lated eigenvalues but, under some circumstances, resonant
states [13,19,20]. However, we don’t fix our attention here
on this problem.

Semiclassical Eigenvalues at the Bottom of a Well

Let x0 be a local nondegenerate minimum for the potential
V(x). For the sake of definiteness we assume that x0 D 0
and the local minimum is such that V (0) D rV(0) D 0
and the Hessian matrix Hess D

�
@2V(0)

ı
@xi@x j


i; jD1:::n

is positively defined with eigenvalues 2 j > 0, j D
1; : : : ; n; furthermore, we choose the system of coordi-
nates such that the Hessian matrix has diagonal form, i. e.
Hess D diag(2 j).

In order to compute the eigenvalues at the bottom of
the well containing the minimum x0 we approximate the
potential by means of the n-dimensional harmonic oscil-
lator. Thus, Eq. (2) takes the form

nX

jD1

"

�„2
@2 

@x2j
C  j x2j � E

#

 D 0

which has exact eigenvalues

„

2

4
nX

jD1

q
 j(2˛ j C 1)

3

5 ; ˛ D (˛1; : : : ; ˛n) 2 Nn ;

with normalized eigenvectors

(„�)�n/4
nY

jD1

�
2˛ j˛ j !

�1/2
1/8j

� e�
p
� j x2j /2„H˛ j



1/4j „

�1/2x
�
;

whereHm is the Hermite polynomial of degreem.
It is clear that when ¯ is small enough then the first

energy level of the harmonic oscillator is very close to the
bottom of the potential and thus we expect that such an
approximation gives the leading term of the first energy

level and wave-function of (2). In fact, there exist two for-
mal power series

E(„) �
1X

jD0

„ j e j and a(x;„) �
1X

rD0

„r ar(x) ; (13)

where e0 D Vmin D 0, „e1 D „
Pn

jD1
p
 j is the first

eigenvalue of the associated harmonic oscillator and a0 D�Qn
jD1  j/�2�1/8, such that the function

 (x;„) D „�n/4a(x;„)e�'(x)/„ (14)

is such that

�„2
 C
�
V (x) � E(„)

�
 D O(„1)e�'(x)/„

in a neighborhood of x0 D 0, where '(x) D 1
2
Pn

jD1
p
 j

x2jCO(jxj2) is the positive solution of the Eikonal equation

jr'j2 D V � e0

in a neighborhood of x0 D 0. The way to obtain this re-
sult essentially consists of inserting the formal power se-
ries (14) in Eq. (2) and expanding in powers of ¯ the coef-
ficients of e�'(x)/„ , then of requiring the cancelation of the
coefficients of „ j for any j 2 N .

These approximate solutions are valid in a neighbor-
hood of the nondegenerateminimum and they are the nat-
ural candidates to become the true eigenvalue and eigen-
function of the problem (2). In fact, we’ll extend this sin-
gle well approximate solution (14) to a larger domain and
then we’ll solve the connection problem.

To this end we fix an open, sufficiently small, regular
bounded set ˝ containing the minimum point x0; then
Eq. (2) with Dirichlet boundary condition on˝ , that is

 ˝ j@˝ D 0 ; k ˝kL2(˝) D 1 ; (15)

admits one simple eigenvalue E˝ („) at the bottom of the
well, close to the first eigenvalue of the harmonic oscillator
e0 C „e1, which admits the asymptotic expansion (13).

Actually, such an eigenvalue will depend on the choice
of the domain ˝ . More precisely, if E˝0 („) denotes the
first eigenvalue of Eq. (2) with Dirichlet boundary con-
dition on ˝ 0 for a different domain ˝ 0 containing x0,
then E˝0 („) differs from E˝(„) for an exponentially small
term. Furthermore, it is also possible to prove that, mod-
ulo an exponentially small error, the spectrum of the
Schrödinger equation (2) in some interval depending on ¯
is the same as the spectrum of the direct sum of the Dirich-
let single well problems in the same interval.
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AgmonMetric

In order to study the exponential behavior of the solution
(14) when x is far from the minimum x0 we introduce now
the Agmon distance between two points x1, x2 2 Rn de-
fined as

dE (x1; x2) D inf
�

Z

�

p
[V (x)� E]Cdx ;

where

[V(x) � E]C D maxfV(x) � E; 0g ;

� is any regular path connecting the two points x1 and
x2 and E � Vmin is fixed. We underline that the Agmon
distance defines a (pseudo)-metric on the Euclidean space
Rn . Indeed, it satisfies the triangle inequality

dE (x1; x2) � dE (x1; x3)CdE (x3; x2) ; 8x1; x2; x3 2 Rn ;

but it is degenerate on each well U where V < E, in par-
ticular dE (x1; x2) D 0 for any couple of points x1 and x2
belonging to the same well and the diameter of each wellU
is zero with respect to this metric.

This kind of (pseudo-)metric has been used to ob-
tain precise exponential decay of wave-functions of
Schrödinger operators. Indeed, the exponential term '(x)
in (14) is simply given by

'(x) D de0(x0; x)

for any x in a neighborhood of x0.
Furthermore, by means of the Agmon metric we are

also able to give an estimate of the exponential decay of
wavefunctions not only for x in a neighborhood of the
minimum x0, but also for x far from this point. In par-
ticular, let Vmin < E < V1 be fixed and let U be one of
the wells, we consider now the eigenvalue problem for the
Schrödinger equation with Dirichlet boundary conditions
on a regular open set˝ containing the wellU. Let E˝ < E
be an eigenvalue of Eq. (2) with Dirichlet boundary con-
dition (15) with associated eigenfunction  ˝ . Then, the
Agmon theorem enables us to obtain the following decay
estimate for the eigenfunction  ˝ : for any fixed and posi-
tive � then

�
��r

h
edE (x;U)/„ ˝

i���
L2(˝)

C
�
��edE (x;U)/„ ˝

�
��
L2(˝)

� C�e�/„

for some positive constant C� depending on � (of course
we expect that C� will grow as � goes to zero). That is we

have a good a priori estimate of the wavefunction  ˝ in
the weighted H1(˝) space with weight edE (x;U)/„. Since
d(x;U) D 0 for any x belonging to the well U then it fol-
lows that the solution  ˝ is exponentially decreasing out-
side the classical allowed region, as already seen in the one-
dimensional problems.

Tunneling Between Wells

In order to consider the tunneling effect among the wells
fUjg

N
jD1 for any fixed E 2 (Vmin;V1) we define

dE (Ui ;Uj) D inf
x2Ui ;y2U j

dE (x; y)

as the Agmon distance between the two wellsUi andUj, by
construction it turns out that this distance is strictly posi-
tive for any i ¤ j. A special role will be played by the min-
imal distance among these wells

S0 D min
i¤ j

dE (Ui ;Uj) :

In fact, the discrete spectrum of the Dirichlet realization
of the Schrödinger equation on the boundary of the wells
give, up to error of the order e�S0/„, the discrete spectrum
of the original Schrödinger equation (2). In order to be
more definite, let MS;�

j be the open set containing the well
Uj defined as

MS;�
j D

˚
x 2 Rn : dE (x;Uj) < S

and dE (x;Uk ) > �; k ¤ j
�

that is MS;�
j is, essentially, a ball (with respect to the Ag-

mon pseudo-metric) large enough centered in the well
Uj where we have eliminated the points from the other
wells. If necessary we can regularize the boundary ofMS;�

j .
In the following we take � > 0 small enough and S large
enough, in particular we require that S > 2S0. Let � j be
the discrete spectrum of the Schrödinger equation (2) with
Dirichlet condition onMS;�

j and let � be the discrete spec-
trum of the Schrödinger equation (2). Then, for any inter-
val I(„) D [˛(„); ˇ(„)], where ˛(„), ˇ(„)! e0 as „ ! 0,
there exists a bijection

b : � \ I(„)!
h
[N

jD1� j

i
\ I(„)

such that for any � < S0 � 2�

jb() � j � C�e��/„ (16)

for some C� > 0.
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Actually, this result could be improved by assuming
some regularity properties on the potential V and estimate
(16) can be replaced by the precise asymptotic behavior.

If we consider now the symmetric double well prob-
lem where N D 2 and with symmetric potential, e. g.
V(x1; x2; : : : ; xn) D V (�x1; x2; : : : ; xn), then, by symme-
try, we have that the twoDirichlet realizations coincide, up
to the inversion x1 ! �x1. Then �1 D �2. If we denote by
E1 and E2 the first two eigenvalues of � then E1 < E2 (in
fact, the first eigenvalue is always nondegenerate) and the
splitting between them can be estimated as

jE2 � E1j � jE2 � b(E2)j C jb(E2) � b(E1)j

C jb(E1) � E1j � C�e��/„ ;

since b(E1) D b(E2), for any � < S0 since � > 0 is arbi-
trary.

Propagation of QuantumObservables

So far we have restricted our analysis to the semiclassi-
cal computation of the stable states of the time-indepen-
dent Schrödinger equation (2). However, there exist some
relevant results for what concerns the time evolution op-
erator e�i tH/„, which is the formal solution of the time-
dependent Schrödinger equation (1) with Hamiltonian
H D �„2
C V . In other words, this result is connected
to the time-evolution of quantum observables [8,29]. The
main tool is the ¯-pseudodifferential calculus we briefly re-
view below.

Brief Review of ¯-Pseudodifferential Calculus

Here, we briefly review some basic results of the semiclas-
sical pseudodifferential (also called ¯-pseudodifferential)
calculus. We refer to the books by Folland [9], Grigis and
Sjöstrand [15], Martinez [22] and Robert [28] for a de-
tailed treatment.

In this brief review, in order to avoid some technical-
ities, we restrict ourselves to the simpler case of bounded
potentials; however, some of the following results hold
in the general case of unbounded potentials too (see,
e. g. [28]). To this end we consider symbols a(x; y; p) 2
S3n(hpim) for some positive m, that is the function a de-
fined on R3n depends smoothly on p and for any ˛ D
(˛1; : : : ; ˛n) 2 Nn one has

ˇ̌
ˇr˛p a(x; y; p)

ˇ̌
ˇ D O

�
hpim


(17)

uniformly. That is

ˇ
ˇ̌
r˛p a(x; y; p)

ˇ
ˇ̌
� Chpim D C

�
1C jpj

�m/2

for some positive constant C independent of x, y and p,
where r˛p D (@˛1p1 ; : : : ; @

˛n
pn ) and jpj D jp1j C : : :C jpn j.

We associate to a symbol a 2 S3n(hpim) the semiclas-
sical pseudodifferential operator of degree m defined for
u 2 C10 (Rn) as the Fourier integral operator

�
Op„(a)u

�
(x) D

1
[2�„]n

�

Z

Rn�Rn

ei(x�y)�p/„a(x; y; p)u(y)dydp :

We notice that it is formally self-adjoint on the Hilbert
space L2(Rn) when the symbol a is such that a(x; y; p) D
a(y; x; p).

The above pseudodifferential operator can be extended
in a unique way to a linear continuous operator on the
space of smooth rapidly decreasing functions S(Rn) and
its dual space of tempered distributions S0(Rn). Further-
more, when the symbol a 2 S3n(1) then the associate pseu-
dodifferential operator is continuous on L2(Rn) (this re-
sult is the so-called Calderón–Villancourt theorem).

It is easy to see that this class of pseudodifferential op-
erators contains the usual differential operators. For in-
stance, in the particular case where the symbol a has the
form

a(x; y; p) D
X

j˛j�m

b˛(x)p˛

then its associated operator is the differential operator
given by

�
Op„(a)u

�
(x) D

"

Op„

� X

j˛j�m

b˛(x)p˛
�
u

#

(x)

D
X

j˛j�m

b˛(x) (i„rx )˛ :

The class of pseudodifferential operator is closed with
respect to the composition. That is: given two sym-
bols a 2 S3n(hpim ) and b 2 S3n(hpim

0 ) then the compo-
sition of the associated pseudodifferential operators is still
a pseudodifferential operator:

Op„(a) ıOp„(b) D Op„(c)
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where the symbol c 2 S3n


hpimCm0

�
depends on ¯ and it

is given by theMoyal product

c(x; y; p) D (a]b) (x; y; p) D
1

[2�„]n

�

Z

Rn�Rn

ei(x�z)�(��p)/„a(x; z; �)b(z; y; p)dzd�

�
X

j˛j�0

„j˛j

ij˛j˛!
r˛z r

˛
�

�
a(x; z; �)b(z; y; p)

�ˇ̌
zDx;�Dp

as ¯ goes to zero; we should underline that the above
asymptotic formula becomes an exact formula when the
symbol a is polynomial with respect to p since the sum be-
comes finite. As a result it follows that for any elliptic sym-
bol a 2 S3n

�
hpim


, that is such that ja(x; y; p)j � Chpim

for some positive constant C, then its associate pseudodif-
ferential operator is invertible in the sense that there exists
a symbol b 2 S3n

�
hpi�m


, depending on ¯, where

Op„(a) ıOp„(b) D 1C Op„(r)

and

Op„(b) ıOp„(a) D 1C Op„(s) ;

with r; s D O(„1) in S3n (1). The symbol b �
P

j „
jb j is

iteratively defined where b0 D 1
a .

Now, we are ready to define the quantization of a clas-
sical observable. Classical observables are functions a(x; p)
of the position x 2 Rn and of the momenta p 2 Rn , if we
assume that a is a smooth function such that
ˇ
ˇ̌
r˛p a(x; p)

ˇ
ˇ̌
� Chpim

then, for any � 2 [0; 1], it follows that

a�(x; y; z) D a
�
(1 � �)x C �y; p

�
2 S3n

�
hpim


:

We define the quantization of the observable a as:

Op�
„
(a) D Op„(a

�)

where the values � D 0; 12 ; 1 will play a special role; in par-
ticular, for � D 0 we have the standard (also called left)
quantization, for � D 1 we have the right quantization and
for � D 1

2 we have theWeyl quantization

OpW„ (a) :D Op1/2
„

(a) D Op„(a
1/2) :

We emphasize that the Weyl quantization is particularly
important in quantum mechanics because when the clas-
sical observable a is a real valued function then the asso-
ciate pseudodifferential operator OpW

„
(a) is formally self-

adjoint on L2(Rn).

We close this review by recalling the following im-
portant result which connects the commutator [A; B] D
AB � BA of the pseudodifferential operators A D Op�

„
(a)

and B D Op�
„
(b), where a, b are two classical observables,

and the Poisson bracket of a and b: let c be the unique sym-
bol such that Op�

„
(c) D [A; B], then

c D �i„ fa; bg C O(„2) :

Egorov Theorem

Now, we are ready to compare the classical evolution of
a classical observable with the quantum evolution of its
quantum counterpart. With more details let h(x; p) be
a classical Hamiltonian where x 2 Rn denotes the spatial
variable and p 2 Rn denotes the momentum. Let

� t : R2n ! R2n

be the (classical) Hamiltonian flux. Thus, for any classical
observable function b D b(x; p) 2 C1(R2n ;R) let

bt(x; p) D
�
b ı � t (x; p) D b[� t(x; p)]

be the classical evolution of this observable.
It is well known that we can associate to any real-val-

ued classical observable b(x; p) a symmetric ¯-pseudod-
ifferential linear operator denoted by OpW

„
(b) by means

of the semiclassical (Weyl) quantization rule formally de-
fined as

�
OpW„ (b)u

�
(x) :D

1
[2�„]n

�

Z

Rn�Rn

ei(x�y)�p/„b
�
x C y
2

; p
�
u(y)dydp

where (x � y) � p D
Pn

iD1(xi � yi)pi . In order to prop-
erly define this integral operator on the Hilbert space
L2(Rn) we require that estimate (17) holds; actually, to
the present purposes it is sufficient to assume the following
weaker condition on the observable b:

ˇ̌
ˇr˛x;pb(x; p)

ˇ̌
ˇ � C

�
1C jxj2 C jpj2

�m/2 (18)

for some m � 0 and any ˛ 2 N2n .
For instance, if h0 is the Hamiltonian associated to a

harmonic oscillator, then it is a quadratic function with
respect to both position and momentum variables

h0(x; p) D
nX

jD1

h
p2j C !

2
j x

2
j

i
(19)



Perturbation Theory, Semiclassical P 6759

and the associatedHamiltonian operator (let n D 1 for the
sake of simplicity) takes the usual form

[H0u] (x) D
�
OpW„ (h0)u

�
(x)

D
1

2�„

Z

R�R

ei(x�y)p/„
"

p2 C !2
�
x C y
2

�2
#

� u(y)dydp

D �„2
d2

dx2
C !2x2

by integrating by parts twice and since 1/(2�„)
R

R
ei(x�y)p/„dp D ı(x � y).

In such a way it is possible to associate a classical
observable b to a quantum operator B. If we denote by
B D OpW

„
(b) and H D OpW

„
(h) the operators associated

to the classical observable b and to the Hamiltonian h then
the time quantum evolution Bt D ei tH/„Be�i tH/„ of the
observable B solves the Heisenberg equation

dBt

dt
D

i
„

�
H; Bt�

and it is, in some sense, related with the classical evolution
bt as we are going to explain.

In the very particular case where the Hamiltonian h0
is given by the harmonic oscillator (19) then we have that
the quantum evolution Bt of the observable B is a ¯-pseu-
dodifferential operator with symbol bt given by means of
the classical flux Hamiltonian; that is

ei tH0/„OpW„ (b) e�i tH0/„ D OpW„
�
b ı � t

where � t is the Hamiltonian flux generated by the Hamil-
tonian (19).

In other words, for the harmonic oscillator Hamilto-
nian then quantum evolution and Weyl quantization com-
mute. This property is specific for this problem and it
comes from the fact that the flux Hamiltonian is a lin-
ear function with respect to (x; p). This fact is not true in
a general case. However, it is possible to see that a gener-
alization of such a result holds whenH0 is replaced by any
symmetric ¯-pseudodifferential operator H; this result is
the so-called Egorov theorem (see [8] for the original state-
ment, see also [29] for a detailed review). In particular, un-
der some assumptions, it is possible to prove that the zero-
th order remainder term

R(t) :D ei tH/„OpW„ (b) e�i tH/„ �OpW„
�
b ı � t

is a bounded operator such that kR(t)k D O(„) in the
sense that the norm of the operator R(t) is bounded

kR(t)k � C„

for some C > 0 and for any t � 0.
Furthermore, it is possible to extend this asymptotic

result to any order N � 1 for a suitable choice of pn;t ,
that is the classical and quantum evolution coincides up
to a term of order „NC1 in the semiclassical limit:

ei tH/„OpW„ (b) e�i tH/„ � OpW„
�
b ı � t

�

NX

nD1

„nOpW„
�
pn;t


D O(„NC1)

in the norm sense.

Future Directions

Semiclassical methods are a field of research where theo-
retical results are rapidly evolving. Just to name some ac-
tive research topics: ¯-pseudodifferential operators, Weyl
functional calculus, frequency sets, semiclassical local-
ization of eigenfunctions, semiclassical resonant states,
Born–Oppenheimer approximation, stability of matter
and Scott conjecture, semiclassical Lieb–Thirring inequal-
ity, Peierls substitution rule, etc. Furthermore, semiclas-
sical methods have been also successfully applied in dif-
ferent contests such as superfluidity and statistical me-
chanics.

Looking forward, we see new emerging research fields
in the area of semiclassical methods: numerical WKB in-
terpolation techniques and semiclassical nonlinear Schrö-
dinger equations.

Indeed, the recent researches in the area of nano-
sciences and nanotechnologies have opened up new fields
where models for semiconductor devices of increasingly
small size and electric charge transport along nanotubes
cannot be fully understood without considering their
quantum nature. Since the oscillating behavior of the so-
lutions of the Schrödinger equation induces serious diffi-
culties for standard numerical simulations, then new nu-
merical approaches based on WKB interpolation are re-
quired [1,4,26].

Although the nonlinear Schrödinger equation has
been an argument of theoretical research since the 1970s,
only in the last few years, with the successful experiments
on Bose–Einstein condensate states, has an increasing in-
terest been shown. When we add a nonlinear term to
the time-dependent Schrödinger equation (1) then the dy-
namics of the model drastically changes and new pecu-
liar features, such as the blow-up effect and stability of
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stationary states, appear. Semiclassical arguments applied
to nonlinear Schrödinger equations justify their reduc-
tion to finite dimensional dynamical systems and thus it
is possible to obtain an approximate solution, at least for
nonlinear time-dependent Schrödinger equations in small
dimensional spaces, typically for n D 1 and n D 2. The
extension of this technique to the case n > 2 and the va-
lidity of such an approximation for large times is still an
open problem [14,27,30].
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Glossary

Resonant eigenvalues Let B be a linear endomorphism
of Cn , with eigenvalues 1; : : : ; n (counted accord-
ing to multiplicity). One calls these eigenvalues reso-
nant if there are integers dj � 0,

P
dj � 2, and some

k 2 f1; : : : ; ng such that

d11 C � � � C dnn � k D 0 :

If B is represented by a matrix in Jordan canonical then
the associated vector monomial xd11 : : : xdnn ek will be
called a resonant monomial. (Here e1; : : : ; en denote
the standard basis, and the xi are the corresponding
coordinates.)

Poincaré–Dulac normal form Let f D BC : : : be a for-
mal or analytic vector field about 0, and let Bs be
the semisimple part of B. Then one says that f is in
Poincaré–Dulac normal form (PDNF) if [Bs; f ] D 0.
An equivalent characterization, if B is in Jordan form,
is to say that only resonant monomials occur in the se-
ries expansion.

Normalizing transformations and convergence A rela-
tively straightforward argument shows that any for-
mal vector field f D BC : : : can be transformed to
a formal vector field in PDNF via a formal power se-
ries transformation. But for analytic vector fields, the
existence of a convergent transformation is not as-
sured. There are two obstacles to convergence: First,
the possible existence of small denominators (roughly,
this means that the eigenvalues satisfy “near-resonance
conditions”); and second, “algebraic” obstructions due
to the particular form of the normalized vector field.

Lie algebras of vector fields The vector space of analytic
vector fields on an open subset U of Cn , with the
bracket [p; q] defined by

[p; q](x) :D Dq(x) p(x) � Dp(x) q(x)

becomes a Lie algebra, as is well known. Mutatis mu-
tandis, this also holds for local analytic and for formal
vector fields. As noted previously, PDNF is most natu-
rally defined via this Lie bracket. Moreover, the “alge-
braic” obstructions to convergence are most appropri-
ately discussed within the Lie algebra framework.

Normal form on invariant manifolds While there may
not exist a convergent transformation to PDNF for
a given vector field f , one may have a convergent
transformation to a “partially normalized” vector field,
which admits a certain invariant manifold and is in
PDNF when restricted to this manifold. This observa-
tion is of some practical importance.

Definition of the Subject

It seems appropriate to first clarify what types of pertur-
bative expansions are to be considered here. There ex-
ist various types of such expansions in various settings
(a very readable introduction is given in Verhulst’s mono-
graph [41]), but for many of these settings the question
of convergence is not appropriate or irrelevant. Therefore
we restrict attention to the scenario outlined, for instance,
in the introductory chapter of the monograph [13] by Ci-
cogna and Gaeta, which means consideration of normal
forms and normalizing transformation for local analytic
vector fields.

Normal forms are among the most important tools for
the local analysis and classification of vector fields and
maps near a stationary point. (See � Normal Forms in
Perturbation Theory.) Convergence problems arise here,
and they turn out to be surprisingly complex. While the
first contributions date back more than a century, some
very strong and very deep results are just a few years old,
and this remains an active area of research. Clearly conver-
gence questions are relevant for the analytic classification
of local vector fields, but they are also of practical relevance
in applications, e. g. for stability questions and for the ex-
istence of particular types of solutions.

Introduction

The theory of normal forms was initiated by Poincaré [35],
and later extended by Dulac [17], and by Birkhoff [5]
to Hamiltonian vector fields. There exist various types
of normal forms, depending on the specific problem one
wants to address. Bruno (see [6,7]) in the 1960s and 1970s
performed a comprehensive and deep investigation of
Poincaré–Dulac normal forms, which are defined with re-
spect to the semisimple part of the linearization. Such nor-
mal forms are very important in applications, and more-
over they have certain built-in symmetries, which allows
a well-defined reduction procedure.

We will first give a quick review of normalization pro-
cedures and normal forms, and then discuss convergence
problems (which mostly refers to convergence or diver-
gence of normalizing transformations). We will present
fundamental convergence and divergence results due to
Poincaré, Siegel, Bruno and others. We then proceed to
discuss the relevance of certain Lie algebras of analytic vec-
tor fields for these matters, including results by Cicogna
and the author of this article on the influence of symme-
tries, and the far-reaching generalization of Bruno’s theo-
rems (among others) due to Stolovitch. Variants of normal
forms which guarantee convergence on certain subsets
(due to Bibikov and Bruno) are then discussed, and ap-



6762 P Perturbative Expansions, Convergence of

plications are mentioned. Finally, the Hamiltonian setting,
which deserves a discussion in its own right, is presented,
starting with results of Ito and recently culminating in
Zung’s convergence theorem. For Hamiltonian systems
there is also work due to Perez–Marco on divergence of
normal forms.

Within the space limitations of this contribution, and
in view of some very intricate and space-consuming tech-
nical questions and conditions, the author tried to find an
approach that, for some problems, should provide some
insight into a result, the arguments in its proof or its rel-
evance, without exhibiting all the technicalities, or with-
out giving the most general statement. The author hopes
to have been somewhat successful in this, and apologizes
to the creators of the original theorems for presenting just
“light” versions.

Poincaré–DulacNormal Forms

We will start with a coordinate-free approach to normal
form theory. Our objects are local ordinary differential
equations (overK D R orC)

ẋ D F(x) ; F(0) D 0

with F analytic, thus we have a convergent series expan-
sion

F(x) D Bx C
X

j�2

f j(x) D Bx C f2(x)C f3(x)C � � �

near 0 2 Kn :

Here B D DF(0) is linear, and each f j is homogeneous of
degree j. Our objective is to simplify the Taylor expansion
of F. For this purpose, take an analytic “near-identity” map

H(x) D x C h2(x)C � � �

Since H is locally invertible, there is a unique

F�(x) D Bx C
X

j�2

f �j (x)

such that the identity

DH(x)F�(x) D F(H(x)) (R)

holds. H “preserves solutions” in the sense that parame-
trized solutions of ẋ D F�(x) are mapped to parametrized
solutions of ẋ D F(x) by H. It is convenient to introduce
the following abbreviation:

F�
H
�! F if (R) holds :

Given the expansion

F(x) D Bx C f2(x)C � � � C fr�1(x)C fr(x)C � � � ;

assume that f2; : : : ; fr�1 are already deemed “satisfactory”
(according to some specified criterion). Then the ansatz
H(x) D x C hr(x)C : : : yields

F�(x) D Bx C f2(x)C � � � C fr�1(x)C f �r (x)C � � �

(with terms of degree< r unchanged), and at degree r one
obtains the so-called homological equation:

[B; hr ] D fr � f �r

(Here [p; q](x) D Dq(x)p(x) � Dp(x)q(x) denotes the
usual Lie bracket of vector fields).

The space Pr of homogeneous vector polynomials of
degree r is finite dimensional, and adB D [B; �] sendsPr to
Pr . Thus the homological equation poses a linear algebra
problem on a finite dimensional vector space: Given B and
f r , determine f �r so that the equation can be solved and
let hr be a solution. How can f �r be chosen? LetW be any
subspace of Pr such that

image (adB)CW D Pr :

Then one may choose f �r 2W . If the sum is direct then
f �r 2W is uniquely determined by f r .

Generally, the type of normal form is specified by
the choice of a subspace Wr for each degree r such that
image (adB)CWr D Pr . The Poincaré–Dulac choice is as
follows: Given the decomposition

B D Bs C Bn

into semisimple and nilpotent part, then ad B D adBs C

adBn is known to be the corresponding decomposition on
Pr . ChooseWr D Ker(ad Bs). By linear algebra

Wr C image(ad B) D Pr ;

and the sum is direct if B is semisimple. In any case we
have [Bs; f �r ] D 0.

Definition 1 The vector field F� is in Poincaré–Dulac
normal form if [Bs; f �j ] D 0 for all j; equivalently if
[Bs; F�] D 0.

If one sets aside convergence questions for the moment,
an immediate consequence of the considerations above is:

Proposition 1 For any F D B C � � � there are formal
power series H(x) D x C � � � , F�(x) D Bx C : : : such
that F�

H
�! F and F� is in Poincaré–Dulac normal form.
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One should note that the homological equation is of rel-
evance beyond the setting of Poincaré–Dulac, and forms
the foundation for various other (or more refined) types of
normal form. See also the entry in this section of the En-
cyclopedia by T. Gramchev on normal forms with respect
to a nilpotent linear part.

Now let us turn to the standard approach via suit-
able coordinates. Given F be as above, let 1; : : : ; n be
the eigenvalues of B. Complexify, if necessary, and as-
sume that B is in Jordan canonical form with respect to
the given coordinates x1; : : : ; xn (with corresponding ba-
sis e1; : : : ; en ofKn). In particular,

Bs D diag (1; : : : ; n) :

In the following we will use xi and ei to denote eigencoor-
dinates, resp. eigenbasis elements, and reserve 1; : : : ; n
for the eigenvalues of B, without explicitly saying so in ev-
ery instance.

Lemma 1 The “vector monomial” p(x) D xm1
1 : : : xmn

n e j
satisfies

[Bs; p] D (m11 C � � � C mnn �  j) � p

Thus, the vector monomials form an eigenbasis of ad Bs on
the space Pr , with eigenvalues m11 C � � � C mnn �  j
(mj nonnegative integers,

P
mj D r).

The eigenvalues play a crucial role both for the classifica-
tion of formal normal forms and for convergence issues.
The following distinction is pertinent here:

Definition 2 One calls (1; : : : ; n) resonant if there are
integers dj � 0,

P
dj � 2, and some k 2 f1; : : : ; ng such

that

d11 C � � � C dnn � k D 0 :

In this case, the vector monomial xd11 : : : xdnn ek is also
called a resonant monomial. One calls (1; : : : ; n) non-
resonant otherwise.

Given eigencoordinates, one can characterize a Poincaré–
Dulac normal form by the property that only reso-
nant monomials occur in the series expansion. More-
over, evaluation of the homological equation shows that
the nonzero eigenvalues of ad B will occur as denomi-
nators in its solution. To iterate the normalization, one
may proceed degree by degree with a series of transfor-
mations of the form exp(hr), using the solution of the
homological equation; see [44]. One may also choose
a different iterative approach to compute a normaliz-
ing transformation, such as the important“distinguished

transformation” of Bruno [6]. In any case this will yield
coefficients whose denominators are products of nonzero
termsm11 C � � � C mnn �  j . This is the source of con-
vergence problems caused by small denominators:

There are formal series H and F� such that F�
H
�! F

and F� is in Poincaré–Dulac normal form, but does there
exist a convergent H? (Here “convergent” means: conver-
gent in some neighborhood of 0.)

To answer this question, it is necessary to specify
a particular type of transformation: Transformations to
Poincaré–Dulac normal form are not necessarily unique,
even if one stipulates a near-identity transformation
H(x) D x C � � �. Non-uniqueness occurs whenever the
eigenvalues of B are resonant, because then some homo-
logical equation will not have a unique solution: In eigen-
coordinates of Bs, the series of the transformation is fixed
only up to resonant monomial terms. In particular, if F
itself is in normal form then any formal power series
H(x) D x C � � � that contains only resonant monomials
will provide a normal form F�, and a suitable nontrivial
choice of H will even force F� D F. Thus there may be
divergent transformations sending an equation in normal
form to itself.

Convergence and Convergence Problems

Let us note at the start that for given analytic F there may
not exist any convergent transformation to normal form;
thus the convergence question has no simple answer.

An early positive convergence result is due to
Poincaré [35], with a later improvement due to Dulac [17]:

Theorem 1 (Poincaré–Dulac) If 1; : : : ; n lie in an open
half-plane in C which does not contain 0 then there exists
a convergent transformation.

For example, one may think of the open left half-plane.
The proof is relatively straightforward, employing natural
majorants. (Due to the hypothesis, the j

Pn
iD1 mii �  jj

are unbounded for
P

mi !1.) Poincaré’s condition
does not preclude the existence of resonantmonomials but
it ensures that there are at most finitely many of these.

One main technical difficulty in proving convergence
was to replace the direct majorant arguments by more effi-
cient, and more sophisticated, tools, so that small denomi-
nator problems could be tackled. The following result, due
to C.L. Siegel [38], may be seen as the start of the “mod-
ern phase” for convergence results. Characteristically, this
result goes back to a mathematician who also worked in
analytic number theory. Siegel assumed that the eigenval-
ues satisfy a certain arithmetic condition.



6764 P Perturbative Expansions, Convergence of

Condition S: The eigenvalues are pairwise different and
there are constants C > 0, � > 0 such that for all nonnega-
tive integer tuples (mi ),

P
mi > 1, the following inequal-

ity holds:

ˇ̌
ˇ
ˇ

nX

iD1

mii �  j

ˇ̌
ˇ
ˇ � C � (m1 C � � � C mn)��

Theorem 2 (Siegel) If Condition S holds then there is
a convergent transformation to normal form.

Proof A very rough sketch of the proof is as follows. One
works in eigencoordinates. By scaling one may assume
that all coefficients in the expansion of F are absolutely
bounded by some constantM � 1. For the transformation
one writes

H(x) D x C
X

r�2


X
˛m1;:::;mn ;k � x

m1
1 � � � x

mn
n ek

�

where the sum inside the bracket extends over all nonneg-
ative integer tuples with

P
mi D r and 1 � k � n. (Since

Condition S precludes resonances, the coefficients of the
series are uniquely determined.) Now set

Am1;:::;mn :D
X

k

j˛m1;:::;mn ;kj :

From the homological equations one finds by recursion

ˇ
ˇ̌
ˇ
X

i

mii � k

ˇ
ˇ̌
ˇ � j˛m1;:::;mn ;k j � M

�
X

Ad1;1;:::;d1;n � � �Ads;1 ;:::;ds;n

where the summation on the right hand side extends over
all tuples (di;1; : : : ; di;n) that add up to (m1; : : : ;mn).
From this one may obtain an estimate for Am1;:::;mn , and
invoking Condition S one eventually arrives at the con-
clusion that

P
Am1;:::;mn x

m1
1 : : : xmn

n is majorized by the
series of

x1 C � � � C xn
1 � K � (x1 C � � � C xn)

; some K > 0 :

�

Example Let ẋ D Bx C � � � be given in dimension two,
and assume that the eigenvalues 1, 2 of B are nonres-
onant, and are algebraic irrational numbers. (This is the
case when the entries of B are rational but the character-
istic polynomial is irreducible over the rationals.) Then
2/1 is algebraic but not rational, and (1; 2) satisfies
Condition S, due to a celebrated number-theoretic result

of Thue, Siegel and Roth. Thus there exists a convergent
transformation to normal form.

While Siegel’s convergence proof uses majorizing se-
ries, the approach is not as straightforward as in the
Poincaré setting. Siegel’s result is strong in the sense
that Condition S is satisfied by Lebesgue – almost all
tuples (1; : : : ; n) 2 Cn . But the condition forces the
normal form to be uninteresting: One necessarily has
F� D B D Bs. In the same paper [38], Siegel also notes
that divergence is possible, even for a set of “eigenvalue
vectors” that is everywhere dense in n-space.

In the resonant case there is a second source of obsta-
cles to convergence. An early example for this is due to
Horn (about 1890); see [6]:

Example The system

ẋ1 D x21
ẋ2 D x2 � x1

(with eigenvalues (0; 1) for the linear part) admits no con-
vergent transformation to normal form. A detailed proof
for this can be found in [14]. The underlying reason is that
the ansatz for a transformation – unavoidably – leads to
the differential equation

x2 � y0 D y � x ;

(which goes back to Euler) with divergent solutionP
k�1(k � 1)! xk . There are no small denominators here.

The problem actually lies within the normal form, which
can be computed as

ẏ1 D y21
ẏ2 D y2 :

The single nonlinear term is sufficient to obstruct conver-
gence.

Pliss [34] showed that Siegel’s theorem still holds if there
are no such nonlinear obstructions in the normal form:

Theorem 3 (Pliss) Assume that:
(i) The nonzero elements among the

Pn
iD1 mii �  j sat-

isfy Condition S.
(ii) Some formal normal form of F is equal to B D Bs.
Then there exists a convergent transformation to normal
form.

While it seemingly extends Siegel’s result only to a rather
narrow special setting, Pliss’ theorem proved to be quite
important for future developments. Pliss uses a different
approach to proving convergence, via a generalized New-
ton method.
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Fundamental insights into normal forms, and in par-
ticular into convergence and divergence problems were
achieved by Bruno, starting in the 1960s; see [6,7]. His re-
sults included or surpassed much of the earlier work. Let
us take a closer look at Bruno’s conditions. As above, let B
be in Jordan form, with eigenvalues 1; : : : ; n . For k � 1
set

!k :D min
nˇ̌
ˇ
X

mii �  j

ˇ̌
ˇ 6D 0 :

1 � j � n; mi 2 ZC;
X

mi < 2k
o

Bruno introduced two arithmetic conditions:
Condition !:

�

1X

kD1

ln!k

2k
<1

Condition !:

lim sup
k
�
ln!k

2k
<1

Condition ! can be shown to imply Condition S. Clearly
Condition ! implies Condition !.

Possibly in view of Pliss’ theorem, Bruno introduced
the following algebraic condition on the normal form:

Condition A: Some formal normal form is of the type

F� D � � Bs

with � a scalar formal power series.
Pliss’ condition corresponds to Condition A with

� D 1. Moreover, one can show that Condition A (as well
as Pliss’ condition) is satisfied by every (formal) normal
form if it is satisfied by one.

Now let us turn to Bruno’s main theorems. The con-
vergence theorem heremay be expected in view of the pre-
vious results, but the divergence theorem – as well as its
proof – conquers new ground. (We do not state the most
general version of the divergence theorem.)

Theorem 4 (Bruno’s convergence theorem) If Condi-
tion ! and Condition A are satisfied then a convergent nor-
mal form transformation exists.

Theorem 5 (Bruno’s divergence theorem) Assume that
1; : : : ; n do not lie in a complex half-plane with 0 in its
boundary (in particular they do not satisfy the Poincaré
condition). Moreover assume that an analytic vector field
F� in normal form does not satisfy a weaker version of Con-
dition A, or that Condition! is not satisfied. Then there ex-
ists an analytic F with normal form F� such that no trans-
formation of F to (any) normal form converges.

As for the “weaker version of Condition A”, see Remark (c)
below. Bruno also discusses the scenario when all eigenval-
ues are contained in some complex half-plane with 0 in its
boundary.

Example There exists an analytic vector field

F(x) D

0

@

p
2 0 0
0 �1 1
0 0 �1

1

AC � � �

which admits no convergent transformation to normal
form (which is just the linear part). The arithmetic con-
ditions on the eigenvalues are satisfied, but the nontrivial
Jordan block violates Condition A. For the related prob-
lem of normalizing local analytic diffeomorphisms (rather
than vector fields), see e. g. DeLatte and Gramchev [16],
and Gramchev [21], for similar divergence results.

Remark (a) Bruno’s divergence theorem cannot be ap-
plied directly to prove divergence of all normalizing trans-
formations for a specific given vector field. (Therefore
any particular example still has to be worked “by hand”.)
Rather, the divergence theorem provides a generic result.
Since the arithmetic conditions (both ! and !) are very
weak, one sees that in absence of the Poincaré condition,
the algebraic obstructions from the formal normal form
are mostly responsible for divergence.

Remark (b) Bruno’s divergence theorem starts from the
assumption that a convergent normal form exists for
a given vector field; thus he deals with convergence or di-
vergence of normalizing transformations. Little seems to
be known about analytic vector fields that admit only di-
vergent normal forms.

Remark (c) The version of Condition A stated here is
taken from Bruno’s monograph (see Chapter III, § in [7]).
The original paper (p. 140 ff. in [6]). contains somewhat
different versions. In the interesting case when the hypoth-
esis of Theorem 5 holds, Bruno’s original requirement on
the normal form in eigencoordinates is as follows:

ẋ j D x j


 j� C  j�

�
; 1 � j � n ;

with scalar series � and � . This condition seems to have
been stated with special regard to real systems, because
otherwise complex conjugation plays no distinguished
role. To illustrate this point, consider the complexifica-
tion of a real system, and multiply this through by some
scalar exp(i�) which is neither real nor purely imaginary.
Convergence or divergence of normalizing transforma-
tions is not affected by this, but the shape of the condition
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above changes considerably. (The appropriate setting for
this seems to be the one developed by Stolovitch [39]; see
below.) In later publications, notably in [7], Bruno him-
self mostly used Condition A in the simple form we stated
above.

Lie Algebra Arguments

Bruno’s theorems set the standard against which later re-
sults are measured. However, they do not directly address
this basic question: Given a particular local analytic vector
field F, characterize properties that are necessary (and, ide-
ally, also sufficient) for the existence of a convergent nor-
mal form transformation. (Obviously, Condition A is not
generally necessary for the existence of a convergent nor-
malizing transformation.) To answer this basic question
and related problems, it turns out helpful to consider Lie
algebras of analytic vector fields.

A possible approach is based on the earlier observa-
tion that normal forms admit symmetries. (See also the en-
try on Symmetry and Perturbation Theory in this section.)
The coordinate-free approach proves to be quite suitable
here. First, let us formalize the observation:

Lemma 2 If F admits a convergent normalizing transfor-
mation then there exists a nontrivial G (i. e., G 62 K � F)
such that [G; F] D 0.

Proof There exist a convergent� and a convergent F� in
normal form such that

F�
�
�! F

Now � sends Bs to some analytic G D Bs C : : :, and
[Bs; F�] D 0 implies [G; F] D 0. If F� ¤ Bs, we are done.
If F� D Bs then take some linear map C 62 K � Bs that

commutes with Bs, and define G by C
�
�! G. �

In other words, if there is a convergent normalizing trans-
formation then there exists a nontrivial infinitesimal sym-
metry at the stationary point. One can try to turn this nec-
essary condition around and thus obtain sufficient con-
vergence criteria. This has been done, with some success,
since the early 1990s. Among the relevant contributions
are those by Markhashov [29], Bruno and Walcher [9],
Cicogna [11,12], Bambusi et al. [3], and, from a differ-
ent starting point, Stolovitch [39] (see below and see also
Gramchev and Yoshino [24] for maps). The survey pa-
per [14] by Cicogna andWalcher collects the development
up to 2001.

Here we will present a few results to give the reader an
impression of the arguments employed.

The objects to deal with are Cfor(F) and Can(F), i. e.,
the formal, respectively analytic, centralizer of F, which by
definition consist of all formal, respectively analytic, vector
fields H such that [H; F] D 0. The first result is due to Ci-
cogna [11,12] and Walcher [45]. Note that Pliss’ theorem
(and thus Condition A) plays a crucial role in the proof.

Theorem 6 Given the analytic vector field F with formal
normal formbF, assume that

dimCfor(bF) D k <1 :

If the eigenvalues of B satisfy Condition ! and dimCan
(F) D k then there exists a convergent transformation to
normal form.

Proof We have dimCfor(F) D dimCfor(bF), so dimCan
(F) D k implies Can(F) D Cfor(F). Given a formal trans-

formation � withbF
�
�! F , there exists an analyticH such

that B
�
�! H and [H; F] D 0, since B 2 Cfor(bF). Note that

H D BC� � � , so B is a normal form ofH. Due to Pliss’ theo-
rem, there is a convergent˚ with B

˚
�! H. NoweF

˚
�! F

for someeF , and [B;eF] D 0, soeF is in normal form. �

The dimension of the formal centralizer is computable
in many cases. The requirement on Condition ! can be
relaxed; see [11,45] and [14]. The next result is due to
Markhashov [29] for the non-resonant case, and to Bruno
and Walcher [9] in the resonant case. One may base
a proof on the observation that dimCfor(F) is infinite only
if Condition A holds, and use Theorem 6 otherwise.

Theorem 7 In dimension n D 2, there is a convergent
transformation of F to normal form if and only if F admits
a nontrivial commuting vector field in 0.

In dimension two, there are other, very precise, charac-
terizations of resonant vector fields (for 2/1 a nega-
tive rational number) admitting a convergent normaliza-
tion, which can be drawn from the work of Martinet and
Ramis [30]. Beyond this, building onwork of Ecalle [18,19]
and Voronin [42],Martinet and Ramis succeeded in giving
an analytical classification of germs of such vector fields,
and those admitting a convergent normalizing transfor-
mation can be characterized by the vanishing of infinitely
many analytical invariants. In this sense, the convergence
problem was settled earlier, at least for the interesting
cases. But Theorem 7 approaches the question from a dif-
ferent perspective, gives an algebraic characterization and
provides structural insight that is not directly available
from [30].

Lie algebra arguments also play a fundamental role,
from a different perspective, in the work of Stolovitch [39].
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We will here give a simplified and incomplete account
of his important results; a full presentation would take
up much more space. To motivate Stolovitch’s approach,
note that in many cases there are natural decompo-
sitions B D B1 C � � � C B`, with all [Bi ; Bj] D 0 which
come from eigenvalues splitting up into groups of pair-
wise commensurable ones, with pairwise incommensu-
rability between the groups. The resonance conditionsP

mj j � k D 0 then split up into conditions involving
only the groups. We illustrate this with a simple example
for such a decomposition:

diag (1;�1;
p
2;�
p
2) D

diag (1;�1; 0; 0)C diag (0; 0;
p
2;�
p
2) :

The setting considered by Stolovitch is as follows: Given
(complex) analytic vector fields

F1 D B1 C � � � ; : : : ; F` D B` C � � �

that commute pairwise, thus all [Fi ; Fj] D 0, ask about si-
multaneous analytic normalization of these vector fields.
There are sensible notions of normal form of a vector field
with respect to a linear Lie algebra, and in particular there
is a natural extension of Poincaré–Dulac for abelian Lie
algebras of diagonal matrices; see [39], Sect. “Convergence
and Convergence Problems”: Each semisimple linear part
Bi;s commutes with each Fj in such a normal form. To
avoid trivial scenarios, Stolovitch requires the semisim-
ple parts Bi;s to be linearly independent. To formulate
diophantine conditions extending Bruno’s Condition !,
one may proceed as follows: Let i;1; : : : ; i;n denote the
eigenvalues of Bi. For nonnegative integers m1; : : : ;mn ,
and for 1 � d � n set

�m1;:::;mn ;d :D
X

i

ˇ
ˇ̌
ˇ
ˇ

X

j

mji; j � d

ˇ
ˇ̌
ˇ
ˇ

and (for instance; Stolovitch gives a more general formu-
lation)

!k(B1; : : : ; B`) :D inf
n
�m1;:::;mn ;d 6D 0 :

1 � d � n; 2 �
X

mj � 2k
o
:

This leads to an appropriate diophantine condition which
extends Bruno’s Condition !.

Condition !#:

�

1X

kD1

!k(B1; : : : ; B`)
2k

<1

We remark briefly that there appear to be some issues of
well-definedness here. For instance, the choice of the Fi,
and hence of the Bi, is not unique, and one has to ver-
ify that the important notions, like Condition !#, do not
depend on these choices. Stolovitch [39] works in an in-
variant setting from the start; as a consequence, no such
questions arise.

Finally, Stolovitch introduces the notion of formal
complete integrability. Disregarding technical subtleties
(even though these are relevant and of interest), one may
informally characterize this property as follows: The sys-
tem F1; : : : ; F` is formally completely integrable if it has as
many formal integrals as admissible by the semisimple lin-
ear parts B1;s ; : : : ; B`;s . To cast at least some light on this,
we note that every formal integral of the system in nor-
mal form is also a simultaneous first integral of the Bi;s .
See Walcher [43] for the case ` D 1 and Stolovitch [39],
Sect. “Lie Algebra Arguments” for the general case. This
notion of complete integrability is the appropriate exten-
sion of Bruno’s Condition A.

The following is a simplified representative of the re-
sults in [39]. The system B1; : : : ; B` is said to have small
divisors if 0 is a limit point of the �m1;:::;mn ;d 6D 0.

Theorem 8 (Stolovitch) In the presence of small divisors,
if Condition !# holds then every formally completely inte-
grable system F1; : : : ; F` admits a convergent transforma-
tion to normal form.

The principal value of Stolovitch’s results is that they open
up a unified approach to a number of applications. One al-
most immediate application is a recovery of Bruno’s con-
vergence theorem. (See also Remark (c) following Theo-
rem 5.) We give two more applications. For the first one,
compare also Bambusi et al. [3].

Corollary 1 (Linearization) In the presence of small divi-
sors, assuming that Condition !# holds, every formally lin-
earizable system F1; : : : ; F` admits a convergent lineariza-
tion.

The second application is a short and clear proof of a the-
orem due to Vey [40]:

Corollary 2 (Volume-preserving vector fields) Assume
that ` D n � 1 and that F1; : : : ; Fn�1 are commuting vol-
ume-preserving vector fields, with diagonal and linearly in-
dependent linear parts Bi D Bi;s . Then the Fi are simulta-
neously analytically normalizable.

Remark (a) For similar results see Zung [46]. Zung uses
a different approach based on a convergence result (a pre-
cursor of [47]) for Hamiltonian vector fields; see also the
section on Hamiltonian vector fields below. His argument
seems somewhat sketchy.
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Remark (b) There is a nontrivial overlap of Stolovitch’s
results with the approach to convergence via symmetries
outlined above: Some results can be proven by either
method, as the references indicate.

We finish this section with a third aspect of Lie algebra
arguments in convergence proofs. The following is taken
from Walcher [44]:

Theorem 9 Let L be a finite dimensional Lie algebra of
polynomial vector fields which is graded in the sense that it
contains all homogeneous parts of each of its elements, and
let F 2 L and F(0) D 0. Then F admits a convergent trans-
formation to normal form F�, and one may take F� 2 L.
The basic idea for the proof is to take suitable solutions hr
of the homological equations, which can be chosen in L,
and transformations exp(hr ); see [44], Prop. 2.7. Due to
finite dimension of L, finitely many such transformations
suffice. There are several interesting Lie algebras among
the finite dimensional graded ones:

Example (a) Every projective vector field, as well as every
conformal vector field in dimension� 3, admits a conver-
gent transformation to Poincaré–Dulac normal form.

Example (b) Matrix Riccati equations: Every matrix dif-
ferential equation of the form

ẋ D xax C bx C xc ;

with x, a, b, c matrices of appropriate sizes, admits a con-
vergent transformation to normal form.

NFIM and Sets of Analyticity

As we have seen, convergence problems for normalizing
transformations are unsurmountable in many instances.
But there are sensible strategies to achieve convergence by
relaxing the requirements on the normalized vector field.
Moreover, such strategies frequently provide interesting
information, e. g. on stability or on the existence of peri-
odic solutions. There are two related, but not equivalent,
approaches to be discussed here: Bibikov’s normal form on
an invariant manifold (NFIM), see [4]; and Bruno’s sets of
analyticity, see [7].

We will first discuss Bibikov’s work, including a coor-
dinate-free approach proposed in [44].

Definition 3 Let C be a semisimple linear map. A vector
subspace of Kn is called strongly C-stable if it is invariant
for every vector field F D BC � � �, with Bs D C, in normal
form.

Strongly C-stable spaces are in particular C-stable. A coor-
dinate-dependent characterization is as follows.

Lemma 3 Assume that C is in diagonal form, and let
1 < r < n. Then the subspace U :D Ke1 C � � � CKer is
strongly C-stable if and only if

m11 C � � � C mrr �  j 6D 0

for all nonnegative integers mi with
P

mi > 0, and all
j 2 frC 1; : : : ; ng.

Here, the choice of indices 1; : : : ; r is just for the sake of
convenience. The proof is simple: The condition ensures
that no monomial

xm1
1 : : : xmr

r e j; j > r

will occur in the normal form, and therefore the sub-
space U, characterized by xrC1 D � � � D xn D 0, is invari-
ant for any normal form F D C C Bn C � � �. Examples in-
clude the stable, unstable and center subspaces of C.

Now one can introduce the notion of NFIM:

Definition 4 Assume that U D Ke1 C � � � CKer is
strongly C-stable. A vector field F D BC � � � with Bs D C
is said to be in normal form on the invariant manifold U
(NFIM on U) if U is invariant for F and furthermore

[BsjU ; FjU ] D 0 :

Example The two-dimensional vector field

F D
�

x21 � 2x1x2 C 3x31
x2(1C x1 C x22)

�
; with Bx D

�
0
x2

�
;

is in NFIM on U D Ke1.

Bibikov also introduced a refined version of NFIM, which
he calls quasi-normal form (QNF). The above example is
not in quasi-normal form; in a QNF the first entry would
contain only functions of x1.

Because normal forms are, in particular, in NFIM on
every strongly Bs-stable subspace, it is obvious that formal
transformations to NFIM exist. But there is more freedom
to construct such transformations, which may be utilized
to force convergence. To give a flavor of Bibikov’s results,
we present a weakened version of one of his theorems.

Theorem 10 (Bibikov) Given a vector field F D BC � � �,
assume that the subspace U :D Ke1 C � � � CKer is
strongly Bs-stable, and moreover that:
(i) There is an � > 0 such that

jm11 C � � � C mrr �  jj � �

for all nonnegative integers mi,
P

mi > 0, and for all
j > r.
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(ii) Some formal normal formbFjU satisfies the Pliss condi-
tion on U.
Then there exists a convergent transformation to NFIM
on U.

Remark In Bibikov’s original theorems (see [4], The-
orem 3.2 and Theorem 10.2), one finds a more gen-
eral (quite technical) condition instead of (ii). Thus the
range of Bibikov’s theorems is wider than our state-
ment indicates. Condition (i), or some related condition,
cannot be discarded completely: There are examples of
strongly C-stable subspaces which do not correspond to
analytic invariant manifolds for certain vector fields. (This
is another incarnation of the small denominator problem.)

Applications of Bibikov’s theorems include the exis-
tence of analytic stable and unstable manifolds; stability
of the stationary point in case 1 D 0 when all other i
have negative real parts, andbFjU =0 on U D Ke1 (“tran-
scendental case”); and the existence of certain periodic so-
lutions.

Let us now turn to Bruno’s method of analytic invariant
sets; see Bruno Part I, Ch. III, and Part II in [7]. To moti-
vate the approach, one may use the following observation:
For an analytic vector field bF D BC : : : in normal form
the set

A D
˚
z :bF(z) and Bsz linearly dependent in Kn�

is invariant for bF . (This is a consequence of [Bs; bF] D 0:
The set of points for which a vector field and an infinites-
imal symmetry “point in the same direction” is invari-
ant.) It is clearly possible to write down analytic functions
such thatA is their common zero set: For instance, take
suitable 2 � 2-determinants. One may now introduce the
notion that a vector field F̃ is normalized onA: In the co-
ordinate version this means that for each entry of the right-
hand side the sumof all nonresonant parts lies in the defin-
ing ideal ofA.

If F is not in normal form but some formal normal
form bF satisfies Condition A then – assuming some mild
diophantine conditions – A is a whole neighborhood of
the stationary point, according to Bruno’s convergence
theorem. Bruno now refines this by investigating whether
the generally “formal” setA is analytic (or at least certain
subsets are), and what can be said about the solutions on
such subsets. To be more precise: Given a not necessarily
convergent normal form bF of F, one can still write down
formal power series whose “common zero set” definesA,
and it makes sense to ask what of this can be salvaged for
analyticity. The following is a sample of Bruno’s results
(see Part I, Ch. III, Theorem 2 and Theorem 4 in [7]).

As above, we do not write down the technical conditions
completely.

Theorem 11 (Bruno) Let the analytic vector field F D
BC � � � be given.

(a) If the eigenvalues 1; : : : ; n of B are commensurable
(i. e., pairwise linearly dependent over the rationals)
then the set A is analytic and there is a convergent
transformation to a vector field F̃ that is normalized
onA.

(b) Generally, there exists a (formal) subsetB ofAwhich is
analytic, and for B the same conclusion as above holds.

For applications see Bruno [7], Part II, and the recent pa-
pers by Edneral [20], and Bruno and Edneral [8], on exis-
tence of periodic solutions for certain equations.

Hamiltonian Systems

Hamiltonian systems have a special position among dif-
ferential equations (see e. g. [2] for an overview, and
� Hamiltonian Perturbation Theory (and Transition to
Chaos)); in view of their importance it is appropriate to
give them particular attention. When discussing normal
forms of Hamiltonian systems (where Poincaré–Dulac be-
comes Birkhoff; see [5]) it is natural to consider canonical
transformations only. In view of the correspondence be-
tween integrals of F and Hamiltonian vector fields com-
muting with F, it is furthermore natural to consider inte-
grals in the Hamiltonian setting. As for convergence re-
sults, we first state two theorems by H. Ito [26,27], from
around 1990:

Theorem 12 (Ito; non-resonant case) Let F D BC � � � be
Hamiltonian and let (!1;�!1; : : : ; !r ;�!r) be the eigen-
values of B. Moreover assume that !1; : : : ; !r are non-res-
onant, thus

P
mj! j D 0 for integers m1; : : : ;mr implies

m1 D � � � D mr D 0. If F possesses r independent integrals
in involution (i. e. with vanishing Poisson brackets) then
there exists a convergent canonical transformation of f to
Birkhoff normal form.

This condition is also necessary in the non-resonant case:
If there is a convergent transformation to analytic normal
formbF then there are r linearly independent linear Hamil-
tonian vector fields that commute with bF , and these, in
turn, correspond to r independent quadratic integrals of
bF. For the “single resonance” case one has:

Theorem 13 (Ito; a simple-resonance case) Let F D
B C � � � be Hamiltonian and let (!1;�!1; : : : ; !r ;�!r)
be the eigenvalues of B. Moreover assume that there are
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nonzero integers n1; n2 such that n1!1 C n2!2 D 0, but
there are no further resonances. If F possesses r independent
integrals in involution then there exists a convergent canon-
ical transformation to Birkhoff normal form.

Again, the condition is also necessary. Ito’s proofs are
quite long and intricate. Kappeler, Kodama and Neme-
thi [28] proved a generalization of Theorem 13 for more
general single-resonance cases. Moreover, they showed
that there is a natural obstacle to further generalizations,
since there exist non-integrable (polynomial) Hamilto-
nian systems in normal form. Thus, a complete inte-
grability condition is not generally necessary for conver-
gence.

Nguyen Tien Zung [47] recently succeeded in a far-
reaching generalization of Ito’s theorems. Considering the
existence of non-integrable normal forms, this seems the
best possible result on integrability and convergence.

Theorem 14 (Zung) Any analytically integrable Hamil-
tonian system near a stationary point admits a convergent
transformation to Birkhoff normal form.

One remarkable feature of Zung’s proof is its relative
shortness, compared with the proofs by Ito.

Finally, turning to divergent normal forms (rather
than normalizing transformations) of Hamiltonian sys-
tems, Perez–Marco [33] recently established a theorem
about convergence or generic divergence of the normal
form in the non-resonant scenario. Although numerical
computations indicate the existence of analytic Hamil-
tonian vector fields which admit only divergent normal
forms, there still seems to be no example known. Perez–
Marco showed that if there is one example then divergence
is generic.

Future Directions

There are various ways to extend the approaches and re-
sults presented above, and clearly there are unresolved
questions. In the following, some of these will be listed,
respectively, recalled.

The convergence problem for normal forms and nor-
malizing transformations is part of the much bigger prob-
lem of analytic classification of germs of vector fields.
Except for dimension two (see the references [18,19,30]
mentioned above) little seems to be known in the case of
nontrivial formal normal forms. Going beyond analyticity,
an interesting extension would be towards Gevrey spaces.
Some work on this topic exists already; see e. g. [22].

Passing from vector fields to maps, matters turn out to
be muchmore complicated in the case of nontrivial formal

normal forms, and even one-dimensional maps show very
rich behavior; see [31,32]. A brief introduction is given in
the survey [23] mentioned above.

A complete (“algebraic”) understanding of Bruno’s
Condition A would be desirable; this could also provide
an approach to a non-Hamiltonian version of Zung’s The-
orem 14. It seems well possible that all the necessary in-
gredients for this endeavor are contained in Stolovitch’s
work [39].

An extension or refinement of Bibikov’s and Bruno’s
results on the existence of certain invariant sets (in the
case of non-convergence) would obviously be interesting.
There seems to be a natural guideline here: Check what
invariant sets are forced onto a system in PDNF and see
which ones can be salvaged. (The existence of a commut-
ing vector field, for instance, has more consequences than
those exploited by Bruno in the arguments leading up to
Theorem 11.)

Finally, one could turn tomore refined versions of nor-
mal forms, such as normal forms with respect to a nilpo-
tent linear part (see [15]), and quite general constructions
such as presented by Sanders [36,37]. It seems that little
attention has been paid to convergence questions for such
types of normal forms. For normal forms with respect to
a nilpotent linear part, there are obviously no small de-
nominator problems, but algebraic obstructions abound.
There exists a precise algebraic characterization for such
normal forms, involving the representation theory of sl(2)
(see [15]). Thus there may be some hope for an alge-
braic characterization of convergently normalizable vector
fields.
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Glossary
Phase transition In statistical physics, a phase transition

is the transformation of a macroscopic system from
one phase to another. Phase transitions are divided
into two types. First-order phase transitions are char-
acterized by discontinuities of first-order derivatives
of the Gibbs free energy, such as the entropy or the
volume whereas second-order phase transitions are
characterized by power-law behaviors of second-order
derivatives of the Gibbs free energy such as the specific
heat or the magnetic susceptibility. These singular be-
haviors occur for specific values of intensive variables
such as the temperature or the magnetic field. Similar
behaviors have also been discovered in many-compo-
nent systems.

Critical behavior Critical behavior manifests itself in
many-component systems and is characteristic of a co-
operative behavior of the various components. This
notion has been introduced in equilibrium statistical
physics for many-body systems that exhibit second-
order phase transitions. In the vicinity of the transi-
tion temperature Tc, a singular physical quantityQ has
a power-law behavior, that is, it behaves as jT � Tcj",
where " is the critical exponent characterizing the crit-
ical behavior of Q.

Universality Despite the great variety of physical systems
that exhibit equilibrium second-order phase transi-
tions, their critical behaviors, characterized by a set of
critical exponents, fall into a small number of univer-
sality classes that only depend on the symmetry of the
order parameter and the space dimension. Critical be-
havior is universal in the sense that it does not depend
upon details whose characteristic size is much less than
the correlation length, such as lattice structure, range
of interactions (as long as this range is finite), spin
length, and so on. Since time is involved in nonequi-
librium critical phenomena, universality classes are ex-
pected to offer a richer variety.

Cellular automaton A cellular automaton is a fully dis-
crete dynamical system. It consists of a regular finite-
dimensional lattice of cells, each one in a state belong-
ing to a finite set of states. The state of each cell evolves
in discrete time steps. At time t the state of a given
cell is a function of the states of a finite number of
neighboring cells at time t � 1. The neighborhood of
a given cell may or may not include the cell itself. All

cells evolve according to the same evolution rule which
may be either deterministic or probabilistic.

Model A model is a simplified mathematical representa-
tion of a system. In the actual system, although many
features are likely to be important, not all of them,
however, should be included in the model. Only a few
relevant features which are thought to play an essential
role in the interpretation of the observed phenomena
should be retained. If it captures the key elements of
a complex system, a simple model, may elicit highly
relevant questions.

Mean-field approximation In a many-agent system the
mean-field approximation is a first attempt to un-
derstand the behavior of the system. Although rather
crude, it is often useful. Ignoring space correlations be-
tween the agents and replacing local interactions by
uniform long-range ones, the mean-field approxima-
tion only deals with average quantities. Historically,
under the name “molecular field theory”, it was first
used by Pierre Weiss (1869–1940) in 1907 to build up
the first simple theory of the para-ferromagnetic sec-
ond-order phase transition.

Definition of the Subject
Phase transitions in cellular automata are non-equilib-
rium phase transitions observed in probabilistic cellular
automata with absorbing states [1,2], that is, states that
can be reached by the dynamics but cannot be left. Di-
rected percolation is one of the most studied example of
a non-equilibrium phase transition but many other ex-
amples such as epidemic or traffic models have attracted,
since the 1990s, a considerable degree of attention.

Introduction
In this article, the notion of critical behavior will often
play an important role. Critical behavior manifests itself
in many-component systems and is characteristic of a co-
operative behavior of the various components. This no-
tion has been introduced in statistical physics for many-
body systems such as ferromagnetic materials, alloys, or
liquid helium, that exhibit second-order phase transitions;
that is, a phase change as a function of a tuning param-
eter, such as the temperature. A ferromagnetic material
(i. e., a system having a spontaneous nonzero magnetiza-
tion), becomes, as its temperature is (in general) increased,
paramagnetic (i. e., its magnetization in the absence of an
external magnetic field is equal to zero). In an ordered al-
loy such as ˇ-brass – a 50% copper and 50% zinc alloy –
the atoms of copper and zinc are located on two identical
sublattices, one sublattice containing more copper and the
other more zinc. As the temperature is increased, the alloy
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becomes disordered (i. e., both sublattices contain equal
fractions of copper and zinc). Liquid helium, which be-
haves as an ordinary liquid at temperatures above 2.19 K,
becomes superfluid at lower temperatures. The tempera-
ture at which these phase transitions occur is called the
critical temperature, and the system at the critical temper-
ature – more generally at the critical point – is said to be
in a critical state.

At the critical point, physical quantities, such as en-
tropy, volume, or magnetization, that are first derivatives
of the Gibbs free energy are continuous, in contrast with
second-order derivatives, such as the specific heat or the
magnetic susceptibility, which are singular. These singular
behaviors reflect the long-range nature of the correlations
in the vicinity of the critical point.

Close to a second-order phase transition, correlation
functions of fluctuating quantities (such as spins in the
case of a para-ferromagnetic phase transition) at two dif-
ferent points decrease exponentially with a characteristic
correlation length � . As the temperature T approaches the
critical temperature Tc, � diverges as (T � Tc)�� if T > Tc
and (T � Tc)��

0 if T < Tc.
This cooperative effect is characteristic of criticality. It

implies that certain physical quantities either vanish or di-
verge as powers of jT � Tcj as T approaches Tc. Today,
when a many-agent system displays a power-law behav-
ior for some observable, most researchers agree that this
is a sign of some cooperative effect and a manifestation of
the system complexity [3].

Despite the great variety of physical systems that ex-
hibit second-order phase transitions, their critical behav-
iors, characterized by a set of critical exponents, fall into
a small number of universality classes that only depend on
the symmetry of the order parameter (such as the mag-
netization for a ferromagnet) and space dimension. Crit-
ical behavior is universal in the sense that it does not
depend upon details whose characteristic size is much
less than the correlation length, such as lattice structure,
range of interactions (as long as this range is finite), spin
length, and so on. Moreover, for a given second-order
phase transition, one needs to know only a rather small
number of critical exponents to determine all other expo-
nents. For instance, in the case of a para-ferromagnetic
second-order phase transition, the specific heat at con-
stant magnetic field CB diverges as (T � Tc)�˛ if T > Tc
and (T � Tc)�˛

0 if T < Tc, the magnetization M, which
is identically equal to zero for T > Tc, goes to zero as
(Tc � T)ˇ if T < Tc, and the isothermal susceptibility
�T diverges as (T � Tc)�� if T > Tc and (T � Tc)��

0 if
T < Tc. If we assume that the free energy F, close to the
critical point, is a generalized homogeneous function of

T � Tc and M, that is, a function satisfying, for all values
of , the relation

F((T � Tc); ˇM) � 2�˛F(T � Tc;M) :

Choosing  D 1/jT � Tcj, we can write F(T � Tc;M) un-
der the form

F(T � Tc;M) D jT � Tcj2�˛ f
�

M
jT � Tcjˇ

�
;

where f is a function of only one variable. From this ex-
pression it can be shown (see [4]) that the critical expo-
nents satisfy the following so-called scaling relations

˛ D ˛0; � D � 0; and ˛ C 2ˇ C � D 2 :

An important distinguishing feature of the power-law
behavior of physical quantities in the neighborhood of
a critical point is that these quantities have no intrin-
sic scale. The function x 7! exp(�x/�) has an intrinsic
scale � , whereas the function x 7! xa has no intrinsic
scale: power laws are self-similar.

Quantities exhibiting a power-law behavior have been
observed in a variety of disciplines ranging from linguistics
and geography to medicine and economics. As mentioned
above, the emergence of such a behavior is regarded as the
signature of a collective mechanism.

Second-order phase transitions are always associated
with a broken symmetry. That is, the symmetry group of
the ordered phase (the phase characterized by a nonzero
value of the order parameter) is a subgroup of the dis-
ordered phase (the phase characterized by an order pa-
rameter identically equal to zero). To an order parameter,
we can always associate a symmetry-breaking field. In the
presence of such a field, the order parameter has a nonzero
value, and, in this case, the system cannot exhibit a sec-
ond-order phase transition. In the case of an ideally sim-
ple para-ferromagnetic phase transition, the paramagnetic
phase is invariant under the tridimensional rotation group
whereas the ferromagnetic phase is no more invariant un-
der that group. The corresponding broken symmetry is
characterized by the nonzero value of the vector magneti-
zationM which plays the role of the order parameter, and
the symmetry-breaking field is the magnetic field B inten-
sive conjugate parameter ofM.

The nature of the broken symmetry is not always obvi-
ous as, for instance, in the case of the normal-superfluid or
normal-superconductor phase transitions, but it does exist
(see [5]).

Depending upon the nature of the order parameter,
a second-order phase transition exists only above a crit-
ical space dimensionality, called the lower critical space
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dimension. Critical exponents, which depend upon space
dimensionality, take their mean-field values (i. e., when
space dependence and correlations are ignored) above an-
other critical space dimensionality, called the upper crit-
ical space dimension. In the case of the Ising model, the
lower and upper critical space dimensions are, respec-
tively, equal to 1 and 4.

In what follows we focus on phase transitions in cellu-
lar automata. Deterministic one-dimensional cellular au-
tomaton rules are defined as follows. Let Q denote the fi-
nite set of integers f0; 1; : : : ;mg and s(i; t) 2 Q represent
the state at site i 2 Z and time t 2 N ; a local evolution rule
is a map f : Qr`CrrC1 ! Q such that

s(i; tC1) D f
�
s(i�r`; t); s(i�`C1; t); : : : ; s(iCrr ; t)


;

(1)

where the integers r` and rr are, respectively, the left radius
and right radius of the rule f ; if r` D rr D r, r is called the
radius of the rule. The local rule f , which is a function of
n D r` C r1 C 1 arguments, is often said to be an n-input
rule. The function St : i 7! s(i; t) is the state of the cellular
automaton at time t; St belongs to the setQZ of all configu-
rations. Since the state StC1 at t C 1 is entirely determined
by the state St at time t and the local rule f , there exists
a unique mapping Ff : S! S, such that

StC1 D Ff (St) ; (2)

called the cellular automaton global rule or the cellular au-
tomaton evolution operator induced by the local rule f .

Most models presented in this article will be formu-
lated in terms of probabilistic cellular automata. In this
case, the image by the evolution rule of any (r` C rr C 1)-
block, is a discrete random variable with values in Q.

The simplest cellular automata are the so-called ele-
mentary cellular automata in which the finite set of states
is Q D f0; 1g and the rule’s radii are r` D rr D 1. Sites in
a nonzero state are sometimes said to be active. It is easy to
verify that there exist 223 D 256 different elementary cel-
lular automaton local rules f : f0; 1g3 ! f0; 1g. The local
rule of an elementary cellular automaton can be specified
by its look-up table, giving the image of each of the eight
three-site neighborhoods. That is, any sequence of eight
binary digits specifies an elementary cellular automaton
rule. Here is an example:

111 110 101 100 011 010 001 000
1 0 1 1 1 0 0 0

Following Wolfram [6], a code number may be associ-
ated with each cellular automaton rule. If Q D f0; 1g, this

code number is the decimal value of the binary sequence
of images. For instance, the code number of the rule above
is 184 since

101110002 D 27 C 25 C 24 C 23 D 18410 :

More generally, the code number N(f ) of a one-dimen-
sional jQj-state n-input cellular automaton rule f is de-
fined by

N( f ) D
X

(x1;x2;:::;xn)2Qn

f (x1; x2; : : : ; xn)

� jQjjQj
n�1x1CjQjn�2x2C���CjQj0xn :

The Domany–Kinzel Cellular Automaton

Directed percolation refers to lattice models that mimic
coffee brewing, that is, causing water to pass through a bed
of ground coffee. Consider the square lattice represented
in Fig. 1 in which open bonds are randomly distributed
with a probability p. In contrast with the usual bond per-
colation problem, here bonds are directed downwards, as
indicated by the arrows.

If we imagine a fluid flowing downwards fromwet sites
in the first row, one problem is to find the probability P(p)
that, following directed open bonds, the fluid will reach
sites on an infinitely distant last row. There clearly exists
a threshold value pc above which P(p) is nonzero (see [7]).
If the downwards direction is considered to be the time
direction, the directed bond percolation process may be
viewed as the evolution of a two-input one-dimensional
cellular automaton rule f such that

s(i; t C 1) D f
�
s(i; t); s(i C 1; t)



D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

0; if s(i; t)C s(i C 1; t) D 0 ;
1; with probability p; if s(i; t)C s(i C 1; t) D 1 ;
1; with probability 1 � (1 � p)2;

if s(i; t)C s(i C 1; t) D 2 :

Phase Transitions in Cellular Automata, Figure 1
A configuration of directed bond percolation on a square lattice



Phase Transitions in Cellular Automata P 6775

The density of active (wet) sites �, which is equal to P(p),
plays the role the order parameter of the second-order
phase transition. Using the image of the flowing fluid, it
can be shown that there exists a directed bond percola-
tion threshold (or a directed bond percolation probability)
pDBPc above which the fluid has a nonzero probability of
reaching an infinitely distant last row. In the vicinity of the
critical probability pDBPc ,f if �k and �? denote, respectively,
the correlation length in the flow direction and perpendic-
ular to it, we have

�k � �
�
? �

�
p � pDBPc

��k �
�
p � pDBPc

��?� ;

where � is the anisotropy exponent and �k and �? the cor-
relation length exponents in the longitudinal and trans-
verse directions respectively. Using the finite-size renor-
malization group technique Kinzel and Yeomans, assum-
ing free boundary conditions, found [8]

pDBPc D 0:644˙ 0:001 � D 1:582˙ 0:001
�k D 1:739˙ 0:002 �?1:099˙ 0:001 :

A cellular automaton n-input rule is said to be totalistic if
it only depends upon the sum of the n inputs. The most
general two-input one-dimensional totalistic probabilistic
cellular automaton rule, called the Domany–Kinzel cellu-
lar automaton rule [9], may be written

s(i; t C 1) D f
�
s(i; t); s(i C 1; t)



D

8
<̂

:̂

0; if s(i; t)C s(i C 1; t) D 0 ;
1; with probability p1; if s(i; t)C s(i C 1; t) D 1 ;
1; with probability p2; if s(i; t)C s(i C 1; t) D 2 :

Directed bond percolation corresponds to p1 D p and
p2 D 2p � p2. The case p1 D p2 D p is also interesting;
it describes the directed site percolation process. In this
case, numerical simulations show that the directed site
percolation probability pDSPc D 0:7058˙ 0:0005 (values
of the critical exponents characterizing the singular be-
havior close to the critical probability pSDPc can be found
in [8]).

Domany and Kinzel showed that, in the infinite time
limit, there exist two phases, an active phase in which
a macroscopic fraction of all sites are occupied (state value
equal to 1) and a phase in which all sites become empty
(state value equal to 0). The domains of existence of these
two phases in the (p1; p2)-plane are separated by a sec-
ond-order phase transition line (see [9]). Along this line,
all phase transitions belong to the same universality class

characterized by a critical exponent ˇ D 0:273˙ 0:002,
characterizing the singular behavior of the order param-
eter in the vicinity of the critical temperature.

A few years later, Martins, Verona de Resende, Tsallis,
and de Magalhães [10] considered a generalized version of
the Domany–Kinzel cellular automaton whose evolution
rule is given by

s(i; t C 1) D f
�
s(i; t); s(i C 1; t)



D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if s(i; t) D 0 and s(i C 1; t) D 0 ;
1; with probability p1;

if s(i; t) D 0 and s(i C 1; t) D 1 ;
1; with probability p3;

if s(i; t) D 1 and s(i C 1; t) D 0 ;
1; with probability p2;

if s(i; t) D 1 and s(i C 1; t) D 1 ;

that is, a two-input one-dimensional probabilistic cellular
automaton rule which is no more totalistic. In the three-
dimensional (p1; p2; p3)-phase space they found, in the in-
finite time limit, a new chaotic phase. The corresponding
phase transition does not belong to the same universality
class as the Domany–Kinzel phase transition. In particu-
lar, the critical exponent ˇ D 0:5˙ 0:02. The boundaries
between the three phases of the Domany–Kinzel prob-
abilistic cellular automaton have been determined with
high accuracy in [11]. For a renormalization group ap-
proach of the Domany–Kinzel cellular automaton refer
to [12].

A richer phase diagram of a simple three-input one-
dimensional totalistic cellular automaton has been stud-
ied by Bagnoli, Boccara, and Rechtman [13]. These au-
thors studied the phase diagram and the critical behavior
of the one-dimensional radius-1 totalistic probabilistic cel-
lular automatonwhose evolution rule is defined as follows.
If s(i, t) denotes the state of the ith cell at time t, then

s(i; t C 1)

D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

0; if s(i � 1; t)C s(i; t)C s(i C 1; t) D 0 ;
X1; if s(i � 1; t)C s(i; t)C s(i C 1; t) D 1 ;
X2; if s(i � 1; t)C s(i; t)C s(i C 1; t) D 2 ;
1; if s(i � 1; t)C s(i; t)C s(i C 1; t) D 3 ;

where Xj ( j D 1; 2) is a Bernoulli random variable equal
to 1 with probability pj, and to 0 with probability 1� p j .
In the (p1; p2)-plane, the line p1 C p2 D 1 is a symmetry
axis of the phase diagram. The evolution rule implies that
states in which the cells are either all empty or all occupied
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are absorbing. There exists a first-order phase transition
between these two phases along the line p1 C p2 D 1 end-
ing at a multicritical point where two second-order phase
transition lines meet. These second-order transition lines
separate the absorbing states mentioned above from a sta-
ble phase having a density � of occupied sites such that
0 < � < 1, (i. e., � ¤ 0 and � ¤ 1). The two second-or-
der phase transitions belong to the universality class of the
directed percolation phase transition. Finally there exists
a chaotic phase, located in the neighborhood of the point
(p1; p2) D (1; 0) in the (p1; p2)-phase plane of the type
discovered by Martins, Verona de Resende, Tsallis, and de
Magalhães.

Car TrafficModels

Vehicular traffic can be treated as a system of interacting
particles driven far from equilibrium. The particle-hop-
ping model describes car traffic in terms of probabilistic
cellular automata. An interesting model of this type was
proposed by Nagel and Schreckenberg [14]. These authors
consider a finite lattice of length L with periodic boundary
conditions. A finite one-dimensional cellular automaton
of length L is said to satisfy periodic boundary conditions
if the set of vertices is ZL , that is, the set of integers mod-
ulo L. In the case of a one-lane traffic model, these condi-
tions are equivalent to assuming that cars are moving on
a circular one-lane highway with neither entries nor exits.
Each cell is either empty (i. e., in state e) or occupied by
a car (i. e., in state v), where v D 0; 1; : : : ; vmax denotes the

Phase Transitions in Cellular Automata, Figure 2
First 50 iterations of theNagel–Schreckenberg probabilistic cellular automaton traffic flowmodel. The initial configuration is random
with a density equal to 0.2 in the left figure and 0.5 in the right one. In both cases vmax D 2 and p D 0:2. The number of lattice sites
is equal to 50. Empty cells are white while cells occupied by a car with velocity v equal to 0, 1, and 2 have darker shades of gray. Time
increases downwards

car velocity (cars are moving to the right). If di is the dis-
tance between cars i and i C 1, car velocities are updated
in parallel according to the following subrules.

vi
�
t C 1

2

D min(vi (t)C 1; di (t)� 1; vmax)

vi(t C 1) D

8
<̂

:̂

max
�
vi
�
t C 1

2

� 1; 0


;

with probability p;
vi
�
t C 1

2

; with probability 1� p ;

(3)

where vi(t) is the velocity of car i at time t. Then, if xi(t) is
the position of car i at time t, cars are moving according to
the rule

xi(t C 1) D xi(t)C vi(t C 1) :

That is, at each time step, each car increases its speed by
one unit (acceleration a D 1), respecting the safety dis-
tance and the speed limit. The model also includes noise:
with a probability p, each car decreases its speed by one
unit. Although rather simple, the model exhibits features
observed in real highway traffic, that is, with increasing
vehicle density, it shows a phase transition from laminar
traffic flow to start-stop waves as illustrated in Fig. 2.

In order to understand, in the case of a second-order
phase transition in a highway car traffic cellular automa-
ton model, the nature of the order parameter, show how it
is related to symmetry-breaking, determine the symmetry-
breaking field conjugate to the order parameter, define the



Phase Transitions in Cellular Automata P 6777

analogue of the susceptibility, study the critical behavior,
and find scaling laws, Boccara and Fukś studied in details
a deterministic version of the Nagel–Schreckenberg high-
way traffic model [15].

If p D 0, the Nagel–Schreckenberg model is determin-
istic and the average velocity over the whole lattice is ex-
actly given by

hvi D min
�
vmax;

1
�
� 1

�
: (4)

This expression shows that, below a critical car density

�c D 1/(vmax C 1) ;

all cars move with a velocity equal to vmax, while above �c,
the average velocity is less than vmax.

To further simplify the Nagel–Schreckenberg model,
we assume that the acceleration, which is equal to 1 in
the Nagel–Schreckenberg model, has the largest possible
value (less or equal to vmax) as in the Fukui–Ishibashi
model [16]. That is, in our model, we just replace (3) by

vi(t C 1/2) D min(di (t) � 1; vmax) (5)

Deterministic cellular automaton rules modeling traffic
flow on one-lane highways are number-conserving (i. e.,
� D constant). Limit sets of number-conserving cellular
automata have, in most cases, a very simple structure and,
these limit sets are reached after a number of time steps
proportional to the lattice size [17,18,19] as illustrated in
Fig. 3.

If � � �c, any configuration in the limit set consists of
“perfect tiles” of vmax C 1 cells as shown below

vmax e : : : e e

in a sea of cells in state e.

Phase Transitions in Cellular Automata, Figure 3
First 30 iterations of the deterministic cellular automaton traffic model for vmax D 2. The critical density �c is equal to 1/3. Initial
configurations are random with a density exactly equal to 0.26 in the left figure, 1/3 in the central one, and 0.6 in the right one.
The number of lattice sites is equal to 50 in the left and right figures and to 51 in the central figure. Empty cells are white whereas
cells occupied by a car with velocity v equal to either 0, 1, or 2 have darker shades of gray. Time increases downwards. Note that for
� � 1/3, all cars move at the speed limit vmax D 2

If � > �c, a configuration belonging to the limit set
only consists of a mixture of tiles containing v C 1 cells
of the type

v e : : : e e

where v D 0; 1; : : : ; vmax. For v < vmax, all these are said
to be “defective.” If f�v j v D 0; 1; 2; : : : ; vmaxg is the ve-
locities distribution, we have

� D

vmaxX

vD0

�v

1 D
vmaxX

vD0

(v C 1)�v

hvi D
1
�

 vmaxX

vD0

v�v

!

:

Note that Relation (4) is a simple consequence of these
relations.

If we introduce randombraking, then, even at low den-
sity, some tiles become defective, which causes the average
velocity to be less than vmax. The random-braking param-
eter p, which is an essential ingredient of all cellular au-
tomaton traffic flow model, can, therefore, be viewed as
a symmetry-breaking field, and the order parameter, con-
jugate to that field is

m D vmax � hvi (6)

This point of view implies that the phase transition char-
acterized by m will be smeared out in the presence of ran-
dom braking as a para-ferromagnetic phase transition in
the presence of a magnetic field.
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From (6) and (4), it follows that, for p D 0,

m D

8
<

:

0 if � � �c ;
���c
��c

otherwise :
(7)

The critical exponent ˇ is, therefore, equal to 1.
The other critical exponents cannot be found exactly

but can be determined using numerical simulations. In our
simulations, we took vmax D 2, used a lattice size equal to
1000 and we averaged our results over 1000 runs of 1000
iterations. For p D 0:0005 we took a lattice of 10 000 sites
and averaged 500 runs of 10 000 iterations [15].

The susceptibility �� at constant �, defined by

�� D lim
p!0

@m
@p

: (8)

In the limit p! 0, the susceptibility diverges as (�c��)��

for � < �c, and as (� � �c)��
0 for � > �c. Our simulations

yield

� D 0:86˙ 0:05 and � 0 D 0:94˙ 0:05 :

Another exponent of interest is ı. It characterizes the be-
havior ofm as a power of p for � D �c. Here again we have
determined the value of

lim
p!0

m(�c; 0) � m(�c; p)
p

using numerical simulations. Our result is

1/ı D 0:53˙ 0:02

In is interesting to note that the values

ˇ D 1; � � 1; ı � 2

obtained for the critical exponents are found in equilib-
rium statistical physics in the case of second-order phase
transitions characterized by nonnegative order parameters
above the upper critical dimensionality.

Close to the phase transition point, critical exponents
obey scaling relations. If we assume that, in the vicinity of
the critical point (� D �c; p D 0), the order parameter m
is a generalized homogeneous function of � � �c and p of
the form

m D j� � �cjˇ f
�

p
j� � �cjˇı

�
; (9)

where the function f is such that f (0) ¤ 0, then, dif-
ferentiating f with respect to p and taking the limit p! 0,
we readily obtain

� D � 0 D (ı � 1)ˇ ; (10)

in agreement with our numerical simulations.
Boccara [20] has shown that this highway traffic flow

model satisfies, with other deterministic traffic flow mod-
els, a variational principle.

EpidemicModels

The general epidemic process (see Fig. 4) describes, ac-
cording to Grassberger [21,22], who studied its critical
properties, “the essential features of a vast number of
population growth phenomena.” In its simplest version
the growth process can be described as follows. Initially
the cluster consists of the seed site located at the ori-
gin. At the next time step, a nearest-neighboring site is
randomly chosen. This site is either added to the clus-
ter with a probability p or rejected with a probability
1 � p. At all subsequent time steps, the same process is
repeated: a nearest-neighboring site of any site belong-
ing to the cluster is selected at random, and it is ei-
ther added to the cluster with a probability p or re-
jected with a probability 1� p. It is clear that there ex-
ists a critical probability pc such that for p > pc, the seed
site has a nonzero probability of belonging to an infinite
cluster. In order to determine the critical behavior of the
general epidemic model, Grassberger performed extensive
numerical simulations on a slightly different model that

Phase Transitions in Cellular Automata, Figure 4
Grassberger’s general epidemic process. The cluster represents
the spread of the epidemic to 3000 sites for p D 0:6
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belongs to the same universality class and whose static
properties are identical to a bond percolation model. In
this model, every lattice site of a two-dimensional square
lattice is occupied by only one individual, who cannot
move away from it. The individuals are either susceptible,
infected, or immune. At each time step, every infected in-
dividual infects each nearest-neighboring susceptible site
with a probability p and becomes immune with probabil-
ity 1. For this model, the critical probability pc is exactly
equal to 1/2. If, at time t D 0, all the sites of one edge of
the lattice are infected, among other results, Grassberger
found that, at pc, the average number of immune sites per
row parallel to the initial infected row increases as a func-
tion of time as tx, where the critical exponent x is equal to
0:807˙ 0:01 (for more detailed numerical results, refer to
Grassberger [21]).

Epidemic models have a long history that started in
1927 with the publication by Kermack and McKendrick
of their celebrated “threshold theorem” stating that the
spread of a disease occurs only if the density of individuals
susceptible to catch the disease is greater than a thresh-
old value [23]. Here we shall only describe a model for-
mulated in terms of cellular automata due to Boccara and
Cheong [24,25] that exhibits a phase transition. In this
so-called SIS epidemic model, individuals are divided into
two disjoint groups:

1. susceptible individuals capable of contracting the dis-
ease and becoming infective, and

2. infective individuals capable of transmitting the disease
to susceptibles.

If pi denotes the probability for a susceptible to be infected
and pr the probability for an infective to recover and re-
turn to the susceptible group, the possible evolution of an
individualmay be represented by the following transfer di-
agram:

S
pi
�! I

pr
�! S :

In a two-dimensional cellular automaton model, with pe-
riodic boundary conditions, in which the sites are elements
of the spaceZL � ZL , each site is either empty or occupied
by a susceptible or an infective.

The spread of the disease is governed by the following
rules.

1. Susceptible individuals become infected by contact
(i. e., a susceptible may become infective with a prob-
ability pi if, and only if, it is in the neighborhood of an
infective). This hypothesis neglects incubation and la-

tent periods: an infected susceptible becomes immedi-
ately infective.

2. Infective individuals recover and become susceptible
again with a probability pr. This assumption states that
recovery is equally likely among infective individuals
but does not take into account the length of time the
individual has been infective.

3. The time unit is the time step. During one time step, the
two preceding rules are applied synchronously, and the
individuals move on the lattice according to a specific
rule.

4. An individual selected at random performs a move.
That is, a site occupied by an individual is selected at
random and swapped with another site (either empty
or occupied) also selected at random. If the second site
is a nearest neighbor of the first site, the resulting move
of the individual is said to be short-range whereas it is
said to be long-range if it is any site of the lattice. This
operation is repeated bm � � � L2c times, where m is
a positive real number called the degree of mixing and �
the density of occupied sites at time t. When two occu-
pied sites care swapped the move is not effective; m is
therefore the average number of tentative moves. The
notation bxc represents the largest integer less than or
equal to x.

The model assumes that the population is closed; it there-
fore ignores births, deaths by other causes, immigrations,
or emigrations.

The critical behavior of this model has been studied
by means of numerical simulations [24]. The total den-
sity of individuals was equal to 0.6, slightly above the site
percolation threshold in two dimensions for the square
lattice in order to be able to observe cooperative effects.
Most simulations were performed on a 100 � 100 lattice
and some on a 200 � 200 lattice to check possible size ef-
fects.

In the case of short-range moves, for given values of pr
andm, there exists a critical value pci of the probability for
a susceptible to become infected. At this transition point,
the stationary density of infective individuals I1(m) be-
haves as (pi � pci )

ˇ . When m D 0 (i. e., if individuals do
notmove), the exponentˇ is close to 0.6, which is the value
for the two-dimensional directed percolation.

For a given value of pr, the variations of ˇ and pci as
functions of m are found to exhibit two regimes reminis-
cent of crossover phenomena. In the smallm regime (i. e.,
for m / 10), pci and particularly ˇ have their m D 0 val-
ues. In the large m regime (i. e., for m ' 300), pci and ˇ
have their mean-field values. In agreement with what is
known in phase transition theory, the exponent ˇ does not
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seem to depend upon pr; i. e., its value does not change
along the second-order transition line.

For given values of pi and pr, the asymptotic behaviors
of the stationary density of infective individuals I1(m) for
small and large values of m may be characterized by the
exponents

˛0 D lim
m!0

log
�
I1(m) � I1(0)



logm
;

˛1 D lim
m!1

log
�
I1(1)� I1(m)



logm
:

It is found that ˛0 D 0:177 ˙ 0:15 and ˛1 D �0:945 ˙
0:065.

The fact that ˛0 is rather small shows the importance
of motion in the spread of a disease. The stationary num-
ber of infective individuals increases dramatically when
the individuals start to move. In other words, the response
@I1(m)/@m of the stationary density I1(m) to the degree
of mixingm tends to1 whenm tends to 0.

In the case of long-range moves, for a fixed value of
pr, the variations of pci and ˇ are very different from those
for short-range moves. Whereas for short-range moves ˇ
and pci do not vary in the small-m regime, for long-range
moves, on the contrary, the derivatives of ˇ and pci with
respect to m tend to1 as m tends to 0. For small m, the
asymptotic behaviors of ˇ and pci may therefore be char-
acterized by the exponents

˛ˇ D lim
m!1

log
�
ˇ(m) � ˇ(0)



logm
;

˛pci D lim
m!0

log
�
pci (m) � pci (0)



logm
:

Both exponents are found to be close to 0.5.

Future Directions

In the article we tried to focus on the essential character-
istics of phase transitions in cellular automata illustrating
our discussion with representative examples. In this sec-
tion we briefly present other examples and list some ar-
ticles that go deeper into the examples we chose to dis-
cuss.

One of the earliest example of a phase transition in cel-
lular automata has been studied in 1984 by Grassberger et
al. [26] who showed that the spatial patterns of two proba-
bilistic cellular automata exhibit a transition from stability
to instability of kinks between ordered states. As a function
of the probability p the cellular automaton rules 94 and 50

for p D 0 are continuously modified to become, for p D 1,
rules 22 and 122 respectively. In both cases the authors de-
termined the critical probabilities and a few critical expo-
nents.

In 1985 Kinzel [27] investigated phase transitions of
probabilistic two-state three-input one-dimensional cellu-
lar automata with absorbing states. Using a transfer matrix
technique, he determined phase diagrams and critical ex-
ponents. He also studied a special three-state probabilis-
tic cellular automaton that could be mapped onto a two-
state cellular automaton modeling the spread of an epi-
demic taking into account immunization. For a field theo-
retic treatment of this epidemic model, see Cardy [28].

A particular class of probabilistic two-dimensional
two-state cellular automata defined on ZL � ZL (i. e., on
a square lattice of size L with periodic boundary con-
ditions) with nearest-neighbor interactions were investi-
gated by Kaneko and Akutsu [29] who considered the evo-
lution rule

s(t C 1; i; j) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

f
�
�(t; i; j); s(t; i; j)


;

with probability 1 � p ;
1 � f

�
�(t; i; j); s(t; i; j)


;

with probability p ;

where s(t; i; j) denotes the state at time t of the cell at site
(i, j), �(t; i; j) D s(t; i; j�1)C s(t; i; jC1)C s(t; i�1; j)C
s(t; iC1; j), and f is a function of two variables which takes
the value 0 or 1. For small values of the probability p, they
found a rich variety of phases.

In epidemic models we stressed the importance of in-
dividuals’ motion. In our cellular automaton models, mo-
tion was modeled by a site-exchange process. That is, we
considered cellular automata whose evolution rule con-
sists of two subrules; the first one, applied synchronously,
is a usual cellular automaton rule, whereas the second, ap-
plied sequentially, is a local or nonlocal exchange of two
site values [30,31]. The evolution of a probabilistic site-ex-
change cellular automaton depends, therefore, upon two
parameters, the probability p characterizing the proba-
bilistic cellular automaton rule, and the degree of mix-
ing m resulting from the exchange process (for the pre-
cise definition ofm, refer above). Depending upon the val-
ues of these two parameters, the system exhibits a sec-
ond order phase transition characterized by a nonnega-
tive order parameter, whose role is played by the station-
ary density of occupied sites. When m is very large, the
correlations created by the application of the probabilis-
tic cellular automaton rule are destroyed and, as expected,
the behavior of the system is then correctly described by
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a mean-field-type approximation. According to whether
the exchange of site values is local or nonlocal, the crit-
ical behavior is qualitatively different as m varies [32].
In [33], the authors found in the (p,m)-plane that, along
the transition line, increasing m, the order of the phase
transition changes from second- to first-order at a tri-
critical point characterized by a different critical behav-
ior.

The Domany–Kinzel cellular automaton is a popular
toy model that has attracted a lot of attention. A signif-
icant number of papers devoted to its study have been
published. It has been shown that the qualitative features
of the phase diagram, including the new phase found by
Martins, Verona de Resende, Tsallis, and de Magalhães
can be predicted analytically by going one-step beyond the
mean-field approximation [34]. Although there is a clear
numerical evidence that the critical behavior along the
critical line found by Domany and Kinzel is that of di-
rected percolation [1,35], this is not the case at termi-
nal point (1/2; 1) [36,37]. The Domany–Kinzel model has
also been used to illustrate the breakdown of universal-
ity in transitions to spatiotemporal chaos [38] and, re-
cently, a few limit theorems have been rigorously estab-
lished [39].

Since the early 1990s, traffic problems have drawn con-
siderable attention and a great number of cellular automa-
ton models of traffic flow have been proposed to deal with
many diverse situations such as the existence of a jam-
ming transition in two dimensions [40], the influence of
two-level crossings on traffic jams [41], the effect of traf-
fic accidents on the jamming transition [42], the cross-
ing of two roads [43], the existence of a roadblock and
the resulting number of stopped cars [44,45], and build-
ing up models of city traffic [46]. In the case of deter-
ministic cellular automaton traffic flow models generaliz-
ing the cellular automaton rule 184 [47], that is, models
in which the maximum speed is greater than 1, Fukś [48]
has been able to derive exactly the flow diagram, that is,
the graph of the car flow as a function of the car den-
sity. There exist also quite a few cellular automaton mod-
els of pedestrian traffic that exhibit phase transitions sim-
ilar to those found in car traffic [49,50]. A very simple
cellular automaton pedestrian model exhibiting self-orga-
nized motion in a multilane passageway with pedestrians
moving in opposite directions is described in [3] page 204.
For a detailed recent review on the application of statisti-
cal physics to traffic see [51]. Concerning “realistic” traf-
fic, there exists an agent-based simulation project at Los
Alamos National Laboratory called TRANSIMS (TRans-
portation ANalysis and SIMulation System) [52] “capable
of simulating the second-by-second movements of every

person and every vehicle through the transportation net-
work of a large metropolitan area” [53].
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Glossary

Cluster Clusters are sets of occupied neighboring sites.
Critical exponent At a critical point or second-order

phase transition, many quantities diverge or vanish
with a power law of the distance from this critical
point; the critical exponent is the exponent for this
power law.

Diffusion A randomwalker decides at each time step ran-
domly in which direction to proceed. The resulting
mean square distance normally is linear in time.

Fractals Fractals have a mass varying with some power of
their linear dimension. The exponent of this power law
is called the fractal dimension and is smaller than the
dimension of the space.

Ising model Each site carries a magnetic dipole which
points up or down; neighboring dipoles “want” to be
parallel.

Percolation Each site of a large lattice is randomly occu-
pied or empty.

Definition of the Subject

At a phase transition, as a function of a continuously vary-
ing parameter (like the temperature), a sharp singularity
happens in infinitely large systems, where quantities (e. g.
the density) jump, vanish, or diverge.

Introduction

Some phase transitions, like the ferromagnetic Curie point
where the spontaneous magnetization vanishes, happen

in solids, and experiments often try to grow crystals
very carefully such that the solid in which the transi-
tion will be observed is periodic with very few lattice
faults. Other phase transitions like the boiling of wa-
ter, or the liquid-vapor critical point where the den-
sity difference between a liquid and its vapor vanishes,
happen in a continuum without any underlying lattice
structure. Nevertheless, the critical exponents of the Ising
model on a simple-cubic lattice agree well with those
of liquid-vapor experiments. Impurities, which are ei-
ther fixed (“quenched dilution”) or mobile (“annealed di-
lution”), are known to change these exponents slightly,
e. g. by a factor 1 � ˛, if the specific heat diverges in
the undiluted case at the critical point, i. e. if the spe-
cific heat exponent ˛ is positive. In this review we deal
neither with regular lattices nor with continuous geome-
try, but with phase transitions on fractal and other net-
works. We will compare these results with the correspond-
ing phase transitions on infinite periodic lattices like the
Ising model.

Ising Model

Ernst Ising in 1925 (then pronounced EEsing, not EYE-
sing) published a model which is, besides percolation, one
of the simplest models for phase transitions. Each site i
is occupied by a variable Si D ˙1 which physicists often
call a spin but which may also be interpreted as a trad-
ing activity [10] on stock markets, as a “race” or other eth-
nic group in the formation of city ghettos [26], as the type
of molecule in binary fluid mixtures like isobutyric acid
and water, as occupied or empty in a lattice-gas model of
liquid-vapor critical points, as an opinion for or against the
government [29],�Opinion Dynamics and Sociophysics,
or whatever binary choice you have in mind. Also mod-
els with more than two choices, like Si D �1, 0 and 1 have
been investigated both for atomic spins as well as for races,
opinions, : : : Two spins i and k interact with each other by
an energy �JSi Sk which is �J if both spins are the same
and CJ if they are the opposite of each other. Thus 2J is
the energy to break one bond, i. e. to transform a pair of
equal spins to a pair of opposite spins. The total interac-
tion energy is thus

E D �J
X

<i;k>

Si Sk ; (1a)

with a sum over all neighbor pairs. If you want to im-
press your audience, you call this energy a Hamiltonian or
Hamilton operator, even though most Ising model publi-
cations ignore the difficulties of quantum mechanics ex-
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cept for assuming the discrete nature of the Si. (If instead
of these discrete one-dimensional values you want to look
at vectors rotating in two- or three-dimensional space, you
should investigate the XY or Heisenberg models instead of
the Ising model.)

Different configurations in thermal equilibrium at ab-
solute temperature T appear with a Boltzmann proba-
bility proportional to exp(�E/kBT), and the Metropo-
lis algorithm of 1953 for Monte Carlo computer simula-
tions flips a spin with probability exp(��E/kBT), where
kB is Boltzmann’s constant and �E D Eafter � Ebefore the
energy difference caused by this flip. If one starts with
a random distribution of half the spins up and half
down, using this algorithm at positive but low tempera-
tures, one sees growing domains [28]. Within each do-
main, most of the spins are parallel, and thus a com-
puter printout shows large black domains coexisting
with large white domains. Finally, one domain covers
the whole lattice, and the other spin orientation is re-
stricted to small clusters or isolated single spins within
that domain. This self-organization (biologist may call
it “emergence”) of domains and of phase separation
appears only for positive temperatures below the crit-
ical temperature Tc and only in more than one di-
mension. For T > Tc (or at all positive temperatures
in one dimension) we see only finite domains which
no longer engulf the whole lattice. This phase transi-
tion between long-range order below and short-range or-
der above Tc is called the Curie or critical point; we
have J/kBTc D 1

2 ln(1C
p
2) on the square lattice and

0.221655 on the simple cubic lattice with interactions
to the z nearest lattice neighbors; z D 4 and 6, respec-
tively. The mean field approximation becomes valid for
large z and gives J/kBTc D 1/z. Near T D Tc the differ-
ence between the number of up and down spins van-
ishes as (Tc � T)ˇ with ˇ D 1/8 in two, ' 0:32 in three,
and 1/2 in six and more dimensions and in mean field
approximation.

Wemay also influence the Ising spins though an exter-
nal field h by adding

� h
X

i

Si (1b)

to the energy of Eq. (1a). This external field then pushes
the spins to become parallel to h. Thus we no longer have
emergence of order from the interactions between the
spins, but imposition of order by the external field. In this
simple version of the Ising model there is no sharp phase
transition in the presence of this field; instead the sponta-
neous magnetization (fraction of up spins minus fraction

of down spins) smoothly sinks from one to zero if the tem-
perature rises from zero to infinity.

Fractals

Fractals obey a power law relating their mass M to their
radius R:

M / RD (2)

where D is the fractal dimension. An exactly solved ex-
ample are random walks (= polymer chains without in-
teraction) where D D 2 if the length of the walk is iden-
tified with the mass M. For self-avoiding walks (= poly-
mer chains with excluded volume interaction), the Flory
approximation gives D D (d C 2)/3 in d � 4 dimensions
(D(d � 4) D 2 as for random walks), which is exact in
one, two and four dimensions, and too small by only about
two percent in three dimensions.

We now discuss the fractal dimension of the Ising
model. In an infinite system at temperatures T close to
Tc, the differenceM between the number of up and down
spins varies as (Tc � T)ˇ while the correlation length �
varies as jT � Tcj�� . Thus, M / ��ˇ /� . The proportion-
ality factor varies as the system size Ld in d dimensions
since all spins are equivalent. In a finite system right at the
critical temperature Tc we replace � by L and thus have
M / Ld�ˇ /� D LD with the fractal dimension

D D d � ˇ/� (d � 4) : (3a)

Warning: one should not apply these concepts to spin
clusters if clusters are simply defined as sets of neighbor-
ing parallel spins; to be fractals at T D Tc the clusters
have to be sets of neighboring parallel spins connected
by active bonds, where bonds are active with probability
1 � exp(�2J/kBT). Then the largest cluster at T D Tc is
a fractal with this above fractal dimension.

This warning is superfluous for percolation theory (see
separate reviews in this encyclopedia) where each lattice
site is occupied randomly with probability p and clus-
ters are defined as sets of neighboring occupied sites. For
p > pc one has an infinite cluster spanning from one
side of the sample to the other; for p < pc one has no
such spanning cluster; for p D pc one has sometimes such
spanning clusters, and then the number of occupied sites
in the largest or spanning cluster is

M / LD ; D D d � ˇ/� (d � 6) (3b)

with the critical exponents ˇ; � of percolation instead of
Ising models.
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These were probabilistic fractal examples, as opposed
to deterministic ones like the Sierpinski carpets and gas-
kets, which approximate in their fractal dimensions the
percolation problem. We will return to them in the
Sect. “Ising Model on Fractals”.

Now, instead of asking how phase transitions produce
fractals we ask what phase transitions can be observed on
these fractals.

Diffusion on Fractals

Unbiased Diffusion

The most thoroughly investigated phase transitions on
fractals are presumably random walkers on percolation
clusters [17], particularly at p D pc. This research was
started by Brandt [7] but it was the later Nobel laureate
de Gennes [16] who gave it the catchy name “ant in the
labyrinth”. The anomalous diffusion [5,14,22] then made
it famous a few years later and may have also biological
applications [13].

We put an ant onto a randomly selected occupied
site in the middle of a large lattice, where each site is
permanently occupied (randomly with probability p) or
empty (1 � p). At each time step, the ant selects randomly
a neighbor direction and moves one lattice unit in this di-
rection if and only if that neighbor site is occupied. We
measure the mean distance

R(t) D
˝
r(t)2

˛1/2 or D hr(t)i ; (4)

where r is the vector from the starting point of the walk
and the present position, and r D jrj its length. The av-
erage h: : : i goes over many such walking ants and disor-
dered lattices. These ants are blind, that means they do not
see from their old place whether or not the selected neigh-
bor site is accessible (occupied) or prohibited (empty).
(Also myopic ants were grown which select randomly al-
ways an occupied neighbor since they can see over a dis-
tance of one lattice unit.) The squared distance r2 is mea-
sured by counting how often the ant moved to the left, to
the right, to the top, to the bottom, to the front, or to the
back on a simple cubic lattice.

The problem is simple enough to be given to students
as a programming project. They then should find out by
their simulations that for p < pc the above R remains fi-
nite while for p > pc is goes to infinity as

p
t, for suf-

ficiently long times t. But even for p > pc it may hap-
pen that for a single ant the distance remains finite: If
the starting point happened to fall on a finite cluster, then
R(t !1) measures the radius of that cluster. Let� be the

Phase Transitions on Fractals and Networks, Figure 1
Log-log plot for unbiased diffusion at (middle curve), above (up-
per data) and below (lower data) the percolation threshold pc.
We see the phase transition from limited growth at pc � 0:01 to
diffusion at pc C 0:01, separated by anomalous diffusion at pc.
Average over 80 lattices with 10 walks each

exponent for the conductivity if percolation is interpreted
as a mixture of electrically conducting and insulating sites.
Then right at p D pc, instead of a constant or a square-
root law, we have anomalous diffusion:

R / tk ; k D (� � ˇ/2)/(2� C � � ˇ) ; (5)

for sufficiently long times. This exponent k is close to but
not exactly 1/3 in two and 1/5 in three dimensions. ˇ and
� are the already mentioned percolation exponents. If we
always start the ant walk on the largest cluster at p D pc
instead of on any cluster, the formula for the exponent k
simplifies to �/(2� C � � ˇ). The theory is explained in
detail in the standard books and reviews [8,17]. We see
here how the percolative phase transition influences the
random walk and introduces there a transition between
diffusion for p > pc and finite motion for p < pc, with the
intermediate “anomalous” diffusion (exponent below 1/2)
at p D pc. Figure 1 shows this transition on a large cubic
lattice.

Biased Diffusion

Another type of transition is seen in biased diffusion, also
for p > pc. Instead of selecting all neighbors randomly, we
do that only with probability 1 � B, while with probabil-
ity B the ant tries to move in the positive x-direction. One
may think of an electron moving through a disordered lat-
tice in an external electric field. For a long time experts
discussed whether for p > pc one has a drift behavior (dis-



6786 P Phase Transitions on Fractals and Networks

Phase Transitions on Fractals and Networks, Figure 2
Log-periodic oscillation in the effective exponent k for biased
diffusion; p D 0:725; B D 0:98. The limit k D 1 corresponds to
drift. 80 lattices with 10 walks each

Phase Transitions on Fractals and Networks, Figure 3
Difficulties at transition from drift (small bias, upper data) to
slower motion (large bias, lower data); 80 lattices with 10 walks
each

tance proportional to time) for small B, and a slower mo-
tion for larger B, with a sharp transition at some p-depen-
dent Bc. In the drift regime one may see log-periodic os-
cillations / sin(const log t) in the approach towards the
long-time limit, Fig. 2. Such oscillations have been pre-
dicted for stock markets [19], where they could have made
us rich, but for diffusion they hamper the analysis. They
come presumably from sections of occupied sites which
allow motion in the biased direction and then end in pro-
hibited sites [20].

Even in a region without such oscillations, Fig. 3 shows
no clear transition from drift to no drift; that transition
could only be seen by a more sophisticated analysis which

Phase Transitions on Fractals and Networks, Figure 4
Biased diffusion atpD pc (middle curve) and pD pc ˙ 0:01 (up-
per and lower data) for bias B D 0:8; 80 lattices with 10 walks
each

showed for the p of Fig. 3 that the reciprocal velocity, plot-
ted vs. log(time), switches from concave to convex shape
at Bc ' 0:53. Fortunately, only a few years after these sim-
ulations [11] the transition was shown to exist mathe-
matically [6].

These simulations were made for p > pc; at p D pc
with a fractal largest cluster, drift seems impossible, and
for a fixed B the distance varies logarithmically, with
a stronger increase slightly above pc and a limited distance
slightly below pc, Fig. 4.

Ising Model on Fractals

What happens if we set Ising spins onto the sites of a frac-
tal? In particular, but also more generally, what happens
to Ising spins on the occupied site of a percolation lattice,
when each site is randomly occupied with probability p?
In this case one expects three sets of critical exponents de-
scribing how the various quantities diverge or vanish at
the Curie temperature Tc(p). For p D 1 one has the stan-
dard Ising model with the standard exponents. If pc is the
percolation threshold where an infinite cluster of occupied
sites starts to exist, then one has a second set of exponents
for pc < p < 1, where 0 < Tc(p) < Tc(p D 1). Finally, for
zero temperature as a function of p � pc one has the per-
colation exponents as a third set of critical exponents. (If
p D pc and the temperature approaches Tc(pc) D 0 from
above, then instead of powers of T � Tc exponential be-
havior is expected.) In computer simulations, the second
set of critical exponents is difficult to observe; due to lim-
ited accuracy the effective exponents have a tendency to
vary continuously with p.
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The behavior at zero temperature is in principle trivial:
each cluster of occupied neighbors has parallel spins, the
spontaneous magnetization is given by the largest cluster
while the many finite clusters cancels each other in their
magnetization. However, the existence of several infinite
clusters at p D pc disturbs this argument there; presum-
ably the total magnetization (i. e. not normalized at mag-
netization per spin) is a fractal with the fractal dimension
of percolation theory.

Deterministic fractals, instead of the random “incip-
ient infinite cluster” at the percolation threshold, may
have a positive Tc and then allow a more usual study of
critical exponents at that phase transition. Koch curves
and Sierpinski structures have been intensely studied in
that aspect since decades. To build a Sierpinski carpet
we take a square, divide each side into three thirds such
that the whole square is divided into nine smaller squares,
and then we take away the central square. On each of
the remaining eight smaller squares this procedure is re-
peated, diving each into nine squarelets and omitting the
central squarelet. This procedure is repeated again and
again, mathematically ad infinitum. Physicists like more
to think in atoms of a fixed distance and would rather
imagine each square to be enlarged in each direction
by a factor three with the central square omitted; and
then again and again this enlargement is repeated. In this
way we grow a large structure built by squares of unit
area.

Unfortunately, the phase transitions on these fractals
depend on details and are not already fixed if the frac-
tal dimension is fixed. Also other properties of the frac-
tals like their “ramification” are important [15]; see [3] for
recent work. This is highly regrettable since modern statis-
tical physics is not restricted to three dimensions. Models
were studied also in seven and in minus two dimensions,
in the limits of dimensionality going to infinity or to zero,
or for non-integral dimensionality. (Similarly, numbers
were generalized from positive counts to negative integers,
to rational and irrational numbers, and finally to imagi-
nary/complex numbers.) It would have been nice if these
fractals would have been models for these non-integral di-
mensions, giving one and the same set of critical exponents
once their fractal dimension is known. Regrettably, we had
to give up that hope.

Many other phase transitions, like those of Potts or
voter models, were studied on such deterministic frac-
tals, but are not reviewed here. We mention that also
percolation transitions exist on Sierpinski structures [24].
Also, various hierarchical lattices different from the above
fractals show phase transitions, if Ising spins are put on
them; the reader is referred to [18,25] for more litera-

ture. As the to our knowledge most recent example we
mention [21] that Ising spins were also thrown into the
sandpiles of Per Bak, which show self-organized critical-
ity.

Networks

Definitions

While fractals were a big physics fashion in the 1980s, net-
works are now a major physics research field. Solid state
physics requires nice single crystals where all atoms sit
on a periodic lattice. In fluids they are ordered only over
shorter distances but still their forces are restricted to their
neighbors. Human beings, on the other hand, form a reg-
ular lattice only rarely, e. g. in a fully occupied lecture hall.
In a large crowd they behave more like a fluid. But nor-
mally each human being may have contacts with the peo-
ple in neighboring residences, with other neighbors at the
work place, but also via phone or internet with people out-
side the range of the human voice. Thus social interac-
tions between people should not be restricted to lattices,
but should allow for more complex networks of connec-
tions.

One may call Flory’s percolation theory of 1941 a net-
work, and the later random graphs of Erdös and Rényi
(where everybody is connected with everybody, albeit
with a low probability) belong to the same “universal-
ity class” (same critical exponents) as Flory’s percolation.
In Kauffman’s random Boolean network of 1969, every-
body has K neighbors selected randomly from the N par-
ticipants. Here we concentrate on two more recent net-
work types, the small-world [31] and the scale-free [1]
networks of 1998 and 1999 respectively (with a precur-
sor paper of economics Nobel laureate Simon [27] from
1955).

The small-world or Watts–Strogatz networks start
from a regular lattice, often only a one-dimensional chain.
Then each connection of one lattice site to one of its near-
est neighbors is replaced randomly, with probability p, by
a connection to a randomly selected other site anywhere
in the lattice. Thus the limits p D 0 and 1 correspond to
regular lattices and roughly random graphs, respectively.

In this way everybody may have exactly two types of
connections, to nearest neighbors and to arbitrarily far
away people. This unrealistic feature of small-world net-
works is avoided by the scale-free networks of Barabási
and Albert [1], defined only through topology with (nor-
mally) no geometry involved:

We start with a small set of fully connected people.
Then more people join the network, one after the other.
Each newmember selects connections to exactlym already
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existing members of the network. These connections are
not random but follow preferential attachment: The more
people have selected a person to be connected with in the
past, the higher is the probability that this person is se-
lected by the newcomer: the rich get richer, famous people
attract more followers than normal people. In the standard
Barabási–Albert network, this probability is proportional
to the number of people who have selected that person.
In this case, the average number of people who have been
selected by k later added members varies as 1/k3. A com-
puter program is given e. g. in [28].

These networks can be undirected (the more wide-
spread version) or directed (used less often.) For the undi-
rected or symmetric case, the connections are like friend-
ships: If A selects B as a friend, then B also has A as a friend.
For directed networks, on the other hand, if A has se-
lected B as a boss, then B does not have A as a boss, and
the connection is like a one-way street. Up to 108 nodes
were simulated in scale-free networks. We will now check
for phase transitions on both directed and undirected net-
works.

Phase Transitions

The Ising model in one dimension does not have a phase
transition at some positive critical temperature Tc. How-
ever, its small-world generalization, i. e. the replacement
of small fraction of neighbor bonds by long-range bonds,
produces a positive Tc with a spontaneous magnetization
proportional to (Tc � T)ˇ , and a ˇ smaller than the 1/8 of
two dimensional lattices [4].

The Solomon network is a variant of the small-world
network: Each person has one neighborhood correspond-
ing to the workplace and another neighborhood corre-
sponding to the home [23]. It was suggested and simulated
by physicists Solomon andMalarz, respectively, before Ed-
monds [12] criticized physicists for not having enough
“models which explicitly include actions and effects within
a physical space as well as communication and action
within a social space”. Even in one dimension a sponta-
neous magnetization was found.

On Barabási–Albert (scale-free) networks, Ising mod-
els were found [2] for small m and millions of spins to
have a spontaneous magnetization for temperatures be-
low some critical temperature Tc which increases logarith-
mically with the number N of spins: kBTc/J ' 2:6 ln(N)
for m D 5.

Here we had undirected networks with symmetric
couplings between spins: actio = –reactio, as required by
Newton. Ising spins on directed networks, on the other
hand, have no well-defined total energy, though each sin-

gle spinmay be influenced as usual by itsmneighbor spins.
If in an isolated pair of spins i and k we have a directed in-
teraction in the sense that spin k tries to align spin i into the
direction of spin k, while i has no influence on k, then we
have a perpetuum mobile: Starting with the two spins an-
tiparallel, we first flip i into the direction of k, which gives
us an energy 2J. Then we flip spin kwhich does not change
the energy. Then we repeat again and again these two spin
flips, and gain an energy 2J for each pair of flips: too nice to
be true. The violations of Newton’s symmetry requirement
makes this directed network applicable to social interac-
tions between humans, but not to forces between particles
in physics.

On this directed Barabási–Albert network, the ferro-
magnetic Ising spins gave no spontaneous magnetization,
but the time after which the magnetization becomes zero
(starting from unity) becomes very long at low tempera-
tures, following an Arrhenius law [30]: time proportional
to exp(const/T). Also on a directed lattice such Arrhenius
behavior was seen while for directed random graphs and
for directed small-world lattices a spontaneous magnetiza-
tion was found [30]. A theoretical understanding for these
directed cases is largely lacking.

Better understood is the percolative phase transition
on scale-free networks (see end of Sect. “Introduction”
for definition of percolation). If a fraction 1 � p of the
connections in an undirected Barabási–Albert network
is cut randomly, does the remaining fraction p keep
most of the network together? It does, for large enough
networks [9], since the percolation threshold pc below
which no large connected cluster survives, goes to zero
as 1/log(N) where N counts the number of nodes in the
network. This explains why inspite of the unreliability of
computer connections, the internet still allows most com-
puters to reach most other computers in the word: If one
link is broken, some other link may help even though it
may be slower [1]. (For intentional [9] cuts in hierarchi-
cal networks one may have a finite percolation thresh-
old [32].)

Future Directions

We reviewed here a few phase transitions, and ignored
many others. At present most interesting for future re-
search seem to be the directed networks, since they
have been investigated with methods from computational
physics even though they are not part of usual physics, not
having a global energy. A theoretical (i. e. not numerical)
understanding would help.

We thank K. Kulakowski for comments.
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(2000) J Phys A 33:8373; Pȩkalski A (2001) Phys Rev E 64:
057104

5. Ben-Avraham D, Havlin S (1982) J Phys A 15:L691
6. Berger N, Ganten N, Peres Y (2003) Probab Theory Relat Fields

126:221
7. Brandt WW (1975) J Chem Phys 63:5162
8. Bunde A, Havlin S (1996) Fractals and Disordered Systems.

Springer, Berlin
9. Cohen R, Erez K, ben-Avraham D, Havlin S (2000) Phys Rev

Lett 85:4626; Cohen R, Erez K, ben-Avraham D, Havlin S (2001)
Phys Rev Lett 86:3682; CallawayDS, NewmanMEJ, Strogatz SH,
Watts DJ (2000) Phys Rev Lett 85:5468

10. Cont R, Bouchaud J-P (2000) Macroecon Dyn 4:170
11. Dhar D, Stauffer D (1998) Int J Mod Phys C 9:349
12. Edmonds B (2006) In: Billari FC, Fent T, Prsakwetz A, Scheffran J

(eds) Agent-based computational modelling. Physica-Verlag,
Heidelberg, p 195

13. Frey E, Kroy K (2005) Ann Physik 14:20
14. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77
15. Gefen Y,Mandelbrot BB, AharonyA (1980) Phys Rev Lett 45:855
16. de Gennes PG (1976) Rech 7:916
17. Havlin S, Ben AvrahamD (1987) Adv Phys 36:395; Havlin S, Ben

Avraham D (2002) Adv Phys 51:187
18. Hinczewski M, Berker AN (2006) Phys Rev E 73:066126
19. Johansen A, Sornette D (1999) Int J Mod Phys C 10:563
20. Kirsch A (1999) Int J Mod Phys C 10:753
21. Koza Z, Ausloos M (2007) Physica A 375:199
22. Kutner R, Kehr K (1983) Phil Mag A 48:199
23. Malarz K (2003) Int J Mod Phys C 14:561
24. Monceau P, Hsiao PY (2004) Phys Lett A 332:310
25. Rozenfeld HD, Ben-Abraham D (2007) Phys Rev E 75:061102
26. Schelling TC (1971) J Math Sociol 1:143
27. Simon HA (1955) Biometrika 42:425
28. Stauffer D, Moss de Oliveira S, de Oliveira PMC, Sá Martins JS

(2006) Biology, Sociology, Geology by Computational Physi-
cists. Elsevier, Amsterdam

29. Sznajd-Weron K, Sznajd J (2000) Int J Mod Phys C 11:1157
30. Sánchez AD, López JM, Rodríguez MA (2002) Phys Rev Lett

88:048701; Sumour MA, Shabat MM (2005) Int J Mod Phys C
16:585; Sumour MA, Shabat MM, Stauffer D (2006) Islamic
Univ J (Gaza) 14:209; Lima FWS, Stauffer D (2006) Physica
A 359:423; Sumour MA, El-Astal AH, Lima FWS, Shabat MM,
Khalil HM (2007) Int J Mod Phys C 18:53; Lima FWS (2007)
Comm Comput Phys 2:522 and (2008) Physica A 387:1545;
3503

31. Watts DJ, Strogatz SH (1998) Nature 393:440
32. Zhang Z-Z, Zhou S-G, Zou T (2007) Eur Phys J B 56:259

Philosophy of Science,
Mathematical Models in
ZOLTAN DOMOTOR
University of Pennsylvania, Philadelphia, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Mathematical Models: What Are They?
Philosophical and Mathematical Structuralism
Three Approaches to Applying Mathematical Models
Validating Mathematical Models
Future Directions
Bibliography

Glossary

Philosophy of science Broadly understood, philosophy of
science is a branch of philosophy that studies and re-
flects on the presuppositions, concepts, theories, ar-
guments, methods and aims of science. Philosophers
of science are concerned with general questions which
include the following: What is a scientific theory and
when can it be said to be confirmed by its predictions?
What are mathematical models and how are they vali-
dated? In virtue of what are mathematical models rep-
resentations of the structure and behavior of their tar-
get systems? In sum, a major task of philosophy of sci-
ence is to analyze and make explicit common patterns
that are implicit in scientific practice.

Mathematical model Stated loosely, models are simpli-
fied, idealized and approximate representations of the
structure, mechanism and behavior of real-world sys-
tems. From the standpoint of set-theoretic model the-
ory, a mathematical model of a target system is spec-
ified by a nonempty set – called the model’s domain,
endowed with some operations and relations, delin-
eated by suitable axioms and intended empirical in-
terpretation. No doubt, this is the simplest definition
of a model that, unfortunately, plays a limited role
in scientific applications of mathematics. Because ap-
plications exhibit a need for a large variety of vastly
different mathematical structures – some topological
or smooth, some algebraic, order-theoretic or combi-
natorial, some measure-theoretic or analytic, and so
forth, no useful overarching definition of a mathemat-
ical model is known even in the edifice of modern cat-
egory theory. It is difficult to come up with a workable
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concept of a mathematical model that is adequate in
most fields of applied mathematics and anticipates fu-
ture extensions.

Target system There are many definitions of the concept
of ‘system’. Here by a target system we mean an ef-
fectively isolated (physical, biological, or other em-
pirical) part of the universe – made to function or
run by some internal or external causes, whose in-
teractions with the universe are strictly delineated by
a fixed (input and output) interface, and whose struc-
ture, mechanism, or behavior are the objects of mathe-
matical modeling. Changes produced in the target sys-
tem are presumed to be externally detectable via mea-
surements of the system’s characterizing quantitative
properties.

Definition of the Subject

Models are indispensable scientific tools in generating in-
formation about the world. Concretely, scientists rely on
models for explanation and prediction. Recent years have
seen intensive attempts to extend the art of modeling and
simulation to a vast range of application areas. Fostered
by inexpensive computers and software, and the accel-
erating growth of mathematical knowledge, in contem-
porary applied research reference to models is far more
frequent than reference to theories or principles. In ap-
plications, the term ‘model’ is used in a wide variety
of senses, including mathematical, physical, mental, and
computational models. Our focus here is on mathematical
models, their structure, representational role, and valida-
tion.

Currently, many philosophers of science are interested
in two major aspects of mathematical models: their nature
and representational role. The question “What are mathe-
matical models?” is answered in two fundamentally differ-
ent but closely related ways:

1. In a seemingly natural way, by viewing mathematical
models as families of equations of some kind, accom-
panied with certain empirical interpretations that link
them to their target systems. It turns out that this simple
conception, called the received view or the syntactic ap-
proach, presents several troubling representational and
interpretational problems.

2. The so-called structuralist or semantic answer takes
mathematical models of target systems to be suitable
set-theoretic structures or generally objects in a spe-
cific dynamical (or other) category. In order to pur-
sue this approach, model builders and users need to
be able to understand how complex notions, relevant

to modeling, are defined in terms of the model’s struc-
ture.

One of the most useful general results on the nature of
mathematical models is the following. If a given seman-
tic formulation of a model involves also a specification of
the solution space of some equations, then in this case the
equational and structural conceptions of models are for-
mally equivalent. Indeed, equations uniquely characterize
their solution spaces and these in turn determine the asso-
ciated semantic model. Conversely, if the semantic model
specifies an abstract solution space, then the latter delin-
eates a system of characterizing equations. This type ofGa-
lois correspondence between equations and their solutions
has been established inmany linear and even in some non-
linear settings.

There is a major counter to this syntactic-seman-
tic dilemma. Structuralists are quick to point out that
the mathematical models of exchange economy, n-per-
son games, probability and decision, and so forth, are au-
tonomous set-theoretic structures that are not associated
with any system of equations. For example, recall that
a classical probability model of a statistical experiment is
defined by a triple, consisting of a set together with a des-
ignated field of its subsets – forming an underlying mea-
surable space, and a probability measure thereon. Remark-
ably, even though in this case there are no equations to
consider, thanks to the powerful Stone–Gelfand duality re-
sult, every probability model has an associated algebraic
counterpart model, given by a linear space (thought of as
the space of bounded random variables on the model’s un-
derlying measurable space) and a positive linear functional
on it (viewed as the expectation functional induced by the
measure). Statisticians in particular (e. g., [21]) prefer to
build their models of experiments in a ‘dual’, computa-
tionally stronger, algebraic setting. It happens quite often
that autonomous mathematical models arise in ‘adjoint’
or paired geometric/algebraic formulations. Characteris-
tically, models of this nature tend to form impressively
versatile ‘mathematical universes’ for all of the mathemat-
ics that model users may need in a given area of applica-
tion.

The question “What is the role of mathematical mod-
els in scientific practice?” is answered by describing how
models are conceived, constructed, and used in various
applications. Since models are mathematical constructs,
in addition to being objects of a formal inquiry, they are
also involved in epistemic relations, expressing intended
uses.

Models do not and need not match reality in all of
its aspects and details to be adequate. A mathematical
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model is usually developed for a specific class of target
systems, and its validity is determined relative to its in-
tended applications. A model is considered valid within
its intended domain of applicability provided that its pre-
dictions in that domain fall within an acceptable range of
error, specified prior to the model’s development or iden-
tification.

To construct a mathematical model of a target system,
it is typically necessary to formalize the system’s decisive
causal mechanisms and behavior with special regards to
the model’s structural stability andmutability into a larger
network of models that includes not only additional cause-
effect relations but also a broad range of deterministic and
stochastic perturbations. In the next section we consider
a simple class of dynamical models in physics that is also
relevant to modeling in other disciplines.

Introduction

The subject of mature mathematical models in the form
of equations has its roots in post-Newtonian develop-
ments of classical mechanics, hydrodynamics, electro-
magnetism, and kinetic theory of gases. It came on the
scene of applied mathematics gradually, during the an-
alytic period before 1880, thanks to the innovative ef-
forts of great scientists, including, among many oth-
ers, the Swiss mathematician Leonhard Euler (1707–
1783), Italian–French mathematician Louis Joseph La-
grange (1736–1813), French astronomer-physicist Pierre
Simon de Laplace (1749–1827), Scottish physicist James
Clerk Maxwell (1831–1879), English physicist Lord John
William Strutt Rayleigh (1842–1919), and the Austrian
physicist Ludwig Boltzmann (1844–1906). It was the ge-
nius of the French mathematician Henri Poincaré (1854–
1912) that generated many of our current topological
and differential methods of mathematical modeling in the
world of dynamical systems. Over the past 100 years or
so, mathematical models have evolved to become the ba-
sic tools in a wide variety of disciplines, including not
only most of physical sciences, but also chemical kinetics,
population dynamics, economics, sociology, and psychol-
ogy.

The many different theoretical areas of natural and so-
cial sciences have led to the development of a large as-
sortment of mathematical models, including but not lim-
ited to descriptive vs. normative, static vs. dynamic, phe-
nomenological vs. process-based, discrete vs. continuous,
deterministic vs. stochastic, linear vs. nonlinear, finite- vs.
infinite-dimensional, difference vs. differential, and topo-
logical vs. measure-theoretic models. Using category the-
ory, efforts have beenmade to construct general theories of

mathematical models of which models of logical systems
and dynamical systems are special cases.

There has been a renewed interest also among philoso-
phers of science in the problems of structure and func-
tion of abstract models. (See, for example, [3,5,10,13,25],
and [33].) Prime questions about abstract models good
many philosophers ask and attempt to answer include the
following:

(i) Ontology of models: What, precisely, are mathemati-
cal models and how are they used in science? Are they
structures in the sense of classical set theory, modern
category theory, or something else, belonging, e. g.,
to the nebulous world of fictional entities or human
constructs?

(ii) Semantics of models: In virtue of what are mathemat-
ical models representations of the structure, causal
mechanisms and behavioral regimes of their target
systems? Is it in virtue of some (possibly partial)
‘isomorphisms’ holding between mathematical and
physical domains or by reason of certain designated
‘similarities’, analogies, or resemblance relations be-
tween models and aspects of the world, or because
of ‘empirical interpretations’ of (parts of) the repre-
senting model’s mathematical vocabulary – implying
quantitative claims about the world that can be cor-
roborated by empirical data, or in virtue of yet some-
thing else, such as homology or physical instantia-
tion? Since models appear to be the main vehicles in
the pursuit of scientific knowledge, philosophers are
also interested in analyzing the truth conditions of
semantic relations of a more general nature, such as
“ResearcherR uses model M to represent target sys-
tem S for purpose˘”.

(iii) Validation of models: How are mathematical mod-
els validated? Is validation just a procedure in which
the model’s predictions are simply compared with
a set of observations within the model’s domain of
applicability, or is it a comprehensive, all-out test-
ing to determine the degree of agreement between
the model and its target system in terms of inter-
nal structure, cause-effect relationships, and predic-
tions?

Needless to add, these and many other questions to be
examined below do not belong to science per se; they
are about science. In this sense, philosophy of science is
a second-order discipline, addressing the practices, meth-
ods and aims of the various sciences. However, it is clear
from [24] that second-order questions about science are
investigated also by scientists themselves.
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Before considering the details of models of mathemat-
ical models, we begin by characterizing a particular use
of the term mathematical model which, although not rep-
resentative of the more careful formulations of the ma-
jority of philosophers of science, is nevertheless the most
common practice encountered in physics, engineering and
economics. Most physicists, engineers andmathematically
oriented social scientists understandmathematical models
to be systems of (algebraic, difference, differential, integral
or other) equations (linking time- and spacetime-depen-
dent quantities, and parameters), derived from first princi-
ples under various idealizing and simplifying scenarios of
target systems or induced by available observational data
and ‘empirical laws’.

