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Glossary

Attribute (also feature or variable) An attribute is an en-
tity that defines a property of an object (or example).
It has a domain defined by its type which denotes the
values that can be taken by an attribute (e. g., nominal
or numeric). For example, apples can have attributes
such as weight (with numeric values) and color (with
nominal values such as red or green).

Example (also instance or case) An example is a single
object from a problem domain of interest. In machine
learning, examples are typically described by a set of
attribute values and are used for learning a descriptive
and/or predictive model.

Model (also classifier) In machine learning, a model is
a computer program that attempts to simulate a partic-
ular system or its part with the aim of gaining insight
into the operation of this system, or to observe its be-
havior. Strictly speaking, a classifier is a type of model
that performs amapping from a set of unlabeled exam-
ples to a set of (discrete) classes. However, in machine
learning the term classifier is often used as a synonym
for model.

Learning (also training) set A learning set is a set of ex-
amples that are used for learning amodel or a classifier.
Examples are typically described in terms of attribute
values and have a corresponding output value or class.

Testing set A testing set is a set of examples that, as op-
posed to examples from the learning set, have not been
used in the process of model learning; they are also
called unseen examples. They are used for evaluating
the learned model.

Ensemble An ensemble in machine learning is a set of
predictive models whose predictions are combined
into a single prediction. The purpose of learning en-
sembles is typically to achieve better predictive perfor-
mance.

Definition of the Subject

Ensemble methods are machine learning methods that
construct a set of predictivemodels and combine their out-
puts into a single prediction. The purpose of combining
several models together is to achieve better predictive per-
formance, and it has been shown in a number of cases that
ensembles can be more accurate than single models.While
some work on ensemble methods has already been done
in the 1970s, it was not until the 1990s, and the introduc-
tion of methods such as bagging and boosting, that ensem-
ble methods started to be more widely used. Today, they
represent a standard machine learning method which has
to be considered whenever good predictive accuracy is de-
manded.

Introduction

Most machine learning techniques deal with the prob-
lem of learning predictive models of data. The data are
usually given as a set of examples where examples repre-
sent objects or measurements. Each example can be de-
scribed in terms of values of several (independent) vari-
ables, which are also referred to as attributes, features, in-
puts or predictors (for example, when talking about cars,
possible attributes include the manufacturer, number of
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seats, horsepower of a car, etc.). Associated with each ex-
ample is a value of a dependent variable, also referred to
as class, output or outcome. The class is some property of
special interest (such as the price of the car). The typical
machine learning task is to learn a model using a learning
data set with the aim of predicting the value of the class
for unseen examples (in our car example this would mean
that we want to predict the price of a specific car based
on its properties). There exist a number of methods, de-
veloped within machine learning and statistics, that solve
this task more or less successfully (cf., [21,31,43]). Some-
times, however, the performance obtained by these meth-
ods (we will call them simple or base methods) is not suf-
ficient.

One of the possibilities to improve predictive perfor-
mance are ensemble methods, which in the literature are
also referred to as multiple classifier systems, committees
of classifiers, classifier fusion, combination or aggregation.
The main idea is that, just as people often consult several
sources when making an important decision, the machine
learning model that takes into account several aspects of
the problem (or several submodels) should be able to make
better predictions. This idea goes in line with the princi-
ple of multiple explanations first proposed by the Greek
philosopher Epicurus (cf., [28]), which says that for an op-
timal solution of a concrete problem we have to take into
consideration all the hypotheses that are consistent with
the input data. Indeed, it has been shown that in a num-
ber of cases ensemble methods offer better predictive per-
formance than single models. The performance improve-
ment comes at a price, though. When we humans want to
make an informed decision we have to make an extra ef-
fort, first to find additional viewpoints on the subject, and
second, to compile all this information into a meaningful
final decision. The same holds true for ensemble methods;
learning the entire set of models and then combining their
predictions is computationally more expensive than learn-
ing just one simple model. Let us present some of the rea-
sons why ensemble methods might still be preferred over
simple methods [33].

Statistical Reasons

As already mentioned, we learn a model on the learning
data, and the resulting model can have more or less good
predictive performance on these learning data. However,
even if this performance is good, this does not guaran-
tee good performance also on the unseen data. Therefore,
when learning single models, we can easily end up with
a badmodel (although there are evaluation techniques that
minimize this risk). By taking into account several models

and averaging their predictions we can reduce the risk of
selecting a very bad model.

Very Large or Very Small Data Sets

There exist problem domains where the data sets are so
large that it is not feasible to learn a model on the en-
tire data set. An alternative and sometimes more efficient
approach is to partition the data into smaller parts, learn
one model for each part, and combine the outputs of these
models into a single prediction.

On the other hand, there exist also many domains
where the data sets are very small. As a result, the learned
model can be unstable, i. e., it can drastically change if we
add or remove just one or two examples. A possible rem-
edy to this problem is to draw several overlapping subsam-
ples from the original data, learn one model for each sub-
sample, and then combine their outputs.

Complex Problem Domains

Sometimes, the problem domain we are modeling is just
too complex to be learned by a single learning method.
For illustration only, let us assume we are trying to learn
a model to discriminate between examples with class ‘+’
and examples with class ‘�’, and the boundary between
the two is a circle. If we try to solve this problem using
a method that can learn only linear boundaries we will
not be able to find an adequate solution. However, if we
learn a set of models where each model approximates only
a small part of the circular boundary, and then combine
these models in an appropriate way, the problem can be
solved even with a linear method.

Heterogeneous Data Sources

In some cases, we have data sets from different sources
where the same type of objects are described in terms of
different attributes. For example, let us assume we have
a set of treated cancer patients for which we want to pre-
dict whether they will have a relapse or not. For each pa-
tient different tests can be performed, such as gene ex-
pression analyzes, blood tests, CAT scans, etc., and each
of these tests results in a data set with different attributes.
It is very difficult to learn a single model with all these at-
tributes. However, we can train a separate model for each
test and then combine them. In this way, we can also em-
phasize the importance of a given test, if we know, for ex-
ample, that it is more reliable than the others.

In the remainder of the article we first describe the pro-
cess of learning ensembles and then give an overview of
some of the commonly used methods. We conclude with
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a discussion on potential impacts of ensemble methods on
the development of other science areas.

Learning Ensembles

Ensembles of models are sets of (simple) models whose
outputs are combined, for instance with majority voting,
into a single output or prediction. The problem of learn-
ing ensembles attracts a lot of attention in the machine
learning community [10], since it is often the case that pre-
dictive accuracy of ensembles is better than that of their
constituent (base) models. This has also been confirmed
by several empirical studies [2,11,15] for both classifica-
tion (predicting a nominal variable) and regression (pre-
dicting a numeric variable) problems. In addition, sev-
eral theoretical explanations have been proposed to justify
the effectiveness of some commonly used ensemble meth-
ods [1,27,38].

The learning of ensembles consists of two steps. In the
first step we have to learn the basemodels thatmake up the
ensemble. In the second step we have to figure out how to
combine these models (or their predictions) into a single
coherent model (or prediction). We will now look more
closely into these two steps.

Generating Base Models

When learning base models it makes sense to learn mod-
els that are diverse. Combining identical or very similar
models clearly does not improve the predictive accuracy
of base models. Moreover, it only increases the computa-
tional cost of the final model. By diverse models we mean
models that make errors on different learning examples,
so that when we combine their predictions in some smart
way, the resulting prediction will be more accurate. Based
on this intuition, many diversity measures have been de-
veloped with the purpose of evaluating and guiding the
construction of ensembles. However, despite considerable
research in this area, it is still not clear whether any of these
measures can be used as a practical tool for constructing
better ensembles [30]. Instead, several more or less ad hoc
approaches are used for generating diverse models. We
can group these approaches roughly into two groups. In
the first case, the diversity of models is achieved by mod-
ifying the learning data, while in the second case, diverse
models are learned by changing the learning algorithm.

The majority of ensemble research has focused on
methods from the first group, i. e., methods that use dif-
ferent learning data sets. Such data sets can be obtained by
resampling techniques such as bootstrapping [14], where
learning sets are drawn randomly with replacement from
the initial learning data set; this is the approach used in

bagging [3] and random forests [5]. An alternative ap-
proach is used in boosting [37]. Here we start with a model
that is learned on the initial data set. We identify learning
examples for which this model performs well. Now we de-
crease the weights of these examples, since we wish for the
next members of the ensemble to focus on examples mis-
classified by the first model. We iteratively repeat this pro-
cedure until enough base models are learned. Yet another
approach to learn diverse base models is taken by the ran-
dom subspaces method [22] where, instead of manipulat-
ing examples in the learning set, we each time randomly
select a subset of attributes used for describing the learn-
ing set examples. Thesemethods are typically coupled with
unstable learning algorithms such as decision trees [6] or
neural networks [36], for which even a small change in the
learning set can produce a significantly different model.

Ensemble methods from the second group, which use
different learning algorithms, use two major approaches
for achieving diversity. First, if we use a base learning al-
gorithm that depends on some parameters, diverse models
can be learned by changing the values of these parame-
ters. Again, because of their instability, decision trees and
neural networks are most often employed here. A special
case are randomized learning algorithms, where the out-
come of learning depends on a seed used for the random-
ization. The second possibility is to learn each base model
with a completely different learning algorithm altogether;
for example, we could combine decision trees, neural net-
works, support vector machines and naive Bayes mod-
els into a single ensemble; this approach is used in stack-
ing [44].

Combining Base Models

Once we have generated a sufficiently diverse set of base
models, we have to combine them so that a single predic-
tion can be obtained from the ensemble. In general, we
have two options, model selection or model fusion (please
note that in the literature a somewhat different definition
of these two terms is sometimes used, e. g., [29]). In model
selection, we evaluate the performance of all base models,
and simply use predictions of the best one as predictions of
the ensemble. This approach cannot be strictly regarded as
an ensemblemethod since in the end we are using only one
base model for prediction. On one hand, this can be seen
as an advantage from the viewpoint that the final model
is simpler, more understandable and can be executed fast.
On the other hand, it is obvious that the performance of
such an ensemble cannot be better than the performance
of the best base model. While this seems like a serious
drawback it turns out that constructing ensembles that are
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more accurate than a selected best basemodel can be a very
hard task [13].

In model fusion, we really combine the predictions of
all base models into a prediction of the ensemble. By far
the most common method for combining predictions is
voting; it is used in bagging [3], boosting [37], random
forests [5] andmany variations of thesemethods. Voting is
a relatively simple combining scheme and can be applied
to predictions with nominal or numeric values, or prob-
ability distributions over these. A different approach is
adopted in stacking [44]. As opposed to voting, where the
combining scheme is known in advance and is fixed, stack-
ing tries to learn a so called meta model in order to com-
bine base predictions as efficiently as possible. The meta
model is learned on data where examples are described in
terms of the predictions of the base models and the de-
pendent variable is the final prediction of the ensemble.
There are, of course, many other possibilities for combin-
ing models, including custom combining schemes specifi-
cally tailored for a given problem domain. In the next sec-
tion we describe some of the most frequently used ensem-
ble methods in more detail.

Frequently Used EnsembleMethods

The use of different schemes for base models generation
and their combination, as briefly mentioned in the previ-
ous section, gives rise to a large number of possible ensem-
ble methods. We describe here a few of them that are most
common, with the exception of the best base model selec-
tion approach, which is very straightforward and does not
need an additional description.

Voting

Strictly speaking, voting is not an ensemble method, but
a method for combining base models, i. e., it is not con-
cerned with the generation of the base models. Still, we
include it in this selection of ensemble methods because
it can be used for combining models regardless of how
thesemodels have been constructed. As mentioned before,
voting combines the predictions of base models according
to a static voting scheme, which does not depend on the
learning data or on the base models. It corresponds to tak-
ing a linear combination of the models. The simplest type
of voting is the plurality vote (also called majority vote),
where each base model casts a vote for its prediction. The
prediction that collects most votes is the final prediction of
the ensemble. If we are predicting a numeric value, the en-
semble prediction is the average of the predictions of the
base models.

A more general voting scheme is weighted voting,
where different base models can have different influence
on the final prediction. Assuming we have some informa-
tion on the quality of the base models’ predictions (pro-
vided by the models themselves or through some back-
ground knowledge), we can put more weight on the pre-
dictions coming frommore trustworthymodels.Weighted
voting predicting nominal values simply means that vote
of each basemodel is multiplied by its weight and the value
with the most weighted votes becomes the final predic-
tion of the ensemble. For predicting numeric values we use
a weighted average. If di andwi are the prediction of the ith
model and its weight, the final prediction is calculated as
YD

Pb
iD1 widi . Usually we demand that the weights are

nonnegative and normalized: wi � 0 ;8i ;
Pb

iD1 wiD1.
Another interesting aspect of voting is that, because

of its simplicity, it allows for some theoretical analyzes of
its efficiency. For example, when modeling a binary prob-
lem (a problem with two possible values, e. g., positive and
negative) it has been shown that, if we have an ensemble
with independent base models each with success proba-
bility (accuracy) greater than 1/2, i. e., better than random
guessing, the accuracy of the ensemble increases as the
number of base models increases (cf., [20,37,41]).

Bagging

Bagging (short for bootstrap aggregation) [3] is a voting
method where base models are learned on different vari-
ants of the learning data set which are generated with
bootstrapping (bootstrap sampling) [14]. Bootstrapping
is a technique for sampling with replacement; from the
initial learning data set we randomly select examples for
a new learning (sub)set, where each example can be se-
lected more than once. If we generate a set with the same
number of examples as the original learning set, the new
one will on average contain only 63.2% different examples
from the original set, while the remaining 36.8% will be
multiple copies. This technique is often used for estimat-
ing properties of a variable, such as its variance, by mea-
suring those properties on the samples obtained in this
manner.

Using these sampled sets, a collection of basemodels is
learned and their predictions are combined by simple ma-
jority voting. Such an ensemble often gives better results
than its individual base models because it combines the
advantages of individual models. Bagging has to be used
together with an unstable learning algorithm (e. g., deci-
sion trees or neural networks), where small changes in the
learning set result in largely different classifiers. Another
benefit of the sampling technique is that it is less likely
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Input: Learning set S, Ensemble size B
Output: Ensemble E

E D ;
for i D 1 to B do

Si D BootstrapSample(S)
Ci D ConstructBaseModel(Si )
E D E [

˚
Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 1
Learning ensembles with bagging

that (many) outliers in the learning set show up also in the
bootstrap sample. As a result, base models and the ensem-
ble as a whole should be less sensitive to data outliers. The
bagging algorithm is presented in Algorithm 1. Bagging
can be used both for classification and regression prob-
lems. In the case of regression the individual predictions
are combined by averaging.

Boosting

Boosting [15] comprises a whole family of similar meth-
ods that, just as bagging, use voting to combine the pre-
dictions of base models learned by a single learning algo-
rithm. The difference between the two approaches is that
in bagging the complementarity of the constructed base
models is left to chance, while in boosting we try to gen-
erate complementary base models by learning subsequent
models, taking into account the mistakes of previous mod-
els. The procedure starts by learning the first base model
on the entire learning set with equally weighted examples.
For the next base models, we want them to correctly pre-
dict the examples that have not been correctly predicted by
previous base models. Therefore, we increase the weights
of these examples (or decrease the weights of the correctly
predicted examples) and learn a new base model. We stop
learning new base models when some stopping criterion is
satisfied (like when the accuracy of the new base model is
less then or equal to 0.5). The prediction of the ensemble is
obtained by weighted voting, where more weight is given
to more accurate base models; the weights of all classifiers
that vote for a specific class are summed and the class with
the highest total vote is predicted.

An interesting property of some boosting methods
is that they provide a theoretical guarantee of the accu-
racy [15,26]. We can show that the predictive error of the
ensemble on the learning data quickly decreases as we in-

Input: Learning set S, Ensemble size B
Output: Ensemble E

E D ;
W D AssignEqualWeights(S)
for i D 1 to B do

Ci D ConstructModel(S;W)
Err D ApplyModel(Ci ; S)
if (Err D 0) _ (Err � 0:5) then

TerminateModelGeneration
return E

end if
for j D 1 to NumberOfExamples(S) do

if CorrectlyClassified(S j;Ci ) then
Wj D Wj

Err
1�Err

end if
end for
W D NormalizeWeights(W)
E D E [

˚
Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 2
The AdaBoost.M1 algorithm for learning ensembles with boost-
ing

crease the number of base models within the ensemble.
The only precondition for error decrease is that the er-
ror of the individual members of the ensemble is less than
0.5. For binary classification problems this condition is
usually easy to fulfill. While the guarantee of a small er-
ror on the learning set is not a guarantee of a small er-
ror on unseen examples, boosting methods are known to
frequently improve the predictive performance of the base
algorithms [39]. Just as bagging, boosting should also be
used together with unstable learning methods such as de-
cision trees or neural networks. The most widely used
boosting method is AdaBoost.M1 [15] presented in Al-
gorithm 2 (together with the exact example reweighting
scheme used in this algorithm), which was designed for
learning with binary classification problems. Nevertheless,
there exist also modifications of the original method that
work on classification problems with more than two pos-
sible values (multiclass) [40] and even on regression prob-
lems [34,35]. An alternative name often used for boosting
methods is arcing (adaptively resample and combine) [4],
although strictly speaking, boosting methods are a subset
of arcing methods, i. e., boosting methods are the ones for
which it can be shown that they can achieve an arbitrarily
small error on the learning data set.
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Input: Learning set S, Ensemble size B,
Proportion of attributes considered f

Output: Ensemble E

E D ;
for i D 1 to B do

Si D BootstrapSample(S)
Ci D BuildRandomTreeModel(Si ; f )
E D E [

˚
Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 3
Learning random forests

Random Forests

Random forests [5] is a method for combining models
learned with a randomized version of a decision tree algo-
rithm. Random forests can be seen as an implementation
of bagging in which each model is learned with a modified
version of the CART decision tree algorithm [6]; namely,
when searching for an optimal attribute split in a tree,
rather than considering all possible splits, only a small sub-
set of randomly selected splits is tested (i. e., a random
subset of attributes), and the best one is chosen from this
subset. There are two sources of diversity when learning
the trees, and both are random: the selection of a boot-
strap sample for learning each tree, and the selection of
attributes to on which to split at every node of the tree.
Random forests are a robust and typically very accurate
ensemble method applicable to classification and regres-
sion problems. The algorithm for learning random forests
is presented in Algorithm 3.

Stacking

Stacking or stacked generalization [44] is a method
for combining heterogeneous base models, i. e., models
learned with different learning algorithms such as the
nearest neighbor method, decision trees, naive Bayes, etc.
Base models are not combined with a fixed scheme such as
voting, but rather an additional model calledmeta (or level
1) model is learned and used for combining base (or level
0) models. The procedure has two steps. First, we generate
the meta learning data set using the predictions of the base
models. Second, using the meta learning set we learn the
meta model which can combine predictions of base mod-
els into a final prediction.

Let L1; : : : ; LN be the base learning algorithms, and
S be the learning data set, which consists of examples

si D (xi ; yi ), i. e., pairs of attribute vectors xi and their
classifications yi. Generation of the meta learning data
set is done using a leave-one-out, or in general, a K-fold
cross-validation procedure. The initial learning set S with
n examples is split into K proper subsets Sk of roughly
equal size and class value distribution. For each of the
subsets a group of base models Ck

1 ;C
k
2 ; : : : ;C

k
N is learned

(Ck
j D Lj(S � Sk);8 j D 1; : : : ;N;8k D 1; : : : ;K).

These models are now used for predicting examples that
were not included in their learning set: ŷ ji D Ck

j (xi ),
xi 2 Sk . These predictions are collected into a meta learn-
ing set Sm. Each example from the original learning
set S has a corresponding example in Sm of the form
smi D (ŷi ; yi ) D ((ŷ1i ; : : : ; ŷ

N
i ); yi ). The attributes of the

meta learning set are therefore the predictions of the base
models (ŷ ji ), while the class value is the true class value
from the original data set (yi). In the second step, a meta
learning algorithm Lm is applied to this meta learning
set. When predicting a value of an unseen example, we
first collect the predictions of the base models which are
then given to the meta model that combines them into
a final prediction. The stacking algorithm is presented
in Algorithm 4. The performance of stacking highly de-
pends on the attributes used in the meta learning set (we
have only described the simplest option above) and the
meta learning algorithm used for learning the meta model
(cf. [13,42]).

Random Subspace Method

The random subspace method (RSM) [22] is an en-
semble method somewhat similar to bagging. However,
while in bagging the diversity of base models is achieved
by sampling examples from the initial learning data
set, in RSM the diversity is achieved by sampling at-
tributes from the learning set. Let each learning exam-
ple Xi in the learning set S be a p-dimensional vec-
tor xi D (xi1; xi2; : : : ; xi p). RSM randomly selects p� at-
tributes from S, where p� < p. By this, we obtain the
p� dimensional random subspace of the original p-dimen-
sional attribute space. Therefore, the modified training set
S̃ D (x̃1; x̃2; : : : ; x̃n) consists of p�-dimensional learning
examples x̃i D (x j1; xi2; : : : ; xi p�) (i D 1; 2; : : : ; n). Af-
terwards, base models are learned from the random sub-
spaces S̃ j (of the same size), j D 1; 2; : : : ; B, and they are
combined by voting to obtain a final prediction. Typically,
p� is equal for all base models. The RSM algorithm is pre-
sented in Algorithm 5.

The RSM benefits from using random subspaces for
learning base models and from their aggregation. When
the number of learning examples is relatively small as com-
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Input: Learning set S, Number of folds for meta data generation K,
Base and meta learning algorithms fL1; L2; ::: ; LN g; Lm

Output: Ensemble E

E D ;
fS1; S2; ::: ; SK g D SplitData(S;K)
Sm D ;
for k D 1 to K do

for j D 1 to N do
Ck
j D Lj(S � Sk)

end for
Smk D

S
xi2Sk f(C

k
1 (xi );C

k
2 (xi); ::: ;C

k
N (xi ); yi )g

end for
Sm D

SK
kD1 S

m
k

Cm D Lm(Sm )
fC1;C2; ::: ;CN g D fL1(S); L2(S); ::: ; LN (S)g
E D (fC1;C2; ::: ;CN g;Cm)
return E

Machine Learning, Ensemble Methods in, Algorithm 4
Learning ensembles with stacking

Input: Training examples S, Number of subspaces B,
Dimension of subspaces p�

Output: Ensemble E

E D ;
for j D 1 to B do

S̃ j D SelectRandomSubspace(S; p�)
Cj D ConstructModel(S̃ j)
E D E [

˚
Cj
�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 5
Learning ensembles with the random subspacemethod

pared to the dimensionality of the data, learning models in
random subspaces alone may solve the small sample prob-
lem. In this case the subspace dimensionality is smaller
than in the original attribute space, while the number of
learning objects remains the same. When the data set has
many redundant attributes, one may obtain better models
in random subspaces than in the original attribute space.
The combined decision of such models may be superior to
a single model constructed on the original learning set in
the complete attribute space.

The RSM was originally developed to be used with de-
cision trees, but the methodology can also be used to im-
prove the performance of other unstable learning methods

(e. g., rule sets, neural networks, etc.). The RSM is expected
to perform well when there is a certain redundancy in the
data attribute space [22]. It has been noticed that the per-
formance of the RSM is affected by the problem complex-
ity (attribute efficiency, length of class boundary, etc.) [23].
When applied to decision trees, the RSM is superior to
a single decision tree and may outperform both bagging
and boosting [22].

Other Methods

Mixture of ExpertsModels The combination of the base
learners can be governed by a supervisor learner, that se-
lects the most appropriate element of the ensemble on
the basis of the available input data. This idea led to the
mixture of experts methods [24], where a gating network
performs the division of the input space and small neu-
ral networks perform the effective calculation at each as-
signed region separately. An extension of this approach is
the hierarchical mixture of experts method, where the out-
puts of the different experts are non-linearly combined by
different supervisor gating networks hierarchically orga-
nized [25]. Cohen and Intrator extended the idea of con-
structing local simple base learners for different regions
of the input space, searching for appropriate architectures
that should be locally used and for a criterion to select
a proper unit for each region of input space [8,9].

Error Correcting Output Codes Error-correcting out-
put codes (ECOC) [12] is an ensemble method for im-
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proving the performance of classification algorithms in
multiclass learning problems. Let us note that some ma-
chine learning algorithms (e. g., standard support vector
machines) work only with two class problems. In order to
apply such algorithms to a multiclass problem it has to be
decomposed into several independent two-class problems;
the algorithm is run on each of them and the outputs of the
resulting binary models are combined. The error-correct-
ing output codes method enables us to efficiently combine
the outputs of such models.

As already mentioned, we have binary base models
with possible outputs (� 1 or +1), and there exists a code
matrixW of size KB whose K rows are the binary codes
of classes in terms of B base models Cj. This code ma-
trix allows us to define a multiclass classification problem
in terms of two-class classification problems. The prob-
lem here is that if there is an error with one of the base
models, there will be a misclassification because the class
code words are so similar. The ECOC approach sets the
B beforehand and then tries to find such a code matrix
W that the distances between rows, and at the same time
the distances between the columns, are as large as possi-
ble in terms of the Hamming distance [19]. The ECOC
can be written as a voting scheme where the entries of W,
wij are considered as vote weights yi D

PB
jD wi jd j . As

a final prediction the class with the highest yi is chosen.

Future Directions

Recent and future research directions in ensemble meth-
ods that are likely to have high impact on data mining
and other areas of science focus along the following top-
ics: Combinations of different sources of diversity; Under-
standing and interpretation of ensembles; Understanding
and explaining in more basic terms why ensembles per-
form better that individual models.

Random forests [5], one of the most successful ensem-
ble approaches, combine two sources of diversity of the
base models: Variations in the learning data set (achieved
through different bootstrap samples, as in bagging) and
a randomized base-level learning algorithm. Another re-
cent approach [32] combines the bagging way of sampling
with the random subspaces way of randomly selecting sub-
sets of the original set of attributes. This approach has the
advantage of being applicable in conjunction with a vari-
ety of base-level learning algorithms that do not need to be
randomized.

We have provided some intuition of why ensembles
work better than individual models in terms of the diver-
sity of the base models. More fundamental explanations
are produced in the bias-variance analysis framework:

Roughly speaking, the error of a learning algorithm can
be divided into a part due to the functional form used by
the algorithm (bias) and a part that is due to the instability
of the algorithms (variance). Bagging and random forests
reduce the variance part. Boosting reduces mainly the bias
part, but also the variance part. Finally, boosting can also
be viewed as an incremental forward stagewise regression
procedure with regularization (Lasso penalty), whichmax-
imizes the margin between the two classes, much like the
approach of support vector machines [18].

While ensembles typically perform better than a sin-
gle model, they do have an important disadvantage: They
are more complex and difficult (if not impossible) to in-
terpret. Recent research has addressed this issue in several
ways. Some approaches produce an estimate of the relative
importance of the attributes as an explanation, for exam-
ple partial dependency plots [16] and the attribute ranking
approach based on bagging and random forests. The ap-
proach of Caruana [7] is to construct a single model that
approximates the behavior of the ensemble: This is done
by generating examples, classifying them with the ensem-
ble, and learning a single model from the resulting learn-
ing set. Finally, a recent approach [17] builds rule ensem-
bles, where small (and understandable) sets of rules are
preferred through regularization.
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Glossary

Nonlinear time series in macroeconomics A field of
study in economics pertaining to the use of statistical
analysis of data in order tomake inferences about non-
linearities in the nature of aggregate phenomena in the
economy.

Time series A collection of data corresponding to the val-
ues of a variable at different points of time.

Linear Refers to a class of models for which the depen-
dence between two random variables can be com-
pletely described by a fixed correlation parameter.

Nonlinear Refers to the class of models for which the de-
pendence between two random variables has a more
general functional form than a linear equation and/or
can change over time.

Structural change A change in the model describing
a time series, with no expected reversal of the change.

Level Refers to a definition of the business cycle that links
the cycle to alternation between phases of expansion
and recession in the level of economic activity.

Deviations Refers to a definition of the business cycle that
links the cycle to transitory deviations of economic ac-
tivity from a trend level.

Fluctuations Refers to a definition of the business cycle
that links the cycle to any short-run changes in eco-
nomic activity.

Deepness A characteristic of a process with a skewed un-
conditional distribution.

Steepness A characteristic of a process with a skewed un-
conditional distribution for its first-differences.

Sharpness A characteristic of a process for which the
probability of a peak when increasing is different than
the probability of a trough when decreasing.

Time reversibility The ability to substitute�t and t in the
equations of motion for a process without changing
the process.

Markov-switching models Models that assume the pre-
vailing regime governing the conditional distribution
of a variable or variables beingmodeled depends on an
unobserved discrete Markov process.

Self-exciting threshold models Models that assume the
prevailing regime governing the conditional distribu-
tion of a variable or variables being modeled is ob-
servable and depends on whether realized values of the
time series being modeled exceed or fall below certain
“threshold” values.

Nuisance parameters Parameters that are not of direct
interest in a test, but influence the distribution of a test
statistic.

Pivotal Refers to the invariance of the distribution of

a test statistic with respect to values of parameters in
the data generating process under the null hypothesis.

Size Probability of false rejection of a null hypothesis in
repeated experiments.

Power Probability of correct rejection of a null hypothesis
in repeated experiments.

Definition of the Subject

Nonlinear time series in macroeconomics is a broad field
of study in economics. It refers to the use of statistical
analysis of data to make inferences about nonlinearities in
the nature of aggregate phenomena in the economy. This
analysis is relevant for forecasting, the formulation of eco-
nomic policy, and the development and testing of macro-
economic theories.

Introduction

In macroeconomics, the primary aggregate phenomenon
is the flow of total production for the entire economy over
the course of a year, which is measured by real gross do-
mestic product (GDP). A collection of data correspond-
ing to the values of a variable such as real GDP at differ-
ent points of time is referred to as a time series. Figure 1
presents the time series for US real GDP for each year from
1929 to 2006.

Time series analysis employs stochastic processes to
explain and predict the evolution of a time series. In partic-
ular, a process captures the idea that different observations
are in some way related to each other. The relationship
can simply be that the observations behave as if they are
drawn from random variables with the same distribution.
Or the relationship can be that the distribution assumed to
generate one observation depends on the values of other
observations. Either way, a relationship implies that the
observations can be used jointly to make inferences about
the parameters describing the distributions (a.k.a. “estima-
tion”).

Within the context of time series in macroeconomics,
the terms “linear” and “nonlinear” typically refer to classes
of models for processes, although other meanings arise in
the literature. For the purposes of this survey, a model that
assumes the dependence between two random variables in
a process can be completely captured by a fixed correla-
tion parameter is said to be linear. A very basic example
of a linear time series model is the workhorse first-order
autoregressive (AR(1)) model:

yt D c C � yt�1 C "t; "t � i.i.d. (0; �2) ; (1)

where j�j < 1. In words, the random variable yt that gen-
erates the observation in period t is a linear function of
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Macroeconomics, Non-linear Time Series in, Figure 1
US real GDP 1929–2006 (Source: St. Louis Fed website)

the random variable yt�1 that generates the observation
in period t � 1. The process fytg1�1 is stochastic because
it is driven by random “shocks”, such as "t in period t.
These shocks have the same distribution in every period,
meaning that, unlike with yt and yt�1, the distribution
of "t does not depend on the value of "t�1 or, for that
matter, any other shock in any other period (hence the
“i.i.d.” tag, which stands for “independently and identi-
cally distributed”). It is straightforward to show that the
correlation between yt and yt�1 is equal to � and this
correlation describes the entire dependence between the
two random variables. Indeed, for the basic AR(1) model,
the dependence and correlation between any two random
variables yt and yt� j , for all t and j, depends only on the
fixed parameter � according to the simple function � j and,
given j�j < 1, the process has finite memory in terms of
past shocks. For other time series models, the functions
relating parameters to correlations (i. e., “autocorrelation
generating functions”) are generally more complicated,
as are the restrictions on the parameters to ensure finite
memory of shocks. However, the models are still linear, as
long as the parameters and correlations are fixed.

In contrast to the linear AR(1) model in (1) and other
models with fixed correlations, any model that allows for
a more general functional form and/or time variation in
the dependence between random variables can be said to
be nonlinear. This nomenclature is obviously extremely
open-ended and examples are more revealing than gen-
eral definitions. Fortunately, macroeconomics provides
many examples, with “nonlinear” typically used to de-
scribemodels that are closely related to linearmodels, such

as the AR(1) model, but which relax one or two key as-
sumptions in order to capture some aspect of the data that
cannot be captured by a linear model. The focus of this
survey is on these types of nonlinear models.

It should be mentioned at the outset that, in addi-
tion to nonlinear models, “nonlinear time series” evokes
nonparametric and semiparametric methods (e. g., neural
networks). These methods tend to be data intensive and
so find more use in finance and other fields where sam-
ple sizes are larger than in macroeconomics. “Nonlinear
time series” also evokes the development and application
of tests for nonlinearity. However, these are the purview of
econometrics, not macroeconomics. Thus, tests for non-
linearity will only be discussed in the context of applica-
tions that are particularly relevant to the choice of appro-
priate models for macroeconomic data.

Types of NonlinearModels

Starting with the linear AR(1) model in (1), there aremany
ways to introduce nonlinearities. An obvious way is to
consider a nonlinear specification for the relationship be-
tween the random variables in the model. For example,
consider the simple bilinear model:

yt D c C � yt�1 C "t C �("t�1 � yt�1) ;

"t � i.i.d. (0; �2) : (2)

See Granger and Andersen [57] and Rao and Gabr [139]
on bilinear models. In macroeconomics at least, there are
relatively few applications of bilinear models, although
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see Peel and Davidson [119], Rothman [128], and Hris-
tova [71].

A more typical approach to introducing nonlinearities
in macroeconomics is to allow one (or more) of the pa-
rameters in a linear model to be driven by its own process.
For example, in a macroeconomics paper that was moti-
vated in part by bilinear models, Engle [46] assumed the
squares of shocks (i. e., "2t ) follow an AR process, with the
implication that the conditional variance of yt is no longer
a constant parameter. Given an AR(1) assumption for "2t ,
the conditional variance is

Et�1
�
�2t
�
D ˛0 C ˛1"

2
t�1 ; (3)

where Et�1 [ ] is the conditional expectations operator,
with expectations formed using information available in
period t � 1. Engle [46] applied this “autoregressive con-
ditional heteroskedasticity” (ARCH) model to U.K. infla-
tion, although in subsequent research, it has mostly been
applied to financial time series. In particular, asset re-
turns tend to display little dependence in the mean, but
high positive dependence in terms of the variance (a.k.a.
“volatility clustering”), which is exactly what the ARCH
model was designed to capture. Beyond Engle’s original
paper, ARCH models have found little use in macroeco-
nomics, although Bansal and Yaron [4] have recently at-
tempted to resolve the so-called “equity premium puz-
zle” in part by assuming that US aggregate consumption
growth follows a GARCH(1,1) process that generalizes En-
gle’s original ARCH process. However, Ma [104] shows
that estimates supporting a GARCH(1,1) model for ag-
gregate consumption growth are due to weak identifica-
tion, with an appropriate confidence interval suggesting
little or no conditional heteroskedasticity. Weak identifi-
cation is also likely a problem for the earlier application
of GARCHmodels to macroeconomic variables by French
and Sichel [49]. In general, because most macroeconomic
data series are highly aggregated, the central limit theorem
is relevant, at least in terms of eliminating “fat tails” due to
volatility clustering that may or may not be present at the
microeconomic level or at higher frequencies than macro-
economic data are typically measured.

The ARCH model begs the question of why not con-
sider a stochastic process directly for the variance, rather
than for the squares of the shocks. The short answer is
a practical one. Amodel with “stochastic volatility” is more
difficult to estimate than an ARCH model. In particular, it
can be classified as a state-spacemodel with an unobserved
non-Gaussian volatility process that has a nonlinear rela-
tionship to the observable time series being modeled. In
the simple case of no serial correlation in the underlying
series (e. g., no AR dynamics), a stochastic volatility model

can be transformed into a linear state-space model for the
squares of the series, although the model still has non-
Gaussian errors. However, the lack of serial correlation
means that this simple version of themodel would bemore
appropriate for applications in finance than macroeco-
nomics. In any event, while the Kalman filter can be em-
ployed to help estimate linear Gaussian state-space mod-
els, it is less suitable for non-Gaussian state-space models
and not at all suitable for nonlinear state-space models.
Recent advances in computing power have made simu-
lation-based techniques (the Gibbs sampler and the so-
called “particle filter”) available to estimate such models,
but these techniques are far from straightforward and are
highly computationally intensive. See Kim, Shephard, and
Chib [88] and Chib, Nardari, and Shephard [21] on esti-
mation of stochastic volatility models via the Gibbs sam-
pler and particle filtering. Meanwhile, such models have
rarely been applied to macroeconomic data due to the lack
of interesting volatility dynamics discussed above.

To the extent that stochastic volatility models have
been applied in macroeconomics, the focus has been on
capturing structural change (i. e., permanent variation) in
volatility rather than volatility clustering. For example,
Stock and Watson [138] investigate the so-called “Great
Moderation” using a stochastic volatility model and con-
firm the findings reported in Kim and Nelson [77] and
McConnell and Perez-Quiros [107] that there was a per-
manent reduction in the volatility of US real GDP growth
in the mid-1980s (see also [82,116,132]). This change in
volatility is fairly evident in Fig. 2, which presents the
time series for US real GDP growth for each quarter from
1947:Q2 to 2006:Q4.

Yet, while it is sometimes merely a matter of seman-
tics, it should be noted that “structural change” is a dis-
tinct concept from “nonlinearity”. In particular, structural
change can be thought of as a change in the model de-
scribing a time series, where the change is permanent in
the sense that it is not expected to be reversed. Then, if
the underlying structure of each model is linear, such as
for the AR(1) model in (1), there is nothing particularly
“nonlinear” about structural change. On the other hand,
Bayesian analysis of structural change blurs the distinction
between structural change and nonlinearity. In particular,
it treats parameters as random variables for the purposes
of making inferences about them. Thus, the distinction be-
tween a model that allows “parameters” to change accord-
ing to a stochastic process and a collection of models with
the same structure, but different parameters, is essentially
a matter of taste, even if the former setup is clearly nonlin-
ear, while the latter is not. For example, consider the clas-
sic time-varying parameter model (see, for example [29]).
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Macroeconomics, Non-linear Time Series in, Figure 2
US real GDP growth 1947–2006 (Source: St. Louis Fed website)

Macroeconomics, Non-linear Time Series in, Figure 3
US inflation 1960–2006 (Source: St. Louis Fed website)

Like the stochastic volatility model, it assumes a stochas-
tic process for the parameters in what would, otherwise,
be a linear process. Again, starting with the AR(1) model
in (1) and letting ˇ D (c; �)0, a time-varying parameter
model typically assumes that the parameter vector evolves
according to a multivariate random walk process:

ˇt D ˇt�1 C vt ; vt � i.i.d. (0; ˙) : (4)

Because the time-varying parameter model treats the evo-
lution of parameters as a stochastic process, it is clearly
a nonlinearmodel. At the same time, its application to data
provides an inherently Bayesian investigation of structural
change in the relationships between dependent and inde-
pendent variables, where those relationships may, in fact,
be linear. In general, then, analysis of structural change
in linear relationships should be considered an example
of nonlinear time series analysis when nonlinear models,
such as stochastic volatility models or time-varying pa-
rameter models, are used in the analysis, but structural
change should not be thought of as nonlinear in itself.

In terms of macroeconomics, time-varying parame-
ter models have recently been used to consider structural
change in vector autoregressive (VAR) models of the US
economy. Cogley and Sargent [26] employ such a model
to argue that US inflation dynamics have changed con-
siderably in the postwar period. Based on Sims’ [135] cri-
tique that evidence for structural change in time-varying
parameters may be the spurious consequence of ignoring
heteroskedasticity in the error processes for a VAR model,
Cogley and Sargent [27] augment their time-varying pa-
rameter model with stochastic volatility and find that their
results are robust. Primiceri [123] employs a structural
VAR with time-varying parameters and stochastic volatil-
ity and also finds evidence of structural changes in infla-
tion dynamics, although he questions the role of monetary
policy in driving these changes. Whether these structural
changes are evident in Fig. 3, which displays US consumer
price inflation for eachmonth from 1960:M1 to 2006:M12,
is debatable. However, it is fairly clear that a basic AR
process with constant parameters would be an inadequate
model for inflation.
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It is worth mentioning that there is a simpler time-
varying parameter model that has seen considerable use in
macroeconomics. It is the unobserved components (UC)
model used for trend/cycle decomposition. A standard
version of the model has the following form:

yt D �t C ct ; (5)

�t D �C �t�1 C �t ; �t � i.i.d.N
�
0; �2�


; (6)

�(L)ct D "t; "t � i.i.d.N
�
0; �2"


; (7)

where �(L) D 1 � �1L � � � � � �pLp , the roots of �(z) D
0 lie outside the unit circle, and corr (�t ; "t) D ��". It is
possible to think of the UC model as a time-varying pa-
rameter model in which the unconditional mean of the
process is equal to the trend � t , meaning that it under-
goes structural change, rather than remaining constant, as
it does for the AR(1) process described by (1). A glance
at the upward trajectory of real GDP in Fig. 1 makes it
clear that a basic AR process would be an extremely bad
model for the time series. Indeed, Morley, Nelson, and
Zivot [114] applied the model in (5)–(7) to 100 times the
natural logarithms of US real GDP under the assumption
that the lag order p D 2 and with no restrictions on the
correlation between �t and "t and found that most of the
variation in log real GDP was due to the trend rather than
the AR cycle ct (note that natural logarithms are more ap-
propriate for time series modeling than the raw data in
Fig. 1 because the “typical” scale of variation for real GDP
is more closely linked to percentage changes than to ab-
solute changes). Yet, while the UC model can be thought
of as a time-varying parameter model, it is not, in fact,
nonlinear. In particular, the UC model for log real GDP is
equivalent to an autoregressive moving-average (ARMA)
model for the first differences of log real GDP. Likewise,
the AR(1) model in (1) may be very sensible for real GDP
growth in Fig. 2, even though it would be a bad model for
real GDP in Fig. 1. In general, if it is possible to transform
a time series, such as going from Fig. 1 to Fig. 2, and em-
ploy a linear model for the transformed series, then the
time series analysis involved is linear. Likewise, under this
formulation, the simple version of the stochastic volatility
model for a series with no serial correlation also falls under
the purview of linear time series analysis. Only time-vary-
ing parameter and stochastic volatility models that cannot
be transformed into linear representations are nonlinear.

Of course, the semantics over “linear” and “nonlin-
ear” are hardly important on their own. What is impor-
tant is whether structural change is mistaken for recur-
ring changes in parameters or vice versa. In terms of
structural VAR models for the US economy, Sims and

Zha [136] argue that when parameters are allowed to un-
dergo large, infrequent changes, rather than the smaller,
more continuous changes implied by a time-varying pa-
rameter model, there is no evidence for changes in dy-
namic structure of postwar macroeconomic data. Instead,
there are only a few large, infrequent changes in the vari-
ance of shocks. Furthermore, among the models that as-
sume some change in dynamics, their Bayesian model
comparison favors a model in which only the monetary
policy rule changes. Among other things, these findings
have dramatic implications for the Lucas [100,101] cri-
tique, which suggests that correlations between macroec-
onomic variables should be highly sensitive to changes
in policy, thus leaving successful forecasting to “struc-
tural” models that capture optimizing behavior of eco-
nomic agents, rather than “reduced-form”models that rely
on correlations between macroeconomic structures. The
results in Sims and Zha [136] suggest that the Lucas cri-
tique, while an interesting theoretical proposition with the
virtue of being empirically testable, is not, in fact, sup-
ported by the data.

From the point of view of time series analysis, an inter-
esting aspect of the Sims and Zha [136] paper and earlier
papers on structural change in the US economy by Kim
and Nelson [77] and McConnell and Perez-Quiros [107]
is that they consider nonlinear regime-switching models
that allow for changes in parameters to be recurring. That
is, while the models can capture structural change, they do
not impose it. Using univariate regime-switching models
of US real GDP growth, Kim and Nelson [77] and Mc-
Connell and Perez-Quiros [107] find a one-time perma-
nent reduction in output growth volatility in 1984. How-
ever, using their regime-switching VAR model, Sims and
Zha [136] find that a small number of volatility regimes re-
cur multiple times in the postwar period. In terms of the
earlier discussion about the lack of volatility dynamics in
macroeconomic data, this finding suggests that there are
some volatility dynamics after all, but these dynamics cor-
respond to less frequent changes than would be implied by
ARCH or a continuous stochastic volatility process. More
generally, the allowance for recurring regime switches is
relevant because time series models with regime switches
have been the most successful form of nonlinear mod-
els in macroeconomics. However, for reasons discussed
in the next section, regime-switching models are typically
employed to capture changing dynamics in measures of
economic activity over different phases of the business cy-
cle, rather than structural change in inflation or recurring
changes in shock variances.

To summarize this section, there are different types of
nonlinear time series models employed in macroeconom-
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ics. While models that assume a nonlinear specification for
the relationship between observable variables exist (e. g.,
the bilinear model), they are rarely used in practice. By
contrast, models that allow some parameters to undergo
changes over time are much more common in macroeco-
nomics. The examples discussed here are ARCH models,
stochastic volatility models, time-varying parameter mod-
els, and regime-switching models.When examining struc-
tural change, there is a conceptual question of whether
the analysis is “linear” or “nonlinear”. However, as long
as the process of structural change is an explicit part of the
model (e. g., the time-varying parameter model), and ex-
cluding cases where it is possible to transform the model
to have a linear representation (e. g., the UC model to an
ARMA model), the analysis can be thought of as nonlin-
ear. Meanwhile, time series analysis of recurring regime
switches is unambiguously nonlinear. As discussed in the
next section, nonlinear regime-switching models come in
many versions and have found wide use in macroeconom-
ics modeling business cycle asymmetry.

Business Cycle Asymmetry

The topic of business cycle asymmetry is broad and the
literature on it extensive. As a result, it is useful to divide
the discussion in this section into four areas: i) concepts of
business cycle asymmetry and their relationships to non-
linearity; ii) nonlinear models of business cycle asymme-
try; iii) evidence for nonlinear forms of business cycle
asymmetry; and iv) the relevance of nonlinear forms of
business cycle asymmetry for macroeconomics.

Concepts

Notions of business cycle asymmetry have a long tradi-
tion in macroeconomics. Classic references to the idea
that recessions are shorter, sharper, and generally more
volatile than expansions are Mitchell [109], Keynes [72],
and Burns and Mitchell [13]. For example, in his charac-
teristic style, John Maynard Keynes writes, “. . . the substi-
tution of a downward for an upward tendency often takes
place suddenly and violently, whereas there is, as a rule,
no such sharp turning point when an upward is substi-
tuted for a downward tendency.” (see p. 314 in [72]). Sim-
ilarly, albeit more tersely, Wesley Mitchell writes, “. . . the
most violent declines exceed the most considerable ad-
vances. The abrupt declines usually occur in crises; the
greatest gains occur in periods of revival. . . Business con-
tractions appear to be a briefer and more violent process
than business expansions.” (see p. 290 in [109]). Milton
Friedman also saw business cycle asymmetry in the form
of a strong relationship between the depth of recession and

the strength of a recovery, with no corresponding relation-
ship between the strength of an expansionwith the severity
of the subsequent recession (see [50,51]).

The link between business cycle asymmetry and non-
linearity depends, in part, on the definition of “business
cycle”. Harding and Pagan [67] discuss three possible defi-
nitions that are presented here using slightly modified ter-
minology. Based on the work of Burns and Mitchell [13],
the first definition is that the business cycle is the alter-
nation between phases of expansion and recession in the
level of economic activity. The second definition, which
is often left implicit when considered, is that the business
cycle represents transitory deviations in economic activity
from a permanent or “trend” level. The third definition,
which is also often only implicitly considered, is that the
business cycle corresponds to any short-run fluctuations
in economic activity, regardless of whether they are per-
manent or transitory.

Under the “level” definition of the business cycle, there
is nothing inherently nonlinear about asymmetry in terms
of the duration of expansions and recessions. Positive drift
in the level of economic activity implies longer expan-
sions than recessions, even if the underlying process is lin-
ear. Even asymmetry in the form of relative sharpness and
steepness of a recession alluded to in the above quote from
Keynes does not necessarily indicate nonlinearity. Again,
given positive drift, an outright decline in economic ac-
tivity only occurs when there are large negative shocks
to the underlying process, while an expansion occurs for
all positive shocks and small negative shocks. Thus, a re-
cession is likely to look like a relatively sharp reversal in
the level. Furthermore, with positive serial correlation in
growth, such as implied by a linear AR(1) process as in (1)
with � > 0, recessions will appear steeper than expansions
due to the dynamic effects of large negative shocks. On
the other hand, as discussed in more detail later, nonlin-
ear models are much more successful than linear models
at reproducing business cycle asymmetry in the form of
a strong link between recessions and their recoveries ver-
sus a weak link between expansions and subsequent reces-
sions noted by Friedman [50].

Under the “deviations” definition of the business cy-
cle, asymmetry is closely linked to nonlinearity. While it is
possible for asymmetry in the independent and identical
distribution of the underlying shocks to generate asymme-
try in a linear process, any persistence in the process would
severely dampen the asymmetries in the unconditional
distribution. Thus, under the assumption that the transi-
tory component of economic activity is at least somewhat
persistent, asymmetries such as differences in the dura-
tions of positive and negative deviations from trend or rel-
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ative sharpness and steepness in negative deviations com-
pared to positive deviations are more suggestive of nonlin-
ear dynamics (i. e., changing correlations) than underlying
asymmetric shocks.

Under the “fluctuations” definition of the business cy-
cle, the link between nonlinearity and asymmetry also de-
pends on the relative roles of shocks and dynamics in gen-
erating asymmetries. However, because growth rates are
less persistent than most measures of the transitory com-
ponent of economic activity and because theymix together
permanent and transitory shocks that may have different
means and variances, it is quite plausible that asymmetry
in the distribution of shocks is responsible for asymme-
try in growth rates. Of course, nonlinear dynamics are also
a plausible source of asymmetry for growth rates.

In terms of asymmetries, it is useful to consider the
formal classifications developed and discussed in Sichel
[133], McQueen and Thorley [108], Ramsey and Roth-
man [124], Clements and Krolzig [24], and Korenok,
Mizrach, and Radchenko [95] of “deepness”, “steepness”,
and “sharpness”. Following Sichel [133], a process is said
to have deepness if its unconditional distribution is skewed
and steepness if the distribution of its first-differences is
skewed. Following McQueen and Thorley [108], a process
is said to have sharpness if the probability of a peak occur-
ring when it has been increasing is different than the prob-
ability of a trough occurring when it has been decreasing.
However, despite these definitions, the different types of
asymmetries are most easily understood with visual exam-
ples.

Figure 4 presents an example of a simulated time series
with deepness, with the distance from peak of the cycle to
the mean less than the distance from the mean to trough
of the cycle (see [124], for the details of the process gen-
erating this time series). In addition to deepness, the series

Macroeconomics, Non-linear Time Series in, Figure 4
A “deep” cycle (Source: Author’s calculations based on Ramsey and Rothman [124])

appears to display sharpness in recessions, with the peak of
the cycle more rounded than the trough, although the fact
that the simulated series is deterministic means it cannot
be directly related to the definition of sharpness in Mc-
Queen and Thorley [108] mentioned above. Meanwhile,
there is no steepness because the slope from peak to trough
is the same magnitude as the slope from trough to peak.

As discussed in Ramsey and Rothman [124], these dif-
ferent types of asymmetry can be classified in two broader
categories of “time reversible” and “time irreversible”.
Time reversibility means that the substitution of �t for t
in the equations of motion for a process leaves the pro-
cess unchanged. The upward drift that is present in many
macroeconomic time series (such as real GDP) is clearly
time irreversible. More generally, the issue of time re-
versibility is relevant for determining whether business
cycle asymmetry corresponds to deepness and sharpness,
which are time reversible, or steepness, which is time ir-
reversible. For example, the time series in Fig. 4 can be
flipped on the vertical axis without any resulting change.
Thus, it is time reversible. By contrast, consider the sim-
ulated time series with “steepness” in Fig. 5. The series is
generated from a regime-switching process with asymmet-
ric shocks across two regimes and different persistence for
shocks in each regime. In this case, flipping the series on
the vertical axis would produce flat inclines and steep de-
clines. Thus, it is time irreversible.

The relevance of the distinction between time re-
versible and time irreversible processes is obvious from
Fig. 6, which presents the time series for the US civil-
ian unemployment rate for each month from 1960:M1 to
2006:M12. The inclines are steep relative to the declines.
Thus, there is a clear visual suggestion of the steepness
form of asymmetry. Indeed, themodern literature on busi-
ness cycle asymmetry begins with Neftçi’s [115] investi-
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Macroeconomics, Non-linear Time Series in, Figure 5
A “steep” cycle (Source: Author’s calculations)

Macroeconomics, Non-linear Time Series in, Figure 6
US civilian unemployment rate 1960–2006 (Source: St. Louis Fed website)

gation of this issue using a nonlinear regime-switching
model in which the prevailing “business cycle” regime in
a given period is assumed to depend on a discrete Markov
process driven by whether the US unemployment rate is
rising or falling in that period. Given the link to the first
differences of the unemployment rate, his finding that the
continuation probabilities for the two regimes are differ-
ent, with declines more likely to persist than increases,
provides formal support for the presence of the steep-
ness forms of asymmetry in the unemployment rate (also,
see [127]). It should also be noted that, while not related
to time irreversibility, the different continuation probabil-
ities also directly imply sharpness.

Models

The subsequent literature on regime-switching models in
macroeconomics can be usefully divided into two cat-
egories that are both related to Neftçi’s [115] model.
First,Markov-switching models assume that the prevailing
regime depends on an unobserved discrete Markov pro-
cess. The main distinction from Neftçi [115] is that the
Markov process is unobserved (hence, these models are

sometimes referred to as a “hidden Markov models”). Sec-
ond, self-exciting threshold models assume that the prevail-
ing regime is observable and depends on whether realized
values of the time series being modeled exceed or fall be-
low certain “threshold” values, much like the regime in
Neftçi’s [115] model depends on whether the change in
the unemployment rate was positive or negative.

Hamilton [59] is the seminal paper in terms of Mar-
kov-switching models. His model has a basic AR structure,
like in (1), but for the first-differences of the time series of
interest:

�(L)
�

yt � �t


D "t; "t � i.i.d. (0; �2) ; (8)

where
yt is 100 times the change in the natural logarithm
of real Gross National Product (GNP). The only difference
from a linear AR model is that the mean follows a stochas-
tic process:

�t D �1 � I (St D 1)C �2 � I (St D 2) ; (9)

with the indicator function I(St D j) equal to 1 if St D j
and 0 otherwise and St D f1; 2g following an unobserved
discrete Markov state variable that evolves according to
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the following fixed transition matrix:
�

p11 p21
p12 p22

�
;

where pi j � Pr[St D j jSt�1 D i ] and the columns sum
to one.

There are two aspects of Hamilton’s [59] model that
should be mentioned. First, while the demeaned speci-
fication is equivalent to a regression model specification
(e. g., (1)) in the linear setting, with � D c/(1 � �), the
two specifications are no longer equivalent in the nonlin-
ear setting. In particular, if the intercept c were switching
instead of the mean �, then past regime switches would
be propagated by the AR dynamics (see [61], for an ex-
ample of such a model). By contrast, with � switching,
there is a clear separation between the “nonlinear” dynam-
ics due to the evolution of the state variable (which does
alter the correlations between 
yt and its lags) and the
“linear” dynamics due to the "t shocks and the AR param-
eters. Second, in order to eliminate arbitrariness in the la-
beling of states, it is necessary to impose a restriction such
as �1 > �2, which corresponds to higher mean growth in
state 1 than in state 2. Furthermore, given the application
to output growth, if �1 > 0 and �2 < 0, the states 1 and 2
can be labeled “expansion” and “recession”, respectively.

Hamilton’s [59] paper had a big impact on econo-
metrics and macroeconomics for two reasons. First, it in-
cluded an elegant filter that could be used to help esti-
mate Markov-switching models via maximum likelihood
and, along with a smoother, calculate the posterior dis-
tribution of the unobserved state variable (filters and
smoothers are recursive algorithms that make inferences
about unobserved state variables, with filters consider-
ing only information available at the time the state vari-
able is realized and smoothers incorporating any subse-
quent available information). Second, the resulting pos-
terior probability of the “recession” regime corresponded
closely to the National Bureau of Economic Research
(NBER) dating of recessions. The NBER dating is based
on non-structural and subjective analysis of a wide vari-
ety of indicators. The official line from its website is “The
NBER does not define a recession in terms of two consec-
utive quarters of decline in real GDP. Rather, a recession
is a significant decline in economic activity spread across
the economy, lasting more than a few months, normally
visible in real GDP, real income, employment, industrial
production, and wholesale-retail sales.” (www.nber.org/
cycles/cyclesmain.html). Thus, it is, perhaps, remarkable
that a simple time series model using only information in
real GNP could find such similar dates for recessions. Of
course, as emphasized by Harding and Pagan [66], a sim-

ple rule like “two consecutive quarters of decline in real
GDP” also does extremely well in matching the NBER re-
cessions, regardless of NBER claims that it is not follow-
ing such a rule. Yet, more important is the notion implied
by Hamilton’s [59] results that the NBER is identifying
a meaningful structure in the economy, rather than simply
reporting (sometimeswith considerable lag) that the econ-
omy had an episode of prolonged negative growth. Specif-
ically, “recession” appears to be an indicator of a different
state for the dynamics of the economy, rather than a label
for particular realizations of linear process. (As an aside,
the fact that the popular press pays so much attention to
NBER pronouncements on recessions also supports the
idea that it is identifying a meaningful macroeconomic
structure).

Numerous modifications and extensions of Hamil-
ton’s [59] model have been applied to macroeconomic
data. For example, while estimates for Hamilton’s [59]
model imply that the linear "t shocks have large perma-
nent effects on the level of real GDP, Lam [96] consid-
ers a model in which the only permanent shocks to real
GNP are due to regime switches. Despite this very differ-
ent assumption, he also finds that the regime probabili-
ties implied by his model correspond closely to NBER dat-
ing of expansions and recessions. Kim [74] develops a fil-
ter that can be used for maximum likelihood estimation
of state-space models with Markov-switching parameters
and confirms the results for Lam’s [96] model. Motivated
by Diebold and Rudebusch’s [38] application of Hamil-
ton’s [59] model to the Commerce Department’s coinci-
dent index of economic activity instead of measures of ag-
gregate output such as real GNP or real GDP, Chauvet
[19] employs Kim’s [74] filter to estimate an unobserved
components model of a coincident index using Hamil-
ton’s [59] model as the specification for its first differences.
Other multivariate extensions include Kim and Yoo [87],
Ravn and Sola [125], Kim and Nelson [76], Kim and Mur-
ray [75], Kim and Piger [81], Leamer and Potter [97], Ca-
macho [14], and Kim, Piger, and Startz [84]. The general
theme of these studies is that the multivariate information,
such as coincident indicators or aggregate consumption
and investment, helps to strongly identify the nonlinear-
ity in economic activity, with regimes corresponding even
more closely to NBER dates than for univariate analysis
based on real GNP or real GDP.

In terms of business cycle asymmetry, an important
extension of Hamilton’s [59] model involves allowing for
three regimes to capture three phases of the business cy-
cle: “expansion”, “recession”, and “recovery” (see [134]).
Papers with three-regime models include Boldin [8],
Clements and Krolzig [23], and Leyton and Smith [98].

http://www.nber.org/cycles/cyclesmain.html
http://www.nber.org/cycles/cyclesmain.html
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The specification in Boldin [8] modifies the time-varying
mean in Hamilton’s [59] model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C�3 �I (St D 3) ; (10)

where St D f1; 2; 3g has fixed transition matrix:
2

4
p11 0 p31
p12 p22 0
0 p23 p33

3

5 :

The zeros in the transition matrix restrict the state se-
quence to follow the pattern of fStg D � � � 1 ! 2 !
3 ! 1 � � � . Given the normalization �1 > �2, the restric-
tion on the transitional matrix implies that the economy
goes from expansion to recession to recovery and back to
expansion. While there is no restriction on �3, Boldin [8]
finds it is greater than �1, which means that the third
regime corresponds to a high-growth recovery. As dis-
cussed in Clements and Krolzig [24], this third regime al-
lows for steepness in output growth, while the basic two-
regime Hamilton [59] model can only capture deepness
and sharpness (the two are inextricably linked for a two-
regime model) in growth. Note, however, from the defini-
tions presented earlier, deepness in growth implies steep-
ness the level of output.

It is possible to capture high-growth recoveries with-
out resorting to three regimes. For example, Kim and Nel-
son [79] develop an unobserved components model that
assumes two regimes in the transitory component of US
real GDP. A slightly simplified version of their model is
given as follows:

yt D �t C ct ; (11)

�t D �C �t�1 C �t ; �t � i.i.d.N
�
0; �2�


; (12)

�(L)ct D  � I (St D 2)C"t ; "t � i.i.d.N
�
0; �2"


; (13)

where yt is 100 times log real GDP, St D f1; 2g is specified
as in Hamilton’s [59] model, and state 2 is identified as the
recession regime by the restriction  < 0 (see [112,113],
on the need for and implications of this restriction). Un-
like Morley, Nelson, and Zivot [114], Kim and Nelson [79]
impose the restriction that ��" D 0 in estimation, which
they conduct via approximate maximum likelihood using
the Kim [74] filter. As with Hamilton [59] and Lam [96],
the regimes correspond closely to NBER-dated expansions
and recessions. However, because the regime switching
is in the transitory component only, the transition from
state 1 to state 2 corresponds to a downward “pluck” in
economic activity that is followed by a full recovery to

trend after the transition from state 2 to state 1. Kim
and Nelson [79] motivate their model as nesting Fried-
man’s [50,51] plucking model, which assumes output can-
not exceed a ceiling level, but is occasionally plucked below
full capacity by recessionary shocks resulting from activist
monetary policy. In line with Friedman’s observations,
Kim and Nelson’s [79] model relates the strength of a re-
covery to the severity of the preceding recession, with no
corresponding link between the strength of an expansion
and the severity of a recession (see also [2,134,150]). No-
tably, the transitory component for their estimated model
achieves the trifecta of business cycle asymmetries in the
form of deepness, steepness, and sharpness.

Another model that captures three phases of the
business cycle with only two underlying regimes is the
“bounceback” model of Kim, Morley, and Piger [83]. The
model modifies the time-varying mean in Hamilton’s [59]
model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C�
mX

jD1

I
�
St� j D 2


;

(14)

where the number of lagged regimes to consider in the
third term on the right hand side of (14) is determined by
the discrete “memory” parameterm, which is estimated to
be six quarters for US postwar quarterly real GDP. Given
the restriction �1 > �2, the third term can be interpreted
as a pressure variable that builds up the longer a recession
persists (up to m periods, where m D 6 quarters is long
enough to capture all postwar recessions) and is motivated
by the “current depth of recession” variable of Beaudry
and Koop [6] discussed later. Then, if  > 0, growth will
be above�1 for up to the first six quarters of an expansion.
That is, there is a post-recession “bounceback” effect, as
in Kim and Nelson’s [79] plucking model. Meanwhile, the
specification in (14) can be thought of as a “u-shaped re-
cession” version of themodel because the pressure variable
starts mitigating the effects of a recession the longer the
regime persists. Morley and Piger [111] consider a slightly
modified “v-shaped recession” version of the model that
assumes the pressure variable only affects growth after the
recession ends, thus producing a sharper trough:

�t D �1 � I (St D 1)C �2 � I (St D 2)

C  �

mX

jD1

I (St D 1) � I
�
St� j D 2


: (15)

This version of the model is identical to Hamilton’s [59]
model in all but the first m periods of an expansion. Fi-
nally, Morley and Piger [113] consider a “depth” version
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Simulated paths for “Output” (Source: Author’s calculations)

of the model that relates the pressure variable to both the
length and severity of a recession:

�t D �1 � I (St D 1)C �2 � I (St D 2)

C  �

mX

jD1

�
�1 � �2 �
yt� j


� I
�
St� j D 2


: (16)

In this case, the post-recession bounceback effect depends
on the relative severity of a recession. Regardless of the
specification, the estimated bounceback effect for US real
GDP based on maximum likelihood estimation via the
Hamilton [59] filter is large (see [83,111,113]).

While Kim, Morley, and Piger’s [83] bounceback
model can capture “plucking” dynamics, there is no re-
striction that regime switches have only transitory effects.
Instead, the model nests both the Hamilton [59] model as-
sumption that recessions have large permanent effects in
the case that  D 0 and Kim and Nelson’s [79] “plucking”
model assumption that recessions have no permanent ef-
fects in the case that  D (�1 � �2)/m (for the specifica-
tion in (14)). Figure 7 presents examples of simulated time
series for the plucking model, the bounceback model, and
the Hamilton model. In each case, “output” is subject to
a recession regime that lasts for six periods. For the pluck-
ing model, output returns to the level it would have been in
the absence of the recession. For the Hamiltonmodel, out-
put is permanently lower as a result of the recession. For
the bounceback model, recessions can have permanent ef-
fects, but they will be less than for the Hamilton model
if  > 0 (indeed, if  > (�1 � �2)/m, the long-run path
of the economy can be increased by recessions, a notion
related to the “creative destruction” hypothesis of Schum-
peter [131]). In practice, Kim, Morley, and Piger [83] find

a very small negative long-run impact of US recessions,
providing support for the plucking model dynamics and
implying considerably lower economic costs of recessions
than the Hamilton model.

Another extension of Hamilton’s [59] model involves
relaxing the assumption that the transition probabilities
for the unobserved state variable are fixed over time
(see [39]). Filardo [48] considers time-varying transition
probabilities for a regime-switching model of industrial
production growth where the transition probabilities de-
pend on leading indicators of economic activity. Durland
and McCurdy [40] allow the transition probabilities for
real GNP growth to depend on the duration of the pre-
vailing regime. DeJong, Liesenfeld, and Richard [34] al-
low the transition probabilities for real GDP growth de-
pend on an observed “tension index” that is determined
by the difference between recent growth and a “sustain-
able” rate that corresponds to growth in potential output.
Kim, Piger, and Startz [84] allow for a dynamic relation-
ship between multiple unobserved discrete state variables
in a multivariate setting and find that regime-switches in
the permanent component of economic activity tend to
lead regime-switches in the transitory component when
the economy heads into recessions.

The distinction between Markov-switching models
and threshold models is blurred somewhat by time-vary-
ing transition probabilities. A standard demarcation is
that Markov-switching models typically assume the dis-
crete state variables driving changes in regimes are ex-
ogenous, while threshold models allow for endogenous
switching. However, this exogenous/endogenous demar-
cation is less useful than it may at first appear. First, as
is always the problem in macroeconomics, it is unlikely
that the variables affecting time-varying transition prob-
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abilities are actually strictly exogenous, even if they are
predetermined. Second, Kim, Piger and Startz [85] have
developed an approach for maximum likelihood estima-
tion of Markov-switching models that explicitly allow for
endogenous switching. In terms of macroeconomics, Sin-
clair [137] applies their approach to estimate a version
of the regime-switching UC model in (11)–(13) for US
real GDP that allows for a non-zero correlation between
the regular shocks �t and "t , as in Morley, Nelson, and
Zivot [114], as well as dependence between these shocks
and the unobserved state variable St that generates down-
ward plucks in output. She finds that permanent shocks
are more important than suggested by Kim and Nel-
son’s [79] estimates. However, she confirms the impor-
tance of the plucking dynamic, with a test supporting the
standard exogeneity assumption for the discrete Markov-
switching state variable.

Another demarcation that would seem to provide
a possible means of distinguishing between Markov-
switching models and threshold models arises from the
fact that, starting from an AR specification, threshold
models typically extend the basic model by allowing for
changes in AR parameters, while, as discussed earlier,
Markov-switching models typically extend the model by
allowing for changes in the mean. However, this de-
marcation is also less useful than it may at first appear
since Markov-switching models have alternative repre-
sentations as autoregressive processes (see [59]). Further-
more, some threshold models assume constant AR param-
eters (e. g., [120]). In particular, regardless of presentation,
both types of models capture nonlinear dynamics in the
conditional mean.

The more general and useful demarcation between
Markov-switching models and threshold models is that
the prevailing regime is unobservable in the former, while
it is observed in the latter. Meanwhile, the observable
regimes in threshold models make it feasible to con-
sider more complicated transitions between regimes than
Markov switching models. In particular, it is possible with
a threshold model to allow a mixture of regimes to prevail
in a given time period.

Tong [145] introduced the basic threshold autoregres-
sive (TAR) model. In a “self-exciting” TAR model, the au-
toregressive coefficient depends on lagged values of the
time series. For example, a simple two-regime AR(1) TAR
model is given as follows:

yt D c C �(1) � I
�
yt�m < �


� yt�1

C�(2) � I
�
yt�m > �


� yt�1C"t ; "t � i.i.d.(0; �2) ;

(17)

where �(1) and �(2) are the AR(1) parameters associ-
ated with the two regimes, � is the threshold, and m is
the discrete delay parameter. A variant of the basic TAR
model that allows multiple regimes to prevail to different
degrees is the smooth transition autoregressive (STAR)
model (see [18,58,140,142]). For STAR models, the indi-
cator function is replaced by transition functions bounded
between zero and one. The STAR model corresponding
to (17) is

yt D c C �(1) � F1
�
yt�mj�; �


� yt�1

C �(2) � F2
�
yt�mj�; �


� yt�1 C "t;

"t � i.i.d. (0; �2) ; (18)

where F2(yt�m j�; � ) D 1 � F1(yt�m j�; � ) and � is a pa-
rameter that determines the shape of the transition func-
tion (in general, the larger � , the closer the STAR model is
to the TARmodel). The twomost popular transition func-
tions are exponential (ESTAR) and logistic (LSTAR). The
exponential transition function is

Fe
1 D 1 � exp

�
�� (yt�m � �)2


; � > 0 ; (19)

while the logistic transition function is

F l
1 D

�
1C exp

�
�� (yt�m � �)

��1
; � > 0 : (20)

For STAR models the transition functions are such that
the prevailing autoregressive dynamics are based on
a weighted average of the autoregressive parameters for
each regime, rather than reflecting only one or the other,
as in TAR models.

In terms of macroeconomics, both TAR and STAR
models have been employed to capture business cycle
asymmetry. A key question is what observed threshold
might be relevant. On this issue, a highly influential paper
is Beaudry and Koop [6]. Related to the notion discussed
above that recessions represent a meaningful macroeco-
nomic structure, they consider whether real GDP falls be-
low a threshold defined by its historical maximum. Specif-
ically, they define a “current depth of recession” (CDR)
variable as follows:

CDRt D max
˚
yt� j

�
j>0 � yt : (21)

Figure 8 presents the current depth of recession using US
real GDP for each quarter from 1947:Q1 to 2006:Q4.

Beaudry and Koop [6] augment a basic linear ARMA
model of US real GNP growth with lags of the CDR vari-
able. They find that the inclusion of the CDR variable im-
plies much less persistence for large negative shocks than
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Current depth of recession 1947–2006 (Source: Author’s calculations based on Beaudry and Koop [6])

for small negative shocks or positive shocks. The asym-
metry in terms of the response of the economy to shocks
corresponds closely to the idea discussed earlier that deep
recessions produce strong recoveries. Indeed, the Beaudry
and Koop [6] paper provided a major motivation for most
of the extensions of Hamilton’s [59] model discussed ear-
lier that allow for high-growth recoveries.

In terms of threshold models in macroeconomics,
Beaudry and Koop [6] initiated a large literature. Tiao and
Tsay [144], Potter [121], and Clements and Krolzig [23]
consider two-regime TAR models with the threshold ei-
ther fixed at zero or estimated to be close to zero. Pe-
saran and Potter [120] and Koop and Potter [91] con-
sider a three-regime TAR model (with many restrictions
for tractability) that incorporates the CDR variable and an
“overheating” (OH) variable reflecting cumulated growth
following large positive shocks. Specifically, a simple ho-
moskedastic, AR(1) version of Pesaran and Potter’s [120]
“floor and ceiling” model is given as follows:


yt D c C �
yt�1 C 1CDRt�1 C 2OHt�1 C "t ;

"t � N(0; �2) ; (22)

where

CDRt D �(
yt � �F ) � Ft � (1 � Ft�1)

C (CDRt�1 �
yt) � Ft � Ft�1 ; (23)

Ft D I
�

yt < �F


� (1 � Ft�1)

C I
�
CDRt�1 �
yt > 0


� Ft�1 ; (24)

OHt D (OHt�1 C
yt � �C ) � Ct ; (25)

Ct D (1 � Ft) � I
�

yt > �C


� I
�

yt�1 > �C


: (26)

The indicator variable Ft D f0; 1g denotes whether the
economy is in the “floor” regime, while Ct D f0; 1g de-
notes whether the economy is in the “ceiling” regime. The
CDR variable is the same as in (20) if the threshold �F D 0.
Thus, a high-growth post-recession recovery is implied by
1 > 0. In particular, with �F D 0, the “floor” regime is
activated when real GDP falls below its historical maxi-
mum at the onset of a recession and remains activated un-
til output recovers back to its pre-recession level. The OH
variable captures whether real GDP is above a sustainable
level based on the threshold level �C of growth. A capac-
ity-constraint effect is implied by 2 < 0. Note, however,
that the “ceiling” regime that underlies the OH variable
can be activated only when the “floor” regime is off, rul-
ing out the possibility that a high-growth recovery from
the trough of a recession is labeled as “overheating”. There
is also a requirement of two consecutive quarters of fast
growth above the threshold level �C in order to avoid label-
ing a single quarter of fast growth as “overheating”. Mean-
while, a heteroskedastic version of the model allows the
variance of the shocks to evolve as follows:

�2t D �
2
1 � I (Ft�1 C Ct�1 D 0)C�22 Ft�1C�

2
3Ct�1 : (27)

Also, in a triumph of controlled complexity, Koop and
Potter [92] develop a multivariate version of this model,
discussed later.
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A related literature on STAR models of business cy-
cle asymmetry includes Teräsvirta and Anderson [143],
Teräsvirta [141], van Dijk and Franses [148], and Öcal
and Osborn [117]. Similar to the development of Markov-
switching models and TAR models, van Dijk and
Franses [148] develop a multi-regime STAR model and
find evidence for more than two regimes in economic ac-
tivity. Likewise, using U.K. data on industrial production,
Öcal and Osborn [117] find evidence for three regimes
corresponding to recessions, normal growth, and high
growth. Rothman, van Dijk, and Franses [130] develop
a multivariate STAR model to examine nonlinearities in
the relationship between money and output.

While there are many different nonlinear models of
economic activity, it should be noted that, in a general
sense,Markov-switchingmodels and thresholdmodels are
close substitutes for each other in terms of their abilities to
forecast (see [23]) and their abilities to capture business
cycle asymmetries such as deepness, steepness, and sharp-
ness (see [24]). On the other hand, specific models are par-
ticularly useful for capturing specific asymmetries and, as
discussed next, for testing the presence of nonlinear dy-
namics in macroeconomic time series.

Evidence

While estimates for regime-switching models often im-
ply the presence of business cycle asymmetries, it must be
acknowledged that the estimates may be more the con-
sequence of the flexibility of nonlinear models in fitting
the data than any underlying nonlinear dynamics. In the
regime-switching model context, an extreme example of
over-fitting comes from a basic i.i.d. mixture model. If
the mean and variance are allowed to be different across
regimes, the sample likelihood will approach infinity as the
estimated variance approaches zero in a regime for which
the estimated mean is equal to a sample observation. (It
should be noted, however, that the highest local maximum
of the sample likelihood for this model produces consis-
tent estimates of the model parameters. See [73]). Thus, it
is wise to be skeptical of estimates from nonlinear models
and to seek out a correct sense of their precision. Having
said this, the case for nonlinear dynamics that correspond
to business cycle asymmetries is much stronger than it is
often made out to be, although it would be a mistake to
claim the issue is settled.

From the classical perspective, the formal problem
of testing for nonlinearity with regime-switching mod-
els is that the models involve nuisance parameters that
are not identified under the null hypothesis of linearity,
but influence the distributions of test statistics. For exam-

ple, Hamilton’s [59] model outlined in (8)–(9) collapses
to a linear AR model if �1 D �2. However, under this
null hypothesis, the two independent transition probabil-
ities p11 and p22 in the transition matrix will no longer be
identified (i. e., they can take on different values without
changing the fit of the model). The lack of identification of
these nuisance parameters is referred to as the Davies [32]
problem and it means that test statistics of the null hypoth-
esis such as a t-statistic or a likelihood ratio (LR) statistic
will not have their standard distributions, even asymptot-
ically. An additional problem for Markov-switching mod-
els is that the null hypothesis of linearity often corresponds
to a local maximum for the likelihood, meaning that the
score is identically zero for some parameters, thus violat-
ing a standard assumption in classical testing theory. The
problem of an identically zero score is easily seen by not-
ing that one of the fundamental tests in classical statis-
tics, the Lagrange multiplier (LM) test, is based on de-
termining whether the score is significantly different than
zero when imposing the null hypothesis in a more general
model. For Hamilton’s [59] model, the scores are zero for
�d D �2 � �1, p11, and p22. Again, identically zero scores
imply nonstandard distributions for a t-statistic or an LR
statistic. In practice, these nonstandard distributions mean
that, if researchers were to apply standard critical values,
they would over-reject linearity.

Hansen [61] derives a bound for the asymptotic dis-
tribution of a likelihood ratio statistic in the setting of
unidentified nuisance parameters and identically zero
scores. The bound is application-specific as it depends on
the covariance function of an empirical process associated
with the likelihood surface in a given setting (i. e., it is
model and data dependent). The distribution of the em-
pirical process can be obtained via simulation. In his ap-
plication, Hansen [61] tests linearity in US real GNP using
Hamilton’s [59] model. His upper bound for the p-value
of the likelihood ratio test statistic is far higher than con-
ventional levels of significance. Thus, he is unable to reject
linearity with Hamilton’s [59] model. However, when he
proposes an extended version of the model that assumes
switching in the intercept and AR coefficients, rather than
the mean as in (8)–(9), he is able to reject linearity with an
upper bound for the p-value of 0.02.

In a subsequent paper, Hansen [62] develops a differ-
ent method for testing in the presence of unidentified nui-
sance parameters that yields an exact critical value rather
than an upper bound for a p-value. Again, the method
requires simulation, as the critical value is model and
data dependent. However, this approach assumes non-
zero scores and is, therefore, more appropriate for testing
threshold models than Markov-switching models. In his
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application for this approach, Hansen [62] tests linearity in
US real GNP using Potter’s [121] TAR model mentioned
earlier (see also [17,63,146,147], on testing TAR models
and [140], on testing STAR models). Referring back to the
TAR model in (17), the threshold � and the delay parame-
ter m are unidentified nuisance parameters under the null
of linearity (i. e., the case where the AR parameters and any
other parameters that are allowed to switch in the model
are actually the same across regimes). Hansen [62] finds
that the p-values for a variety of test statistics are above
conventional levels of significance, although the p-value
for the supLM (i. e., the largest LM statistic for different
values of the nuisance parameters) under the hypothesis
of homoskedastic errors is 0.04, thus providing some sup-
port for nonlinearity.

Garcia [53] reformulates the problem of testing for
Markov-switching considered in Hansen [61] by proceed-
ing as if the score with respect to the change in Markov-
switching parameters (e. g., �d D �2 � �1 for Hamil-
ton’s [59], model) is not identically zero and examining
whether the resulting asymptotic distribution for a likeli-
hood ratio test statistic is approximately correct. The big
advantage of this approach over Hansen [61] is that the
distribution is no longer sample-dependent, although it
is still model-dependent. Also, it yields an exact critical
value instead of an upper bound for the p-value. Gar-
cia [53] reports asymptotic critical values for some basic
Markov-switching models with either no linear dynamics
or a mild degree of AR(1) linear dynamics (� D 0:337)
and compares these to critical values based on a simu-
lated distribution of the LR statistic under the null of lin-
earity and a sample size of 100. He finds that his asymp-
totic critical values are similar to the simulated critical val-
ues for the simple models, suggesting that they may be
approximately correct despite the problem of an identi-
cally zero score. The asymptotic critical values are consid-
erably smaller than the simulated critical values in the case
of Hamilton’s [59] model with an AR(4) specification, al-
though this is perhaps due to small sample issues rather
than approximation error for the asymptotic distribution.
Regardless, even with the asymptotic critical values, Gar-
cia [53] is unable to reject linearity for US real GNP using
Hamilton’s [59] model at standard levels of significance,
although the p-value is around 0.3 instead of the upper
bound of around 0.7 for Hansen [61].

It is worth mentioning that the simulated critical val-
ues in Garcia’s [53] study depend on the values of param-
eters used to simulate data under the null hypothesis. That
is, the LR statistic is not pivotal. Thus, the approach of
using the simulated critical values to test linearity would
correspond to a parametric bootstrap test (see [105,106],

for excellent overviews of bootstrap methods). The use
of bootstrap tests (sometimes referred to as Monte Carlo
tests, although see MacKinnon [105,106], for the distinc-
tion) for Markov-switching models has been limited (al-
though see [96], for an early example) for a couple of rea-
sons. First, the local maximum at the null hypothesis that
is so problematic for asymptotic theory is also problem-
atic for estimation. While a researcher is likely to re-esti-
mate a nonlinear model using different starting values for
the parameters when an optimization routine converges
to this or another local maximum in an application, it is
harder to do an exhaustive search for the global maximum
for each bootstrap sample. Thus, the bootstrapped critical
valuemay be much lower than the true critical value (note,
however, that Garcia’s [53], bootstrapped critical values
were considerably higher than his asymptotic critical val-
ues). Second, given the unidentified nuisance parameters,
the test statistic may not even be asymptotically pivotal.
Thus, it is unclear how well the bootstrapped distribution
approximates the true finite sample distribution. Despite
this, bootstrap tests have often performed better in terms
of size (the probability of false rejection of the null hypoth-
esis in repeated experiments) than asymptotic tests in the
presence of unidentified nuisance parameters. For exam-
ple, Diebold and Chen [37] consider Monte Carlo analy-
sis of bootstrap and asymptotic tests for structural change
with an unknown breakpoint that is a nuisance parameter
and find that the bootstrap tests perform well in terms of
size and better than the asymptotic tests. Enders, Falk, and
Siklos [44] find that bootstrap and asymptotic tests both
have size problems for TAR models, although bootstrap
LR tests perform better than the asymptotic tests or other
bootstrap tests. In terms of testing for nonlinearity with
Markov-switching models, Kim, Morley, and Piger [83]
bootstrap the distribution of the LR statistic testing linear-
ity for the bounceback model discussed above and reject
linearity with a p-value of less than 0.01. The local max-
imum problem is addressed by conducting a grid search
across transition probabilities.

In a recent paper, Carrasco, Hu, and Ploberger [15]
develop an information matrix-type test for Markov-
switching that is asymptotically optimal and only re-
quires estimation under the null of no Markov-switch-
ing (their null allows for other forms of nonlinearity such
as ARCH). At this point, there is little known about
the finite sample properties of the test. However, Car-
rasco, Hu, and Ploberger [15] show that it has higher
power (probability of correct rejection of the null hypoth-
esis in repeated experiments) than Garcia’s [53] approach
for a basic Markov-switching model with no autoregres-
sive dynamics. Hamilton [60] applies Carrasco, Hu, and
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Ploberger’s [15] method to test for Markov switching in
the US unemployment rate (he also provides a very help-
ful appendix describing how to conduct the test). The null
hypothesis is a linear AR(4) model with student t errors.
The alternative is an AR(4) with student t errors where the
intercept is Markov-switching with three regimes. The test
statistic is 26.02, while the 5 percent critical value is 4.01.
Thus, linearity can be rejected for the unemployment rate.
Meanwhile, the estimated Markov-switching model im-
plies asymmetry in the form of steepness (the unemploy-
ment rate rises above its average more quickly than it falls
below its average rate).

In contrast to Markov-switching models or threshold
models, Beaudry and Koop’s [6] ARMA model with the
CDR variable provides a very simple test of nonlinearity.
In particular, for their preferred specification, Beaudry and
Koop [6] find support for nonlinearity with a t-statistic
of 3.39 for the CDR variable. Hess and Iwata [68] ques-
tion the significance of this statistic on the basis of Monte
Carlo analysis. However, the data generating process in
their Monte Carlo study assumed no drift in the simulated
“output” series, meaning that the simulated CDR variable
behaves much like a unit root process. By contrast, given
drift, the CDR variable can be expected to revert to zero
over a fairly short horizon, as it does in the real world (see
Fig. 8). Elwood [43] develops an unobserved components
model with a threshold process for the transitory compo-
nent and argues that there is no evidence for asymmetry
in the responses to positive and negative shocks. However,
his model does not confront the key distinction between
large negative shocks versus other shocks that Beaudry
and Koop [6] address directly with the inclusion of the
CDR variable in their model. A more fundamental issue
is whether the CDR variable is merely a proxy for an-
other variable such as the unemployment rate or interest
rates and the apparent nonlinearity is simply the result of
an omitted variable. However, as discussed in more detail
later, the results in Clarida and Taylor [22] andMorley and
Piger [113] suggest that Beaudry and Koop’s [6] model is
capturing a nonlinear dynamic that is fundamentally dif-
ferent than what would be implied by any linear model.