As an example illustrating the equational conception
of mathematical models, we shall consider briefly the most
familiar simple classical planar pendulum model, describ-
ing an undamped pendulum’s dynamical behavior. (Addi-
tional examples can be found in [12].) It is specified by the
autonomous, deterministic second-order nonlinear differ-
ential equation

d2�
dt2
C

g
`
sin � D 0 ;

in which the time-dependent indeterminate � represents
the target pendulum’s variable angle from its downward
vertical to the pivoting rod, to which a bob of massm is at-
tached at its swinging end. Coefficient g denotes the homo-
geneous gravitational acceleration acting on the pendu-
lum’s bob downward, and coefficient ` captures the length
of the pendulum’s idealized ‘massless’ and perfectly stiff
rod. These constant coefficients are needed for individ-
uating the target pendulum in its classical gravitational
ambience. Under the accompanying physical interpreta-
tion, fixed by the pendulum’s idealizing scenario (involv-
ing significant idealizations of friction, torque, resistance,
and elasticity) and first-principle framework, the all-im-
portant observable quantity is the pendulum’s total energy
(Hamiltonian)

H
�
�;

d�
dt

�
Ddf m`2

 
1
2

�
d�
dt

�2
�

g
`
cos �

!

:

The first term in the differential equation above encodes
inertia and the second term stands for gravity. Recall
that the pendulum’s rod is suspended from a pivot point,
around which it oscillates or rotates in a vertical plane
without surface resistance and forcing, so that there are
no extra additive terms in the equation for the effects of

friction and torque. Coarsely speaking, in general a model
is a simplified representation of a real-world system of in-
terest for designated scientific purposes. Although the tar-
get system has many important features, not all of them
can and should be included in the model for reasons of
tractability and limited epistemic import. And those that
are included, often involve drastic idealizations, known to
be empirically false.

It has long been known that in general the foregoing
differential equation does not have a closed-form solu-
tion in terms of traditional elementary functions. For gen-
eral analytic solutions, Jacobi’s periodic elliptic functions
are needed, with values knowable only with specified de-
grees of accuracy from mathematical tables or computa-
tions performed by special computer programs. The gap
between theoretically granted solutions and their approx-
imate variants has led Harald Atmanspacher and Hans
Primas [2] to advocate a dichotomy between states of re-
ality and states of knowledge. In a nutshell, derivation of
highly theoretical equations of motion (providing maxi-
mal information) offers a so-called ontic (endophysical)
view of modes of being of target systems, whereas (sta-
tistical) approximation and measurement procedures give
an epistemic (exophysical) perspective on real-world sys-
tems, involving errors and updating. It is well known that
the nonlinear equation above has several geometric types
of solution that capture all sorts of swinging and rotating
motions, and states of rest – for the most part knowable
only approximately.

Moving beyond the important ontic vs. epistemic
dichotomy in modeling, note that because the forego-
ing pendulum equation’s nonlinear component is repre-
sentable by the infinite series sin � D � � �3/(3!) C
�5/(5!) � � � � and since for small deflections (less than
5ı) of the pendulum’s rod from the vertical the values
sin �(t) of the angle quantity are very nearly equal to �(t),
we can substitute � for sin � in the equation and forget
about the higher-order polynomial terms in the infinite
series. So, at the cost of obvious approximation errors,
we obtain the basic linear pendulum differential equation
d2� /dt2 C g/`� D 0 that is easy to solve. It is an elemen-
tary exercise to show that its smooth closed-form solutions
are given by parametrized trigonometric position func-
tions of the form

�(t) D �(0) cos(! t)C
�̇(0)
!

sin(! t)

for all time instants t, with initial conditions �(0) and
�̇(0) Ddf

d�
dt (t)

ˇ
ˇ
tD0, and parameter ! Ddf

p
` : g, charac-

terizing the pendulum’s frequency of oscillation. In the
study of differential equations and their solutions it is stan-
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dard to adopt the so-called flow point of view. Simply, in-
stead of studying a particular solution for a given initial
value, the entire solution space
(

� 2 C1(T )

ˇ̌
ˇ
ˇ̌

d2�
dt2
C

g
`
� D 0

)

is studied, preferably in a parametrized form. Granted that
the model is ‘correct’, this subspace of the space C1(T )
of smooth real-valued functions on a designated contin-
uum-time domain T provides the investigator with com-
plete information about the target pendulum’s possible
angular positions and dynamical behavior. Clearly, the
foregoing solution space includes many relativistically for-
bidden solutions that encode physically impossible behav-
iors – individuated by the pendulum’s superluminal veloc-
ities. The key idea here is that in the absence of complete
knowledge of the model’s empirical domain of applicabil-
ity, a researcher may be in an epistemic danger of trying
to physically interpret (in terms of behavior) some of the
solutions – countenanced by the model, that are actually
meaningless in the physical world.

To remedy the situation, the foregoing classical simple
pendulum model must be extended to the relativistic case
(studied, e. g., in [11]), having the form

d2�
dt2
C

 

1 �
�
`

c
d�
dt

�2
!

g
`
sin � D 0 ;

where parameter c denotes the speed of light. Because for-
mal models usually possess limited empirical domains of
applicability, in comprehensive treatments of target sys-
tem behavior several different, closely related models may
become necessary.

Real-world systems tend to have many representing
models and these models often possess a surplus content,
which supports their mutations and extensions in unex-
pected ways. For example, in the presence of random-
ness or ‘noise’, a classical stochastic pendulummodel pro-
vides the most appropriate representation of randomly
perturbed motion. A typical model of the behavior of
simple pendulums affected by ‘noise’ is presented by the
stochastic differential equation

d2X
dt2
C (1C "W)!2 sinX D 0 ;

where X denotes the stochastic position indeterminate,
" > 0 is a parameter with small values, and W is a (e. g.,
Gaussian) stochastic process, capturing the pendulum’s
random perturbation. Naturally, to extract information

from a stochastic pendulum model, the investigator has
to calculate the moments of target pendulum’s positions
or consider the transition probability density that allows
to calculate the conditional probability of a future position
of the pendulum’s bob, given its position at a designated
starting time.

In many applications, the same basic pendulum differ-
ential equation drops out of a wholly different idealizing
scenario of, say, a coupled mass-spring system, consisting
of a (point) mass attached to a spring at one end, where
the other end of the spring is tied to a fixed frame. Other
prominent examples of systems, whose dynamical behav-
ior is also modeled by ‘pendulum equations’, include elec-
tric circuits, chemical reactions and interacting biological
populations with oscillatory behaviors. Of course, in each
application, the indeterminate and individuating parame-
ters are interpreted differently.

These examples illustrate clearly that mathematical
models are characteristically generic or protean with re-
spect to real-world systems, meaning that often the same
mathematical model applies to different empirical situa-
tions, admits several different empirical interpretations,
and is functioning both as an investigative instrument and
as an object of mathematical inquiry. Although, broadly
speaking, models can be representations of a particular
token target system (canonical examples are cosmologi-
cal models) or of a stereotype class of systems (e. g., pen-
dulums), they are always representations of some partic-
ular structure of a phenomenon, mechanism or behav-
ior. Needless to add, empirically meaningful deductions
from the representing equations are guided not just by
the free-standing equational structure of pure mathemat-
ics but also by the accompanying empirical interpretation,
encapsulated in part by the target system’s idealizing sce-
nario. Along these lines, in [23] Saunders Mac Lane as-
serts that “mathematics is protean science; its subject mat-
ter consists of those structures which appear (unchanged)
in different scientific contexts”.

On this picture, scientists construct formal models in
the form of (differential, partial differential, stochastic dif-
ferential, etc.) equations, proceeding in a simple top-down
analytic fashion – using first principles (e. g., Newton’s,
Kirchhoff’s and other laws) and idealizing scenarios or
‘empirical rules’ that are not part of any ambient theory, or
in a more involved bottom-up, data-driven synthetic man-
ner, starting from experimental (e. g., time series) data, the
extant stage of knowledge, analogies with other systems,
and background assumptions. In a total absence of any
data or prior knowledge pertaining to the target system,
it is inappropriate to consider mathematical models at all.
This raises several additional foundational questions:
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(i) What is at stake, if anything, in conceiving mathe-
matical models as empirically interpreted equations
of some sort?

(ii) How is it that the causal mechanisms and behaviors
of real-world systems can be so effectively studied in
terms of solutions of various equations that employ
highly idealized assumptions, known to be false?

(iii) Since most (nonlinear) equations arising in science
are solvable only approximately and in a discrete
range of values, what is their epistemic import? Recall
that predictions from these equations may have to be
obtained by brute-force numerical methods that re-
quire more computational power than the scientists
are likely to have. Thus, only a Laplacean superscien-
tist with unlimited cognitive capacities and compu-
tational resources could make full use of such equa-
tions. In contrast, although a real-world scientist does
start with such “true-in-heaven” equations but then
he or she quickly modifies them to make them com-
putationally easier to extract predictions from them.

We are now ready to start discussing some of the answers
to these and other previously listed philosophical ques-
tions about mathematical models.

MathematicalModels:What Are They?

We begin, as a way of entering the subject of mathemati-
cal models by clarifying the dichotomy between equational
(syntactic) and structural (semantic) conceptions of mod-
els. The standard view among most theoretical physicists,
engineers and economists is that mathematical models are
syntactic (linguistic) items, identified with particular sys-
tems of equations or relational statements. From this per-
spective, the process of solving a designated system of (al-
gebraic, difference, differential, stochastic, etc.) equations
of the target system, and interpreting the particular solu-
tions directly in the context of predictions and explana-
tions are primary, while the mathematical structures of as-
sociated state and orbit spaces, and quantity algebras – al-
though conceptually important, are secondary.

This is a good place to recall that, contrary to the above,
philosophical structuralists (e. g., Landry [18]) defend the
claim that mathematical models are structures and cate-
gory theory is the correct framework for their study. Struc-
turalists have two major arguments against the equational
(syntactic) view of mathematical models.

The first reason why the popular syntactic conception
of models is troubling to philosophers of science is the fol-
lowing. Even though a stipulated system of equations of
a target system admits infinitely many alternative formula-
tions – linked by scale, coordinate, change-of-variable and

other transformations, researchers do not presume of hav-
ing different models presented by these inessentially dif-
ferent formulations. It is important to bear in mind that
the structure of the associated solution space, serving as
a storehouse for all model-based information about the
target system’s causal mechanisms and behavior, remains
basically the same. Each type of solution of a given system
of differential (difference) equations is not defined by the
system of equations per se, but generally by a much larger
(prime) differential (difference) ideal of equations, gener-
ated by it. Since solutions and their mathematical seman-
tics are more important than change-of-variable transfor-
mations, systems of equations are related to each other in
a considerably deeper way by solution-preserving trans-
formations than by, say, scale transformations. A case in
point is the familiar physical equivalence of Hamiltonian
and Lagrangean formulations of equations of motion in
mechanics. Though the underlying language in each case
is different, nevertheless the modeling results are the same.
In brief, models in the sense suggested by the practice of
science possess properties equations do not seem to have.

It is well known that the basic linear second-order pen-
dulum differential equation d2�/dt2 C g/`� D 0 can be
put in the form of two linear first-order differential equa-
tions

( D
d�
dt

and
d(
dt
C

g
`
� D 0 ;

illustrating the notion of an equation-based state space
model. As an aside, we note that this type of transforma-
tion is general in that any system of higher-order differ-
ential equations can be rewritten as a first-order system of
higher dimensionality.

In this system of equations, the position-velocity pairs
h�(t); ((t)i are thought to encode the target pendulum’s
dynamical state (or physical mode of being) of interest at
time t. More importantly, the equations’ smooth, two-di-
mensional parametric solutions are now given by the po-
sition-velocity function pair

h�a;b(t); (a;b(t)i

D

�
a cos(! t)C

b
!

sin(! t); b cos(! t)� a! sin(! t)
	
;

with parameters a D �(0) and b D ((0). Thus, to specify
a particular (position-velocity) state-space trajectory for
the pendulum model, all we need is the initial state ha; bi,
arrived at via first and second integration of the original
equation. We mention in passing that if the differential
equation characterizing a target system were of order n,
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then generally we would need n independent parameter
values for a unique individuation of any of its solutions in
the form of specific time-functions.

The point of this simple exercise in pendulum mod-
eling is to make a headway in the direction of a powerful
alternate structuralist formulation of the pendulummodel
that has the following smooth group action (smooth flow
or smooth group representation) form

T � (R/2	Z �R)
h�;�i

�������! R/2	Z �R ;

to be defined next. Here and below, T denotes a con-
tinuum-time domain, isomorphic to the group hR; 0;Ci
of real numbers, and R/2	Z �R denotes the two-dimen-
sional cylinder-shaped state space, generated by the unit
circle and intended to encode all physically relevant states
in terms of values of the parametrized position-velocity
function. The customary geometric interpretation of state-
parametrized solutions consists of smooth curves, cover-
ing the cylinder state space and thereby forming the target
system’s phase portrait.

By a continuous group action of a topological group
hT ; 0;Ci (interpreted as a continuum-time domain or
time-group) on a topological space X (thought of as a state
space) we mean a jointly continuous map of the form
ı : T � X �! X (also known as a dynamical transition
map) such that the following axioms of group action hold
for all time instants t; t0 2 T and for all states x in X:

(i) Identity property: ı(0; x) D x, and
(ii) Group property: ı(t; ı(t0; x)) D ı(t C t0; x):

Because in what follows, group actions will be used mainly
to represent the temporal evolution of target systems’
states, the above-introduced group action ı : T �X �! X
is alternatively called a (deterministic) topological dynami-
cal model and is symbolized more succinctly by the curved
group-action arrow TÕ

ı
X. An impressively large class of

deterministic dynamical models arises from autonomous
systems of ordinary first-order differential equations by
simple state-parametrizations of their solution spaces. If
the time domain T and the state space X are both smooth
manifolds, and if the transition map ı is also smooth (i. e.,
infinitely differentiable), then TÕ

ı
X is called a (determin-

istic) smooth dynamical model. In particular, the structural
variant of the earlier discussed smooth pendulum dynam-
ical model has the form T Õ

ı;�
(R/2	Z �R), obtained di-

rectly from the solutions of a pair of first-order pendulum
equations. Because the time group’s operation is an action
on its own underlying space, we automatically obtain the
‘clock’ dynamical model TÕ

C
jT j.

Passage from equations to group action formulations
of their solutions represents a significant change of view-
point. From this new structuralist perspective, in formu-
lating a state-based mathematical model or simply a dy-
namical model of a target system’s behavior, the modeler
needs to specify the following two conceptual ingredients:
a state space X (endowed with additional smooth, topolog-
ical, or measurable structure, assumed to be respected by
all maps on it) and a time-group action ı : T � X �! X,
satisfying the identity and group properties. A defining
property of a state space is its being the domain of real-
valued, observable quantities. A prime example of an ob-
servable quantity in the pendulum model is the Hamilto-
nian, representing the pendulum’s energy levels.

Structuralists argue that the particular system of equa-
tions (if any) that generates the group action, is of sec-
ondary concern. In a dynamical model, comprised of
a state space and a time-group action on it, each state-
space point is an abstract, information-bearing encoding
of the target system’s physical mode of being at a given
time. Assuming that the system under consideration has
a physical state structure, its adequate state space model
comes with a state space comprised of points that are pre-
sumed to contain complete information about the past his-
tory of the system, relevant to its future behavior. Thus,
if the target system’s instantaneous physical state – en-
coded by a point in its representing state model, is known,
then the system’s subsequent temporal evolution can be
predicted with the help of the model’s time-group action,
without any additional knowledge of what has happened
to the system. The group action need not be continuous or
smooth. It can also be measurable, computable, discrete,
and local (i. e., only partially defined).

The structuralist point of view of mathematicalmodels
also includes the so-called behavioral approach, proposed
by Jan Willems [35]. It turns out to be just as effective as
the group action approach. Recall from the basic pendu-
lummodel example above that the group action pair h�; (i
has a function space transpose

R/2	Z �R
bh�;�i

�������! (R/2	Z �R)T ;

defined by the time function
�
1h�; (i(ha; bi)

�
(t) Ddf˝

�a;b(t); (a;b(t)
˛
for all time instants t and initial states

ha; bi in R/2	Z �R. Note that here the image function
space 1h�; (i(R/2	Z �R) is comprised of those time func-
tions (pictured as state trajectories) in (R/2	Z �R)T that
satisfy the initially given pair of first-order pendulum
equations.
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In engineering applications, it is often conceptually ad-
vantageous to work directly with the solution space
(

�

ˇ̌
ˇ̌
ˇ

d2�
dt2
C

g
`
� D 0

)

� C1(T )

of higher-order (linear) equations – interpreted as the sub-
space of behaviors, without any passage to a parametrizing
state space. In this behavioral setting, a behavioral topo-
logical dynamical model is a triple hT ; X;Bi, consisting of
a continuum-time domainT , a topological space X (inter-
preted as a signal space), and a function subspaceB � XT

of maps (encoding behaviors), satisfying the system’s dy-
namical equations. (Here and below, XT denotes the space
of all continuous time-functions, i. e., continuous maps
from T to X, endowed with the product topology.) This
notion of a model is an outgrowth of the traditional in-
put-output method, popular in engineering. The propo-
nents of the behavioral approach in algebraic systems the-
ory emphasize that in general the space of time-func-
tions XT need not be just the space C1(T ) of all smooth
functions. Instead, it can also be the space of compactly
supported smooth functions, locally integrable functions,
distributions, and so forth. Polderman and Willems [27]
provide a very readable introduction to the behavioral
conception of mathematicalmodels in systems theory. The
foregoing lengthy digression into structuralist conceptions
of models completes the first reason why the syntactic def-
inition of mathematical models is unsatisfactory. We are
now ready for the second reason.

The second reason why the equational conception in
science is inadequate is because equations are unable to
deal fully and directly with intended empirical interpre-
tations, representational power, denotation, model net-
works, and many other semantic and representational
functions of models. To place the equations on a mathe-
matically rigorous ground, the model builder must choose
a host ring or field for the possible values of indetermi-
nates and observable quantities. Beyond that, several other
choices have to be made, including the ‘correct’ choice of
a function space for indeterminates and quantities, and
that of parameter spaces for constants. Depending on the
interpretation, solutions can be everywhere defined and
smooth, or they can be generalized functions (distribu-
tions), and so forth. There is also the problem of param-
eter identification and the question of how various quan-
tities are to be measured. These functions of models are
typically determined by the intended interpretation of so-
lution spaces and phase portraits. Last but not least, parent
models come with various structural enrichments and im-
poverishments – forming a model network. But of course

in many applications, mathematical models involve both
linguistic and structural (non-linguistic) elements. In rep-
resenting natural systems, usually equations provide an
all-important starting point. However, in view of various
inevitable abstractions and idealizations, the correspond-
ing group-action and behavioral models – having “more
meat”, serve uniquely well as equation-worldmediators or
proxies, and stand-ins for the real-world target systems. In-
deed, statements derived from well-confirmed equations
are strictly true in the associated group-action and behav-
ioral models, but they are only indirectly and approxi-
mately true of the actual system’s behavior. The applied
mathematics literature usually leaves implicit many of the
details needed for understanding the equations.

So what is the merit of philosophical objections to
the equational treatment of mathematical models? In their
seminal work, Oberst [26], Röhrl [28], and Walcher [34]
have established a natural Galois correspondence between
the two (syntactic and structural) approaches, leading to
a deeper understanding of the relations between the prop-
erties of (differential and difference) equations and the
properties of their solutions, representing behavior. This
fundamental relationship between the world of equations
and that of solution spaces (or input-output behaviors)
has been established for a large class of linear (and also
for some nonlinear) cases, in the form of category-theo-
retic duality. In parallel with the above, classical models of
statistical experiments, decision theory, game theory, and
so forth, built over underlying smooth, topological, met-
ric and measurable spaces, possess computationally con-
venient algebraic counterparts, granted by Stone–Gelfand
duality results, discussed, e. g., in [17].

Having studied the ways in which equations lead to
group-actions on state spaces and function spaces of tra-
jectories representing behaviors, we now discuss how these
and other types of models can be put together from more
basic mathematical structures, and how certain universal
constructions support the construction of complex mod-
els from simple ones.

Philosophical andMathematical Structuralism

Since much of what is taken as distinctive of mathemati-
cal models and their connections to target systems is tied
to mathematical structuralism, a brief description of the
concept of structure is in order. We begin by reviewing
the principal theses of philosophical structuralism. Within
the current philosophical literature (e. g., [8]) on the sta-
tus of scientific realism, two major positions can be dis-
cerned. The first, resurrected by Worrall [36], is epistemic
structuralism that places a special restriction on scientific
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knowledge. Its central thesis is that we can have knowledge
of structures without knowledge of natures. Here struc-
tures are identified with relations – broadly understood,
and natures are the intrinsic modes of being of objects that
are related. This view is motivated by the need to han-
dle the ontological discontinuity across theory-change in
terms of a well-grounded knowledge of structures. For ex-
ample, although conceptions of the nature of light have
changed drastically through history (from a particle on-
tology to a wave ontology, and then again to a wave-par-
ticle duality), nevertheless, the old equation-based models
describing the propagation of light have not been aban-
doned. Rather, at each stage of knowledge, they have been
incorporated into more refined successor models. The sec-
ond position, called ontic structuralism, initiated by Lady-
man [16], holds that since structure is all there is to re-
ality, what we can have at best is knowledge of the struc-
tural aspects of real-world systems. Inspired by the pecu-
liar nature of quantum theory, ontic structuralism argues
for the thesis that there are no objects. This object-free on-
tology leaves its proponents with the burden of showing
how physico-chemical entities (e. g., superconductors and
radioactive chemicals), endowed with astonishing causal
powers, can be dissolved into structures, without anything
left over.

In the field of mathematical ontology, structuralism
is regarded as one of the most successful approaches to
the philosophy of mathematics. For example, Shapiro [31]
states that mathematics is the study of independently ex-
isting structures, and not of collections of mathematical
objects per se. This picture may seem to be a bit distorted
to some, since not all of mathematics is concerned with
structures. For example, the distribution of prime num-
bers in the setN of natural numbers and arguments as to
why � must be a transcendental real are hardly structural
matters.

Be that as it may, from the standpoint of classical
model theory, a mathematical structure is simply a list of
operations and relations on a set, together with their re-
quired properties, commonly stated in terms of equational
axioms. The most familiar examples of such structures
are Bourbaki’s mother structures on sets: algebraic (e. g.,
time groups and quantity rings), topological (e. g., metric,
measurable and topological state spaces), and order-theo-
retic (e. g., partially ordered sets of observables and event
algebras). Of course, there are many vastly more elabo-
rate composite types of set-theoretic structures, including
ordered groups, topological groups, ordered topological
groups, group actions, linear spaces, differentiable mani-
folds, bundles, sheaves, stacks, schemes, and so forth. The
world of sets is granted by a fixed maximal (possibly Pla-

tonist) mathematical ontology out of which all structures
of mainstreammathematics are presumed to be built.

The foregoing idea of mathematical structure is due
mainly to the influence of Nicolas Bourbaki [7], who (to-
gether with other mathematicians around him) noted that
mathematical structures of practical interest can be gener-
ated by three universal operations on sets: The (Cartesian)
product X � Y of two sets X and Y , the power set P(X)
of X, and the exponentiation-type function set YX (con-
sisting of all functions that map X into Y). For example,
a group structure on a set X can be viewed as a designated
element of the function set X(X�X) with the usual equa-
tional properties of the group operation, together with
a suitable element of XX (for the inverse operation) and
a designated element 0 2 X. Similarly, a topological struc-
ture on a set X is given by a designated element of the iter-
ated power set construct P(P(X)), satisfying the axioms
of topology. Thus, Bourbaki’s concept of a mathematical
structure is given by an underlying set together with some
higher-order set-theoretic data, forming a string of desig-
nated elements of suitable product, power or function set
constructions on it, and satisfying certain axioms. Unfor-
tunately, Bourbaki’s definition of the concept of mathe-
matical structure includes many pathological examples of
no known utility. Furthermore, in general, Bourbaki does
not consider the notion of structure-preserving mappings
between mathematical structures, except isomorphisms
that are always suitable functions, treated as subsets of the
Cartesian product of their domains and codomains.

The plurality of set theories with divergent properties
in particular and that of universes of mathematical objects
in general with wildly different and mutually inconsistent
formulations have led to new ideas in philosophical struc-
turalism. Among other things, these ideas suggest that in
the presence of an abstract product ×, exponentiation (�)(�)

and other universal operations, any entity whatever can
serve as a proxy for the underlying set-theoretic domain or
carrier of a structure. This undermines the Platonist com-
mitment to sets, believed to underly mathematical reality.
The plurality of set theories has been replaced by a plural-
ity of toposes – a special class of categories with products,
function space constructions and subobject classification,
in which most set-like mathematical constructions can be
carried out. Category theory is seen by many as provid-
ing a structuralist framework for mathematics and hence
also for mathematical models per se. Simply, structures
are determined up to isomorphism, making the particu-
lar nature, individuality or constitution of their underlying
domains irrelevant. Domains are only ‘positions’ in struc-
tured systems. For example, real numbers are fully speci-
fied by the structure of a complete Archimedean ordered
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field that has many realizations. Mathematics is not about
objects, either empirical or mathematical. It is about the
axiomatic presentation of the structure of such objects in
general, and of no objects in particular. If mathematics dis-
cusses objects, it does so only by construing them as ‘po-
sitions’ in structured systems, devoid of any special ontol-
ogy. In sum, mathematical objects need not be sets and
mappings need not be functions. However, mathematical
structuralism does not always translate into physical struc-
turalism. For example, the quantum structure of particles
and the physical structure of liquids is empirically mean-
ingless when viewed in isolation from their concrete phys-
ical carriers.

Present-day mathematics uses structure-preserving
mappings to specify different kinds of sets-with-structure.
For example, instead of describing groups traditionally
in terms of elements and higher-order data (i. e., opera-
tions satisfying the group axioms) on a set, mathematical
practice demonstrates that it is far more effective to treat
groups as abstract black-box type objects together with
distinguished maps, emulating group homomorphisms
between them. Upon engaging product and other opera-
tions in the construction of these abstractly given objects
and maps, algebraists quickly arrive at a crucial universe
of discouse, namely the categoryGrp of groups and group
homomorphisms. For a thorough discussion of categories,
see [22].

In [30] Dana Schlomiuk specifies the classical notion of
a topological structure strictly in terms of abstract spaces
and maps of a category Top – called the category of topo-
logical spaces, independently of the usual set-based means
of specification, employing elements and closure opera-
tors, or algebras of open or closed subsets. Even far more
sophisticated structures can be treated in this fundamen-
tally structuralist manner. For example, a smooth struc-
ture of a differentiable manifold can be given category-
theoretically by specifying exactly which continuous maps
must be smooth in the category of abstractly conceived
smooth manifolds. Here the utility of category theory is in
providing a uniform treatment of the concept of structure,
solely in terms of holistically given ‘structure-preserving’
maps that serve remarkably well also the needs of empiri-
cal applications.

Having now indicated the ways category theory spec-
ifies mathematical structures, we may profitably revisit
the earlier discussed syntactic equational and structural-
ist approaches to mathematical models from the point
of view we have just developed. Here we only give one
illustration of this approach out of many possibilities,
namely the category TopT of topological dynamical mod-
els in the form of a topological group-action on state

spaces by a designated time group hT ; 0;Ci, discussed
in the previous Section. This category consists of topo-
logical dynamical models of the form TÕ

ı
X, serving as

its objects, where the map ı : T � X �! X is a contin-
uous action of time-group T on its codomain topolog-
ical state space X. Next, maps between dynamical mod-
els of the form ' : (TÕ

ı
X) �! (TÕ

ı0
X 0), called dynamor-

phisms, are given by continuous mappings ' : X �! X 0

between the underlying state spaces such that the diagram

T � X
ı
�! X

1T�'

?
?y

?
?y'

T � X 0 �!
ı0

X 0

commutes, i. e., the compositions of constituent maps
along both paths in the diagram give the same map. In
other words, we have the equality ' ı ı D ı0 ı (1T � ').
Because the identity maps of state spaces are trivially dy-
namorphisms and since the composition of two dynamor-
phisms is again a dynamorphism, by definition, TopT is
indeed a category.

A dynamorphism ' from TÕ
ı
X to TÕ

ı0
X 0 is said to be

an isomorphic dynamorphism or simply a conjugacy pro-
vided that ' : X �! X 0 is a homeomorphism. From the
standpoint of mathematical systems theory, two conjugate
dynamical models are structurally identical. Any dynam-
ical property (i. e., a property defined in terms of a group
action on its underlying state space) possessed by one is
also possessed by the other. Concretely, a dynamicalmodel
TÕ
ı
X is said to be structurally stable provided that any dy-

namical model TÕ
ı0
X with transition map ı0 sufficiently

close to ı in a suitable topological sense is conjugated to
TÕ
ı
X.
Surjective (onto) dynamorphisms are called factor dy-

namorphisms. Each factor dynamorphism ' : X �! X 0

comes with its natural equivalence relation, given by
x1 � x2 iff '(x1) D '(x2), and induced quotient dy-
namical model T Õ

ı'
X/�. Injective (one-to-one) dy-

namorphims specify dynamical submodels. For example,
the trajectory passing through a state x at time zero,
defined by T (x) D

˚
ı(t; x) j t 2 T

�
, can be viewed as

a member of the family of the smallest nontrivial submod-
els of TÕ

ı
X. Many other notions and constructions avail-

able in the category Top of topological spaces automati-
cally transfer to the category TopT of topological dynami-
cal models and dynamorphisms. For example, the product
(TÕ

ı
X) � (TÕ

ı0
X 0) of two dynamical models TÕ

ı
X and

TÕ
ı0
X 0 is defined in the same way as in topology, namely

by

(TÕ
ı
X) � (TÕ

ı0
X 0) Ddf T

Õ
ı ; ı0

(X � X 0) ;
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where the diagonal action is given by [ı;ı0](t; (x; x0)) D˝
ı(t; x); ı0(t; x0)

˛
. Disjoint sum (coproduct) of two dynam-

ical models is defined similarly. For more details regarding
category-theoretic constructions, see [20] that includes an
elaborate category-theoretic treatment of dynamical mod-
els. Similar constructions work with varying degrees of
success in many other host categories. For example, if
Top is replaced by the categoryMes of measurable spaces
and measurable maps between them, we obtain the much
studied category MesT of measurable dynamical models.
Another significant mutation of dynamical models arises,
when the continuum-time domain is replaced by a dis-
crete-time domain, isomorphic to the group hZ; 0;Ci of
integers or the monoid hN; 0;Ci of natural numbers.

Topological (smooth or measurable) dynamical mod-
els provide complete support also for the representation
of perturbed, controlled, nonautonomous, and random dy-
namical systems, in terms of various skew-product con-
structions. In more detail, let TÕ

ı
X be a (topological,

smooth or measurable) base dynamical model that repre-
sents a driving system (i. e., perturbation, control or envi-
ronmental noise process), affecting the target system’s dy-
namical behavior. The model of this behavior, subject to
the influence of added perturbation, control, and so on,
is based on a so-called (continuous, differentiable or mea-
surable) cocycle map ˛ : T � X � Y �! Y , acting on the
driven target system’s principal state space Y and satisfy-
ing the following skew-product action (or cocycle) axioms
for all t; t0 in T , x 2 X, and y 2 Y :

(i) Identity property: ˛(0; x; y) D y, and
(ii) Cocycle property: ˛(t C t0; x; y) D ˛

�
t; ı(t0; x);

˛(t0; x; y)

.

The space X � Y should be thought of, informally, as
a trivial bundle, made up of fibers fxg � Y , indexed by
points x 2 X and “glued together” by the topology. In the
same way, for time instants t; t0, the cocycle map should
be viewed as an indexed family

fxg�Y
˛(t;�;�)
����! fı(t; x)g�Y

˛(t0;ı(t;�);�)
��������! fı(t0Ct; x; )g�Y

of maps between fiber state spaces. As the extant base
state x at time t is shifted by the base model’s dynam-
ics to ı(t; x), the restricted cocycle map ˛(t; x; �) moves
each system state y in the fiber fxg � Y over x to the state
˛(t; x; y) belonging to the fiber fı(t; x)g � Y over ı(t; x).

The skew-product (TÕ
ı
X)Ę̈Y of a base dynamical

modelTÕ
ı
X and a principal state spaceY under cocycle ˛

acting on Y is defined by the dynamical model

(TÕ
ı
X)Ę̈Y Ddf T

Õ
�
(X � Y)

on the trivial bundle X � Y , where � : T � (X � Y) �!
X � Y is specified by �(t; (x; y)) Dd f hı(t; x); ˛(t; x; y)i
for all time instants t and states x; y. It is easy to
check that the transition map � is fiber-preseving and
hence a bundle morphism. Since each group-action in-
duces a skew-product action, product dynamical mod-
els are special cases of skew-product dynamical models.
More importantly, because the second projection map
�Y : (TÕ

ı
X)Ę̈Y �! (TÕ

ı
X) is a factor dynamorphism,

skew-products are best viewed as objects of the so-called
slice category TopT

//TÕ
ı

X that fuses topological (smooth,
measurable, etc.) bundle theory with the theory of dy-
namical systems. Rohlin’s representation theorem states
that the domains of factor morphisms in the category of
probability spaces andmaps are essentially skew-products.
Thus, all stochastic representations of perturbed systems
are tractable uniformly by skew-product constructions.

Nonautonomous differential equations (describing
nonautonomous systems) of the form dy/dt D f (t; y)
with t 2 T and y 2 Y (involving an explicit time depen-
dence), are known to have solutions that induce skew-
product dynamical models of the form (TÕ

C
jT j)Ę̈Y over

a suitable cocycle ˛. Quite simply, the model enlarges the
principal state space Y by the space jT j of time coor-
dinates. Because solutions of stochastic differential equa-
tions have the form of cocycles over base measurable dy-
namical models, once again, smooth skew-products, called
random dynamical models, provide the correct structural-
ist framework for them. For a thorough treatment of some
of these topics, see [1] and [9].

Three Approaches
to ApplyingMathematicalModels

Since one of the most perplexing philosophical questions
is how models relate to their target systems, in this Sec-
tion we review three major approaches to the problem of
model-world relationship.

Internal Approach

Set-theoretic models are applicable to real-world systems
simply because physical objects can literally bemembers of
legitimate sets and there are special functions between sets
comprised of physical objects (e. g., particles and bodies)
and pure mathematical objects (e. g., reals). As a classical
example of a physical application of this nature, recall the
application of Newton’s laws to the solar system. The pro-
ponents of the internal view (including, e. g., Steiner [32])
argue that planets together with the sun form a perfectly
meaningful finite set on which real-valued mass and posi-
tion functions can be defined in the usual way. In this man-
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ner, set-theoretic models are applied to physics (and other
disciplines) using only internal (i. e., internal to set theory)
relations between, say, bodies and numbers. The defend-
ers of the internal view treat the names of (say) planets as
rigid designators, always picking the same object in every
possible situation in which they exist at all. It is now easy
to see how the intended empirical interpretation of math-
ematical models leads directly to claims about the physical
world.

It must be stressed, however, that there is a good basis
for questioning this fairly popular approach. One obvious
concern is this: For particles, bodies and other physical ob-
jects to form classical sets, it must be assumed that they can
never be annihilated, split or changed in some other ways,
leading to a loss of their identity. Under these types of im-
plicit comprehensive idealizations, it is better to think of
such ‘physical’ or ‘empirical sets’ as ordinary sets involv-
ing mathematical encodings. Simply, the actual physical
objects under study are encodable in terms of suitable ab-
stract elements (e. g., numbers) of a set, so that the infor-
mal semantic assumptions of the sort “B is a set of physical
bodies”, “X is a set of physical states”, “TÕ

ı
X is a dynam-

ical system”, and so forth, are treated as succinct abbre-
viations of the formal details of fallible mathematical en-
codings and their empirical interpretation. A more serious
philosophical concern pertains to the nature of (e. g., dif-
ferentiable) maps on various ‘empirical sets’, consisting of
fluids and other objects of continuum mechanics.

External Approach

Some philosophers suggest to draw a thick conceptual line
between timelessmathematicalmodels and actual physical
systems. But then, for a model to be a model of something
else, a relationship between a model and what it models is
required. Specifically, applications of mathematical mod-
els involve certain external (preferably intensional) rela-
tions between models and real-world systems. In more
detail, philosophical structuralists argue that the model-
world relation is best described by structure-preserving
maps (usually isomorphisms or embeddings) between rep-
resenting mathematical models and their intended phys-
ical (or generally empirical) situations. As a concrete il-
lustration of this viewpoint, consider the representational
model of weight measurement, studied in great detail by
Kranz et al. in [15]. The empirical domainD of the ‘phys-
ical structure’ of weight measurement is a set of material
objects. This domain is equipped with a binary ‘heavier-
than’ weak-order relation �, where the empirical state-
ment d � d0 – stating that object d is heavier than ob-
ject d0, is operationally established by placing d and d0

on the two pans of an equal-arm balance scale and then
observing which pan drops. In addition, there is a binary
weakly commutative and weakly associative composition
operation ˚ on D, where for objects d and d0 the value
d ˚ d0 denotes the composite object obtained by placing
both objects in the same pan with d beneath d0. Now, here
the world-model relation is given by an algebraic homo-
morphism from the so-called physical extensive measure-
ment structure hD;�;˚i of weight measurement to the
ordered additive structure hR; >;Ci of reals. Such homo-
morphisms are guaranteed to exist provided that the ex-
tensive measurement structure satisfies certain relatively
simple axioms, similar to those used in the definitions of
Archimedean-ordered semigroups.

We see that for a structure-preserving world-to-
model map to exist, numerous idealizing restrictions
must be placed on the target physical domain’s struc-
ture. For example, in the case of weight measurement, the
Archimedean property forces the empirical domain D to
be infinite, even though in applications experimenters al-
ways work with finitely many objects. Because idealiza-
tions typically involve known-to-be-false descriptions, ig-
norance of causes, and deliberate stipulations of objects
that do not exist in the actual physical situation, a struc-
ture-preserving map can be guaranteed to exist only be-
tween the idealization itself and a representing mathemat-
ical model, but not necessarily between the actual real-
world situation (enjoying unlimited degrees of freedom)
and the model.

Finally, one must question the ontological status of the
structure-preserving maps (isomorphisms). If these maps
go from a mathematical domain to a real-world physical
domain or conversely, then their graphs, being subsets of
a ‘hybrid set’ of physical-mathematical object pairs, take us
back straight to the internal viewpoint, questioned earlier.

A rival and equally popular approach to this gen-
eral topic is to replace the isomorphism (or homomor-
phism) relation between models and the world by some
other, technically less demanding devices. For example,
Giere [13] proposes to solve the problem of structure-pre-
serving maps by passing to considerably simpler graded
context-dependent similarity relations between models
and aspects of the real world. Thus, if the representing
model is sufficiently similar to its target system, then the
analysis of the model is also (indirectly) an analysis of the
system. This solution comes at quite a price, since it is
hard to see what exactly, if anything, is similar between
the familiar Lotka–Volterra differential equations and the
predator-prey two-species system of finitely many sharks
and fishes in the Adriatic Sea. Another major concern is
that under similarity anything can be a model of anything
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else, since any two things can always be claimed to be
similar in some respect and to some degree or other. In
general, model builders cannot reduce the problem of ap-
plication of models to similarity relations, because mod-
els usually come with falsifying idealizations that simply
violate any similarity relation that may perhaps exist be-
tween intractable ‘perfect’ models and their systems. Last
but not least, mathematical models tend to possess a ‘sur-
plus structure’ and features that do not correspond to any-
thing in particular, similar or not, in the actual system
(e. g., recall the applications of complex analysis to the be-
havior of electric circuits or the role of undetectable mea-
sure-zero attractors in a dynamical model).

Model Network Approach

The relation between a mathematical model and its tar-
get system is not as straightforward as it is often thought
to be. Models interact with other models, both globally
and locally in complex ways, and their relationship to the
world is not a static affair. If connections between mod-
els and their target systems were tractable by rigid rela-
tions, then a large bulk of scientific research would be-
come redundant. However, as mathematical models are
structurally mutated, their representational capacities of-
ten undergo unexpected refinements and changes. As a re-
sult, in subsequent applications new epistemic links be-
tween models and systems emerge, and accrue along the
way. Thus, from the standpoint of scientific practice, an
essential aspect of mathematicalmodeling is extendability,
enrichment and open-endedness of model constructions.
Model builders cannot realistically constrain models to be
just single frozen structures. Instead, applied mathemati-
cal models are best viewed as complex networks of struc-
tures with distributed empirical interpretations that guide
model users in the network-world interface to gathermore
informative data and make better predictions. (For related
views but motivated by different considerations, see [4]
and [5].)

Applications of category theory to mathematical mod-
els has opened up the possibility of building new models
from old ones via functorial constructions. In Sect. “Philo-
sophical and Mathematical Structuralism”, we have given
a brief introduction to some concepts, intended for the
class of topological dynamical models. But there is more.
For example, the study of deterministic dynamical sys-
tems operating in a chaotic regime – hard to under-
stand in deterministic terms, calls for a passage to prob-
abilistic dynamical models. These are obtained by intro-
ducing probability monads – special functors discussed
by Giry [14], on suitable categories of topological and

measurable spaces. In brief, the parent deterministic dy-
namical model TÕ

ı
X is used in conjunction with the

associated logically higher-level probabilistic dynamical
model T Õ

ı�
D(X) with time-group action on the convex

space D(X) of probability density functions, represent-
ing the target system’s stochastic states. Here the transi-
tion map ı� is defined by the so-called Perron–Frobenius
integral equation, studied in great detail by Lasota and
Mackey [19]. Mutation of TÕ

ı
X into nondeterministic,

fuzzy and other dynamical models is also obtained by the
monad approach. Since the time evolution of states of
a target system is observed only indirectly via measurable
real-valued quantities, defined on the representingmodel’s
state space X, the parent model TÕ

ı
X is used in paral-

lel with another associated higher-level dynamical model
T Õ
ı�

C(X) on the Banach algebra C(X) of (bounded) real-
valued continuous functions on X. The induced time-
group action ı�, defined by the fundamental Gelfand du-
ality result, characterizes the time evolution of observable
quantities, crucial in time-series analysis.

Because in applications the evaluation of the analytic
parent model’s transition map tends to involve roundoff
and other truncation operations that may have long-term
pathological effects, and since generally the model’s time
and space points cannot be identified with arbitrarily fine
degrees of accuracy, several forms of (temporal, spatial and
parametric) discretizations become necessary. Time dis-
cretizations of a continuum-timemodelTÕ

ı
X is solved by

passing to discrete-time dynamical models �ZÕ
ı�
X, where

�Z D f� � � ;�2�;��; 0; �; 2�; � � � g is the group of discrete
timesteps with sampling period � > 0. Spatial discretiza-
tion of TÕ

ı
X is captured by a nested family of coarse-

grained dynamical models of the form TÕ
ı�
X� , where the

underlying state space X� is comprised of a uniform grid
(lattice) of finitely many points in X with mesh size � D 1

n ,
tractable with finitary resources. Spatially discretized dy-
namical models provide the formal meeting ground for
measurement results and the parent model’s predictions.
To understand the gap between ontologically and episte-
mologicallymotivated dynamicalmodels, it is important to
know how well a discretized space mimics the properties
of the parent model’s state space. Remarkably, Hausdorff
topological state spaces are known to be approximable by
inverse limits of nested sequences of T0 finite topological
spaces. For more details on this subject, see [6].

ValidatingMathematicalModels

Although many models are built for scientific research
purposes, applications demand that models be validated
iteratively by comparisons of their predictions with mea-



6802 P Philosophy of Science, Mathematical Models in

surement data. Validation is intended to demonstrate that
the representing model generates predictions and claims
in its domain of applicability that are consistent with its
intended application – within an acceptable range of accu-
racy. Because it is not true that good predictions can only
be obtained from a model that is causally sound and since
data may not portray the target system accurately, full ver-
ification of a model requires various testing procedures
for agreementwith cause-effect relationships (operating in
the target system) and analysis of inter-model relations in
a model network to which it belongs.

Validation tends to be limited by the available domain
of measurement data – to be used in model-world com-
parisons, and generally is not sufficient to demonstrate
that the model is adequate in its entire state space, mod-
ulo locally granted margins of error. As a matter of fact,
mathematical models are seldom valid in all regions of
their phase portraits. As we have seen, the most popular
example is the Newtonian dynamical model of a simple
pendulum that gradually fails as its angular velocity ap-
proaches the speed of light. In scientific practice, a dynam-
ical model is typically valid only in limited regions of its
underlying state space that are of particular interest. Prob-
lems arise when the model fails to be valid in most parts of
the state space regions under consideration. Deficiencies
in the model may be traced to a wrong choice of differen-
tial equations (that ignores higher degrees of nonlinearity),
a crude choice of time and/or space discretization parame-
ters, and reliance on data samples contaminated with gross
errors.

In many applications, it is far from sufficient to know
that the model is statistically valid. The reason is that a sta-
tistically valid theoretical model may turn out to be dy-
namically (qualitatively) invalid, meaning that it may fail
to represent correctly the dynamical invariants of the tar-
get system (including equilibrium states, periodic, aperi-
odic, chaotic or strange attractors, and their basins) un-
der various choices of parameter values. Note that even if
a dynamical model provides highly accurate predictions in
its tested state space regions, it does not necessarily fol-
low that the model is dynamically valid, since it may in-
clude spurious dynamics in untested state space regions
that are also of interest. The spectrum of actual behaviors
of the target system remains largely unknown from the
perspective of its representing model. Further observation
and theoretical research may be needed to obtain a better
knowledge about the dynamical invariants and character-
istics of the system.

These considerations lead us to reason about the
validation of dynamical models geometrically, in terms
of suitable conditional geometric measures of adequacy.

Philosophy of Science, Mathematical Models in, Figure 1
Geometry of model validation

Given a parent dynamical model of a target system, sup-
pose the associated body of actual observation and mea-
surement data, available at a given stage of knowledge and
collected independently of themodel under consideration,
forms a subset Meas of a finite grid of the parent model’s
underlying state space, as illustrated by a shaded circle in
Fig. 1 below. The size of the set Meas is constrained by
various resources, available measuring instruments, their
accuracy, and research interests of the validating scientist.
Of course, Meas varies with time and it can form a mul-
tiply connected or scattered subset of the state space. For
simplicity, we assume that the discretization embodied in
the grid captures the uniform admissible margin of error.

Along related lines, let Pred be a subset of a finite grid
of the parent model’s state space, given by all quantita-
tive predictions calculated from the representing model
at a given stage of research and depicted by the second
shaded circle in Fig. 1 that overlaps with Meas. Naturally,
the set Pred grows in time as brand-new predictions are
generated by the model. It should be obvious that the in-
tersection Meas \ Pred represents those predictions that
have been checked by observation or measurement.

Since the model of interest need not be perfect or fully
reliable, it is likely to generate some predictions that fal-
sify the model. In Fig. 1, the set of falsifiers is indicated by
the ellipse Fail, forming a subset of Pred. Note that at the
current stage of research, only a proper subset of incor-
rect predictions in Fail is comparable with measurement
results. The other potentially falsifying predictions in Fail
have not yet been verified. Finally, note also that subse-
quent discrete measurements of a state trajectory (indi-
cated in Fig. 1 by a dotted curve segment) over a longer pe-
riod of time may gradually diverge from the correspond-
ing parent model-given continuous state trajectory, both
generated by the same presumed initial state.

We are now ready to use the geometric scheme devel-
oped above to measure the adequacy of dynamical models.
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Even thoughmeasurement results and predictions form fi-
nite sets, for the sake of simplicity we choose to measure
the adequacy of the given dynamical model by the ratio

�(Meas \ (Pred � Fail))
�(Meas)

;

where � denotes the Lebesgue measure defined on the
model’s underlying state space. The idea is that the ratio of
the volume of fully verified correct predictions and the vol-
ume of all available measurement results is a good indica-
tor of the model’s adequacy at a given stage of knowledge.
In any case, it should be clear that a semantic approach to
confirmation theory must directly engage the structure of
dynamical models under consideration. Because adequacy
and reliability should be judged according to the volume
of phase portrait regions on which measurements and pre-
dictions agree, modulo admissible errors, measures of the
sort displayed above are in the ballpark of measuring ade-
quacy. Note, however, that just like many other measures
in dynamical systems theory (including topological and
Kolmogorov–Sinai entropy functions), the foregoing mea-
sure of model adequacy is largely conceptual and not read-
ily implementable in all instances of real-life models.

Testingmodels for adequacy is conceptually quite sim-
ilar to testing statistical hypotheses. Recall that a given rep-
resentative sample of data validates a statistical hypothesis
about the target population only with a certain degree of
confidence; the larger the sample, the higher the degree
of confidence in the correctness of the hypothesis. Like-
wise, representative measurement data validate the dy-
namical model under consideration via its predictions per-
taining to the target system’s addressed behavior only lo-
cally, specified by a region in its phase portrait. The larger
the body of validating data in its phase portrait, the higher
the degree of confidence in the model’s global adequacy.

Future Directions

We do not give a detailed list but briefly mention two ma-
jor directions of current research.

Galois Correspondence
Between Equational and Structuralist Approaches

There are several algebraic methods in the realm of lin-
ear differential equations that demonstrate a Galois corre-
spondence between differential or difference ideals of equa-
tions (modules of differential operators) and group-action
(behavioral) models. There are reasons to conjecture that
these results remain valid also for a large class of nonlin-
ear differential or difference equations. Although some ex-

amples of this are studied by Walcher [34], a more com-
plete understanding of the equation-solution relationship
is needed. A similar Galois connection must be addressed
also in the context of stochastic differential equations and
random dynamical models or stochastic flows.

Validation and Verification of Mathematical Models

It is a problem of considerable interest to formalize the
processes of model validation and testing. In recent years
efforts have been made to come to grips with this prob-
lem in the field of validation of computer simulationmod-
els. (See, for example, the influential work of Sargent [29].)
However, a substative theory of dynamical model valida-
tion that circumvents the inadequacies of classical confir-
mation theory is not yet available.
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Glossary

Cellular automata Discrete variables on a discrete lattice
change in discrete time steps.

Ising model Neighboring variables prefer to be the same
but exceptions are possible. The probability for such
exceptions is an exponential function of “tempera-
ture”.

Percolation Each site is randomly either occupied or
empty, leading to random clusters. At the percolation
threshold for the first time an infinite cluster is formed.

Universality Certain properties are the same for a whole
set of models or of real objects.

Definition of the Subject

Herein we introduce the section of this Encyclopedia de-
voted to Social Sciences, edited by A. Nowak, which con-
centrates on the application of mathematics and physics to
this field. Under “mathematics” we include also all com-
puter simulations if they are not taken from physics; while
physics applications include model simulations derived
from physics that were applied to social simulations. Thus,
obviously there is no sharp border between applications
from physics and from mathematics in the sense of our
definition. Also social science is not defined precisely. In-
cluded are economics and linguistics, but not social insects
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or fish swarms, nor human epidemics or demography. It
should further be noted that the section of the Encyclope-
dia on agent-based modeling edited by F. Castiglione also
contains articles of social interest.

Introduction

If mathematical/physical methods are applied to social sci-
ences, a major problem is the mutual lack of literature
knowledge. Take for example the Schelling model of racial
segregation in cities [1]. Sociologists don’t cite the better
and simpler Ising model, physicists ignored the Schelling
model for decades, and sociologists also ignored better
sociology work [2]. For simulations of financial markets,
many econophysicists thought that they had introduced
Monte Carlo and agent-based simulations to finance, not
knowing of earlier work from some forward-looking No-
bel laureates in economics [3,4]. For inter-community re-
lations, already 25 centuries ago analogies with liquids
were pointed out by Empedokles in Sicily � Opinion Dy-
namics and Sociophysics or [5]. More recently, Ettore Ma-
jorana [6] around 1940 suggested application of quan-
tum-mechanical uncertainty to socio-economic questions.
With emphasis shifted to statistical physics, sociophysics
and econophysics became fashionable around the change
of the millennium, but continuous lines of research by
some physicists had already begun in 1971 [7]. In the
same year the Journal of Mathematical Sociology started
and published Schelling’s model of urban segregation [1],
which is amodification of the Isingmagnet at zero temper-
ature. The year of 1982 saw the start of two other lines of
research by physicists on socio-economic questions [8,9].

Languages have been simulated on computers for
decades, while the interest of physicists in this area is more
recent [10,11], triggered mostly by a model of language
competition [12].

We do not mention chemists since at present they play
no major role in this field. However, the 1921 chemistry
Nobel laureate F. Soddy [13], to whom we owe the “iso-
tope” concept, had already worked on economic, social
and political theories, and his finance work of the 1930s
was still being cited in 2007. The present authors are try-
ing this the other way round: First apply physics to social
sciences, and then get the Nobel prize (for literature: sci-
ence fiction).

SomeModels and Concepts

Physicist Albert Einstein said that models should be as
simple as possible, but not simpler. In this spirit we now
introduce some basic physics models and concepts for
readers from social sciences. All models are complex in

the sense that the behavior of large systems cannot be pre-
dicted from the properties of the single element.

Cellular Automata

Mathematicians denote cellular automata often as “inter-
acting particle systems”, but since many other models or
methods in physics use interacting particles, we do not
use this term here. A large d-dimensional lattice of Ld

sites carries variables Si (i D 1; 2; : : : ; Ld ) which can be
either zero or one; more generally, they are small inte-
gers between 1 and Q > 2. The lattice may be square (four
nearest neighbors), triangular (six nearest neighbors), or
simple cubic (also six nearest neighbors, but in d D 3 di-
mensions); many other choices are also possible. Time
t D 1; 2; : : : increases in steps. At each time step, each
Si (t C 1) is calculated anew, one i after the other, from
a deterministic or probabilistic rule involving the neigh-
boring Sk(t) of the previous time step. This way of updat-
ing is called “simultaneous” or “parallel”; one may also use
sequential updating where Si depends on the current val-
ues of the neighbors Sk; then the order of updating is im-
portant: random sequential, or regular like a typewriter.

An example is a biological infection process: Each site i
becomes permanently infected, Si D 1, if at least one of its
nearest neighbors is already infected. (Computers handle
that efficiently if each computer word of, say, 32 bits stores
32 sites, and if then 32 possible infections are treated at
once by bit-by-bit logical-OR operations [14].)

Temperature

We know temperature T from the weather reports, but in
physics it enters according to Boltzmann into the proba-
bility

p / exp(�E/kBT) (1)

to observe some configuration with an energy E. Here
T is the temperature measured in Kelvin (about 273 +
the Celsius or centigrade temperature), and kB the Boltz-
mann constant relating the scales of energy and temper-
ature. For simplicity we now set kB D 1, i. e., we mea-
sure temperature and energy in the same units. If g differ-
ent configurations have the same energy, then S D ln(g)
is called the entropy, and the probability to observe this
energy is / g exp(�E/T) D exp(�F/T) with the “free en-
ergy” F D E � TS.

In a social application we may think of peer pressure
or herding: If your neighbors drink Pepsi Cola, they in-
fluence you to also drink Pepsi, even though at present
you drink Coca Cola. Thus, let E be the number of near-
est neighbors drinking Pepsi Cola, minus the number of
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Coke-drinking nearest neighbors. The probability for you
to switch then is given by the energy difference and equal
to exp(�2E/T) (or 1 if E < 0) in theMetropolis algorithm,
or 1/(1C exp(2E/T) in the Glauber or Heat Bath algo-
rithm. In both cases there is a tendency to decrease E. In
the limit T D 0 one never makes a change which increases
E, while for small positive T one increases E with a low
but finite probability. In the opposite limit of infinite tem-
perature, the energy becomes unimportant and all possible
configurations become equally probable. Neither zero nor
infinite temperature are usually realistic.

In this sense, decreasing the energy E is the most sim-
ple or most plausible choice, and the temperature mea-
sures the willingness or ability to deviate from this sim-
plest option, e. g. to withstand peer pressure. But temper-
ature also incorporates all those random accidents of life
that influence us but are not part of the social model. For
example, it may happen that there is no Pepsi Cola avail-
able even though all your neighbors drink Pepsi and you
want to follow them. Investors have to make their finan-
cial choices under the influence of their clients, whose life
is shaped by births, marriages, deaths, or other personal
events which are not included explicitly into a financial
market model. These accidents are then simulated by a fi-
nite temperature, entering the probability that one does
not follow the usual rule.

The ability to withstand peer pressure and the ran-
domness of personal lives are in principle two different
things, and if one wants to include them both one needs
two different temperatures T1 and T2 [15], which do not
exist in traditional physics.

Ising Model

In the model published by Ernst Ising in 1925, the vari-
ables Si are not 0 or 1, but˙1:

E D �
X

i;k

Si Sk � B
X

i

Si (2)

and for B D 0 this corresponds to the above Coke ver-
sus Pepsi example. The first summation runs over all
neighbor pairs, the second over all sites. Thus, if site
i considers changing its variable, the energy change is
˙
E D 2(

P
k Sk � B) and enters through exp(�
E/T)

into the probabilities to flip Si; now k runs over the neigh-
bors of i only. (If instead of flipping one Si one wants to
exchange two different variables Si and Sj, moving Si into
site j and Sj into site i, then one has to calculate the energy
changes for both sites i and j in this “Kawasaki” kinetics.)
A computer program and pictures from its application are

given elsewhere in this Encyclopedia � Opinion Dynam-
ics and Sociophysics or in [5].

In physics, the Si are magnetic dipole moments of the
atoms, often called spins, and B is proportional to themag-
netic field. Usually, physicists write an exchange constant
J before the first sum, but we set J D 1 for simplicity here.
The model was invented to describe ferromagnetism, like
in the elements iron, cobalt or nickel. Later it was found
to describe liquid–vapour equilibria and other phase tran-
sitions. We know that iron at room temperature is mag-
netic, and this corresponds to the fact that for 0 < T < Tc
and under zero field B, the majority of its spins point in
one direction (either mostly +1 or mostly �1), while for
T > Tc half of the spins point in one and the other half
in the opposite direction. The magnetization M D

P
i Si ,

often normalized by the number Ld of spins, is therefore
an order parameter. The critical temperature Tc is often
named after Pierre Curie.

In one dimension, we have Tc = 0; in the square lat-
tice in two dimensions we know Tc D 2/ ln(1C

p
2) ex-

actly, while on the simple cubic lattice Tc ' 4:5115 is es-
timated only numerically. Of course, one has generalized
the model to more than nearest neighbors, to more than
two states˙1 for each spin, and to disordered lattices and
networks.

Percolation

Simpler than the Ising model but less useful is percolation
theory, reviewed more thoroughly in this Encyclopedia in
the section edited by M. Sahimi. Each site of a large lattice
is randomly occupied with probability p, empty with prob-
ability 1 � p, and clusters are sets of occupied neighboring
sites. There is one percolation threshold pc such that for
p < pc only finite clusters exist, for p > pc also one in-
finite cluster, and at p D pc several infinite clusters may
co-exist, which are fractal: The number of occupied sites
belonging to the infinite clusters varies at pc as LD where
D is the fractal dimension. Here “infinite” means: span-
ning from one end of the sample of Ld sites to the opposite
end, or: increasing in average number of sites with a posi-
tive power of L. In one dimension, again one has no phase
transition (pc D 1), on the square lattice pc ' 0:5927462
and on the simple cubic lattice pc ' 0:311608 are known
only numerically, with a fractal dimension of 1, 91/48 and
' 2:5 in one to three dimensions.

In the resulting disordered lattices, each site has from
0 to z neighbors, where z is the number of neighbors in
the ordered lattice p D 1. If one neglects the possibility of
cyclic links one finds pc D 1/(z � 1) in this Bethe lattice
or Cayley tree. Near this percolation threshold the critical
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exponents with which several quantities diverge or van-
ish are the same as in the random graphs of Erdös and
Rényi. But this percolation theory was published nearly
two decades earlier, in 1941 by P. Flory, later to become
a chemistry Nobel laureate.

Mean Field Approximations

What is called “mean field” is similar to the “representative
agent” theory in economics, and is widespread in chem-
istry where the changes in the concentrations of various re-
acting compounds are approximated as functions of these
time-dependent concentrations. A particularly simple ex-
ample is Verhulst’s logistic equation dx/dt D ax(1 � x),
known as Bass diffusion in economics. We now explain
why this approximation is unreliable.

Let us return to the above-mentioned Ising model of
Eq. (2) and replace the Sk in that equation by it’s aver-
age hSki D m D M/Ld which is a real number between�1
and +1 instead of being just �1 or +1;m is the normalized
magnetization. Then the total energy E is approximated as
the sum over single energies Ei:

E D
X

i

Ei ; Ei D

 

�
X

k

hSki � B

!

Si D �B0Si

with a mean magnetic field B0 D BC
P

khSki D BC mz
where z again is the number of lattice neighbors. The sys-
tem now behaves as if each spin Si is in an effective field
B0 influenced only by the average magnetizationm and no
longer directly by its neighbors Sk. The two possible orien-
tations of Si have the energies˙B0, giving an average

m D hSi i D tanh(B0/T) D tanh[(BC zm)/T] (3)

and thus a self-consistency equation for m. Expanding the
hyperbolic tangent into a Taylor series for small m and B
we get

B D (1 � z/T)m C m3/3C : : : (4)

which gives a Curie temperature Tc D z, since for T < Tc
themagnetization ism D ˙[3(z/T � 1)]1/2 / (Tc � T)1/2.
Similar approximations for liquid–vapour equilibria lead
to the Van der Waals equation of 1872, which may be
regarded as the first quantitative theory of a complex phe-
nomenon. (m in that case is the difference between the
liquid and the vapour density.) Nowhere in Eqs. (2) and
(3) have we put in that there is a phase transition to ferro-
magnetism; it just arises from the very simple interaction
energy Si Sk between neighboring spins, and similarly the

formation of raindrops emerges from the interaction be-
tween the molecules of water vapour. The water molecule
is the same H2O in the vapour, the liquid or the ice phase.

But this nice approximation contradicts the results
mentioned above. For the chain, square and simple cu-
bic lattice it predicts Tc D z D 2, 4 and 6 while the correct
values are 0, 2.2 and 4.5. Particularly in one dimension it
predicts a phase transition at a positive Tc while no such
transition is possible: Tc D 0. This was the main result of
Ernst Ising’s thesis in 1925. And even in three dimensions,
where the difference in Tc between 4.5 and 6 is less drastic,
the above square-root law for m is wrong, since m varies
for T slightly below Tc roughly as (Tc � T)0:32. Thus, mean
field theory, Van der Waals equation, and similar approx-
imations averaging over many particles are at best quali-
tatively correct. They become exact when each particle in-
teracts equally with all other particles.

Analogously for percolation, Flory’s approximation
of neglecting cyclic links and the Erdös-Rényi random
graphs lead to results corresponding to mean field ap-
proximations and should not be relied upon in one, two
or three dimensions with links between nearest neighbors
only.

For cellular automata a particularly drastic failure of
analogous mean field approximations (differential equa-
tions) was given by Shnerb et al. [16] for a biological prob-
lem. Even simpler, many cellular automata on the square
lattice lead to blinking pairs of next-nearest neighbors: at
even times one site of the pair is 1 and the other is 0, while
at odd times the first is 0 and the second is 1. Averag-
ing over many sites destroys these local correlations which
keep the blinking pair alive.

Applications

A thorough review of “sociophysics” was given recently by
Castellano et al. [17], and a long list of references by Car-
bone et al. [18]. In this Encyclopedia some work by so-
cial scientists is reviewed by Davidsson and Verhagen in
the section on agent-based simulations in sociology, while
Troitzsch in this section reviews both social scientists and
physicists. His book with Gilbert [29] is, of course, more
complete. Thus, we merely sketch here some of the areas
covered in greater detail in the other articles or in the cited
literature.

Elections

A social scientist may be interested in predicting the fate
of one particular party or candidate in one particular elec-
tion, or to explain it after this election. A physicist, accus-
tomed to electrons, hydrogen atoms and water molecules
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Physics andMathematics Applications in Social Science, Figure 1
The vote distribution in several countries and elections is a func-
tion only of the scaled variable vQ/N. From [19]

being the same all over the world may be more interested
to find which universal properties all elections have in
common. Figure 1, kindly provided by Santo Fortunato,
is an example. Let v be the number of votes that a candi-
date obtained,Q the number of candidates in that election,
and N the total number of votes cast. Then the probabil-
ity distribution P(v;Q;N) for the number of votes is ac-
tually a function f (vQ/N) of only one scaled variable, and
that variable vQ/N is the ratio of the actual number v of
votes per candidate to the average number N/Q of votes
per candidate. Various countries and various elections, all
using a proportional election system, gave the same curve
f (vQ/N) which is a parabola on this double-logarithmic
plot and thus corresponds to a log-normal distribution.
In Brazil, however, where the personality of a candidate
plays a major role, with the party affiliation of the candi-
date playing a lesser role, the results were different. These
authors also present amodel to explain the log-normal dis-
tribution [19].

Other models for opinion dynamics are reviewed else-
where in this Encyclopedia � Opinion Dynamics and So-
ciophysics or in [5]. A more cognitive approach for inter-
acting agents is their realization by neural network mod-
els [20,21,22],� Social Cognitive Complexity.

Financial Markets

Agent-based simulation of stock markets [23] are a typical
example of complex systems applications: In these mod-
els not the single agent but their (unconscious) coopera-
tion produces the ups and downs on the stock market, the
bubbles and the crashes. These models deal with the more
or less random fluctuations, not with well founded market

changes due to new inventions or major natural catastro-
phes.

Realmarkets give at each time interval a return rwhich
is the relative change of the price. Typically, an index of the
whole market like Dow Jones changes each trading day by
about one percent. Much larger fluctuations are rarer, and
the probability to have a change larger than r decays for
large r as 1/r3: Fat tails, compared with normal Gaussian
distributions. The sign of the change is barely predictable,
but its absolute value is: Volatility clustering. Thus, in calm
times when jrj was small, tomorrow’s jrj probably is also
small, whereas for turbulent times with high jrj in the past
one should also expect a large jrj tomorrow. The daily
weather behaves similarly: presumably tomorrow will be
like today.

A simple model, going back to Bachelier more than
a century ago, would throw a coin to determine whether
the market tomorrow will go up or down. This simple ran-
dom-walk or diffusionmodel was shown byMandelbrot in
the 1960s not to describe a real market; it lacks fat tails and
volatility clustering but may be good for monthly changes.
Many better agent-based models have been invented dur-
ing the last decade and reproduce these real properties; the
Cont–Bouchaud model is based on the above percolation
theory (see Fig. 2) [24], while the Minority Game is based
on the hypothesis that it is better not to be with the big
crowd [25].

Languages

The versatility of human languages distinguishes us from
the simpler communication systems of other living beings.
With computers or mathematically exact solutions [26]
models have been studied for the learning of a language
by children or for the evolution of human languages out
of simpler forms.

Closer to simulations in biology with the Darwinian
selection of the fittest are the models of competition be-
tween various languages of adult humans: Will the Welsh
language survive against English in Great Britain? Similar
to Lotka–Volterra equations for prey and predator in bi-
ology, some nonlinear differential equations [12] seem to
describe the extinction of the weaker language. Statistics
better than in [12] are available for the size distribution of
languages, where “size” is the number of people speaking
this language, and for the number of languages in one lan-
guage family. Here one model from de Oliveira et al. [28]
found good agreement with reality, see Fig. 3; other mod-
els [27] were less successful, in spite of many simulations
from physicists.
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Physics andMathematics Applications in Social Science, Figure 2
Simulated return distribution in the Cont–Bouchaud percolation model of stock markets [24]. The asymptotic slope to the right is
about� 2.9. We plot the number of simulated events for a given absolute value of the market change (in arbitrary units) versus that
value

Physics andMathematics Applications in Social Science, Figure 3
Simulated size distributions for human languages (full circles,
and line), compared with reality (open circles). From [28]

Future Directions

The future should see more work on what we have shown
here through our three figures: Searching for universal
properties, or the lack of them, in the multitudes of mod-
els and in reality. Biology became a real science when the
various living beings were classified into horses, mammals,
vertebrates etc. Within each such taxonomic set all an-

imals have certain things in common, which animals in
other taxonomic sets do not share. This check for univer-
sality is different from improving our ability to ride horses.
Thus, making money on the stock market, or explaining
the crash of 1987, is nice, but investigating the exponents
of the fat tails, Fig. 2, of all markets may give us more in-
sight into what drives a market and what differences exist
between different markets. Winning one particular elec-
tion and predicting the winner is important, but universal
scaling properties as in Fig. 1 may help us to understand
democracy better. Preventing the extinction of the French
language in Canada is important for the people there, but
explaining the overall statistics of languages in Fig. 3 is rel-
evant globally.

It is in these general aspects where the methods of
mathematics and physics seem to be most fruitful. One
specific problem is better solved by the local people who
know that problem best, not by general simplified models.

We thank G. Weisbuch for comments on this
manuscript.
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Glossary

R Radius of gyration of a polymer chain
N,M Degree of polymerization or number of monomers

in a polymer chain, molecular weight.
� The screening length or correlation length in semi-

dilute polymer solutions; the length over which local
density is dominated by a single chain.

Ne, Me Entanglement degree of polymerization and
molecular weight.

lp Persistence length of polymer chain.
� “Flory” exponent of a polymer chain relating R and N

so that R � N� .
S(k) Scattering structure factor from a polymeric fluid as

function of scattering vector k D 4� sin � / where 
is the wavelength and � the scattering angle of the ex-
periment.

˘ (c) Osmotic pressure of a solution as a function of con-
centration c.

	 ij Components of the stress tensor.
d, D Dimensions of a macromolecular object and its em-

bedding space.
R(n; t) Functional description of a macromolecular con-

tour as functions of monomer number n and time t.
G(t) Time dependent relaxation modulus.
� Viscosity.
kB Boltzmann’s constant.
� Flory interaction parameter betweenmonomers of dif-

ferent chemistry.

Definition of the Subject

Physics is uniquely endowed among the sciences with
complete freedom from restriction to any particular do-

http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-bio.html
http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-bio.html
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main of the physical world. It is able to turn its particu-
lar outlook on the scientific program and its special set of
experimental and theoretical tools to most material phe-
nomena. In particular it is not limited to any particular
length scale, but is sensitive to the emergence of new struc-
tures and processes of any size. So macromolecular sci-
ence, born of the chemistry of the early 20th century, soon
gave rise to a branch of physics that seeks to understand
the special phenomena of polymer molecules and poly-
meric matter. Polymers are giant, usually linear molecules
constructed as covalently-bonded chains of identical units,
or monomers. Individual polymer molecules may contain
hundreds or even millions of monomers. Initially disfa-
vored by an organic chemistry community that prized ex-
actitude, polymers were largely ignored since their molec-
ular weight was inexact within a single sample. How-
ever, biology knew long before we did that the proper-
ties of polymers met the essential requirements of liv-
ing organisms. Polymers constitute nature’s scaffolds from
the macroscopic (bone, collagen) to the microscopic (fil-
amentous actin, polymerized tubulin), her force-genera-
tors (myosin, dynein and kinesin protein polymers) her
information-processing networks (peptide-binding pro-
teins, polysaccharides) and her instruction sets (the nu-
cleic acid family of polymers including DNA). Much of the
reason for this lies in the unique set of physical properties
of polymeric matter. Some of these have now familiar ap-
plication in plastic materials from packaging to high-per-
formance fiber and even addressable polymeric electron-
ics. Yet polymer physics is much more than the applica-
tion of statistical mechanics and spectroscopy to a class of
molecular matter; it has taught our discipline about some
of its own deep structural connections. Path-integral tech-
niques at the heart of theoretical polymer physics were
adopted from readily developed tools in quantum field
theory and magnetism. Flexible linear-like objects occur
in many other avenues of the subject, superconductivity
and plasma turbulence to name two. Above all polymer
physics has provided us with a classic example of emergent
simplicity from bewildering complexity, so beloved of our
subject. It shows every indication of providing in future an
essential Ariadne’s thread to guide us in our exploration of
complexity itself.

Introduction

The fascinating physics of flexible polymers flows from
both necessity and beauty. Born of the early investiga-
tions into the phenomenon of the elasticity of natural rub-
ber [1,2], then out of the rapid growth in synthetic poly-
mer materials in the post-war years, the need to under-

stand and control the processing of such highly viscoelas-
tic liquids as polymer melts, and to understand the prop-
erties of the resulting materials led rapidly to fundamen-
tal investigations led by physicists who saw an opportu-
nity to explore the fundamental structures of a new class
of matter. Flory [3], Zimm and Stockmayer [4] and Ed-
wards [5] asked how large would macromolecules, linear
or branched, be, while Zimm [6] and Rouse [7] asked how
such giant molecules would move. Paralleling develop-
ments in solid-statemany-body physics, the focus of inves-
tigations moved from single-chain tomany-chain systems,
which we review below in Sects. “Single Polymer Chain
Physics” and “Equilibrium Properties of Many-Chain Flu-
ids”. These pioneers were already using a beautiful notion
that was to take hold of condensed-matter physics in the
mid 20th century – that of universality, or the indepen-
dence of physical phenomena from local, small-scale de-
tails. The emergence of universal properties is usually as-
sociated with “critical phenomena” [8], since near phase
transitions, the spatial scale of correlated fluctuations may
hugely exceed molecular dimensions. Any properties that
depend on these fluctuations (an example would be com-
pressibility of a fluid near its critical point, and especially
the exponent with which it vanishes as the temperature
tends to its critical value) will then be insensitive to molec-
ular detail. In field theories of both condensed and high-
energy matter, the field-fluctuations “renormalize” micro-
scopic constants into new emergent numbers on which
the physics at coarser length scales (or lower energies)
may be built (a famous example is the charge of the elec-
tron). Although there is at first glance no apparent neigh-
boring critical point in the case of polymeric fluids, both
universality in exponents and renormalized quantities ap-
pear in abundance.Moreover, there is a natural large num-
ber associated with mesoscopic, rather than microscopic
lengthscales. The defining feature of a polymer is, after
all, its large “degree of polymerization”, N, the number of
monomers linked together covalently to form the polymer
chain. (The literature discusses interchangeablyN and the
molecular weight M of the chains, given in terms of the
monomer molecular weight m0 by M D Nm0). At the
most basic level of inquiry into polymer structure, experi-
ments and simulations asking how the average end-to-end
distance R of a polymer molecule in solution depends on
its degree of polymerization N, began to suggest a univer-
sal scaling behavior

R � N� (1)

with an exponent �, dependent only on the embedding di-
mension d and first calculated by Edwards to be � D d

dC2 .
It assumes a rather larger value in solution (' 0:59) than
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the simple random walk value of 0.5 [9], due to the self-
exclusion of the monomers. More phenomena reminis-
cent of other areas of condensed matter appeared at the
level of many-body effects. In the dense limit of polymer
melts and concentrated solutions, where chains are highly
overlapped (and in embedding dimensions greater than 4,
the “upper critical dimension” of the self-exclusion prob-
lem), the exponent � reassumes the value of 1/2 of the ideal
Gaussian random walk (“Gaussian” because the ensemble
of spatial end-to end vectors of the polymer chains is nor-
mally distributed). Closer inspection revealed this to be
true above a “screening length”, introduced into polymer
physics by Edwards [10]. The screening length � itself may
be directly measured by neutron scattering, and depends
on concentration via another universal scaling exponent,
related to � [11]

� � c
��
3��1 : (2)

The picture we have build up of a many-chain polymer
solution so far is summarized in Fig. 1, where atomic de-
tail at the monomer level is far below the resolution of the
diagram. As the polymer concentration increases, so the
screening length or “mesh size” decreases. A typical strand
of chain, whose end-to-end distance is � , dominates the
monomer concentration within the volume it spans.

Both experimental and theoretical evidence of univer-
sality continued to build up. Even in the case of dynam-
ics, the many-chain system of a polymer melt followed the
ideal, local-dissipation theory of Rouse [7] for sufficiently
low molecular weight chains (see below Sect. “Dynamics
of Polymeric Fluids”) that assumed ideal Gaussian chains.
It became clear that Rouse’s result can be seen as a fixed

Polymer Physics, Figure 1
Schematic picture of universal structures of screening (overlap)
length � and the number of monomers g that just spans �

“point” of all theories of polymer dynamics in which linear
connected objects are ideal and are subject to local dissipa-
tion (in dilute solution, far-field hydrodynamics destroys
this locality [6]). For example, lattice models of polymer
dynamics with local update rules renormalize to the con-
tinuum Rouse theory at large enough length scales [12].

It seemed as though the huge connectivity of macro-
molecules acts to freeze-in long-range order, even though
there is no true thermodynamic transition nearby. Such
suspicions were confirmed by the demonstration of di-
rect isomorphisms of the calculation of statistical me-
chanical partition functions of polymers, both dilute and
concentrated, onto idealized spin-lattice models of mag-
netism [9]. It is indeed the high molecular connectivity,
as the inverse of the degree of polymerization, N�1, that
plays the part of proximity to the distance from a critical
point in the spin model

N�1 � " �
T � Tc
Tc

: (3)

So by exhibiting physics in which an ensemble of
macromolecules of polystyrene (PS) exhibits the same
emergent behavior as polyisoprene (PI) or polybutadiene
(PB), following scaling laws, and tractable by application
of statistical mechanical field theories [8], polymer physics
drew together many of the strongest conceptual strands of
the century.

More, however, has proved to be true in the realm of
topological effects. The polymer melts of industrial poly-
mer processing are very highly overlapped on the molec-
ular level, where it becomes immediately apparent that
molecular relaxation processes controlling elastic stress
are prolonged to very long times indeed. All the impor-
tant phenomenology is covered in Ferry’s seminal sur-
vey of polymer viscoelasticity [13]. Mechanical experi-
ments restricted to a range of intermediate timescales of
the plateau are hardly able to distinguish between the
polymer melt and a rubber, in which the chains are per-
manently cross-linked to each other at very rare points,
sufficiently for each chain to be permanently immobi-
lized from large-scale diffusion. Conceptually, the absent
“cross-links” were replaced in the minds of engineers and
physicists alike by “entanglements” [13]. These loosely-de-
fined objects were assumed to represent the topological
constraint that covalently-bonded molecular chains may
not pass through each other. The effective distance be-
tween these objects could be calculated, employing rub-
ber elasticity theory (see below), to deduce the degree of
polymerization between entanglements Ne, or the equiv-
alent “entanglement molecular weight”, Me. The number
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Ne consistently turned out to be of order 102, indicating
a length-scale for an “entanglement spacing” of 50–100Å,
depending on the particular chemistry. This is highly sig-
nificant for us, because it shows that small chains on the
threshold of feeling topological interactions are real poly-
mers, already long enough to show to a good approxi-
mation all the universal properties of statistical connected
chains. It also suggests that the role of topology in highly-
entangled (N 	 Ne) polymer fluids has the potential to
be treated universally. Further evidence of universality in
entanglements came from experiments in which the poly-
mers were diluted to a volume fraction �p by a compat-
ible solvent, indicating that Me � �

�˛
p where the scaling

exponent ˛ ' 1 [11]. The dependence of melt viscosity �
(at fixed temperature) on molecular weight also exhibits
remarkable universality over very many different polymer
chemistries [13] closely matched by � � M3:4, providing
that the molecular weight lay well above the entangle-
ment thresholdMe suggested by their high-frequency elas-
tic modulus. We review this rapidly-progressing area in
Sect. “Dynamics of Polymeric Fluids”.

New phenomena arise when different chemistries of
monomer are introduced into the same chain. Effective
repulsive interactions between heterogeneous monomers
create a tendency for strong spatial correlations of chem-
ical type. In blends of more than one type of homoge-
neous polymer, the result is often a demixing transition
with near-universal structure and dynamics [17]. When
the chemical species are combined into the same chain in
regular “blocks” of controlled molecular weight, demixing
occurs on the scale of the chains themselves, giving an ex-
tremely rich variety of spatially-periodic nanoscopic struc-
tures, self-assembled micellar structures, and controlled
collapsed forms. Both chain composition and tempera-
ture act as control parameters of a structural space that
becomes increasingly biomimetic as the information con-
tent of the macromolecular sequence increases. Experi-
ment and theory are reviewed in Sect. “Multi-Phase Poly-
meric Fluids”.

Single Polymer Chain Physics

It should not be surprising that the notion of complexity
should arise even in the context of the “single particle” do-
main of polymer physics: that of a single molecule. For al-
ready a macromolecule contains many degrees of freedom
that are coupled in non-linear ways. Not only this, but also
at the single-chain level emergent co-operative properties
arise. We briefly survey three important cases of single-
chain physics: the non-interacting chain, the effect of ex-
cluded volume and the role of charge.

Ideal Non-interacting Chains

The first and most fundamental of these underlies the
physics of rubber elasticity: it is the emergence of an en-
tropic Hookean spring for macrostates of a single poly-
mer chain in thermal equilibrium defined in terms of its
end-to-end vector R. We recap briefly here the statistical
physics of a polymer chain, modeled as a random walk in
space and subject to some local rule for spatial links. An
example is the freely jointed chain, in which the orien-
tations of a set of linked rods are uncorrelated. The step
length of the chain corresponds to the Kuhn length, b, of
the polymer (the shortest independently oriented segment
length). It is not as small as a monomer length, but usually
4 or 5 monomers long.

For polymer statistics suppose a whole walk has N
links. Let the end to end displacement of an individ-
ual chain be R(N). From the theory of random walks:
hR2(N)i D Nb2 and the probability density for the end to
end vector G(R) must have Gaussian form (from the law
of large numbers, since each vector step is an independent
random variable whose sum is R(N)). So

G(R;N) D
�

3
2�Nb2

�3/2
e�3R

2/2Nb2 : (4)

The macrostate of an ensemble of such chains is de-
fined by the chain end-to-end vector R. The microstates
are the different specific paths through space that have R
as their end-to-end displacement. Each individual path,
or microstate of the chain, will be specified if the spa-
tial position of each link is known. We will use the no-
tation R(n) for the position of the nth link. The full time-
dependence of the chain would then be described by the
function R(n; t), extended to the two dependent variables
of contour position n and time t. The role of Brownian
motion can be cast in the form of Langevin equations
for R(n; t) (see Rouse model, Sect. “Dynamics of Poly-
meric Fluids”), but here we exploit it as a generator of
ergodic exploration of all chain configurations in the en-
semble. The number of configurations with fixed end to
end vector R is just the corresponding fraction of total
microstates ˝(R) D ˝TOTP(R). Since the entropy of the
walk S D kB ln˝(R) we have S(R) D const. � 3kBR2

2Nb2 . The
conformational free energy of the chain F(R) D U � TS
has U D 0 since there are no sources of internal energy.
This yields for the free energy of a chain of fixed end-to end
vector F(R) D 3kBTR2

2Nb2 . Finally we may derive the thermo-
dynamic force (or “Brownian tension”) on the chain end-
to-end vector as

f D �rF(R) D �
3kBT
Nb2

R (5)
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and recognize a linear elastic spring law. I. e., a random
walking polymer at finite T is a Hookean spring with
spring constant/ T/N .

The analogies between the statistical mechanics of ran-
dom walks and the quantum mechanics of spinless parti-
cles also emerges from this analysis. Applying Eq. (4) to
small subchains of path length 
N allows the (careful)
taking of a limit so that

G(R; 
N) D
�

3
2�
Nb2

�3/2
e�

3
2b2



@R
@N

�2
�N

:

The notation G for the probability distribution is sugges-
tive: this descriptor of the chain has the structure of a prop-
agator. The complete end-to-end propagation of (4) can be
written as the sum over all possible intermediate positions
of the meeting points of all smaller subchains, which in
turn is just an example of a Feynman path integral over all
possible paths of the polymer contour R(n)

G(R;N) D
Z R(N)DR

R(0)D0
e�

3
2b2

R N
0



@R
@N

�2
dNÐ

�
R(n)

�
: (6)

The propagator structure arises because the properties of
the chain at equilibrium is governed by its partition func-
tion, which in turn is a sum over microstates that are in
this case just the possible paths of the chain. An analogous
integral arises in Feynman’s form of quantum mechanics
because the sum over all trajectories that gives the (com-
plex) amplitude for particle propagation is just the same
geometrical set of paths. The difference is that in poly-
mer statistical mechanics the phase angle attributed to the
path is imaginary, giving a real argument of the exponen-
tial in the path integral. A rich set of techniques flow nat-
urally from this analogy: since the propagator also obeys
Schrödinger’s equation, the equilibrium configuration of
ideal chains in confined geometries and external potentials
can be solved by any technique developed for the quantum
mechanical case [9].

Experiments on single chains have until recently been
indirect ensemble measurements. However, neutron-scat-
tering can give averaged single chain properties because
of the very different scattering lengths of hydrogen and
deuterium nuclei. It is relatively straightforward to replace
chemically some or all of the hydrogen atoms in a frac-
tion of the chains in a polymeric fluid. When the chains
themselves are monodisperse, the small-angle scattering
pattern is identical to that of the population of labeled
chains. Figure 2 shows an example of scattering from a 7%
labeled fraction of polystyrene chains with a narrow dis-
tribution of molecular weight. Early experiments of this
type showed the remarkable result illustrated here that the

Polymer Physics, Figure 2
Small angle neutron scattering (SANS) data averaged over an-
gles for a monodisperse polystyrene melt. The theoretical curve
is that calculated from a Gaussian propagator

single chains in a densely packed melt actually assume
an ideal (effectively non-self-interacting) set of configu-
rations described by the Gaussian propagator of Eq. (4)
(see Sect. “Equilibrium Properties of Many-Chain Fluids”
below). Much more recently the advent of recombinant
DNA, fluorescent labeling and video confocal microscopy
has begun to make direct inspection of individual polymer
molecules possible in restricted circumstances. Even very
high molecular weight DNA has a random-walk molecu-
lar dimension (bN1/2) below the resolution limit of optics,
but if the chain is stretched out much larger dimensions
are accessible approaching bN, so that some of the predic-
tions of single-chain elasticity can be explored.

Figure 3 shows one famous example that actually illus-
trates chain response as the maximum elongation is ap-
proached. In this limit the Gaussian approximation breaks
down badly and a divergence of force with extension is
measured. The form of the divergence is, unlike the lin-
ear entropy-dominated range of elasticity, not universal
among local polymer chemistries, but depends on the form
of the local structure and its response to tension. Another
analogy with high-energy physics arises here: strong ap-
plied forces measure structure at smaller length scales.
This is powerfully illustrated by the high-force asymp-
tote of two models of flexible polymers, the Freely Jointed
Chain (FJC) and the Worm–Like Chain (WLC). The first
models the local structure of a chain asN freely-hinged
but infinitely stiff rods each of length b. Such a chain has
a maximum extension of its own contour length L0 D Nb,
but at low forces responds with the linear behavior of the
Gaussian chain so that the force f with extension L follows
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Polymer Physics, Figure 3
Images of a 64� long DNA molecule held in place at one end
by optical tweezers and stretched out by hydrodynamic flow of
increasing velocity from left to right. Reprinted with permission
from [19]

f � kBT(L/Nb2). The force diverges as L! L0 with the
asymptotic form f (L) � (1 � L/L0)�1. The WLC intro-
duces a finite bending rigidity everywhere along the chain
so that the internal energy of a configuration R(n) can be
written

E D kBTlp
Z N

nD0

�
@2R(n)
@n2

�2

dn (7)

with the constraint that
ˇ
ˇ@R(n)
@n

ˇ
ˇ D 1. The stiffness is writ-

ten as kBTlp in terms of the “persistence length” lp because
at equilibrium the chain is locally stiff at smaller length-
scales and flexible over longer lengths. This statement can
be made exact by considering the correlation function of
the orientation of the chain:
�
@R(n1)
@n

@R(n2)
@n

	
D e�jn1�n2j/lp :

Although this model also shares the Gaussian linear re-
sponse of the FJC, it possesses quite different asymptotics
at high force [20], following f (L) � (1 � L/L0)�1/2. The
calculation takes the response under the force of all har-
monic normal modes of the Hamiltonian (7), the more
gentle divergence arising from the successive suppression
of contortions of the chain at smaller and smaller wave-
length as the force increases.

Self-Interacting Chains: Excluded Volume

As pointed out in the introduction, real polymer chains
in solution are not typically Gaussian. The reason is that
the path integral of (6) overcounts the allowable config-
urations of the chains, including those that cross them-
selves. The modification to the Hamiltonian that achieves
the monomeric self-exclusion with maximum simplicity
and generality is the “Edwards Hamiltonian” [21]

G(R;N)

D

R(N)DRZ

R(0)D0

e
� 3

2b2

NR

0



@R
@N

�2
dN�w

NR

0

NR

0
ı[R(n)�R(n0)]dndn0

Ð
�
R(n)

�
:

Although formally the delta-function potential removes
only a volume of phase space of zero measure from the
path integral, its anticipated use within field-theoretic
tools for the solution of the model mean that it repre-
sents a renormalized local repulsion between monomers
of the chain at the level of this universal coarse-grained
theory. From this starting point one can proceed by sev-
eral methods: [21] self-consistent field treatment of the
excluded volume term, mapping onto problems in criti-
cal phenomena [23], direct renormalization-group calcu-
lation [24] and Monte Carlo numerical enumeration [22].
For a comprehensive and technical review see [25]. The
essential structure within the self-consistent field meth-
ods is the same as that of an early calculation by Flory [3]
who balanced the scaling forms of the free-energy contri-
butions from chain elasticity (R2/N) and excluded volume
(N2/Rd ) in d-dimensional space andminimized to give the
dependence of the scaling exponent for chain size � as

� D
d

d C 2
: (8)

This is fortuitously accurate in all dimensions from d D 1
(where it is exact) to d D 4, which it correctly identifies
as the upper critical dimension of the problem since the
Gaussian exponent of � D 1/2 is recovered here. However,
the method is unreliable for the calculation of other quan-
tities because in dimensions less than four the excluded
volume term is not perturbative for any strength of the pa-
rameter w in the large-N limit. This really forces a renor-
malization approach to the problem, already achieved in
the case of spin interactions in magnets at the ferromag-
netic critical point. A formal and beautiful exact mapping
first pointed out by de Gennes exits between the excluded
volume chain and an analytic continuation of the Heisen-
berg model in which the number of spin components goes
to zero [23]. The analogy arises because the calculation of
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the correlation function between the magnetic spins on
any two sites of the lattice in themagnetmodel can bewrit-
ten as a weighted sum over all non-intersecting paths that
connect the two sites within the lattice. So formally

˝
Si S j

˛
D
X

N

˝(N)e��N ; (9)

where˝(N) counts the number of self-excluding walks of
length N connecting the sites and " measures the dimen-
sionless temperature difference from the ferromagnetic
critical point as in Eq. (3). The analogy led directly to the
first calculated values for the Flory Exponent � using dia-
grammatic expansion methods developed originally from
Feynman’s perturbation tools for quantum electrodynam-
ics. In three dimensions the problem is non-perturbative –
the exponent departs from the mean-field value for all val-
ues of the excluded volume parameter w no matter how
small, providing that the chains are long enough. The cal-
culation of � requires first taking the problem in 4 dimen-
sions, where it becomes perturbative, then taking a dou-
ble expansion in w and in the analytic continuation of di-
mension below 4. For short enough segments on the other
hand, the chains do not depart strongly from ideal be-
havior. There is a characteristic length scale at which the
energy of self-exclusion equals the thermal energy kT be-
low which statistics are near-ideal and beyond which the
chains are swollen. Subchains of this intermediate length-
scale are known as “thermal blobs”. In d D 3 the value
of � ' 0:588, in close agreement with the value predicted
(fortuitously) by (8).

The behavior of chains under an attractive 2-body in-
teraction constitutes an emergent phenomenon that mir-
rors that under repulsion discussed above. The experi-
mental case is that of a “poor solvent” where monomers
of the polymer now enjoy a favorable interaction. Now
the chains are densely packed for high enough molecular
weights so that � D 1/d above the thermal blob size. In
the limit of infinite molecular weight the transition from
a swollen to collapsed chain becomes thermodynamic.
This is possible to realize experimentally in some cases
by simply controlling the solvent quality though control
of temperature. There exists in these cases a critical point
known as the “theta temperature” at which the effective 2-
bodymonomer-monomer interactions from excluded vol-
ume and solvent-induced attraction exactly cancel, leaving
only 3-body and higher terms. The “coil-collapse” transi-
tion is not sharp (only becoming so in the thermodynamic
limit of infinitely long chains).

The collapsed and swollen chain configurations of real
chains leave their traces on the emergent elastic properties
of single chains that we examined above in the ideal case.

For example, now the effective Hookean spring force-dis-
tance relation f (R) is modified to f � R

�
1�� in general.

The Role of Electrostatic Charge

A recently very active area in polymer physics that has
produced a number of surprises is the form of emer-
gent behavior arising from the combination of electro-
static charge, polymeric connectivity and counter-charges
in solution. This is the case of “polyelectrolytes” – poly-
mers containing charged monomers. Complex emergent
behavior is perhaps unsurprising since all three have the
propensity to generate long-ranged interactions that are
candidates for generators of qualitatively different physics
from the local interactions examined in the last section.

The static configurations of a polyelectrolyte are rad-
ically different from those of a neutral flexible chain in
solution. Constructing a mean-field “Flory” type theory
for a chain containing a fraction f of monomers carrying
charge e that, balancing electrostatic energy with configu-
rational entropy yields the result [26]

R ' Nb f 2/3
�
lB
b

�1/2
(10)

showing that at this level the chains will be completely
stretched at the scaling level. This result contains one of
the several new lengthscales that appear in complex fluid
electrostatics, the Bjerrum length

lB � e2/ ("kT) :

This is the distance between charges at which the electro-
static and thermal energies are comparable.

Charged configurations of this extreme kind are
not realized globally, since counter-ions are universally
present to ensure overall neutrality. Their presence in so-
lution screens the “bare” long range electrostatic repulsion
beyond the “Debye screening length”

lD �
�
"kT
n0e2

�1/2
:

This is not the length-scale on which the charged chains
adopt random-walk configurations, however, since there
is typically a strong repulsion (many kT) between chain
segments adjacent by lD, providing the charge fraction is
great enough. The emergent persistence length is another
new scale

lp D lD
�
lD lB
b2

�
f 2 :
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A different set of structures arises if the energy com-
petition is between electrostatic repulsion and chain-col-
lapse in a poor solvent. Without electrostatics the chain
will collapse into a compact globular form with � D 1/d
to minimize the total contact between monomers and sol-
vent, restricting it to the surface of the globule. The sur-
face energy rises as �R2, but is eventually overcome by
the electrostatic self-repulsion from the globule’s charge,
which rises (in three dimensions) as N2 f 2e2/R � R5. This
instability was identified as a cause of droplet breakup in
simple fluids by Lord Rayleigh. The free-energy minimum
is achieved in the polymeric case by a configuration resem-
bling a string of pearls, in which the polyelectolyte breaks
up into small globules that closely balance the surface and
electrostatic energies, connected by stretched strands of
chain. It is a rare example of heterogeneous configura-
tions minimizing the free energy at the level of a single
chain [27].

The combination of persistent, or rod-like configura-
tions and counter-charges leads to other remarkable prop-
erties of charged polymers. The entropy of confinement
of counter ions within a cylindrical region around an ex-
tended polymer of radius R decreases as kT log R per ion.
In this geometry this has the same functional form as
the electrostatic attraction (providing that R is less than
the screening length), which depends on the charge per
unit length of the polymer � as (�e/") log R. Providing
(�e/") > kT , most of the counter-ions in solution balanc-
ing the charge on the polymer will be closely-bound to it,
the phenomenon of “Manning condensation” [28].

The charge clouds condensed in the vicinity of neigh-
boring polymers sustain thermal fluctuations that corre-
late via the long-range electrostatic interaction in an anal-
ogous way to the electronic origin of the Van der Waals
interaction. Providing the fluctuations are large enough
(these are enhanced by ions of high valency), then the
fluctuation-induced attraction between the counter-ion
clouds may actually overcome the electrostatic repulsion
of the bare polyelectrolyte charge. For polymers in solu-
tion like charges may indeed attract! This effect is respon-
sible for the attraction and bundling of polymers of DNA,
which carries a strong negative charge [29].

EquilibriumProperties of Many-Chain Fluids

We have seen that the thermodynamic properties of sin-
gle polymer chains exhibit both richness and a high degree
of universality. Both aspects of the emergent properties of
polymer physics extend to many-chain systems in which
the molecular chains become strongly overlapped. When
this happens the quality of the solvent (controlled with

temperature) that for single chains gave rise to the coil-
collapse transition, swollen statistics and the pseudo-ideal
theta temperature, now control co-operative phenomena
such as the emergence of an osmotic pressure, and phase
separation.

Semi-dilute Solutions

The existence of the coil-size itself R � N� sets a new con-
centration regime, termed “semi-dilute”, that only exists
in the case of polymeric fluids. We have already encoun-
tered it, and its key attributes, in the introductory discus-
sion of Fig. 1. The semi-dilute concentration range cov-
ers those cases where the chains themselves are strongly
overlapped but where the volume fraction taken up by
monomer rather than solvent molecules is still small. The
structure of the solution when the polymer-solvent inter-
action is favorable is entirely dominated in this regime by
the new lengthscale of the screening length � . The physics
of this lengthscale is readily detected in two ways: by direct
structural probes such as neutron scattering, and by the so-
lution property of osmotic pressure. If scattering contrast
exists between monomer and solvent then the scattering
intensity and scattering wavevector kmeasures the fluctu-
ations in monomer concentration within volumes of fluid
of size k�1. For large lengthscales k 
 ��1, there are no
correlations between one element bounded by a screening
length and its neighbors: the identity of a single chain is
lost at these scales where it is highly overlapped with oth-
ers. At the other limit, all scattering for k	 ��1 is gov-
erned by correlations along single chain segments within
such correlation volumes, and the scattering is identical to
that from a single chain. Since chains have a spatial scal-
ing structure whether in theta or good solvents, power-law
behavior is induced in the scattering as well. The physics
is captured by a generalization of the Ornstein–Zernicke
scattering function:

S(k) '
S(0)

1C (k�)1/�
(11)

illustrated in the figure [30]. The exponent � is the same
as that determining coil size for single chains discussed in
the previous section.

The osmotic pressure as a function of monomer con-
centration ˘ (c) of a semi-dilute polymer solution is also
connected with the structure of closely-packed correlation
volumes that emerges from the screening-length picture.
This is because˘ measures the change of free energy with
concentration, itself dominated by the balance of chain en-
tropy and chain contact-energy. Since all sub-chain con-



6818 P Polymer Physics

figurations within each correlation volume �3 are sampled
ergodically, but all correlations at greater lengthscales lost,
the consequence is that the free-energy density carries the
structure of kT/�3, or one thermal degree of freedom per
correlation volume. Since the concentration of the cor-
relation length is calculable in terms, once more, of the
Flory exponent �, from Eq. (2), the concentration depen-
dence of the osmotic pressure follows ˘ (c) � c3�/(3��1)

in the semi-dilute regime. The same result can be arrived
at by anticipating a scaling structure that crosses-over to
the correct ideal-gas form under truly dilute conditions,
writing

˘ (c) D
kT
b3

c
N

f

 c
c�
�
: (12)

Here f (x) is a scaling function that tends to unity for small
argument, and to a power law f (x) � xz for largest. The
concentration c� is the overlap threshold separating di-
lute and semidilute regimes, where individual coils just
begin to overlap. Insisting that for c	 c� the osmotic
pressure should not depend on chain length N (this is
equivalent to the loss of correlations beyond �) fixes the
power z D 1

3��1 and the result ˘ (c) � c3�/(3��1) is re-
covered. Experiments at different molecular weights and
chemistries in good solvents collapse well onto the scaling
form of (12) [31]. A formal route to the calculation of the
solution properties of correlation, free energy and osmotic
pressure was discovered by Des Cloiseaux as a generaliza-
tion of the magnetic spin-analogy of de Gennes. A dia-
grammatic expansion of n-body chain interactions is per-
formed for the zero-spin limit of the model, but this time
in the presence of an external field. This acts as a fugacity
for chains, and creates a system where renormalization-
group methods may be used, again in expansion around 4
spatial dimensions, to calculate exponents such as z [25].

Complex Topology Polymers and Gelation The emer-
gent properties of polymers in solution, it should be clear
by now, arise from the connectivity of chains, either on
its own, or in the presence of other physical interactions
such as excluded volume or electrostatics. It is also the es-
sentially topological properties of connectivity that endow
polymer physics with its universality. It is therefore of in-
terest to explore the consequences of altering the chain
topology in more complex ways. One very practical way
of doing this is to introduce cross-links chemically into
a polymer solution (industrially this is the route to prepa-
ration of rubbers). In the limit of high cross-link den-
sity the result is a system of chains that have a significant
number of their degrees of freedom “quenched” (chemi-
cally connected monomers on different chains are perpet-

ually forced into proximity). That the resulting physical
object is a solid when the original system was fluid is by no
means an obvious result, and emerges only delicately from
the treatment of the statistical mechanics of quenched dis-
order. Historically, methods originally developed to treat
the model systems of “spin-glasses” were the first to treat
the cross-linked polymeric fluid from this point of view,
among them the “replica method” of Edwards [33]. Here
the formal free energy of the rubber as an average over the
logarithms of quenched partition functions with different
configurations of cross-links fNxg:

F(N;Nx ; �) D kT hln Z (N; fNxg ; �)ifNxg

is treated using the formal limit log Z D limn!0



Zn�1
n

�
.

This amounts to the statistical mechanics of an un-
quenched ensemble of replicas of the original network,
but in the limit (analytically-continued) of the number
of replicas tending to zero. The liquid-solid transition
emerges as the physical consequence of a mathematical
symmetry-breaking between the replicas in the evaluation
of the free energy, and a shear-modulus grows as the third
power of the difference between the cross-link density and
a critical value for the onset of the solid [34].

Although the formal treatment of rubber elasticity is
very subtle, there are good approximations that have gen-
erated a sequence of semi-empirical models capable of
capturing not only stress generation in cross-linked rub-
bers, but also the temporary stress generated in entangled
polymeric fluids (see below). These begin with identifying
a length-scale at which the deformation � is imposed on
chain segments affinely, and below which the chains are
assumed to be able to explore all microstates. Applying
the result for the effective elasticity of the chain segments
(5) above yields an expression for the bulk stress tensor in
terms of the average configuration of the subchains:

�i j D
3kBT
b2

C

�
@Ri

@n
@Rj

@n

	
: (13)

These results obtain for the case in which the cross-
links are suddenly imposed upon an equilibrium semi-di-
lute or concentrated polymer solution. If they are intro-
duced gradually a richer structure arises in which chains
of increasingly branched nature are created well before the
critical liquid-solid transition. If this process is imposed
mathematically on an ensemble of ideal chains, an ensem-
ble of very compact branched polymers results with a Flory
exponent of � D 1/4. From the definition of �, (1), we see
that its inverse 1/� � D plays the role of a dimension.
Ideal linear chains are in this sense two-dimensional ob-
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jects, but ideal branched polymers are four-dimensional!
This does not present a necessary difficulty at fixed spa-
tial scales, since the individual molecules of finite molec-
ular weight are very sparse, but at high enough molecular
weight there will not be sufficient space in three embed-
ding dimensions to contain such objects without overlap.
Thismust occur in successive cross-linking, because calcu-
lations of the distribution of molecular weights that result
from random insertion of cross-links (this may be done
elegantly by the use of generating functions [9]) gives a re-
sult of the form

P(M) D M�� f (M/Mx) ; (14)

where � is a “Fisher exponent” and f (x) a cut-off function
that limits the distribution function to a highest molecular
weight of Mx. This upper molecular weight itself diverges
as another scaling function of the difference in cross-link
density from the critical value Mx � jp � pcj�1/
 . This
class of critical phenomena generated by topological con-
nectivity is called “percolation” and generates beautiful
physical effects in polymers. Like other critical phenom-
ena associated with thermodynamic phase transitions it
possesses universality classes in which the values of the
exponents are independent of the geometry of local in-
teractions. We can see that the mean-field (ideal) value
of D D 4 (and � D 5/2) is not sustainable in 3-dimen-
sional space: the branched polymers must swell by ex-
cluded volume so that they do not overlap strongly with
themselves (or with subclusters of larger molecules) [35].
Applying this requirement on the non-overlap of clusters
of all molecular weights generates a relationship between
the exponents � , D and the embedding dimension d called
the hyperscaling relation:

d
D
D � � 1 : (15)

This holds for a wide range of “bare” fractal dimensions D
since the excluded volume drives systems to marginal
overlap at all length scales stably: if the overlap reduces
for larger chains then they suffer less excluded volume
and swell less, consequently increasing overlap once more.
The values for percolation in 3-dimensional space are
D Š 2:53 and � Š 2:18. Should the overlap increase then
the consequent increased self-repulsion increases swelling
with the opposite effect. The structure implied by (15) is
self-similar on a grand scale: not only are the individual
molecules self-similar, but the ensemble also satisfies self-
similarity at all length-scales in the marginal overlap of
clusters of all sizes. There is no correlation length and the
scattering function is a power law.

Dynamics of Polymeric Fluids

Complex, emergent phenomena extend from static struc-
ture of polymeric fluids into their rich dynamic proper-
ties. This is especially true of the semi-dilute and con-
centrated cases when interactions between distinct chains
are very strong and the conformational dynamics highly
coupled. But even in the case of dilute or effectively un-
coupled dynamics the scaling structures we saw in equi-
librium pattern the behavior out of equilibrium. The ex-
perimental tools deployed also mirror those used for stat-
ics: direct structural probes of light or neutron scattering
possess dynamic counterparts in photon correlation spec-
troscopy [36] and neutron spin-echo [37]. Specific aver-
ages over bond correlation dynamics are available from di-
electric spectroscopy [39] or NMR relaxation [38]. Emer-
gent effects at the level of the fluid aremost striking in their
rheology [40]. At the level of linear response, the rubber-
elastic stress generated by small deformations decays with
a function G(t) characteristic of the molecular structures
present: the phenomenon of viscoelasticity. In strongly
non-linear flows other effects appear, such as the effec-
tive decrease in viscosity with shear rate, complex tran-
sient behavior in stress response and the generation of rich
stress-fields and non-inertial elastic instabilities in non-
trivial flows.We first review briefly the dynamic properties
of single polymer chains before treating more extensively
the complex dynamics of entangled systems.

Single Chain Dynamics

In the simplest fundamental model of polymer dynam-
ics, due to Rouse, we make three key simplifying assump-
tions [7]. Their physical validity depends on the effective-
ness of screening [10] of both static and hydrodynamic
quantities in a melt. In the case of concentrated solutions,
screening will not be operative at lengthscales below the
mesh size � , but will hold at larger scales. But these contain
the lengthscales of entanglement effects, so in the solution
case also, coarse-grained local dynamics are expected to
follow the Rousemodel locally. Even in concentrated poly-
meric fluids the dynamics of chains (and subchains) below
a characteristic molecular weight are not strongly coupled
to the presence of other chains. The central assumptions
are:

� Gaussian Chains: in which the force on a subchain seg-
ment n is the net entropic force from its neighbors. In
the continuum representation we have adopted, this is
equivalent to a thermodynamic force at each point of
the chain of � @

@n



� @R
@n

�
D �� @

2R
@n2 with � D

3kBT
b2 .
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� Local drag: the drag force on a subchain segment comes
from frictional drag against background without long-
range hydrodynamic effects of backflow (this works
in melts where all long-range mediated backflows are
screened). This force is � @R

@t with � a drag coefficient
per segment.

� Brownian motion: a random force f (n; t) acts on each
subchain with correlation times much faster than any
polymer dynamics to be modeled by the theory.

The monomeric drag constant �0 will parametrize
all our theoretical models, setting the timescale for both
Rouse and, subsequently, entangled, motion. The balance
of entropic, drag and random forces on the chain ofN sub-
chains is the Rouse equation:

�0
@R
@t
D

3kBT
b2

@2R
@n2
C f (n; t) : (16)

The noise on each subchain is related to its frictional drag
by the generalized Einstein relation as above:

˝
f (n; t) f (m; t0)

˛
D 2�0kBT I ı(n � m)ı(t � t0) : (17)

The Rouse dynamical Eq. (16) is diagonalized by the trans-
formation:

R(n; t) D X0(t)C 2
1X

pD1

X p(t) cos

 p�n

N

�
: (18)

The X p(t) are the time-dependent amplitudes of the
“Rouse modes” of the polymer chain. These are just the
(vector amplitude) Fouriermodes of the chain pathR(n; t)
with respect to the arclength coordinate n. The key result
for us is the time correlation function of the mode ampli-
tudes, which is:

˝
X p(t)Xq(t0)

˛
D I

kBT
kp

ıpqe�jt�t
0j/�p

with kp D
6kBTp2�2

Nb2
: (19)

Each mode has its own relaxation time �p D �/kp that de-
crease rapidly (as 1/p2) with mode index p. The longest
of these relaxation times �1 D �N2b2

3	2kBT
has special signifi-

cance. It is known as the Rouse Time, and often given the
notation �R. It is the time for relaxation of the overall shape
of the molecule (it is the relaxation time of the amplitude
of the normal mode with fewest nodal points, cos 	nN ), and
is also the time for a Gaussian Rouse chain to diffuse its
own radius of gyration.

Polymer Physics, Figure 4
A Rouse chain changes its configuration (from solid to dashed
curve) locally but not globally in times shorter than �R

What does the local motion of this model chain look
like? We expect for short intervals that the chain contour
may have adjusted locally, but retain a very similar global
configuration (see Fig. 4). In order to answer this question,
and to compare with local diffusion probes of NSE and
NMR on unentangled dynamics, we need to calculate the
correlation function �n(t) �

˝
(R(n; t) � R(n; 0))2

˛
that

describes the mean displacement over time of monomers
on the chain. Summing over the independent normal
modes gives

�n(t) D 6DCMt C
Nb2

3�2

�
t
�R

�1/2
˛ :

Here ˛ D 1
2
R1
0 z�3/2 (1 � e�z ) dz ' 1:77 is a purely nu-

merical constant. The result is remarkable: each monomer
executes an “anomalous” or sub-Fickian diffusion, such
that its mean square displacement goes as t1/2 rather than t
(as for ordinary diffusion). This behavior persists un-
til times longer than the Rouse time, after which each
monomer is carried by the (faster) center of mass mo-
tion of the whole molecule. This anomalous diffusion is
simply a consequence of chain connectivity: the further
a monomer travels under Brownian motion, the greater is
the length of chain that must be correlated with it and the
greater the effective drag over that lengthscale.

The (deviatoric) stress formula

�i j D
3kBT
b2

C

�
@Ri

@n
@Rj

@n

	

we derived above Eq. (13) leads, via representation in
terms of the Rouse modes [97], to an expression for the
time-dependent modulus function following a step strain
G(t) D �x y (t)/� . Each mode decays back to equilibrium
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anisotropy with its own characteristic time. The power-
law distribution of modes then gives:

G(t) D
CkBT
N

X

p
e�2p

2 t/�R

� CkBT
�

t
�1

��1/2
e�t/�R : (20)

So we find that, until a final crossover to an exponential
decay beyond the Rouse time, the Rouse model has a re-
laxation modulus which is a power-law of G(t) � t�1/2.
Note that the longest relaxation time scales with molecu-
lar weight asN2, but the viscosity scales asCkBTN . This is
because at the longest relaxation time that sets the value of
the viscosity, the stress is carried only by the lowest Rouse
mode; the density of these modes is just one per chain,
or C

N .
Beautiful generalizations of such dynamical scaling be-

havior arise in the case of marginally overlapped frac-
tal clusters, such as those arising from gelation transi-
tions. Long-range hydrodynamic interactions are effec-
tively screened, but entanglement effects are negligible. So
now the Rouse Eq. (16) generalizes to solving the eigen-
values of the Laplacian (right hand side of (16)) on a frac-
tal cluster with high degree of branching. Locally (for high
frequency modes) this is indistinguishable from the case
of linear chains, but at longer wavelengths than the chain
length between branch points, the effective dimensional-
ity of the cluster rises. Just as in many cases it is possi-
ble to represent the mass distribution with an effective di-
mensional exponent D D 1/�, so the Laplacian eigenfunc-
tions of a self-similar branched object possess a “spectral
dimension” ds and the density of states in k-space can be
written

g(k)dk Š kds�1dk : (21)

The combination of the scaling dimension of individual
clusters, and the self-similarity of the molecular weight
distribution via the Fisher exponent yields a generalized
power-law for stress relaxation [35]. For Rouse dynamics
(local friction) and hyperscaling the result depends only
on the fractal dimension of the clusters

G(t) '
kT
b3

�
t
�0

�� 3
DC2

: (22)

The value of the dynamic exponent z in G(t) � t�z for
three-dimensional percolation is therefore predicted to
be z Š 0:66. Experiments on critical gels of unentangled
chains confirm this [41].

Entangled Polymer Dynamics

Richer behavior still emerges in the realm of inter-chain
topological effects that dominate in fluids where chain
overlap is very strong. The polymer melts of industrial
polymer processing are very highly overlapped on the
molecular level, where it becomes immediately appar-
ent that molecular relaxation processes controlling elas-
tic stress are prolonged to very long times indeed. The
classic “relaxation modulus” G(t) measuring stress lin-
ear-response to a step strain records a “plateau” value
before a terminal relaxation time that increases rapidly
with molecular weight, in strong contrast to the power-
law decays discussed above. Experiments restricted to
the timescales of the plateau are hardly able to distin-
guish between the polymer melt and a rubber, in which
the chains are permanently cross-linked to each other at
very rare points, sufficiently for each chain to be perma-
nently immobilized from large-scale diffusion. Conceptu-
ally, the absent “cross-links” were replaced in the minds
of engineers and physicists alike by “entanglements” [13].
These loosely-defined objects were assumed to represent
the topological constraint that covalently-bondedmolecu-
lar chains may not pass through each other. The effective
distance between these objects could be calculated, em-
ploying rubber elasticity theory,

G(0)
N D kG

RT�
Me

(with the constant kG D 1 for “affine” and 1/2 for “junc-
tion fluctuation” models of elasticity) to deduce the de-
gree of polymerization between entanglements Ne, or
the equivalent “entanglement molecular weight”, Me. The
number Ne consistently turned out to be of order 102, in-
dicating a length-scale for an “entanglement spacing” of
50–100Å, depending on the particular chemistry. This is
highly significant for us, because it shows that small chains
on the threshold of feeling topological interactions are real
polymers, already long enough to show to a good approxi-
mation all the universal properties of statistical connected
chains. It also suggests that the role of topology in highly-
entangled (N 	 Ne) polymer fluids has the potential to
be treated universally. Further evidence of universality in
entanglements came from experiments in which the poly-
mers were diluted to a volume fraction �p by a compati-
ble solvent. The apparent entanglement molecular weight
Me � �

�˛
p where the scaling exponent ˛ ' 1 [11].

Other experiments had pointed to the existence of
a topological feature at this coarse-grained scale of struc-
ture. Careful measurements on rubbers of controlled syn-
thesis had shown that the shear modulus was higher for
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a network of long chains than a model incorporating
cross-links alone would predict [14]. Other “trapped en-
tanglements” on the same scale as the melt value of Ne
seemed to contribute to the elasticity. Advanced theories
of rubber elasticity have been able to treat rubber networks
in terms of the two distinct constraints of physical cross-
links and trapped entanglements [16,42]. A remarkable
universality also emerged in measurements of the scaling
of melt viscosity � on themolecular weightM of verymany
different polymer chemistries [13]:

� � M1 M < Mc
� � M3:4 M > Mc :

(23)

For each material, a critical molecular weight, Mc
emerged, above which the viscosity rises very steeply with
molecular weight. Furthermore, within experimental er-
ror, this explicitly dynamical observation was linked phe-
nomenologically to the essentially static measurements of
the plateau modulus by the correlation

Mc ' 2Me : (24)

This connection between essentially dynamic (Mc) and
static (Me) experiments, observed over a wide range of
chemistries, is strong evidence that topological interac-
tions dominate both the molecular dynamics and the vis-
coelasticity at the 10 nm scale in polymermelts (and at cor-
respondingly larger scales for concentrated solutions).

Without going beyond rheological measurements on
bulk samples, there has long been other very strong ev-
idence that molecular topology is the dominant physics
in melt dynamics. This emerges from the phenomenol-
ogy of “long chain branched” (LCB) melts. These materi-
als, commonly used in industry, possess identical molec-
ular structure to their linear cousins on the local scale,
but contain rare molecular branches (they differ from the
“polymeric fractals” discussed above in that their linear
sections are long enough to be entangled). The density
of branching varies from one branched carbon in every
10 000 to 1 in 1000. This level is chemically all but unde-
tectable, yet the melt rheology is changed out of all recog-
nition if the molecular weight is high enough [43]. Provid-
ing that M 	 Me, the limiting low-shear viscosity may be
much higher for the same molecular weight. Moreover in
strong extensional flows the melt responds with a much
higher apparent viscosity than in linear response. This
phenomenon, vital for the stable processing properties of
branched melts, is called “extension hardening”. The ef-
fect is all the more remarkable because in shear flows,
branched, as well as linear, melts exhibit a lower stress

than would be predicted by a continuation of their lin-
ear response [44] (they are “shear-thinning”). A fascinat-
ing example of the difference between linear and branched
entangled melts is well-known from flow-visualization ex-
periments. The velocity field in a strong “contraction flow”
of a linear polymer melt resembles that of a Newtonian
fluid, while that of a branched polymer sets up large vor-
tices situated in the corners of the flow field. Slight changes
to the topology of the molecules themselves give rise to
qualitatively different features in the macroscopic fluid
response.

The most successful accounts of these phenomena
have been given by the tube model. The idea is to de-
ploy the theoretical physicists favorite strategy of replac-
ing a difficult many-body problem with a tractable single-
body problem in an effective field. In this case the “single
body” is the single polymer chain, and the effective field
becomes a tubelike region of constraint along the contour
of the chain. The tube is invoked to represent the sum of
all topological non-crossing constraints active with neigh-
boring chains, and the tube radius, a, is of the order of
the end-to-end length of a chain of molecular weight Me.
In this way, only chains of higher molecular weight than
Me are strongly affected by the topological constraints (see
Fig. 5).

The tube was first invoked by Edwards [45] in an early
model for the trapped entanglements in a rubber network.
The consequences of the idea for dynamics were first ex-
plored by de Gennes [46], again in the context of networks.
A free chain in a network would be trapped by neighbor-

Polymer Physics, Figure 5
A tubelike region of constraint arises around any selected poly-
mer chain in a melt due to the topological constraints of other
chains (small circles) in its neighborhood (diagram courtesy of
R. Blackwell)



Polymer Physics P 6823

ing chains into tube of radius a defined by its own con-
tour, suppressing motion perpendicular to the tube’s lo-
cal axis beyond a distance of a, but permitting both lo-
cal curvilinear chain motions and center-of-mass diffu-
sion along the tube. deGennes coined the term “reptation”
for this snake-like wriggling of the chain under Brown-
ian motion. The theory gives immediately a characteris-
tic timescale for disengagement from the tube by curvi-
linear center-of-mass diffusion. This disengagement time
�d is naturally proportional to the cube of the molecu-
lar weight of the trapped chain (this arises from combin-
ing the Fickian law of diffusive displacement of length L
with time � , � � L2, recognizing that path length L � M,
with one extra power arising from the proportionality of
the total drag on molecular weight). Very significantly,
de Gennes also realized that a tubelike confining field
would endow a dangling arm, fixed to the network at
one end, or belonging to a star-shaped polymer in a net-
work, with exponentially slow relaxations. In this topology
reptation would be suppressed by the immobile branch
point [47], and only exponentially-rare retractions of the
dangling arm would disengage it from its original tube
(see Fig. 6 below). In the late 1970s, S.F. Edwards and M.
Doi developed the tube concept into a theory of entan-
gled melt dynamics and rheology for monodisperse, linear
chains [97], finding extensions to flow instabilities [48],
blends [49] and polymers of controlled architecture that
go beyond the star topology [50] to H-polymers [51] and
combs [52].

Fully atomistic simulations of polymer melts are now
able to examine entanglement effects. It is now possible
to conduct molecular dynamics simulations of, for ex-
ample, elastically-connected Lennard–Jones polymers that

Polymer Physics, Figure 6
The process of arm retraction predicted by the tubemodel for the case of dangling entangled arms, as from the branchpoint of a star
polymer. Unlike in reptation, reconfiguration of the outer parts of the arm occursmany times for one relaxation of deeper segments

contain 50 chains each of 10 000 monomers well into
the regime in which entanglements dominate the dynam-
ics [53]. This technology is now at the point at which di-
rect comparisons to experimental results such as NSE is
now possible. The other advantage of large simulations is
that they may mimic the “ideal” experiment in which ev-
erything may in principle be measured. This has been ex-
ploited in tests of fundamental theories of entanglements
(see below) [54].

The growing quantity of data on branched molecules
of controlled molecular weight and topology has provided
severe tests of the tube concept at a level beyond that
probed by linear chains [40]. The hierarchical nature of
configurational relaxation at the molecular level in par-
ticular has been turned from speculation into orthodoxy.
In the simplest case of entangled star polymers, the the-
ory suggests that chains escape from their confining tubes
not by reptation, which is suppressed by virtue of the im-
mobile branch point, but by a process of arm retraction,
present but largely eclipsed in the case of linear polymers
(see Fig. 6).

The effect on the viscosity of replacing linearmolecules
with those of identical molecular weight, but of star topol-
ogy, is striking: now

� � e˛ (Ma/Me) Ma > Mc (25)

is the dominant form of the molecular weight dependence
(where Ma is the molecular weight of the dangling arm),
rather than � � M3:4 (in the case of linear polymers the
entire effect of these fluctuations is to change the appar-
ent exponent of this relation from 3 to 3.4 up to a high
molecular weight of order 103 entanglements, where it sat-
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urates at the “bare reptation” value of 3). In entangled
melts with repeated levels of branching, the retraction dy-
namics of outer levels generate the slower retraction of in-
ner branches in a hierarchical way. Themost advanced ap-
plication of this process has been on materials that com-
bine the complexity of the gelation-point critical ensem-
ble (see Subsect.“Single Chain Dynamics” above) with the
physics of entanglement. The broad rheological spectrum
of branching chemistry that builds molecules by graft-
ing back repeatedly previously synthesized molecules [55]
is captured by these calculations. When the percolation
transition is approached by cross-linking entangled poly-
mers, there exists a measurable region in which mean-
field statistics (D D 4) actually hold. Stress relaxation from
such an ensemble is logarithmic in this regime, but is
closely modeled by a dynamical scaling form in which
the dynamic exponent z is small (being inversely propor-
tional to the number of entanglements between branch
points) [56].

The wealth of experimental and simulation data has
sharpened the theoretical picture. Without exploding with
new parameters, it has been possible to capture, in a sin-
gle model, modes of entangled motion beyond pure repta-
tion. In linear response contour length fluctuation (CLF),
the Brownian fluctuation of the length of the entangle-

Polymer Physics, Figure 7
A cartoon of the processes of contour length fluctuation (CLF)
and constraint release (CR) on a linear polymer in a constrain-
ing tube. In CLF the chain end retracts via longitudinal fluctu-
ations of the entangled chain, but without requiring center-of-
mass (reptation) motion. Re-extension of the chain end may ex-
plore new topological constraints, reconfiguring the tube. In CR,
an entanglement with a neighboring chains (shown hatched)
may disappear, allowing effective conformational relaxation of
that part of the tube, again without reptation of the test chain
itself. In both cases the former tube configuration is shown dark,
the new, light

ment path through the melt, modifies early-time relax-
ation. Similarly the process of constraint release (CR), by
which the reptation of surrounding chains endows the
tube constraints on a probe chain with finite lifetimes,
contributes to the conformational relaxation of chains at
longer times. Both the processes of CLF and CR contribute
to the quantitative understanding of linear rheology, such
that the � � M3:4 law is no longer a mystery [57,58], but
much of the newer data still need to be examined quanti-
tatively as sensitive tests of the detailed physics, and many
puzzles remain. These two additional processes are visual-
ized in Fig. 7.

Non-linear Flow of Polymeric Fluids

In strong deformations the additional processes of chain
stretch, chain retraction, and branch-point withdrawal
emerge on the level of single chains (the latter exclu-
sively in the branched case), and convective constraint-re-
lease (CCR) at the level of co-operative motion [59,60,61].
The most advanced formulation of the tube model for
linear polymers keeps the coarse grained coordinates
of the chain, and allowing CCR events to generate lo-
cal Rouse jumps of the tube [61]. The idea is to re-
tain full information about average chain trajectories in-
stead of working indirectly with dynamic equations for
the stress and orientation tensor. This approach also al-
lows quantitative predictions about the single chain scat-
tering function S(q), and to develop a local description
of CCR events. The main assumptions of the first ver-
sion of the theory (valid when there is no chain stretch)
are: (i) that CCR operates locally in reorienting chain
segments both into and away from the flow direction,
and (ii) that neither the number of entanglements per
chain Z D M/Me nor the tube diameter a changes. The
first assumption endows the tube itself with a Rouse-
like motion in which the local hopping rate is cou-
pled to the global deformation rate via a single new pa-
rameter. The second (constant length) assumption intro-
duces a difference from ordinary Rouse-chain motion,
and limits the range of validity at first (but see below) to
0 < �̇ < 1/(�eZ2).

No single set of variables will be able to diagonalize
the essential entangled modes of motion, namely (i) chain
reptation, (ii) chain retraction, (iii) tube-length fluctuation
and the new mode (iv) Rouse-tube motion. However, the
theory is conventionally cast in a real-space notation for
the tube trajectory R(s; t) and its tangent curve R0 � @R

@s ,
functions of curvilinear distance s from along the tube and
time t. Our chains are monodisperse containing Z entan-
glements of tube diameter a. The (stochastic) equation of
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motion becomes [62]
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(26)

The terms of this formulation describe, in order, affine
convection of the tube, reptation, CR Rouse motion of the
tube, retraction of the chain within the tube and chain
stretch. This model predicts in shear flow a near-plateau
of �x y (�̇ ) between �̇ �d and �̇�R, and an increase propor-
tional to �̇ 1/2 beyond that (so that the “shear-dependent
viscosity” �(�̇) � �̇�1/2 (see Fig. 8). Both this feature, and
a prediction of strong extension hardening at rates faster
than the inverse chain stretch time, have been quantita-
tively matched to experiment.

The strongest tests of the predictions for chain confor-
mations have been performed in “neutron flow mapping”
experiments [64,65]. Here a partially-deuterated (for neu-
tron scattering contrast) polymer melt of monodisperse
or controlled architecture, is passed continuously through
a complex flow field such as a contraction, bounded by
windows transparent to both laser illumination and ther-

Polymer Physics, Figure 8
Predictions of the local CCRmodel with chain stretch using cv D 0:1 for values of Z D 10;20;30. A comparison to the non-stretching
version is given

mal neutrons. The stress field is measured in optical bire-
fringence, while single chain conformations are reported
by the neutron small angle scattering. Scanning the ap-
paratus across the neutron beam allows the experiment
to probe regions of the flow with varying strain histories.
The experiments are compared to calculations in which
the model of (26) is used both to calculated the flow field
itself, then the scattering function of chains subjected to
the stream lines that flow through the neutron beams.

Figure 9 shows the results of one such experiment. The
key result is that relaxation to equilibrium structure takes
place in the flow at timescales that depend on the chain
lengthscale examined. It also shows that no model con-
taining just one viscoelastic relaxation time is even qual-
itatively able to account for the non-linear physics of en-
tangled melts. The simplest must possess at least two re-
laxation times, corresponding to chain stretch (fast – by
Rouse motion) and chain orientation (slow – by repta-
tion). At the purely phenomenological level of the stress
tensor the emergent property is a rapidly-relaxing trace,
and a slower traceless part to the stress.

At a more approximate level, it is possible to com-
bine the complexities of non-linear response and complex
branched topologies in entangled melts. All the linear and
non-linear molecular processes of chains in tube-like en-
tanglement fields are present, together with one additional
process, that of “branch point withdrawal”.When a strand
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Polymer Physics, Figure 9
A monodisperse linear entangled melt in a neutron flow mapping experiment. Flow is from bottom to top. Single chain scattering
functions from windows B, D and F are compared with contour predictions on the left. Chain configurations relax during passage
through the channel from an initial strain. On the right, contours of principal stress (left) are compared with calculations (right)

connecting two branch points is very highly stretched, the
finite size of the clusters it connects (in contrast to the net-
work case) becomes apparent, and one of the clusters may
topologically collapse into the deforming tube of the cen-
tral strand. In the simplest case of the H-polymer the two
outer arms are drawn into the tube of the “cross-bar” seg-
ment (see Fig. 10).

There are consequences of the process for both chain
conformation (scattering) and stress response (rheology).
If the retracting arms are labeled in a scattering experi-
ment, very strong signal enhancement is seen in the di-
rection of the deformation [51,66]. At the same time, the
growing extensional stress, until that point resembling that
of a cross-linked network, reaches a near-plateau. The
effect of this at the level of the process engineering is to
endow strongly branched melts with both extension hard-
ening (leading to flow stabilization) and good process-
ability. A useful modeling tool for branched melts has
been derived from the ideal “pom-pom” architecture [67].
This generalization of the H-polymer allows the num-
ber of arms attached at either end of the cross-bar, q,
to vary. So q becomes a molecular parameter controlling

Polymer Physics, Figure 10
The process of branch point withdrawal: a segment with greater
than equilibrium tension pulls attached dangling arms some dis-
tance into its own tube, thus shortening their effective entan-
gled path length
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the degree of strain-hardening. Creating multiple modes
from this model allows accurate models to be built for
commercial, highly-branched melts [68,69,70]. Comput-
ing in complex geometries with these models has success-
fully predicted features of the flows particular to branched
melts, such as recirculating vortices upstream of a con-
traction and very persistent sheets of high birefringence
downstream from re-entrant corners, sometimes known
as “stress-fangs” [71].

Multi-Phase Polymeric Fluids

In the foregoing, the spatial structure of polymeric fluids
has remained essentially homogeneous, all heterogeneities
remaining at the level of entanglements, or correlation
volumes, in solution. The hidden reason for this is that
we have considered systems containing just one chem-
istry of monomer. Yet one of the great attractions of poly-
mers is their tendency to develop complex spatial struc-
tures when different chemistries are combined, either in
the case of entire chains, when we create polymer blends,
or within single chains, referred to as co-polymers. In the
latter case, especially interesting structures arise when the
distinct monomers are correlated in sequence along the
chain, forming block co-polymers. The simplest example
would be a string of nmonomers of chemistry A followed
by m of chemistry B. This is an A–B diblock co-polymer.
The essential reason for the sensitivity to local chemistry
is that the entropy of spatial translation per monomer
in a polymeric fluid is extremely low. The usual Van’t-
Hoff term Strans D �kT log� is divided by the degree of
polymerization of the chain so that it effectively competes
with the mild Van der Waals dominated enthalpic inter-
action between monomer units, that tend to favor prox-
imity of identical chemical units: polymers tend therefore
towards demixing. In blends the demixing competes with
the slow, viscoelastic dynamics we discussed in the last sec-
tion, creating spatially complex morphologies that are de-
termined kinetically. In the case of block co-polymers, the
demixing occurs locally, confined to spatial scales of the
block subchain radii. The demixing now competes with
the chain elasticity we discussed in Sect. “Single Polymer
Chain Physics”. The connection of polymer sequence with
emergent structure illustrates the high potential informa-
tion content of a macromolecule. It is an example of the
genotype-phenotype pattern developed to a much higher
degree in the case of the DNA-embedded genetic code.
This field, like that of controlled architecture dynamics, is
an area of polymer physics where the complex emergent
phenomena have required a parallel implementation of
careful synthetic chemistry [72], experimental physics [73]

and advanced theoretical techniques [75] to explore, and is
growing extremely rapidly.

Polymer Blends

The starting point for a conceptual understanding of the
physics of polymer blends is a mean-field model for the
free energy of mixing of two species such that one occupies
a total volume fraction � . Known as the Flory–Huggins
free-energy [17], it balances the entropy of mixing of the
two components against the energy difference of mixed
and demixed states:


Fmix D kBT
�
�

NA
ln� C

1 � �
NB

ln (1��)C �� (1��)
�
:

(27)

The control parameters for this theory are the two molec-
ular weights and the (temperature dependent) interac-
tion (“Flory”) parameter �. The whole system is therefore
three-dimensional: the monomer interaction is best nor-
malized with the mean molecular weight so that � EN is
the essential parameter that controls interaction strength.
Then NA/NB becomes the asymmetry parameter while �
controls the composition. The possibility of phase sep-
aration means that 
Fmix can be minimized by form-
ing regions with different values of � if the curvature
@2
Fmix/@�2 is anywhere less than zero. This in turn oc-
curs for all � > �c. Phase separation then occurs for all
systems whose mean composition falls between the two
minima of 
Fmix(�), a region that broadens as � moves
further (as temperature is changed) from �c.