Hess and Iwata [69] provide a more formidable chal-
lenge to Beaudry and Koop’s [6] model, and, indeed, to
many of the regime-switching models discussed earlier,
by examining the relative abilities of linear and nonlin-
ear models to reproduce particular features of US real
GDP. This alternative form of model evaluation is related
to encompassing tests for non-nested models (see [110],
on encompassing tests and [9], on the use of encompass-
ing tests to evaluate Markov-switching models). In par-
ticular, Hess and Iwata [69] simulate data from a va-

riety of models of output growth, including an AR(1)
model, an ARMA(2,2) model, Beaudry and Koop’s [6]
model, Potter’s [121] two-regime TARmodel, Pesaran and
Potter’s [120] “floor and ceiling” model, Hamilton’s [59]
two-regime Markov-switching model, and a three-regime
Markov-switching model with restrictions on the transi-
tion matrix as in Boldin [8]. They then consider whether
the simulated data for each model can successfully repro-
duce “business cycle” features in terms of the duration and
amplitude of expansions and recessions. Their definition
of the business cycle is related to the level of real GDP.
However, they label any switch between positive and nega-
tive growth, nomatter how short-lived, to be a business cy-
cle turning point. For US real GDP, their approach identi-
fies twice as many turning points as reported by the NBER.
Under this definition, Hess and Iwata [69] find that the
linear AR(1) model is better than the nonlinear models at
reproducing the duration and amplitude of “expansions”
and “recessions” in US real GDP.

Harding and Pagan [65] and Engel, Haugh, and Pa-
gan [45] confirm Hess and Iwata’s [69] findings of little or
no “value-added” for nonlinear models over linear models
using a business cycle dating procedure that more closely
matches NBER dates. The procedure is a quarterly ver-
sion of an algorithm by Bry and Broschan [12] and iden-
tifies recessions as being related to two consecutive quar-
ters of decline in real GDP. In terms of nonlinear mod-
els, Engel, Haugh, and Pagan [45] move beyond Hess and
Iwata [69] by considering van Dijk and Franses’ [149] ver-
sion of the floor and ceiling model with ARCH errors,
Kim, Morley, and Piger’s [83] bounceback model, and De-
Jong, Liesenfeld, and Richard’s [34] tension index model.
Meanwhile, Clements and Krolzig [25] find that multi-
variate two-regime Markov-switching models provide lit-
tle improvement over linear models in capturing business
cycle features.

However, beyond the issue of how to define a busi-
ness cycle, the major question in the literature on repro-
ducing business cycle features is which features to con-
sider. Galvão [52], Kim, Morley, and Piger [83], and Mor-
ley and Piger [111] examine the ability of linear and non-
linear models to capture high-growth recoveries that are
related to the severity of the preceding recessions, which is
the asymmetry emphasized by Friedman [50], Wynne and
Balke [150], Sichel [134], and Balke andWynne [2]. When
considering this feature, there is strong support for Kim
and Nelson’s [79] plucking model and Kim, Morley, and
Piger’s [83] bounceback model over linear models. Inter-
estingly, the three-regime Markov-switching model does
not reproduce this feature. In particular, even though it
implies high-growth recoveries, the fixed transition prob-
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abilities mean that the strength of the recovery is indepen-
dent of the severity of the preceding recession. However,
the strong support for the pluckingmodel and bounceback
model over linear models when considering the relation-
ship between recessions and their recoveries represents
a major reversal of the earlier findings for linear models
by Hess and Iwata [69] and others.

In terms of directly testing business cycle asymmetries,
DeLong and Summers [35] consider a nonparametric test
for steepness in real GNP and unemployment rates for
eight countries (including the US). In particular, they test
for skewness in output growth rates and changes in un-
employment rates. With the exception of changes in the
US unemployment rate, the measures of economic activity
produce no statistically significant evidence of skewness,
although the point estimates are generally large and neg-
ative for output growth and large and positive for the un-
employment rates. Of course, given that the nonparamet-
ric test of skewness is unlikely to have much power for the
relatively small sample sizes available in macroeconomics,
it is hard to treat the non-rejections as particularly deci-
sive. In amore parametric setting, Goodwin [56] considers
a likelihood ratio test for sharpness using Hamilton’s [59]
model. Applying the model and test to real GNP for eight
countries (including the US), he is able to reject non-
sharpness in every country except Germany. In a more
general setting, Clements and Krolzig [24] develop tests
of deepness, steepness, and sharpness that are conditional
on the number of regimes. For a three-regime model, they
are able to reject the null hypotheses of no steepness and
no sharpness in US real GDP growth, although the test
results are somewhat sensitive to the sample period con-
sidered. Meanwhile, Ramsey and Rothman [124] develop
a test of time reversibility and find that many measures
of economic activity are irreversible and asymmetric, al-
though the nature of the irreversibility does not always
provide evidence for nonlinearity.

In addition to classical tests of nonlinear models and
the encompassing-style approach discussed above, there
are two other approaches to testing nonlinearity that
should be briefly mentioned: nonparametric tests and
Bayesian model comparison. In terms of nonparametric
tests, there is some evidence for nonlinearity in macroec-
onomic time series. For example, Brock and Sayers [11]
apply the nonparametric test for independence (of “pre-
whitened” residuals using a linear AR model) developed
by Brock, Dechert, and Schienkman [10] and are able to
reject linearity for the US unemployment rate and in-
dustrial production. However, as is always the case with
such general tests, it is not clear what alternative is be-
ing supported (i. e., is it nonlinearity in the conditional

mean or time-variation in the conditional variance?). Also,
again, the nonparametric approach is hampered in macro-
economics by relatively small sample sizes. In terms of
Bayesian analysis, there is some support for nonlinear-
ity related to business cycle asymmetry using Bayes fac-
tors for multivariate models (see [80]). Bayes factors cor-
respond to the posterior odds of one model versus another
given equal prior odds. In essence, they compare the rela-
tive abilities of two models to predict the data given the
stated priors for the model parameters. Obviously, Bayes
factors can be sensitive to these priors. However, given
diffuse priors, they have a tendency to favor more tightly
parametrized models, as some of the prior predictions
from the more complicated models can be wildly at odds
with the data. Thus, because the findings in favor of non-
linear models correspond to relatively more complicated
models, evidence for nonlinearity using Bayes factors is
fairly compelling.

Relevance

Even accepting the presence of nonlinear dynamics related
to business cycle asymmetry, there is still a question of eco-
nomic relevance. Following the literature, the case can be
made for relevance in three broad, but related areas: fore-
casting, macroeconomic policy, and macroeconomic the-
ory.

In terms of forecasting, the nonlinear time series mod-
els discussed earlier directly imply different conditional
forecasts than linear models. Beaudry and Koop’s [6]
model provides a simple example with a different implied
persistence for large negative shocks than for other shocks.
By contrast, linear models imply that the persistence of
shocks is invariant to their sign or size. Koop, Pesaran, and
Potter [94] develop “generalized impulse response func-
tions” to examine shock dynamics for nonlinear models.
Their approach involves simulating artificial time series
both in the presence of the shock and in the absence of
the shock, holding all else (e. g., other shocks) equal, and
comparing the paths of the two simulated time series. This
simulation can be done repeatedly for different values of
other shocks in order to integrate out their impact on the
difference in conditional expectations of the time series
implied by presence and absence of a shock. Clarida and
Taylor [22] use related simulated forecasts to carry out the
Beveridge–Nelson (BN) decomposition (see [7]) for US
real GNP using Beaudry and Koop’s [6] model. The BN
decomposition produces estimates of the permanent and
transitory components of a time series based on long-hori-
zon conditional forecasts. Importantly, the estimated cycle
(under the “deviations” definition of the business cycle)
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“Bounceback” cycle and NBER recessions (Source: Author’s calculations based on Morley and Piger [113], and NBER website)

for Beaudry and Koop’s [6] model displays deepness that
would be difficult to replicate with any linear forecasting
model, even with multivariate information. Thus, there is
a direct sense in which Beaudry and Koop’s [6] model is
not just approximating a linear multivariate model.

In a recent paper, Morley and Piger [112] develop an
extension of the BN decomposition that produces optimal
(in a “minimum mean squared error” sense) estimates of
the cyclical component of an integrated time series when
the series can be characterized by a regime-switching pro-
cess such as for a Markov-switching model with fixed
transition probabilities. The approach, which is labeled
the “regime-dependent steady-state” (RDSS) decomposi-
tion, extracts the trend by constructing a long-horizon
forecast conditional on remaining in a particular regime
(hence, “regime-dependent”). In Morley and Piger [113],
the RDSS decomposition is applied to US real GDP us-
ing the “depth” version of Kim, Morley, and Piger’s [83]
bounceback model given by (8) and (16). Figure 9 presents
the estimated cycle for a version of the model with a struc-
tural break in �2,�1, and�2 in 1984:Q2 to account for the
Great Moderation. The figure also displays an indicator
variable for NBER-dated recessions for each quarter from
1949:Q2 to 2006:4. (For visual ease, the indicator variable
is � 8 in expansions and � 6 in recessions).

There are three particularly notable features of the cy-
cle in Fig. 9. First, there is a close correspondence between
the big negative movements in it and the NBER-dated pe-
riods of recession. Thus, in practice, there is a direct rela-
tionship between the level and deviations definitions of the
business cycle discussed earlier. Also, this correspondence
directly implies that the NBER is identifying a meaning-
ful macroeconomic structure (i. e., it is capturing a phase

that is closely related to large movements in the transitory
component of economic activity), rather than merely not-
ing negative movements in economic activity. Second, it is
fairly evident from Fig. 9 that the cycle displays all three
business cycle asymmetries in the form of deepness, steep-
ness, and sharpness. Third, the unconditional mean of the
cycle is negative. As discussed in Morley and Piger [113],
this finding stands in contrast to cyclical estimates for all
linear models, whether univariate or multivariate.

The negative mean of the cycle in US real GDP has
strong implications for the potential benefits of macro-
economic stabilization policy. Lucas [102,103] famously
argued that the elimination of all business cycle fluctua-
tions would produce a benefit equivalent to less than one-
tenth of one percent of lifetime consumption. One rea-
son for this extraordinarily low estimate is that his calcu-
lation assumes business cycle fluctuations are symmetric.
However, as discussed in DeLong and Summers [36], Co-
hen [28], Barlevy [5], and Yellen and Akerlof [151], a non-
zero mean cyclical component of economic activity di-
rectly implies that stabilization policies, if effective, could
raise the average level of output and lower the average level
of the unemployment rate. In this setting, the potential
benefits of stabilization policy are much larger than cal-
culated by Lucas [102,103]. (In deference to Milton Fried-
man and his plucking model, it is worth mentioning that
the optimal “stabilization” policy might be a passive rule
that prevents policymakers from generating recessionary
shocks in the first place. Regardless, the point is that, given
a negativemean for the cycle in real GDP, the costs of busi-
ness cycles are high and can be affected by policy).

A related issue is asymmetry in terms of the effects of
macroeconomic policy on economic activity. For example,
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DeLong and Summers [36] and Cover [31] find that nega-
tive monetary policy shocks have a larger effect on output
than positive shocks of the same size (the so-called “push-
ing on a string” hypothesis). This form of asymmetry re-
presents a third type of nonlinearity in macroeconomics
beyond structural change and business cycle asymmetry,
although it is clearly related to business cycle asymmetry.
Indeed, Garcia and Schaller [54] and Lo and Piger [99]
considerMarkov-switchingmodels and find that asymme-
try in the effects of monetary policy shocks is more closely
related to whether the economy is in an expansion or a re-
cession, rather thanwhether the shock was positive or neg-
ative. In particular, positive shocks can have large effects
on output, but only in recessions. There is an obvious link
between this result, which is suggestive of a convex short-
run aggregate supply curve rather than the “pushing on
a string” hypothesis, and the business cycle displayed in
Fig. 9, which is also highly suggestive of a convex short-
run aggregate supply curve.

In addition to the implications for more traditional
theoretical notions in macroeconomics such as the shape
of the short-run aggregate supply curve, the findings
for business cycle asymmetry are important for modern
macroeconomic theory because dynamic stochastic gen-
eral equilibrium (DSGE) models are often evaluated and
compared based on their ability to generate internal prop-
agation that matches what would be implied by linear AR
and VAR models of US real GDP (see, for example [126]).
These linear models imply a time-invariant propagation
structure for shocks, while the business cycle presented in
Fig. 9 suggests that theory-based models should instead be
evaluated on their ability to generate levels of propagation
that vary over business cycle regimes, at least if they are
claimed to be “business cycle” models.

Future Directions

There are several interesting avenues for future research in
nonlinear time series in macroeconomics. However, two
follow directly from the findings on nonlinearities sum-
marized in this survey. First, in terms of structural change,
it would be useful to determine whether the process of
change is gradual or abrupt and the extent to which it is
predictable. Second, in terms of business cycle asymme-
tries, it would be useful to pin down the extent to which
they reflect nonlinearities in conditional mean dynamics,
conditional variance dynamics, and/or the contemporane-
ous relationship between macroeconomic variables.

The issue of whether structural change is gradual
or abrupt is only meaningful when structural change is
thought of as a form of nonlinearity in a time series

model. In particular, formal classical tests of structural
change based on asymptotic theory make no distinction
between whether there are many small change or a few
large changes. All that matters is the cumulative mag-
nitude of changes over the long horizon (see [42], on
this point). Of course, a time-varying parameter model
and a regime-switching model with permanent changes in
regimes can fit the data in very different ways in finite sam-
ples. Thus, it is possible to use finite-sample model com-
parison (e. g., Bayes factors) to discriminate between these
two behaviors. It is even possible to use a particle filter to
estimate a nonlinear state-space model that nests large, in-
frequent changes and small, frequent changes (see [90]).
In terms of predicting structural change, Koop and Pot-
ter [93] develop a flexible model that allows the number
of structural breaks in a given sample and the duration of
structural regimes to be stochastic processes and discuss
estimation of the model via Bayesian methods.

The issue of the relative importance of different types
of recurring nonlinearities is brought up by the findings
in Sims and Zha [136], discussed earlier, that there are
no changes in the conditional mean dynamics, but only
changes in the conditional variance of shocks for a struc-
tural VAR model of the US economy. Likewise, in their
multivariate three-regime TAR model, Koop and Pot-
ter [92] consider a VAR structure, and find that a lin-
ear VAR structure with heteroskedastic errors is preferred
over a “vector floor and ceiling” structure for the condi-
tional mean dynamics. The question is how to reconcile
these results with the large body of evidence supporting
nonlinearity in conditional mean dynamics discussed at
length in this survey. A short answer is that VAR models
are highly parametrized in terms of the conditional mean.
Thus, it may be hard to identify regime shifts or nonlin-
ear forms of time-variation in conditional means using
a VAR model, even if they are present. On the other hand,
even for their nonlinear model, Koop and Potter [92] find
stronger evidence for nonlinearity in the contemporane-
ous relationship between variables than in the conditional
mean dynamics. Meanwhile, in terms of multivariate anal-
ysis, consideration of more parsimonious factor models
has typically increased the support for nonlinear models
over linear models (e. g. [80]). Thus, a full comparison of
different types of nonlinearity in the context of a parsimo-
nious nonlinear model would be useful.

Another important avenue for future research in
macroeconomics is an increased integration of the find-
ings in nonlinear time series into macroeconomic theory.
In terms of structural change, there has been considerable
progress in recent years. In particular, some of the papers
on changes in policy regimes discussed earlier (e. g. [123,
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136]) can be classified as “theory-oriented” given their
consideration of structural VAR models. Another non-
linear time series paper on changing policy regimes with
a structural model is Owyang and Ramey [118], which
considers the interaction between regime switching in the
Phillips curve and the policy rule. Meanwhile, Fernández-
Villaverde and Rubio-Ramírez [47] and King [89] directly
incorporate structural change (of the gradual form) in the-
ory-based DSGE models, which they proceed to estimate
with the aid of particle filters. In terms of Bayesian anal-
ysis of the sources of the Great Moderation, Chauvet and
Potter [20] and Kim, Nelson, and Piger [82] consider dis-
aggregated data (in a joint model and separately, respec-
tively) and find that the decline in volatility of economic
activity is a broadly-based phenomenon, rather than cor-
responding to particular sectors, while Kim, Morley, and
Piger [86] employ structural VAR models and find that
the decline in volatility cannot be explained by changes
in aggregate demand shocks, monetary policy shocks, or
the response of the private sector or policymakers to
shocks.

In terms of the integration of business cycle asym-
metries into macroeconomic theory, there has been less
progress in recent years, perhaps due the obviously
greater difficulty in modeling endogenous regime switch-
ing than in simply assuming exogenous structural change.
However, the theoretical literature contains some work
on asymmetries. In particular, mechanisms for regime
switching in the aggregate data that have been considered
in the past include spillovers and strategic complementar-
ities [41], animal spirits [70], a history-dependent selec-
tion criterion in an economy with multiple Nash equilib-
ria corresponding to different levels of productivity [30],
and intertemporal increasing returns [1]. However, Pot-
ter [122] notes that, while these mechanisms can gener-
ate regime switching in the aggregate data, they cannot
explain asymmetry in the form of high-growth recover-
ies following large negative shocks. He proposes a model
with Bayesian learning and an information externality
(see [16]) that can generate such dynamics. Meanwhile, in
terms of business cycle asymmetry more generally, obvi-
ous mechanisms are investment irreversibilities [55] and
capacity constraints [64]. More promisingly for future de-
velopments in macroeconomic theory, there is a grow-
ing empirical literature on the sources of business cycle
asymmetries. For example, Korenok, Mizrach, and Rad-
chenko [95] use disaggregated data and find that asymme-
tries are more pronounced in durable goods manufactur-
ing sectors than nondurable goods manufacturing sectors
(also see [129]) and appear to be related to variation across
sectors in credit conditions and reliance on raw material

inventories, while they do not appear to be related to oil
price shocks [33] or adjustment costs [3].
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Glossary

Feature It is a dimension of some multi-variate data. It is
also called “attribute” or “variable”. A feature can have
continuous, discrete, or nominal values.

Feature selection It is a task of selecting some features
from a given set of features according to some perfor-
mance criterion.

Supervised learning It is a machine learning task that
learns patterns (or hypotheses, models) from labeled
data.

Unsupervised learning It is a machine learning task that
learns patterns (or hypotheses, models) from unla-
beled data.

Semi-supervised learning It is a machine learning task
that learns patterns (or hypotheses, models) from par-
tially labeled data.

Search It is to find a solution in a search space which con-
tains all possible solutions. There exist a large body
of search algorithms ranging from uninformed to in-
formed.

Ranking It is to order concerned items according to some
metric. Ranked features indicate their relevance or im-
portance.

Evaluation It is an important task that measures the qual-
ity of some machine learning task, e. g., feature selec-
tion.

Definition of the Subject

Feature selection is the study of algorithms for reducing
dimensionality of data for various purposes. One of the
most common purposes is to improve machine learning
performance. The other purposes include simplifying data
description, streamlining data collection, improving com-
prehensibility of the learned models, and helping gain in-
sight through learning.

The objective of feature selection is to remove irrele-
vant and/or redundant features and retain only relevant
features. Irrelevant features can be removedwithout affect-

ing learning performance. Redundant features are a type of
irrelevant features. The distinction is that a redundant fea-
ture implies the co-presence of another feature; individu-
ally, each feature is relevant, but the removal of either one
will not affect learning performance.

As a plethora of data are generated in every possible
means with the exponential decreasing costs of data stor-
age and computer processing power, data dimensionality
increases on a scale beyond imagination in cases rang-
ing from transactional data to high-throughput data. In
many fields such asmedicine, health care,Web search, and
bioinformatics, it is imperative to reduce high dimension-
ality such that efficient data processing and meaningful
data analysis can be conducted in order to mine nuggets
from high-dimensional, massive data.

Introduction

For a dataset with N features and M dimensions (or fea-
tures, attributes), feature selection aims to reduceM to M0

and M0 � M. For example, in bioinformatics, some gene
expression dataset can have 40,000 genes, and biologists
often want to reduce that large number to a manageable
figure, say, a few dozens or a couple of hundreds. It is an
important and widely used approach to dimensionality re-
duction. Another effective approach is feature extraction.
One of the key distinctions of the two approaches lies at
their outcomes. Assuming we have four features F1, F2,
F3, F4, if both approaches result in 2 features, the 2 selected
features are a subset of 4 original features (say, F1, F3), but
the 2 extracted features are some combination of 4 original
features (e. g., F 01 D

P
aiFi and F 02 D

P
bi Fi where ai, bi

are some constants). Feature selection is commonly used
or preferred in applications where original features need to
be retained. Some examples are document categorization,
medical diagnosis and prognosis, gene-expression profil-
ing. We focus our discussion on feature selection.

Broadly speaking, two factors matter most for effec-
tive learning: (1) the number of features (M), and (2) the
number of instances (N). For a fixed M, a larger N means
more constraints, and the resulting correct hypothesis is
expected to be more reliable. For a fixed N, a decreased
M amounts to a significantly increased number of in-
stances. Consider the following thought experiment for
a binary domain of a binary classification problem: F1,
F2, F3, F4 are binary and class C is also binary (e. g., pos-
itive or negative). If the training data is of 4 instances
(N D 4), it is only a quarter of all possible number of
instances (24 D 16). The size of the hypothesis space is
224 D 65; 536. If only two features are relevant, the size of
the hypothesis space becomes 222 D 16, an exponential re-
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duction of the hypothesis space. Now, the only available 4
instances might suffice for perfect learning if there is no
duplicate instance in the reduced training data with two
features. And a resulting model of 4 features can also be
more complex than that of 2 features. Hence, feature se-
lection can effectively reduce the hypothesis space, or vir-
tually increase the number of training instances, and help
create a compact model.

An unnecessarily complex learning model subjects
itself to over-searching an excessively large hypothesis
space. Its consequence is that the learned hypothesis over-
fits the training data and may not perform well when ap-
plying the learned model to the unseen data. Another way
of describing the relationship between N and M in the
context of learning is the so-called curse of dimension-
ality [2], the need for the exponential increase in data size
associated with linearly adding additional dimensions to
a multi-dimensional space [10]; or the concept of proxim-
ity becomes blurry in a high-dimensional space [22], re-
sulting in degrading learning performance. Theoretically,
the reduction of dimensionality can eventuate the expo-
nential shrinkage of hypothesis space [15].

Basics of Feature Selection

Feature selection algorithms can be studied in various per-
spectives [21]. We choose to discuss four aspects in terms
of the outcomes of feature selection (subsets or ranked
lists), evaluation of feature selection algorithms, and an
intuitive way of categorizing feature selection algorithms
(supervised vs. unsupervised).

Searching for Feature Subsets

SelectingM0 out ofM features whereM0 � M can be con-
veniently defined as a problem of search [27]. Starting with
an initial state, search techniques use an explicit search tree
generated by a successor function. Depending on search
techniques, the search tree can define the search space (in
case of exhaustive search) and can be some paths from the
initial state to the goal (solution) state (in case of heuristic
search). The search space generated by exhaustive search
can be O(bd ) where b is a branching factor and d is the
depth where a solution can be found. First, we introduce
the concept of search direction. In the case of searchingM0

outM features, one can start searching in various ways, or
search direction. If one starts with an empty feature set and
adds subsequent features into it one (or a few) at a time,
it is called forward search; if one starts with a full set and
removes irrelevant features one at a time, it is backward
search. Other search directions are bi-directional, random
or stochastic. Take the example of forward selection. As-

suming that we have 4 features, do not know howmany are
relevant, but in effect 2 of them are relevant, we start with
finding the best 1 out of 4 features and check if the one best
feature can satisfy some performance criterion indicating
we have found sufficient and necessary relevant features. If
not, we need to find the best 2 out of 4 features. The search
continues until we either exhaust all possibilities

��4
1

,
�4
2

,

and
�4
3

, or we find a smaller number of relevant features

(2 in this example). Hence, the big O analysis of time com-
plexity is O(2M). When M is large, it is evident that ex-
haustive search is infeasible.

It is necessary to resort to alternative search strate-
gies. One commonly adopted strategy is sequential selec-
tion. Sequential forward selection (SFS) retains the fea-
tures selected in the previous rounds, and sequential back
selection (SBS) keeps out the removed features in future
rounds. For example, if SFS selects F1 among F1, F2, F3,
F4 in the first round, F1 will always remain selected. In
other words, for the final two selected features, F1 is one
of them. Conversely, if F4 is removed by SBS in the first
round, it can be certain that F4 will not be included in the
final two selected features. Illustrative examples of sequen-
tial forward and backward search of are depicted in Fig. 1.
The sequential search eliminates the need of retrospect-

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Figure 1
Sequential forward and backward search in feature subset selec-
tion. a SFS to add F5. b SBS to remove F4
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ing and thus likely makes early commitments to selected
or removed features which might turn out to be subop-
timal. Given the time constraint, exhaustive research for
high-dimensional data can never be a practical option. The
question is whether alternative search strategies such as
sequential selection are sensible. As we know, given rel-
atively few data points (instances) with high dimensional-
ity, exhaustive search can lead to over-searching, resulting
in selecting those features thatmight not truly relevant fea-
tures if more instances were available. The reason behind it
is similar to that we discuss earlier in Sect. “Introduction”
about over-searching a large hypothesis space.

Now we turn our attention to another two pertinent
issues: (1) the measures of feature quality evaluation, and
(2) search stopping criteria. Let us assume that our pur-
pose of feature selection is to improve learning perfor-
mance (say, a classifier’s accuracy). Our obvious choice
of measuring feature quality is whether selected features
can help improve a learning model’s performance (e. g.,
a classifier’s accuracy), and the search stops when no im-
provement of estimated accuracy is observed. What we
just described is a so-called wrapper model for feature
selection [14] in which a learning model’s performance
serves as the feature-quality measure. The shortcomings
of a wrapper model are (1) the features are selected for im-
proving the chosen learning model (e. g., a classifier), and
thus might be idiosyncratic to that particular classifier, or
lack of generality; in other words, for a different classifier,
it is necessary to reselect features, and (2) every time when
a new feature subset is considered, a new classifier needs
to be built to obtain a new estimate of accuracy; this might
involve some cross validation procedure such as 10-fold,
5 � 2-fold cross validation for reliable estimation; and thus
it can be time consuming. A filter model of feature selec-
tion does not employ a learning model (say a classifier) in
evaluating the quality of selected features. Instead, it uses
some intrinsic data properties in determining how good
some features are. One measure is the correlation between
a feature (or a feature subset) with the class. Its gist is that
the least correlated feature is removed first. Depending on
how the search and comparison are performed, the selec-
tion or removal process may iterate until some stopping
criterion is met. We present one example in Sect. “Su-
pervised Feature Selection” when providing some specifics
about supervised feature selection algorithms.

A gamut of stopping criteria can be employed to help
determine when the selection or removal process should
stop. One intuitive criterion is the number of selected fea-
tures. Sometimes, this number is not known a priori. An-
other intuitive stopping criterion is that the selection or
removal process converges. For example, the further iter-

ations do not change the feature weights. If it converges
very slowly, one can specify a cap for the number of itera-
tions. For different feature quality measures [18], disparate
stopping criteria should be used. Taking consistency as the
measure of feature quality, one can remove features un-
til the minimum inconsistency allowed is exceeded. It is
clear that selecting a stopping criterion is not as straight-
forward as it seems. However, an existing feature selection
algorithm is often coupled with a fixed stopping criterion.
That significantly alleviates the need for a user. In addi-
tion, the domain knowledge and application requirements
should be considered in the selection of feature selection
algorithms and stopping criteria.

Ranking Features

Feature selection can be attained via feature ranking as
well. The basic idea is to assign weights to features accord-
ing to some weight updating principle. When the weight
updating does not result in any weight change, features
can be sorted according to their weights, and top ranked
features are then selected. The two key components of fea-
ture ranking algorithms are (1) weight updating, and (2)
when to stop. A simple ranking algorithm can have lin-
ear time complexity in terms of the number of features.
It measures the relationship between each feature and the
class attribute, and assigns bigger weights to those features
having stronger relationships. For example, one can use
correlation to measure the relationship between a contin-
uous feature and the class attribute. For a discrete feature
and the class, one can use information gain [24] as an ex-
ample. One can calculate the importance of each feature
with respect to the class and rank features accordingly. The
advantage of this ranking approach is that it is fast. Two
obvious shortcomings are (1) each feature’s importance
is measured independently of each other, and (2) redun-
dant features cannot be removed as they likely have simi-
lar rankings. More sophisticated ranking algorithms have
been developed. One idea is to use the boundary between
the instances of different classes to determine how impor-
tant features are. This treatment considers all features to-
gether in evaluating feature importance. A popular feature
ranking algorithm (ReliefF) is presented in Sect. “Super-
vised Feature Selection” to illustrate its working details.

Feature Selection Evaluation

The end results of feature selection are a subset of selected
features. Presumably, the selected feature subset should
contain all relevant features. Besides, different feature se-
lection algorithms eventuate differed results. It is incum-
bent to evaluate whether feature selection is effective in
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one of the intended purposes we outline in the beginning.
Evaluation can be made simple if we know the true, rele-
vant features. However, the dilemma is if we know what
the relevant features are, we really do not need to perform
feature selection; and when we need to select features, we
often have no inkling about what features are relevant.
That presents a challenge to the evaluation of feature selec-
tion. The evaluation of feature selection can be addressed
in two tasks. One task is whether feature selection helps or
not. The second task is which algorithm is better given two
feature selection algorithms. If we allow a dummy feature
selection algorithm that simply selects all features, we end
up having only the second task – which algorithm is better
given two feature selection algorithms.

A realistic issue of evaluation for feature selection now
is which algorithm should be adopted, given an applica-
tion or a data set. Without knowing what relevant features
are, we need to find out if the two algorithms are similar
or different. One commonly used evaluation method is to
check if the selected features can lead to better classifica-
tion accuracy (when the training data has class labels). It
consists of two basic steps. First, features subsets are se-
lected by both feature selection algorithms (A1 and A2),
named by F1 and F2. Second, employ a classifier (e. g., k-
NN, SVM, Decision Tree Induction, etc.) to induce mod-
els with F1 and F2, and compare their corresponding ac-
curacy rates. One feature selection algorithm is better than
the other if its feature subset results in better accuracy. De-
pending on how accuracy is estimated, specific procedures
may vary and it may be necessary to integrate the two
steps. For example, if a 10-fold cross validation method is
used for accuracy estimation, one may consider insert the
feature selection in the cross-validation process. The rami-
fications of so doing and alternatives are discussed in [25].

Another relevant issue about feature selection for clas-
sification is the correct use of training data which is used in
both phases of feature selection and classification. The use
of the same training data can cause the so-called feature
selection bias [28]. Theoretically, the data used in the two
phases should not be correlated. However, almost without
exceptions, researchers and practitioners employ the same
training data for both feature selection and classification
learning. The study reported in [28] investigates the effect
of feature selection bias, provides concrete evidence about
the minimal effect of feature selection bias in classification
learning, and illustrates why so. Research in [1,30] suggests
that in medicine and especially in bioinformatics, a feature
selection bias could have a significant impact that can have
serious consequences when applied as a clinical test. Fur-
ther research on feature selection bias in terms of various
performance measures should be encouraged.

So far, our discussion is based on the data with class
labels. This is because the corresponding supervised learn-
ing (e. g., classification) is one of the most familiar types
in machine learning and data mining. Equipped with ba-
sic concepts of feature selection, we are ready to consider
various types of feature selection algorithms.

Categories of Feature Selection Algorithms

Two main types of machine learning algorithms are su-
pervised and unsupervised based on the availability of la-
beling information in the data. Supervised learning is for
data with class labels, and unsupervised learning is mainly
for data without class labels. Feature selection algorithms
can be similarly divided into supervised and unsupervised
groups. In the early days of feature selection research, the
majority of feature selection algorithms are supervised (re-
fer to many algorithms surveyed in [5]). Since late 90s,
the demand for unsupervised feature selection increases
as data evolve with the rapid growth of computer gener-
ated data, text/Web data, and high-throughput data in ge-
nomics and proteomics [29]. Many unsupervised feature
selection algorithms have been developed [6,21]. Having
class labels or not necessitates the different ways of evalu-
ating feature quality for supervised and unsupervised fea-
ture selection. Lack of class labels can make the feature-
quality evaluation less clear-cut because in essence, unsu-
pervised learning (or feature selection) is a less constrained
problem than supervised one. More often than not, an un-
supervised feature selection algorithm adopts a wrapper
model approach as it relies on an unsupervised learning
algorithm to help determine if some features are relevant
or not. We elaborate the two types of feature selection al-
gorithms below with illustrative examples.

Supervised Feature Selection

To demonstrate the workings of supervised feature selec-
tion, we present two representative filter algorithms for
subset selection and feature ranking below. The subset se-
lection algorithm is called FCBF (Fast Correlation-Based
Filter). It is a search-based algorithm and designed to elim-
inate both irrelevant and redundant features [31]. It ex-
tends the usual feature-class correlation model by adding
pair-wise feature correlation in determining a feature’s rel-
evance. After a feature is determined to be selected, other
features are checked to see their necessity to remain in the
selected list of features. The concept is illustrated in Fig. 2.
There are 6 features ordered according to their individ-
ual class correlations. Starting with feature F1, one check
whether the remaining features are still needed as follows:
if their class correlations are smaller than their correlations
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Manipulating Data and Dimension Reduction Methods: Feature
Selection, Figure 2
The key concept of FCBF

Input: X; Y ; ı
Output: Sbest – the selected feature list
for i D 1 to N do1

calculate SUi;c for Fi ;2

append Fi to S0l i s t , if SUi;c > ı;3

end4

order S0l i s t in descending SUi;c value;5

Fj = getFirstElement(S0l i s t);6

while Fj ¤ NULL do7

Fi = getNextElement(S0l i s t; Fj);8

if Fi ¤ NULL then9

while Fi DD NULL do10

if SUi; j � SUi;c , remove Fi from11

S0l i s t ;
Fi D getNextEl ement(S0l i s t; Fi);12

end13

end14

Fj D getNextElement (S0l i s t ; Fj);15

end16

Sbest D S0list;17

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 1
FCBF – Fast Correlation-Based Filter

with F1, these features can be removed. In the figure, F2
and F4’s class correlations are smaller than their correla-
tions with F1 (thus F2 and F4 are redundantwith respect to
F1), hence, they can be removed. Likewise, F6 is removed
due to its high correlation with F3. After selection, F1, F3
and F5 are retained. If simply using these features’ class
correlations to determine relevance, F1, F2 and F3 will
be selected assuming we need 3 features. The algorithm
FCBF is given in Algorithm 1. It contains two major parts:
(1) ranking individual features based on their individual
class-correlations such that the feature with the highest
class-correlation is ranked first; and (2) going through the
ranked list one feature at a time and removing its redun-
dant features, and when every feature in the list is consid-
ered, the remaining features are selected features.

The second supervised feature selection algorithm is
ReliefF [26] which has significantly extended the work

Input: X; Y
Output: w – the vector of feature weight
w 0;1

for i D 1 to m do2

randomly select an instance Ri ;3

find k nearest hits Hj ;4

for each class C ¤ class(Ri) do5

from class C find k nearest missesMj(C);6

end7

end8

for each feature Fi do9

w(Fi) : D w(Fi) �
Pk

jD1
DIFF(A;Ri ;H j)

m�k10

C
P

C¤c l ass(Ri )



P(C)

1�P(c l ass(Ri ))

�

Pk
jD1 DIFF(A;Ri ;Mj(C))

m�k

�

end11

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 2
ReliefF

in [16]. The basic idea is that a relevant feature should
contribute to differentiate two nearby instances of differ-
ent classes. When this idea is implemented algorithmi-
cally, each feature is associated with a weight which is ad-
justed according to the the local geometry reflected by the
nears-hits and near-misses of sampled instances as shown
in Algorithm 2. Given an instance, its near-hit is a nearby
instance of the same class, and its near-miss is a nearby
instance of a different class. The two main parts are (1)
for every instance, find their near-hits and near-misses;
and (2) for each feature, adjust its weight according to
their contributions in terms of near-hits and near-misses.
DIFF() is a distance function (examples are hamming or
Euclidean distances).

When the number of instances is huge, ReliefF can
simply employ some sampling techniques [9] to select
a small sample from the data, instead of the whole available
data. Therefore, ReliefF can be a very efficient algorithm.

Unsupervised Feature Selection

Feature selection is also applied in unsupervised learn-
ing [7]. It has gained much attention in the recent years.
Most data collected are without class labels since labeling
data can incur huge costs. The basic principle of unsuper-
vised learning is to cluster data such that similar objects
(instances) are grouped together and dissimilar objects are
separated. For data of high-dimensionality, distance cal-
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culation can be a big problem due to the curse of dimen-
sionality. One idea is to find features that can promote the
data separability. A rudimentary idea of unsupervised fea-
ture selection can be implemented as follows: if one can
find a sufficient and necessary subset of features for each
cluster of data points, the union of these subsets may also
be sufficient and necessary. Since finding clusterings is not
a trivial matter, various approaches to unsupervised fea-
ture selection have been proposed. A recent comprehen-
sive survey of unsupervised feature selection algorithms
can be found in [6]. The goal of unsupervised feature se-
lection can be defined as finding the smallest feature subset
that best uncovers “interesting natural” clusters from data
according the chosen criterion (see [7]). A variant of un-
supervised feature selection is subspace clustering. It ex-
plores the fact that in a high-dimensional space, clusters
can often be found in various subspaces of very low di-
mensionality. Some subspace clustering algorithms are re-
viewed in [23].

An unsupervised feature selection algorithm, Lapla-
cian Score, is proposed in [11]. It is briefly described
here. Let X be a given date set, and S the matrix record-
ing similarity among instances. G(V ; E) denote the undi-
rected graph constructed from S, where V is the ver-
tex set, and E is the edge set. The ith vertex vi of G
corresponds to xi 2 X and there is an edge between
each vertex pair (vi ; v j), where the weight wij is deter-
mined by S, wi j D Si j . Given G, its adjacency matrix
W is defined as W(i; j) D wi j . Let d denote the vector:
d D fd1; d2; : : : ; dng, where di D

Pn
kD1 wik , the degree

matrix D of the graph G is defined by: D(i; j) D di if
i D j, and 0 otherwise. Given the adjacency matrixW and
the degree matrix D of G, the Laplacian matrix L and the
normalized Laplacian matrix L are defined as:

L D D �W ; L D D�
1
2 LD�

1
2 : (1)

Given a graphG, the Laplacian matrix of G is a linear
operator on feature vectors f D ( f1; f2; : : : ; fn)T 2 Rn :

hf; Lfi D fTLf D
1
2

X

v iÏv j

wi j(xi � x j)2 : (2)

The equation quantifies how much f varies locally or
how “smooth” it is over G. More specifically, the smaller
the value of < f; Lf >, the smoother the vector f on G.
A smooth vector f assigns similar values to the instances
that are close to each other onG, thus it is consistent with
the graph structure. Based on this concept, the Laplacian
Score algorithm for unsupervised feature selection is pro-
posed as shown in Algorithm 3.

Input: X; Y ; ı
Output: w – the vector of feature weight
for each feature Fi do1

f̂i D fi �
fTi D1
1T D11; w(Fi) D

f̂Ti L f̂i
f̂Ti D f̂i

;2

end3

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 3
Laplacian Score: An unsupervised feature selection algorithm

Some Recent ResearchDevelopment

As research in data processing and analysis advances, fea-
ture selection research also evolves in various ways. We
present three examples to illustrate some recent studies of
feature selection. One example is an attempt to unify su-
pervised and unsupervised feature selection via so-called
spectral feature selection. Another is of semi-supervised fea-
ture selection that can take advantage of both labeled and
unlabeled data. The third example is an introduction of
dealing with feature interaction in feature selection. In
Sect. ”Future Directions”, we will discuss some future di-
rections of feature selection research.

Spectral Feature Selection

There seems a chasm between supervised and unsuper-
vised feature selection as one works with class labels and
the other does not. A framework for feature selection en-
ables us to (1) jointly study supervised and unsupervised
feature selection algorithms, (2) gain a deeper understand-
ing of some existing successful algorithms, and (3) de-
rive novel algorithms with better performance. A unified
framework is proposed in [35] based on spectral graph
theory [4], and it is shown that existing powerful algo-
rithms such as ReliefF (supervised) and Laplacian Score
(unsupervised) are special cases of the proposed frame-
work.

Both supervised and unsupervised feature selection
can be viewed as an effort to select features that are con-
sistent with the target concept. In supervised learning, the
target concept is related to class affiliation, while in unsu-
pervised learning the target concept is usually related to
the innate structures of the data. Essentially, in both cases,
the target concept is related to dividing instances into well
separable subsets according to different definitions of the
separability. Pairwise instance similarity is widely used in
both supervised and unsupervised learning to describe the
relationships among instances. Given a set of pairwise in-
stance similarities S, the separability of the instances can
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be studied by analyzing the spectrum of the graph induced
from S. A unified framework for feature selection using
the spectrum of the graph induced from S is proposed
in [35]. By designing different S’s, the unified framework
can produce families of algorithms for both supervised and
unsupervised feature selection. For example, without us-
ing the class information, a popular similarity measure is
the RBF kernel function:

Si j D e�
kx1�x2k2

(2ı2) : (3)

Using the class labels, the similarity can be defined by:

Si j D

(
1
nl
; yi D y j D l

0 ; otherwise
(4)

where nl denotes the number of instances in class l.
One can apply L on a feature vector tomeasure its con-

sistency with the graph structure. In [35], three functions
are proposed to evaluate features so that feature selection
can be performed in three steps: (1) building similarity
set S and constructing its graph representation (Line 1–
3); (2) evaluating features using the spectrum of the graph
(Line 4–6); and (3) ranking features in descending order
in terms of feature relevance, where features selection is
accomplished by choosing the desired number of features
from the returned feature list (Line 7–8). The framework
is named as SPEC, stemming from the SPECtrum decom-
position of L.

The connections of the framework to unsupervised
and supervised feature selection algorithms (Laplacian

Input: X; � (�); k; b' 2 fb'1; b'2; b'3g – ranking
functions

Output: SFSPEC – the ranked feature list
construct S, the similarity set from X1

(and Y);
construct graph G from S;2

buildW; D and L from G;3

for each feature vector fi do4

bf i  
D

1
2 f i

jjD
1
2 f i jj

; SFSPEC (i) b'(Fi);5

end6

ranking SFSPEC in ascending order forb'1 and7

b'2, or descending order forb'3;
return SFSPEC ;8

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 4
SPEC

Score and ReliefF) are shown via both analysis and experi-
ments in [35]. The framework can also be used to system-
atically derive novel spectral algorithm by using different
S, � (�) and ranking functionsb'(�).

Semi-Supervised Feature Selection

While we are inundated with data, but labeled data is
costly to obtain. Nowadays it is also common to have
a data set with huge dimensionality but small labeled-sam-
ple size. The data sets of this kind present a serious chal-
lenge, the so-called small labeled-sample problem, to su-
pervised feature selection. In other words, when the la-
beled sample size is too small to carry sufficient informa-
tion about the target concept, supervised feature selection
algorithms might fail by either unintentionally removing
many relevant features or selecting irrelevant features. Un-
supervised feature selection algorithms can be an alterna-
tive in this case, as they are able to use large amounts of
unlabeled data. However, as these algorithms do not use
label information, important information about labels is
left out, and this can downgrade the performance of unsu-
pervised feature selection algorithms. Under the assump-
tion that labeled and unlabeled data are sampled from the
same population of the target concept, using both labeled
and unlabeled data is expected to better estimate feature
relevance. The task of learning from mixed labeled and
unlabeled data is of semi-supervised learning [3]. A semi-
supervised feature selection algorithm is proposed in [34]
to rank features through a regularization framework, in
which a feature’s relevance is evaluated by its fitness with
both labeled and unlabeled data.

Supervised and unsupervised feature selection meth-
ods require to measure feature relevance, but in differ-
ent ways. Therefore the key for designing an effective
semi-supervised feature selection algorithm is to ensure
that the relevance of a feature can be evaluated by both
labeled and unlabeled data in a natural way. The basic
idea is illustrated in Fig. 3. A feature vector fi is first
transformed into a cluster indicator so that each element
fi j ; ( j D 1; 2; : : : ; n) of fi indicates the affiliation of the
corresponding instance x j . The fitness of the cluster in-
dicator can be evaluated by two factors: (1) separability
of unlabeled data – whether the cluster structures formed
are well separable; and (2) separability of labeled data –
whether the cluster structures formed is consistent with
the given label information. The ideal case is that all la-
beled data in each cluster are of the same class.

It is clear that the spectral feature selection framework
(SPEC) naturally captures both types of separability. The
total separability can bemeasured through a regularization
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Manipulating Data and Dimension Reduction Methods: Feature Selection, Figure 3
The basic idea for comparing the fitness of cluster indicators according to both labeled and unlabeled data for semi-supervised
feature selection. “–” corresponds to instances of negative class, “+” to those of positive class, and “M” to unlabeled instances

in the following form:

'Su (Fi)C (1 � )'Ss (Fi ) (5)

where  is the regularization parameter about which part
(the supervised or the unsupervised part) is more impor-
tant. 'Ss (�) and 'Su (�) are the evaluation functions for su-
pervised part and unsupervised part respectively. The eval-
uation function for the supervised part is based on normal-
ized mutual information which is applied on the cluster
indicator derived from a feature and the class label. Given
the regularization framework, a semi-supervised feature
selection algorithm, sSelect is proposed in [34] in Algo-
rithm 5. More detailed analysis and experimental results
of sSelect can be found in [32].

Interacting Features

Feature interaction presents another challenge to feature
selection. A feature by itself may have little correlation
with the target concept, but when it is combinedwith some
other features, they can be strongly correlated with the tar-
get concept. Unintentional removal of these features can

Input: X; YL ; ; k
Output: SFsS e l ec t , the ranked feature list
construct k-neighborhood graph G from X;1

buildW; d and L from G;2

for each feature vector fi do3

construct gi from fi using ';4

calculate si , the score of Fi using Eq. (5);5

end6

SFsS e l ec t  ranking Fi in descending order;7

return SFsS e l ec t ;8

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 5
sSelect for Semi-supervised Feature Selection

result in poor classification performance. Existing efficient
feature selection algorithms usually assume feature inde-
pendence [5]. Because of the irreducible nature of feature
interactions, these algorithms either cannot select inter-
acting features or can only handle low-order interactions
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(2- or 3-way). The XOR problem is a good example of two
interacting features (F1 and F2). Considered individually,
the correlation between F1 and the classC (similarly for F2
and C) is zero, measured by mutual information. Hence,
F1 or F2 is irrelevant when each is individually evaluated.
However, if we combine F1 with F2, they are strongly rel-
evant in defining the target concept of XOR. An intrin-
sic character of feature interaction is its irreducibility [13],
i. e., a feature could lose its relevance due to the absence of
its interacting feature(s).

In [12], the authors suggest to use interaction gain as
a practical heuristic for detecting attribute interaction. Us-
ing interaction gain, their algorithms can detect if datasets
have 2-way (one feature and the class) and 3-way (two
features and the class) interactions. They further provide
in [13] a justification of the interaction information, and
replace the earlier notion of ‘high’ and ‘low’ with statis-
tical significance and illustrate the significant interactions
in the form of interaction graph. Handling feature interac-
tion can be computationally intractable. An efficient fea-
ture selection algorithm, INTERACT, is proposed in [33]
to handle feature interaction.

The three key components of INTERACT are: (1) con-
sistency based feature relevance measure: c-contribution.
C-contribution of a feature Fi is a function of F � fFig,
where F is the set of features forD. C-contribution of a fea-
ture is an indicator about how significantly the elimina-
tion of that feature will affect data consistency. (2) Sim-
plified backward elimination. To remove k out of n fea-
tures, we start from the end of the ranked list of features
to check if a feature’s c-contribution is below ı: if it is, the
feature is removed, otherwise, it is retained. On one hand,
the simplified backward elimination has a time complexity
of O(k), instead of O(kn) as in the normal backward elim-
ination [18]. On the other hand, cooperating with c-contri-
bution, the simplified backward elimination works as well
as normal backward elimination. It is clear that backward
elimination plusing c-contribution allows a feature to be
evaluated with all features it potentially interacts with. (3)
A hash table data structure for accelerating the evaluation
of c-contribution. INTERACT also using symmetrical un-
certainty (SU) as a preprocessing step to rank feature in an
descending order such that the (heuristically) most rele-
vant feature is positioned at the beginning of the list. The
preprocessing step helps overcome the so called feature or-
der problem of c-contribution.

The pseudocode of INTERACT is listed in Algo-
rithm 6. Given a full set with N features and a class at-
tribute Y , it finds a feature subset Sbest for the class concept.
The algorithm consists of two major parts. In the first part
(lines 1–6), the features are ranked in descending order

Input: F1; F2; :::; FN , the full feature set;
Y , the class label;
ı, a predefined threshold;

Output: Sbest , the best subset;
// Ranking
Sl i st = NULL;1

for i=1 to N do2

calculate SUFi ;y for Fi ;3

append Fi to Sl i st ;4

end5

order Sl i st in descending values of SUi;y ;6

// Feature Eliminating
counter = N ;7

repeat8

F = Sl i st[counter];9

p = c-contribution(F; Sl i st);10

if p � ı then11

remove F from Sl i st ;12

end13

counter = counter � 1;14

until counter = 0 ;15

Sbest = Sl i st ;16

return Sbest ;17

Manipulating Data and Dimension Reduction Methods: Feature
Selection, Algorithm 6
Algorithm INTERACT

based on their SU values. In the second part (lines 7–16),
features are evaluated one by one starting from the end of
the ranked feature list. Slist[i] returns the feature in the po-
sition i of the list, Slist. If c-contribution of a feature is less
than ı, the feature is removed, otherwise it is selected. And
the counter is decreased and pointed to next unchecked
feature preceding the F in the ranked feature list (line 14).
The algorithm continues until all features in the list are
checked. ı is a predefined threshold (0 < ı < 1). Features
with their c-contribution < ı are considered immaterial
and removed. A large ı is associated with a high proba-
bility of removing relevant features. In practice a proper
ı can be found by cross-validation.

Future Directions

Feature selection finds its application in many fields such
as image processing, computer vision, pattern recognition,
bioinformatics, text categorization, information retrieval
and extraction, data fusion, Web mining, to name some
examples. The research of feature selection evolves and de-
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velops rapidly to answer the pressing needs arising from
the real world [17]. One challenge is to deal with large
numbers of instances. In addition to sampling methods,
another approach is to rely on search to find representative
instances to represent the data used for feature selection.
One such approach is presented in [20] in which data is
first organized into bins according to its intrinsic proper-
ties, and representative instances are sampled from respec-
tive bins for feature selection. Another challenge is how to
allow a domain expert to interject her/his expert knowl-
edge in solving real world problems. That is, the comput-
ing system servesmainly as an intelligent assistant that can
request advice from a human expert. An example of in-
volving domain experts in the decision process is reported
in [8]. The objectives of such assistant systems are to miti-
gate the human expert’s effort in data intensive processing
tasks so that the expert can have ample time and focus on
solving more complex but fewer problems. Active learning
plays an instrumental role. Feature selection can also take
advantage of such a mechanism in efficiently integrating
human expertise.

The frontier of feature selection is expanding inces-
santly in various directions. On one hand, feature selection
develops from supervised to unsupervised and to semi-su-
pervisedmethods; on the other hand, new feature selection
methods emerge such as causal feature selection, relational
feature selection, and sequential feature selection. Some
latest research and new directions have been showcased in
a recent book on computational methods of feature selec-
tion [19]. Included exemplarmethods are randomized fea-
ture selection, active learning of feature relevance, ensem-
bles with variable independent probing, weighting meth-
ods, local methods, and non-myopic feature quality evalu-
ation. Representative outstanding applications of feature
selection are text and bioinformatics covering Bayesian
feature scoring, aggressive feature ranking, feature genera-
tion for biological sequence classification, ensemble meth-
ods for biomarker identification, model building and fea-
ture selection with genomic data. A large body of feature
selection work can also be accessed in various journals and
conferences, as well as specialized workshops.

Bibliography

Primary Literature
1. Ambroise C,McLachlanGJ (2002) Selectionbias in gene extrac-

tion on the basis of microarray gene-expression data. Proc Natl
Acad Sci USA 99(10):6562–6566

2. Bellman R (1961) Adaptive Control Processes: A Guided Tour.
Princeton University Press, Princeton

3. Chapelle O, Scholkopf B, Zien A (2006) Semi-Supervised Learn-
ing. MIT Press, Cambridge

4. Chung F (1997) Spectral Graph Theory. American Mathemati-
cal Society, Providence

5. Dash M, Liu H (1997) Feature selection methods for classifica-
tions. Intell Data Anal: Int J 1(3):131–156

6. Dy J (2007) Unsupervised feature selection. In: Liu H, Motoda H
(eds) Computational Methods of Feature Selection. Chapman
Hall/CRC Press, Boca Raton

7. Dy JG, Brodley CE (2004) Feature selection for unsupervised
learning. J Mach Learn Res 5:845–889

8. Foschi PG, Liu H (2004) Active learning for detecting a spec-
trally variable subject in color infrared imaginery. Pattern
Recognit Lett 25(13):1509–1517

9. Gu B, Hu F, Liu H (2001) Sampling: KnowingWhole from Its Part.
Kluwer, Boston, pp 21–38

10. Hastie T, Tibshirani R, Friedman J (2001) The Elements of Sta-
tistical Learning. Springer, New York

11. He X, Cai D, Niyogi P (2005) Laplacian score for feature selec-
tion. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in Neural
Information Processing Systems 18. MIT Press, Cambridge

12. Jakulin A, Bratko I (2003) Analyzing attribute dependencies. In:
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Glossary

Game A (cooperative) game (in characteristic form) is de-
fined simply as a finite set of players and a function or
correspondence ascribing a worth (a non-negative real
number, interpreted as an idealized money) to each
nonempty subset of players, called a group or coalition.

Payoff vector A payoff vector is a vector listing a payoff
(an amount of utility or money) for each player in the
game.

Core The core of a game is the set (possibly empty) of fea-
sible outcomes – divisions of the worths arising from
coalition formation among the players of the game –
that cannot be improved upon by any coalition of play-
ers. core

Totally balanced game A game is totally balanced if the
game and every subgame of the game (a game with
player set taken as some subset of players of the ini-
tially given game) has a nonempty core.

Market A market is defined as a private goods economy
in which all participants have utility functions that are
linear in (at least) one commodity (money).

Shapley value The Shapley value of a game is feasible out-
come of a game in which all players are assigned their
expected marginal contribution to a coalition when all
orders of coalition formation are equally likely.

Pregame A pair, consisting of a set of player types (at-
tributes or characteristics) and a function mapping fi-
nite lists of characteristics (repetitions allowed) into
the real numbers. In interpretation, the pregame func-
tion ascribes a worth to every possible finite group
of players, where the worth of a group depends on
the numbers of players with each characteristic in the
group. A pregame is used to generate games with arbi-
trary numbers of players.

Small group effectiveness A pregame satisfies small
group effectiveness if almost all gains to collective ac-
tivities can be realized by cooperation only within ar-
bitrarily small groups (coalitions) of players.
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Per capita boundedness A pregame satisfies per capita
boundedness if the supremum of the average worth of
any possible group of players (the per capita payoff) is
finite.

Asymptotic negligibility A pregame satisfies asymptotic
negligibility if vanishingly small groups can have only
negligible effects on per capita payoffs.

Market games A market game is a game derived from
a market. Given a market and a group of agents we
can determine the total utility (measured in money)
that the group can achieve using only the endowments
belonging to the group members, thus determining
a game.

Club A club is a group of agents or players that forms for
the purpose of carrying out come activity, such as pro-
viding a local public good.

An economy We use the term ‘economy’ to describe any
economic setting, including economies with clubs,
where the worth of club members may depend on the
characteristics of members of the club, economies with
pure public goods, local public goods (public goods
subject to crowding and/or congestion), economies
with production where what can be produced and the
costs of production may depend on the characteristics
of the individuals involved in production, and so on.
A large economy has many participants.

Price taking equilibrium A price taking equilibrium for
a market is a set of prices, one for each commodity,
and an allocation of commodities to agents so that each
agent can afford his part of the allocation, given the
value of his endowment.

Definition of the Subject

The equivalence of markets and games concerns the rela-
tionship between two sorts of structures that appear fun-
damentally different – markets and games. Shapley and
Shubik [60] demonstrates that: (1) games derived from
markets with concave utility functions generate totally bal-
anced games where the players in the game are the par-
ticipants in the economy and (2) every totally balanced
game generates a market with concave utility functions.
A particular form of such a market is one where the com-
modities are the participants themselves, a labor market
for example.

But markets are very special structures, more so when
it is required that utility functions be concave. Participants
may also get utility from belonging to groups, such asmar-
riages, or clubs, or productive coalitions. It may be that
participants in an economy even derive utility (or disutil-
ity) from engaging in processes that lead to the eventual

exchange of commodities. The question is when are such
economic structures equivalent to markets with concave
utility functions.

This paper summarizes research showing that a broad
class of large economies generate balanced market games.
The economies include, for example, economies with
clubs where individuals may have memberships in multi-
ple clubs, with indivisible commodities, with nonconvexi-
ties and with non-monotonicities. The main assumption
are: (1) that an option open to any group of players is
to break into smaller groups and realize the sum of the
worths of these groups, that is, essential superadditivity is
satisfied and: (2) relatively small groups of participants can
realize almost all gains to coalition formation.

The equivalence of games with many players and mar-
kets with many participants indicates that relationships
obtained for markets with concave utility functions and
many participants will also hold for diverse social and eco-
nomic situations with many players. These relationships
include: (a) equivalence of the core and the set of compet-
itive outcomes; (b) the Shapley value is contained in the
core or approximate cores; (c) the equal treatment prop-
erty holds – that is, both market equilibrium and the core
treat similar players similarly. These results can be applied
to diverse economic models to obtain the equivalence of
cooperative outcomes and competitive, price taking out-
comes in economies with many participants and indicate
that such results hold in yet more generality.

Introduction

One of the subjects that has long intrigued economists
and game theorists is the relationship between games, both
cooperative and noncooperative, and economies. Semi-
nal works making such relationships include Shubik [67],
Debreu and Scarf [22], Aumann [4], Shapley and Shu-
bik [60,62] and Aumann and Shapley [7], all connecting
outcomes of price-taking behavior in large economies with
cores of games. See also Shapley and Shubik [63] and an
ongoing stream of papers connecting strategic behavior to
market behavior. Our primary concern here, however, is
not with the equivalence of outcomes of solution concepts
for economies, as is Debreu and Scarf [22] or Aumann [6]
for example, but rather with equivalences of the structures
of markets and games. Solution concepts play some role,
however, in establishing these equivalences and in under-
standing the meaning of the equivalence of markets and
games.

In this entry, following Shapley and Shubik [60], we
focus on markets in which utility functions of participants
are quasi-linear, that is, the utility function u of a partici-
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pant can be written as u(x; �) Dbu(x)C � where x 2 RL
C

is a commodity bundle, � 2 R is interpreted as money and
bu is a continuous function. Each participant in an econ-
omy has an endowment of commodities and, without any
substantive loss of generality, it is assumed that no money
is initially endowed. The price of money is assumed equal
to one. A price taking equilibrium for a market then con-
sists of a price vector p 2 RL for the commodities.and
an assignment of commodities to participants such that:
the total amounts of commodities assigned to participants
equals the total amount of commodities with which par-
ticipants are endowed and; given prices, each participant
can afford his assignment of commodities and no partic-
ipant, subject to his budget constraint, can afford a pre-
ferred commodity bundle.

We also treat games with side payments, alternatively
called games with transferable utility or, in brief, TU
games. Such a game consists of a finite set N of players
and a worth function that assigns to each group of play-
ers S � N a real number v(S) 2 RC, called the worth of
the group. In interpretation, v(S) is the total payoff that
a group of players can realize by cooperation. A central
game-theoretic concept for the study of games is the core.
The core consists of those divisions of the maximal total
worth achievable by cooperation among the players in N
so that each group of players is assigned at least its worth.
A game is balanced if it has a nonempty core and totally
balanced if all subgames of the game have nonempty cores.
A subgame of a game is simply a group of players S � N
and the worth function restricted to that group and the
smaller groups that it contains.

Given a market any feasible assignment of commodi-
ties to the economic participants generates a total worth of
each group of participants. The worth of a group of partic-
ipants (viewed as players of a game) is the maximal total
utility achievable by the members of the group by allocat-
ing the commodities they own among themselves. In this
way a market generates a game – a set of players (the par-
ticipants in the economy) and a worth for each group of
players.

Shapley and Shubik [60] demonstrate that any mar-
ket where all participants have concave, monotonic in-
creasing utility functions generates a totally balanced game
and that any totally balanced game generates a market,
thus establishing an equivalence between a class of mar-
kets and totally balanced cooperative games. A particular
sort of market is canonical; one where each participant in
the market is endowed with one unit of a commodity, his
“type”. Intuitively, one might think of the market as one
where each participant owns one unit of himself or of his
labor.

In the last twenty years or so there has been substantial
interest in broader classes of economies, including those
with indivisibilities, nonmonotonicities, local public goods
or clubs, where the worth of a group depends not only on
the private goods endowed to members of the group but
also on the characteristics of the group members. For ex-
ample, the success of the marriage of a man and a woman
depends on their characteristics and on whether their
characteristics are complementary. Similarly, the output
of a machine and a worker using the machine depends on
the quality and capabilities of the machine and how well
the abilities of the worker fit with the characteristics of the
machine – a concert pianist fits well with an high quality
piano but perhaps not so well with a sewing machine. Or
how well a research team functions depends not only on
the members of the team but also on how well they in-
teract. For simplicity, we shall refer to these economies as
club economies. Such economies can be modeled as coop-
erative games.

In this entry we discuss and summarize literature
showing that economies with many participants are ap-
proximated by markets where all participants have the
same concave utility function and for which the core of
the game is equivalent to the set of price-taking eco-
nomic equilibrium payoffs. The research presented is pri-
marily from Shubik and Wooders [65], Wooders [92]
and earlier papers due to this author. For the most re-
cent results in this line of research we refer the reader to
Wooders [93,94,95]. We also discuss other related works
throughout the course of the entry. Themodels and results
are set in a broader context in the conclusions.

The importance of the equivalence of markets and
games with many players relates to the hypothesis of per-
fect competition, that large numbers of participants leads
to price-taking behavior, or behavior “as if” participants
took prices as given. Von Neumann andMorgenstern per-
ceived that even though individuals are unable to influence
market prices and cannot benefit from strategic behavior
in large markets, large “coalitions” might form. Von Neu-
mann and Morgenstern write:

It is neither certain nor probable that a mere in-
crease in the number of participants might lead in
fine to the conditions of free competition. The clas-
sical definitions of free competition all involve fur-
ther postulates besides this number. E.g., it is clear
that if certain great groups of individuals will – for
any reason whatsoever– act together, then the great
number of participants may not become effective;
the decisive exchanges may take place directly be-
tween large “coalitions”, few in number and not be-



5362 M Market Games and Clubs

tween individuals, many in number acting indepen-
dently. . . . Any satisfactory theory . . . will have to
explain when such big coalitions will or will not be
formed –i. e., when the large numbers of partici-
pants will become effective and lead to more or less
free competition.

The assumption that small groups of individuals cannot
affect market aggregates, virtually taken for granted by
von Neumann and Morgenstern, lies behind the answer
to the question they pose. The results presented in this en-
try suggest that the great number of participants will be-
come effective and lead to more or less free competition
when small groups of participants cannot significantly af-
fect market outcomes. Since all or almost all gains to col-
lective activities can be captured by relatively small groups,
large groups gain no market power from size; in other
words, large groups are inessential. That large groups are
inessential is equivalent to small group effectiveness [89].
A remarkable feature of the results discussed in this es-
say is they are independent of any particular economic
structure.

Transferable Utility Games;
Some Standard Definitions

Let (N; �) be a pair consisting of a finite set N, called
a player set, and a function v, called a worth function, from
subsets of N to the real numbers R with v(�) D 0. The
pair (N; �) is a TU game (also called a game with side
payments). Nonempty subsets S of N are called groups (of
players) and the number of members of the group S is
given by jSj. Following is a simple example.

Example 1 A glove game: Suppose that we can partition
a player setN into two groups, sayN1 andN2. In interpre-
tation, a member ofN1 is endowedwith a right-hand (RH)
glove and a member of N2 is endowed with a left-hand
(LH) glove. The worth of a pair of gloves is $1, and thus the
worth of a group of players consisting of player i 2 N1 and
player j 2 N2 is $1. The worth of a single glove and hence
of a one-player group is $0. The worth of a group S � N is
given by v(S) D minfjS \ N1j ; jS \ N2jg. The pair (N; �)
is a game.

A payoff vector for a game (N; �) is a vector u 2 RN . We
regard vectors in finite dimensional Euclidean space RT

as functions from T to R, and write ui for the ith com-
ponent of u, etc. If S � T and u 2 RT , we shall write
uS :D (ui : i 2 S) for the restriction of u to S. We write
1S for the element of RS all of whose coordinates are 1 (or
simply 1 if no confusion can arise.) A payoff vector u is

feasible for a group S � N if

u(S) def
D
X

i2S

ui �

KX

kD1

v(Sk ) (1)

for some partition fS1; : : : ; SKg of S.
Given " � 0, a payoff vector u 2 RN is in the weak

"-core of the game (N; �) if it is feasible and if there is
a group of players N0 � N such that

ˇ
ˇNnN0

ˇ
ˇ

jNj
� " (2)

and, for all groups S � N0,

u(S) � v(S) � "jSj (3)

where jSj is the cardinality of the set S. (It would be pos-
sible to use two different values for epsilon in expressions
(2) and (3). For simplicity, we have chosen to take the same
value for epsilon in both expressions.) A payoff vector u is
in the uniform "-core (or simply in the "-core) if if is fea-
sible and if (3) holds for all groups S � N. When " D 0,
then both notions of "-cores will be called simply the core.

Example 1 (continued) The glove game (N; �) described
in Example 1 has the happy feature that the core is always
nonempty. For the game to be of interest, we will suppose
that there is least one player of each type (that is, there is
at least one player with a RH glove and one player with
a LH glove). If jN1j D jN2j any payoff vector assigning the
same share of a dollar to each player with a LH glove and
the remaining share of a dollar to each player with a RH
glove is in the core. If there are more players of one type,
say jN1j > jN2j for specificity, then any payoff vector in
the core assigns $1 to each player of the scarce type; that is,
players with a RH glove each receive 0 while players with
a LH glove each receive $1.

Not all games have nonempty cores, as the following ex-
ample illustrates.

Example 2 (A simple majority game with an empty core)
Let N D f1; 2; 3g and define the function v as follows:

v(S) D
�

0 if jSj D 1 ;
1 otherwise :

It is easy to see that the core of the game is empty. For if
a payoff vector u were in the core, then it must hold that
for any i 2 N; ui � 0 and for any i; j 2 N, ui C u j � 1.
Moreover, feasibility dictates that u1 C u2 C u3 � 1. This
is impossible; thus, the core is empty.
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Before leaving this example, let us ask whether it would
be possible to subsidize the players by increasing the payoff
to the total player set N and, by doing so, ensure that the
core of the game with a subsidy is nonempty. We leave it
to the reader to verify that if v(N) were increased to $3/2
(or more), the new game would have a nonempty core.

Let (N; �) be a game and let i; j 2 N . Then players i and j
are substitutes if, for all groups S � N with i; j … S it holds
that

v(S [ fig) D v(S [ f jg) :

Let (N; �) be a game and let u 2 RN be a payoff vec-
tor for the game. If for all players i and j who are substi-
tutes it holds that ui D u j then u has the equal treatment
property. Note that if there is a partition of N into T sub-
sets, say N1; : : : ;NT , where all players in each subset Nt
are substitutes for each other, then we can represent u by
a vector u 2 RT where, for each t, it holds that ut D ui for
all i 2 Nt .

Essential Superadditivity

Wewish to treat gameswhere the worth of a group of play-
ers is independent of the total player set in which it is em-
bedded and an option open to the members of a group
is to partition themselves into smaller groups; that is, we
treat games that are essentially superadditive. This is built
into our the definition of feasibility above, (1). An alter-
native approach, which would still allow us to treat situa-
tions where it is optimal for players to form groups smaller
than the total player set, would be to assume that v is the
“superadditive cover” of some other worth function v0.
Given a not-necessarily-superadditive function v0, for each
group S define v(S) by:

v(S) D max
X

v0(Sk) (4)

where the maximum is taken over all partitions fSkg of S;
the function v is the superadditive cover of v0. Then the no-
tion of feasibility requiring that a payoff vector u is feasible
only if

u(N) � v(N) ; (5)

gives an equivalent set of feasible payoff vectors to those
of the game (N; v0) with the definition of feasibility given
by (1).

The following Proposition may be well known and is
easily proven. This result was already well understood in
Gillies [27] and applications have appeared in a number of
papers in the theoretical literature of game theory; see, for

example (for " D 0) Aumann and Dreze [6] and Kaneko
andWooders [33]. It is also well known in club theory and
the theory of economies with many players and local pub-
lic goods.

Proposition 1 Given " � 0, let (N; v0) be a game. A payoff
vector u 2 RN is in the weak, respectively uniform, " -core of
(N; v0) if and only if it is in the weak, respectively uniform,
"-core of the superadditive cover game, say (N; �), where v
is defined by (4).

AMarket

In this section we introduce the definition, from Shapley
and Shubik [60], of a market. Unlike Shapley and Shubik,
however, we do not assume concavity of utility functions.
Amarket is taken to be an economy where all participants
have continuous utility functions over a finite set of com-
modities that are all linear in one commodity, thought of
as an “idealized” money. Money can be consumed in any
amount, possibly negative. For later convenience we will
consider an economy where there is a finite set of types
of participants in the economy and all participants of the
same type have the same endowments and preferences.

Consider an economy with T C 1 types of commodi-
ties. Denote the set of participants by

N D f(t; q) : t D 1; : : : ; T; and q D 1; : : : ; ntg :

Assume that all participants of the same type, (t; q),
q D 1; : : : ; nt have the same utility functions given by

but(y; �) D ut(y)C �

where y 2 RT
C and � 2 R. Let atq 2 RT

C be the endow-
ment of the (t; q)th player of the first T commodities. The
total endowment is given by

P
(t;q)2N atq . For simplic-

ity and without loss of generality, we can assume that no
participant is endowed with any nonzero amount of the
(T C 1)th good, the “money” ormediumof exchange. One
might think of utilities as being measured in money. It is
because of the transferability of money that utilities are
called “transferable”.

Remark 1 Instead of assuming that money can be con-
sumed in negative amounts one might assume that en-
dowments of money are sufficiently large so that no equi-
librium allocates any participant a negative amount of
money. For further discussion of transferable utility see,
for example, Bergstrom and Varian [9] or Kaneko and
Wooders [34] .



5364 M Market Games and Clubs

Given a group S � N, a S-allocation of commodities is a set
8
<

:
(ytq ; � tq) 2 RT

C �R :

X

(t;q)2S

ytq �
X

(t;q)2S

atq and
X

(t;q)2S

� tq � 0

9
=

;
;

that is, a S-allocation is a redistribution of the commodi-
ties owned by the members of S among themselves and
monetary transfers adding up to no more than zero. When
S D N , a S-allocation is called simply an allocation.

With the price of the (T C 1)th commodity � set equal
to 1, a competitive outcome is a price vector p in RT , list-
ing prices for the first T commodities, and an allocation
f(ytq ; � tq) 2 RT �R : (t; q) 2 Ng for which

(a) ut(ytq) � p � (ytq � atq) � ut(by) � p � (by � atq)

for allby 2 RT
C, (t; q) 2 N ;

(b)
P

(t;q)2N ytq D
P

(t;q) a
tq D y ;

(c) � tq D p � (ytq � atq) for all (t; q) 2 N and

(d)
P

(t;q)2N �
tq D 0 :

(6)

Given a competitive outcome with allocation f(ytq ; � tq) 2
RT
C � R : (t; q) 2 Ng and price vector p, the competitive

payoff to the (t; q)th participant is u(ytq)� p � (ytq � atq).
A competitive payoff vector is given by

(u(ytq)� p � (ytq � atq) : (t; q) 2 N) :

In the following we will assume that for each t, all par-
ticipants of type t have the same endowment; that is, for
each t, it holds that atq D atq0 for all q; q0 D 1; : : : ; nt . In
this case, every competitive payoff has the equal treatment
property;

ut(ytq) � p � (ytq � atq) D ut(ytq
0

) � p � (ytq
0

� atq
0

)

for all q; q0 and for each t. It follows that a competitive
payoff vector can be represented by a vector in RT with
one component for each player type.

It is easy to generate a game from the data of an econ-
omy. For each group of participants S � N , define

v(S) D max
X

tq2S

ut(ytq ; � tq)

where the maximum is taken over the set of S-allocations.
Let (N; �) denote a game derived from a market.

Under the assumption of concavity of the utility func-
tions of the participants in an economy, Shapley and Shu-
bik [60] show that a competitive outcome for the market
exists and that the competitive payoff vectors are in the
core of the game. (Since [22], such results have been ob-
tained in substantiallymore generalmodels of economies.)

Market-Game Equivalence

To facilitate exposition of the theory of games with many
players and the equivalence of markets and games, we con-
sider games derived from a common underlying structure
and with a fixed number of types of players, where all play-
ers of the same type are substitutes for each other.

Pregames

Let T be a positive integer, to be interpreted as a number of
player types. A profile s D (s1; : : : ; sT ) 2 ZT

C, where Z
T
C is

the T-fold Cartesian product of the non-negative integers
ZC, describes a group of players by the numbers of players
of each type in the group. Given profile s, define the norm
or size of s by

ksk def
D
X

t
st ;

simply the total number of players in a group of players
described by s. A subprofile of a profile n 2 ZT

C is a profile s
satisfying s � n. A partition of a profile s is a collection of
subprofiles fskg of n, not all necessarily distinct, satisfying
X

k

sk D s :

A partition of a profile is analogous to a partition of a set
except that all members of a partition of a set are distinct.

Let � be a function from the set of profiles ZT
C to RC

with � (0) D 0. The value � (s) is interpreted as the total
payoff a group of players with profile s can achieve from
collective activities of the group membership and is called
the worth of the profile s.

Given� , define a worth function ��, called the super-
additive cover of � , by

��(s) def
D max

X

k

� (sk) ;

where the maximum is taken over the set of all partitions
fskg of s . The function � is said to be superadditive if the
worth functions � and �� are equal.

We define a pregame as a pair (T; � ) where � : ZT
C

! RC. As we will now discuss, a pregame can be used
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to generate multiple games. To generate a game from
a pregame, it is only required to specify a total player setN
and the numbers of players of each of T types in the set.
Then the pregame can be used to assign a worth to every
group of players contained in the total player set, thus cre-
ating a game.

A game determined by the pregame (T; � ), which we
will typically call a game or a game with side payments, is
a pair [n; (T; � )] where n is a profile. A subgame of a game
[n; (T; � )] is a pair [s; (T; � )] where s is a subprofile of n.

With any game[n; (T; � )] we can associate a game
(N; �) in the form introduced earlier as follows: Let

N D f(t; q) : t D 1; : : : ; T and q D 1; : : : ; ntg

be a player set for the game. For each subset S � N define
the profile of S, denoted by prof(S)2 ZT

C, by its components

prof(S)t
def
D
ˇ̌
fS \ f(t0; q) : t0 D t and q D 1; : : : ; ntg

ˇ̌

and define

v(S) def
D � (prof(S)) :

Then the pair (N; �) satisfies the usual definition of a game
with side payments. For any S � N , define

v�(S) def
D ��(prof(S)) :

The game (N; ��) is the superadditive cover of (N; �).
A payoff vector for a game (N; �) is a vector u 2 RN .

For each nonempty subset S of N define

u(S) def
D

X

(t;q)2S

utq :

A payoff vector u is feasible for S if

u(S) � v�(S) D ��(prof(S)) :

If S D N we simply say that the payoff vector u is feasible
if

u(N) � v�(N) D ��(prof(N)) :

Note that our definition of feasibility is consistent with es-
sential superadditivity; a group can realize at least as large
a total payoff as it can achieve in any partition of the group
and one way to achieve this payoff is by partitioning into
smaller groups.

A payoff vector u satisfies the equal-treatment prop-
erty if utq D utq0 for all q; q0 2 f1; : : : ; ntg and for each
t D 1; : : : ; T .

Let [n; (T; � )] be a game and let ˇ be a collection of
subprofiles of n. The collection is a balanced collection of
subprofiles of n if there are positive real numbers �s for
s 2 ˇ such that

P

s2ˇ
�s s D n. The numbers �s are called

balancing weights. Given real number " � 0, the game
[n; (T; � )] is "-balanced if for every balanced collection ˇ
of subprofiles of n it holds that

��(n) �
X

s2ˇ

�s (� (s) � "ksk) (7)

where the balancingweights forˇ are given by �s for s 2 ˇ.
This definition extends that of Bondareva [13] and Shap-
ley [56] to games with player types. Roughly, a game is
(") balanced if allowing “part time” groups does not im-
prove the total payoff (by more than " per player). A game
[n; (T; � )] is totally balanced if every subgame [s; (T; � )]
is balanced.

The balanced cover game generated by a game
[n; (T; � )] is a game [n; (T; � b )] where

1. � b (s) D � (s) for all s ¤ n and
2. � b (n) � � (n) and� b(n) is as small as possible consis-

tent with the nonemptiness of the core of [n; (T; � b )].

From the Bondareva–Shapley Theorem it follows that
� b (n) D ��(n) if and only if the game [n; (T; � )] is bal-
anced ("-balanced, with " D 0).

For later convenience, the notion of the balanced cover
of a pregame is introduced. Let (T; � ) be a pregame. For
each profile s, define

� b(s) def
D max

ˇ

X

g2ˇ

�g� (g) ; (8)

where the maximum is taken over all balanced collec-
tions ˇ of subprofiles of s with weights �g for g 2 ˇ. The
pair (T; � b ) is called the balanced cover pregame of (T; � ).
Since a partition of a profile is a balanced collection it is
immediately clear that � b (s) � ��(s) for every profile s.

Premarkets

In this section, we introduce the concept of a premarket
and re-state results from Shapley and Shubik [60] in the
context of pregames and premarkets.

Let LC 1 be a number of types of commodities and let
fbut(y; �) : t D 1; : : : ; Tg denote a finite number of func-
tions, called utility functions, of the form

but(y; �) D ut(y)C � ;

where y 2 RL
C and � 2 R. (Such functions, in the liter-

ature of economics, are commonly called quasi-linear).
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Let fat 2 RL
C : t D 1; : : : ; Tg be interpreted as a set of

endowments. We assume that ut(at) � 0 for each t. For
t D 1; : : : ; T we define ct def

D (ut(�); at) as a participant
type and let C D fct : t D 1; : : : ; Tg be the set of partic-
ipant types. Observe that from the data given byC we can
construct a market by specifying a set of participants N
and a function from N to C assigning endowments and
utility functions – types – to each participant in N. A pre-
market is a pair (T;C).

Let (T;C) be a premarket and let s D (s1; : : : ; sT ) 2
ZT
C. We interpret s as representing a group of economic

participants with st participants having utility functions
and endowments given by ct for t D 1; : : : ; T ; for each t,
that is, there are st participants in the group with type ct .
Observe that the data of a premarket gives us sufficient
data to generate a pregame. In particular, given a pro-
file s D (s1; : : : ; sT ) listing numbers of participants of each
of T types, define

W(s) def
D max

X

t
stut(yt)

where the maximum is taken over the set fyt 2 RL
C : t D

1; : : : ; T and
P

t st y
t D

P
t a

t ytg. Then the pair (T;W)
is a pregame generated by the premarket.

The following Theorem is an extension to premarkets
or a restatement of a result due to Shapley and Shubik [60].

Theorem 1 Let (T;C) be a premarket derived from eco-
nomic data in which all utility functions are concave. Then
the pregame generated by the premarket is totally balanced.

Direct Markets andMarket-Game Equivalence

Shapley and Shubik [60] introduced the notion of a direct
market derived from a totally balanced game. In the direct
market, each player is endowed with one unit of a com-
modity (himself) and all players in the economy have the
same utility function. In interpretation, we might think of
this as a labor market or as a market for productive factors,
(as in [50], for example) where each player owns one unit
of a commodity. For games with player types as in this es-
say, we take the player types of the game as the commodity
types of a market and assign all players in the market the
same utility function, derived from the worth function of
the game.

Let (T; � ) be a pregame and let [n; (T; � )] be a derived
game. Let N D f(t; q) : t D 1; : : : ; T and q D 1; : : : ; nt
for each tg denote the set of players in the game where
all participants f(t0; q) : q D 1; : : : ; nt0g are of type t0

for each t0 D 1; : : : ; T . To construct the direct market
generated by a derived game [n; (T; � )], we take the

commodity space as RT
C and suppose that each par-

ticipant in the market of type t is endowed with one
unit of the tth commodity, and thus has endowment
1t D (0; : : : ; 0; 1; 0; : : : ; 0) 2 RT

C where “1” is in the tth
position. The total endowment of the economy is then
given by

P
nt1t D n.

For any vector y 2 RT
C define

u(y) def
D max

X

s�n
�s� (s) ; (9)

the maximum running over all f�s � 0 : s 2 ZT
C; s � ng

satisfying
X

s�n
�s s D y : (10)

As noted by Shapley and Shubik [60], but for our types
case, it can be verified that the function u is concave and
one-homogeneous. This does not depend on the balanced-
ness of the game [n; (T; � )]. Indeed, one may think of u as
the “balanced cover of [n; (T; � )] extended to RT

C”. Note
also that u is superadditive, independent of whether the
pregame (T; � ) is superadditive. We leave it to the inter-
ested reader to verify that if � were not necessarily super-
additive and �� is the superadditive cover of � then it
holds that max

P
s�n �s� (s) D max

P
s�n �s�

�(s).
Taking the utility function u as the utility function of

each player (t; q) 2 N where N is now interpreted as the
set of participants in amarket, we have generated amarket,
called the direct market, denoted by [n; u; (T; � )], from
the game [n; (T; � )].

Again, the following extends a result of Shapley and
Shubik [60] to pregames.

Theorem 2 Let [n; u; (T; � )] denote the direct mar-
ket generated by a game [n; (T; � )] and let [n; (T; u)]
denote the game derived from the direct market. Then,
if [n; (T; � )] is a totally balanced game, it holds that
[n; (T; u)] and [n; (T; � )] are identical.

Remark 2 If the game [n; (T; � )] and every subgame
[s; (T; � )] has a nonempty core – that is, if the game is
‘totally balanced’– then the game [n; (T; u)] generated by
the direct market is the initially given game [n; (T; � )].
If however the game [n; (T; � )] is not totally balanced
then u(s) � � (s) for all profiles s � n. But, whether or
not [n; (T; � )] is totally balanced, the game [n; (T; u)] is
totally balanced and coincides with the totally balanced
cover of [n; (T; � )].

Remark 3 Another approach to the equivalence of mar-
kets and games is taken by Garratt and Qin [26], who de-
fine a class of direct lottery markets. While a player can
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participate in only one coalition, both ownership of coali-
tions and participation in coalitions is determined ran-
domly. Each player is endowed with one unit of probabil-
ity, his own participation. Players can trade their endow-
ments at market prices. The core of the game is equivalent
to the equilibrium of the direct market lottery.

Equivalence ofMarkets and Games
withMany Players

The requirement of Shapley and Shubik [60] that utility
functions be concave is restrictive. It rules out, for example
situations such as economies with indivisible commodi-
ties. It also rules out club economies; for a given club struc-
ture of the set of players – in the simplest case, a partition
of the total player set into groups where collective activi-
ties only occur within these groups – it may be that utility
functions are concave over the set of alternatives available
within each club, but utility functions need not be concave
over all possible club structures. This rules out many ex-
amples; we provide a simple one below.

To obtain the result that with many players, games
derived from pregames are market games, we need some
further assumption on pregames. If there are many sub-
stitutes for each player, then the simple condition that
per capita payoffs are bounded – that is, given a pregame
(T; � ), that there exists some constant K such that
� (s)
ksk < K for all profiles s – suffices. If, however, there may
be ‘scarce types’, that is, players of some type(s) become
negligible in the population, then a stronger assumption
of ‘small group effectiveness’ is required. We discuss these
two conditions in the next section.

Small Group Effectiveness and Per Capita Boundedness

This section discusses conditions limiting gains to group
size and their relationships. This definition was introduced
in Wooders [83], for NTU, as well as TU, games.

PCB A pregame (T; � ) satisfies per capita boundedness
(PCB) if

PCB : sup
s2ZT
C

� (s)
ksk

is finite (11)

or equivalently,

sup
s2ZT
C

��(s)
ksk

is finite :

It is known that under the apparently mild conditions
of PCB and essential superadditivity, in general games

with many players of each of a finite number of player
types and a fixed distribution of player types have non-
empty approximate cores; Wooders [81,83]. (Forms of
these assumptions were subsequently also used in Shu-
bik and Wooders [69,70]; Kaneko and Wooders [35]; and
Wooders [89,91] among others.) Moreover, under the
same conditions, approximate cores have the property that
most players of the same type are treated approximately
equally ([81,94]; see also Shubik andWooders [69]). These
results, however, either require some assumption ruling
out ‘scarce types’ of players, for example, situations where
there are only a few players of some particular type and
these players can have great effects on total feasible pay-
offs. Following are two examples. The first illustrates that
PCB does not control limiting properties of the per capita
payoff function when some player types are scarce.

Example 3 ([94]) Let T D 2 and let (T; � ) be the pregame
given by

� (s1; s2) D

(
s1 C s2 when s1 > 0
0 otherwise :

The function � obviously satisfies PCB. But there is
a problem in defining lim� (s1; s2)/s1 C s2 as s1 C s2 tends
to infinity, since the limit depends on how it is approached.
Consider the sequence (s�1 ; s

�
2 ) where (s�1 ; s

�
2 ) D (0; �);

then lim� (s�1 ; s
�
2 )/s

�
1 C s�2 D 0. Now suppose in contrast

that (s�1 ; s
�
2 ) D (1; �); then lim� (s�1 ; s

�
2 )/s

�
1 C s�2 D 1. This

illustrates why, to obtain the result that games with many
players are market games either it must be required that
there are no scarce types or some some assumption limit-
ing the effects of scarce types must be made. We return to
this example in the next section.