This behavior is mapped in Fig. 11. The region be-
tween the two curves (binodal and spinodal) of the plot
corresponds to compositions and temperatures where the
curvature of 
Fmix(�) is positive, producing a fluid that
is locally stable to composition fluctuations though glob-
ally unstable to phase separation. In this case droplets of
the separated phase have to nucleate, giving an initially
disconnected morphology. Within the spinodal curve on
the other hand, the fluid is unstable to local and in-
finitesimal changes in composition, so that natural ther-
mal fluctuations of composition are amplified. The pres-
ence of a fastest-growing wavelength leads to a connected
(or “spinodal”) morphology for most of this region. Since
the final minimum in free-energy is total phase separa-
tion, whatever intermediate structure evolves eventually
coarsens with time with well-known growth laws depend-
ing on whether hydrodynamics or diffusion is dominat-
ing [76]. This beguilingly simple map hides a great deal of
latent complexity, however.More recently, the recognition
that the spinodal process leads to amorphology dependent
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Polymer Physics, Figure 11
Regions of phase-separation in polymer blends with the Flory–
Huggins model. Phase separation occurs within the binodal
curve (solid curve), but is unstable locally only within the spin-
odal (dashed curve)

on both the local free energy and the distribution of ini-
tial fluctuations has generated experimental and theoret-
ical explorations of the wider control space that includes
trajectories across the composition diagram [77], varia-
tions on boundary conditions and viscoelastic effects [78].
A striking example is given by the “target” structures that
result from kinetic trajectories that spend some time in the
nucleation region of the composition space before (cool-
ing) into the spinodal region. During the first period, small
nuclei are allowed to form but sustain limited growth.
Instead, the growth occurs in the locally unstable region
using the nuclei as sources of unstable fluctuations. Be-
cause the Fourier wavelet decomposition of a spherical nu-
cleus with a sharp boundary consists of spherical waves
centered on the nucleus, it is these that are amplified by
the growth process, or reverse-diffusion, and structures of
nested spheres of varying composition appear during it.
Since phase separating polymers typically also have a glass
transition temperature, it is possible to quench the com-
position structure at any point in the phase separation.

Viscoelasticity may play a modifying role at both early
and late stages of the phase separation. At early times,
any dominant viscoelastic mode, such as reptation, can
undergo mode-mixing with the dominant phase separa-
tion time to produce to two-timescale process of separa-
tion [79]. This may result in non-monotonic concentra-
tion growth with time, since of the two resulting modes
one typically decays while the other grows. At later stages,
a strong viscoelasticity in at least one phase causes the het-

Polymer Physics, Figure 12
Confocal imaging of viscoelastic phase separation from [78]
showing the time development of structure from a dilute
polymer solution, b protein solution, c concentrated polymer
solution

erogeneous fluid to retain the mutual connectivity of both
phases for much longer than in Newtonian fluids [78].

Figure 12 illustrates the high degree of universality
of this effect, contrasting dilute and concentrated poly-
mer solutions with a protein solution in which the protein
molecules behave more as colloidal particles than polymer
chains. Although the structures coarsen, they retain con-
nectivity of the minority phase rather than suffer it break-
ing into droplets. A similar effect is generated by the natu-
ral composition-dependence of mobility. It is unlikely that
the mobilities of the two demixing species will remain in-
dependent of the local composition, since the natural drag
constants within the two final demixed phases will typ-
ically differ. The phase of lower mobility then becomes
kinetically quenched earlier than that of higher mobility.
This nonlinearity affects the connectivity of the morphol-
ogy at long times [80].

Block Co-Polymers

The demixing tendencies of polymers of different
chemistries becomes very rich when it competes with
the feature at the heart of polymer physics itself: that of
connectivity. By connecting a chain of A-monomers to
one of B-monomers they are forced by the spatial cor-
relations that chain connectivity induces into proxim-
ity. Within a mean field picture, the repulsive interac-
tion in the free energy density kBT��A�B (from the last
term in (27)) competes with the entropic chain elasticity
Felas D kBT

�
R2
A/NAb2 C R2

B/NBb2

. In contrast to previ-

ous sections, we consider first the case of dense chains
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(melts), then solutions and finally the effects within single
chains of such controlled chemical architecture.

Consider first the case of the diblock co-polymer just
outlined. In a melt, when the interaction parameter � is
large enough, the chains must locally segregate into re-
gions rich in one or other of the polymers. The molecules
themselves clearly minimize their contribution by situat-
ing their midpoints where the two chemistries join at the
interface between the two regions. Topology dictates that
at most two A-chains may span an A-rich region, so con-
sequently the length scale of the morphology must be of
the same order as the radius of gyration of the chains. In
the symmetric case the system spontaneously forms lamel-
lae of alternating composition whose width increases as
the interaction parameter does though with a weak power
law of �1/6. The width of the interface region in which
both A and B monomers are present decreases with �.
In a fully quantitative “strong segregation theory” of this
physics [81] the lamellum width L and interface width w
obey

L D 2
�

8
3�4

�1/6
N2/3b�1/6 ; w D

2b
(6�)1/2

: (28)

But additional physics comes into play as soon as the two
blocks are of different length, for now the entropy of con-
finement of the chains in the plane of the interface does
not balance (we did not consider that in the above), with
the result that the interface tends to curve away from the
domains containing the longer chains. Other more com-
plex morphologies become candidates for the minimum
in free energy: periodic cylinders (C) and spheres (S) as
well as the more exotic forms of the gyroid (G), perforated
lamellae (PL) and double-diamond lattices (D) of Fig. 13.

Experiments on carefully synthesized block co-poly-
mers, especially the model polystyrene-polyisoprene sys-
tem, have mapped out the morphology diagram in terms
of interaction (via temperature, as in blends) and com-
position of the diblock. Calculations were first performed
near the critical point, where segregation of the two species
is only weak, and the free energy can be expanded in
powers of the difference of the local mean concentrations
� D (�A � �B) [83], but can be extended into strong seg-
regation by a fully continuous self-consistent mean field
theory [82] that ignores only the fluctuations in composi-
tion. Results and comparison with experiment are shown
in Fig. 14.

Clearly the calculations are qualitatively, and in some
aspects quantitatively in agreement, especially far from
the disordered (fully mixed) state. However, fluctuations
clearly have an important effect near the boundary. The

Polymer Physics, Figure 13
Potential candidate morphologies for block co-polymer melts,
from [82]

Polymer Physics, Figure 14
The morphology map for diblocks as a function of interaction
parameter and composition by a self-consistent field calculation
and b experiment on PS-PI diblocks. From [82]
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topology of the diagram at the critical point is actu-
ally changed by them, stabilizing a finite region of the
lamellar phase. Quite recently, field-theoretical methods
for computing the full effect of fluctuations in the par-
tition function of block co-polymers have been intro-
duced [84]. Other natural extensions include increasing
the complexity of the chemical structure of the block
co-polymer. Taking only one step to the tri-block per-
mits a very wide class of morphologies that mix those of
the diblock, so that for example spheres of A may dec-
orate cylinders of B within a matrix of C. Such materi-
als are by no means only of academic interest, as they
constitute the fundamental technology behind toughened
plastics, in which the minority, rubbery phase prevents
crack propagation within a majority glassy phase [85]. We
can begin to see the sequence of the chain correspond-
ing to an information content (“genotype”) that implicitly
codes for the morphology (“phenotype”) of the emergent
morphology.

Block copolymers in solution, either of a low molecu-
lar weight species or of a simple homopolymer, may act as
polymeric versions of the familiar surfactants. Their self-
assembly picks out the same structures as we have already
seen in the context of bulk microphase separation (lamel-
lae, cylinders and spheres) with now the difference that
these self-assembled structures exist in isolation rather
than in a regular array. The corresponding structures are
vesicles, wormlike micelles and spherical micelles [86].

Examples are given in Fig. 15. These phases have a vis-
ibly complex form, since they are largely determined ki-
netically: because of the long timescales for diffusion and
collision of the individual micelles, and of the high activa-
tion energy for mutual rearrangement, merger and break-
ing, true equilibrium is very hard to reach in these sys-
tems. So vesicles of widely different radius may coexist,
together with nested structures and complexes. The tran-
sitions between linear and spherical structures, which may
be driven by changes in temperature or pH depending on
the chemistry of the polymers, may exhibit a rich kinetics
in which cylindrical structures emerge from spherical and
vice versa.

We finally consider the generalization of the coil-col-
lapse transition we saw in the case of dilute chains in poor
solvents in Sect. “Single Polymer Chain Physics”. When
all monomers are identical in their interaction with the
solvent the form of the resultant globule will be on aver-
age spherical, together with natural thermal fluctuations
of the interface. When the polymer contains blocks of het-
erogeneous interaction with solvent, as well as self-inter-
action, the globule may become a much more complex
object. Experiments on diblocks indicate that a range of

Polymer Physics, Figure 15
Schematic of chain configuration in the wall of a block co-poly-
mer vesicle and its architectural control (a) and transmission
electron micrograph of polymeric vesicles (b), from [86]

non-spherical geometries may be generated by control-
ling the architecture of the primary chain [87]. Calcula-
tions balancing chain stretch, mutual interaction and sur-
face tension against the solvent [88] indicate that it is the-
oretically possible, using only two monomers, to code for
transitions between near-spherical to prolate and finger-
like forms of the collapsed globule. More complex fea-
tures such as budded and pearled structures also emerge
from the same mean-field level of theory that successfully
treats block co-polymer melts. This single-molecule form
of the coding of emergent phenotype from the informa-
tion coded as a polymer sequence is very suggestive of na-
ture’s own method of constructing the functional single
molecules of enzymes, motors and cellular structures. For
proteins are “just” co-polymers (of a possible 20 amino
acid monomer set) that code in their sequence for abso-
lutely specific forms of their collapsed state. The protein-
folding problem has generated a huge literature [89], al-
though rather little of it actually exploits polymer physics,
with its natural high order of dimensionality and degrees
of freedom [90] to understand this ultimate refinement of
the art of coded morphology.
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Future Directions

Several current themes suggest a rich future for polymer
physics, notwithstanding the experience of history that the
richest veins of research to come will be those currently
unforeseen. The general area of biomimetic, or perhaps
better, bio-suggestive polymer physics is bound to be an
area of growth. Biology has already mastered the art of
synthesizing single polymers that act as self-assembling
machines, chemical reactors and separation systems. Ar-
tificial polymers that act in these ways are certainly possi-
ble, and may not need to be as exactly structured as pro-
teins are in order to deliver function. We have already seen
that theoretical schemes exist for designing block co-poly-
mers that will collapse into pre-determined shapes and
forms [88]. Future designs of active versions of protein-
like polymers may also go beyond the chemical “fuel” of
ATP dephosphorylation, perhaps using light as both an
energy and signaling source. Optically-activated mechan-
ical transitions in polymers have already been demon-
strated [91]. Effectively equally fast response can be elicited
from pressure changes. In the long term one might hope
for advanced therapeutics from this route, especially in
combination with polymer-based encapsulation systems
such as triggered micelles of block co-polymers.

Structural materials properties also have many things
to learn from evolution. As it becomes possible to mod-
erate and control microstructure, both in terms of crys-
tallinity andmicroseparation, so polymeric nano-compos-
ites will be able to realize combinations of strength and
stiffness currently existing as ideals [74].

A related direction brings polymer physics into bio-
logical research directly. Dynamic neutron scattering by
neutron spin echo [92], as well as advanced NMR relax-
ation techniques will assist the current move towards ex-
ploring the role of dynamics in molecular biological func-
tion on a similar footing to the achievements in the area of
structure. Even thermal dynamics is beginning to be rec-
ognized as a generator of functions such as signaling, in an
analogous way to the emergence of rubber elasticity from
the same source [93]. Technologically, the use of artificial
polymers to create scaffolds for tissue engineering will re-
quire a balance of local biochemical interaction and global
mechanical and topological structure formation.

The key underpinning science of biocompatible and
biomimetic polymers is the control of self-assembly. Al-
ready there are a number of “suprachemical” options of
non-covalent, reversible polymerization [94]. Playing with
nature’s alphabet of peptide-forming amino acids, that
naturally self-assemble via main-chain hydrogen bonds,
gives a rich system in which chirality becomes a new con-

trol parameter for the equilibrium structure [95]. Combin-
ing main-chain self-assembly with side-chain functional-
ity may prove to open up new classes of functional poly-
meric materials.

The growth of conducting and semi-conducting poly-
meric materials within a burgeoning new sector of the
electronics industry is alreadywell underway. But this area
has been driven largely be technology, andmuch of funda-
mental science remains to be understood, especially at the
level of many chain, materials physics [96]. The changing
demands of the world’s energy economy are bound to put
pressure on developments of organic, polymer-based pho-
tovoltaic materials, as well as lightweight polymer gel en-
ergy storage. The combination of information-processing
and advanced structural properties within new polymeric
materials is a tempting prospect.
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Glossary

Connectivity Connectivity extends the concept of adja-
cency and is essentially a form (and measure) of con-
catenated adjacency. If it is possible to establish a path
from any vertex to any other vertex of a graph, the
graph is said to be connected; otherwise, the graph is
disconnected. A graph is totally disconnected if there

is no path connecting any pair of vertices. This is just
another name to describe an empty graph or indepen-
dent set.

Distance The distance duv between two vertices u and v in
a graph is the length of a shortest path between them.
When u and v are identical, their distance is 0. When u
and v are unreachable from each other, their distance
is defined to be infinity1.

Ideal chain The interactions between adjacent structural
units along the chain are called short-range interac-
tion, whereas the interactions between units which are
far removed from each other along the chain are called
long-range interaction. Note that the long-range in-
teractions are typically short-range in space. An ideal
chain is the unperturbed chain without the intramolec-
ular long-range interaction between structural units
where only short rage interaction is considered. A ba-
sic theoretical model for ideal flexible chains is the
Gaussian chain, which assumes a number of ideal
beads with intramolecular distance between them fol-
lowing a Gaussian distribution.

Long chain branching The clearest definition of this is
that to be long a branch needs to have a molecular
weight at least greater than the entanglement molec-
ular weight which is defined in terms of the plateau
modulus, which can be directly measured from the lin-
ear viscoelasticity of the polymer.

Nonlinear polymer These are branched and cross-linked
polymers which contains some polyfunctional units.
This term is reserved for functionalities exceeding two
and the branches formed from the polyfunctional units
sufficiently are long or large.

Polymer A chain like molecule make up of repetition of
a particular atomic group joined together by covalent
bonds. The chain-like molecule is usually called the
polymer if the entanglement and intertwining interac-
tion occurs in the melt state and in the concentrated
solution. The basic unit of this sequence is called the
‘structural unit’, and the number of units in the se-
quence is the degree of polymerization.

Tree A tree is a connected acyclic simple graph. A vertex
of degree 1 is called a leaf, or pendant vertex. An edge
incident to a leaf is a leaf edge, or pendant edge. (Some
people define a leaf edge as a leaf and then define a leaf
vertex on top of it. These two sets of definitions are of-
ten used interchangeably.) A non-leaf vertex is an in-
ternal vertex. Sometimes, one vertex of the tree is dis-
tinguished, and called the root. A rooted tree is a tree
with a root. Rooted trees are often treated as directed
acyclic graphs with the edges pointing away from the
root.
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Definition of the Subject

Branching formation is known from the beginning of
polymer chemistry and modern synthesis methods make
it possible to prepare a great variety of nonlinear polymers
with specific branching structure. Branched polymers are
nowadays becoming more and more important so that
analytical techniques to reveal the role of branching in
macroscopic properties of polymers are desired. This ar-
ticle demonstrates that the graph-theoretical approaches
are most effective when providing topological and physi-
cal insights into the nonlinearity in polymer architecture.
Thus, the problems of the dynamics and statistics of any
branched molecule are shown to be completely reduced
to the problem of the eigen-polynominal of graph, result-
ing in that various ideas and concepts, thus, obtained from
the graph theory can be applied directly to the topological
analysis for architecture in nonlinear polymers. This will
leads to a new kind of paradigm in polymer science and
engineering.

Introduction

A polymer is a chain-like molecule that comprises huge
number of repeating structural units or atoms connected
by chemical bonds.Modern polymerization techniques for
the preparation of chain-like molecules can produce chain
branching and these branched polymers possess practi-
cally important properties and specific phenomena involv-
ing processability and rheological properties [19,34,50,55,
87,109] which cannot be reached for linear polymers.

Branching formation was suspected almost from the
beginning of the study of polymer chemistry in the 1930s.
Flory [41] first pointed out the possibility of the occur-
rence of branching in the free-radical polymerization of
diene monomers. The occurrence of branching had been
well recognized by the early 1940s and since then, many
theoretical and experimental studies related to the effects
of branching on the properties of polymers have been car-
ried out. In 1953, several important papers [2,7,108,115]
showed that polyethylene materials produced by the free-
radical process have not only a significant number of short
branches but also long-chain branches.

In the 1960s, several research groups found that the
“living polymer” procedure of anionic polymerization
makes it possible to synthesize definitely known branched
polymers [88]. During the 1970s and 1980s in addition to
random branching that occurs in industrial polymeriza-
tion, more rational synthetic methods based on living an-
ionic polymers have facilitated the preparation of a great
variety of polymers with specific branching structures such
as star-shaped polymers having several branches attached

to a single polyfunctional branching point [58] and comb-
shaped polymers having a given number of branching
points randomly distributed along a backbone [93,124].
Comb-shaped polymers with branching points of func-
tionality greater than three are also sometimes called poly-
meric brushes [80]. During the period from the end of
the 1980s to the 1990s, it has been possible to build struc-
tures possessing regular “hyper-branched” polymers [74]
or starburst polymers with radial symmetry, which is gen-
erally called a “dendrimer” [127]. The physical and chem-
ical properties of such dendritic polymers, which essen-
tially differ from those of not only linear polymers but also
comb- and star-shaped polymers, enables unpredictable
wide applicability [49]. These specific branched polymers
are illustrated in Fig. 1.

In order to clarify the effects of long chain branching
on polymer properties, we need some quantitative mea-
sures that reflect molecular branching: one of the quanti-
tative factors is the average size of isolated single polymers
characterized through the measurement of dilute solu-
tion properties. The smaller expansion in the space of iso-
lated branched molecules as compared with isolated lin-
ear molecules of the samemolecular weight is the basis for
the most fundamental methods for estimating branching
as demonstrated by Zimm–Stockmayer [139].

For the purpose of estimating branching, therefore,
considerable effort has been extended to obtain the chain
dimensions such as the mean square radius of gyration
hs2i estimated by performing the light scattering (LS) mea-
surements and/or the mean Stokes radius rH, estimated
by using the intrinsic viscosity [�] data. In addition, a gel
permeation chromatograph (GPC) [20,26,60] is one of the
most popular devices used for the fractionation of a poly-
mer according to the volume dimension [�]M where M
is the molecular weight. Therefore, the effort to relate [�]
to hs2i or rH, has been continuing for a long time by
a combination of GPC and LS or [�] techniques, although
they cannot satisfactorily describe the structural details of
branched polymers such as the number of branches, the
branch length, and their position along the backbone.

Under ordinary conditions, in a dilute solution, there
are significant long-range intramolecular correlations that
“perturb” the conformation of the chains. However, un-
der special conditions in the	 state [84], the effects of the
excluded volume of a structural unit vanish and the di-
mensions of the macromolecule adopt their unperturbed
values which are appropriate for evaluating the branching
degree based on conformational statistics.

Consequently, extensive research has been carried out
in calculating the various conformational properties cor-
responding to well-defined branching architectures. How-
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Structural images of a regular star; b regular comb; c hyperbranch; d dendrimer

ever some mathematical difficulties often arise in apply-
ing statistical treatments to unperturbed branched poly-
mers. The Monte Carlo simulation methods [6,48] have
been powerful computational tools in the treatment of
branched chains more complicated than those generally
treated by statistical methods. The simulations suggest
that intrinsic properties of polymers are influenced not
only by the number of branches but also by the branch
length and their position along the backbone. Quantita-
tive data concerning the local dynamics and local struc-
ture can be obtained from the molecular dynamics sim-
ulation studies. However, it is hard to provide the topo-
logical or physical insights into these computer simulation
results.

The specification of a linear polymer requires only one
parameter; i. e. the degree of polymerization or molecu-
lar weight; however, additional key parameters are neces-
sary for the specification of any branched polymer. For un-
derstanding molecular branching from a general point of
view, systematic studies on the effect of branching on the
physical properties in the frame of a homologous series of
polymeric materials are desirable. For this purpose, it is
also necessary to develop the topological or graph-theoret-
ical methods for analyzing the branching and/or skeletal
nature of polymers such as the branch length, the number
of branches, and their positions.

The final goal of our work is to set up a rigorous molec-
ular theory for linear as well as nonlinear flexible polymers
and to give a description and a reliable prediction of the
materials properties in the melt and solid states. This arti-
cle demonstrates that the graph-theoretical approaches are
most effective when establishing such a universal frame-
work for polymers with any structural architecture.

This article deals with the topological nature of tree-
like chain molecules as typical nonlinear polymers. This
article is organized as follows: The graph-theoretical
approach for characterizing branched molecules is de-
scribed in brief in Sect. “Topological Analysis of Branched
Molecules”. In Sect. “Ideal Chain Models”, the chain con-
formational statistics in the unperturbed state is discussed
in the framework of ideal chain models based on the
spring-beads and rod-beads models. The graph-theoreti-
cal approach to chain statistics is presented in Sect. “Chain
Statistics of Nonlinear Polymers”. The relations between
the conformational statistics of ideal chains and the
graphic representation are also presented. In Sect. “Chain
Dynamics of Nonlinear Polymers”, it is shown that the
dynamics of various types of branched chains are ob-
tained by solving the polynomial equation derived from
the graph-theoretical representations. The final section
provides a brief summary of this article and future prob-
lems.
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Topological Analysis of BranchedMolecules

An alkane molecule is one of the most basic organic com-
pounds, and it is a set of carbon and hydrogen atoms that
are connected to one another by covalent bonds. The topo-
logical analysis of a branched alkane begins with a drawing
where the atoms are depicted as points and the bonds link-
ing them are depicted as straight lines.

If only the carbon atoms of alkanes are depicted as
points and their hydrogen atoms are omitted, there is
a one-to-one correspondence between these isomers and
the drawings whose points have at most four neighbors.
This type of drawings is called the chemical graph [122].
In the graphs, the hydrogen atoms do not normally play
a major role in discriminating the structure of a molecule
and in enumerating the isomers of alkanes. It was major
problem for chemists to predict the number of isomers of
any alkane on the basis of simple graphical constructions.
The enumeration of the chemical isomers, in particular
the constructional isomers of alkanes, has been treated as
the subject matter of a mathematical discipline known as
graph theory since the pioneering work by Cayley [21] and
Sylvester [123].

In graph theory, points (atoms) are generally referred
to as vertices and lines (bonds) are referred to as edges,
and the functionality of the atoms is called the “vertex de-
gree”. We consider only the connected graphs in which
every vertex has more than one neighbor, and no loops
or multiple edges are involved. A hydrocarbon molecule
can be represented as a tree graph G, in which a carbon
atom (or vertex) and a bond (or edge) are arbitrarily num-

Polymers, Non-linearity in, Figure 2
Representation of a nonlinear molecule a the ordinary graph; b the digraph; c the line graph. The line graph (c) is transformed from
the graph (a)

bered, and a digraph D, in which each edge of the graph G
is arbitrarily directed, as exemplified in Figs. 2a and 2b.
If the chemical graph is allowed to have a branch point
withmore than four degrees, the extended chemical graph,
which may be called the molecular graph, could be used
to describe the structural diversity in branched polymers
by offering quantitative descriptors, called topological in-
dices.

In graph theory, the algebraic expressions using sev-
eral matrices reflecting the connectivity in graphG [69] are
important devices for determining the topological feature
of graphs, and the algebraic properties of the characteristic
polynomials have been extensively examined. For graphG,
the adjacencymatrixA is the most fundamental matrix for
the representation of graphs [69] and it is defined in graph
theory as a square matrix with the following elements:

ai j D

(
1; if the vertexes i and j are adjacent,
0; otherwise.

(1)

The matrixA is often called a topological matrix [68]. The
order of A is identical with the total number of vertices
in G. The adjacency matrix A of G has been useful for
characterizing and encoding the skeletal structure of the
corresponding molecules.

The characteristic polynomial of a molecular graph
represents an important, even if not unique, molecular in-
variant. It is defined as

˚(A;) D Det jA � Ej ; (2)
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where E is a unit matrix of the same order as A. The list of
eigenvalues of a matrix calculated from the characteristic
polynomial is called the spectrum of the matrix which in-
cludes much quantitative information on topological na-
ture of the molecules.

Another matrix describing a graph is the incidence
matrix [70], which represents a linear mapping and deter-
mines the homology of the graph. The incidence matrix
B D (bi j) of a digraph D is defined by the following:

bi j D

8
<̂

:̂

C1; if edge j starts from vertex i ;
�1; if edge j terminates in vertex i ;
0; otherwise.

(3)

The incidence matrix may be constructed for any graph
having n vertices andm edges by setting up an n �m ma-
trix array; the rows and columns of the matrix then cor-
respond to the vertices and the edges of the digraph, re-
spectively. Also, the signless incidence matrix C D (ci j) of
an ordinary graph G can be defined and its elements are
the absolute values of those of B. Thus, the number 1 is in-
serted in the (i; j)th position in the array, if the jth edge is
coincident with the ith vertex and all the other entries in
the array are zeros.

Kirchhoff [75] discovered graphs while solving prob-
lems involving the calculation of currents in electrical net-
works where a connectivity matrix K D C>C was consid-
ered for admittance conductivity. The superscript “T” in-
dicates the transpose of a matrix and a vector. He found
the following formula relating the vertex adjacency matrix
to the incidence matrix for tree graphs:

AL D K � 2E ; (4)

where AL represents the adjacency matrix for the line
graph ofG. The line graph L(G) ofG is formed by replacing
the edges ofG by vertices in amanner such that the vertices
in L(G) are connected whenever the corresponding edges
in G are adjacent. The example of a line graph is shown in
Fig. 2c. Furthermore, a combination of (4) and (2) gives

˚(K;) D ˚(AL; � 2) : (5)

Consequently, the eigenvalues i of K of a graph can be
calculated from the eigenvalues �i of AL of its line graph;
i. e. i D �i C 2.

The topological analysis of graphs has widely been per-
formed by the Laplacian matrices being related to both the
adjacency and incidence matrices and they are defined by

L D V� A ; (6)

LC D VC A ; (7)

where V is a diagonal matrix whose entries are the vertex
degrees, LC is the signless Laplacian matrix [116,131], the
entries of which is the absolute values of the entries of L.
The Laplacian matrices can be represented using the inci-
dence matrices [24,130]

L D BB> ; (8)

LC D CC> : (9)

The Laplacian matrix L is in agreement with the Zimm
matrix Z which has been used for molecular dynamics of
linear as well as branched polymers [137,138]. The details
of the molecular dynamics are described in Sect. “Chain
Dynamics of Nonlinear Polymers”. In addition, one can
find the relation

˚(L;) D ˚(LC;) ; (10)

indicating that the eigenvalues of the signless matrix LC

are identical with those of the Laplacian matrix L. Fur-
thermore, comparing the characteristic polynomials of
LC D CC> and K D C>C, we can find the following re-
lation:

˚(LC;) D ˚(K;) : (11)

The eigenvalues of LC contain one zero eigenvalue and the
non-zero eigenvalues of LC are identical with those of K.

Another important invariant of amolecular graph is its
distance matrix D [70] which contains the shortest paths
(distances dij) between every pair of connected vertices.
The entries in the distance matrix are related to the entries
in powers of the adjacency matrix A.

A secular determinant giving the Hückel molecular
orbitals for the � electrons of an unsaturated hydro-
carbon is reduced to the same form as the determinant
of A [3,56,57]. In other words, the problem of the Hückel
orbital energies can be completely reduced to the eigen-
value problem of A. Thus, the spectrum of the matrix A
yields the energy levels of molecular orbitals.

One of the earliest graph invariants or topological in-
dices is known to mathematicians as the vertex number
and to chemists as the carbon number. The carbon num-
ber is an appropriate index only for linear chainmolecules;
however, it is not well suited to branchedmolecules, which
may have considerably different skeletal structures as com-
pared to one another even if they have the same num-
ber of carbon atoms. Because there exists many different
molecules with the same carbon number, the carbon num-
ber seems to be an index with low discriminating power.
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Apparently, it is necessary to develop other indices that
can effectively distinguish various types of isomers having
different branching structures.

The first topological index capable of characteriz-
ing the branchedness of molecules was proposed by
Wiener [133,134] to predict the boiling points of isomeric
alkanes. The Wiener index W, named by Platt [102,103],
is defined as the sum of the distances between any two car-
bon atoms in a hydrocarbon molecule:

W D
N�1X

iD1

i ki ; (12)

where ki stands for the total number of pairs of atoms
whose separation is i. Platt attempted to interpret this in-
dex that W1/3 is a sort of the mean molecular diame-
ter [103].

The Wiener index of a hydrocarbon molecule is like
the carbon number because it becomes generally larger
for molecules with higher molecular weights; however,
W also provides some measure of a molecule’s branch-
ing structure. Since Wiener devised it, several other re-
searchers found that the Wiener index correlated surpris-
ingly well with properties for certain types of hydrocarbon
molecules, as well as conjugated polymers [11,12,13,14,89,
90] such as heat capacity, viscosity, surface tension, refrac-
tive index and electron energy.

Hosoya [71] found thatW can also be obtained by the
half sum of the off-diagonal elements of a distance matrix
whose element dij is the number of edges for the shortest
path between the ith and jth vertices: this not only offers an
alternative method to determineW but also allows a par-
ticular extension ofW to cyclic structures. TheW is given
by

W D
1
2

NX

iD1

NX

jD1

di j ; (13)

where N is the total number of vertices. Rouvray exam-
ined the sum of the elements of the distance matrix, inde-
pendently and considered it as a topological index [111].
The fact that Rouvray’s index is equal to 2W was soon rec-
ognized. Bonchev et al. [15] studied the Wiener index of
any branched graph and succeeded in formulating struc-
tural features such as the branching point and the branch
length.

The Laplacian matrix is a real symmetric matrix. The
diagonalization of the Laplacian matrix for a graph G
with N vertices produces N real eigenvalues, 1 > 2
> : : : > N D 0, where the smallest eigenvalue is always
zero. Let a graph G be a tree; then, the Wiener index of the
tree can be obtained in terms of its Laplacian eigenvalues

as follows [91,95]:

W D N
N�1X

iD1

1
i
: (14)

In chemical graph theory, the distance matrix D ac-
counts for the bond interactions of atom in molecules.
However, these interactions decrease as the distance be-
tween atoms increases so that the research groups of Bal-
aban [73] and Trinajistić [104] respectively, proposed the
reciprocal distance matrix whose entries are given by d�1i j .
The reciprocal distance matrix enables the calculation of
a Wiener index analog, as the half sum of its entries:

H D
1
2

NX

iD1

NX

jD1

d�1i j : (15)

This index H is called the “Harary index”. Here we gener-
alize this index for its applicability to polymers as follows:

H" �
1
2

NX

iD1

NX

jD1

d�"i j : (16)

Clearly, one can findW D H�1 and H D H1.
Hosoya et al. [72] have introduced a topological in-

dex Z; in the case of acyclic molecules, Z is equal to the
sum of the absolute values of the polynomial coefficients of
the adjacency matrix and it was used to describe the boil-
ing points of various molecules. Recently, in a number of
papers, the problem of molecular branching was related
to the properties of the characteristic polynomial. Lovász
and Pelikán [85] have found that the maximal eigenvalue
of a tree graph is a fairly reliable measure of branching.

TheWiener index of a molecule is essentially based on
the topological concept of distance so that it can be rec-
ognized as a measure of the molecular size rather than
molecular shape and connectivity. Whereas Randić pro-
posed a different type of index which is based on the topo-
logical concept of degree. The Randić index [107], or the
connectivity index �, can be defined in terms of the atomic
contributions and relates also to the elements of the nor-
malized Laplace matrix. The vertex-connectivity index is
defined as

� D
1
2

NX

iD1

NX

jD1

(d(vi ) d(v j))�0:5 ; (17)

where d(vi ) is the degree of vertex i. Estrada [37] in-
troduced the edge-connectivity index on the basis of the
Randić index analog. These connectivity indices were
found to be surprisingly correlated with the density, solu-
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bility in water, molar volume, molar refractivity, and vari-
ous types of biological responses.

In this section we introduced typical topological in-
dices which have a possibility to be suited to branched
polymers. At present, the mathematical characterization
of molecules has led to a large number of molecular de-
scriptor, and their number continues to grow. These de-
scriptors, often referred to as topological indices, will play
an important role in structure-property and structure-ac-
tivity studies. However, the important task is to find the
physical meanings of these topological descriptors.

Ideal ChainModels

In this section, we deal with only the statistical proper-
ties of ideal polymer chains in the unperturbed state and
only short-rage interactions are considered. Flory pro-
posed that the polymer molecules in the molten state are
unperturbed as they are in a 	 solvent [42]. Small angle
neutron scattering data [39,64] support the Flory theorem.
An elegant explanation for the Flory theorem was given
by de Gennes [29]. Therefore, the concept of ideal chain
model plays a central role in analyzing the fundamental
topological feature of any branched polymer.

Let us consider the simple homologous series of nor-
mal alkane hydrocarbons designated as linear polyethyl-
enes. These polymers have a general structure where the
number of �CH2-units is connected by chemical single
bonds. Although chemical bonds are fairly rigid with re-
spect to stretching and to bending of the valence angles
between adjacent bonds, a single-polymer molecule has
many internal degrees of rotational freedom about each
C-C bond in the polyethylene molecule, resulting in that
it can adopt many different configurations, thereby neces-
sitating the use of statistical mechanics.

Here we consider three models of varying levels of
complexity and reality for flexible chains. The simplest
model is called the “Kramers chain” [81] by considering
the polymer to be composed of points or units that are
freely joined by bonds of a fixed length. For the random
flight chain the bond angles are fixed; however, there is free
rotation about the bonds. This is called the “Kirkwook–
Riseman chain” [76] (see Fig. 3a). The bond angle � of typ-
ical vinyl polymers is approximately 111:5ı and the bond
length is approximately 0.154 nm. More realistic models
include the hindered rotations about the bonds that form
the chain backbone, and they also possibly include the
steric hindrances which result in the interdependence of
the internal rotational degrees of freedom. Three types of
micro-conformations, i. e. one trans and two gauche states,
occur every C-C bond.

Polymers, Non-linearity in, Figure 3
Kirkwood–Riseman chain and a its equivalent chain model; b its
Gaussianmodel

Each conformation exists for only a very short time:
the observed proportions of the microconformations, and
thus the resultingmacroconformations, are temporal aver-
ages over all molecules, resulting in that the polymer chain
forms a random coil. Consider the end-to-end vector r
joining one end of the linear alkane chain to the other: the
average length of the alkane chain can be considered as an
indicator of the spreading out or the size of the polymer.
If the chain is made up of bonds labeled from numeral 1
through �, atoms labeled from 1 throughN, and if˛i is the
bond vector of the ith bond (i D 1; 2; 3; : : : ; �), we have

r D ˛1 C ˛2 C : : :C ˛� : (18)

It is apparent that we obtain the relation � D N � 1 for
any chain possessing no loops or rings. Since the average
value of r is zero, its average length can be obtained by
taking the square root of r2 D r � r:

˝
r2
˛
0 D �˛

2 C

�
2
XX

i> j

ri � r j
	
; (19)
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where the angular bracket indicates the average of the spa-
tial quantities, the subscript 0 signifies the 	 conditions,
and the double sum is over all pairs i < j. The end-to-
end distance is the spatial size of a linear chain, but it has
no significance for a branched chain. The square radius
of gyration hs2i and hydrodynamic Stokes radius rH are
an appropriate measure of the spatial size of linear and
branched coils or particles [119,120].

The square radius of gyration is the means of all po-
sition of atoms from the center of mass vector. The mean
square radius of gyration for unperturbed chains can be
derived from the Lagrange theorem [30,43,59]:

˝
s2
˛
0 D

1
2N2

NX

iD1

NX

jD1

˝
r2i j
˛

(20)

and the hydrodynamic radius or the Stokes radius of the
coil is obtained from the mean reciprocal distance:

˝
r�1H

˛
0 D

1
2N2

NX

iD1

NX

jD1

˝
jri jj�1

˛
; (21)

where ri j is the vector from atoms i to j.
In the random-flight Kramers model, the second term

on the right-hand side of (19) disappears. Therefore we
have
˝
r2
˛
0 D �˛

2 : (22)

It follows that the size of the polymer is proportional
to the square root of the bond number. The chain be-
haves as a ghost or phantom chain that can intersect or
cross itself freely and is often called the “Markov chain”.
Note that in the model ˛ is not always 0.154 nm, which
is the actual length of the C-C bond. Mathematically, the
possible maximum length of the freely joint chain is un-
doubtedly given by �˛ which corresponds to the contour
length rcont because it paces off the contour of the chain.
The contour length of a chain is given by geometry in an
all-trans conformation with a fixed bond angle � as rcont
D nCa sin(� /2) where a is 0.154 nm and nC is the num-
ber of C-C bonds. Thus the end-to-end distance of a fully
extended real chain should be the maximum length, �˛
of the straightly aligned Kramers chain. The value of ˛
may be the length of the virtual bond which is a projec-
tion of the real bonds onto the end-to-end vector. In this
case, the virtual bond length is given by ˛ D 0:254 nm and
� D nC/2 because a D 0:154 nm and � D 111:5ı.

The freely rotating chain is identical to the freely
joined chain in every respect, except that the angle between
two adjoining bonds is held fixed at a predetermined value.

In this Karkwood–Risemann chain (see Fig. 3a), (19) be-
comes

˝
r2
˛
0 D

�
1 � cos �
1C cos �

C
2 cos � [1 � (� cos �)�]

� (1C cos �)2

�
�˛2 :

(23)

In a more realistic model, the symmetric hindered rota-
tion model, the conformations of the bonds do not occur
with equal probability; however, they are determined by
a torsion angle-dependent potential function u(�), where
� D 0ı for the tarns state and � D ˙120ı for the gauche
state. At equilibrium, the bond conformations are dis-
tributed according to the Boltzmann distribution, and we
obtain

˝
r2
˛
0 D

�
1 � cos �
1C cos �

C
2 cos � [1 � (� cos �)�]

�(1C cos �)2

�

�

�
1 � hcos�i
1C hcos �i

�
�˛2 ; (24)

where the average value of hcos�i can be readily obtained
from the assumed potential energy function.

Consequently both these realistic models in the unper-
turbed state adapt to the same type of equation as
˝
r2
˛
0 D C�˛2 ; (25)

where C is called the characteristic ratio and depends on
the nature of the polymer. As is evident from (23) and (24),
the C is slightly dependent on the value � but C may be
considered to be constant for flexible polymers or large �.
The chain composed of � bonds of length ˛ can be re-
garded as a freely joined chain consisting of n “effective
bonds” of length b by taking b D C˛ and n D �/C. The
two parameters n and b are determined under the restric-
tion that the contour lengthmust be the same as that of the
real chain, i. e., �˛ D nb. Then, the end-to-end distance of
any unperturbed chain molecule can be renormalized as
˝
r2
˛
0 D nb2 : (26)

Such a coarse-graining polymer chain is often called the
equivalent chain. The effects of the chemical bulkiness
of units, the inclusions of double bonds and short chain
branches can be attributed to the parameter C. Thus,
a real flexible polymer may be effectively treated as a freely
jointed chain; i. e. Kramers chain, of n bonds with a length
of b, and the details of the chemical structure of real chains
can be smeared out (see Fig. 3a).

The equilibrium distribution function in freely joined
chains is assumed to be identical to the random walk. It
should be noted here that the random walk distribution
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is inconsistent with the equilibrium statistical mechan-
ics [52] but the differences are probably inconsequential
for large N . As described previously, a polymer chain can
take many different macroconformations above a molec-
ular glass temperature. This corresponds to the micro-
Brownian motion and the chains are rapidly converted
into other macroconformations. The instantaneous shape,
which is obtained by time-averaging over many confor-
mations, can be described by a Gaussian distribution for
large N . The distribution function W(bi ) of the vector bi
between adjacent units i and i C 1 can be defined either
as the time-averaged incidence of bi within the specified
range for a given molecule or as the average incidence for
an ensemble of many identical units subject to identical
conditions:

W(bi ) D
�

3
2�hb2i

�3/2
exp

 

�
3b2i
2hb2i

!

; (27)

where hb2i is the time-averaged square bond length. Let
the position vector of the ith effective unit be ri . Then,
the distribution of the effective bond vector bi D riC1 � ri
is given by a Gaussian distribution function (27); hence
the probability distribution of the set of position vectors
frig D fr1; : : : ; rNg is proportional to

P(frig) D
�

3
2�hb2i

�3/2
exp

 

�
3

2hb2i

N�1X

iD1

(riC1 � ri )2
!

:

(28)

The equilibrium state of this chain is described by
a distribution function proportional to exp(�V /kBT),
where V is the potential energy, kB is the Boltzmann con-
stant and T is the absolute temperature; therefore, if we
choose

V D
1
2
k

N�1X

iD1

(riC1 � ri)2 ; (29)

where k D 3kBT/hb2i, then the chain’s equilibrium dis-
tribution is given by (28). Consequently, the Gaussian
chain can be modeled as a chain of beads connected by
aHookean spring with a spring constant k of (29) as shown
in Fig. 3b. In the model, if the square root of hb2i is iden-
tical to the effective bond length b, hb2i1/2 D b, then the
end-to-end distance of Gaussian chain may be identical
to the value given by (26). In this case, the spring of the
Gaussian chain is called the “segment” (see Fig. 3b). The
Gaussian chain plays a central role in the study of chain
dynamics [17,110,137]. The applicability of the Gaussian
chain model to any type of branched polymers was soon

attempted [22,23,32,67,79,138]. The length of any bond
and the angles between the bonds are insignificant because
a connection between segments, rather than the precise
nature of the connection of atoms, is important in topo-
logical analysis for flexible polymers.

Chain Statistics of Nonlinear Polymers

One of the quantitative measures that reflect molecular
branching is the average size of isolated single branched
polymers. The expansion in the space of isolated branched
polymers is smaller than that of linear chains with the
same molecular weight. As shown in the previous sec-
tion, we can treat any flexible polymer as a random-flight
chain model which can be regarded as a molecular graph
composed of N � 1 statistical bonds (edges) of a length b
joining N points (vertices) of unit mass. The quality b is
the segment length and it depends on the conformational
characteristics of the polymer species.

When the branched chains obey random-flight statis-
tics, the average of the scalar product extending over
all sets of bond vectors bi is given by hbi � b ji D b2ıi j
where ıij is the Kronecker delta function. Thus, the mean
square of ri j becomes

˝
r2i j
˛
D
X

i; j

b2 D di j b2 ; (30)

because the number of bonds between the ith and jth bead
is identical to the graph-theoretical distance dij. Then,
combination of (13) and (20) with (30) yields

˝
s2
˛
0 D

�
b
N

�2
W : (31)

This is a graph-theoretical expression for the mean square
radius of gyration for any unperturbed random-flight
chain [96,132]. The radius of branched chains becomes
proportional toW1/2N�1.

As a measure of branching, Zimm–Stockmayer pro-
posed a parameter g [139] which is defined by the ra-
tio of hs2i for a given branched chain to that for the
linear chain at the same number of statistical units. Con-
sequently, the g-factor is equal to the Wiener index nor-
malized by the Wiener index of linear chain proposed by
Bonchev et al. [9,10]:

g D

˝
s2
˛
0˝

s2
˛L
0

D
W
WL

; (32)

where the superscript L indicates the linear chain. The
Wiener index of linear chains WL can be easily evaluated



6842 P Polymers, Non-linearity in

by substituting the relation ki D N � i into (12):

WL D

N�1X

iD1

i (N � i) D
1
6
N
�
N2 � 1


: (33)

Substituting (33) into Eq. (31) yields the equation
of hs2i of linear chains, which was first derived by
Kramers [31,81,112]. Substitution of (33) into (32) results
in that the g-factor of any branched polymer can be repre-
sented by theWiener indexW and the number of beadsN:

g D 6
W

N(N2 � 1)
Š 6N�3W : (34)

Here we present the graph theoretical expressions of
typical types of branched random-flight chains to evalu-
ate their mean square radius of gyration according to the
mathematical procedure by Bonchev–Trinajstić [15]. The
branched chains are here classified into two types: one is
a type of a non-linear chain with a fixed type of branching:
referred to as a “specifically branched chain”, and the other
is an unfixed type of branching: referred to as a “randomly
branched chain”.

Specifically Branched Chains

Let us consider a chain with any specified branching
geometry in which various linear side chains are arbi-
trarily connected with a linear main chain. Bonchev–
Trinajstić [15] showed that the Wiener index is given by
the sum of the total path number between any two beads in
the main chain,Wch, that between any two beads in a com-
mon side chain,Wbr, that between a bead in themain chain
and a bead in a side chain,Wch–br and that between a bead
in a side chain and a bead in another side chain,Wbr–br.

Polymers, Non-linearity in, Figure 4
The molecular graph of a specifically branched chain with linear branches

The molecular graph of such a specifically branched
chain is illustrated in Fig. 4, in which N0 is the total num-
ber of beads in the main chain and the beads are labeled
with the numerals 1 through N0; p is the total number
of branched beads; mk is the label numeral of the kth
branched bead, where k enumerates the branched beads
(1 � k � p); nk is the total number of branches connected
with the labeled beadmk; and Nk; j is the number of beads
in the jth branch, where j enumerates the branches at-
tached to the bead mk. Then, the Wiener index of graphs
with linear branches is given by

W D Wch CWbr CWch–br CWbr–br ; (35)

where

Wch D
1
6
N0
�
N2
0 � 1


; (36)

Wbr D

pX

kD1

2

4
nkX

jD1

1
6
Nk; j

�
N2

k; j � 1

3

5 ; (37)

Wch–br D

pX

kD1

nkX

jD1

1
2
Nk; j

h�
N0 � mk C 1

2

C
�
m2

k � 1

C N0 Nk;i

i
; (38)

Wbr–br D

pX

kD1

2

4
nk�1X

iD1

nkX

jD1Ci

Nk;i Nk; j

�

�Nk;i C Nk; j

2
C 1

�
3

5
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C

p�1X

kD1

pX

lD1Ck

2

4
nlX

iD1

nkX

jD1

Nl ;i Nk; j

�

�Nl ;i C Nk; j

2
C 1C ml � mk

�
3

5 :

(39)

Here the total number of beads N becomes

N D N0 C

pX

kD1

nkX

iD1

Nk;i : (40)

The first term on the right-hand side of (39) is the sum
of the path number extending over all pairs of branches
connected with a common branched bead and the sec-
ond term is the sum extending over all pairs of branches
connected with different branched beads. Thus, the first
term vanishes for tri-functional comb-shaped molecules
and the second term vanishes for star-shaped molecules.

Explicit expressions for the mean square radius of
gyration hs2i0 or the g-factor can be obtained by the
substitution of (35)–(39) into (31) or (34). Furthermore,
the present formula from (36) to (39) for specifically
branched chains with linear branches can be recursively
extended to include more complicated types of specifi-
cally branched chains having any branched branches as
well as reduced to simplified types of specifically branched
chains. The changes in the Wiener index due to the link-
age of two graphs are formulated in general by Polansky
et al. [105,106].

Here we exemplify the expressions for the Wiener in-
dices of two specifically branched chains that are of great
interest in practical use, that is, star-shaped and tri-func-
tional comb-shaped chains.

Setting p D 1 in from (36) to (39), we obtain the
Wiener index of stars:

WStar D
1
6
N0
�
N2
0 � 1


C

n1X

jD1

1
6
N1; j

�
N2
1; j � 1



C
1
2

n1X

jD1

N1; j

h
(N0 C 2 � m1) (N0 C 1 � m1)

C (m1 � 1) (m1 C 2)C N0 (N1; j � 1)
i

C

n1�1X

iD1

n1X

jD1Ci

N1;i N1; j

�
N1;i C N1; j

2
C 1

�
:

(41)

Likewise, setting nk D 1 in (36)–(39), we obtain that of
combs:

WComb D
1
6
N0
�
N2
0 � 1


C

pX

kD1

1
6
Nk;1

�
N2

k;1 � 1


C
1
2

pX

kD1

Nk;1

h
(N0 C 2 � mk) (N0 C 1 � mk )

C (mk � 1) (mk C 2)C N0 (Nk;1 � 1)
i

C

p�1X

kD1

pX

jD1Ck

Nl ;1 Nk;1

�
Nl ;1 C Nk;1

2

C 1C ml � mk

�
:

(42)

The topological method gives the results numerically
identical with that calculated by usual statistical meth-
ods [5,99]. Advantages in the formulation based on the
Wiener index are that the mean square radius of gyration
or the g-factor not only can be evaluated in the homol-
ogous process but also can be expressed as a function of
topological parameters such as the position of branches
and the length of main or side chains. For example, let us
consider a simple specifically branched chain with one lin-
ear side chain, the so-called Y-shaped chain. The Wiener
index of the Y-shaped chain WY can be readily evaluated
from (41) or (42). The g-factor of Y-shaped chain gY can
be expressed as a function of the position of branch point
or the length of branches.

gY D
6N1;1

N (N2 � 1)

h
(m1�1)2�(N0�1) (m1�1)

i
C1; (43)

where N1;1 is the number of beads in the branch, N0 is
the number of beads in the main chain, N D N1;1 C N0,
andm1 is the position of branched bead on themain chain.
When N1;1 and N0 are fixed and discrete, m1 is trans-
formed into continuous m1 because of the large N0 and g
becomes a quadratic function of the branch positionm1 in
which g has the minimum atm1DN0/2. Likewise, whenN
and m1 are fixed, g becomes another quadratic function
of N0 or N1;1 and has a minimum at N0 D (N C m1)/2
or N1;1 D (N � m1)/2.

Block copolymers [126] have also been given much at-
tention to offer the potential for obtaining materials that
incorporate the properties of different homopolymers and
for improving the compatibility of the immiscible poly-
mer blends and the interfacial adhesion in polymeric com-
posites. Recent techniques of living anionic copolymer-
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ization [66] make it possible to produce various compli-
cated nonlinear copolymers such as graft copolymers with
the different chemical nature of the backbone [117,118]
and the attached branches and the miktoarm (�-star), or
heteroarm star polymers consisting of chemically differ-
ent arms [65]. The graph-theoretical expressions for linear
block copolymers has been studied by Yang [136].

The nonlinear copolymer thus considered is a chain
consisting of branch units with edge bond length b at-
tached to the backbone chain with edge length a. The
length of edge of backbone and branches is different so
that the path number can be determined on the basis of
the concept of Altenburg polynomial [1]. The path num-
ber of the nonlinear graph can be obtained

˝ch D
1
6
N0
�
N2
0 � 1


a2 ; (44)

˝br D

pX

kD1

2

4
nkX

jD1

1
6
Nk; j

�
N2

k; j � 1

b2
3

5 ; (45)

˝ch–br D

pX

kD1

nkX

jD1

1
2
Nk; j

hn�
N0 � mk C 1

2

C
�
m2

k � 1
o

a2 C N0 Nk;i b2
i
; (46)

˝br–br D

pX

kD1

2

4
nk�1X

iD1

nkX

jD1Ci

Nk;i Nk; j

�Nk;i CNk; j

2
C1
�
b2

C a2
3

5C
p�1X

kD1

pX

lD1Ck

2

4
nlX

iD1

nkX

jD1

Nl ;i Nk; j

�

��Nl ;i CNk; j

2

�
b2 C

�
1C ml � mk


a2
�
3

5 :

(47)

The total path number statistically weighted by a and b be-
comes ˝ D ˝ch C˝br C˝ch–br C˝br–br and the mean
square radius of gyration for any nonlinear copolymers is
given by hs2i D ˝/N2. Of course (44)–(47) of ˝ are re-
duced to (36)–(39) of the Wiener index W for branched
homopolymers when a D b D 1.

Randomly Branched Chains

Any real polymeric material will have a distribution in
chain lengths, number and position of branches, and
so on, depending on polymerization and/or fractiona-
tion; the actual polymers may be a mixture of such iso-
mers. For the proceeding to such actual polymers, Zimm–

Stockmayer [139] investigated the ensemble of random
mixture of structural isomers, in which it was assumed that
the total number of beads (or molecular weight) and the
number of subchains per chain are fixed but all possible
arrangements of subchains of various lengths occur with
equal frequency. Here the term “subchain” refers to a por-
tion of the molecule between two adjacent branched beads
or between adjacents pair of an end and a branched bead.

An example of a randomly branched chain is shown
in Fig. 5a. Let nk be the number of the beads within the
kth subchain, then the total number of beads is given by
N D n1 C n2 C : : :C np where p is the total number of
subchains per molecule. Let us consider the g-factor of
randomly branched chains with a random distribution
of nk which is defined such that all possible sets of the
numbers, (n1; n2; : : : ; np), occur with equal frequency un-
der the restriction that N is fixed. Then the g-factor of the
randomly branched chains can be expressed as a function
of a set of (n1; n2; : : : ; np). Consequently the g-factor of
any branched chain can be determined by averaging the g
value over all arrangements of nk under the fixed N and p
as follows

ḡ D Av[g]

D

Z N

0
dnp�1

Z N�np�1

0
dnp�2 : : :

Z N�
p�1P

kD1
nk

0
dn1 g(n1; n2; : : : ; np)

Z N

0
dnp�1

Z N�np�1

0
dnp�2 : : :

Z N�
p�1P

kD1
nk

0
dn1

:

(48)

According to Kataoka and Saito [83,135], the g-factor can
be expressed using the total number of subchains p as

ḡ D
6

p (pC 1) (pC 2)

 

p2 C
X

(˛;ˇ )

�˛ˇ

!

; (49)

where �˛ˇ represents the number of subchains lying be-
tween the specified subchains ˛ and ˇ, and

P
(˛;ˇ ) is the

sum extending over all distinguishable pairs of subchains.
According to Nitta [96], the g-factor of any randomly

branched chain can be estimated from theWiener index!
of its reduced graph in which subchains are transformed
into single edges of unit length and both junctions and
ends into vertices of unit mass, as shown in Fig. 5b. Thus,

ḡ D Av[g] D Av
�
W
WL

�
D

!

!L
; (50)
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Polymers, Non-linearity in, Figure 5
A randomly branched molecule and its reduced molecular graph in which branched and end beads are transformed to uniform
vertices and subchains are transformed to uniform edges

where !L is the Wiener index of a linear graph with the
same number of edges which can be readily evaluated
from (33) by setting N D pC 1. Thus,

!L D
p (pC 1) (pC 2)

6
: (51)

Moreover, since WL may be considered to be constant for
the averaging process in (48), the average Wiener index
can be readily obtained as follows:

W̄ D Av[W] D Av[g]WL D
N (N C 1) (N C 2)
p (pC 1) (pC 2)

!: (52)

Consequently, the mean Wiener index of any randomly
branched chain can be calculated by the total number of
subchains p, the total number of beads N, and the Wiener
index! of the corresponding reduced graphwhere all sub-
chains are transformed into single edges (see Fig. 5b). This
indicates that themathematical difficulty involvedwith the
treatment of highly branched molecules is largely reduced

by the use of the Wiener index. The reduced graph corre-
sponds to the proper graph, which contains only two types
of vertices-terminal and branched ones, as introduced by
Bonchev et al. [10]. Specific cases of randomly branched
chains are exemplified below.

In the case of “star” chains, the Wiener index can be
evaluated from (41) by putting N1;i D 1, N0 D 3, m1D 2
and n1 D q � 2:

!S D q2 : (53)

In the case of the “comb” type chains, we obtain

!C D
1
12
�
q3 C 9q2 � qC 3


(54)

by substituting the relations that Nk;1 D 1, mk D k C 1,
p D (q � 1)/2, and N0 D (qC 3)/2 into (42). Of course,
these equations are identical with the results derived from
Kurata and Fukatsu’s statistical treatments [83]. Gutman
et al. [62,63] presented the formula for theWiener index of
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regular dendrimer graphs of three and four degrees. The
more generalized Wiener index for a regular dendrimer
graph of degree f is given by

!D(n; f ) D
f

( f � 2)3
h˚
n f 2� 2(1C n) f C 1

�
( f � 1)2n

C 2 f ( f � 1)n � 1
i
; (55)

where n is the generation number.

Intrinsic Viscosity and Hydrodynamic Radius

The most precise and direct experimental method for
characterizing chain architecture is through the measure-
ment of dilute solution properties. The most useful mea-
sure of branching is the Zimm–Stockmayer ratio g of the
radius of gyration of the branched polymer to that of the
linear polymer at the same molecular weight as shown
in (32). Other commonly employed branching parameters
are the ratio of the intrinsic viscosity g0 [138] and the ra-
tio of hydrodynamic radius h [120] for branched polymers
to the linear ones, respectively. The non-free draining in-
trinsic viscosity of suspended spheres with hydrodynamic
radius was given by Einstein as

[�]ND D
5
2

�
NA

M

�
4
3
� r3H ; (56)

where M is the molecular weight and NA is Avogadro’s
number.

According to (21), the mean reciprocal hydrodynamic
radius r�1H can be calculated from the mean reciprocal
of ri j given by [59,120]

˝
jri jj�1

˛
D

�
6
�

�1/2
d�1/2i j b�1 : (57)

Using the generalizedHarary index (16) with " D 1/2, one
obtains the reciprocal hydrodynamic radius given by

˝
r�1H

˛
0 D

1
bN2

�
6
�

�1/2
H1/2 (58)

and its branching factor can then be written as

h D
hrHi�10

hrHiL
�1

0

D
HL

1/2
H1/2

; (59)

where the superscript L represents the linear chain. In the
non-draining condition, we have g0 D h3. Consequently
the hydrodynamic radius and the branching parameter h
or g0 can be evaluated from the distance matrix.

Assuming that the Stokes radius rH is proportional to
the square root of the mean-square radius of gyration with
proportional constant �

rH D �
�
6
˝
s2
˛1/2
D �

�
b
N

�
(6W)1/2 : (60)

Consequently the intrinsic viscosity in the non-draining
condition is also related to the Wiener index. Conse-
quently we have [44]

[�]ND D
5
2
˚

�
6
˝
s2
˛3/2

N
D

5
2
˚

b3

N4 (6W)3/2 ; (61)

where˚ D (NA/M0) 4/3��3 andM0 is the molar mass of
the unit, i. e. M0 D M/N.

Chain Dynamics of Nonlinear Polymers

As mentioned before, Gaussian chains have played a cen-
tral role on the statistics and dynamics of flexible chain
molecules with and without branching [8,53,78,100].
According to the central limit theorem in statistical
physics [59], the random-flight statistics of a flexible
polymer can be described by a Gaussian chain which is
mathematically simpler to handle [47]. Rouse [110] and
Bueche [17] demonstrated that the dynamics of dilute so-
lutions of linear polymers can be characterized by con-
sidering a Gaussian chain suspended in a flowing vis-
cous liquid. Subsequently, the extension of this model to
any branched molecule was made by Ham [67]. In fact,
the Rouse model provides a good description for semi-
dilute solutions and for melts below the entanglement
limit rather than dilute solutions [38]. The mathemati-
cal representation of graph theory is helpful to generalize
the statistics and dynamics of Gaussian chains to include
any type of branching [36,45,46,136]. In this section, we
present a graph-theoretical method for calculating the re-
laxation spectra of flexible chain molecules with any type
of branching. The significance of this approach lies in pro-
viding the relationship between the statistics and the dy-
namics of chain molecules being reformulated into a more
convenient algebraic form.

Rouse–Ham Theory

Branched Gaussian chains containing no loops or circles
contains N beads and N � 1 segments acting as Hookean
springs with spring constant of 3kBT/b2 as shown in (29).
The laws, which govern the behavior of linear flexible
chain, are assumed to hold for nonlinear flexible polymers.
Considering a Gaussian chain suspended in a flow liquid,
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one finds the motion equation given by [101]

� �0 ṙ D
3kBT
b2

Z � r ; (62)

where r is a 3 � N matrix whose rows contain the dimen-
sional component of the N position vectors of beads, ṙ
is the time derivative of r, �0 is the friction constant of
the beads, and Z is the N � N connectivity matrix which
is called the Zimm matrix in polymer physics [137] and
is identical to the Laplacian matrix L (D V� A) in graph
theory. According to Rouse theory [110], one can rewrite
(62) in terms of bond vectors b as

� �0 ḃ D
3kBT
b2

R � b ; (63)

where b is a 3 � (N � 1) matrix whose rows contain the di-
mensional component of the N � 1 bond vectors. Thema-
trix R is the (N � 1) � (N � 1) connectivity matrix which
is called the Rouse matrix [110]. Comparing the charac-
teristic polynomials of Z and R, we can find the following
relation:

˚(Z;) D ˚(R;) : (64)

The eigenvalues of Z contain one zero eigenvalue and,
hence, Z do not possess an ordinary inverse. (64) shows
that the non-zero eigenvalues of Z are identical with those
of R. The springs and beads are assigned in any arbitrary
fashion. The eigenvalues of Z and R are, however, inde-
pendent of how their elements are numbered [46,51,94].
Also, this relation (64) corresponds to the relation (11).

The zero eigenvalue of Z represents the mode of chain
translation [61]. Each eigenvalue i (i D 1; 2; : : : ;N � 1)
of R or non-zero eigenvalue of Z is associated with the re-
laxation times � i of the ith mode for dynamic molecular
motions [46,51]:

2�i D
�0 b2

3kBT
�1i : (65)

According to the theory of linear viscoelasticity, the relax-
ation time spectrum, H(�), is given by

H(�) D
ckBT
N

N�1X

iD1

ı(ln � � ln �i ) ; (66)

where c is the concentration of beads per unit volume
and ı(x) is a Dirac delta function. Various rheological
functions describing the bulk properties of polymers can
be determined using the relaxation spectrum H(�).

The Zimmmatrix Z or the Rouse matrix R can also be
constructed in a different manner by making use of the in-
cident matrix of a digraph D. Forsman [46] showed that Z
and R are given by the incidence matrix B of D:

Z D BB> and R D B>B : (67)

It should be here noted that all elements of a connectivity
matrix K formed by C>C are the absolute values of those
of R. Combination of the relations (10), (11), (64), Z D L
gives

˚(R;) D ˚(K;) : (68)

Furthermore from the Kirchhoff’s relation (4), we have

˚(R;) D ˚(AL; � 2) : (69)

Consequently, the eigenvalues i of R can be calculated
from the eigenvalues�i of AL as follows:

i D �i C 2 : (70)

Remembering (65), we have

�i D
�0b2

6kBT
(�i C 2)�1 : (71)

It is interesting to note that the relaxation spectrum of
a chain molecule can be determined entirely by the set of
eigenvalues of the adjacency matrix AL of its line graph.

According to Forsman [46], the square radius of gyra-
tion is given by s2 D N�1 b> � F � b where F is called the
Kramers matrix and it is equal to the inverse of R. When
the chains obey random-flight statistics, the mean square
of radius of gyration can be related to the reciprocal of
eigenvalues of R and we have

˝
s2
˛
0 D

b2

N
Tr
�
R�1


D

b2

N

N�1X

iD1

1
i
D

b2

N

N�1X

iD1

1
�i C 2

;

(72)

where Tr denotes the trace of a matrix. The mean radius of
gyration is related to the sum of the reciprocal eigenvalues
of Rousematrix so that it largely depends on theminimum
eigenvalue of R or the second smallest one of L. This cor-
responds to Mohar’s suggestion that the second smallest
one of L is related to the diameter and mean distance in
a graph [94].

Comparing (72) and (31) gives

W D N Tr
�
R�1


D N

N�1X

iD1

1
i
D N

N�1X

iD1

1
�i C 2

: (73)
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Moreover, a combination of (65) and (73) gives a relation
between the Wiener index and relaxation times:

W D
6NkBT
�b2

N�1X

iD1

�i : (74)

This may be a physical meaning of the Wiener index. The
steady-state viscosity in a dilute solution can be obtained
from the relaxation time spectrum (66):

� D �s C c
NA

M
kBT

N�1X

iD1

�i : (75)

Consequently, the intrinsic viscosity in the freely draining
condition can be written as

[�]FD D
NA

M�s
kBT

N�1X

iD1

�i ; (76)

which turns out to be proportional to the mean square of
the radius of gyration:

[�]FD D
NA�

6M0�s

˝
s2
˛
D

NA�b2

6M0�sN2 W ; (77)

where �s is the viscosity of pure solvent. It can be shown
that the intrinsic viscosity in freely draining conditions is
proportional toW/N2 for branched chains and to the first
power of N for linear chains. (77) may be referred to as
“Staudinger’s relation”. This suggests that the Wiener in-
dex of any polymer molecule can be evaluated from the
steady-flow viscosity of dilute solution in the freely drain-
ing condition.

The non free-draining intrinsic viscosity �ND as shown
in (61) is proportional to W3/2/N4. Zimm and Kilb [138]
introduced a branching parameter g0 defined as the ra-
tio of [�] of a branched polymer to that of a linear poly-
mer in the 	 condition. Therefore, we have g0 D g1:0 for
the freely draining condition and g0 D g1:5 for the non-
draining condition. For various branched polymers, how-
ever, measured exponents fall between 0.5 and 2.0, and
they are strongly dependent on solvents and molecular
weight [82,125].

Sheridan et al. [114] examined the relation between
the intrinsic viscosity and the Wiener index for hyper-
branched polymers. According to their computer simula-
tions, they found the relation [�] � WaNb where a D 1:0
and b D �2:2 which is similar to the result of (77) in the
freely draining condition.

High Moments of Relaxation Time
and Radius of Gyration

The potential energy of the chain molecule given by (29)
can be rewritten as

V D
1
2
k Tr

h
r � r>

i
: (78)

Fixman [40] derived that the distribution function of the
square radius of gyration s2 as follows:

P
�
s2

/

Z
ı


s2 � N�1 Tr

h
r � r>

i�
e�V /kBT : (79)

In order to obtain the higher moments of radius of gyra-
tion hs2ni, we introduces a Laplace transform of P(s2) with
respect to s2 according to Eichinger’s treatment [35]. Then
we obtain

L
�
P
�
s2
�
D

Z 1

0
e�zs

2
P
�
s2

ds2 D '(z)�3/2 (80)

and

'(z) D Det jEC �zR�1j (81)

where � D 2b2/(3N). The Laplace transform of P(s2), i. e.,
the generating function of P(s2), provides the average
he�zs2 i and, therefore, the average of the powers of s2 can
be computed by making use of the expansion in the form
of a power series in z. Thus we have

˝
s2n
˛
0 D (�1)n

@n

@zn
'(z)�3/2

ˇ̌
ˇ
ˇ
z!0

: (82)

Since we have Det jRj D N for any tree graph, (81) can be
rewritten as

'(z) D
1
N

Det jRC �z Ej D
1
N
˚(R;��z) : (83)

Using (4) and (68), we have

'(z) D
1
N

Det jALC (�zC2)Ej D
1
N
˚(AL;��z�2) :

(84)

It was shown that the characteristic polynomial of the line
graph gives the general equation for calculating the radius
of gyration of a Gaussian chain with any type of branch-
ing [97].

According to Eichinger’s mathematical treatments
[35], we showed the relation between eigenvalues of the
matrix R and the moments of the radius of gyration: ex-
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pansion of (83) and comparing the coefficients of z give
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The above formulas also yield the relation between vis-
coelasticity and chain dimensions through the Rouse ma-
trix.

The significance of the present graph-theoretical ap-
proach is to provide the general equations for the relax-
ation spectrum and the radius of gyration of any tree-like
chain. In particular, it is noteworthy that the mathemat-
ical method has the potential to provide an algorithmic
method of calculating high-order moments of the radius
of gyration and the relaxation time for any tree-like chain.
These values can hardly be calculated from the usual statis-
tical methods because of a great difficulty in enumerating
the distribution function.

The characteristic function (81) can be rewritten in
terms of the N � 1 eigenvalues of the Rouse matrix as [35]

'(z) D
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: (87)

Making use of the relation
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the sums of the reciprocal powers of the eigenvalues are
easily determined from the following equation:
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Using (65), we have
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The coefficient of z in the characteristic function (81)
can be related to a topological index such as the Wiener
index of the molecular graph G, i. e., a total sum of the ele-
ments of its distance matrix, which is potentially useful in
the correlation of molecular topology to thermodynamic
properties for alkanes. Therefore, any high-order coeffi-
cient in (81) for a tree-like graph, or any coefficient of the
characteristic polynomial for its line graph, has the poten-
tial to be a new topological index. From the coefficients,
we can define the high-ordered Wiener indices as

Wk � (k � 1)!
�
2
3

�k�1
Nk

N�1X

iD1

�
1
i

�k
: (91)

One can easily see that the first index W1 becomes the
originalW. For example, the second and third Wiener in-
dices, W2 and W3, can be used for calculating the higher
moments of radius of gyration and mechanical relax-
ation spectrum of branched chains. The second and third
Wiener indices provide the fourth and sixth moments of
radius of gyration.
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Applications

In this section, the relationship between the characteristic
polynomial and themechanical relaxation spectra is exam-
ined. Then the zero-shear-rate viscosity �0 and the steady-
state compliance J 0e [38], a measure of the elastic energy
stored under steady flow, are
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so that these basic rheological functions can be rewritten
using the Wiener indices as

�0 D
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(95)
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Thus, the rheological properties can be calculated from
the distance matrix of the corresponding tree-graph. This
is a very important result because we can realize the ef-
fects of the branching feature such as the branch length,
branch number, and branch position on these rheologi-
cal behaviors. In addition, the intrinsic dynamic moduli of
storage [G0] and loss [G00] can be obtained by using the
following relations [129]:

�
G0
�
D

N�1X

iD1

!2 �2i

1C !2 �2i
;

�
G00
�
D

N�1X

iD1

! �i

1C !2 �2i
; (96)

where the ! is the frequency of strain oscillation.
It is possible to obtain the relaxation spectra

through (71) from the eigenvalues of the adjacency matrix
of its line graph. Calculations of relaxation spectra were ex-
emplified for a linear, Y-shape star, comb, and dendrimer
with a fixed vertex number of N D 94 in Fig. 6. The cor-
responding frequency dependences of [G0] and [G00] are
plotted in Fig. 7 with the reduced variables. As seen in
these figures, the low frequency slopes of [G0] and [G00]

Polymers, Non-linearity in, Figure 6
Relaxation spectra of linear, Y-star, comb, and dendrimer chains with a fixed vertex number of 94

are 2 and 1 on the logarithmic plot as expected for any lin-
ear polymer liquid but the higher frequency slope of [G0]
for the dendrimer was found to be larger than the 1/2 of
the linear chain. It is evident that the comb and Y-star are
almost intermediate between the linear and the dendrimer.
In the flow region, ! ! 0, [G0] and [G00] is going to !2�R
and !�R as is obvious from (96) where �R is the highest
relaxation time or Rouse time. The Rouse time �R can be
estimated from the smallest eigenvalue of K or R or the
second smallest one of LC or Z. The order of �R was in
linear > comb > Y-star > dendrimer.

Future Directions

The formulation of conformational statistics and dynam-
ics due to the graph-theoretical expressions is based on
the fact that the random-flight model and/or Gaussian
chainmodelmay be characterized by the so-calledMarkov
nature such that the mean-square radius is proportional
to the number of bonds in the chain in the unperturbed
state without excluded volume. However, the Markov na-
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Polymers, Non-linearity in, Figure 7
Logarithmic plot of reduced intrinsic moduli [G0] and [G00] against !�R for linear, comb, star, and dendrimer chains with N D 94,
where �R is the maximum relaxation time in Rouse dynamics

ture breaks down for real short chains and semiflexible
or stiff chains [135]. This non-Markov nature arises from
a sort of stiffness or static rigidity, as introduced by the
constraints on the internal degrees of freedom such as
fixed bond lengths, fixed bond angles, and hindered in-
ternal rotations. In other words, the Wiener index re-
flecting the radius of gyration based on the Markov na-
ture can be considered to be an appropriate measure of
molecular size and viscosity of flexible polymers rather
than small molecules. For the study of such problems,
the graph-theoretical studies for nonlinear non-Markov
chains will play a central role in presenting the more useful
devices and descriptors not only for semi-flexible chains
and liquid crystalline polymers [98,135] but also for small
molecules. The modification on the original bead-spring
(Gaussian) chain or Markov chain model for nonlinear
chains is to include the ‘excluded volume effect’ [129] be-
cause a substantial increase in the density of structural
units close to branching point causes a stronger excluded-
volume effects in comparison with other regions of the
chain [25]. Regarding such theoretical difficulties inher-
ent to branched structures, simulation work as well as the
statistic-based methods such as renormalizing group the-
ory [113] and self-avoiding random work (SAW) proce-
dure [77] will be a very powerful tool in the study of this
type of branched polymers [48]. Furthermore, the combi-
nation with the graph-theoretical formulation will make it
possible to find key parameters expressing the nature and
degree of branching, which inevitably makes the mathe-
matics more complicated.

The chain entanglements play an important role in the
melt viscosity and rheological properties [54]. The extend
of the theoretical framework for entanglements presented

by de Gennes [27,28] and Doi–Edwards [33] to branched
polymers could be important for understanding the rheo-
logical properties of various branched polymers. Bonchev
et al. [16] propose the topological descriptors of coarse-
graining polymer graphs obtained by regarding the sin-
gle edge as entanglement length. In particular the discrete
mathematics such as graph theory and knot theory [121]
seems to be important in the deeply understanding of the
interplay between the entanglement and branching effects.

In addition, the effects of molecular weight distri-
bution will be also the inevitable problems in industrial
polymer products [4,92]. In random branching and hy-
perbranching processes the polydispersity index increases
with the molecular weight [18,119]. The shape and width
of themolar mass distribution curve remain extremely im-
portant also for branched polymers and markedly affect
the melt properties of the polymers [86,87]. The concept
of “forest” in graph theory will be appropriate to this prob-
lem.

Throughout this article, we have demonstrated that the
graph-theoretical approach provides a topological insight
into the nonlinearity in polymer architecture. This article
deals with only the flexible polymers containing no loops
nor rings are treated because of the lack of sufficient data
on the statistics and dynamics of nonlinear chains with
loops and rings. Thus, the problems of the dynamics and
statistics of a tree-shaped molecule, which are very impor-
tant for practical applications, were found to be completely
reduced to the problem of the eigen-polynominal of the
chain graph. This suggests that various ideas and concepts
thus obtained from graph theory can be applied directly
to the topological analysis for architecture in nonlinear
polymers. For example, advantages in the formulation due
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to the topological invariants are that the conformational
statistics and dynamics of any branched polymer not only
can be simply and universally evaluated, but also can be
expressed as a function of topological parameters such as
the position of branches and the length of main or side
chains.

In conclusion, polymer chemistry would need a sense
of the mathematical chemistry defined by Trinajistić–
Gutman [128]: “Mathematical chemistry is part of theoreti-
cal chemistry which is concerned with applications of math-
ematical methods to the chemical problems.”. The topolog-
ical descriptor widely used in polymer chemistry is the
molecular weight or the degree of polymerization which
seems to be an index with low discriminating power and
appropriate only to linear chain molecules. The author
believes that the topological sense resulting from discrete
mathematics such as graph theory provides powerful de-
vises for leading to the quantitative structure-property and
structure-activity relationships in the respectable form.
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Glossary

B-splines Nd is the uniform B-spline of order d based
on integer knot sequence. It is a function of piecewise
polynomial of degree d � 1 and smoothness d � 2.
Trigonometric B-splines Td will also be used.

Box splines B`;m;n is a box spline of degree `CmCn�2
on three direction mesh. Bk;`;m;n is a box spline of de-
gree k C `C mC n � 2 on four direction mesh. They
are bivariate piecewise polynomial functions of certain
smoothness dependent on integers k; `;m; n.

Filter A filter is a sequence of real numbers. For exam-
ple, a FIR filter is a finite sequence of real numbers. An
IIR filter is a sequence of real numbers whose discrete
Fourier transform is a rational function in z D ei! .

Filter process A filter process is to convolute a digital sig-
nal with a filter, converting an input digital signal to
an output digital signal. A subband coding scheme is
a synthetic filter process which convert an input signal
to several output signals.

Image compression A procedure to use less bytes of in-
formation to represent the same image (within toler-
ance). That is, for an image of size 512 � 512 and stan-
dard integer gray level [0, 255], the image needs a file of
512 � 512 � 8 bytes to store in a computer or to be sent
over the internet. If one can use a file of some bytes less
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than 512 � 512 � 8 to represent this image (storage or
transmission), then the file is a compressed image.

Image denoise A procedure to remove noises from
a noised image to make the image sharper and clearer.

Image edge detection A procedure to find features, skele-
ton or segmentation of images.

L2 spaces A space of all square integrable functions.
Mask Amask is a finite sequence of real numbers. Amask

polynomial is the discrete Fourier transform of a mask.
Sometimes, a mask polynomial is also called the sym-
bol of a mask.

MRA MRA stands for multi-resolution approximation
(of a L2 space).

Wavelet A function or a group of functions which can
generate a basis for Hilbert space by its transla-
tions and dilations is called wavelet. Many general-
ized versions of wavelets will be discussed includ-
ing orthonormal wavelets, biorthogonal wavelets, pre-
wavelets, wavelet frames, multi-wavelets, q-dilated
wavelets, multivariate nonseparable wavelets.

Introduction

Wavelets are one or a few functions whose integer transla-
tions and dilations can generate a basis for a Hilbert space.
The concept of wavelets was introduced in the 1980’s and
has since been generalized and extended in many direc-
tions. The theory and applications have been continuously
developed. One of its significant features is that it provides
a systematical approach for designing various filters and
filter banks for signal and image processing. Another fea-
ture is that wavelets leads to the theory of multi-resolution
approximation (MRA). Wavelets and MRA have found
many applications in most areas of science and technol-
ogy, e. g., astronomy, electric engineering, fuzzy logic, geo-
science, medical imaging, physics, and statistics. Wavelets
have become an important subject in applied mathemat-
ics, approximation theory, numerical analysis and har-
monic analysis.

In this article we present only the discrete wavelet
transform, omitting the discussion of continuous wavelet
transform. We shall describe various kinds of wavelets,
outline their construction, and present some examples. To
simplify the study of the regularity properties of wavelets,
we restrict our discussion to primarily those wavelets
whose construction is based on the well-known refin-
able functions, B-splines and box splines whose regular-
ity is fully understood. Additionally, some wavelets with-
out smoothness will be given as examples. Also, we shall
describe the concepts of filters, filter banks, filtering pro-
cesses, and their connection to wavelets. For the pur-

pose of applications, only finite impulse response filters
and realizable infinite impulse response filters (some ra-
tional filters) can be implemented. Thus, we shall restrict
our attention to compactly supported wavelet functions
with the exception of those associated to stable ratio-
nal filters. All globally supported wavelet functions such
as Meyer’s wavelet, Battle–Lemarie’s wavelets, Shannon’s
wavelets, and Freeden’s spherical wavelets will not be
mentioned further in this article. Also we only discuss
real-valued wavelets although there are complex-valued
wavelets available in the literature.

For applications of wavelets, we will consider three ap-
plications in image processing. Other applications in sig-
nal processing, in solution of integral equations and partial
differential equations, in subdivision algorithms for curves
and surfaces, and in statistics, have to be omitted due to the
space and time limitation.

Definition of Wavelets

Let us start with a well-known Hilbert space, L2(R), the
space of all square integrable functions onR. That is,

L2(R) D

8
<

:
f :

1Z

�1

j f (x)j2dx < C1

9
=

;
:

A function  2 L2(R) is a wavelet if the integer transla-
tions and dilations

 jk(x) :D 2 j/2 (2 j x � k) ; j; k 2 Z (1)

of  form a basis for L2(R). That is, these j;k are linearly
independent, and any function f 2 L2(R) can be repre-
sented as a linear combination of  jk .

It is clear that such a function is useful for computation
since one only needs to store one function  in computer
to represent any function in L2(R). In particular, a com-
pactly supported wavelet  is more appropriate for the
evaluation of any f represented in terms of these  jk .

There are many kinds of wavelet functions. When
these  jk are orthonormal, i. e.,

1Z

�1

 j;k(x) m;n(x)dx D
�

1 ; if j D m ; k D n
0 ; otherwise

(2)

 is called orthonormal wavelet.
Let Wj D spanf jk ; k 2 Zg for each j. When Wj is

orthogonal to Wm for m 6D j while the integer translates
 jk ; k 2 Z may not be orthonormal to each other,  is
called prewavelet or semi-orthonormal wavelet.
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Since  jk ; j; k 2 Z form a basis, for each f 2 L2(R)

f D
X

j;k2Z

c jk jk

for some coefficients c jk . Suppose that there are two posi-
tive constants A and B such that

A
X

j;k2Z

jc jk j2 �

�
���
��

X

j;k2Z

c jk jk

�
���
��

2

2

� B
X

j;k2Z

jc jk j2

for all coefficients cjk. Then  is called Riesz wavelet.
Suppose that there exists another function e 2 L2(R)

associated with  such that
1Z

�1

 j;k(x)e m;n(x)dx D
�

1 ; if j D m and k D n
0 ; otherwise

for j; k;m; n 2 Z, where e jk (x) D 2 j/2e (2 j x � k). Sup-
pose that both  and e are Riesz wavelets. Then  is
called biorthogonal wavelet and e is a dual of  . In this
case,

f D
X

j;k2Z

h f ;e jki jk D
X

j;k2Z

h f ;  jkie jk

for all f 2 L2(R), where

h f ; gi D
1Z

�1

f (x)g(x)dx

is the standard inner product in L2(R). Clearly, when
e D  ,  is an orthonormal wavelet.

Furthermore, let us now assume that  jk ; j; k 2 Z,
form a redundant basis for L2(R) in the sense that any
function f 2 L2(R) can be expressed by these  jk in the
following sense

f D
X

j;k2Z

c jk jk ;

where these  jk may not be linearly independent and cjk
not unique. We say that these  jk form a tight wavelet
frame if

X

j;k2Z

jh f ;  jkij
2 D k f k2

for all f 2 L2(R), where k f k2 :D h f ; f i.
Next, let us consider a Sobolev space Hk(R) consist-

ing of all functions f whose derivatives up to k > 0 are in
L2(R). That is,

Hk(R) D f f : f (r) 2 L2(R); r D 0; : : : ; kg ;

where f (r) denotes the rth derivative of f . Certainly, if we
replace L2(R) by a Sobolev space Hk(R) above, we will get
corresponding Sobolev wavelets. In particular, if we let  
be a function in Hk(R) and  jk defined as in (1), and if

h jk ;  mnik D

�
1; if j D m and k D n
0; otherwise ;

then is called orthonormal Sobolev wavelet. Here h f ; gik
stands for the inner product in Hk(R) defined by

h f ; gik D
kX

rD0

h f (r); g(r)i

for all f ; g 2 Hk(R). Similarly we can define biorthogonal
wavelets in Sobolev spaces (cf. [3,4,41]).

Furthermore, we can generalize the concepts of
wavelets in several directions. If we consider the d-dimen-
sional Euclidean spaceRd with d > 1, then all of the above
concepts for various wavelets can be defined in L2(Rd ) or
in Hk(Rd ) accordingly. These concepts will be explained
in detail in later sections.

Another direction of generalization is to consider
a group of wavelet functions. Let � be a function vector
of finite length r > 1. That is,

� D [ 1; : : : ;  r]T :

For example, � contains a symmetric function  1, anti-
symmetric function  2, a sufficiently smooth function  3
and a discontinuous function  4. In fact, a wavelet vector
� consisting of functions of various shapes and properties
is very useful to represent any function f 2 L2(R).

A new direction of generalization is to consider a dila-
tion factor s > 2. That is, we define

 s; j;k(x) D s j/2 (s jx � k); j; k 2 Z :

In this case, one wavelet function is usually not enough.
For example, when s D 3 we will need 2 wavelet functions.

The above two generalizations lead to the following
concept of multi-wavelets. Let �s; j;k be the kth transla-
tion and jth dilation of� with integer dilation factor s � 2.
That is,

�s; j;k D [s j/2 1(s jx � k); : : : ; s j/2 r(2 j x � k)]T :

Suppose that any function f 2 L2(R) can be expressed by
using the entries of �s; j;k , i. e., there exist coefficient vec-
tors c j;k of length r such that

f D
X

j;k2Z

cTj;k�s; j;k :
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Suppose that we have

1Z

�1

�s; j;k (x)�s;m;n(x)Tdx D Itı jmıkn

with Ir being the identity matrix of size r � r and ı jm
being the Kronecker delta, i. e., ı jm D 1 if j D m and
ı jm D 0 otherwise. Then� is called an orthonormal multi-
wavelet. Other concepts of wavelets can be generalized in
this multi-wavelet setting as well. We leave the discussion
to later sections.

Yet, another direction of generalization is to consider
wavelet functions over a bounded domain. Let ˝ � Rd

be a bounded domain, e. g., ˝ D [0; 1] when d D 1. One
would like to have locally supported wavelet functions
over˝ .

Definition of Filters

We begin with the following basic concepts in signal pro-
cessing. A continuous-time signal, or sometimes called an
analog signal, u(t), is a piecewise continuous function of
the time variable t, where t ranges from �1 to 1. It is
called a band-limited signal if

u(t) D
!0Z

�!0

�(!)ei! t d! (3)

for a function �(!) in L1(�!0; !0), where !0 is a positive
number. Certainly we shall consider only signals u(t) of
finite energy, i. e.,

1Z

�1

ju(t)j2 <1 :

In mathematical language, we shall restrict ourselves to
functions in L2(R). If a band-limited analog signal u(t)
happens to be in L1(R), the space of all absolutely inte-
grable functions over R, then the Fourier transform of
u(t), defined by

bu(!) D
1Z

�1

u(t)e�i! tdt

is given by

bu(!) D
�

2��(!); for � !0 � ! � !0
0; otherwise :

The Fourier transform takes u(t) defined on the time do-
main to bu(!) defined on the frequency domain. Here,

! will be reserved for the frequency variable and i for the
pure imaginary number

p
�1. The length of the small-

est subinterval of (�!0; !0) outside which �(!) vanishes
identically is called the bandwidth of u(t). Hence, the
bandwidth of u(t) as defined in (3) does not exceed 2!0.
That is, the signal u(t) contains no frequency higher than
!0
	

cycles per second.
Any analog signal u(t) can be converted to a discrete-

time signal un (n D : : : ;�1; 0; 1; : : :) by first sampling u(t)
periodically with sampling time t0 > 0 and then quantiz-
ing by rounding off the values of u(nt0).

It is important to note, however, that if the sampling
time t0 is not chosen small enough, then the analog signal
would not be well represented. For a band-limited analog
signal, the following famous result gives us a guide-line for
choosing t0.

Theorem 1 (Shannon’s Sampling Theorem) Let u(t) be
a band-limited analog signal in L2(�1;1) with band-
width 2!0, and let

0 < t0 �
�

!0
:

Then u(t), �1 < t <1, can be recovered from its values
u(nt0); n D : : : ;�1; 0; 1; : : :, by using the formula

u(t) D
1X

nD�1
u(nt0)

sin�(t/t0 � n)
�(t/t0 � n)

;

where the convergence is uniform in t 2 (�1;1).

Of course, most analog signals are not band-limited. How-
ever, we have the following result:

Theorem 2 (Plancherel’s Theorem) There is a linear
isometry � of L2(R) onto L2(R) which is uniquely deter-
mined by the requirement that

� f D
1
p
2�

1Z

�1

f (t)e�i! tdt

for every function f 2 L2(R) \ L1(R) such that for every
f ; g 2 L2(R),

1Z

�1

f (t)g(t)dt D
1Z

�1

� f (!)� g(!)d! :

By the above theorem, if u(t) is in L2(R) and has
a Fourier transform (e. g., its frequency can be seen or
measured), then its Fourier transform û(!) is in L2(R). If
u(t) 2 L2(R) \ L1(R), thenbu(!) is a continuous function
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on (�1;1). Thus, û(!) decays to 0 as ! tends to ˙1,
andbu(!) can be approximated by the truncated functions

�b(!) D
� 1

2	 û(!) for � b < ! < b
0; otherwise ;

and this in turn implies that u(t) can be approximated by
the band-limited signals

ub(t) D
bZ

�b

�b(!)e j! t d! ;

where b 2 (0;1) is usually determined by some practical
criteria.

Next we introduce the z-transform of a digital signal
fun : n 2 Zg by

Z(fung) D
X

n2Z

unz�n

for z D rei! for some 0 < r <1, where un D u(nt0) for
a band-limited signal with bandwidth 2�/t0. Sometimes,
it is called the discrete Fourier transform when r D 1.

The connection between an analog signal u(t) in the
frequency domain and its digital signal fu(nt0)g in the fre-
quency domain is the following

Theorem 3 Suppose that u(t) 2 L1(�1;1) and its
Fourier transform û of u is in L1(�1;1). Then

U�(!) D
X

n
u(nt0)e j!nt0 D

1
t0

X

n
bu
�
2n�
t0
� !

�

where t0 > 0 is a sampling time.

This can be verified by using the well-known Poisson’s
summation formula (cf. [8]).

With the above knowledge of analog and digital sig-
nals, let us explain filters and filtering process. Although
a digital filter is a (linear or nonlinear) transformation
that takes any digital signal fung, called an input signal, to
a digital signal fvng, called the corresponding output sig-
nal, we are only interest in those filters which are stable,
time-invariant, and linear filters. Such a filter is uniquely
determined by a sequence of complex numbers

: : : ; h�2; h�1; h0; h1; h2; : : :

with
P

n2Z jhn j <1 and by the filtering process defined
by convolution:

fvng D fhng  fung with vn D
1X

jD�1

hjun� j : (4)

By using the z-transform to both sides of the equation
above, a digital filter is associated with a transfer function
H(z) such that

Z(fvng) D H(z)Z(fung)

with H(z) D
P

n2Z hnz�n .
For example, a filter such that for any input signal

fung, an output signal fvng is obtained as defined by

vn D
1
k

kX

iD1

un�i

is an example of moving average filter. As another exam-
ple, a filter which takes input signal fung and output a dig-
ital signal fvng with vn D u�n for all n is called a mirror
filter. And as another example, a transfer function H(z)
satisfying jH(z)j2 C jH(�z)j2 D 1 is called conjugate fil-
ter.

If fhng is a finite sequence (i. e. only finitely many
hn ¤ 0), it is called a finite impulse response (FIR) digital
filter. If infinitely many hn are nonzero, the filter is called
an infinite impulse response (IIR) digital filter.

An FIR digital filter is easy to implement. For example,
if hj; j D 0; : : : ;N are only nonzero, then

vn D
NX

jD0

hjun� j D h0un C : : :C hNun�N ; 8n 2 Z :

Of course the operations described above can be consid-
ered as a weighted averagewith weights h0; : : : ; hN , an FIR
filter is also called amoving average (MA) digital filter.

On the other hand, an IIR digital filter cannot be im-
plemented in the same manner, simply because it is not
possible to implement infinitely many scalar multiplica-
tions except for those filters whose z-transform is a ra-
tional function in z. That is, we will see that a rational
function H(z) indeed provides a realizable IIR digital fil-
ter. Suppose that

H(z) D
a0 C a1z�1 C : : :C aMz�M

1 � b1z�1 � : : : � bNz�N
;

where a0; : : : ; aM , b1; : : : ; bN are complex numbers and
M, N are nonnegative integers. In terms of z-transform,
we may write

 

1 �
NX

nD1

bnz�n
! 

1X

nD0

vnz�n
!

D

 MX

nD0

anz�n
! 

1X

nD0

unz�n
!

:
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Comparing with the coefficients from both sides of the
above equation, we obtain

vn �
NX

jD1

bjvn� j D

MX

jD0

a jun� j

or

vn D
MX

jD0

a jun� j C

NX

jD1

bjvn� j :

Observe that the filtered outputs vn�j , j D 1; : : : ;N, are
used again to give the output vn. This shows that a rational
transfer function provides a realizable digital filter.

However, an important question is that this filter must
be stable, i. e., it transforms any bounded input digital sig-
nal to a bounded output digital signal. The following result
provides a criterion (cf. [8]).

Theorem 4 (Stability Criterion for IIR Causal Digital
Filters) An IIR digital filter with transfer function H(z)
is stable if and only if all the poles of the rational function
H(z) lie in the open unit disk jzj < 1.

Since any FIR filter is stable, more FIR filters than realiz-
able IIR filters have been designed in practice.

The most important role that the transfer function
H(z) of a digital filter plays is to decide what frequencies
to pass and what frequencies to stop. In practice, a whole
range of frequencies must be filtered. For instance, if we
wish to stop all frequencies ! in the range a < ! < b and
pass those frequencies ! in the range c < ! < d, (where
the intervals (a; b) and (c; d) lie in (0; �) and do not over-
lap), then we require

H�(!) D
�

0; for a < ! < b
1; for c < ! < d :

The intervals (a, b) and (c, d) are called the stopband and
passband of the digital filter, respectively. See Figs. 1 and 2

Unfortunately, any ideal amplitude filter characteristic
jH�I (!)j which has a stopband (consisting of at least one
interval) can not have a causal representation nor be an
FIR filter. Thus we have to use FIR or realizable IIR filters
to approximate the ideal filters H�I (!). There are many
ways to do such approximation. Wavelets are one of the
modern approaches.

Subband coding is a good example of digital filtering
application in signal processing. In Fig. 3, a subband cod-
ing scheme is shown, where H denotes the filterH which
is convoluted with input signal fsng. G , Hı , and Gı

denote filters similarly. 2 # denotes a downsampling by

Popular Wavelet Families and Filters and Their Use, Figure 1
Ideal low–pass filter

Popular Wavelet Families and Filters and Their Use, Figure 2
Ideal band–pass filter

Popular Wavelet Families and Filters and Their Use, Figure 3
A subband coding schematic

2 of an input signal. That is, retain every even indexed sam-
ple values and delete every odd indexed sample values of
an input digital signal. And 2 " denotes a upsampling by
2 of an input signal. That is, insert zero between every sam-
ple values of input signal.

L
stands for a simple addition

of two input digital signals.
A typical subband coding involves filtering a broad-

band signal into two frequency bands (high-pass and
lower-pass bands) so that the resulting subbands can be in-
dependently encoded for transmission. The encoders can
be optimized to the statistics of the input signal, and made
to give preferential coding weight to signal components in
the parts of the spectrum that are perceptually most signif-
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icant. The received signals are decoded and the subband
components recombined to give an output signal which,
for a given bit rate, is subjectively better than an equivalent
broad-band waveform encoded signal. Idealy, s̃n D snCk
for all n by using four filters H;G;Hı, and Gı, where k is
a certain time delay. This is called a perfect reconstruc-
tion. For application purposes, we say those four filters
realize a perfect reconstruction if S(z) D S̃(z), where S(z)
and S̃(z) denote the z-transform of fsng and fs̃ng.

Let X1(z); X2(z);Y1(z);Y2(z); S1(z); and S2(z) denote
the z-transform of digital signals fx1ng, fx2ng, fy1ng, fy2ng,
fs1ng, and fs2ng, respectively. Write

H(z) D
X

k

hkzk and Hı(z) D
X

k

hıkz
k

and

G(z) D
X

k

gkzk and Gı(z) D
X

k

gık z
k :

Then X1(z) D H(z)S(z) and X2(z) D G(z)S(z). After
down-sampling by 2,

s1n D
X

k

hk�2nsk and s2n D
X

k

gk�2nsk :

In terms of z-transform,

S1(z2) D
1
2
(X1(z)C X1(�z)) and

S2(z2) D
1
2
(X2(z)C X2(�z)) :

The received signal, after decoding, is up-sampled by 2 by
inserting a zero valued sample between each received sam-
ple. That is,

y1n D
�

s1n/2; if n is even
0; if n is odd

and

y2n D
�

s2n/2; if n is even
0; if n is odd :

Or, Y1(z) D S1(z2) and Y2(z) D S2(z2). Then the two
subbands are filtered by Hı and Gı, respectively and are
added into an output signal fs̃ng. That is,

S̃(z) D Hı(z)Y1(z)C Gı(z)Y2(z):

Equivalently,

s̃n D
X

k

hı2k�ns
1
k C gı2k�ns

2
k ;8n :

It can be easily seen that

S̃(z) D
1
2
[Hı(z)H(z)C Gı(z)G(z)]S(z)

C
1
2
[Hı(z)H(�z)C Gı(z)G(�z)]S(�z) :

Thus, in order to achieve the perfect reconstruction, we
need to choose H;G;Hı, and Gı such that S̃(z) D S(z).
In terms of those four filters, we need to have

�
Hı(z)H(z)C Gı(z)G(z) D 2
Hı(z)H(�z)C Gı(z)G(�z) D 0 : (5)

Hence, the above set of equations in (5) is called the perfect
reconstruction condition.

Example 1 If G(z) D H(�z), Hı(z) D H(z), and
Gı(z) D �H(�z), then the second equation of the above
system can be easily seen to satisfy. The first equation
becomes

(H(z))2 C (H(�z))2 D 2 :

Such a group of four filters is called a Quadrature Mirror
Filter Bank. It is not easy to obtain such a bank of four
filters. In practice, one designs filters so that

ˇ̌
(H(z))2 C (H(�z))2 � 2

ˇ̌
� 0 :

Example 2 Consider G(z) D zH(�z). Choosing Hı(z) D
H(z) andGı(z) D G(z) with z D e�i! , we have those four
filters satisfied the second equation of the system (5) above.
The first equation becomes

jH(z)j2 C jH(�z)j2 D 2 :

Such a group of four filters is called a Conjugate Quadra-
ture Filter Bank. In later sections we shall use wavelets to
give many examples of such a bank of filters.

In the above, we have discussed a simple subband splitting.
Certainly, we can further split each of bandpass signals be-
fore the encoder and transmission in the above diagram.
If we split only low-pass signal in the above diagram and
keep the high-pass signal unsplitted, we get a nonuniform
subband split. In this way, we shall obtain a wavelet de-
composition of a signal if we use the filters associated with
a wavelet. If we split both low- and high-pass signal fur-
ther, we obtain a wavelet packet decomposition (cf. [91]).

It is easy to see that the concepts of filters, filtering pro-
cess, subband coding scheme, and perfect reconstruction
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have counterparts for multi-dimensional signals, e. g., 2D
images (cf., e. g., [90]).

Multi-ResolutionAnalysis

A simple example of orthonormal wavelet is Haar wavelet
 defined by

 (x) D

8
<

:

1; if x 2 [0; 1/2)
�1; if x 2 [1/2; 1)
0; otherwise :

It is easy to check that  jk(x) D 2 j/2 (2 j x � k) are or-
thonormal and are dense in L2(R).

To construct a wavelet with more smoothness than
that of the Haar wavelet we need a concept called mul-
tiresolution approximation of L2(R). It is natural to let
Wj D spanf j;k ; k 2 Zg and Vj D

S
�1<i� j Wj for all

j 2 Z. We can easily see that Vj � VjC1. In fact, we have
VjC1 D f f (2x � k);8 f 2 Vj ; k 2 Zg. Suppose that V0 is
spanned by translates of one function � , i. e.,

V0 D span

(
X

k2Z

ck�(x � k); ck 2 R

)

:

Then since V0 � V1, we have

�(x) D
X

k2Z

pk�(2x � k) (6)

which is called dilation equation and � is called refinable
function or scaling function. In particular, if � is also or-
thonormal in the sense that

1Z

�1

�(x)�(x � k)dx D ı0k ; 8k 2 Z ; (7)

then � is called father wavelet. In this case, a wavelet
function  , sometimes called mother wavelet can be
found directly as follows. Since V1 D V0 ˚W0, let
W0 D spanf

P
k2Z dk (x � k); dk 2 Rg. If we can find

a function  2 V1 which is orthonormal toV0 and integer
translates of  are orthonormal, then  can be shown to
be an orthonormal wavelet. Indeed, we can easily see that
 jk 2 VjC1. To see  jk are orthonormal, let us consider
the inner product of  jk and  mn . Without loss of gener-
ality, let us assume that j < m. Then  jk is in VjC1 � Vm
and  mn 2 Vm which is orthonormal to VjC1 and hence,
they are orthogonal to each other. Once Vj; j 2 Z, are
dense in L2(R), it immediately follows that  is an or-
thonormal wavelet.

In order to find such a function  2 V1, we take
Fourier transform of Eq. (6) to get

b�(!) D P(!/2)b�(!/2) ; (8)

where P(!) D 1
2
P

k2Z pke�i k! . Using Parseval’s equal-
ity to Eq. (7), we have

ı0k D
1
2�

1Z

�1

jb�(!)j2e�i k! d!

D
1
2�

	Z

�	

X

n2Z

jb�(! C 2n�)j2e�i k! d! :

It follows that

Theorem 5 � is orthonormal if and only if
X

n2Z

jb�(! C 2n�)j2 D 1 :

In terms of (8), we have

jP(!)j2 C jP(! C �)j2 D 1 : (9)

Since  2 V1, let us write  (x) D
P

k2Z qk�(2x � k).
In terms of Fourier transform, we have b (!) D

Q(!/2)b�(!/2). The analysis similar to the above shows
that if  (x � k); k 2 Z are orthonormal to each other,
then

jQ(!)j2 C jQ(! C �)j2 D 1 :

Also, a similar analysis of
R1
�1  (x)�(x � k)dx D 0 for

all k 2 Z implies that

P(!)Q(!)C P(! C �)Q(! C �) D 0 :

That is, the matrix
�

P(!) P(! C �)
Q(!) Q(! C �)

�

is a unitary matrix which is a necessary condition for
 to be orthonormal. The solution of Q is trivial and
it is Q(!) D ei!P(! C �). We remark here that after
multiplying them by

p
2, the four Laurent polynomials

P(!); P(! C �), Q(!), and Q(! C �) form a conjugate
quadrature filter bank (see Example 2 in the previous sec-
tion).

The above discussion explains an excellent approach to
construct wavelet functions.We can summarize as follows.
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Theorem 6 (Multiresolution Approximation) Let
Vj ; j 2 Z be a nested sequence of subspaces of L2(R). That
is, Vj � VjC1;8 j 2 Z. Suppose that

S
j2Z Vj is dense in

L2(R) and
T

j2Z D f0g. If there exists a scaling or refinable
function � 2 V0 whose integer translates span V0 such that
there exist positive constants A and B

A �
X

k2Z

jb�(! C 2k�)j2 � B ;

then there exists an orthonormal wavelet function  2 V1
such that f jk ; j; k 2 Zg is an orthonormal basis for L2(R).

A proof of this result is provided in [70]. We now ex-
plain the usefulness when a nested sequence fVj ; j 2 Zg
forms a multiresolution approximation of L2(R). To ap-
proximate a function f 2 L2(R), we can use functions in
Vj for some integer j. If functions in Vj can not approx-
imate f very well, we look for functions in the next level
VjC1 to approximate f by adding functions inWj. We can
continue to add functions inWjC1;WjC2; : : : to get better
and better approximation of f . Thus we can build several
levels of approximations of f . In other word, f can be ap-
proximated in different resolutions.

When A 6D B in Theorem 6,  is not in general com-
pactly supported. To obtain a compactly supported or-
thonormal wavelet, we have to study the properties of
� to satisfy the necessary and sufficient condition in The-
orem 5 There are several equivalent conditions which can
be found in [24].We shall discuss the construction of com-
pactly supported orthonormal wavelets as well as other
wavelet functions in later sections.

Wavelet Decomposition and Reconstruction

Suppose that we have a compactly supported refin-
able function � 2 L2(R) which generates an MRA of
L2(R). Let Vj D spanf� j;k ; k 2 Zg for all j 2 Z and
Wj be the the orthogonal complement of Vj in VjC1,
where � jk D 2 j/2�(2 jx � k) as usual. Also let  2W0
be a wavelet function which spans W0 in the sense that
W0 D spanf (x � k);8k 2 Zg and

A �
X

k2Z

jb (! C 2k�)j2 � B

for two positive constants A and B. Because V0 � V1;
W0 � V1 and V1 D V0 CW0, we have the following de-
composition and reconstruction sequences:

�(x) D
X

k2Z

pk21/2�(2x � k)

 (x) D
X

k2Z

qk21/2�(2x � k)
(10)

and

21/2�(2x�k) D
X

j2Z

(a2 j�k�(x� j)Cb2 j�k (x� j)); (11)

where only finitely many pk ; qk ; a j; bj are nonzero.
Let f 2 L2(R) be a band-limited signal as explained in

Sect. “Definition of Filters”. We first approximate f by the
MRA generated by � at a fine level. That is,

Aj f (x) D
X

k2Z

s j;k� jk(x) ;

for some coefficients s j;k . For example, when � is or-
thonormal, we may use orthogonal projection,

s j;k :D h f ; � jki :

As another example, we may choose s j;k D f (k/2 j) to be
the digital samples of f if j is sufficiently large such that
1/2 j < �/!0, where !0 is the the half of the bandwidth of
f . All we need is to make sure that Aj f converges to f in
L2(R) as j �!1. Now we can decompose Aj f into

Aj�1 f D
X

k2Z

s j�1;k� j�1;k 2 Vj�1

and

Dj�1 f D
X

k2Z

d j�1;k j�1;k 2Wj�1

by using (11) with

s j�1;k D
X

m2Z

s j;ma2k�m

dj�1;k D
X

m2Z

s j;mb2k�m :

Note that the digital signal fs j�1;kg is computed from
fs j;kg by first convolution with a digital filter fakg and
then downsampling by 2. Similar for fdj�1;kg. We can cer-
tainly continue such a decomposition step. That is, we get
Aj f ;Aj�1 f ; : : : ;Aj�` f and Dj�1 f ;Dj�2 f ; : : : ;Dj�` f
for some ` � 1.

On the other hand, we can reconstruct Aj f back from
these Aj�` f ;Dj�`;Dj�`C1; : : : ;Dj�1 f . Indeed, let us say
` D 1. Then

Aj�1 f D
X

k2Z

s j�1;k� j�1;k D
X

k2Z

s j�1;k
X

m2Z

pm�2k� j;m

D
X

m2Z

X

k2Z

s j�1;k pm�2k� j;m :
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Similar for Dj�1 f . Thus, Aj f D Aj�1 f C Dj�1 f implies
that

s j;m D
X

k2Z

s j�1;k pm�2k C
X

k2Z

d j�1;k qm�2k :

In terms of signal processing, the digital signal fs j;kg is
obtained from fs j�1;kg and fdj�1;kg by first upsampling
fs j�1;kg by 2 then convoluting with digital filter fpkg,
secondly upsampling fdj�1;kg by 2 and convoluting with
fqkg, and finally adding the resulting signals together.

The above decomposition/reconstruction procedures
are exactly the same as the well-known subband coding of
signals described in Sect. “Definition of Filters”. It is clear
that the decomposition/reconstruction can be generalized
to deal with 2D signals. In other words, 2D images can be
decomposed and reconstructed in the same fashion. This
decomposition and reconstruction process is very pop-
ular in applications such as image/signal denoising, im-
age/signal feature extraction, and image/signal compres-
sion. A less popular, but useful idea to use wavelets is to
detect singularities from signal by examining the wavelet
coefficients Dj�1 f ; : : : ;Dj�` f . Another less popular, but
useful, method is to use wavelets to build more accurate
solutions. That is, if we have Aj f and if we compute Dj f
from f directly, then we can build up AjC1 f by letting
AjC1 f D Aj f C Dj f . In particular, when Dj f may be
computed using the same expense as Aj f , AjC1 f can be
done in parallel to achieve the efficiency.

Refinable Functions

As we saw in the previous section, we need a refinable
function � to build a multiresolution approximation of
L2(R). That is, we want to have

b�(!) D P(!/2)b�(!/2)

for some Laurant polynomial function P(!). Fortunately,
there are many known functions satisfying the above dila-
tion relation. Fix any integer n � 1 and let

cNn(!) D
�
1 � ei!

i!

�n

: (12)

This is the well-known uniform B-spline function of
order n over integer knot sequence f0; 1; : : : ; ng. Since
1 � ei! D (1C ei!/2)(1 � ei!/2), this Nn is refinable with
P(!) D (1C ei!)n/2n . See [6] and [84] for the properties
of B-splines.

To construct other refinable functions, we have to
study what kinds of sequence fpk ; k 2 Zg such that

P(!) D
P

k2Z pkei k! can generate a refinable function �
in the following sense:

b�(!) D P(!/2)b�(!/2) D : : : D
1Y

jD1

P(!/2 j)b�(0) :

It follows that P(0) must be equal to 1 in order that the
above infinite product converges. When P(0) D 1 and
P(!) is a Laurent polynomial in the sense that only finitely
many pk are nonzero,b�(!) is a continuous function. Fur-
thermore, the distribution � is compactly supported by us-
ing Paley–Wiener’s Theorem. It turns out that the condi-
tion (9) ensures thatb� belongs to L2(R) (cf. [70]). Hence,
when P(0) D 1, P(!) is a Laurent polynomial, and P(!)
satisfies (9), � is a compactly supported function in L2(R).
We still need to check if � satisfies the necessary and suf-
ficient condition for orthonormality in Theorem 5. There
is an example that P satisfies the above mentioned three
properties, but P is not orthonormal (cf. [24]).

If � is orthonormal, we can use the constructive pro-
cedure in Sect. “Definition of Filters”, that is, Theorem 6
to find the associated wavelet function. This constitutes
a powerful method of construction of univariate orthonor-
mal wavelets. All the construction of various wavelets are
based this idea and started with the construction of refin-
able functions.

Once we have wavelets, we would like to know the
smoothness property of the wavelets. Clearly, the smooth-
ness of � determines the smoothness of the associ-
ated wavelet function. In terms of Fourier transform,
� 2 Hk(R) if and only if

1Z

�1

(1C j!j2)k jb�(!)j2 d! < C1

for some k > 0. Thus, b� needs a decay factor
O(j!j�(kC1)). One way to get it is to use the Fourier
transform of B-spline of degree k (or order k C 1). Using
this factor,

b�(!) D
�
1 � ei!

i!

�kC1
e�(!)

for some function e� 2 L2(R). In this case, b�(2!) D

P(!)b�(!) with mask P(!) D


1Cei!

2

�kC1
P̃(!) for some

Laurent polynomial P̂(!). It turns out that the factor is re-
lated to the polynomial reproductivity by the linear com-
bination of integer translates of � . By Strang–Fix condi-
tions ([89] or [60]), a polynomial q of degree � k can be
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expressed by

q(x) D
X

j2Z

c j(q)�(x � j)

for some coefficients cj(q) if and only ifb� contains this fac-
tor.

Compactly Supported OrthonormalWavelets

As we discussed in previous sections, the necessary con-
ditions for � to be an orthonormal scaling function are
placed on the mask polynomial P(!), where we recall that
b�(2!) D P(!)b�(!). They are

� 1) P(0) D 1;
� 2) jP(!)j2 C jP(! C �)j2 D 1;

� 3) P(!) contains a factor


1Cei!

2

�k
for some k > 0.

Let P(!) D
� 1Cei!

2
k p̃(!) and jP(!)j2 D j cos(!/2)j2k

jp̃(!)j2. For simplicity we write x D cos2(!/2) and
jp̃(!)j2 D p(1 � x). Then the requirement 2) is equal to

xk p(1 � x)C (1 � x)k p(x) D 1 : (13)

It is easy to see that

1 D (1 � x C x)2kC1 D

kX

jD0

 
2k C 1

j

!

(1 � x) j x2k� j

C

kX

jD0

 
2k C 1

2k C 1 � j

!

(1 � x)2k� j x j

D xk
kX

jD0

 
2k C 1

j

!

(1 � x) j xk� j

C (1 � x)k
kX

jD0

 
2k C 1

j

!

(1 � x)k� j x j :

(14)

Thus, we may choose p(x) D
Pk

jD0
�2kC1

j

(1 � x)k� j x j .

Note that for x D cos2(!/2) 2 [0; 1]; p(x) D

p(cos2(!/2)) D p(1/2C (ei!C e�i!)/4) is a Laurent poly-
nomial. Since p(x) � 0, there exists p̃k(ei!) such that

p(x) D jp̃k(ei!)j2

by Fejér–Riesz’s Lemma. It is easy to see that p(1 � x) D
jp̃k(�ei!)j2. Thus, letting

Pk(!) D
�
1C ei!

2

�k

p̃k(ei!) ;

we can see that Pk satisfies 2). Note that Pk satisfies
1). as well. We define a compactly supported function
� 2 L2(R), in terms of Fourier transform, by

b�k(!) D
1Y

jD1

Pk(!/2 j) :

One can prove (see [24]) that this function �k is an or-
thonormal scaling function and generates a multiresolu-
tion approximation of L2(R) when k � 1. Then we define
the associated wavelet k by its Fourier transform:

c k(!) D Qk(!/2)b�k(!/2) ;

where Qk(!) D ei!Pk(! C �). As explained in the previ-
ous sections, k is an orthonormal wavelet. These wavelets
are called Daubechies wavelets which were invented in
1988 (cf. [23]).

Example 3 Let k D 1. Then P1(!) D 1Ce!
2 and hence,

� is the uniform B-spline of order 1 which is the charac-
teristic function

�(x) D
�

1; x 2 [0; 1)
0; otherwise :

The associated wavelet is the well-known Haar wavelet:

 (x) D

8
<

:

1; x 2 [0; 1/2)
�1; x 2 [1/2; 1)
0; otherwise :

When 2 � k � 10, the coefficients of P(z) associated with
Daubechies wavelets are given in [24] which can be im-
mediately used for wavelet decomposition and reconstruc-
tion.

Next we look at the smoothness of these scaling func-
tions. Unfortunately, �k does not belong to Hk(R) since
the

Q1
jD1 epk(e

i!/2 j ) does not belong to L2(R). One has

to use a part of the decay factor
� 1Cei!

2
k to ensure

Q1
jD1

� 1Ce!/2 j

2
k�k0 p̃k(ei!/2

j ) to be in L2(R) and thus,
�k 2 Hk0(R) for some k0 < k (see [24] for k0).

Parameterizationof OrthonormalWavelets

In the previous section we obtained special solutions to the
requirements 1), 2), and 3). We now look for general so-
lutions. For convenience, let Pn(!) D c0 C c1z C : : : C
cn�1zn�1 with zi! . We look for Pn(!) satisfying 1), 2), and
3) with k D 1 discussed in the previous section. That is,
Pn(0) D 1, P(�) D 0, and

jPn(!)j2 C jPn(! C �)j2 D 1; 8! 2 R :
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In this section, we shall show the solutions Pn(!) for n D 4
and n D 6. For general n � 8 see [59]. As in the previous
section, once we have Pn, we can define a refinable func-
tion �n 2 L2(R) and its associated wavelet function  n in
terms of Fourier transform, by

c�n(!) D
1Y

jD1

Pn


!/2 j

�

and with Qn(!) D zPn(! C �) and z D ei! ,

c n(!) D Qn(!/2)c�n(!/2) :

Wehave to point out that not all the refinable functions �n
are orthonormal. However, the associated wavelet func-
tions generate tight wavelet frames to be defined in a later
section.

We first consider n D 4. Write P4(!) D a0 C b0z C
a1z2 C b1z3.

Lemma 1 P4(!) satisfies P4(0) D 1 and

jP4(!)j2 C jP4(! C �)j2 D 1; 8! 2 R

if and only if

a0 D
1
4
C

1
2
p
2
cos ˛; b0 D

1
4
C

1
2
p
2
sin ˛;

a1 D
1
4
�

1
2
p
2
cos˛; b1 D

1
4
�

1
2
p
2
sin˛ ;

for any ˛ 2 R.

Example 4 When ˛ D 	
4 , we get P4(!) D

1Cz
2 , which is

associated with the Haar wavelet.

Example 5 When ˛ D 5	
12 , we get a0 D

1C
p
3

8 and a1 D
3�
p
3

8 as well as b0 D 3C
p
3

8 , b1 D 1�
p
3

8 . Then P4(!) is as-
sociated with the Daubechies D4 wavelet.

Next, we look for choices of ˛ where P4(!) has a second-
order vanishing moment, that is, P4(!) D

� 1Cz
2
2 p̃(z)

where p̃(z) is some trigonometric polynomial.
In this case d

dz P4(!)jzD�1 D 0 which is equivalent to
˛ D 5	

12 or ˛ D 13	
12 . Both are associated with Daubechies’

D4 wavelet. Thus, D4 is the only member of this family
with two vanishing moments.

Next we consider P6(!) D a0 C b0z C a1z2 C b1z3 C
a2z4 C b2z5.

Lemma 2 P6(!) satisfies P6(0) D 1 and

jP6(!)j2 C jP6(! C �)j2 D 1;8! 2 R

if and only if

a0 D
1
8
C

1
4
p
2
cos˛ C

p
2
cosˇ

a1 D
1
4
�

1
2
p
2
cos˛

a2 D
1
8
C

1
4
p
2
cos˛ �

p
2
cosˇ

b0 D
1
8
C

1
4
p
2
sin˛ C

p
2
sinˇ

b1 D
1
4
�

1
2
p
2
sin˛

b2 D
1
8
C

1
4
p
2
sin˛ �

p
2
sinˇ ;

where

p D
1
2

r
1C sin



˛ C

�

4

�

for any ˛; ˇ 2 R.

Example 6 If ˛ D 	
4 and ˇ D 	

4 , then P6(!) is associated
with the Haar wavelet.

Example 7 If ˛ D 5	
12 and ˇ D 	

3 , then P6(!) is associ-
ated with the Daubechies D4 wavelet.

Example 8 If

cos˛ D �
1
4

r

8C
q
15C 12

p
10;

sin˛ D
1
4

r

8 �
q
15C 12

p
10;

cosˇ D
1
4

r

8 � 8
q
�25C 8

p
10;

sinˇ D
1
4

r

8C 8
q
�25C 8

p
10 ;

then P6(!) is the filter associated with Daubechies D6
wavelet.

Example 9 To see when P6(!) has two vanishing mo-
ments, we require P0(�) D 0 which implies

sin(˛ C �) D
1

8 sin2(ˇ � �/4)
� 1 :

When the ordered pair (˛; ˇ) satisfy the above equation,
P6(!) has two vanishing moments.

Example 10 With ˛ D 1:4288992721907328, ˇ D

1:1071487177940904, P6(!) is associated with the most
smooth length-four filter as given in [24]. When
˛ D 1:9886461158096038 and ˇ D 1:0934936891036087,
P6(!) is associated with the most smooth length-six filter
as given in [24].
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BiorthogonalWavelets

In this section we explain biorthogonal wavelets. Suppose
that � and e� are two refinable functions in L2(R) which
are dual to each other in the following sense:

1Z

�1

�(x � j)e�(x � k)dx D

(
1 ; if j D k;
0 ; otherwise

(15)

for all j; k 2 Z. As usual, define � jk(x) D 2 j/2�(2 j x � k)
and e� jk (x) D 2 j/2e�(2 j x � k) for all j; k 2 Z. Also we let
Vj D spanf� j;k ; k 2 Zg and eV j D spanfe� j;k ; k 2 Zg. We
look for  2 V1 and e 2 eV1 such that

h�(�);e (� � k)i D 0; h (�);e�(� � k)i D 0;
h (�);e (� � k)i D ık ; (16)

for all k 2 Z, where ık D 1 when k D 0 andD 0 for other
k. Then  and e will be a pair of biorthogonal wavelets
under the assumptions that both families f� jk ; j; k 2 Zg
and fe� jk ; j; k 2 Zg are multiresolution approximations of
L2(R).

Indeed, let  jk(x) D 2 j/2 (2 j x � k) and e jk (x) D
2 j/2e (2 j x � k) for all j; k 2 Z. For any j; k and m; n we
claim that

1Z

�1

 j;k(x)e m;n(x)dx D ı j;mık;n :

For j < m, we know from (16) that e m;n is orthogonal
to �m;k for all k and hence is orthogonal to Vm which
contains  jC1 since  j;` 2 VjC1 � : : : � Vm . Similar for
j > m. When j D m, we use (16) again. We now need the
following concept:

Definition 1 A family f� j;k ; j; k 2 ZZg is a Riesz basis
for L2(R) if

1. � j;k ; j; k 2 Z are linearly independent, and
2. there exist two strictly positive constants A and B such

that for any f 2 L2(R),

Ak f k22 �
X

j;k

ˇ̌
ˇ̌
1Z

�1

f (x)� j;k(x)dt
ˇ̌
ˇ̌
2
� Bk f k22:

Let P and eP be the mask polynomials associated with
� ande� . That is,

b�(!) D P(!/2)b�(!/2) and be�(!) DeP(!/2)be�(!/2) :

Then the condition (15) implies

P(!)eP(!)C P(! C �)eP(! C �) D 1 : (17)

Let us define the associated wavelet functions  and e in
terms of Fourier transform by

b (!) D Q(!/2)b�(!/2) and be (!) D eQ(!/2)be�(!/2);

where Q(!) D ei!eP(! C �) and eQ(!) D ei!P(! C �).
The conditions in (16) give
�

P(!) P(! C �)
Q(!) Q(! C �)

� � eP(!) eP(! C �)
eQ(!) eQ(! C �)

��
D I2

where I2 denotes the identity matrix of size 2 � 2.
In fact, the Q and eQ so defined as above, one only

needs to solve (17). If P andeP satisfy (17) and if the � and
e� generate two Riesz bases for L2(R), then one can show
that  and e are biorthogonal wavelet functions (cf. [22])

In this setting, for any f 2 L2(R), we have

f (x) D
X

j;k2Z

h f ;e j;ki j;k(x) D
X

j;k2Z

h f ;  jkie jk (x) :

To construct some examples, we begin with the uni-
form B-spline �k whose Fourier transform is

� 1�ei!
i!

k .
It is well-known that �k is a refinable and generate
a multiresolution approximation of L2(R). Let Pk(!) D� 1Cei!

2
k be its mask polynomial. Next we construct a dual

e� k;n whose mask polynomial

ePk;n(!) D
�
1C e�i!

2

�2n�k

ein! pn(sin2(!/2))

where pn(x) is a polynomial in x defined in (14). So that

P(!)ePk;n(!)C P(! C �)ePk;n(! C �)

D

�
1C ei!

2

�2n

e�in! pn(sin2(!/2))C

�
1 � ei!

2

�2n

e�in!(�1)n pn(cos2(!/2))

D (cos2(!/2))n pn(sin2(!/2))

C (sin2(!/2))n pn(cos2(!/2)) D 1

by using (14) in a previous section. If we choose n large
enough we can ensure that e� k;n 2 L2(R) and satisfies the
duality relation (15) with �k by using the equation above.

There are many other choices of biorthogonal
wavelets. In the following we explain a well-known
biorthogonal wavelet called CDF 9/7 wavelet (cf. [50]). It
was famous for finger print compression employed by FBI
in the beginning of 90’s. Now it is exclusively used by the
state-of-art JPEG2000 for image compression.
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Example 11 Letting z D ei! , we choose

P(!) D
�
1C z
2

�4
(c0 C c1z C (1 � 2(c0 C c1))z2

C c1z3 C c0z4)

eP(!) D
�
1C z
2

�4
z(c̃0 C c̃1z C c̃0z2) :

The reason to choose this pattern of coefficients is to make
� ande� symmetric.

The necessary biorthogonal condition (17) implies
that the coefficients c0; c1 and c̃0; c̃1

c0 D
5
24
C

p
15 � 5
48

˛ C
2
p
15 � 5
336

˛2;

c1 D �
3
2
C

6 �
p
15

12
˛ �

p
15 � 3
24

˛2;

c̃0 D �
1
3
�

1
12
˛ C

3
p
15 � 11
168

˛2;

c̃1 D
5
3
C
˛

6
�

3
p
15 � 11
84

˛2 ;

where ˛ D (154C 42
p
15)1/3. This leads to the

well-known CDF biorthogonal 9/7 wavelets. Writ-
ing P(z) D

P8
iD0 pi z

i , Q(z) D
P6

iD0 qi z
i , eP(z) DP7

iD1 p̃i z
i and eQ(z) D

P7
iD�1eqi z

i to be the mask poly-
nomials associated with the CDF 9/7 wavelets, their coef-
ficients are listed in Table 1 which can be directly used for
computation.

Popular Wavelet Families and Filters and Their Use, Table 1
Numerical values of fpkg8kD0; fqkg6kD0; fepkg7kD1, and feqkg7kD�1

p0 :0534975148216202 q0 :0912717631143501
p1 �:0337282368857499 q1 �:0575435262285002
p2 �:1564465330579805 q2 �:5912717631142501
p3 :5337282368857499 q3 1:1150870524570004
p4 1:2058980364727207 q4 �:5912717631142501
p5 :5337282368857499 q5 �:0575435262285002
p6 �:1564465330579805 q6 :0912717631142501
p7 �:0337282368857499
p8 :0534975148216202

eq�1 :0534975148216202
ep0 .0 eq0 :0337282368857499
ep1 �:0912717631142501 eq1 �:1564465330579805
ep2 �:0575435262285002 eq2 �:5337282368857499
ep3 :5912717631142501 eq3 1:2058980364727207
ep4 1:1150870524570004 eq4 �:5337282368857499
ep5 :5912717631142501 eq5 �:1564465330579805
ep6 �:0575435262285002 eq6 :0337282368857499

Prewavelets

In this section, we first construct a compactly supported
pre-wavelet  n associated with B-spline �n D Nn of or-
der n. After that we describe a general approach to con-
struct compactly supported pre-wavelets from any refin-
able function � who generates a multiresolution approxi-
mation of L2(R).

It is known that the B-spline Nn of order n � 1 gen-
erates a multiresolution approximation of L2(R) (cf. [12]).
Let

V0 D spanL2(R)fNn(x � k) ; k 2 Zg

and Vj D f f (2 j�);8 f 2 V0g. Since Nn is a refinable func-
tion, Vj � VjC1. Let Wj be the orthogonal comple-
ment of Vj in VjC1. If a function  n 2 Wj such that
Wj D spanL2(R)f n(x � m);m 2 Zg, then  n is called
a prewavelet associated with Nn.

According to [18], let

 n(x) D
1

2n�1

2n�2X

iD0

(�1)i N2n(iC 1)N (n)
2n (2x � j) ; (18)

where N2n is the uniform B-spline of order 2n. Here N (n)
2n

denotes the nth derivative of N2n(x) which is a linear com-
bination of B-splines Nn(x � k) for finitelymany k. In fact,

N (n)
2n (x) D

nX

iD0

(�1)i
 
n
i

!

Nn(x � j) :

It follows that

 n(x) D
3n�2X

iD0

(�1)i

2n�1

�

nX

kD0

 
n
k

!

N2n(i � k C 1)Nn(2x � i) 2 V1 : (19)

We can verify that  n is a pre-wavelet associated with Nn
(cf. [18]).

Theorem 7 The spline function n(x) defined in (18) with
support [0; 2n � 1] is a pre-wavelet associated with the B-
spline Nn(t) of order n.

Let us determine two sequences fgng and fhng such that

Nn(2x � k) D
X

m2Z

gk�2mNn(x � m)

C
X

m2Z

hk�2m n(x � m) (20)



Popular Wavelet Families and Filters and Their Use P 6869

for all k 2 Z.
Let G and H be the z-transform of the sequences

fgigi2Z and fhigi2Z. That is,

G(z) D
X

m2Z

gmz�m and H(z) D
X

m2Z

hmz�m :

As we know from a previous section,

cNn(!) D
1
2
P(!)cNn(!/2) :

We find

c n(!) D
1Z

�1

 n(x)e�i x!dx

D 2�nC1
2n�2X

iD0

(�1)i N2n(i C 1)

1Z

�1

N (n)
2n (2x � i)e�i x!dx

D 2�n
2n�2X

jD0

(�1) jN2n( jC 1)e�i j!/2

1Z

�1

N (n)
2n (x)e

�i x!/2dx

D 2�n
2n�2X

jD0

(�1) jN2n( jC 1)e�i j!/2(i!/2)n

1Z

�1

N2n(x)e�i x!/2dx

D 2�n
2n�2X

jD0

(�1) jN2n( jC 1)e�i j!/2

(1 � e�i!/2)n N̂n(!/2)

D 2�n
2n�2X

jD0

(�1) jN2n( jC 1)z j(1 � z)n N̂n(!/2)

D
1
2
Q(z)cNn(!/2)

where z D e�i!/2 and

Q(z) D 2�nC1(1 � z)n
2n�2X

jD0

(�1) jN2n( jC 1)z j :

Note that the Fourier transform of (20) and the orthogo-
nality between W0 and V0 can be recast in the following

matrix format:
�

P(z)G(z) C Q(z)H(z) D 2
P(�z)G(z) C Q(�z)H(z) D 0 :

The solution are

G(z) D
2Q(�z)

P(z)Q(�z) � P(�z)Q(z)
;

H(z) D
�2P(�z)

P(z)Q(�z) � P(�z)Q(z)
:

Wehave to verify that P(z)Q(�z) � P(�z)Q(z) 6D 0 for all
z. This follows easily from the following (cf. [18])

Lemma 3

P(z)Q(�z) � P(�z)Q(z) D
22nz�2n�1(z2)
22n�2(2n � 1)!

:

where �2n�1 is the Euler–Frobenius polynomial which is de-
fined by

�n(t) :D n!
n�1X

iD0

NnC1(i C 1)ti ; 8n � 0 ;

which is never zero for z (cf. [83]).

Therefore, � is a pre-wavelet associated with Nn(x). It fol-
lows from its definition (19) that n is of compact support.

Example 12 Consider m D 1. Then

N1(x) D

(
1 x 2 [0; 1)
0 otherwise

and

 1(x) D N2(1)N 02(2x) D N 02(2x) D

(
1 x 2 [0; 12 )
�1 x 2 [ 12 ; 1]

which is the Haar wavelet.

Example 13 Consider m D 2.

N2(x) D

8
<̂

:̂

x; x 2 [0; 1]
2 � x; x 2 [1; 2]
0; otherwise :

Then

 2(x) D
1
2

2X

jD0

N4( jC 1)N (2)
4 (2x � j)

D
1
12

(N (2)
4 (2x) � 4N (2)

4 (2x � 1)C N (2)
4 (2x � 2))

D
1
12

(N2(2x) � 6N2(2x � 1)C 10N2(2x � 2)

� 6N2(2x � 3)C N2(2x � 4)) :
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We remark that both G(z) and H(z) are rational filters.
As pointed in Sect. “Definition of Filters”, these are real-
izable (recursive) filters which can be used for digital sig-
nal reconstruction procedure. On the other hand, the ze-
ros 1; : : : ; n�1 of �n(z) are located in (�1; 0) and sat-
isfy n�11 D n�22 D : : : D 1 (cf. [83]). Thus, G and
H are not stable IIR filters.

We now consider a new constructive method for
finding compactly supported prewavelet function for any
given refinable function � which generates a multiresolu-
tion approximation of L2(R). LetVj D spanL2(R)f�(2 jx�
k); k 2 Zg for all j 2 Z. We are looking for compactly
supported functions  in V1 such that

V1 D V0
M

W0 ;

whereW0 is the closure of the linear span of integer trans-
lates of  (2 j x � m);m 2 Z and  (� � m);m 2 Z form
a stable basis forW0.

To do so, we first introduce a function

˚(z) :D
X

m2Z

h�(x); �(x � m)izm ;

where h f ; gi stands for the standard inner product for
L2(R). This function ˚ may be called the generalized Eu-
ler–Frobenius polynomial.

Next we need a necessary and sufficient condition for
the orthogonality. Writing

g(x) D
X

m2Z

cm21/2�(2x � m) 2 V1 ;

to be a general function in V1 and

G(z) D
1
p
2

X

m2Z

cmzm ;

i. e., the Fourier transformbg(!) D G(ei!/2)b�(!/2), we let

G D closureL2(R)fg(x � m); m 2 Zg

be the closure of the linear span of integer translates of g.
Then we have the following (see, e. g., [49] for a proof)

Theorem 8 Let P(z) be the mask polynomial of �. That is,
b�(!) D P(ei!/2)b�(!/2). Then G is orthogonal to V0 if and
only if

G(z)P(z)˚(z)C G(�z)P(�z)˚(�z) D 0 :

Our first step is to construct compactly supported
gk 2 V1; k D 1; 2 such that the closure Gk of the lin-
ear span of integer translates gk is orthogonal to V0 for

k D 1 and k D 2 and V1 D V0 ˚ (G1 C G2). The second
step is to find a sufficient condition that one of them
can be written in terms of integer translates of the other.
For example, G2 is contained in G1. In this case we will
have V1 D Vj ˚ G1. To be more precise, we suppose that
gk 2 V1 satisfy

gk(x � m) ? V0; m 2 Z

for k D 1; 2 and

21/2�(2x) D
X

m2Z

�
a1;m�(x � m)C b1;mg1(x � m)



21/2�(2x � 1) D
X

m2Z

�
a2;m� j(x � m)C b2;mg2(x � m)


:

In terms of Fourier transform, the above equations can
be rewritten as

1
21/2

b�(
!

2
) D A1(!)b�(!)C B1(!)bg1(!)

D A1(!)P

!
2

�
b�

!
2

�

C B1(!)G1


!
2

�
b�

!
2

�

and
1

21/2
ei!/2b�


!
2

�
D A2(!)b�(!)C B2(!)bg1(!)

D A2(!)P

!
2

�
b�

!
2

�

C B2(!)G2


!
2

�
b�

!
2

�
;

where Ak(!) D
P

m2Z ak;meim! and Bk(!) DP
m2Z bk;meim! . Here, we have abused the notation of

Gk, that is, we use Gk(!) instead of Gk(z) with z D ei!

just for convenience.
It follows that
A1(2!)P(!)C B1(2!)G1(!) D 1;

A2(2!)P(!)C B2(2!)G2(!) D ei! :

Using Theorem 8, the solution of Ak ; Bk and Gk can be
easily found. Indeed, let E be the operator which maps
a Laurent polynomial f into a Laurent polynomial E(f )
which contains all the even index terms of f . That is,
E( f ) D ( f (z)C f (�z))/2. One simple property of E is
E( f (z)) D E( f (�z)).

Theorem 9 Suppose that E(P(z)P(z)(z)) 6D 0 for all z with
jzj D 1. Let

A1(2!) :D
E(P(z)˚(z))

E(P(z)P(z)˚(z))
;

B1(2!) :D
1

E(P(!)P(!)˚(z))
;

G1(!) :D E(P(!)P(!)˚(z)) � E(P(!)˚(z))P(!)



Popular Wavelet Families and Filters and Their Use P 6871

and

A2(2!) :D
E(ei!P(!)˚(z))
E(P(!)P(!)˚(z))

;

B2(2!) :D
1

E(P(!)P(!)˚(z))
;

G2(!) :D E(P(!)P(!)˚(z))ei!

� E(ei!P(!)˚(z))P(!) :

Then Gk is orthogonal to V0 for all k D 1; 2 and

V1 D V0
M

(G1 C G2) :

Proof Using the assumption of Theorem 9, we know that
Ak, Bk are well-definited. It is clear that V1 is the direct
sum of V0 and Gk ; k D 1; 2. To see Gk is orthogonal to
V0, we use Theorem 8 to see E(Gk (z)P(z)˚(z)) D 0. Since
Bk(2!) 6D 0 and

E(Bk(2!)Gk(z)P(z)˚(z))

D Bk(2!)E(Gk (z)P(z)˚(z)) ;

we may consider

E(B1(2!)G1(z)P(z)˚(z))

D E((1 � A1(2!)P(z))P(z)˚(z))

D E(P(z)˚(z)) � A1(2!)E(P(z)P(z)˚(z)) D 0

by the construction of A1. Similar for the second equation.
This completes the proof. �

Let us make a remark on E(P(!)P(!)˚(z)). The following
result is known (cf. [12]).

Lemma 4

E(P(!)P(!)˚(z)) D
1
2
˚(z2) :

Next we show that gk ; k D 1; 2 are linearly dependent if
P satisfies another condition. Let us write P in its poly-
phase form, i. e.,

P(z) D P0(z2)C zP1(z2) :

Theorem 10 Suppose that P0(z) is not zero for any z with
jzj D 1. Then there exist non-zero coefficients f m’s such that

g1(x) D
X

m2Z

fm g2(x � m) :

Furthermore, the integer translates of g2 form a Riesz basis
for W0 :D V1 � V0 which is the closure of the linear span of
g2(2 j � �m);m 2 Z. If P1(z) 6D 0 for all z, then

g2(x) D
X

m2Z

f 0j;mg1(x � m)

for some coefficients f 0m and the integer translates of g1 form
a Riesze basis for W0.

Without loss of generality, we may assume that P1 is not
zero. The letting  D g1 andW0 :D G1,  is a prewavelet
associated with � . It is easy to see that is compactly sup-
port if � is since  D g1 is a finitely linear combination of
integer translates of � because

bg1(!) D G1(!)b�(!)

with Laurent polynomial G1(!). Let  jk (x) D

2 j/2 (2 j x � k). We can verify that all these  jk form
a Riesz basis for L2(R) (cf. [49]). We have

Theorem 11 Suppose that � is a compactly supported
refinable function generating an MRA for L2(R). Denote
b�(!) D P(!/2)b�(!/2). Let ˚ be the generalized Euler–
Frobenius polynomial associated with �. Suppose that

E(P(!)P(!)˚(!)) 6D 0; 8ei!

and suppose that at least one of the two polyphases of P is
not zero, i. e., P0(!) 6D 0 or P1(!) 6D 0 for all ! 2 [0; 2�].
Then there exist a compactly supported function  such
that the closure W0 of the linear span of integer translates
 (x � m);m 2 Z is orthogonal to V0, V1 D V0

L
W0 and

the integer translates of  form a Riesz basis for W0. All of
them forms a Riesz basis for L2(R).

Let us use B-splines to give some examples of prewavelets
for L2(R). Recall B-splines from (12). Fix an integer n > 0.
Let � D Nn the n-th order B-spline. It is easy to see

cNn(!) D P(n)(!/2)cNn(!/2)

with P(n)(!) D


1Ce�i!

2

�n
.

It is clear that

P(n)(!) � P(n)(! C �)

D

�
1C e�i!

2

�n

�

�
1 � e�i!

2

�n

¤ 0

for any ! 2 [0; 2�]. It follows that the polyphase P(n)1 as-
sociated with � is never zero.

Next by Lemma 4, we know

E(P(n)(!)P(n)(!)˚(!)) D
1
2
˚(2!) :
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By Poisson summation formula,

˚(!) D
X

m2Z

hNn(�);Nn(� � m)ie�im!

D
X

m2Z

jcNn(! C 2m�)j2

which is never zero (cf. [83]). That is, the conditions in
Theorem 11 are satisfied.

The above discussions verify that all B-spline functions
can be used to construct prewavelets for L2(R). Note that
our B-spline prewavelets have a larger support than those
constructed in the first half of this section. The purpose of
the examples is to show the detail of the constructive pro-
cedure. The advantages of the second construction are (1).
it enables us to construct prewavelets from any refinable
functions and (2). the construction can be easily general-
ized to the multivariate setting to be discussed later. Note
that the first construction has no multivariate generaliza-
tion.

Example 14 Consider linear B-spline N2 with
P(2)(z) D (1C z)2/4. It is easy to see that

˚(z) D
1
6
z�1 C

4
6
C

1
6
z :

Indeed, by using the symmetric property of B-splines, i. e.,
N2(x) D N2(2 � x). It is easy to see

˚(z) D
X

m2Z

N4(2C m)zm D
1

24z2
(10z2 C z4 C 1) :

Thus, we know E(P(2)(z)P(2)(1/z)˚(z)) D 1
2˚(z2) 6D 0.

Using the formulas in Theorem 9, we have

G(z) D
1

96z2
(z6 � 6z5C 11z4� 12z3C 11z2� 6zC 1) :

That is, the prewavelet associated with linear B-spline
� :D N2 is

 (x) D
1
96

(�(2x C 2) � 6�(2x C 1)C 11�(2x)

� 12�(2x � 1)C 11�(2x � 2)� 6�(2x � 3)
C �(2x � 4)) :

Example 15 Consider cubic B-spline N4 with P(4)(z) D
(1C z)4/16. We have

˚(z) D
1

5040z3
C

1
42z2

C
397
1680z

C
151
315

C
397
1680

z C
1
42

z2 C
1

5040
z3:

Thus, E(P(2)(z)P(2)(1/z)˚(z)) D 1
2˚(z2) 6D 0.

E(zP(4)(1/z)˚(z)) D
1

80640z6
(18482z4 C z10 C 18482z6

C 1677z2 C 1C 1677z8):

Thus, by using the formula in Theorem 9, G(z) DP8
kD�6 gkz

k with coefficients gk as follows:

g�6 D
�1

1290240
; g�5 D

31
322560

; g�4 D
�187
143360

g�3 D
1081
161280

; g�2 D
�1903
86016

; g�1 D
17953
322560

;

g0 D
�131051
1290240

; g1 D
1441
11520

; g2 D
�131051
1290240

g3 D
17953
322560

; g4 D
�1903
86016

; g5 D
1081
161280

;

g6 D
�187
143360

; g7 D
3

322560
; g8 D

�1
1290240

:

That is, the prewavelet associated with cubic B-spline
� :D N4 is

 (x) D
1

1290240
(�(2x C 6)� 124�(2x C 5)

C 1683�(2x C 4) � 8648�(2x C 3)
C 28545�(2x C 2) � 71812�(2x C 1)
C 131051�(2x))� 161392�(2x � 1)
C 131051�(2x � 2) � 71812�(2x � 3)
C 28545�(2x � 4) � 8648�(2x � 5)
C 1683�(2x � 6) � 124�(2x � 7)C �(2x � 8)) :

We can easily verify that  is orthogonal to the integer
translates of � using the computer program MAPLE.

Tight Wavelet Frames

In this section we consider the tight wavelet frames. First
of all, let us introduce some notation and explain their use-
fulness for representation of functions in L2(R). We will
show the stricking feature of tight wavelet frames: their
representation of any function f 2 L2(R) is just like that
by using an orthonormal wavelet basis although they can
contain redundancy. Also, the representation is most eco-
nomic in the sense that the `2 norm of the coefficients in
the representation is the same as the L2 norm of the func-
tion.

Definition 2 A family of functions f� j; j 2 Jg in L2(R) is
called a frame, if there exist constants A > 0; B > 0 such
that

Ak f k2 �
X

j2J

jh f ; � jij
2 � Bk f k2; 8 f 2 L2(R) ;
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where k f k denotes the norm of f in L2(R). If AD B,
f� jg j2J is called tight wavelet frame.

Thus for a tight wavelet frame we may normalize so that
AD B D 1. In this case, we will have

k f k2 D
X

j2J

jh f ; � jij
2; 8 f 2 L2(R) : (21)

Thus for any f and g in L2(R); we have

k f C gk2 D
X

j2J

jh f C g; � jij
2;

k f � gk2 D
X

j2J

jh f � g; � jij
2 :

Differencing the two equations, we have

4h f ; gi D 4
X

j2J

h f ; � jih� j; gi (22)

for all g 2 L2(R). That is,

f D
X

j2J

h f ; � ji� j; weakly 8 f 2 L2(R) : (23)

Thus, a tight wavelet frame can represent any f 2 L2(R)
just like an orthonormal basis. Note that the representa-
tion (23) is simply derived from (21) and the technique is
called polarization.

Compared to the orthonormal wavelet basis represen-
tation of functions in L2(R), a tight wavelet frame needs no
orthonormality nor linear independence among the func-
tions � j; j 2 J. In fact, it allows redundancy in � j; j 2 J.
Thus, we have more degrees of freedom to construct tight
wavelet frames. In the following we shall present three
methods.

In general we shall construct a finitely many compactly
supported functions  ` 2 L2(R) such that

�( `; ` D 1; : : : ; r) D f `: j;k(x) :D 2 j/2 `(2x � k) ;

j; k 2 Z ; ` D 1; 2; : : : ; rg

is a tight wavelet frame.
We start with a refinable function � 2 L2(R). Let P(!)

be the mask polynomial of � . That is,

b�(!) D P(!/2)b�(!/2) :

Suppose that � generates a multiresolution approximation
of L2(R). For Laurent polynomials Q`(!); ` D 1; : : : ; r,
let  ` be a function in L2(R) defined in terms of Fourier
transform by

c `(!) D Q`(!/2)b�(!/2); ` D 1; : : : ; r :

The following condition is called Unitary Extension Prin-
ciple (UEP) developed in [76].

P(!)P(! C �)C
rX

`D1

Q`(!)Q`(! C �) D

(
1 if� D 0 ;
0 if� D � :

(24)

Theorem 12 Suppose that � 2 L2(R) is a compactly sup-
ported continuous function with Hölder continuity ˛ > 0
and suppose that � generates a multiresolution approxima-
tion of L2(R). Assume that there exist Laurent polynomials
Q`; ` D 1; : : : ; r such that P and Q` satisfy the UEP con-
dition. Then defining  ` as above, �( `; ` D 1; : : : ; r) is
a tight wavelet frame for L2(R).

The proof of the above theorem can be derived based on
the following three lemmas.

Lemma 5 Let � 2 L2(R). Suppose thatb�(0) D 1 and that
for some constant B > 0,

X

m22	Z

jb�(! C m)j2 � B < C1; a. e.; ! 2 R :

Define

ˇ j( f ; !) D 2 j/2
X

m22	Z

bf (2 j(! C m))b�(! C m)

for any fixed f 2 L2(R) and j 2 Z. Then

lim
j!C1

Z

[0;2	]

jˇ j( f ; !)j2 d! D k f k2 and

lim
j!�1

Z

[0;2	]

jˇ j( f ; !)j2 d! D 0 :

Lemma 6 For the refinable function � satisfying the same
condition in Lemma 5 and  ` defined above, we have the
following equations:

X

k2Z

jh f ; � j;ki j
2 D

Z

[0;2	]

jˇ j( f ; !)j2 d!

X

k2Z

jh f ; � j�1;ki j
2 D

1
2

Z

[0;2	]

ˇ̌
ˇ̌
ˇ
ˇ

X

�2f0;1g	

P

!
2
C �

�

ˇ j



f ;
!

2
C �

�
ˇ̌
ˇ
ˇ̌

2

d!

X

k2Z

j h f ;  `j;k i j
2 D

1
2

Z

[0;2	]

ˇ
ˇ̌
ˇ
ˇ̌
X

�2f0;1g	

Q`

!
2
C �

�

ˇ j



f ;
!

2
C �

�
ˇ̌
ˇ̌
ˇ

2

d!
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where � j;k(�) D 2 j/2�(2 j � �k), `: j;k (�) D 2 j/2 `(2 j ��k).

Lemma 7 Suppose that we can find Q`, ` D 1; : : : ; r sat-
isfying (24). Let  ` be the functions defined by its Fourier
transform usingc `(!) D Q`(!/2)b�(!/2). Then the collec-
tion of functions f `: j;k : ` D 1; : : : ; r; j; k 2 Zg is a tight
wavelet frame.

We now rewrite the UEP in a matrix format.

Lemma 8 Let P D [P(!); P(! C �)] be a vector and
Q D [Q`(!);Q`(! C �)]`D1;:::;r be a matrix of size r � 2.
Then the UEP condition in (24) is equivalent to

Q�Q D I2 � PP� : (25)

Here I2 is the identity matrix of size 2 � 2.

Multiplying P� from the left of (25) and P from the right,
we immediately get

P�P � (P�P)2 � 0 :

It follows that

P�P � 1 or jP(!)j2 C jP(! C �)j2 � 1 : (26)

That is, P is necessary to satisfy the above (26) in order to
have the associated tight wavelet frame.On the other hand,
if a mask polynomial P satisfies (26), we now show that
there is a set of frame generators  `; ` D 1; 2; 3 such that
their dilations and integer translates form a tight wavelet
frame for L2(R). That is, the condition (26) is necessary
and sufficient to have a tight wavelet frame associated with
the refinable function � (cf. [14] and [72]).

Indeed, let P(!) D P1(2!)C zP2(2!) be the poly-
phase format of P, where z D ei! . Since

jP(!)j2CjP(!C�)j2 D 2jP1(2!)j2C 2jP2(2!)j2 � 1;
(27)

we let P3(!) be a polynomial in z such that

2jP1(2!)j2 C 2jP2(2!)j2 C jP3(2!)j2 D 1 : (28)

This can be done using Riesz–Fejér factorization. We now
define a matrix of 3 � 3 by

eQ(!) D I3 �eP(!)eP(!)�

witheP(!) D [
p
2P1(!);

p
2P2(!); P3(!)]T being a vector

of 3 � 1. It is easy to check that

eQ(!)�eQ(!) D I3 �eP(!)eP(!)�

by using (28). If we choose the top 2 � 2 principal block
from the right-hand side of the above equation, we will
have, letting eQ D [Q̃ jk ]1� j;k�3,

�
Q̃ jk

��
1� j�3
1�k�2

�
Q̃ jk

�
1� j�3
1�k�2

D I2 �
�p

2P1(!)p
2P2(!)

�

hp
2P1(!)�

p
2P2(!)�

i
:

Replacing ! by 2! in the above equation, multiplying the
following unitary matrix from the left of the equation

U :D
1
p
2

�
1 z
1 �z

�

and multiplying U� from the right of the equation, we ob-
tain

U
�
Q̃ jk

��
1� j�3
1�k�2

�
Q̃ jk

�
1� j�3
1�k�2

U� D I2 �
�

P(!)
P(! C �)

�

�
P(!)� P(! C �)�

�
:

Then Q`(!) D
p
2(Q̃`;1(2!)C zQ̃`;2(2!))/2 for ` D

1; 2; 3 together with P(!) satisfy the matrix format UEP
(cf. Lemma 8), and thus  ` defined by using these Q` are
tight wavelet frame generators.

Another method to construct tight wavelet frames
is to do matrix extension. That is, let eP be the vec-
tor of size 3 � 1 defined above. Note that eP�eP D 1. By
a method in [62], one can find eQ1 D [Q̃11; Q̃12; Q̃13]T and
eQ2 D [Q̃21; Q̃22; Q̃23]T, two vectors of size 3 � 1 such that
the matrix

�eP eQ1 eQ2
�
is unitary. See also [14] for detail

construction. Once we have such unitary extension, we
know that the first two rows are unitary. Rewriting the row
vectors in column format, we have

2

4

p
2P1(!)

p
2P2(!)

Q̃11(!) Q̃12(!)
Q̃21(!) Q̃22(!)

3

5

� 2

4

p
2P1(!)

p
2P2(!)

Q̃11(!) Q̃12(!)
Q̃21(!) Q̃22(!)

3

5 D I2:

Substituting ! by 2! in the above equation and multiply-
ing U from the right and U� from the left of the above
equation both sides, we obtain

2

4
P(!) P(! C �)
Q1(!) Q1(! C �)
Q2(!) Q2(! C �)

3

5

�2

4
P(!) P(! C �)
Q1(!) Q1(! C �)
Q2(!) Q2(! C �)

3

5 D I2

which is just an another form of the UEP (see (24)). Here
Q`(!) D Q̃`;1(2!)C zQ̃`;2(2!) for ` D 1 and ` D 2.
Hence, we can define two tight wavelet frame generators
 ` using the above Q` for ` D 1; 2.
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We now discuss a new method how to construct tight
wavelet frames. Let

bQ(!) D I2 �bP(!)bP(!)�

wherebP(!) D [
p
2P1(!);

p
2P2(!)]T. We claim that bQ is

nonnegative definite under the assumption (26). Clearly,
bQ(!) is symmetric. 1 is an eigenvalue of bQ since any
vector v(!) orthogonal to bP(˝) is an eigenvector of bQ.
1 �bP(!)�bP(!) � 0 is another eigenvalue of bQ. Thus, by
matrix-valued Riesz–Fejér factorization (cf. [34] and [30])
we have

bQ(!) D eQ(!)eQ(!)�

for a Laurent polynomial matrix eQ(!) of size 2 � 2. That
is,

bP(!)bP(!)� C eQeQ� D I2 :

Replacing ! by 2! in the above equation, multiplying U
from the left and U� from the right of the equation we
have

�
P(!)
P(! C �)

� �
P(!)� P(! C �)�

�

C

�
Q1(!) Q1(! C �)
Q2(!) Q2(! C �)

�

�

�
Q1(!)� Q2(!)
Q1(! C �) Q2(! C �)

�
D I2 :

We now use B-splines to give some examples of tight
wavelet frames (cf. [14]).

Example 16 Consider linear B-splines. The mask poly-
nomial P(!) D (1C z)2/4 with z D ei! . It is easy to find
Q1(z) D �1/4C z/2 � z2/4 and Q2(z) D

p
2(1 � z2)/2.

One of the tight wavelet frame generators defined by using
Q1 and Q2 is symmetric and the other is anti-symmetric.

Example 17 Consider quadratic B-splines. The mask
polynomial P(!) D (1C z)3/8. One can find Q1(z) Dp
3(1 � z)/4 and Q2(z) D (1 C 3z � 3z2 � z3)/8. The

tight wavelet generators associated with these Q1 and Q2
are all anti-symmetric.

Example 18 Consider cubic B-splines. The mask polyno-
mial P(!) D (1C z)4/16. Denote

a D

p
8 � 2

p
14

8
; b D

p
8C 2

p
14

8
; r D

p
16C 2

p
14

8
:

Let

Q1(z) D 4ar2 C
�
r �

1
16r

�
z
p
2
C

1 � 2r2
p
2r

z2

�
b
p
2
z3 �

b
4
p
2
z4

Q2(z) D
r

4
p
2
C (aC

b
p
2
)z

�
b

2
p
2
z2 �

b
p
2r

z3 �
b2
p
2r

z4 :

One can define tight wavelet frame generators  ` using
these Q`.

It is also possible to find symmetric and anti-symmetric
tight wavelet frame generators using B-splines. We refer
to [14,72,73] for the detail.

Tight Wavelet Frames over BoundedDomain

We discuss the construction of tight wavelet frames over
bounded domain. The following discussion works for
a bounded domain over any Euclidean space. For conve-
nience, we restrict our attention to the univariate setting.

Let ˝ � R be a bounded domain, e. g., an interval.
A tight wavelet frame for L2(˝) is based on a half infi-
nite sequence of nested subspaces over˝ . Suppose that we
have a sequence of nested subspaces fVkgk2ZC � L2(˝)
satisfying

V1 � V2 � : : : � Vk � : : :! L2(˝) and
1[

kD1

Vk is dense in L2(˝) :

Let ˚k :D (�k;1; : : : ; �k;mk )
T be a column vector of lo-

cally supported functions in Vk which generate Vk, i. e.,
Vk D spanf�k;1; : : : ; �k;mk g.

Because Vk is a subspace of VkC1; the vector ˚k in Vk
can be generated by the column vector ˚kC1 which spans
VkC1. Thus there exists a matrix Pk of size mk � mkC1
with mk � mkC1 such that

˚k D Pk˚kC1 : (29)

The matrix Pk is often called a refinement matrix. Let Qk
be another matrix of size nk � mkC1. Define

�k :D Qk˚kC1 : (30)

Definition 3 The family of vectors f�kgk2ZC defined in
(30) is a tight wavelet frame associated with f˚kgk2ZC in
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L2(˝) if

k f k2 D
m1X

jD1

jh f ; �1; jij2 C
1X

kD1

nkX

jD1

jh f ;  k; jij
2;

8 f 2 L2(˝) ;

where h f ; gi D
R
˝ f (x)g(x)dx be the standard inner

product on L2(˝).

If �1; j; j D 1; : : : ;m1 and  k; j; j D 1; : : : ; nk ; k D 1; : : :
generate a tight wavelet frame, then one can prove that

f D
m1X

jD1

h f ; �1; ji�1; j C
1X

kD1

nkX

jD1

h f ;  k; ji k; j

for any f 2 L2(˝) by using the polarization technique
mentioned before.

We show that a matrix Qk satisfying

ImkC1 D PTk Pk C QT
k Qk ; (31)

for a given refinement matrix Pk in (29) is a key step for
constructing a tight wavelet frame. Here ImkC1 is the stan-
dard identity matrix of size mkC1.

Clearly, each component in the function vector �k is
in VkC1. We want to have

h f ; ˚kC1i
T ˚kC1 D h f ; ˚ki

T ˚k C h f ; �ki
T �k ;

8 f 2 L2(˝) : (32)

Let ck;i :D h f ; �k;ii for all i D 1; : : : ;mk and Ck :D
(ck;1; : : : ; ck;mk )

T be a column vector of size mk � 1 for
any k 2 ZC. In the same way, let dk; j :D h f ;  k; ji for
all j D 1; : : : ; nk and Dk :D (dk;1; : : : ; dk;nk )

T. Then we
know

Ck D h f ; ˚ki D h f ; Pk˚kC1i D PkCkC1 ; (33)

Dk D h f ; �ki D h f ;Qk˚kC1i D QkCkC1 : (34)

Thus condition in (32) can be expressed in the following
form

CT
kC1˚kC1 D CT

k Pk˚kC1 C DT
kQk˚kC1 :

That is, CT
kC1 D CT

k Pk C DT
k Qk . By using (34), we get

CT
kC1CkC1 D CT

kC1
�
PTk Pk C QT

k Qk

CkC1 :

This implies that Qk must satisfy (31) for all k � 1. On the
other hand, if we find Qk satisfying (31) for all k � 1, then
we have the above equation and hence, by using (34),

CT
kC1CkC1 D CT

k Ck C DT
k Dk :

It follows for any ` 2 ZC with ` < k,

CT
kC1CkC1 D CT

`C` C
kX

jD`

DT
j D j : (35)

The condition (31) implies CT
kC1 D CT

kC1(P
T
k Pk C QT

k Qk)
D CT

k Pk C DT
k Qk and hence,

CT
kC1˚kC1 D CT

k˚kCQT
k�k D : : : D CT

`˚`C

kX

jD`

DT
j � j :

If CT
kC1˚kC1 converges to f in L2(˝), for any ` 2 ZC; we

have

k f k2 D
�
f ; lim

k!C1
CT
kC1˚kC1

	

D lim
k!C1

*

f ;CT
`˚` C

kX

jD`

DT
j � j

+

D CT
`C` C

1X

jD`

DT
j D j

D

mX̀

jD1

jh f ; �`; jij2 C
1X

kD`

nkX

jD1

jh f ;  k; jij
2 :

Theorem 13 Suppose that ˚k is a given refinable vector
which spans Vk for all k � 1 with refinable matrix Pk, i. e.,
˚k D Pk˚kC1. Suppose that the projections f to Vk con-
verge to f , i. e., CT

k˚k �! f for any f 2 L2(˝). Suppose
Qk satisfies (31). Let �k D Qk˚k . Then �k ; k 2 ZC form
a tight wavelet frame. Hence, any f 2 L2(˝) can be gener-
ated by using˚` and�k with k � ` for any ` � 1 using the
formula above.

We now explain how to compute Qk satisfying (31).

Theorem 14 Let fVkg
1
kD1 be a nested sequence and Vk

be generated by a family of functions ˚k . Denote by Pk the
refinable matrix, i. e., ˚k D Pk˚kC1. If Imk � PkPTk is pos-
itive semi-definite, then there exists a matrix Qk satisfying
(31). Moreover, if each component function �k; j of˚k is lo-
cally supported then each component function  k; j of the
vector �k is locally supported.

We note that the condition Imk � PkPTk � 0 is different
from (31) which may be rewritten in ImkC1 � PTk Pk D
QT

k Qk � 0 since the the size of the matrix, e. g., Imk is
smaller than that of ImkC1 . The proof of Theorem 14 can
be found in [54].

Next we use B-splines to construct tight wavelet frames
over a bounded interval [0; b] for an integer b > 0. Fix
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m � 1 and consider B-spline Nm which satisfies the fol-
lowing refinement equation:

Nm(x) D
X

j2Z

cmj Nm(2x � j) ;

where

cmj D

(
2�mC1�m

j

; for 0 � j � m

0 otherwise :
(36)

We now define scaling functions � j;k (x) D 2 j/2Nm(2 j x �
k)j[0;b] which are nonzero when k D 1�m; : : : ; 2 jb�mC
1. Thus, let

Vj :D f� j;k : �1 � k � 2 jb � m C 1g

for all j. It is easy to see that Vj � VjC1 by using (36). Also,
we can easily verify that

S1
jD1 Vj is dense in L2([0; b]).

Letmj D 2 jb � m C 2 and˚ j D [� j;�1; : : : ; � j;m j�1]T be
a vector of basis functions forVj.We can find a refinement
matrix Pjm of size mj � mjC1 satisfying ˚m

j D Pm
j ˚

m
jC1

for each j 2 ZC using the coefficients in (36). Based on the
discussion above we can check the positive semi-definite
property of the matrix

Im j � Pm
j � P

m
j
T

for the identity matrix Im j :

Lemma 9 The above matrix of size mj � mj associated
with B-spline Nm of order m is positive semi-definite for
each j 2 Z and m � 1:

Proof Let us denote (pm; ji;k ) :D Pm
j . Then for each

i D 1; : : : ;mj

0 �
m jC1X

kD1

pm; ji;k �
1
2

mX

kD0

cmk D 1 ; (37)

where ckm is in (36). Let us express [gm; ji;k ]1�i;k�m j D

Pm
j � P

m
j
T. We claim that the matrix Imk � Pm

j � P
m
j
T

is diagonally dominant. Indeed, it is sufficient to check
j1 � gm; ji;i j �

P
k¤i j g

m; j
i;k j for i � mk : Notice that

gm; ji;k D

m jC1X

`D1

pm; ji;` p
m; j
`;k :

Then for each k 2 ZC,

1 � jgm; ji;i j �
X

k¤i

j gm; ji;k j D 1 �
m jC1X

kD1

m jC1X

`D1

pm;ki;` pm; jk;`

D 1 �

 m jC1X

`D1

pm; ji;`

!2

:

Since (37), 1 � jgm; ji;i j �
P

k¤i j g
m; j
i;k j for all i D 1; : : : ;

mk . Therefore the symmetry matrix Imk � Pm
k � P

m
k

T is
positive semi-definite. This completes the proof. �

That is, we can use B-splines of any order to construct tight
wavelet frames over any intervals.

q-Dilated OrthonormalWavelets

In the previous sections, we consider refinable functions �
which are dilated by 2. That is,

�(x) D
X

n
hn
p
q�(qx � n); x 2 R (38)

for q D 2. In general, we can consider refinable function
� which can be dilated by q > 2. All the previous theories
of various wavelets have a generalization in this setting of
dilation factor q > 2. One important feature of wavelets in
the new setting is that it requires more than one wavelet
function. Let us give a brief explanation of orthonormal
wavelets based on dilation factor q D 3.

Suppose we have a multiresolution approximation of
L2(R) based on dilation factor q. That is, we have

Definition 4 A sequence of closed subspaces : : :V�2;
V�1;V0;V1;V2; : : : of L2(R) is a multiresolution approx-
imation of L2(R) if they satisfy the following

1. Vj � VjC1;8 j 2 Z;
2.
S

j2Z Vj D L2(R) and
T

j2Z Vj D f0g;
3. f (�) 2 V0 () f (qj � �k) 2 Vj for all j, k 2 Z;
4. There is a function � 2 L2(R) called scaling function

such that f�(x � k); k 2 Zg forms an orthonormal ba-
sis of V0.

By taking the Fourier transform both sides of (38), we get
that

b�(�) D m0(!/q)b�(!/q); � 2 R ; (39)

where

m0(!) D
1
pq

X

n
hne�in! : (40)

m0 is a Laurent polynomial in z D ei! and is called the
mask of � .

Since � is orthonormal, we know

ın0 D

Z

R

�(x)�(x � n)dx D
1
2�

Z

R

j�̂(�)j2ein� d�

D
1
2�

2	Z

0

 
X

k2Z

j�̂(� C 2k�)j2
!

ein� d� ;
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and hence,
X

k2Z

jb�(� C 2k�)j2 D 1 : (41)

Since m0 is 2�-periodic, by (39) and (41) we find that

1 D
X

k2Z

jb�(q� C 2k�)j2

D
X

k2Z

jm0(� C 2k�/q)j2jb�(� C 2k�/q)j2

D jm0(�)j2
X

k2Z

jb�(� C 2k�)j2 C jm0(� C 2�/q)j2

X

k2Z

jb�(� C 2�/qC 2k�)j2

C : : :C jm0(� C 2(q � 1)�/q)j2
X

k2Z

jb�(� C 2(q � 1)�/qC 2k�)j2 :

Hence

jm0(�)j2 C jm0(� C 2�/q)j2 C : : :

C jm0(� C 2(q � 1)�/q)j2 D 1 : (42)

Consider j D 0 and letW0 be the orthogonal comple-
ment of V0 in V1. Since V0 is generated by integer trans-
lates of �(x) and V1 is generated by integer translates of q
functions, �(qx), �(qx � 1); : : :, �(qx � qC 1), we need
q � 1 functions whose integer translates to generate W0.
That is, we look for  1,  2; : : :,  q�1 such that

f i(x � k) : i D 1; 2; : : : ; q � 1; k 2 Zg (43)

forms an orthonormal basis forW0. For convenience, let

Wi
0 :D spanf i(x�k); k 2 Zg for i D 1; 2; : : : ; q�1:

(44)

Then we have W0 D W1
0
L

W2
0
L
: : :
L

Wq�1
0 . In gen-

eral, we set

Wi
j D spanf i(qjx�k); k 2 Zg for i D 1; 2; : : : ; q�1:

Then we have

VjC1 D Vj ˚W1
j ˚W2

j ˚ : : :˚Wq�1
j (45)

and

Wi
j ? Wi 0

j if i ¤ i0 : (46)

It implies

L2(R) D
M

j2Z

q�1M

iD1

Wi
j : (47)

That is,  i ; i D 1; 2; : : : ; q � 1 form a set of orthonormal
q-wavelet functions.

Since  j 2 V1 and  j ? V0, we have

 j(x) D
p
q
X

n
g jn�(qx � n) ; (48)

with g jn D h j; �1;ni and fg
j
ng 2 `

2(Z). This implies

 ̂ j(�) D mj(�/q)�̂(�/q) ; (49)

where

mj(�) D
1
pq

X

n
g jne�in� : (50)

We can prove the following

Lemma 10 Let � be an orthonormal refinable func-
tion associated with dilation factor q � 2 and m0
be the corresponding mask. Let  1,  2; : : : ;  q�1 be
functions defined by in terms of Fourier transform us-
ing take m1;m2; : : : ;mq�1 as above. Then the family
f j(x � n); j D 1; 2; : : : ; q � 1; n 2 Zg is an orthonormal
basis for the orthogonal complement W0 of V0 in V1 if and
only if the matrix

2

6
66
4

m0(!) m0(! C 2�/q)
m1(!) m1(! C 2�/q)
:::

:::

mq�1(!) mq�1(! C 2�/q)

: : : m0(! C 2(q � 1)�/q)
: : : m1(! C 2(q � 1)�/q)
: : :

:::

: : : mq�1(! C 2(q � 1)�/q)

3

7
77
5

(51)

is unitary.

As usual, the first problem is to find a Laurent polynomial
m0 such that

Pq�1
iD0 jm0(! C 2i�/q)j2 D 1. Once suchm0

is found, we can find the other mj; j D 1; : : : ; q � 1 by us-
ing unitary matrix extension technique in [62].

To give some examples, we now restrict ourselves to
q D 3. Consider a maskm0 which must satisfy

m0(0) D 1

in order to make
Q1

jD1 m0(!/3 j) converges so that it de-
fines a distribution � .m0 must satisfy

jm0(!)j2 C jm0(! C 2�/3)j2 C jm0(! C 4�/3)j2 D 1

so that � is in L2(R). Note that the above two conditions
implies that m0(!) D

� 1Cei!Ce2i!
3


L(!) for some Lau-

rent polynomial in ei! . The following can be found in [92].
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Lemma 11 A Laurent polynomial m0(!) DP5
kD0 pke

ik! satisfies above two conditions if and only
if

p0 D
1
6
C

p
3
6

cos �; p1 D
1
6
C

p
3
6

sin � cos˛

p2 D
1
6
C

p
3
6

sin � sin˛; p3 D
1
6
�

p
3
6

cos �

p4 D
1
6
�

p
3
6

sin � cos ˛; p5 D
1
6
�

p
3
6

sin � sin˛

for some � , ˛ in [0; 2�].

Example 19 A scaling function associated with m0 in
Lemma 11 is symmetric if and only if the coefficients
given above with tan � D �1; sin˛ D 1 or tan � D 1;
sin˛ D �1.

Example 20 m0 in Lemma 11 has two order of vanishing
moments, i. e., m0 contains a factor (1C ei! C ei2!)2 if

˛ D arccos
�q 19

50C4
p
57


and � D arcsin

�p50C4
p
57

9

.

Next we consider m0(z) D p0 C p1z C p2z2 C p3z3 C
p4z4Cp5z5Cp6z6Cp7z7Cp8z8 be the symbol of a scaling
function supported on [0; 4], where z D ei! .

Lemma 12 m0(z) satisfies m0(0) D 1 and

jm0(z)j2 C jm0(z�)j2 C
ˇ̌
m0(z�2)

ˇ̌2
D 1 ;

8z D ei! ; ! 2 R; (52)

with � D ei
2

3 if and only if

p1 D
1
12
C

p
3

12
sin˛ C

1
6
r sin �

p2 D
1
12
C

p
3

12
cos˛ sinˇ C

1
6
r cos � sin �

p3 D
1
6
(1 �
p
3 cos ˛ cosˇ)

p4 D
1
6
(1 �
p
3 sin ˛)

p5 D
1
6
(1 �
p
3 cos ˛ sinˇ)

p6 D
1
12
C

p
3

12
cos˛ cosˇ �

1
6
r cos � cos �

p7 D
1
12
C

p
3

12
sin˛ �

1
6
r sin �

p8 D
1
12
C

p
3

12
cos˛ sinˇ �

1
6
r cos � sin �;

where

r D

s
1
2
C

p
3
6

(cos ˛ cosˇ C cos ˛ sinˇ C sin ˛) (53)

for some ˛; ˇ; � in [0; 2�].

Example 21 A scaling function associated with m0 in
Lemma 12 is symmetric if and only if the coefficients
given above with sin � D 0, cos ˛ D 0, tanˇ D 1, and
tan � D �1.

Example 22 m0 in Lemma 12 has three order of vanishing
moments, i. e., m0 contains a factor (1 C ei! C ei2!)3 if
˛ D � D 0, ˇ D arcsin( 7

p
6

36 )� 	4 , and � D �Carcsin( 35 ).

Multiwavelets and BalancedMultiwavelets

We shall explain a construction of multiwavelets in this
section. Typical multiwavelets are DGHM multiwavelets
(cf. [28]), Chui-Lian wavelets (cf. [16]) and multiwavelets
based on B-splines (cf. [29]). In the following we present
a newer construction. An advantage is that the number of
wavelets is always 3 no matter how smooth the wavelets
are.

Fix integer r > 1. Let˚ D [�1; : : : ; �r]T be a vector of
compactly supported real-valued functions in R. We sup-
pose that ˚ is refinable. That is, there exist matrices Ak’s
of size r � r such that

˚(x) D
X

k2Zd

Ak˚(2x � k); x 2 R :

Also, we say ˚ is orthonormal if

Z

R

�i(x)� j(x� k)dx D

(
1 ; if i D j and k D 0 ;
0 ; otherwise

for all i; j D 1; : : : ; r.˚ generates a space S if S consists of
all finitely linear combination of integer translates of en-
tries of ˚ .

Next we define a GrammianmatrixG D (Gi j)i; jD1;:::;r
of size r � r associated with ˚ by

Gi j(z) D
X

k2Z

zk
Z

R

�i(x)� j(x � k)dx

for all i; j D 1; : : : ; r with z 2 C n f0g. We note that ˚ is
orthonormal if and only if its Grammian matrix G is the
identity of size r � r.

We suppose that ˚ generates a space S. Then for any
compactly supported functions  1; : : : ;  s in S, there ex-
ists a finitely many nonzero matrices Ck of size s � r such
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that

� (x) D [ 1(x); : : : ;  s(x)]T D
X

k2Z

Ck˚(x � k) :

In terms of Fourier transform, we have

b� (!) D C(z)b̊(!)

where C(z) denotes the s � r matrix of Laurent polynomi-
als, i. e.,

C(z) :D
X

k2Z

Ckzk :

A squarematrixC(z) is said to be invertible if det(C(z))
is a monomial of z, e. g., ˛zm for a scalar ˛ ¤ 0 and an
integer m 2 Z. It is clear that if C(z) is invertible, � gen-
erates the same S. A proof of the following result can be
found in literature (cf. e. g., [31]).

Lemma 13 Suppose that � is a vector of compactly sup-
ported functions and generates a space S. Let G(z) D
(Gi j(z))i; jD1;:::;r of size r � r by

Gi j(z) D
X

k2Z

zk
Z

R

 i(x) j(x � k)dx

for all i; j D 1; : : : ; r be the Grammian matrix associated
with � . If the determinant of the Grammian matrixG(z) is
a nonzero constant, then there exists a˚ which is orthonor-
mal and generates S. The converse is also true.
The above lemma reveals a key for constructing orthonor-
mal vector of scaling functions: find  1; : : : ;  r which
generate the same space S such that its Grammian matrix
has a constant determinant.

We now explain how to use B-splines for constructing
an orthonormal vector of scaling functions with r D 3. Let
Nm be the uniform B-spline of orderm, in terms of Fourier
transform,

bNm(!) D
�
1 � e�i!

i!

�m

:

Let V0 D spanfNm(x � k); k 2 Zg be the spline space.
Since Nm is a refinable function, for V1 being spanned
by the integer translates of Nm(2x � k); k 2 Z, we have
V0 � V1. Thus, letting  1(x) D Nm(2x) and  2(x) D
Nm(2x�1), 1 and 2 generateV1. On the other hand, by
the dilation equation, there exist two finite sequences a2k
and a2kC1 such that

Nm(x) D
X

k2Z

a2k 1(x � k)C
X

k2Z

a2kC1 2(x � k) :

Note that the Fourier transform of the above equation is

bNm(2!) D
1
2
A(z)bNm(!)

and

bNm(!) D A0(z)b 1(!)C A1(z)b 2(!)

D A0(z)
1
2
bNm


!
2

�
C A1(z)

1
2
z
1
2bNm


!
2

�

where

A0(z) D
X

k2Z

a2kzk and A1(z) D
X

k2Z

a2kC1zk :

It follows that

A(z) D A0(z2)C zA1(z2) :

It is known that A(z) D 2
� 1Cz

2
m . It is easy to see that

there exist two Laurent polynomials B0(z) and B1(z) of de-
gree � m such that

A0(z)B0(z)C A1(z)B1(z) D 1 :

We now define a new spline function in terms of
Fourier transform by

bMm(!) D �B1(z)b 1(!)C B0(z)b 2(!) :

Recall that

bNm(!) D A0(z)b 1(!)C A1(z)b 2(!) :

It follows that Nm andMm generate V1 since the determi-
nant of the foll owing matrix
"
bNm(!)
bMm(!)

#

D

�
A0(z) A1(z)
�B1(z) B0(z)

�"b 1(!)
b 2(!)

#

is constant 1. Furthermore, Nm(2x);Nm(2x � 1);
Mm(2x);Mm(2x � 1) generate V2.

Define  3 D
P

k2Z ˛kMm(2x � k) for some finitely
many nonzero coefficients ˛k . We will show how to
find such ˛k that the Grammian matrix associated with
f 1;  2;  3g;

G(z) D

0

@
X

k2Z

zk
Z

R

 i(x) j(x � k)dx

1

A

i; jD1;2;3

has a constant determinant. Let

r(z) D
X

k2Z

˛kzk :
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The computation in [31] shows

4 detG(z2) D D(z)r(z)r(1/z)CD(�z)r(�z)r(�1/z) (54)

where

D(z) D
1
2
(a(z2) � zb(z2)) (a(z)2 � zb(z)2)

with

a(z) D
X

k2Z

zk
Z

Nm(2x)Nm(2x � k)dx;

b(z) D
X

k2Z

zk
Z

Nm(2x)Nm(2x � 2k � 1)dx :

Nowwe claim that there exists a polynomial p(z) � 0 such
that

D(z)p(z)C D(�z)p(�z) D 1 :

Once we have such a p(z), it follows from the Riesz–
Féjer lemma that there exists a polynomial r(z) such that
r(z)r(1/z) D p(z). This r(z) is the polynomial we look for
such that the determinant (54) of Grammian matrix G(z)
is a nonzero constant.

The existence of p(z) satisfying the above properties
is guaranteed by the following lemma (see a constructive
proof from [32]).

Lemma 14 Let q be a polynomial of degree n with all its
zeros in [1;1) having a positive leading coefficient. Then
there exists a unique polynomial p with real coefficients of
degree n � 1 such that

p(x)q(x)C p(1 � x)q(1 � x) D 1

for x 2 [0; 1]. Moreover, (�1)n p(x) > 0 for x 2 (0; 1).

By letting x D 1 � (z C 1/z)/2 we can convert D(z) into
a polynomial in x. By studying the zeros of D(z) we
can see that q(x) D D(z) satisfies the conditions in
the above lemma (for details, see [31] and [9]). This
shows that the Grammian matrix G(z) associated with
� D ( 1;  2;  3)T is nonzero monomial. Hence, it can
be factored into G(z) D B(z)�B(z) with invertible poly-
nomial matrix B(z) by matrix-valued Fejér–Riesz lemma
(cf. [34]), where B(z)� stands for the transpose and con-
jugate of B(z). A straightforward computational method
to do such factorizations can be found in [9] based on the
theory developed in [30]. Letting

b̊(z) D B(z)�1b� (z) ;

we know that the Grammian matrix of ˚ is B(z)�1G(z)
B�1(z)� which is the identity matrix and hence ˚ D [�1;

�2; �3]T is an orthonormal refinable function vector. Next
we explain how to compute the associated wavelets. We
begin with

Lemma 15 ˚ is refinable. That is, letting

e̊(x) D
p
2(�1(2x); �2(2x); �3(2x);

�1(2x � 1); �2(2x � 1); �3(2x � 1))T ;

there exists matrix coefficients pi of size 3 � 6 such that

˚(x) D
X

k2Z

pk e̊(x�k) or b̊(!) D P(z)be̊(!); (55)

where P(z) is a matrix mask of size 3 � 6.

Since ˚ is of compact compact, we may assume that only
mC 1 terms p0; p1; : : : ; pm are nonzero matrix coeffi-
cients. Then the orthogonal condition implies

0 D
Z

R

˚(x)˚(x � k)Tdx

D

mX

i; jD1

pi
Z

R

e̊(x � i)e̊T(x � j � k)dxpTj

D

mX

i; jD1

piıi; jCk I6�6pTj D
mX

iDk

pi pTi�k ;

for k D 1; : : : ;m. In particular, we have

pm pT0 D 0 : (56)

We now use induction on m to explain how to con-
struct three compactly supported orthonormal wavelets
h1; h2; h3 2 S1 such that

W :D spanfh1(� � i); h2(� � j); h3(� � k); i; j; k 2 Zg

is the orthogonal completement of S in S1. It is trivial
whenm D 0. Indeed, in this case, P(z) D p0 is a scalarma-
trix. We simply choose Q(z) to be a scalar matrix which is
an orthonormal extension of p0. Assume that for m � 1,
when Pm(z) D

Pm
kD0 pkz

k is an orthonormal matrix of
3 � 6, we can find Qm(z) such that
�
Pm(z)
Qm(z)

�

is unitary. We now consider the case of m C 1:
PmC1(z) D

PmC1
kD0 pkzk satisfying orthonormal proper-

ties. In particular, (56) implies that there exists a unitary
matrix U0 of size 6 � 6 such that p0U0 D [03�3 p̃b0 ] and
pmC1U0 D [p̃amC1 03�3], where p̃

b
0 is of size 3 � 3 and the
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same for p̃amC1. Writing pkU0 D [p̃ak ; p̃
b
k ] with p̃ak and p̃bk

being of size 3 � 3. Then

PmC1(z)U0 D

"mC1X

kD1

p̃akz
k ;

mX

kD0

p̃bkz
k

#

:

Let

U1 :D
� 1
z I3�3 03�3
03�3 I3�3

�
:

Then it follows that

PmC1(z)U0U1 D

" mX

kD0

p̃akC1z
k ;

mX

kD0

p̃bkz
k

#

D

mX

kD0

h
p̃akC1; p̃

b
k

i
zk :

That is, P̃m(z) :D PmC1(z)U0U1 has onlym C 1 terms and
is unitary. By induction, we can find an unitary extension
Q̃m(z) such that
�
PmC1(z)U0U1

Q̃m(z)

�

is unitary. Clearly,

�
PmC1(z)U0U1

Q̃m(z)

�
U�1 U

�
0 D

�
PmC1(z)

Q̃m(z)U�1 U
�
0

�

is also unitary. It follows that QmC1(z) :D Q̃m(z)U�1 U
�
0 is

an unitary extension of PmC1(z). This completes the in-
duction procedure. Several examples of multiwavelets and
filters associated with these multiwavelets are given in [9].

Before we apply these multiwavelets, we need to bal-
ance them. The concept of balance was initially proposed
in [63]. Mainly we need tomake sure that a constant signal
is reproduced by using balanced multiwavelets with con-
stant coefficient vectors. The discussion and computation
of balancing the abovemultiwavelets are presented in [38].

MultivariateOrthonormalWavelets

Univariate wavelets have found successful applications in
signal processing. To apply wavelet methods to digital im-
age processing, we have to construct bivariate wavelets.
The most commonly used method is the tensor product
of univariate wavelets. This construction leads to a sepa-
rable wavelet which has a disadvantage of giving a partic-
ular importance to the horizontal and vertical directions.
Much effort has been spent on constructing non-separable

bivariate wavelets in the last ten years. In this and the fol-
lowing three sections, we survey some methods for con-
structing bivariate and multivariate non-separable com-
pactly supported orthonormal, biorthogonal, pre-wavelets
as well as tight wavelet frames. All the discussion is based
on the commonly used uniform dilation matrix 2Id d-di-
mensional Euclidean space Rd , where Id is the identity of
d � d matrix. Due to the space limitation, we are not able
to include all the constructions. We refer the reader to the
following literature [21,33,45,46,87,88], for other meth-
ods of constructing nonseparable compactly supported or-
thonormal wavelets (cf. [48]).

All the construction of compactly supported orthonor-
mal wavelets is based multiresolution analysis (MRA). For
convenience, we restrict our attention toR2. To construct
bivariate wavelets, we need to solve the following two
mathematical problems.

(1) Find a Laurent polynomial

m0(x; y) D
X

�M� j�M
�N�k�N

c jk x j yk

so normalized that m0(1; 1) D 1 satisfying

jm0(x; y)j2 C jm0(�x; y)j2 C jm0(x;�y)j2

Cjm0(�x;�y)j2 D 1 (57)

for x D ei� and y D ei� with �; � 2 R.
(2) Find another three Laurent polynomials mj(x; y),

j D 1; 2; 3 such that the following matrix M is uni-
tary, i. e.,

M D

2

66
4

m0(x; y) m0(�x; y)
m1(x; y) m1(�x; y)
m2(x; y) m2(�x; y)
m3(x; y) m3(�x; y)

m0(x;�y) m0(�x;�y)
m1(x;�y) m1(�x;�y)
m2(x;�y) m2(�x;�y)
m3(x;�y) m3(�x;�y)

3

77
5 (58)

is unitary.

The condition (58) is called the perfect reconstruction
condition as in Sect. “Definition of Filters”.

Since m0(1; 1) D 1, let

b�(�; �) D
1Y

kD1

m0(ei�/2
k
; ei�/2

k
) (59)

be the refinable function associatedwithm0. Then the con-
dition (57) implies that � 2 L2(R2).
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In order to see that � is orthonormal, wemay apply the
multidimensional generalization of Cohen’s condition or
Lawton’s condition (cf. [24]). For simplicity, let us assume
that � is orthonormal in the sense that
Z

R2

�(x; y)�(x�k; y� j)dxdy D
�

1; if j D k D 0
0; otherwise

for all j; k 2 Z and � generate a multiresolution approxi-
mation of L2(R2). That is, let

Vj :D spanf2 j�(2 jx � m; 2 j y � n);m; n 2 Zg

for j 2 Z.
S

j2Z Vj is dense in R2 and
T

j2Z Vj D f0g.
Let b k(�; �) D mk(ei�/2; ei�/2)b�(�/2; �/2) and

W0;k :D spanf2 j (2 j x � m; 2 j y � n);m; n 2 Zg

for k D 1; 2; 3. In order for k to be orthonormal wavelets,
we need to have

1)  k is orthonormal for k D 1; 2; 3 and
2)

V1 D V0 ˚W0;1 ˚W0;2 ˚W0;3 :

These conditions 1) and 2) are equivalent to (58) (cf. [40]).
Therefore, we mainly review recent methods for solving
(57) and (58).

Method of Tensor Product

Starting with univariate wavelets, we can use the method
of tensor product to construct separable wavelets. Let us
recall the method below.

Let Pa(x) and Pb(x) be two univariate Laurent polyno-
mials satisfying Pa(1) D 1, Pb (1) D 1,

jPa(x)j2CjPa(�x)j2 D 1 and jPb(x)j2CjPb(�x)j2 D 1:

Letting fQa D xPa(�1/x) and fQb(x) D xPb(�1/x) be
the Laurent polynomials associated with Pa and Pb, re-
spectively, we know

Pa(x)fQa(x)C Pa(�x)fQa(�x) D 0

Pb(y)fQb (y)C Pb(�y)fQb (�y) D 0 :

With these relations, we define

m0(x; y) D Pa(x)Pb(y);
m1(x; y) D fQa(x)Pb(y);
m2(x; y) D Pa(x)fQb(y);
m3(x; y) D fQa(x)fQb(y) :

Then, m0 satisfies (57) and mj ; j D 0; 1; 2; 3 satisfy
(58). This is an easy method. However, the method em-
phasizes horizontal and vertical directions which may not
be desirable for applications. Therefore, these prompt for
construction of nonseparable wavelets.

The Ayache Method

In [1], Ayache proposed two methods for constructing
bivariate nonseparable compactly supported orthonormal
wavelets. The wavelets constructed using one of the meth-
ods is called semi-separable wavelets.

Starting with a separable filter m(x; y) D Pa(x)Pb(y),
we write

m(x; y) D Pa(x)
Pb (y)C Pb (�y)

2

C Pa(x)
Pb (y) � Pb(�y)

2
:

Let

(Pb )e(y) D
1
2
(Pb (y)C Pb (�y));

(Pb )o(y) D
1
2
(Pb (y) � Pb(�y)) :

be the even and odd part of Pb(x). That is, m(x; y) D
Pa(x)(Pb )e (y)C Pa(x)(Pb )o(y). Let Pc(x) be another uni-
variate CQF which is different from Pa(x). We define

m0(x; y) D Pa(x)(Pb )e (y)C Pc (x)(Pb)o(y)
m1(x; y) D ePa(x)(Pb )e (y)C ePc (x)(Pb)o(y)
m2(x; y) D Pa(x)(ePb )e (y)C Pc (x)(ePb)o(y)
m3(x; y) D ePa(x)(ePb )e (y)C ePc (x)(ePb)o(y) :

Then we have

Lemma 16 Let m0(x; y) be a Laurent polynomial defined
above. Then m0(x; y) satisfies (57) and mj; j D 0; 1; 2; 3
satisfy (58).

Let us give some simple examples.

Example 23 Let Pa(x) D Pb(x) D 1Cx
2 and Pc (x) D

1Cx3
2 . Then

m(x; y) D
1C x
4
C

1C x3

4
y

is a simple bivariate nonseparable filter satisfying (57). It
can be easily verified thatm(x; y) satisfies the bivariate Co-
hen condition for the orthonormality. Thus, m(x, y) gen-
erates a bona fide scaling function � .
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Example 24 Let Pa(x) D Pb (x) D 1Cx
2 and

Pc(x) D
1C
p
3

8
C

3C
p
3

8
xC

3 �
p
3

8
x2C

1 �
p
3

8
x3 :

Thenm(x; y) D 1Cx
4 C

y
2 Pc(x) is another simple bivariate

nonseparable filter satisfying (57).

When Pa and Pc are masks associated with scaling func-
tions �a and �c , if Pb is sufficiently close to Pa, then
m0(x; y) defined above will generate an orthonormal re-
finable function � . Indeed, m0 will satisfy the bivariate
generalization of Cohen’s orthonormal condition when Pb
is sufficiently close to Pa (cf. [1] and [2]).

The Maass–Ayache Method

This is the second method that Ayache proposed in [1].
Let (x; y) and �(x; y) be two even Laurent polynomials
satisfying

j(x; y)j2 C j�(x; y)j2 D 1 ;

where (x; y) also satisfies (1; 1) D 1. We define

m0(x; y) D (x; y)Pa (x)Pb (x)C �(x; y)ePa(x)Pb (y)

m1(x; y) D �(x; y)Pa(x)Pb (y)� (x; y)ePa(x)Pb(y)
m2(x; y) D (x; y)Pa (x)ePb (y)C �(x; y)ePa (x)ePb(y)

m3(x; y) D �(x; y)Pa(x)ePb (y)� (x; y)ePa(x)ePb(y) :

Lemma 17 m(x, y), m1(x; y), m2(x; y), m3(x; y) so de-
fined above satisfy the perfect reconstruction condition (58).

Next let q(x) be a nonzero Laurent polynomial with
0 � q(x) � 1 and q(1) D 0. We define

(x) D 1 �
1
4
q(x)

and �(x) such that

j(x)j2 C j�(x)j2 D 1 : (60)

We now define mN;0(x; y) by

mN;0(x; y) D DN (y)((x2)DN (x)C�(x2)D̃N (x)) ; (61)

where DN is the filter associated with Daubechies’ wavelet
and eDN (x) D xDN(�x) is a conjugate filter of DN(x).

We refer [1] for the discussion of the orthonormality
and regularity of the refinable function �N generated by
mN;0.

Also, in [69], Maass proposed a similar method for
m0(x; y) such that the refinable function � associated with

m0 satisfies the orthonormal condition under the dilation

matrix
�
1 �1
1 1

�
: i. e.,

jm0(x; y)j2 C jm0(�x;�y)j2 D 1 : (62)

His method can be given as follows: Let  and � be two
even Laurent polynomials satisfying (60) with (1; 1) D 1.
Then

m0(x; y) D (x; y)DN (x)C �(x; y)eDN (x)

satisfies (62). Comparing with (61), we can see that the
Maass method and the method Ayache used here are very
similar. Thus, we call the construction the Maass–Ayache
method.

The Belogay andWangMethod

In [5], Belogay and Wang constructed nonseparable com-
pactly supported orthonormal wavelets using dilation ma-

trix
�
0 2
1 0

�
. However, their method can be modified to

construct nonseparable wavelets using the dilation matrix�
2 0
0 2

�
. We begin with

Lemma 18 Let Pa(x) and Pb(x) be two Laurent poly-
nomials of x D ei! . Suppose that Pa and Pb satisfy that
Pa(1) D 1,

jPa(x)j2C jPa(�x)j2 C jPb(x)j2C jPb(�x)j2 D 1 (63)

and

ma(x)mb(1/x)C ma(�x)mb (�1/x) D 0 : (64)

Then, letting

m0(x; y) D (Pa(x)C yPb(x))(Pa (y)C x2Pb(y)) ;

m0(1; 1) D 1 and m0(x; y) satisfies (57).

Next we define

m1(x; y) D y(Pa(x)C yPb(x))(Pa(�1/y)

C x2Pb (�1/y));
m2(x; y) D x(Pa(�1/x)C 1/yPb(�1/x))

(Pa(y)C x2Pb(y));
m3(x; y) D xy(Pa(�1/x)C 1/yPb (�1/x))

(Pa(�1/y)C x2Pb(�1/y)) :
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Then it is easy to verify the following

Lemma 19 Let m(x, y) and mi (x; y); i D 1; 2; 3 be Lau-
rent polynomials defined above. They satisfy the perfect re-
construction condition (58).

Next we define these Pa and Pb which satisfy (63) and (64).
Let T(x) D 2N�1 and S(x) such that

jS(x)j2 D
N�1X

kD0

 
N
k

!

sin2

!

2

�k 

cos2

!

2

�N�k

C
3
4



sin2

!

2

�N

with x D ei! . Then S and T satisfy

jS(x)j2 C jT(1/x)j2
ˇ
ˇ̌
ˇ
1 � x
4

ˇ
ˇ̌
ˇ

2N
D 1 :

Lemma 20 Let

Pa(x) D
�
1C x
2

�N
LN (x)S(x2)x�

Pb(x) D
�
1C x
2

�N �1 � x
2

�2N
LN (�1/x)T(1/x2) ;

where jLN (x)j2 D
PN�1

kD0
�n�1Ck

k
 �
sin2 !2

k , � is an inte-
ger such that � C N is odd. Then Pa(x) and Pb(x) satisfy
(63) and (64).

This is the main step for constructing the Belogay–Wang
nonseparable wavelets associated with dilation matrix 2I2.
We omit the discussion on the orthonormality and regu-
larity here. See their paper for details.

The Karoui Method

In [43], Karoui proposed the following method to design
nonseparable wavelets. Starting with a Laurant polynomial
m(x, y) which satisfies

jm(x; y)j2 C jm(�x;�y)j2 D 1 ; (65)

we define

m0(x; y) D m(x; y)m(x/y; xy) :

Then we have the following

Lemma 21 Let m0 be defined above. Then m0(x; y) satis-
fies (57) for jxj D 1 and jyj D 1.

Next we define

m1(x; y) D x/ym(x; y)m(�x/y;�xy)

m2(x; y) D xm(�x;�y)m(x/y; xy);

m3(x; y) D 1/ym(�x;�y)m(�x/y;�xy) :

Then we have

Lemma 22 The four filters mj, j D 0; 1; 2; 3 satisfy the per-
fect reconstruction condition (58).

Note that (65) is the same as (62) before. By the Maass
method, we can construct m satisfy (65).

The He and Lai Method

In [35], He and Lai construct many examples of non-
separable orthonormal wavelets. The constructive method
starts with Laurent polynomial

m0(x; y) D
X

0� j�3;0�k�3

c j;kx j yk

with x D ei� and y D ei� . First we write m(x, y) in its
polyphase form:

m(x; y) D f0(x2; y2)C x f1(x2; y2)C y f2(x2; y2)

C xy f3(x2; y2) ;

where

f�(x; y) D a� C b�x C c� y C d�xy ; � D 0; 1; 2; 3 :

Lemma 23 m(x, y) satisfies (57) if and only if the following
5 nonlinear equations hold

3X

�D0

(a�b� C c�d� ) D 0 ;
3X

�D0

(a� c� C b�d�) D 0 ;

3X

�D0

a�d� D 0 ;
3X

�D0

b� c� D 0 ;

and

3X

�D0

�
a2� C b2� C c2� C d2�


D

1
4
:

The requirements m(1; 1) D 1 and m(�1; y) D 0 D
m(x;�1) imply the following 5 linear equations

3X

�D0

a� C b� C c� C d� D 1 ;

a� C b� C c� C d� D
1
4
; � D 0; 1; 2; 3 :

We were able to find a complete solution for c j;k ; 0 �
j; k � 3.
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Theorem 15 Let

m(x; y) D
X

0� j�3;0�k�3

c j;k x j yk D
(1C x)(1C y)

16

�
�
a00 C a10x C a01y C a11xy C a20x2

C a21x2y C a12xy2 C a22x2y2 C a02y2


(66)

with
8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

a00 D 1C
p
2(cos ˛ C cosˇ)C 2 cos � cos �

a10 D
p
2(sin ˛ � cos ˛) � 2 cos � cos �
C2 cos � sin �

a01 D
p
2(sinˇ � cosˇ)� 2 cos � cos �
C2 sin � cos �

a11 D 2(cos � cos � C sin � sin �� cos � sin �
� sin � cos �)

a20 D 1C
p
2(cosˇ � sin˛) � 2 cos � sin �

a02 D 1C
p
2(cos ˛ � sinˇ)� 2 sin � cos �

a21 D
p
2(sinˇ � cosˇ)� 2 sin � sin �
C2 cos � sin �

a12 D
p
2(sin ˛ � cos ˛) � 2 sin � sin �
C2 sin � cos �

a22 D 1 �
p
2(sin ˛ C sinˇ)C 2 sin � sin � :

Suppose that ˛; ˇ; �; �; � satisfy the following

cos � cos � C cos � sin � C sin � cos �C sin � sin �

D 2 sin


˛ C

�

4

�
sin


ˇ C

�

4

�
: (67)

Then m0(x; y) satisfies (57). On the other hand, it m0(x; y)
satisfies (57), then the coefficients cij can be given in the
above form and satisfy (67).

Theorem 16 For any given m(x, y) in (66) satisfying (57),
one can construct Laurant polynomials m1;m2; and m3
such that mj ; j D 0; 1; 2; 3 satisfy the perfect reconstruction
condition (58).

Their proof is constructive and has been implemented in
MATLAB. See [35] for details. Let us give two examples of
m(x, y).

Example 25 The following are two examples which has
rational coefficients. One can construct mj; j D 1; 2; 3 as-
sociated with any of the following such that they satisfy the
perfect reconstruction condition (58).

m(x; y) D
(1C x)(1C y)

100
(11C 6x � 2x2 C 6y

C 13xy � 4x2y � 2y2 � 4xy2 C x2y2)

m(x; y) D
(1C x)(1C y)

3468
(544C 120x � 52x2

C 120y C 416xy � 128x2y � 52y2 � 128xy2

C 27x2y2) :

There are many other examples including those which are
continuous. We refer to [35] for detail.

Method of Symmetry

Another easy method to construct bivariate compactly
supported wavelets is to use the method of symmetry. Sup-
pose that a Laurent polynomialm0(x; y) satisfies a symme-
try property: m0(1/x; 1/y) D x�My�Nm0(x; y): Suppose
that m0(x; y) satisfies (57). Then the other three filters
mj ; j D 1; 2; 3 can be easily obtained by

m1(x; y) D m0(�x; y)
m2(x; y) D x � m0(x;�y)
m3(x; y) D x � m0(�x;�y) :

In [57], we found the complete solutions for

m0(x; y) D
X

0� j;k�5

c j;k x j yk

which satisfies the orthonormal condition (57), symmetry
condition

m0(1/x; 1/y) D x�5y�5m0(x; y)

and low-pass feature m0(�1; y) D m0(x;�1) D 0. We
leave the detail to [57].

The Multiwavelet Method

Assume that � is a given compactly supported scaling
function which generates an MRA. We now discuss how
to construct compactly supported orthonormal wavelets
 j; j D 1; : : : ; n with n � 3 associated with � . For sim-
plicity, let

m(�; �) D
X

0� j�5;0�k�5

c j;kei( j�Ck�) :

Consider a function vector

˚(x; y) D

2

66
4

2�(2x; 2y)
2�(2x � 1; 2y)
2�(2x; 2y � 1)
2�(2x � 1; 2y � 1) :

3

77
5

Sine � is orthonormal, so is ˚(x; y), i. e.,
Z

R2

˚(x � `; y � k)˚(x; y)Tdxdy D I4�4ı0;`ı0;k :

Writing ˚ D (�1; �2; �3; �4)T, we let

eVk D spanL2f� j(2kx � `; 2k y � m) ;

`;m 2 Z ; j D 1; 2; 3; 4g :
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Note that is Ṽ0 D V1. It follows that fṼk ; k 2 Zg forms
an MRA and hence ˚ generates an MRA. It is clear that
˚(x; y) is a refinable vector. That is,

˚(x; y) D
X

`;m2Z

M`;m˚(2x � `; 2y � m) :

In terms of Fourier transform, we have

ˆ̊ (�; �) D M(�/2; �/2) ˆ̊ (�/2; �/2) ;

where M(�; �) D 1
4
P
`;m M`;mei(`�Cm�).

It follows that
X

`;m2Z

ˆ̊ (�C2`�; �C2m�) ˆ̊ (�C2`�; �C2m�)� D I4�4:

Thus, we have

M(�; �)M(�; �)� CM(� C �; �)M(� C �; �)�

C M(�; �C �)M(�; �C �)� CM(� C �; �C �)
M(� C �; �C �)� D I4�4 :

Let W̃k be the orthogonal complement of Ṽk in ṼkC1.
We will construct three compactly supported orthonormal
multi-wavelet vectors �1; �2; �3 2 W̃0 such that

Ṽ1 D Ṽ0 ˚ W̃0 ;

and for j; k D 1; 2; 3,

Z

R2

� j(x � `; y � m)�k (x; y)Tdxdy D 0 ; j ¤ k ;

where

W̃0 D spanL2f� j;k(x � `; y � m) ;

`;m 2 Z; j D 1; 2; 3 ; k D 1; : : : ; 4g

and � j D (� j1; � j2; � j3; � j4)T; j D 1; 2; 3. Writing

�̂ j(�; �) D Mj(�/2; �/2) ˆ̊ (�/2; �/2) ; j D 1; 2; 3 ;

we need to find matrices Mj(�; �) with polynomial entries
in (ei� ; ei�) such that

2

66
4

M(�; �) M(� C �; �)
M1(�; �) M1(� C �; �)
M2(�; �) M2(� C �; �)
M3(�; �) M3(� C �; �)

M(�; �C �) M(� C �; �C �)
M1(�; �C �) M1(� C �; �C �)
M2(�; �C �) M2(� C �; �C �)
M3(�; �C �) M3(� C �; �C �)

3

77
5

(68)

is a unitary matrix.
By the above properties and the fact that ˚ generates

anMRA, we know that f� jk ; j D 1; 2; 3; k D 1; 2; 3; 4g are
compactly supported orthonormal wavelet functions for
L2(R2) if we have (68).

To solve this matrix extension problem, i. e., finding
Mj; j D 1; 2; 3 such that (68) holds, we need the following
lemma whose proof is based on the ideas in [35].

Theorem 17 Let M(�; �) be a matrix of size 4 � 4 with
polynomial entries in ei� and ei� with coordinate degrees
� (3; 3). Suppose that

I4�4 D M(�; �)M(�; �)� CM(� C �; �)M(� C �; �)�

CM(�; �C �)M(�; �C �)�

C M(� C �; �C �)M(� C �; �C �)� :

Then there exist polynomial matrix Mj, j D 1; 2; 3 such
that the matrix in (68) is unitary.

Therefore we can have

Theorem 18 Suppose that �(x; y) 2 L2(R2) is a scaling
function associated with dilation matrix 2I2. Let

m(�; �) D
1
4

X

0� j�5
0�k�5

c jk ei( j�Ck�)

be the mask associated with �. Then there exist 12
compactly supported orthonormal wavelets  jk , j D
1; 2; 3; k D 1; 2; 3; 4 such that translates dilation of these
 j;k ’s form an orthonormal basis for L2(R2).

The detail of the proof is contained in [49]. What happens
when the support size of � is bigger. Suppose that

m(�; �) D
X

0� j�9
0� j�9

c jkei( j�Ck�)
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is a trigonometric polynomial associated with a scaling
function � . We will let

˚(x; y) D

2

6
666
666
666
666
666
6666
666
666
6
4

4�(4x; 4y)
4�(4x C 1; 4y)
4�(4x; 4yC 1)

4�(4x C 1; 4y C 1)
4�(4x C 2; 4y)

4�(4x C 2; 4y C 1)
4�(4x C 2; 4y C 2)
4�(4x C 1; 4y C 2)
4�(4x; 4yC 2)
4�(4x C 3; 4y)

4�(4x C 3; 4y C 1)
4�(4x C 3; 4y C 2)
4�(4x C 3; 4y C 3)
4�(4x C 2; 4y C 3)
4�(4x C 1; 4y C 3)
4�(4x; 4yC 3)

3

7
777
777
777
777
777
7777
777
777
7
5

16�1

:

Then ˚ D (�1; : : : ; �16)T is an orthonormal scaling vec-
tor. Let

bV0 D spanL2f� j(x�`; y�m); `;m 2 Z; j D 1; : : : ; 16g:

It is easy to see that bV 0 D V2. Thus, ˚ generates a bona
fide MRA. The above construction procedure can be sim-
ply extended for this ˚ . We can construct three multi-
wavelet vectors of size 16 � 1. The details can be found
in [49]. Therefore, we conclude

Theorem 19 Suppose that �(x; y) 2 L2(R2) is a scal-
ing function associated with dilation matrix 2I2. Then
there exist compactly supported orthonormal wavelets  jk ,
j D 1; 2; 3; k D 1; : : : ; n with appropriate n dependent on
the size of the support of � such that translates dilation of
these  j;k ’s form an orthonormal basis for L2(R2).

Biorthogonal Box SplineWavelets

In a previous section, we have used B-spline function Nn
to construct biorthogonal dual function B̃n and the asso-
ciated compactly supported biorthogonal wavelets. Since
bivariate box splines are a natural generalization of B-
spline functions, we shall present a constructive method
to find biorthogonal wavelets associated with box spline
functions.

Let Bl ;m;n be the bivariate box spline function whose
Fourier transform is

bBl ;m;n(!1; !2) D
�
1 � ei!1

i!1

�l �1 � ei!2

i!2

�m

 
1 � ei(!1C!2)

i(!1 C !2)

!n

:

(For properties of box spline functions, see [7,11,60]
For computation of these bivariate box spline functions,
see [47]). It is known that Bl ;m;n generates a multi-
resolution approximation of L2(R2) (cf. [74]). We are
interested in constructing a compactly supported func-
tion B̃l ;m;n generating a multi-resolution approximation
of L2(R2) which is a biorthogonal dual to Bl ;m;n in the fol-
lowing sense:

“

R2

Bl ;m;n(x � j; y � k)B̃l ;m;n(x � j0; y � k0)dxdy

D ı j; j0ık;k0 (69)

for all integers j; k 2 Z, where ı j;k is the standard Kro-
necker notation defined by ı j;k D 0 if j ¤ k and ı j;k D 1
if j D k and Z is the collection of all integers.

We are furthermore interested in constructing com-
pactly supported biorthogonal wavelets  j; j D 1; 2; 3
and  ̃ j; j D 1; 2; 3 and two families of FIR filters
fMj; j D 0; 1; 2; 3g and fJ j; j D 0; 1; 2; 3g with

b j(!1; !2) D Mj(ei
!1
2 ; ei

!2
2 )bBl ;m;n


!1

2
;
!2

2

�
;

j D 1; 2; 3 ; (70)

and

b̃ j(!1; !2) D J j


ei
!1
2 ; ei

!2
2

�
b̃Bl ;m;n


!1

2
;
!2

2

�
;

j D 1; 2; 3 ; (71)

such that the dilations and translates of the  j ’s and  ̃ j ’s
form two dual Riesz bases for L2(R2) and the two fami-
lies form an exact reconstruction of synthesis/analysis fil-
ter bank for image/data processing.

In the following we mainly follow the construction of
biorthogonal box spline wavelets in [36]. Denote z1 D ei!1

and z2 D ei!2 . Let

M0(z1; z2) D
�
1C z1

2

�l �1C z2
2

�m �1C z1z2
2

�n

be a mask associated with the box spline function Bl ;m;n .
We look for a mask J0(z1; z2) in the form

J0(z1; z2) D
�
1C z1

2

�ñ�l �1C z2
2

�ñ�m

�

�
1C z1z2

2

�m̃�n
H(z1; z2)D(z1z2)

(72)
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with ñ > l ; ñ > m and odd integer m̃ > n such that

M0(z1; z2)J0(z1; z2)C M0(�z1; z2)J0(�z1; z2)

C M0(z1;�z2)J0(z1;�z2)

C M0(�z1;�z2)J0(�z1;�z2) D 1 : (73)

Recall from (14) that there exists a polynomial PN(y)
of degree< N such that

(1 � y)NPN (y)C yNPN (1 � y) D 1 ; (74)

In fact, we have

PN (y) D
N�1X

kD0

�
2N � 1

k

�
(1 � y)N�1�k yk :

Theorem 20 Let ñ > n and m̃ D 2bmC 1. Let J0(z1; z2)
be defined in (72) with H and D defined by

H(z1; z2) D
ñ�1X

kD0

�
2ñ � 1

k

��
1C z1

2
1C z2

2

�ñ�1�k

�
1 � z1

2
1 � z2

2

�k
; (75)

and

D(ei(!1C!2)) D e�i(!1C!2)NPñCm̂

�
sin2

�
!1 C !2

2

��
:

(76)

Then J0 is a dual of M0 satisfying (73).

Proof We first note that

1C z1z2
2

D
1C z1

2
1C z2

2
C

1 � z1
2

1 � z2
2

:

By letting H(z1; z2) be defined in (75), we have, similar to
the derivation of PN(y) in (14)

�
1C z1z2

2

�2ñ�1

D

�
1C z1

2
1C z2

2
C

1 � z1
2

1 � z2
2

�2ñ�1

D

ñ�1X

kD0

 
2ñ � 1

k

!

�

�
1C z1

2
1C z2

2

�2ñ�1�k �1 � z1
2

1 � z2
2

�k

C

ñ�1X

`D0

 
2ñ � 1

2ñ � 1 � `

!�
1C z1

2
1C z2

2

�`

�

�
1 � z1

2
1 � z2

2

�2ñ�1�`
D

�
1C z1

2
1C z2

2

�ñ

� H(z1; z2)C
�
1 � z1

2
1 � z2

2

�ñ
H(�z1;�z2)

and similarly,

�
1 � z1z2

2

�2ñ�1
D

�
1 � z1

2
1C z2

2

C
1C z1

2
1 � z2

2

�2ñ�1
D

�
1 � z1

2
1C z2

2

�ñ

� H(�z1; z2)C
�
1C z1

2
1 � z2

2

�ñ
H(z1;�z2) :

With the definition of J0 in (73), (73) may be simplified as
follows:

M0(z1; z2)J0(z1; z2)C M0(�z1;�z2)J0(�z1;�z2)

C M0(�z1; z2)J0(�z1; z2)CM0(z1;�z2)J0(z1;�z2)

D

"�
1C z1

2
1C z2

2

�ñ
H(z1; z2)C

�
1 � z1

2
1 � z2

2

�ñ

H(�z1;�z2)

#

�

�
1C z1z2

2

�m̃
D(z1z2)

C

"�
1 � z1

2
1C z2

2

�ñ
H(�z1; z2)C

�
1C z1

2
1 � z2

2

�ñ

H(z1;�z2)

#

�

�
1 � z1z2

2

�m̃
D(�z1z2)

D

�
1C z1z2

2

�2ñCm̃�1
D(z1z2)C

�
1 � z1z2

2

�2ñCm̃�1

D(�z1z2) :

Let m̃ D 2bmC 1 and N D ñC bm. Recall z1 D ei!1 and
z2 D ei!2 . Then the last equation may be simplified fur-
ther:

�
cos2

!1 C !2

2

�N
ei(!1C!2)ND(ei(!1C!2))

C

�
sin2

!1 C !2

2

�N
(�1)Nei(!1C!2)ND(�ei(!1C!2)):

Let y D sin2


!1C!2

2

�
and recognize that ei(!1C!2)N

D(ei(!1C!2)) D PN (y). We can see that the above equa-
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tion is just the left-hand side of (74). Therefore, we have
established the results of Theorem 20. �

We remark here that the filter J0(z1; z2) is a linear phase
filter. It is known that the Fourier transform of box spline
Bl ;m;n is

bBl ;m;n(!1; !2) D
1Y

kD1

M0



ei
!1
2k ; ei

!2
2k
�
2 L2(R2) :

We now construct the dual functions B̃l ;m;n in terms of its
Fourier transform by

b̃Bl ;m;n(!1; !2) D
1Y

kD1

J0


ei
!1
2k ; ei

!2
2k
�
:

To see B̃l ;m;n is in L2(R2) and generates a MRA in the bi-
variate setting, we have the following (cf. [36])

Theorem 21 Let ñ and m̃ be large enough. Then B̃l ;m;n
is a well-defined compactly supported L2 function. Further-
more, for any ˛ > 0, B̃l ;m;n 2 C˛(R2) if ñ and m̃ suffi-
ciently large, e. g.,

ñ >
2(max(l ;m)C 2C ˛)
2 � log(3)/ log(2)

;

m̃ > 2
ñ log(3)/ log(2)C n � 1

2 � log(3)/ log(2)
C 1 :

We next show that B̃l ;m;n defined above is a biorthogo-
nal dual to Bl ;m;n in the sense of (69). We first see that
b̃Bl ;m;n is continuous and b̃Bl ;m;n(0; 0)bBl ;m;n(0; 0) D 1. It is
straightforward to prove

Theorem 22 For any sufficiently large integers ñ and m̃,

X

`2z2

ˇ̌
ˇbBl ;m;n((!1; !2)C 2�`)b̃Bl ;m;n((!1; !2)C 2�`)

ˇ̌
ˇ
2

� C2 > 0 :

The same arguments in the proof of Theorem 22 can also
show that

X

`2Z2

ˇ̌
ˇb̃Bl ;m;n((!1; !2)C 2�`)

ˇ̌
ˇ
2
� C1 : (77)

It follows from Theorem 21 that
X

`2Z2

ˇ
ˇ̌b̃Bl ;m;n((!1; !2)C 2�`)

ˇ
ˇ̌2
� C2 : (78)

Thus, letting

V0 D spanfB̃l ;m;n(x � j; y � k); ( j; k) 2 Z2g ;

the inequalities (77) and (78) imply that fB̃l ;m;n(x �
j; y � k); ( j; k) 2 Z2g is a Riesz basis for V0. Letting
Vk :D f f (x/2k ; y/2k) : 8 f (x; y) 2 V0g for k 2 Z, we can
show that

S
k Vk is dense in L2(R2) and

T
k Vk D f0g. We

leave the detail to the interested reader. Thus, we conclude
that B̃l ;m;n generates a multi-resolution approximation of
L2(R2). These complete the proof of the following

Theorem 23 Let ñ and m̃ be sufficiently large. Then B̃l ;m;n
generates a multi-resolution approximation of L2(R2).
Also, B̃l ;m;n is a biorthogonal dual of Bl ;m;n.

Next we work on constructing biorthogonal wavelets asso-
ciated with Bl ;m;n and B̃l ;m;n . As before we start with the
construction of two families of Laurent polynomials satis-
fying the following

2

6
6
4

M0(z1; z2) M1(z1; z2)
M0(�z1; z2) M1(�z1; z2)
M0(z1;�z2) M1(z1;�z2)
M0(�z1;�z2) M1(�z1;�z2)

M2(z1; z2) M3(z1; z2)
M2(�z1; z2) M3(�z1; z2)
M2(z1;�z2) M3(z1;�z2)
M2(�z1;�z2) M3(�z1;�z2)

3

77
5

�

2

66
4

J0(z1; z2)
J1(z1; z2)
J2(z1; z2)
J3(z1; z2)

3

77
5 D

2

66
4

1
0
0
0

3

77
5 (79)

For convenience, let us denote by A(M0;M1;M2;M3)
the coefficient matrix in (79). In order to have com-
pactly supported wavelets we need Mj; J j; j D 1; 2; 3
to be Laurent polynomials in (z1; z2) and the matrix
A(M0;M1;M2;M3) must have a nonzero monomial de-
terminant, i. e., Cz j1z

k
2 .

To this end, we rewrite Mj; j D 0; 1; 2; 3 in its poly-
phase form

Mj (z1; z2) D f j0
�
z21; z

2
2

C z1 f j1

�
z21; z

2
2


C z2 f j2
�
z21; z

2
2

C z1z2 f j3

�
z21; z

2
2

:

Similarly we have

Mj (�z1; z2) D f j0
�
z21; z

2
2

� z1 f j1

�
z21; z

2
2


C z2 f j2
�
z21; z

2
2

� z1z2 f j3

�
z21; z

2
2


Mj (z1;�z2) D f j0
�
z21; z

2
2

C z1 f j1

�
z21; z

2
2


� z2 f j2
�
z21; z

2
2

� z1z2 f j3

�
z21; z

2
2


Mj (�z1;�z2) D f j0
�
z21; z

2
2

� z1 f j1

�
z21; z

2
2


� z2 f j2
�
z21; z

2
2

C z1z2 f j3

�
z21; z

2
2

:
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We can easily check

A(M0;M1;M2;M3)

D

2

66
4

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

77
5

2

66
4

1 0 0 0
0 z1 0 0
0 0 z2 0
0 0 0 z1z2

3

77
5

�

2

6
6
4

f00 f10 f20 f30
f01 f11 f21 f31
f02 f12 f22 f32
f03 f13 f23 f33

3

7
7
5 ; (80)

where f jk :D f jk(z21; z
2
2)’s. It is easy to see that for a given

M0, the existence of the matrix A(M0;M1;M2;M3) such
that its determinant is a monomial Cz2�1 z2�2 is equiva-
lent to the existence of [ f jk ]0� j;k�3 whose determinant is
a monomial.

It is clear from the expression of M0(z1; z2) associ-
ated with box spline Bl ;m;n that M0(z1; z2), M0(�z1; z2);
M0(z1;�z2);M0(�z1;�z2) have no common zeros in C2,
where C denotes the usual complex space. It follows that
f00; f01; f02; f03 have no common zeros.

We further show that the first three polyphase terms
f00(z21; z

2
2), f01(z

2
1; z

2
2), f02(z

2
1; z

2
2) have no common zero in

(C)2 (cf. [36]).

Lemma 24 Suppose that f0 j; j D 0; : : : ; 3 are polynomials
in (z1; z2). Suppose that f00; f01; f02 have no common zeros
in (C)2. Then there exist fk; j; j D 0; 1; 2; 3 and k D 1; 2; 3
such that the matrix [ fk; j]0�k; j�3 is of determinant˙1.

Proof By the well-known Hilbert Nullstellensatz there
exist polynomials p0; p1; p2 such that p0 f00 C p1 f01 C
p2 f02 D 1. Then it is easy to check that

2

66
4

f00 1 0 0
f01 0 1 0
f02 0 0 1
f03 �p0(1 � f03) �p1(1 � f03) �p2(1 � f03)

3

77
5

D

2

66
4

1 0 0 0
0 1 0 0
0 0 1 0

�p0(1 � f03) �p1(1 � f03) �p2(1 � f03) 1

3

77
5

�

2

6
6
4

f00 1 0 0
f01 0 1 0
f02 0 0 1
1 0 0 0

3

7
7
5

which is obviously of determinant�1.We choose this ma-
trix for [ fk j]0�k; j�3. �
By Lemma above, for M0, we can find M̃1; M̃2; M̃3
such that A(M0; M̃1; M̃2; M̃3) has a determinant which is

a nonzero monomial Cz j1z
k
2 . A computation of the deter-

minant of matrix A(M0; M̃1; M̃2; M̃3) from the right-hand
side of (80) yields the determinant is of even power, i. e.,
j D 2 j0 and k D 2k0. Without loss of generality, we may
simply assume

det(A(M0; M̃1; M̃2; M̃3)) D 1

by absorbing Cz2 j
0

1 z2k
0

2 into M̃1. Let us invert the matrix
(A(M0; M̃1; M̃2; M̃3))T. From the definition of the inverse
matrix, we know there exist polynomial entries J̃0; J1; J2,
and J3 such that


A
�
M0; M̃1; M̃2; M̃3

T��1
D A

�
J̃0; J1; J2; J3



or equivalently,


A
�
J̃0; J1; J2; J3

��1
D


A
�
M0; M̃1; M̃2; M̃3

�T
:

Since the determinant is 1, we know that, by Cramer’s rule,
M0 is equal to the cofactor of J̃0 in matrix A(J̃0; J1; J2; J3).
In particular, we have

M0(z1; z2) D det

2

4
J1(�z1; z2) J2(�z1; z2)
J1(z1;�z2) J2(z1;�z2)
J1(�z1;�z2) J2(�z1;�z2)

J3(�z1; z2)
J3(z1;�z2)
J3(�z1;�z2) :

3

5

(81)

Note that expanding according to the first column of
A(J̃0; J1; J2; J3) and by using the definition of the inverse
matrix, we have

1 D det(A(J̃0; J1; J2; J3)
D J̃0(z1; z2)M0(z1; z2)C J̃0(�z1; z2)M0(�z1; z2)
C J̃0(z1;�z2)M0(z1;�z2)C J̃0(�z1;�z2)
M0(�z1;�z2) :

Replacing the first column of matrix A(J̃0; J1; J2; J3)
by a column [J0(z1; z2), J0(�z1; z2), J0(z1;�z2),
J0(�z1;�z2)]T with J0 being defined in (72), we get a new
matrix A(J0; J1; J2; J3) whose determinant is

det(A(J0; J1; J2; J3) D J0(z1; z2)M0(z1; z2)

C J0(�z1; z2)M0(�z1; z2)C J0(z1;�z2)M0(z1;�z2)

C J0(�z1;�z2)M0(�z1;�z2) D 1

by (73). We compute the inverse of A(J0; J1; J2; J3) and
write

A(J0; J1; J2; J3)�1 D A(q0;M1;M2;M3)T :
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By the definition of the inverse matrices, it is now easy to
recognize that q0 D M0 since (81). That is, we have

A(J0; J1; J2; J3)A(M0;M1;M2;M3)T D I4

where I4 stands for the identity matrix of 4 � 4. Hence,

A(M0;M1;M2;M3)A(J0; J1; J2; J3)T D I

which implies (79). Therefore, we have obtained the fol-
lowing

Theorem24 Let M0(z1; z2) D
� 1Cz1

2
l � 1Cz2

2
m� 1Cz1z2

2
n

and J0 defined in (72). Then there exist M1;M2;M3 and
J1; J2; J3 such that the exact reconstruction condition (79)
holds.

We are finally ready to define biorthogonal wavelet func-
tions  j and e j in terms of Fourier transform by

b j(!1; !2) D J j


ei
!1
2 ; ei

!2
2

�
bBl ;m;n


!1

2
;
!2

2

�
;

and

b̃ j(!1; !2) D Mj



ei
!1
2 ; ei

!2
2

�
b̃Bl ;m;n


!1

2
;
!2

2

�
;

for j D 1; 2; 3. By using a generalization of the proof
in [22] we can prove

Theorem 25 Let  j , j D 1; 2; 3 and e j , j D 1; 2; 3 be de-
fined above. Let

 j;k;(`1;`2)(x; y) D2
�k j

�
2�kx � `1; 2�k y � `2



e j;k;(`1;`2)(x; y) D2
�ke j

�
2�kx � `1; 2�k y � `2



for (`1; `2) 2 Z2, k 2 Z, and j D 1; 2; 3. Then the
 j;k;(`1;`2)’s and  ̃ j;k;(`1;`2)’s constitute two dual Riesz
bases of L2(R2). They satisfy biorthogonal conditions.

Z

R2

 j;k;`1;`2 (x; y)e i;m;n1;n2(x; y)dxdy

D ıi; jık;mı`1;n1ı`2;n2 ;

for all i; j D 1; 2; 3, k;m 2 Z, and `1; `2; n1; n2 2 Z. That
is,  j and e j are biorthogonal wavelets.

Although the above theory is beautiful, examples are dif-
ficult to give and hence, are omitted here. Trivariate
biorthogonal box spline wavelets were discussed in [37].
The interested reader may refer to [37] for details.

Multivariate Prewavelets

The general construction of prewavelets in the univariate
setting (see Sect. “Prewavelets”) can easily be generalized
to the multivariate setting. We shall outline such a gener-
alization here.

We start the definition of multi-resolution approxima-
tion of L2(Rd ).

Definition 5 A multi-resolution approximation (MRA)
of L2(Rd ) is a sequence of subspaces Vj ; j 2 Z of L2(Rd )
such that

(i) Vj � VjC1;
(ii)

S1
jD�1 Vj is dense in Hs(Rd );

(iii)
T1

jD�1 Vj D f0g;
(iv) there is a function � 2 V0 such that the integer trans-

lates, �(x � m);m 2 Zd form a Riesz basis for V0,
i. e., there exist two positive numbers A and B such
that

A
���fcm ;m 2 Zdg

���
2

2

�
���
X

m2Zd

cm� j(x�m)
���
2

2
� B

���fcm ;m 2 Zdg
���
2

2
;

for all square summable sequence fcm ;m 2 Zdg.

We shall say � generates a multiresolution approximation
of L2(Rd ) if letting Vj D spanf�(2 j x � k); k 2 Zdg, Vj is
a nested subspace satisfying the above conditions (i)–(iv).
Next we need

Definition 6 A collection  j;k ; k D 2; : : : ; 2d of func-
tions in L2(Rd ) satisfying the following five properties are
called prewavelets:

1. the closureWk of the linear span of integer translates of
 k is orthogonal to the closure V0 of the linear span of
integer translates of � ;

2. Wk is orthogonal each other among k D 2; : : : ; 2d ,
3. V1 is the direct sum V0 andWk ; k D 2; : : : ; 2d ;
4. the integer translates of  k form a Riesz basis for Wk;

That is, there exist two positive constants A and B such
that

A
2dX

kD2

X

m2Zd

jck;mj2 �

��
���

2dX

kD2

X

m2Zd

ck;m2 jd/2 k(2 j � �m)

��
���

2

2

�B
2dX

kD2

X

m2Zd

jck;mj2

for all square summable sequence fck;m ; k D 2;
: : : ; 2d ;m 2 Zdg.
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In this section, we assume that there exists a compactly
supported function � which generates anMRA of L2(Rd ).
Let P be the mask polynomial defined by

b�(2!) D P(z)b�(!) ;

where b� denotes the Fourier transform of � and
z D exp(i!). We are looking for compactly supported
functions  k ; k D 2; : : : ; 2d in V1 such that

V1 D V0
M 2dM

kD2

Wk ;

and �(� � m);  k(� � m);m 2 Zd ; k D 2; : : : ; 2d form
a stable basis for V1, whereWk is the closure of the linear
span of integer translates of  k(x � m);m 2 Zd .

To do so, we first introduce a Laurent polynomial

˚(z) :D
X

m2Zd

D
2d/2�(2x); 2d/2� j(2x � m)

E
zm :

This function ˚ is called the generalized Euler–Frobenius
polynomial.

Next we need a necessary and sufficient condition for
the orthogonality. Writing

gk(2x) D
X

m2Zd

ck;m2d/2�(2x � m) 2 V1 ;

and

Gk(z) D
1

2d/2
X

m2Zd

ck;mzm ;

the Fourier transforms of gk and � are related by

bgk(2!) D Gk(z)b�(!) :

Let

Gk D closureL2(Rd )fgk(x � m); m 2 Zdg

be the closure of the linear span of integer translates of gk.
Recall a special operator E which maps any Laurent

polynomial f into such a Laurent polynomial E(f ) which
contains all the even index terms of f . For example, when
d D 2 and z D (z1; z2),

E( f (z)) D
1
4
( f (z1; z2)C f (�z1; z2)C f (z1;�z2)

C f (�z1;�z2)) :

One important property is

E(P(z)P(z)˚(z)) D 2�d˚(z2)

(see a proof in [19].)
We have the following generalization of Theorem 8.

Theorem 26 Gk is orthogonal toGk0 for k0 6D k if and only
if

E(Gk (z)Gk0 (z)˚(z)) D 0 : (82)

We divide the construction of compactly supported pre-
wavelets into two steps. The first step is to construct
compactly supported gk 2 V1; k D 1; : : : ; 2d such that the
closure Gk of the linear span of integer translates gk is
orthogonal to V0 for each k. The second step is to use
a technique like Gram–Schmidt orthonormal procedure to
orthogonalize these gk’s for different k.

To be more precise, we let fn1; : : : ; n2d g D f0; 1gd

with nk 2 Z2d and gk 2 V1 satisfy

gk(x � m) ? V0; m 2 Zd

and

2d/2�(2x � nk)

D
X

m2Zd



ak;m2d/2�(x � m)C bk;m2d/2gk(2 j x � m)

�

for each k 2 f1; : : : ; 2dg. That is, we want to have Gk is
orthogonal to V0 and V1 D V0

L�
G1 C : : :C G2d


. In

terms of Fourier transform, the above equations can be
rewritten as

1
2d/2

eink!/2b�

!
2

�
D Ak(!)b�(!)C Bk(!)bgk(!)

D Ak(!)P(!/2)b�(!/2)C Bk(!)Gk(!/2)b�(!/2) ;

where Ak(!) D
P

m2Zd 2d/2ak;meim! and Bk(!) DP
m2Zd 2d/2bk;meim! . Here, we have abused the notation

of P(z) Gk(z), that is, we use P(!) instead of P(z) and
Gk(!) instead of Gk(z) with z D ei! just for convenience.
It follows that

Ak(2!)P(z)C Bk(2!)Gk(z) D
eink!

2d/2
; (83)

for k D 1; : : : ; 2d . Using Theorem 26, the solution of
Ak ; Bk and Gk can be easily found as shown in the follow-
ing.
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Lemma 25 Suppose that ˚(z2) D 2d E(P(z)P(z)˚(z)) 6D
0 for all z in torus Td. Let

Ak(2!) :D
E(eink!P(z)˚(z))
E(P(z)P(z)˚(z))

;

Bk(2!) :D
1

E(P(!)P(z)˚(z))
;

Gk(z) :D
1

2d/2
E(P(z)P(z)˚(z))eink!

�
1

2d/2
E(eink!P(z)˚(z))P(z) :

Then Gk is orthogonal to V0 for all k D 1; : : : ; 2d and

V1 D V0
M�

G1 C : : :C G2d

:

Next we can show that integer translates of gk ; k D
1; : : : ; 2d are linearly dependent. However, under a certain
condition on P, integer translates of gk ; k D 2; : : : ; 2d are
linearly independent. Let us write P in its polyphase form,
i. e.,

P(z) D
2dX

kD1

eink!Pk(z2) ; (84)

where nk ; k D 1; : : : ; 2d are the multi-integers in the col-
lection f0; 1gd as defined above. We refer to [49] for
a proof of the following theorem.

Theorem 27 Suppose that ˚(z2) 6D 0. Suppose that there
exists an integer k 2 f0; 1gd such that Pk(z2) 6D 0 for all
z on the torus Td. For simplicity, let us assume that
P1(z2) 6D 0 for all z on Td. Then the integer translates of
gk ; k D 2; : : : ; 2d form a Riesz basis for V1 � V0.

The second step is to use a technique like the well-
known Gram–Schmidt orthonormalization to construct
 j;k from g j;k such that  j;k are orthogonal among each
other. It is a standard technique (cf. e. g., [39]).

We first choose  2 D g2. Let

 3(x) D
X

m2Zd

(c1;m 2(x � m)C c2;mg3(x � m))

for some coefficients c1;m and c2;m . To compute these co-
efficients, we write them in terms of Fourier transform

c 3(2!) DC1(z2)c 2(2!)C C2(z2)bg3(2!)

D(C1(z2)G2(z)C C2(z2)G3(z))b�(!/2) ;

where C1 and C2 are discrete Fourier transform of
sequences c1;m ’s and c2;m ’s. For convenience, we let
Q2(z) D G2(z) and

Q3(z) D C1(z2)G2(z)C C2(z2)G3(z) :

In order to have W3 ? W2, the orthogonal condition in
Theorem 26 implies that

C1(z2)E(G2(z)G2(z)˚(z)

C C2(z2)E(G3(z)G2(z)˚(z)) D 0 : (85)

By choosing

C1(z2) DE(G3(z)G2(z)˚(z));

C2(z2) D� E(G2(z)G2(z)˚(z)) ;

we know that the the Eq. (85) holds andW3 is perpendicu-
lar toW2. We continue this procedure above. To be more
precise, let us show how to construct  4. That is, let

 4(x) D
X

m2Zd

(d1;m 2(x � m)C d2;m 3(x � m))

C d3;mg4(x � m)) :

In terms of Fourier transform, we have

c 4(2!) DD1(z2)c 2(!)C D2(z2)c 3(!)C D3(z2)bg4(!)

D(D1(z2)Q2(z)C D2(z2)Q3(z)

C D3(z2)G4(z)))b�(!/2) :

In order to haveW4 ? W2 andW4 ? W3, we have the
following two equations with three unknowns:

D1(z2)E(Q2(z)Q2(z)˚(z))

C D3(z2)E(G4(z)Q2(z)˚(z)) D 0

D2(z2)E(Q3(z)Q3(z)˚(z))

C D3(z2)E(G4(z)Q3(z)˚(z)) D 0

(86)

which is an upper triangular homogeneous linear system.
It can be solved easily. A solution may be given below. Let

D1(z2) DE(Q3(z)Q3(z)˚(z))E(G4(z)Q2(z)˚(z))

D2(z2) DE(Q2(z)Q2(z)˚(z))E(G4(z)Q3(z)˚(z))

D3(z2) D� E(Q2(z)Q2(z)˚(z))E(Q3(z)Q3(z)˚(z)) :

With these Laurent polynomials D1;D2;D3, the two
equations in (86) are satisfied simultaneously. Thus we
obtain the desired function  4. Repeating the above con-
structive steps when d > 2, we find  k ; k D 2; : : : ; 2d . It
is easy to see that  k ’s are compactly support when � are
compactly supported. The above construction shows that
the integer translates of  k form a Riesz basis for Wk for
k D 2; : : : ; 2d andWk’s are mutually orthogonal. We have
thus obtained the following



Popular Wavelet Families and Filters and Their Use P 6895

Theorem 28 If a refinable function � generates an MRA
for L2(Rd ). If ˚(z) 6D 0 for all z D ei! and one of the poly-
phases of the mask P(!) of � is not zero for all ei! . Then
the functions  j;k constructed above are prewavelets for
L2(Rd ) satisfying the conditions 1.–4. in Definition 6.

Next we show how to use box splines to construct pre-
wavelets in L2(Rd ) since multivariate box splines are
a very important class of refinable functions. Let us recall
the definition of box splines. LetD be a set of nonzero vec-
tors inRd (counting multiple of a same vector) which span
Rd . The box spline �D associates with the direction set D
is the function whose Fourier transform is defined by

�̂D(!) D
Y

y2D

1 � e�i��!

iy � !
:

It is well-known that box spline �D is a piecewise poly-
nomial function of degree � #D � d, where #D denotes
the cardinality of D. For more properties of box splines,
see [7,11,60]. In particular, for d D 2; e1 D (1; 0)T; e2 D
(0; 1)T, and

D D fe1; : : : ; e1„ ƒ‚ …
`

; e2; : : : ; e2„ ƒ‚ …
m

; e1 C e2; : : : ; e1 C e2„ ƒ‚ …
n

g ;

the box spline �`mn based on such direction setD is called
3-direction box spline whose Fourier transform is

�̂`mn(!1; !2) D
�
1 � e�i!1

i!1

�` �1 � e�i!2

i!2

�m

 
1 � e�i(!1C!2)

i(!1 C !2)

!n

:

It is well-known that box spline �D generates a bona
fide MRA of L2(Rd ) (cf. [74]) when the direction set D
is unimodular, i. e., the determinant of any d directions
which spanRd is 1 or �1 (cf. [7]). The unimodularity also
implies ˚(!) > 0. Let ˚D be the Euler–Frobenius poly-
nomial associated with �D and PD be the mask associated
with �D , i. e.,c�D(2!) D PD(z)c�D(!).

Theorem 29 Consider the linear box spline inRd . That is,
let

D D fe1; : : : ; ed ;�(e1 C : : :C ed )g ;

where ei denotes the standard unit vector inRd which is 1 in
the ith component while zero in the rest of the components
for i D 1; : : : ; d. Then˚D(z) 6D 0 for all z with jzj D 1 and
E(PD(z)) D 1

2d .

Proof Since the D is unimodular, we have ˚D(z) 6D 0
for all z with jzj D 1. Next it is easy to see that

PD(z) D
Qd

iD1
� 1Cz i

2
� 1C1/(z1:::zd

2

. Then we can see that

the even index term E(PD(z)) is only the constant term
which is 2/2dC1 D 1/2d . This completes the proof. �
Example 26 Consider �2;2;1. Since P2;2;1(z) D (1 C
z1)2(1C z2)2(1C z1z2)/32, it is easy to check that

E(P2;2;1(z)) D
1
32
�
5z21z

2
2 C z21 C z22 C 1


:

Since

32jE(P2;2;1(z)j D j5C (z1z2)�2 C (z1)�2 C (z2)�2j

> 5 � j(z1z2)�2j � j(z1)�2j � j(z2)�2j D 2 ;

we know that E(P2;2;1(z) 6D 0 for z D (z1; z2) with jz1j D
jz2j D 1.

Example 27 Consider �2;2;2. Similar to the examples
above, we have

E(P2;2;2(z)) D
1

64x2y2
(10x2y2 C x2 C y2 C 1C y4x2

C x4y4 C x4y2) :

We can easily see that E(P2;2;2(z)) 6D 0. �
Example 28 We use box spline B̃1;1;1 D �D based
on D D fe1; e2;�(e1 C e2)g to construct compactly sup-
ported pre-wavelets in L2(R2). Note that our prewavelets
have a larger support than those constructed in [44]
and [39]. The purpose of this example is to show the detail
of our constructive procedure. Clearly,

P(z) D
1C z1

2
1C z2

2
1C 1/(z1z2)

2

and ˚D(z) D 1
2 C

1
12 (z1 C z2 C 1/z1 C 1/z2 C z1z2 C

1/(z1z2)) D 1
2 C

1
6 (cos(!1)C cos(!2)C cos(!1 C !2)) 6D

0 for any !1 and !2. Using a computer algebra program
Maple, we obtain the Laurent polynomials for G1; : : : ;G4
and Q2;Q3;Q4. They are as follows:

768G1(z1; z2) D

2

66
666
666
4

z�31
z�21
z�11
1
z1
z21
z31

3

77
777
777
5

T2

66
666
666
4

�1 �1 �1 �1
�1 14 �2 14
�1 �2 �19 �19
�1 14 �19 60
0 �1 �2 �19
0 0 �1 14
0 0 0 �1

0 0 0
�1 0 0
�2 �1 0
�19 14 �1
�19 �2 �1
�2 14 �1
�1 �1 �1

3

777
777
77
5

2

666
666
66
4

z�32
z�22
z�12
1
z2
z22
z32

3

777
777
77
5

;
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768G2(z1; z2) D

2

6
666
4

z�11
1
z1
z21
z31

3

7
777
5

T2

6
666
4

�2 14 �10 6
�2 �4 �12 �20
0 14 �12 76
0 0 �10 �20
0 0 0 6

0 0 0
�10 0 0
�12 14 0
�12 �4 �2
�10 14 �2

3

7
777
5

2

666
6666
6
4

z�32
z�22
z�12
1
z2
z22
z32

3

777
7777
7
5

;

768G3(z1; z2) D

2

666
666
66
4

z�31
z�21
z�11
1
z1
z21
z31

3

777
777
77
5

T2

666
666
66
4

�2 �2 0
14 �4 14
�10 �12 �12
6 �20 76
0 �10 �12
0 0 14
0 0 0

0 0
0 0
�10 0
�20 6
�12 �10
�4 14
�2 �2

3

7
777
777
7
5

2

66
66
4

z�12
1
z2
z22
z32

3

77
77
5
;

and

768G4(z1; z2) D

2

6
666
4

z�11
1
z1
z21
z31

3

7
777
5

T2

6
666
4

6 �10 14
�10 �20 �12
14 �12 76
�2 �4 �12
0 �2 14

�2 0
�4 �2
�12 14
�20 �10
�10 6

3

777
7
5

2

666
6
4

z�12
1
z2
z22
z32

3

777
7
5
:

Since Q2 D G2, we now give Q3 as follows. Let

10616832Q3 D
�
z�71 ; : : : ; z�11 ; 1; z1; : : : ; z�71

�

Q
�
z�72 ; : : : ; z�12 ; 1; z2; : : : ; z�92

�T

with matrix Q being a of size 15 � 17 defined by
Q D [Q1Q2] and Q1 of size 15 � 9 and Q2 of size 15 � 8,

where

Q1 D
2

666
666
666
666
6666
666
666
666
4

�1 5 �1 9 1
1 �2 �26 �2 �52
�2 7 11 73 71
2 �4 �46 24 �516
�1 �1 33 37 369
1 �2 �22 70 �672
0 �3 21 �45 385
0 0 �2 44 �228
0 0 0 �18 70
0 0 0 0 �4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3 1 �1 0
2 �22 2 3
63 85 �17 27
144 �628 168 �158
271 773 15 480
714 �3110 1402 �2285
�63 1713 291 2057
700 �2462 2712 �6520
�174 746 �260 2057
96 �340 792 �2285
�28 74 �150 480
0 2 52 �158
0 0 �14 27
0 0 0 3
0 0 0 0

3

7
777
7777
777
777
777
777
777
77
5

;

and

Q2 D

2

66
666
666
666
666
666
666
666
4

0 0 0 0
0 0 0 0
�14 0 0 0
52 2 0 0
�150 74 �28 0
792 �340 96 �4
�260 746 �174 70
2712 �2462 700 �228
291 1713 �63 385
1402 �3110 714 �672
15 773 271 369
168 �628 144 �516
2 �22 2 �52
�1 1 3 1
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
�18 0 0
44 �2 0 0
�45 21 �3 0
70 �22 �2 1
37 33 �1 �1
24 �46 �4 2
�2 �26 �2 1
9 �1 5 �1

3

77
777
777
777
777
777
777
777
5

:

The expression for Q4 involves a matrix of size about
51 � 51. Due to the space limit, we omit the details for
Q4. �

Multivariate Tight Wavelet Frames and Bi-Frames

In this section, we generalize one of three constructive
methods in Sect. “Tight Wavelet Frames” to give a con-
struction of tight wavelet frames in the multivariate set-
ting. We first introduce some notation.

Given a function  2 L2(Rd ), we let

 j;k(y) D 2 jd/2 (2 j y � k);8 j 2 Z; k 2 Zd :

Let � be a finite subset of L2(Rd ) and

�(� ) :D f j;k ; 2 �; j 2 Z; k 2 Zdg

where Z is the set of all integers.

Definition 7 We say �(� ) is a frame if there exist two
positive numbers A and B such that

Ak f k2L2(Rd ) �
X

g2�(� )

jh f ; gij2 � Bk f k2L2(Rd )

for all f 2 L2(Rd ). �(� ) is a tight frame if it is a frame
with AD B. In this case, after a renormalization of the g’s
in � , we have

X

g2�(� )

jh f ; gij2 D k f k2L2(Rd ) (87)

for all f 2 L2(Rd ).

By polarization technique (as in Sect. “Tight Wavelet
Frames”), the Eq. (87) implies that when �(� ) is a tight
frame, any f 2 L2(Rd ) can be represented as

f D
X

g2�(� )

h f ; gig :

We start with a compactly supported refinable func-
tion � 2 L2(Rd ) which generates a MRA of L2(Rd ) under
a standard dilation matrix 2Id, where Id is the identity ma-
trix in Rd . Since � 2 L2(Rd ) is compactly supported and
refinable,

�̂(!) D P(!/2)�̂(!/2)

where mask P(!) is a trigonometric polynomial. Suppose
P satisfies

X

j2f0;1gd	

jP(! C j)j2 � 1 : (88)

Note that this condition is necessary, but may not be suf-
ficient in the multivariate setting. We have to assume that
there exist Laurent polynomialseP` ` D 1; : : : ;N such that

1 �
X

j2f0;1gd	

jP(! C j)j2 D
NX

kD1

jePk(2!)j2 : (89)

Here N is a nonnegative integer which is dependent on P.
We shall show that for allmultivariate box spline functions
the condition (89) will be satisfied.

To construct tight wavelet frames we use the unitary
extension principle (UEP) (cf. [76,77]). That is, we look
for Qi (trigonometric polynomial) such that

P(!)P(! C `)C
rX

iD0

Qi (!)Qi(! C `)

D

�
1 if ` D 0;
0; ` 2 f0; 1gd�nf0g :

(90)

With theseQi’s we can define wavelet frame generators
 (i), in terms of their Fourier transforms, by

 ̂ (i)(!) D Qi(!/2)�̂(!/2); i D 1; : : : ; r : (91)

Then, if � is continuous and Lip ˛, with ˛ > 0, and the
UEP is satisfied, the family � D f (i); i D 1; : : : ; rg gen-
erates a tight frame, i. e., �(� ) is a tight wavelet frame.
This result can be proved by using the same proof of Theo-
rem 12 in Sect. “TightWavelet Frames”. (See [20] and [25]
for different proofs.)

For convenience, we rewrite (90) in an equivalent ma-
trix form as follows:

Lemma 26 Let P D (P(! C `); ` 2 f0; 1gd�)T be a vec-
tor of size 2d � 1 and Q D (Qi (! C `); ` 2 f0; 1gd�; i D
1; : : : ; r; ) be a matrix of size 2d � r. Then (90) is equivalent
to

QQ� D I2d � PP� ; (92)
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where P� denotes the complex conjugate transpose of the
column vector P.
Proof This can be verified directly. �

For example, when d D 2, r D 4 and ! D (�; �), we have

Q D

2

66
4

Q1(�; �) Q1(� C �; �)
Q2(�; �) Q2(� C �; �)
Q3(�; �) Q3(� C �; �)
Q4(�; �) Q4(� C �; �)

Q1(�; �C �) Q1(� C �; �C �)
Q2(�; �C �) Q2(� C �; �C �)
Q3(�; �C �) Q3(� C �; �C �)
Q4(�; �C �) Q4(� C �; �C �)

3

77
5

T

;

P D (P(�; �); P(� C�; �); P(�; �C�); P(� C�; �C�))T,
and

QQ� D I2d � PP� : (93)

Our construction of tight wavelet frames is mainly based
on the matrix form (92).

In general, for P satisfying (88) we write P in its poly-
phase form (cf. (84) with a normalized constant) and
let bP D (Pm(2!);m 2 f0; 1gd )T DM�P, whereM is the
polyphase matrix

M D 2�d/2(eim�(!C`))`2f0;1gd	
m2f0;1gd

(94)

which is unitary andP D (P(! C `); ` 2 f0; 1gd�)T. Here
we have abused notation by writing P(!) in terms of P(z)
with z D ei! . Then (88) is equivalent to

bP�bP D
X

m2f0;1gd
jbPm(2!)j2 � 1 : (95)

Theorem 30 Suppose that P satisfies the condition (88).
Suppose that there exist Laurent polynomials eP1; : : : ;ePN
such that

X

m2f0;1gd
jPm(!)j2 C

NX

iD1

jePi (!)j2 D 1 : (96)

Then there exist 2d C N compactly supported tight frame
generators with wavelet masks Qm, m D 1; : : : ; 2d C N,
such that P, Qm, m D 1; : : : ; 2d C N, satisfy (90).

Proof We define the combined column vector eP D

(Pm (2!); m 2 f0; 1gd ;ePi (2!); 1 � i � N)T of size
(2d C N) and the matrix

eQ :D I(2dCN) � ePeP� :

Note that all entries of eP and eQ are �-periodic. Identity
(96) implies that eQeQ� D eQ, and this gives

ePeP� C eQeQ� D I(2dCN) :

Restricting to the first principle 2d � 2d blocks in the
above matrices, we have

bPbP� C bQbQ� D I2d ; (97)

where bP DM�P was already defined above and bQ de-
notes the first 2d � (2d C N) block matrix of eQ. By (94),
we have P DMbP, and (97) yields

PP� CMbQ(MbQ)� D I2d ;

which is (93). Thus we let

Q DMbQ :

Then the first row [Q1; : : : ;Q2dCN] ofQ gives the desired
trigonometric functions for compactly supported tight
wavelet frame generators. The form Q D [Qi (! C `)] is
inherited from M, since the entries of bQ are �-periodic.
This completes the proof. �

In general, we do not know if (96) holds for any givenmask
P. The problem is related to Hilbert’s 17th problem. For
any multivariate nonnegative polynomial, it is not know
that if it can be written as a sum of square of finitely many
polynomials (cf. [30,80]). However, we have the following

Theorem 31 Let P(!) D
P

k2Zd ckzk be a Laurant poly-
nomial, with N nonzero coefficients ck. Suppose that all ck
are nonnegative. Furthermore, writing

P(!) D
2dX

kD1

ei	nk Pk(2!)

in its polyphase form with fnk ; k D 1; : : : ; 2dg D f0; 1gd ,
suppose that Pk(0) D 1/2d ; k D 1; : : : ; 2d . Then there exist
at most r D N2 polynomials Qj such that (90) holds.

A proof of this result can be found in [10]. In particular,
for a box spline function � , its mask polynomial satisfies
the condition in Theorem 31. Thus we can always use box
spline function to construct tight wavelet frames.

We shall use the constructive scheme above to find
compactly supported tight wavelet frames based on mul-
tivariate box splines, in particular, bivariate box splines on
three and four directional meshes.

Let us recall the definition of box spline �D from
Sect. “Multivariate Prewavelets”, where D is a set of non
zero vectors in Rd (allowing multiples of the same vector)
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which span Rd . It is well-known that �D is refinable and
its Fourier transform satisfiesb�D(!) D PD(!2 )b�D(!2 ) that

PD(!) D
Y

�2D

1C e�i��!

2
:

Thus PD is a Laurent polynomial and jPD(!)j2 D
Q
�2D(cos

��!
2 )2. Then we have the following result.

Lemma 27 Suppose that a given direction set D � Zd con-
tains all of the standard unit vectors ei ofRd , i D 1; : : : ; d.
Then PD satisfies (88).

Proof Since jPD(!)j2 �
Qd

iD1 cos
2 !i

2 , with ! D

(!1; : : : ; !s)T 2 Rd , we have

X

`2f0;1gd	

jPD(!C `)j2 �
dY

iD1



cos2

!i

2
C sin2

!i

2

�
D 1 :

This completes the proof. �
We now give some examples that the mask polynomial PD
associated with bivariate box splines on three and four di-
rection meshes satisfy (89).

Example 29 Consider a three directional box spline �1;1;1.
It is easy to see that

1 �
X

`2f0;1g2	

jP1;1;1(! C `)j2

D
3
8
�
1
8
cos(2!1)�

1
8
cos(2!2)�

1
8
cos(2!1C2!2):

Thus, we let

eP1(!) D
p
6
8

(1 � ei!1 ); and

eP2(!) D
p
2
8

(2 � ei!2 � ei(!1C!2)):

Clearly, we have

X

`2f0;1g2	

jP1;1;1(! C `)j2 C
2X

iD1

jePi (2!)j2 D 1 :

Thus, one can apply the constructive steps in the proof of
Theorem 30 to get 6 tight frame masks Qi ; i D 1; : : : ; 6.�
Example 30 Consider box spline �2;2;1. We find that

1 �
X

`2f0;1g2	

jP2;2;1(! C `)j2

D
19
32
�

7
32

cos(2!1) �
7
32

cos(2!2)

�
1
64

cos(2!1 � 2!2) �
9
64

cos(2!1 C 2!2) :

Let

eP1(!) D
p
21
12
�

p
102C 2

p
21

48
ei!1

C

p
102 � 2

p
21

48
ei!2

eP2(!) D �
p
42C 2

p
51

48
C

p
42
24

ei!2

�

p
42 � 2

p
51

48
ei(!1C!2) :

It is easy to check that

X

`2f0;1g2	

jP2;2;1(! C `)j2 C
2X

iD1

jePi (2!)j2 D 1 :

Hence, the constructive steps in the proof of Theorem 30
yield 6 tight frame masks and thus, 6 tight frame genera-
tors. �

Example 31 For box spline �1;1;1;1, we have

1 �
X

`2f0;1g2	

jP1;1;1;1(! C `)j2

D
5
8
�

1
8



ei2!1 C e�i2!1

�
�

1
8



e2i!2 C e�2i!2

�

�
1
32



e2i(!1C!2) C e�2i(!1C!2)

�

�
1
32



e2i(!1�!2) C e�2i(!1�!2)

�
D

2X

iD1

jePi (2!)j2 ;

whereeP1(!) D
p
6
8 (1 � ei(!1�!2), and

eP2(!) D �
1
4
C

p
6
8
C

1
4
(ei!1Cei!2 )�

2C
p
6

8
ei(!1C!2) :

Hence, the constructive steps in the proof of Theorem 30
yield 6 tight frame masks and hence, 6 tight frame genera-
tors. �

In the rest of this section, we construct compactly sup-
ported bi-frames. For refinable functions � and �dual, let
P and Pdual denote the symbols of the respective refine-
ment masks. We use the superscript dual in order to point
to duality of the respective frames. Moreover, let  j and
 dual

j be functions associated with � and �dual defined by

 ̂ j(!) D Qj(!/2)�̂(!/2) and
1

 dual
j (!) D Qdual

j (!/2) b�dual(!/2) ;
(98)

where Qj, Qdual
j , j D 1; : : : ; r, are two families of masks.

Let � D f j; j D 1; : : : ; r and �dual D f dual
j ; j D 1;
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: : : ; rg be the corresponding families of framelets and their
shifts and dilates are collected into the following two sets:

�(� ) :D f2 jd/2 i(2 j x � k) ; j 2 Z ; k 2 Zd ;

i D 1; : : : ; rg;

�(�dual) :D f2 jd/2 dual
i (2 j x � k) ; j 2 Z; k 2 Zd ;

i D 1; : : : ; rg :
(99)

Recall that a family of functions f� j; j 2 Jg is a Bessel fam-
ily if
�
���
X

j2J

c j� j

�
���

2

2
� B

X

j2J

jc jj2

for any coefficients cj (see [17]).

Definition 8 The two families �(� ) and �(�dual) are
called bi-frames if they are Bessel families, and the dual-
ity relation holds for all f ; g 2 L2(Rd )

h f ; gi D
nX

iD1

X

j2Z
k2Zd

h f ;  i ; j;ki
D
 dual

i ; j;k ; g
E
: (100)

The functions  i and  dual
i are called bi-framelets or bi-

frame generators.

It follows that

f D
nX

iD1

X

j2Z
k2Zd

h f ;  i ; j;ki 
dual
i ; j;k (101)

and

f D
nX

iD1

X

j2Z
k2Zd

D
 dual

i ; j;k ; f
E
 i ; j;k (102)

weakly for all f 2 L2(R2).
To construct the bi-frames, we need the following the-

orem (cf. Proposition 5.2 in [25]).

Theorem 32 Suppose that � and �dual are compactly sup-
ported refinable functions. Suppose that there are Qi ;Qdual

i ,
i D 1; : : : ; r, satisfying

P(!)Pdual(! C `)C
rX

iD0

Qi (!)Qdual
i (! C `) D ı` (103)

for ` 2 f0; 1gd� . Suppose that Qi (!) and Qdual
i (!) have

a zero at ! D 0. Let  i and  dual
i be the functions defined

by their Fourier transform in (98). Then the two families
�(˚) and�(˚dual) are bi-frames.

It is easy to see that the relations in (103) can be recast as

Lemma 28 Let P D (P(! C `); ` 2 f0; 1gd�) be a vector
of size 2d � 1,Q D (Qi (!C`); ` 2 f0; 1gd�; i D 1; : : : ; r)
be a matrix of size 2d � r, and Pdual, Qdual be given analo-
gously. Then (103) is equivalent to

Q


Qdual

��
D Ir � P



Pdual

��
: (104)

Proof This can be verified directly. �

We will construct compactly supported bi-frames for
those masks P and Pdual which satisfy

X

`2f0;1gd	

P(! C `)Pdual(! C `) D 1 (105)

and P(0) D 1 D Pdual(0). Let P and Pdual be given as in
Lemma 28. Recall the unitary matrixM defined as before.
Then we have

Theorem 33 Define

Q :D (Qi (! C `))`2f0;1gd	
iD1;:::;2d

D (I2d�2d � P(Pdual)�)M

and

Qdual :D (Qdual
i (!C`))`2f0;1gd	

iD1;:::;2d
D (I2d�2d�PdualP�)M:

Then P;Pdual;Q; and Qdual satisfy (104), Let  i and
 dual

i be defined by (98), with these Qi’s and Qdual
i ’s.

Then f i ; i D 1; : : : ; 2dg and f dual
i ; i D 1; : : : ; 2dg are

bi-framelets.

Proof It is trivial to verify that

Q(Qdual)� D I2d�2d � P(Pdual)�

which is (104) with S(!) D 1. Since bothM and P have
the desired form, and since (Pdual)�M is a row vector
whose entries are � periodic, the matrixQ has the desired
form as well. Analogous statements hold forQdual.

Next we need to verify the vanishing moment condi-
tions forQi and Qdual

i . Let (bPm(2!);m 2 f0; 1gd ) DM�P
be the polyphase components of P. Then

Qdual
m (!) D 2�d/2eim�! � Pdual(!)bPm(2!)

and bPm(0) D 2�d/2. Note that Pdual(0) D 1. Therefore,
Qdual

m (0) D 0 for m 2 f0; 1gd . Analogous statements show
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that Qm(0) D 0 for m 2 f0; 1gd . Using Theorem 32, we
conclude that  i and  dual

i defined above, using these
Qm’s and Qdual

m ’s, are bi-framelets. This completes the
proof. �

We have the following example of bi-frame generators
based on bivariate box splines.

Example 32 For the mask P`;m;n , associated with the bi-
variate box spline B`;m;n on the three direction mesh,
many dual masks Pdual

`;m;n were given in Sect. “Biorthogonal
Box Spline Wavelets” satisfying (105) with d D 2. Then
the formulae for Q and Qdual given in Theorem 33 pro-
vide an explicit representation of bi-framelets or bi-frame
generators. �

Next we consider a general refinable function � . Let P be
the mask associated with � . Note that P(0) D 1. Assume
that P(`) D 0 for ` 2 f0; 1g�dnf0g. To ensure (105) for
any given mask P, we may use the celebrated Hilbert Null-
stellensatz. Indeed, we let Pm(2!) be the polyphase com-
ponents of P, i. e.,

(Pm(2!);m 2 f0; 1gd ) DM�(P(! C `); ` 2 f0; 1gd ) :

Similarly, for the dualmaskPdual, let Pdualm (2!) be the poly-
phase components of Pdual. Then (105) is equivalent to

X

m2f0;1gd
Pm(!)Pdualm (!) D 1 :

By the Hilbert Nullstellensatz, we have

Lemma 29 Let P be the mask of a refinable function �.
Write P̂m(z) :D Pm(!) in terms of z D ei! :D (ei!1 ; : : : ;

ei!d ) 2 Cd for m 2 f0; 1gd . If the Laurent polynomials P̂m
have no common zero in (Cnf0g)d , then there exist Laurent
polynomials Q̂m(z) such that

X

m2f0;1gd
P̂m(z)Q̂m (z) D 1 : (106)

Thus, we let Pdual(!) D 2�d/2
P

m2f0;1gd e
im�! Q̂m(ei2!).

Then P and Pdual satisfy (105). In order to apply
our Theorem 33, we only need to make sure that
Pdual(0) D 1. Using the fact P(0) D 1 and the assumption
P(`) D 0 for ` 2 f0; 1gd�nf0g, we conclude from (105)
that Pdual(0) D 1. Hence, we obtain the following

Theorem 34 Given a mask P, suppose that P(0) D 1 and
P(`) D 0 for ` 2 f0; 1gd�nf0g. Let Pm (!), m 2 f0; 1gd , be
the polyphase components of P. Writing P̂m(z) :D Pm(!)
in terms of z D ei! , suppose that the Laurent polyno-
mials P̂m have no common zero in z 2 Cdnf0g. Then

there exists a pair of bi-frames f i ; i D 1; : : : ; 2dg and
f dual

i ; i D 1; : : : ; 2dg associated with P.

The tight wavelet frames and bi-frames constructed above
have one order of vanishing moment. In order to increase
the order of vanishing moment, we have to introduce van-
ishing moment recovery function S or use Oblique Exten-
sion Principle. We refer the reader to [20] and [25] for the
details.

Spherical Tight Wavelet Frames

Let S 2 R3 be the unit spherical surface and L2(S) be the
space of all square integrable functions over S. For any
function F(x; y; z) 2 L2(S) with jxj2 C jyj2 C jzj2 D 1,
we can use a standard transform x D cos(�) cos(�),
y D cos(�) sin(�), and z D sin(�) to convert F int o
a function f over [��/2; �/2] � [0; 2�] by

f (�; �) D F(x; y; z) :

Note that f (�; �) is not an ordinary function over rect-
angular domain [��/2; �/2] � [0; 2�]. When F is contin-
uous at the north and south poles, we have

f (˙�/2; �)D F(0; 0;˙1); 8� 2 [0; 2�] : (107)

To have C1 continuity or continuous tangent plane at the
both poles, we have

@ f
@�

(˙�/2; �) D �F1(0; 0;˙1) cos(�)� F2(0; 0;˙1)

sin(�); 8� 2 [0; 2�] : (108)

The conditions (107) and (108) can be found
in [26,66,85].

Furthermore, using the standard transform, we have

Z

S

jF(x; y; z)j2dS D
	/2Z

�	/2

2	Z

0

j f (�; �)j2 cos(�)d� d� :

(109)

Thus, we consider a special L2 space over rectangular do-
main [��/2; �/2] � [0; 2�]. Let L�2 ([��/2; �/2]�[0; 2�])
be the space of all bivariate functions f on [��/2; �/2] �
[0; 2�] such that the right-hand side of the Eq. (109) is fi-
nite.

To build a multiresolution approximation of L�2
([��/2; �/2] � [0; 2�]), we may use tensor product of
two sets of univariate refinable functions. Let V0 D
spanfB1(�); : : : ; Bm(�)g and bV0 D spanfT1(�); : : : ;
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Tn(�)g be two basic spaces. Consider functions in the fol-
lowing form:

f (�; �) D
mX

iD1

nX

jD1

ci jBi(�)Tj(�)

for coefficients cij. Assume that the basis functions Bi
and Tj are locally supported, that is, Bi does not contain
a neighborhood [��/2;��2/C ı) except for i D 1 and Bi
does not contain (�/2 � ı; �/2] except for i D m, where
ı > 0 is sufficiently small. In this case, we have

f (��/2; �) D
nX

jD1

c1 j B1(��/2)Tj(�)

f (�/2; �) D
nX

jD1

cm jBm(�/2)Tj(�) :

By (107), we have

F(0; 0;�1) D
nX

jD1

c1 jB1(��/2)Tj(�)

F(0; 0; 1) D
nX

jD1

cm jBm(�/2)Tj(�)

Similarly, by using (108), we have

�F1(0; 0;�1) cos(�)� F2(0; 0;�1) sin(�)

D

nX

jD1

c1 jB01(��/2)Tj(�)

�F1(0; 0; 1) cos(�)� F2(0; 0; 1) sin(�)

D

nX

jD1

cm jB0m(�/2)Tj(�) :

Therefore, the space spanfTj; j D 1; : : : ; ng has to be able
to reproduce 1 and both cos(�) and sin(�). Fortunately,
trigonometric splines of even degrees have such a property
(based on trigonometric Marsden’s identity).

This is why in [66], a tensor of C1 quadratic B-splines
and C1 trigonometric splines are used to build a mul-
tiresolution approximation of L2(S) and to construct pre-
wavelets. To have a higher smoothness at the both north
and south poles, one has to use trigonometric splines of
higher order (cf. [53]).

Trigonometric splines were first studied in [82] and
they are much like ordinary B-splines. More literature on
trigonometric splines can be found in [67,68,84]. Let us
give a brief explanation of trigonometric B-splines. Let

s(x) D sin(x); c(x) D cos(x) :

Let Td be the space of all trigonometric polynominals
of degree � d. That is, Td is a collection of functions of
form

f (x) D

8
ˆ̂<

ˆ̂
:

a0
2 C

Pm
jD1(a2 j c(2 jx)C b2 j s(2 jx));

if d D 2mPm
jD1(a2 j�1c((2 j � 1)x)C b2 j�1s((2 j � 1)x));

if d D 2m � 1 :

It is easy to see that Td is a linear vector space of dimen-
sion d C 1. It is easy to verify that functions c(2 jx); s(2 jx);
j D 0; : : : ;m are orthogonal with respect to L2 inner prod-
uct on interval [0; 2�] when d D 2m is even. Similar for
the case when d D 2m � 1 is odd. Any function f 2 Td
satisfies f (x C 2�) D (�1)d f (x) for all x and d. That is, f
is periodic on [0; 2�] if d is even.

Trigonometric splines of degree d are piecewise
trigonometric functions, which each piece belongs to the
space Td of trigonometric polynomials of degree� d. For
simplicity, we consider [0; 2�]. Suppose that t D (t j ;
j D 0; : : : ; n C 1) is a knot sequence with length at least
n � d C 2 such that 0 < t jC1Cd � t j < � for all possible
j. Starting with

T0; j(x) D
�

1; if t j � x < t jC1
0; otherwise ; (110)

for j D 0; : : : ; n, and for k D 1; 2; : : : ; d, we recursively
define

Tk; j(x) D
s(x � t j)

s(t jCk � t j)
Tk�1; j(x)

C
s(t jC1Ck � x)

s(t jC1Ck � t jC1)
Tk�1; jC1(x)

(111)

for j D 0; : : : ; n � k, where terms with zero denominators
are defined to be zero. Tk; j is called the jth trigonometric
B-spline of degree k. Repeating (111) we have

Lemma 30 A trigonometric B-spline Tk; j is a piecewise
trigonometric polynomial. In fact,

Tk; j(x) D
jCkX

iD j

Pi; j;k(x)T0;i (x) ;

where Pi; j;k(x) are trigonometric polynomials 2 Tk .