The next example illustrates that, with only PCB, uniform
approximate cores of games with many players derived
from pregames may be empty.

Example 4 ([94]) Consider a pregame (T; � ) where
T D f1; 2g and � is the superadditive cover of the func-
tion � 0 defined by:

� 0(s) def
D

�
jsj if s1 D 2 ;
0 otherwise :

Thus, if a profiles D (s1; s2) has s1 D 2 then the worth of
the profile according to � 0 is equal to the total number of
players it represents, s1 C s2, while all other profiles s have
worth of zero. In the superadditive cover game the worth
of a profile s is 0 if s1 < 2 and otherwise is equal to s2 plus
the largest even number less than or equal to s1.

Now consider a sequence of profiles (s�)� where
s�1 D 3 and s�2 D � for all �. Given " > 0, for all sufficiently
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large player sets the uniform "-core is empty. Take, for ex-
ample, " D 1/4. If the uniform "-core were nonempty, it
would have to contain an equal-treatment payoff vector.1

For the purpose of demonstrating a contradiction, suppose
that u� D (u�1 ; u

�
2 ) represents an equal treatment payoff

vector in the uniform "-core of [s� ; (T; � )]. The following
inequalities must hold:

3u�1 C �u
�
2 � � C 2 ;

2u�1 C �u
�
2 � � C 2; and

u�1 �
3
4 :

which is impossible. A payoff vector which assigns each
player zero is, however, in the weak "-core for any
" > 1

�C3 . But it is not very appealing, in situations such
as this, to ignore a relatively small group of players (in this
case, the players of type 1) who can have a large effect on
per capita payoffs. This leads us to the next concept.

To treat the scarce types problem, Wooders [88,89,90] in-
troduced the condition of small group effectiveness (SGE).
SGE is appealing technically since it resolves the scarce
types problem. It is also economically intuitive and appeal-
ing; the condition defines a class of economies that, when
there are many players, generate competitive markets. In-
formally, SGE dictates that almost all gains to collective
activities can be realized by relatively small groups of play-
ers. Thus, SGE is exactly the sort of assumption required
to ensure that multiple, relatively small coalitions, firms,
jurisdictions, or clubs, for example, are optimal or near-
optimal in large economies.

A pregame (T; � ) satisfies small group effectiveness,
SGE, if:

SGE :

For each real number " > 0;
there is an integer �0(")

such that for each profile s;
for some partition fskg of s with

kskk � �0(") for each subprofile sk , it holds that
��(s) �

P
k � (s

k ) � "ksk ;
(12)

given " > 0 there is a group size �0(") such that the
loss from restricting collective activities within groups to
groups containing fewer that �0(") members is at most "
per capita [88].2

1It is well known and easily demonstrated that the uniform "-core
of a TU game is nonempty if and only if it contains an equal treatment
payoff vector. This follows from the fact that the uniform "-core is
a convex set.

2Exactly the same definition applies to situations with a compact
metric space of player types, c.f. Wooders [84,88].

SGE also has the desirable feature that if there are no
‘scarce types’ – types of players that appear in vanishingly
small proportions– then SGE and PCB are equivalent.

Theorem 3 ([91] With ‘thickness,’ SGE = PCB) (1) Let
(T; � ) be a pregame satisfying SGE. Then the pregame sat-
isfies PCB.

(2) Let (T; � ) be a pregame satisfying PCB. Then
given any positive real number �, construct a new pregame
(T; ��) where the domain of �� is restricted to profiles s
where, for each t D 1; : : : ; T, either st

ksk > � or st D 0.
Then (T; ��) satisfies SGE on its domain.

It can also be shown that small groups are effective for the
attainment of nearly all feasible outcomes, as in the above
definition, if and only if small groups are effective for im-
provement – any payoff vector that can be significantly im-
proved upon can be improved upon by a small group (see
Proposition 3.8 in [89]).

Remark 4 Under a stronger condition of strict small
group effectiveness, which dictates that �(") in the defini-
tion of small group effectiveness can be chosen indepen-
dently of ", stronger results can be obtained than those
presented in this section and the next. We refer to Win-
ter andWooders [80] for a treatment of this case.

Remark 5 (On the importance of taking into account scarce
types) Recall the quotation from von Neumann andMor-
genstern and the discussion following the quotation. The
assumption of per capita boundedness has significant con-
sequences but is quite innocuous – ruling out the possi-
bility of average utilities becoming infinite as economies
grow large does not seem restrictive. But with only per
capita boundedness, even the formation of small coali-
tions can have significant impacts on aggregate outcomes.
With small group effectiveness, however, there is no prob-
lem of either large or small coalitions acting together –
large coalitions cannot do significantly better then rela-
tively small coalitions.

Roughly, the property of large games we next intro-
duce is that relatively small groups of players make only
“asymptotic negligible” contributions to per-capita payoffs
of large groups. A pregame (˝;� ) satisfies asymptotic neg-
ligibility if, for any sequence of profiles f f �g where

k f �k ! 1 as � !1;

�( f �) D �( f �0) for all � and �0 and

lim�!1
��( f � )
k f �k exists ;

(13)

then for any sequence of profiles f`�g with

lim
�!1

k`�k

k f �k
D 0 ; (14)
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it holds that

lim�!1
��k f �C`�k
k f �C`�k exists, and

lim�!1
��k f �C`�k
k f �C`�k D lim�!1

��( f � )
k f �k :

(15)

Theorem 4 ([89,95]) A pregame (T; � ) satisfies SGE if
and only if it satisfies PCB and asymptotic negligibility

Intuitively, asymptotic negligibility ensures that vanish-
ingly small percentages of players have vanishingly small
effects on aggregate per-capita worths. It may seem para-
doxical that SGE, which highlights the importance of rela-
tively small groups, is equivalent to asymptotic negligibil-
ity. To gain some intuition, however, think of a marriage
model where only two-person marriages are allowed. Ob-
viously two-person groups are (strictly) effective, but also,
in large player sets, no two persons can have a substantial
affect on aggregate per-capita payoffs.

Remark 6 Without some assumptions ensuring essential
superadditivity, at least as incorporated into our defini-
tion of feasibility, nonemptiness of approximate cores of
large games cannot be expected; superadditivity assump-
tions (or the close relative, essential superadditivity) are
heavily relied upon in all papers on large games cited.
In the context of economies, superadditivity is a sort of
monotonicity of preferences or production functions as-
sumption, that is, superadditivity of � implies that for all
s; s0 2 ZT

C, it holds that� (s C s0) � � (s)C � (s0). Our as-
sumption of small group effectiveness, SGE, admits non-
monotonicities. For example, suppose that ‘two is com-
pany, three or more is a crowd,’ by supposing there is only
one commodity and by setting � (2) D 2, � (n) D 0 for
n ¤ 2. The reader can verify, however, that this example
satisfies small group effectiveness since ��(n) D n if n is
even and ��(n) D n � 1 otherwise. Within the context of
pregames, requiring the superadditive cover payoff to be
approximately realizable by partitions of the total player
set into relatively small groups is the weakest form of su-
peradditivity required for the equivalence of games with
many players and concave markets.

Derivation of Markets from Pregames Satisfying SGE

With SGE and PCB in hand, we can now derive a premar-
ket from a pregame and relate these concepts.

To construct a limiting direct premarket from
a pregame, we first define an appropriate utility function.
Let (T; � ) be a pregame satisfying SGE. For each vector x
inRT

C define

U(x) def
D kxk lim

�!1

��( f �)
k f �k

(16)

where the sequence f f �g satisfies

lim�!1
f �

k f �k
D x
kxk

and
k f �k ! 1 :

(17)

Theorem 5 ([84,91]) Assume the pregame (T; � ) sat-
isfies small group effectiveness. Then for any x 2 RT

C the
limit (16) exists. Moreover, U(�) is well-defined, concave
and 1-homogeneous and the convergence is uniform in the
sense that, given " > 0 there is an integer � such that for all
profiles s with ksk � � it holds that
ˇ̌
ˇ
ˇU
�

s
ksk

�
�
��(s)
ksk

ˇ̌
ˇ
ˇ � " :

From Wooders [91] (Theorem 4), if arbitrarily small per-
centages of players of any type that appears in games gen-
erated by the pregame are ruled out, then the above result
holds under per capita boundedness [91] (Theorem 6). As
noted in the introduction to this paper, for the TU case, the
concavity of the limiting utility function, for the model of
Wooders [83] was first noted by Aumann [5]. The concav-
ity is shown to hold with a compact metric space of player
types in Wooders [84] and is simplified to the finite types
case in Wooders [91].

Theorem 5 follows from the facts that the functionU is
superadditive and 1-homogeneous on its domain. Since U
is concave, it is continuous on the interior of its do-
main; this follows from PCB. Small group effectiveness en-
sures that the function U is continuous on its entire do-
main [91](Lemma 2).

Theorem 6 ([91]) Let (T; � ) be a pregame satisfying small
group effectiveness and let (T;U) denote the derived di-
rect market pregame. Then (T;U) is a totally balanced
market game. Moreover, U is one-homogeneous, that is,
U(x) D U(x) for any non-negative real number .

In interpretation, T denotes a number of types of play-
ers/commodities and U denotes a utility function on RT

C.
Observe that when U is restricted to profiles (in ZT

C), the
pair (T;U) is a pregame with the property that every game
[n; (T;U)] has a nonempty core; thus, we will call (T;U)
the premarket generated by the pregame (T; � ). That every
game derived from (T;U) has a nonempty core is a conse-
quence of the Shapley and Shubik [60] result that market
games derived frommarkets with concave utility functions
are totally balanced.

It is interesting to note that, as discussed in Wooders
(Section 6 in [91]), if we restrict the number of commodi-
ties to equal the number of player types, then the utility
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function U is uniquely determined. (If one allowed more
commodities then one would effectively have ‘redundant
assets’.) In contrast, for games and markets of fixed, finite
size, as demonstrated in Shapley and Shubik [62], even if
we restrict the number of commodities to equal the num-
ber of player types, given any nonempty, compact, convex
subset of payoff vectors in the core, it is possible to con-
struct utility functions so that this subset coincides with
the set of competitive payoffs. Thus, in the Shapley and
Shubik approach, equivalence of the core and the set of
price-taking competitive outcomes for the direct market is
only an artifact of the method used there of constructing
utility functions from the data of a game and is quite dis-
tinct from the equivalence of the core and the set of com-
petitive payoff vectors as it is usually understood (that is,
in the sense of Debreu and Scarf [22] and Aumann [4]. See
also Kalai and Zemel [31,32] which characterize the core
in multi-commodity flow games.

Cores and Approximate Cores

The concept of the core clearly was important in the work
of Shapley and Shubik [59,60,62] and is also important for
the equivalence of games with many players and market
games. Thus, we discuss the related results of nonempti-
ness of approximate cores and convergence of approxi-
mate cores to the core of the ‘limit’ – the game where all
players have utility functions derived from a pregame and
large numbers of players. First, some terminology is re-
quired. A vector p is a subgradient at x of the concave func-
tion U if U(y) � U(x) � p � (y � x) for all y. One might
think of a subgradient as a bounding hyperplane. To avoid
any confusion it might be helpful to note that, as Mas-
Colell [46] remarks: “ Strictly speaking, one should use the
term subgradient for convex functions and supergradient
for concave. But this is cumbersome”, (p. 29–30 in [46]).

For ease of notation, equal-treatment payoff vectors
for a game [n; (T; � )] will typically be represented as vec-
tors in RT . An equal-treatment payoff vector, or simply
a payoff vector when the meaning is clear, is a point x in
RT . The tth component of x, xt , is interpreted as the pay-
off to each player of type t. The feasibility of an equal-treat-
ment payoff vector x 2 RT for the game [n; (T; � )] can be
expressed as:

��(n) � x � n :

Let [n; (T; � )] be a game determined by a pregame
(T; � ), let " be a non-negative real number, and let
x 2 RT be a (equal-treatment) payoff vector. Then x is
in the equal-treatment "-core of [n; (T; � )] or simply “in
the "-core” when the meaning is clear, if x is feasible for

[n; (T; � )] and

� (s) � x � s C "ksk for all subprofiles s of n :

Thus, the equal-treatment "-core is the set

C(n; ") def
D fx 2 RT

C : ��(n) � x � n and

� (s) � x � sC "ksk for all subprofiles s of ng :
(18)

It is well known that the "-core of a game with transfer-
able utility is nonempty if and only if the equal-treatment
"-core is nonempty.

Continuing with the notation above, for any s 2 RT
C,

let ˘ (s) denote the set of subgradients to the function U
at the point s;

˘ (s) def
D f� 2 RT : � � s D U(s) and � � s0 � U(s0)

for all s0 2 RT
Cg : (19)

The elements in ˘ (s) can be interpreted as equal-treat-
ment core payoffs to a limiting game with the mass of
players of type t given by st . The core payoff to a player is
simply the value of the one unit of a commodity (himself
and all his attributes, including endowments of resources)
that he owns in the direct market generated by a game.
Thus˘ (�) is called the limiting core correspondence for the
pregame (T; � ): Of course ˘ (�) is also the limiting core
correspondence for the pregame (T;U).

Let b̆(n)� RT denote equal-treatment core of the
market game [n; (T; u)]:

b̆(n) def
D f� 2 RT : � � n D u(n)

and � � s � u(s) for all s 2 ZT
C, s � ng : (20)

Given any player profile n and derived games
[n; (T; � )] and [n; (T;U)] it is interesting to observe the
distinction between the equal-treatment core of the game
[n; (T;U)], denoted by b̆(n); defined by (20), and the
set ˘ (n) (that is, ˘ (x) with x D n). The definitions of
˘ (n) and b̆(n) are the same except that the qualification
“s � n” in the definition of b̆(n) does not appear in the
definition of ˘ (n). Since ˘ (n) is the limiting core cor-
respondence, it takes into account arbitrarily large coali-
tions. For this reason, for any x 2 ˘ (n) andbx 2 b̆(n) it
holds that x � n �bx � n. A simple example may be infor-
mative.

Example 5 Let (T; � ) be a pregame where T D 1 and
� (n) D n� 1

n for each n 2 ZC, and let [n; (T; � )] be a de-
rived game. Then˘ (n) D f1g while b̆(n) D f(1 � 1

n2 )g.
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The following Theorem extends a result due to Shapley
and Shubik [62] stated for games derived from pregames.

Theorem 7 ([62]) Let [n; (T; � )] be a game derived from
a pregame and let [n; u; (T; � )] be the direct market gen-
erated by [n; (T; � )]. Then the equal-treatment core b̆(n)
of the game [n; (T; u)] is nonempty and coincides with
the set of competitive price vectors for the direct market
[n; u; (T; � )].

Remark 7 Let (T; � ) be a pregame satisfying PCB. In
the development of the theory of large games as models
of competitive economies, the following function on the
space of profiles plays an important role:

lim
r!1

��(r f )
r

;

see, for example, Wooders [81] and Shubik and Wood-
ers [69]. For the purposes of comparison, we introduce an-
other definition of a limiting utility function. For each vec-
tor x inRT

C with rational components let r(x) be the small-
est integer such that r(x)x is a vector of integers. There-
fore, for each rational vector x; we can define

Û(x) def
D lim
�!1

��(�r(x)x)
�r(x)

:

Since �� is superadditive and satisfies per capita bound-
edness, the above limit exists and Û(�) is well-defined.
Also, Û(x) has a continuous extension to any closed sub-
set strictly in the interior ofRT

C: The function Û(x); how-
ever, may be discontinuous at the boundaries of RT

C. For
example, suppose that T D 2 and

��(k; n) D

(
k C n when k > 0
0 otherwise :

The function �� obviously satisfies PCB but does not
satisfy SGE. To see the continuity problem, consider
the sequences fx�g and fy�g of vectors in R2

C where
x� D ( 1

�
; ��1
�

) and y� D (0; �). Then lim�!1 x� D
lim�!1 y� D (0; 1) but lim�!1 Û(x�) D 1 while
lim�!1 Û(y�) D 0. SGE is precisely the condition re-
quired to avoid this sort of discontinuity, ensuring that the
function U is continuous on the boundaries of RT

C.

Before turning to the next section, let us provide some
additional interpretation for b̆(n). Suppose a game
[n; (T; � )] is one generated by an economy, as in Shap-
ley and Shubik [59] or Owen [50], for example. Players of
different types may have different endowments of private
goods. An element � in b̆(n) is an equal-treatment payoff

vector in the core of the balanced cover game generated
by [n; (T; � )] and can be interpreted as listing prices for
player types where �t is the price of a player of type t; this
price is a price for the player himself, including his en-
dowment of private goods.

Nonemptiness and Convergence
of Approximate Cores of Large Games

The next Proposition is an immediate consequence of
the convergence of games to markets shown in Wood-
ers [89,91] and can also be obtained as a consequence of
Theorem 5 above.

Proposition 2 (Nonemptiness of approximate cores)
Let (T; � ) be a pregame satisfying SGE. Let " be a positive
real number. Then there is an integer �1(") such that any
game [n; (T; � )] with knk � �1(") has a nonempty uni-
form "-core.

(Note that no assumption of superadditivity is required
but only because our definition of feasibility is equivalent
to feasibility for superadditive covers.)

The following result was stated in Wooders [89]. For
more recent results see Wooders [94].

Theorem 8 ([89] Uniform closeness of (equal-treat-
ment) approximate cores to the core of the limit game)
Let (T; � ) be a pregame satisfying SGE and let ˘ (�) be
as defined above. Let ı > 0 and � > 0 be positive real
numbers. Then there is a real number "� with 0 < "�

and an integer �0(ı; �; "�) with the following property: for
each positive " 2 (0; "�] and each game [ f ; (T; � )] with
k f k > �0(ı; �; "�) and ft/k f k � � for each t D 1; : : :, T,
if C( f ; ") is nonempty then both

dist[C( f ; ");˘ ( f )] < ı and dist[C( f ; "); b̆( f )] < ı ;

where ‘dist’ is the Hausdorff distance with respect to the sum
norm onRT .

Note that this result applies to games derived from diverse
economies, including economies with indivisibilities, non-
monotonicities, local public goods, clubs, and so on.

Theorem 8 motivates the question of whether approx-
imate cores of games derived from pregames satisfying
small group effectiveness treat players most of the same
type nearly equally. The following result, from Wood-
ers [81,89,93] answers this question.

Theorem 9 Let (T; � ) be a pregame satisfying SGE. Then
given any real numbers � > 0 and  > 0 there is a positive
real number "� and an integer � such that for each " 2 [0,



5372 M Market Games and Clubs

"�] and for every profile n 2 ZT
C with knk1 > �, if x 2 RN

is in the uniform "-core of the game [n; � ] with player set

N D f(t; q) : t D 1; : : : ; T
and, for each t; q D 1; : : : ; ntg

then, for each t 2 f1; : : : ; Tg with nt
knk1
� �

2 it holds that

jf(t; q) : jxtq � zt j > �gj < ntg ;

where, for each t D 1; : : : ; T,

zt D
1
nt

ntX

qD1

xtq ;

the average payoff received by players of type t.

Shapley Values of GameswithMany Players

Let (N; �) be a game. The Shapley value of a superadditive
game is the payoff vector whose ith component is given by

SH(v; i)

D
1
jNj

jNj�1X

JD0

1
�
jNj � 1

J

�
X

S�Nnfig
jSjDJ

�
v(S [ fig)� v(S)

�
:

To state the next Theorem, we require one additional
definition. Let (T; � ) be a pregame. The pregame satisfies
boundedness of marginal contributions (BMC) if there is
a constantM such that

j� (s C 1t)� � (s)j � M

for all vectors 1t D (0; : : : ; 0; 1t th place; 0; : : : 0) for each
t D 1; : : : ; T . Informally, this condition bounds marginal
contributions while SGE bounds average contributions.
That BMC implies SGE is shown inWooders [89]. The fol-
lowing result restricts the main Theorem of Wooders and
Zame [96] to the case of a finite number of types of players.

Theorem 10 ([96]) Let (T; � ) be a superadditive pregame
satisfying boundedness of marginal contributions. For each
" > 0 there is a number ı(") > 0 and an integer �(") with
the following property:

If [n; (T; � )] is a game derived from the pregame, for
which nt > �(") for each t, then the Shapley value of
the game is in the (weak) "-core.

Similar results hold within the context of private goods
exchange economies (cf., Shapley [55], Shapley and Shu-

bik [60], Champsaur [17], Mas-Colell [43], Cheng [18]
and others). Some of these results are for economies with-
out money but all treat private goods exchange economies
with divisible goods and concave, monotone utility func-
tions. Moreover, they all treat either replicated sequences
of economies or convergent sequences of economies. That
games satisfying SGE are asymptotically equivalent to bal-
anced market games clarifies the contribution of the above
result. In the context of the prior results developed in this
paper, the major shortcoming of the Theorem is that it re-
quires BMC. This author conjectures that the above result,
or a close analogue, could be obtainedwith themilder con-
dition of SGE, but this has not been demonstrated.

Economies with Clubs

By a club economy we mean an economy where partic-
ipants in the economy form groups – called clubs – for
the purposes of collective consumption and/or production
collectively with the groupmembers. The groups may pos-
sibly overlap. A club structure of the participants in the
economy is a covering of the set of players by clubs. Pro-
viding utility functions are quasi-linear, such an economy
generates a game of the sort discussed in this essay. The
worth of a group of players is the maximum total worth
that the group can achieve by forming clubs. The most
general model of clubs in the literature at this point is Al-
louch and Wooders [1]. Yet, if one were to assume that
utility functions were all quasi-linear and the set of possi-
ble types of participants were finite. the results of this pa-
per would apply.

In the simplest case, the utility of an individual de-
pends on the club profile (the numbers of participants of
each type) in his club. The total worth of a group of players
is the maximum that it can achieve by splitting into clubs.
The results presented in this section immediately apply.
When there are many participants, club economies can be
represented as markets and the competitive payoff vectors
for the market are approximated by equal-treatment pay-
off vectors in approximate cores. Approximate cores con-
verge to equal treatment and competitive equilibrium pay-
offs. A more general model making these points is treated
in Shubik and Wooders [65]. For recent reviews of the lit-
erature, see Conley and Smith [19] and Kovalenkov and
Wooders [38].3

Coalition production economies may also be viewed
as club economies. We refer the reader to Böhm [12], Son-

3Other approaches to economies with clubs/local public goods in-
clude Casella and Feinstein [15], Demange [23], Haimanko, O., M. Le
Breton and S. Weber [28], and Konishi, Le Breton and Weber [37].
Recent research has treated clubs as networks.
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dermann [73], Shubik and Wooders [70], and for a more
recent treatment and further references, Sun, Trockel and
Yang [74]).

Let us conclude this section with some historical notes.
Club economies came to the attention of the economics
profession with the publication of Buchanan [14]. The au-
thor pointed out that people care about the numbers of
other people with whom they share facilities such as swim-
ming pool clubs. Thus, there may be congestion, lead-
ing people to form multiple clubs. Interestingly, much of
the recent literature on club economies with many par-
ticipants and their competitive properties has roots in an
older paper, Tiebout [77]. Tiebout conjectured that if pub-
lic goods are ‘local’ – that is, subject to exclusion and pos-
sibly congestion – then large economies are ‘market-like’.
A first paper treating club economies with many partici-
pants was Pauly [51], who showed that, when all players
have the same preferred club size, then the core of econ-
omy is nonempty if and only if all participants in the econ-
omy can be partitioned into groups of the preferred size.
Wooders [82] modeled a club economy as one with lo-
cal public goods and demonstrated that, when individuals
within a club (jurisdiction) are required to pay the same
share of the costs of public good provision, then outcomes
in the core permit heterogeneous clubs if and only if all
types of participants in the same club have the same de-
mands for local public goods and for congestion. Since
these early results, the literature on clubs has grown sub-
stantially.

With a Continuumof Players

Since Aumann [4] much work has been done on econo-
mies with a continuum of players. It is natural to question
whether the asymptotic equivalence of markets and games
reported in this article holds in a continuum setting. Some
such results have been obtained.

First, let N D [01] be the 0,1 interval with Lesbegue
measure and suppose there is a partition of N into a finite
set of subsets N1, . . . , NT where, in interpretation, a point
in Nt represents a player of type t. Let� be given. Observe
that � determines a payoff for any finite group of players,
depending on the numbers of players of each type. If we
can aggregate partitions of the total player set into finite
coalitions then we have defined a game with a continuum
of players and finite coalitions.

For a partition of the continuum into finite groups to
‘make sense’ economically, it must preserve the relative
scarcities given by the measure. This was done in Kaneko
andWooders [35]. To illustrate their idea of measurement
consistent partitions of the continuum into finite groups,

think of a census form that requires each three-person
household to label the players in the household, #1, #2,
or #3. When checking the consistency of its figures, the
census taker would expect the numbers of people labeled
#1 in three-person households to equal the numbers la-
beled #2 and #3. For consistency, the census taker may
also check that the number of first persons in three-person
households in a particular region is equal to the number of
second persons and third persons in three person house-
holds in that region. It is simple arithmetic. This consis-
tency should also hold for k-person households for any k.
Measurement consistency is the same idea with the work
“number” replaced by “proportion” or “measure”.

One can immediately apply results reported above to
the special case of TU games of Kaneko–Wooders [35] and
conclude that games satisfying small group effectiveness
and with a continuum of players have nonempty cores and
that the payoff function for the game is one-homogeneous.
(We note that there have been a number of papers inves-
tigating cores of games with a continuum of players that
have came to the conclusion that non-emptiness of exact
cores does not hold, even with balancedness assumptions,
cf., Weber [78,79]). The results of Wooders [91], show
that the continuum economymust be representable by one
where all players have the same concave, continuous one-
homogeneous utility functions. Market games with a con-
tinuum of players and a finite set of types are also investi-
gated in Azriel and Lehrer [3], who confirm these conclu-
sions.)

Other Related Concepts and Results

In an unpublished 1972 paper due to Edward Zajac [97],
which has motivated a large amount of literature on ‘sub-
sidy-free pricing’, cost sharing, and related concepts, the
author writes:

“A fundamental idea of equity in pricing is that ‘no
consumer group should pay higher prices than it
would pay by itself. . . ’. If a particular group is pay-
ing a higher price than it would pay if it were sev-
ered from the total consumer population, the group
feels that it is subsidizing the total population and
demands a price reduction”.

The “dual” of the cost allocation problem is the prob-
lem of surplus sharing and subsidy-free pricing.4 Tau-
man [75] provides a excellent survey. Some recent works
treating cost allocation and subsidy free-pricing include

4See, for example Moulin [47,48] for excellent discussions of these
two problems.
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Moulin [47,48]. See also the recent notion of “Walras’
core” in Qin, Shapley and Shimomura [52].

Another related area of research has been into whether
games with many players satisfy some notion of the Law
of Demand of consumer theory (or the Law of Supply of
producer theory). Since games with many players resem-
ble market games, which have the property that an in-
crease in the endowment of a commodity leads to a de-
crease in its price, such a result should be expected. Indeed,
for games with many players, a Law of Scarcity holds – if
the numbers of players of a particular type is increased,
then core payoffs to players of that type do not increase
and may decrease. (This result was observed by Scotchmer
and Wooders [54]). See Kovalenkov and Wooders [38,41]
for the most recent version of such results and a discussion
of the literature. Laws of scarcity in economies with clubs
are examined in Cartwright, Conley andWooders [16].

Some Remarks onMarkets
andMore General Classes of Economies

Forms of the equivalence of outcomes of economies where
individuals have concave utility functions but not neces-
sarily linear in money. These include Billera [10], Billera
and Bixby [11] and Mas-Colell [42]. A natural question is
whether the results reported in this paper can extend to
nontransferable utility games and economies where indi-
viduals have utility functions that are not necessarily liner
in money. So far the results obtained are not entirely satis-
factory. Nonemptiness of approximate cores of gameswith
many players, however, holds in substantial generality; see
Kovalenkov andWooders [40] andWooders [95].

Conclusions and Future Directions

The results of Shapley and Shubik [60], showing equiva-
lence of structures, rather than equivalence of outcomes of
solution concepts in a fixed structure (as in [4], for exam-
ple) are remarkable. So far, this line of research has been
relatively little explored. The results for games with many
players have also not been fully explored, except for in the
context of games, such as those derived from economies
with clubs, and with utility functions that are linear in
money.

Per capita boundedness seems to be about the mildest
condition that one can impose on an economic structure
and still have scarcity of per capita resources in economies
with many participants. In economies with quasi-linear
utilities (and here, I mean economies in a general sense,
as in the glossary) satisfying per capita boundedness and
where there are many substitutes for each type of par-
ticipant, then as the number of participants grows, these

economies resemble or (as if they) are market economies
where individuals have continuous, and monotonic in-
creasing utility functions. Large groups cannot influence
outcomes away from outcomes in the core (and out-
comes of free competition) since large groups are not sig-
nificantly more effective than many small groups (from
the equivalence, when each player has many close sub-
stitutes, between per capita boundedness and small group
effectiveness).

But if there are not many substitutes for each partic-
ipant, then, as we have seen, per capita boundedness al-
lows small groups of participants to have large effects and
free competition need not prevail (coresmay be empty and
price-taking equilibriummay not exist). The condition re-
quired to ensure free competition in economies with many
participants, without assumptions of “thickness”, is pre-
cisely small group effectiveness.

But the most complete results relating markets and
games, outlined in this paper, deal with economies in
which all participants have utility functions that are lin-
ear in money and in games with side payments, where the
worth of a group can be divided in any way among the
members of the group without any loss of total utility or
worth. Nonemptiness of approximate cores of large games
without side payments has been demonstrated; seeWood-
ers [83,95] and Kovalenkov and Wooders [40]. Moreover,
it has been shown that when side payments are ‘limited’
then approximate cores of games without side payments
treat similar players similarly [39].

Results for specific economic structures, relating cores
to price taking equilibrium treat can treat situations that
are, in some respects, more general. A substantial body
of literature shows that certain classes of club economies
have nonempty cores and also investigates price-taking
equilibrium in these situations. Fundamental results are
provided by Gale and Shapley [25], Shapley and Shu-
bik [61], and Crawford and Kelso [21] and many more
recent papers. We refer the reader to Roth and So-
tomayor [53] and to � Two-Sided Matching Models, by
Ömer and Sotomayor in this encyclopedia. A special fea-
ture of themodels of these papers is that there are two sorts
of players or two sides to the market; examples are (1) men
and women, (2) workers and firms, (3) interns and hospi-
tals and so on.

Going beyond two-sided markets to clubs in gen-
eral, however, one observes that the positive results on
nonemptiness of cores and existence of price-taking equi-
libria only holds under restrictive conditions. A number of
recent contributions however, provide specific economic
models for which, when there are many participants in the
economy, as in exchange economies it holds that price-
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taking equilibrium exists, cores are non-empty, and the set
of outcomes of price-taking equilibrium are equivalent to
the core. (see, for example, [1,2,24,85,92]).
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Glossary

All terms in this glossary relate mainly to the case of Inno-
vation.
Aggregate models Models that use market level data of

adoption, with less if any emphasis on individuals’
data.

Consumer behavior Consumers make decisions and
choices according to preferences, personalities but
mainly according to some heuristics and rules. In Mar-
keting, the field that investigates this behavior is de-
fined consumer behavior.

Diffusion of innovation A research field in marketing
that deals with the dissemination of a new product in
the marketplace.

Early adopters Similar to the innovators, they like inno-
vations and they also not risk averse. Contrary to in-
novators they are interested in product advantages and
new benefits. on average they are estimated as 13.5%.

Early and late majority Together they are estimated
as 66%. they adopt the dominant designs, products
that are compatible, bugs free, reliable, user friendly,
and after the price has been stabled on a reasonable
level.

Innovation A new product or service that provides new
benefits, typically by new product or process or tech-
nology. Innovation can be Radical (extremely new) or
incremental (moderately new).

Innovators First adopters, typically consist of 2.5% of the
population, interested mainly in the technology and
new features, and less interested in the advantages.
They are not risk averse, and they are not concerned
from products with bugs.

Laggards Individuals who do not like to adopt innovation
and prefer to avoid it if possible (estimated as 16% of
the population).

Marketing efforts A firm’s activity to increase awareness
of the new product and the propensity to try it.

Penetration and product life cycle Product life cycle is
a general model that describes the “life” of a product
by flat growth of sales followed by a take off in which
sales are increased exponentially until a peak of sales
and decline until the product “dies”. Product life cycle
can be examined by sales or by units sold. penetration
is measured by counting the first adoption on each in-
dividual.

http://www.myrnawooders.com/
http://www.myrnawooders.com/
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Saddle A dual peak penetration pattern that is character-
ized by an initial peak of sales, followed by a slump,
and then a recovery until a second (much larger) peak
is obtained.

Word of mouth (w-o-m) Interaction between consumers
in which information and recommendation is passed.
There are other paths of information transfer that fall
under this classification as well like imitation in which
no conversation is needed.

Definition of the Subject

Adoption of innovation is one of the most interesting
fields in marketing, with high monetary importance as
more than 50% of firms profits are influenced from new
products performances. Innovations are also an important
factor for society as it influences many aspects in life.

Because adoption of an innovation involves risks,
learning periods, and sometimes adaptations, individuals
tend to consult with their friends and peers before mak-
ing an adoption decision. The interactions between large
numbers of consumers is one of the trademarks of com-
plex system. Innovationmarkets are complex systems, and
the complexity approach can become an important tool,
both scientifically and practically.

Introduction

Having been established as a scientific field only as recently
as the late 1960s, marketing can be considered a young dis-
cipline in the social sciences. Nevertheless in a relatively
short time, this field had rapidly matured into a fascinat-
ing, highly interdisciplinary field with its own rigorous
foundations. The reason why the complexity approach,
which emerged so many years ago, is now only in its ini-
tial stages in the field of marketing, might be because it is
a wide interdisciplinary topic, without too many years of
heritage.

In this chapter we cover some of the benefits of com-
plexity approaches for improving our understanding of
marketing systems. We point out real-world applications
that can be derived from this approach, and demonstrate
that marketing also offers a unique contribution to com-
plexity paradigm development.

Broadly speaking, research in marketing has tradition-
ally followed one of two main approaches: the first is a be-
havioral one (micro perspective), and the second is more
aggregate level (macro perspective). In the behavioral ap-
proach, the unit of analysis is the individual, or more
precisely, the consumer. Studies adopting this approach
employ psychological research methods to study choices,
decision making processes, and other forms of consumer

behavior. Aggregate outcomes are less interesting to re-
searchers conducting this type of research. In the second
approach, the unit of analysis is a market – a collection
of individuals whose behavior is aggregated. This group of
studies generally employs research methods that are sim-
ilar to economic and other mathematical models. The in-
dividual consumer is typically ignored.

Naturally this is a very coarse classification. But it is
interesting to see that scholars in both groups participate
in conferences that focus on issues that belong to “their”
group, and seldom collaborate with scholars from the sec-
ond group. Papers that include both focuses are rare. It
seems that the tools are part of the definition and selection
of the research problems to face.

A complexity approach requires knowledge from both
sub-fields of marketing, in order to combine individual
and aggregate levels relatively easier, and offer innovative
insights that may be otherwise overlooked.

Yet even preceding the issue of feasibility of apply-
ing complexity models in marketing is the question of the
justification for such an approach. Are markets complex
systems? Fortunately for researchers who constantly seek
for new adventures, the answer is an absolute “yes”. Con-
sumers interact – they talk to each other, they make rec-
ommendations to each other, they express their opinions
(both positive and negative), and they influence the peo-
ple in their social networks. In fact, various studies have
shown that interactions between consumers can some-
times have an effect that is 10 times stronger than mar-
keting efforts such as advertising or promotions. Interac-
tions between consumers are sometimes termed “word of
mouth (w-o-m)” or “the internal force”, but we believe
that they should more aptly be viewed as “magma forces”:
they are invisible, they act below the surface, but they are
extremely powerful.

Complexity in marketing deals with understanding
these invisible forces.

For the sake of convenience, in this chapter we focus
on Innovation Adoption (also labeled as Diffusion of In-
novation, Growth Processes). In our view, this is a rich and
fascinating phenomenon, and one in which the benefits of
complexity modeling have been demonstrated.

Markets Are Complex

The environment in which firms operate fits the definition
of a complex system quite well: Customers, employees,
partners, suppliers, and other stakeholders interact with
each other, exchange information, and adapt their behav-
ior in response to actions by the firm and other network
peers. This network of individuals has features that are
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similar to those of other complex systems, such as colonies
of bacteria, flocks of birds, genes, or neural networks.

As in other complex systems, a set of relatively sim-
ple individual interactions can result in surprising (even
counter intuitive), non-linear (and sometime unstable)
dynamics. As a result, marketing managers find it diffi-
cult to predict the consequences of changes in a firm’s en-
vironment or strategy, such as introducing a new prod-
uct, creating a lateral alliance, or changing the way service
personnel operate and interact with the firm’s customers.
Unfortunately, conventional decision-making tools such
as analytical models – often built on static assumptions to
preserve their parsimony – are less relevant where players
in the marketing exchange arena constantly interact with
each other and adapt their behavior. While managers can
often measure and predict behavior and information on
the individual level, how the multi-player mix ultimately
transforms into the aggregate firm or market level largely
remains a mystery. Take as an example the phenomenon
of consumer word-of-mouth. Given its centrality in adop-
tion decision-making [16,17], one would expect to find
abundant marketing literature that explicitly models this
process with the aim of helping managers understand the
role of word of mouth in market growth and evolution.
However, unlike other types of marketing communica-
tions, such as advertising, sales promotion, or sales force
management, where significant attention has been given
to assessing aggregate effects on sales, little is known about
how word-of-mouth aggregates to impact sales levels. Pa-
pers that uncover the determinants of word of mouth have
only recently appeared in marketing literature. Similarly,
while efforts are made to understand inter-organizational
information exchange among employees – for example,
information acquisition and utilization in new product
alliances [15] – marketers have yet to better understand
how individual- or network-level behavior aggregates to
the firm or market level.

Innovation adoption is, in our view, one of the most
interesting cases in marketing, with a tremendous impact
on many social aspects, and one which demonstrates how
general complexity modeling can be utilized to improve
our understanding of and ability to predict how markets
work.

Innovation Growth Processes in Marketing

Diffusion of Innovation

Much of the knowledge that has accumulated in recent
decades on new product adoption is of a practical, pre-
scriptive nature. One suchmaxim inmarketing, supported
by PDMA survey findings [18], is that a new product

which offers a solution to a problem has a greater chance
of success than one which offers a superior marketing mix
that resolves no problem.

Despite the cumulative wealth ofmarketing experience
available to manufacturers andmarketers of new products,
the rate of new product failures is distressingly high [7],
even discounting innovations which fail to satisfy any gen-
uine consumer need. When we consider the cumulative
wealth of marketing experience available to manufacturers
and marketers of new products, this fact alone is sufficient
to undermine confidence in our own marketing savvy.

Actually, we are probably making fairly sophisticated
use of the knowledge we have – it is the knowledge that
we have yet to acquire that is working against our best ef-
forts. New findings on how consumers communicate mar-
keting information to each other may yield a wealth of
valuable information for marketing professionals hoping
to gain acceptance for new innovations they introduce to
the market. Recent developments now allow us to investi-
gate as yet unexplored dimensions of the phenomenon of
word-of-mouth, whose significance in the adoption of new
products has been recognized for several decades. Qualita-
tively new findings on this fascinating and hitherto elusive
marketing factor, the inherent complexity of the factors in-
volved, as well as the changes in their relative significance,
may hold the key to our understanding of the new prod-
uct development process and, more specifically, of why so
many new products fail.

To highlight the unique contribution of complexity
modeling for w-o-m research, it is necessary to review the
current state of our knowledge on this topic. We can trace
the origin of this concept to several sources, including
the classic formulation of the product growth curve. This
model of economical growth, embraced with enthusiasm
by theoreticians and marketers alike, is based on the work
of economist and demographer Thomas Robert Malthus,
who formulated the first equation describing the dynam-
ics of auto-catalytically proliferating individuals in 1798.
A correction to Malthus’ equation, offered by P.F. Ver-
huulst in 1838, offered amore realistic growth pattern with
saturation terms. The models used in marketing today are
almost identical to Verhuulst’s logistic equation.

Two social sciences researchers took up this basic no-
tion to establish a broad framework for the process of
innovation adoption. In 1962, Everett Rogers published
the first edition of his book “Diffusion of Innovation”.
Through case study analysis, Rogers uncovered the fun-
damental sociological structure describing how adopters
of new products interact with each other; influence each
other’s adoption and rejection decisions, and ultimately
affect the diffusion of innovations in a market. Several
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years later, Frank Bass [2] developed a quantitative model
of diffusion, based on a model taken from the field of
epidemiology. Extending the biological analogy, Rogers
established the critical role of interpersonal contact in
the diffusion of new products as one of the most ba-
sic assumptions of his model. In this model, consumers
are either infected (i. e., adopt the new product) sponta-
neously or through contact with other consumers (previ-
ous purchasers of the product). He assumed, for example,
that “infection” through contact is more prevalent than
spontaneous infection (as represented by effects such as
advertising and marketing efforts).

Together, the premises of Bass and Rogers created the
foundation for the product growth curve (visually similar
to the product life cycle and also known as the adoption
curve or the diffusion curve). The product growth curve
represents the introduction of an innovation into a mar-
ket as a progression along an inevitably successful path,
in which early adopters stimulate subsequent product ac-
ceptance by the main market. The pivotal role of early
adopters is based on their basic traits and social roles, bol-
stered by a host of marketing activities, including advertis-
ing. Indeed, early adopters are conceptualized on the basis
of their unique contribution to other population groups
in the form of product-related information. The informa-
tion that early adopters communicate – either in the form
of data injected into the market by marketers and actively
sought or passively received by consumers; or as infor-
mation passed directly or indirectly from one consumer
to another – reduces uncertainty in subsequent consumer
decision making. In addition to their ability to reduce the
perceived risks associated with an innovation by commu-
nicating product-related information, early adopters also
instigate a process of social emulation and provide the ba-
sis for social legitimization.

Rogers’s book triggered huge interest in the social as-
pects of innovation adoption, and Bass’ paper demon-
strated the first steps toward a model of this phenomenon.
Both Everett Rogers and Frank Bass lived long enough to
see the impact of their work on the field of innovation
adoption and its evolution as a strong research discipline.
In fact, the Bass model [2] remains the best-known and
most widely used model in diffusion research today. Since
its publication in Management Science, it inspired many
other models and it is considered a benchmark with which
new models are judged.