More properties of trigonometric B-splines can be found
in the references mentioned above. Especially, we can
show that Tk; j is refinable. That is, after uniformly refining
the knot sequence t, we can define trigonometric B-spline
Th/2
k; j as above and show that Tk; j is a finitely linear combi-

nation of Th/2
k; j0 .
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We are now ready to present a method to find a tight
wavelet frame for L2(S). We begin with

Definition 9 The family f�kgk2ZC of function in L2(S)
is a (MRA) tight wavelet frame for L2(S) if

kFk2 D
X

j2ZC

jhF; � jij
2; 8 f 2 L2(S) :

Using the polarization technique as in Sect. “TightWavelet
Frames” we have

F(x; y; z) D
X

k2ZC

h f ; � ji� j(x; y; z)

for all F 2 L2(S).
By (109) it is equivalent to build a tight wavelet

frame for L�2 ([��/2; �/2] � [0; 2�]). That is, we need to
find a family fe� kgk2ZC of function in L�2 ([��/2; �/2] �
[0; 2�]) such that

k f k2� D
X

j2ZC

jhF;e� ji�j
2 ;

where k f k� and h f ; gi� are the norm and the in-
ner product associated with the weighted L2 space
L2([��/2; �/2] � [0; 2�]). The following result tells us
how to do.

Theorem 35 Suppose that f! j; j 2 Jg is a tight frame
for L2(0; 2�) and f k ; k 2 Kg is a tight frame for
L2(��/2; �/2) with respect to a nonnegative weight func-
tion cos(x). Then f! j(�) k(�); j 2 J; k 2 Kg is a tight
frame for L�2 ([��/2; �/2] � [0; 2�]).

Proof Since f 2 L�2 ([��/2; �/2] � [0; 2�])

	/2Z

�	/2

j f (�; �)j2 cos(�)d�

is essentially bounded by Fubini’s theorem. For such
a � 2 [0; 2�] that

	/2Z

�	/2

j f (�; �)j2 cos(�)d� < C1 ;

we have

	/2Z

�	/2

j f (�; �)j2 cos(�)d�

D
X

k2K

ˇ̌
ˇ
ˇ̌
ˇ

	/2Z

�	/2

f (�; �) k(�) cos(�)d�

ˇ̌
ˇ
ˇ̌
ˇ

2

(112)

because that f k ; k 2 Kg is a tight frame. Since

ˇ
ˇ̌
ˇ
ˇ̌

	/2Z

�	/2

f (�; �) k(�) cos(�)d�

ˇ
ˇ̌
ˇ
ˇ̌

2

�

	/2Z

�	/2

j f (�; �)j2 cos(�)d� ;

it follows that
Z 2	

0

ˇ̌
ˇ̌
Z 	/2

�	/2
f (�; �) k(�) cos(�)d�

ˇ̌
ˇ̌
2

dy <

1. For each k 2 K, the function

2	Z

0

f (�; �) k(�)d� 2 L2(0; 2�) :

The tight frame of f! j; j 2 Jg implies that
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:

Therefore, integrating (112) from 0 to 2� and using
Lebegues dominant convergence theorem, we have
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2
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ˇ
ˇ

2	Z

0

	/2Z

�	/2

f (�; �) k(�) cos(�)d�! j(�)d�

ˇ̌
ˇ̌
ˇ
ˇ

2

by (113). Therefore, f! j(�) k(�); j 2 J; k 2 Kg is a tight
frame in L�2 ([��/2; �/2] � [0; 2�]). �

Let ��/2 D t1;0 < t1;1 < t1;2 < : : : < t1;m D �/2 be
a knot sequence with t1;i D ��/2C ih with h D �/m and
B1;i be B-spline of order d > 1 based on knots t1;i ; : : : ;
t1;iCd , where t1;iCd D t1;iCd�m when i C d > m.
Here, due to the equally-spaced knots t1;i , Bi(x) is just
a shift of scaled version of uniform B-spline Nd. We uni-
formly refine the knots t1;i ; i D 0; : : : ;m to have t2;i D
��/2C i�/(2m) and B2;i be the B-spline of order d based
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on knots t2;i ; : : : ; t2;iCd . LetV1 D spanfB1;0; : : : ; B1;m�1g

and V2 D spanfB2;0; : : : ; B2;2m�1g. It is easy to see thatV1
is refinable in the sense that V1 � V2. We repeat adding
new knots and use the uniform B-splines on the new knots
to form finer and finer spline spaces. Thus, we will have
V1 � V2 � V3 � : : : � L2([��/2; �/2]). It is known
that

S1
jD1 Vj is dense in L2([��/2; �/2]) with respect to

nonnegative weight function cos(�). Similar to the con-
struction in Sect. “Tight Wavelet Frames over Bounded
Domain, we can find tight wavelet frames associated with
these B-spline subspaces with respect to the weighted L2
inner product. For simplicity, let f j; j 2 Jg stands for the
tight wavelet frame.

Similarly, we can find tight wavelet frame f!k ; k 2 Kg
associated with trigonometric B-splines of even degree
d > 0. See [53] for detail. Then f j!k ; j 2 J; k 2 Kg form
a tight wavelet frame by Theorem 35.

Wavelets for Image Processing

In this section we explain how to use wavelets to find the
edges of images, remove noises from images, and com-
press images. Mainly we use the wavelet decomposition
and reconstruction as explained in Sect. “Wavelet De-
composition and Reconstruction”. That is, we first use
a wavelet or a wavelet frame to decompose an image into
several subimages. Then we treat these subimages by some
methods. Finally we reconstruct the image back using
treated subimages based on the same wavelet or wavelet
frame. Certainly, different wavelets give us different recon-
structed images. One of the purposes of the study is to find
the best one from all wavelets constructed so far.

AWavelet/Wavelet Frame Method for Edge Detection

We shall use tensor product of some orthonormal wavelets
and the tight wavelet frame based on box spline B2211 to
find the edges of images.

The wavelet/wavelet frame method for edge detection
can be described as follows. We first use a wavelet or
wavelet-frame to decompose an image into many levels
of subimages which consist of a low-pass part and sev-
eral high-pass parts of the image. Then we set the low-pass
part to be zero and reconstruct the image back using zero
low-pass part and the original high-pass parts. Such recon-
structed image contains all the edges of the image. (See
also [13].) For box spline wavelet frame, we only do one
level of decomposition. For other standard wavelets (Haar,
D4, D6, biorthogonal 9/7 wavelets), we do 1, 2, 3 levels of
decomposition dependent on the images. For some im-
ages, e. g. the finger print image, we must do 3 levels of
decomposition while for many other images, one or two

levels of decomposition are enough. We choose the best
edge representation by visual inspection among three lev-
els of decompositions to present here.

To present the edges clearly, we normalize the recon-
structed image into the standard grey level between 0 to
255 and use a threshold to divide the pixel values into two
major groups. That is, if a pixel value is bigger than the
threshold, it is set to be 1. Otherwise, it is set to be zero.

In the following we present several sets of images for
comparison. The top two figures are the original image
and the edges based on the box spline B2211. The two fig-
ures in the middle row are the edges computed by using
the Haar and Daubechies D4 wavelets. The two figures in
the last row are based on Daubechies D6 and wavelet 9/7
wavelet. From these figures, it is clear that box spline B2211
on four direction mesh does an excellent job to reveal the
edges of images. (See more examples in [71].)

AWavelet/Wavelet FrameMethod
for Image Denoising

Here we shall use the tight wavelet frames based on box
splines �111; �221; �222; �1111; �2211 to remove the noises
from images. To compare the effectiveness of image de-
noising, we also use tensor products of the Haar wavelet,
Daubechies D4 and D6 wavelets, and biorthogonal 9/7
wavelet to do the denoising. Themain idea to use a wavelet
or wavelet frame to denoise is we first decompose an im-
age into one level of subimages which consist of a low-pass
part and several high-pass parts of the image, then use the
soft-thresholding [27,42] to treat each high-pass subimage
by shrinking wavelet coefficients, and finally reconstruct
the image by using the original low-pass part and shranked
high-pass parts. The reconstructed image is an denoised
image.

The soft-thresholding method is to set each pixel value
z of an image to be nz according to the following

nz D
�

0; if abs(z) � �
sign(z)(abs(z) � �); if abs(z) > �

where � is a thresholding value. An heuristic reason for
this wavelet denoising method is that the noise of the im-
age will be in contents of the high-pass subimages after the
wavelet decomposition. To remove the noise, we reduce
the high frequency contents by �.

To measure the quality of denoised images, we use the
peak signal to noise ratio (PSNR) which can be explained
as follows. Let xi j; 1 � i; j � 512 be the pixel values of the
original image with pixel values in the range [0; 255]. Let
yij be the pixel value of the denoised image. Then we mea-



Popular Wavelet Families and Filters and Their Use P 6905

Popular Wavelet Families and Filters and Their Use, Figure 4
aOriginal image. b Edges by box spline B2211

Popular Wavelet Families and Filters and Their Use, Figure 5
a Edges by Haar wavelet. b Edges by Daubechies D4 wavelet

Popular Wavelet Families and Filters and Their Use, Figure 6
a Edges by D6 wavelet. b Edges by CDF 9/7 wavelet
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Popular Wavelet Families and Filters and Their Use, Figure 7
aOriginal image. b Edges by box spline B2211

Popular Wavelet Families and Filters and Their Use, Figure 8
a Edges by Haar wavelet. b Edges by D4 wavelet

Popular Wavelet Families and Filters and Their Use, Figure 9
a Edges by D6 wavelet. b Edges by CDF 9/7 wavelet

sure the PSNR of the denoised image by

PSNR D �10 log10

P512
i; jD1(yi j � xi j)2

2552 � 5122
:

Certainly, the thresholding value � is dependent on images
and noises. We should look for an optimal � such that the
PSNR is the best. It is known that the thresholding values
are different for high-pass subimages at different levels of
decomposition. It is also known that the most of the noise

will be in the high frequency contents at the first level of
decomposition. one level of the wavelet decomposition.

To test the effectiveness of the wavelet/wavelet frame
method, we start with an original image with pixel values
xij and then add a Gaussian noise with zero mean and var-
ious variances � to obtain a noisy image. That is, the pixel
values of the noisy image is

zi j D xi j C �ıi j
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Popular Wavelet Families and Filters and Their Use, Table 2
The PSNR comparison for standard image Bank

Images 
 D 10 
 D 15 
 D 20 
 D 25
Noised 28.28 24.81 22.36 20.50
Haar wavelet 29.94 26.68 24.38 22.59
D4 wavelet 29.92 26.69 24.39 22.61
D6 wavelet 29.92 26.70 24.40 22.62
Biorth. 9/7 29.93 26.70 24.40 22.62
BSTF111 31.59 28.99 27.32 26.05
BSTF221 31.52 28.99 27.40 26.24
BSTF222 31.14 28.55 26.91 25.73
BSTF1111 31.34 28.78 27.20 26.04

with Gaussian noise ıi j � N(0; 1), where � will be cho-
sen at levels 10; 15; 20 and 25. We choose a popular
image Lena to test all the standard wavelets and box
spline tight frames. In Table 2, we first list the PSNR
numbers for noised image of Lena with different vari-
ances � D 10; 15; 20; 25 of noises. BSTF111 stands for
box spline tight frame using box spline �111. Similar for
other box spline tight frames. Then we present the noisy
images and denoised images to show how well the box
spline tight frames can perform.

Wavelets for Image Compression

The scheme to use wavelets for image compression can be
described as follows.

(1) We use a wavelet to decomposing the gray-scale values
of an images to a maximum number of levels.

(2) Encoding the decomposed image using an embedded
zero-tree encoder (cf. [81]) to a specified file size. For
images of size 512 � 512, the file size of 262,159 bytes
which is approximately one byte per pixel. The ac-
tual compressed file sizes are 32,793 bytes (8:1), 16,409
bytes (16:1), 8,217 bytes (32:1), and 4,121 bytes (64:1).

(3) Decoding the compressed file.
(4) Reconstructing the image using the wavelet transform

and rounding the values to the nearest integer.
(5) Calculating the peak signal to noise ratio (PSNR) as in

the previous section.

The PSNR larger the better. That is, the compressed image
can be recovered better. In general, a PSNR � 32 is con-
sidered to be visually indistincted from the original and
reconstructed images by normal people’s eyes at a com-
fortable viewing distance away from the images. In the
following we list a table of PSNR by using tensor prod-

uct of Haar, Daubechies D4, D6, and a Lai–Roach wavelet
(cf. [59]). Test images are standard and given in Fig. 14.

Popular Wavelet Families and Filters and Their Use, Table 3
PSNR of five images by various wavelets

Image: Lena 512� 512
Wavelet 8:1 16:1 32:1 64:1
Haar 36.2258 32.6462 29.5685 27.5420
D4 38.4440 34.9209 31.6733 28.8185
D6 38.7819 35.3234 32.0479 29.0727
9/7 39.6450 36.3379 32.9495 29.9049
LR6 38.8167 35.4208 32.1585 29.1588

Image: Barbara 512 � 512
Wavelet 8:1 16:1 32:1 64:1
Haar 30.4954 26.8119 24.6329 22.7409
D4 32.8675 28.6364 25.6853 23.3821
D6 33.4311 29.0735 25.9431 23.4715
9/7 34.7288 30.0708 26.4626 24.1701
LR6 33.6441 29.2804 26.1074 23.5789

Image: Boat 512 � 512
Wavelet 8:1 16:1 32:1 64:1
Haar 34.7720 30.7103 27.5762 25.4130
D4 35.6517 31.5910 28.5165 26.0746
D6 35.8593 31.8088 28.6402 26.1880
9/7 37.7118 33.1534 29.7557 27.1292
LR6 35.9301 31.9080 28.7187 26.2733

Image: Finger-print 512 � 512
Wavelet 8:1 16:1 32:1 64:1
Haar 32.4415 29.9961 28.5828 27.3396
D4 33.3224 30.8632 29.4448 27.9762
D6 33.8077 31.2097 29.8049 28.2562
9/7 34.7043 32.3327 30.3877 28.8153
LR6 33.9236 31.3387 29.9687 28.3928

Image: Crowd 512 � 512
Wavelet 8:1 16:1 32:1 64:1
Haar 33.3109 29.2032 26.1346 23.7222
D4 34.7214 30.6307 27.4101 24.8170
D6 35.1740 31.0444 27.7601 25.0348
9/7 37.0871 32.4109 28.8652 25.9603

In the above tables, D4 and D6 denote Daubechies
wavelets of order 4 and 6, respectively. 9/7 stands for
CDF 9/7 biorthogonal wavelet as in Sect. “Biorthogonal
Wavelets”. As we can see that CDF 9/7 does much better
for image compression for all levels. This is why that CDF
9/7 wavelets were implemented in JPEG 2000 standard.

Future Directions

We have discussed many constructive methods of various
wavelets in the univariate and multivariate settings. There
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Popular Wavelet Families and Filters and Their Use, Figure 10
The noisy image when � D 10 and a denoised image by using BSTF1111

Popular Wavelet Families and Filters and Their Use, Figure 11
The noisy image when � D 15 and a denoised image by using BSTF1111

are still many research problems remaining open after
about twenty years of development of wavelets since the
successful construction of compactly supported orthonor-
mal wavelets with arbitrary regularity in 1988 [23]. We list
some of important open problems below.

1. Construction of multivariate nonseparable compactly
supported wavelets with high order smoothness. In the
multivariate setting, how to find a mask polynomial P
such that

X

k2f0;1gd
jP(! C k�)j2 D 1

and � defined by its Fourier transform

b�(!) D
1Y

jD1

P(!/2 j) (113)

is compactly supported and has any desired smooth-
ness. Belogay–Wang’s method in Sect. “Multivariate
Orthonormal Wavelets” provides a way to do it in the
bivariate setting. How can we do in themultivariate set-
ting? Are there any other methods available?

2. In Sect. “Multiwavelets and Balanced Multiwavelets”,
we describe the Goodman method for compactly
supported orthonormal multi-wavelet using B-splines.
One open problem is to generalize the Goodman
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Popular Wavelet Families and Filters and Their Use, Figure 12
The noisy image when � D 20 and a denoised image by using BSTF2211

Popular Wavelet Families and Filters and Their Use, Figure 13
The noisy image when � D 25 and a denoised image by using BSTF2211

method to the multivariate setting. That is, can we
use box splines to construct compactly supported or-
thonormal multi-wavelets?

3. Even in the univariate setting, when using B-splines to
construct compactly supported orthonormal wavelets
based onGoodman’smethod, it is interesting to know if
we can use B-splines to construct symmetric compactly
supported orthonormal multiwavelets.

4. In the univariate setting, consider using dilation fac-
tor q > 2 to construct orthonormal wavelets. Sup-
pose we have an orthonormal scaling function. That
is, we have the mask polynomial P. It is known that
we can use Lawton–Lee–Shen’s method [62] to con-
struct the associated wavelets. That is, we can find

Qk ; k D 1; : : : ; q � 1. The open question is to find
a formula for Qk’s like the case when q D 2.

5. When constructing biorthogonal wavelets using box
splines, the dual wavelets by the He–Lai method needs
box splines of very high degree. Thus, the support
of dual wavelets is very large. An open problem is
to find multivariate biorthogonal wavelets of arbitrary
smoothness with relatively small support. For example,
for lower smoothness, say,Cr for r D 0; 1; 2 how canwe
construct biorthogonal compactly supported wavelets
of Cr with the support which is much smaller than the
one by using the He–Lai method?

6. Suppose that there is a mask polynomial P satisfying
(113). An open problem is if and how we can find
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Popular Wavelet Families and Filters and Their Use, Figure 14
Images: a Barbara. b Finger-print. c Boat and d Crowd

Qk ; k D 1; : : : ; 2d � 1 such that
2

66
6
4

P(! C n1�) P(! C n2�)
Q1(! C n1�) Q1(! C n2�)

:::
: : :

Q2d�1(! C n1�) Q2d�1(! C n2�)

: : : P(! C n2d�)
: : : P(! C n2d�)
: : :

:::

: : : Q2d�1(! C n2d�)

3

777
5

is unitary, where fnk ; k D 1; : : : ; 2ng D f0; 1gd � Zd
C.

7. Construction of multivariate compactly supported or-
thonormal wavelets, prewavelets, and tight wavelet
frames in Sobolev spaces is a challenge for two decades.
So far we still do not have a standard wavelet tool
for numerical solution of partial differential equations.
One initial step toward to this problem is [52]. Com-

pactly supported prewavelets under the norm inH1
0(˝)

with ˝ being a rectangular domain or triangular do-
main were constructed and tested to solve Poisson
equation. More work is needed for a wavelet method
for biharmonic equations and nonlinear equations.

8. As we have seen from the previous sections, tight
wavelet frames are much easier to construct than or-
thonormal wavelets and they performmuch better than
orthonormal wavelets for image edge detection and de-
noising. However, one can not straightforwardly apply
the wavelet compression schemes to do image com-
pression based on tight wavelet frames. Mainly the
number of wavelet frame generators is more than the
number of wavelet functions and hence one needsmore
bit budget allocated to code the coefficients of wavelet
frame representation of an image than to code the co-
efficients of orthonormal wavelet representation. This
is one of major problems that wavelet researchers face
today.
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Regarding tight wavelet frames, one of problems is
to increase the approximation power and order of van-
ishing moments of wavelet frames. This difficulty may
be overcome by using the method of virture components
(cf. [55,56]). Construction of tight wavelet frames based on
refinable function vectors will be reported in [51].

The wavelet research has already stimulated the inter-
est from both pure and appliedmathematicians. The prob-
lems proposed above require a deep knowledge of algebra
and algebraic geometry (e. g., Problem 6) and an exten-
sive knowledge of applied mathematics (e. g., Problem 8).
It is not know if Problem 6 has a solution in the multivari-
ate setting. The Problem 8 may needs some knowledge of
optimization and nonlinear sparse approximation. Thus,
they are extremely difficult to solve. It may take time to
further develop various linear and nonlinear approaches
before we can see some hope to answer these questions.
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Glossary

Social network A simple social network is a set of so-
cial actors with one or more social relations defined
over them. A network for one relation can be repre-
sented by a graph which is defined as an ordered triple
G D (V ; E;A). In this representation, V denotes the
set of vertices (or nodes) that represent the social ac-
tors, E the set of edges (undirected lines) representing
reciprocated or symmetric ties andA the set of arcs (di-
rected lines) representing unreciprocated or directed
ties. The cardinality of V , usually denoted by n, gives
the size of the network. The sets E and A are pairwise
disjoint and their union is the set of all the ties for the
social relation, denoted by R. The graph can also be
denoted by G D (V ; R) given that R D E [ A. Such
network data are also called one-mode data (because
there is only one type of social unit over which social
relations are defined). If there are r relations, these are
denoted by R1; R2; : : : ; Rr and the social network is de-
noted by G D (V ; R1; R2; : : : ; Rr ). For ease of exposi-
tion, a network with one relation is used below. The
ties, where the arcs and edges are viewed as lines in
the pictorial representation of a graph, can be binary
or valued.

Location in a network The location of an actor (vi) is the
set of ties that vi has with all of the other actors in the
network including the absence of ties.

Partitioning networks A partition of a social network is
a simultaneous partitioning of the actors into positions
and the social ties into blocks. For blockmodeling, this
simultaneous partitioning is done solely in terms of the
relational ties in R.

Position When the set of vertices (V) is partitioned
into a set of clusters C D (C1;C2; : : : ;Ck ) where
Ci \ Cj D ', the empty set, for distinct i and j and
[i Ci D V , then each Ci 2 C (and the vertices it con-
tains) forms a position. (See Fig. 2, below). The number
of positions is denoted by k. This partition determines
an equivalence relation and the units within each clus-
ter are said to be equivalent to each other (and not
equivalent to any the remaining vertices).

Positional analysis A positional analysis of a social net-
work is based on the locations of all vertices (repre-
senting actors) and positions (occupied by vertices).

Block C also partitions the relation, R, into k2 blocks:
R(Ci ;Cj) D R \ (Ci � Cj) where × denotes the
Cartesian product. Each block, R(Ci ;Cj), consists
of all of the arcs from vertices in Ci to vertices in Cj.
The set of these arcs and edges is used to ‘summa-
rize’ the relation between Ci and Cj by an arithmetic
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calculation using the values of the arcs and edges in
the block. A block is a relation between two clusters
of vertices. (This is illustrated below in Sects. “Intro-
duction”, “Conventional Blockmodeling” and “Gen-
eralized Blockmodeling” and diagrammed in Fig. 2).
When i D j the blocks are called diagonal blocks and
there are k of them, one for each position. The remain-
ing k(k � 1) blocks are called nondiagonal blocks.

Blockmodel A blockmodel consists of structures obtained
by: (i) identifying all vertices within a cluster (in the
clustering C) and representing each cluster as a vertex
to construct k vertices for another graph and (ii) com-
bining all of the ties in a block into a single tie between
positions and constructing one tie for each block. If
there are no ties in a block there is no tie between the
two positions defining the block.

Blockmodel image The blockmodel is another network
(graph) with many fewer vertices than G(k
 n) and
many fewer ties. When this blockmodel is represented
as a simpler (and smaller) matrix or graph the result
is labeled the blockmodel image. Even if there are no
loops (ties from vertices to themselves) in G there can
be loops in the blockmodel image depending on the
ties present in diagonal blocks.

Blockmodeling Blockmodeling refers to the set of tech-
niques used to discern network structure as blockmod-
els and representing them.

Two-mode network data A two-mode network N D

(V1;V2; R;w) has one set of social units V1 D (v11;
v12; : : : ; v1p) and a second set of units V2 D (v21; v22;
: : : ; v2q) where V1 \ V2 is empty. The social relation R
is a subset of V1 � V2 and is a relation between the two
sets of vertices. The item, w, is a set of weights (viewed
as a mapping of the relational ties of R to the real
numbers).

Definition of the Subject

There are many types of social actors ranging from indi-
viduals to groups to organizations to institutions to so-
cieties. Many different social relations can be defined for
all of these types of social actors. Depending on the sub-
stantive concerns of a researcher, many different and di-
verse social networks can be studied. All these networks
can be represented by graphs as described above. It com-
monplace to talk of the structure of these networks: com-
munication networks, transportation networks, organiza-
tional networks, trading networks all have structures. Two
ideas are central to social network analysis. The first is that
the structure of a social network, as a whole, is important
for collective outcomes at the level of the network. The

second is that the location occupied in a network is im-
portant for outcomes at the actor level – regardless of the
network that is studied. In order to study these collective
and individual outcomes it is essential to know how a net-
work is structured. Blockmodeling is an approach that is
highly effective in identifying the overall structure of a net-
work and describing it. Large and/or complex networks
are mapped into simpler structures – called blockmodel
images – that are viewed as structural summaries of the
large and/or complex social networks. In one type of im-
agery, the structure depicted in a blockmodel image is the
fundamental structure of the network and the observed
network is an instantiation of the fundamental structure.
Knowing the fundamental structure of a network is the
primary goal. In turn, this permits the understanding of
many network phenomena at both the collective and local
levels.

Introduction

The foundational paper for blockmodeling [19] intro-
duced the concept of structural equivalence. Two actors
(vertices) are structurally equivalent if they are connected
to exactly the same other actors in the network. Their lo-
cations are identical. In this sense they are structurally
identical and occupy exactly the same location in the net-
work. Grouping together all of the vertices having the
same network location defines a position occupied jointly
by these (structurally equivalent) vertices. If all vertices can
be grouped into sets of structurally equivalent clusters, the
way is open to reduce a network to a simpler structure de-
fined over these positions. The first widely accepted gen-
eralization of structural equivalence equivalence was reg-
ular equivalence as proposed in [21] where two vertices
are regularly equivalent if they are equivalently connected
to equivalent others. The difference between the two con-
ceptions of equivalence is illustrated in Fig. 1 which shows
a simple hierarchy twice. On the left, an exact structural
equivalence partition is shown where the vertices have
been color coded so that vertices in the same equivalence
class have the same color. Note that in the lower two lev-
els of the hierarchy not all of the vertices at a given level
have the same color, a representation that appears to ig-
nore a basic feature of this network. On the right, a regular
equivalence partition is shown with three positions, one
for each level. (As an illustration of the notion of regular
equivalence, vertices j, k, and l are connected to d in the
same way as h and i are connected to c while c and d are
connected in the same way to their subordinates.) There
is an additional subtlety here because every network has
a lattice of regular equivalence partitions [4]. Both of the
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Positional Analysis and Blockmodeling, Figure 1
Two partitions of a hierarchy

partitions shown in Fig. 1 are located in the lattice of reg-
ular partitions of the network shown in the figure.

Of course, most empirical networks cannot be parti-
tioned exactly in terms of structural or regular equivalence
in a useful fashion. (Extremely fine grained partitions are
possible for structural equivalence where k approaches n
with the result that the blockmodel image is almost as large
as the empirical network, an outcome that is not very use-
ful. And, in terms of regular equivalence, there are the triv-
ial partitions with 1 or n clusters for a network without
isolates). So, in practice, partitions are sought that come as
‘close as is possible’ to the underlying conception of equiv-
alence used to partition the network. In short, the notion
of an exact equivalence partition is approximated when
partitioning empirical networks to get a blockmodel. Con-
ventional blockmodeling and generalized blockmodeling
provide two approaches to establishing blockmodels em-
pirically where the concept of an exact equivalence parti-
tion is approximated.

Conventional Blockmodeling

Structural equivalence is defined as follows: x and y are
structurally equivalent iff (i) xRy iff yRx; (ii) xRx iff yRy;
(iii) For all z 2 Vnfx; yg, xRz iff yRz and (iv) For all
z 2 Vnfx; yg, zRx iff zRy. In order to have a practical
empirical procedure, conventional blockmodeling oper-
ationalizes an approximation to exact structural equiva-
lence in terms of a metric. For example, if two vertices
are structurally equivalent, the correlation of the vectors
giving their locations is 1 because the vectors are iden-
tical. Similarly, the Euclidean distance between the two
such vectors is 0. The correlation between “almost equiv-
alent” locations will be close to 1 and the Euclidean dis-
tance between them will be close to 0. So “exactly equiv-
alent” becomes “almost exactly equivalent” and cluster-
ing procedures can be applied to matrices containing

(dis)similarities that have been constructed from the re-
lational data. This strategy has been called this ‘the indi-
rect approach’ because the structural network data have
been replaced by the (dis)similarity measures used for the
clustering procedures [14]. One widely used algorithm,
CONCOR [7], uses iterated correlations while another
widely used algorithm, STRUCTURE [8], uses (corrected)
Euclidean distances. Variants of both are implemented in
UCINET [6].

An equivalence � on V is a regular equivalence on
G D (V ; R) iff for all x; y; z 2 V , x � y implies both (i)
xRz implies there exists w 2 V such that (yRw and w � z)
and (ii) zRx implies there exists w 2 V such that (wRy
and w � z). As for structural equivalence, regular equiv-
alence does not apply exactly for most empirical networks.
REGGE [20] has been used to relax exact regular equiva-
lence in the form of an iterative algorithm to locate empir-
ical partitions based on approximate regular equivalence.
Thus far, no satisfactory metric for approximating exact
regular equivalence has been established and, as a result,
indirect methods for establishing partitions based on regu-
lar equivalence have been limited in their applicability. For
amore general discussion of positions and equivalence, in-
cluding automorphic equivalence, see [5].

Generalized Blockmodeling

Generalized blockmodeling has been proposed as an alter-
native approach to conventional blockmodeling for estab-
lishing blockmodels empirically [14]. (See also [1]). While
it shares the goal of discerning the structure of a network
via homomorphisms of the network to the blockmodel im-
age, it has many distinctive features: (i) it is a direct ap-
proach that works with the relational data; (ii) it general-
izes the notion of equivalence in a way that permits a se-
ries of indefinite extensions; (iii) it uses an optimizational
approach with an explicit criterion function; (iv) this cri-
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terion function is used as measure of fit for established
blockmodels; and (v) generalized blockmodeling can be
used both inductively and deductively.

Direct Approach

The direct approach is facilitated by translating the notion
of equivalence into the set of block types that are con-
sistent with the equivalence. Such block types are called
permitted or ideal block types for the equivalence. Thus,
structural equivalence is turned into the four block types
that it implies: null block where every element is 0, com-
plete blocks where every element is 1, diagonal blocks
that have 0 only on the diagonal and 1 elsewhere, and
diagonal blocks with only 1 on the diagonal and 0 else-
where. (Of these block types, the fourth is empirically rare
and is seldom used.) Under exact structural equivalence
no other block types are possible. Regular equivalence is
treated in a similar fashion: The only block types that reg-
ular equivalence permits are null blocks and 1-covered
blocks [3]. A 1-covered block has at least one 1 in ev-
ery row and every column. (Note that a complete block is
a special case of a 1-covered block, consistent with struc-
tural equivalence being a special case of regular equiva-
lence.) The implication of redefining equivalence in terms
of a set of permitted block types means that an empiri-
cal procedure can be constructed by focusing on the ex-
tent to which the permitted block types are present in
a network instead of transforming the structural data into
(dis)similarities.

Generalizing Equivalence Ideas

By focusing instead on permitted block types the way is
cleared for defining new block types and new types of
blockmodels. One way of doing this is to modify the defi-
nition of extant block types. The idea of 1-covered blocks
can be relaxed from regular to row-regular blocks and col-
umn-regular blocks. The former have at least one 1 in ev-
ery row while the latter has at least one 1 in each column. It
follows that if a block is both row-regular and column-reg-
ular then it is regular. A row-dominant block is one where
there is at least one row consisting entirely of 1s. If the clus-
ters of the blockmodel partition are Ci and Cj, then at least
one element in Ci has a tie directed all vertices in Cj. Col-
umn-dominant blocks can be defined in a similar fashion.
(See pp. 211–215 in [14] for further examples of new block
types).

New types of block types can be defined from scratch.
An example of doing this stems from structural balance
theory [17]. One generalization of Heider’s theory [9]
showed that if a signed network is structurally balanced

according to Heider, there will be a clear partition struc-
ture: the vertices will be partitioned into two clusters so
that all of the positive ties will be within the clusters and
all of the negative ties will be between the clusters. By
modifying the definition of balance, this can be general-
ized so that there would be two or more clusters with the
same partition structure [10]. This suggests a natural pair
of block types and a new type of blockmodel [11]. The new
block types are positive block (where the only elements
are positive or null ties) and negative block (where the
only possible ties are negative and null ties). According to
the theory, the positive blocks will be on the diagonal and
the negative blocks will be nondiagonal blocks. An algo-
rithm for detecting partitions that are as close as possible
to exact structural balance is suggested in [11]. Another
example is the ranked clusters blockmodel where the di-
agonal blocks have vertices that are linked only by edges
(or by null ties) and all of the arcs either go up the rank-
ing or down the ranking [12]. Each of these blockmodels
is an example of defining new block types and, with them,
new types of blockmodels that can be fitted to empirical
data.

The general scheme for generalized blockmodeling is
shown in the diagram shown in Fig. 2. There, vertices in
the cluster Ci are shown, generically, as x and the vertices
of Cj are shown as y. The set of arcs from vertices in Ci
to vertices in Cj is shown as axy in the figure. The clus-
ter Ci of the original network is mapped under a map-
ping � to the position i (as a vertex in the blockmodel)
and the cluster Cj is mapped to j (another position as

Positional Analysis and Blockmodeling, Figure 2
A diagram of the generalized blockmodeling scheme
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a vertex in the blockmodel) also under �. The set axy
is summarized, via arithmetic rules, as a in the block-
model and T is a set of predicates that are used to de-
scribe the block types of the blockmodel. Thus, for struc-
tural equivalence, T D fnull, completeg and for regular
equivalence T D fnull, 1-coveredg. For structural balance,
T D fpositive, negativeg.

Criterion Functions

When permitted block types are defined, it is straight-
forward to define departures from the permitted (ideal)
block types. For structural equivalence, every 1 in what
is thought to be a null block is inconsistent with struc-
tural equivalence. Similarly, every 0 in what is thought to
be a complete block is inconsistent with structural equiv-
alence. The more inconsistencies there are in a block the
less it conforms to the corresponding ideal block type.
And the more inconsistencies there are, when the block
inconsistencies are combined for the whole network, the
worse the fitted empirical block model. Similarly, for reg-
ular equivalence, every row or column in a block lack-
ing a 1 is not consistent with the block being 1-covered
and every 1 in an otherwise null block is an inconsistency
with regular equivalence. The more inconsistencies there
are, when they are summed across the blocks, the worse
the fitted blockmodel when regular equivalence has been
used. Note that, in general, the count of inconsistencies
for structural equivalence will differ from the count of
inconsistencies for regular equivalence because the block
types differ. Counting inconsistencies in blocks and com-
bining them to give the total number of inconsistencies for
a blockmodel is the core of the idea of a criterion function
that can be used to establish blockmodels.

Let G D (V ; R) be a network and let 	 denote the set
of all equivalence relations of a given type (for example
structural equivalence, or regular equivalence, or balance
theoretic, or ranked clusters). Every equivalence, say �,
on V determines a partition C of V and vice versa. Let ˚
denote the set of all partitions corresponding to the rela-
tions from	. In general, we need a criterion function, de-
noted P(C), to satisfy two criteria: (i) P(C) > 0 and (ii)
P(C) D 0 iff�2 � . With such a P(C) we can set up a clus-
tering problem to minimize P(C) (given the equivalence
specified for a blockmodel). If there are exact equivalences
of a given type then P(C) is 0. However, if there are no
such partitions (i. e. 	 is empty) then an optimization ap-
proach gives the solution(s) that differ(s) the least from an
ideal case – provided that the criterion function is com-
patible with and sensitive to the type of equivalence that is
used.

The intuition behind using these criterion functions
is that of a pair of blockmodels that are compared in
terms of the criterion function. One is an ideal blockmodel
with only the permitted block types for a given equiva-
lence and the other is a corresponding empirical block-
model (i. e. with the same partition of the vertices) for
a clustering C. Let B(Ci ;Cj) denote the set of all of the
ideal blocks (in the blockmodel) and let p(Ci ;Cj) denote
the inconsistency between the empirical block defined
by Ci and Cj and the corresponding nearest ideal block.
The criterion function for the blockmodel is expressed
as P(C) D ˙ p(Ci ;Cj) where the summation is over all
k2 blocks. At the block level, the block inconsistency is
p(Ci ;Cj) D min ı(R(Ci ;Cj); B) where the minimization
is over all possible blocks for B(Ci ;Cj) and ı(R(Ci ;Cj); B)
measures the deviation (number of inconsistencies) be-
tween R(Ci ;Cj) and the nearest ideal block B. For struc-
tural equivalence, the simplest inconsistency measure for
a block whose nearest ideal block is null is the number
of 1s in it. Put differently, ı(R(CiCj); B) is the number of
1s that are present where they ought not be. Similarly, the
simplest inconsistency (ı(R(Ci ;Cj); B)) for a block whose
nearest ideal block is complete is the number of 0s in it.
The total number of inconsistencies is obtained by sum-
ming the inconsistencies over all of the blocks in the block-
model. This gives us P(C). This can be generalized by us-
ing differential weights for the types of inconsistencies be-
tween the ideal and empirical blockmodels. For example,
for structural equivalence partitions, it is possible to view
1s in what is specified as a null block as more serious than
0s in what is thought to be a complete block. If so, not
all inconsistencies are viewed as being equally important
and penalties can be imposed on some of them. Of course,
this modifies the definition of, and values returned for, the
criterion function, P(C). The ‘best’ partitions C are not
known ahead of time and have to be identified empiri-
cally. A simple relocation algorithm can be used determine
one (or more) partitions that minimize the criterion func-
tion.

Optimization and Measures of Fit

The relocation algorithm is defined and mobilized as fol-
lows. To locate a partition (as consistent as possible with
the set of permitted block types defining the equivalence
used) into k clusters, the network is partitioned randomly
into k clusters. The value of P(C) is then computed. Of
course, given that the starting partition is random, this
value will be very large. The starting (and any) parti-
tion can be changed in two ways: (i) interchanging a pair
of vertices between two different clusters or (ii) moving
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a vertex from one cluster to another. These two types of
change (transformations) determine the neighborhood of
any clustering, C. The algorithm is expressed as follows:

Repeat:
if in the neighborhood of the current clustering, C,

there exists a clustering, C0, such that P(C0) < P(C)
then move to the clustering P(C0).

This continues until a smaller value of P(C) cannot be
found. The relocation algorithm has to be repeated many
times (hundreds or thousands of times) for different ran-
dom starting partitions for a given value of k in order to
obtain solutions with the minimal values of P(C).

A criterion function is defined explicitly for a par-
ticular type of blockmodel. As noted above, for regular
equivalence there are two ideal block types. The value
of ı(R(Ci ;Cj); B) is defined differently for each of these
types. If B is a null block, then one specification of
ı(R(Ci ;Cj); B) is the number of 1-covered rows and if B
is a regular block, ı(R(Ci ;Cj); B) is the number of rows or
columns that have only 0s. (Other specifications are possi-
ble.) For a structural balance theoretic partition, there are
two block types – positive and negative blocks. For posi-
tive blocks (on the diagonal) every � 1 (for binary signed
networks) contributes to ı(R(Ci ;Cj); B) and for nega-
tive blocks (off-diagonal) every + 1 (for binary signed net-
works) contributes to ı(R(Ci ;Cj); B) for that block. If P is
the total number of ‘positive inconsistencies’ and N is the
total number of ‘negative inconsistencies’ then one spec-
ification for the criterion function is P(C) D P C N . Al-
ternatively, these two inconsistency types can be weighted
differently as in P(C) D ˛P C (1 � ˛)N with 0 6 ˛ 6 1.
This formulation extends naturally to valued signed net-

Positional Analysis and Blockmodeling, Table 1
Inductive and deductive uses of generalized blockmodeling

Clustering Blockmodel
Inductive Unknown (in advance) Unknown (in advance)

Deductive
Pre-specification Unknown Given
Constraints Given Unknown
Constrained Pre-specification Given Given

Positional Analysis and Blockmodeling, Table 2
Two examples of pre-specified blockmodels

Model 1 Model 2
Complete Complete Null Row Regular Row Dominant Complete
Complete Regular Null Null Complete Null
Regular Null Null Null Regular Symmetric

works. A more extended discussion is contained in [13]
and generalized blockmodeling is implemented in [3].

Deductive and Inductive Uses of Blockmodeling

Within conventional blockmodeling, using the indirect
approach, blockmodeling is essentially inductive. A spe-
cific type of equivalence is specified, some (dis)similarity
measure is specified (often implicitly) and a clustering al-
gorithm is used to identify a clustering. For example, in us-
ing structural equivalence as the selected equivalence, cor-
rected Euclidean distances can be computed and used in
conjunction with theWard criterion in a hierarchical clus-
tering procedure. This usage results in a dendrogram or
a cluster diagram and it is then necessary for a researcher
to identify a clustering given the dendrogram. Neither the
number of clusters is specified in advance nor is the lo-
cation of the permitted types in a blockmodel specified.
This is purely inductive. In another variant of using struc-
tural equivalence, CONCOR can be used to give succes-
sive splits of previously established clusters (starting with
the whole network as a cluster) where the number of splits
is specified in advance. This, too, is inductive and the re-
searcher accepts (or not) the clusters that happen to be
returned by the application of the algorithm. In contrast,
generalized blockmodeling can be used in a pre-specified
(and hence deductive use of blockmodeling) fashion. The
different options are given in Table 1.

A simple pre-specified model is one where the block
types and their location in the blockmodel are specified in
advance but the actual clustering, C, is not known and is
to be “discovered”. Two examples of pre-specified block-
models for k D 3 are given in Table 2 where both the types



Positional Analysis and Blockmodeling P 6919

of blocks and their place in the blockmodel are specified.
These specifications state that the type of blockmodel is
known or conjectured but not its exact realization.

It is permissible to formulate alternative blockmodels
for the same network as alternative hypothetical models.
However, the two criterion functions cannot be compared
directly (in magnitude) because different block types de-
fine different inconsistencies. It is possible – and interest-
ing – for different blockmodels to fit the same network.

In general, the criterion function for structural equiv-
alence is the most stringent with every 0 and 1 in the
‘wrong’ places (blocks of the ‘opposite’ type) contributing
while the number of inconsistencies under regular equiv-
alence is likely to be much smaller. So comparing the cri-
terion functions for different blockmodels based on struc-
tural and regular equivalence for the same data is inad-
missible. In short, the metrics differ and the size of the
criterion function matters only within a given blockmodel
type for a specific network data set – where the aim is to
find the closest empirical blockmodel(s) consistent with
the selected type of blockmodel for the network studied.
What matters is the appropriate type of blockmodel given
the problem studied. The use of criterion functions is to
identify the best fitting blockmodels of a given type and
they should never be compared across different types of
blockmodels.

An alternative option is to specify the clustering and
leave open the exact nature of the blockmodel. The con-
straint takes the form of specifying which vertices go in
which cluster and, given that, seeing the blockmodel type
that results (in terms of the permitted block types). In the
first example used below the presence of two types of or-
ganizations in the network suggested a partition of the or-
ganizations into the two types. Under this strategy, it is
possible also to identify only partially the membership of
the clusters by specifying that some vertices must be clus-
tered together and other pairs of vertices are never clus-
tered together. The third approach listed in Table 1 is the
constrained pre-specification where both the blockmodel
and the clustering are specified. (In the organizational ex-
ample just mentioned, the partition into two types of or-
ganizations could be coupled to a specification of one type
of a core-periphery blockmodel.)

Engaging in pre-specifying blockmodels requires so-
cial knowledge about the specific network or the type of
network that it represents. And it may be that a lot of
such knowledge is required to make blockmodel specifi-
cations with confidence. However, often a network ana-
lyst knows more about a network than what is implied
by a completely inductive approach. As such, a pre-spec-
ified blockmodel is one that can be tested rather than one

that is discovered. All of the inductive, partially deductive
and fully deductive uses of blockmodeling are useful and
the decision over which approach to take depends on the
knowledge that is available about a network. For example,
a type of blockmodel that is discovered for a network of
a given type (e. g. corporate networks in the United States)
becomes a candidate for a blockmodel to be tested in an-
other network of the same broad type in another country.

Examples of GeneralizedBlockmodeling

Example 1. An Interorganizational Network

The first example features a small network with 15 organi-
zations and is taken from [15]. The studied organizations
are involved in a specific collaborative enterprise and the
relation shown in Fig. 3 is the presence (or not) of recipro-
cated ties prior to the start of the collaborative enterprise.
Even though this is a small network, the structure is not
immediately apparent from the diagram. Prior to the anal-
ysis, the basic intuition was that these organizations form
some kind of a core-periphery structure. Of course, there
are many types of core-periphery structures so something
more has to be specified. Those organizations thought to
be in the core were expected to be tied to each other and
to most of the other organizations in the network. These
organizations occupy the core as Position 1. Another set
of organizations was each thought to be tied to most of the
core organizations but not to each other. These organiza-

Positional Analysis and Blockmodeling, Figure 3
An interorganizational network matrix in an arbitrary order
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Positional Analysis and Blockmodeling, Table 3
A pre-specified blockmodel

Position 1 Position 2 Position 3
Position 1 Complete Regular Null
Position 2 Regular Null Null
Position 3 Null Null Null

tions occupy Position 2 and can be called the semi-periph-
ery. Finally, there was the suspicion that one organization
largely unknown prior to the collaborative effort. This or-
ganization (or possibly more than one organization) occu-
pies Position 3. Reflecting these arguments, the specifica-
tion used in [15] is shown in Table 3.

This pre-specified model was fitted with 3 clusters and
the rows of the matrix were permuted so that members
of the same position (cluster) are grouped together. The
matrix array in Fig. 4 resulted. The blue lines (that extend
beyond the matrix on the left and at the bottom) sepa-
rate the three positions. While the model fits the data well,
there are some inconsistencies: among the core organiza-
tions in Position 1, s6 and s1 do not have a reciprocated tie
(and contribute 2 inconsistencies to the criterion function
as 0s in a specified complete block) and, among the orga-
nizations in the semi-periphery (Position 2), f9 and f2 do
share a tie when the expectation expressed in the model
was there would be no ties there. This brings the num-
ber of inconsistencies to 4. There is a lone organization
in Position 3 that has no reciprocated ties with the other

Positional Analysis and Blockmodeling, Figure 4
Blockmodel of the interorganizational network with 3 positions

Positional Analysis and Blockmodeling, Figure 5
Blockmodeling image for Fig. 4

organizations: the blocks defined in terms of this position
contribute no inconsistencies. So the optimized value of
the criterion function is 4 and this partition is unique. Fig-
ure 5 shows the blockmodel image for this network gotten
by using the pre-specified model shown in Table 3. The
loop for Position 1 represents a complete block and the
edge between Position 1 and Position 2 represents a regu-
lar link.

This example raises another interesting issue. As noted
above in Sect. “Conventional Blockmodeling”, the organi-
zations could be grouped into two clusters based on what
they do. One was made up of ‘practicing’ organizations
(with regard to health service delivery) and the other was
made up of organizations ‘supporting’ the collaborative ef-
fort. The former organizations are labeled f1 through f9
and the second set s1 though s6. An alternative block-
model was an obvious candidate and is consistent with the
third deductive use of blockmodeling listed in Table 1. It
has the same specification of block types with three po-
sitions: Position 1 made up of the support organizations;
Position 2 made up of all of the practicing organizations.
(Position 3 could be specified for f6 as an isolate.) Much as
this blockmodel made sense a priori, it has a much worse
fit. Looking at Fig. 4, it is clear that if s5 and f6 are inter-
changed between Positions 1 and 2, the count of incon-
sistencies would jump by 12 to 16. The structure of the
second specification is right but the composition of the
positions was inferior – which shows, for this network,
that the constrained pre-specification did not fit as well
as a simpler pre-specification with only the blockmodel
stated ahead of the model fitting. It suggests also that test-
ing specifications is important and that the assumed social
knowledge for specified blockmodel need not be correct.

Example 2. Structural Balance and Signed Networks

The data for this example are taken from [18] for a group
of 21 women living in a college residence. Measurement
for signed social relations was done by using four rela-
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Positional Analysis and Blockmodeling, Figure 6
Original signed and valuedmatrix

tions that tapped an underlying dimension of affect. Each
woman was asked to provide signed data about the other
women in the residence in the form of who they would
like to do activities with and those with whom they did not
want to do these things. The items used were: having them
as a room mate; going on a double date with them; tak-
ing them home to visit the family for a weekend and being
a friend after college. These relations have been combined
into counts of activities to be shared and counts of activi-
ties not to be shared are shown in Fig. 6.

Black squares indicate the presence of positive ties for
all four relations with red squares showing where all four
ties were negative. Shades of gray show lesser counts of
positive ties (+3, +2 and +1) and shades of pink show lesser
counts of negative ties (�3, �2 and �1). White squares
indicate no preference either way. (There were no cases
where, for a pair or women, there was a positive tie on one
relation and a negative tie on another relation). If struc-
tural balance holds exactly then a signed relation will par-
tition the actors into clusters (also called plus-sets) where
all of the ties within a cluster are positive and all ties be-
tween the clusters are negative. In practice, structural bal-
ance does not hold exactly and there are some negative
ties within plus-sets and some positive ties between them.
These are all inconsistencies with structural balance and
the total count of them gives the value of a criterion func-
tion. Partitions were sought that minimize this criterion
function, P(C), and this depends on the number of clus-

Positional Analysis and Blockmodeling, Table 4
Values of P(C) and the number of solutions for values of k

k 2 3 4 5 6
P(C) 48.5 37 32 32.5 33
Solutions 1 1 1 2 1

ters (k) used. Table 4 summarizes the outcomes leading to
the choice of the partition shown in Fig. 6. (The criterion
function, P(C), is larger for higher values of k).

The best fitting (and unique) partition is with 4 clus-
ters. The pre-specified blockmodel for this case is:

Positive (+, 0) Negative (�, 0) Negative (�, 0) Negative (�, 0)
Negative (�, 0) Positive (+, 0) Negative (�, 0) Negative (�, 0)
Negative (�, 0) Negative (�, 0) Positive (+, 0) Negative (�, 0)
Negative (�, 0) Negative (�, 0) Negative (�, 0) Positive (+, 0)

To locate the best fitting partition(s), the relocation al-
gorithm described above was used with P(C) D ˛P C
(1 � ˛)N with ˛ D 0:5. The unique best fitting partition
is shown in Fig. 7 where the blue lines mark the bound-
aries between the four plus-sets. Any red or pink square
in the diagonal blocks shows the presence of negative ties,
in what is specified as positive blocks, as inconsistencies
contributing to P(C). Similarly, black and gray squares in
the off-diagonal blocks show positive ties that are present
in what are specified as negative blocks and they also con-

Positional Analysis and Blockmodeling, Figure 7
Permuted signed and valuedmatrix with 4 plus-sets
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tribute to P(C). The plus-set {g, h, o, u} is particularly co-
hesive with all their positive ties being distributed among
themselves and all their negative ties being sent to women
in other plus-sets. Furthermore, the women in this plus-
set receive no positive ties from women in other plus-sets.
The plus-set {l, n, t} has only positive ties within their plus-
set but two positive ties are sent to women in other plus-
sets. All of the negative ties are sent outside the plus-set.
The other three person plus-set is less consistent with the
ideal structural balance partition having two negative ties
within it and positive ties to women in other plus-sets. The
blocks associated with the large plus-set have both kinds of
inconsistencies. In summary, the generalized blockmodel-
ing discerned a structural pattern as a partition of a valued
signed relation that is readily interpretable.

Example 3. The Supreme Court as Two-Mode Data

Two-mode data involves two sets of social objects. Exam-
ples of such data include companies employing people,
people attending events, organizations joining alliances
and Supreme Court Justices voting on cases they hear.
While the row objects and column objects belong to dif-
ferent sets, it is still possible to apply blockmodeling tools
to two-mode data. Of course, the rows and columns will

Positional Analysis and Blockmodeling, Figure 8
A partition of the Supreme Court voting for 2000–2001

be partitioned differently. For the example of the voting of
Supreme Court Justices there are two possible weights: 1
for voting in favor of a decision and 0 for not so voting.
(An alternative weighting scheme has three values where
1 is voting for a decision, 0 is not voting at all (for justices
recusing themselves from a case) and� 1 for voting in dis-
sent). The simpler weight scheme is used in this example.

Instead of seeking a clustering C as used for one-mode
data, a two-clustering is sought where C D (C1;C2) with
C1 a partition of V1 and C2 a partition of V2. As for
one-mode data, block types, together with their associ-
ated inconsistency counts, can be defined and an optimiza-
tion problem formulated as (˚; P(C), minimize). The so-
lution set is made up of two-clusterings C� D (C�1 ;C

�
2 )

for which P(C�) is minimized over all C 2 ˚ , the set of
feasible two-clusterings. The value of the criterion func-
tion, P(C�) D P(C1;C2) is obtained by summing all of
the inconsistencies for each block of the two-mode block-
model. Structural equivalence blocks (null and complete)
was used in [14] to examine the voting of the Supreme
Court for the 2000–1 term for the 26 most important de-
cisions identified in [16](a). The justices were partitioned
into 4 clusters and the cases into 7 clusters with 13 in-
consistencies. Their optimal solution partition is shown in
Fig. 8 where the four clusters of justices are in the center
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Positional Analysis and Blockmodeling, Figure 9
A partition of the Supreme Court voting for 2002–2003

Positional Analysis and Blockmodeling, Figure 10
A partition of the Supreme Court voting for 2003–2004
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column of the figure and the clusters of cases are shown
on the two sides. Both sets of clusters are color coded ac-
cording to cluster membership. The blue lines show the
votes of the justices for their decisions. The partition of
the justices shows the familiar ideological cleavage of the
Supreme Court with the wing of ‘conservative’ justices at
the top and the ‘liberal’ wing at the bottom.

Figures 9 and 10 show the corresponding results for
the next two years of the Supreme Court’s decisions based
on the important cases identified in [16](b, c). There are
subtle differences between the three two-mode block-
model partitions within the same broad description of the
voting patterns of the Supreme Court across the years. The
methodological point here is that generalized blockmodel-
ing can be applied to two-mode data and that the resulting
partitions are both clear and interpretable.

The benefits from using a generalized blockmodeling
approach include the use of precise criterion functions
and an optimization approach for identifying blockmod-
els empirically, having a well defined measure of fit for
a blockmodel, being able to define new types of blocks
and new blockmodel types, being able to use blockmod-
eling in a deductive fashion (when our knowledge mer-
its doing so), and being able to differentially weight the
different types of inconsistencies in blocks and doing so
within a very flexible, coherent and broad framework for
blockmodeling. Further, in cases where the direct and in-
direct approaches have been compared, for both struc-
tural and regular equivalence, the generalized approach
has never been outperformed by the indirect approach and
most often it returns blockmodels that fit better for the
same equivalence type. However, even though these ben-
efits are clear, it does not follow that the generalized ap-
proach to blockmodeling totally dominates the conven-
tional approach nor that the major problems have been
solved.

Future Directions

One drawback to generalized blockmodeling is that the
combinatorial computational burden is considerable even
when a local optimization method is used. This constrains
the size of networks that can be modeled, a major dis-
advantage. Much larger networks can be analyzed using
the indirect approach and, even though attention is con-
fined to structural and regular equivalence with it, the
network size restriction for generalized blockmodeling is
problematic. This issue becomes even more acute when
three-mode networks are considered. For these problems,
some combination of indirect methods, direct methods
and graph theoretical methods will be needed. So, one

open problem set stems the need to create more efficient
algorithms together with the formulation of better heuris-
tics for partitioning networks in general.

Positional analysis gives priority to network locations
and network positions. Indeed, this is its hallmark. Be-
cause the whole network matters, both approaches to
blockmodeling assume that the boundary of the network
has been located correctly. In many cases, the assump-
tion is appropriate but, as the ambition of network ana-
lysts expands to consider networks of (much) larger size,
this assumption becomes questionable. At the moment,
we simply do not know the vulnerability (or instability)
of blockmodeling solutions when the boundary has been
draw inaccurately. (Leaving out crucial network vertices is
far more problematic than including vertices of little struc-
tural relevance). The need to learn the vulnerabilities of
blockmodeling to this type of boundary problem is acute
and creates a second open problem set. One data analytic
response to this problem is to represent the wider network
environment of the network being studied in some fashion
so as to reduce the vulnerability that comes from simply
ignoring the wider network environment.

Equally acute is the problem of missing network data
when the boundary has been correctly identified. That is,
the data may contain all of the actors but the information
from and about them is incomplete, inaccurate or missing.
This sets up the third set of open problems: dealing with
inadequate data. The missing data part of this problem is
easy to sweep under the rug by assuming that the missing
relational data is the same as null relational data. In reality,
the 0 in a network data set can be a null relation or that no
data for the tie is available and it is folly to treat them as
the same. There are three broad approaches to this prob-
lem that show promise. One is to experiment with com-
plete extant data by systematically deleting or otherwise
corrupting the data and reanalyzing the corrupted data
with the same blockmodeling tools to learn more about
which types of corrupted data matter the most and how
much missing or corrupted data will distort the results of
blockmodeling the network. A second approach is to use
simulation methods to generate data where the sources of
missing or incomplete data is built in the generating pro-
cess and can be studied. The disadvantage to both of these
approaches is that the derived knowledgemay be restricted
to the situations featured in the experiments and simula-
tions. The third approach deals with the analysis of data
directly by marking the missing data as such and incor-
porating the missing data by defining new block types de-
fined by the missing data in them. All three approaches are
suggestions for tackling the third open problem set aris-
ing from the need to consider ‘bad’ data seriously – far
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more seriously than the current cavalier practice of assum-
ing network data are all ‘good’ when positional approaches
are used.

Most of the examples used in [14] feature binary net-
works and there is a clear need to extend generalized
blockmodeling to consider valued networks, the fourth
set of open problems. The balance theoretic partition-
ing can deal with valued signed network – as the exam-
ple discussed above demonstrates. In one respect, con-
ventional blockmodeling does this because many of the
(dis)similarity measures that are used are applicable for
valued networks. But for generalized blockmodeling this
is a real problem. A crude way of dealing with valued net-
works is to impose some threshold to convert a valued
network into one (or more) binary networks. The work
in [22] suggests that this strategy is fraught with hazard
and he has introduced a potentially fruitful approach for
a generalized blockmodeling approach to valued network
data.

A fifth open problem set is ushered in by the cri-
terion function used to fit generalized blockmodels. For
a given set of block types and a specific blockmodel type,
we can say that the optimization approach provides em-
pirical blockmodels that fit the best – subject to the caveat
the relocation method is a local optimization procedure. If
the criterion function is well defined (i. e. it is compatible
with and sensitive to the equivalence used), then identify-
ing partitions minimizing it all but guarantees the claim.
And if the values of the criterion function are small (as in
the examples used above) this claim is strengthened. How-
ever, this does not address the issue of how large a cri-
terion function has to be to say that the specified block-

Positional Analysis and Blockmodeling, Figure 11
Two relations with the same partition but different blockmodels

model does not fit the data well even though the partition
returns the lowest possible value of the criterion function
for the data at hand. The ‘best’ may not be good enough.
Some statistical theory is needed for fully testing the fit
of blockmodels to data in a principled fashion. Assem-
bling this constitutes a solution set for the fifth set of open
problems.

Dealing with multiple relations constitutes the sixth
open problem set discussed here. This is acute for both
the conventional and generalized approaches to the block-
modeling problem even though, at face value, it seems
more acute for generalized blockmodeling. Conventional
blockmodeling handles this issue by stacking the rela-
tions and computing the (dis)similaritymeasure across the
full set of relations and mobilizing a clustering algorithm.
However, this strategy implies that every relationship has
the same set of block types for each relation. The example
shown in Fig. 11 demonstrates the serious drawback with
this assumption.

Two relations are shown. On the left is a hierarchical
relation for a hypothetical bureaucratic structure, similar
to the one in Fig. 1. The relation shown is ‘has author-
ity over’ and a regular equivalence is shown with the lev-
els that are color coded according to the partition. On the
right is a hypothetical social relationship of advice seeking.
Suppose, further, in this hypothetical organization that
there are definite norms about advice seeking. People at
the same bureaucratic level are free to seek advice from
each other and it is acceptable for lower ranked subor-
dinates to see advice from their bosses. In addition, sup-
pose that the informal norms are such that bosses seeking
advice from their subordinates is unacceptable and they
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never do so (or admit to doing so). The data on the right
hand network are fully consistent with a ranked clusters
model [12]. Within levels of the hierarchy, advice seeking,
when it occurs, is fully symmetrical and the only directed
ties are from subordinates at the lowest level to some of
their bosses at the middle level and from the middle level
to the top company official. This ranked clusters partition
is exact and the clusters are identical for each relation in
Fig. 11. The problem with the ‘stacking’ of relations ap-
proach is clear for this example. The blockmodels for each
relationship are totally different even though the vertex
partition for each relation is the same. Assuming, for ex-
ample, that a single equivalence holds for both relations
and computing some (dis)similarity will simply confound
the two types of blockmodel with the result that the actual
partitions will not be identified and, even if they were, they
would be misrepresented in terms of the predicates of the
blockmodel.

Analyzing multiple relations where the different rela-
tions can have quite different blockmodels is a deep prob-
lem, one that cannot be solved by the use of (dis)similarity
measures as if they apply to each relation in the same
fashion.

The seventh, and final, open problem set considered
here has to do with the notion of evolving social networks.
One of the basic assumptions of the positional approach,
with blockmodeling as the primary strategy, is that there
is a large and/or complex social network that we observe
and the primary task is understand the structure of the net-
work. This is done by delineating and describing the sim-
pler blockmodel image. Another part of the basic assump-
tion is that the underlying blockmodel image is the funda-
mental structure and the observed (surface) structure is an
indicator only of the fundamental structure. There is a hint
in the Supreme Court example that the voting structure
did change over time. Of course, this could be due to the
nature of the cases that happened to be considered in each
of the terms studied. But even if there is some systematic
evolution of the structure, the images depicted in Figs. 8
through 10 are no more than a description of change and
does not deal with evolution as a structural process. The
(deep) problem is to formulate models of network evolu-
tion for the fundamental structure(s) represented by the
blockmodel while all of the data depict the observed sur-
face model.

Blockmodeling methods, whether in the conventional
or generalizedmode, form a powerful set of tools for mod-
eling, representing and understanding the structure of so-
cial networks. The many benefits stemming from the use
of these tools, especially in the generalized blockmodeling
variant, inspire confidence in this approach and suggest an

enormous potential for using these tools. However, there
are many serious open problem sets that need to be solved
before this potential is fully realized.
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Glossary

Possibility distribution A possibility distribution re-
stricts a set of possible values for a variable of interest
in an elastic way. It is represented by a mapping from
a universe gathering the potential values of the variable
to a scale such as the unit interval of the real line, or
a finite linearly ordered set, expressing to what extent
each value is possible for the variable. Thus, a possibil-
ity distribution restricts a set of more or less possible
values belonging to a universe that may be also ordered
such as a subpart of real line for a numerical variable,
or not ordered if for instance the variable takes its value
in the set of interpretations of a logical language. This
may be used for representing uncertainty if the restric-
tion pertains to possible values for an ill-known state
of the world, or for representing preferences if the re-
striction encodes a set of values that are considered as
more or less satisfactory for some purpose.

Possibility measure A possibility measure is a set func-
tion (increasing in the wide sense) that returns the
maximum of a possibility distribution over a subset
representing an event.

Necessity measure A necessity measure is a set function,
associated by duality to a possibility measure through
a relation expressing that an event is all the more nec-
essarily true (all the more certain) as the opposite event
is less possible. A necessity measure estimates to what

extent the information represented by the underlying
possibility distribution entails the occurrence of the
event.

Guaranteed possibility A guaranteed possibility measure
is a set function (decreasing in the wide sense) that re-
turns the minimum of a possibility distribution over
a subset representing an event. While possibility mea-
sures evaluate the consistency of the information be-
tween an event and the available information repre-
sented by the underlying possibility distribution, guar-
anteed possibility measures capture another view of
the idea of possibility related to the idea of (guaran-
teed) feasibility, or sufficiency condition.

Possibilistic logic Standard possibilistic logic is
a weighted logic where formulas are pairs made of
a classical logical formula and a weight that acts as
a lower bound of the necessity of the logical formula.
Extended possibilistic logics may include formulas
weighted in terms of lower bounds of possibility or
guaranteed possibility measures.

Definition of the Subject
Possibility theory is the simplest uncertainty theory de-
voted to the modeling of incomplete information. It is
characterized by the use of two basic dual set functions
that respectively grade the possibility and the necessity of
events. Possibility theory lies at the crossroads between
fuzzy sets, probability and non-monotonic reasoning. Pos-
sibility theory is closely related to fuzzy sets if one consid-
ers that a possibility distribution is a particular fuzzy set
(of mutually exclusive) possible values. However fuzzy sets
and fuzzy logic are primarily motivated by the represen-
tation of gradual properties while possibility theory han-
dles the uncertainty of classical (or fuzzy) propositions.
Possibility theory can be cast either in an ordinal or in
a numerical setting. Qualitative possibility theory is closely
related to belief revision theory, and common-sense rea-
soning with exception-tainted knowledge in Artificial In-
telligence. It has been axiomatically justified in a decision-
theoretic framework in the style of Savage, thus providing
a foundation for qualitative decision theory. Quantitative
possibility theory is the simplest framework for statistical
reasoning with imprecise probabilities. As such it has close
connections with random set theory and confidence inter-
vals, and can provide a tool for uncertainty propagation
with limited statistical or subjective information.

Introduction
Possibility theory is an uncertainty theory devoted to the
handling of incomplete information. To a large extent, it
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is similar to probability theory because it is based on set-
functions. It differs from the latter by the use of a pair of
dual set functions (possibility and necessity measures) in-
stead of only one. Besides, it is not additive and makes
sense on ordinal structures. The name “Theory of Possi-
bility” was coined by Zadeh [1], who was inspired by a pa-
per by Gaines and Kohout [2]. In Zadeh’s view, possibility
distributions were meant to provide a graded semantics to
natural language statements. However, possibility and ne-
cessity measures can also be the basis of a full-fledged rep-
resentation of partial belief that parallels probability. It can
be seen either as a coarse, non-numerical version of prob-
ability theory, or a framework for reasoning with extreme
probabilities, or yet a simple approach to reasoning with
imprecise probabilities [3].

After reviewing pioneering contributions to possibil-
ity theory, we recall its basic concepts and present the two
main directions along which it has developed: the qualita-
tive and quantitative settings. Both approaches share the
same basic “maxitivity” axiom. They differ when it comes
to conditioning, and to independence notions.

Historical Background

Zadeh was not the first scientist to speak about formal-
izing notions of possibility. The modalities possible and
necessary have been used in philosophy at least since the
Middle-Ages in Europe, based on Aristotle’s works. More
recently they became the building blocks of Modal Logics
that emerged at the end of the first decade of the XXth cen-
tury from the works of C.I. Lewis (see Hughes and Cress-
well [5]). In this approach, possibility and necessity are
all-or-nothing notions, and handled at the syntactic level.
More recently, and independently from Zadeh’s view, the
notion of possibility, as opposed to probability, was cen-
tral in the works of one economist, Shackle, and in those
of two philosophers, D. Lewis and L.J. Cohen.

G.L.S. Shackle

A graded notion of possibility was introduced as a full-
fledged approach to uncertainty and decision in the 1940–
1970’s by the English economist G.L.S. Shackle [6], who
called degree of potential surprise of an event its degree of
impossibility, that is, the degree of necessity of the oppo-
site event. Shackle’s notion of possibility is basically epis-
temic, it is a “character of the chooser’s particular state of
knowledge in his present”. Impossibility is understood as
disbelief. Potential surprise is valued on a disbelief scale,
namely a positive interval of the form [0; y�], where y�

denotes the absolute rejection of the event to which it is

assigned. In case everything is possible, all mutually exclu-
sive hypotheses have zero surprise. At least one elemen-
tary hypothesis must carry zero potential surprise. The de-
gree of surprise of an event, a set of elementary hypothe-
ses, is the degree of surprise of its least surprising realiza-
tion. The disbelief notion introduced later by Spohn [7]
employs the same type of convention as potential surprise,
but using the set of natural integers as a disbelief scale.
Shackle also introduces a notion of conditional possibil-
ity, whereby the degree of surprise of a conjunction of two
events A and B is equal to the maximum of the degree of
surprise of A, and of the degree of surprise of B, should A
prove true.

D. Lewis

In his 1973 book [8] the philosopher David Lewis consid-
ers a graded notion of possibility in the form of a relation
between possible worlds he calls comparative possibility.
He equates this concept of possibility to a notion of sim-
ilarity between possible worlds. This non-symmetric no-
tion of similarity is also comparative, and is meant to ex-
press statements of the form: a world j is at least as similar
to world i as world k is. Comparative similarity of j and
k with respect to i is interpreted as the comparative possi-
bility of j with respect to k viewed from world i. Such re-
lations are assumed to be complete pre-orderings and are
instrumental in defining the truth conditions of counter-
factual statements. Comparative possibility relations �˘
obey the key axiom: for all events A; B;C,

A �˘ B implies C [ A �˘ C [ B :

This axiom was later independently proposed by the first
author [9] in an attempt to derive a possibilistic counter-
part to comparative probabilities. Interestingly, the con-
nection between numerical possibility and similarity is
currently investigated by Sudkamp [10].

L.J. Cohen

A framework very similar to the one of Shackle was pro-
posed by the philosopher L.J. Cohen [11] who considered
the problem of legal reasoning. He introduced so-called
Baconian probabilities understood as degrees of provabil-
ity. The idea is that it is hard to prove someone guilty at
the court of law by means of pure statistical arguments.
The basic feature of degrees of provability is that a hypoth-
esis and its negation cannot both be provable together to
any extent (the contrary being a case for inconsistency).
Such degrees of provability coincide with necessity mea-
sures.
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L.A. Zadeh
In his seminal paper [1] Zadeh proposed an interpreta-
tion of membership functions of fuzzy sets as possibil-
ity distributions encoding flexible constraints induced by
natural language statements. Zadeh articulated the rela-
tionship between possibility and probability, noticing that
what is probable must preliminarily be possible. However,
the view of possibility degrees developed in his paper refers
to the idea of graded feasibility (degrees of ease, as in the
example of “how many eggs can Hans eat for his break-
fast”) rather than to the epistemic notion of plausibility
laid bare by Shackle. Nevertheless, the key axiom of “max-
itivity” for possibility measures is highlighted. In two sub-
sequent articles [12,13], Zadeh acknowledged the connec-
tion between possibility theory, belief functions and up-
per/lower probabilities, and proposed their extensions to
fuzzy events and fuzzy information granules.

Basic Notions of Possibility Theory
The basic building blocks of possibility theory were first
extensively described in the authors’ books [14,15] (see
also [16]). Let S be a set of states of affairs (or descriptions
thereof), or states for short. A possibility distribution is
a mapping � from S to a totally ordered scale L, with top 1
and bottom 0, such as the unit interval. The function �
represents the state of knowledge of an agent (about the
actual state of affairs) distinguishing what is plausible from
what is less plausible, what is the normal course of things
from what is not, what is surprising from what is expected.
It represents a flexible restriction onwhat is the actual state
with the following conventions (similar to probability, but
opposite to Shackle’s potential surprise scale):

� �(s) D 0 means that state s is rejected as impossible;
� �(s) D 1 means that state s is totally possible (= plausi-

ble).

If S is exhaustive, at least one of the elements of S should
be the actual world, so that 9s; �(s) D 1 (normalization).
Distinct values may simultaneously have a degree of pos-
sibility equal to 1.

Possibility theory is driven by the principle of mini-
mal specificity. It states that any hypothesis not known to
be impossible cannot be ruled out. A possibility distribu-
tion � is said to be at least as specific as another � 0 if and
only if for each state of affairs s: �(s) � � 0(s) (Yager [17]).
Then, � is at least as restrictive and informative as � 0.

In the possibilistic framework, extreme forms of partial
knowledge can be captured, namely:

� Complete knowledge: for some s0; �(s0) D 1 and
�(s) D 0;8s ¤ s0 (only s0 is possible)

� Complete ignorance: �(s) D 1;8s 2 S, (all states are
possible).

Given a simple query of the form “does event A occur?”
where A is a subset of states, the response to the query can
be obtained by computing degrees of possibility and ne-
cessity, respectively (if the possibility scale L D [0; 1]):

˘ (A) D sup
s2A

�(s);N(A) D inf
s…A

1 � �(s) :

˘ (A) evaluates to what extent A is consistent with � ,
while N(A) evaluates to what extent A is certainly im-
plied by � . The possibility-necessity duality is expressed
by N(A) D 1 �˘ (Ac), where Ac is the complement of A.
Generally, ˘ (S) D N(S) D 1 and ˘ (;) D N(;) D 0.
Possibility measures satisfy the basic “maxitivity” property
˘ (A[ B) D max(˘ (A);˘ (B)). Necessity measures sat-
isfy an axiom dual to that of possibility measures, namely
N(A\ B) D min(N(A);N(B)). On infinite spaces, these
axioms must hold for infinite families of sets.

Human knowledge is often expressed in a declarative
way using statements to which belief degrees are attached.
It corresponds to expressing constraints the world is sup-
posed to comply with. Certainty-qualified pieces of uncer-
tain information of the form “A is certain to degree ˛” can
then be modelled by the constraint N(A) � ˛. The least
specific possibility distribution reflecting this information
is [15]:

�(A;˛)(s) D

(
1 ; if s 2 A
1 � ˛ ; otherwise :

(1)

Acquiring further pieces of knowledge leads to updating
�(A;˛) into some � < �(A;˛).

Apart from˘ andN, a measure of guaranteed possibil-
ity or sufficiency can be defined [18]: �(A) D infs2A �(s).
In contrast, ˘ appears to be a measure of potential possi-
bility. It estimates to what extent all states in A are actually
possible according to evidence. �(A) can be used as a de-
gree of evidential support for A. Uncertain statements of
the form “A is possible to degree ˇ” often mean that all
realizations of A are possible to degree ˇ. They can then
be modelled by the constraint �(A) � ˇ. It corresponds
to the idea of observed evidence. This type of information
is better exploited by assuming an informational principle
opposite to the one of minimal specificity, namely, any sit-
uation not yet observed is tentatively considered as impos-
sible. This is similar to closed-world assumption. Themost
specific distribution ı(A;ˇ ) in agreement with�(A) � ˇ is:

ı(A;ˇ )(s) D

(
ˇ ; if s 2 A
0 ; otherwise :
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Acquiring further pieces of evidence leads to updating
ı(A;ˇ ) into some wider distribution ı > ı(A;ˇ ). Such ev-
idential support functions do not behave with the same
conventions as possibility distributions: ı(s) D 1 means
that S is guaranteed to be possible, because of a high ev-
idential support, while ı(s) D 0 only means that S has not
been observed yet (hence is of unknown possibility). Dis-
tributions ı are generally not normalized to 1, and serve as
lower bounds to possibility distributions � (because what
is observed must be possible). Such a bipolar representa-
tion of information using pairs (ı; �) may provide a nat-
ural interpretation of interval-valued fuzzy sets. Note that
possibility distributions induced from certainty-qualified
pieces of knowledge combine conjunctively, by discarding
possible states, while evidential support distributions in-
duced by possibility-qualified pieces of evidence combine
disjunctively, by accumulating possible states.

Notions of conditioning and independence were stud-
ied for possibility measures. Conditional possibility is de-
fined similarly to probability theory using a Bayesian like
equation of the form [15]

˘ (B \ A) D ˘ (BjA) ? ˘ (A) :

However, in the ordinal setting the operation ? cannot
be a product and is changed into the minimum. In the
numerical setting, there are several ways to define condi-
tioning, not all of which have this form [19]. There are
several variants of possibilistic independence [20,21,22].
Generally, independence in possibility theory is neither
symmetric, nor insensitive to negation. For non Boolean
variables, independence between events is not equivalent
to independence between variables. Joint possibility dis-
tributions on Cartesian products of domains can be repre-
sented bymeans of graphical structures similar to Bayesian
networks for joint probabilities (see [23,24]. Such graphi-
cal structures can be taken advantage of for evidence prop-
agation [25] or learning [26].

Qualitative Possibility Theory

This section is restricted to the case of a finite state space S,
supposed to be the set of interpretations of a formal propo-
sitional language. In other words, S is the universe induced
by Boolean attributes. A plausibility ordering is a complete
pre-order of states denoted by �	 , which induces a well-
ordered partition fE1; : : : ; Eng of S. It is the comparative
counterpart of a possibility distribution � , i. e., s �	 s0 if
and only if �(s) � �(s0). Indeed it is more natural to ex-
pect that an agent will supply ordinal rather than numer-
ical information about his beliefs. By convention E1 con-
tains the most normal states of fact, En the least plausible,

or most surprising ones. Denoting argmax(A) any most
plausible state s0 2 A, ordinal counterparts of possibility
and necessity measures [9] are then defined as follows:
fsg �˘ ; for all s 2 S and

A �˘ B if and only if max(A) �	 max(B)
A �N B if and only if max(Bc ) �	 max(Ac) :

Possibility relations �˘ are those of Lewis and satisfy the
characteristic property

A �˘ B implies C [ A �˘ C [ B

while necessity relations can also be defined as A �N B if
and only if Bc �˘ Ac , and satisfy a similar axiom:

A �N B implies C \ A �N C \ B :

The latter coincide with epistemic entrenchment relations
in the sense of belief revision theory [27,28]. Condition-
ing a possibility relation �˘ by an non-impossible event
C >˘ ;means deriving a relation �C

˘ such that

A �C
˘ B if and only if A\ C �˘ B \ C :

The notion of independence for comparative possibility
theory was studied in Dubois et al. [22], for independence
between events, and Ben Amor et al. [29] between vari-
ables.

Non-monotonic Inference

Suppose S is equipped with a plausibility ordering. The
main idea behind qualitative possibility theory is that the
state of the world is always believed to be as normal as pos-
sible, neglecting less normal states. A �˘ B really means
that there is a normal state where A holds that is at least as
normal as any normal state where B holds. The dual case
A �N B is intuitively understood as “A is at least as cer-
tain as B”, in the sense that there are states where B fails
to hold that are at least as normal as the most normal state
where A does not hold. In particular, the events accepted
as true are those which are true in all the most plausible
states, namely the ones such that A >N ;. These assump-
tions lead us to interpret the plausible inference Aj � B of
a proposition B from another A, under a state of knowl-
edge�˘ as follows: B should be true in all the most normal
states were A is true, which means B >A

˘ Bc in terms of
ordinal conditioning, that is, A\ B is more plausible than
A\ Bc . Aj � B also means that the agent considers B as
an accepted belief in the context A.

This kind of inference is non-monotonic in the sense
that Aj � B does not always imply A\ Cj � B for any
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additional information C. This is similar to the fact that
a conditional probability P(BjA\ C) may be low even if
P(BjA) is high. The properties of the consequence rela-
tion j � are now well-understood, and are precisely the
ones laid bare by Lehmann and Magidor [30] for their so-
called “rational inference”. Monotonicity is only partially
restored: Aj � B implies A\ Cj � B holds provided that
Aj � Cc does not hold (i. e. that states were A is true do
not typically violate C). This property is called rational
monotony, and, along with some more standard ones (like
closure under conjunction), characterizes default possi-
bilistic inference j �. In fact, the set fB;Aj � Bg of ac-
cepted beliefs in the context A is deductively closed, which
corresponds to the idea that the agent reasons with ac-
cepted beliefs in each context as if they were true, until
some event occurs that modifies this context. This closure
property is enough to justify a possibilistic approach [31]
and adding the rational monotonicity property ensures the
existence of a single possibility relation generating the con-
sequence relation j � [32].

Rather than being constructed from scratch, plau-
sibility orderings can be generated by a set of if-then
rules tainted with unspecified exceptions. This set forms
a knowledge base supplied by an agent. Each rule “if
A then B” is understood as a constraint of the form
A\ B >˘ A\ Bc on possibility relations. There exists
a single minimally specific element in the set of possi-
bility relations satisfying all constraints induced by rules
(unless the latter are inconsistent). It corresponds to the
most compact plausibility ranking of states induced by the
rules [32]. This ranking can be computed by an algorithm
originally proposed by Pearl [33].

Possibilistic Logic

Qualitative possibility relations can be represented by (and
only by) possibility measures ranging on any totally or-
dered set L (especially a finite one) [9]. This absolute rep-
resentation on an ordinal scale is slightly more expressive
than the purely relational one. When the finite set S is
large and generated by a propositional language, qualita-
tive possibility distributions can be efficiently encoded in
possibilistic logic [34]. A possibilistic logic baseK is a set of
pairs (�; ˛), where � is a Boolean expression and ˛ is an
element of L. This pair encodes the constraint N(�) � ˛
where N(�) is the degree of necessity of the set of mod-
els of � . Each prioritized formula (�; ˛) has a fuzzy set
of models (described in Sect. “Basic Notions of Possibil-
ity Theory”) and the fuzzy intersection of the fuzzy sets of
models of all prioritized formulas in K yields the associ-
ated plausibility ordering on S.

Syntactic deduction from a set of prioritized clauses
is achieved by refutation using an extension of the stan-
dard resolution rule, whereby (� _  ;min(˛; ˇ)) can be
derived from (� _ �; ˛) and ( _ :�; ˇ). This rule, which
evaluates the validity of an inferred proposition by the va-
lidity of the weakest premiss, goes back to Theophrastus,
a disciple of Aristotle. Possibilistic logic is an inconsis-
tency-tolerant extension of propositional logic that pro-
vides a natural semantic setting for mechanizing non-
monotonic reasoning [35], with a computational complex-
ity close to that of propositional logic. See [36] for a de-
tailed introduction to possibilistic logic, its syntactic and
semantic aspects, different extensions that involve time,
for instance, or that encode constraints on lower bounds
of possibility or guaranteed possibility measures, or that
perform multiple source information fusion. See [37] for
a sketch of further extensions for handling groups of
agents’ beliefs and mutual beliefs.

Another compact representation of qualitative pos-
sibility distributions is the possibilistic directed graph,
which uses the same conventions as Bayesian nets, but re-
lies on an ordinal notion of conditional possibility [15]

˘ (BjA) D

(
1 ; if˘ (B \ A) D ˘ (A)
˘ (B \ A) ; otherwise :

Joint possibility distributions can be decomposed into
a conjunction of conditional possibility distributions (us-
ing minimum) in a way similar to Bayes nets [38]. It
is based on a symmetric notion of qualitative indepen-
dence ˘ (B \ A) D min(˘ (A);˘ (B)) that is weaker than
the causal-like condition˘ (BjA) D ˘ (B) [22]. Ben Amor
and Benferhat [39] investigate the properties of qualitative
independence that enable local inferences to be performed
in possibilistic nets.

Decision-Theoretic Foundations

Zadeh [1] hinted that “since our intuition concerning the
behavior of possibilities is not very reliable”, our under-
standing of them “would be enhanced by the development
of an axiomatic approach to the definition of subjective
possibilities in the spirit of axiomatic approaches to the
definition of subjective probabilities”. Decision-theoretic
justifications of qualitative possibility were recently de-
vised, in the style of Savage [40]. On top of the set of states,
assume there is a set X of consequences of decisions. A de-
cision, or act, is modelled as a mapping f from S to X as-
signing to each state S its consequence f (s). The axiomatic
approach consists in proposing properties of a preference
relation � between acts so that a representation of this
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relation by means of a preference functional W( f ) is en-
sured, that is, act f is as good as act g (denoted f � g) if
and only if W( f ) � W(g). W( f ) depends on the agent’s
knowledge about the state of affairs, here supposed to be
a possibility distribution � on S, and the agent’s goal,mod-
elled by a utility function u on X. Both the utility func-
tion and the possibility distribution map to the same finite
chain L. A pessimistic criterion W�	 ( f ) is of the form:

W�	 ( f ) D min
s2S

max(n(�(s)); u( f (s)))

where n is the order-reversing map of L. n(�(s)) is the de-
gree of certainty that the state is not s (hence the degree of
surprise of observing s), u( f (s)) the utility of choosing act f
in state s.W�	 ( f ) is all the higher as all states are either very
surprising or have high utility. This criterion is actually
a prioritized extension of theWaldmaximin criterion. The
latter is recovered if�(s) D 1 (top of L)8s 2 S. According
to the pessimistic criterion, acts are chosen according to
their worst consequences, restricted to the most plausible
states S� D fs; �(s) � n(W�	 ( f ))g. The optimistic coun-
terpart of this criterion is:

WC	 ( f ) D max
s2S

min(�(s)); u( f (s))) :

WC	 ( f ) is all the higher as there is a very plausible state
with high utility. The optimistic criterion was first pro-
posed by Yager [41] and the pessimistic criterion by
Whalen [42]. These optimistic and pessimistic possibilis-
tic criteria are particular cases of a more general criterion
based on the Sugeno integral [43] specialized to possibility
and necessity of fuzzy events [1,14]:

S�;u( f ) D max
�2L

min(; � (F�))

where F� D fs 2 S; u( f (s)) � g, � is a monotonic set
function that reflects the decision-maker attitude in front
of uncertainty: � (A) is the degree of confidence in eventA.
If � D ˘ , then S˘;u( f ) D WC	 ( f ). Similarly, if � D N,
then SN;u( f ) D W�	 ( f ).

For any acts f ; g, and any event A, let f Ag denote an
act consisting of choosing f if A occurs and g if its com-
plement occurs. Let f ^ g (resp. f _ g) be the act whose
results yield the worst (resp. best) consequence of the two
acts in each state. Constant acts are those whose conse-
quence is fixed regardless of the state. A result in [44,45]
provides an act-driven axiomatization of these criteria,
and enforces possibility theory as a “rational” representa-
tion of uncertainty for a finite state space S:

Theorem 1 Suppose the preference relation � on acts
obeys the following properties:

1. (XS ;�) is a complete preorder.
2. There are two acts such that f � g.
3. 8A;8g and h constant, 8 f ; g � h implies gAf � hAf .
4. If f is constant, f � h and g � h imply f ^ g � h.
5. If f is constant, h � f and h � g imply h � f _ g.

Then there exists a finite chain L, an L-valued monotonic
set-function � on S and an L-valued utility function u, such
that� is representable by a Sugeno integral of u( f ) with re-
spect to � . Moreover � is a necessity (resp. possibility) mea-
sure as soon as property (iv) (resp. (v)) holds for all acts. The
preference functional is then W�	 ( f ) (resp. WC	 ( f )).

Axioms (4–5) contradict expected utility theory. They be-
come reasonable if the value scale is finite, decisions are
one-shot (no compensation) and provided that there is
a big step between any level in the qualitative value scale
and the adjacent ones. In other words the preference pat-
tern f � h always means that f is significantly preferred
to h, to the point of considering the value of h negligible in
front of the value of f . The above result provides decision-
theoretic foundations of possibility theory, whose axioms
can thus be tested from observing the choice behavior of
agents. See [46] for another approach to comparative pos-
sibility relations, more closely relying on Savage axioms
but giving up any comparability between utility and plau-
sibility levels. The drawback of these and other qualitative
decision criteria is their lack of discrimination power [47].
To overcome it, refinements of possibilistic criteria were
recently proposed, based on lexicographic schemes [48].
These new criteria turn out to be representable by a classi-
cal (but big-stepped) expected utility criterion.

Quantitative Possibility Theory

The phrase “quantitative possibility” refers to the case
when possibility degrees range in the unit interval. In that
case, a precise articulation between possibility and proba-
bility theories is useful to provide an interpretation to pos-
sibility and necessity degrees. Several such interpretations
can be consistently devised. See [49] for a detailed survey.
A degree of possibility can be viewed as an upper prob-
ability bound [50], and a possibility distribution can be
viewed as a likelihood function [51]. A possibility measure
is also a special case of a Shafer plausibility function [52].
Following a very different approach, possibility theory can
account for probability distributions with extreme values,
infinitesimal [7] or having big steps [53]. There are finally
close connections between possibility theory and idem-
potent analysis [54,55]. The theory of large deviations in
probability theory [56] also handles set-functions that look



Possibility Theory P 6933

like possibility measures [57]. Here we focus on the role of
possibility theory in the theory of imprecise probability.

Possibility as Upper Probability

Let � be a possibility distribution where �(s) 2 [0; 1].
Let P(�) be the set of probability measures P such that
P � ˘ , i. e. 8A � S; P(A) � ˘ (A). Then the possibility
measure ˘ coincides with the upper probability function
P� such that P�(A) D supfP(A); P 2 P(�)g while the ne-
cessitymeasureN is the lower probability function P� such
that P�(A) D inffP(A); P 2 P(�)g ; see [50,58] for details.
P and � are said to be consistent if P 2 P(�). The con-
nection between possibility measures and imprecise prob-
abilistic reasoning is especially promising for the efficient
representation of non-parametric families of probability
functions, and it makes sense even in the scope of mod-
elling linguistic information [59].

A possibility measure can be computed from a set
of nested confidence subsets fA1;A2; : : : ;Amg where
Ai � AiC1; i D 1 : : : m � 1. Each confidence subset Ai
is attached a positive confidence level i interpreted as
a lower bound of P(Ai ), hence a necessity degree. It is
viewed as a certainty-qualified statement that generates
a possibility distribution �i according to Sect. “Basic No-
tions of Possibility Theory”. The corresponding possibility
distribution is

�(s) D min
iD1;:::;m

�i (s)

D

(
1 ; if u 2 A1

1 �  j�1 ; if j D maxfi : s … Aig > 1 :

The information modelled by � can also be viewed
as a nested random set f(Ai ; �i ); i D 1; : : : ;mg, where
�i D i � i�1. This framework allows for imprecision
(reflected by the size of the Ai ’s) and uncertainty (the �i ’s).
And �i is the probability that the agent only knows that
Ai contains the actual state (it is not P(Ai )). The random
set view of possibility theory is well adapted to the idea of
imprecise statistical data, as developed in [60,61]. Namely,
given a bunch of imprecise (not necessarily nested) obser-
vations (called focal sets), � supplies an approximate rep-
resentation of the data, as �(s) D

P
i : s2Ai

�i .
The set P(�) contains many probability distributions,

arguably too many. Neumaier [62] has recently proposed
a related framework, in a different terminology, for repre-
senting smaller subsets of probability measures using two
possibility distributions instead of one. He basically uses
a pair of distributions (ı; �) (in the sense of Sect. “Basic
Notions of Possibility Theory”) of distributions, he calls
“cloud”, where ı is a guaranteed possibility distribution

(in our terminology) such that � � ı. A cloud models the
(generally non-empty) set P(�) \ P(1 � ı), viewing 1 � ı
as a standard possibility distribution.

Conditioning

There are two kinds of conditioning that can be envis-
aged upon the arrival of new information E. The first
method presupposes that the new information alters the
possibility distribution � by declaring all states outside
E impossible. The conditional measure �(:jE) is such that
˘ (BjE) �˘ (E) D ˘ (B \ E). This is formally Dempster
rule of conditioning of belief functions, specialized to pos-
sibility measures. The conditional possibility distribution
representing the weighted set of confidence intervals is,

�(sjE) D

(
	(s)
˘(E) ; if s 2 E
0 ; otherwise :

De Baets et al. [63] provide a mathematical justification
of this notion in an infinite setting, as opposed to the
min-based conditioning of qualitative possibility theory.
Indeed, the maxitivity axiom extended to the infinite set-
ting is not preserved by the min-based conditioning. The
product-based conditioning leads to a notion of indepen-
dence of the form ˘ (B \ E) D ˘ (B) �˘ (E) whose prop-
erties are very similar to the ones of probabilistic indepen-
dence [21].

Another form of conditioning [64,65], more in line
with the Bayesian tradition, considers that the possibil-
ity distribution � encodes imprecise statistical informa-
tion, and event E only reflects a feature of the current
situation, not of the state in general. Then the value
˘ (BkE) D supfP(BjE); P(E) > 0; P � ˘g is the result of
performing a sensitivity analysis of the usual conditional
probability over P(�) (Walley [66]). Interestingly, the re-
sulting set-function is again a possibility measure, with
distribution

�(skE) D

(
max



�(s); 	(s)

	(s)CN(E)

�
; if s 2 E

0 ; otherwise :

It is generally less specific than � on E, as clear from
the above expression, and becomes non-informative when
N(E) D 0 (i. e. if there is no information about E). This
is because �(�kE) is obtained from the focusing of the
generic information � over the reference class E. On the
contrary, �(�jE) operates a revision process on � due to
additional knowledge asserting that states outside E are
impossible. See DeCooman [65] for a detailed study of this
form of conditioning.
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Probability-Possibility Transformations

The problem of transforming a possibility distribution
into a probability distribution and conversely is meaning-
ful in the scope of uncertainty combination with heteroge-
neous sources (some supplying statistical data, other lin-
guistic data, for instance). It is useful to cast all pieces of in-
formation in the same framework. The basic requirement
is to respect the consistency principle ˘ � P. The prob-
lem is then either to pick a probability measure in P(�), or
to construct a possibility measure dominating P.

There are two basic approaches to possibility/
probability transformations, which both respect a form
of probability-possibility consistency. One, due to
Klir [67,68] is based on a principle of information invari-
ance, the other [69] is based on optimizing information
content. Klir assumes that possibilistic and probabilistic
information measures are commensurate. Namely, the
choice between possibility and probability is then a mere
matter of translation between languages “neither of which
is weaker or stronger than the other” (quoting Klir and
Parviz [70]). It suggests that entropy and imprecision
capture the same facet of uncertainty, albeit in different
guises. The other approach, recalled here, considers that
going from possibility to probability leads to increase the
precision of the considered representation (as we go from
a family of nested sets to a random element), while going
the other way around means a loss of specificity.

From Possibility to Probability

The most basic example of transformation from possibil-
ity to probability is the Laplace principle of insufficient
reason claiming that what is equally possible should be
considered as equally probable. A generalized Laplacean
indifference principle is then adopted in the general case
of a possibility distribution � : the weights �i bearing the
sets Ai from the nested family of levels cuts of � are uni-
formly distributed on the elements of these cuts Ai . Let Pi
be the uniform probability measure on Ai . The resulting
probability measure is P D

P
iD1; ::: ;m �i � Pi . This trans-

formation, already proposed in 1982 [71] comes down to
selecting the center of gravity of the set P(�) of probabil-
ity distributions dominated by � . This transformation also
coincides with Smets’ pignistic transformation [72] and
with the Shapley value of the “unamimity game” (another
name of the necessity measure) in game theory. The ratio-
nale behind this transformation is to minimize arbitrari-
ness by preserving the symmetry properties of the repre-
sentation. This transformation from possibility to proba-
bility is one-to-one. Note that the definition of this trans-
formation does not use the nestedness property of cuts of

the possibility distribution. It applies all the same to non-
nested random sets (or belief functions) defined by pairs
f(Ai ; �i ); i D 1; : : : ;mg, where �i are non-negative reals
such that

P
iD1;:::;m �i D 1.

From Objective Probability to Possibility

From probability to possibility, the rationale of the trans-
formation is not the same according to whether the prob-
ability distribution we start with is subjective or objec-
tive [73]. In the case of a statistically induced probability
distribution, the rationale is to preserve as much informa-
tion as possible. This is in line with the handling of�-qual-
ified pieces of information representing observed evi-
dence, considered in Sect. “Basic Notions of Possibility
Theory”; hence we select as the result of the transforma-
tion of a probability measure P, the most specific possi-
bility measure in the set of those dominating P [69]. This
most specific element is generally unique if P induces a lin-
ear ordering on S. Suppose S is a finite set. The idea is to
let ˘ (A) D P(A), for these sets A having minimal proba-
bility among other sets having the same cardinality as A.
If p1 > p2 > : : : > pn , then ˘ (A) D P(A) for sets A of
the form fsi ; : : : ; sng, and the possibility distribution is
defined as �P(si) D

P
jDi; ::: ;m p j . Note that �P is a kind

of cumulative distribution of P. If there are equiprobable
elements, the unicity of the transformation is preserved if
equipossibility of the corresponding elements is enforced.
In this case it is a bijective transformation as well. Re-
cently, this transformation was used to prove a rather sur-
prising agreement between probabilistic indeterminate-
ness as measured by Shannon entropy, and possibilistic
non-specificity. Namely it is possible to compare probabil-
ity measures on finite sets in terms of their relative peaked-
ness (a concept adapted from Birnbaum [74]) by compar-
ing the relative specificity of their possibilistic transforms.
Namely let P and Q be two probability measures on S and
�P , �Q the possibility distributions induced by our trans-
formation. It can be proved that if �P � �Q (i. e. P is less
peaked than Q) then the Shannon entropy of P is higher
than the one of Q [75]. This result give some grounds to
the intuitions developed by Klir [67], without assuming
any commensurability between entropy and specificity in-
dices.

Possibility Distributions Induced
by Prediction Intervals

In the continuous case, moving from objective probabil-
ity to possibility means adopting a representation of un-
certainty in terms of prediction intervals around the mode
viewed as the “most frequent value”. Extracting a predic-
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tion interval from a probability distribution or devising
a probabilistic inequality can be viewed as moving from
a probabilistic to a possibilistic representation. Namely
suppose a non-atomic probability measure P on the real
line, with unimodal density p, and suppose one wishes to
represent it by an interval I with a prescribed level of con-
fidence P(I) D � of hitting it. The most natural choice is
the most precise interval ensuring this level of confidence.
It can be proved that this interval is of the form of a cut
of the density, i. e. I� D fs; p(s) � �g for some thresh-
old � . Moving the degree of confidence from 0 to 1 yields
a nested family of prediction intervals that form a possibil-
ity distribution � consistent with P, the most specific one
actually, having the same support and the same mode as
P and defined by ([69]):

�(inf I� ) D �(sup I� ) D 1 � � D 1 � P(I� ) :

This kind of transformation again yields a kind of cumu-
lative distribution according to the ordering induced by
the density p. Similar constructs can be found in the sta-
tistical literature (Birnbaum [74]). More recently Mauris
et al. [76] noticed that starting from any family of nested
sets around some characteristic point (the mean, the me-
dian,. . . ), the above equation yields a possibility measure
dominating P. Well-known inequalities of probability the-
ory, such as those of Chebyshev and Camp–Meidel, can
also be viewed as possibilistic approximations of probabil-
ity functions. It turns out that for symmetric uni-modal
densities, each side of the optimal possibilistic transform
is a convex function. Given such a probability density on
a bounded interval [a; b], the triangular fuzzy number
whose core is the mode of p and the support is [a; b] is
thus a possibility distribution dominating P regardless of
its shape (and the tightest such distribution). These re-
sults justify the use of symmetric triangular fuzzy num-
bers as fuzzy counterparts to uniform probability distribu-
tions. They provide much tighter probability bounds than
Chebyshev and Camp–Meidel inequalities for symmetric
densities with bounded support. This setting is adapted to
the modelling of sensor measurements [77]. These results
are extended to more general distributions by Baudrit et
al., [78], and provide a tool for representing poor proba-
bilistic information.

Subjective Possibility Distributions

The case of a subjective probability distribution is differ-
ent. Indeed, the probability function is then supplied by
an agent who is in some sense forced to express beliefs in
this form due to rationality constraints, and the setting of
exchangeable bets. However his actual knowledge may be

far from justifying the use of a single well-defined proba-
bility distribution. For instance in case of total ignorance
about some value, apart from its belonging to an inter-
val, the framework of exchangeable bets enforces a uni-
form probability distribution, on behalf of the principle
of insufficient reason. Based on the setting of exchange-
able bets, it is possible to define a subjectivist view of nu-
merical possibility theory, that differs from the proposal
of Walley [66]. The approach developed by Dubois Prade
and Smets [79] relies on the assumption that when an
agent constructs a probability measure by assigning prices
to lotteries, this probability measure is actually induced
by a belief function representing the agents actual state of
knowledge. We assume that going from an underlying be-
lief function to an elicited probability measure is achieved
by means of the above mentioned pignistic transforma-
tion, changing focal sets into uniform probability distri-
butions. The task is to reconstruct this underlying belief
function under a minimal commitment assumption. In
the paper [79], we pose and solve the problem of finding
the least informative belief function having a given pig-
nistic probability. We prove that it is unique and conso-
nant, thus induced by a possibility distribution. This re-
sult exploits a simple partial ordering between belief func-
tions comparing their information content, in agreement
with the expected cardinality of random sets. The ob-
tained possibility distribution can be defined as the con-
verse of the pignistic transformation (which is one-to-
one for possibility distributions). It is subjective in the
same sense as in the subjectivist school in probability the-
ory. However, it is the least biased representation of the
agents state of knowledge compatible with the observed
betting behavior. In particular it is less specific than the
one constructed from the prediction intervals of an ob-
jective probability. This transformation was first proposed
in [80] for objective probability, interpreting the empiri-
cal necessity of an event as summing the excess of prob-
abilities of realizations of this event with respect to the
probability of the most likely realization of the opposite
event.

Possibility Theory and Defuzzification

Possibilistic mean values can be defined using Choquet
integrals with respect to possibility and necessity mea-
sures [65,81], and come close to defuzzification meth-
ods [82]. A fuzzy interval is a fuzzy set of reals whosemem-
bership function is unimodal and upper-semi continuous.
Its ˛-cuts are closed intervals. Interpreting a fuzzy inter-
valM, associated to a possibility distribution�M , as a fam-
ily of probabilities, upper and lower mean values E�(M)
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and E�(M), can be defined as [83]:

E�(M) D
Z 1

0
infM˛ d˛; E�(M) D

Z 1

0
supM˛ d˛

whereM˛ is the ˛-cut ofM.
Then the mean interval E(M) D [E�(M); E�(M)]

of M is the interval containing the mean values of all
random variables consistent with M, that is E(M) D
fE(P)jP 2 P(�M)g, where E(P) represents the expected
value associated to the probability measure P. That the
“mean value” of a fuzzy interval is an interval seems to
be intuitively satisfactory. Particularly the mean interval
of a (regular) interval [a; b] is this interval itself. The up-
per and lower mean values are linear with respect to the
addition of fuzzy numbers. Define the addition M C N as
the fuzzy interval whose cuts are M˛ C N˛ D fs C t; s 2
M˛; t 2 N˛g defined according to the rules of interval
analysis. Then E(M C N) D E(M)C E(N), and similarly
for the scalar multiplication E(aM) D aE(M), where aM
has membership grades of the form �M(s/a) for a ¤ 0. In
view of this property, it seems that the most natural de-
fuzzication method is the middle point Ê(M) of the mean
interval (originally proposed by Yager [84]). Other de-
fuzzification techniques do not generally possess this kind
of linearity property. Ê(M) has a natural interpretation in
terms of simulation of a fuzzy variable [85], and is the
mean value of the pignistic transformation of M. Indeed
it is the mean value of the empirical probability distribu-
tion obtained by the random process defined by picking
an element ˛ in the unit interval at random, and then an
element s in the cut M˛ at random.

Applications and Future Directions

Possibility theory has not been themain framework for en-
gineering applications of fuzzy sets in the past. However,
on the basis of its connections to symbolic artificial intel-
ligence, to decision theory and to imprecise statistics, we
consider that it has significant potential for further applied
developments in a number of areas, including some where
fuzzy sets are not yet al.ways accepted. Only some direc-
tions are pointed out here.

1. Rules with exceptions can be modelled by means of
conditional possibility [32], based on its capability to
account for non-monotonic inference, as shown in
Sect. “Non-monotonic Inference”. Possibility theory
has also enabled a typology of fuzzy rules to be laid bare,
distinguishing rules whose purpose is to propagate un-
certainty through reasoning steps, from rules whose
main purpose is similarity-based interpolation [86], de-
pending on the choice of a many-valued implication

connective that models a rule. The bipolar view of in-
formation based on (ı; �) pairs sheds new light on the
debate between conjunctive and implicative represen-
tation of rules [87]. Representing a rule as a material
implication focuses on counterexamples to rules, while
using a conjunction between antecedent and conse-
quent points out examples of the rule and highlights
its positive content. Traditionally in fuzzy control and
modelling, the latter representation is adopted, while
the former is the logical tradition. Introducing fuzzy
implicative rules in modelling accounts for constraints
or landmark points the model should comply with (as
opposed to observed data) [88]. The bipolar view of
rules in terms of examples and counterexamples may
turn out to be very useful when extracting fuzzy rules
from data [89].

2. Possibility theory also offers a framework for preference
modeling in constraint-directed reasoning. Both prior-
itized and soft constraints can be captured by possibil-
ity distributions expressing degrees of feasibility rather
than plausibility [90]. Possibility offers a natural setting
for fuzzy optimization whose aim is to balance the lev-
els of satisfaction of multiple fuzzy constraints (instead
of minimizing an overall cost) [91]. Qualitative deci-
sion criteria are particularly adapted to the handling of
uncertainty in this setting. Applications of possibility
theory-based decision-making can be found in schedul-
ing [92,93,94,95].

3. Quantitative possibility theory is the natural setting
for a reconciliation between probability and fuzzy sets.
An important research direction is the comparison be-
tween fuzzy interval analysis [96] and random variable
calculations with a view to unifying them [97]. Indeed,
a current major concern, in for instance risk analy-
sis studies, is to perform uncertainty propagation un-
der poor data and without independence assumptions
(see the papers in the special issue [98]). Finding the
potential of possibilistic representations in computing
conservative bounds for such probabilistic calculations
is certainly a major challenge [99] The active area of
fuzzy random variables is also connected to this ques-
tion [100].

4. One might also mention the well-known possibilis-
tic clustering technique [101,102]. However, it is only
loosely related to possibility theory. This name is due
to the use of fuzzy clusters with (almost) unrestricted
membership functions, that no longer form a usual
fuzzy partition. But one might use it to generate gen-
uine possibility distributions, where possibility derives
from similarity, a point of view already mentioned be-
fore.
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Other applications of possibility theory can be found in
fields such as data analysis [103,104,105], database query-
ing [106], diagnosis [107,108], belief revision [109], ar-
gumentation [110] case-based reasoning [111,112]. Lastly,
possibility theory is also being studied from the point of
view of its relevance in cognitive psychology. Experimen-
tal results [113] suggest that there are situations where
people reason about uncertainty using the rules or possi-
bility theory, rather than with those of probability theory.
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Glossary

Dynamical system In this article: a continuous transfor-
mation T of a compact metric space X. For each
x 2 X, the transformation T generates a trajectory
(x; Tx; T2x; : : : ).

Invariant measure In this article: a probabilitymeasure�
on X which is invariant under the transformation T,
i. e., for which h f ı T; �i D h f ; �i for each continu-
ous f : X ! R. Here h f ; �i is a short-hand notation
for

R
X f d�. The triple (X; T; �) is called a measure-

preserving dynamical system.
Ergodic theory Ergodic theory is the mathematical the-

ory of measure-preserving dynamical systems.
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Entropy In this article: the maximal rate of information
gain per time that can be achieved by coarse-grained
observations on a measure-preserving dynamical sys-
tem. This quantity is often denoted h(�).

Equilibrium state In general, a given dynamical sys-
tem T : X ! X admits a huge number of invariant
measures. Given some continuous � : X ! R (“po-
tential”), those invariant measures which maximize
a functional of the form F(�) D h(�)C h�;�i are
called “equilibrium states” for � .

Pressure Themaximumof the functional F(�) is denoted
by P(�) and called the “topological pressure” of � , or
simply the “pressure” of � .

Gibbs state In many cases, equilibrium states have a local
structure that is determined by the local properties of
the potential � . They are called “Gibbs states”.

Sinai–Ruelle–Bowen measure Special equilibrium or
Gibbs states that describe the statistics of the attractor
of certain smooth dynamical systems.

Definition of the Subject

Gibbs and equilibrium states of one-dimensional lattice
models in statistical physics play a prominent role in the
statistical theory of chaotic dynamics. They first appear
in the ergodic theory of certain differentiable dynamical
systems, called “uniformly hyperbolic systems”, mainly
Anosov and Axiom A diffeomorphisms (and flows). The
central idea is to “code” the orbits of these systems into
(infinite) symbolic sequences of symbols by following their
history on a finite partition of their phase space. This de-
fines a nice shift dynamical system called a subshift of fi-
nite type or a topological Markov chain. Then the con-
struction of their “natural” invariant measures and the
study of their properties are carried out at the symbolic
level by constructing certain equilibrium states in the sense
of statistical mechanics which turn out to be also Gibbs
states. The study of uniformly hyperbolic systems brought
out several ideas and techniques which turned out to be
extremely fruitful for the study of more general systems.
Let us mention the concept of Markov partition and its
avatars, the very important notion of SRB measure (after
Sinai, Ruelle, and Bowen) and transfer operators. Recently,
there was a revival of interest in Axiom A systems as mod-
els to understand nonequilibrium statistical mechanics.

Introduction

Our goal is to present the basic results on one-dimensional
Gibbs and equilibrium states viewed as special invariant
measures on symbolic dynamical systems, and then to de-
scribe without technicalities a sample of results they allow

to obtain for certain differentiable dynamical systems. We
hope that this contribution will illustrate the symbiotic re-
lationship between ergodic theory and statistical mechan-
ics, and also information theory.

We start by putting Gibbs and equilibrium states in
a general perspective. The theory of Gibbs states and equi-
librium states, or Thermodynamic Formalism, is a branch
of rigorous Statistical Physics. The notion of a Gibbs state
dates back to R.L. Dobrushin (1968–1969) [17,18,19,20]
and O.E. Lanford and D. Ruelle (1969) [41] who proposed
it as a mathematical idealization of an equilibrium state of
a physical system which consists of a very large number
of interacting components. For a finite number of com-
ponents, the foundations of statistical mechanics were al-
ready laid in the nineteenth century. There was the well-
known Maxwell–Boltzmann–Gibbs formula for the equi-
librium distribution of a physical systemwith given energy
function. From the mathematical point of view, the intrin-
sic properties of very large objects can bemademanifest by
performing suitable limiting procedures. Indeed, the cru-
cial step made in the 1960s was to define the notion of
a Gibbs measure or Gibbs state for a system with an in-
finite number of interacting components. This was done
by the familiar probabilistic idea of specifying the inter-
dependence structure by means of a suitable class of con-
ditional probabilities built up according to the Maxwell–
Boltzmann–Gibbs formula [29]. Notice that Gibbs states
are often called “DLR states” in honor of Dobrushin, Lan-
ford, and Ruelle. The remarkable aspect of this construc-
tion is the fact that a Gibbs state for a given type of in-
teraction may fail to be unique. In physical terms, this
means that a system with this interaction can take sev-
eral distinct equilibria. The phenomenon of nonunique-
ness of a Gibbs measure can thus be interpreted as a phase
transition. Therefore, the conditions under which an in-
teraction leads to a unique or to several Gibbs measures
turns out to be of central importance. While Gibbs states
are defined locally by specifying certain conditional prob-
abilities, equilibrium states are defined globally by a vari-
ational principle: they maximize the entropy of the system
under the (linear) constraint that the mean energy is fixed.
Gibbs states are always equilibrium states, but the two no-
tions do not coincide in general. However, for a class of
sufficiently regular interactions, equilibrium states are also
Gibbs states.

In the effort of trying to understand phase transitions,
simplified mathematical models were proposed, the most
famous one being undoubtedly the Ising model. This is an
example of a lattice model. The set of configurations of
a lattice model is X :D AZd , where A is a finite set, which
is invariant by “spatial” translations. For the physical in-
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terpretation, X can be thought, for instance, as the set of
infinite configurations of a system of spins on a crystal lat-
tice Zd and one may take AD f�1;C1g, i. e., spins can
take two orientations, “up” and “down”. The Ising model
is defined by specifying an interaction (or potential) be-
tween spins and studying the corresponding (translation-
invariant) Gibbs states. The striking phenomenon is that
for d D 1 there is a unique Gibbs state (in fact a Markov
measure) whereas if d � 2, there may be several Gibbs
states although the interaction is very simple [29].

Equilibrium states and Gibbs states of one-dimen-
sional lattice models (d D 1) played a prominent role in
understanding the ergodic properties of certain types of
differentiable dynamical systems, namely uniformly hy-
perbolic systems, Axiom A diffeomorphisms in particu-
lar. The link between one-dimensional lattice systems and
dynamical systems is made by symbolic dynamics. Infor-
mally, symbolic dynamics consists of replacing the orbits
of the original system by its history on a finite partition of
its phase space labeled by the elements of the “alphabet”A.
Therefore, each orbit of the original system is replaced by
an infinite sequence of symbols, i. e., by an element of the
set AZ or AN , depending on whether the map describing
the dynamics is invertible or not. The action of the map on
an initial condition is then easily seen to correspond to the
translation (or shift) of its associated symbolic sequence.
In general there is no reason to get all sequences of AZ or
AN . Instead one gets a closed invariant subset X (a sub-
shift) which can be very complicated. For a certain class of
dynamical systems the partition can be successfully chosen
so as to form aMarkov partition. In this case, the dynami-
cal system under consideration can be coded by a subshift
of finite type (also called a topological Markov chain) which
is a very nice symbolic dynamical system. Then one can
play the game of statistical physics: for a given continu-
ous, real-valued function (a “potential”) on X, construct
the corresponding Gibbs states and equilibrium states. If
the potential is regular enough, one expects uniqueness
of the Gibbs state and that it is also the unique equilib-
rium state for this potential. This circle of ideas – ranging
from Gibbs states on finite systems over invariant mea-
sures on symbolic systems and their (Shannon-)entropy
with a digression to Kolmogorov–Chaitin complexity to
equilibrium states and Gibbs states on subshifts of finite
type – is presented in the next four sections.

At this point it should be remembered that the objects
which can actually be observed are not equilibrium states
(they are measures on X) but individual symbol sequences
in X, which reflect more or less the statistical properties of
an equilibrium state. Indeed, most sequences reflect these
properties very well, but there are also rare sequences that

look quite different. Their properties are described by large
deviations principleswhich are not discussed in the present
article. We shall indicate some references along the way.

In Sects. “Examples on Shift Spaces” and “Exam-
ples from Differentiable Dynamics” we present a selec-
tion of important examples: measure of maximal entropy,
Markov measures and Hofbauer’s example of nonunique-
ness of equilibrium state; uniformly expanding Markov
maps of the interval, interval maps with an indifferent
fixed point, Anosov diffeomorphisms and Axiom A at-
tractors with Sinai–Ruelle–Bowen measures, and Bowen’s
formula for the Hausdorff dimension of conformal re-
pellers. As we shall see, Sinai–Ruelle–Bowen measures are
the only physically observable measures and they appear
naturally in the context of nonuniformly hyperbolic dif-
feomorphisms [71].

A revival of the interest to Anosov and Axiom A sys-
tems occurred in statistical mechanics in the 1990s. Sev-
eral physical phenomena of nonequilibrium origin, like
entropy production and chaotic scattering, were mod-
eled with the help of those systems (by G. Gallavotti, P.
Gaspard, D. Ruelle, and others). This new interest led to
new results about old Anosov and Axiom A systems, see,
e. g., [15] for a survey and references. In Sect. “Nonequi-
librium Steady States and Entropy Production”, we give
a very brief account of entropy production in the context
of Anosov systems which highlights the role of relative en-
tropy.

This article is a little introduction to a vast subject
in which we have tried to put forward some aspects not
previously described in other expository texts. For read-
ers willing to deepen their understanding of equilibrium
and Gibbs states, there are the classic monographs by
Bowen [6] and by Ruelle [58], the monograph by one of
us [38], and the survey article by Chernov [15] (where
Anosov and Axiom A flows are reviewed). Those texts are
really complementary.

Warming Up: Thermodynamic Formalism
for Finite Systems

We introduce the thermodynamic formalism in an ele-
mentary context, following Jaynes [34]. In this view, en-
tropy, in the sense of information theory, is the central
concept.

Incomplete knowledge about a system is conveniently
described in terms of probability distributions on the set
of its possible states. This is particularly simple if the set
of states, call it X, is finite. Then the equidistribution on X
describes complete lack of knowledge, whereas a probabil-
ity vector that assigns probability 1 to one single state and
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probability 0 to all others represents maximal informa-
tion about the system. A well-established measure of the
amount of uncertainty represented by a probability distri-
bution � D (�(x))x2X is its entropy

H(�) :D �
X

x2X

�(x) log �(x) ;

which is zero if the probability is concentrated in one state
and which attains its maximum value log jXj if � is the
equidistribution on X, i. e., if �(x) D jXj�1 for all x 2 X.
In this completely elementary context we will explore two
concepts whose generalizations are central to the theory of
equilibrium states in ergodic theory:

� Equilibrium distributions – defined in terms of a varia-
tional problem.

� The Gibbs property of equilibrium distributions.

The only mathematical prerequisite for this section are cal-
culus and some elements from probability theory.

Equilibrium Distributions and the Gibbs Property

Suppose that a finite system can be observed through
a function U : X ! R (an “observable”), and that we are
looking for a probability distribution � which maximizes
entropy among all distributions � with a prescribed ex-
pected value hU; �i :D

P
x2X �(x)U(x) for the observ-

able U. This means we have to solve a variational problem
under constraints:

H(�) D maxfH(�) : hU; �i D Eg : (1)

As the function � 7! H(�) is strictly concave, there is
a unique maximizing probability distribution � provided
the value E can be attained at all by some hU; �i. In order
to derive an explicit formula for this � we introduce a La-
grange multiplier ˇ 2 R and study, for each ˇ, the uncon-
strained problem

H(�ˇ )ChˇU; �ˇ i D p(ˇU) :D max
�

(H(�)ChˇU; �i) :

(2)

In analogy to the convention in ergodic theory we call
p(ˇU) the pressure of ˇU and the maximizer �ˇ the cor-
responding equilibrium distribution (synonymously equi-
librium state).

The equilibrium distribution �ˇ satisfies

�ˇ (x) D exp(�p(ˇU)C ˇU(x)) for all x 2 X (3)

as an elementary calculation using Jensen’s inequality for
the strictly convex function t 7! �t log t shows:

H(�)C hˇU; �i D
X

x2X

�(x) log
eˇU(x)

�(x)

� log
X

x2X

�(x)
eˇU(x)

�(x)

D log
X

x2X

eˇU(x) ;

with equality if and only if eˇU is a constant multiple of �.
The observation that � D �ˇ is a maximizer proves at the
same time that p(ˇU) D log

P
x2X eˇU(x).

The equality expressed in (3) is called the Gibbs prop-
erty of �ˇ , and we say that�ˇ is a Gibbs distribution if we
want to stress this property.

In order to solve the constrained problem (1) it re-
mains to show that there is a unique multiplier ˇ D ˇ(E)
such that hU; �ˇ i D E. This follows from the fact that the
map ˇ 7! hU; �ˇ i maps the real line monotonically onto
the interval (minU;maxU) which, in turn, is a direct con-
sequence of the formulas for the first and second derivative
of p(ˇU) w.r.t ˇ:

dp
dˇ
D hU; �ˇ i ;

d2p
dˇ2 D hU

2; �ˇ i � hU; �ˇ i2 : (4)

As the second derivative is nothing but the variance of U
under �ˇ , it is strictly positive (except when U is a con-
stant function), so that ˇ 7! hU; �ˇ i is indeed strictly in-
creasing. Observe also that dp/dˇ is indeed the directional
derivative of p : RjAj ! R in direction U. Hence the first
identity in (4) can be rephrased as: �ˇ is the gradient at
ˇU of the function p.

A similar analysis can be performed for an Rd -valued
observable U. In that case a vector ˇ 2 Rd of Lagrange
multipliers is needed to satisfy the d linear constraints.

Systems on a Finite Lattice

We now assume that the system has a lattice structure,
modeling its extension in space, for instance. The sys-
tem can be in different states at different positions. More
specifically, let Ln D f0; 1; : : : ; n � 1g be a set of n po-
sitions in space, let A be a finite set of states that can be
attained by the system at each of its sites, and denote by
X :D ALn the set of all configurations of states from A at
positions of Ln . It is helpful to think of X as the set of all
words of length n over the alphabetA.We focus on observ-
ablesUn which are sums ofmany local contributions in the
sense that Un(a0 : : : an�1) D

Pn�1
iD0 �(ai : : : aiCr�1) for
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some “local observable” � : Ar ! R. (The index i C r � 1
has to be taken modulo n.) In terms of � the maximizing
measure can be written as

�ˇ (a0 : : : an�1)

D exp

 

�nP(ˇ�)C ˇ
n�1X

iD0

�(ai : : : aiCr�1)

!

; (5)

where P(ˇ�) :D n�1p(ˇUn). A first immediate conse-
quence of (5) is the invariance of �ˇ under a cyclic shift
of its argument, namely �ˇ (a1 : : : an�1a0) D �ˇ (a0 : : :
an�1). Therefore, we can restrict the maximizations in (1)
and (2) to probability distributions � which are invariant
under cyclic translations which yields

P(ˇ�) D max
�

(n�1H(�)C hˇ�; �i)

D n�1H(�ˇ )C hˇ�;�ˇ i :
(6)

If the local observable � depends only on one coordi-
nate, �ˇ turns out to be a product measure:

�ˇ (a0 : : : an�1) D
n�1Y

iD0

exp (�P(ˇ�)C ˇ�(ai)) :

Indeed, comparison with (3) shows that �ˇ is the n-fold
product of the probability distribution �loc

ˇ
on A that

maximizes H(�)C ˇ�(�) among all distributions � on A.
It follows that n�1H(�ˇ ) D H(�loc

ˇ
) so that (6) implies

P(ˇ�) D p(ˇ�) for observables � that depend only on
one coordinate.

Shift Spaces, Invariant Measures and Entropy

Wenow turn to shift dynamical systems over a finite alpha-
bet A.

Symbolic Dynamics

We start by fixing some notation. Let N denote the set
f0; 1; 2; : : : g. In the sequel we need

� a finite set A (the “alphabet”),
� the set AN of all infinite sequences over A, i. e., the set

of all x D x0x1 : : : with xn 2 A for all n 2 N ,
� the translation (or shift) � : AN ! AN , (�x)n D xnC1,

for all n 2 N,
� a shift invariant subset X D �(X) of AN . With a slight

abuse of notation we denote the restriction of � to X
by � again.

We mention two interpretations of the dynamics of � : it
can describe the evolution of a system with state space X

in discrete time steps (this is the prevalent interpretation
if � : X ! X is obtained as a symbolic representation of
another dynamical system), or it can be the spatial transla-
tion of the configuration of a system on an infinite lattice
(generalizing the point of view from Subsect. “Systems on
a Finite Lattice” above). In the latter case one usually looks
at the shift on the two-sided shift space AZ, for which the
theory is nearly identical.

On AN one can define a metric d by

d(x; y) :D 2�N(x;y)

where N(x; y) :D minfk 2 N : xk ¤ ykg : (7)

Hence d(x; y) D 1 if and only if x0 ¤ y0, and d(x; x) D 0
upon agreeing that N(x; x) D 1 and 2�1 D 0. Equipped
with this metric, AN becomes a compact metric space
and � is easily seen to be a continuous surjection of AN .
Finally, if X is a closed subset of AN , we call the restric-
tion � : X ! X, which is again a continuous surjection,
a shift dynamical system. We remark that d generates on
AN the product topology of the discrete topology on A,
just as many variants of d do. For more details� Symbolic
Dynamics. As usual, C(X) denotes the space of real-valued
continuous functions on X equipped with the supremum
norm k � k1.

InvariantMeasures

A probability distribution � (or simply distribution) on X
is a Borel probability measure on X. It is unambiguously
specified by its values �[a0 : : : an�1] (n 2 N , ai 2 A) on
cylinder sets

[a0 : : : an�1]
:D fx 2 X : xi D ai for all i D 0; : : : ; n � 1g :

Any bounded and measurable f : X ! R (in particular
any f 2 C(X)) can be integrated by any distribution �. To
stress the linearity of the integral in both, the integrand
and the integrator, we use the notation

h f ; �i :D
Z

X
f d� :

In probabilistic terms, h f ; �i is the expectation of the ob-
servable f under �. The set M(X) of all probability dis-
tributions is compact in the weak topology, the coars-
est topology on M(X) for which � 7! h f ; �i is continu-
ous for all f 2 C(X),�Measure Preserving Systems, Sub-
sect. “Existence of InvariantMeasures”. (Note that in func-
tional analysis this is called the weak-* topology.) Hence-
forth we will use both terms, “measure” and “distribution”,
if we talk about probability distributions.
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A measure � on X is invariant if expectations of ob-
servables are unchanged under the shift, i. e., if

h f ı �; �i D h f ; �i
for all bounded measurable f : X ! R :

The set of all invariant measures is denoted byM
 (X). As
a closed subset ofM(X) it is compact in the weak topology.
Of special importance among all invariant measures � are
the ergodic ones which can be characterized by the prop-
erty that, for all bounded measurable f : X ! R,

lim
n!1

1
n

n�1X

kD0

f (� kx) D h f ; �i

for �-a. e. (almost every) x ; (8)

i. e., for a set of x of �-measure one. They are the indecom-
posable “building blocks” of all other measures inM
 (X),
� Measure Preserving Systems or � Ergodic Theorems.
The almost everywhere convergence in (8) is Birkhoff’s er-
godic Theorem � Ergodic Theorems, the constant limit
characterizes the ergodicity of �.

Entropy of InvariantMeasures

We give a brief account of the definition and basic prop-
erties of the entropy of an invariant measure �. For details
and the generalization of this concept to general dynamical
systems we refer to � Entropy in Ergodic Theory or [37],
and to [36] for an historical account.

Let � 2M
 (X). For each n > 0 the cylinder probabil-
ities �[a0 : : : an�1] give rise to a probability distribution
on the finite set ALn , see Sect. “Warming Up: Thermody-
namic Formalism for Finite Systems”, so

Hn(�) :D �
X

a0;:::;an�12A

�[a0 : : : an�1] log �[a0 : : : an�1]

is well defined. Invariance of � guarantees that the
sequence (Hn(�))n>0 is subadditive, i. e., HkCn(�) �
Hk(�) C Hn(�), and an elementary argument shows that
the limit

h(�) :D lim
n!1

1
n
Hn(�) 2 [0; log jAj] (9)

exists and equals the infimum of the sequence. We simply
call it the entropy of �. (Note that for general subshifts X
many of the cylinder sets [a0 : : : an�1] � X are empty.
But, because of the continuity of the function t 7! t log t
at t D 0, we may set 0 log 0 D 0, and, hence, this does not
affect the definition of Hn(�).)

The entropy h(�) of an ergodic measure � can be ob-
served along a “typical” trajectory. That is the content of
the following theorem, sometimes called the “ergodic the-
orem of information theory” � Entropy in Ergodic The-
ory.

Theorem (Shannon–McMillan–Breiman Theorem)

lim
n!1

1
n
log �[x0 : : : xn�1] D �h(�) for �-a. e. x : (10)

Observe that (9) is just the integrated version of this state-
ment. A slightly weaker reformulation of this theorem
(again for ergodic �) is known as the “asymptotic equipar-
tition property”.

Asymptotic Equipartition Property

Given (arbitrarily small) � > 0 and ˛ > 0, one can,
for each sufficiently large n, partition the set An into
a set Tn of typical words and a set En of exceptional
words such that each a0 : : : an�1 2 Tn satisfies

e�n(h(�)C˛) � �[a0 : : : an�1] � e�n(h(�)�˛)

and the total probability
P

a0:::an�12En
�[a0 : : :

an�1] of the exceptional words is at most ".

(11)

A Short Digression on Complexity

Kolmogorov [40] and Chaitin [14] introduced the con-
cept of complexity of an infinite sequence of symbols.
Very roughly it is defined as follows: First, the complex-
ity K(x0 : : : xn�1) of a finite word in An is defined as the
bit length of the shortest program that causes a suitable
general purpose computer (say a PC or, for the mathemat-
ically minded reader, a Turing machine) to print out this
word. Then the complexity of an infinite sequence is de-
fined as K(x) :D lim supn!1

1
n K(x0 : : : xn�1). Of course,

the definition of K(x0 : : : xn�1) depends on the particu-
lar computer, but as any two general purpose computers
can be programmed to simulate each other (by some finite
piece of software), the limit K(x) is machine independent.
It is the optimal compression factor for long initial pieces
of a sequence x that still allows complete reconstruction of
x by an algorithm. Brudno [8] showed:

If X � AN and � 2M
 (X) is ergodic, then K(x) D
1

log 2 h(�) for �-a. e. x 2 X.

Entropy as a Function of the Measure

An important technical remark for the further devel-
opment of the theory is that the entropy function
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h : M
 (X) ! [0;1) is upper semicontinuous. This
means that all sets f� : h(�) � tgwith t 2 R are closed and
hence compact. In particular, upper semicontinuous func-
tions attain their supremum. Indeed, suppose a sequence
�k 2M
 (X) converges weakly to some � 2M
 (X) and
h(�k) � t for all k so that also 1

n Hn(�k) � t for all n
and k. As Hn(�) is an expression that depends continu-
ously on the probabilities of the finitely many cylinders
[a0 : : : an�1] and as the indicator functions of these sets
are continuous, 1

n Hn(�) D limk!1
1
n Hn(�k) � t, hence

h(�) � t in the limit n!1.
A word of caution seems in order: the entropy func-

tion is rarely continuous. For example, on the full shift
X D AN each invariant measure, whatever its entropy is,
can be approximated in the weak topology by equidistri-
butions on periodic orbits. But all these equidistributions
have entropy zero.

The Variational Principle:
A Global Characterizationof Equilibrium

Usually, a dynamical systems model of a “physical” sys-
tem consists of a state space and a map (or a differen-
tial equation) describing the dynamics. An invariant mea-
sure for the system is rarely given a priori. Indeed, many
(if not most) dynamical systems arising in this way have
uncountably many ergodic invariant measures. This lim-
its considerably the “practical value” of Birkhoff’s ergodic
theorem (8) or the Shannon–McMillan–Breiman theo-
rem (10): not only do the limits in these theorems de-
pend on the invariant measure �, but also the sets of points
for which the theorems guarantee almost everywhere con-
vergence are practically disjoint for different � and �0 in
M
 (X). Therefore, a choice of � has to be made which re-
flects the original modeling intentions. We will argue in
this and the next sections that a variational principle with
a judiciously chosen “observable” may be a useful guide-
line – generalizing the observations for finite systems col-
lected in the corresponding section above. As announced
earlier we restrict again to shift dynamical systems, be-
cause they are rather universal models for many other sys-
tems.

Equilibrium States

We define the pressure of an observable � 2 C(X) as

P(�) :D supfh(�)C h�; �i : � 2M
 (X)g : (12)

SinceM
 (X) is compact and the functional � 7! h(�) C
h�; �i is upper semicontinuous, the supremum is at-
tained – not necessarily at a unique measure as we will see

(which is remarkably different fromwhat happens in finite
systems). Each measure � for which the supremum is at-
tained is called an equilibrium state for � . Here the word
“state” is used synonymously with “distribution” or “mea-
sure” – a reflection of the fact that in “well-behaved cases”,
as we will see in the next section, this measure is uniquely
determined by the constraint(s) under which it maximizes
entropy, and that means by the macroscopic state of the
system. (In contrast, the word “state” was used in the above
section on finite systems to designate microscopic states.)

As, for each � 2 M
 (X), the functional � 7!

h(�) C h�; �i is affine on C(X), the pressure functional
P : C(X) ! R, which, by definition, is the pointwise
supremum of these functionals, is convex. It is therefore
instructive to fit equilibrium states into the abstract frame-
work of convex analysis [32,38,45,68]. To this end re-
call the identities in (4) that identify, for finite systems,
equilibrium states as gradients of the pressure function
p : RjAj ! R and guarantee that p is twice differen-
tiable and strictly convex. In the present setting where P
is defined on the Banach space C(X), differentiability and
strict convexity are no more guaranteed, but one can
show:

Equilibrium states as (sub)-gradients

� 2M
 (X) is an equilibrium state for � if and only
if � is a subgradient (or tangent functional) for P at
� , i. e., if P(�C )�P(�) � h ;�i for all 2 C(X).
In particular, � has a unique equilibrium state � if
and only if P is differentiable at � with gradient �,
i. e., if limt!0

1
t (P(� C t ) � P(�)) D h ;�i for

all  2 C(X).

(13)

Let us see how equilibrium states on X D AN can directly
be obtained from the corresponding equilibrium distri-
butions on finite sets An introduced in Subsect. “Systems
on a Finite Lattice”. Define �(n) : An ! R by �(n)(a0 : : :
an�1) :D �(a0 : : : an�1a0 : : : an�1 : : : ), denote by Un the
corresponding global observable on An, and let �n be the
equilibrium distribution on An that maximizes H(�) C
hUn ; �i. Then all weak limit points of the “approximative
equilibrium distributions” �n on An are equilibrium states
on AN .

This can be seen as follows: Let the measure � on AN

be any weak limit point of the �n. Then, given � > 0 there
exists k 2 N such that

h(�)C h�;�i �
1
k
Hk(�)C h�;�i � �

�
1
k
Hk(�n)C h�(n); �ni � 2�
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for arbitrarily large n, because k� � �(n)k1 ! 0 as
n ! 1 by construction of the �(n). As the �n are invari-
ant under cyclic coordinate shifts (see Subsect. “Systems
on a Finite Lattice”), it follows from the subadditivity of
the entropy that

h(�)C h�;�i �
1
n
(Hn(�n)C hUn ; �ni) � 2�

�
k
n
log jAj :

Hence, for each � 2M
 (X),

h(�)C h�;�i �
1
n
(Hn(�)C hUn ; �i) � 2�

�
k
n
log jAj ! h(�)C h�; �i � 2�

as n!1, andwe see that� is indeed an equilibrium state
on AN .

The Variational Principle

In Subsect. “Equilibrium Distributions and the Gibbs
Property”, the pressure of a finite system was defined as
a certain supremum and then identified as the logarithm
of the normalizing constant for the Gibbsian represen-
tation of the corresponding equilibrium distribution. We
are now going to approximate equilibrium states by suit-
able Gibbs distributions on finite subsets of X. As a by-
product the pressure P(�) is characterized in terms of the
logarithms of the normalizing constants of these approx-
imating distributions. Let Sn�(x) :D �(x) C �(�x) C
� � � C �(� n�1x). From each cylinder set [a0 : : : an�1] we
can pick a point z such that Sn�(z) is the maximal value
of Sn� on this set. We denote the collection of the jAjn

points we obtain in this way by En. Observe that En is not
unambiguously defined, but any choice we make will do.

Theorem (Variational Principle for the Pressure)

P(�) D lim sup
n!1

1
n
Pn(�)

where Pn(�) :D log
X

z2En

eSn�(z) : (14)

To prove the “� ” direction of this identity we just
have to show that 1

n Hn(�)C h�; �i � 1
n Pn(�) for each

� 2M
 (X) or, aftermultiplying by n,Hn(�)ChSn�; �i �

Pn(�). But Jensen’s inequality implies:

Hn(�)C hSn�; �i

�
X

a0;:::;an�12A

�[a0 : : : an�1]

log

 
sup

˚
eSn�(x ) : x 2 [a0 : : : an�1]

�

�[a0 : : : an�1]

!

� log
X

a0;:::;an�12A

sup
n
eSn�(x) : x 2 [a0 : : : an�1]

o

D log
X

z2En

eSn�(z) D Pn(�) :

For the reverse inequality consider the discrete Gibbs dis-
tributions

�n :D
X

z2En

ız exp(�Pn(�)C Sn�(z))

on the finite sets En, where ız denotes the unit point mass
in z. One might be tempted to think that all weak limit
points of the measures �n are already equilibrium states.
But this need not be the case because there is no good
reason that these limits are shift invariant. Therefore, one
forces invariance of the limits by passing to measures �n
defined by h f ; �ni :D h 1n

Pn�1
kD0 f ı �

k ; �ni. Weak limits
of thesemeasures are obviously shift invariant, and a more
involved estimate we do not present here shows that each
such weak limit � satisfies h(�)C h�;�i � P(�).

We note that the same arguments work for any other
sequence of sets En which contain exactly one point from
each cylinder. So there are many ways to approximate
equilibrium states, and if there are more than one equi-
librium state, there is generally no guarantee that the limit
is always the same.

Nonuniqueness of Equilibrium States: An Example

Before we turn to sufficient conditions for the unique-
ness of equilibrium states in the next section, we present
one of the simplest nontrivial examples for nonuniqueness
of equilibrium states. Motivated by the so-called Fisher–
Felderhof droplet model of condensation in statistical me-
chanics [23,25], Hofbauer [31] studies an observable � on
X D f0; 1gN defined as follows: Let (ak) be a sequence of
negative real numbers with limk!1 ak D 0. Set sk :D
a0 C � � � C ak . For k � 1 denote Mk :D fx 2 X : x0 D
� � � D xk�1 D 1; xk D 0g and M0 :D fx 2 X : x0 D 0g,
and define

�(x) :D ak for x 2 Mk and �(11 : : : ) D 0 :
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Then � : X ! R is continuous, so that there exists at
least one equilibrium state for � . Hofbauer proves that
there is more than one equilibrium state if and only ifP1

kD0 e
sk D 1 and

P1
kD0(k C 1)esk <1. In that case

P(�) D 0, so one of these equilibrium states is the unit
mass ı11:::, and we denote the other equilibrium state by
�1, so h(�1)C h�;�1i D 0. In view of (13) the pressure
function is not differentiable at � .

What does the pressure function ˇ 7! P(ˇ�) look
like? As h(ı11:::)C hˇ�; ı11:::i D 0 for all ˇ, P(ˇ�) � 0
for all ˇ. Observe now that �(x) � 0 with equality only for
x D 11 : : : This implies that h�;�i < 0 for all� 2M
 (X)
different from ı11:::. From this we can conclude:

� P(ˇ�) � P(�) D 0 for ˇ > 1, so P(ˇ�) D 0 for ˇ � 1.
� P(ˇ�) � h(�1)C hˇ�;�1i D h(�1)C h�;�1i � (1 �
ˇ)h�;�1i D �(1 � ˇ)h�;�1i.

It follows that, at ˇ D 1, the derivative from the right of
P(ˇ�) is zero, whereas the derivative from the left is at
most �h�;�1i < 0.

More on Equilibrium States

Inmore general dynamical systems the entropy function is
not necessarily upper semicontinuous and hence equilib-
rium states need not exist, i. e., the supremum in (12) need
not be attained by any invariant measure. A well-known
sufficient property that guarantees the upper semiconti-
nuity of the entropy function is the expansiveness of the
system, see, e. g., [53]: a continuous transformation T of
a compact metric space is positively expansive, if there is
a constant � > 0 such that for any two points x and y from
the space there is some n 2 N such that Tnx and Tn y are
at least a distance � apart. If T is a homeomorphism one
says it is expansive, if the same holds for some n 2 Z. The
previous results carry over without changes (although at
the expense of more complicated proofs) to general ex-
pansive systems. The variational principle (14) holds in the
very general context where T is a continuous action ofZd

C

on a compact Hausdorff space X. This was proved in [44]
in a simple and elegant way. In the monograph [45] it is
extended to amenable group actions.

The Gibbs Property:
A Local Characterizationof Equilibrium

In this section we are going to see that, for a sufficiently
regular potential � on a topologically mixing subshift of fi-
nite type, one has a unique equilibrium state which has the

“Gibbs property”. This property generalizes formula (5)
that we derived for finite lattices. Subshifts of finite type
are the symbolic models for Axiom A diffeomorphisms, as
we shall see later on.

Subshifts of Finite Type

We start by recalling what is a subshift of finite type and
refer the reader to� Symbolic Dynamics or [43] for more
details. Given a “transition matrix” M D (Mab)a;b2A
whose entries are 0’s or 1’s, one can define a subshiftXM as
the set of all sequences x 2 AN such that Mxi xiC1 D 1 for
all i 2 N . This is called a subshift of finite type or a topo-
logical Markov chain. We assume that there exists some
integer p0 such that Mp has strictly positive entries for all
p � p0. This means that M is irreducible and aperiodic.
This property is equivalent to the property that the sub-
shift of finite type is topologically mixing. A general sub-
shift of finite type admits a decomposition into a finite
union of transitive sets, each of which being a union of
cyclically permuted sets on which the appropriate iterate is
topologically mixing. In other words, topologically mixing
subshifts of finite type are the building blocks of subshifts
of finite type.

The Gibbs Property for a Class of Regular Potentials

The class of regular potentials we consider is that of
“summable variations”. We denote by vark(�) the mod-
ulus of continuity of � on cylinders of length k � 1, that
is,

vark(�) :D supfj�(x) � �(y)j : x 2 [y0 : : : yk�1]g :

If vark(�)! 0 as k!1, this means that � is (uni-
formly) continuous with respect to the distance (7). We
impose the stronger condition

1X

kD1

vark(�) <1 : (15)

We can now state the main result of this section.

The Gibbs state of a summable potential Let XM be
a topologically mixing subshift of finite type. Given a po-
tential � : XM ! R satisfying the summability condi-
tion (15), there is a (probability) measure�� supported on
XM , that we call a Gibbs state. It is the unique �-invariant
measure which satisfies the following property:
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There exists a constantC > 0 such that, for all x 2 XM and
for all n � 1,

C�1 �
�� [x0 : : : xn�1]

exp(Sn�(x) � nP(�))
� C : (“Gibbs property”)

(16)

Moreover, the Gibbs state �� is ergodic and is also the
unique equilibrium state of � , i. e., the unique invariant
measure for which the supremum in (12) is attained.

We now make several comments on this theorem.

� The Gibbs property (16) gives a uniform control of the
measure of all cylinders in terms of their “energy”. This
strengthens considerably the asymptotic equipartition
property (11) that we recover if we restrict (16) to the
set of �� measure 1 where Birkhoff’s ergodic Theo-
rem (8) applies, and use the identity h�;��i � P(�) D
�h(�� ).

� Gibbs measures on topologically mixing subshifts
of finite type are ergodic (and actually mixing in
a strong sense) as can be inferred from Ruelle’s Perron–
Frobenius Theorem see the next subsection.

� Suppose that there is another invariant measure �0

satisfying (16), possibly with a constant C0 different
from C. It is easy to verify that�0 D f� for some �-in-
tegrable function f by using (16) and the Radon–
Nikodym Theorem. Shift invariance imposes that, �-
a. e., f D f ı � . Then the ergodicity of � implies that f
is a constant �-a. e., thus �0 D � ; see [6].

� One could define a Gibbs state by saying that it is an
invariant measure � satisfying (16) for a given contin-
uous potential � . If one does so, it is simple to verify
that such a �must also be an equilibrium state. Indeed,
using (16), one can deduce that h�;�i C h(�) � P(�).
The converse need not be true in general, see Sub-
sect. “More on Hofbauer’s Example” below. But the
summability condition (15) is indeed sufficient for the
coincidence of Gibbs and equilibrium states. A proof of
this fact can be found in [58] or [38].

Ruelle’s Perron–Frobenius Theorem

The powerful tool behind the theorem in the previous sub-
section is a far-reaching generalization of the classical Per-
ron–Frobenius theorem for irreducible matrices. Instead
of a matrix, one introduces the so-called transfer opera-
tor, also called the “Perron–Frobenius operator” or “Ru-
elle’s operator”, which acts on a suitable Banach space of
observables. It is D. Ruelle [52] who first introduced this
operator in the context of one-dimensional lattice gases

with exponentially decaying interactions. In our context,
this corresponds to Hölder continuous potentials: these
are potentials satisfying vark(�) � c� k for some c > 0 and
� 2 (0; 1). A proof of “Ruelle’s Perron–Frobenius Theo-
rem” can be found in [4,6]. It was then extended to po-
tentials with summable variations in [67]. We refer to the
book of V. Baladi [1] for a comprehensive account on
transfer operators in dynamical systems.

We content ourselves to define the transfer opera-
tor and state Ruelle’s Perron–Frobenius Theorem. Let
L : C(XM)! C(XM) be defined by

(L f )(x) :D
X

y2
�1x

e�(y) f (y)

D
X

a2A:M(a;x0)D1

e�(ax) f (ax) :

(Obviously, ax :D ax0x1 : : :)

Theorem (Ruelle’s Perron–Frobenius Theorem) Let
XM be a topologically mixing subshift of finite type.
Let � satisfy condition (15). There exist a number  > 0,
h 2 C(XM), and � 2M(X) such that h > 0, hh; �i D 1,
Lh D h,L�� D �, whereL� is the dual ofL. Moreover,
for all f 2 C(XM),

k�nLn f � h f ; �i � hk1 ! 0; as n!1 :

By using this theorem, one can show that �� :D h� satis-
fies (16) and  D eP(�).

Let us remark that for potentials which are such that
�(x) D �(x0; x1) (i. e., potentials constant on cylinders of
length 2), L can be identified with a jAj � jAj matrix and
the previous theorem boils down to the classical Perron–
Frobenius theorem for irreducible aperiodic matrices [63].
The corresponding Gibbs states are nothing but Markov
chains with state spaceA (Chapter 3 in [29]). We shall take
another point of view below (Subsect. “Markov Chains
over Finite Alphabets”).

Relative Entropy

We now define the relative entropy of an invariant mea-
sure � 2M
 (XM) given a Gibbs state �� as follows. We
first define

Hn(�j��)

:D
X

a0;:::;an�12A

�[a0 : : : an�1] log
�[a0 : : : an�1]
�� [a0 : : : an�1]

(17)
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with the convention 0 log(0/0) D 0. Now the relative en-
tropy of � given �� is defined as

h(�j��) :D lim sup
n!1

1
n
Hn(�j�� ) :

(By applying Jensen’s inequality, one verifies that
h(�j��) � 0.) In fact the limit exists and can be com-
puted quite easily using (16):

h(�j��) D P(�) � h�; �i � h(�) : (18)

To prove this formula, we first make the following ob-
servation. It can be easily verified that the inequali-
ties in (16) remain the same when Sn� is replaced by
the “locally averaged” energy �̃n :D (�[x0 : : : xn�1])�1R
[x0:::xn�1] Sn�(y)d�(y) for any cylinder with �[x0 : : :
xn�1] > 0. Cylinders with � measure zero does not con-
tribute to the sum in (17).

We can now write that

�
1
n
log C

� �
1
n
Hn(�j��)C

�
P(�) �

1
n
hSn�; �i �

1
n
Hn(�)

�

�
1
n
log C :

To finish we use that hSn�; �i D nh�; �i (by the invari-
ance of �) and we apply (9) to obtain

lim
n!1

1
n
Hn(�j��) D P(�) � h�; �i � lim

n!1

1
n
Hn(�)

D P(�) � h�; �i � h(�)

which proves (18).

The variational principle revisited We can reformulate
the variational principle in the case of a potential satisfying
the summability condition (15):

h(�j��) D 0 if and only if � D �� ; (19)

i. e., given �� , the relative entropy h(�j��), as a function
onM
 (XM), attains its minimum only at �� .

Indeed, by (18) we have h(�j��) D P(�)� h�; �i � h(�).
We now use (12) and the fact that �� is the unique equi-
librium state of � to conclude.

More Properties of Gibbs States

Gibbs states enjoy very good statistical properties. Let us
mention only a few. They satisfy the “Bernoulli property”,
a very strong qualitative mixing condition [4,6,67]. The se-
quence of random variables ( f ı � n)n satisfies the central

limit theorem [15,16,49] and a large deviation principle if f
is Hölder continuous [21,38,39,70]. Let us emphasize the
central role played by relative entropy in large deviations.
(The deep link between thermodynamics and large devi-
ations is described in [42] in a much more general con-
text.) Finally, the so-called “multifractal analysis” can be
performed for Gibbs states, see, e. g., [48].

Examples on Shift Spaces

Measure of Maximal Entropy and Periodic Points

If the observable � is constant zero, an equilibrium state
simplymaximizes the entropy. It is calledmeasure of maxi-
mal entropy. The quantity P(0) D supfh(�) : � 2M
 (X)g
is called the topological entropy of the subshift � : X ! X.
When X is a subshift of finite type XM with irreducible
and aperiodic transition matrixM, there is a unique mea-
sure of maximal entropy, see, e. g., [43]. As a Gibbs state it
satisfies (16). By summing over all cylinders [x0 : : : xn�1]
allowed byM, it is easy to see that the topological entropy
P(0) is the asymptotic exponential growth rate of the num-
ber of sequences of length n that can occur as initial seg-
ments of points in XM . This is obviously identical to the
logarithm of the largest eigenvalue of the transition ma-
trixM.

It is not difficult to verify that the total number of pe-
riodic sequences of period n equals the trace of the matrix
Mn, i. e., we have the formula

Card
˚
x 2 XM : � nx D x

�
D tr(Mn) D

mX

iD1

ni ;

where 1; : : : ; m are all the eigenvalues ofM. Asymptot-
ically, of course, Cardfx 2 XM : � nx D xg D enP(0) C
O(j0jn), where 0 is the second largest (in absolute value)
eigenvalue ofM.

The measure of maximal entropy, call it �0, de-
scribes the distribution of periodic points in XM : one can
prove [3,37] that for any cylinder B � XM

lim
n!1

Card
˚
x 2 B : � nx D x

�

Card
˚
x 2 XM : � nx D x

� D �0(B) :

In other words, the finite atomic measures that assign
equal weights 1/ Cardfx 2 XM : � nx D xg to each peri-
odic point in XM with period n weakly converges to �0,
as n!1. Each such measure has zero entropy while
h(�0) D P(0) > 0, so the entropy is not continuous on the
space of invariant measures. It is, however, upper-semi-
continuous (see Subsect. “Entropy as a Function of the
Measure”).
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In fact, it is possible to approximate any Gibbs state
�� on XM in a similar way by finite atomic measures on
periodic orbits, if one assigns weights properly (see, e. g.,
Theorem 20.3.7 in [37]).

Markov Chains over Finite Alphabets

Let Q D (qa;b)a;b2A be an irreducible stochastic ma-
trix over the finite alphabet A. It is well known (see,
e. g., [63]) that there exists a unique probability vec-
tor � on A that defines a stationary Markov measure �Q
on X D AN by �Q [a0 : : : an�1] D �a0qa0a1 : : : qan�2an�1 .
We are going to identify �Q as the unique Gibbs distribu-
tion � 2M
 (X) that maximizes entropy under the con-
straints �[ab] D �[a]qab , i. e., h�ab ; �i D 0 (a; b 2 A),
where �ab :D 1[ab] � qab1[a]. Indeed, as� is a Gibbs mea-
sure, there are ˇab 2 R (a; b 2 A) and constants P 2 R,
C > 0 such that

C�1 �
�[x0 : : : xn�1]

exp
�P

a;b2A ˇab�ab
n (x) � nP

 � C (20)

for all x 2 AN and all n 2 N . Let rab :D exp(ˇab �P
b02A ˇab0qab0�P). Then the denominator in (20) equals

rx0x1 : : : rxn�2xn�1 , and it follows that � is equivalent
to the stationary Markov measure defined by the (non-
stochastic) matrix (rab )a;b2A. As � is ergodic, � is this
Markov measure, and as � satisfies the linear constraints
�[ab] D �[a]qab , we conclude that � D �Q .

The Ising Chain

Here the task is to characterize all “spin chains” in
x 2 f�1;C1gN (or, more commonly, f�1;C1gZ) which
are as random as possible with the constraint that two
adjacent spins have a prescribed probability p ¤ 1

2 to be
identical. With �(x) :D x0x1 this is equivalent to requir-
ing that x is typical for a Gibbs distribution �ˇ� where
ˇ D ˇ(p) is such that h�;�ˇ�i D 2p � 1. It follows that
there is a constant C > 0 such that for each n 2 N and any
two “spin patterns” a D a0 : : : an�1 and b D b0 : : : bn�1
ˇ̌
ˇ̌log

�ˇ�[a0 : : : an�1]
�ˇ�[b0 : : : bn�1]

� ˇ(Na � Nb)
ˇ̌
ˇ̌ � C ;

where Na and Nb are the numbers of identical adjacent
spins in a and b, respectively.

More on Hofbauer’s Example

We come back to the example described in Subsect.
“Nonuniqueness of Equilibrium States: An Example”. It
is easy to verify that in that example varkC1(�) D jakj.

For instance, if ak D �1/(k C 1)2 there is a unique Gibbs/
equilibrium state. If ak D �3 log ((k C 1)/k) for k � 1
and a0 D � log

P1
jD1 j

�3, then from [31] we know that �
admitsmore than one equilibrium state, one of thembeing
ı11:::, which cannot be a Gibbs state for any continuous � .

Examples fromDifferentiableDynamics

In this section we present a number of examples to which
the general theory developed above does not apply di-
rectly but only after a transfer of the theory from a sym-
bolic space to a manifold. We restrict to examples where
the results can be transferred because those aspects of the
smooth dynamics we focus on can be studied as well on
a shift dynamical system that is obtained from the origi-
nal one via symbolic coding. (We do not discuss the cod-
ing process itself which is sometimes far from trivial, but
we focus on the application of the Gibbs and equilibrium
theory.) There are alternative approaches where instead of
the results the concepts and (partly) the strategies of proofs
are transferred to the smooth dynamical systems. This has
led both to an extension of the range of possible applica-
tions of the theory and to a number of refined results (be-
cause some special features of smooth systems necessarily
get lost by transferring the analysis to a completely discon-
nected metric space).

In the following examples, T denotes a (possibly piece-
wise) differentiablemap of a compact smoothmanifoldM.
Points on themanifold are denoted by u and v. In all exam-
ples there is a Hölder continuous coding map � : X ! M
from a subshift of finite typeX onto themanifold which re-
spects the dynamics, i. e., T ı � D � ı � . This factor map
� is “nearly” invertible in the sense that the set of points
in M with more than one preimage under � has mea-
sure zero for all T-invariant measures we are interested
in. Hence such measures �̃ on M correspond unambigu-
ously to shift invariant measures � D �̃ ı ��1. Similarly
observables �̃ onM and � D �̃ ı � on X are related.

Uniformly Expanding Markov Maps of the Interval

A transformation T on M :D [0; 1] is called a Markov
map, if there are 0 D u0 < u1 < � � � < uN D 1 such that
each restriction Tj(ui�1;ui ) is strictly monotone, C1Cr

for some r > 0, and maps (ui�1; ui ) onto a union of
some of these N monotonicity intervals. It is called
uniformly expanding if there is some k 2 N such that
 :D infx j(Tk)0(x)j > 1. It is not difficult to verify that
the symbolic coding of such a system leads to a topolog-
ical Markov chain over the alphabet AD f1; : : : ;Ng. To
simplify the discussion we assume that the transition ma-
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trix M of this topological Markov chain is irreducible and
aperiodic.

Our goal is to find a T-invariant measure �̃ repre-
sented by � 2M
 (XM) which minimizes the relative en-
tropy to Lebesgue measure on [0; 1]

h(�̃jm) :D lim
n!1

1
n

X

a0;:::;an�12f1;:::;Ng

�[a0 : : : an�1]

log
�[a0 : : : an�1]
�n[a0 : : : an�1]

;

where �n[a0 : : : an�1] :D jIa0:::an�1 j. (Recall that, without
insisting on invariance, this would just be the Lebesgue
measure itself.) The existence of the limit will be justi-
fied below – observe that m is not a Gibbs state as v is
in Eq. (17). The argument rests on the simple observa-
tion (implied by the uniform expansion and the piecewise
Hölder-continuity of T 0) that T has bounded distortion,
i. e., that there is a constant C > 0 such that for all n 2 N ,
a0 : : : an�1 2 f1; : : : ;Ngn and u 2 Ia0:::an�1 holds

C�1 � jIa0:::an�1 j � j(T
n)0(u)j � C ; or , equivalently ,

C�1 �
jIa0:::an�1 j

exp
�
Sn �̃(u)

 � C ;

(21)

where �̃(u) :D � log jT 0(u)j. (Observe the similarity be-
tween this property and the Gibbs property (16).) Assum-
ing bounded distortion we have at once

h(�̃jm) D lim
n!1

1
n

 

�Hn(�) �
n�1X

kD0

h� ı � k ; �i

!

D �h(�) � h�;�i ;

andminimizing this relative entropy just amounts to max-
imizing h(�)C h�;�i for � D � log jT 0j ı � . As the re-
sults on Gibbs distributions from Sect. “The Gibbs Prop-
erty: A Local Characterization of Equilibrium” apply, we
conclude that

C�1 �
�[a0 : : : an�1]
jIa0 : : : an�1j

� C

for some C > 0. So the unique T-invariant measure �̃ that
minimizes the relative entropy h(�̃jm) is equivalent to
Lebesguemeasurem. (The existence of an invariant proba-
bility measure equivalent tom is well known, also without
invoking entropy theory. It is guaranteed by a “Folklore
Theorem” [33].)

Interval Maps with an Indifferent Fixed Point

The presence of just one point x 2 [0; 1] such that
T 0(x) D 1 dramatically changes the properties of the sys-
tem.A canonical example is themap T˛ : x 7! x(1C2˛x˛)
if x 2 [0; 1/2[ and x 7! 2x � 1 if x 2 [1/2; 1]. We
have T 0(0) D 1, i. e., 0 is an indifferent fixed point.
For ˛ 2 [0; 1[ this map admits an absolutely continuous
invariant probability measure d�(x) D h(x)dx, where
h(x) � x�˛ when x ! 0 [66]. In the physics literature,
this type of map is known as the “Manneville–Pomeau”
map. It was introduced as a model of transition from lam-
inar to intermittent behavior [50]. In [28] the authors con-
struct a piecewise affine version of this map to study the
complexity of trajectories (in the sense of Subsect. “A Short
Digression on Complexity”). This gives rise to a count-
able state Markov chain. In [69] the close connection to
the Fisher–Felderhof model and Hofbauer’s example (see
Subsect. “Nonuniqueness of Equilibrium States: An Ex-
ample”) was realized. We refer to [61] for recent develop-
ments and a list of references.

Axiom A Diffeomorphisms, Anosov Diffeomorphisms,
Sinai–Ruelle–Bowen Measures

The first spectacular application of the theory of Gibbs
measures to differentiable dynamical systems was Sinai’s
approach to Anosov diffeomorphisms via Markov parti-
tions [64] that allowed one to code the dynamics of these
maps into a subshift of finite type and to study their in-
variant measures by methods from equilibrium statisti-
cal mechanics [65] that had been developed previously
by Dobrushin, Lanford, and Ruelle [17,18,19,20,41]. Not
much later this approach was extended by Bowen [2] to
Smale’s Axiom A diffeomorphisms (and to Axiom A flows
by Bowen and Ruelle [7]); see also [54]. The interested
reader can consult, e. g., [71] for a survey, and either [6]
or [15] for details.

Both types of diffeomorphisms act on a smooth com-
pact Riemannian manifoldM and are characterized by the
existence of a compact T-invariant hyperbolic set � � M.
Their basic properties are described in detail in the contri-
bution � Ergodic Theory: Basic Examples and Construc-
tions. Very briefly, the tangent bundle over � splits into
two invariant subbundles – a stable one and an unsta-
ble one. Correspondingly, through each point of � there
passes a local stable and a local unstable manifold which
are both tangent to the respective subspaces of the lo-
cal tangent space. The unstable derivative of T, i. e., the
derivative DT restricted to the unstable subbundle, is uni-
formly expanding. Its Jacobian determinant, denoted by
J(u), is Hölder continuous as a function on �. Hence the
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observable �(u) :D � log jJ(u)j ı � is Hölder continuous,
and the Gibbs and equilibrium theory apply (via the sym-
bolic coding) to the diffeomorphism T (modulo possibly
a decomposition of the hyperbolic set into irreducible and
aperiodic components, called basic sets, that can be mod-
eled by topologically mixing subshifts of finite type). The
main results are:

Characterization of attractors The following assertions
are equivalent for a basic set˝ � �:

(i) ˝ is an attractor, i. e., there are arbitrarily small
neighborhoods U � M of˝ such that TU � U .

(ii) The union of all stable manifolds through points of˝
is a subset ofM with positive volume.

(iii) The pressure PTj˝ (�(u)) D 0.

In this case the unique equilibrium and Gibbs state �C

of Tj˝ is called the Sinai–Ruelle–Bowen (SRB) mea-
sure of Tj˝ . It is uniquely characterized by the identity
hTj˝ (�C) D �h�(u); �Ci. (For all otherT-invariantmea-
sures on˝ one has “<” instead of “D”.)

Further properties of SRB measures Suppose
PTj˝ (�(u)) D 0 and let �C be the SRB measure.

(a) For a set of points u 2 M of positive volume we have:

lim
n!1

1
n

n�1X

kD0

f (Tku) D h f ; �Ci :

(Indeed, because of (ii) of the above characterization,
this holds for almost all points of the union of the sta-
ble manifolds through points of˝ .)

(b) Conditioned on unstable manifolds, �C is absolutely
continuous to the volume measure on unstable mani-
folds.

In the special case of transitive Anosov diffeomorphisms,
the whole manifold is a hyperbolic set and ˝ D M. Be-
cause of transitivity, property (ii) from the characteriza-
tion of attractors is trivially satisfied, so there is always
a unique SRB measure �C. As T�1 is an Anosov diffeo-
morphism as well – only the roles of stable and unstable
manifolds are interchanged – T�1 has a unique SRB mea-
sure �� which is the unique equilibrium state of T�1 (and
hence also of T) for �(s) :D log jJ(s)j. One can show:

SRB measures for Anosov diffeomorphisms The fol-
lowing assertions are equivalent:

(i) �C D ��.
(ii) �C or �� is absolutely continuous w.r.t the volume

measure onM.

(iii) For each periodic point u D Tnu 2 M, jJ(u)j D 1,
where J denotes the determinant of DT.

We remark that, similarly to the case of Markov inter-
val maps, the unstable Jacobian of Tn at u is asymp-
totically equivalent to the volume of the “n-cylinder” of
the Markov partition around u. So the maximization of
h(�)C h�(u); �i by the SRB measure �C can again be in-
terpreted as the minimization of the relative entropy of in-
variant measures with respect to the normalized volume,
and the fact that P(�(u)) D 0 in the Anosov (or more gen-
erally attractor) case means that�C is as close to being ab-
solutely continuous as it is possible for a singular measure.
This is reflected by the above properties (a) and (b).

We emphasize the meaning of property (a) above: it
tells us that the SRB measure �C is the only physically ob-
servable measure. Indeed, in numerical experiments with
physical models, one picks an initial point u 2 M “at ran-
dom” (i. e., with respect to the volume or Lebesgue mea-
sure) and follows its orbit Tku, k � 0.

Bowen’s Formula for the Hausdorff Dimension
of Conformal Repellers

Just as nearby orbits converge towards an attractor, they
diverge away from a repeller. Conformal repellers form
a nice class of systems which can be coded by a subshift of
finite type. The construction of their Markov partitions is
much simpler than that of Anosov diffeomorphisms, see,
e. g., [72].

Let us recall the definition of a conformal repeller be-
fore giving a fundamental example. Given a holomorphic
map T : V ! C where V � C is open and J a compact
subset of C, one says that (J;V ; T) is a conformal repeller
if

(i) there exist C > 0, ˛ > 1 such that j(Tn)0(z)j � C˛n

for all z 2 J, n � 1;
(ii) J D

T
n�1 T

�n(V ), and
(iii) for any open setU such thatU \ J ¤ ;, there exists n

such that Tn(U \ J) � J.

From the definition it follows that T(J) D J and T�1(J)
D J.

A fundamental example is the map T : z ! z2 C c,
c 2 C being a parameter. It can be shown that for jcj < 1

4
there exists a compact set J, called a (hyperbolic) Julia set,
such that (J;C; T) is a conformal repeller.

Conformal repellers J are in general fractal sets and
one can measure their “degree of fractality” by means of
their Hausdorff dimension, dimH(J). Roughly speaking,
one computes this dimension by covering the set J by balls
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with radius less than or equal to ı. If Nı (J) denotes the
cardinality of the smallest such covering, then we expect
that

Nı(J) � ı� dimH(J); as ı ! 0 :

We refer the reader to � Ergodic Theory: Fractal Ge-
ometry or [22,46] for a rigorous definition (based on
Carathéodory’s construction) and for more information
on fractal geometry.

Bowen’s formula relates dimH(J) to the unique zero
of the pressure function ˇ 7! P(ˇ�̃) where �̃ :D
�(log jT 0j)jJ . It is not difficult to see that indeed this map
has a unique zero for some positive ˇ.

By property (i), Sn �̃ � const � n log˛, which implies
(by (13)) that d

dˇ P(ˇ�̃) D h�̃; �ˇ i � � log˛ < 0. As
P(0) equals the topological entropy of J, i. e., the logarithm
of the largest eigenvalue of the matrixM associated to the
Markov partition, P(0) is strictly positive. Therefore, (re-
call that the pressure function is continuous) there exists
a unique number ˇ0 > 0 such that P(ˇ0�̃) D 0.

It turns out that this unique zero is precisely dimH(J):

Bowen’s formula The Hausdorff dimension of J is the
unique solution of the equation P(ˇ�̃) D 0,ˇ 2 R; in par-
ticular

P(dimH(J)�̃) D 0 :

This formula was proven in [55] for a general class of con-
formal repellers after the seminal paper [5]. The main tool
is a distortion estimate very similar to (21). A simple ex-
position can be found in [72].

NonequilibriumSteady States
and Entropy Production

SRB measures for Anosov diffeomorphisms and Axiom
A attractors have been accepted recently as conceptual
models for nonequilibrium steady states in nonequilibrium
statistical mechanics. Let us point out that the word “equi-
librium” is used in physics in a much more restricted sense
than in ergodic theory. Only diffeomorphisms preserving
the natural volume of the manifold (or a measure equiv-
alent to the volume) would be considered as appropriate
toy models of physical equilibrium situations. In the case
of Anosov diffeomorphisms this is precisely the case if the
“forward” and “backward” SRB measures �C and �� co-
incide. Otherwise, the diffeomorphism models a situation
out of equilibrium, and the difference between�C and��

can be related to entropy production and irreversibility.
Gallavotti and Cohen [26,27] introduced SRB mea-

sures as idealized models of nonequilibrium steady states

around 1995. In order to have as firm a mathematical ba-
sis as possible they made the “chaotic hypothesis” that the
systems they studied behave like transitive Anosov sys-
tems. Ruelle [56] extended their approach to more gen-
eral (even nonuniformly) hyperbolic dynamics; see also
his reviews [57,59] for more recent accounts discussing
also a number of related problems; see by [51], too. The
importance of the Gibbs property of SRB measures for
the discussion of entropy production was also highlighted
in [35], where it is shown that for transitive Anosov
diffeomorphisms the relative entropy h(�Cj��) equals
the average entropy production rate hlog jJj; �Ci of �C

where J denotes again the Jacobian determinant of the dif-
feomorphism. In particular, the entropy production rate
is zero if, and only if, h(�Cj��) D 0, i. e., using cod-
ing and (19), if, and only if, �C D ��. According to
Subsect. “Axiom A Diffeomorphisms, Anosov Diffeomor-
phisms, Sinai–Ruelle–BowenMeasures”, this is also equiv-
alent to �C or �� being absolutely continuous with re-
spect to the volume measure.

SomeOngoing Developments and Future Directions

As we saw, many dynamical systems with uniform hyper-
bolic structure (e. g., Anosov maps, axiom A diffeomor-
phisms) can be modeled by subshifts of finite type over
a finite alphabet. We already mentioned in Subsect. “In-
terval Maps with an Indifferent Fixed Point” the typi-
cal example of a map of the interval with an indifferent
fixed point, whose symbolic model is still a subshift of
finite type, but with a countable alphabet. The thermo-
dynamic formalism for such systems is by now well de-
veloped [24,30,60,61,62] and used, e. g., for multidimen-
sional piecewise expanding maps [13]. An active line of
research is related to systems admitting representations by
symbolic models called “towers” constructed by using “in-
ducing schemes”. The fundamental example is the class
of one-dimensional unimodal maps satisfying the “Col-
let–Eckmann condition”. A first attempt to develop ther-
modynamic formalism for such systems was made in [10]
where existence and uniqueness of equilibrium measures
for the potential function �̃ˇ (u) D �ˇ log jT 0(u)j with ˇ
close to 1 was established. Very recently, new develop-
ments in this direction appeared, see, e. g., [11,12,47].

A largely open field of research concerns a new
branch of nonequilibrium statistical mechanics, the so-
called “chaotic scattering theory”, namely the analysis of
chaotic systems with various openings or holes in phase
space, and the corresponding repellers on which interest-
ing invariant measures exist. We refer the reader to [15]
for a brief account and references to the physics litera-
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ture. The existence of (generalized) steady states on re-
pellers and the so-called “escape rate formula” have been
observed numerically in a number of models. So far, little
has been provenmathematically, except for Anosov diffeo-
morphisms with special holes [15] and for certain nonuni-
formly hyperbolic systems [9].
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Glossary

Impulse The word impulse is used in many areas in dif-
ferent ways. In classical mechanics, the impulse is the
integral of force with respect to time. It is also used to
refer to a fast-acting force, which is often idealized by
a step function or a delta function. In this text, it is used
to represent any functional form of pressure increase,
either static or transient, which can generate observ-
able signals.

Magma, melt, liquid Magma is a general name for
molten rock. It is fluid but contains solid and gas in-
clusions in liquid matrix. The matrix in magma is sili-
cate melt (which is often called just melt), and that in
a hydrothermal system is water.

Volatile Volatile is compound in silicate melt. The major
component is H2O, of which concentration is 1–5wt%
depending mainly on pressure and composition of the
melt. It exsolves from melt and forms gas bubbles at
relatively low pressure (ca. 100MPa corresponding to
the litho-static pressure around several kilo-meters).
The second major component is CO2. Although its
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concentration is usually several ppm, some kinds of
melts may dissolve 3–30wt% of CO2 at several GPa.

Long period seismic events Long-period (or very long-
period) seismic events are dominant in the period from
about 1 s tomore than a few tens of seconds. These sig-
nals at volcanoes are considered to be generated by in-
teraction or resonance between volcanic fluid and the
surrounding medium.

Ground deformation Ground deformation is often ob-
served at volcanoes when magma chambers inflate or
deflate. Such ground deformation is detected by geode-
tic measurements such as GPS, tilt or strain meters,
and the deformations often continue for a few tens of
minutes to days or even months.

Magma chamber A magma chamber is a storage system
of molten magma. It is generally hard to detect, but is
probably located at from a shallow depth (ca. 1 km) to
a few tens of km beneath the volcanoes. The shape and
size have not been confirmed yet, but it is usually as-
sumed to be rather round and hundreds to thousands
of meters in scale. A magma storage system which has
a horizontal extent is called a sill, and one which has
a vertical extent is called a dike.

Rectified diffusion and rectified heat transfer Rectified
diffusion is a mechanism which can push dissolved
volatiles into bubbles in a sound field. Bubbles take in
more volatiles during expansion than they discharge
during contraction, mainly because of the follow-
ing two non-linear effects. Firstly, during expansion
the bubble radius becomes larger so that the bubble
surface is also larger than the surface during contrac-
tion. Secondly, radial bubble expansion tangentially
stretches the diffusion layer and sharpens the radial
gradient of the volatile concentration in the diffusion
layer, so that the volatile flux into the bubble. The
mechanism also works to push heat into bubbles and
enhances evaporation in a liquid-vapor system. The
rectified diffusion and heat transfer have been known
and studied in mechanical and chemical engineering.

Bubble collapse When the bubble is compressed, oscil-
lates, or loses its mass by diffusion or phase change, it
contracts to a very small size and sometimes disappear.
Bubble collapse indicates the contraction of a bubble
and does not necessarily indicate its disappearance.

Definition of the Subject

A volcano consists of solids, liquids, gases, and intermedi-
ate materials of any two of these phases. Mechanical and
thermo-dynamical interactions of these phases are essen-

tial in generating a variety of volcanic activities. In partic-
ular, the gas phase is mechanically distinct from the other
phases and plays important roles in the dynamic phenom-
ena of volcanoes. When we work on volcanic activities, we
are almost certainly confronted with physics problems as-
sociated with bubbles.

The roles of bubbles in volcanic activities have been in-
vestigated mainly in three aspects. Firstly, the nucleation,
growth, and expansion of bubbles is considered to be the
main force that brings the magma to the surface [62,88].
Secondly, a single bubble, if it is sufficiently large, may
generate seismic waves when it rapidly expands or accel-
erates in the volcanic conduit [11,35,81,95], and may gen-
erate acoustic waves in the air when it oscillates or bursts
at the magma surface [36,82,95,96]. Thirdly, the existence
of bubbles can significantly reduce the sound velocity [16,

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Table 1
List of important variables and constants

Notation Unit Definition
Ceq – Equilibriumvolatile concentration

(weight fraction) in the liquid
cl m s�1 Sound speed in the liquid
cpg J kg�1K�1 Heat capacity of the gas at constant

pressure
cpl J kg�1K�1 Heat capacity of the liquid at constant

pressure
Kg Pa Effective bulk modulus of the bubble
Kl Pa Bulk modulus of the liquid
L J kg�1 Latent heat
pg Pa Pressure in the bubble
pg Pa Pressure in the liquid far from the bubble
R m Bubble radius
S m Outer radius of the cellular bubble
T K Temperature
U ms�1 Translational velocity of the bubble
� – Specific heat ratio
�l Pa s Liquid viscosity
�gl m2 s�1 Diffusivity of the volatile in the liquid
�T m2 s�1 Thermal diffusivity in the bubble
�Tl m2 s�1 Thermal diffusivity in the liquid
�̄ Pa Effective stiffness of the magma

chamber
�l Pa Shear elasticity of the liquid
�l kgm�3 Liquid density
˙ ms�1 Surface tension

1 Pa Ambient stress change given to the

magma chamber
� s Maxwell relaxation time
! rad s�1 Angular frequency
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42] and increase the attenuation and dispersion of the
waves [15,30,44]. This effect is considered to be relevant
to many spectral features of seismic waves and air-waves
associated with volcanic activities [3,10,22,45].

Studies on bubble dynamics relevant to the volcanol-
ogy are spread over many research fields and cannot be
covered by a single paper. Good review papers and text-
books have already been published on bubble phenomena
in sound fields [61,70,73,74] and on the nucleation and
growth of bubbles in magma [62]. In this paper, we dis-
cuss several bubble dynamics phenomena selected from
a particular point of view that the bubbly fluid works as an
impulse generator. Here the term impulse means a pres-
sure increase, either static or transient, which can generate
any observable signal (e. g. earthquakes, ground deforma-
tions, airwaves, and an eruption itself). Especially, we fo-
cus on the processes that the impulse is excited by non-
linear coupling between the internal processes of a bub-
bly fluid and an external perturbation. The importance of
these processes have recently become noticed as a possi-
ble triggering mechanism of eruptions, earthquakes, and
inflation of a volcano [57,64]. Although it is generally con-
sidered that stress perturbation caused by preceding events
is important, exact mechanisms to generate a pressure in-
crease, which is required to trigger the subsequent events,
are yet under discussion. In the first place, factors con-
trolling single bubble dynamics are summarized as the
elementary processes in the bubbly fluid. Then two dis-
tinct liquid-bubble systems are considered, both of which
are included in a volcano. The one is a body of bubbly
magma confined in an elastic chamber, where elasticity of
the chamber, melt viscosity, and gas diffusion are impor-
tant. The other is a hydrothermal system, where bubble
oscillation, evaporation, and heat transfer are important.

Introduction

Elementary Processes in Single-Bubble Dynamics

Radial motion of a single bubble interacting with ambient
pressure perturbation is the elementary process control-
ling behaviors of the liquid-bubble mixtures. Although it
appears quite simple, it contains various mechanisms in
plenty. The great variety of behaviors of a single bubble
has attracted many scientists, among whom is Leonardo
da Vinci [76]. Nowadays, knowledge of the single bubble
dynamics is used and studies are continued in many aca-
demic and industrial areas such as mechanical engineer-
ing, chemical engineering, medical science, and earth sci-
ence.

Factors which may control the radial motion of a bub-
ble are the pressure difference inside and outside the bub-

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Table 2
List of characteristic times

Notation Equation Definition
�c (2) Inertia-controlled bubble collapse
�g (25) Mass diffusion in the liquid around the

bubble
�T (24) Thermal diffusion in the bubble
�v < (11) Viscosity-controlled bubble expansion
!o (9) Natural frequency of a bubble

ble, inertia and stress associated with the deformation of
the surrounding liquid, propagation of pressure waves,
heat and mass transport, phase transition at the bubble
wall, chemical reactions, relative translational motion be-
tween the bubble and the liquid, and so on. Because in-
cluding all these mechanisms at the same time in order
to calculate the behavior of a bubble is unrealistic, we
need to make adequate simplification and assumptions.
Each mechanism has its own characteristic time scale in
which the effect is dominant (Table 2), and its own ef-
fect on the bubble dynamics. Knowing the individual time
scales and features is important when we want to under-
stand and simulate a certain phenomenon correctly and
efficiently. A brief review of some representative mecha-
nisms with linearized analyses are presented in Sect. “Ele-
mentary Processes in a Single–Bubble Dynamics” for this
purpose. Based on the results, geophysical phenomena and
proposed models are discussed in the latter sections.

Bubbly Magma in an Elastic Rock as a Pressure Source

We consider a body of bubbly magma confined in an elas-
tic rock. Pressure perturbations to the system are caused by
a change of tectonic stress due to local earthquakes, surface
unloading by dome collapse, passing seismic waves from
a near or distant source, or depressurization of the cham-
ber by degassing or magma leakage. Dynamic response of
the system may be relevant to subsequent activities of the
volcano as follows.

Nishimura [64] investigated pressure re-equilibration
between the bubbles, the melt, and the surrounding elas-
tic medium. It is assumed that the pressure of the sys-
tem is suddenly decreased. After re-equilibration, the orig-
inal magma pressure is partially or completely recovered
or even exceeded, depending on the size of the bubbles,
stiffness of the elastic container, and the confining pres-
sure. His model is used to explain rapid pressurization
of a magma chamber triggered by the lava-dome collapse
at Soufriere Hills Volcano [97], and pressure recovery in
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magma filling the chamber after explosive degassing to
continue activities at Popocatepetl Volcano [12]. Shimo-
mura et al. [87] extended the formulation of [64] to cal-
culate the time profile of the pressure recovery after sud-
den decompression. They showed that the time scale of
the pressure recovery is strongly controlled by the sys-
tem parameters, which include stiffness of the elastic con-
tainer, bubble number density, diffusivity of the volatile
in the melt, ambient pressure, and properties of the melt.
Chouet et al. [13] also calculated the time profile assum-
ing the system parameters for Popocatepetl Volcano, and
compared the results with a particular source time func-
tion of a very-long-period seismic signal. Furthermore, in
the same year, Lensky et al. [53] independently developed
a mathematically equivalent model considering magma
with CO2 bubbles in mantle rock. They interpreted the
results as a possible pressurization mechanism to initiate
dikes in mantle which allow the fast transport of magma.
There are in fact quite a few documented cases in which
eruptions were triggered by local tectonic earthquakes
(e. g. [47,68]) and wave propagation from a distant earth-
quake (e. g. [6,54]). Recently, Manga and Brodsky [57]
have given a comprehensive review on the phenomena and
possible mechanisms. Brodsky et al. [6] investigated the
possibility that a strain wave from a distant earthquake
can increase the pressure in bubbly magma by rectified
diffusion, which is the mechanism by which volatiles are
pumped into a bubble by cyclic expansion and contrac-
tion. However, it has turned out that the mechanism by
itself can cause a negligibly small pressure increase [6,29].
Several other mechanisms for long-range triggering have
been proposed, which include pressure increase from ris-
ing bubbles [55], sub-critical crack growth [7], and frac-
ture unclogging [8].

Acoustic Bubbles in Hydrothermal Systems

A hydrothermal system is another major source of pres-
sure increase, long-period volcano seismic events [46], and
triggered seismicity [57,89]. Behaviors of a single bubble
and liquid-bubble mixtures in a hydrothermal system are
quite different from those in a magmatic system, mainly
because of the water viscosity which is less than that of
magma by several orders of magnitude.We introduce sev-
eral phenomena which are particular to the hydrothermal
systems in Sect. “Acoustic Bubbles in Hydrothermal Sys-
tems”.

Geyser activity is well known for intermittent activ-
ity of hot-water effusion. The effusion process looks quite
similar to volcanic eruptions, and some geysers are charac-
terized by regular intervals of time and duration, which are

also recognized in particular types of eruptions and seis-
mic activities. Consequently, the geysers have been widely
studied using seismological and geophysical techniques, as
well as field observations, not only for clarifying the mech-
anism of the geysers but also for understanding the vol-
canic activities (e. g., [39,40,43,65]). Kedar et al. [39,40]
conducted a unique experiment at Old Faithful Geyser,
Yellowstone. They measured pressure within the geyser’s
water column simultaneously with seismic measurements
on the surface. The data demonstrated that the tremor ob-
served at Old Faithful results from impulsive events in the
geyser. The impulsive events weremodeled by a collapse of
a spherical bubble by cooling that occurred when the wa-
ter column reached a critical temperature. Their data are
reviewed in Sect. “Acoustic Bubbles in Hydrothermal Sys-
tems” in relation to other studies on the dynamics of gas
and vapor bubbles.

Elementary Processes in a Single-Bubble Dynamics

Equation of Motion for the Bubble Radius

Motion of a bubble is in fact a fluid dynamical problem
for the liquid surrounding the bubble. The simplest model
describing the behavior of a bubble is based on three as-
sumptions:

(1) The bubble is spherical,
(2) The liquid is incompressible, and
(3) The motion is radial.

Using the basic equations of fluid mechanics, which are
the continuity equation and the momentum equation, and
the force balance at the bubble surface, the first equa-
tion of motion for the bubble radius was obtained by
Rayleigh [80]:

�l

�
RR̈C

3
2
Ṙ2
�
D p(R) � pl ; (1)

where R is the bubble radius, �l is the liquid density, p(R)
is the pressure in the liquid at the bubble surface, and pl
is the pressure in the liquid at a large distance from the
bubble. Using Eq. (1), Rayleigh [80] solved the problem of
the collapse of an empty cavity in a large body of liquid at
a constant pl and showed the characteristic collapse time
is

�c D Ro
p
�l/pl : (2)

The time �c is called the Rayleigh collapse time and is one
of the most important time scales in the bubble dynamics.

Plesset [69] extended Eq. (1) including the effects of
surface tension and time-dependent pressure field, and
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Proitsky [71] included the effect of viscosity. The gener-
alized Rayleigh equation for bubble dynamics is known as
the Rayleigh–Plesset equation. liquid viscosity and surface
tension. The generalized Rayleigh equation for bubble dy-
namics is called the Rayleigh–Plesset equation [70]:

�l

�
RR̈C

3
2
Ṙ2
�
D pg � pl � 4�l

Ṙ
R
�

2˙
R
; (3)

where �l is the liquid viscosity, and ˙ is the surface ten-
sion. Equation (3) is valid for a Newtonian liquid under
conditions of negligible mass exchange at the bubble sur-
face. A further generalized equation to which these two re-
strictions do not apply is [72]:

�l

�
Ru̇l C

3
2
u2l

�
� J

�
2ul C J

�
1
�g
�

1
�l

��

D pg � pl C
Z 1

R

3�rr
r

dr �
2˙
R
; (4)

where ul is the radial liquid velocity at the bubble surface,
J D �l(ui � Ṙ) is the outgoing mass flux through the bub-
ble wall, �g is the density of the gas in the bubble, and �rr
is the normal radial stress.When the interfacial mass flux J
vanishes, ul D Ṙ as in the left-hand side of the original
Eq. (3).

While the above equations consider a single bubble
in an infinite melt, magmatic systems often contain bub-
bles with some finite spacing. Cellular models of pack-
ing which include a finite volume of melt in interaction
with each bubble have been employed for closely spaced
bubbles [79]. When the elementary cell is represented by
a sphere with an outer radius of S, the equation corre-
sponding to (3) is [76]:

�l

�
RR̈

�
1 �

R
S

�
C

3
2
Ṙ2
�
1 �

4
3
R
S
C

1
3
R4

S4

��

D pg � pl � 4�l
Ṙ
R

�
1 �

R3

S3

�
�

2˙
R
: (5)

Equation (5) agrees with Eq. (3) for S !1.
When there is no transport of heat or mass between

the liquid and the bubble, the pressure in the bubble is de-
termined by the instantaneous bubble radius alone. Using
the ideal gas approximation, we have

pgR3� D pgoR3�
o ; (6)

where � is the specific heat ratio, and the subscript o in-
dicates the equilibrium value of the variable. Substituting
Eq. (6) into Eq. (3) for pg and linearizing the equation, we
obtain a damped oscillator equation:

Ẍ C 2bv Ẋ C !2
oX D �

p0l
�lR2

o
; (7)

bv D
2�l
�lR2

o
; (8)

!o D
1
Ro

s
3� pgo � 2˙ /Ro

�l
; (9)

where X and p0l are defined by R D Ro(1C X) and
pl D pgo � 2˙ /Ro C p0l , respectively. Equation (7) is use-
ful to see the characteristic behaviors of a bubble and
their time scales. The resonant frequency of the bubble
is !o (rad s�1). When the second term in the left-hand
side of Eq. (7) dominates the first one in the time scale
of the resonant oscillation, namely when !o < bv , the res-
onant oscillation is damped. In the case of a gas bubble
with a radius of 10�3 m in magma (�l D 2500 kgm�3) at
10MPa (pgo � 2˙ /Ro D 107 Pa), the frequency (!o/(2�))
is about 20 kHz. The oscillation is damped when the vis-
cosity is larger than 160 Pa s. This viscosity is relatively
small for magma. According to these estimations, we see
that the free oscillation of a bubble in magma is possible
in the limited cases that the viscosity is small and the bub-
ble is large. We also see that the bubble oscillation is easily
excited in water which has a viscosity about 10�3 Pa s.

Liquid Rheology

The shear rheology of the liquid surrounding the bubble
is one of the controlling factors for the bubble dynamics.
According to experimental results, magma has viscoelastic
nature, which is the most simply represented by a linear
Maxwell model [99]. Then the normal radial stress �rr in
Eq. (4) is related to the corresponding strain rate ėrr by

�rr D �l

Z t

0
exp

�
�
t � t0

�

�
ėrrdt0 ; (10)

where �l is the shear elasticity and � is the relaxation time.
In the limit of t
 � , the Maxwell relation (10) is reduced
to a linear elastic stress-strain relation as �rr D �lerr.
While in the limit of t 	 � , it is reduced to a Newtonian
viscous relation, that is a linear stress-strain rate relation
as �rr D �l� ėrr, where �l� corresponds to the Newtonian
viscosity �l.

Fogler and Goddard [21] first used the viscoelastic
relation (10) in the generalized Rayleigh–Plesset Eq. (4)
without mass flux, and demonstrated that the influence
of the viscoelastic effects on the radial motion of a bub-
ble is characterized by a dimensionless parameter called
the Deborah number De D � /�c, which compares the re-
laxation time � and Rayleigh collapse time �c defined in
Eq. (2): the influence is large when � 	 �c. Extending the
formulation by Fogler and Goddard [21] to a cellular bub-
ble, Ichihara [28] investigated its characteristic behaviors
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in magmatic conditions. It is shown that the elastic oscil-
lation of a bubble, which occurs in the case of � 	 �c, is in
a frequency of order of MHz and with very small displace-
ment of the bubble wall because of the large shearmodulus
of the magma.

Change of the bubble radius in magma is mainly con-
trolled by the viscosity except in magma with very small
viscosity in which the bubble oscillation is possible. There-
fore, in most of the studies for bubble growth in magma,
effects of liquid inertia and viscoelasticity are not consid-
ered, and Eq. (3) or (5) for a Newtonian fluid is used,
neglecting the left-hand side terms representing the iner-
tia [2,62,79,88]. Barclay et al. [2] analytically solved the
problem of the viscosity-controlled bubble expansion for
instantaneous decompression, and showed the character-
istic expansion time is

�v D
4�l
3pl

; (11)

where pl is the pressure in the liquid. The time �v is one of
the most important time scales of the bubble dynamics in
magma [2,30], while the Rayleigh collapse time �c, which
is controlled by the inertia, is important in low-viscosity
fluids including hydrothermal systems.

Definition of the viscous expansion time correspond-
ing to Eq. (11) is different depending on which problems
and literature are being referenced. The time scale of the
entire expansion of a bubble for instantaneous decompres-
sion is represented by Eq. (11) using the reduced pressure
for pl [2]. Volumetric oscillation of a bubble in an acous-
tic field is prevented by the viscous resistance if the period
is shorter than �v , in this case with the initial static pres-
sure for pl [30]. When the bubble expansion is driven by
a constant gas pressure, which occurs at the initial stage
of diffusion-drive gas expansion when the gas is efficiently
supplied from the liquid, the bubble grows approximately
as R � Ro exp[t
p/(4�l)] [62,93], where 
p is the pres-
sure difference. In this case, �v D 4�l/
p. The last case is
discussed again later in the section of mass transport.

Liquid Compressibility

The effect of liquid compressibility on radial motion of
a bubble was first considered in connection with under-
water explosions [14,41]. Liquid compressibility allows en-
ergy transport as a pressure wave so that it causes radia-
tion damping. Noting that the effect is considerable in the
case of a violent oscillation or collapse of a bubble, sev-
eral mathematical approaches were proposed to include
the effect in the equation of bubble radius. According to
mathematical and numerical studies by Prosperetti and

Lezzi [78], which compared the proposed equations, the
following Keller’s equation [41] is widely accepted as the
most adequate form.

�l

��
1 �

Ṙ
cl

�
RR̈C

3
2

�
1 �

Ṙ
3cl

�
Ṙ2
�

D

�
1C

Ṙ
cl
C

R
cl

d
dt

��
pg � pl � 4�l

Ṙ
R
�

2˙
R

�
;

(12)

where cl is the sound speed in the liquid. Although Pros-
peretti and Lezzi [78] further proposed to use the liquid
enthalpy at the bubble wall instead of the pressure for the
best accuracy, Eq. (12) is generally used in the literature.

Comparing Eqs. (12) and (3), we can see that the
correction terms due to the liquid compressibility have
the order of Ṙ/cl. It means that the correction is con-
siderable only when the bubble wall velocity becomes
as large as the sound speed of the liquid. By apply-
ing [1C (Ṙ/cl)C (R/cl)d/dt]�1 to both sides of Eq. (12)
and linearizing the equation, Prosperetti [75] derived the
acoustic damping coefficient, which corresponds to bv in
Eq. (8) for the viscous damping, as bac :

bac D
!2Ro

2cl
; (13)

where ! is the angular frequency of the oscillation. The
acoustic damping is more significant when the bubble is
larger and the oscillation frequency is higher.

Effects of liquid compressibility on bubble dynamics
in a highly viscous liquid are not understood comprehen-
sively. Derivation of Eq. (12) and related studies were per-
formed thinking of liquids with ordinary viscosities like
water. Therefore, the Reynolds number Re D �lRocl/�l
was presupposed to be large. On the other hand, the vis-
cosity of magma can be large enough to make Re very
small. In this case, the same mathematical approximation
is not necessarily applicable. Yamada et al. [100] pointed
out this problem and solved the equations including the
viscous force associated with the volumetric strain rate.
Although the equation of motion for the bubble radius ap-
pears not to be affected by the compressibility when the
system is initially hydrostatic, the velocity field around
the bubble is different from the incompressible solution,
even if the wall velocity is much smaller than the acoustic
velocity.

There is argument whether the equation of radial mo-
tion of a bubble surrounded by a finite volume of liquid
needs correction terms for the compressibility. However, it
seems to be negligible in magma, which is evaluated as fol-
lows [28]. In the case that the bubble is surrounded by an
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Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 1
The internal heat and mass transport processes which control
pressure change and energy loss associated with the bubble os-
cillation

elastic shell, contribution of the compressibility to the bub-
ble expansion is ıcR D Ro(pg � pl)(1 � R3

o/S3o)�1(3Kl)�1,
where Kl is the bulk modulus of the liquid, which
is the reciprocal of the compressibility [48]. We can
evaluate ıcR/Ro < 10�3, because Kl � 1010 � 1011 Pa for
magma [99], the realistic pressure difference, pg � pl is not
much larger than 107 Pa, and the volume fraction of the
bubbles, R3

o/S3o , is reasonably assumed to be smaller than
the close-packing limit (� 0:74). The change of pg due to
ıcR is ıcpg/pgo � �3ıcR/Ro , which is also in the same or-
der. When the shell deforms viscously, displacement due
to non-volumetric deformation grows, while that from the
volumetric deformation remains in the same order.

Heat andMass Transport

Each equation of motion for the bubble radius includes pg,
which is the pressure of the gas in the bubble, as we see in
Eqs. (3), (5), and (12). Equation (6) is available to calculate
pg only for an adiabatic process. In fact, when a bubble
expands, the pressure and temperature in the bubble de-
creases. Then heat and volatile components flow into the
bubble from the surrounding liquid. The opposite occurs
when a bubble shrinks. The internal processes which con-
trol pg are schematically shown in Fig. 1. These transport
effects are essential in most of actual systems including
magmatic and hydrothermal systems.

Growth of a bubble by the mass diffusion in an over-
saturated liquid is one of the fundamental problems. Based
on purely dimensional considerations, an approximate
growth law is given by

RṘ D
�gl�l(Co � Ceq)

�g
; (14)

where �gl is the diffusivity of the volatile in the liquid, Co
is the dissolved volatile concentration at a large distance

from the bubble, and Ceq is the equilibrium concentration
at the given pressure [62,70]. From Eq. (14) we find that,
asymptotically, R �

p
2�gl�l(Co � Ceq)t/�g. This expres-

sion is not valid at t ! 0 making Ṙ!1. In the initial
stage, the diffusion is very efficient and the bubble growth
is controlled by viscous resistance [62,93]. In this stage,
R � Ro exp[t
p/(4�l)] as discussed in the section of liq-
uid rheology. The approximate time of the transition from
the viscosity-controlled exponential solution to the diffu-
sion-controlled square-root solution is found by Navon
and Lyakhovsky [62] to be

�vd � [�15 � 10 log(Pe)]�l/
p ; (15)

where Pe D 
pR2
o�
�1
l ��1gl is the Pecret number that com-

pares the time scales of viscous expansion and diffusion.
It is noted that Eq. (15) is validated for Pe < 10�2, that is
for relatively large viscosity and small bubble radius [62].
If we consider 
p � 106 Pa and �gl � 10�11m2 s�1,
this condition is satisfied when R2

o�
�1
l < 10�19, that

is �l > 107 Pa s when Ro � 10�6 m, and �l > 109 Pa s
when Ro � 10�5 m. Then the corresponding times are
�vd > 50 s and �vd > 5000 s, respectively. Lensky et al. [51]
have suggested that the change of the characteristic behav-
ior of the bubble expansion over the time scale �vd gener-
ates a non-linear response of the liquid-bubble mixture to
the pressure perturbation, which may cause amplification
of a pressure wave. Coupling of effects of viscosity and dif-
fusion on the bubble expansion also occurs through the
material properties, because magma viscosity and water
diffusivity are strongly influenced by the amount of dis-
solved water, which is the major volatile component in
magma [4,50].

Matsumoto and Takemura [59] numerically solved
a complete set of equations for the radial dynamics of
a bubble including the conservation equation for mass,
momentum, and energy in the bubble, heat and mass
diffusion in the liquid, and heat and mass exchange be-
tween the gas and the liquid by diffusion and evapora-
tion/condensation. Except in extremely rapid phenomena
as the cases they treated, approximation of a spatially uni-
form pressure in the bubble is adequate [75]. With this
approximation, the computational load is considerably re-
duced [9,38,63].

It is necessary to consider non-uniform temperature
distribution and compositions, in order to quantify the
amounts of energy exchange between the bubble and liq-
uid and energy loss associated with the non-equilibrium
process. Time scales required to recover uniform temper-
ature and composition in the bubble are controlled by
diffusion processes and are much longer than that to at-
tain uniform pressure, which is controlled by the pressure
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wave propagation in the bubble. Assuming representative
values of the thermal diffusivity, �T � 10�5 (m2 s�1), and
the inter-diffusivity of the components in the gas phase,
�gi � 10�7 (m2 s�1) [38], development of thermal and
material diffusion layers all over the bubble with radius
of 10�3 m takes � 0:1 s and � 10 s, respectively. The time
range of 0.1–10 s is exactly what studies on seismoacoustic
phenomena in volcanology are mainly concerned with. It
takes an even longer amount of time to recover uniform
concentration of volatile components in the liquid around
the bubble. Therefore approximation of uniform tempera-
ture and compositions are not always adequate. Again we
introduce results from the linearized theory for a periodic
acoustic field. The bulk modulus of a bubble, Kg, is defined
as:

Kg D �
R
3
@pg
@R

; (16)

which is generally a complex number. The elasticity and
the energy loss associated with volumetric change of
a bubble are represented by the real and imaginary parts
of Kg, respectively. Then the damping factor and the res-
onant frequency for the bubble oscillation, which corre-
spond to Eqs. (8) and (9), respectively, are [75]:

bt D
3Im(Kg)
2�l!R2

o
(17)

!o D
1
Ro

s
3Re(Kg)� 2˙ /Ro

�l
: (18)

In the case of an adiabatic process for an ideal gas, where
Eq. (6) holds, Kg D � pgo and Eq. (18) agree with Eq. (9).
While in the case of an isothermal process, Kg D pgo . In
these two extreme conditions, Im(Kg) D 0 and there is no
thermal damping.

In order to include the effect of non-uniform tempera-
ture distribution in the bubble, we have to solve the energy
equation with the continuity of temperature at the bub-
ble surface. Assuming that the pressure in the bubble is
uniform, the temperature at the bubble wall is constant,
which is supported by the large heat capacity of the liquid
compared with that of the gas, and the pressure perturba-
tion is periodic (/ ei! t), the effective bulk modulus, Kg, is
represented as [75]:

pgo
Kg
D

1
�
�
3(� � 1)
�

i�

"s
i
�
coth

 s
i
�

!

� 1

#

; (19)

� D
�T

!R2 : (20)

When the mass transfer is controlled by the diffusion
of the volatile component in the liquid phase, the diffusion

equation in the liquid and the equilibrium condition at the
bubble surface are added. Then the effective bulk modulus
which includes both the heat and mass transport is

pgo
Kg
D

1
�
�

3(� � 1)
�

i�

"s
i
�
coth

 s
i
�

!

� 1

#

� 3Ag
p
˛g i�

 s
i
�
C
p
˛g

!

; (21)

Ag D
�lpgo
�go

@Ceq

@p
; (22)

˛g D
�gl

�T
; (23)

where Ceq is the saturation concentration at pgo [30].
Equation (21) has the last term in addition to Eq. (19),
which represents the effect of the mass transfer. The di-
mensionless parameter, Ag, represents the ratio of the
volatile mass going into the gas phase from a unit volume
of the liquid phase by decompression to the mass change
in a unit volume of the gas phase due to expansion.

Figure 2 shows the relevant range of the dimensionless
parameters, Ag and ˛g, for an H2O bubble in magma [30].
As temperature decreases or pressure increases, Ag de-
creases (Fig. 2) because of the following two reasons.
With decreasing temperature, ��1go decreases. In the case of
magma, Ceq(p) is approximately proportional to

p
p [26]

so that @Ceq/@p decreases with increasing pressure.
The effective bulk modulus of a bubble for some se-

lected values of the parameters in the range is presented
in Fig. 3 [30]. The thick broken lines in the figure are ob-
tained by Eq. (19), which includes only the heat transport.
In this case, the real part approaches the isothermal bulk
modulus and the adiabatic one in the low and high fre-
quencies, respectively. The mass transport makes the bub-
ble stiffness (Re(Kg)) smaller, which is the more significant
in the lower frequency regime. It is because the bubble has
more time to take in and out the volatile from the liquid
in a cycle of the pressure perturbation. The imaginary part
for each parameter set has a local peak around

! � ��1T D 15�TR�2o ; (24)

which is the characteristic frequency of the energy loss
due to heat transfer. In the case of Ro D 10�3 (m) and
�T D 4 � 10�6 (m2 s�1), which is the value for H2O at
10MPa and 1273K [5], the corresponding frequency
(!/(2�)) is 9.5Hz. The imaginary part of Kg including the
diffusion effect has another peak at the characteristic fre-
quency of the energy loss due to the mass transport. The
frequency is approximately represented by

! � ��1g D 9˛g�TA2
gR
�2
o ; (25)



Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation P 6963

Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 2
The relevant range of the dimensionless parameters representing the effect of the volatile transfer in themagmatic system is shown
as the grayarea. TheparameterAg and˛g are defined in Eqs. (22) and (23), respectively. The temperature (T) and the volatile diffusiv-
ity (�gl) are assumed as shown in the legend, and the pressure is varied from 0.1 to 100MPa. The open crosses are the corresponding
parameters for a vapor-bubble system, Av and ˛T given in Eqs. (27) and (28), respectively. The temperature is varied from 380K to
500K and the pressure is the saturation pressure at each temperature. (Modified from Fig. 1 in [30])

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 3
The effective bulk modulus of a gas bubble with heat and mass
diffusion (calculated by Eq. (21)) as a function of the dimension-
less frequency. The real and the imaginary parts are presented in
a and b, respectively. The thick broken lines indicate no diffusion
and include only thermal effects (which is calculated by Eq. (19)).
(Fig. 2 in [30])

which is usually smaller than ��1T [30]. It is noted that the
above model assumes a single bubble in an infinite liquid.
When the oscillation period is very long, interaction of the
diffusion layers of the adjacent bubbles has to be consid-
ered [15].

When the mechanism of the mass exchange between
the liquid and the bubble is the evaporation/condensation
at the bubble wall, the latent heat plays an important role.
Then the thermal diffusion equation in the liquid and the
balance between the heat flux through the bubble surface
and generation of the latent heat should be added [19,24].
The corresponding bulk modulus of the bubble is repre-
sented as [24]:

pgo
Kg
D

1
�
�

3(� � 1)
�

�
1 �

cpgTo
L

�2
i�

"s
i
�
coth
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�
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� 3Av
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˛T i�

 s
i
�
C
p
˛T

!

; (26)

Av D
�lcplTo pgo
(�goL)2

; (27)

˛T D
�Tl

�T
; (28)

where cpg and cpl are the heat capacity at constant pres-
sure in the gas and the liquid phases, respectively, L is
the latent heat, and �Tl is the thermal diffusivity in the
liquid. In obtaining Eq. (26), the Clausius-Clapeyron re-
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lation: (dp/dT)sat D L�g/T , and thermodynamic relations
for an ideal gas are used.

Equation (26) has the same form as Eq. (21) except
cpgTo/L. This difference is due to the temperature change
at the bubble wall. The dimensionless parameter, Av , cor-
responds to Ag and has a similar physical meaning, which
represents the ratio of the mass going through a phase
change in a unit volume of the liquid phase to the mass
change in a unit volume of the gas phase due to expan-
sion. Although the equation is similar, the possible range
of the parameter is different (Fig. 2). As a result, the fre-
quency dependence of Kg is also different as is shown in
Fig. 4. Comparing the figure with Fig. 3, we can see that
the energy loss of the vapor bubble due to the phase change
is significant in a frequency range higher than that due to
diffusion. The frequency range is comparable to that of the
heat transfer, but the amount of energy loss is much larger.
The vapor bubble loses its elasticity, which is represented
by Re(Kg), in the lower frequency as well.

Under the action of the sound field, there is a net
transport of heat into the bubble by a non-linear pro-

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 4
The effective bulk modulus of a vapor bubble with thermal and
evaporation effects (calculated by Eq. (26)) as a function of the
dimensionless frequency. The real and the imaginary parts are
presented in a andb, respectively. The thick broken lines indicate
no evaporation and include only thermal effects (which is calcu-
lated by Eq. (19))

cess called the rectified heat transfer [98]. In the evapora-
tion/condensation system, the order of the non-linear ef-
fect is so large that it affects the amplitude and damping of
the oscillation in the linear regime [24]. Equation (26) does
not include the effect. Some works investigating the effect
of rectified diffusion process in triggering an eruption or
an earthquake are introduced in the later sections.

Translational Motion

So far we have neglected the translational motion of a bub-
ble relative to the liquid. The translational motion is con-
sidered to be negligible when the translational displace-
ment is smaller than the diffusion layer in the liquid sur-
rounding the bubble. In an acoustic field with frequency!,
this condition is represented by U/! <

p
�/!, where U is

the translational speed and � is the relevant diffusivity. The
translational velocity of a spherical bubble driven by buoy-
ancy is estimated by U D k�lR2

o g��1l , where g is the grav-
itational acceleration. Although k D 1/3 for a pure liquid,
k D 2/9 is used for most of actual liquid, which is not per-
fectly pure, because the pro-surface components concen-
trate on the bubble surface to make the surface less mo-
bile [49]. These approximations hold for relatively slow
velocity, which satisfies Ret D 2�lRoU��1l � 1. Then the
condition in which the translational motion has a minor
effect on the heat and mass transfer is

! >
R4

�

�
k�lg
�l

�2
: (29)

Assuming k D 2/9, R D 10�3 (m), � D �gl D 10�11

(m2 s�1), �l D 2500(kgm�3), �l D 105 (Pa s) for
a magma-H2O system, ! > 3 � 10�4 (rad s�1) and U D
6 � 10�6(m s�1). For a water-vapor system, on the other
hand, we assume k D 1/3, � D �Tl D 10�7, �l D 1000,
�l D 10�3. Then, if R D 10�5, ! > 1 and U D 3 � 10�4,
and if R D 10�4, ! > 104 and U D 3 � 10�2. According
to these estimations, we can see that the translational mo-
tion is negligible for most cases with magma except basalt,
which has relatively small viscosity (�l < 102) and large
diffusivity (�gl � 10�9), while it is considerable in hy-
drothermal systems, except for very small bubbles and the
time scale is very short. As an example, the effect on the
thermal collapse of a vapor bubble is introduced later.

Another effect of the translational motion is its me-
chanical coupling with the radialmotion. Because a bubble
has to move the surrounding liquid in order to make itself
move, it is subject to the inertial force of the liquid, which
depends on its volume [49]. Therefore when the bubble
volume changes, the force also changes. By this considera-
tion, an equation of the translational motion of the bubble
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is approximately represented as [101]:

U̇ D �
3
R
ṘU C 2g �

3
4
CD

R
jUjU ; (30)

where CD is the non-dimensional drag coefficient, which
is given as a function of Ret. From the first term in the
right-hand side, we see that the translational motion is de-
celerated by the bubble expansion. Although it had been
theoretically recognized for long time, it was quantitatively
justified by experiments recently [66]. On the other hand,
the effect of the translational motion on the radial motion
is represented by the term, �U2/2. This term can usually
be neglected [37,66] except in cases with very strong oscil-
lation [17].

Bubbly Magma in an Elastic Rock
as a Pressure Source

Model Overview

Here we consider a magma chamber filled with compress-
ible viscous melt and numerous tiny H2O gas bubbles
(Fig. 5) [79,87]. The magma chamber is confined in an
elastic rock. When perturbation is given to the system,
pressure may increase by interaction of the elastic defor-
mation of the chamber, expansion of the bubbles, and gas
diffusion from themelt to the bubble. Recently, the process
has been discussed in the literature in relation to the ob-
served volcanic phenomena [6,13,29,53,64,87,97], which
are presented in the introduction.

The melt and bubbles are expressed by the cell
model [79], in which multiple spherical bubbles of a con-
stant radius are uniformly packed. Each bubble is sur-
rounded by a finite volume of the melt, represented by an
elementary cell. The elementary cell is spherical, in which
a single gas bubble is located at the center. It is assumed
there is no interaction between neighboring elementary
cells such that all gas bubbles grow in the same manner.
This simplification enables us to examine bubble growth
processes in the entire chamber by studying the growth of
just a single bubble, which is represented by Eq. (5).

Themainmechanism for increasing the pressure is dif-
fusion of the volatile. It is the slowest process of the bubble
dynamics as is described in the previous section. It is cer-
tainly longer than the period of resonant oscillation of the
individual bubbles so that the inertia terms in Eq. (5) are
neglected. It is also longer than the time scale of the heat
transport within the bubble as is shown in Fig. 3 so that we
may assume uniform and constant temperature within the
bubble. Then the mathematical model for the elementary
cell consists of three equations, which represent the radial
motion of the bubble, volatile diffusion in the melt, and

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 5
Schematic illustrations of a cell model [79], b an elementary cell,
and c a chamber surrounded by an elastic medium. The cham-
ber is filled with compressible viscous melt and numerous tiny
spherical gas bubbles. Magma is represented by a combination
of many elementary cells. R and S is the radius of the elementary
cell and gas bubble, respectively, and Vo C ıV is the volume of
the chamber. (Modified from Fig. 1 in [87])

ideal gas approximation, respectively, and three boundary
conditions, which are phase equilibrium and mass flux at
the bubble surface and no mass flux at the external bound-
ary of the cell element.

Interaction Between Melt and Elastic Medium

The volumetric change of the bubbles and the melt due to
the pressure change is compensated by the elastic defor-
mation of the chamber. Here we consider the initial pres-
sure and stress conditions in relation to the physical pro-
cess which brings about the condition, since the relations
have not always been mentioned clearly in previous litera-
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Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 6
Mathematical representation for the interaction of melt pressurepl, stress in the ambient rock�1, and volume change of the cham-
ber, ıV. Volume change due to internal overpressure pl � po and that due to external stress is considered separately

ture. We assume quasi-static deformation of the chamber,
where the pressure of the melt is balanced by the elastic
stress applied by the wall of the chamber. The volumet-
ric change can be caused by (a) pressure change within
the chamber and (b) stress change in the surrounding rock
(Fig. 6). Each process is individually represented by

pl � po D �̄pıVp/Vo ; (31)

� �1 D �̄eıVe/Vo ; (32)

where Vo is the initial equilibrium volume of the cham-
ber, �1 is the ambient stress change, ıVp and ıVe are the
volumetric change due to (a) and (b), respectively, and
�̄p and �̄e are the corresponding effective stiffness of the
wall. Each effective stiffness depends on the elasticity of the
rock, the geometry of the chamber, and the applied stress
field. For the simplicity, we approximate �̄p D �̄e D �̄.
Then the total volumetric change, ıV , is given by

pl � po � �1 D �̄ıV/Vo : (33)

The two perturbations which cause the volumetric
change have not been clearly distinguished in previous lit-
erature. The mathematical treatment by [87] assumed that
pl � po D �
p is given at t D 0. They considered that
this pressure drop is caused by a decrease of the ambi-
ent stress field by a certain amount, say �1 D �
� . On
the other hand, the assumption of [13] is that the pres-
sures in all of the bubbles, the melt, and the rock are
lower by
p than the saturation pressure for the dissolved
volatile concentration at t D 0. Strictly speaking, the con-
sequent processes are different depending on what causes
the pressure perturbation. If the pressure drop of 
p oc-
curred first within the chamber, that is pl � po D �
p
and �1 D 0, the chamber would initially shrink accord-
ing to Eq. (33). If it is caused by an ambient stress drop
first, that is pl � po D 0 and �1 < 0. Then the chamber
would initially expand. In either case, the initial response
is almost instantaneous, which is controlled by elasticity of
the rock and compressibility of the melt. The major defor-

mation occurs later and is controlled by volumetric change
of the bubbles.

Response to Sudden Decompression
and Characteristic Time for Pressure Recovery

There are three important parameters to characterize the
response of the system to the pressure drop which are use-
ful for comparing the model and the field observations.
The first one is the re-equilibrated pressure pf. The second
is the final bubble radius, Rf. The third is the characteristic
time of the recovery process, Tgrowth.

The first and the second are calculated by considera-
tion of the equilibrium condition alone and can be calcu-
lated semi-analytically [64]. On the other hand, Tgrowth is
determined by numerical calculation of the set of equa-
tions described above. Shimomura et al. [87] investigated
the recovery processes and presented that Tgrowth depends
on the stiffness of the chamber (�̄), initial bubble radius
(Ro ), number density of the bubbles (N), volatile diffusiv-
ity in the melt (�gl), initial pressure (po), the pressure drop
(
p), and the melt properties in a complicated manner.

The corresponding study for the bubble growth in an
open space, where the pressure is constant regardless of
the bubble expansion, was presented by Prousevitch et
al. [79]. They assumed an initially supersaturated condi-
tion, in which both plo and pgo are lower than the satu-
ration pressure of the volatile dissolved in the melt. They
investigated the final bubble radius and the time to reach
it, which correspond to Rf and Tgrowth, respectively. They
also presented effects of initial bubble radius (Ro), number
density of the bubbles (N), volatile diffusivity in the melt
(�gl), initial pressure (po), and initial super-saturation.

A simple theory to estimate the time scale of re-equili-
bration is useful to compare the model with observations,
but has not been determined yet. Here we test two hy-
potheses.

1. The recovery time is comparable with the time scale in
which the diffusion layer develops over the entire shell,
that is �1 D (Sf � Rf)2/�gl.
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Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 7
Numerical results of the pressure recovery time for magma in an
elastic rock a and the bubble growth time in an open system b
for various system parameters are compared with analytical ap-
proximations: �1 is the time scale of mass diffusion across the
final shell thickness, �2 is approximation by [53]. Agreement be-
tween the numerical results and �1 is better, but some system-
atic discrepancy remains, as indicated by gray frames. The nu-
merical results for a are from [87], and those for b are from [79]

2. Based on a dimensional analysis of the simplified dif-
fusion Eq. (14), Lensky et al. [53] proposed �2 D

(R2
f /�gl)(�gf/�l)(Co � Cf)�1, where �gf and Cf are the

final gas density in the bubble and the volatile concen-
tration remained in the melt, both of which are func-
tions of pf. They obtained this equation based on the
approximation that the quasi-static mass flux through
the interface is (Co � Ceq(pg))/R.

The re-equilibration times, Tgrowth, obtained by Shimo-
mura et al. [87] and Prousevitch et al. [79] are compared

with the above models in Fig. 7. Comparing Tgrowth-�1
(black symbols) and Tbrowth-�2 (white symbols), we see
that the general trend of Tgrowth is better estimated by �1
than by �2 in both confined and open systems. However,
it should also be noted that �1 still has systematic errors
which are indicated by gray frames. The errors are more
dominant in the confined system (Fig. 7a). It is indicated
that the simple estimation does not include all the factors
relevant to the re-equilibration time and it is not necessar-
ily applicable to the wider range of the parameters.

Re-equilibration Processes

Here we discuss different re-equilibration processes de-
pending on the cause of the pressure drop and the rele-
vant initial conditions. Three representative solutions are
presented in Figs. 8–10. They are obtained for the stan-
dard basaltic system [87], but only viscosity is varied from
50 Pa s for (a) to 106 Pa s for (b).

Figure 8 is the case in which the stress drop occurs in
the ambient rock first. It is generated by, for example, sur-
face unloading by dome collapse [97] and stress change
after a local earthquake. The condition is represented
by �1 D �
� at t � 0 while pl D pg � 2˙ /Ro D po at
t D 0. According to Eq. (33), the chamber expands instan-
taneously, and pl drops by 
p. Then the initial condition
assumed by [64,87] is attained. Response of pg is not in-
stantaneous [62]. Due to the difference between pg and pl,
the bubble expands according to Eq. (5) to decrease pg.
Then the difference between pg and the equilibrium pres-
sure for the volatile concentration in the melt occurs to
make the volatile flow into the bubble to re-increase pg. As
the bubbles grow, the entire volume of the magma (ıV )
increases to enlarge the chamber elastically. Then the elas-
tic stress �̄ıV/Vo increases pl according to Eq. (33). The
re-equilibration proceeds in this way [87].

Figure 9 is the case in which the pressure in the bub-
ble as well as those in the melt and the ambient rock is
lower than the saturation pressure for the initial volatile
concentration in the melt at t D 0. This condition occurs
if bubbles are mixed with the supersaturated melt instan-
taneously, or if the bubbles are kept in the supersaturated
mixture without interaction and suddenly allows the diffu-
sion. Mathematically, the initial condition is equivalent to
those assumed by [13] and [79]. The condition is repre-
sented by pl � po D pg � 2˙ /Ro � po D �1 D �
p at
t � 0. Diffusion of the volatile into the bubble starts, which
increases pg first. Then pg � pl expands the bubble and the
chamber to increase pl in the same way as the previous
case. Practically, the difference between Fig. 8 and Fig. 9
occurs only during a very short period in the beginning,
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Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 8
Pressure recovery in a bubbly magma in an elastic chamber after sudden unloading �1 D �1MPa. The initial condition is
pl D pg � 2˙ /R D 25MPa and R D 10�5m. The bubble radius on the right axis is plotted with a line and points. The stress and
pressures on the left axis are plotted with a solid line for pl, a dotted line for pg, and gray line for �1. The system parameters are
�gl D 10�8 m2 s�1, the bubble number density is 1011 m�3, and �l D 50Pa s for a and 106 Pa s for b. The others are the same as
those for the basaltic system by [87]

Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 9
Similar to Fig. 8, but the initial condition is �1 D pl � po D pg � 2˙ /R� po D �1MPa, with po D 25MPa

Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 10
Similar to Fig. 8, but the initial condition is �1 D 0 and pl � po D pg � 2˙ /R� po D �1MPa, with po D 25MPa

and the subsequent increase of the pressure and volume of
the chamber may look the same from outside.

Figure 10 is the case in which the pressure drop oc-
curs in the melt and in the bubble, while the stress in the
ambient rock is unchanged. The condition is represented

by pl � po D pg � 2˙ /Ro � po D �
p and �1 D 0. Al-
though the assumed initial condition is rather imaginary,
this case is presented in order to demonstrate how the re-
sponse can be different depending on the way the system
is decompressed. In fact, it is more realistic that pl drops
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first, while pg remains at the initial value. This situation
may occur by small leakage of the melt from the system.
In this case, the melt pressure just recovers almost instan-
taneously, because the container compresses the melt ac-
cording to Eq. (33) and bubbles also compress themelt. No
other significant change is expected. On the other hand, if
both pl and pg drop, as in Fig. 10, the pressure still re-
covers rapidly, but bubbles are compressed. Because the
mechanical balance of the bubble and the melt is attained
with pg � 2˙ /R D pl according to Eq. (5), pg has to be-
come larger when R decreases. Then pg exceeds the equi-
librium pressure for the volatile in the melt to make the
volatile dissolve into the melt.

Rectified Diffusion

So far, we discussed responses of the system to a stepwise
pressure drop. When the perturbation is caused by a seis-
mic wave from an external source, the system is subject
to a cyclic disturbance. Rectified diffusion is a mechanism
which can push dissolved volatiles into bubbles in a sound
field. Bubbles take inmore volatiles during expansion than
they discharge during contraction, mainly because of the
following two non-linear effects [18,27]. Firstly, the inter-
face is larger during expansion than during contraction.
Secondly, radial bubble expansion tangentially stretches
the diffusion layer and sharpens the radial gradient of the
volatile concentration in the diffusion layer, so that the
volatile flux into the bubble is enhanced.

Brodsky et al. [6] discussed the possible pressure in-
crease of a bubbly magma confined in an elastic rock by
this mechanism. Using the solution by Hsieh and Ples-
set [27] for a periodic system, they considered that, even
though the net pressure changes are determined by the
pre-existing oversaturation, the rectified diffusion accel-
erates the pressure increase and may break the balance
which had been stabilized the system prior to the oscil-
lation. Ichihara and Brodsky [29] improved the solution
by including resorption of gas as the pressure increase and
development of the diffusion layer around the bubble in
a self-consistent way. It is then shown that rectified diffu-
sion is not faster than the ordinary diffusion and its contri-
bution to the net pressure change is at the most 2 � 10�9

of the initial pressure regardless of the pre-existing over-
saturation.

Acoustic Bubbles in Hydrothermal Systems

Pressure Impulses Generated in a Geyser

Here we consider a mixture of water and vapor bubbles, in
which we expect effects of bubble oscillations and evapo-
ration.

Kedar et al. [39,40] conducted field experiments at
Old Faithful Geyser, Yellowstone. Theymeasured pressure
within the geyser’s water column simultaneouslywith seis-
mic measurements on the surface. The data show a dis-
tinct cause-and-effect relationship between the impulsive
pressure source and the impulse response of the rock
surrounding the water column. In addition, the pressure
pulse, which is strongest at the top transducer, strongly
attenuates downward. Considering that the pulse is gen-
erated by the oscillation of a single bubble, they com-
pared one selected signal with a solution of the equation
of motion for the bubble radius (Eq. (3)). In order to
fit the measured oscillation with a reasonable bubble ra-
dius, they had to assume a very small ambient pressure
to lower the frequency, and a very large viscosity to in-
crease the damping. For Ro D 0:055m, for example, they
used pgo D 0:02MPa, with which Eq. (9) gives the reso-
nant frequency close to the observation:� 20Hz. The vis-
cosity was assumed as �l D 40 Pa s, which is larger than
the actual value by more than four orders. They compared
the damping coefficient with those from radiation and heat
transfer, though these effects were not included in the cal-
culation of Eq. (3), and concluded that mechanisms other
than acoustic, thermal, or viscous damping are required to
explain the strong damping observed.

We have already introduced the damping coefficient
bt with the evaporation effect in Eq. (17) with Eq. (26).
Then, assuming the similar bubble radius and frequency
ranges as [40], let us see the damping coefficient by evap-
oration in comparison with the other coefficients, which
are for viscous, acoustic and thermal damping, repre-
sented by Eqs. (8), (13), and (17) with Eq. (19), respec-
tively. Their values are compared in Fig. 12b, assuming
pgo D 0:13MPa (the saturation pressure at 380K). We
can see that the evaporation effect significantly increases
the damping and dominates the other damping mecha-
nisms in the frequency range of the geyser oscillation. The
evaporation effect also decreases Re(Kg) (Fig. 12a) in the
range. It is thus suggested that the evaporation effect is
significant for the bubble dynamics in the hydrothermal
system.

Inertial and Thermal Collapse of a Bubble

When we heat water in a kettle, we hear strong intermit-
tent pulses before boiling starts. The phenomenon is ex-
plained in terms of the bubble dynamics as follows [1].
In the first regime (which initiates above approximately
40 ıC), small bubbles form slowly out of dissolved air in
the liquid, rising silently to the surface as they break off the
side of the vessel. At higher temperature (� 70 ıC), vapor
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Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 11
Simultaneous pressure records (through a high-pass filter at 1Hz) and seismic traces atOld Faithful geyser, Yellowstone. The geyser’s
eruptions are 2–5min long with the interval between them ranging from30–100min. The figure shows a 30 s data about 27min after
the previous eruption and about 52min before the next eruption. The conduit of the geyser is 22m deep, where the bottom sensor
was located. The bottom, middle and top sensors were connected 3m apart. The seismic station was located at � 25m from the
geyser. The data show a direct correspondence between the pressure pulses and the seismic signals that follow them. (Fig. 3 in [39])

Pressure Impulses Generated by Bubbles Interacting with Ambi-
ent Perturbation, Figure 12
The bubble elasticity (a) and damping factors (b) for a single va-
por bubble with radius 0.055m at 380K, 0.13MPa (saturation
pressure)

bubbles start to nucleate at various sites at the heated bot-
tom surface of the container. Vapor bubbles are different
from the air bubbles in that their formation and collapse
(at the bottom of the vessel) occurs explosively, producing
pressure impulses that traverse the liquid and cause much
of the sound we hear. In the third stage (between 90 ıC
and 100 ıC), vapor bubbles grow, coalesce, and survive
their ascent through the liquid. Bursting of vapor bubbles
at the top surface is considered to be the sound source in
this regime. Finally, the transition to full boil is character-
ized by large bubble formation throughout the bulk of the
liquid.

We consider whether and how the impulse genera-
tion by the bubble collapse occurs in a geyser, where water
that is already boiling is injected and cooled from the sur-
face [43]. The collapse (or growth) of a bubble is classified
into two modes: the inertia mode, which is controlled by
the liquid inertia and driven by the pressure difference be-
tween the liquid and the bubble, and the thermal mode,
which is controlled by the heat transfer and driven by the
temperature difference [20,103]. The former is more vio-
lent than the latter and is responsible for the impulse gen-
eration.
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Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 13
Variation of wall temperature and radius during collapse of water vapor bubbles. Bsat is the dimensionless parameter given by
Eq. (35), which determines relative importance of the liquid inertia and the heat transfer (Fig. 3 in [20])

Based on theoretical and experimental studies, Flor-
schuetz and Chao [20] proposed that the relative impor-
tance of the inertia and the heat transfer is evaluated by
a dimensionless parameter, B, defined by

Ja D
�lcpl(Tsat(plo) � To)

�goL
; (34)

B D Ja2
�Tl

Ro

r
�l

plo � psat(To)
; (35)

where Tsat(plo) is the saturation temperature for the ambi-
ent pressure (plo) and psat(To) is the saturation pressure
for the system temperature (To). The dimensionless pa-
rameter Ja is called the Jacob number, which represents
the degree of subcooling. Figure 13 displays their calcula-
tion results, which clearly shows that for B � 0:3, the col-
lapse rate is dominated by liquid inertia effect, while for
B � 0:03 it is much slower and is recognized as the ther-
mal mode. For an intermediate value of B, oscillation is
observed.

In these works [20,77], it is often assumed that the
pressure in the bubble is initially equal to the saturation
pressure of the subcooled liquid, that is pgo D psat(To),
which is less than the ambient pressure (plo) [20,77]. Ex-
perimentally, it is achieved by preparing for a thermally
equilibriumwater-vapor system at a low pressure and sud-
denly increasing the system pressure to plo [20]. Then the
initial collapse is relatively violent and continues by iner-
tia until the vapor heating at the bubble wall increases the

vapor pressure above the ambient pressure to such an ex-
tent that the liquid is momentarily brought to rest and its
motion actually reverses before the vapor pressure again
drops below the system pressure [20,77]. Although the os-
cillation is difficult to see on the radius change curves in
Fig. 13 for small B, the beginning inertia controlled stage
is evidenced by that all the curves start along the inertia
curve.

On the other hand, in case that a bubble suddenly en-
ters cold water, pgo D plo > psat(To) while temperature in
the bubble Tgo is larger than To and is close to Tsat(pgo ).
Then the collapse begins in the gentle mode controlled
by the heat transfer. It can turn into the inertia mode
only if the rate of heat transport and condensation to
decrease the vapor pressure is so large that inward mo-
tion of the surrounding liquid cannot follow. Prosperetti
and Hao [77] presented that relative translational mo-
tion between the bubble and the liquid significantly in-
creases the rate of heat transport and accelerates the bub-
ble collapse. Furthermore, they pointed out the coupling
effect between the translational and the radial motions.
As Eq. (30) suggests, the decreasing bubble radius (Ṙ < 0)
works to accelerate the translational motion. Although the
drag force (/ CDR�1jUjU) increases as R decreases andU
increases, there are cases in which the contribution of the
first term is so large as to make U̇ > 0. Then the collapse
and the translational motion of the bubble accelerate each
other [77].
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Rectified Heat Transfer

In the same way as the rectified diffusion discussed in the
previous section, rectified heat transfer works for a vapor
bubble in an acoustic field [24,98]. When the bubble is
compressed, some vapor condenses, the surface temper-
ature rises, and heat is conducted away into the adjacent
liquid. When the bubble expands during the following half
cycle, evaporation causes a temperature drop of the bubble
surface, with a consequent heat flux from the liquid. The
imbalance of the heat flux and the interface area between
the compression phase and the expansion phase causes the
net energy flux into the bubble.

Sturtevant et al. [89] investigated the effect of rectified
diffusion on pressure increase in a hydrothermal system,
as a possible mechanism for triggered seismicity by a dis-
tant earthquake. They modeled the system as a two-com-
ponent H2O-CO2 system, and considered rectified mass
diffusion. As is mentioned in the previous section, the
net pressure change due to rectified mass diffusion is very
small, if it is evaluated in a self-consistent way [29].

Although rectified heat transfer has a similar mecha-
nism as the rectified mass transfer, it is much more in-
tense since the thermal diffusivity of liquids typically ex-
ceeds the mass diffusivity by two orders of magnitude [77].
It can grow a vapor bubble quickly within several cycles of
oscillation at the beginning (Fig. 14), and thus can be ef-
fective evenwith low-frequency pressure waves.Moreover
the effect is reinforced by the coupling effect of the bub-

Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 14
Growth of a vapor bubble by rectified heat transfer. Bubble radius normalized by the linear resonant radius Rr D 2:71 mm versus
time for saturate water at 1 atm. The sound frequency is 1 kHz and the amplitude is attached to each profile (Fig. 4 in [24])

ble growth and translational motion [25], and coupling of
evaporation and diffusion of another gas component [38].
The net energy flux into the bubble increases the tempera-
ture in the bubble, whichmay change the liquid static pres-
sure [24]. It is noted that numerical results in the literature
cannot be directly used to estimate the pressure increase,
because they were obtained for an open system in which
the bubble continues to grow instead of increasing system
pressure. However, it might be worth while to re-evaluate
effects of rectified processes in a hydrothermal system tak-
ing account of these recent results.

Non-linear Oscillation of a Spherical Cloud of Bubbles

Oscillation of a group of bubbles generates particular sig-
nals as well as oscillation of a single bubble. The presence
of bubbles can lower the acoustic speed of the fluid by an
order of magnitude [16,42], if the liquid viscosity is small
enough [30,31]. Therefore, there is a sharp impedance
contrast between a region of bubbly liquid and a region
of pure liquid. The boundary of a bubble cloud acts like
an elastic boundary that traps acoustic energy in the bub-
bly region so that the bubble cloud has characteristic fre-
quency of resonance [56,67,102]. Chouet [10] considered
that it is the mechanism for the harmonic oscillations ob-
served at volcanoes having relatively low-viscosity magma.
He showed the typical values for the oscillation in the few
Hz range may be generated by a columnar bubble cloud
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Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation, Figure 15
Change of bubble radius (blue lines) and pressure (red lines) in a spherical cloud of bubbles after a sudden pressure rise. The initial
pressure and temperature are 3� 104 Pa, 293K, radii of the bubble and the cloud are 2:5� 10�4 m and 3� 10�2, the void fraction
is 3%, and the pressure rise is 2:4� 104 Pa. Values at the center (a) and at a half the radius from the center (b) are presented in
dimensionless form (a unit of the dimensionless time corresponds to� ms). (Modified from Fig. 9 in [67])

with void fraction of 1%,� 100m in length, and � 1m in
radius in a bubble-free magma with � 5m in radius. The
radius of each bubble is assumed as 10�3 m, which has its
own resonance frequency at 8.9 kHz [10].

Omta [67] conducted numerical calculation for oscil-
lation of a spherical cloud of bubbles with relatively large
amplitude. Figure 15 shows one of his results, in which the
cloud oscillation was excited by an external pressure in-
crease. Three cycles of the oscillation are presented. We
can see high-frequency strong pulsation at the center of
the bubble cloud (Fig. 15a). It is explained as follows [67].
The pressure perturbation is amplified and sharpened to-
ward the center of the cloud because of the spherical ge-
ometry. Then the bubbles are excited at their resonance
frequency.

The strong pulsation is observed only near the center
in a spherical bubble cloud (Fig. 15). If a bubble cloud is
hemispherical with its cross section attached on a solid
wall, the pulsation generated at the center of the hemi-
sphere may strongly hit the wall [86]. Generation of strong
high-frequency pulses by a bubble cloud interacting with
a pressure perturbation with lower frequencies is actually
observed in experiments and now the phenomenon is go-
ing to be applied to medical treatment under controlled
condition [33,60]. Similar mechanisms may work in a hy-
drothermal system, in which a low-frequency perturbation
generates strong pressure impulses hitting the walls to be
observed as seismic waves. In fact pressure oscillations in
the bubble cloud (Fig. 15) and in the geyser (Fig. 11) have

quite similar features, though their time scales are different
by three orders of magnitude.

Future Directions

We have summarized theoretical bases of the bubble dy-
namics, mainly based on radial motion equations of a sin-
gle bubble. These theories have been established and ver-
ified by experiments for simple systems. For volcanic sys-
tems, these theories have mainly been applied to the nu-
cleation and growth of bubbles in magma. This subject
takes an important role of volcanology, though it is not in-
cluded in this review paper. By comparing the theory with
observation of bubbles left in natural volcanic rock [58,
94] and re-producing the process by laboratory exper-
iments [23,52,90], researchers have determined physical
parameters of the volcanic processes, which are the tem-
perature, pressure, volatile saturation, ascent rate, and so
on. The bubble dynamics theories have also been ap-
plied to explain geophysical observations, as we have re-
viewed several possible mechanisms of bubbles that gen-
erate pressure impulses. However, determining the ef-
fects or even existence of bubbles is more difficult in
these phenomena than in the bubble growth problems,
because direct observation of bubbles and re-production
of the process in a laboratory are more difficult. Here
we discuss how we can go forward to confirm the mod-
els and apply them to determine useful physical parame-
ters.
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It would be effective to focus on relatively simple vol-
canic phenomena in which the bubble dynamics theory
appears to work. Especially, for some volcanoes which
erupt frequently, data taken by modern geophysical meth-
ods are being accumulated and the phenomenological
cause-and-result relations between an eruption and pres-
sure impulses before and during the eruption are well doc-
umented. For example, at Stromboli Volcano all the se-
quences of the repetitive small eruptions and a few proxi-
mal explosions have been taken by multi-parameter mon-
itoring systems [84,85]. Geophysical data taken close to
active craters at Sakurajima, Suwanosejima, and Semeru
volcanoes have revealed common features in the pressure
change before and during an explosion [32]. At Sakura-
jima Volcano, behaviors of a shallow gas pocket are dis-
cussed in the sequences of seismic and explosion events
based on analyses of seismic data [91,92]. It might be pos-
sible and useful to have a common backbone model for
these eruptions, based on which we can explain the partic-
ular detail of each case as a result of different parameters
of the system.

The bubble dynamics theory which is used in themod-
els needs to be updated, too. Responses of a bubbly fluid
are sensitive to the system parameters, which determine
possibilities, features, and time scales of the individual
mechanisms, as are shown in the text. Although many
models assume uniform system for simplicity, the natural
system is considered to be non-uniform. In other words,
regions having different physical parameters may coexist.
Interaction of these subsystems may enhance the charac-
teristic response, but may diminish with one another, or
generate completely different effects. The inhomogeneities
and their interactions may occur in various scales and
manners. For example, in Sect. “Bubbly Magma in an Elas-
tic Rock as a Pressure Source”, behaviors of a single uni-
form magma body in an elastic rock have been discussed.
In the real system, the bubble size and the chemical com-
position are likely to be non-uniform within a small region
and/or over the entire magma body. If the system is large,
the hydrostatic pressure gradient is significant. Moreover,
if there are multiple magma containers which have differ-
ent physical parameters, eachmagma body will respond to
the pressure perturbation differently, and pressure gradi-
ent may be generated between the two adjacent contain-
ers. Developing a model including these subscale interac-
tionsmay be a subject ofmodernmulti-scalemulti-physics
studies.

Laboratory experiments using analogous materials are
useful in verifying and improving the models. In the pro-
cedure to construct amodel system, we frequently find fac-
tors which are important in the real system but have been

neglected in the idealized mathematical model. Although
there may be some processes which can be realized in the
nature more easily, and there always be a scaling prob-
lem, experiments will give us more concrete idea about the
mechanism of the models. Although most of the previous
analogue experiments are designed to be compared with
geological and petrological observations, there are some
which investigate generation of pressure impulses by bub-
bles and are intended to explain seismic and/or acoustic
observations [34,35,83]. According to the results and im-
plications obtained by these preceding works, laboratory
studies in this direction are promising.

It is also important to connect geophysical observa-
tion and geological data to understand the bubble dynam-
ics phenomena in volcanology. Compared with other geo-
physical processes which occur in the earth, there is larger
possibility that the source of activity appears to the surface
after relatively short time. The geological samples (e. g.,
pylocrasts during eruptions and volcanic gasses) can in-
form us physical and chemical properties of the materials
generating pressure impulses, and would make useful con-
straints on the model. On the other hand, these constraints
can be tested and verified by geophysical signals of seismic,
geodetic and acoustic measurements when the models are
established.

By combining these theoretical, experimental, geo-
physical, and geological approaches, we will get better
understanding on the processes which generate volcanic
activities.
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Glossary

Information economics Information economics studies
how information and its distributions among the play-
ers affect economic decisions.

Asymmetric information In a relationship or a transac-
tion, there is asymmetric information when one party
has more or better information than other party con-
cerning relevant characteristics of the relationship or
the transaction. There are two types of asymmetric in-
formation problems:Moral Hazard and Adverse Selec-
tion.

Principal–agent The principal-agent model identifies the
difficulties that arise in situations where there is asym-
metric information between two parties and finds the
best contract in such environments. The “principal” is
the name used for the contractor while the “agent” cor-
responds to the contractee. Both principal and agent
could be individuals, institutions, organizations, or de-
cision centers. The optimal solutions propose mecha-
nisms that try to align the interests of the agent with
those of the principal, such as piece rates or profit shar-
ing; or that induce the agent to reveal the information,
such as self-reporting contracts.

Moral hazard (hidden action) The term moral hazard
initially referred to the possibility that the redistribu-
tion of risk (such as insurance which transfers risk
from the insured to the insurer) changes people’s be-
havior. This term, which has been used in the insur-
ance industry for many years, was studied first by Ken-
neth Arrow.
In principal-agent models, the term moral hazard is
used to refer to all environments where the ignorant
party lacks information about the behavior of the other
party once the agreement has been signed, in such
a way that the asymmetry arises after the contract is
settled.

Adverse selection (hidden information) The term ad-
verse selection was originally used in insurance. It de-
scribes a situation where, as a result of private informa-
tion, the insured aremore likely to suffer a loss than the
uninsured (such as offering a life insurance contract at
a given premium may imply that only the people with
a risk of dying over the average take it).
In principal-agent models, we say that there is an ad-
verse selection problem when the ignorant party lacks
information while negotiating a contract, in such a way
that the asymmetry is previous to the relationship.
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Definition of the Subject

Principal-Agent models provide the theory of contracts
under asymmetric information. Such a theory analyzes the
characteristics of optimal contracts and the variables that
influence these characteristics, according to the behavior
and information of the parties to the contract. This ap-
proach has a close relation to game theory andmechanism
design: it analyzes the strategic behavior by agents who
hold private information and proposes mechanisms that
minimize the inefficiencies due to such strategic behavior.
The costs incurred by the principal (the contractor) to en-
sure that the agents (the contractees) will act in her inter-
est are some type of transaction cost. These costs include
the tasks of investigating and selecting appropriate agents,
gaining information to set performance standards, moni-
toring agents, bonding payments by the agents, and resid-
ual losses.

Principal-agent theory (and Information Economics in
general) is possibly the area of economics that has evolved
the most over the past twenty-five years. It was initially de-
veloped in parallel with the new economics of Industrial
Organization although its applications include now almost
all areas in economics, from finance and political economy
to growth theory.

Some early papers centered on incomplete informa-
tion in insurance contracts, and more particularly on
moral hazard problems, are Spence and Zeckhauser [88]
and Ross [81]. The theory soon generalized to dilemmas
associated with contracts in other contexts [38,46]. It was
further developed in the mid-seventies by authors such as
Pauly [72,73], Mirrlees [66], Harris and Raviv [39], and
Holmström [40]. Arrow [7] worked on the analysis of the
optimal incentive contract when the agent’s effort is not
verifiable.

A particular case of adverse selection is the one where
the type of the agent relates to his valuation of a good.
Asymmetric information about buyers’ valuation of the
objects sold is the fundamental reason behind the use of
auctions. Vickrey [92] provides the first formal analysis of
the first and second-prize auctions. Akerlof [3] highlighted
the issue of adverse selection in his analysis of the mar-
ket for second-hand goods. Further analyzes include the
early work of Mirrlees [65], Spence [87], Rothschild and
Stiglitz [83], Mussa and Rosen [68], as well as Baron and
Myerson [10], and Guesnerie and Laffont [36].

The importance of the topic has also been recognized
by the Nobel Foundation. James A. Mirrlees and William
Vickrey were awarded with the Nobel Prize in Economics
in 1996 “for their fundamental contributions to the eco-
nomic theory of incentives under asymmetric informa-

tion”. Five years later, in 2001, George A. Akerlof, A.
Michael Spence and Joseph E. Stiglitz also obtained the
Nobel Prize in Economics “for their analyzes of markets
with asymmetric information”.

Introduction

The objective of the Principal-Agent literature is to analyze
situations in which a contract is signed under asymmetric
information, that is, when one party knows certain rele-
vant things of which the other party is ignorant. The sim-
plest situation concerns a bilateral relationship: the con-
tract between one principal and one agent. The objective
of the contract is for the agent to carry out actions on be-
half of the principal; and to specify the payments that the
principal will pass on to the agent for such actions.

In the literature, it is always assumed that the principal
is in charge of designing the contract. The agent receives
an offer and decides whether or not to sign the contract.
He will accept it whenever the utility obtained from it is
greater than the utility that the agent would get from not
signing. This utility level that represents the agent’s out-
side opportunities is his reservation utility. In order to sim-
plify the analysis, it is assumed that the agent cannot make
a counter offer to the principal. This way of modeling im-
plicitly assumes that the principal has all the bargaining
power, except for the fact that the reservation utility can
be high in those cases where the agent has excellent out-
side opportunities.

If the agent decides not to sign the contract, the re-
lationship does not take place. If he does accept the of-
fer, then the contract is implemented. It is crucial to no-
tice that the contract is a reliable promise by both parties,
stating the principal and agent’s obligations for all (con-
tractual) contingencies. It can only be based on verifiable
variables, that is, those for which it is possible for a third
party (a court) to verify whether the contract has been ful-
filled. When some players know more than others about
relevant variables, we have a situation with asymmetric in-
formation. In this case, incentives play an important role.

Given the description of the game played between
principal and agent, we can summarize its timing in the
following steps:

(i) The principal designs the contract (or set of con-
tracts) that she will offer to the agent, the terms of
which are not subject to bargaining.

(ii) The alternatives opened to the agent are to accept or
to reject the contract. The agent accepts it if he desires
so, that is, if the contract guarantees him greater ex-
pected utility than any other (outside) opportunities
available to him.
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(iii) The agent carries out an action or effort on behalf of
the principal.

(iv) The outcome is observed and the payments are done.

From these elements, it can be seen that the agent’s objec-
tives may be in conflict with those of the principal. When
the information is asymmetric, the informed party tries to
take advantage, while the uninformed player tries to con-
trol this behavior via the contract. Since a Principal-Agent
problem is a sequential game, the solution concept to use
is Subgame (Bayesian) Perfect Equilibrium.

The set-up gives rise to three possible scenarios:

1. The Symmetric Information case, where the two players
share the same information, even if they both may ig-
nore some important elements (some elements may be
uncertain).

2. TheMoral Hazard case, where the asymmetry of infor-
mation arises once the contract has been signed: the de-
cision or the effort of agent is not verifiable and hence
it cannot be included in the contract.

3. The Adverse Selection case, where the asymmetry of in-
formation is previous to the signature of the contract:
a relevant characteristic of the agent is not verifiable
and hence the principal cannot include it in the con-
tract.

To see an example of moral hazard, consider a labora-
tory or research center (the principal) that contracts a re-
searcher (the agent) to work on a certain project. It is dif-
ficult for the principal to distinguish between a researcher
who is thinking about how to push the project through,
and a researcher who is thinking about how to organize
his evening. It is precisely this difficulty in controlling ef-
fort inputs, together with the inherent uncertainty in any
research project, what generates a moral hazard problem,
which is a non-standard labor market problem.

For an example of adverse selection, consider a regu-
lator who wants to set the price of the service provided by
a public monopoly equal to the average costs in the firm
(to avoid subsidies). This policy (as many others) is subject
to important informational requirements. It is not enough
that the regulator asks the firm to reveal the required in-
formation in order to set the adequate price, since the
firm would attempt to take advantage of the information.
Therefore, the regulator should take this problem into ac-
count.

The Base Game

Consider a contractual relationship between a principal
and an agent, who is contracted to carry out a task. The
relationship allows a certain result to be obtained, whose

monetary value will be referred to as x. For the sake of
exposition, the set of possible results X is assumed to be
finite, X D fx1; : : : ; xng. The final result depends on the
effort that the agent devotes to the task, which will be de-
noted by e, and the value of a random variable for which
both participants have the same prior distribution. The
probability of result xi conditional on effort e can be writ-
ten as:

Prob[x D xi je] D pi (e) ; for i 2 f1; 2; : : : ; ng ;

with
Pn

iD1 pi (e) D 1. Let us assume that pi (e) > 0 for
all e, i, which implies that no result can be ruled out for
any given effort level.

The Base Game is the reference situation, where prin-
cipal and agent have the same information (even the one
concerning the random component that affects the result).
Since uncertainty exists, participants react to risk. Risk
preferences are expressed by the shape of their utility func-
tions (of the von Neumann–Morgenstern type). The prin-
cipal, who owns the result and must pay the agent, has
preferences represented by the utility function

B(x � w) ;

where w represents the payoff made to the agent. B(:)
is assumed to be increasing and concave: B0 > 0, B00 � 0
(where the primes represent, respectively, the first and sec-
ond derivatives). The concavity of the function B(:) indi-
cates that the principal is either risk-neutral or risk averse.

The agent receives a monetary pay-off for his partici-
pation in the relationship, and he supplies an effort which
implies some cost to him. For the sake of simplicity we
represent his utility function as:

U(w; e) D u(w) � v(e) ;

additively separable in the components w and e. This as-
sumption implies that the agent’s risk-aversion does not
vary with the effort he supplies (many results can be gen-
eralized for more general utility functions). The utility de-
rived from the wage, u(w), is increasing and concave:

u0(w) > 0 ; u00(w) � 0 ;

thus the agent may be either risk-neutral, u00(w) D 0, or
risk-averse u00(w) < 0. In addition, greater effort means
greater disutility. We also assume that the marginal disu-
tility of effort is not decreasing: v0(e) > 0, v00(e) � 0.

A contract can only be based in verifiable information.
In the base game, it can depend on the characteristics of
the principal and the agent and includes both the effort e
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Principal-Agent Models, Figure 1
The figure summarizes the timing of the relationship and the three cases as a function of the information available to the participants

that the principal demands from the agent, and the wages
fw(xi)giD1;:::;n .

If the agent rejects the contract, he will have to fall
back on the outside opportunities that the market offers
him. These other opportunities, that by comparison deter-
mine the limit for participation in the contract, are sum-
marized in the agent’s reservation utility, denoted by U. So
the agent will accept the contract as long as he earns an ex-
pected utility equal or higher than his reservation utility.
Since, the principals problem is to design a contract that
the agent will accept, (by backward induction) the optimal
contract must satisfy the participation constraint and it is
the solution to the following maximization problem:

Max
[e;fw(xi )giD1;:::;n ]

nX

iD1

pi (e)B(xi � w(xi))

s.t.
nX

iD1

pi(e)u(w(xi )) � v(e) � U :

The above problem corresponds to a Pareto Optimum in
the usual sense of the term. The solution to this problem is
conditional on the value of the parameter U, so that even
those cases where the agent can keep a large share of the
surplus are taken into account.

The principal’s program is well behavedwith respect to
payoffs given the assumptions on u(w). Hence the Kuhn–
Tucker conditions will be both necessary and sufficient for
the global solution of the problem. However, we cannot as-
certain the concavity (or quasi-concavity) of the functions
with respect to effort given the assumptions on v(e), be-
cause these functions also depend on all the pi (e). Hence
it is more difficult to obtain global conclusions with respect
to this variable.

Let us denote by eı the efficient effort level. From the
first-order Kuhn–Tucker conditions with respect to the
wages in the different contingencies, we can analyze the
associated pay-offs fwı(xi)iD1;:::;ng.We obtain the follow-
ing condition:

ı D
B0(xi � wı(xi))

u0(wı(xi))
; for all i 2 f1; 2; : : : ; ng ;

where ı is themultiplier associated with the participation
constraint. When the agent’s utility is additively separable,
the participation constraint binds (ı is positive). The pre-
vious condition equates marginal rates of substitution and
indicates that the optimal distribution of risk requires that
the ratio of marginal utilities of the principal and the agent
to be constant irrespective of the final result.
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If the principal is risk-neutral (B00(:) D 0), then
the optimal contract has to be such that u0(wı(xi)) D
constant for all i. In addition, if the agent is risk-averse
(u00(:) < 0), he receives the same wage, say wı, in all
contingencies. This wage only depends on the effort de-
manded and is determined by the participation constraint.
If the agent is risk-neutral (u00(:) D 0) and the principal
is risk-averse (B00(:) < 0), then we are in the opposite sit-
uation. In this scenario, the optimal contract requires the
principal’s profit to be independent of the result. Conse-
quently, the agent bears all the risk, insuring the principal
against variations in the result. When both the principal
and the agent are risk-averse, each of them needs to accept
a part of the variability of the result. The precise amount
of risk that each of them supports depends on their de-
grees of risk-aversion. Using the Arrow–Pratt measure of
absolute risk-aversion rp D �B00/B0 and ra D �u00/u0

for the principal and the agent respectively, we can show
that:

dwı

dxi
D

rp
rp C ra

;

which indicates how the agent’s wage changes given an
increase in the result xi. Since rp/(rp C ra) 2 (0; 1), when
both participants are risk-averse, the agent only receives
a part of the increased result via a wage increase. The more
risk-averse is the agent, that is to say, the greater is ra,
the less the result influences his wage. On the other hand,
as the risk-aversion of the principal increases, greater
rp, changes in the result correspond to more important
changes in the wage.

Moral Hazard

Basic Moral HazardModel

Here we concentrate onmoral hazard, which is the case in
which the informational asymmetry relates to the agent’s
behavior during the relationship. We analyze the optimal
contract when the agent’s effort is not verifiable. This im-
plies that effort cannot be contracted upon, because in case
of the breach of contract, no court of law could know if the
contract had really been breached or not. There are many
examples of this type of situation. A traditional example is
accident insurance, where it is very difficult for the insur-
ance company to observe how careful a client has been to
avoid accidents.

The principal will state a contract based on any signals
that reveal information on the agent’s effort. We will as-
sume that only the result of the effort is verifiable at the
end of the period and, consequently, it will be included in

the contract. However, if possible, the contract should be
contingent on many other things. Any information related
to the state of nature is useful, since it allows better estima-
tions of the agent’s effort thus reducing the risk inherent in
the relationship. This is known as the sufficient statistic re-
sult, and it is perhaps the most important conclusion in
the moral hazard literature [40]. The empirical content of
the sufficient statistic argument is that a contract should
exploit all available information in order to filter out risk
optimally.

The timing of a moral hazard game is the following. In
the first place, the principal decides what contract to offer
the agent. Then the agent decides whether or not to accept
the relationship, according to the terms of the contract. Fi-
nally, if the contract has been accepted, the agent chooses
the effort level that he most desires, given the contract that
he has signed. This is a free decision by the agent since ef-
fort is not a contracted variable. Hence, the principal must
bear this in mind when she designs the contract that de-
fines the relationship.

To better understand the nature of the problem faced
by the principal, consider the case of a risk-neutral princi-
pal and a risk-averse agent, which implies that, under the
symmetric information, the optimal contract is to com-
pletely insure the agent. However, if the principal proposes
this contract when the agent’s effort is not a contracted
variable, once he has signed the contract the agent will ex-
ert the effort level that is most beneficial for him. Since the
agent’s wage does not depend on his effort, he will use the
lowest possible effort.

The idea underlying an incentive contract is that the
principal can make the agent interested in the conse-
quences of his behavior by making his pay-off dependent
on the result obtained. Note that this has to be done at the
cost of distorting the optimal risk sharing among both par-
ticipants. The trade-off between efficiency, in the sense of
the optimal distribution of risk, and incentives determines
the optimal contract.

Formally, since the game has to be solved by back-
wards induction, the optimal contract under moral hazard
is the solution to the maximization problem:

Max
[e;fw(xi )giD1;:::;n]

nX

iD1

pi (e)B(xi � w(xi))

s.t.
nX

iD1

pi(e)u(w(xi )) � v(e) � U

e 2 ArgMax
ê

( nX

iD1

pi(ê)u(w(xi )) � v(ê)

)
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The second restriction is the incentive compatibility con-
straint and the first restriction is the participation con-
straint. The incentive compatibility constraint, and not the
principal as under symmetric information, determines the
effort of the agent.

The first difficulty in solving this program is related
to the fact that the incentive compatibility constraint is
a maximization problem. The second difficulty is that the
expected utility may fail to be concave in effort. Hence,
to use the first order condition of the incentive compat-
ibility constraint may be incorrect. In spite of this, there
are several ways to proceed when facing to this problem.
(a) Grossman and Hart [33] propose to solve it in steps,
identifying first the optimal payment mechanism for any
effort and then, if possible, the optimal effort. This can be
done since the problem is concave in payoffs. (b) The other
possibility is to consider situations where the agent’s max-
imization problem is well defined. One possible scenario is
when the set of possible efforts is finite, in which case the
incentive compatibility constraint takes the form of a finite
set of inequalities. Another scenario is to write the incen-
tive compatibility as the first-order condition of the max-
imization problem, and introduce assumptions that allow
doing it. The last solution is known as the first-order ap-
proach.

Let us assume that the first-order approach is ad-
equate, and substitute the incentive compatibility con-
straint in the previous program by

nX

iD1

p0i(ê)u(w(xi )) � v0(ê) D 0 :

Solving the principals program with respect to the payoff
scheme, and denoting by  (resp., �) the Lagrangeanmul-
tiplier of the participation constraint (resp., the incentive
compatibility constraint), we obtain that for all i:

1
u0(w(xi))

D C �
p0i (e)
pi (e)

:

This condition shows that the wage should not depend at
all on the value that the principal places on the result. It
depends on the results as a measure of how informative
they are as to effort, in order to serve as an incentive for
the agent. The wage will be increasing in the result as long
as the result is increasing in effort. Hence, it is optimal that
the wage will be increasing in the result only in particular
cases. The necessary condition for a wage to be increasing
with results is p0i(e)/pi (e) to be decreasing in i. In statistics,
this is called the monotonous likelihood quotient property.
It is a strong condition; for example, first-order stochastic

dominance does not guarantee themonotonous likelihood
property.

Extensions of Moral HazardModels

The basic moral hazard setup, with a principal hiring and
an agent performing effort, has been extended in several
directions to take into account more complex relation-
ships.

Repeated Moral Hazard Certain relationships in which
a moral hazard problem occurs do not take place only
once, but they are repeated over time (for example, work
relationships, insurance, etc.). The duration aspect (the
repetition) of the relationship gives rise to new elements
that are absent in static models.

Radner [76] and Rubinstein and Yaari [84] consider
infinitely repeated relationships and show that frequent
repetition of the relationship allows us to converge to-
wards the efficient solution. Incentives are not determined
by the payoff scheme contingent on the result of each pe-
riod, but rather on average effort, and the information
available is very precise when the number of periods is
large. A sufficiently threatening punishment, appliedwhen
the principal believes that the agent on average does not
fulfill his task, may be sufficient to dissuade him from
shirking.

When the relationship is repeated a finite number of
times, the analysis of the optimal contract concentrates on
different issues relating long-term agreements and short-
term contracts. Note that in a repeated set up, the agent’s
wage and the agent’s consumption in a period need not
be equal. Lambert [54], Rogerson [80], and Chiappori and
Macho-Stadler [15] show that long-term contracts have
memory (i. e., the pay-offs in any single period will depend
on the results of all previous periods) since they internalize
agent’s consumption over time, which depends on the se-
quence of payments received (as a function of the past con-
tingencies). Malcomson and Spinnewyn [58], Fudenberg,
Holmström, and Milgrom [30], and Rey and Salanié [77]
study when the optimal long-term contract can be imple-
mented through the sequence of optimal short-term con-
tracts. Chiappori, Macho-Stadler, Rey, and Salanié [16]
show that, in order for the sequence of optimal short-term
contracts to admit the same solution as the long-term con-
tract, two conditions must be met. First, the optimal se-
quence of single-period contracts should have memory.
That is why, when the reservation utility is invariant (is not
history dependent), the optimal sequence of short-term
contracts will not replicate the long-term optimum unless
there exist means of smoothing consumption, that is, the
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agent has access to credit markets. Second, the long-term
contract must be renegotiation-proof. A contract is said
to be renegotiation-proof if at the beginning of any in-
termediate period, no new contract or renegotiation that
would be preferred by all participants is possible. When
the long term contract is not renegotiation-proof (i. e., if it
is not possible for participants to change the clauses of the
contract at a certain moment of time even if they agree),
it cannot coincide with the sequence of short term con-
tracts.

One Principal and Several Agents When a principal
contracts with more than on agent, the stage where agents
exert their effort, which is translated into the incentive
compatibility, depends on the game among the agents. If
the agents behave as a coordinated and cooperating group,
then the problem is similar to the previous one where the
principal hires a team. A more interesting case appears
when agents play a non-cooperative game and their strate-
gies form a Nash equilibrium.

Holmström [40] and Mookherjee [67], in models
where there is personalized information about the output
of each agent, show that the principal is interested in pay-
ing each agent according to his own production and that
of the other agents if these other results can inform on the
actions of the agent at hand. Only if the results of the other
agents do not add information or, in other words, if an
agent’s result is a sufficient statistic for his effort, then he
will be paid according to his own result.

When the only verifiable outcome is the final result
of teamwork (joint production models), the optimal con-
tract can only depend on this information and the con-
clusions are similar to those obtained in models with only
one agent. Alchian and Demsetz [5] and Holmström [41]
show that joint production cannot lead to efficiency when
all the income is distributed amongst the agents, i. e., if the
budget constraint always binds. Another player should be
contracted to control the productive agents and act as the
residual claimant of the relationship.

Tirole [90] and Laffont [49] have studied the effect of
coalitions among the agents in an organization on their
payment scheme. If collusion is bad for the organization,
it adds another dimension of moral hazard (the collud-
ing behavior). The principal may be obliged to apply rules
that are collusion-proof, which implies more constraints
and simpler contracts (more bureaucratic). When coordi-
nation can improve the input of a group of agents, the opti-
mal contract has to find payment methods that strengthen
group work (see [44,56]).

Another principal’s decision when she hires several
agents is the organization with which she will relate. This

includes such fundamental decisions as how many agents
to contract and how should they be structured. These is-
sues have been studied by Demski and Sappington [23],
Melumad and Reichelstein [63], and Macho-Stadler and
Pérez-Castrillo [57].

Holmström and Milgrom [42] analyze a situation in
which the agent carries out several tasks, each one of which
gives rise to a different result. They study the optimal con-
tract when tasks are complementary (in the sense that ex-
erting effort in one reduces the costs of the other) or sub-
stitutes. Their model allows to build a theory of job design
and to explain the relationship among responsibility and
authority.

Several Principals and One Agent When one agent
works for (or signs his contracts with) several principals
simultaneously (common agency situation), in general, the
principals are better off if they cooperate. When the prin-
cipals are not able to achieve the coordination and com-
mitment necessary to act as a single individual and they
do not value the results in the same way, they each de-
mand different efforts or actions from the agent. Bern-
heim and Whinston [12] show that the effort that prin-
cipals obtain when they do not cooperate is less than the
effort that would maximize their collective profits. How-
ever, the final contract that is offered to the agent mini-
mizes the cost of getting the agent to choose the contrac-
tual effort.

Adverse Selection

Basic Adverse Selection Model

Adverse selection is the term used to refer to problems of
asymmetric information that appear before the contract is
signed. The classic example of Akerlof [3] illustrates very
well the issue: the buyer of a used car has much less infor-
mation about the state of the vehicle than the seller. Sim-
ilarly, the buyer of a product knows how much he appre-
ciates the quality, while the seller only has statistical infor-
mation about a typical buyer’s taste [68]; or the regulated
firm has more accurate information about the marginal
cost of production than the regulator.

A convenient way to model adverse selection prob-
lems is to consider that the agent can be of different types,
and that the agent knows his type before any contract is
signed while the principal does not know it. In the pre-
vious examples, the agent’s type is the particular quality
of the used car, the level of appreciation of quality, or the
firm’s marginal cost. How can the principal deal with this
informational problem? Instead of offering just one con-
tract for every (or several) types of agents, she can pro-
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pose several contracts so that each type of agent chooses
the one that is best for him. A useful result in this liter-
ature is the revelation principle [31,32,69] that states that
any mechanism that the principal can design is equiva-
lent to a direct revelation mechanism by which the agent is
asked to reveal his type and a contract is offered according
to his declaration. That is, a direct revelation mechanism
offers a menu of contracts to the agent (one contract for
each possible type), and the agent can choose any of the
proposed contracts. Clearly, the mechanism must give the
agent the right incentives to choose the appropriate con-
tract, that is, it must be a self-selection mechanism. Menus
of contracts are not unusual. For instance, insurance com-
panies offer several possible insurance contracts between
which clients may freely choose their most preferred. For
example, car insurance contracts can be with or without
deductible clauses. The second goes to more risk averse
or more frequent drivers while deductibles attract less risk
averse or less frequent drivers.

Therefore, the timing of an adverse selection game is
the following. In the first place, the agent’s characteristics
(his “type”) are realized, and only the agent learns them.
Then, the principal decides the menu of contracts to of-
fer to the agent. Having received the proposal, the agent
decides which one of the contracts (if any) to accept. Fi-
nally, if one contract has been accepted, the agent chooses
the predetermined effort and receives the corresponding
payment.

A simple model of adverse selection is the following.
A risk-neutral principal contracts an agent (who could be
risk-neutral or risk-averse) to carry out some verifiable ef-
fort on her behalf. Effort e provides an expected payment
to the principal of ˘ (e), with ˘ 0(e) > 0 and ˘ 00(e) < 0.
The agent could be either of two types that differ with
respect to the disutility of effort, which is v(e) for type
G(good), and kv(e), with k > 1 for type B(bad). Hence, the
agent’s utility function is either UG (w; e) D u(w) � v(e)
or UB(w; e) D u(w) � kv(e). The principal considers that
the probability for an agent to be type-G is q, where
0 < q < 1.

The principal designs a menu of contracts f(eG ;wG );
(eB ;wB)g, where (eG ;wG ) is directed towards the most
efficient type of agent, while (eB ;wB) is intended for the
least efficient type. For the menu of contracts to be a sen-
sible proposal, the agent must be better off by truthfully
revealing his type than by deceiving the principal. The
principals problem, is therefore to maximize her expected
profits subject to the restrictions that (a) after consider-
ing the contracts offered, the agent decides to sign with
the principal (participation constraints), and (b) each agent
chooses the contract designed for his particular type (in-

centive compatibility constraints):

Max
[(eG ;wG );(eB;wB)]

q[˘ (eG ) � wG ]C (1 � q)[˘ (eB) � wB]

s.t. u(wG ) � v(eG ) � U

u(wB) � kv(eB) � U

u(wG ) � v(eG ) � u(wB )� v(eB)

u(wB) � kv(eB) � u(wG ) � kv(eG )

The main characteristics of the optimal contract menu
f(eG ;wG ); (eB ;wB)g are the following:

(i) The contract offered to the good agent (eG, wG ) is ef-
ficient (‘non distortion at the top’). The optimal salary
wG however is higher than under symmetric informa-
tion: this type of agent receives an informational rent.
That is, the most efficient agent profits from his pri-
vate information and in order to reveal this informa-
tion he has to receive a utility greater than his reserva-
tion level.

(ii) The participation condition binds for the agent when
he has the highest costs (he just receives his reserva-
tion utility). Moreover, a distortion is introduced into
the efficiency condition for this type of agent. By dis-
torting, the principal loses efficiency with respect to
type-B agents, but she pays less informational rent to
the G-types.

Principals Competing for Agents
in Adverse Selection Frameworks

Starting with the pioneer work by Rothschild and
Stiglitz [83] on insurance markets, there have been many
studies on markets with adverse selection problems where
there is competition among principals to attract agents.
We move from a model where one principal maximizes
her profits subject to the above constraints, to a game the-
ory environment where each principal has to take into ac-
count the actions by others when deciding which contract
to offer. In this case, the adverse selection problem may be
so severe that we may find ourselves in situations in which
no equilibrium exists.

To highlight the main results in this type of models,
consider a simple case in which there are two possible risk-
averse agent types: good (G) and bad (B) with G being
more productive than B. In particular, we assume that G
is more careful than B, in the sense that he commits fewer
errors. When the agent exerts effort, the result could be ei-
ther a success (S) or a failure (F). The probability that it is
successful is pG when the agent is type-G and pB when he
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is type B, where pG > pB. The principal values a successful
result more than a failure. The result is observable, so that
the principal can pay the agent according to the result, if
she so desires.

There are several risk-neutral principals. Therefore,
we look for the set of equilibrium contracts in the game
played by principals competing to attract agents. Equilib-
rium contracts must satisfy that there does not exist a prin-
cipal who can offer a different contract that would be pre-
ferred by all or some of the agents and that gives that prin-
cipal greater expected profits. This is why, if information
was symmetric, the equilibrium contracts would be char-
acterized by the following properties: (i) principals’ ex-
pected profits are zero; and (ii) each contract must be ef-
ficient. Hence the agent receives a fixed contract insuring
him against random events. In particular, the equilibrium
salary that the agent receives under symmetric informa-
tion is higher when he is of type G than when he is of
type B.