The Bass Model

Assume a market with potential M where N(t) is the cu-
mulative number of adopters and n(t) is the adoption rate

at time t. At each point in time, new adopters join the
market as a result of external and international influences.
External influences are the activities of firms in the mar-
ket, mainly advertising, and they are represented by a con-
stant P. Internal influences, which are interactions between
consumers (such as word of mouth), are represented by
a constant Q. In the original paper by Bass, as well as later
interpretations that regarded diffusion as a theory of com-
munications, Q represented word-of-mouth communica-
tions. According to current interpretations, the internal
coefficient Q. represents consumer interdependencies.

The Bass model postulates that the hazard function of
the adoption process, which represents the percentage of
new adopters of all potential adopters, is determined by
the sum of these two influences. Specifically:

n(t)
M � N(t)

D P C Q
�
N(t)
M

�
; (1)

where the total internal influence (i. e. the total word-of-
mouth effect) is proportional to the fraction of the market
potential that already adopted the new product. Therefore,
setting the problem to the continuous limit, the number of
new adopters at time t can be described by the following
differential equation:

dN(t)
dt
D
�
M � N(t)

 �
pC

Q
M

N(t)
�

D MPC (Q � P)N(t) �
Q
M
�
N(t)

2
: (2)

Equation (2) is a non-linear first-order differential equa-
tion, and can be solved analytically. Given the initial con-
dition N(0) D 0 (so that the time t D 0 is the launching
time of the new product), the solution for Eq. (1) takes the
form

N(t) D M
1 � e�(PCQ)t

1C


Q
P

�
e�(PCQ)t

: (3)

This equation reflects time-dependent growth governed
by 3 parameters P, Q, andM. Its general shape is a regular
S shape (logistic) graph.

The Bass model parameters P, Q, and M can be es-
timated from adoption data, usually by using non-linear
least squares [21]. Numerous studies have estimated these
parameters in various industries, and found that the aver-
age values of P and, Q for durable goods were P D 0:03,
and Q D 0:38 (Sultan, Farley, & Lehmann 1990). Figure 1
presents real data of VCR penetration along with a Bass
curve that fits the data.

The diffusion models are similar to the Bass mod-
els, and contribution to our understanding of the market-
ing forces that govern innovation adoption and growth
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Estimated Bass model from penetration data of VCR in US

of markets, and, at the same time, they enable forecast-
ing of penetration in forthcoming periods by estimating
the model parameter based on initial data. These two
advantages were probably the main reasons behind the
widespread appeal of diffusion models. However, this ag-
gregate approach involves several problems, including:

1. Need for adequate database for forecasting: Even the
Bass model, which is the simplest diffusion model, re-
quires a minimum periods to estimate its three param-
eters. This implies that reliable predictions can be per-
formed only after several years of data have been col-
lected, which is sometimes too late for an innovation
marketer. One approach that circumvents this require-
ment is the use of higher resolution data by switching to
quarterly or even monthly data. However, the volatility
of the data also causes estimation problems (we will re-
turn to this issue later).

2. Limited local fit: At the beginning of the growth process
when the number of actual adopters is much smaller
than the total market potential (i. e. N(t)
 M), the
Bass model is reduced to a simple growth process of the
following form:

dN(t)
dt
� MPC (Q � P)N(t) :

Since the market potentialM cannot be separated from
the productMP, predictions that are based on curve fit-
ting at the early stages of the adoption process become
inaccurate and even erroneous. On the other hand,
in subsequent stages of the growth process, the mar-
ket is closer to exhausting its potential, and the actual
number of adopters N(t) is on the same scale as total
market potential M. Consequently, the quadratic term
Q
� N(t)

M

N(t) which appears in the Bass model is no

longer negligible and fitting and forecasting are quite
satisfactory.

3. Simplistic model assumptions: As the most simple of
all diffusion models, the Bass model is based on the
most naive assumptions, as a result of which it is quite
synthetic. For example, the Bass model assumes homo-
geneity, implying that all the individuals are equally
affected by marketing efforts and peer recommenda-
tions, and that all social ties are of the same intensity.
In fact, according to the Bass model, everyone meets
and talks with everyone. Bass parameters P, Q, and
M do not change over time, and social network, ac-
cording to these assumption, do not exist. This world
is too simplistic – social life is much richer and more
complex. Even more recent models based on aggregate
modeling have succeeded in capturing only part of this
complexity.

The original model captured a truth and was admittedly
appealing in its simplicity. While related theories matured,
significant deviations from the basic model were revealed.
It has become increasingly obvious that the growth of con-
temporary markets and products is driven by a host of
intricately interwoven factors, which the classic adoption
curve fails to reflect, and therefore fails to predict.

Today we have access to information on advertising
investments, the number of coupons distributed, and the
number of sales promotion personnel hired.We are able to
measure the inputs and outputs of various elements in our
distribution channel and even evaluate the long-term con-
tribution of each one. However, since we lack understand-
ing of the weight consumers attribute to information, rec-
ommendations or warnings they receive from friends and
acquaintances in their purchase decisions, the effect of w-
o-m tends to catch us unprepared. Emmanuel Rosen [17]
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offered some surprising data confirming the strong impact
of word-of-mouth on sales. For example, 65% of all PDA
purchasers reported learning about their hand-held orga-
nizer from their friends and 70% of all Americans select
their physician based on personal recommendations.

It is not surprising that the implications of this factor
have remained unnoticed for so long. The unique feature
of word of mouth (w-o-m) is the almost surreptitious na-
ture of the process it generates beneath the surface of the
market and marketing data. The word of mouth effect be-
comes observable only when its ultimate results become
accessible for analysis, in the form of sales data. The pro-
cess of transmitting and communicating information from
individual to individual and the manner in which individ-
ual consumers are differentially affected remain a mystery
to market researchers.

One of the causes of this gap in knowledge is the un-
derlying complexity of the w-o-m process. W-o-m devel-
ops in a social system that may be described as “an adap-
tive complex system”, i. e., a system that consists of a large
number of individual entities which interact with each
other (in a manner that is sometimes indiscernible), ul-
timately generating collective (macro) behavior [23]. Al-
though the interactions in many adaptive systems may in
themselves be simple, the magnitude of the system’s scale
admits the emergence of patterns which are hard to pre-
dict, hard to track empirically, and often almost impossi-
ble to model analytically.

Complexity has emerged as a distinct field of research
in recent decades to address a wide range of phenomena
occurring in such systems. Originated in physics and bi-
ology, the study of complexity has recently moved into
the social sciences [10], including economics [19], man-
agement [1], andmarketing [8]. Let us explore the benefits
of this approach for marketing modeling.

We begin with the chasm and saddle – a simple case of
complexity in which two sub-markets interact with each
other phenomenon.

Blazing Saddles – a Simple Case
for ComplexityModeling

The Dual Market phenomenon is a simple case that neatly
illustrates the significant role that word-of-mouth plays in
the adoption process. The Dual Market model is offered
as a recent extension of the classic adoption curve, pur-
porting to reflect a more accurate representation of new
product development by attributing the high failure rate
of new products to communications (or the lack thereof)
between individual consumers. The model, also known
as Moore’s Chasm Theory [13], is supported by a wealth

of anecdotal evidence. Ascribing a large number of new
product failures to the marketers’ disregard of an impor-
tant twist on the classic adoption theory, Moore cautions
marketers to recognize a communication barrier between
early adopters and the main market, which results in the
formation of two distinct markets rather a single, general
market in which consumers are classified by “adopter cat-
egory”. The success of a new product critically depends on
adoption rates in both these markets. According toMoore,
marketing failure is avoided by the realization that w-o-
m communication among consumers cannot not be taken
for granted as inevitably sweeping the adoption curve from
product introduction to take-off and success.

This intuitively appealing idea has been confirmed by
empirical evidence in [8]. It is important to look at sales
data and see whether the chasm (defined in the model
as an expression of the lack of communications between
the two sub-markets) is just another factor contributing to
market failure or an immanent mechanism. Indeed, when
sales data for several innovative products were tracked
over time, it became clear that new product adoption takes
place in two semi-consecutive loci – two different con-
sumer markets, with distinct consumer attributes. Specifi-
cally, using an information bank containing data on a large
number of innovative products in the consumer electron-
ics industry, this study found that approximately one-third
of the growth patterns of these new products involved
an initial peak, giving rise to a trough of sufficient depth
and duration to preclude random fluctuations, followed by
sales which eventually exceeded the initial peak – a pattern
which is termed a ‘saddle’. When the inherent differences
in the reception of new products by these two markets are
sufficiently large, a lag occurs between the adoption pat-
terns of the early market and the main market, creating
two distinct sales peaks, rather than the single, classic Bass
diffusion pattern.

Figure 2 is a graphic illustration of the relation of the
dual market model to the saddle phenomenon. Figure 3
presents a real case of the pc sales to consumers

From a managerial point of view, this phenomenon
warrants attention because a significant and unexpected
decline in sales in the relatively early stages of a product’s
life cycle may erroneously cast doubt on product viabil-
ity. Thus, identifying the conditions underlying the oc-
currence of a saddle may prevent premature withdrawal
of potentially successful new products. This is especially
true for high-tech and similar innovative products, since
firms typically continue R&D and product improvements
after market launch, increasing early sales fluctuations. Ev-
idence of a decline in sales leads to a sudden, unexpected
drop in the cash flow just when firms are in the invest-
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The dual market underlying the Saddle mechanism
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Figure 3
Saddle in personal computers penetration

ment-intensive stage of simultaneously launching and im-
proving the new product. The saddle’s contribution in
informing managerial decision-making at such a crucial
stage of the new product launch is magnified if we take
into account that saddles may be even more ubiquitous
than our statistics show. Using data on products that ul-
timately survived the drop in sales and endured, a sad-
dle pattern was evident in approximately one third of the
cases studied. Is a traditional marketing approach insuffi-
cient to reveal this phenomenon? Muller and Yogev [13]
followed by Van den Bulte and Joshi [22] modeled the
same saddle phenomenon using aggregate modeling and
combined close form solutions while Goldenberg, Libai
and Muller [8] used a complexity approach. Although in
this case model performances in terms of predictions and

understanding the phenomenon are similar, in our view,
both approaches are required, both have advantages, and
together they allow more understanding and managerial
advantages.

However let us remember that this was a simple case
which involves only two subsystems that interact with
each other is a very simple way. The chasm, and its con-
sequence, the saddle are not a genuine complex system.
However this phenomenon was one of the first cases that
was addressed through complexity modeling tools, and it
conveniently illustrates how complexity modeling can be
applied to marketing systems. This framework is extended
in the following sections.

The Complexity Approach in the Social Sciences –
the Basic Idea

Complexity models havemore names than principles. One
of the first applications of complexity modeling in so-
cial sciences was coined cellular automata. The concep-
tion of cellular automata is typically attributed to John
von Neumann as a formal model of a self-reproducing bi-
ological organism. The history of the use of cellular au-
tomata in a variety of disciplines has been well docu-
mented (e. g., [20]) and will not be repeated here (Cellu-
lar automata are models of computation that can gener-
ate complex aggregate behaviors using a limited number of
simple individual-level rules. Cellular automata were pub-
licly recognized when proposed by John von Neumann as
formal models of self-reproducing organisms. However,
the first attempt to understand complex system behavior
can be traced to the Ising model, first proposed in 1924 by
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Ernst Ising. Despite its deceptively simple appearance, this
consequently well-establishedmodel explains and predicts
deterministic phenomena in nature. The Ising model at-
tempts to imitate a process in which individual elements
(e. g., atoms, animals, protein folds, biological membranes,
and social elements) modify their behavior in response to
the behavior of other individuals in their vicinity).

Recently Agent based modeling (ABM) was developed
as a more general framework for complexity applications.
Basically one can think of ABM as a grid of cells. In its sim-
plest state this is a one-dimensional grid, but most applica-
tions, including the ones we present here, are two-dimen-
sional matrices. In the ABM environment, time is discrete
and at each point in time, a cell can assume one of a fi-
nite number of possible states. A cell can change its state
each period in response to (or, as a function of) the state of
its surrounding cells. The algorithm by which cells change
their state is usually called “local rule” or “transition rule”.
The collection of all states at a given point in time is called
the “global state”. In each period, application of the local
rule of the ABM to a cell changes the global state of the
matrix. In the simple version of ABM, local rules are de-
terministic: A global state determines the next global state
with certainty. However, one can also use stochastic ABM,
in which the state of the cells changes based on some prob-
ability function, which is also a function of the state of the
cells around it.

Consider the example of the diffusion of innovations,
which we will use in this chapter to demonstrate the uses
of ABM for marketing applications. Diffusion theory as
well as most diffusion modeling efforts in marketing, sug-
gest that the process in which a social system adopts an
innovation is largely based on interactions among poten-
tial adopters. The transition from a potential adopter to an
adopter is attributed to two information sources: External
sources are unrelated to the number of previous adopters,
and include advertising, sales force, and other marketing
efforts, as well as mass media. Internal sources, on the
other hand, are the previous adopters of the innovation
who can influence potential adopters by spreading word
of mouth and functioning as role models of imitation.

Using the basic principles of ABM it is easily shown
how the combination of external and internal sources cre-
ates an aggregate adoption pattern in a given social system.
We define an innovation diffusion ABM model consisting
of three components:

1. A matrix representing adoption by individual con-
sumers

2. Relationships among the individuals
3. Transition rules representing adoption probabilities

The matrix is a two-dimensional array of cells. Each cell,
representing a potential consumer, can accept one of two
states: “0”, representing a potential consumer who has
not adopted the innovation, and “1”, representing a con-
sumer who has adopted the new product. In addition, irre-
versibility of transition is assumed, so that consumers can-
not “un-adopt” after they have adopted.

The model assumes that potential consumers interact
with all individuals in their immediate “neighborhood”.
Hence in the above matrix, any individual who is not on
the edge of the matrix has eight neighbors. While this
seems an obvious assumption, other kinds of neighbor-
hoods have been defined (e. g., [20]).

Transition rules define the conditions needed to con-
vert individuals from state “0” to state “1” as a result of
information. Transition rules involve two types of infor-
mation sources:

1. External Factors: A generic transition rule of this type
is: Some probability p exists, such that in a given time
period, external influence mechanisms (such as adver-
tising or mass media) will cause the individual to adopt
the innovative product.

2. Internal Factors: A generic transition rule of this type
is: Some probability q exists, that during a given time
period, an individual will be affected by an interaction
with a single other individual in its immediate neigh-
borhood who has already adopted the product.

Running the ABMAlgorithm

The following step-by-step outline describes how the ABM
algorithm is applied:

Period 0: This is the initial condition, wherein no individ-
ual has yet adopted the product (all cells have a value
of 0).

Period 1: The probability functions prob(t) are applied
to each consumer. Obviously, in this period, advertis-
ing is the only source of information available because,
by definition, word of mouth needs consumers who
have already adopted the product to initiate the pro-
cess. Hence the probability of adoption in this term
is p. A random number U is drawn from a uniform
distribution in the range [0; 1], representing the prob-
ability of individuals to become influenced by adver-
tising. If U < prob(t), the consumer moves from non-
adopter to adopter state (receiving the value of 1). Oth-
erwise the consumer remains a non-adopter.

Period 2: The individuals who have adopted the prod-
uct initiate the word-of-mouth process by interacting
and communicating with other consumers. Probabili-
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ties are realized as in step 1, and the random number is
drawn so that whenU < prob(t), the consumermoves
from non-adopter to adopter.

Period n: This process is repeated until a certain percent-
age (e. g., 95%) of the total market turns into adopters.

It is easy to see that in this basic diffusion ABMmodel,
the time-dependent (non-cumulative) individual proba-
bility of adoption, prob(t), given that the individual has
not yet adopted, is based on the following binomial for-
mula:

prob(t) D 1 � (1 � p)(1 � q)k(t) ; (4)

where k(t) is the number of previous adopters with whom
the individual maintains interactions in the matrix. The
logic is that 1 � p is the probability that the individual
has not been influenced to adopt by the external force,
and (1 � q)k(t) is the probability that she was not affected
by any w-o-m. This general ABM process is performed
computationally by running a stochastic process wherein
at each period, the individual probability of adoption is
determined by equations such as Eq. (4). The results for
a particular realization of the stochastic process are de-
picted in Fig. 4.

Tracking the total number of “1”s in each period over
time reveals the cumulative adoption of the product over
time, and when taking into account the difference between
periods, non-cumulative adoption is also evident. In the

simple case shown above, marketers can examine, for ex-
ample, how strategies that affect the individual-level adop-
tion parameters p and q influence the aggregate adoption
curve.

Back to the Saddle

Using data on a large number of innovative products in the
consumer electronics industry, one can find that a consid-
erable percentage of the cases followed a similar pattern:
an initial peak, giving rise to a trough of sufficient depth
and duration to exclude random fluctuations, followed
by sales which eventually exceeded the initial peak. This
pattern, the saddle, is explained by the dual-market phe-
nomenon that treats the early market adopters and main
market adopters as sufficiently different to warrant differ-
ential treatment as two separate markets. If these two seg-
ments – an early market and a main market – communi-
cate at different rates, and if the difference is pronounced,
then overall sales to the two markets will exhibit a tempo-
rary decline during the intermediate stage.

ABM can be mobilized to gain deeper understanding
of the dual market phenomenon. The market is divided
into two main groups:

1. The early market (indexed by i), and
2. Themain market (indexed bym)

Each group has distinct external (pi and pm) and internal
probabilities of adoption (qii and qmm), corresponding to
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the distinct nature of these markets. In addition, a cross-
market effect parameter qim was defined, to reflect some
degree of communications and influence between early
adopters and the main market.

ABM-generated data offers the flexibility required to
generate different sets of data needed to prove the main
point in question. In this study, if one wishes to prove
that cross-market communications are the main determi-
nant of the saddle phenomenon, one can generatemultiple
would-be worlds, differentiated by different cross-market
communication values. For each value of this parameter,
a number of different worlds are created by manipulating
the values of the rest of the parameters. ABM can confirm
that the saddle phenomenon is a natural by-product of
the dual-market assumption, and illuminate the circum-
stances under which saddles form.

The models show good fit with the data [8], and can
also be used to formulate predictions. However as we al-
ready mentioned, the saddle may be too simple to be
called a genuine complex system phenomenon. Dividing
the market to two sub-markets explains an important dy-
namics of innovation, but the complexity approach offers
much more.

Agent BasedModeling
and Aggregate DiffusionModels

The basic model described so far is similar in nature to
the basic Bass (1969) model, which constitutes the foun-
dation for most aggregate diffusion modeling in market-
ing, as well as much of the strategic thought on new prod-
uct marketing (see [11], for a review). However, while the
Bass model describes a process that occurs on the aggre-
gate level, developments in the agent based model (ABM)
takes place at the level of the individual level. While both
methods can be used to model the growth of a new prod-
uct, ABM offers the advantage of more flexible dynamics
that avoid the typical oversimplifications of aggregate as-
sumptions through the following principles:

Individual-level assumptions: Using ABM, researchers
model the growth process without having to make ag-
gregate-level assumptions that are not theory-based.
For example, the Bass model assumes that the hazard
rate of adoption is a simple linear function of both ex-
ternal and internal effects. However, this assumption
lacks any theoretical foundation, and the examination
of other functions can be equally justified.

Simplifying assumptions: Most diffusionmodels include
a number of implicit or explicit simplifying assump-
tions that were originally introduced to facilitate ana-

lytical solutions [12]. These assumptions include a bi-
nary adoption state (adopted/did not adopt), constant
market potential, a single adoption event by a single
adopting unit, probability functions are universal (ap-
plied equally to all individuals), and a non-changing
innovation. While extensions to the Bass model have
tried to relax some of these assumptions (see [11]),
these attempts have generally been limited and per-
formed piecemeal, thus preserving many of the as-
sumptions of the basic model. The ABM diffusion
model, on the other hand, can relax all of the assump-
tions mentioned above in a tractable way. The two
studies cited below relax several of the original as-
sumptions, and we are confident that many others will
follow.

The Lost Dimension: Using Spatial Analysis
to PredictingNew Product Success

Analyzes of new products in marketing literature has been
typically time-dependent. Studies have sought to describe,
explain, and predict how product sales grow over time. Al-
though patterns of product growth in space can also be
of crucial interest to marketers, very few formal attempts
have been to model growth over time and space due to
the complexities involved in suchmodeling. Because ABM
modeling explicitly takes into account the spatial connec-
tion among potential adopters, it is well-suited for spatial
analysis.

One of the main problems associated with early-pe-
riod forecasting of new product success is the lack of suf-
ficient sales data required for reliable predictions. A study
by Garber et al. [4], attempted to enhance prediction reli-
ability by utilizing information related to the spatial adop-
tion of a new product. According to diffusion theory, word
of mouth and imitation may play a significant role in the
success of many innovative products. Because traditional
word-of-mouth spread is often associated with some level
of geographic proximity between the parties involved, one
can expect the formation of non-uniform “clusters” of
adopters. Alternatively, when market reaction to external
factors is an overall reluctance to adopt the new product,
word-of-mouth effect is expected to be significantly re-
duced, leading to a more uniform pattern of sales (assum-
ing that there are no external reasons for clustering). Below
we explain in greater detail how adoption patterns may
help marketers formulate reliable early-period predictions
of new product success.

Figure 5 describes the spatial growth of two products
in an ABM environment. Figure 5a presents a simulated
product adoption process in six discrete time periods (8,
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Spatial Adoption of Two Products: a Successful Product (clustered) b Failed Product (uniformly distributed)

17, 25, 33, 42, and 50) over a certain rectangular geograph-
ical area. The product is clearly adopted in clusters. In
comparison, in Fig. 5b presents the adoption pattern of
a second product, whose distribution of adopters in the
same geographical area is relatively uniform.

ABM was used in this case in a number of ways.
First, it was used as a graphic tool to visually identify the
phenomenon. Second, ABM was used to examine vari-
ous scenarios and the conditions under which clusters are
formed. Finally, it was used to examine the feasibility of
using a distance measure (in this case, cross-entropy) to
predict long-term success from early-period data. Follow-
ing ABM results for this study, the early-period spatial
analysis method was successfully applied to actual prod-
uct data, and was found to generate correct predictions for
the new product success of 15 out of 17 new products (that
included 9 success and 8 failures).

We turn now to develop a more universal model that
can be tailored to a wide range of applications based on [9].

A Universal Framework
forModeling theMarket PenetrationDynamics

Can complexity modeling support a general (perhaps uni-
versal) modeling framework which takes into account
both individual level behavior as well as aggregate re-
sults? Such a framework would bridge between individ-
ual-level and aggregate-level point of views. It will hence
be a suitable framework for applying novel theories which
are rooted in the individual consumer behavior analysis to
explore the collective behavior of the whole market. In this
section, we present a universal modeling platform for syn-

thesizing individual and aggregate levels, using the most
general case of new product adoption dynamics, and a spe-
cific focus on the dynamics of the initial purchase of a new
product. Although we assume that an individual can adopt
the product only once, this framework supports a straight-
forward generalization to repeat purchase cases as well.

Our unit of analysis is the individual consumer rather
than the market segments or the entire market, as is typi-
cal of aggregate approaches. Let si be a binary variable that
represents the state of adoption of potential customeri. All
individuals in the market are potential adopters. That is,
si (t) takes the value 1 if customer i adopted the innova-
tion before time t, and 0 otherwise. We define the vector
ES(t) D [s1(t); s2(t); : : : ; sM(t)] as the market state vector
at time t, where M is the market potential. A customer
status change from potential adopter to actual adopter is
based on the transition from si D 0 to si D 1.

As the transition process between potential adopter to
actual adopter is stochastic in nature, we can define time-
dependent probabilities Fi(t)
t (i D 1; 2; : : : ;M), where
Fi(t)
t is the probability that individual i will adopt the
innovation within the time interval between t and t C
t.
These probabilities are determined by the market condi-
tions which affect individuals’ adoption decisions. Thuswe
can identify the transition rate Fi(t) with applied market
forces on potential adopter i, where more intense market
force leads to a greater transition rate. In general market
forces depend on the entire history of market dynamics.
The entire history, denoted by ˝t , may include current
and the past market state vectors, f(ES(t); ES(t �
t); : : : ;
ES(0))g, the social network topology, intensities of word-
of-mouth interactions among individuals, and the affect of
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external factors (such as advertising and promotion activ-
ities) on different consumers.

Since our interest is exploring the dynamic penetration
of a new product in the marketplace, we define a transition
index for a potential customer i as


si (t) D si(t C
t) � si (t) ; (5)

where given the entire history of the market dynamics˝ t :


si (t) D

(
1 with probability Fi(t j˝t )
t
0 otherwise:

(6)

The transition indices 
si(t) are stochastic variables by
definition. If we set the time interval 
t to a very small
value, which limits the probability of potential adopter
communications, the resulting word-of-mouth effect to
induce purchasing becomes negligible. In that case, the
transition indices can be considered independent (Also
note that the independence assumption does not imply
that individuals who simultaneously purchase the new
product cannot have mutual influence. Such an influence
is encapsulated in the entire history of the market dynam-
ics˝ t).

The first step in integrating the micro and the macro
points of view is to define the non-cumulative penetration
of the new product. This is the number of individuals who
have adopted the innovation within a given short time in-
terval 
t, subsequent to a certain time t, and can be ex-
pressed as the sum of all individual transition indices, such
that


N(t) D
MX

iD1


si (t) : (7)

The non-cumulative penetration is a stochastic variable
in the sense that if we were able to reconstruct the cur-
rent market status and repeatedly run the new product
adoption process, each rerun would generate different re-
sults. Under the assumption that simultaneous purchases
are uncorrelated within a short time interval
t, and given
the entire history of the market dynamics˝t , the non-cu-
mulative penetration is a sum of independent binomially
distributed variables. Thus, it can be shown that [9]


N(t) D F(t;˝t)
t C "t (8)

where

F(t;˝t) D
X

i

Fi(t;˝t)

is the net market force applied to entire potential market
and "t is uncorrelated noise with mean zero which satisfies

E
�
"2t j˝t


Š E(
N(t) j˝t )

(E(� j˝t ) denotes a conditional excepted value, given ˝ t
the entire history of the market dynamics at time t.)

Equation (8) is in fact an “equation of motion of pen-
etration dynamics” where modeling the net market force
becomes, in a sense, a marketing engineering challenge
(Marketing engineering is a relatively new concept (see
http://www.mktgeng.com/) of education and implementa-
tion framework of marketing models. Here, we propose to
extend this view and include development and tailor mod-
els using complexity framework in a marketing engineer-
ing framework).

In many respects, this assignment is analogous to typ-
ical problems in classical mechanics where one aims to re-
trieve the spatial motion of physical bodies by modeling
the applied force on those bodies and solving the appropri-
ate equations of motion provided by Newton’s second law
of motion. Yet, while the dynamical equations of classical
mechanics are deterministic, the penetration dynamics is
stochastic by nature.

Furthermore, actual net market force F is defined as
a function of˝t , the entire history of the market dynamics
that also contains individual-level information. Since such
data are seldom available, the applicability of such a mod-
eling approach is significantly restricted. Nevertheless, we
can use Eq. (8) (non-cumulative penetration), which we
recast as follows to reflect partial information:


N(t) D F̂(t; ˆ̋ t)
t C u(t) (9)

where F̂(t; ˆ̋ t) is the model of the net market force which
is used to estimate actual net market force F on the basis of
the partial information ˆ̋ t . In contrast, the term u(t) de-
notes the actual noise, or stochasticity, of the process. The
actual noise contains all the relevant micro-level informa-
tion that has not been (or cannot be) modeled. Since in
general E(u(t) j˝t ) ¤ 0 and E(u(t)u(t0) j˝t ) ¤ 0 for dif-
ferent time indexes t and t0, the actual noise in the non-
cumulative penetration usually becomes biased and cor-
related, resulting in strong coupling effects evident in the
penetration curve. These effects can be interpreted as large
fluctuations or trends in the adoption rates. That is, mod-
eling the actual net market force F exhibits the following
trade-off: The simpler and hence the less micro-informa-
tive the model of the net market force F̂, the more signif-
icant the impact of the noise u in producing large fluctua-
tions and trends in the penetration data.

On the other hand, by zooming in to a unit of analysis
which is a single consumer (rather than market segments
or the entire market), and tomore granular (e. g., daily) in-
stead of smoothed (e. g., annual) data, we are able to obtain
a more accurate modeling of the net market force. How-

http://www.mktgeng.com/
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Actual daily penetration of an e-mail software product in India and Sweden

ever, such models may become very difficult, if not impos-
sible, to formulate and solve.

The stochastic term u(t) incorporates all the effects
that have not been modeled, including heterogeneity
among individual consumers, social networks topology,
dynamical changes of external and internal influences.
These effects may cause significant deviations from the
pattern of product life cycle, predicted by traditional mod-
els (e. g., the Bass model). This phenomenon is illustrated
in Fig. 6 which presents the actual daily penetration of an
e-mail software product in two different markets (India
and Sweden). Although a primary tendency of increasing
adoption rates is evident in all cases (as expected in the
initial phase of a standard new product growth process at
the beginning of the product life cycle), secondary move-
ments and large fluctuations can also be observed. Nat-
urally, in order to explicate these secondary movements
and large fluctuations one may use a more realistic model
F̂ of the net market force F that includes additional and
more detailed information, rather than rely on total adop-
tion rates.

This particular example is not merely a theoretical case
but has significant practical implications as well. Often,
monthly or weekly sales curves of trends, patterns and

changes of the curve are characterized by “noise”, a term
often used (in most fields) to reflect measurement tool er-
ror. This is what we see in Fig. 6. The “noise” in sales data is
typically handled by data smoothing and the use of larger
time frames of analysis (i. e., quarters or years) in aggregate
models. However, as measurement tools and information
technology developme and allow increasingly precise mea-
surements, we can posit that what we see in granular data
is not noise, but simply the true face of growth. In par-
ticular, we can identify “ripples that ride on small waves”.
Goldenberg, Lowengart and Shapira [9] argued that the
volatility may surprisingly contain valuable information.
Accordingly, they propose to “step inside the noise” and
use granular data instead of the more commonly used
smoothed quarterly or annual data. Analysis of the struc-
ture of the “waves” yields information that improves the
accuracy of post-launch predictions at much earlier stages
(i. e., immediately following product introduction). By
analyzing highly fluctuating daily data, changes in sales
patterns can self-emerge as a direct consequence of the
stochastic nature of the process. This study demonstrated
how to “stepping into the noise-like data” and treat it as
information, through a Kalman–Filter-based tracker, to
trace and significantly improve predictions.
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Actual penetration data of a software product on an a annual, b quarterly, and c daily scale

Selecting the best time resolution for data analysis is
not a trivial decision. Annual data (Fig. 7a) offers only
two data points that scantly provide any insight, while
daily data (Fig. 7c) involves high fluctuations that may
appear to be noise. Possible compromises including ac-
cumulating data over several years, or using quarterly
data (Fig. 7) which is less noisy than the daily data yet
offers sufficient data points to make forecasts based on
smoothing and fitting. Is this our best option for anal-
ysis? Goldenberg, Lowengart and Shapira [9] show that
the patterns observed in Fig. 7c are an inherent compo-
nent of the diffusion process of new products, and bet-
ter predictions result at very early stages of the product
introduction process if granular data (instead of smooth-
ing) is used. More specifically, in few examined cases it
was possible to provide forecasting already 50 days after
launch two quarters ahead. This is a valuable informa-
tion for firms that have to make plans, and such forecast-
ing are not provided by regular diffusion models (because
they use smoothed data, such annual one). When compar-
ing the model with 3 diffusion models the fit of the fore-
casts using the zooming in approach was sometimes twice
better.

Through the aggregation of a microscopic approach,
marketers may obtain insights to the collective behavior of
their target market, by resolving practical and operational
tradeoffs imposed by factual constraints and by the firm’s
business plan and objectives. In this context, one can think
of the role of a “sales engineer” who is familiar with his
or her target market and can evaluate the specific market
forces that are to be substituted in the sales equation of
motion in order to derive the dynamics of the new prod-
uct consuming process. The universal framework based on
micro-level data, offers a natural platform to profile col-
lective market behavior by applying advanced theories in
marketing that are usually rooted in the analysis of indi-
vidual consumer behavior.

The universal framework for modeling market pene-
tration dynamics involves an inter-disciplinary approach
that combines complex system analysis methods with ad-
vanced marketing theories. It can also be applied to other
problems from different disciplines that involve the dis-
semination of information over social networks, including
collective decision making, the spread of computer viruses
via the internet, or the evolution of species in ecological
environments, to name only a few.
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Illustration of Penetration Dynamics Modeling
Using the Universal Framework

To illustrate the use of the universal framework for
modeling market penetration dynamics, we con-
sider the most simple case of a homogeneous and
stationary market. Let p
t be the probability that
a potential adopter is persuaded by an external in-
fluence (e. g. advertising or firm’s promotion activ-
ities) to adopt the new product within a short time
interval
t; let q
t be the probability that a poten-
tial adopter interacts with an actual adopter and is
affected by his or her word of mouth to adopt the
innovation within a short time interval 
t, and let
N(t) be the total number of actual adopters at time t.
Assuming that word of mouth communications and
external effects are orthogonal, we canmodel the ap-
plied market force on any potential adopter i as fol-
lows:

F̂i(t)
t D 1 � (1 � p
t)(1 � q
t)Nt

Š (pC qN(t))
t : (A1)

In this case, the net market force is given by the
product of the number of potential adopters and
the applied market force on each potential adopter.
Namely,

F(t;˝t) � F̂( ˆ̋ t)

D (M � N(t))
�
pC

Q
M

N(t)
�
; (A2)

where M is the total market potential, P D p and
Q D Mq. Partial information ˆ̋ t on which our
model of the net market force is based, includesN(t)
the total number of actual adopters at time t as well
as the constant parameters P, Q and M that denote
market potential, external influences, and word of
mouth effects respectively (Note that our model is
not explicitly time-dependent). After modeling the
net market force, we can now use Eq. (9) to describe
the dynamics of new product growth, as follows:


N(t) D
�
(M � N(t))

�
pC

Q
M

N(t)
��


t

C u(t) : (A3)

As a special case, we can set Eq. (A3) to the contin-
uous limit, while neglecting the stochastic effects of
the process to obtain the following ordinary differ-
ential equation:

dN(t)
dt
D (M � N(t))

�
pC

Q
M

N(t)
�

(A4)

which is the Bass Eq. (1) [2].

Future Directions

An important question is how robust the approach is to
errors resulting from data that is not at the industry level.
While the last demonstration used penetration data of
a unique product, and the data can be considered a good
proxy for an industry level, there are other studies that are
a case of partial data (firm level). The results indicate that
despite such a limitation, the proposed model works well,
and its predictions are relatively high.

The proposed framework and modeling approach lay
the groundwork for further research. Extending the cur-
rent model to account for repeat purchase goods is a natu-
ral step that can provide meaningful insight into the emer-
gence of sales trends. Another avenue for future research
might focus on identification of opinion leaders and their
effect on other consumers through social ties. Another
important force is the resistance to innovation, in which
a negative word of mouth is disseminated and competes
again the positive one. The two diffusions interact and the
outcome of this battle can determine the faith of the new
product. Modeling the two forces seems to be doable. Fi-
nally, the spatial dimension can be more sophistically uti-
lized if information is used to develop a spatial allocation
of marketing resources.
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Glossary

Ask price Price at which a trader is willing to sell an asset.
The most competitive ask price in a financial market
or best ask is the lowest price offered by a seller.

Bid price Price at which a trader is willing to buy an asset.
The most competitive bid price or best bid in a finan-
cial market is the highest price offered by a buyer.

Limit order Orders placed bymarket participants contin-
gent upon the realization of a certain price in the mar-
ket. In other words, traders will identify amaximum or
minimum price at which they are willing to buy or sell
a specific quantity of a particular asset.

Market order Order to buy or sell a particular asset im-
mediately at current market prices.

Market structure The way in which trade occurs within
a particular market. Institutions have constructed id-
iosyncratic guidelines to dictate how transactions can
take place, so generalizing one trading structure to
model all markets is quite difficult, if impossible.

Order flow is the cumulative flow of signed transactions
over a time period, where each transaction is signed
positively or negatively depending on whether the ini-
tiator of the transaction (the non-quoting counter-
party) is buying or selling, respectively. By definition,
in any market, the quantity purchased of an asset
equals the quantity sold of the same asset. The key is
to sign the transaction volume from the perspective of
the initiator of the transaction.

Bid-ask spread The difference between the highest bid
price and the lowest ask price. This difference, or
spread, constitutes part of the cost of trading.

Definition of the Subject

Market microstructure is a field of study in economics that
examines the way in which assets are traded and priced
under different trading mechanisms, e. g., single-price call
auction, dealer markets, limit-order book markets, hybrid
markets, etc., and under different trading environments,
e. g., perfect information environments (complete mar-
kets) compared to asymmetric information environments
(incomplete markets). While much of economics abstracts
from the market structure and market frictions the mi-
crostructure literature specializes in understanding them
and the effects theymay have on asset prices and quantities
traded. Even though economic theorists assume a friction-
less economy to prove powerful theorems about the effi-
ciency of a decentralized market system, the market struc-
ture and market frictions can be very important. Ignor-
ing themmay lead researchers and policy makers to wrong
conclusions. For example, in a Walrasian world with per-
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fect information and no transaction costs, prices efficiently
aggregate information when trading is organized as a sin-
gle-price call auction with large numbers of traders. How-
ever, most securities markets are not single-price call auc-
tions as several studies show that this trading mechanism
may be optimal when uncertainty about the fundamen-
tal value of the asset is high, but it is not optimal at other
times. Furthermore, in the 1970’s the economics of infor-
mation literature argued that allowing for imperfect in-
formation could overturn the central implication of the
complete-markets model, that competitive, decentralized
markets yield economically efficient results.

Market Structures

A large part of the market microstructure field consists of
developing models to describe the behavior of individuals
acting according to the guidelines of various trading insti-
tutions, and to study how trading quantities and prices in
variousmarkets arise given a particular set of assumptions.
Thus, we start with a short description of the common
market structures. It is outside the scope of this article to
detail the myriad rules that govern various financial mar-
kets. It is also counter-productive because trading systems
are in a continuous process of structural changes gener-
ated by research, competition, and technological innova-
tions. Insteadwe present a general outline of the guidelines
that dictate the way in which assets trade and the effects
these rules may have on asset prices and quantities traded.

Auctions

Auctions are order-driven trading mechanism, i. e., in-
vestors submit their orders before observing the transac-
tion price. In contrast, investors in a quote-driven trad-
ing mechanism obtain firm price quotations from dealers
prior to order submission (these price quotations usually
depend on the size of the order). Auctions can be continu-
ous or periodic. An example of a continuous auction is the
automated limit order book, which consists of a sequence
of bilateral transactions at possibly different prices (we de-
scribe limit-order books inmore detail below). In contrast,
a periodic or call auction is characterized by multilateral
transactions. Periodic or batch systems, such as the single-
price call auction, are used to set opening prices in sev-
eral exchanges, e. g., NYSE, Tokyo Stock Exchange, etc.
In these markets limit orders and market-on-open orders
are collected overnight. At the beginning of the trading
day the specialist chooses the price that enables the largest
number of orders to be executed. Stock exchanges use call
auctions to fix opening prices because uncertainty about
fundamentals is larger at the opening than during regu-

lar trading hours. Indeed, Madhavan [36] provides a the-
oretical argument for batch markets as a way to reduce
market failures caused by information asymmetries. An-
other example of a periodic auction market is the primary
market for US Treasury securities. These securities are
sold through sealed-bid single-price auctions at pre-deter-
mined dates announced by the US Treasury Department
(before November 1998 the Treasury auctioned securities
through multiple-price or discriminatory auctions).

Limit Order Markets

Limit order books are the most widespread conduit to fa-
cilitate trade in financial markets; at least one limit order
book exists in most continuous (liquid) security markets
(see p. 10 in [29]). In such markets, traders submit their
bid and ask orders, and the order book(s) process these or-
ders, comparing them to already existing orders to estab-
lish whether any matches can be made. These pre-existing,
unfilled limit orders comprise the limit order book. Vari-
ous rules dictate how andwhen limit orders are acted upon
Parlour and Seppi [42]. Generally price and then time de-
termine priority of execution. For instance, a limit order
to sell an asset for $50 will take precedence over an order
to sell at $52. If two limit orders are priced the same, then
the first limit order submitted is the first order executed.

Sometimes tradersmay request the execution of amar-
ket order; this order is immediately executed at the best
price available. A problem can arise if the quantity desig-
nated in the market order is larger than the quantity avail-
able at the best price available on the limit book. Differ-
ent exchanges have different rules to deal with the left-
over quantity. In the NYSE, the excess quantity “walks
the book”, meaning that the market order achieves par-
tial executions at progressively worse prices until the or-
der is filled. This process results in the partial execution of
market orders at less than desirable prices for the order-
issuing trader. In contrast, in the Euronext system and the
Paris Bourse, if the quantity in the market order exceeds
the quantity at the best price, the unfilled part of the mar-
ket order is transformed into a limit order, requesting ex-
ecution on the remaining quantity at the same execution
price.

Various other rules regarding the execution of limit or-
ders exist. For example, traders can post orders with an
expiration time, i. e., the limit order is canceled if it is not
executed within a given time frame. This prevents limit or-
ders to be “picked off” by investors who receive updated
public or private information. Traders can also hide part
of the order they submit to the limit order book, these are
called “iceberg” orders.
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Exchanges vary in the degree of transparency of the
limit order books. The automated limit-order-book sys-
tem used by the Toronto Stock Exchange and the Paris
Bourse are among the most transparent systems. They of-
fer continuous trading and the public display of current
and away limit orders (an open book limit-order system).
The NYSE has shifted from a close limit order book policy
(although specialists made the book available to traders on
the floor at their own discretion) to making the content
of the limit-order book public. In January 24, 2002 the
service OpenBook was introduced. This service provides
information about depth in the book in real time at each
price level for all securities to subscribers either directly
from the NYSE or through data vendors such as Reuters
and Bloomberg. Boehmer et al. [10] empirically examine
the effect of increased transparency in the NYSE andGoet-
tler et al. [24] numerically solves a dynamic model of limit
orders in which agents arrive randomly andmay trade one
share in an open electronic limit order market.

Single Dealer Markets

It is a market where one dealer (market maker or special-
ist) stands ready to buy at his bid quote and sell at his of-
fer quote. In this environment, incoming orders are nec-
essarily market orders (in contrast to limit orders). The
customer either buys (sells) at the dealer’s offer (bid) or
chooses not to trade. Dealer markets are less transparent
than open book limit order markets (only the best-bid and
best-ask price are known to the customer in a dealer mar-
ket, while the entire depth of the market is visible in an
open limit-order book). In reality there are very few pure
single-dealer markets. The NYSE is sometimes mistakenly
labeled as a single-dealer market, but it is a hybrid sys-

Market Microstructure, Figure 1
Single dealer market

tem with both limit-order and single-dealer features. Eq-
uity trading is centered on the stock specialist, who is as-
signed particular stocks in which to make a market. Each
listed security has a single specialist, and all trading on
the exchange must go through the specialist. The specialist
receives market orders (orders for immediate execution)
and limit orders (orders contingent on price, quantity and
time), so that specialists do not enjoy monopoly power be-
cause they compete against the limit order book. If a mar-
ket order comes to buy, the specialist can either match it
with the best sell limit order or if he offers a lower price,
he can take the other side. Examples of pure single-dealer
markets are foreign exchangemarkets in developing coun-
tries with fixed exchange rates, where all orders must be
routed through a single dealer – the central bank.