When the principals cannot observe the type of the
agent, the previous contracts cannot be longer an equi-
librium: all the agents would claim to be a good type. An
equilibrium contract pair fCG;CBgmust satisfy the condi-
tion that no principal can add a new contract that would
give positive expected profits to the agents that prefer this
new contract to CG and CB. If the equilibrium contracts
for the two agent types turn out to be the same, that is,
there is only one contract that is accepted by both agent
types, then the equilibrium is said to be pooling. On the
other hand, when there is a different equilibrium contract
for each agent type, then we have a separating equilibrium.
In fact, pooling equilibria never exist, since pooling con-
tracts always give room for a principal to propose a prof-
itable contract that would only be accepted by the G-types
(the best agents). If an equilibrium does exist, it must be
such that each type of agent is offered a different con-
tract.

If the probability that the agent is “good” is large
enough, then a separating equilibrium does not exist ei-
ther. That is, an adverse selection problem in a market
may provoke the absence of any equilibrium in that mar-
ket.When, a separating equilibria does exist. In, the results
are similar to the ones under moral hazard in spite of the
differences in the type of asymmetric information and in
the method of solving. That is, contingent pay-offs are of-
fered to the best agent to allow the principal to separate
them from the less efficient ones. In this equilibrium, the
least efficient agents obtain the same expected utility (and
even sign the same contract) as under symmetric informa-
tion, while the best agents lose expected utility due to the
asymmetric information.

Extensions of Adverse Selection Models

Repeated Adverse Selection In this extension, we con-
sider whether the repetition of the relationship during sev-
eral periods helps the principal and how it influences the
form of the optimal contract. Note first that if the agent’s
private information is different in each period and the in-
formation is not correlated among periods, then any cur-
rent information revealed does not affect the future and
hence the repeated problem is equivalent to simple repeti-
tion of the initial relationship. The optimal intertemporal
contract will be the sequence of optimal single-period con-
tracts.

Consider the opposite situation where the agent’s type
is constant over time. If the agent decides to reveal his type
truthfully in the first period, then the principal is able to
design efficient contracts that extract all surpluses from the
agent. Hence, the agent will have very strong incentives to
misrepresent his information in the early periods of the re-
lationships. In fact, Baron and Besanko [8] show that if the
principal can commit herself with a contract that covers
all the periods, then the optimal contract is the repetition
of the optimal static contract. This implies that the con-
tract is not sequentially rational, and it is also non robust to
renegotiation: once the first period is finished, the princi-
pal “knows” the agent’s type and a better contract for both
parties is possible.

It is often the case that the principal cannot commit
not to renegotiate a long-term contract. Laffont and Ti-
role [52] show that, in this case, it may be impossible to
propose perfect revelation (separating) contracts in the
first periods. This is known as the ratchet effect. Also,
Freixas, Guesnerie, and Tirole [29], and Laffont and Ti-
role [51] have proven that, even when separating contracts
exist, they may be so costly that they are often non optimal
and we should expect that information be revealed pro-
gressively over time. Baron and Besanko [9] and Laffont
and Tirole [53] also introduce frameworks in which it is
possible to propose perfect revelation contracts but they
are not optimal.

Relationships with Several Agents: Auctions One par-
ticularly interesting case of relationship among one prin-
cipal and several agents is that of a seller who intends
to sell one or several items to several interested buyers,
where buyers have private information about their valu-
ation for the item(s). A very popular selling mechanism
in such a case is an auction. As Klemperer [48] would
put it, auction theory is one of economics’ success sto-
ries in both practical and theoretical terms. Art galleries
generally use English auctions: the agents bid “upwards”;
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while fish markets are generally examples of Dutch auc-
tions: the seller reduces the price of the good until some-
one stops the auction by buying. Public contracts are gen-
erally awarded through (first price or second price) sealed-
bid auctions where buyers introduce their bid in a closed
envelope, the good is sold to the highest bidder and the
prize is either the winner’s own bid or the second highest
bid.

Vickrey [92,93] was the first to establish the key re-
sult in auction theory, the Revenue Equivalence Theorem
which, subject to some reasonable conditions, says that
the seller can expect equal profits on average from all the
above (and many other) types of auctions, and that buyers
are also indifferent among them all. Auctions are efficient,
since the buyer who ends up with the object is the one with
the highest valuation. Hence, the existence of private in-
formation does not generate any distortions with respect
to who ends up getting the good, but the revenue of the
seller is less than under symmetric information.

Myerson [70] solves the general mechanism design
problem of a seller who wants to maximize her expected
revenue, when the bidders have independent types and all
agents are risk-neutral. In general, the optimal auction is
more complex than the traditional English (second price)
or Dutch (first price) auction. His work has been extended
by many other authors. When the buyers’ types are affil-
iated (i. e., they are not negatively correlated in any sub-
set of their domain), Milgrom and Weber [64] show that
the revenue equivalence theorem breaks down. In fact, in
this situation, McAfee, McMillan, and Reny [61] show that
the seller may extract the entire surplus from the bidders
as if there was no asymmetric information. Starting with
Maskin and Riley [60], several authors have also analyzed
auctions of multiple units.

Finally, Clarke [19] and Groves [34] initiated another
group of models in which the principal contracts with sev-
eral agents simultaneously, but does not attempt to max-
imize her own profits. This is the case of the provision of
a public good through a mechanism provided by a benev-
olent regulator.

Relationships with Several Agents: Other Models and
Organizational Design Adverse selection models have
attempted to analyze the optimal task assignment, the ad-
vantages of delegation, or the optimal structure of contrac-
tual relationships, when the principal contracts with sev-
eral agents. Riordan and Sappington [79] analyze a situ-
ation where two tasks have to be fulfilled and show that
if the person in charge of each task has private informa-
tion about the costs associated with the task, then the as-
signment of tasks within the organization is an important

decision. For example, when the costs are positively corre-
lated, then the principal will prefer to take charge of one of
the phases herself while she will prefer to delegate the task
when the costs are negatively correlated.

In a very general framework, Myerson [71] shows
a powerful result: in adverse selection situations, central-
ization cannot be worse than decentralization, since it is
always possible to replicate a decentralized contract with
a centralized one. This result is really a generalization
of the revelation principle. Baron and Besanko [11] and
Melumad, Mookherjee, and Reichelstein [62] show that,
if the principal can offer complex contracts in a decen-
tralized organization, then a decentralized structure can
replicate a centralized organization. When there are prob-
lems of communication between principal and agents,
the equivalence result does not hold: Melumad and Re-
ichelstein [63] show that delegation of authority can be
preferable if communication between the principal and
the agents is difficult. Still concerning the optimal design
of the organization, Dana [22] analyzes the optimal hi-
erarchical structure in industries with several productive
phases, when firms have private information related to
their costs. They show that structures that concentrate all
tasks to a single agent are superior since, the incentives
to dishonestly reveal the costs of each of the phases are
weaker. Da-Rocha-Alvarez and De-Frutos [20] argue that
the absolute advantage of the centralized hierarchy is not
maintained if the differences in costs between the different
phases are sufficiently important.

Several Principals Stole [89] and Martimort [59] point
out the difficulty of extending the revelation principle to
situations where an agent with private information is con-
tracted by several principals who act separately. Given that
not only one contract (or menu of contracts) is offered
to the agent, but several contracts coming from different
principals, it is not longer necessarily true that the best
a principal can do is to offer a “truth-telling mechanism”.

Consider a situation with two principals that are hir-
ing a single agent. If we accept that agent’s messages are
restricted to the set of possible types that the agent may
have, we can obtain some conclusions. If the activities or
efforts that the agent carries out for the two principals are
substitutes (for instance, a firm producing for two differ-
ent customers), then the usual result on the distortion of
the decision holds: the most efficient type of agent sup-
plies the efficient level of effort while the effort demanded
from the least efficient type is distorted. However, due to
the lack of cooperation between principals, the distortion
induced in the effort demanded from the less efficient type
of agent is lower than the one maximizing the principals’
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aggregate profits. On the other hand, if the activities that
the agent carries out for the principals are complementary
(for example, the firm produces a final good that requires
two complementary intermediate goods in the production
process), then the comparison of the results under cooper-
ation and under no cooperation between the principals re-
veals that: if a principal reduces the effort demanded from
the agent, in the second case, this would imply that it is also
profitable for the other principal to do the same. There-
fore, the distortion in decisions is greater to that produced
in the case in which principals cooperate.

Models of Moral Hazard and Adverse Selection The
analysis of principal-agent models where there are si-
multaneously elements of moral hazard and adverse se-
lection is a complex extension of classic agency theory.
Conclusions can be obtained only in particular scenarios.
One common class of models considers situations where
the principal cannot distinguish the part corresponding
to effort from the part corresponding to the agent’s effi-
ciency characteristic because both variables determine the
production level. Picard [74] and Guesnerie, Picard, and
Rey [37] propose a model with risk-neutral participants
and show that, if the effort demanded from the different
agents is not decreasing in the characteristic (if a higher
value of this parameter implies greater efficiency), then the
optimal contract is a menu of distortionary deductibles de-
signed to separate the agents. The menu of contracts in-
cludes one where the principal sells the firm to the agent
(aiming at the most efficient type), and another contract
where she sells only a part of the production at a lower
prize (aiming at the least efficient type). However, there
are also cases where fines are needed to induce the agents
to honestly reveal their characteristic.

In fact, the main message of the previous literature is
that the optimal solution for problems thatmix adverse se-
lection and moral hazard does not imply efficiency losses
with respect to the pure adverse selection solution when
the agent’s effort is observable. However, in other frame-
works (see [50]), a true problem of asymmetric informa-
tion appears only when both problems are mixed when,
and efficiency losses are evident. Therefore, the same so-
lution as when only the agent’s characteristic is private in-
formation cannot be achieved.

Future Directions

Empirical Studies of Principal-Agent Models

The growing interest on empirical issues related to asym-
metric information started in the mid nineties (see the sur-
vey by Chiappori and Salanie [18]). A very large part of the

literature is devoted to test the predictions of the canon-
ical models of moral hazard and adverse selection, where
there is only one dimension in which information is asym-
metric. A great deal of effort is devoted to try to ascertain
whether it is moral hazard, or adverse selection, or both
prevalent in themarket. This is a difficult task because both
adverse selection and moral hazard generate the same pre-
dictions in a cross section. For instance, a positive corre-
lation between insurance coverage and probability of ac-
cident can be due to either the intrinsically riskier drivers
selecting into contracts with better coverage (as the [83]
model of adverse selection will predict) or to drivers with
better coverage exerting less effort to drive carefully (as
the canonical moral hazard model will predict). Chiap-
pori, Jullien, Salanié and Salanié [17] have shown that the
positive correlation between coverage and risk holds more
generally that in the canonical models as long as the com-
petitive assumption is maintained.

Future empirical approaches are likely to incorporate
market power (as in [17]), multiple dimensions of asym-
metric information (as in [28]), as well as different mea-
sures of asymmetric information (as in [91]). These ad-
vances will be partly possible thanks to richer surveys
which collect subjective information regarding agents’ at-
tributes usually unobserved by principals or agent’s sub-
jective probability distributions. The wider availability of
panel data will mean that it will become easier to disentan-
gle moral hazard from adverse selection (as in [1]). Much
is to be learnt by using field experiments that allow ran-
domly varying contract characteristics offered to individ-
uals and hence disentangling moral hazard from adverse
selection (as in [47]).

Contracts and Social Preferences

Although principal-agent theory has proved fundamen-
tal in expanding our understanding of contract situations,
real-life contracts frequently do not exactly match its pre-
dictions. Many contracts are linear and simpler, incentives
are often stronger and wage gaps more compressed than
expected. One possible explanation is that the theory has
mainly focused on economic agents exclusively motivated
by their own monetary incentives. However, this assump-
tion leaves aside issues such as social ties, team spirit or
work morale, which the human resources literature high-
lights. A recent strand of economic literature, known as
“behavioral contract theory”, has tried to incorporate so-
cial aspects into the economic modeling of contracts.

Such theory has beenmotivated by two types of empir-
ical support. On the one hand, extensive interview stud-
ies with firm managers and employees [13] has shown not
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only that agents care about social comparisons such as in-
ternal pay equity or effort diversity, but that their incen-
tives to work hard are affected by them and that principals
are aware of it and design their contracts accordingly. On
the other hand, one of themost influential contributions of
the experimental literature has been to show that, assum-
ing that economic agents are not completely selfish (but
exhibit some form of social preferences), helps organizing
many laboratory data. Experiments replicating labor mar-
kets (starting with Fehr’s [26]) confirm Akerlof’s [4] in-
sight that contracts may be understood as a form of gift
exchange in which principals may offer a “generous” wage
and agents may respond with more than the minimum ef-
fort required.

Incorporating social and psychological aspects in a sys-
tematic manner into agents’ motivations has given rise to
several forms of utility functions reflecting inequality aver-
sion [14,24,27], fairness [75] and reciprocity [25].More re-
cently, such utility functions have been included into stan-
dard contract theory models and have helped in shorten-
ing the gap between theory predictions and real-life con-
tracts. In particular, issues such as employees’ feelings of
envy or guilt towards their bosses [45], utility comparisons
among employees [35,78] or peer-pressure motivating ef-
fort decisions [43,55] have proved important in widening
the scope of issues principal-agent theory can help to un-
derstand.

Principal-Agent Markets

The literature has been treating each principal-agent rela-
tion as an isolated entity. Thus, it normally takes a given
relationship between a principal and an agent (or among
several principals and/or several agents), and analyzes the
optimal contract. In particular, the principal assumes all
the bargaining power as she has the right to offer the con-
tract she likes the most, and agent’s payoff is determined
by his exogenously given reservation utility. However, in
markets there is typically not a single partnership but there
are several. It is then interesting to consider the simulta-
neous determination of both the identity of the pairs that
meet (i. e., the matching between principals and agents)
and the contracts these partnerships sign. The payoffs to
each principal and agent will then depend on the other
principal-agent relationships being formed in the market.
This analysis requires a general equilibrium-like model.

Game theory provides a very useful tool to deal with
the study of markets where heterogeneous players from
one side can form partnerships with heterogeneous players
from the other side: the two-sided matching models. Ex-
amples of classic situations studied in two-sided matching

models (see [82,86]) are the marriage market, the college
admissions model, or the assignment market (where buy-
ers and sellers transact). Several papers extend this game
theory models to situations where each partnership in-
volves contracts and show that the simultaneous consid-
eration of matching and contracts has important impli-
cations. Dam and Pérez-Castrillo [21] show that, in an
economy where landowners contract with tenants, a gov-
ernment willing to improve the situation of the tenants
can be interested in creating wealth asymmetries among
them. Otherwise, the landowners would appropriate all
the incremental money that the government is willing to
provide to the agents. Serfes [85] shows that higher-risk
projects do not necessarily lead to lower incentives, which
is the prediction in the standard principal-agent theory,
and Alonso-Paulí and Pérez-Castrillo [6] apply the the-
ory to markets where contracts (between shareholders and
managers) can include Codes of Best Practice. On the em-
pirical side, Ackerberg and Botticini [2] find strong ev-
idence for endogenous matching between landlords and
tenants and that risk sharing is an important determinant
of contract choice.

Future research will extend the general equilibrium
analysis of principal-agent contracts to other markets.
In addition, the literature has only studied one-to-one
matching models. This should be extended to situations
where each principal can hire several agents, or where
each agent deals with several principals. The interplay be-
tween (external) market competition and (internal) col-
laboration between agents or principals can provide use-
ful insights about the characteristics of optimal contracts
in complex environments.
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Glossary

Apparent exponent The apparent exponent is the power-
law exponent of the probability density function
P(s; sc) in the scaling region. The scaling region is the
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range of event sizes s which is closest to a straight line
in a double-logarithmic plot of P(s; sc), the intermedi-
ate range sc 	 s	 s0.

Consistent estimator An estimator is consistent if it con-
verges to the quantity estimated (the expectation value
of the population) as the sample size is increased. For
example, the lack of independence of consecutive mea-
surements generated in a numerical simulation can
render an estimator inconsistent.

Corrections to scaling In general, pure power-law be-
havior is found in an observable only to leading order,
for example hs2i D aL˛ C bLˇ C : : : with ˛ > ˇ.
While the sub-leading terms can have great physical
relevancemore emphasis is normally given to the lead-
ing order. The quality of the data analysis when deter-
mining the leading order can improve significantly by
allowing for correction terms. The exponents found in
these correction terms are usually expected to be uni-
versal as well.

Correlation time Fitting the autocorrelation function of
an observable to an exponential exp(�t/�) produces
the correlation time � . Although correlations are in
general more complicated than the single exponen-
tial suggests, the standard deviation of the estimator
of the nth moment from N measurements is often es-
timated to be

p
(2� C 1)/N times the estimated stan-

dard deviation of the nth moment,

�2
�
sn

D

2� C 1
N

�2
�
sn

; (1)

as if the number of independent measurements was
only N/(2� C 1).

Estimator A numerical estimator is any function that
provides an estimate from the sample, that is the
set of all measurements taken. A good estimator is
unbiased, consistent and efficient. Very often, such
an estimator coincides with the definition of the ob-
servable as taken from the exact distribution, for ex-
ample s2 D 1

N
PN

i s2i for estimating the second mo-
ment from an uncorrelated sample s1; s2; : : : ; sN , with
exact value hs2i D

R
dss2P(s; sc). However, generally,

a function of observables to be estimated, is not well
estimated by taking the function of the estimates. For
example, the square of the first moment hsi2 is not well
estimated by the numerical estimate s2 D (

P
si /N)2,

as this estimator would be biased.
Finite size scaling Observables in complex systems that

display a power-law dependence on a parameter, of-
ten diverge in the thermodynamic limit. In finite sys-
tems they remain finite and their value is expected to

diverge as a power-law of the system size. The rela-
tion between the value of the observable and the sys-
tem size is known as “finite size scaling” (abbreviated
FSS).

Gap exponent Given that a system displays scaling, the
exponents � 0n characterizing the dependence of the nth
moment on a parameter, such as the system size in
case of finite size scaling, often are linear in n. The gap
exponent is the gap between consecutive moments,
� 0nC1 � �

0
n .

Importance sampling Importance sampling is a numeri-
cal technique to bias the frequency which with config-
urations are generated, so that states of greater impor-
tance, e. g. large observables, are generated more of-
ten than others, less important ones. Using a Markov
chain to generate the states of an Ising model as op-
posed to generating them at random and applying
a Boltzmann–Gibbs weight can be regarded as a form
of importance sampling.

Lower cutoff The lower cutoff in a probability density
function of event sizes in complex systems is a value
of the event size above which the distribution displays
universal behavior. Below this value the system is gov-
erned by microscopic details. For many systems, the
probability density functions for different system sizes
coincide for event sizes below the lower cutoff.

Markov chain Monte Carlo A Monte Carlo technique
whereby configurations are generated by transform-
ing the state of the system according to a transition
probability. The stationary probability distribution of
the different states corresponds to the target probabil-
ity distribution, i. e. the distribution to be modeled. In
complex systems, Markov Chain Monte Carlo (abbre-
viatedMCMC) is the natural method to study a model:
Configurations of the system are generated with the
frequency they occur in the exact distribution.

Moment analysis In general it is a difficult to identify and
quantify scaling behavior in probability density func-
tions. The most general analysis is a data collapse, the
quality of which is not easily determined. The most
widely used method to determine scaling exponents
and moment ratios of the universal scaling function
therefore is a moment analysis. Based on the scaling
assumption of the probability density function, mo-
ments scale as a power of the upper cutoff with am-
plitudes certain ratios of which are universal.

Monte Carlo Technique to calculate numerical estimates
for expectation values in stochastic models by gen-
erating configurations at random. More generally,
Monte Carlo (abbreviated MC) is a stochastic tech-
nique to numerically integrate a high-dimensional in-
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tegral, here corresponding to the calculation of an
expectation value by integrating over all degrees of
freedom, constituting the phase space of the sys-
tem.

Parameter space and phase space The parameter space
of a complex system is the space spanned by all param-
eters of the model, such as system size and couplings
of the interacting agents. A numerical study usually
aims to probe the model throughout a large part of the
parameter space. The number of parameters therefore
needs to be as small as possible. Often only a single pa-
rameter exists. Leaving the parameters fixed, an indi-
vidual numerical simulation samples the phase space
available to the system. The phase space is the set of
all possible configurations or states of the model. This
space is very high dimensional and it is virtually im-
possible to sample this space homogeneously. A nu-
merical simulation relies on the assumption that the
sample taken nevertheless is sufficiently representative
to allow for reliable estimates.

Stationary distribution and transient
Most complex systems studied possess a limiting dis-
tribution, i. e. the probability density distribution in
phase space converges. This is the stationary distribu-
tion. A free random walker, for example, does not pos-
sess a stationary distribution, while a random walker
in a harmonic potential does. Due to correlations, the
probability distribution of states after any finite time
generally depends on the initial condition, which is
therefore often chosen to be random. The measure-
ments discarded due to these correlation are called the
transient.

Unbiased estimator An estimator is unbiased if the pop-
ulation average of the estimator is independent of
the sample size. For example, s D

PN
i si /N from

an uncorrelated sample s1; : : : ; sN is an unbiased
estimator of the expected first moment. Estimat-
ing the variance of s as �2(s) D s2 � s2 however is
biased, because the population mean of s2 � s2 is
((N � 1)/N)(hs2i � hsi2), which depends on the sam-
ple size N .

Upper cutoff The upper cutoff is the characteristic scale
of the universal part of the event size distribution. It
is a measure of the event size at which the scaling
function of the event size distribution breaks up. Mo-
ments hsniwith sufficiently large n are to leading order
a power of the upper cutoff. The upper cutoff itself is
expected to be a power law of the system parameter,
i. e. the system size in case of finite size scaling. The ex-
ponent controlling the relation between upper cutoff
and system size is the gap exponent.

Definition of the Subject

Observables in complex systems usually obtain a broad
range of values. They are random variables of a stochas-
tic process and the system explores a wide phase space.
The observables are therefore characterized by a proba-
bility density function (PDF), representing the probability
(density) to find the complex system in a state with a par-
ticular value of the observable. As in other areas of statisti-
cal mechanics, complex systems are often studied in com-
puter simulations, most prominentlyMonte Carlo [1,2,3]
and the probability density function is recorded in form
of a histogram, which frequently has power-law asymp-
totes. Historically, the probability density function itself
plays a dominant rôle in the characterization of complex
system, while more recently derived quantities, in particu-
lar moments, are used more frequently.

Introduction

There are three main stages in the analysis of the PDF of
a complex system: The first step is to generate in a com-
puter simulation estimates of the PDF itself or derived
quantities, such as moments. This is a general, technical
problem considered in computational physics. In a second
step, the expected behavior of the observables is to be de-
rived, a process that often feeds to the stage of data gener-
ation, as it might suggest new observables to be estimated.
Thirdly, the estimates are to be analyzed and compared to
the expected behavior.

The followingmaterial highlightsmain aspects of these
steps. In practice, the first and the second step go hand in
hand and might even change places, but as the simulation
techniques are so clearly distinct from the theoretical ex-
pectations and the data analysis, which, in turn, are closely
related, simulation techniques are presented first.

The following subsection describes a key-example in
complexity which has been analyzed in great detail using
the techniques described in this article. The subsequent
sections present some principal ideas and techniques from
the three areas introduced above.

Bak–Tang–Wiesenfeld Model

The Bak–Tang–Wiesenfeld (BTW) Model [4,5] is the first
model of Self Organized Criticality studied because of the
peculiar features of the probability density function of its
key observable. The BTW model is a cellular automaton,
sometimes also called a “stochastic cellular automaton”
when it is updated in a random fashion. The BTW model
evolves as follows: In two dimension, height variables zi,
which can take integral values set to 0 initially, are assigned
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to every site i of a square lattice of size L � L. Whenever
a height variable exceeds a certain critical value, its value
is decreased by 4 and the variables of the surrounding
four nearest neighboring sites are incremented by 1. These
rules are modified for sites on the open boundary, where
particles are lost. To drive the model, the height variable
at either a single, specific site or at a randomly chosen site
is increased by 1 and the relaxation rules described above
are applied until none of the sites exceeds the critical value,
which gives rise to an “avalanche” of size s, measuring the
number of times the updating rule has been applied.

The histogram P(s), calculated by repeating the above
procedure millions of times, measures the frequency with
which a certain avalanche size has been observed. It repre-
sents a numerical estimate of the exact, discrete probabil-
ity function hP(s)i. In the following, an over-line as in P(s)
indicates a numerical estimate, while brackets, such as in
hP(s)i indicate the exact population average.

Strictly, the distribution hP(s)i is usually inaccessible,
because even a finite complex system has so many differ-
ent states and therefore so many different outcomes, some
with very small frequencies, that it is virtually impossible

Probability Densities in Complex Systems, Measuring, Figure 1
BTW simulation of a system of size 256� 256, with 1 � 107 iterations used in the transient and 2 � 107 iterations used for statistics:
a Raw histogram, b binned histogram, (dashed line shows exponent� 1.1) c rescaled histogram, using � D 1:22 and d (attempt) of
a data collapse including very small system sizes, L D 32;64;128;256. The different ways to generate, process, present and analyze
the raw data are discussed in this article

to calculate the distribution exactly or sample all outcomes
with the exact weight.

As shown in Fig. 1, the PDF of the avalanche size
has a very long, power law tail. This is typical for com-
plex systems and distinguishes it from what is often found
in simpler problems. Most importantly, the PDF deviates
from a simple Gaussian which is, by the central limit the-
orem [6], the expected PDF, if the observable was a sum
or an average of many independent random variables. The
lack of convergence to a Gaussian therefore indicates the
presence of correlations, the hallmark of a complex sys-
tem. The aim of a numerical estimate and analysis of the
PDF of a complex system is to characterize it quantitatively
in the form of exponents, moment ratios and other features,
in order to compare it to other complex systems. To im-
prove the numerical results, various simulation and anal-
ysis techniques are employed, many of which are aiming
to minimize the amount of CPU-time spent in the simula-
tion.

In the following, some standard simulation techniques
are described. These methods have been developed since
the early 1950s [2] and represent themselves a branch of
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numerical analysis. The data analysis is based on the sam-
ple, i. e. the set of measurements produced in numerical
simulations, subject of the following section. The analysis
can either focus on the PDF itself or on its moments, re-
vealing different features of the system.

Simulation Techniques

In general, the complex system to be studied numerically
models a more complicated phenomenon observed in na-
ture, in economy, society etc. Typically, such a model
is composed of a large number of interacting elements,
which might be divisible in different classes. These ele-
ments might be agents, particles, organisms, locations etc.
and the classes might represent different rôles or species.
Depending on the class, the type of interaction might be
very different.

Only in very rare cases the model strictly reflects the
original natural, economical or social observation it has
been derived from. A complete representation of the orig-
inal problem, even if possible, might be numerically in-
tractable, because of too large a number of parameters that
characterize the model. These parameters generally are
couplings, i. e. they parametrize the interaction between
the individual elements, and generally stay fixed during
the simulation. The immediate aim of the simulation is
to determine observables as functions of the parameters.
Only if the number of parameters is small enough, the pa-
rameter space can be covered sufficiently densely to al-
low for a reliable statement of their various rôles and ef-
fects.

The parameter space is to be distinguished from the
phase space, which is the space or set of possible configu-
rations of the system. Here, a configuration or state is the
(smallest) set of values describing the system in such a way
that they suffice at any point to prescribe the further evo-
lution of the system. Each of these values is associated with
a degree of freedom in phase space.

Reducing the degrees of freedom generally has little
impact on the quality of the numerical estimates. Even
the simplest computer models usually have so many states
that it becomes virtually impossible to calculate any prop-
erty by realizing all such states. For example, a two dimen-
sional square lattice of size 10 � 10 sites, which each can
be in one out of two states, has 2100 possible states and it
would take thousands of billions of years to visit each state,
even if a billion states could be realized every second. Such
a comprehensive study of this rather small system there-
fore is out of scope. Moreover, the original process to be
modeled, realized in nature or society, cannot be thought
of being appropriately represented in this form.

Monte Carlo is by far the most widely used technique
for measuring probability densities in a complex system.
Other approaches, in particular deterministic molecular
dynamics, are far less popular. This section focuses on the
practice of Monte Carlo and various standard techniques
used in conjunction with it.

Monte Carlo Methods

In its most general form, a Monte Carlo algorithm esti-
mates an expectation value of an observable by averag-
ing over a random sample. In the following, this is illus-
trated for a problem with discrete configurations � , each
of which describing the state of the entire system. In case
of interacting particles at sites, this would be a set of num-
bers representing the state of every individual site. Assum-
ing the exact, but usually unknown probability of state �
to be P(�), which in systems with continuous degrees of
freedom is replaced by a PDF, the expectation value for an
observable A(�) is

hAi D
X

f
g

P(�)A(�) (2)

where the sum runs over the set of all states f�g. The ex-
act expectation value can be approximated by the mean
A over a (small) random sample of N configurations
�1; �2; : : : ; �N ,

AD
1
N

NX

iD1

A(�i ) (3)

if the configurations � i occur withP(�). By the (weak) law
of large numbers, the estimate A converges to the exact
value hAi in the limit of a large sample size N.

In most classical models of statistical mechanics, the
probability P(�) is known exactly and often corresponds
to the Boltzmann–Gibbs weight. In some rare cases, such
as percolation [7], configurations of the system are all
equally important and are therefore generated easily at
random and independently. For a much greater class of
problems, for example in case of the Ising model [8],
the configurations differ greatly in statistical weight and
it is a hard computational problem to generate them in
a sensible way. In these cases, Monte–Carlo sampling is
mainly concerned with finding important configurations,
which is often achieved by constructing a pseudo-dynam-
ical process that generates the configurations with the cor-
rect probabilities. In complex systems, on the other hand,
usually the dynamics is given while the probability is un-
known, so that the first concern is to produce measure-
ments with the correct probability (density). However,
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both issues lead to the same solution, namely Markov
Chain Monte Carlo, which can be regarded as a form of
importance sampling.

Importance sampling is a method for producing mea-
surements with a frequency optimized for reducing the
number of measurements required to estimate an expecta-
tion value within a prescribed error. The sampling method
therefore is, ideally, adapted to the observable. In the vast
majority of numerical simulations of complex systems,
however, the sampling scheme used corresponds to the
simplest form of a Markov chain, where the configuration
of the system evolves from one stage to another in discrete
steps given by the dynamics, so that the frequency with
which a configuration occurs during the simulation con-
verges to the exact probability of that configuration [9].
The Markov condition means that the probability to ob-
serve a certain configuration of the system depends only
on the directly preceding configuration. By including a suffi-
cient amount of information in the configuration, in prin-
ciple every process can be renderedMarkovian. For exam-
ple, while the sequence of particle coordinates in a classical
gas is not Markovian, the same sequence together with the
particles’ moments is so.

More sophisticated approaches bias the sampling so
that regions in phase space which have a greater contribu-
tion A(�)P(�) to the expectation value than other regions
are visited more frequently, which is discussed further in
Subsect. “Rare Events”.

Monte Carlo Applied to Complex Systems

In the following, it will be assumed that the complex sys-
tem has its dynamics given in the form of a set of rules
specifying how the model evolves from one configuration
to another. Furthermore, it will be assumed that these rules
involve some randomness, so that a given starting config-
uration does not necessarily lead to one particular config-
uration in the next step. The evolution of the system is
subject to certain transition probabilities encoded in the
transition matrix W(�; � 0), which gives the probability to
go from configuration � 0 to configuration � . This leads to
the notion of the system’s trajectory in phase space, which
is a random variable, traced out by application of the tran-
sition matrix in every Monte Carlo time step or update.
Markov Chain Monte Carlo uses the phase space trajec-
tory to sample the phase space in a fair fashion.

By construction, consecutive configurations are gen-
erally correlated, i. e. the probability to find the system in
a certain configuration depends on the preceding config-
uration. Given the Markovian nature of the process, the
probability depends only on the previous configuration,

nevertheless correlations can be very long-lived, because
the previous configuration’s probability depends in turn
on its preceding configuration and so on. The correlation
time is a measure for the number of updates over which
these correlations decay, the numerical consequences of
which are discussed in Subsect. “Correlation Time”.

At the beginning of the simulation the system is ini-
tialized in a particular form which in practice is often
a rather artificial state. Due to correlations the influence
of the initial condition can last for very many updates.
The Markov-chain approach relies on the insight that the
sampling frequency after a sufficiently long transient con-
verges to the stationary distribution P(�), which solves
for all states � [6]

0 D
X

f
 0g

P(� 0)W(�; � 0) �
X

f
 0g

P(�)W(� 0; �) (4)

where W(�; � 0) is the transition probability from � 0 to �
introduced above. Unless relaxation processes are to be
studied, the stationary regime is sampled after a suffi-
ciently transient, which is ignored, i. e. configurations gen-
erated during the transient do not enter the numerical
estimates. It is general practice to save the configuration
of a system regularly at later stages, which might subse-
quently be used as a starting point for other trajectories in
phase space. This method also allows a systematic study of
the influence of the transient. Eq. (4) is to be distinguished
from detailed balance,

0 D P(� 0)W(�; � 0)� P(�)W(� 0; �) (5)

which solves (4) term by term. Detailed balance is the hall-
mark of equilibrium thermodynamics and has far reach-
ing consequences for the topology of the network spanned
by configurations and the possible transitions between
them [10].

Poisson Processes Many complex systems consist of
a set of concurrent Poisson processes, for example parti-
cles at sites that decay with one particular rate and interact
with another rate. Maintaining a list of all possible pro-
cesses and treating the fastest as deterministic is a widely
adopted approach. If n processes with rate r1; : : : ; rn are
possible with the fastest having the largest rate e, one pro-
cess, say i, out of n is picked at randomwith uniform prob-
ability, performed with probability ri /e [11] and the con-
tinuous time incremented by 1/(en). Within time T on av-
erage enT picks are made, each process is selected eT times
and performed ri T times, which is precisely the average
number of times the Poissonian event should occur. This
implementation therefore correctly reproduces the aver-
ages. On the other hand, an event controlled by a Poisson
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process can take place an arbitrary number of times within
any finite time-span, which this implementation is inca-
pable of. If correct time-keeping is expected to play an im-
portant rôle, as for example in the case of temporal corre-
lations, the time increment itself is to be drawn randomly
from a waiting time distribution [6,12].

Rare Events In the presence of rare events, [13] reliably
estimating expectation values might become impossible.
The problem affect bounded and unbounded observables,
although an unbounded observable is potentially more
prone to this phenomenon.

The problem is caused by events that occur only very
rarely, where, however, the observable is particularly large.
If, for example, an event occurs with frequency f D 10�6

where the observable A has a value of A� D 104a, with a
being the average of A over all other realizations, then in-
cluding the event will change the estimate of the average
of A only by f A�/a D 10�2. Assuming that the second
moment over all other events is a2, including the rare event
will shift the estimate by f A�2/a2 D 102.

An even more dramatic effect is expected for higher
moments, the details of which are discussed in Sect. “Scal-
ing”. Anticipating Subsect. “Moment Analysis” somewhat,
the difficulty of estimating higher moments reliably lies in
their higher demand of independent measurements (also
discussed in Subsect. “Estimators”). To prevent system-
atic underestimation, at least a certain fraction ofmeasure-
ments must be taken from above hsni1/n . The number of
measurements required increases significantly with n and
is further increased in cases of long time correlation and
pathological distributions. In the presence of rare events
more sophisticated importance sampling techniques have
to be used [14,15] to calculate reliable estimates.

In financial applications, rare events are often dis-
cussed in the context of so-called “fat tails” [16], which re-
fer to PDFs that are close to a normal distribution but still
have significant support at about five to ten standard devi-
ations away from the mean. Fat tails are sometimes char-
acterized by power laws, which are often the focus of the
analysis of complex systems, as discussed in this article.

Rare events are sometimes associated [17] with mul-
tiscaling, which is a form of power law scaling to be dis-
cussed in Subsect. “Gap Scaling Versus Multiscaling”.

RandomNumber Generators The simulation of a com-
plex system that is essentially discrete and can be rep-
resented by integers usually spends a significant fraction
of time producing (pseudo) random numbers. If, on the
other hand, the model is essentially continuous, i. e. re-
quires floating point numbers and involves functions from

the mathematical library, those are likely to consumemost
of the CPU-time.

This observation suggests two paths of optimization:
Firstly, floating point operations should be avoided as
much as possible. For example, as most random num-
ber generators produce random integers, a frequent com-
parison of the form rand()/RAND_MAX < q where
q is a constant floating point number, should be re-
placed by rand() < i, where i is q rescaled by a fac-
tor RAND_MAX. Similarly, Boolean random variables, true
with probability 1/2, should be replaced by random bits,
obtained using a bit-mask on an integer random variable,
which is shifted on many platforms most efficiently by
adding it to itself.

The second obvious path of optimization addresses the
(pseudo) random number generator. All modern random
number generators, such as rand2 and others from [18],
various generators discussed in [19] or the Mersenne
twister [20], are of comparable quality and usually have
passed all standard tests [21,22]. Their periods, that is the
number of pseudo random numbers generated until they
repeat, are usually long enough for modern requirements.
Different generators mainly differ in CPU-time consump-
tions and general acceptance. Linear congruential random
number generators and some of those found in the Stan-
dard C Library, on the other hand, generally lack the qual-
ity required in modern computer simulations. They often
fail standard tests, yet some of them are very fast.

Different numerical simulations are independent only
if the random number sequences used are independent.
Only very few random number generators, mostly those
designed for the use in parallelized simulations, guarantee
the independence of sequences for different seeds, which
in some cases have to be generated separately. It is good
practice to seed the random number generator in a con-
trolled way that ensures that none of the seeds is usedmore
than once.

Estimators

Similar to experiments, numerical simulations suffer from
different sources of error, many of which can be reliably
estimated or even cured. In a Monte-Carlo simulation, ex-
pectation values are estimated using an estimator, for ex-
ample the estimator for the nth moment

hsni D
Z

ds snP(s) (6)

from a simulation producing a sequence s1; s2; : : : ; sN is

sn D N�1
NX

iD1

sn : (7)
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For the sake of the argument, in the following it will be
assumed that all moments exist.

An estimator is called unbiased if the expectation
value of the estimator coincides with the expectation
value of the object to be estimated, independent of the
sample size N . Provided the sequence s1; : : : ; sN , intro-
duced above, was taken from the stationary regime, the
above example, Eq. (7), estimating sn , is unbiased, because
hsni D hsni since hsni i D hs

ni for every element in the se-
quence. On the other hand, sn2 is not an unbiased esti-
mator of hsni2, even if the elements in the sequence are
independent. In this case,

hsn2i D hsni2 C N�1
�
hs2ni � hsni2


(8)

which has an explicit dependence onN unless the variance
of sn vanishes. Consequently, the unbiased estimator of the
variance of sn, denoted as �2(s2) is

�2(sn) D
N

N � 1



s2n � sn2

�
(9)

assuming mutual independence of the measurements.
An estimator is called consistent if it converges to the

quantity to be estimated as the sample size is increased.
The law of large numbers ensures this property for simple
means, however, more complicated objects to be estimated
might not posses an estimator that is obviously consistent.

Numerical Error The central aim of a numerical simula-
tion is to produce, efficiently, large sample sizes, with small
or even vanishing correlation time, estimating observables
using unbiased and consistent estimators. The quality of
the numerical estimate, i. e. its error is usuallymeasured by
means of the standard deviation of the estimator, which,
in turn, is to be estimated as well. The standard devia-
tion measures the width of the Gaussian describing the ex-
pected normal distribution of the estimator.

The standard deviation, �(�), is defined as the square
root of variance �2(�). The variance of the estimator of
hsni, introduced in Eq. (7) is

�2
�
sn

D
D
sn2
E
�
˝
sn
˛2
D N�1

�
hs2ni � hsni2



D N�1�2(sn) (10)

using Eq. (8), assuming that the sample is uncorrelated.
A naïve estimator of this variance is N�1(s2n � sn2), which
is, however, a biased estimator, because of Eq. (8):

D
N�1



s2n � sn2

�E
D N�1�2(sn)

N � 1
N

(11)

so that the unbiased estimator for the variance of the esti-
mator of hsni is in fact

�2
�
sn

D (N � 1)�1



s2n � sn2

�
: (12)

When estimating functions of means, such as the variance

f
�
hsi; hs2i


D hs2i � hsi2 (13)

finding an unbiased estimator for it might already be a dif-
ficult task. The most natural choice is of course f (s; s2) but
as pointed out above, Eq. (9), this choice is biased.

The task of finding an estimator for the variance of
the estimator might be even more problematic. The most
naïve approach is to assume independence and approxi-
mate the variance by error propagation

�2( f ) � �2(s)

0

@ @ f
@s

ˇ
ˇ̌
ˇ
hsi;

D
s2
E

1

A

2

C�2


s2
�
0

@ @ f

@s2

ˇ
ˇ̌
ˇ
hsi;

D
s2
E

1

A

2

:

(14)

A first attempt to include correlations is

�2( f ) � �2(s)
�
@ f
@s

�2
C �2

�
s2
 � @ f
@s2

�2

C 2 covar
�
s; s2

@ f
@s
@ f
@s2

(15)

where covar
�
s; s2


denotes the covariance

covar
�
s; s2


D
˝
ss2
˛
�
˝
s
˛˝
s2
˛
: (16)

Similar schemes are often used to estimate variances of
very complicated functions of the observables, sometimes
assuming that the expectation value of the function co-
incides with the function of the expectation values of the
observables, which clearly is only the case for linear func-
tions.

One widely used class of methods available to reduce
bias in estimators and the estimators of their variances are
the Bootstrap and the Jackknife [23,24]. Both methods are
so-called “resampling plans”, which prescribe a method
to construct estimators and estimate their variances from
the distribution of estimates based on sub-samples. In case
of the Jackknife, a sample containing N individual mea-
surements produces N sub-samples by taking all measure-
ments apart from the first, second, third and so on. The es-
timator of the desired quantity is applied to each of the N
sub-samples, each of which containing N � 1 measure-
ments. More elaborate schemes are available particularly
suited to small sample sizes.
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A very similar approach is to measure the desired
quantity in, say M, independent measurements, such as
different Monte-Carlo simulations with different random
number sequences, each consisting of N individual mea-
surements. If N is large enough, the central limit theorem
renders the distribution of the M estimates indistinguish-
able from a normal distribution. The error of the mean is
then easily derived. This scheme lends itself to a simulation
consisting of many independent runs, if they are necessary
anyway to determine a quantity reliably. It can be applied
in a weighted fashion if individual runs consists of differ-
ent sample sizes.

Correlation Time If the sequence s1; s2; : : : ; sN used in
Eq. (7) is observed in a Markov process, the individ-
ual measurements will not be mutually independent: If
P(s2js1) denotes the probability to observe s2 given the di-
rectly preceding sample was s1, then P(s2js1) is, in gen-
eral, not independent of s1. The same is true for n > 1
in P(sn js1), which is generally not independent of s1, and
even P(sn jsn�1; sn�2; : : : ; s1) or any other probability of sn
given a previous (sub-)sequence. Only if the probability of
sn depends only on the directly preceding sample sn�1 but
not on any earlier one, then the sequence s1; : : : ; sn itself
is a Markov process and fully specified by the transition
probabilities between successive si.

The independence of two measurements si and sj
means that their joint probability factorizes. It implies
that they are uncorrelated, which means that the expec-
tation value of their product factorizes, hsi s ji D hsi ihs ji.
The converse is generally not true, but frequently assumed.

The correlation time in a sample is derived from the
autocorrelation function in the stationary state,

C( j) D
hsi s jCi i � hsi2

�2(s)
(17)

which is independent of i because of stationarity. The au-
tocorrelation function is normalized with the variance of
the observable s,

�2(s) D hs2i � hsi2 (18)

so that C(0) D 1. Motivated by the study of Markovian
processes [6], the correlation time 
 of a sequence is es-
timated by fitting C(j) to an exponential exp(� j/�). One
can show that the mean calculated from a finite sequence
si, i D 1; 2; : : : ;N , with correlation time � has a variance
equal to the variance of the mean derived from a set of
N/(2� C 1) uncorrelated measurements.

Obviously, in numerical simulations a sample with
large correlation time is inferior to one with a smaller

correlation time. The estimated mean from an uncorre-
lated sample comprising of N measurements has variance
�2(s) D �2(s)/N, so that along the simple arguments pre-
sented above, the variance of the mean increases (almost)
linearly in the correlation time and decreases inversely in
the sample size. As discussed further below, the square
root of the variance of the estimator is usually used as
a measure of the statistical error. When comparing differ-
ent numerical techniques in terms of their computational
costs, i. e. their CPU-time, one therefore has to compare
the product of the square of the error and CPU-time.

Reducing the Correlation Time A sample of sample
size N and correlation time � contains � correlated sub-
samples which have only correlation time 1, s1; s1C� ;
s1C2� ; : : : . By pruning the original sample or, equivalently,
reducing the sampling rate in a numerical simulation, one
can reduce the correlation time to arbitrarily small values.
This, however, is achieved only with the additional com-
putational cost for the intermediate states of the system
which are produced but not sampled. Such a technique
pays off only if the cost of the sampling is high compared
to the production of a new state of the system, as for ex-
ample if the (expensive) Fourier transform is to be taken
in a system the configuration of which evolves at virtually
no costs. Often, it is more efficient to include all correlated
sub-samples.

Scaling

Scaling is the hallmark of universality [25,26]. One of the
aims of the analysis of a complex system is to determine
whether it displays scaling and if so, whether the charac-
teristics of the scaling behavior suggest that it belongs to
a certain universality class. The universality hypothesis
makes it possible to extend the predictive power of a sim-
ple model to more realistic situations and entire classes of
stochastic processes.

Finite Size Scaling Hypothesis

The PDF hP(s; sc)i of an observable expected to display
scaling is tested against the scaling hypothesis also known
as simple scaling

hP(s; sc)i D

(
as��G(s/sc) for s > s0 (19a)
f (s; sc) otherwise (19b)

where a is a metric factor (constant and in particular in-
dependent of sc), � denotes a (critical) scaling exponent
(not to be confused with the correlation time) and G(x) is
the scaling function usually assumed to be universal up to
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a pre-factor. The upper cutoff sc is the typical scale of the
observable for which the density function rapidly drops to
0. It is also called “characteristic event size” and coincides,
up to a pre-factor, with the first moment hsi in the case
� D 1.

The lower cutoff s0 separates a range of values of the
observable s where the histogram is governed predomi-
nantly by the non-universal PDF f (s; sc). Equation (19)
applies only approximately in discrete systems and in gen-
eral only asymptotically, i. e. for sufficiently large s, sc. Tak-
ing this limit appropriately, quickly becomes very techni-
cal and for that reason will not be discussed in detail in the
following.

The upper cutoff sc is often assumed to diverge with
the system size L as a power-law, sc D bLD with D being
another (critical) exponent, which can be regarded as the
spatial dimension of sc and therefore of the observable s.
The pre-factor b is a secondmetric factor. Together with a,
these two factors are the only non-universal parameters
entering the universal part of the PDF, Eq. (19). In order to
test for universal behavior, one has to impose that G(s/sc)
is a dimensionless function of a dimensionless argument.
For dimensional consistency, a and b both are dimension-
ful, unless � D 1 in which case a is a pure number which
can in principle be absorbed into G, or if D D 1, in which
case b is a number which can be absorbed into G as well.

If sc depends only on L, (19) describes finite size scal-
ing. In standard critical phenomena [25] this is observed
only exactly at the critical point. Away from it, the upper
cutoff depends on an external tuning parameter, such as
the reduced temperature t, which vanishes at the critical
point of a ferromagnetic phase transition. The PDF then
is still expected to display scaling as in (19), to be investi-
gated in the thermodynamic limit, i. e. L!1. In this case
one expects sc D b0�D with b0 being another metric factor,
� the correlation length andD the same spatial dimension-
ality as above. Similarly � is expected to be the same, while
the scaling function differs in finite size scaling and criti-
cal (point) scaling. Most importantly, the finite size scaling
function depends on more details of the system than the
critical scaling function, such as the shape, topology and
aspect ratio of the system aswell boundary conditions [26].

The difference between finite size scaling function and
critical scaling function is generally explained to be caused
by the difference in correlation length: The statistics of a fi-
nite system at the critical point displaying finite size scaling
depends on the geometric properties of the boundaries of
the system as the correlation length reaches them. In case
of critical scaling the system can often be treated as being
composed of many independent sub-systems, not probing
the boundaries. Therefore, the distribution of some ob-

servables, such as the order parameter, is normal if the
thermodynamic limit is taken when the system is not at
the critical point. Other PDFs, such as the cluster size dis-
tribution in percolation, remain non-trivial but different
from finite L, as they are not subject to the central limit
theorem [6,7].

Complex systems and most notably self-organized
criticality very often display finite size scaling and lack an
explicit tuning parameter. Therefore, the following focuses
on finite size scaling.

Data Collapse By plotting the numerical estimate of
hP(s; sc)i(s) in a double logarithmic plot versus s, the slope
of the resulting graph in the scaling region, i. e. the region
dominated by the power-law behavior, sc 	 s	 s0, gives
the apparent exponent �̃ . This is illustrated in Fig. 1b.
According to Eq. (19a) the slope is �� plus any con-
tribution due to the scaling function. Only if the scal-
ing function converges to a constant for small arguments,
limx!0 G(x) > 0, will the apparent exponent �̃ coincide
with the (actual) scaling exponent � .

From the slope of the PDF in a double-logarithmic plot
a first estimate for � can be derived and can subsequently
be used in a data collapse, which consists in plotting the
estimates of the PDF in the rescaled form s�P(s; sc) ver-
sus s/sc. For each individual measurement sc is to be esti-
mated, but the same � is assumed to apply to all of them.
If the result follows simple scaling, then there is a value
of sc for each measurement so that all data s�P(s; sc) for
s > s0 collapse onto the same curve, representing the scal-
ing function in the form aG(s/sc), as exemplified by the so-
called Oslo model [27] in Fig. 2. A failed data collapse is
shown for small system sizes of the BTWmodel in Fig. 1d.
The construction of a data collapse is discussed further in
Subsect. “Binning During Data Analysis”.

The different measurements with sc varying between
them are usually taken from different system sizes. Plot-
ting sc versus the system size in a double-logarithmic
plot reveals the spatial dimension or gap exponent (see
Subsect. “Gap Scaling Versus Multiscaling”) D, since
sc D bLD , possibly with corrections to scaling (see Sub-
sect. “Corrections to Scaling”). The same strategy is ap-
plied if sc is expected to depend on a different parameter,
such as a temperature.

There is no established method for quantifying the
quality of a data collapse and it therefore remains some-
what subjective. There is, however, a simple method to
rule out simple scaling, for example if the tail of the scaling
function, i. e. the region of large arguments, changes shape
for different values of sc, as in the BTW model at least in
the case of small system sizes, Fig. 1d, or if the lower cut-
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Probability Densities in Complex Systems, Measuring, Figure 2
Example of a data collapse, here for the avalanche size distribu-
tion of the one-dimensional Oslo model, [27], driven at a single
site, with system sizes L D 640;1280;2560. The upper cutoff is
expected to scale like sc / L2:25. The data collapses for large val-
ues of s. For small s, the behavior is non-universal

off changes significantly with increasing sc as in the Forest
Fire Model [28]. It is particularly important to probe for
this phenomenon, because the quantitative analysis based
on moments of the PDF is generally unable to detect it, see
Subsect. “Variance and Numerical Error of Higher Mo-
ments”.

The Lower Cutoff The lower cutoff s0 appears in
Eq. (19) to distinguish the universal part of the PDF
shaped by G(s/sc) from the non-universal part given by
f (s; sc). Below the lower cutoff complex and critical sys-
tems are expected to be governed by microscopic physics,
i. e. the specific details of the process. In this region, the
PDF might depend on additional parameters. More often
however, the processes on a very small scale are expected
to be similar, so that often f (s; sc) � f (s; s0c) even for sc
very different from s0c. This is found, for example, in crit-
ical percolation, where sc is solely determined by the sys-
tem size and s is chosen to be so small that the finiteness
of the system is irrelevant. This feature is also visible in the
patterns at low s in Fig. 2. Different definitions of the ob-
servable usually have an impact in this region, but not for
the asymptotic, large s behavior.

Some complex systems do not possess a lower cutoff,
so that the entire region of accessible values of the ob-
servable s is governed by the universal behavior. Although
discrete systems have a natural lower cutoff given by the
smallest possible event, this might be hidden in the defi-

nition range of the observable, as for example in the case
of the avalanche size distribution of the one-dimensional
BTW model, which follows hP(s)i D s�1(s/sc)�(1 � s/sc)
with s 2 f1; 2; : : : ; scg; sc D L and � denoting the Heavi-
side step function.

A continuous system without a lower cutoff is phys-
ically equivalent to one without an upper cutoff, because
by suitable rescaling the range of observables s tested can
be made arbitrarily large.

Corrections to Scaling Equation (19a) describes only
the leading order behavior of the PDF, which is only
asymptotically valid as sc 	 s0 and s	 s0. The former
condition, sc 	 s0, suppresses contributions from the
non-universal part and can in case of finite size scaling be
achieved by increasing the system size. The latter condi-
tion, s	 s0, is reflected in the condition s > s0, however
the larger s0 is chosen, the smaller the error of Eq. (19a).

The corrections accounting for the failure of the ex-
act scaling behavior are known as corrections to scal-
ing [29], originally introduced in the context of ferro-
magnetic phase transitions. In principle, the scaling form
Eq. (19a) can be generalized to

as��G(s/sc)C a1s�(�C!1)G1(s/sc)C : : : (20)

with !1 > 0. It is much more common to account for cor-
rections to scaling on the level of individual observables,
such as moments or sc, instead of the entire distribution.
For example, the standard finite size scaling ansatz includ-
ing corrections to scaling is

sc D bLD(1C b1L�!
0

1 C b2L�!
0

2 C : : :) (21)

with the exponents ! i and ! 0i expected to be universal.

Moments

The data collapse described in the previous section suffers
from the problem that its quality is not easily quantifiable.
Only the obvious failure gives a strong indication of the
absence of finite size scaling in the form Eq. (19).

A more quantitative tool is the moment analysis. In
principle, moments can be derived from the histogram af-
ter the simulation, but the error introduced by binning
methods, which are almost always a necessity, or round-
ing errors in case of continuous event sizes can be very big.
They are easily avoided by calculating themoments during
the simulation.

Numerics of Moments Moments are usually calculated
during the simulation and provide access to the scaling be-
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havior of the system without large memory or computa-
tional requirements. However, as individual contributions
to moments can vary greatly in value, the quality of the
estimate relies crucially on the precision of the numerical
calculation.

The standard method to calculate the nth moment of
P(s; sc) is to sum all nth powers of individual event sizes s
and finally divide by the number of contributions. If the
process takes place in continuous time, each event size
might carry an additional weight with it, and the normal-
ization required is the sum over all weights. This weight
usually corresponds to the amount of time the observable
had a particular value now entering the estimator.

Depending on the type of process, measuring the mo-
ments can contribute significantly to the overall comput-
ing time.Onemethod tominimize it, is to reduce the num-
ber of additions and multiplications. An implementation
could read

// Normalization
power=weight;
moment[0]+=power;
// First moment
power*=event_size;
moment[1]+=power;
// Second moment, etc.
power*=event_size;
moment[2]+=power;
power*=event_size;
moment[3]+=power;
...

which can be further simplified in the form of a loop. Mo-
ments of very high order can be generated in the form

// Normalization
moment[0]+=weight;
// First moment
power=event_size;
moment[1]+=power*weight;
// Second moment
power*=power;
moment[2]+=power*weight;
// Fourth moment
power*=power;
moment[3]+=power*weight;
...

Precision is crucial in particular when it is a priori un-
known whether the main contribution to a moment is due
to many small events or a few very big ones. Integer vari-
ables are an option only if the weight is integer-valued or
can be rendered so. They are ideal, because they do not suf-

fer from rounding errors. To avoid overruns, many plat-
forms offer 64 bit integers. Integers are often computation-
ally, i. e. in terms of CPU-time, advantageous as well.

Where floating point numbers are a necessity, they
have to be of appropriate size. A central criterion is
whether small events can still enter with sufficient accu-
racy at the end of the simulation, when the various vari-
ables holding sums of different powers of the observables
contain very large numbers. Adding a sufficiently small
number to a large floating point number might not actu-
ally change it, depending on the size of the mantissa. The
IEEE 754 standard [30] describes floating point numbers
with 24, 53 and 64 bit mantissae.

It is computationally very inefficient to studymoments
hsni for n … N , because it requires a floating point op-
eration, such as sqrt or pow. Where such moments
are unavoidable, these operations can often be “recycled”,
by, say, calculating pow(event_size, 1./3.), tak-
ing its square and constructing from these two values
plus event_size, all powers 1/3; 2/3; 1; 4/3; 5/3; : : : us-
ing a minimal number of multiplications.

Moment Analysis Simple finite size scaling, Eq. (19),
implies that the moments hsni of the PDF scale like
a power of the upper cutoff sc,

lim
sc!1

hsni
snC1��
c

D a lim
y!0

gn(y) for n > � � 1 (22)

where the amplitude gn(0) is a moment of the universal
scaling function

gn(y) D
Z 1

y
dx xn��G(x) ; (23)

which is universal up to a pre-factor, i. e. any ratio of these
amplitudes is universal. Assuming that the scaling func-
tion G(x) is continuous and has no singularity at finite ar-
gument, one can prove that the limit limy!0 gn(y) exists.
Moreover, as g0(0) > 0, the exponent � cannot be less than
unity.

Simplifying Eq. (22)

hsni / s�nc with �n D 1Cn�� for n > ��1 (24)

the scaling exponents �n are usually determined for n
ranging from 1 up to typically 8 as the slope in a double-
logarithmic plot of the moment versus the system param-
eter, which in case of finite size scaling is the linear size of
the system. If no such parameter is quantifiable, moments
can be measured with respect to each other, noting that

hsni / hsmi
�n
�m for n > � � 1 : (25)
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A priori the lower cutoff and the corrections to scaling
are unknown and in order to determine the (asymptotic)
finite size scaling behavior, a numerical study has to probe
system sizes as large as possible. The true asymptote will,
by definition, strictly remain inaccessible.

Gap Scaling Versus Multiscaling Moments following
the scaling behavior prescribed by (22) are said to display
gap scalingwithD being the gap exponent [31]. This term
refers to the constant gap between the scaling exponents
for consecutive moments as a function not of sc itself but
of the tuning parameter, usually the system size. Assuming
Eq. (21) and using the simplified notation Eq. (24) finite
size scaling implies

hsni / L�
0

n with � 0n D D(1C n � �) (26)

so that two consecutive moments have an exponent dif-
fering by � 0nC1 � �

0
n D D, visible as a constant slope when

plotting the scaling exponent as a function of n, see Fig. 3.
Measuring this slope is the standard method for calculat-
ing the exponent D.

The intersection of the linear continuation of the �n
with the abscissa gives � � 1, which is a standard method
of estimating � . An exponent �n > 0 indicates that the cor-
responding moment is diverging as sc diverges. For � > 1
there are some moments for non-negative n which do not
diverge. If � D 1 the only non-negative moment that does
not diverge is the normalization n D 0.

Probability Densities in Complex Systems, Measuring, Figure 3
The exponents �n estimated from the moments calculated from
hP(s; sc)i as introduced in Fig. 4. The dotted line shows the
exponents estimated from sc ranging from 25 to 1 � 104, the
dashed line shows exponents based on sc ranging from 1 � 104
to 6:4 � 105. The full line shows the exact values the numerical
data converges to. The rounding in the numerical estimates can
bemistaken as multiscaling

If the exponents �n do not increase linearly in n yet
the moments still display scaling behavior, the system is
said to exhibit multiscaling. In this case, the scaling form
Eq. (22) is often extended to

lim
sc!1

hsni
ln(sc)�n s�nc

(27)

to allow for logarithmic contributions to the scaling behav-
ior. The presence of these logarithmic “corrections” are of-
ten interpreted as a sign of multiscaling, as is the presence
of rare events, see Subsect. “Rare Events”.

Multiscaling often means that the �n converge for
large n and only the n continue to increase. Multiscal-
ing is sometimes confused with the absence of scaling al-
together, or with the rounding effect observed close to
n D � � 1, as shown in Fig. 3.

The standard method of estimating � and the gap
exponent D is to fit the moments hsni to a power-law,
see (24) and Eq. (26), possibly including corrections to
scaling (Subsect. “Corrections to Scaling”) and usually by
plotting not versus sc but versus some system parameter
such as the size L. The resulting �n or � 0n are then fitted
against 1C n � � or D(1C n � �) respectively to deter-
mine � and possibly D.

Variance and Numerical Error of Higher Moments
The variance of the nth moment is hs2ni � hsni2 D
h(sn � hsni)2i. This difference is always non-negative and
comparing the scaling exponents for both contributions
from Eq. (24) confirms �2n � 2�n , where the equality
holds only if � D 1. Thus, unless � D 1, the standard de-
viation of the estimator of the nth moment is expected
to scale with exponent (1/2)�2n D nD C (1/2)(1 � �). The
relative variance, also known as the relative fluctuations,
therefore is expected to scale as

hs2ni
hsni2

/ s�2n�2�nc D s��1c (28)

and therefore diverges asymptotically for � > 1 as the up-
per cutoff increases.

For � D 1 the relative variance might not change
with sc, although the ratio

p
hs2ni/hsni2 might have

a strong dependence on n. Because (24) determines only
the leading order scaling of the moments but makes no
statement about the respective amplitude, the difference
hs2ni � hsni2 might have a leading order that scales slower
than �2n if � D 1. In this case the relative variance might
asymptotically vanish, which is known as self-averag-
ing [32].

Self-averaging is more commonplace in the context of
scaling with system size away from a critical point. In this



Probability Densities in Complex Systems, Measuring P 7003

case, spatial densities usually follow a Gaussian distribu-
tion and the system can be decomposed into finite patches,
the number of which grows linearly in the volume. There-
fore, the relative variance of a density that converges in the
thermodynamic limit to a finite value, decreases like L�d .
This effect is known as strong self-averaging [33]. Where
the variance decays with increasing L, but not as fast as
L�d , the effect is known as weak self-averaging. The vari-
ance can decrease faster than L�d only in the (rare) pres-
ence of anti-correlations.

AMonte–Carlo simulation can be regarded as a means
to integrate a function, so that estimating hsni means in
fact to perform the integral

sn D
Z

ds P(s; sc)sn : (29)

Themost efficient method to estimate hsni samples exactly
with a density / hP(s; sc)isn , which in principle can be
achieved using (ideal) importance sampling. In practice,
this is rarely possible and only very crude approximations
to hP(s; sc)isn are available as sampling frequencies. In the
context of complex systems, hP(s; sc)i itself is the sampling
rate, in the vast majority of problems.

The comparison to ideal importance sampling sug-
gests an alternative, much stronger criterion to assess the
quality of a numerical estimate. The product hP(s; sc)isn

usually has its maximum at some smax close to sc and
one might therefore compare the density of measurements
around smax to the weight this range of s enters the inte-
gral (29) [34].

Correspondingly, one can derive the number of mea-
surements needed to perform the integral (29) reliably by
imposing a lower bound on the density of measurements
around s as a fraction of hP(s; sc)isn . Demanding that the
density of measurements around s is nowhere less than
��P(s; sc)sn , then gives rise to a scale s�, so that at least
one sample is to be taken above the “characteristic largest
event” s�,

Z 1

s�
ds ��P(s; sc)sn D 1 (30)

which depends on n and is to be compared to the total
weight in the sample actually produced in the simulation
P̃(s; sc),

Ñ(s�) D N
Z 1

s�
dsP̃(s; sc) (31)

where N is the total number of measurements taken and
P̃(s; sc) D P(s; sc) is the sampling frequency unless impor-
tance sampling is used. The event size s� usually is of the

Probability Densities in Complex Systems, Measuring, Figure 4
Moments for larger n draw more weight from larger s. A mo-
ment analysis investigating large moments might possibly miss
features of the distribution at small arguments. The distribu-
tion used here is hP(s; sc)i D as�3/2G(s/sc) for s 2 [1;1 with
G(x) D (1C x2) exp(�x3/sc) and sc D 10000

order of the upper cutoff sc and the number of measure-
ments needed typically scales itself like snc .

Thus, this much stronger criterion, constraining the
sampling density even in the extreme region of very large s
produces a much stronger constraint on the sample size
than suggested by the relative variance, which increases
with sc only as s��1c , see Eq. (28).

Figure 4 shows the product snhP(s; sc)i/hsni for a range
of n as a function of s. As indicated above, the larger n, the
more weight enters from the tail of the distribution, which
implies that small s features are more and more ignored
with increasing n. While increasing n are needed in order
to derive the gap exponent (see Subsect. “Gap Scaling Ver-
sus Multiscaling”) reliably, an analysis that relies solely on
moments can miss a lack of finite size scaling for small s,
such as divergent lower cutoff.

This problem can be avoided either by careful inspec-
tion of the data collapse, or by accurate determination of
the scaling of moments for very small n > � � 1, which
might necessitate the investigation of fractional moments,
see Fig. 3. The closer themoment is to � � 1, the slower the
convergence to the asymptotic behavior. This is illustrated
in Fig. 5a which shows the scaling of the first moment hsi
in a system with � D 1:5.

Whether displaying and analyzing the histogram or
moments, it is generally significantly more informative to
plot the data with the leading order divided out, for exam-
ple ss�1/2c if s / s1/2c is expected as shown in Fig. 5b. If the
numerical data converges to a constant, this confirms the
scaling, while the shape of ss�1/2 indicates the rôle of cor-
rections to scaling. Moreover, the spread of the numerical
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Scaling of the firstmoment hsi of hP(s; sc)i (see Fig. 4). a In a double-logarithmic plot, the slope ranges from0.95 (dashed line) to about
0.5 (asymptotically exact; full line) as indicated. Correction terms (corrections to scaling) or very large system sizes are necessary
for the estimated exponent to be sufficiently close to the asymptote, which is �1 D 0:5 known from construction. This becomes
more apparent when plotted in the form shown in b: The same data but plotted as hsis�1/2

c . In this form it is easier to see that the
asymptotic behavior is only reached by probing system sizes at least as big as the largest one shown

data across the ordinate is reduced, allowing for a more
detailed inspection of the details. This is discussed further
in Subsect. “Binning During Data Analysis” for the scaling
of histograms.

Critical Slowing Down Large upper cutoffs are needed
to isolate the asymptotic behavior on the one hand, but
they are numerically very demanding on the other hand.
Another effect which reduces the effectiveness of Monte–
Carlo simulations, known from ferromagnetic phase tran-
sitions, is critical slowing down.

The (auto-)correlation time discussed in Subsect.
“Correlation Time” effectively reduces the number of in-
dependent measurements produced in the simulation.
Critical slowing down describes the behavior of the cor-
relation time at the critical point or in finite size scaling:
The correlation time � , see Subsect. “Correlation Time”,
diverges like a power-law of the tuning parameter, which
in finite size scaling means that � / Lz , where z is known
as the dynamical exponent.

Taking all different effects into account, the increas-
ing relative variance for � > 1 (exponent � , see Eq. (19)),
the minimal number of measurements required for a cer-
tain minimal coverage and finally critical slowing down,
large system sizes always represent a challenge to the qual-
ity of the estimate of moments, in particular for large n.
These are, however, necessary for a reliable estimate of the
asymptotic behavior of the PDF.

Moment Ratios A priori the amplitude a on the RHS
of (22) is unknown; definition Eq. (19a) fixes only � and
otherwise states only that there exist quantities a andG(x),

fixed only up to a pre-factor, so that the universal part of
the PDF obeys Eq. (19a).

By taking ratios of quantities containing non-universal
pre-factors these are removed. For example,

gn(0) gn�21 (0)
gn�12 (0)

D
hsnihsin�2

hs2in�1
(32)

contains only moments of the scaling function with any
non-universal pre-factor removed. Moreover, one can
show that (32) converges to a non-zero value if hsni fol-
lows Eq. (24).

For � D 1 the metric-factor a becomes dimension-
less and can therefore be fully absorbed into the scaling
function. In ferromagnetic critical phenomena and related
phase transitions, such as percolation, where � D 1, ratios
of the form hsnmi/hsmin are universal already.

HistogramData Representation

Naïvely, collecting the histogram in a simulation of
a complex system with integer valued event sizes
amounts only to incrementing a variable histogram
[event_size]++. While this procedure is very effi-
cient, provided that the number of processor cycles needed
to access histogram[event_size] is minimal, the
memory requirements quickly exceed that of standard
computers as sc increases. Moreover, histogram entries for
small event sizes might overflow, necessitating very large
data types to accommodate the largest entry in the his-
togram. At the same time, entries for very large event sizes
are very sparse. Using this technique for continuous event
sizes means that they have to be rounded.
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Various methods of binning are established to han-
dle these problems. Binning is usually also used at the
stage of data analysis, i. e. in the preparation of data af-
ter the actual simulation has taken place. The key is to
map the complete range of event sizes to the range avail-
able in the representation of the histogram. In the con-
text of computing, the map is effectively a hash-func-
tion, in the following h(s). Assuming that the event size
lies within a certain, finite range and is non-negative,
s 2 [0; smax] D ˝ , not necessarily discrete, sets Sl � ˝

are defined so that all s 2 Sl are equivalent under the
hash algorithm and distinct otherwise, i. e. s; s0 2 Sl im-
plies h(s) D h(s0) D l and vice versa. The sets are usu-
ally continuous, so that the hash algorithm h(s) can be
represented by a set of ranges, for example h(s) D l for
sl � s < slC1. The hash function is then used in the form
histogram[h(event_size)]++.

After collecting the data into bins, they are normalized
by the bin size and often shown with respect to the geo-
metric mean of the bin rangespsl slC1. There is obviously
some freedom of choice, but if the choice makes a qualita-
tive or quantitative difference, this implies that the binning
is too coarse.

Binning Schemes Within the Simulation

Binning can take place either during the simulation or in
the data analysis. In general, it is advisable to keep the sim-
ulation as simple as possible: If the binning scheme within
the simulation fails, all data might be lost or rendered use-
less. If it fails at the stage of data analysis, it can easily be
fixed and repeated. However, due to memory constraints,
it is very often necessary to use binning within the simu-
lation. In these cases, it is vital to choose the most efficient
binning scheme to avoid a negative impact on the CPU
time.

Power Law Binning The aim of binning generally is
to reduce the histogram’s memory requirements, while
avoiding potential overflows. The first aim can be achieved
by choosing the size of the ranges slC1 � sl according to
the (expected) PDF, which a priori is, however, unknown.
Assuming a pure power law, hP(s; sc)i D s�� , the ranges
would need to be sl D (c(M � l))1/(1��) for � > 1, where c
determines the size of the range andM is the maximum l.
In case of discrete event sizes, obviously the ranges need to
be rounded.

Even distribution of the events across the histogram
has the additional advantage of equal error for each bin,
provided that the error is only a function of the number
of events. This might not be the case for very small events,

where correlations might be significantly larger than for
larger event sizes.

Although the binning ranges described above would
produce ideal bins, it is generally not advisable to use an
expected result, such as the exponent � , in the process of
collecting the raw data to measure this quantity.

Exponential Binning The schememost suitable for pre-
senting the data in a double-logarithmic plot is exponen-
tial binning. In this case the range limits are powers of
some base sb, so that sl D rslb with some pre-factor r. As
a result, the data points are evenly spread with a spacing
of ln(sb) after taking the logarithm of the abscissa. The er-
ror, on the other hand, increases towards larger s because
of the smaller number of events collected in bins for larger
event sizes. Approximating the PDF by a pure power law,
the number of events in the bin with hash l is, up to the
normalization

Z s lC1

s l
ds s�� D

(rslb )
1��

� � 1
(1 � s1��b ) (33)

for � > 1 which decreases with increasing l. The width of
each bin is slC1 � sl D sl (sb � 1).

Exponential binning is frequently used and the one
most suited for a direct calculation of the hash value dur-
ing the simulation. Two simple methods can be distin-
guished for determining the hash value: Firstly, a function
h̃(s) can be devised so that, for example, its integer part
gives the hash value. In case of exponential binning, this
function is h̃(s) D ln(s/r)/ ln(sb). Using functions from
the mathematical library, such as log is, however, com-
putationally very expensive.

Secondly, one can compare s to the various sl until l
is found so that sl � s < slC1. Since small events are the
most frequent ones, this might be implemented by sim-
ply linearly increasing l. A crude estimate of the expected
number of comparisons shows that this number generally
quickly converges with increasing sc, as hln(s)i is finite.

The constant number of expected comparisons it to be
compared to the obvious “divide and conquer” or tree-
search approach: Given M bins, s is compared to sM/2,
in the next step, depending on the outcome of the pre-
vious comparison, to sM/4 or s3M/4 etc. This method can
be improved further by choosing the values to compare
to so that the probability for s to be above or below are
roughly equal, again assuming a certain, simplified form
of hP(s; sc)i. The expected number of comparisons in this
scheme is of the order of ln(M). Usually, the (logarithmic)
bin size sb is fixed, so that M increases with sc like ln(sc),
i. e. the expected number of comparisons is proportional
to the double logarithm of sc. Even though asymptotically
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tree-search has a greater number of comparisons than the
linear search discussed above, in practice, the double log-
arithms means that tree-search will almost always by far
outperform a linear search. Similarly, even though direct
calculation of the bin l using a function h̃(s) has constant
computational costs, they will typically be greater than for
the tree search, in particular if the observable is discrete
and provisions must be made in the region of its small val-
ues.

Coarse Graining The simplest binning scheme consists
of dividing s by a constant, h(s) D s/q so that the resulting
range of hash values is small enough to fit in the memory
available. In case of integer valued event sizes, the simplest

Probability Densities in Complex Systems, Measuring, Figure 6
A data collapse in detail. Using the data shown in Fig. 2, a shows the binned data. In b a preliminary estimate has been made for the
scaling exponent � and the data is plotted in the form s1:5P(s; sc). A “landmark” has been chosen (the maxima, indicated by arrows),
which connected by a line (dotted) indicate that the exponent � is to be chosen larger than the preliminary choice. In c � D 1:55 is
chosen to make all maxima line up (dotted line). The position of themaxima on the abscissa (arrows) indicate the value of sc. d shows
the final collapse, after shifting the data horizontally by dividing s by the respective sc. The approximate value for s0, estimated for
the two smaller system sizes as the point where the data approximately coincide is indicated by an arrow

and potentially the fasted way of determining the hash
value is a bit shift, i. e. a division by a power of 2.

The key problem is the same as the initial motivation
for binning, namely that entries for small smight overflow,
while entries for large smight be very sparse. The problem
is more serious in case of coarse graining if the factor q is
so large that the majority of events arrives in the first bin.
Moreover, not fully resolving the distribution for small s
means that most of the non-universal part of the distribu-
tion is lost, potentially hiding problems of the behavior of
the lower cutoff.

A very powerful alternative is a combination of coarse
graining and exponential binning. A small number of
thresholds is introduced and within each pair, a different
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rescaling q factor is used to implement different degrees
of coarse graining. This method also allows the use of dif-
ferent variables types in different regions of the histogram,
i. e. large types for small s and smaller less memory con-
suming ones for smaller values.

Binning During Data Analysis

To simplify visual inspection, in practice the raw his-
togram produced in the simulation is always binned after-
wards. The most widely used method is exponential bin-
ning, as it provides equally spaced data points in a double-
logarithmic plot.

To perform a data collapse, the data is plotted in the
form s�P(s; sc) versus s/sc. If Eq. (19) applies, the data
for different sc collapses on the same line, approximating
G(s/sc) up to an error due tofinite size corrections and the
presence of the non-universal part. An example is shown
in Fig. 2. If Eq. (19) applies, the data collapses for any func-
tion f (x) when plotted in the form s� f (s/sc)P(s; sc) ver-
sus s/sc and shows G(s/sc) f (s/sc). A particularly important
case is f (x) D x�� , which leads to s�c P(s; sc) versus s/sc.
To expose as many details as possible of the assumed scal-
ing function, it is generally advisable to choose f (x) so that
the ordinate of the resulting data spreads as little as pos-
sible (see also Fig. 5). If limx!0 G(x) ¤ 0, this is usually
the case for f (x) D 1. If G(x) is expected to have a power-
law dependence on the argument, G(x) D x˛G̃(x) with
limx!0 G̃(x) ¤ 0, then f (x) D x�˛ is the appropriate
choice.

If the exponent � and the values sc are unknown, the
first step to perform a data collapse is to collapse the
binned data (Fig. 6a) approximately with some prelimi-
nary choices for � and (Fig. 6b) possibly also for the dif-
ferent values of sc and determine an outstanding feature
in the resulting data, such as the maximum (arrows in
Fig. 6b). A different choice for � will change the relative
vertical position of the “landmark”, which is to be chosen
so that all landmarks line up at the same value on the or-
dinate, Fig. 6c. Next, the sc for the different simulations
are chosen to collapse the data horizontally, usually by es-
timating sc as the position of the landmark with respect to
the abscissa, Fig. 6d. In this last figure the lower cutoff s0
can be estimated as well, as the value of s fromwhere on the
data roughly coincide. A double-logarithmic plot of both
cutoffs indicates roughly constant s0 and a gap-exponent
D D 2:25 for sc. A data collapse often reveals that much
greater system sizes are needed, as scaling applies to the
asymptotic behavior only. The attempt of a data collapse
for the BTWmodel, Fig. 1d, shows an example for a failed
collapse in the case of small system sizes.

Probability Densities in Complex Systems, Measuring, Figure 7
If the sample is too sparse in the tail of the distribution, exponen-
tial binning produces a spurious slope � D 1

While binning greatly improves the visual quality of
the data, it assumes that hP(s; sc)i does not change too sud-
denly on the scale of the size of the bin, which therefore
needs to be chosen small enough. However, choosing sb
too small results in too many bins and therefore too much
statistical noise. For large s most of those will be empty,
some will contain a single entry, some two etc. Because
the width of the bin is (sb � 1)sl the density within bins
containing a single entry scales like s�1l , leading in a dou-
ble-logarithmic plot to a sequence of points with slope �1.
Parallel to this line, lies a set of points corresponding to
bins with two entries etc. The resulting plot displays a spu-
rious scaling exponent � D 1, see Fig. 7.

Future Directions

The numerical methods discussed above are commonly
used in other areas of statistical physics and have been
mainly developed there. That applies to the Monte Carlo
methods as well as to the data analysis. Within complex-
ity, the development of methods hardly forms a research
branch in its own right. Most methods are developed by
practitioners for the specific problem at hand.

As complexity is a very diverse field, only very few
models have received so much attention that specialized
algorithms have been developed and discussed broadly in
the literature, for example [11,35]. Most models are de-
fined by a dynamic process which normallymakes a simple
implementation readily available. Algorithmic improve-
ments mainly focus on efficiency and resources, as both
CPU time and memory requirements are the two key fac-
tors limiting the quality of results in terms of sample size
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and system size respectively. In other areas, as for example
in the context of networks, new observables often require
new, efficient algorithms.

Even though almost all models are constrained by the
computer hardware available and therefore benefit sig-
nificantly from improved algorithms, optimization often
clashes with the universality of the algorithm and, on
a more technical level, with the elegance and readability
of the code.

With respect to data analysis, some literature is con-
cerned with new approaches to established observables,
such as the moment analysis discussed in Subsect. “Mo-
ment Analysis” to derive the exponents of the PDF.

While algorithms and methods have advanced signif-
icantly, there seems to be a maximum amount of infor-
mation about a complex system accessible through a given
amount of CPU time spent in a computer simulation. The
most significant general advancement in computational
physics therefore comes from the continuous improve-
ment of computer hardware available, producing an ever
increasing sample size within a certain amount of CPU
time. While this relieves the research from many con-
straints, it does not imply that sophisticated algorithms
and well thought-out methods become less relevant. It is
the combined effect of methods, software and hardware
that moves the subject forward continuously. A good al-
gorithm to cope with today’s technical constraints will do
an even better job in the years to come.
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Glossary

Complex system A system with a large number of mutu-
ally interacting parts, often open to its environment,
which self-organizes its internal structure and its dy-
namics with novel and sometimes surprising macro-
scopic “emergent” properties.

Criticality (in physics) A state in which spontaneous
fluctuations of the order parameter occur at all scales,
leading to diverging correlation length and susceptibil-
ity of the system to external influences.

Power law distribution A specific family of statistical dis-
tribution appearing as a straight line in a log-log plot;
exhibits the property of scale invariance and therefore
does not possess characteristic scales.

Self-organized criticality Occurs when the system dy-
namics are attracted spontaneously, without any ob-
vious need for parameter tuning to a critical state with
infinite correlation length and power law statistics.

Stretched-exponential distribution A specific family of
sub-exponential distribution interpolating smoothly
between the exponential distribution and the power
law family.

Definition of the Subject

This core article for the Encyclopedia of Complexity and
System Science (Springer Science) reviews briefly the con-
cepts underlying complex systems and probability distri-
butions. The latter are often taken as the first quantita-
tive characteristics of complex systems, allowing one to
detect the possible occurrence of regularities providing
a step toward defining a classification of the different lev-
els of organization (the “universality classes”). A rapid
survey covers the Gaussian law, the power law and the
stretched exponential distributions. The fascination for
power laws is then explained, starting from the statisti-
cal physics approach to critical phenomena, out-of-equi-
librium phase transitions, self-organized criticality, and
ending with a large, but not exhaustive, list of mecha-
nisms leading to power law distributions. A checklist for
testing and qualifying a power law distribution from data
is described in seven steps. This essay enlarges the de-
scription of distributions by proposing that “kings”, i. e.,
events even beyond the extrapolation of the power law
tail, may reveal information which is complementary and
perhaps sometimes even more important than the power
law distribution. We conclude with a list of future direc-
tions.

Introduction

Complex Systems

The study of out-of-equilibrium dynamics (e. g. dynami-
cal phase transitions) and of heterogeneous systems (e. g.,
spin-glasses) has progressively made popular in physics
the concept of complex systems and the importance of
systemic approaches: systems with a large number of
mutually interacting parts, often open to their environ-
ment, self-organize their internal structure and their dy-
namics with novel and sometimes surprising macroscopic
(“emergent”) properties. The complex system approach,
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which involves “seeing” inter-connections and relation-
ships, i. e., the whole picture as well as the component
parts, has become pervasive in modern control of engi-
neering devices and business management. It also plays
an increasing role in most of the scientific disciplines, in-
cluding biology (biological networks, ecology, evolution,
origin of life, immunology, neurobiology, molecular biol-
ogy, etc.), geology (plate-tectonics, earthquakes and vol-
canoes, erosion and landscapes, climate and weather, en-
vironment, etc.), economics and social sciences (cogni-
tion, distributed learning, interacting agents, etc.). There
is a growing recognition that progress in most of these dis-
ciplines, in many of the pressing issues for our future wel-
fare as well as for the management of our everyday life,
will need such a systemic complex system and multidisci-
plinary approach.

A central property of a complex system is the possi-
ble occurrence of coherent large-scale collective behaviors
with very rich structure, resulting from the repeated non-
linear interactions among its constituents: the whole turns
out to be much more than the sum of its parts. Most com-
plex systems around us exhibit rare and sudden transi-
tions that occur over time intervals which are short com-
pared to the characteristic time scales of their prior evo-
lution. Such extreme events express more than anything
else the underlying “forces” usually hidden by almost per-
fect balance and thus provide the potential for a better
scientific understanding of complex systems. These crises
have fundamental societal impacts and range from large
natural catastrophes such as earthquakes, volcanic erup-
tions, hurricanes and tornadoes, landslides, avalanches,
lightning strikes, and catastrophic events of environmen-
tal degradation, to the failure of engineering structures,
crashes in the stock market, social unrest leading to large-
scale strikes and upheaval, economic drawdowns on na-
tional and global scales, regional power blackouts, traffic
gridlock, diseases and epidemics, etc.

Given the complex dynamics of these systems, a first
standard attempt to quantify and classify the characteris-
tics and the possible different regimes consists of

1. identifying discrete events,
2. measuring their sizes,
3. constructing their probability distribution.

The interest in probability distributions in complex sys-
tems has the following roots.

� They offer a natural metric of the relative rate of oc-
currence of small versus large events, and thus of the
associated risks.

� As such, they constitute essential components of risk
assessment and prerequisites of risk management.

� Their mathematical form can provide constraints and
guidelines to identify the underlying mechanisms at
their origin and thus at the origin of the behavior of
the complex system under study.

� This improved understanding may lead to better fore-
casting skills, and even to the option (or illusion (?)) of
(a certain degree of) control [1,2].

Probability Distributions

Let us first establish some notation and vocabulary. Con-
sider a process X whose outcome is a real number. The
probability density function P(x) of X (also called proba-
bility distribution or pdf) is such that the probability thatX
is found in a small interval 
x around x is P(x)
x . The
probability that X is between a and b is therefore given by
the integral of P(x) between a and b:

P(a < X < b) D
Z b

a
P(x)dx : (1)

The pdf P(x) depends on the units used to quantify the
variable x and has the dimension of the inverse of x, such
that P(x)
x , being a probability, i. e., a number between
0 and 1, is dimensionless. In a change of variable, say
x ! y D f (x), the probability is invariant. Thus, the in-
variant quantity is the probability P(x)
x and not the pdf
P(x). We thus have

P(x)
x D P(y)
y ; (2)

leading to P(y) D P(x)jd f /dxj�1, taking the limit of in-
finitesimal intervals. By definition, P(x) � 0. It is normal-
ized,

R xmax
xmin

P(x)dx D 1, where xmin and xmax (often ˙1)
are the smallest and largest possible values for x, respec-
tively.

The empirical estimation of the pdf P(x) is usually
plotted with the horizontal axis scaled as a graded series
for themeasure under consideration (themagnitude of the
earthquakes, etc.) and the vertical axis scaled for the num-
ber of outcomes or measures in each interval of horizontal
value (the number of earthquakes of magnitude between 1
and 2, between 2 and 3, etc.). This implies a “binning” into
small intervals. If the data is sparse, the number of events
in each bin becomes small and can fluctuate, leading to
a poor representation of the data. In this case, it is useful
to construct the cumulative distribution P�(x) defined by

P�(x) D P(X � x) D
Z x

�1

P(y)dy ; (3)
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which is much less sensitive to fluctuations. P�(x) gives
the fraction of events with values less than or equal to x.
P�(x) increases monotonically with x from 0 to 1. Simi-
larly, we can define the so-called complementary cumula-
tive (or survivor) distribution P>(x) D 1 � P�(x).

For random variables which take only discrete values
x1; x2; : : : ; xn , the pdf is made of a discrete sum of Dirac
functions (1/n)[ı(x � x1)C ı(x � x2)C � � � C ı(x � xn)].
The corresponding cumulative distribution function (cdf)
P�(x) is a staircase. There are also more complex distri-
butions made of a continuous cdf but which are singular
with respect to the Lebesgue measure dx. An example is
the Cantor distribution constructed from the Cantor set
(see for instance Chap. 5 in [3]). Such a singular cdf is con-
tinuous but has its derivative which is zero almost every-
where: the pdf does not exist (see e. g. [4]).

Brief Survey of Probability Distributions

Statistical physics is rich with probability distributions.
The most famous is the Boltzmann distribution, which
describes the probability that the configuration of a sys-
tem in thermal equilibrium has a given energy. Its exten-
sion to out-of-equilibrium systems is the subject of in-
tense scrutiny [5]; see also Chap. 7 in [3] and references
therein. Special cases include theMaxwell–Boltzmann dis-
tribution, the Bose–Einstein distribution and the Fermi–
Dirac distribution.

In the quest to characterize complex systems, two dis-
tributions have played a leading role: the normal (or Gaus-
sian) distribution and the power law distribution. The
Gaussian distribution is the paradigm of the “mild” fam-
ily of distributions. In contrast, the power law distribu-
tion is the representative of the “wild” family. The contrast
between “mild” and “wild” is illustrated by the following
questions:

� What is the probability that someone has twice your
height? Essentially zero! The height, weight and many
other variables are distributed with “mild” pdfs with
a well-defined typical value and relatively small varia-
tions around it. The Gaussian law is the archetype of
“mild” distributions.

� What is the probability that someone has twice your
wealth? The answer of course depends somewhat on
your wealth but in general, there is a non-vanishing
fraction of the population twice, ten times or even one
hundred times as wealthy as you are. This was noticed
at the end of the 19th century by Pareto, after whom the
Pareto law has been named, which describes the power
law distribution of wealth [6,7], a typical example of
“wild” distributions.

The Normal (or Gaussian) Distribution The expres-
sion of the Gaussian probability density function of a ran-
dom variable x with mean x0 and standard deviation �
reads

PG (x) D
1

p
2��2

exp
�
�
(x � x0)2

2�2

�

defined for �1 < x < C1 : (4)

The importance of the normal distribution as a model
of quantitative phenomena in the natural and social sci-
ences can be in large part attributed to the central limit
theorem. Many measurements of physical as well as so-
cial phenomena can be well approximated by the normal
distribution. While the mechanisms underlying these phe-
nomena are often unknown, the use of the normal model
can be theoretically justified by assuming that many small,
independent effects additively contribute to each observa-
tion. The Gaussian distribution is also justified as the most
parsimonious choice in absence of information other than
just the mean and the variance: it maximizes the infor-
mation entropy among all distributions with known mean
and variance. As a result of the central limit theorem, the
normal distribution is the most widely used family of dis-
tributions in statistics and many statistical tests are based
on the assumption of asymptotic normality of the data.
In probability theory, the standard Gaussian distribution
arises as the limiting distribution of a large class of distri-
butions of random variables (with suitable centering and
normalization) characterized by a finite variance, which is
nothing but the statement of the central limit theorem (see
Chapter 2 in [3]).

At the beginning of the twenty-first century, when
power laws are often taken as the hallmark of complexity,
it is interesting to reflect on the fact that the previous gi-
ants of science in the eighteenth and nineteenth centuries
(Halley, Laplace, Quetelet, Maxwell and so on) considered
that the Gaussian distribution expressed a kind of univer-
sal law of nature and of society. In particular, the Belgian
astronomer Adolphe Quetelet was instrumental in popu-
larizing the statistical regularities discovered by Laplace in
the frame of the Gaussian distribution, which influenced
the likes of John Herschel and John Stuart Mill and led
Comte to define the concept of “social physics.”

The Power Law Distribution A probability distribution
function P(x) exhibiting a power law tail is such that

P(x) /
C�
x1C�

; for x large ; (5)

possibly up to some large limiting cut-off. The exponent�
(also referred to as the “index”) characterizes the nature of
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the tail: for � < 2, one speaks of a “heavy tail” for which
the variance is theoretically not defined. For power laws,
the scale factor C� plays a role analogous to the role of
variance in Gaussian distributions (see Chapter 4 in [3]).
In particular, it enjoys the additivity property: the scale
factor of the distribution of the sum of several indepen-
dent random variables, each with a distribution exhibiting
a power law tail with the same exponent �, is equal to the
sum of the scale factors characterizing each distribution of
each random variable in the sum.

A more general form is

P(x) /
L(x)
x1C�

; for x large ; (6)

where L(x) is a slowly varying function defined by
limx!1 L(tx)/L(x) D 1 for any finite t (typically, L(x) is
a logarithm ln(x) or power of a logarithm such as (ln(x))n

with n finite). In mathematical language, a function such
as (6) is said to be “regularly varying”. This more general
form means that the power law regime is an asymptotic
statement holding only as a better and better approxima-
tion as one considers larger and larger x values.

Power laws obey the symmetry of scale invariance, that
is, they verify the following defining property that, for an
arbitrary real number , there exists a real number � such
that

P(x) D �P(x) ; 8x : (7)

Obviously, � D 1C�. The relation (7) means that the ra-
tio of the probabilities of occurrence of two sizes x1 and x2
depends only on their ratio x1/x2 and not on their absolute
values. For instance, according to the Zipf law (� D 1) for
the distribution of city sizes, the ratio of the number of
cities with more that 1 million inhabitants to those with
more than 100,000 persons is the same as the ratio of the
number of cities with more than 100,000 inhabitants to
those with more than 10,000 persons, both ratios being
equal to 1/10. The symmetry of scale invariance (7) ex-
tends to the space of functions the concept of scale invari-
ance which characterizes fractal geometric objects.

It should be stressed that, when they exhibit a power-
law-like shape, most empirical distributions do so only
over a finite range of event sizes, either bounded between
a lower and an upper cut-off [8,9,10,11], or above a lower
threshold, i. e., only in the tail of the observed distribu-
tion [12,13,14,15]. Power law distributions and, more gen-
erally, regularly varying distributions remain robust func-
tional forms under a large number of operations, such
as linear combinations, products, minima, maxima, order
statistics, and powers, which may also explain their ubiq-
uity and attractiveness. Jessen and Mikosch [16] give the

conditions under which transformations of power law dis-
tributions are also regularly varying, possibly with a dif-
ferent exponent (see also Sect. 4.4 in [3] for an heuristic
presentation of similar results).

The Stretched Exponential Distribution The so-called
stretched exponential (SE) distribution has been found
to be a versatile intermediate distribution interpolating
between “thin tail” (Gaussian, exponential, . . . ) and very
“fat tail” distributions. In particular, Laherrère and Sor-
nette [17] have found that several examples of fat-tailed
distributions in the natural and social sciences, often con-
sidered to be good examples of power laws, could some-
times be represented as well as or even better by an SE dis-
tribution. Malevergne et al. [18] present systematic statis-
tical tests comparing the SE family with the power law dis-
tribution in the context of financial return distributions.
The SE family is defined by the following expression for
the survival distribution (also called the complementary
cumulative distribution function):
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h
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; for x � u: (8)

The constant u is a lower threshold that can be changed
to increasingly emphasize the tail of the distribution as u
is increased. The structural exponent c controls the “thin”
versus “heavy” nature of the tail.

1. For c D 2, the SE distribution (8) has the same asymp-
totic tail as the Gaussian distribution.

2. For c D 1, expression (8) recovers the pure exponential
distribution.

3. For c < 1, the tail ofPu(x) is fatter than an exponential,
and corresponds to the regime of sub-exponentials (see
Chapter 6 in [3]).
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with tail exponent �.
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which is the pdf of the Pareto power lawmodel with tail in-
dex�. This implies that, as c! 0, the characteristic scale d
of the SE model must also go to zero with c to ensure its
convergence towards the Pareto distribution.

This shows that the Pareto model can be approxi-
mated with any desired accuracy on an arbitrary interval
(u > 0;U) by the (SE) model with parameters (c; d) sat-
isfying Eq. (9) where the arrow is replaced by an equal-
ity. The limit c! 0 provides any desired approximation
to the Pareto distribution uniformly on any finite interval
(u;U). This deep relationship between the SE and power
law models allows us to understand why it can be very dif-
ficult to decide, on a statistical basis, which of thesemodels
best fits the data [17,18]. This insight can be made rigorous
to develop a formal statistical test of the (SE) hypothesis
versus the Pareto hypothesis [18,19].

From a theoretical viewpoint, this class of distributions
(8) is motivated in part by the fact that large deviations
of multiplicative processes are generically distributed with
stretched exponential distributions [20]. Stretched expo-
nential distributions are also parsimonious examples of
the important subset of sub-exponentials, that is, of the
general class of distributions decaying slower than an ex-
ponential [21]. This class of sub-exponentials share several
important properties of heavy-tailed distributions [22] not
shared by exponentials or distributions decreasing faster
than exponentials: for instance, they have “fat tails” in the
sense of the asymptotic probability weight of the maxi-
mum compared with the sum of large samples [4] (see also
Chaps 1 and 6 in [3]).

Notwithstanding their fat-tailness, stretched exponen-
tial distributions have only finite moments, in contrast
with regularly varying distributions for which moments
of order equal to or larger than the tail index � are not
defined. However, they do not admit an exponential mo-
ment, which leads to problems in the reconstruction of the
distribution from the knowledge of their moments [23].
In addition, the existence of all moments is an impor-
tant property allowing for an efficient estimation of any
high-order moment, since it ensures that the estimators
are asymptotically Gaussian. In particular, for stretched-
exponentially distributed random variables, the variance,
skewness and kurtosis can be accurately estimated, con-
trarily to random variables with regularly varying distri-
bution with tail index smaller than about 5.

The Fascinationwith Power Laws

Probability distribution functions with a power law depen-
dence in terms of event or object sizes seem to be ubiq-
uitous statistical features of natural and social systems. It

has repeatedly been argued that such an observation relies
on an underlying self-organizing mechanism, and there-
fore power laws should be considered as the statistical im-
prints of complex systems. It is often claimed that the ob-
servation of a power law relation in data often points to
specific kinds of mechanisms at its origin, that can of-
ten suggest a deep connection with other, seemingly un-
related systems. In complex systems, the appearance of
power law distributions is often thought to be the signa-
ture of hierarchy and robustness. In the last two decades,
such claims have been made, for instance, for earthquakes,
weather and climate changes, solar flares, the fossil record,
and many other systems, to promote the relevance of self-
organized criticality as an underlying mechanism for the
organization of complex systems [24]. This claim is often
unwarranted as there are many non-self-organizing mech-
anisms that produce power law distributions [3,25,26,27].

Research on the origins of power law relations and ef-
forts to observe and validate them in the real world are ex-
tremely active in many fields of modern science, including
physics, geophysics, biology, medical sciences, computer
science, linguistics, sociology and economics. This section
briefly summarizes the present understanding.

Statistical Physics in General
and the Theory of Critical Phenomena

The study of critical phenomena in statistical physics sug-
gests that power laws emerge close to special critical or bi-
furcation points separating two different phases or regimes
of the system. In systems at thermodynamic equilibrium
modeled by general spin models, renormalization group
theory [28] has demonstrated the existence of universal-
ity, so that diverse systems exhibit the same critical ex-
ponents and identical scaling behavior as they approach
criticality, i. e., they share the same fundamental macro-
scopic properties. For instance, the behavior of water and
CO2 at their boiling points at a certain critical pressure
and that of a magnet at its Curie point fall in the same
universality class because they can be characterized by or-
der parameter s with the same symmetries and dimensions
in the same space dimension. In fact, almost all material
phase transitions are described by a small set of universal-
ity classes.

From this perspective, the fascination with power laws
reflects the fact that they characterize the many coexist-
ing and delicately interacting scales at a critical point. The
existence of many scales leading to complex geometrical
properties is often associated with fractals [12]. While it
is true that critical points and fractals share power law re-
lations, power law relations and power law distributions
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are not the same. The latter, which is the subject of this
essay, describes the probability density function or fre-
quency of occurrence of objects or events, such as the fre-
quency of earthquakes of a givenmagnitude range. In con-
trast, power law relations between two variables (such as
the magnetization and temperature in the case of the Curie
point of a magnet) describe a functional abstraction be-
longing to or characteristic of these two variables. Both
power law relations and power law distributions can result
from the existence of a critical point. A simple example
in percolation is (i) the power law dependence of the size
of the larger cluster as a function of the distance from the
percolation threshold and (ii) the power law distribution
of cluster sizes at the percolation threshold [29].

Out-of-Equilibrium Phase Transition
and Self-Organized Critical Systems (SOC)

In the broadest sense, self-organized criticality (SOC)
refers to the spontaneous organization of a system driven
from the outside into a globally stationary state, which is
characterized by self-similar distributions of event sizes
and fractal geometrical properties. This stationary state is
dynamical in nature and is characterized by statistical fluc-
tuations, which are generically referred to as “avalanches.”

The term “self-organized criticality” contains two
parts. The word “criticality” refers to the state of a system
at a critical point at which the correlation length and the
susceptibility become infinite in the infinite size limit as
in the preceding section. The label “self-organized” is of-
ten applied indiscriminately to pattern formation among
many interacting elements. The concept is that the struc-
turation, the patterns and large scale organization appear
spontaneously. The notion of self-organization refers to
the absence of control parameters.

In this class of mechanisms, where the critical point
is the attractor, the situation becomes more complicated
as the number of universality classes proliferates. In par-
ticular, it is not generally well-understood why sometimes
local details of the dynamics may change the macroscopic
properties completely while in other cases, the universality
class is robust. In fact, the more we learn about complex
out-of-equilibrium systems, the more we realize that the
concept of universality developed for critical phenomena
at equilibrium has to be enlarged to embody a more quali-
tative meaning: the critical exponents defining the univer-
sality classes are often very sensitive to many (but not all)
details of the models [30].

Of course, one of the hailed hallmarks of SOC is the
existence of power law distributions of “avalanches” and
of other quantities [3,24,31].

Non-exhaustive List of Mechanisms
Leading to Power Law Distributions

There are many physical and mathematical mechanisms
that generate power law distributions and self-similar be-
havior. Understanding how a mechanism is affected by
microscopic laws constitutes an active field of research.
We can propose the following non-exhaustive list of
mechanisms that have been found to operate in different
complex systems, and which can lead to power law dis-
tribution of avalanches or cluster sizes. For most of these
mechanisms, we refer the reader to Chaps. 14 and 15 in [3]
and to [27,32] for detailed explanations and the relevant
bibliography. However, some of the mechanisms men-
tioned here have not been reviewed in these three refer-
ences and are thus new to the list developed in particu-
lar in [3]. We should also stress that some of the mecha-
nisms in this list are actually different incarnations of the
same underlying idea (for instance preferential attachment
which is a re-discovery of the Yule process, see [33] for an
informative historical account).

1. percolation, fragmentation and other related pro-
cesses,

2. directed percolation and its universality class of so-
called “contact processes,”

3. cracking noise and avalanches resulting from the com-
petition between frozen disorder and local interac-
tions, as exemplified in the random field Ising model,
where avalanches result from hysteretic loops [34],

4. random walks and their properties associated with
their first passage statistics [35] in homogeneous as
well as in random landscapes,

5. flashing annihilation in Verhulst kinetics [36],
6. sweeping of a control parameter towards an instabil-

ity [25,37],
7. proportional growth by multiplicative noise with con-

straints (the Kesten process [38] and its generalization,
for instance in terms of generalized Lotka–Volterra
processes [39]), whose ancestry can be traced to Simon
and Yule,

8. competition between multiplicative noise and birth-
death processes [40],

9. growth by preferential attachment [32],
10. exponential deterministic growth with random times

of observations (which gives the Zipf law) [41],
11. constrained optimization with power law constraints

(HOT for “highly optimized tolerant”),
12. control algorithms, which employ optimal parame-

ter estimation based on past observations, shown to
generate broad power law distributions of fluctuations



Probability Distributions in Complex Systems P 7015

and of their corresponding corrections in the control
process [42,43],

13. on-off intermittency as a mechanism for power law
pdf of laminar phases [44,45],

14. self-organized criticality which comes in many flavors
as explained in Chapter 15 of [3]:
� cellular automata sandpiles with and without con-

servation laws,
� systems made of coupled elements with threshold

dynamics,
� critical de-synchronization of coupled oscillators

of relaxation,
� nonlinear feedback of the order parameter onto the

control parameter
� generic scale invariance,
� mapping onto a critical point,
� extremal dynamics.

If there is one lesson to extract from this impressive list it
is that, when observing an approximate linear trend in the
log-log plot of some data distribution, one should refrain
from jumping to hasty conclusions on the implications of
this approximate power law behavior. Another lesson is
that power laws appear to be so ubiquitous perhaps be-
cause many roads lead to them!

Testing for Power Law Distributions in your Data

Although power law distributions are attractive for their
simplicity (they are straight lines on log-log plots) andmay
be justified from theoretical reasons as discussed above,
demonstrating that data do indeed follow a power law dis-
tribution requiresmore than simple fitting. Indeed, several
alternative functional forms can appear to follow a power
law form over some extent, such as stretched exponentials
and log-normal distributions. Thus, validating that a given
distribution is a power law is not easy and there is no silver
bullet.

Clauset et al. [46] have recently summarized some
statistical techniques for making accurate parameter es-
timates for power-law distributions based on maximum
likelihood methods and the Kolmogorov–Smirnov statis-
tic. They illustrate these statistical methods on 24 real-
world data sets from a range of different disciplines. In
some cases, they find that power laws are consistent with
the data while in others the power law is ruled out. The
log-likelihood ratio that they propose is however not war-
ranted for non-nested models [47]

Here, we offer some advice for the characterization of
a power law distribution as a possible adequate represen-
tation of a given data set. We emphasize good sense and
practical aspects.

1. Survivor distribution First, the survival distribution
should be constructed using raw data by ranking the
values in increasing order. Then, rank versus values
gives immediately a non-normalized survival distribu-
tion. The advantage of this construction is that it does
not require binning or kernel estimation, which is a del-
icate art, as we have alluded to.

2. Probability density function The previous construc-
tion of the complementary cumulative (or survivor)
distribution function should be complemented with
that of the density function. Indeed, it is well-known
that the cumulative distribution, being a “cumulative”
integral of the density function as its name indicates,
may be contaminated by disturbances at one end of the
density function, leading to rather long cross-overs that
may hide or perturb the power law. For instance, if the
generating density distribution is a power law truncated
by an exponential, as found for critical systems not ex-
actly at their critical point or in the presence of finite-
size effects [48], the power law part of the cumulative
distribution will be strongly distorted leading to a spu-
rious estimation of the exponent �. This problem can
be in large part alleviated by constructing the pdf using
binning or, even better, kernel methods (see the very
readable article [49] and references therein). By testing
and comparing the survival and the probability den-
sity distributions, one obtains either a confirmation of
power law scaling or an understanding of the origin(s)
of the deviations from the power law.

3. Structural analysis by visual inspection Given that
these first two steps have been performed, we recom-
mend a preliminary visual exploration by plotting the
survival and density distributions in (i) linear-linear
coordinates, (ii) log-linear coordinates (linear abscissa
and logarithmic ordinate) and (iii) log-log coordinates
(logarithmic abscissa and logarithmic ordinate). The
visual comparison between these three plots provides
a fast and intuitive view of the nature of the data.
� A power law distribution will appear as a convex

curve in the linear-linear and log-linear plots and as
a straight line in the log-log plot.

� A Gaussian distribution will appear as a bell-
shaped curve in the linear-linear plot, as an inverted
parabola in the log-linear plot and as a strongly con-
cave sharply falling curve in the log-log plot.

� An exponential distribution will appear as a convex
curve in the linear-linear plot, as a straight line in the
log-linear plot and as a concave curve in the log-log
plot.

Having in mind the shape of these three reference dis-
tributions in these three representations provides fast
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and useful reference points to classify the unknown
distribution under study. For instance, if the log-lin-
ear plot shows a convex shape (upward curvature),
we can conclude that the distribution has a tail fat-
ter than an exponential. Then, the log-log plot will
confirm if a power law is a reasonable description. If
the log-log plot shows a downward curvature (concave
shape), together with the information that the log-lin-
ear plot shows a convex shape, we can conclude that
the distribution has a tail fatter than an exponential
but thinner than a power law. For example, it could be
a gamma distribution (� xn exp[�x/x0] with n > 0)
or a stretched distribution (expression (8) with c < 1).
Only more detailed quantitative analysis will allow one
to refine the diagnostic, often with less-than-definite
conclusions (see as an illustration the detailed statisti-
cal analysis comparing the power law to the stretched
exponential distributions to describe the distribution of
financial returns [18]).
The deviations from linearity in the log-log plot sug-
gest the boundaries within which the power law regime
holds. We say “suggest,” as a visual inspection is only
a first step which can be actually misleading. While we
recommend a first visual inspection, it is only a first in-
dication, not a proof. It is a necessary step to convince
oneself (and the reviewers and journal editors) but cer-
tainly not a sufficient condition. It is a standard rule of
thumb that power law scaling is thought to be mean-
ingful if it holds over at least two to three decades on
both axes and is bracketed by deviations on both sides
whose origins can be understood (for instance, due to
insufficient sampling and/or finite-size effects).
As an illustration of the potential errors stemming from
visual inspection, we refer to the discussion of Sornette
et al. [50], on the claim of Pacheco et al. [51] of the ex-
istence of a break in the Gutenberg–Richter distribu-
tion of earthquake magnitudes at m D 6:4 for Califor-
nia. This break was claimed to reveal the finiteness of
the crust thickness according to Pacheco et al. [51]. This
claim has subsequently been shown to be unsubstanti-
ated, as the Gutenberg–Richter law (which is a power
law when expressed in earthquake energies or seismic
moments) seems to remain valid up to magnitudes
of 7.5 in California and up to magnitude about 8–8.5
worldwide. This visual break at m D 6:4 turned out to
be just a statistical deviation, completely expected from
the nature of power law fluctuations [15,52].

4. OLS fitting The next step is often to perform an or-
dinary least-square (OLS) regression of the data (sur-
vival distribution or kernel-reconstructed density) on
the logarithm of the variables, in order to estimate the

parameters of the power law. These parameters are the
exponent �, the scale factor C� and possibly an up-
per threshold or other parameters controlling the cross-
over to other behaviors outside the scaling regime. Us-
ing logarithms ensures that all the terms in the sum
of squares over the different data points contribute ap-
proximately similarly in the OLS. Otherwise, without
logarithms, given the large range of values spanned by
a typical power law distribution, a relative error of say
1% around a value of the order of 104 would have
a weight in the sum ten thousand times larger than
the weight due to the same relative error of 1% around
a value of the order of 102, biasing the estimation of
the parameters towards fitting preferentially the large
values. In addition, in logarithm units, the estimation
of the exponent � of a power law constitutes a linear
problem which is solved analytically. When perform-
ing the OLS estimation on the survival distribution, it
is optimal to shift the ranks by 1/2 [53]. With this im-
provement, the OLS method is typically more robust to
deviations from a pure power law form than the Hill
estimator discussed below.

5. Maximum likelihood estimation Using an OLS
method to estimate the parameters of a power law as-
sumes implicitly that the distribution of the deviations
from the power law (actually the difference between the
logarithm of the data and the logarithm of the power
law distribution) are normally distributed. This may
not be a suitable approximation. An estimation which
removes this assumption consists in using the likeli-
hoodmethod, in which the parameters of the power law
are chosen so as to maximize the likelihood function.
When the data points are independent, the likelihood
function is nothing but the product

QN
iD1 P(xi) over

the N data points x1; x2; : : : ; xN of the power law dis-
tribution P(x). In this case, the exponent � which max-
imizes this likelihood (or equivalently and more conve-
niently its logarithm called the log-likelihood) is called
the Hill estimator [54]. It reads

1
�
D

1
n

X
ln
�

x j
xmin

�
; (11)

where xmin is the smallest value among the n values
used in the data set for the estimation of�. Since power
laws are often asymptotic characteristics of the tail, it is
appropriate not to use the full data set but only the up-
per tail with data values above a lower threshold. Then,
plotting 1/� or � as a function of the lower thresh-
old usually provides a good sense of the existence of
a power law regime: one should expect an approxi-
mate stability of 1/� over some scaling regime. Note
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that the Hill estimator provides an unbiased estimate
of 1/� while � obtained by inverting 1/� is slightly bi-
ased (see e. g., Chapter 6 in [3]). We refer to [55,56] for
improved versions and procedures of the Hill estimator
which deal with finite ranges and dependence.

6. Non-parametric methodsMethods testing for a power
law behavior in a given empirical distribution which
are not parametric and not sensitive to the value of the
exponent provide useful complements of the above fit-
ting and parametric estimation approaches. Pisarenko
et al. [57] and Pisarenko and Sornette [58] have devel-
oped new statistics such that a power law behavior is as-
sociated with a zero value of the statistics independently
of the numerical value of the exponent� and with a non-
zero value otherwise. Plotting these statistics as a func-
tion of the lower threshold of the data sample allows
one to detect subtle deviations from a pure power law.
Lasocki [59] and Lasocki and Papadimitriou [60] have
developed another non-parametric approach to detect
deviations from a power law, the smoothed bootstrap
test for multimodality, which makes it possible to test
the complexity of the distribution without specifying
any particular probabilistic model. The method relies
on testing the hypotheses that the number of modes
or the number of bumps exhibited by the distribution
function equal 1. Rejection of one of these hypotheses
indicate that the distribution has more complexity than
described by a simple power law.

Once the evidence for a power law distribution has
been reasonably demonstrated, the most difficult task re-
mains: finding a mechanism and model which can explain
the data. Note that the term “explain” refers to different
meanings depending on the expert you are speaking to.
For a statistician, having been unable to reject the power
law function (5) given the data amounts to saying that the
power law model “explains” the data. The emphasis of the
statistician will be on refining parametric and non-para-
metric procedures to test the way the power law “fits” or
deviates from the empirical data. In contrast, a physicist
or a natural scientist sees this as only a first step, and at-
tributes the word “explain” to the stage where a mecha-
nism described in terms of a more fundamental process or
first principles can derive the power law. But even among
natural scientists, there is no consensus on what is a suit-
able “explanation.” The reason stems from the different
cultures and levels of study in different fields, well ad-
dressed in the famous paper “More is different” by An-
derson [61]: a suitable explanation for a physicist will frus-
trate a chemist whose explanation, in turn, will not sat-
isfy a biologist. Each scientific discipline’s concepts are

anchored in its characteristic fundamental scientific level,
which provides the underpinning for the next scientific
level of description (think for instance of the hierarchy:
physics ! chemistry ! molecular biology ! cell biol-
ogy ! animal biology ! ethology ! sociology ! eco-
nomics! . . . ).

Once a model at a given scientific description level has
been proposed, the action of the model on inputs gives
outputs which are compared with the data. Verifying that
the model, inspired by the preliminary power law evi-
dence, adequately fits this power law is a first step. Un-
fortunately, much too often, scientists stop there and are
happy to report that they have a model that fits their em-
pirical power law data. This is not good science. Keeping
in mind the many possible mechanisms at the origin of
power law distributions reviewed above, a correct proce-
dure is to run the candidate model to get other predictions
that can themselves be put to the test. This validation is
essential to determine the degree to which the model is
an accurate representation of the real world from the per-
spective of its intended uses. Reviewing a large body of lit-
erature devoted to the problem of validation, Sornette et
al. [62] have proposed a synthesis in which the validation
of a given model is formulated as an iterative construction
process that mimics the often implicit process occurring in
the minds of scientists. Validation is nothing but the pro-
gressive build-up of trust in themodel, based on testing the
model against non-redundant novel experiments or data,
that allows one to make a decision and act on that basis.
The applications of the validation program to a cellular au-
tomaton model for earthquakes, to a multifractal random
walk model for financial time series, to an anomalous dif-
fusion model for solar radiation transport in the cloudy at-
mosphere, and to a computational fluid dynamics code for
the Richtmyer–Meshkov instability, exemplify the impor-
tance of going beyond the simple qualification of a power
law.

Beyond Power Laws: “Kings”

The Standard View

Power law distributions embody the notion that extreme
events are not exceptional 9-sigma events (to refer to the
terminology using the Gaussian bell curve and its standard
deviation � as the metric to quantify deviations from the
mean). Instead, extreme events should be considered as
rather frequent and part of the same organization as other
events. In this view, a great earthquake is just an earth-
quake that started small. . . and did not stop; it is inher-
ently unpredictable due to its sharing of all the properties
and characteristics of smaller events (except for its size),
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so that no genuinely informative precursor can be iden-
tified [63]. This is the view expounded by Bak and co-
workers in their formulation of the concept of self-orga-
nized criticality [24,64]. In the following, we outline sev-
eral promising directions of research that expand on these
ideas.

Self-Organized Criticality Versus Criticality

However, there are many suggestions that inherent unpre-
dictability does not need to be the case. One argument
is that criticality and self-organized criticality (SOC) can
actually co-exist. The hallmark of criticality is the exis-
tence of specific precursory patterns (increasing suscepti-
bility and correlation length) in space and time. Continu-
ing with the example of earthquakes, the idea that a great
earthquake could result from a critical phenomenon has
been put forward by different groups, starting almost three
decades ago [65,66,67]. Attempts to link earthquakes and
critical phenomena find support in the evidence that rup-
ture in heterogeneous media is similar to a critical phe-
nomenon (see Chapter 13 of [3] and references therein).
Also indicative is the often-reported observation of in-
creased intermediate magnitude seismicity before large
events [68,69]. An illustration of the coexistence of crit-
icality and of SOC is found in a simple sandpile model
of earthquakes on a hierarchical fault structure [70]. Here,
the important ingredient is to take into account both non-
linear dynamics and complex geometry. From the point of
view of self-organized criticality, this is surprising news:
large earthquakes do not lose their identity. In the model
of Huang et al. [70], a large earthquake is different from
a small one, a very different story than the one told by com-
mon SOC wisdom in which any precursory state of a large
event is essentially identical to a precursory state of a small
event and an earthquake does not “know” how large it will
become. The difference comes from the absence of geom-
etry in standard SOC models. Reintroducing geometry is
essential. In models with hierarchical fault structures, one
finds a degree of predictability of large events.

Beyond Power Laws: Five Examples of “Kings”

Are power laws the whole story? The following examples
suggest that some extreme events are even “wilder” than
predicted by the extrapolation of power law distributions.
They can be termed “outliers” or even better “kings” [17].
According to the definition of the Engineering Statistical
Handbook [71], “An outlier is an observation that lies an
abnormal distance from other values in a random sample
from a population.” Here, we follow Laherrère and Sor-
nette [17] and use the term “king” to refer to events which

are even beyond the extrapolation of the fat tail distribu-
tion of the rest of the population.

� Material failure and rupture processes There is now
ample evidence that the distribution of damage events,
for instance quantified by the acoustic emission ra-
diated by micro-cracking in heterogeneous systems,
is well-described by a Gutenberg–Richter like power
law [72,73,74,75]. But consider now the energy released
in the final global event rupturing the system in pieces!
This release of energy is many, many times larger than
the largest ever recorded event in the power law distri-
bution. Material rupture exemplifies the co-existence of
a power law distribution and a catastrophic event lying
beyond the power law.

� Gutenberg–Richter law and characteristic earth-
quakes In seismo-tectonics, the situation is muddy be-
cause of the difficulties with unambiguously defining
the spatial domain of influence of a given fault. Re-
searchers who have delineated a spatial domain sur-
rounding a clearly mapped large fault claim to find
a Gutenberg–Richter distribution up to a large magni-
tude region characterized by a bump or anomalous rate
of large earthquakes. These large earthquakes have rup-
ture lengths comparable with the fault length [76,77].
If proven valid, this concept of a characteristic earth-
quake provides another example in which a “king” co-
exists with a power law distribution of smaller events.
Others have countered that this bump disappears
when removing the somewhat artificial partition of the
data [78,79], so that the characteristic earthquake con-
cept may be a statistical artifact. In this view, a particu-
lar fault may appear to have characteristic earthquakes,
but the stress-shedding region, as a whole, behaves ac-
cording to a pure scale-free power law distribution.
Several theoretical models have been offered to support
the idea that, in some seismic regimes, there is a co-
existence between a power law and a large size regime
(the “king” effect). Gil and Sornette [80] reported that
this occurs when the characteristic rate for local stress
relaxations is fast compared with the diffusion of stress
within the system. The interplay between dynamical ef-
fects and heterogeneity has also been shown to change
the Gutenberg–Richter behavior to a distribution of
small events combined with characteristic system size
events [81,82,83,84]. On the empirical side, progress
should be made in testing the characteristic earthquake
hypothesis by using the prediction of the models to
identify independently of seismicity those seismic re-
gions in which the king effect is expected. This remains
to be done [85].
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� Extreme king events in the pdf of turbulent velocity
fluctuations The evidence for kings does not require,
and is not even synonymous in general with, the exis-
tence of a break or a bump in the distribution of event
sizes. This point is well-illustrated in shell models of
turbulence which are believed to capture the essential
ingredient of these flows, while being amenable to anal-
ysis. Such “shell” models replace the three-dimensional
spatial domain by a series of uniform onion-like spher-
ical layers with radii increasing as a geometrical series
1; 2; 4; 8; : : : ; 2n and communicating mostly with near-
est neighbors. The quantity of interest is the distribu-
tion of velocity variations between two instants at the
same position or between two points simultaneously.
L’vov et al. [86] have shown that they could collapse
the pdf’s of velocity fluctuations for different scales only
for small velocity fluctuations, while no scaling held for
large velocity fluctuations. The conclusion is that the
distributions of velocity increments seems to be com-
posed of two regions, a region of so-called “normal
scaling” and a domain of extreme events. They could
also show that these extreme fluctuations of the fluid
velocity correspond to intensive peaks propagating co-
herently (like solitons) over several shell layers with
a characteristic bell-like shape, approximately indepen-
dent of their amplitude and duration (up to a rescaling
of their size and duration). One could summarize these
findings by saying that “characteristic” velocity pulses
decorate an otherwise scaling probability distribution
function.

� Outliers and kings in the distribution of financial
drawdowns In a series of papers, Johansen and Sor-
nette [87,88,89] have shown that the distribution of
drawdowns in financial markets exhibits the coexis-
tence of a fat tail with a characteristic regime with
“kings” (called “outliers” in the papers). The analysis
encompasses exchange markets (US dollar against the
Deutsch Mark and against the Yen), the major world
stock markets, the U.S. and Japanese bond markets and
commodity markets. Here, drawdowns are defined as
a continuous decrease in the value of the price at the
close of each successive trading day. The results are
found robust with using “coarse-grained drawdowns,”
which allows for a certain degree of fuzziness in the
definition of cumulative losses. Interestingly, the pdf
of returns at a fixed time scale, usually the daily re-
turns, does not exhibit any anomalous king behavior
in the tail: the pdf of financial returns at fixed time
scales seems to be adequately described by power law
tails [90]. The interpretation proposed by Johansen and
Sornette is that these drawdown kings are associated

with crashes, which occur due to a global instability
of the market which amplifies the normal behavior via
strong positive feedback mechanisms [91].

� Paris as the king in the Zipf distribution of French
city sizes Since Zipf [92], it is well-documented that
the distribution of city sizes (measured by the number
of inhabitants) is, in many countries, a power law with
an exponent � close to 1. France is not an exception as
it exhibits a nice power law distribution of city sizes. . .
except for Paris which is completely out of range, a gen-
uine king with a size several times larger than expected
from the distribution of the rest of the populations of
cities [17]. This king effect reveals a particular histori-
cal organization of France, whose roots are difficult to
unravel. Nevertheless, we think that this king effect em-
bodied by Paris is a significant signal to explain in or-
der to understand the competition between cities in Eu-
rope.

Kings and Crises in Complex Systems

We propose that these kings may reveal information
which is complementary and perhaps sometimes even
more important than the power law pdf.

Indeed, it is essential to realize that the long-term be-
havior of complex systems is often controlled in large
part by rare catastrophic events: the universe was prob-
ably born during an extreme explosion (the “big-bang”);
the nucleosynthesis of all important atomic elements con-
stituting our matter results from the colossal explosion of
supernovae; the largest earthquake in California repeat-
ing about once every two centuries accounts for a signifi-
cant fraction of the state’s total tectonic deformation; land-
scapes are shaped more by the “millennium” flood that
moves large boulders than by the action of all other erod-
ing agents; the largest volcanic eruptions lead to major to-
pographic changes as well as severe climatic disruptions;
evolution is characterized by phases of quasi-statis inter-
rupted by episodic bursts of activity and destruction; fi-
nancial crashes can destroy trillions of dollars in an in-
stant; political crises and revolutions shape the long-term
geopolitical landscape; even our personal life is shaped on
the long run by a few key “decisions/happenstances.”

The outstanding scientific question is thus how such
large-scale patterns of catastrophic nature might evolve
from a series of interactions from the smallest to increas-
ingly larger scales. In complex systems, it has been found
that the organization of spatial and temporal correlations
does not stem, in general, from a nucleation phase diffus-
ing across the system. It results, rather, from a progres-
sive and more global cooperative process occurring over
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the whole system by repetitive interactions. An instance
would be the many occurrences of simultaneous scientific
and technical discoveries signaling the global nature of the
maturing process.

Standard models and simulations of scenarios of ex-
treme events are subject to numerous sources of error,
each of which can have a negative impact on the validity
of the predictions [93]. Some of the uncertainties are un-
der control in the modeling process; they usually involve
trade-offs between faithful descriptions and manageable
calculations. Other sources of errors are beyond control
as they are inherent in the modeling methodology of the
specific disciplines. The two known strategies for model-
ing are both limited in this respect: analytical theoretical
predictions are out of reach for most complex problems,
while brute force numerical resolution of the equations
(when they are known) or of scenarios is reliable only in
the “center of the distribution”, i. e., in the regime far from
the extremes where good statistics can be accumulated.
Crises are extreme events that occur rarely, albeit with ex-
traordinary impact, and are thus completely under-sam-
pled and poorly constrained. Even the introduction of ter-
aflop (or even petaflops in the near future) supercomput-
ers does not qualitatively change this fundamental limita-
tion.

Recent developments suggest that non-traditional ap-
proaches, based on the concepts and methods of statis-
tical and nonlinear physics could provide a middle way
to direct the numerical resolution of more realistic mod-
els and the identification of relevant signatures of im-
pending catastrophes. Enriching the concept of self-orga-
nizing criticality, the predictability of crises would then
rely on the fact that they are fundamentally outliers, e. g.,
large earthquakes are not scaled-up versions of small
earthquakes but the result of specific collective amplify-
ing mechanisms. To address this challenge, the available
theoretical tools comprise in particular bifurcation and
catastrophe theories, dynamical critical phenomena and
the renormalization group, nonlinear dynamical systems,
and the theory of partially (spontaneously or not) broken
symmetries. Some encouraging results have been gathered
on concrete problems, such as the prediction of the failure
of complex engineering structures, the detection of pre-
cursors of stock market crashes and of human parturition,
with exciting potential for earthquakes. At the beginning
of the third millennium, it is tempting to extrapolate and
forecast that a larger multidisciplinary integration of the
physical sciences together with artificial intelligence and
soft-computational techniques, fed by analogies and fer-
tilization across the natural sciences, will provide a better
understanding of the limits of predictability of catastro-

phes and adequate measures of risks for a more harmo-
nious and sustainable future for our complex world.

Future Directions

Our exposition has focused mainly on the concept of dis-
tributions of event sizes as a first approach to character-
izing the organization of complex systems. But probabil-
ity distribution functions are just one-point statistics and
thus provide only an incomplete picture of the organiza-
tion of complex systems. This opens the road to several
better measures of the organization of complex systems.

� Statistical estimations of probability distribution func-
tions is a delicate art. An active research field in mathe-
matical statistics which is insufficiently used by prac-
titioners of other sciences is the domain of “robust
estimation.” Robust estimation techniques are meth-
ods which are insensitive to small departures from the
idealized assumptions which have been used to opti-
mize the algorithm. Such techniques include M-esti-
mates (which follow frommaximum likelihood consid-
erations), L-estimates (which are linear combinations
of order statistics), and R-estimates (based on statisti-
cal rank tests) [94,95,96].

� Ideally, one would like to measure the full multivariate
distribution of events, which can be in full generality
decomposed into the set of marginal distributions dis-
cussed above and of the copula of the system. A copula
embodies completely the entire dependence structure
of the system [97,98]. Copulas have recently become
fashionable in financial mathematics and in financial
engineering [19]. Their use in other fields in the natural
sciences is embryonic but can be expected to blossom.

� When analyzing a complex system, a common trap is
to assume without critical thinking and testing that
the statistics are stationary, implying that monovari-
ate (marginal) and multivariate distribution functions
are sufficient to fully characterize the system. It is in-
deed a common experience that the dependencies esti-
mated and predicted by standard models change dra-
matically at certain times. In other words, statistical
properties are conditional on specific regimes. The ex-
istence of regime-dependent statistical properties has
been discussed in particular in climate science, in med-
ical sciences and in financial economics. In the latter,
a quite common observation is that investment strate-
gies, which have some moderate beta (coefficient of re-
gression to the market) for normal times, can see their
beta jump to a much larger value (close to 1 or larger
depending on the leverage of the investment) at cer-
tain times when the market collectively dives. Said dif-
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ferently, investments which are thought to be hedged
against negative global market trends may actually lose
asmuch ormore than the globalmarket at certain times
when a large majority of stocks plunge simultaneously.
In other words, the dependency structure and the re-
sulting distributions at different time scalesmay change
in certain regimes.
The general problem of the application of mathemat-
ical statistics to non-stationary data (including non-
stationary time series) is very important, but alas, not
much can be done. There are only a few approaches
which may be used and only in specific conditions,
which we briefly mention.
1. Use of algorithms and methods which are robust

with respect to possible non-stationarity in data,
such as normalization procedures or the use of
quantile samples instead of initial samples.

2. Modeling non-stationarity by some low-frequency
random processes, such as a narrow-band random
process X(t) D A(t) cos(! t C �(t)) where ! 
 1
and A(t) and �(t) are slowly varying amplitude and
phase. In this case, the Hilbert transform can be very
useful to characterize �(t) non-parametrically.

3. The estimation of the parameters of a low-frequency
process based on a “short” realization is often hope-
less. In this case, the only quantity which can be eval-
uated is the uncertainty (or scatter) of the results due
to non-stationarity.

4. Regime Switching popularized by Hamilton [99] for
autoregressive time series models is a special case of
non-stationarity, which can be handled with specific
methods.

� We already discussed the problem of “kings.” One key
issue that needs more scrutiny is that these outliers
are often identified only with metrics adapted to take
into account transient increases of the time depen-
dence in the time series, as for instance in the case
of returns of individual financial assets [88] (see also
Chap. 3 of [91]). These outliers seem to belong to a sta-
tistical population which is different from the bulk of
the distribution and require some additional amplifi-
cation mechanisms active only at special times. The
presence of such outliers both in marginal distributions
and in concomitant events, together with the strong
impact of crises and of crashes in complex systems,
suggests the need for novel measures of dependence,
different definitions of events and other time-varying
metrics across different variables. This program is part
of the more general need for a joint multi-time-scale
and multi-variate approach to the statistics of complex
systems.

� The presence of outliers poses the problem of exogene-
ity versus endogeneity. An event identified as anoma-
lous could perhaps be cataloged as resulting from ex-
ogenous influences. The concept of exogeneity is fun-
damental in statistical estimation [100,101]. Here, we
refer to the question of exogeneity versus endogene-
ity in the broader context of self-organized criticality,
inspired in particular by the physical and natural sci-
ences. As we already discussed, according to self-orga-
nized criticality, extreme events are seen to be endoge-
nous, in contrast with previous prevailing views (see for
instance the discussion in [64,102]). But, how can one
assert with 100% confidence that a given extreme event
is really due to an endogenous self-organization of the
system, rather than a response to an external shock?
Most natural and social systems are indeed continu-
ously subjected to external stimulations, noises, shocks,
solicitations, and forcing, which can vary widely in am-
plitude. It is thus not clear a priori if a given large
event is due to a strong exogenous shock, to the internal
dynamics of the system, or to a combination of both.
Addressing this question is fundamental for under-
standing the relative importance of self-organization
versus external forcing in complex systems and under-
pins much of the problem of dependence between vari-
ables. The concepts of endogeneity and exogeneity have
many applications in the natural and social sciences
(see [103] for a review) and we expect this viewpoint
to develop into a general strategy of investigation.
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Is the nature of complex systems such that they are in need
of a special treatment in terms of statistics and probability.
Yes, they are in the sense that a particular focus suggests
itself. This becomes clear if we try to specify what we mean
by complex systems. Although no consensus exists for the
definition of what constitutes a complex system, the fol-
lowing summary will probably be accepted by most peo-
ple.
� Complex Systems consist of a large number of inter-

acting components. The interactions give rise to emer-
gent hierarchical structures. The components of the
system and properties at systems level typically change
with time. A complex system is inherently open and its
boundaries often a matter of convention.

Large numbers of components and interaction between
these are central and this has immediate consequences for
the nature of the relevant statistics. The interactions be-
tween the many components will typically be so strong
that correlations cannot be neglected (� Correlations in
Complex Systems) and hence, when we sum up con-
tributions from the individual parts, we may not have
the central limit theorem to ensure that the macroscopic
quantities are Gaussian distributed. Instead of peaked dis-
tributions with well-defined average and higher moments,
one typically encounters very broad heavy tailed distribu-
tions, frequently the tail reaches so far out that the average
doesn’t even exist. When this is the case, a description in
terms of the typical—on the average scenario—is not pos-
sible (� Probability Distributions in Complex Systems).
This makes not only fluctuations significant, it makes a de-
scription and understanding of the fluctuations absolutely
essential (� Fluctuations, Importance of: Complexity in
the View of Stochastic Processes). To illustrate this point
think of, say, flood protection. It is no good to protect one-
self against some imaginary average event, say a “typical”
flooding, if effectively any size of flooding may occur with
a non negligible probability. This makes it important to be

able to deal with broad distributions and distributions of
extreme events (� Extreme Value Statistics).

The hierarchical nature of complex systems (� Hier-
archical Dynamics) leads to situations where the existence
of many time scales cannot be ignored and as a result it
may be inappropriate to assume the statistics to be station-
ary. The time dependence of the statistics may come about
for a number of reasons. One is that the emergent hierar-
chical components change their internal state with time.
An alternative reason may be that the strong interaction
between components, themselves with no internal time
evolution, prevents the collective set of components from
reaching an equilibrium or asymptotic stationary state. In
such cases one needs to be able to understand how to de-
scribe and predict the behavior of a system that is in a tran-
sient for all the relevant time scales, such as, say, the age of
life on earth, if one is dealing with the history of the bio-
sphere.

It seems natural to divide the discussion of probability
and statistics for complex systems into at least three as-
pects:

1. Analyzing data from complex systems,
2. The phenomenology and
3. Modeling.

When analyzing data it is important to be able to han-
dle the effect of long memory, correlations and exception-
ally strong fluctuations. These effects make it necessary
to exert special care when trying to identify probability
distributions extracted from observational or experimen-
tal data or from data generated by computer simulations
(� Probability Densities in Complex Systems,Measuring).
The often very large amounts of data, and the lack of fun-
damental theory derived from first principle, have made
it important to develop methods to identify structures in
data sets, in this respect Bayesian statistics is often very rel-
evant to complex systems (� Bayesian Statistics).

From experiments and observations we know that one
signature of complexity may be power law like probability
distributions. To determine the exponent can be compli-
cated as the exponent one reads off from the slope in a log-
log plot of the distribution may only be an “apparent” ex-
ponent. Not that this makes the exponent less important,
but it does make the exponent more specific. An apparent
exponent might very well depend on systems size and on
the amount of collected data. In contrast we know from
the lesson of statistical mechanics of critical phenomena
that the asymptotic behavior of an infinite system may be
the same even when microscopic details differ. This en-
courages the study of simplistic models in the hope that,
though simplistic, the models might nevertheless capture

http://arxiv.org/abs/physics/0412026
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the essential mechanisms relevant for the phenomena un-
der consideration. With this in mind, particular empha-
sis is placed on how apparent exponents converge towards
their “universal” values in the limit of long distance and
long time scales in the limit of a system composed of in-
finitely many components. Of course we don’t know how
applicable this form of universality is in the case of non-
equilibrium complex systems. It might very well be that
the many power laws observed in experiments are in fact
only approximate and only persist for a limited range of
support for the stochastic variable being studied. To set-
tle this, careful experiments and theoretical studies are
needed and will make use of some of the methods rele-
vant to power laws discussed in the present section of the
encyclopedia.

The focus on the functional form of the probability
distributions becomes complicated by the fact that many
complex systems never enter a stationary state during
time scales accessible to observations or simulations. This
doesn’t exclude that the system relaxes towards a station-
ary sate in the mathematically asymptotic limit of infinite
time, but this limit might be of little physical relevance.
Then it becomes essential to study the very nature of how
systems for all observational times is relaxing towards the
stationary state. Inspired by the slow dynamics in glassy
systems, and the very widespread intermittent dynamics
encountered when many components interact, it has been
suggested that the statistics of records may be of rele-
vance to the intermittent relaxation of complex systems.
The analysis of the statistics of the time instances marked
by the occurrence of abrupt activity can be interesting. It
might allow insight into the question concerning, how rel-
evant record dynamics is for the complex dynamics and
can in this way help to provide understanding of the col-
lective dynamics of the components (� Record Statistics
and Dynamics).

To construct and analyze theoretical models of com-
plex systems a number of methods have been developed.
At the intuitive level we have attempts to develop phe-
nomenological theories by generalizing the well-studied
branching process originating in Galton’s and Watson’s
sociological studies (� Branching Processes). Among at-
tempts to formulate theory of more basic foundation we
encounter methods developed in physics to deal with
phase transitions in materials where many interacting par-
ticles enter into a critical state. Here a critical state is taken
tomean that no particular length or time scale can be iden-
tified, one talks about scale invariance, to indicate that all
length and time scales are involved in the phenomena. To
analyze such systems field theoretic methods are partic-
ularly useful as a tool to study the asymptotic behavior,

i. e., long length and time scales (� Field Theoretic Meth-
ods). Stochastic analysis is particularly relevant since we
are dealing with large numbers of components and, more-
over, a stochastic element is often present even at the basic
level, e. g. through thermal fluctuations in the case of phys-
ical systems (� Stochastic Processes).

In traditional statistical mechanics the concept of en-
tropy has played a very important role. It is therefore only
natural that work is being done to try to develop the def-
inition of entropy to make it applicable beyond the tra-
ditional areas. In particular strong interaction makes the
entropy non-extensive and appropriate generalizations are
needed (� Entropy in Ergodic Theory).

The ordinary random walker is a bit of a workhorse
in statistical mechanics. When random walks are used to
model aspects of complex systems, the walker needs of-
ten to be dressed up with a broad distribution of step sizes
(� Levy Statistics and Anomalous Transport: Levy Flights
and Subdiffusion) or to walk in a background that makes
the step size distribution location dependent (� Random
Walks in Random Environment). This more sophisticated
walker is not any longer necessarily controlled by the cen-
tral limit theorem and new mathematics are needed.

The theory of random matrices is another example
of methods developed to understand statistical aspects of
physical systems that now have become of much broader
importance. This is a field developed in response to the
need of physicists when they, a while ago, started to try
to understand the energy spectrum of heavy nuclei. The
formalism has since then been used in a range of very
different fields including the analysis of the stability of
ecosystems. It is very likely that random matrices also will
become a standard tool in complexity (� RandomMatrix
Theory). One reason for this is that complex systems often
can be represented in terms of networks and that random
matrix theory naturally relates to network analysis.

Finally, I feel it is in place to explain why this sec-
tion contains an article about the stochastic Löwner equa-
tion (� Stochastic Loewner Evolution: Linking Univer-
sality, Criticality and Conformal Invariance in Complex
Systems). The topic is included, as a spectacular exam-
ple of how successful fairly abstract mathematics, from the
realms of the pure end of the mathematical spectrum, can
sometimes be in providing a detailed quantitative under-
standing of the intricacies of systems that are complex in
the sense that they are far from equilibrium and in a non-
stationary state. One might hope that this degree of de-
tail in the mathematical understanding of the statistics of
complex systems may become the norm in the future, as
the research in to the statistical and probabilistic analysis
of complex systems develop.
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Glossary

Atomic force microscopy (AFM) A near-field type of
microscopy that uses a mechanical force sensor (can-
tilever) and a nanopositioner to either scan a sur-
face, obtaining a topography of the sample (“imaging”
configuration) and/or to stretch the sample to obtain
a force spectrum (“force spectroscopy” configuration).
This acronym is also used throughout the text for the
instrument itself, the atomic force microscope.

Bionanomachines Nanoscopic structures, usually
constituted by protein complexes, which performmost
cell functions with a few exceptions like genetic infor-
mation storage.

Enthalpic elasticity Elasticity derived from the breaking
of non-covalent bonds after stretching.

Entropic elasticity In polymer science, this type of elas-
ticity results from the entropic behavior of monomers
in a polymer after its stretching. This recoiling is
driven by thermal energy (second principle of thermo-
dynamics) and results in the so-called restoring force.

Functionalization Process by which specific chemical
groups are added typically to a surface and/or the sam-
ple to gain certain control of sample immobilization
(attachment, orientation, coverage, etc.)

Hookean spring A spring that shows a linear force-exten-
sion relationship as is the case of an AFM cantilever.

Mechanical stability It can be operationally defined as
the amplitude of the highest force peak (Fmax) ob-
served during the stretching of a single protein mol-
ecule using the length-clamp mode of SMFS, averaged
over many unraveling events. Most proteins show just
one force peak.

Molecular chaperons Protein complexes that help pro-
tein folding and complex assembly. Chaperonins are
a well characterized subclass of chaperons that assist
in the folding of newly-made proteins in all cells. These
bionanomachines use chemical energy, in the form of
adenosine triphosphate (ATP).

Molecular dynamics A specialized discipline of molecu-
lar modeling and computer simulation based on statis-
tical mechanics. These techniques are used to simulate
the behavior of molecules from the physicochemical
principles.

Polyprotein In protein engineering, artificial polymeric
protein formed by repeats (oriented or not) of a pro-
tein or a protein domain linked by covalent (pep-
tide, isopeptide or disulfide) bonds. Polymerization can
be achived at the DNA (by genetic engineering tech-
niques: in vivo) or protein (by using biochemical tech-
niques: in vitro) level.

Protein Natural biopolymer composed of up to 20 differ-
ent monomers, amino acids, linked by so-called pep-
tide bonds (a planar covalent bond), which typically
acquires a unique 3D (fold) structure. The sequence
of amino acids of a polypeptide is its primary struc-
ture. Proteins with quaternary structure are formed by
several polypeptides, which are linked by non-covalent
bonds, other covalent bonds, or both.

Protein engineering Discipline at the crossroads of mol-
ecular biology (includes genetic engineering, a tech-
nology to manipulate DNA), biochemistry, structural
biology, and bioinformatics that aims to either the
modification of proteins to improve or study its prop-
erties (redesign), or to design new proteins de novo.
Usually it involves making changes in the sequence
of a gene coding for a protein (usually by polymerase
chain reaction and directed mutagenesis) in order to
bring about desirable changes in its structure and/or
function.

Protein folding Process by which a polypeptide acquires
its native 3D structure (fold).

Protein fold Unique 3D structure of proteins (also called
superior structure or protein conformation), achieved
by either self-assembly alone or with the help or spe-
cific proteins (molecular chaperons), which is neces-
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sary for its biological function. There are several struc-
tural levels of protein conformation: secondary (the
mainmodels are ˛-helix and ˇ-sheet; the latter formed
by ˇ-strands), tertiary (final fold of a polypeptide; e. g.
ˇ-sandwich ˇ-barrel), quaternary (resulting from the
association of several polypeptides usually by non-
covalent bonds). Protein structures (folds) resolved
at atomic resolution are unique having an ascribed
file specifying their atomic coordinates (i. e., Protein
Data Bank, PDB file) and are classified somewhat ar-
tificially into discrete classes (e. g., immunoglobulin
fold).

Protein nanomechanics New discipline in charge of
measuring forces, distances, motions, energies, and de-
formations involved in the manipulation of individual
proteins or protein complexes, which are typically in
the sub-micrometer and sub-nanonewton ranges.

Protein unfolding Process by which a native protein
loses its native folding becoming “denatured”.

Proteasomes Large bionanomachines that degrade dam-
aged or unneeded proteins by proteolysis (a chemical
reaction that breaks peptide bonds). They are present
in all kinds of cells, belonging to the class of enzymes
called proteases, and they use ATP as a source of chem-
ical energy.

Single-molecule force spectroscopy (SMFS)
Technique carried out by several instruments (AFM,
optical tweezers or biomembrane force probe) consist-
ing in stretching single molecules to measure the resis-
tance forces (length-clampmode) or distances traveled
between resistance barriers (force-clampmode).

Unfolding (folding) pathway Energetic representation
of the pathway of an unfolding (folding) reaction.

Definition of the Subject

Proteins can be considered as machine-like devices that
function through complex structural changes in their
intra- or intermolecular bonding. Understanding the dy-
namics of the inner workings of proteins is still one of the
major challenges in biology.

Many proteins are nanomachines that use mechanical
forces to fulfill a variety of cellular functions from repli-
cation to cell adhesion to cell crawling. The nanomachin-
ery involved in these processes (i. e. the internal parts of
these bionanomachines) is still poorly understood. Protein
mechanics has emerged as a new multidisciplinary field to
directly apply and measure mechanical forces through an
array of recently developed dynamic techniques for ma-
nipulating single molecules, both in real time and under
physiological conditions. After a decade, this field is still

maturing fast and exciting developments await just around
the corner.

AFM (atomic force microscopy) single-molecule force
spectroscopy (SMFS) is one of the main technical pillars
of this new discipline and it is particularly suited to di-
rectly quantify the forces involved in both intra- and inter-
molecular protein interactions. In combination with pro-
tein engineering and computer simulations, this technique
has been used to characterize the unfolding and refolding
reactions in a variety of protein structures, both with and
without “mechanical functions”.

Protein engineering allows the unequivocal identifi-
cation of single molecules, through polyprotein analysis,
and a careful experimental dissection of the experimen-
tal variables involved, through mutational analysis. Com-
puter simulations based on molecular dynamics allow the
process of the mechanical unfolding/folding of a protein
to be modeled at the atomic level in order to obtain de-
tailed structural information on its dynamics. These de-
scriptions have been particularly useful in predicting and
understanding the complexity behind the experimental re-
sults obtained by SMFS.

This review summarizes the concepts underpinning
this field and some of the main findings to date.

Background

Mechanical Force: A New Biochemical Parameter

In contemporary biology we tend to regard the cell as
a factory-like system crowded with a variety of specialized
molecular “machines” of nanometer size (i. e., nanoma-
chines), mainly proteins that exist either as single polypep-
tides or as complex assemblies of protein “parts” [5]. Un-
derstanding the inner workings of these biological ma-
chines remains one of the more active frontiers in biology.

The function of an individual protein or protein com-
plex often involves the conversion of chemical energy
(stored or supplied) into mechanical work through con-
formational changes. These “bionanomachines” that make
use of mechanical forces are located throughout the cell
(from the cell nucleus to the extracellular matrix) and they
are involved in processes as diverse as replication, tran-
scription, translation, protein folding, protein and nucleic
acid unfolding, protein degradation, nucleic acid and pro-
tein translocation, organelle transport, muscle elasticity,
cell adhesion, membrane fusion, or cell crawling [19,53]
(Fig. 1).

Mechanical forces are also crucial to regulate the struc-
ture and function of cells and tissues. Thus, the shape of
eukaryotic cells, and by extension that of the multicel-
lular organisms they form, is the result of mechanosen-
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Protein Mechanics at the Single-Molecule Level, Figure 1
Mechanical biomachines. a Modular cell adhesion proteins may function as shock absorbers by increasing the range and lifetime
of adhesion bonds. b Cytoskeletal proteins such as titin (in red, myosin filament in green, actin filaments in blue) may function as
adjustable elastic springs. cMechanosensitive ion channels are present in many biological systems some of which, like the auditory
system have not yet been identified. The gating spring is a critical proteinaceous component of thismachinery. d Chaperonines such
as GroEL may induce conformational changes to mechanically unfold the substrate protein before refolding. e Compartmental pro-
teases: the AAA+ (hexameric ring) ATPase from the proteasome and other related proteases unfold proteins, presumable by force, in
an ATP-dependentmanner, prior to their translocation to the catalytic chamber for degradation. f The strain and distortion hypothe-
sis by Haldane and Pauling postulates that enzyme catalysis may work by inducingmechanical tension in the enzyme-substrate (ES)
complex. (Modified from [27])

sory, mechanotransduction and mechanoresponse cycles.
Responses to mechanical forces also underlie many bio-
logical processes from normal morphogenesis to carcino-
genesis, cardiac hypertrophy, wound healing, and bone
homeostasis. Indeed, recent studies show that several sig-
naling pathways are involved in force transduction, in-
cluding MAP kinases, small GTPases, and tyrosine ki-
nases/phosphatases [6,48,49,121,122].

The molecular mechanisms by which mechanical
forces influence these processes have been elusive due to
the lack of appropriate tools. However, with the recent ad-
vent of single-molecule manipulation techniques we can
now investigate these new biochemical pathways by di-
rectly probing bond dynamics in real time and under phys-
iological conditions. These new techniques allow us to use
mechanical force as an additional parameter in a biochem-
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ical reaction, which can dramatically affect its rates in both
directions.

Single Molecule Biology: A New Scientific Revolution

Single-molecule biology (alternatively referred to as sin-
gle-molecule, biophysics or biochemistry) is an entirely
new field of science, at the crossroads of several disciplines
(namely biology, physics, chemistry, material science, and
computer science), which overcomes the restrictions of
the traditional bulk biochemical studies by focusing not
on a population of molecules but on the molecule itself.
Single-molecule methods may be considered a “paradigm
shift” as they allow the behavior of individual molecules to
be analyzed directly (under thermodynamic equilibrium
or nonequilibrium conditions) at their real “nanoscale”
and in their own “nanoworld” where thermal motion is
a dominant force (see below).

Single-molecule techniques allow us to test the so-
called ergodic principle (see � Ergodic Theorems) of
molecular populations: the measurement of a property in
an ensemble at a given time should be equivalent to the av-
erage of the property measured on a single molecule over
long periods of time. Moreover, these methods are reveal-
ing important information regarding:

a) Intermolecular variations in the experimental param-
eter of interest, which can arise from chemical (e. g.
extent of glycosylation) or non-chemical (often called
“static disorder”) differences,

b) Rare events hidden in the ensemble,
c) The distribution underlying the ensemble average,
d) Fluctuations over time (the so-called “dynamic disor-

der”), and
e) Molecule kinetics without requirement for synchro-

nization [61,96,134].

An additional technical advantage of single-molecule tech-
niques is that the data can be directly compared to that
obtained in silico by molecular dynamics simulations, as
these methods also deal with single molecules.

There are two main types of single-molecule methods:
1) those that do not use an external force such as sin-
gle-molecule fluorescence microscopy [61,96,134]; and 2)
those imposing an external force to the system through
an electric field (e. g. patch-clamp [83]) or a mechani-
cal manipulation (through tension or torsion). The latter
subtype, the so-called single-molecule manipulation tech-
niques, offers a unique opportunity to study the behavior
of molecules under an external mechanical force, applied
either directly using flexible beams (AFM, microneedles,

optical fibers) and vesiclemembranes (biomembrane force
probe), or through external-field manipulators (optical
tweezers, magnetic tweezers, flow-field apparatus) [20,84].
These techniques have been used to examine the nanome-
chanics of themain biopolymers (DNA, RNA, polysaccha-
rides, and proteins) [61,96,134]. Proteins are in charge of
virtually every process that occurs in modern cells and are
the subject of this review.

Protein Nanomechanics

Nanomanipulation techniques can be used to study all
kinds of proteins, although pioneering experiments con-
centrated for obvious reasons (namely function, modular-
ity and size) on the so-called “mechanical proteins”. These
are proteins with a mechanical function that can generate,
transmit or use mechanical forces during their normal ac-
tivity in the organism. They fall into two main subclasses:
proteins that generate mechanical forces (biomolecular
motors, which and have been mainly probed by optical
tweezers) and proteins that are subjected to the mechan-
ical forces generated by biomolecular motors or from the
environment (mainly probed by AFM).

In order to identify the molecular mechanisms in-
volved in the activity of both types of proteins it is im-
portant to analyze their mechanics at the single-molecule
level. “Protein nanomechanics” achieves this by study-
ing the forces, distances, motions, energies, and defor-
mations involved in individual proteins or protein com-
plexes, typically in the sub-micrometer and sub-nanonew-
ton ranges.

Mechanical forces have also been used to probe the
mechanical strength of “non-mechanical proteins” (i. e.,
those with no known mechanical function) to better un-
derstand the thermodynamics and kinetics of protein un-
folding/refolding. Moreover, intermolecular interactions
in protein complexes, some of which are subjected to me-
chanical force in vivo (e. g. adhesion proteins), have also
been studied by mechanical stretching.

We shall focus on the response of individual pro-
teins to the mechanical forces applied mainly by AFM
and will provide an overview highlighting the principles,
ideas, achievements, and perspectives of this fast-growing
multidisciplinary field. For further reading and details, the
reader is recommended to consult other reviews on pro-
tein nanomechanics from the general ones, which include
those focusing on molecular biomotors [19,34,53,79], to
others restricted to specific types of interactions: inter- and
intramolecular [27,80,133], intermolecular [51,66,125],
intramolecular [44,86,98,132], and molecular interactions
of native membrane proteins [60,82].
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Protein Mechanics at the Single-Molecule Level, Table 1
Relevant forces in protein nanomechanics. Ubiquitous thermal forces help to overcome the energy activation barriers of biochemical
reactions and are the basis for the entropic elasticity displayed by many proteins in solution, which is on the range of a few pN.
Breaking the non-covalent bonds (van derWaals, hydrogen, electrostatic) thatmaintain protein folds and protein interactions needs
higher forces, typically below 300pN,while the rupture of covalent bonds requires stronger forces, above 1000pN. Forces accessible
to the AFM techniques are highlighted in italics

Force type Force range (pN) Origin Biological role Protein examples
Langevin
(thermal agitation)

�0.001 thermal energy activation of energy barrier
of reactions

typical enzymatic reactions

entropic �0–10 thermal energy (on
a polymer)

entropic elasticity (recoil)
of biopolymers

titin passive elasticity
(physiological range)

enthalpic (non covalent) �10–300 non -covalent bonds folding/interactions
in biopolymers

unfolding/unbinding
in proteins

enthalpic (covalent) �1000–3000 covalent bonds biopolymer synthesis Proteolysis (enzymatic
hydrolysis of proteins)

Methodological Bases

Range of Relevant Mechanical Forces in Biology

What are themagnitudes of the biologically relevant forces
that affect protein structure? Proteins are subject to ther-
mal forces, which are random in nature. These forces are
in the femtonewton ( f N D 10�15 N) range and when they
act on small objects like bionanomachines in solution, they
result in what is called Brownian motion (Table 1). It is
through thermal energy that proteins reach the high-en-
ergy transition states that are essential in biochemical re-
actions. To understand life at a fundamental level. it is im-
portant to know how these protein machines move their
parts and change shape in response to the thermal and
mechanical forces present in their nanoenvironment. The
energies involved in protein conformational changes (the
“signals” of our experiments) are just above thermal en-
ergy levels (“noise”), typically ranging from 1 kBT (ther-
mal energy; kBT D 4:1 pNnm D 0:6 kcal/mol, at room
temperature; where kB is the Boltzmann constant and T
is the absolute temperature) to 25 kBT (the energy re-
leased by ATP hydrolysis) such that the structures are sta-
ble enough to prevail at physiological temperatures. Given
that changes in protein conformation are measured in the
Ångstrom-nanometer range (Å-nm, 1ÅD 10�10 m, 1 nm
D 10�9 m) the relevant biological forces are expected to be
in the piconewton range (1 pND 10�12 N).

Because proteins are subject to thermal forces, the
number of possible conformations (entropy) reaches
a maximum when a protein forms a random coil or is de-
natured. Conformational entropy becomes progressively
reduced with the formation of secondary and tertiary
structures. Stretching random-coiled proteins in the low
force regime to overcome “entropic forces” requires the
application of forces in the order of a few pN, which has

been achieved experimentally using single-molecule ma-
nipulation techniques. Several molecular motors such as
myosin, kinesin, and RNA or DNA polymerases also gen-
erate forces in this range.

The next group are the “enthalpic forces”, which in-
cludes the forces needed to unfold the folded domains of
proteins (i. e. intramolecular interactions) as well as those
required to overcome specific intermolecular interactions
such as ligand/receptor or antigen/antibody. These forces
are typically in the 50–300 pN range, when measured at
a high loading rate. It must be noted that protein mechan-
ical unfolding is typically a non-equilibrium dynamic pro-
cess and therefore, these forces depend on the loading rate
(see definition below). The typical loading rates in vivo
may in some cases bemuch lower and accordingly the cor-
responding forces may also be lower.

Finally, the forces needed to break covalent bonds
apart are almost two orders of magnitude larger, in the
range of a few nanonewtons (1 nND 10�9 N) [134].

Single-Molecule Force Spectroscopy of Proteins:
The Underlying Principle and Modes

AFM is the main technique used to characterize the me-
chanical resistance of both individual polypeptides (in-
tramolecular interactions) and protein-biomolecule bonds
(intermolecular interactions) [20]. Thus most of studies
on single protein stretching have used this technique [27]
with the exception of three studies performed with op-
tical tweezers [8,28,62]. The mechanical resistance of in-
termolecular interactions in protein pairs have also been
studied using the biomembrane force probe [41].

The AFM was originally developed as a high-reso-
lution imaging tool [15] before it began to be used to
probe and manipulate atoms and molecules. The so-called
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Protein Mechanics at the Single-Molecule Level, Figure 2
Single-molecule force spectroscopy (SMFS) by AFM: physical principle and modes of operation. a Schematic diagram of the typical
AFMused inpullingexperiments. The linedepicts the laser lightpathbefore (dashed line; pale red) and after (solid lines; red) pullingon
the system (i. e., protein, green). Theprotein connectsmechanically the tip and the substrate,which is in turn bound to a piezoelectric
positioner in this specific setup. The movement of the positioner along the z-axis results in bending of the cantilever along the same
axis. This bending is tracked by changes in the reflected angle of a laser beam bounced off the cantilever, which in turn is detected
by a split photodiode as a voltage difference between the two channels and is converted into force using Hooke’s law. b 1 Typical
force curve diagram in length-clamp SMFS mode showing different snapshots of the movement of the cantilever and tip as the
positioner completes an approach-retraction cycle: it starts with the substrate not in contact with the tip (1), then it contacts with
it, which bends the cantilever (2) increasingly (3); afterwards it is withdrawn from the tip, which bends the cantilever the other way
(4) as it adheres to the tip, originating a force peak (4) on “jumping off contact” from the tip (5) which ends with the substrate again
not in contact with the tip (6). 2 Schematic force-extension diagram showing a recording of a typical sawtooth pattern obtained by
stretching of a multidomain protein molecule. c Force-clampmode of SMFS showing the typical staircase extension-time recording.
This particular example shows a polyubiquitin protein (N-C linked) being stretched at a constant force (110pN). (Modified from [27],
© Springer-Verlag 2006, with permission from Springer Science and Business Media)
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“force spectroscopy” or “force-measuring” configuration
of the AFM (Fig. 2) was designed to record force-extension
curves obtained by pulling in a single direction (z-axis).
Single molecules can be readily analyzed in this way by
“single-molecule force spectroscopy” (SMFS).

SMFS is a very sensitive technique that can measure
forces of tens of piconewtons and changes in length at
nanometer resolution. A common problem is that force
peaks can originate from a variety of sources other than
the interaction of interest (detachment of other molecules
from any of the two anchoring points, protein-protein in-

Protein Mechanics at the Single-Molecule Level, Figure 3
Elastic behavior of proteins under SMFS (length clamp mode). 1 Cartoon representation of the process of mechanical unfolding for
a proteinmodule using an applied force (F) that results in an extension of the protein (	x). 2 Equilibrium and nonequilibrium in pro-
tein unfolding-refolding (green unfolding process, red retraction, pale green hysteresis; insets show the corresponding structures).
a Force-extension curve of a “Hookean” spring suchas the AFMcantilever (amacroscopic system).b Force-extension curve of an elas-
tomeric protein: elastin. This protein behaves as an entropic spring in equilibrium, showing no hysteresis. c Force-extension curve
of an elastic protein (inset): the tail of myosin II. This structure behaves close to a truly elastic protein showing little hysteresis when
relaxed, which reflects the small amount of energy dissipated between extension and retraction. d Force-extension curve of a mod-
ular protein: a region of 8 Ig modules from the elastic region of titin. This structure shows a characteristic entropic-enthalpic force
spectrum. Stretching the ends of a multimodular protein sequentially unfolds the domains, generating a typical saw-tooth pattern.
The forced unfolding of this structure is a nonequilibrium process (note the marked hysteresis), which makes this protein a perfect
shock absorber: it dissipates as heat part of the energy put into the system by the external mechanical work. Inserts: structure of
a typicalmacroscopic spring (a), putative structure of elastin (b), structure of myosin II tail (c), and structure of the titin I27 Igmodule
(d). (Modified from [27])

teractions, disentanglement of molecules, etc.), or from
multiple molecules in parallel. This serious drawback was
overcome in pioneering studies of protein nanomechanics
by usingmodular proteins [87,94] or homomeric recombi-
nant polyproteins [25], in which their pseudo-periodicity
or pure periodicity, respectively, was used to infer single
molecules unequivocally (i. e., a single-molecule reporter).
These protein molecules are first immobilized between the
substrate (a glass coverslip) and the force sensor so that
a “mechanical circuit” is established that connects these
two points (Fig. 1). Typically, in these experiments pro-
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teins become attached by physisorption (i. e., nonspecific
adsorption via “physical forces”) to the two elements, al-
though sometimes specific functionalization methods are
also used (e. g., terminal cysteine residues in the protein to
covalently link it to the gold coated surface of the substrate
or/and the cantilever tip). Often, proteins in solution are
attached nonspecifically to the substrate forming a dense
layer of molecules from which the cantilever tip can pick
out single molecules at random. Protein molecules are
then stretched as in a lilliputian medieval rack, by moving
apart the AFM positioner (bound to the substrate), which
applies a mechanical force that unfolds the individual do-
mains. This imposes a specific reaction coordinate (i. e. the
end-to-end distance) on the unfolding process. By retract-
ing the AFM positioner, the protein can also be refolded
in the presence or absence of mechanical force. These ex-
periments are typically performed under nonequilibrium
conditions (Fig. 3). There are two basic modes currently
being used depending on the variable being controlled: the
most common, length-clamp, yielding a “force-extension”
curve; and force-clamp, which yields an “extension-time”
curve (Fig. 2).

What Kind of Information Can Be Extracted
from Stretching Proteins?

When the length-clamp mode is used on a modular pro-
tein or a polyprotein, the first source of resistance to ex-
tension typically comes from entropic forces, as these are
“polymeric” proteins formed by several “pseudo-repeats”
or perfect repeats, respectively. Entropic elasticity is a gen-
eral property of polymers that results from the tendency of
a chain to form a coil in order to maximize the conforma-
tional freedom (entropy) of its constituent monomers un-
der the drive of thermal fluctuations. Stretching this poly-
meric molecule reduces its entropy producing a restoring
force that bends the cantilever. In contrast to the linear re-
lationship that governs cantilever bending (common me-
chanical springs follow Hooke’s law, Fig. 3), the entropic
elasticity of a protein follows a non-linear relationship
that can be formally described by the so-called “worm-like
chain” model of polymer elasticity (WLC, see Sect. “Me-
chanical Dissection of Titin I27 Module: A Model Sys-
tem”).

Further extension of the protein may unravel it in
a typically all-or-none fashion, which can be described by
a two-state model (Fig. 4, see below). This exposes previ-
ously “force hidden” amino acid residues to force, result-
ing in an increase in the end-to-end length of the pro-
tein trapped between the tip and the positioner (
Lc ),
while relaxing the force acting on the cantilever to near

Protein Mechanics at the Single-Molecule Level, Figure 4
The effect of a mechanical force on the energy diagram of a pro-
tein. a Cartoon representation of the process of mechanical un-
folding as in Fig. 3a.b The effect of amechanical force on the free
energy diagram of a protein that unfolds following a two-state
model (f folded, u unfolded). The dashed blue curve represents
the process in the absence of an applied force. An applied force
(black dashed line) tilts the energy diagram of the process, de-
creasing the barrier to the transition state, ‡ [	G�(F) < 	G0�]
(red line). The application of force also lowers the energy of the
unfolded state relative to that of the folded state [	G(F) < 0].
The mechanical reaction coordinate is x. With an applied force,
the positions of the free-energyminima (xf and xu) and themaxi-
mum (x�) shift such that	xu becomes shorter (	xu, red< 	xu,
blue) and	xf longer (	xf, red > 	xf, blue). Local curvature of
the free-energy surface dictates these relative shifts in position.
(Modified from [19] © Annual Reviews 2004, with permission)

zero (see Sect. “Mechanical Dissection of Titin I27 Mod-
ule: A Model System”). Thus, unfolding events are de-
tected as sudden changes in the end-to-end distance of
the molecule. For a modular protein or a polyprotein, fur-
ther extension repeats this cycle for each of the remain-
ing folded modules, giving rise to a characteristic saw-
tooth pattern in the force-extension curve (Fig. 2b). When
the force-clamp mode is used, the extension-time curve
adopts a staircase pattern (Fig. 2c).

SMFS permits the direct measurement of both the me-
chanical stability of the barriers that a protein offers to its
stretching (i. e., the mean force, as the process of unfold-
ing is thermally driven and is stochastic) and the location
of these barriers with single amino acid resolution [24]. As
we shall see, the mechanical stability of a protein is a prop-
erty that cannot be inferred from thermodynamic stability
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measurements. Additionally, and based on conventional
transition state theory, we can infer the kinetic parame-
ters of the forced unfolding/refolding reaction [9,40]. An
applied mechanical force tilts the energy diagram of the
process, decreasing the barrier to the transition state and
increasing the rate of the forward reaction (Fig. 4).

It is possible to calculate the probability density for un-
folding, which predicts the most likely force of unfolding
in terms of the spontaneous unfolding rate constant as fol-
lows:

Fu D (kBT/
xu) ln(r
xu/k0ukBT) :

By using this analytical solution we can calculate the ki-
netic parameters for the unfolding reaction: k0u (sponta-
neous rate of unfolding) and 
xu (width of the activation
energy barrier, i. e. the distance on the reaction coordinate
over which the force must be applied to reach the transi-
tion state). This equation predicts that the mechanical sta-
bility of a protein (F) depends on the unfolding distance,

xu, the height of the barrier (
G(u , which depends on
kou), thermal energy, and the loading rate used during the
extension of the protein (r D dF/dt D k�v; where v is the
pulling speed).

Also, by relaxing the tethered protein before it breaks
and waiting for appropriate periods of time, we can per-
form refolding experiments (in the presence of force or in
its virtual absence) from which we can extract the equiva-
lent parameters of the folding process.

Two recent SMFS studies show that it is now possible
to gather both detailed information on protein structure,
through a method called “mechanical triangulation” [38],
and to probe dynamic rearrangements within the active
site of an enzyme with unprecedented resolution [129].

Computer Simulations of the Mechanical Unfolding
of Proteins

SMFS experiments canmeasure changes in length at single
amino acid resolution [24]. However, the typical methods
used cannot provide a detailed structural resolution nor
a “microscopic” (in the physicist sense, “nanoscopic” for
biologists) interpretation of these processes. To this end
computer simulations bymolecular dynamics have proven
to be very important for the atomic analysis of this process.
They allow us to follow how mechanical forces change the
structure of proteins under stress at the atomic level. These
simulations are relatively simple to implement since the
denaturing agent (force) and the reaction coordinate (N-
C distance, if the protein is pulled by its termini) can be
readily simulated. As these techniques also deal with single

molecules, they are especially suitable for direct compari-
son with SMFS results, which constitutes one of the main
appeals of SMFS for theoreticians. The methods that have
been used are all-atom (with and without explicit water
solvent) and coarse-grained (e. g., on- and off-lattice sim-
ulations) models. The latter approaches give less detail but
allow massive studies to be carried out at near experimen-
tal pulling speeds.

Classical all-atom simulations have been used for
decades as an approach to interpret the behavior of pro-
teins near their native states over time scales up to the
order of 100 ns, with and without an explicit water sol-
vent [46,50,93,109]. The usual approach is to resolve New-
ton’s equations (for instance, by using the leap-frog or
prediction-correction algorithms) for all of the atoms in
the system, monitor trajectories, and calculate time av-
erages. However, interatomic forces have many sources.
The forces are typically described by about 1000 parame-
ters, which are collectively known as the ‘force field’ and
they are determined through studies of model peptides.
The primary contributions are Coulombic interactions be-
tween partial charges placed on the individual atoms. The
all-atommodels are often considered as being realistic rep-
resentations of proteins, however, they incorporate several
important approximations. Indeed, they neglect the dy-
namics of electrons as described by Schrödinger’s equa-
tion and what is often more important, the force field is
‘trained’ to be valid near expected native states of simple
proteins and not in their non-native conformations.

By applying all-atom simulations to protein stretching
we can obtain a wealth of information about the atomic
details of conformation, which often enables the nature of
mechanical stability to be elucidated (i. e., to explain which
modules give rise to resistance to pulling). However, in
order to fit the process to the computationally available
time scales, very fast pulling speeds are used. These sim-
ulations are generally performed at pulling speeds many
orders of magnitude faster than those of the experiment
(eight or more, typically 1–10mm/ms vs. 0.1–1 nm/ms).
Because of this reduction in time, additional irreversible
work is done to stretch the molecule, which typically re-
sults in force peaks one order of magnitude higher than
those observed in AFM experiments. Hence, as simula-
tions not fully reproduce the experimental conditions, it
is not clear whether they precisely model the real process
in these short periods of time in which new physical phe-
nomenamay arise. It should be noted that the peak heights
at the computational speeds are usually substantially larger
not only than the experimental unfolding force peaks but
also than their extrapolation, assuming a logarithmic de-
pendence on the speed that is often found.
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These simulation techniques have a much higher
time resolution than experimental single-molecule tech-
niques (which can only capture slow conformational mo-
tions). Computational times are also shorter, in the range
of nanoseconds or tenths of nanoseconds, which are
achieved by increasing the pulling speed in the case of con-
stant-velocity simulations (or by increasing the force in
the case of constant-force simulations). However, a direct
comparison is not possible because these techniques sim-
ulate the unfolding process over a very short time period
(picosecond to nanosecond range), whereas experimental
SMFS data are obtained over much longer times (millisec-
ond-second range).

In spite of these difficulties, the synergy between all-
atom simulations and experiments is very powerful. It is
expected that such simulations will be important for the
future development of the field in order to obtain the nec-
essary high resolution picture of the mechanical unfolding
of proteins. The first protein for which stretching was sim-
ulatedwas the titin I27 domain, which has become amodel
system in the field (see Sect. “Mechanical Dissection of
Titin I27 Module: AModel System”). So far, about 30 pro-
tein structures have been studied using all-atom simula-
tions, representing about half of the proteins folds studied
by SMFS. Both numbers are only a tiny fraction of proteins
stored in the PDB or existing in any organism. In this pro-
teomic era there is a need for approaches to investigate the
elastic landscape of large numbers of proteins and coarse-
graining has recently offered such a tool.

Coarse-grained molecular dynamics models provide
access to the experimental timescales of protein processes,
in an approximate way, not only by reducing the num-
ber of degrees of freedom (e. g., by dealing only with the
C˛ atoms) but also by introducing simple effective inter-
actions that pertain to the larger scale level of descrip-
tion. The coarse-grained models are generally well suited
for studies of large conformational changes, such as those
occurring during folding, stretching and thermal melting.
They offer further advantageswhen considering biomolec-
ular complexes, such as the multiple linkages of proteins
and ribosomes [116]. Their high-throughput character al-
lows the comparison of the properties of a large num-
ber of proteins. A further simplification of the model may
be implemented by making the conformational space dis-
crete through constraining the locations of the C˛ atoms
to certain sites of a lattice. This step also requires replacing
Newton-equations based dynamics by Monte Carlo sam-
pling [74].

Coarse-grained models of proteins have gained popu-
larity in the last decade, although biochemists tend to dis-
miss them because of their reduced ‘realism’. Among the

coarse-grained models of proteins, the so-called Go-like
systems are currently the most widely used [17,32,35,52,
59,63,120,126], particularly since they are easy to imple-
ment and yet specific to a protein. The general idea is to
formulate a model with effective couplings that is consis-
tent with the experimentally established structure of the
native state [1,114]. Clearly, there is no unique prescrip-
tion for how to implement it. However, there is a host of
simple choices that produce fairly good correlations with
the experimental SMFS data. Go-like models have ques-
tionable features to study folding, but they are expected to
be more reliable for studies of stretching where much of
the relevant dynamics of the process takes place near the
native state.

The construction of a C˛-based Go-like model starts
by representing each amino acid by a bead located at the
C˛ site. Consecutive beads are tethered by harmonic po-
tentials with minima at 3.8 Å. The next step is to introduce
bead-bead interactions that would minimize the potential
energy of the system in the experimentally established na-
tive structure. This is done by first determining which in-
teractions should be operational in the native state and
which should not. This results in the generation of the so-
called contact map, which lists the native contacts (i. e. in-
teractions). A sensible way to construct the contact map is
to read in the all-atom native structure and represent each
amino acid by a cluster of ‘grapes’. Each grape has a ra-
dius equal to the van der Waals radius of the correspond-
ing atom multiplied by a factor to account for attraction.
If such clusters overlap in the native state a native con-
tact arises, which represents specific interactions such as
hydrogen bonds, ionic bonds, disulfide bonds, and so on.
Otherwise the contact is non-native and the correspond-
ing interaction is made repulsive to prevent entanglement.

Once the contact map has been determined, one needs
to decide on how to pick an effective potential that rep-
resents a contact whatever its chemical nature. Among
the simple choices, the Lennard–Jones potential, VLJ D
4"[(� /r)12 � (� /r)6], appears to work particularly well.
Here, r is the distance between interacting C˛ atoms, �
is the length parameter, which is determined contact-by-
contact so that the minimum in the potential coincides
with that in the experimental structure. " is the energy
scale. In its simplest version, the energy scale is uniform
and equal to 1.3–1.6 kcal/mol (so that the unit of force,
"/Å, is 67–110 pN). Disulfide bonds are covalent in na-
ture so their effective coefficient " is an order of magnitude
larger. Themodel can be improved by terms that represent
local backbone stiffness. They favor the native values of the
bond and dihedral angles. In order to mimic the thermo-
stating effects of the solvent, one also introduces random
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forces whose amplitude is proportional to temperature, T,
(Langevin noise) and a damping force that produces over-
damping. One can take kBT/" � 0:3 to represent room
temperature situations. The characteristic time scale (�),
in the resulting molecular dynamics simulations is of the
order of ns instead of ps since it relates to the diffusion
time across a distance of a typical � , instead of an oscilla-
tory time.

It should be noted that temperature exerts a profound
effect on the force-displacement patterns since thermal
fluctuations contribute to unraveling. The higher the T,
the smaller the force peaks. At sufficiently high temper-
atures (kBT/" � 0:8), in the so-called entropic limit, the
force peaks due to the contact potentials disappear alto-
gether. It is in this limit that the physics of an entropic
chain applies.

The stretching simulations in all-atom models are
usually implemented by making the molecular dynam-
ics “steered”, which means that pulling is done directly
through the attachment to a selected amino acid, usu-
ally a terminus, and this amino acid is made to move in
a specific way. In coarse-grainedmodels, stretching is usu-
ally accomplished by attaching two amino acids to elastic
springs that imitate the elasticity of the cantilever on one
end and that of the attachment to a substrate on another
end. These simulations can be done at the experimental
pulling speeds although, in order to survey the PDB at rea-
sonable times, they are typically done two orders of mag-
nitude faster.

Protein Engineering is a Fine Tool
for Protein Nanomechanics

Protein engineering has been critical for the progress of
this field not only because it allows the construction of
polyproteins (single-molecule markers for SMFS) but also
for permitting the introduction of mutations.

Mutational analysis is a high-resolution tool that per-
mits minimal perturbations of the system to be intro-
duced in order to analyze the underlying molecular de-
tails. It has offered a unique way to study the molecu-
lar basis of how proteins respond to mechanical force.
Several types of mutant proteins of the titin I27 domain
(See Sect. “Mechanical Dissection of Titin I27 Module:
A Model System”) have been used in SMFS studies. Loop
insertion using glycine residues was used to show the ex-
istence of a “mechanical clamp” in I27 formed by back-
bone hydrogen bonds, demonstrating also the amino acid
resolution of the technique [24]. Proline mutagenesis was
used to show the existence of a mechanical folding in-
termediate [75] and to alter the mechanical stability of

the domain [69]. This approach takes advantage of the
fact that proline (a known breaker of secondary struc-
ture) is an imino acid and as such, cannot form backbone
hydrogen bonds. Conservative substitution and deletion
mutagenesis have been used to demonstrate the existence
of the I27 folding intermediate [45]. Furthermore, anal-
ysis of the so-called mechanical ˚-value holds promise
for a more detailed examination of the structure of the
transition state in a forced unfolding reaction [11]. This
is the mechanical equivalent to the well established ˚-
value analysis [43], which is used to examine the confor-
mational effect of a mutation based on the relative changes
in free energy of the native, transition and denatured states
(

GN�(; 

GU�(). The ˚-value is obtained from the
changes in thermodynamic stability measured from the
shifts in the equilibrium denaturation curves. The unfold-
ing ˚-value, defined as ˚u D 

GN�(/

GN�D , is de-
termined by comparing the effect of the mutation on the
transition state and it measures the amount of native struc-
ture that is present around the mutated residue in the tran-
sition state. The 

GN�D is determined using equilib-
rium denaturation experiments. This analysis can only be
applied when 
xu remains the same for wild type and
mutant proteins. Using these methods it has been shown
that mechanical unfolding of titin I27 is a 3-state process
in which the first transition state (between the native and
the intermediate states) is very similar to the native state
(Fig. 5).

Main Findings

Which Proteins Have Been Studied?

Over the last decade bothmechanical and non-mechanical
proteins have been studied by mechanical unfolding and
folding using SMFS [27,86] (Table 2). The protein struc-
tures analyzed so far include the following:

a) the “all-ˇ” protein E2Lip3 [17];
b) several “all-ˇ” structures of the ˇ-sandwich type in-

cluding “Ig-like” domains (from titin, fibronectin,
tenascin, filamin, polycystin-1, Sls-kettin and projectin)
and a “C2 domain-like” module (from synaptotag-
min I) [18,26,70,87,89,92,105];

c) a protein of the ˇ-barrel type (GFP: green flourescent
protein) [37,90];

d) several “˛ C ˇ” proteins: ankyrin B, T4 lysozyme, bar-
nase, DHFR (dihydrofolate reductase), ˇ-grasp pro-
teins (ubiquitin, protein L, GB1), RNase H, mal-
tose binding protein, and Top7 [3,8,10,21,23,28,67,103,
106,131];
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e) several “all ˛” structures (calmodulin, spectrin, and
myosin II tail) [7,26,64,95,104]; and

f) several unstructured proteins (elastin, titin PEVK, and
titin N2B) [65,70,71,100,118].

Most proteins analyzed to date (i. e., modular proteins
and recombinant polyproteins) have been pulled in the
N-C direction, which is the natural direction provided
by the peptide bond as synthesized at the ribosome.
Exceptions are naturally occurring proteasomal polyubiq-
uitins (K48-C linked) [23], E2Lip3 domain (K41-C) [17],
lyzozyme polyproteins cysteine-linked in solid state (C21-
C124) [131] andGFP polyproteins cysteine-linked in solu-
tion (C3-C132, C3-C212, and C132-C212) [38]. These al-
ternative linkages offer unique opportunities to apply force
to different points of the protein. As we will see, these al-
ternative geometries of pulling greatly alter themechanical
stability of proteins.

� Protein Mechanics at the Single-Molecule Level, Figure 5
A model system in protein nanomechanics: the I27 module.
Schematic representation of the mechanical architecture of the
I27module from titin. A three repeats polyprotein (center panel),
showing patches of backbone hydrogen bonds in both “zip-
per” (dashed grey lines) and “shear” (AB, A0G; solid green lines)
mechanical topologies. a A force extension-curve (force spec-
trum) obtained after stretching an I27 polyprotein by SMFS-
AFM. b Force spectrum predicted by steered molecular dynam-
ics (SMD) simulations, by an all-atom method. The main stabil-
ity determinants of this module are a minor mechanical bar-
rier (A-B patch of backbone hydrogen bonds in the polypeptide
backbone) and a major one (A0G patch of backbone hydrogen
bonds). The major resistance barrier corresponds to the force
peaks in the force–extension spectrum (a). The minor barrier is
detected in SMFS as a deviation of the WLC (“hump”), which
is more apparent in the first peak of the spectrum since it col-
lects the contribution of all the events from the stretched mod-
ules (pink arrows). This intermediate refolds after each unfolding
event, as the force relaxes. These results are correlatedwith SMD
simulations, where a low force peak and a high one can be ob-
servedwhen stretching a single domain (b). Although the exten-
sion data are similar (28.1nm in AFM vs. 25–30nm in SMD), the
force data are different. Thus, the AFMmean peak value is about
200pN, whereas the main force peak in the SMD simulation is
about 2,000pN. This discrepancy can be attributed to the differ-
ent timescale of the experiments; simulations are much shorter
processes (1 ns to tenths of 1 ns) than experiments (milliseconds
to seconds) and thus they cannot fully reproduce the experimen-
tal conditions. (Modified from [27], © Springer-Verlag 2006, with
permission from Springer Science and Business Media)

In addition to single polypeptides, the mechanical
properties of some protein complexes as a whole have been
also analyzed by SMFS (e. g., myosin II tails [104] and
E. coli adhesive pili [81]).

Molecular Determinants of the Mechanical Stability
of Proteins

The number of proteins analyzed so far by SMFS is still
very small (about 23 different proteins, roughly 55 PDB
structures) and they have been studied with differing de-
tail (systematization of the conditions in which these stud-
ies are done would be highly desirable, as already pro-
posed [97]). Although this prevents us from being able to
extract general principles, regarding mechanical stability
some tendencies have been observed that can be summa-
rized as follows [27,86]:

Proteins have widely different mechanical stabilities,
measured by the most probable unfolding force (Fu) when
pulled in the N-C direction: they range from less than the
limit of resolution of AFM (typically�20 pN; e. g. calmod-
ulin) to 330 pN (e. g., titin Ig domains). Interestingly, me-
chanical proteins intended to resist force tend to be more
mechanically stable than non-mechanical ones or the so-
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Protein Mechanics at the Single-Molecule Level, Table 2
Mechanical stability of representative proteins. Mechanical stability (measured in pN) is defined as the average force of unfolding.
The proteins listed here were all pulled apart from their N- and C-termini at comparable loading rates

Protein fold Examples Mechanical stability, F (pN)

˛-helix calmodulin < 25

ˇ-spiral ˛ -elastin, PEVK (titin) < 25

˛-helical structures

bundles spectrin, dystrophin, myosin tail, ankyrin B repeats 25–50

solenoids ankyrin B 360 ?

˛+ˇ structures dihydrofolate reductase, barnase 27–70

ˇ-grasp ubiquitin, GB-1, protein L 136–200

ˇ-barrel GFP 100

ˇ-sandwich

“zipper” C2A domain 60

“shear” (PKD) polycystin-1 50–250

“shear” (fn) titin A band, fibronectin, tenascin, projectin (fn), myomesin (fn) 80–200

“shear” (Ig) titin I band, sls -kettin, projectin (Ig), myomesin (Ig), filamin A 150–330

called elastomeric proteins, although there are some ex-
ceptions.

Unstructured and ˇ-spiral proteins (e. g. elastomeric
proteins like elastin and the PEVK and N2B regions
from human titin) are among the less mechanically sta-
ble proteins. Such proteins are entropic springs and be-
have reversibly. ˛-helical proteins (e. g., calmodulin, T4
lysozyme) also have relatively low mechanical stabil-
ity although ˛-helical bundles (e. g., spectrin, myosin II
tail) and solenoids (e. g., ankyrin B) are more stable.
ˇ-stranded proteins tend to unfold at higher unfolding
forces than ˛-helical ones.

The mechanical stability of most mechanical proteins
(e. g., Ig-like ˇ-sandwich and the ubiquitin-like ˇ-grasp
folds) tends to be determined by highly-localized mechan-
ical clamps at the breakpoint formed by shear hydrogen
bonds between the backbones of the ˇ-strands. However,
in some protein folds (e. g., fibronectin type III, fnIII,
from human tenascin- TNfnIII3) the hydrophobic core
also contributes to mechanical resistance [85]. Exceptions
to the shear mechanical clamp topology are GFP, ankyrin
B, and the de novo designed Top7 fold. In addition to sec-
ondary-structure based elasticity, there are twomore types
of structure elasticity: tertiary (e. g., the solenoid of ankyrin
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B [67]) and quaternary (e. g. the helical rod of E. coli adhe-
sive pili [81] and the myosin II tail [104]).

Since force is a vector quantity, the mechanical sta-
bility and the mechanical unfolding pathway depend on
the pulling geometry, which is affected by both the topol-
ogy at the breakpoint and the point of application of the
force. Hence, ˇ-stranded proteins with a shear mechanical
topology at the breakpoint (i. e. the force vector is orthog-
onal to the hydrogen bonds) are more mechanically stable
than zipper ˇ-stranded proteins (where the force vector
is parallel to the hydrogen bonds). The points of applica-
tion of the force to a protein are also relevant as they can
substantially alter its mechanical stability [17,23], imply-
ing that proteins have “Achilles’ heels” in their structure.
For instance, GFP pulled from geometries other than N-C
shows mechanical stabilities of up to�550 pN [39].

Mechanical stability is a kinetic property which in gen-
eral is not correlated with thermodynamic stability (
G)
or with melting temperature (Tm D 
G/
S) [26]. Me-
chanical stability seems to be roughly predicted by the un-
loaded unfolding rate constant [27].

Chemical and mechanical unfolding have been shown
to follow different pathways [10,45] and have different un-
folding barriers [10,16].

Moreover, it has been demonstrated that mechanical
stability can be modulated by ligand binding [3,58] and by
disulfide bond formation [4,14,22,128,129].

Taking together, these findings show that proteins dis-
play a broad range of responses to mechanical stress,
which cannot easily be rationalized in terms of predictors
ofmechanical resistance. Thus, although themolecular ba-
sis underlying the mechanical resistance of proteins is still
unclear, several determinants have been identified through
these studies: amino acid sequence, mechanical topology,
unloaded unfolding rate constant and pulling geometry.

The molecular structure of a protein, poses constraints
on the location of the transition state in mechanical un-
folding. It has been suggested that tertiary interactions
have shorter distances to their transition states than sec-
ondary structures, and they tend to be more brittle (i. e.
they break at high forces and after small deformations)
than secondary interactions, which are more compliant
(breaking at low forces and after large deformations). Fur-
thermore, tertiary interactions may require more time to
equilibrate than secondary ones and therefore, they of-
ten present hysteresis in the pulling-relaxation cycle [19].
Most proteins show a high degree of connectivity and as
a result, their unfolding seems to be highly cooperative
with the stability of secondary structures depending on
their tertiary context and often presenting no intermedi-
ates. Still, due to the local action of the applied force, their

mechanical stability tends to be related to highly localized
molecular structures near the mechanical “breakpoint”
rather than to the global structure [19,73]. A massive sur-
vey has been carried out recently to identify these me-
chanical clamps in all protein modules (up to 150 amino
acids long) for which there are atomic structures avail-
able [110,111].

Mechanical Dissection of Titin I27 Module:
A Model System

The model system most commonly used to study me-
chanical unfolding/refolding in proteins is the I27 mod-
ule from titin (Fig. 5), a gigantic multimodular protein
responsible for the so-called passive elasticity of muscle
(see Sect. “The Elasticity of Muscle Explained at the Sin-
gle-Molecule Level) [117]. This module has an 89 amino
acids long Ig-like ˇ-sandwich fold (Fig. 3d and Table 2).
All-atom molecular dynamics simulations of its stretch-
ing identified two patches of backbone hydrogen bonds
as true “structural” barriers with different mechanical re-
sistances: a low force barrier involving 2 hydrogen bonds
between ˇ-strands A and B (AB patch), and a high force
barrier between ˇ-strands A0 and G involving 6 hydro-
gen bonds (A0G patch) [73]. The hydrogen bonds in both
patches are perpendicular to the direction of the force vec-
tor (a “shear”mechanical topology: bonds are arranged “in
parallel” in the mechanical circuit), whereas the remaining
hydrogen bonds in the structure are parallel to the force
vector (a “zipper” mechanical topology where the bonds
are arranged in series) and like the hydrophobic core, seem
to offer little resistance to extension (Fig. 5). Interestingly,
coarse-grained models yield similar results [32,126].

These predictions were remarkably consistent with the
experimental data obtained from SMFS using polypro-
teins: an intermediate found at low force (�100 pN,
at 0.3–05 nm/ms) was associated to the rupture of the
AB patch [75], whereas a high force peak (�200 pN, at
0.6 nm/ms) was found to depend exclusively on the A0G
patch [25] and the associated side-chain packing (i. e. hy-
drophobic) interactions between the A0 andG strands. The
hydrophobic core of this structure plays no role in resist-
ing force [13]. The hypothetical role of the A0G patch as
a mechanical clamp was tested by loop insertion [24] and
proline mutagenesis [69], thesemutants providing the first
mechanical phenotypes.

Unveiling Intermediates and Rare Misfolding Events

As mentioned in the last section, experimental stretching
of I27 also confirmed the existence of a weaker mechan-
ical barrier in the AB patch, which appeared as a small
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deviation in the force-extension recordings (at �100 pN
and at 0.3–0.5 nm/ms) from the pure entropic behavior
described by the WLC model (a “hump” of decreasing in-
tensity on each of the saw teeth; Fig. 5). This deviation
was interpreted as evidence for the existence of an unfold-
ing intermediate involving the rupture of the AB patch.
The existence of this unfolding intermediate in the wild
type I27 module was later confirmed by using mutant pro-
teins [45,75].

During refolding experiments using polyproteins or
modular proteins, “skip” events are occasionally observed,
whose contour lengths suggest they are due to the forma-
tion of a “superfold” which includes two consecutive do-
mains plus the linker region between them. Thismisfolded
“superdomain” unfolds at similar forces to those for a sin-
gle domain and refolds back to the dimensions and me-
chanical stability of two normal domains. SMFS of the titin
poly-I27, the fnIII domains of tenascin, and the R1617 tan-
dem repeat of spectrin have demonstrated that these sin-
gle-molecule studies can detect rare events in as little as 2,
4 and 3% of the population, respectively. Hence, the effi-
ciency (i. e. fidelity) of refolding after mechanical unfold-
ing can be estimated [21,88], which has been found to be
exceptionally high for the non-mechanical protein GB1,
a structural homologue of protein L (above 99.8%) [21].
Such rare unfolding events could not be detected using en-
semble techniques and they open the door to investigate
the means of reversing the undesirable misfolding that oc-
curs in a number of pathological conditions.

The Elasticity of Muscle Explained
at the Single-Molecule Level

The basic contractile unit of muscle is the sarcomere. This
relatively simple contraction/extension machine (i. e. it
works in a single dimension) is highly elastic [55]. The
pioneering work by Wang et al. [124] and Maruyama
et al. [76] demonstrated that the so-called “passive elastic-
ity” of muscle (i. e. generation of restoring forces that resist
stretch independently of ATP) is mainly mediated by titin,
a giant protein (> 3MDa, the longest polypeptide known to
date) that spans half a sarcomere (� 1 μm; from the Z disk
to the M line) and that acts as a molecular spring (Fig. 6).
Passive elasticity plays an important role in muscle func-
tion since, typically, a muscle actively contracts against the
elastic strain of a passively elongating muscle. This prop-
erty ensures that the sarcomere recovers its initial dimen-
sions on muscle relaxation [117].

A remarkable feat achieved using SMFS was the recon-
struction of the passive elasticity of intact myofibrils by
simply scaling up from the mechanical properties of sin-

gle titin molecules [70] (Fig. 6). These were reconstructed
from the mechanical properties of representative elements
of its elastic region (i. e. N2B, PEVK, and the proximal
and distal Ig regions relative to the N-terminus of the pro-
tein). These results showed that titin behaves very differ-
ently from a Hookean spring. Instead, in response to ax-
ial tension, titin behaves as a multistage non-linear spring
that adjusts both its length and apparent stiffness by virtue
of its particular modular design. At low forces the entropic
springs dominate (i. e. N2B, PEVK, and Ig straightening)
while at high force (i. e. in non-physiological conditions)
the enthalpic springs (partial and total unfolding of a few
Ig domains) act as “shock absorbers” to prevent damage
of the sarcomere. Thus, titin Ig shock absorbers are essen-
tially a “safety mechanism” for the sarcomere.

Through this reductionist approach, it has been possi-
ble to explainmuscle passive elasticity (a macroscopic bio-
logical property) from the additive mechanical properties
of a single sarcomeric protein at the single-molecule level.
The example of titin elasticity shows how single-molecule
experiments can be used to elucidate, at a more fundamen-
tal level, the physiological function of a protein through
a pure biophysical dissection of a complex hierarchical sys-
tem.

Molecular Shock Absorbers Galore

Mechanical proteins tend to be modular, and are often
composed of assortments of modules of the same type
(e. g. immunoglobulin, fibronectin), which frequently dis-
play distinct mechanical stabilities. The shock absorber ef-
fect of the Ig domains from titin has also been found in
cell adhesion proteins like tenascin (in its fnIII modules),
where it was proposed to extend the range and lifetime
of cell-cell interactions [87]. In the case of fibronectin,
another extracellular matrix protein, most of its (Ig-like)
fnIII domains remain folded during the stretching of its
matrix [2], similar to titin.

Protein domains from muscle (titin, myomesin, pro-
jectin and Sls-kettin), cell adhesion (tenascin, fibronectin,
polycystin-1), cytoskeletal (filamin), and surface receptor
proteins tend to belong to the Ig-like ˇ-sandwich family
of proteins and probably have somewhat similar mechan-
ical topologies at the breakpoint. This superfamily of Ig
folds, which includes Ig (titin, projectin, Sls-kettin), fnIII
(tenascin, fibronectin, titin, projectin), E-set (filamin), and
PKD (polycystin-1) types, consist of 7 stranded ˇ-sand-
wich structures in which the N- and C-terminal strands
are parallel to each other, pointing in completely differ-
ent directions (i. e., 180ı, Table 2, Fig. 3). These mod-
ules seem to have evolved to withstand forces, when con-
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Protein Mechanics at the Single-Molecule Level, Figure 6
Reverse engineering of titin. a–f Reconstruction of muscle passive elasticity from the mechanical properties of single titin proteins.
The mechanical properties of representative elements of its elastic region, I band (b). c These elements are the proximal Ig domains
(the crystal structure of I1 is shown in d, left panel), the N2B and PEVK (hypothetical random coils) and the distal Ig domains (the
NMR structure of I27 is shown in d, right panel). e Representative force-extension recordings obtained after stretching I4-I11 (in red),
an N2B (in blue), a PEVK (yellow) and I278 proteins (violet). f According to this model, within the physiological range of sarcomere
extension (i. e. forces below 4pN) unfolding would rarely happen and most of the elasticity of titin would result from the entropic
elasticity of straightening the Ig domains in the I band, and of extending the random coils (PEVK and N2B). (Modified from [70,86])

nected in series, thanks to a shear mechanical topology
of the hydrogen bonds at the breakpoint. This arrange-
ment may provide these domains with considerable resis-
tance to mechanical stretching. Thus, the Ig-like ˇ-sand-
wich fold seems to be a platform that can tolerate higher
mechanical stress than other folds. Within this class, the Ig
(forces ranging from 150–330 pN, at 0.6 nm/ms) and the
PKD (�200 pN; at 1 nm/ms) domains appear to be more
mechanically stable than the fibronectin type III (fnIII; 75–
220 pN, at 0.6 nm/ms) or the E-set (to which filamin be-
longs; 50–220 pN, at 0.37 nm/ms) domains [27].

As discussed, SMFS is often used for the mechani-
cal analysis of multi-modular proteins and polyproteins.
In these proteins, stretching results in the unwinding of
many segments. Often the patterns are interpreted as a se-
rial process. This seems justified in many cases (especially

for polyI27 or polyubiquitin), but there are examples when
this assumption fails (e. g., polycalmodulin). Temperature
also seems to play an important role in these experiments.
At high temperatures, thermal fluctuations dominate and
all segments unwind in parallel (i. e. simultaneously, be-
cause such fluctuations are independent of the segment
number although they are sensitive to the sequential dis-
tance between amino acids that are in contact so that the
short range contacts unravel last). Thus, in these condi-
tions the weakest spots will unravel first, irrespective of
whether they are hidden, exposed, or near the termini. On
the other hand, at very low temperatures strong spots re-
sist simultaneous unwinding, resulting in a serial process
except at the very initial stages when all segments yield
somewhat. At room temperature, there is a competition
between serial and parallel unwinding pathways and either
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one may win, depending on the nature of the modules.
Thus, in general, one should always expect some degree
of mutual influence between modules [29,31,56].

On the Biological Meaning of Protein “Robustness”:
Selected Trait or Epiphenomenon?

How well do SMFS experiments mimic protein mechan-
ics in vivo? In the case of extension machines like the
sarcomere, SMFS seems to adequately mimic the natural
linear pulling geometry, since proteins are pulled apart
from both ends of the polypeptide chain. This may also
be the case for other cytoskeletal machines (the case of
spectrin may not be as clear as it forms a mesh-like struc-
ture), the adhesion machinery, and some mechanosensi-
tive ion channels. Furthermore, it has been suggested that
some chaperonins may pull their protein substrates apart
in a similar way prior to their refolding [107].

However, the case of the unfoldases is not so clear-cut
(Fig. 1). The acceptedmodel for protein translocases (from
the mitochondrion, chloroplast and endoplasmic reticu-
lum) and compartmental proteases (such as the protea-
some), is also a mechanical one. Nevertheless, rather than
a linear pulling geometry with two attachment points, the
evidence here favors a different geometry that involves
a single attachment point from which the pulling would
be done by threading the protein towards the entrance of
a narrow channel present in these nanomachines (i. e., in
similar way to wire drawing in metallurgy). This model
is mainly based on the fact that the susceptibility of sub-
strate proteins to be unfolded by these nanomachines in
vivo correlates more closely with the mechanical stability
obtained bymechanical unfolding (using SMFS) than with
thermodynamic or kinetic stability (measured in vitro by
bulk chemical or heat denaturation). In the case of com-
partmental proteases, the AAA+ ATPase motor involved
in the pulling process seems to unfold the structure ad-
jacent to the degradation tag by trapping local unfolding
fluctuations. Global unfolding then occurs immediately,
driven by the cooperativity of the protein unfolding pro-
cess [77,91,102]. As seen from SMFS findings, in this “local
stability” model the structure and pulling geometry at the
attachment point (i. e. local stability) are more important
than their global counterparts. Similarly, protein import
by the mitochondrial translocase depends on the N-termi-
nal targeting sequence and the local structure of the ad-
jacent protein, more akin to the vectorial nature of AFM
pulling experiments than to solution or heat denatura-
tion experiments [130]. Indeed, mechanical hypomorphic
mutations can also accelerate mitochondrial import under
specific conditions [101]. The vectorial nature of protein

translocation highlights the importance of the existence of
Achilles’ heels in proteins. Accordingly, in order to un-
fold their protein substrates more economically, mechani-
cal “unfoldases”might have evolved specific pulling mech-
anisms to take advantage of the presence of weak spots in
the structure of the latter.

If the mechanical model is confirmed for “unfoldases”
(molecular chaperones, compartmental proteases such as
proteasomes, and the protein translocases from the pro-
tein import machinery of the mitochondria, chloroplasts,
and endoplasmic reticulum), thenmost proteins in the cell
(i. e., “mechanical substrates” of unfoldases) would be me-
chanically unfolded at some point or another during their
lifespan, which would make their mechanical properties
physiologically relevant.

Mechanochemical enzymes may not be alone in their
capacity able to generate mechanical forces. Thus, accord-
ing to the hypothesis of the tension-induced catalysis pro-
posed by Haldane and Pauling, mechanical forces may also
underlie the activity of other enzymes [19]. This hypothe-
sis postulates that enzyme catalysis may work by inducing
mechanical tension in the enzyme-substrate complex.

The correlation between mechanical stability and me-
chanical function holds well at high forces but it is less true
below �100 pN [27]. This may reflect the possibility that
for some proteins with no known mechanical function
(e. g. protein L, GB1, GFP) their relatively high mechan-
ical stability (in some cases derived from a shear mechan-
ical topology at the breakpoint) may just be an epiphe-
nomenon, unrelated to the biological function of the pro-
tein. Indeed, a number of the proteins studied may never
experience mechanical forces in the cell and if they do, the
pulling geometry in situ might be different to that of SFMS
experiments. Alternatively, mechanical stability may sim-
ply be a neutral trait for certain proteins, not directly se-
lected by evolution (i. e. a remnant by-product of their
evolutionary history). For instance, the mechanical stabil-
ity of fnIII domains from the titin A-band (non-elastic re-
gion bound to the myosin thick filament of the sarcomere
and therefore probably not subject to axial stress) is only
slightly lower than those of the I-band (180 vs. 200 pN,
at similar pulling speed). Hence, if our current model of
how titin works is correct, this trait does not appear to
have been evolutionarily selected in the case of the A-band
domains (non-elastic) but rather, it may be an epiphe-
nomenon originated through constraints imposed during
the evolution of this elastic protein. Alternatively, it is also
possible that the anchoring geometry of these domains to
myosin may require such a high mechanical stability.

In conclusion, by using SMFS only a certain type of
mechanical stability in proteins can be accessed at present.
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This mechanical stability (defined as Fmax when they are
pulled from the N- to C-termini, using the length-clamp
mode) would be expected to be an evolutionarily selected
trait for components and substrates of mechanical bioma-
chines that work like extension machines (i. e., similar to
a medieval rack with two attachment points, Fig. 1a,b,c,d).
However for other mechanical biomachines (e. g., wire
drawing-like machines. Figure 1e) and for “non-mechani-
cal” proteins, this parameter may well be a mere epiphe-
nomenon. Thus, in each case careful comparative and
functional analysis should be done to distinguish between
these two possibilities.

Predicting the Robustness of Proteins
from Their Structure

As we have already pointed out, the nanomechanics of
only a few proteins and protein modules has been stud-
ied to date. Considering how vast proteomes are, there
are therefore plenty of mechanical proteins and un-
foldase substrates waiting to be mechanically character-
ized. In the mean time, simulations provide a nice short
cut in order to help us to predict and understand pro-
tein robustness, and to access pulling geometries that are
not yet experimentally accessible (e. g., “wire drawing”
pulling, [54,115,127]).

As mentioned above, using a simple variant of a Go-
model a massive survey [110,111] has been recently con-
ducted to identify mechanical clamps in 7510 protein
modules, of up to 150 amino acids long, for which uncor-
rupted atomic structures were available at the time when
the study was undertaken. Additionally, 239 substantially
longer proteins were also included in the survey. This
study has identified new mechanical clamps and has en-
abled the available protein structures to be ordered on the
basis of their predicted mechanical stability. This model
correlates fairly well (correlation coefficient of 89%) with
the available experimental values of the mechanical sta-
bility, Fmax. The theoretical and experimental data points
are listed in Table 3 and displayed in Fig. 7. The compar-
ison is restricted to 28 experimentally stretched proteins
for which the PDB structure is available.

This survey used a simple Go-like model and stretch-
ing was implemented at a constant speed and at a temper-
ature meant to correspond to room temperature. The val-
ues of resistance to pulling, Fmax, together with the force-
displacement patterns are available at info.ifpan.edu.pl/
BSDB (Bio-molecule Stretching DataBase). The survey is
restricted to stretching at the termini (i. e., N-t and C-t
amino acids), although it should be kept inmind that there

Protein Mechanics at the Single-Molecule Level, Figure 7
Modeling mechanical stability with coarse-grained molecular
dynamics. Correlation between the experimental and theo-
retical values of Fmax for a simple Go-like model with uniform
Lennard–Jones potentials in the native contacts. The contact
map is obtained by studying heavy atom overlaps and by
eliminating the i; iC 2 contacts which usually are weak. The
chain of amino acids is also endowed with local terms that
mimic the backbone stiffness. The numbers in the top left panel
indicate particular proteins. These are: 1(1n11), 2(1cfc), 3(1hci),
4(10FNfnIII), 5(1u4q), 6(1aj3), 7(B), 8(1ubq(48-N)), 9(1b6i),
10(1rsy), 11(13FNfnIII), 12(12FNfnIII), 14(3TNfnIII), 15(1qjo(N-41)),
16(G), 17(1FNfnIII), 18(I1), 19(I27), 20(1emb), 21(1emb(132-
212)), 22(1emb(3-212)), 23(1ubq), 24(1nct), 25(1g1c), 26(L),
27(1emb(3-132)), 28(1vsc). B, L, and G denote barnase, protein
L, and protein G respectively. The solid line corresponds to "/Å
D 67pN and the lower dotted line to 111pN. This figure also
illustrates the best pick for " (1.3 kcal/mol, the unit of force
67pN) and this translation of the theoretical results into values
in pN is shown in Table 3. Adapted from [113]

is a significant linkage dependence, i. e. Fmax depends on
the particular pulling geometry.

The first observation of this study is that the distri-
bution of Fmax across the PDB is non-Gaussian and has
a pronounced tail at the high end (the end corresponding
to “strong” proteins). The I27 domain of titin is a fairly
strong mechanical protein, with its Fmax being about twice
as high as the average. However, there are a substantial
number of proteins that are predicted to have twice the
strength of this module. In 80% of cases, the maximum
force is found at the early stages of stretching. The force
was found not to depend on the number of amino acids
(N) as one can find weak and strong proteins for any value

http://info.ifpan.edu.pl/BSDB
http://info.ifpan.edu.pl/BSDB


7044 P Protein Mechanics at the Single-Molecule Level

Protein Mechanics at the Single-Molecule Level, Table 3
Predicted and measured mechanical stability in proteins. Comparison between experimentally measured values Fmax with theoret-
ical predictions in the Lennard–Jones Go-like model. The theoretical results are averaged over 10 trajectories to account for several
pathways if any. Proteins were pulled by their termini except for the ones in which the amino acids being pulled are indicated in
brackets. The first column shows the PDB code and the second one the number of amino acids. Adapted from [113]

PDB N Fmax[pN] -experiment Fmax[pN] -theory
1tit 89 204˙ 30 144 I27*8
1nct 98 210˙ 10 161˙ 13 I54-I59
1g1c 97 127˙ 10 154˙ 13 I1 titin
1b6i 164 64˙ 30 80 T4 lysozyme(21-141)
1aj3 106 68˙ 20 82 spectrin R16
1qjo 80 15˙ 10 80 eE2lip3(N-C)
1qjo 40 177˙ 10 134 E2lip3(N-41)
1dqv 127 60˙ 15 100 calcium binding C2A
1rsy 127 60˙ 15 100˙ 13 calcium binding C2A
1byn 127 60˙ 15 94 calcium binding C2A
1cfc 148 < 20 pN 55˙ 20 calmodulin
1n11 33 37˙ 9 27 ankyrin*1
1bni 108 70˙ 15 94, 114 barnase/I27
1bnr 108 70˙ 15 70 barnase/I27
1bny 108 70˙ 15 74, 87 barnase/I27
1hz6 67 152˙ 10 235 protein L
1hz5 67 152˙ 10 188 protein L
2ptl 67 152˙ 10 147˙ 13 protein L
1ksr 100 45˙ 20 134˙ 20 DdFLN -4
2rn2 155 19˙ 10 121˙ 13 ribonuclease H
1ubq 76 230˙ 34 155 ubiquitin
1ubq 76 203˙ 35 155 ubiqutin(N-C)*9
1ubq 28 85˙ 20 60 ubiquitin(K48-C)*(2-7)
1emb 129 350˙ 30 345˙ 25 GFP(3-132)
1emb 219 130˙ 30 154, 288 GFP(3-212)
1emb 80 120˙ 30 147˙ 13 GFP(132-212)
1emb 235 104˙ 40 154˙ 13 GFP(N-C)
1fnf 94 75˙ 20 107, 121 10FNfnIII
1ttf 94 75˙ 20 47, 80 10FNfnIII
1ttg 94 75˙ 20 47, 67 10FNfnIII
1fnh 92 124˙ 18 121 12FNfnIII
1fnh 89 89˙ 18 94, 114 13FNfnIII
1oww 93 125˙ 31 141˙ 13 1FNfnIII
1ten 90 135˙ 40 114 3TNfnIII
1pga 56 190˙ 20 161˙ 13 protein G
1gb1 56 190˙ 20 111˙ 13 protein G

of N. However, the larger the N the higher the probabil-
ity that force was higher. The ˛-class of proteins usually
showed weak forces. There are other specific correlations
between types of structure, as described by the CATH clas-
sification (Class, Architecture, Topology, Homology), so
that the strongest proteins correspond to two types of spe-
cific architectures: 30% ˛; ˇ-rolls (ubiquitin-like) and 60%
ˇ-sandwiches (titin-like).

The unraveling process can be represented by “sce-
nario diagrams” that show for how long a given native
contact holds. Accumulation of such events results in the
appearance of a force peak. Thus, it is possible to deter-
mine which contacts give rise to a force peak and then
asses their dynamic impact by removing them in small sets
and determining what effect this has on Fmax. The contacts
whose removal reduces Fmax substantially correspond to
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a mechanical clamp (i. e., a resistance point). In the top
strongest proteins, 95% have mechanical clamps corre-
sponding to long stretches of parallel ˇ-strands that shear
on pulling (like titin modules). Particularly large forces
arise when such parallel strands are further stabilized by
neighboring parts of the structure. However, there is also
another type of mechanical clamps, those formed by an-
tiparallel ˇ-strands that are unstructured and even delo-
calized (where the clamping action sits in disjoint places).

Finally, there is a small but interesting group of pro-
teins (about 300 examples so far) which contain simple
knots in their native structures, usually trefoil knots. Knots
are attractive topological features of proteins biologically
relevant (e. g., toxicity), which are predicted to have im-
portant mechanical properties. These proteins could be
pulled by a non-terminal amino acid to unravel the knot
whereas pulling at the termini would tighten the knot. The
latter case has been studied theoretically using the Go-
like model for 20 proteins [112]. The simulations suggest
that the knot tightening in a stretched protein proceeds
through jumps, i. e. sudden displacements of the ends of
the knot along the sequence. (The ends of a knot can be
identified by removing the C˛ atoms as long as the back-
bone does not intersect a triangle set by the atom un-
der consideration and its two immediate sequential neigh-
bors.) These jumps have definite lengths and together with
the final location of a tightened knot they are specified by
the local geometry of a protein chain (sharp turns are fa-
vored). The larger the size of a knot the larger the num-
ber of jumps observed before its final tightening. How-
ever, such jumps are not observed in the dynamics of knot
motion on stretched polymers. In this case, the motion
has a diffusive character and usually results in sliding of
the knot off the chain. Another possible way to manip-
ulate such a protein is to pull it to a certain extension
and then release it abruptly. If the stretching stage lasts
sufficiently long (so that several force peaks are observed
and the knot gets tightened substantially) then the pro-
tein misfolds upon release and the knot ends up residing
at metastable locations (this is predicted to happen for 2etl
(N D 223), 1vho (N D 157), and 1v2x (N D 191) and in
80% of trajectories for 1o6d (N D 147). However, the knot
in protein 1j85 (N D 156) was usually found (for most tra-
jectories) to return reversibly to its native location.

Go-models can also be used to simulate the pulling of
membrane proteins out of membranes (an important topic
that is out of the scope of this review as it involves not only
unfolding but also unbinding from the membrane com-
ponents), resulting in a multipeak force pattern for bac-
teriorhodopsin that was remarkably similar to the exper-
imental one [33]. All these results eagerly encourage the

use of Go-like models for comparative studies in a variety
of proteins.

Insights into Protein Folding
from Forced Unfolding/Folding

Protein nanomechanics is multifaceted. One attractive el-
ement of our new capability to unfold/refold proteins by
force is that it may provide new insights into the protein
folding problem for any protein (i. e., mechanical proteins,
“mechanical protein substrates”, and non-mechanical pro-
teins).

Ten years ago the only way to measure the stability of
a protein was to change its physical (temperature or pres-
sure) or chemical environment (using guanidinium chlo-
ride or urea, or varying the pH), and to monitor the loss
of protein conformation by spectroscopic techniques in
order to determine the change in the Gibbs free energy
(
G). Most of these folding studies are typically done us-
ing chemical denaturants acting on untethered proteins
(i. e. in solution). However, a considerable number of cy-
toskeletal and extracellular matrix proteins, as well as un-
foldase substrates from chaperones, translocases and pro-
tein degradation machines, are likely to be subjected to
mechanical forces and are tethered (Fig. 1). Thus, for those
proteins at least, SMFS experiments (providing that the
pulling geometry is the right one) maymore closely mimic
the physiological conditions in which they function in the
cell.

Furthermore, the reaction coordinate in SMFS exper-
iments has a well-defined physical meaning (i. e., protein
length) and it is a “natural” one for some mechanical pro-
teins. This is in clear contrast with the less well physically
defined kinetic “m-values” used in chemical folding exper-
iments. Them-value is defined as the derivative of the nat-
ural logarithm of the folding, or unfolding, rate constant
with respect to the denaturant concentration and it mea-
sures the sensitivity of the rate of the process to denatu-
rant concentration, being generally interpreted as a mea-
sure of the change in solvent exposure of the lateral chains
of amino acid residues.

Thermodynamic comparisons of the 
G of the pro-
cess between both methods should in principle give iden-
tical results, if the entropic contribution of tethering the
ends of the molecule is properly corrected for. At equi-
librium, from a single molecule, it is possible to deter-
mine 
G (which as a state function, it depends only on
the initial and final stages of the process and can be ob-
tained by integrating a reversible force-extension curve),
the equilibrium constant, the reaction kinetics and their
dependence on force [19]. Most single-molecule unfolding
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experiments in proteins are performed under nonequilib-
rium conditions, where themolecule is pulled or relaxed at
a faster rate than its spontaneous rate of equilibration (i. e.
its molecular relaxation time). Consequently, a marked
hysteresis is apparent (i. e. the extension and relaxation
curves do not overlap) and at the same time the unfold-
ing forces become speed dependent (Fig. 3). This indicates
that not all the mechanical work carried out during the
unfolding reaction is converted into a change in the free
energy of the molecule (i. e., the efficiency of the process
is less than 100%). It has recently been demonstrated that
it is possible to recover the free energy of unfolding RNA
molecules not only from near-equilibrium conditions [72]
but also in far-from-equilibrium conditions [36]. The lat-
ter method is a promising tool to extract the equilibrium
free energy of protein unfolding, since most protein un-
folding reactions occur far from equilibrium.

In contrast, the kinetics of the reaction depends on the
pathway and SMFS unfolding experiments impose a reac-
tion coordinate to the molecule distinct to that of the bulk
(chemical) experiments. Force acts along a single dimen-
sion in specific regions of the protein, typically the N- and
C-termini, while conventional denaturants have a more
global effect. As a result, the kinetic parameters of unfold-
ing obtained by both methods may differ. In fact, a poor
correlation was found between mechanical and chemical
unfolding kinetic rates (a measure of kinetic stability) in
a recent survey of 19 proteins [27]. In contrast, there was
a remarkable agreement between these unfolding rate con-
stants for modules I27 and I28 from the distal I-band re-
gion of titin [25,68]. This is noteworthy and raises inter-
esting questions about the mechanical design of these par-
ticular domains. It has been shown that the A0G region
is the only region in the I27 fold that is critical in both
pathways and it is responsible for kinetic stability in both
cases [44,69]. This may explain why the two unfolding
rates are so close in this module.

While unfolding rates along the force-unfolding path-
way can be easily estimated, refolding rates along the
force-folding pathway cannot usually be measured be-
cause the high forces applied often prevent the folding
of proteins. Using the regular length-clamp mode it has
been possible to measure refolding rates during relax-
ation for several proteins, such as I27, projectin, ankyrin
B, myosinII and filamin [18,25,67,104,105]. For example,
ankyrin B repeats were shown to refold against force (20–
25 pN) with complete reversibility, which makes them true
elastic enthalpic springs [67]. The myosin II tail (a dimer
that forms a coiled coil supramolecular structure) is also
an elastic protein structure able to refold against forces
of up to 30 pN, although the transition presented a lit-

tle hysteresis, indicating that the process is not fully re-
versible [104].

Finally, force-clamp SMFS has been used to directly
examine themechanical folding pathways of I27, ubiquitin
and projectin molecules [18,42,47,123] (Fig. 2c). In these
experiments, the protein is first unfolded and extended at
a high force and then relaxed at lower forces so that refold-
ing can be monitored by measuring changes in the end-to-
end length of the protein. Under these conditions, folding
is marked by large fluctuations in the end-to-end length
of the protein, which have been interpreted as folding of
the chain through many continuous steps. By controlling
the end-to-end length of a single protein with subnanome-
ter resolution these studies provide us with a new perspec-
tive on how to analyze protein folding trajectories (Fig. 8).
It should be noted that refolding using the force-clamp
mode may proceed along different pathways than those in
the absence of such restraints, as shown for ubiquitin us-
ing a Go-like model [30]. Finally, optical tweezers (that use
lower spring constants and hence, correspondingly lower
loading rates than AFM) have been used to study the me-
chanical unfolding/folding of RNase H and maltose bind-
ing protein [8,28]. These studies are providing newmolec-
ular insights into folding intermediates, the energy land-
scape of the process, and how chaperone interactions af-
fect protein folding pathways at the single molecule level.

Future Directions

It has been just a decade since the first individual protein
molecule was pulled by SMFS. This impressive feat has
since grown into a new discipline providing a wealth of in-
formation on the molecular elasticity of proteins, a funda-
mental property for many biological processes. This new
methodology is unveiling the mechanical properties of
more and more proteins, and it is providing new insights
into the problem of protein folding.

However, only a few protein folds have been analyzed
to date and many improvements are still required, such
as more specific functionalization methods for immobi-
lization of soluble proteins in order to improve the effi-
ciency and sample control of these experiments. These im-
mobilization methods should ideally be compatible with
a quasi-simultaneous imaging of proteins in the same sam-
ple [119]. We also need single-molecule reporters to con-
duct more reliable studies on intermolecular interactions
between proteins.

It would be also very interesting to use optical tweez-
ers and the biomembrane force probe instrument (which
allow even lower loading rates to be applied) on some of
the proteins already studied by AFM and to compare the
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Protein Mechanics at the Single-Molecule Level, Figure 8
Collapse of unfolded titin-like domains under force (mechanical refolding). A titin like protein (projectin) molecule is first unfolded
and extended at a high force (97pN) using force-clamp SMFS. We observed 10 unfolding events. There was an initial large step
elongation of�100nm upon application of force and this initial phasemost likely corresponds to the length of the folded polypep-
tide chain plus a few already unfolded domains. Then after�12 s the protein was relaxed to a force of 15 pN and before the protein
reached its fully collapsed state therewas a dramatic increase in the noise level with length fluctuations of up to 10nmpeak-to-peak.
The source of this noise is not clear, but the phenomenon may reflect the transient formation of secondary structures or intermedi-
ate folded conformations. There are three main phases: i) a fast phase (<200ms) corresponding to the elastic recoil of the unfolded
polypeptide chain and accounting for �60% of the unfolded length of the protein; ii) a slow phase (�1–8 nm/s) characterized by
large fluctuations in end-to-end length (up to 10nm in this example); and iii) again a fast phase (>100nm/s) that corresponds to the
final collapse of the polypeptide chain to its folded length. In order to test whether the domains are folded, the protein was unfolded
by applying a second stretching pulse to 97pN after 30 s. This experiment demonstrates that titin domains can refold under force;
this suggests that titin-like proteins could function according to a folding-based-springmechanism. (After [18])

results obtained at these low loading rates. For the sake of
comparison researchers should also follow a standard set
of experimental conditions for SMFS experiments [12,97],
as recently proposed in the field of chemical protein fold-
ing [78]. Moreover, there is a need for a sensor that could
report forces inside the living cell and important advances
along these lines were recently reported [57,99,108].

Single-molecule mechanical techniques are still in
their infancy, but they are maturing fast. These techniques
are providing us more andmore fundamental information
on the structure and function of proteins. Accordingly,
they are becoming an indispensable tool to understand
how proteins fold and work in real time. With the new-
found capacity to manipulate and look at the “secret life”
of single molecules, we should be prepared for many sur-

prises from the mechanochemistry of proteins. Through
the information unveiled by these techniques we are en-
tering a new and exciting time in biology which, in com-
bination with the knowledge generated in this proteomic
era, is likely to move us closer to understanding the logic
behind protein design.
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Glossary

Causal loop diagram A diagrammatic artifact that cap-
tures the causal model and feedback structure underly-
ing a problem situation. Commonly used as a first-cut
tool to identify major stakeholder concerns and inter-
actions. These diagrams are often precursors to formal
models.

Dynamic modeling Formal examination of the behavior
of a system over time. Contrast with point-estimation,
which attempts to predict an average outcome.

Feedback A relationship where two or more variables are
linked over time so that the influence of one variable
on a second will later affect the state of the first. If the
influence is such as to increase the state of the first over
time, the feedback is termed reinforcing. If the influ-
ence is such as to decrease the state of the first, it is
termed balancing.

Formal model The representation of a system structure
in mathematical form. Contrast with causal model,
which represents structure without the underlying
mathematics.

Mental model The representation of a problem’s struc-
ture as possessed by an expert in a particular domain.
Mental models are often intangible until explicated by
the expert.

Public policy Any and all actions or non-actions, deci-
sions or non-decisions taken by government, at all lev-
els, to address problems. These actions, non-actions,
decisions or non-decisions are implemented through
laws, regulations and the allocation of resources.

Group model building (GMB) An approach to problem
definition that asks multiple experts and major stake-
holders to provide collective insights into the structure
and behavior of a system through facilitated exercises
and artifacts. GMB is often used to explicate the con-
trasting mental models of stakeholders.

Stakeholder An individual or group that has significant
interest or influence over a policy problem.

System dynamics An analytic approach to problem defi-
nition and solution that focuses on endogenous vari-
ables linked through feedback, information and mate-

rial delays, and non-linear relationships. The structure
of these linkages determines the behavior of the mod-
eled system.

Definition of the Subject

System dynamics is an approach to problem understand-
ing and solution. It captures the complexity of real-world
problems through the explication of feedback among en-
dogenous variables. This feedback, and the delays that ac-
company it, often drive public sector programs towards
unanticipated or unsatisfactory results. Through formal
and informal modeling, System Dynamics-based analysis
explicates and opens these feedback structures to discus-
sion, debate and consensus building necessary for success-
ful public sector policymaking.

Introduction

In the 50 years since its founding, System Dynamics has
contributed to public policy thought in a number of areas.
Major works, such as Urban Dynamics [35] and Limits to
Growth [61] have sparked controversy and debate. Other
works in the domains of military policy, illegal drugs, wel-
fare reform, health care, international development, and
education have provided deep insight into complex social
problems. The perspective of System Dynamics, with its
emphasis on feedback, changes over time, and the role of
information delays, helps inform policy makers about the
intended and unintended consequences of their choices.
The System Dynamics method includes a problem-ori-
ented focus and the accommodation of multiple stake-
holders, both crucial to the development of sound policy.
Through the use of formal simulation, decision makers
may also use System Dynamics models to consider the ef-
fects of their choices on short- and long-term outcomes.
We illustrate this process with real life examples, followed
by a review of the features of System Dynamics as they re-
late to public policy issues. We then describe the conjunc-
tion of System Dynamics and Group Model Building as
a mechanism for policy ideation and review. We identify
some of the historical and current uses of System Dynam-
ics in the public sector, and discuss techniques for evaluat-
ing its effects on policy and organizations.

MedicalMalpractice: A SystemDynamics
and Public Policy Vignette

The year was 1987 and New York’s medical malpractice in-
surance system was in a state of crisis. Fueled by unprece-
dented levels of litigation, total settlements were soaring as
were the malpractice insurance rates charged to hospitals
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and physicians. Obstetricians stopped taking on new pa-
tients. Doctors threatened to or actually did leave the state.
Commercial insurance carriers had stopped underwriting
malpractice insurance policies, leaving state-sponsored risk
pools as the only option. The Governor and the Legislature
were under pressure to find a solution and to find it soon.
At the center of this quandary was the state’s Insurance
Department, the agency responsible for regulating and set-
ting rates for the state’s insurance pools. The agency’s head
found himself in just the kind of media hot seat one seeks to
avoid in the public service.

An in-house SWAT team of actuaries, lawyers, and an-
alysts had been working to present a fiscally sound and po-
litically viable set of options for the Agency to consider and
recommend to the legislature. They had been working with
a team of System Dynamics modelers to gain better under-
standing of the root causes of the crisis.Working as a group,
they had laid out a whole-system view of the key forces driv-
ing malpractice premiums in New York State. Their simu-
lation model, forged in the crucible of group consensus, por-
trayed the various options on a “level playing field,” each
option being analyzed using a consistent set of operating as-
sumptions. One option stood out for its ability to offer im-
mediate malpractice insurance premium relief, virtually in-
suring a rapid resolution to the current crisis. An actuar-
ial restructuring of future liabilities arising from future pos-
sible lawsuits relieved immediate pressure on available re-
serve funds. Upward pressure on premiums would vanish;
a showdown in the legislature would be averted. Obviously,
the Commissioner was interested in this option–who would
not be?

“But what happens in the later years, after our crisis is
solved?” he asked. As the team pored over the simulation
model, they found that today’s solution sowed the seeds for
tomorrow’s problems. Ten, fifteen, or maybemore years into
the future, the deferred liabilities piled up in the system cre-
ating a secondary crisis, quite literally a second crisis caused
by the resolution of the first crisis.

“Take that option off the table – it creates an unaccept-
able future,” was the Commissioner’s snap judgment. At
that moment a politically appointed official had summar-
ily dismissed a viable and politically astute “silver bullet”
cure to a current quandary because he was thinking dynam-
ically, considering both short-term and long-term effects of
policy.

The fascinating point of the medical malpractice vi-
gnette is that the option taken off the table was indeed,
in the short run, a “silver bullet” to the immediate crisis.
The System Dynamics model projected that the solution’s
unraveling would occur long after the present Commis-
sioner’s careerwas over, as well as after the elected life span

of the Governor who had appointed him and the legisla-
tors whose votes would be needed to implement the so-
lution. His decision did not define the current problem
solely in terms of the current constellation of stakehold-
ers at the negotiations, each with their particular interests
and points of view. His dynamic thinking posed the cur-
rent problem as the result of a system of forces that had ac-
cumulated in the past. Symmetrically, his dynamic think-
ing looked ahead in an attempt to forecast what would be
the future dynamic consequences of each option. Might
today’s solution become tomorrow’s problem?

This way of thinking supported by System Dynamics
modeling invites speculation about long-run versus short-
run effects. It sensitizes policy makers to the pressure of
future possible stakeholders, especially future generations
whomay come to bear the burden of our current decisions.
It draws attention into the past seeking causes that may
be buried at far spatial and temporal distances from cur-
rent symptoms within the system. It seeks to understand
the natural reaction time of the system, the period during
which problems emerge and hence over which they need
to be solved. System Dynamics-based analysis in the pub-
lic sector draws analytic attention away from the riveting
logic of the annual or biannual budget cycle, often focusing
on options that will play themselves out years after current
elected officials have left office. Such work is hard to do,
but critical if one wants to think in systems terms.

What Is SystemDynamicsModeling?

While other papers in this series may provide a more ex-
panded answer to this basic question, it may be useful to
begin this discussion of System Dynamics and public pol-
icy with a brief description of what System Dynamics is.

SystemDynamics is an approach to policy analysis and
design that applies to problems arising in complex social,
managerial, economic, or ecological systems [31,33,74,95].
System Dynamics models are built around a particular
problem. The problem defines the relevant factors and key
variables to be included in the analysis. This represents the
model’s boundary, which may cross departmental or orga-
nizational boundaries. One of the unique advantages of us-
ing System Dynamics models to study public policy prob-
lems is that assumptions from a variety of stakeholders are
explicitly stated, can be tested through simulation, and can
be examined in context.

System Dynamics models rely on three sources of in-
formation: numerical data, the written database (reports,
operations manuals, published works, etc.), and the ex-
pert knowledge of key participants in the system [36]. The
numerical database of most organizations is very small,
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the written database is larger, and the expert knowledge
of key participants is vast. System Dynamicists rely on all
three sources, with particular attention paid to the expert
knowledge of key participants because it is only through
such expert knowledge that we have any knowledge of the
structure of the system. The explicit capturing of accumu-
lated experience from multiple stakeholders in the model
is one of the major differences between System Dynamics
models and other simulation paradigms. An understand-
ing of the long term effects of increased vigilance on the
crime rate in a community needs to account for the reac-
tion of courts, prisons, and rehabilitation agencies pressed
to manage a larger population. This knowledge is spread
across experts in several fields, and is not likely to be found
in any single computer database. Rather, insight requires
a process that makes these factors visible and explicit. For
public sector problems, in particular, this approach helps
move conflict out of the realm of inter-organizational con-
flict and towards a problem-solving focus.

Through the use of available data and by using the
verbal descriptions of experts to develop mathematical
relationships between variables, we expose new concepts
and/or previously unknown but significant variables. Sys-
tem Dynamics models are appropriate to problems that
arise in closed-loop systems, in which conditions are con-
verted into information that is observed and acted upon,
changing conditions that influence future decisions [69].

This idea of a “closed loop” or “endogenous” point of
view on a system is really important to all good System
Dynamics models. A simple example drawn from every-
day life may help better to understand what an endoge-
nous (versus exogenous) point of view means. If a father
believes that his teenage daughter is always doing things
to annoy him and put him in a bad mood, then he has an
exogenous or “open loop” view of his own mood because
he is seeing his mood as being controlled by forces out-
side of or exogenous to his own actions. However, if the
father sees that his daughter and her moods are reacting
to his own actions and moods while in turn his daughter’s
actions shape and define his moods, then this father has
an endogenous point of view on his ownmood. He under-
stands how his mood is linked in a closed loop with an-
other member of his family. Of course, the father with an
endogenous view will be in a better position to more fully
understand family dynamics and take actions that can pre-
vent bad moods from spreading within the family.

Using an SDModel to Develop a Theory

A System Dynamics model represents a theory about
a particular problem. Since models in the social sciences

Public Policy, System Dynamics Applications to, Figure 1
Closed loop diagram of fathers and daughters

represent a theory, the most we can hope for from all these
models, mental or formal, is that they be useful [94]. Sys-
temDynamicsmodels are useful because themathematical
underpinning needed for computer simulation requires
that the theory be precise. The process of combining nu-
merical data, written data, and the knowledge of experts in
mathematical form can identify inconsistencies about how
we think the system is structured and how it behaves over
time [38].

In policymaking it is often easy and convenient to
blame other stakeholders for the problem state. Often,
though, the structure of the system creates the problem by,
for example, shifting resources to the wrong recipient or
by inclusion of policies that intervene in politically visible
but ineffective ways. The use of inclusive SD models ed-
ucates us by identifying these inconsistencies through an
iterative process involving hypotheses about system struc-
ture and tests of system behavior. Simulation allows us to
see how the complex interactions we have identified work
when they are all active at the same time. Furthermore, we
can test a variety of policies quickly to see how they play
out in the long run. The final result is a model that repre-
sents our most insightful and tested theory about the en-
dogenous sources of problem behavior.

Behavior over Time Versus Forecasts

People who take a systems view of policy problems know
that behavior generated by complex organizations cannot
be well understood by examining the parts. By taking this
holistic view, SystemDynamicists capture time delays, am-
plification, and information distortion as they exist in or-
ganizations. By developing computer simulation models
that incorporate information feedback, systems modelers
seek to understand the internal policies and decisions, and
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the external dynamic phenomena that combine to gener-
ate the problems observed. They seek to predict dynamic
implications of policy, not forecast the values of quantities
at a given time in the future.

System Dynamics models are tools that examine
the behavior of key variables over time. Historical data
and performance goals provide baselines for determining
whether a particular policy generates behavior of key vari-
ables that is better or worse, when compared to the base-
line or other policies. Furthermore, models incorporat-
ing rich feedback structure often highlight circumstances
where the forces governing a system may change in a rad-
ical fashion. For example, in early phases of its growth
a town in an arid region may be driven by a need to at-
tract new jobs to support its population. At some future
point in time, the very fact of successful growthmay lead to
a water shortage. Now the search for more water, not more
jobs, may be what controls growth in the system. Richard-
son [69] has identified such phenomena as shifts in loop
dominance that provide endogenous explanations for spe-
cific outcomes. Simulation allows us to compress time [95]
so that many different policies can be tested, the outcomes
explained, and the causes that generate a specific outcome
can be examined by knowledgeable people working in the
system, before policies are actually implemented.

Excellent short descriptions of System Dynamics
methodology are found in Richardson [69,70] and Bar-
las [9]. Furthermore, Forrester’s [33] detailed explanation
of the field in Industrial Dynamics is still relevant, and
Richardson and Pugh [74], Roberts et al. [78], Coyle [22],
Ford [31], Maani and Cavana [53], Morecroft [65] and
Sterman [95] are books that describe the field and provide
tools, techniques and modeling examples suitable for the
novice as well as for experienced System Dynamics mod-
elers.

An Application of System Dynamics – The Governor’s
Office of Regulatory Assistance (GORA) Example

When applied to public policy problems, the “nuts and
bolts” of this System Dynamics process consist of identify-
ing the problem, examining the behavior of key variables
over time, creating a visualization of the feedback struc-
ture of the causes of the problem, and developing a formal
simulation model. A second case illustration may assist in
understanding the process. The New York State Gover-
nor’s Office of Regulatory Assistance (GORA) is a govern-
mental agency whose mission it is to provide information
about government rules and regulations to entrepreneurs
who seek to start up new businesses in the state. The case
was described by Andersen et al. [7] and is often used as

a teaching case introducing System Dynamics to public
managers.

Figure 2 below illustrates three key feedback loops that
contribute both to the growth and eventual collapse of cit-
izen service requests at GORA. The reinforcing feedback
loop labeled “R1” illustrates how successful completion of
citizen orders creates new contacts from word-of-mouth
by satisfied citizens which in turn leads to more requests
for service coming into the agency. If only this loop were
working, a self-reinforcing process would lead to contin-
uing expansion of citizen requests for services at GORA.
The balancing loop labeled “B2” provides a balancing ef-
fect. As workers within the agency get more and more
work to complete, the workload within the agency goes
up with one effect being a possible drop in the quality in
the work completed. Over time, loop B2 tells a story of
how an increased workload can lead to a lower quality
of work, with the effect of that lower quality being fewer
incoming requests in the future. So over time, too many
incoming requests set off a process that limits future re-
quests by driving down quality. Many public managers
who have worked with the GORA model find these two
simple feedback loops to be realistic and powerful expla-
nations of many of the problems that their agencies face on
a day-to-day basis. The full GORA model has many other
feedback loops and active variables not shown in the ag-
gregated Fig. 2.

Once all of the variables have been represented by
mathematical equations, a computer simulation is able to
recreate an over time trajectory possible future values for
all of the variables in the model. Figure 3 shows a graph
over time of simulated data for key indicators in theGORA
case study. The simulation begins when GORA comes into
existence to provide services to the public and runs for
48months. Initially, there is adequate staff and the amount
of work to do is low, so theWorkload Ratio, shown as part
of loops B1 and B2 in the previous figure, is very low.With
a lowWorkload Ratio GORA employees are able to devote
additional time to each task they perform and the Quality
of Work1 is thus relatively high. The Backlog of Requests
and the Average Completions Per Year begin at 0 and then
increase and level off over time to approximately 4,500 and
41,000 respectively. The Fraction Experienced Staff mea-

1The Workload Ratio and Quality of Work are normalized vari-
ables. This means that they aremeasured against some predetermined
standard. Therefore, when these two variables are equal to 1 they are
operating in the desired state. Depending on the definition of the
variable, values below or above 1 indicate when they are operating
in a desired or undesired state. For example, Quality of Work above
1 indicates that quality is high, relative to the predetermined normal.
However, Quality of Work below 1 indicates an undesirable state.
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Key feedback loops in a simulation of workflow in the Governor’s Office of Regulatory Administration (GORA)

Public Policy, System Dynamics Applications to, Figure 3
Simulated performance of key variables in the GORA case study
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sures what portion of the overall workers are experienced
and hence more efficient at doing their jobs. As shown in
Fig. 3, the Fraction Experienced begins at 1 and then falls
and increases slightly to .75 indicating that GORA is hav-
ing a harder time retaining experienced staff and is experi-
encing higher employee turnover. (The full GORA model
has a theory of employee burnout and turnover not shown
in Fig. 2.)

The combination of the visualization in Fig. 2 with
a formal model capable of generating the dynamic out-
put shown in Fig. 3 illustrates the power of System Dy-
namics modeling for public policy issues. Linking behav-
ior and structure helps stakeholders understand why the
behavior of key variables unfolds over time as it does. In
the GORA case, the program is initially successful as staff
are experienced, are not overworked, and the quality of the
services they provide is high. As clients receive services
the R1 feedback loop is dominant and this attracts new
clients to GORA. However, at the end of the first year the
number of clients requesting services begins to exceed the
ability of GORA staff to provide the requested services in
a timely manner. The Workload Ratio increases, employ-
ees are very busy, the Quality of Work falls, and the B2
feedback loop works to limit the number of people seek-
ing services. Furthermore, people are waiting longer to re-
ceive services and some are discouraged from seeking ser-
vices due to the delay. The initial success of the program
cannot be sustained and the program settles down into an
unsatisfactory situation where theWorkload Ratio is high,
Quality of Work is low, clients are waiting longer for ser-
vices and staff turnover is high as indicated by the Fraction
Experienced.

The model tells a story of high performance expecta-
tions, initial success and later reversal, all explained en-
dogenously. Creating and examining the simulation helps
managers consider possible problems before they occur –
before staff are overtaxed, before turnover climbs, and be-
fore the agency has fallen behind. Having a model to con-
sider compresses time and provides the opportunity for
a priori analysis. Finally, having a good model can provide
managers with a test bed for asking “what if ” questions,
allowing public managers to spend simulated dollars and
make simulated errors all the while learning how to design
better public policies at relatively low cost and without real
(only simulated) risk.

How Is System Dynamics Used
to Support Public Policy andManagement?

TheMedical Malpractice vignette that opened this chapter
involving the New York State Commissioner of Insurance

is more fully documented by Reagan-Cirincione et al. [68]
and is one of the first published examples of the results
of a team of government executives working in a face-to-
face group model building session to create a System Dy-
namics model to support critical policy decisions facing
the group. The combined group modeling and simulation
approach had a number of positive effects on the policy
process. Those positive effects are:

Make Mental Models of Key Players Explicit

When the Commissioner drew together his team, the
members of this group held different pieces of information
and expertise. Much of the most important information
was held in the minds, in the mental models, of the Com-
missioner’s staff, and not in data tabulations. The System
Dynamics modeling process made it possible for managers
to explicitly represent and manipulate their shared men-
tal models in the form of a System Dynamics simulation
model. This process of sharing and aligning mental mod-
els, as done during a SystemDynamics modeling interven-
tion, is an important aspect of a “learning organization” as
emphasized by Senge [87].

Create a Formal and Explicit Theory
of the Public Policy Situation Under Discussion

The formal model of malpractice insurance contained an
explicit and unambiguous theory of how the medical mal-
practice system in New York State functions. The shared
mental models of the client team implied such a formal
and model-based theory, but the requirements of creating
a running simulation forced the group to be much more
explicit and clear about their joint thinking. As the model-
ing teamworked with the group, a shared consensus about
how the whole medical malpractice system worked was
cast, first into a causal-loop diagram, and later into the
equations of the formal simulation model [74,95].

Document all Key Parameters
and Numbers Supporting the Policy Debate

In addition to creating a formal and explicit theory, the
System Dynamics model was able to integrate explicit data
and professional experience available to the Department
of Insurance. Recording the assumptions of the model in
a clear and concise way makes possible review and exami-
nation by those not part of the model’s development. Cap-
turing these insights and their derivation provides face va-
lidity to the model’s constructs.

Building confidence in the utility of a System Dynam-
ics model for use in solving a public policy problem in-
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volves a series of rigorous tests that probe how the model
behaves over time as well as how available data, both nu-
merical and tacit structural knowledge, have been inte-
grated and used in the model. Forrester and Senge [39] de-
tail 17 tests for building confidence in a System Dynamics
model. Sterman [95] identifies 12 model tests, the purpose
or goal of each test, and the steps that modelers should fol-
low in undertaking those tests. Furthermore, Sterman [95]
also lists questions thatmodel consumers should ask in or-
der to generate confidence in a model. This is particularly
important for public policy issues where the ultimate goal
or outcome for different stakeholders may be shared, but
underlying assumptions of the stakeholders may be differ-
ent.

Create a Formal Model that Stimulates
and Answers Key “what if ” Questions

Once the formal model was constructed, the Commis-
sioner and his policy team were able to explore “what if ”
scenarios in a cost-free and risk-free manner. Significant
cost overruns in a simulated environment do not drive up
real tax rates, nor do they lead to an elected official be-
ing voted out of office, nor to an appointed official los-
ing her job. Quite the contrary, a simulated cost overrun
or a simulated failed program provides an opportunity to
learn how better to implement or manage the program or
policy (or to avoid trying to implement the policy). Public
managers get to experiment quickly with new policies or
programs in a risk-free simulated environment until they
“get it right” in the simulatedworld. Only then should they
take the risk of implementation in a high stakes policy en-
vironment.

Bringing a complex model to large groups sometimes
requires the development of a more elaborate simulation,
so that those who were not part of the initial analysis
can also derive insight from its results. Iterative develop-
ment and discussion provides an additional validation of
the constructs and conclusions of the model, Zagonel et
al. [108] have described a case where local managers re-
sponsible for implementing the 1996 federal welfare re-
form legislation used a simulation model to explore such
“what if ” futures before taking risks of actual implemen-
tation.

Public policy problems are complex, cross organiza-
tional boundaries, involve stakeholders with widely differ-
ent perspectives, and evolve over time. Changes in police
procedures and/or resources may have an effect on prison
and parole populations many years into the future. Health
care policies will determine how resources are allocated
at local hospitals and the types of treatments that can be

obtained. Immigration policies in one country may influ-
ence the incomes and jobs of people in a second country.
Miyakawa [64] has pointed out that public policies are sys-
temically interdependent. Solutions to one problem often
create other problems. Increased enforcement of immi-
gration along the U.S. borders has increased the workload
of courts [26]. Besides being complex these examples also
contain stakeholders with different sets of goals. In solv-
ing public policy problems, how diverse stakeholders work
out their differences is a key component of successful pol-
icy solutions. System Dynamics modeling interventions,
and in particular the techniques of group model build-
ing [2,6,72,98], provide a unique combination of tools and
methods to promote shared understanding by key stake-
holders within the system.

System Dynamics andModels:
A Range of Analytic Scope and Products

In the malpractice insurance example, the Commissioner
called his advisors into a room to explicitly engage in
a group model building session. These formal group
model-building sessions involve a specialized blend of
projected computer support plus professional facilitation
in a face-to-face meeting of public managers and policy
analysts. Figure 4 is an illustration of a team of public man-
agers working together in a group model building project.
In this photograph, a facilitator is working on a hand
drawn view of a simulation model’s structure while pro-
jected views of computer output can be used to look at
first cut simulation runs or refined images of the model
being built by the group. Of course, the key feature of this
whole process is facilitated face-to-face conversations be-
tween the key stakeholders responsible for the policy deci-
sions being made.

Richardson and Andersen [72], Andersen and Rich-
ardson [6], Vennix [98], and Luna-Reyes et al. [52] have
provided detailed descriptions of how this kind of group
model building process actually takes place. In addition
to these group model building approaches, the System
Dynamics literature describes five other ways that teams
of modelers work with client groups. They are (1) the
Reference Group approach [91], (2) the Strategic Fo-
rum [75], (3) The stepwise approach [104], (4) strategy
dynamics [100,101,102], and (5) the “standard method” of
Hines [67].

Some System Dynamics-oriented analyzes of public
policies completed by groups of public managers and
policy analysts stop short of building a formal simula-
tion model. The models produced by Wolstenholme and
Coyle [107], Cavana, Boyd and Taylor [14] and the system
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A team of public managers working together to build a System Dynamics model of welfare reform policies

archetypes promoted by Senge [87] have described how
these qualitative system mapping exercises, absent a for-
mal running simulation model, can add significant value
to a client group struggling with an important public pol-
icy problem. The absence of a formal simulation limits the
results to a conceptual model, rather than a tool for sys-
tematic experimentation.

Finally, a number of public agencies and Non Gov-
ernmental Organizations are joining their counterparts
in the private sector by providing broad-based systems
thinking training to their top leaders and administra-
tive staff. A number of simulation-based management ex-
ercises such as the production-distribution game (also
known as the “beer game”) [93] and the People’s Express
Flight Simulator [92] have been developed and refined
over time to support such training and professional devel-
opment efforts. In addition, Cavana and Clifford [11] have
used GMB to develop a formal model and flight simulator
to examine the policy implications of an excise tax policy
on tobacco smoking.

What Are the Arenas inWhich System
DynamicsModels Are Used?

The malpractice insurance vignette and the GORA exam-
ple represented cases where a model was developed for
a single problem within one agency. Naill [66] provides
an example of how a sustained modeling capability can
be installed within an agency to support a range of on-
going policy decisions (in this case the model was look-
ing at transitional energy policies at the federal level). Bar-
ney [10] developed a class of System Dynamics simulation

models to support economic development and planning in
developing nations. Wolstenholme [105] reported on ef-
forts to support health planning within the British Health
Service.

Addressing a tactical problem within a single public
sector agency, while quite common, is only one of the
many types of decision arenas in which System Dynam-
ics models can be and are used to support public policy.
Indeed, how a model is used in a public policy debate is
largely determined by the unique characteristics of the spe-
cific decision-making arena in which the model is to be
used. Some of the more common examples follow.

Models Used to Support Inter-Agency
and Inter-Governmental Collaborative Efforts

A quite different arena for the application of System Dy-
namics models to support the policy process occurs when
an interagency or inter-governmental network of program
managers must cooperate to meet a common mission.
For example, Rohrbaugh [79] and Zagonel et al. [108] re-
port a case where state and local officials from social ser-
vices, labor, and health agencies combined their efforts
with private and non-profit managers of day care services,
health care services, and worker training and education
services to plan for comprehensive reform of welfare poli-
cies in the late 1990s. These teams were seeking strategies
to blend financial and program resources across a myr-
iad of stovepipe regulations and reimbursement schemes
to provide a seamless system of service to clients at the lo-
cal level. To complete this task, they created a simulation
model containing a wide range of system-level interactions
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and tested policies in that model to find out what blend of
policies might work. Policy implementation followed this
model-based and simulation-supported policy design.

Models Used to Support Expert Testimony
in Courtroom Litigation

Cooper [20] presented one of the first published accounts
of a System Dynamics model being used as a sort of expert
witness in courtroom litigation. In the case he reported,
Litton Industries was involved in a protracted lawsuit with
the U. S. Navy concerning cost and time overruns in the
construction of several naval warships. In a nutshell, the
Navy contended that the cost overruns were due to actions
taken (or not taken) by Litton Industries as primary con-
tractor on the project and as such the Navy should not be
responsible for covering cost overruns. Litton maintained
that a significant number of change orders made by the
Navy were the primary drivers of cost overruns and time
delays. A simulation model was constructed of the ship-
building process and the simulation model then built two
simulated ships without any change orders. A second set
of “what if ” runs subsequently built the same ships except
that the change orders from the Navy were included in
the construction process. By running and re-running the
model, the analysts were able to tease out what fractions of
the cost overrun could reasonably be attributed to Litton
and what fraction should be attributed to naval change or-
ders. Managers at Litton Industries attribute their receipt
of hundreds of millions dollars of court-sanctioned pay-
ments to the analysis supported by this System Dynam-
ics simulation model. Ackermann, Eden and Williams [1]
have used a similar approach involving soft systems ap-
proaches combined with a System Dynamics model in lit-
igation over cost overruns in the channel tunnel project.

Models Used as Part of the Legislative Process

While System Dynamics models have been actively used
to support agency-level decision making, inter-agency and
inter-governmental task forces and planning, and even
courtroom litigation, their use in direct support of legisla-
tive processes has a more uneven track record. For exam-
ple, Ford [30] reports successes in using System Dynamics
modeling to support regulatory rule making in the electric
power industry, and Richardson and Lamitie [73] report
on how System Dynamics modeling helped redefine a leg-
islative agenda relating to the school aid formula in the
U.S. state of Connecticut. However, Andersen [4] remains
more pessimistic about the ability of System Dynamics
models to directly support legislative decision making, es-
pecially when the decisions involve zero-sum tradeoffs in

the allocation of resources (such as formula-driven aid in-
volving local municipal or education formulas). This class
of decisions appears to be dominated by short-term special
interests. A longer-term dynamic view of such immediate
resource allocation problems is less welcome. The path-
way to affecting legislative decision making appears to be
by working through and with public agencies, networks of
providers, the courts, or even in some opinions, by directly
influencing public opinion.

Models Used to Inform the Public
and Support Public Debate

In addition to using System Dynamics modeling to sup-
port decision making in the executive, judicial, and leg-
islative branches of government (often involving Non-
Governmental Organizations and private sector support),
a number of System Dynamics studies appeal directly to
the public. These studies intend to affect public policy by
shaping public opinion in the popular press and the policy
debate. In the 1960s, Jay Forrester’s Urban Dynamics [34]
presented a System Dynamics model that looked at many
of the problems facing urban America in the latter half
of the 20th century. Several years later in response to an
invitation from the Club of Rome, Forrester put together
a study that led to the publication ofWorld Dynamics [35],
a highly aggregate System Dynamics model that laid out
a feedback-oriented view of a hypothesized set of relation-
ships between human activity on the planet, industrializa-
tion, and environmental degradation. Meadows et al. [61]
followed on this study with a widely hailed (and critiqued)
System Dynamics simulation study embodied in the best-
selling book, Limits to Growth. Translated into over 26 lan-
guages, this volume coalesced a wide range of public opin-
ion leading to a number of pieces of environmental re-
form in the decade of the 1970s. The debate engendered
by that volume continues even 30 years later [63]. Donella
Meadows continued in this tradition of appealing directly
to public opinion through her syndicated column, The
Global Citizen, which was nominated for the Pulitzer Prize
in 1991. The column presented a System Dynamics-based
view of environment matters for many years (http://www.
pcdf.org/meadows/).

What Are some of the Substantive Areas
Where SystemDynamics Has Been Applied?

The International System Dynamics Society (http://www.
systemdynamics.org) maintains a comprehensive bibliog-
raphy of over 8,000 scholarly books and articles docu-
menting a wide variety of applications of System Dynam-
ics modeling to applied problems in all sectors. MacDon-

http://www.pcdf.org/meadows/
http://www.pcdf.org/meadows/
http://www.systemdynamics.org
http://www.systemdynamics.org
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ald et al. [54] have created a bibliography extracted from
this larger database that summarizes some of the major ar-
eas where System Dynamics modeling has been applied to
public policy. Below, we summarize some of the substan-
tive areas where SystemDynamics has been applied, giving
one or two sample illustrations for each area.

Health Care

System Dynamicists have been applying their tools to an-
alyze health care issues at both the academic and prac-
titioner level for many years. The System Dynamics Re-
view, the official journal of the System Dynamics Society,
devoted a special issue to health care in 1999 due to the
importance of health care as a critical public policy issue
high on the political agenda of many countries and as an
area where much System Dynamics work has been per-
formed. The extensive System Dynamics work performed
in the health care area fell into three general categories: pa-
tient flow management, general health policy, and specific
health problems.

The patient flow management category is exemplified
by the work of Wolstenholme [106], Lane and Rosen-
head [48], and Van Ackere and Smith [97]. The articles
written by these authors focused on issues and policies re-
lating to patient flows in countries where health care ser-
vice is universal.

The general health policy category is rather broad in
that these articles covered policy and decision making
from the micro level [96] to the macro level [88]. There
were also many articles that showed how the process of
modeling resulted in better understanding of the problem
and issues facing health care providers and policy mak-
ers [12].

The last category dealt with specific health-related
problems such as the spread of AIDS [43,76], smok-
ing [42], and malaria control [29], as well as many other
health-related conditions.

Education

The education articles touched on various topics relating
to education ranging from using System Dynamics in the
classroom as a student-centered teaching method to mod-
els that dealt with resource allocations in higher educa-
tion. Nevertheless, many of the articles fell into five cat-
egories that could be labeled management case studies or
flight simulators, teaching technology, research, teaching,
and education policy.

The management case study and flight simulator ar-
ticles are best exemplified by Sterman’s [93] article de-
scribing the Beer Game and Graham, Morecroft et al. [41]

article on “Model Supported Case Studies for Manage-
ment Education.” The emphasis of these works is on the
use of case studies in higher education, with the addi-
tion of games or computer simulations. This is related to
the teaching technology category in that both emphasize
using System Dynamics models/tools to promote learn-
ing. However, the teaching technology category of articles
stresses the introduction of computer technology, specif-
ically System Dynamics computer technology, into the
classroom. Steed [90] has written an article that discusses
the cognitive processes involved while using Stella to build
models, while Waggoner [99] examined new technologies
versus traditional teaching approaches.

In addition to teaching technology are articles that fo-
cus on teaching. The teaching category is very broad in
that it encompasses teaching System Dynamics in K-12
and higher education as subject matter [37,77] as well
as ways to integrate research into the higher-education
classroom [71]. System Dynamics models are also used
to introduce advanced mathematical concepts through
simulation and visualization, rather than through equa-
tions [27,28]. In addition, lesson plans for the classroom
are also part of this thread [44]. The Creative Learning
Exchange (http://www.clexchange.com) provides a central
repository of lessons and models useful for pre-college
study of System Dynamics, including a selfstudy roadmap
to System Dynamics principles [23].

There are also a number of articles that pertain
to resource allocation [15] at the state level for K-12
schools along with articles that deal with resource-alloca-
tion decisions in higher education [32,40]. Saeed [83] and
Mashayekhi [56] cover issues relating to higher education
policy in developing countries.

The last education category involved research issues
around education. These articles examined whether the
System Dynamics methodology and simulation-based ed-
ucation approaches improved learning [24,47,55].

Defense

System Dynamics modeling work around the military has
focused on manpower issues, resource allocation deci-
sions, decision making and conflict. Coyle [21] developed
a System Dynamics model to examine policies and sce-
narios involved in sending aircraft carriers against land-
based targets. Wils, Kamiya et al. [103] have modeled in-
ternal conflicts as a result of outbreaks of conflict over
allocation and competition of scarce resources. The man-
power articles focused on recruitment and retention poli-
cies in the armed forces and are represented in articles
by Lopez and Watson [51], Andersen and Emmerichs [5],

http://www.clexchange.com
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Clark [18], Clark, McCullough et al. [19] and Cavana et
al. [14]. The resource allocation category deals with issues
of money and materials, as opposed to manpower, and is
represented by Clark [16,17]. Decision making in military
affairs from a System Dynamics perspective is represented
in the article by Bakken and Gilljam [8].

Environment

The System Dynamics applications dealing with environ-
mental resource issues can be traced back to when the
techniques developed in Industrial Dynamics were be-
ginning to be applied to other fields. The publication of
Forrester’s World Dynamics in 1971 and the follow-up
study Limits to Growth [61,62,63] used System Dynamics
methodology to address the problem of continued popu-
lation increases on industrial capital, food production, re-
source consumption and pollution. Furthermore, specific
studies dealing with DDT, mercury and eutrophication of
lakes were part of the Meadows et al. [59] project and ap-
peared as stand-alone journal articles prior to being pub-
lished as a collection in Meadows and Meadows [60].

The environmental applications of System Dynamics
have moved on since that time. Recent work has com-
bined environmental and climate issues with economic
concerns thorough simulation experiments [25] as well as
stakeholder participation in environmental issues [89]. In
2004, the SystemDynamics Review ran a special issue dedi-
cated to environmental issues. Cavana and Ford [13] were
the editors and did a review of the System Dynamics bib-
liography in 2004, identifying 635 citations with the key
words “environmental” or “resource.” Cavana and Ford
broke the 635 citations into 11 categories they identified
as resources, energy, environmental, population, water,
sustainable, natural resources, forest, ecology, agriculture,
pollution, fish, waste, earth, climate and wildlife.

General Public Policy

The System Dynamics field first addressed the issue of
public policy with Forrester’s Urban Dynamics [34] and
the follow-up work contained in Readings in Urban Dy-
namics [58] and Alfeld and Graham’s Introduction to Ur-
ban Dynamics [3]. The field then branched out into the
previously mentioned World Dynamics and the follow-
up studies related to that work. Moreover, the applica-
tion of System Dynamics to general public policy issues
began to spread into areas as diverse as drug policy [50],
and the causes of patient dropout from mental health pro-
grams [49], to ongoing work by Saeed [82,84,85] on de-
velopment issues in emerging economies. More recently,
Saysel et al. [86] have examined water scarcity issues in

agricultural areas, Mashayekhi [57] reports on the impact
on public finance of oil exports in countries that export oil
and Jones et al. [46] cover the issues of sustainability of
forests when no single entity has direct control.

This brief review of the literature where System Dy-
namics modeling has been used to address public policy
issues indicates that the field is making inroads at the mi-
cro level (within government agencies) and at the macro
level (between government agencies). Furthermore, work
has been performed at the international level and at what
could truly be termed the global level withmodels address-
ing public policy issues aimed at climate change.

Evaluating the Effectiveness of SystemDynamics
Models in Supporting the Public Policy Process

System Dynamics modeling is a promising technology for
policy development. But does it really work? Over the past
several decades, a minor cottage industry has emerged that
purports to document the successes (and a few failures)
of System Dynamics models by reporting on case stud-
ies. These case studies report on successful applications
and sometimes analyze weaknesses, making suggestions
for improvement in future practice. Rouwette et al. [81]
have compiled a meta-analysis of 107 such case-based sto-
ries.

However, as compelling as such case stories may be,
case studies are a famously biased and unsystematic way
to evaluate effectiveness. Presumably, failed cases will not
be commonly reported in the literature. In addition, such
a research approach illustrates in almost textbook fashion
the full litany of both internal and external threats to valid-
ity, making such cases an interesting but unscientific com-
pilation of war stories. Attempts to study livemanagement
teams in naturally occurring decision situations can have
high external validity but almost always lack internal con-
trols necessary to create scientifically sound insights.

Huz et al. [45] created an experimental design to
test for the effectiveness of a controlled series of group-
based System Dynamics cases in the public sector. They
used a wide battery of pre- and post survey, interview,
archival, administrative data, and qualitative observation
techniques to evaluate eight carefully matched interven-
tions. All eight interventions dealt with the integration
of mental health and vocational rehabilitation services at
the county level. Four of the eight interventions contained
System Dynamics modeling sessions and four did not.
These controlled interventions were designed to get at the
impact of System Dynamics modeling on the public policy
process.
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Overall, Huz et al. [45] envisioned that change could
take place in nine domains measured across three separate
levels of analysis as illustrated in Table 1 below.

Using the battery of pre- and post test instruments,
Huz found important and statistically significant results
in eight of the nine domains measured. The exceptions
were in domain 9 where they did not measure client out-
comes, in domain 5 where “participants were not signifi-
cantly more aligned in their perceptions on strategies for
changes” (but were more aligned in goals), and in domain
7 where “no significant change was found with respect to
structural conditions within the network” (but two other
dimensions of organizational relationships did change).

In their meta-analysis of 107 case studies of System
Dynamics applications, Rouwette et al. [81] coded case
studies with respect to eleven classes of outcomes, sorted
into individual level, group level, and organizational level.
The 107 cases were dominated by for-profit examples
with 65 such cases appearing in the literature followed
by 21 cases in the non-profit sector, 18 cases in govern-
mental settings, and three cases in mixed settings. While
recognizing possible high levels of bias in reported cases
as well as difficulties in coding across cases and a high
number of missing categories, they found high percent-
ages of positive outcomes along all 11 dimensions of anal-
ysis. For each separate dimension, they analyzed between
13 and 101 cases with the fraction of positive outcomes for
each dimension ranging from a low of 83% to several di-
mensions where 100% of the cases reporting on a dimen-
sion found positive results. At the individual level, they
coded for overall positive reactions to the work, insight

Public Policy, System Dynamics Applications to, Table 1
Domains of measurement and evaluation used to assess impact
of systems-dynamics interventions (see p. 151 in [45])

Level I Reflections of the modeling team
Domain 1 Modeling team’s assessment of the intervention
Level II Participant self-reports of the intervention
Domain 2 Participants’ perceptions of the intervention
Domain 3 Shifts in participants’ goal structures
Domain 4 Shifts in participants’ change strategies
Domain 5 Alignment of participantmental models
Domain 6 Shifts in understanding how the system functions
Level III Measurable system change

and “bottom line” results
Domain 7 Shifts in network of agencies

that support services integration
Domain 8 Changes in system-wide policies

and procedures
Domain 9 Changes in outcomes for clients

gained from the work, and some level of individual com-
mitment to the results emerging from the study. At the
group level, they coded for increased levels of communi-
cation, the emergence of shared language, and increases
in consensus or mental model alignment. Organizational
level outcomes included implementation of system level
change. With respect to this important overall indicator
they “found 84 projects focused on implementation, which
suggests that in half (42) of the relevant cases changes are
implemented. More than half (24) of these changes led to
positive results”(see p. 20 in [81]).

Rouwette [80] followed this meta-analysis with a de-
tailed statistical analysis of a series of System Dynam-
ics-based interventions held mostly in governmental set-
tings in the Netherlands. He was able to estimate a sta-
tistical model that demonstrated how System Dynamics
group model building sessions moved both individuals
and groups from beliefs to intentions to act, and ultimately
on to behavioral change.

In sum, attempts to evaluate System Dynamics inter-
ventions in live settings continue to be plagued bymethod-
ological problems that researchers have struggled to over-
come with a number of innovative designs.What is emerg-
ing from this body of study is a mixed, “good news and
bad news” picture. All studies that take into account a rea-
sonable sample of field studies show some successes and
some failures. About one-quarter to one-half of the Sys-
tem Dynamics studies investigated showed low impact on
decision making. On the other hand, roughly half of the
studies have led to system-level implemented change with
approximately half of the implemented studies being asso-
ciated with positive measures of success.

Summary: SystemDynamics – A Powerful Tool
to Support Public Policy

While recognizing and respecting the difficulties of scien-
tific evaluation of System Dynamics studies in the pub-
lic sector, we remain relentlessly optimistic about the
method’s utility as a policy design and problem-solv-
ing tool. Our glass is half (or even three-quarters) full.
A method that can deliver high decision impact up to
three-quarters of the time and implement results in up
to half of the cases examined (and in a compressed time
frame) is a dramatic improvement over alternative ap-
proaches that can struggle for months or even years with-
out coming to closure on important policy directions.

System Dynamics-based modeling efforts are effective
because they join the minds of public managers and pol-
icy makers in an emergent dialog that relies on formal
modeling to integrate data, other empirical insights, and
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mental models into the policy process. Policy making be-
gins with the pre-existing mental models and policy sto-
ries that managers bring with them into the room. Policy
consensus and direction emerge from a process that com-
bines social facilitation with technical modeling and anal-
ysis. The method blends dialog with data. It begins with an
emergent discussion and ends with an analytic framework
that moves from “what is” baseline knowledge to informed
“what if ” insights about future policy directions.

In sum, we believe that a number of the process fea-
tures related to building System Dynamics models to solve
public policy problems contribute to their appeal for front-
line managers:

� Engagement Key managers can be in the room as the
model is evolving, and their own expertise and insights
drive all aspect of the analysis.

� Mental models The model-building process uses the
language and concepts thatmanagers bring to the room
with them, making explicit the assumptions and causal
mental models managers use to make their decisions.

� Complexity The resulting nonlinear simulation mod-
els lead to insights about how system structure influ-
ences system behavior, revealing understandable but
initially counterintuitive tendencies like policy resis-
tance or “worse before better” behavior.

� Alignment The modeling process benefits from di-
verse, sometimes competing points of view as stake-
holders can have a chance to wrestle with causal as-
sumptions in a group context. Often these discussions
realign thinking and are among the most valuable por-
tions of the overall modeling effort.

� Refutability The resulting formal model yields testable
propositions, enabling managers to see how well their
implicit theories match available data about overall sys-
tem performance.

� EmpowermentUsing the modelmanagers can see how
actions under their control can change the future of the
system.

System Dynamics modeling projects merge managers’
causal and structural thinking with the available data,
drawing upon expert judgment to fill in the gaps concern-
ing possible futures. The resulting simulation models pro-
vide powerful tools to develop a shared understanding and
to ground what-if thinking.

Future Directions

While the field of System Dynamics has reached its half-
centenary in 2007, its influence on public policy continues

to grow.Many of the problems defined by the earliest writ-
ers in the field continue to challenge us today. The grow-
ing literature base of environmental, social, and education
policy is evidence of continued interest in the systems per-
spective. In addition, System Dynamics modeling is grow-
ing in popularity for defense analysis, computer security
and infrastructure planning, and emergencymanagement.
These areas have the characteristic problems of complex-
ity and uncertainty that require the integration of multi-
ple perspectives and tacit knowledge that this method sup-
ports. Researchers and practitioners will continue to be at-
tracted to the open nature of System Dynamics models as
a vehicle for consensus and experimentation.

We anticipate that the tool base for developing and dis-
tributing System Dynamics models and insights will also
grow. Graphical and multimedia-based simulations are
growing in popularity, making it possible to build clearer
models and disseminate insights easily. In addition, the de-
velopment of materials for school-age learners to consider
a systems perspective to social problems gives us optimism
for the future of the field, as well as for future policy.
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