Multiple Dealer Markets

Competition in this environment is brought through mul-
tiple dealers. In a centralized market, quotes from many
dealers are available on a screen (NASDAQ) or on the
floor of an exchange (like a futures trading pit: the Chicago
Board of Trade, the New York Mercantile Exchange,
and the Chicago Mercantile Exchange). In a decentral-
ized market trading occurs over-the-counter rather than
through an organized exchange. The foreign exchange
market, government bond’s secondary market and cor-
porate bond markets are good examples of decentral-
ized multiple-dealer markets. There is less transparency
in these markets than in a centralized multiple-dealer one
because not all dealer quotes are observable. As a re-
sult, there can be simultaneous transactions that occur
at different prices. The main mechanism that mitigates
the dealer’s monopoly power is the fact that the inter-

Market Microstructure, Figure 2
Multiple dealer market
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action between a dealer and a customer is repeated over
time. Dealers have an incentive to keep their reputation
in quoting reasonable bid and ask prices so that the cus-
tomer does not go to another dealer. In particular, deal-
ers are concerned about losing large customers, so that
small customers have less bargaining power. Competition
in these markets and pressure from regulators has also
forced a shift from voice-based brokers to electronic bro-
kers, who provide a higher level of transparency. For ex-
ample, recently the Bond Market Association responded
to SEC pressure for more transparency in the corporate
bond market by setting up a single reporting system for
investment grade bonds Viswanathan andWang [47]. For
a detailed description of how the foreign exchange market
and the government bond market operate please refer to
Lyons [35] and Fabozzi and Fleming [21], respectively.

Inter-Dealer Markets

In addition to dealer-customer interactions, inter-dealer
trading is very important. Ho and Stoll [31] suggest that
risk-sharing is the main reason for inter-dealer trading.
The incoming orders that a particular dealer receives are
rarely balanced, so that the dealer is left with an unde-
sired short or long position. To balance their inventory
the dealer can sell to or buy from other dealers. The dealer
can do so by either contacting another dealer directly or
through a broker. The benefit of going through a broker
is that they provide anonymity and the cost is the bro-
ker fee. In addition, brokers offer dealers electronic trad-
ing platforms that help the flow of information. These
screens typically post: (i) the best bid and offer prices of
several dealers, (ii) the associated quantities bid or offered,
(iii) transaction prices, and (iv) transaction size. Common
brokers in the secondary government bond market are
ICAP’s BrokerTec, Cantor Fitzgerald/eSpeed, Garban-In-
tercapital, Hilliard Farber, and Tullett Liberty. The main
electronic brokers in the major spot markets (JPY/USD,
Euro/USD, CHF/USD and GBP/USD currency pairs) are
EBS and Dealing 2000-2, a dealer-broker Reuter prod-
uct (Dealing 2000-1 is the Reuter product for direct in-
ter-dealer trading). It is worth noting that EBS and Deal-
ing 2000-2 typically conduct trades via a limit order book,
while Reuters D2000-1 is a sequential trading system (an
outside customer trades with dealer 1 who trades with
dealer 2 who trades with dealer 3 and so on; hence it is
often referred to as “hot potato” trading). In the equity
markets inter-dealer trading is also common. On the NAS-
DAQ market, dealers can trade with each other on the
SuperSoes system, the SelectNet system and on electronic
crossing networks (ECNs) like Instinet. In equity mar-

Market Microstructure, Table 1
Primary Government Securities Dealers as of Nov. 30, 2007.
Source: Federal Reserve Bank of New York
http://www.newyorkfed.org/markets/pridealers_listing.html

BNP Paribas Securities Corp.
Banc of America Securities LLC
Barclays Capital Inc.
Bear, Stearns & Co., Inc.
Cantor Fitzgerald & Co.
Citigroup Global Markets Inc.
Countrywide Securities Corporation
Credit Suisse Securities (USA) LLC
Daiwa Securities America Inc.
Deutsche Bank Securities Inc.
Dresdner Kleinwort Wasserstein Securities LLC.
Goldman, Sachs & Co.
Greenwich Capital Markets, Inc.
HSBC Securities (USA) Inc.
J.P. Morgan Securities Inc.
Lehman Brothers Inc.
Merrill Lynch Government Securities Inc.
Mizuho Securities USA Inc.
Morgan Stanley & Co. Incorporated
UBS Securities LLC.

kets like the London Stock Exchange, inter-dealer trading
constitutes about 40% of the total volume Viswanathan
and Wang [47], while in the foreign exchange market and
the US government bond market inter-dealer trading far
exceeds public trades. Inter-dealer trading accounts for
about 85% Lyons [35] of the trading volume in the for-
eign exchange market and about 99% Viswanathan and
Wang [47] in the US government bond market. Two-
thirds of the transactions in the US government bondmar-
ket are handled by inter-dealer brokerage firms and the re-
maining one-third is done via direct interactions between
the primary dealers listed in Table 1. For more details
on inter-dealer trading please refer to Viswanathan and
Wang [47].

In the next section we present a few of the basic models
that are employed in the market microstructure literature.

InventoryModels

The first theoretical models in the market microstructure
field were inventory models; however information-based
models have come to dominate the field because the for-
mer describe temporary price deviations around the equi-
librium price, while the later describe permanent price
changes. The main idea of inventory models is captured
by Smidt [44] who argued that dealers, or market makers

http://www.newyorkfed.org/markets/pridealers_listing.html
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in general, are not simply passive providers of immediacy,
but actively adjust the bid-ask spread in response to fluc-
tuation in their inventory levels. Though dealers’ main re-
sponsibility is to facilitate trade in an asset market, they set
prices to realize rapid inventory turnover and to prevent
the accumulation of significant positions on one side of
the market. The consequence of this paradigm is a price
that may diverge from the expected value of an asset if
a dealer is long or short relative to a desired (target) inven-
tory, which would result in temporary price movements
over various (short-term) periods of time. How “short-
term” these deviations are differs across studies. Data on
specialists’ inventories is scarce, but studies have been suc-
cessful in showing that inventories play an important role
in intraday trading and a recently published paper by Hen-
dershot and Seasholes [30] shows that inventory consider-
ations affect prices beyond intraday trading. Hendershott
and Seasholes argument is that market makers are will-
ing to provide liquidity as long as they are able to buy
(sell) at a discount (premium) relative to future prices.
Hence, large inventories of the market maker should co-
incide with large buying or selling pressure, which cause
prices to subsequently reverse (e. g., Amihud and Mendel-
son [2] and Grossman and Miller [26] provide inventory
models that lead to reversals). But the reversal of prices
does not have to be immediate, in fact, they document that
reversals can take as long as 12-days.

Inventory models assume that there is no asymmet-
ric information. Fluctuations in market prices, therefore,
results solely from dealers’ decisions about the positions
of their inventory. Dealers’ hold sub-optimal portfolios,
bare a cost for maintaining inventories – holding assets for
the purpose of providing liquidity to the market exposes
them to risk. Consequently, market makers receive com-
pensation (i. e., bid-ask spread) for incurring the transac-
tion costs entailed in managing their inventories.

Various texts, including O’Hara [41], present different
inventory models. The discussion below will focus on one
suchmodel—themodel presented by Garman [22] that in-
augurated the field of marketmicrostructure and builds on
Smidt [44] idea. As O’Hara notes, aspects of basic inven-
tory models, such as the assumption of perfect informa-
tion, are not realistic; however, it is still useful to review
basic models’ assumptions about the functioning of asset
markets to isolate the various ways in which the behavior
of market makers can influence asset prices.

Garman’s Model

The expected value of the asset or the equilibrium price
is equal to the price at which quantity demanded equals

quantity supplied at a particular period in time. Let’s la-
bel this price p�. Garman (16) shows that it is optimal
for the market maker to charge two different prices. One
price, pa, the ask price, at which he will fill orders wish-
ing to buy the stock, and another price, pb, the bid price,
at which he will fill order wishing to sell the stock. These
prices will not necessarily straddle the equilibrium price,
p�, i. e., pb > p� > pa. By being willing to take profits in
the form of stock inventory increases, the market maker
can artificially inflate prices by maintaining the inequality
pb > pa > p�. In no case, however, will the market maker
be able to set both prices below p� without ultimately run-
ning out of inventory. Furthermore, if the market maker
sets both prices equal to each other, equal to the equilib-
rium price, i. e., pb D p� D pa, then themarketmakerwill
fail with certainty (i. e., the market maker will either run
out of inventory or cash with probability equal to 1). In
what follows we describe briefly how the model works and
we ask the reader to refer to the original paper for more
details. Garman considered two market clearing mecha-
nisms: a dealer structure and a double auctionmechanism;
however, we will focus on the dealer structure only.

Garman conceived the dealer as amonopolist; he alone
receives orders from traders, determines asset prices, and
facilitates trade. In making the market, the dealer engages
in optimizing behavior by maximizing his expected profit
per unit of time while avoiding bankruptcy or failure,
which is defined as depleting his inventory or losing all of
his money. The dealer sets an ask price and a bid price at
the beginning of trading, and investors submit their orders
after observing the dealer’s bid and ask quote. The arrivals
of orders to buy and sell the asset are independent stochas-
tic processes that are distributed according to a Poisson
distribution. The dealer, therefore, runs a chance of fail-
ing since he must ensure liquidity—selling part of his in-
ventory or buying a particular asset as determined by the
arrival rate of buyers and sellers.

Assuming a Poisson arrival rate necessitates that
(i) many agents are interacting in the market, (ii) these
agents issue orders independently without consideration
of others’ behavior, (iii) no one agent can issue an infi-
nite number of orders in a finite period, and (iv) no subset
of agents can dominate order generation, which precludes
the existence of private information. It requires that the
order flow be stochastic without being informative about
future market or price movements.

Garman’s model is based on two equations—one that
determines the dealer’s cash, Ic(t), at time t and one that
determines the dealer’s inventory of the asset, Is(t), at
time t. At time 0, the dealer holds Ic(0) units of cash and
Is(0) of stock. Inventories at any point in time can be rep-
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resented as follows:

Ic(t) D Ic(0)C paNa(t) � pbNb(t) ;

Is(t) D Is(0)C Nb(t) � Na(t) ;

where Na(t) is the number of executed buy orders at time
t, Nb(t) is the number of executed sell orders at time t,
pa is the ask price and pb is the bid price for a stock.
Using these equations, Garman sets forth to determine
how a dealer can avoid market failure or bankruptcy (i. e.,
Ic(t) or Is(t) D 0). Preventing this situation from occur-
ring is the main goal of dealers in setting asset prices. Gar-
man [22] provides a detailed explanation for determining
when failure will occur, but for the purpose of this article it
is enough to skip to the main conclusion. In order to avoid
market failure, dealers must set pa and pb to satisfy both
equations:

paa(pa) > pbb(pb) and

b(pb) > a(pa)

where a(pa) is the probability of stock leaving the dealer’s
inventory and b(pb) is the probability of stock being
added to the dealers inventory. Simultaneously satisfying
these equations requires that the dealer set pa above pb.
In other words, a spread must be in place in order for the
dealer to avoid bankruptcy or market failure, though the
market maker still faces a positive probability of failure.

Various inventory models exist that explain the pres-
ence of the bid-ask spread. Although Garman’s approach
focuses on the threat of market failure to explain the dis-
parity in bid and ask prices, other explanations such as
dealers’ market power or risk aversion have also been pro-
posed by theorists (see p. 51 in O’Hara [41]). Though
the dissimilarities among inventory models are many, the
common theme that links these models together is the
complex balancing problem faced by the dealer who must
moderate random deviations in inflows and outflows of
cash and assets. Over the long run the flow of orders had
no effect on asset prices, but the dealers’ attempt to recali-
brate their positions in response to the random stochastic
order flows causes price fluctuation in the short run.

Information-BasedModels

One implication of the inventory approach discussed in
the previous section is that inventory costs determine
the bid-ask spread. Beginning with an insightful paper
by Bagehot [9], a new theory emerged to explain bid-
ask spreads that did not rely on inventory costs, but
rather posited an important role for information. These

information-based models used insights from the theory
of adverse selection to demonstrate how, even in com-
petitive markets without explicit inventory costs, spreads
would exist. In what follow we describe three information-
based models to illustrate the insights gained from adopt-
ing an information-based approach to studyingmarket in-
teractions.

Copeland and Galai’s Model

Copeland and Galai [14] were first to construct a for-
malized model incorporating information costs. Similar
to Garman’s inventory model the agents in the model
are dealers and traders. In contrast to Garman’s model,
there is more than one dealer and there are two types
of traders: informed and uninformed. Informed traders
know the true value of the asset, P, and uninformed or liq-
uidity traders trade for exogenous reasons to the value of
the asset (e. g., immediate consumption needs). The exis-
tence of uninformed traders that trade for non-speculative
reasons is ubiquitous in the literature. This assumption is
necessary because for information to be valuable informed
traders need to be anonymous. If traders known to possess
superior knowledge could easily be identified, then no one
would agree to trade with them. This is the so called no-
trade equilibrium described in Milgrom and Stokey [39].

The trader arrival process is exogeneously determined
and is independent of the price change process. This is the
same assumption as in Garman’s model, but this assump-
tion is not harmless in the presence of informed traders
as it appears likely that informed trader behavior would
depend on what they know about the true value of the as-
set relative to what the market thinks. This aspect of the
problem is not resolved in Copeland andGalai’s paper, but
other authors relax this assumption and allow the num-
ber of informed traders in the market to be endogenously
determined. However, the main contribution of Copeland
and Galai’s paper is to show that even in the presence of
competitive dealers, themere presence of informed traders
implies that the bid-ask spread will be positive. The dealer
knows the stochastic process that generates prices, f (P),
knows the probability that the next trader is informed,
�1, and knows the elasticity of demand of uninformed
and informed traders. With this information the objec-
tive of the dealer is to choose a bid-ask spread that max-
imizes his profits. If the dealer sets the bid-ask spread too
wide, he loses expected revenues from uninformed traders,
but reduces potential losses to informed traders. On the
other hand, if he establishes a spread which is too nar-
row, the probability of losses incurring to informed traders
increases, but is offset by potential revenues from liquid-
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ity traders. His optimal bid-ask spread is determinted by
a tradeoff between expected gains from liquidity trading
and expected losses to informed trading.

The timing of the model is as follows. A trader arrives
to the trading post, the dealer offers a quote, and the “true”
price, P, is revealed immediately after the trade. An unin-
formed trader will buy an asset with probability �BL, sell
an asset with probability �SL, and decide not to trade with
probability �NL. (The “L” in this notation reflects the fact
that Copeland and Galai refer to uninformed traders as
liquidity traders.) Because informed traders know the true
value of P, their decisions to buy, sell, or refrain from trade
are based on strategies that maximize their profit.

Dealers at any instant will trade with informed traders
with probability �1 and can expect to lose:

Z 1

PA
(P � PA) f (P)dP C

Z PB

0
(PB � P) f (P)dP ;

where PA and PB are the ask and bid prices quoted by the
dealer, and P is the “true” value of the asset. Dealers at any
instant will trade with uninformed traders with probability
1 � �1 and can expect to gain:

�BL(PA � P)C �SL(P � PB)C �NL(0)

Because the dealer does not know whether individual
trades are with informed or uninformed traders, the deal-
ers’ objective function is the product of �1 and the first
equation added to the product of 1� �1 and the second
equation. The dealers’ optimal bid and ask prices result
from this maximization problem. If the prices are nega-
tive, however, the market closes.

Not all informed traders who arrive at the market-
place will trade. Informed traders who believe the quoted
price by the dealer will fall between PA and PB will not
trade. Hence, the elasticity of demand by informed traders
with respect to the bid-ask spread interval is implicit in
the limits of integration in the equation above. The deal-
ers revenue comes from those liquidity traders who are
willing to pay PA � P or P � PB as a price for immedi-
acy. The authors assume that the likelihood that a liquid-
ity trader will consummate trade declines as the bid-ask
spread increases, in other words, the liquidity traders elas-
ticity of demand is implicit in the probabilities that liquid-
ity traders will either buy the asset, sell it or not trade.

The framework described above can include compe-
tition by incorporating a zero-profit constraint into the
dealers problem. The most important result is that even
with risk neutral, competitive dealers, the bid-ask spread is
positive. The size of the spread will depend on the particu-

lar elasticities of the traders’ demand functions, and the ar-
rival rate of informed and uninformed traders. As long as
there is a positive probability that some trader is informed,
the spread will not be zero.

This model, however, is a static one-trade framework
and as such it does not allow trade itself to convey infor-
mation. The model we describe in the next section cap-
tures the dynamic aspect of trading and introduces the
concept of trade as signals of information.

Easley and O’Hara’sModel

What follows is a brief summary of the model; for an ex-
tensive discussion of the structure of themodel please refer
to Easley and O’Hara [16].

The game consists of three players, liquidity traders,
informed traders and a market maker. All players are risk
neutral, there are no transactions costs, and there is no
discounting by traders. The no-discounting assumption is
reasonable since agents are optimizing their behavior over
one day. Liquidity traders buy or sell shares of the asset
for reasons that are exogenous to the model and each buy
and sell order arrives to the market according to an inde-
pendent Poisson distribution with a daily arrival rate equal
to ". The probability that an information event occurs is ˛,
in which case the probability of bad news is ı and the prob-
ability of good news is (1 � ı). If an information event oc-
curs, the arrival rate of informed traders is �. Informed
traders trade for speculative reasons; if they receive good
news (the current asset price is below the liquidation value
of the asset) they buy one share of the asset, if they receive
bad news they sell one share of the asset.

On days with no information events, which occur with
probability (1 � ˛), the arrival rate of buy orders is " and
the arrival rate of sell orders is " as well. The model can
be parametrized so that the arrival rate of liquidity buyers
and sellers is different. However, the numbers of trades for
certain stocks from 2000 on are very large, particularly for
Nasdaq stocks, and as a result the parameter estimates suf-
fer from a truncation error. To minimize this problem, it
is useful to set the arrival rates of liquidity sellers and buy-
ers equal to each other, so that one can factor out a com-
mon factor in the likelihood function as in Easley, Engle,
O’Hara, and Wu [19]. Figure 3, represents a diagram of
how the model works.

Thus, the total amount of transactions on non-infor-
mation days is 2" with the number of buys approximately
equal to the number of sells. On a bad information event
day, which occurs with probability ˛ı, we observe more
sells than buys. To be precise, the arrival rate of buy orders
is " and the arrival rate of sell orders is "C �. In contrast,
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Market Microstructure, Figure 3
The tree diagram of the trading process [16]

on a good information event day, which occurs with prob-
ability ˛(1 � ı), we observe more buys than sells, i. e., the
arrival rate of buy orders is "C � and the arrival rate of
sell orders is ".

Easley and O’Hara [16] define PIN as the estimated ar-
rival rate of informed trades divided by the estimated ar-
rival rate of all trades during a pre-specified period of time.
Formally,

PIN D
ˆ̨�̂

ˆ̨�̂C 2"̂
:

One can estimate all four parameters, � D f"; �; ˛; ıg, by
maximizing the likelihood function

L (� jM) D
TY

tD1

L (� jBt; St)

whereBt is the number of buys and St is the number of sells
on day t. Assuming days are independent, the likelihood of
observing the history of buys and sells fM D (Bt ; St)gTtD1

over T days is just the product of the daily likelihoods,

L (� jM) D ˛ıe�(2"C�)
"B ("C �)S

B!S!

C ˛(1 � ı)e�(2"C�)
("C �)B "S

B!S!

C (1 � ˛)ıe�(2")
"BCS

B!S!

where T is equal to the time frame the researcher is inter-
ested in, e. g., Vega [46] choses 40 trading days before an
earnings announcement is released, Easley, O’Hara, and
Paperman [17] also use 40 trading days to estimate PIN,
while Easley, Hvidkjaer, and O’Hara [18] use one calen-
dar year to estimate PIN. The more trading days one uses
to estimate PIN the more accurately one will measure in-
formation-based trading. Hence, one should check for ro-
bustness different estimation windows.

While all the parameters are identified and the likeli-
hood function is differentiable, there is no closed-form so-
lution to the four ("; �; ˛; ı) first-order conditions. Nev-
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ertheless, the arrival rate of liquidity traders " can be inter-
preted as the daily average number of transactions during
the estimation window. The parameter � reflects the ab-
normal or unusual number of transactions. The parame-
ter ˛ is equal to the proportion of days characterized by an
abnormal level of transactions. The parameter ı is equal
to the number of days with an abnormal number of sells
divided by the number of days with an abnormal level of
transactions.

To calculate the daily number of buys and sells
most authors use the Lee and Ready [33] algorithm for
NYSE- and AMEX-listed stocks and Ellis, Michaely, and
O’Hara’s [20] suggested variation of the Lee and Ready
algorithm for Nasdaq-listed stocks. Odders–White [40],
Lee and Radhakrishna [34], and Ellis, Michaely, and
O’Hara [20] evaluate how well the Lee and Ready algo-
rithm performs and they find that the algorithm is from
81% to 93% accurate, depending on the sample period and
stocks studied. Thus the measurement error is relatively
small.

To estimate the model using US stock market data
most researchers use bid quotes, ask quotes, and trans-
action prices from the Institute for the Study of Securi-
ties Markets (ISSM) and the Trade and Quotes (TAQ)
database. ISSM data contains tick-by-tick data covering
the NYSE and AMEX trades between 1983 to 1992 and
NASDAQ trades from 1987 to 1992, while TAQ data cov-
ers the sample period from 1993 to the present.

Vega [46] plots the time series of the parameter esti-
mates in addition to the PIN measure averaged across all
stocks in the sample. It is evident in that plot that the pa-
rameters " and � are not stationary. These parameters are
related to the trading frequency, hence they are upwards-
trending as the number of transactions has increased over
the years. In contrast, the estimates of ı, ˛, and PIN are
stationary over the years.

Vega [46] also shows average quarterly bivariate corre-
lations of firm characteristics and PIN. PIN is most highly
correlated with log market value with a bivariate correla-
tion coefficient equal to �0.481. The cross-sectional range
of �0.70 to �0.32 over the 64 periods implies that across
stocks within the same quarter, PIN is negatively corre-
lated with the firm capital size. To test this hypothesis for-
mally Vega [46] first calculate Mann–Whitney test statis-
tics for all periods. Then she tests the hypothesis that the
sample of large firms has the samemedian PIN as the sam-
ple of small firms against the alternative hypothesis that
they have different medians. In untabulated results she
finds that she can soundly reject the null hypothesis in fa-
vor of the alternative for 60 out of the 64 periods she ana-
lyzes.

The negative relation between private information and
firm size is consistent with both previous empirical stud-
ies that use PIN as an informed trading measure and Dia-
mond and Verrecchia [15] who assert that asymmetric in-
formation is largest for small firms.

Next we present the Kyle Model, which is a workhorse
within the market microstructure literature.

Kyle Model

In this information model, an auctioneer determines
a price after all traders, uninformed and informed, sub-
mit their orders. Besides the risk-neutral market-maker,
there is also one risk-neutral informed trader and multi-
ple uninformed traders, who do not issue strategic orders.
The market makers are unable to distinguish orders ema-
nating from informed traders from those issued by unin-
formed traders. Informed traders understand this lack of
transparency and can use it for their own advantage.

In the Kyle model there is just one risky asset that is
traded over one period. This period of time consists of four
distinct phases. First, the informed trader (and only the
informed trader) observes the value V of the risky asset’s
payoff at the end of the period. V is a normally distributed
random variable with mean zero and variance equal to �2v .
Second, market orders from the informed trader as well
as the uninformed traders are submitted to the auction-
eer, who is unaware of the end-of-period payoff of the as-
set, V . The market orders from the informed trader can be
represented by DI , and the market orders from the unin-
formed traders collectively can be referred to asDU , which
is a normally distributed random variable independent
of V with mean zero and variance �2u . If DU is positive,
then uninformed traders are buying on net. Conversely,
uninformed traders are selling the asset on net, if DU is
negative. Though the informed trader knows V , he does
not know DU prior to submitting his orders. Effectively
this precludes the informed trader from conditioning on
the market-clearing price, as it is usual in a rational expec-
tations model.

Once receiving these orders, the auctioneer deter-
mines P, the market clearing price. Kyle assumes free entry
into the auctioneeringmarket and therefore the auctioneer
has nomonopoly power, so that he earns zero profits and P
is determined by the following equation:

P D E[V jDI C DU ] :

To arrive at a value for P, the auctioneer only takes into ac-
count the sum of the orders issued by the informed trader
and the uninformed traders: DI C DU . P depends on the
sum of the orders because he cannot differentiate between
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the orders issued by the informed trader from the rest.
Note that DU is an exogenous variable, but DI depends
on the informed trader’s trading strategy. The informed
trader knows that his order has some effect on the price
created by the auctioneer. Since he is risk neutral, the in-
formed trader will seek to maximize his expected profit.
He accomplishes this goal by considering each possible
value of V and choosing the value of DI that maximizes:

E[DI(V � P)jV ] :

These two equations illustrate that the auctioneer’s strat-
egy for setting the asset’s price depends on DI while the
informed trader’s strategy for setting DI depends on his
perceived effect of DI on P.

Kyle first conjectures general functions for the pric-
ing rule and the informed trader’s demand, then he solves
for the parameters assuming the informed trader maxi-
mizes his profits conditioning on his information set, i. e.
DI D argmax E[DI(V � P)jV] and the market maker sets
prices equal to P D E[V jDI C DU ].

Although the proof is not shown here, in equilibrium
the market maker will choose a price such that

P D (DI CDU )

and the informed trader will choose DI such that

DI D ˇV

where  and ˇ are positive coefficients that solely depend
on �2v , the variance of V , the normally distributed ran-
dom variable for the asset’s payoff, and �2u the variance of
DU , the normally distributed random variable for the un-
informed traders’ orders. The exact expressions (not de-
rived here) for  and ˇ are:

 D
1
2

s
�2v
�2u

ˇ D

s
�2u
�2v
:

If  has a high value, then order flow has a high impact
on prices, and we say that the particular asset is not very
liquid. B, on the other hand, is rather low, which is inter-
preted as informed traders issuing less aggressive orders
in an effort to minimize the impact of their own trades on
price.

EmpiricalMarketMicrostructure

As transaction-by-transaction or high frequency data from
a variety of sources has become available, empirical mar-
ket microstructure has grown extensively. Most papers

use high frequency data to predict transaction costs, esti-
mate limit-order book models for intraday trading strate-
gies, and estimate the liquidity of the market. There are
a few papers, though, that do not estimate market mi-
crostructure models per se, but use high frequency data
to answer questions relevant to the asset pricing field, cor-
porate finance field, and economics in general. For exam-
ple, Andersen et al. [6] use intraday data to obtain bet-
ter measures of the volatility of asset prices, Chen, Gold-
stein and Jiang [13] estimate the PIN measure to answer
questions relevant to corporate finance, and Andersen et
al. [8] and [7] use intraday data to better identify the ef-
fect macroeconomic news announcements have on asset
prices.

In what follows we describe the most commonly used
empirical estimations of liquidity or adverse selection
costs. The most general measure of adverse selection costs
that does not assume a particular economic model is Has-
brouck [27]. He assumes the quote midpoint is the sum of
two unobservable components,

qt D mt C st

where mt is the efficient price, i. e., the expected security
value conditional on all time-t public information, and
st is a residual term that is assumed to incorporate tran-
sient microstructure effects such as inventory control ef-
fects, price discreteness, and other influences that cause
the observed midquote to temporarily deviate from the ef-
ficient price. As such Hasbrouck [27] further assumes that
E[st] D 0 and that it is covariance stationary which im-
plies that microstructure imperfections do not cumulate
over time, i. e., Et[stCk]! E[stCk] D 0 as!1. The ef-
ficient price evolves as a random walk,

mt D mt�1 C wt (1)

where E[wt] D 0, E[w2
t ] D �2w , E[wtw� ] D 0 for t ¤ �

and wt is also covariance stationary. The innovations,
wt , reflect updates to the public information set includ-
ing the most recent trade. The market’s signal of private
information is the current trade innovation defined as
xt � E[xtj˚t�1], where ˚t�1 is the public information set
at time t � 1. The impact of the trade innovation on the ef-
ficient price innovation is E[wt jxt � E[xtj˚t�1]]. Hence,
two measures of information asymmetry, or trade infor-
mativeness, that Hasbrouck [27] proposes are:

Var(E[wt jxt � E[xt j˚t�1]]) D �2w;x

an absolute measure of trade informativeness and

R2
w D

Var(E[wt jxt � E[xt j˚t�1]])
Var(wt)

D
�2w;x

�2w
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a relative measure of trade informativeness. The random
walk decomposition, Eq. (1), on which these measures are
based is unobservable. However, we can estimate �2w;x and
�2w using a vector autoregressive (VAR) model,

rt D
1X

iD1

ai rt�i C
1X

iD0

bi xt�i C v1;t

xt D
1X

iD1

ci rt�i C
1X

iD0

di xt�i C v2;t

where rt D qt � qt�1 is the change in the quote midpoint,
and xt is an indicator variable that takes values f�1;C1g
whether the trade was seller-initiated or buyer-initiated
according to the Lee and Ready [33] algorithm. Some pa-
pers also consider taking signed volume (number of trans-
actions times shares traded) rather than signed transac-
tions, but empirical evidence shows that what is important
is the number of transactions not the number of shares
traded.

Hasbrouck [27] estimates the VAR system using OLS.
Wold’s representation theorem states that any covari-
ance-stationary process possesses a vector moving aver-
age (VMA) representation of infinite order, i. e. frt ; xtg
can be written as an infinite distributed lag of white noise,
called the Wold representation or VMA. The minimum
and maximum daily number of transactions among all the
equities varies greatly, so the researcher has to set trun-
cation points for each individual stock separately. Rather
than use the Akaike and SIC information criteria to deter-
mine the optimal lag length, the purpose of the VAR es-
timation above is to get rid off all serial correlation. Once
the lag lengths are set we can estimate the following VMA
representation:

rt D
NX

tD1

a�i v1;t�1 C
NX

tD0

b�i v2;t�1

xt D
NX

tD1

c�i v1;t�1 C
NX

tD0

d�i v2;t�1 :

Hence the trade-correlated component of the variance is
equal to

�̂2w;x D

 NX

tD0

b�i

!

˝

 NX

tD0

b�0i

!

C

 

1C
NX

tD1

a�i

!2

�21 ;

where ˝ D Var(v1;t ; v2;t) and �21 D Var(v1;t) the vari-
ance of the random-walk component is

�̂2w D

 NX

tD0

b�i

!

˝

 NX

tD0

b�0i

!

:

Some Estimation Considerations

The VAR and VMA systems described above are not stan-
dard autoregressive models, in the sense that the index t is
not a wall-clock index, but an event index, i. e., it is incre-
mented whenever a trade occurs or a quote is revised. The
choice between an event index and a wall-clock index de-
pends on the goals of the analysis. If the analysis involves
a single security, an event index is better than a wall-clock
index because the process is more likely to be covariance
stationary in event time than in wall-clock Hasbrouck (see
p. 90 in [29]). However, when conducting a cross-sectional
analysis or estimating a pooled regression, comparability
across securities becomes the dominant consideration and
one may want to adopt a wall-clock time in estimating the
above equations.

Hasbrouck (see p. 39 in [29]) also points out that the
overnight return will almost certainly have different prop-
erties than the intraday return and he suggests that one
should drop the overnight return.

All told, researchers that use Hasbrouck’s measure of
adverse selection costs to test important economic hy-
pothesis should feel very uncomfortable if their results de-
pended on the way they estimate the VAR equations. As
a robustness check researchers should estimate the VAR
using different specifications, i. e., wall-clock time as op-
posed to event-time indexes, and researchers should sam-
ple quotes at different frequencies.

Madhavan, Richardson and Roomans Model

Similar to Hasbrouck [27], Madhavan, Richardson and
Roomans [38] model the efficient price, m, as a random
walk, in contrast they include an order flow innovation
term,

mt D mt�1 C �(xt � E[xt jxt�1])C "t (2)

where � measures the permanent price impact of order
flow and "t is the public information innovation. The
transaction price, p, is equal to the efficient price plus
a stochastic rounding error term, � , and a market makers’
cost per share of supplying liquidity, � , i. e. compensation
for order processing costs, inventory costs etc.

pt D mt C �xt C �t (3)

Combining Eq. (2) and Eq. (3) we obtain,

mt D pt � pt�1 � (� C �)xt C (� C ��)xt�1

where � is the first-order autocorrelation of the signed
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trade variable, xt. Then, the measure of permanent price
impact, � , alongside the temporary price impact of order
flow, � , the autocorrelation of signed trades, �, the uncon-
ditional probability that a transaction occurs within the
quoted spread , and a constant, ˇ, can be estimated us-
ing GMM applied to the following moment conditions:

E

0

BBB
BBB
@

xtxt�1 � x2t�1�
jxtj � (1 � )

mt � ˇ

(mt � ˇ)xt
(mt � ˇ)xt�1

1

CCC
CCC
A

D 0

Future Directions

Hasbrouck [29] on page 7 lists a few outstanding signif-
icant questions in market microstructure. To this list we
add two particularly important issues. First, the recent
availability of good quality high frequency data has made
it possible for researchers to answer a wide range of ques-
tions. This new data, though, also raises questions. In our
opinion, it is imperative for researchers to determine un-
der what circumstances more data is better. Some papers
in the realized volatility literature have made headway in
this direction by determining optimal sampling frequen-
cies to estimate the volatility of assets with different liq-
uidity. Future research should investigate what is the op-
timal frequency in estimating adverse selection costs and
in event studies – studies that investigate the impact of
public announcements on prices and trading in the hours
surrounding its release. Second, most empirical and theo-
retical studies assume that trades affect prices, but prices
do not affect trades (see, for example, Hasbrouck’s VAR
specification). Theory provides means of understanding
why causality runs from trades to prices – trades are cor-
related with private information, so that trades cause asset
price changes, with the underlying private information be-
ing the primitive cause. However, a more realistic setting
is that in which there are heterogeneous beliefs and prices
partially reveal other agent’s information so that there is
a learning process. Future research should relax the as-
sumed exogeneity of trades. Finally, two productive areas
of research are (i) the investigation of microstructure is-
sues in fixed income markets, and (ii) studies that link mi-
crostructure to other areas in finance such as asset pricing
and corporate finance.

Readings

Various economists have written books and articles about
the field of market microstructure. This article is a short

survey and here we compile an non-exhaustive list of pub-
lications that provide more comprehensive reviews of the
literature: [12,25,29,35,37,41], and [42]. Martin Evans and
Richard K Lyons have also written a useful manuscript en-
titled “Frequently Asked Questions About the Micro Ap-
proach to FX,” even though its main focus is on foreign
exchange markets it is also applicable to the market mi-
crostructure literature in general.
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Glossary

Barrier options Options that either come into existence
or disappear when exchange rates cross pre-specified
levels. Barriers can be triggered by price rises or de-
clines and reaching a barrier can either extinguish or
create an option. An “up-and-out call,” for example, is
a call option that disappears if the exchange rate rises
above a certain level. A “down-and-in put,” by con-
trast, is created if the exchange rate falls to a certain
level.

Bid-ask spread The difference between the best (lowest)
price at which one can buy an asset (the ask) and the
best (highest) price at which one can sell it (the bid).
In quote-driven markets both sides of the spread are
set by one dealer. In order-driven markets, the “best
bid and the best offer” (BBO) are likely to be set by
different dealers at any point in time.

Brokers Intermediaries in the interbank foreign exchange
market that match banks willing to buy with banks
willing to sell at a given price. Two electronic broker-
ages – EBS (Electronic Broking Service) and Reuters –
now dominate interbank trading in the major curren-
cies. In other currencies voice brokers still play an im-
portant role.

Call markets Financial markets that clear periodically
rather than continuously. During a specified time in-
terval, agents submit orders listing how much they are
willing to buy or sell at various prices. At the end of the
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interval a single price is chosen at which all trades will
take place. The price is chosen tomaximize the amount
traded and is essentially the intersection of the supply
and demand curves revealed by the submitted orders.

Clearing The administration process that ensures an in-
dividual trade actually takes place. The amounts and
direction are confirmed by both parties and bank ac-
count information is exchanged.

Corporate (or commercial) customers One of the two
main groups of end-users in the foreign exchangemar-
ket. Includes largemultinational corporations, middle-
market corporations, and small corporations. Their
demand is driven almost entirely by international
trade in goods and services, since traders at these firms
are typically not permitted to speculate spot and for-
ward markets.

Covered interest arbitrage A form of riskless arbitrage
involving the spotmarket, the forwardmarket, and do-
mestic and foreign deposits.

Dealership market See Quote-driven markets.
Delta-hedge A delta-hedge is designed to minimize first-

order price risk in a given position. That is, small price
changes should change the agent’s overall position by
only a minimal amount (ideally zero). A delta-hedge
gets its name from an option’s “delta,” which is the first
derivative of the option’s price with respect to the price
of the underlying asset. To delta-hedge a long call (put)
option position, the agent takes a short (long) posi-
tion in the underlying asset equal in size to the option’s
delta times the notional value of the option.

Expandable limit order An order whose quantity can be
expanded if it is crossed with a market order for
a larger quantity.

Financial customers One of the two main groups of end-
users in the foreign exchange market. Includes hedge
funds and other highly-leveraged investors, institu-
tional investors such as mutual funds, pension funds,
and endowments, multilateral financial institutions
such as the World Bank or the IMF, broker-dealers,
and regional banks.

Feedback trading The practice of trading in response to
past returns. Positive-feedback trading refers to buy-
ing (selling) after positive (negative) returns. Negative-
feedback trading refers to selling (buying) after posi-
tive (negative) returns.

Foreign exchange dealers Intermediaries in the foreign
exchange market who stand ready, during trading
hours, to provide liquidity to customers and other
dealers by buying or selling currency. Salespeople
manage relationships with clients; interbank traders
manage the inventory generated by customer sales,

and also speculate on an extremely high-frequency ba-
sis, by trading with other banks; proprietary traders
speculate on a lower-frequency basis in currency and
other markets.

Forward market Currencies traded in forward markets
settle after more than two trading days (and infre-
quently after less than two trading days).

FX Foreign Exchange.
Limit order See “Order-driven markets.”
Long position A long position arises when an agent owns

an asset outright.
Market order See “Order-driven markets.”
Order flow Buy-initiated transactions minus sell-initi-

ated transactions over a given period. Since customers
are always the initiators, their order flow is just cus-
tomer purchases minus customer sales. In the inter-
dealer market, a dealer initiates a trade if s/he places
a market order with a broker or if the dealer calls out
to another dealer.

Order-driven markets Also known as “limit-order mar-
kets.” Asset markets in which participants can both
supply liquidity or demand it, as they choose. Liq-
uidity suppliers place limit orders, which specify an
amount the agent is willing to trade, the direction, and
the worst acceptable price. A limit buy order in the
euro-dollar market, for example, might specify that the
agent is willing to buy up to $2 million at $1.2345
or less. These limit orders are placed into a “limit-
order book,” where they remain until executed or can-
celed. Agents demanding liquidity place “market” or-
ders, which state that the agent wishes to trade a speci-
fied amount immediately at whatever price is required
to fulfill the trade. Market orders are executed against
limit orders in the book, beginning with the best-
priced limit order and, if necessary, moving to limit or-
ders with successively less attractive prices. The foreign
exchange interdealer markets for major currencies are
dominated by two electronic limit-order markets, one
run by EBS and the other run by Reuters.

Overconfidence A human tendency to have more confi-
dence in oneself than is justified.Humans tend to over-
estimate their own personal and professional success
(“hubris”) and that they overestimate the accuracy of
their judgments (“miscalibration”).

Over-the-counter market See quote-driven market.
Picking-off risk The risk that a limit order will be ex-

ecuted against a better informed trader, leaving the
limit-order trade with a loss.

Price-contingent orders Orders that instruct a dealer to
transact a specified amount at market prices once
a currency has traded at a pre-specified price. There
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are two types: stop-loss orders and take-profit orders.
Stop-loss orders instruct the dealer to sell (buy) if the
rate falls (rises) to the trigger rate. Take-profit orders
instruct the dealer to sell (buy) if the price rises (falls)
to the trigger rate.

Quote-driven markets Also known as “dealership mar-
kets” or “over-the-counter markets.” An asset market
in which dealers provide immediate liquidity to those
needing it. During trading hours the dealers commit to
trade at any time but at prices they quote. The price at
which they are willing to buy, the “bid,” is always no
greater – and usually lower – than the price at which
they are willing to sell, the “ask.” Foreign exchange
dealers transact with end-users in a quote-driven mar-
ket.

Settlement The process by which funds actually change
hands in the amounts and direction indicated by
a trade.

Short position A short position arises when an agent sells
an asset, possibly before actually owning the asset.
A “short position in euros” could arise if a dealer starts
with zero inventory and then sells euros. The dealer
could keep the short euro inventory overnight, but will
typically close the position out at the end of the trading
day by buying the equivalent amount of euros. Note
that the overall bank will not have a negative inven-
tory position, since the bank maintains balances in ev-
ery currency it trades. Someone “short euros in the for-
ward market” would have entered into a forward con-
tract to sell euros in the future.

Slippage The concurrent effect of a given trade on price.
Stop-loss orders See “Price-contingent orders.”
Spot market Currencies traded in the spot market settle

after two trading days (except for transactions between
the US and Canadian dollars).

Swaps A swap in the foreign exchange market is analo-
gous to a repo in the money market. One counter-
party agrees to buy currency A in exchange for cur-
rency B from another counterparty in the spot mar-
ket, and simultaneously agrees to sell currency A back
to the same counterparty, and buy back currency B, at
a future date. The spot transaction is at the spot rate,
the forward transaction is at the forward rate.

Take-profit orders See “Price-contingent orders.”
Technical Trading Trading based on technical analysis,

an approach to forecasting asset-price movements that
relies exclusively on historical prices and trading vol-
ume. In foreign exchange, the absence of frequent vol-
ume figures limits the information basis to past prices.
Notably, technical forecasts do not rely on economic
analysis. Nonetheless, many technical trading strate-

gies have been demonstrated to be profitable in cur-
rencymarkets, even after considering transaction costs
and risk.

Trading volume The value of transactions during a given
time period.

Triangular arbitrage Between every three currencies A,
B, and C there are three bilateral exchange rates. Tri-
angular arbitrage is a way to make riskless profits if the
A-per-B exchange rate does not equal the C-per-B ex-
change rate multiplied by the A-per-C exchange rate.

Definition of the Subject

“Foreign exchange microstructure” is the study of the cur-
rency trading process and high-frequency exchange-rate
determination. The field is also called “the new microe-
conomics of exchange rates.” Research in this area began
in the late-1980s, when it became clear after many years
of floating rates that traditional, macro-based exchange-
rate models were not able to explain short-run dynamics.
Research accelerated in the mid-1990s as currency trading
systems became sufficiently automated to provide useful
data.

Introduction

Foreign exchange microstructure research, or the study of
the currency trading process, is primarily motivated by
the need to understand exchange-rate dynamics at short
horizons. Exchange rates are central to almost all inter-
national economic interactions – everything from inter-
national trade to speculation to exchange-rate policy. The
dominant exchange-rate models of recent decades, mean-
ing specifically the monetary model and the intertemporal
optimizing models based on Obstfeld and Rogoff [149],
come from macro tradition. These have some value rela-
tive to horizons of several years, but they have made little
headway in explaining exchange rate dynamics at shorter
horizons [69,116,134]. Shorter horizons are arguably of
greater practical relevance.

As elucidated by Kuhn in his seminal analysis of sci-
entific progress (1970), the emergence of major anomalies
typically leads researchers to seek an alternative paradigm.
Currency microstructure research embodies the search for
a new paradigm for short-run exchange-rate dynamics.

The search for an alternative paradigm has focused
on the currency trading process for a number of reasons.
First, it is widely held that macroeconomic models are en-
hanced by rigorous “microfoundations” in which agent
behavior is carefully and accurately represented. A rig-
orous microfoundation for exchange rates will require
a thorough understanding of the currency trading process.
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Researchers are also motivated to study currency trad-
ing by evident contradictions between the way currency
markets actually work and the way exchange-rate determi-
nation is represented in macro-based models. As Charles
Goodhart remarked of his time as adviser at the Bank of
England, “I could not help but observe that some of the
features of the foreign exchange . . . market did not seem
to tally closely with current theory . . . ” (p. 437 in [81]). To
others with first-hand experience of the trading world, it
seemed natural “to ask whether [the] empirical problems
of the standard exchange-rate models . . . might be solved
if the structure of foreign exchangemarkets was to be spec-
ified in a more realistic fashion” (p. 3 in [72]).

The emergence of currency-market research in re-
cent years also reflects a confluence of forces within
microstructure. By the mid-1990s, microstructure re-
searchers had studied equity trading for over a decade,
thereby creating a foundation of theory and a tradition
of rigorous analysis. Meanwhile, technological advances
at foreign-exchange dealing banks made it possible to ac-
cess high-frequency transactions data. Currency markets –
huge and hugely influential – were a logical new frontier
for microstructure research.

Currency microstructure research – like all mi-
crostructure research – embodies the conviction that eco-
nomic analysis should be based solidly on evidence. As
articulated by Charles Goodhart, arguably the founder of
this discipline, “economists cannot just rely on assump-
tion and hypotheses about how speculators and othermar-
ket agents may operate in theory, but should examine how
they work in practice, by first-hand study of such mar-
kets” (p. 437 in [81]). Most papers in this area are em-
pirical, and those that include theory almost always con-
front the theory with the data. The literature includes quite
a few dealer surveys, reflecting a widespread appreciation
of practitioner input. This survey, like the literature, em-
phasizes evidence.

Institutional Structure

This section describes the institutional structure of the for-
eign exchange market.

Basics

Foreign exchange trading is dispersed throughout the day
and around the world. Active trading begins early in Asia,
continues in Europe, peaks when both London and New
York are open, and finally tapers off after London traders
leave for the day. There is an “overnight” period during
which trading is relatively thin, but it lasts only the few
hours between the end of trading in London (around 19

GMT) and early trading in Sydney (around 22 GMT). In
terms of geography, currency trading takes place in almost
every big major city around the world, though there are
major trading centers. These major centers are Singapore,
Sydney, and Tokyo in Asia, London in Europe, and New
York in North America.

Foreign exchange trading is an intensely competitive
business. Price is one dimension of competition, but there
are many others. When it evaluates trading institutions
each year, Euromoney considers their pricing consistency,
strategies and ideas for trading in options, and innovative
hedging solutions [55]. Customer relations are also criti-
cally important. As in many industries, good customer re-
lations are fostered by personal attention from salespeople
and by perks for good customers, such as sports tickets and
elegant feasts.

Unlike trading in stocks, bonds, and derivatives, trad-
ing in currency markets is essentially unregulated. There
is no government-backed authority to define acceptable
trading practices, nor is there a self-regulating body. Local
banking authorities are limited to regulating the structure
of trading operations: they typically require, for example,
that clearing and settlement are administratively separate
from trading. Any attempt to regulate trading itself, how-
ever, would encourage dealers to move elsewhere, an un-
desirable outcome since foreign exchange is an attractive
industry – it pays high salaries and generates little pollu-
tion. In the absence of regulation, certain practices that are
explicitly illegal in other markets, such as front-running,
are not only legal but common in foreign exchange.

Market Size Spot and forward trading volume in all cur-
rencies is worth around $1.4 trillion per day [9]. If for-
eign exchange swap contracts are included, daily trading is
roughly twice as large, at $3.2 trillion. By either figure, for-
eign exchange is the largest market in the world. Trading
on the New York Stock Exchange (NYSE), for example, is
on the order of $0.050 trillion per day [145], while daily
trading in the US Treasury market, possibly the world’s
second-largestmarket, is on the order of $0.20 trillion [67].
Spot and forward trading, on which FX microstructure
research has consistently focused, has grown rapidly for
many years – average yearly growth since 1992 has been
nine percent, and since 2004 has been 18 percent.

The vast bulk of foreign exchange trading involves
fewer than ten currencies. The US dollar is traded most
actively [9] due to its role as the market’s “vehicle cur-
rency”: to exchange almost any non-dollar currency for
any other requires one to convert the first currency into
dollars and then trade out of dollars into the second cur-
rency. The value of US dollars traded in spot and forward
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markets is roughly $1.2 trillion per day, over 86 percent of
total traded value. Of course, two currencies are involved
in every transaction so the total traded value every day is
twice the day’s trading volume. The euro accounts for 37
percent of all trading, a staggering $518 billion per day.
The yen and the UK pound each account for a further six-
teen percent of traded value. The next tier of currencies,
comprising the Swiss franc, the Australian dollar and the
Canadian dollar, accounts for eighteen percent of traded
value. The remaining 150 or so of the world’s convert-
ible currencies account for merely thirty percent of traded
value.

Only the dollar, the euro, and the yen are liquid
throughout the trading day. Liquidity in most other cur-
rencies is concentrated during locally-relevant segments
of the day. The Swedish krone, for example, is liquid only
during European trading hours.

Quotation Conventions Each exchange rate is quoted
according to market convention: dollar-yen is quoted as
yen per dollar, euro-dollar is quoted as dollars per euro,
etc. Trade sizes are always measured in units of the base
(denominator) currency and the price is set in terms of the
numerator currency. In euro-dollar, for example, where
the euro is the base currency, a customer asking to trade
“ten million” would be understood to mean ten million
euros and the dealer’s quotes would be understood to be
dollars per euro. The minimum tick size is usually on the
order of one basis point, though it is technically one “pip,”
meaning one unit of the fifth significant digit for the ex-
change rate as conventionally quoted. Examples will be
more helpful: in euro-dollar, where the exchange rate is
currently around $1.5000, one tick is $0.0001; for dollar-
yen, where current exchange rates are roughly ¥ 110.00/$,
one tick is ¥ 0.01.

The average trade size is on the order of $3 million
[18]; trades of $50,000 or less are considered “tiny.” Thus
the average foreign exchange trade is roughly the same size
as normal “block” (large) trades on the NYSE [125], which
makes it large relative to the overall average NYSE trade.
The average foreign exchange trade is smaller, however,
than the average trade in the US Treasury market, where
average interdealer trades vary from $6 to $22 million de-
pending on maturity [67].

A Two-Tiered Market

The foreign exchange market has two segments or “tiers.”
In the first tier, dealers trade exclusively with customers.
In the second tier, dealers trade primarily with each other.
The interdealer market forms the market’s core in the

sense that customer prices are all based on the best avail-
able interdealer prices.

Interdealer trading in spot and forward markets now
accounts for 38 percent of all trading [9]. This is down
sharply from its 57 percent share in 1998, a change often
ascribed to rapid consolidation in the industry. The cur-
rent share is comparable to the share of interdealer trad-
ing on the London Stock Exchange, which was most re-
cently estimated to be between 25 and 35 percent [163]. It
is lower, however, than the share of interdealer trading in
the US Treasury market, which was 68 percent in October
2007 [66].

The Customer Market The customer foreign exchange
market is quote-driven, meaning that liquidity is provided
by professional market makers. As in most such markets,
currency dealers are under no formal obligation to provide
liquidity, unlike specialists on the NYSE. Failing to provide
liquidity on demand, however, could be costly to a dealer’s
reputation so dealers are extremely reliable. The market
functioned smoothly even during the crisis of September
11, 2001. Spreads widened, as would be expected given the
heightened uncertainty, but market makers stayed at their
desks and trading continued uninterrupted [135].

The customer market is fairly opaque. Quotes and
transactions are the private information of the two par-
ties involved, the customer and the dealer. Unlike stock
and bond markets, which publish trading volume daily,
aggregate figures for customer trading volume are pub-
lished only once every three years e. g.[9]. The lack of
transparency is intensified by the tendency for large cus-
tomer trades, meaning those over around $25 million,
to be split into multiple smaller trades. Splitting trades,
which is a way to minimize market impact and thus exe-
cution costs [16], also characterizes the London Stock Ex-
change [165], among othermarkets. Trade-splittingmakes
it more difficult for a dealer to know howmuch a customer
actually intends to trade. Dealers like to know when cus-
tomers are trading large amounts, since large trades move
the market.

Dealers divide their customers into two main groups,
and structure their sales force accordingly. The first group,
financial customers, is dominated by asset managers but
also includes non-dealing banks, central banks, and mul-
tilateral financial institutions. The asset managers, in turn,
are divided into “leveraged investors,” such as hedge funds
and commodity trading associations (CTAs), and “real
money funds,” such as mutual funds, pension funds, and
endowments. Financial customers account for 40 percent
of foreign exchange trading [9], sharply higher than their
22 percent share in 1998 [9].
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The second group of customers, referred to as “cor-
porates,” are commercial firms that purchase currency as
part of ongoing real production activities or for financial
purposes such as dividend payments or foreign direct in-
vestment. The share of such commercial trading has been
steady at roughly twenty-percent for a decade [9]. Com-
mercial customers tend to be the mainstay of profitability
for smaller banks [136]. Financial customers, by contrast,
tend to make bigger transactions and thus gravitate to big-
ger banks [154].

The customers listed above are all institutions. Unlike
equity markets, where the trading of individuals for their
own account can account for half of all trading, retail trad-
ing has historically been tiny in foreign exchange. The par-
ticipation of individuals has been discouraged by large av-
erage trade sizes and by the need to establish lines of credit
with dealing banks.

Though customer trading has historically been car-
ried out over the telephone, trading over electronic com-
munication networks is growing rapidly, spurred by the
advent of new technologies [11]. Formal figures are not
available, but dealers estimate informally that these new
networks now account for over one fifth of all customer
transactions. Major dealers run single-bank proprietary
networks through which they are connected to individ-
ual customers. The biggest networks, however, are man-
aged independently. Some of these multi-bank e-portals,
such as FXAll, permit customers to get multiple quotes si-
multaneously. FXAll has appealed primarily to commer-
cial customers, which have historically paid relatively wide
spreads on average (as discussed later), since it has brought
them enhanced pre-trade transparency, intensified com-
petition among dealers and, according to dealers, smaller
spreads. Other multi-bank e-portals, such as FXConnect
or Hotspot FXi, focus on financial customers and are
valued because they permit “straight-through processing”
(STP), meaning fully automated clearing and settlement.
STP handles back office functions far more efficiently than
the traditional manual approach in part because it reduces
the opportunity for human error. Another type of net-
work, such as Oanda.com, target individuals trading for
their own account, permitting them to trade with no more
than a Paypal account. Though such retail trading has
grown rapidly in the current century, dealers report that
it does not yet affect market dynamics.

The Interdealer Market In the foreign exchange inter-
bank market there are no designated liquidity providers.
At every moment a dealing bank can choose whether to
supply liquidity or demand it. A dealer needing liquidity
can, of course, call another dealer and request a quote.

Until the mid-1990s such “direct dealing” accounted for
roughly half of all interdealer trading [36], while the other
half of interdealer trading was handled by voice brokers –
essentially limit-order markets in which people match the
orders. During this period the best indication of the mar-
ket price was often indicative quotes posted on Reuters’
“FXFX” screen.

The structure of interdealer trading changed dramat-
ically after the introduction of electronic brokerages in
1992. In the major currencies, electronic brokerages not
only took over from the voice brokers but also gainedmar-
ket share relative to direct dealing. Electronic Broking Ser-
vice (EBS) now dominates in euro and yen while Reuters,
the other major electronic brokerage, dominates in ster-
ling. As the electronic brokerages took over, their best
posted bid and offer quotes became the benchmark for
market prices. By the end of the 1990s, voice brokers were
important only in the “exotic” (relatively illiquid) cur-
rencies for which electronic brokers are unavailable. The
speed of this transition reflects the intensity of competi-
tion in this market.

EBS and Reuters share a common, uncomplicated
structure. Standard price-time priority applies. Hidden or-
ders are not permitted. Limit orders are not expandable.
Orders must be for integer amounts (in millions). Trading
is anonymous in the sense that a counterparty’s identity is
revealed only when a trade is concluded. Dealers pay com-
missions on limit orders as well as market orders, though
the commission on limit orders is smaller.

These markets have moderate pre- and post-trade
transparency relative to most other limit-order markets.
With respect to pre-trade information, price information
is limited to the five best bid and offer quotes, and depth
information is limited to total depth at the quotes unless
it exceeds $20 million (which it usually does during active
trading hours). The only post-trade information is a listing
of transaction prices. The exchanges do not publish any
trading volume figures.

Automated (program) trading on the electronic bro-
kerages was introduced in 2004. Trading was restricted to
dealers until 2006, but now certain hedge funds are per-
mitted to trade on EBS. These shifts are reported to be
a major source of the surge in trading between dealers and
their financial customers since 2004 [9].

Objectives and Constraints

To construct exchange-ratemodels with well-specifiedmi-
crofoundations it is critical to know the objectives and
constraints of major market participants. It is also critical
to know the constraints that determine equilibrium.
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Dealers’ Objectives and Constraints Dealers are moti-
vated by profits according to the conscious intent of their
employers. Half or more of their annual compensation
comes in the form of a bonus which depends heavily on
their individual profits [153]. Profits are calculated daily
and reviewed monthly by traders and their managers.

Dealers are constrained by position and loss limits
which are, in turn, management’s response to rogue trader
risk, meaning the risk that traders will incur immense
losses [43,81]. A single rogue trader can bring down an en-
tire institution: Nick Leeson brought down Barings Bank
in the early 1990s by losing $1.4 billion; John Rusnack
brought down Allfirst Bank by losing $700 million. Such
catastrophes could not occur in the absence of an infor-
mation asymmetry that plagues every trading floor: man-
agement cannot know each trader’s position at all times.
Traders are technically required to record their profits
and losses faithfully and in a timely manner, but as losses
mount they sometimes resort to falsifying the trading
record. Position- and loss-limits are intended to minimize
the risk that losses mushroom to that point. Intraday po-
sition limits begin at around $5 million for junior traders,
progress to around $50million for proprietary traders, and
can be far higher for executive managers. Data presented
in Oberlechner and Osler [148] suggests that intraday lim-
its average roughly $50 million. Overnight position limits
are a fraction of intraday limits, and loss limits are a few
percent of position limits.

Profit-maximization for dealers involves inventory
management, speculation, and arbitrage. We review these
activities in turn.

Inventory management Foreign exchange dealers man-
age their own individual inventory positions [18,81],
tracking them in a “deal blotter” or on “position cards”
[120]. Large dealers as well as small dealers typically
choose to end the day “flat,” meaning with zero inventory,
and generally keep their inventory close to zero intraday
as well. Average intraday inventory levels are $1 to $4 mil-
lion in absolute value and account for less than five percent
of daily trading activity [18,154]. Though these absolute
levels far exceed the $0.1 million median inventory level
of NYSE specialists [98], the NYSE inventories are much
larger relative to daily trading (24 percent).

Dealers generally eliminate inventory positions
quickly. The half-life of an inventory position is below
five minutes for highly active dealers and below half an
hour for less active dealers [18,155]. Fast inventory mean-
reversion has also been documented for futures traders
[130], but standard practice in other markets often differs
markedly. On the NYSE, for example, the half-life of in-

ventory averages over a week [127]. Even on the London
Stock Exchange, which has an active interdealer market
like foreign exchange, inventory half-lives average 2.5
trading days [85].

Foreign exchange dealers in the major currencies gen-
erally prefer to manage their inventory via interdealer
trades, rather than waiting for customer calls. In conse-
quence, recent studies of dealer practices find no evidence
of inventory-based price shading to customers, e. g.[154].
This distinguishes currency dealers from those in some eq-
uity markets [127] and bond markets [51]. Currency deal-
ers also do not shade prices to other dealers in response to
inventory accumulation [18]. Instead, dealers wishing to
eliminate inventory quickly choose more aggressive order
strategies [18,154].

Speculation Foreign exchange dealers speculate actively
in the interdealer market [81]. Indeed, according to
a dealer cited in Cheung and Chinn [36], “[d]ealers make
the majority of their profit on rate movement, not spread”
(p. 447). Consistent with this, Bjønnes and Rime [18] find
that speculative profits are the dominant source of dealer
profitability at the good-sized bank they analyze. Deal-
ers’ speculative positions are based on information gath-
ered from customers, from professional colleagues at other
banks, and from real-time news services.

Arbitrage Some dealers also engage in arbitrage across
markets, such as triangular arbitrage or covered interest
arbitrage. The associated software originally just identi-
fied the arbitrage opportunities, but by now it can actually
carry out the trades. Arbitrage opportunities, though typi-
cally short-lived, arise frequently and occasionally provide
sizeable profits (2).

Customers’ Objectives and Constraints The three
main types of customers are active traders, meaning lev-
ered funds and proprietary traders; real-money funds; and
commercial firms.

Active Currency Traders The objectives and constraints
of active currency traders are in some ways consistent
with those assigned to international investors in standard
academic models. These groups are motivated by prof-
its: proprietary traders are motivated by an annual bonus;
hedge fund managers receive a share of the firm’s net as-
set value growth in [169]. Further, their risk-taking is con-
strained since active currency traders, like dealers, face po-
sition limits. Notice, however, that active currency traders
are not motivated by consumption and they do not care
about consumption risk. Indeed, there is no reason to ex-
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pect the objectives of financial market participants to be
aligned with those of consumers. It is agency problems
that drive a wedge between the objectives of consumers
and traders in foreign exchange: the institutions that em-
ploy the traders have to align the traders’ incentives with
those of shareholders under conditions of asymmetric in-
formation, with the result that consumption is irrelevant.
Agency problems have been shown to be of overwhelm-
ing importance in understanding financial management at
corporations. It would appear risky to assume that agency
problems do not exist at currency-management firms.

Active currency traders also differ, however, from the
academic image of the international investor. The specu-
lative horizons of active currency traders typically range
from a day to a month – longer than a dealer’s intraday
horizon but still short by macro standards. Further, these
traders rarely take positions in assets with fixed supplies,
such as bonds or equities. Instead, they rely on forwards,
other derivatives, or possibly deposits, which are in flexi-
ble supply. This seemingly simple observation may unlock
a longstanding puzzle in international macro, the appar-
ent irrelevance of bond supplies for exchange rates. Under
the standard assumption that speculative agents invest in
bonds (an asset with fixed supply) bond supplies should
influence exchange rates. Since bonds are not widely used
by active currency speculators, however, the irrelevance of
bond supplies seems natural.

Common speculative strategies among active currency
traders are based on (i) forward bias, (ii) anticipated trends
or trend reversals, and (iii) anticipated macro news.

Real-Money Managers Most managers of real money
funds do conform to the academic image of an interna-
tional investor in terms of their investment horizon and
their assets of choice: they take positions for a month
or more and generally invest in bonds or equities. These
managers do not, however, conform to that image in a sep-
arate, critical dimension: real-world real money managers
generally ignore the currency component of their return.
According to Taylor and Farstrup [178], who survey the
currency management business,

there are key participants in foreign exchange mar-
kets . . . that are not always seeking profit derived
from their currency positions. . . . [I]n this cate-
gory are international equity managers.While some
managers factor in currency considerations as they
go about picking foreign stocks, most are attempt-
ing to add value through stock, sector, and region
bets rather than currency plays (p. 10, italics in orig-
inal).

The decision not to forecast the currency component of re-
turns is sometimes justified by pointing to the well-known
inability of macro-based exchange-rate models to forecast
more accurately than a random walk [134]. Further infor-
mation about financial customers is presented in Sager and
Taylor [169].

Note that all speculative positions are constrained in
currency markets. In exchange-rate models this would be
consistent with the assumption that speculators are risk
averse. It would not, however, be consistent with the as-
sumption that deviations from purchasing power parity or
uncovered interest parity are instantaneously eliminated
by infinite trading. This may help explain why macroeco-
nomic evidence of long standing shows that these parity
conditions do not hold over short-to-medium horizons.

Commercial Customers With only rare exceptions, com-
mercial firms do not take overtly speculative positions
in spot and forward foreign exchange markets. Good-
hart [81] estimates that less than five percent of large cor-
porate customers will speculate in the forward market, and
dealers report that zero middle-market or small corpo-
rations speculate in that way. Indeed, many firms explic-
itly prohibit their trading staff – often administrators with
other responsibilities besides trading – from engaging in
such transactions. Rogue trader risk is one key motiva-
tion for this choice. To impede the deception that enables
rogue trading, firms that permit speculation must “sepa-
rate the front office from the back office,” meaning they
must prohibit traders from confirming or settling their
own trades. This requires a separate staff to handle these
functions [65]. The firms must also hire “compliance of-
ficers” to ensure that controls on the trading process are
being observed faithfully (Federal Reserve Bank of New
York, Best Practice 48). Since the vast majority of com-
mercial firms need to trade only infrequently to carry out
their real-side business, these heavy staffing requirements
make speculative trading prohibitively expensive.

Another powerful reason why corporate customers
avoid overt speculation is that it can raise corporate tax
burdens. In the US, at least, profits from overtly specula-
tive positions are accounted for differently from gains de-
signed to offset losses on existing business exposures, with
the result that speculative profits are taxed more heav-
ily. If a treasurer wishes to speculate, s/he can do so at
a lower cost by redistributing the firm’s assets and liabil-
ities around the world. Goodhart [81] lists additional rea-
sons why corporate customers generally do not speculate
in spot and forward markets.

The presence of non-financial customers provides
a natural source of heterogeneity in the motivations for
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currency trading. Such heterogeneity is critical for mod-
eling asset prices, and may thus be critical for the func-
tioning of asset markets [142,143]. When all agents are ra-
tional speculators it is hard to find reasons why specula-
tors would trade with each other. If the price is away from
its fundamental value both agents should insist on taking
the profitable side of any trade, which is impossible. If the
price is at its equilibrium, however, there is no profit to be
gained from trading.

In the foreign exchangemarket, commercial firms nec-
essarily have different trading motivations from specula-
tors. Speculative agents primarily care about currencies
as a store of value and commercial traders primarily care
about currencies as a medium of exchange. Thus the ex-
istence of high trading volumes is less difficult to explain
in foreign exchange than in, say, equity markets. (In bond
markets, an alternative trading motivation may be pro-
vided by insurers and others engaged in duration match-
ing.)

To generate trading volume in models of equity
markets, financial modelers typically introduce “liquidity
traders” or “noise traders” [22,115], typically modeled as
a pure random variable and verbally assigned some moti-
vation for trading. For liquidity traders the motivation is
exogenous portfolio rebalancing; for noise traders the mo-
tivation is often speculation based onmisinformation [22].
Neither motivation is fully satisfactory to the profession,
however. Portfolio rebalancing is not sufficient to account
for observed trading volumes and the professional pref-
erence for assuming rationality is not well-served by the
noise trader concept. In foreign exchange markets, com-
mercial traders provide rational trading partners for ratio-
nal speculators.

Constraints on Exchange Rates The institutional fea-
tures outlined in this section reveal a key constraint on
exchange rates. Onmost days the amount of currency pur-
chased by end-usersmust (roughly) equal the amount sold
by end-users. Though dealers stand ready to provide liq-
uidity intraday, the fact that they generally go home flat
means that the dealing community, as a whole, does not
provide overnight liquidity. Within a day, the net pur-
chases of any end-user group must ultimately be absorbed
by the net sales of some other end-user group. The ex-
change rate is presumably the mechanism that adjusts to
induce end-users to supply the required liquidity.

This same explicit constraint can be found in finan-
cial markets known as “call markets” (see glossary), where
a single price is chosen to match the amount bought to the
amount sold. Prominent call markets include the opening
markets on the NYSE and the Paris Bourse.

The very real constraint that end-user purchases equal
end-user sales over a trading day differs dramatically
from the exchange-rate equilibrium condition common
to standard macroeconomic models. That condition is,
in essence, that money demand equals money supply.
The evidence does not support the relevance of aggregate
money demand/supply to day-to-day exchange-rate deter-
mination [153].

Intraday Dynamics

This section provides descriptive information about trad-
ing volume, volatility, and spreads on an intraday basis.

Intraday Patterns in Volume, Volatility, and Spreads

Trading volume, volatility, and interdealer spreads all vary
according to strong intraday patterns that differ in cer-
tain key respects from corresponding patterns in bond and
equity markets. Figure 1a and b shows these patterns for
euro-dollar and dollar-yen, based on EBS trade and quote
data over the period 1999–2001 [103].

As in other markets, trading volume (measured here
by the number of interbank deals) and volatility move to-
gether. As Asian trading opens (around hour 22) they both
rise modestly from overnight lows, after which they fol-
low a crude U-shape pattern during Asian trading hours
and then another U-shape during the London hours. They
both peak for the day as London is closing and New York
traders are having lunch and then decline almost mono-
tonically, reaching their intraday low as Asian trading
opens early in the New York evening.

Some back-of-the envelope figures may help make
these trading-volume patterns concrete. In Ito and Hashi-
moto’s 1999–2001 EBS database there were roughly eight
trades per minute in euro-dollar and six trades in dollar-
yen [103]. Together with the seasonal patterns, this sug-
gests that overnight interdealer trading was on the order
of one or fewer trades per minute while peak trading (out-
side of news events) was on the order of 10 (JPY) to 25
(EUR) trades per minute. Current interdealer trading ac-
tivity would be substantially larger, reflecting subsequent
market growth.

Bid-ask spreads almost perfectly mirror the pattern
of volume and volatility. They are highest during the
overnight period, and then decline as trading surges at the
Asian open. As trading and volatility follow their double-U
pattern during Asian and London trading hours, spreads
follow the inverse pattern: they rise-then-fall during Asian
trading and then rise-then-fall once again during the Lon-
don morning. After London closes, spreads rise roughly
monotonically to their overnight peaks.
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Market Microstructure, Foreign Exchange, Figure 1
IntradayPatterns for Volume, Volatility, Spreads, and theNumber of Price Changes. Figures are calculated from tick-by-tick EBS trade
and quote data during winter months during 1999–2001. Seasonal patterns are only slightly different in summer. (Source: [103]).
Greenwich Mean Time

Conventional interdealer spreads, as reported in Che-
ung and Chinn [36], average three basis points in euro-
dollar and dollar-yen, the two most active currency pairs.
In sterling-dollar and dollar-swiss, the next two most ac-
tive pairs, these averaged five basis points. Dealers in
both the US [36] and the UK [37] report that the domi-
nant determinant of spreads is the market norm. One im-
portant reason spreads widen is thin trading and a hec-
tic market. Another important reason is market uncer-

tainty [36], which is often associated with volatility. Since
volatility also increases inventory risk, it makes sense that
volatility and spreads have been shown to be positively re-
lated [23,92,105].

This tendency for interdealer spreads to move in-
versely from volume and volatility is consistent with pre-
dictions from two conceptual frameworks. Hartmann [92]
explains the relationship in terms of fixed operating costs,
such as the costs of maintaining a trading floor and of
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acquiring real-time information. When trading volume is
high these costs can easily be covered with small spread,
and vice versa, so long as the extra volume is dominated
by uninformed traders. The same explanation could also
apply at the intraday horizon.

Admati and Pfleiderer [1] develop an asymmetric in-
formation model consistent with some of the key proper-
ties just noted. In their model, discretionary uninformed
traders (who can time their trades) choose to trade at one
time since this brings low adverse selection costs to deal-
ers and thus low spreads. The low spreads encourage in-
formed traders to trade at the same time and the infor-
mation they bring generates volatility. Overall, this model
predicts that trading volume and volatility move in paral-
lel and both move inversely with spreads, consistent with
the patterns in major foreign exchange markets.

In most equity and bond markets, spreads move in
parallel with trading volume and volatility, rather than
inversely, with all three following an intraday (single)
U-shape. Notably, a similar U-shape characterizes inter-
dealer foreign exchange markets in smaller markets, such
as Russia’s electronic interdealer market for rubles, which
only operate for a few hours every day [141]. In Taipei’s
interdealer market, which not only has fixed opening and
closing times but also closes down for lunch, spreads fol-
low a double-U-shape: they begin the day high, tumble
quickly, and then rise somewhat just before lunch; after
lunch they follow roughly the same pattern [76]. This con-
trast suggests that there is a connection between fixed trad-
ing hours and this U-shape for spreads.

Madhavan et al. [128] provide evidence that high
spreads at the NYSE open reflect high adverse-selection
risk, since information has accumulated overnight. High
spreads at the close, by contrast, reflect high inventory risk,
according to their evidence, since dealers cannot trade un-
til the market re-opens the next morning. In less-liquid
foreign exchangemarkets, such as those for emergingmar-
ket currencies, the overnight period is relatively long and
there is little overnight liquidity, so similar patterns may
arise. The failure of interdealer spreads in major curren-
cies to follow the pattern observed in equity and bond
markets need not imply, however, that adverse selection
is irrelevant in the interdealer markets. In the major cur-
rencies, the overnight period is short and liquid (relative
to other assets), so adverse-selection risk may not rise as
sharply as the market opens and inventory risk may not
rise as sharply as the overnight period approaches. In this
case adverse selection could be relevant but subordinate to
other factors, such as Hartmann’s fixed operating costs.

Weekends are a different story, since foreign exchange
trading largely ceases from about 21 GMT on Fridays until

21 GMT on Sundays. The previous analysis suggests that
foreign exchange spreads might be particularly wide on
Mondaymornings in Tokyo and Friday afternoons in New
York. There is support for the first of these implications:
Ito and Hashimoto [103] provide tentative evidence that
spreads are indeed exceptionally wide on Monday morn-
ings in Tokyo.

Minute-by-minute data show that volume and volatil-
ity spike sharply at certain specific times of day [12]. In the
New Yorkmorning there are spikes at 8:20, 8:30, 10 and 11
am, reflecting the opening of derivatives exchanges, the re-
lease of US macro news, standard option expiration times,
and the WM/Reuters fixing (at 4 pm London time; this is
a price at which many banks guarantee to trade with cus-
tomers), respectively. Further spikes occur at 2 pm, and 8
pmNewYork time, reflecting the closing of derivatives ex-
changes and Japanese news releases, respectively. The tim-
ing of these spikes differs slightly in summerwhen daylight
saving time is adopted in the UK and the US but not Japan.

The high trading that typically accompanies macro
news releases represents a further dimension on which
the markets differ from the features assumed in macro-
based exchange-rate models. In macro-based models all
agents have rational expectations and all information is
public. The release of macro news causes everyone’s ex-
pectations to be revised identically so the price moves in-
stantly to reflect the new expectation without associated
trading volume.

Feedback Trading

The data provide substantial evidence of both positive and
negative feedback trading in foreign exchange. Sager and
Taylor [169] find evidence for positive feedback trading
in interdealer order flow using Granger-causality tests ap-
plied to the Evans and Lyons [58] daily data. Marsh and
O’Rourke [131] and Bjønnes et al. [18] find evidence for
negative feedback trading in semi-daily commercial-cus-
tomer order flow but not in corresponding financial-cus-
tomer order flow. Daniélsson and Love [44] find evidence
of feedback trading in transaction-level interdealer trading
data.

Feedback trading can greatly influence asset-price dy-
namics. For example, Delong et al. [45] show that in the
presence of positive-feedback traders, the common pre-
sumption that rational speculators stabilize markets is
turned on its head, and rational speculators intensify mar-
ket booms and busts instead. Negative-feedback traders,
by contrast, tend to dampen volatility.

There are at least three important sources of feedback
trading in currency markets: technical trading, options



Market Microstructure, Foreign Exchange M 5415

hedging, and price-contingent orders. We discuss each in
turn.

Technical Trading Technical trading is widespread in
foreign exchange markets. Taylor and Allen [180] show
that 90 percent of chief dealers in London rely on technical
signals. Cheung and Chinn [36] find that technical trad-
ing best characterizes thirty percent of trading behavior
among US dealers and the fraction has been rising. Sim-
ilar evidence has emerged for Germany [137] and Hong
Kong (Lui and Mole 1998).

Trend-following technical strategies generate positive-
feedback trading. Froot and Ramadorai [74] present ev-
idence for positive-feedback trading among institutional
investors: their results indicate that, for major currencies
vs. the dollar, a one standard deviation shock to current re-
turns is associated with an 0.29-standard-deviation rise in
institutional-investor order flow over the next thirty days.

Contrarian technical strategies generate negative feed-
back. For example, technical analysts claim that “support
and resistance” levels are points at which trends are likely
to stop or reverse, so one should sell (buy) after rates rise
(fall) to a resistance (support) level. Support and resistance
levels are a day-to-day topic of conversation among mar-
ket participants, and most major dealing banks provide
active customers with daily lists of support and resistance
levels.

Option Hedging Option hedging also generates both
positive- and negative-feedback trading. To illustrate, con-
sider an agent who buys a call option on euros. If the in-
tent is to speculate on volatility, the agent will minimize
first-order price risk (delta-hedge) by opening a short euro
position. Due to convexity in the relationship between op-
tion prices and exchange rates, the short hedge position
must be modestly expanded (contracted) when the euro
appreciates (depreciates). The dynamic adjustments there-
fore bring negative-feedback trading for the option holder
and, by symmetry, positive-feedback trading for the op-
tion writer.

Barrier options – which either come into existence
or disappear when exchange rates cross pre-specified lev-
els – can trigger either positive- or negative-feedback trad-
ing and the trades can be huge. Consider an “up-and-out
call,” a call that disappears if the exchange rate rises above
a certain level. If the option is delta-hedged it can trigger
substantial positive-feedback trading when the barrier is
crossed: since the short hedge positionmust be eliminated,
the rising exchange rate brings purchases of the underly-
ing asset. The entire hedge is eliminated all at once, how-
ever, so the hedge-elimination trade is far larger than the

modest hedge adjustments associated with plain-vanilla
options. Many market participants pay close attention to
the levels at which barrier options have been written, and
make efforts to find out what those levels are. Related op-
tion types, such as Target Resumption Notes (TARNs),
also trigger substantial feedback trading but tend to spread
it out.

Price-Contingent Orders Price-contingent customer
orders are the third important source of feedback trad-
ing in foreign exchange. These are conditional market or-
ders, in which the dealer is instructed to transact a spec-
ified amount at market prices once a trade takes place at
a pre-specified exchange-rate level. There are two types:
stop-loss orders and take-profit orders. Stop-loss orders
instruct the dealer to sell (buy) if the rate falls (rises) to the
trigger rate, thereby generating positive-feedback trading.
By contrast, take-profit orders instruct the dealer to sell
(buy) if the price rises (falls) to the trigger rate, thereby
generating negative-feedback trading.

Take-profit orders are often used by non-financial
customers that need to purchase or sell currency within
a given period of time. Their option to wait is valuable due
to the volatility of exchange rates. They can avoid costly
monitoring of the market and still exploit their option by
placing a take-profit order with a dealer. Financial cus-
tomers also use take-profit orders in this way. Stop-loss
orders, as their name implies, are sometimes used to en-
sure that losses on a given position do not exceed a cer-
tain limit. The limits are frequently set by traders’ employ-
ers but can also be self-imposed to provide “discipline.”
Stop-loss orders can also be used to ensure that a position
is opened in a timely manner if a trend develops quickly.
Savaser [171] finds that stop-loss order placement intensi-
fies prior to major macro news releases in the US.

One might imagine that these orders would tend to
offset each other, since rising rates trigger stop-loss buys
and take-profit sales, and vice versa. However, as discussed
in Osler [151,152], differences between the clustering pat-
terns of stop-loss and take-profit orders reduce the fre-
quency of such offsets. Take-profit orders tend to cluster
just on big round numbers: Stop-loss orders are less con-
centrated on the round numbers and more concentrated
just beyond them (meaning above (below) the round num-
ber for stop-loss buy (sell) orders).

Since stop-loss and take-profit orders cluster at dif-
ferent points, offsets are limited and these orders cre-
ate noticeable non-linearities in exchange-rate dynam-
ics [151,152]. The presence of stop-loss orders, for exam-
ple, substantially intensifies the exchange-rate’s reaction to
macro news releases [171]. Likewise, the tendency of take-
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profit orders to cluster at the round numbers increases the
likelihood that trends reverse at such levels. This is con-
sistent with the technical prediction, introduced earlier,
that rates tend to reverse course at support; and resistance
levels. Finally, the tendency of stop-loss orders to cluster
just beyond the round numbers brings a tendency for ex-
change rates to trend rapidly once they cross round num-
bers. This is consistent with another technical prediction,
that rates trend rapidly after a trading-range break out.

Market participants often report that stop-loss or-
ders are responsible for fast intraday exchange-rate trends
called “price cascades.” In a downward cascade, for exam-
ple, an initial price decline triggers stop-loss sell orders
that in turn trigger further declines, which in turn trig-
ger further stop-loss sell orders, etc. Upward cascades are
equally possible: since every sale of one currency is the
purchase of another, there are no short-sale constraints
and market dynamics tend to be fairly symmetric in terms
of direction (most notably, there is no equivalent to the
leverage effect). Dealers report that price cascades happen
relatively frequently – anywhere from once per week to
many times per week. Osler [152] provides evidence con-
sistent with the existence of such cascades.

News Announcements

Macro news announcements typically generate a quick
surge in currency trading volume and volatility. As shown
in Fig. 2a and b, which are taken from Chaboud et al. [31],
volume initially surges within the first minute by an order
of magnitude or more. Dealers assert that the bulk of the
exchange-rate response to news is often complete within
ten seconds [36].

Carlson and Lo [29] closely examines one macro an-
nouncement, the timing of which was unanticipated. They
show that in the first half-minute spreads widened and
in the second half-minute trading surged and the price
moved rapidly. Chaboud et al. [31] shows that after the
first minute volume drops back substantially, but not com-
pletely, in the next few minutes. The remaining extra
volume then disappears slowly over the next hour. The
response of returns to news is particularly intense after
a period of high volatility or a series of big news sur-
prises [48,54], conditions typically interpreted as height-
ened uncertainty.

The US macro statistical releases of greatest impor-
tance are the GDP, the unemployment rate, payroll em-
ployment, initial unemployment claims, durable goods or-
ders, retail sales, the NAPM index, consumer confidence,
and the trade balance [3]. Strikingly, money supply re-
leases have little or no effect on exchange rates [3,25,

36,62], consistent with the observation above that aggre-
gate money supply and demand seem unimportant for
short run exchange-rate dynamics.

Statistical releases bring a home-currency appreciation
when they imply a strong home economy. A positive one-
standard deviation surprise to US employment, which is
released quite soon after the actual employment is realized,
appreciates the dollar by 0.98 percent. For GDP, which is
released with a greater lag, a positive one-standard devi-
ation surprise tends to appreciate the dollar by 0.54 per-
cent [3]. Responses are driven by associated anticipations
of monetary policy: anything that implies a stronger econ-
omy or higher inflation leads investors to expect higher
short-term interest rates [13] and thus triggers a dollar ap-
preciation, and vice versa.

Federal Reserve announcements following FOMC
meetings do not typically elicit sharp increases in trad-
ing volume and volatility [13]. Instead, FOMC announce-
ments bring only a small rise in trading volume (Fig 2c)
and tend to reduce exchange-rate volatility [33]. This sug-
gests that Federal Reserve policy shifts are generally antic-
ipated, which is encouraging since that institution prefers
not to surprise markets.

Unanticipated changes in monetary policy do affect
exchange rates. Fratscher [133] finds that an unanticipated
25 basis-point rise in US interest rates tends to appreci-
ate the dollar by 4.2 percent. Kearns and Manners [108],
who analyze other Anglophone countries, find that a sur-
prise 25 basis-point interest-rate rise tends to appreciate
the home currency by only 38 basis points. Kearns and
Manners also note a more subtle dimension of response:
If the policy shift is expected merely to accelerate an al-
ready-anticipated interest-rate hike, the exchange-rate ef-
fect is smaller (only 23 basis points, on average) than if the
shift is expected to bring consistently higher interest rates
over the next few months (43 basis points on average).

Evidence presented in Evans and Lyons [59] suggests
that exchange rates overshoot in responses to news an-
nouncements. For some types of news, between a tenth
and a quarter of the initial response is typically reversed
over the four consecutive days. The reversals are most
pronounced for US unemployment claims and the US
trade balance. This contrasts strikingly with the well-doc-
umented tendency for the initial stock-price response to
earnings announcements to be amplified after the first
day, a phenomenon known as “post-earnings announce-
ment drift” (Kothari [113] provides a survey). Nonethe-
less, over-reaction to fundamentals has been documented
repeatedly for other financial assets [10,26,173].

Exchange-rate responses to a given macro news statis-
tic can vary over time, as dealers are well aware [36]. Dur-
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Market Microstructure, Foreign Exchange, Figure 2
Minute-by-minute trading volume, euro-dollar, around US scheduled macro news announcements. Based on tick-by-tick EBS trade
data over 1999–2004. Trading volume relative to the intraday average. Source: [31]. Eastern Standard Time

ing the early 1980s, for example, the dollar responded
fairly strongly to money supply announcements which, as
noted above, is no longer the case. This shift appears to
have been rational since it reflected public changes in Fed-
eral Reserve behavior: in the early 1980s the Fed claimed
to be targeting money supply growth, a policy it has since
dropped. The possibility that such shifts are not entirely
rational is explored in Bachetta and vanWincoop [7]. Che-
ung and Chinn [36] provide further discussion of how and
why the market’s focus shifts over time. Using daily data,

Evans and Lyons [60] find little evidence of such shifting
during the period 1993–1999. This could reflect the mask-
ing of such effects in their daily data or it could indicate
that such shifting was modest during those years of consis-
tent economic expansion and consistent monetary policy
structure.

Information relevant to exchange rates comes from
many more sources than macroeconomic statistical re-
leases. Trading volume and volatility are triggered by of-
ficial statements, changes in staffing for key government
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positions, news that demand for barrier options is rising or
falling, reports of stop-loss trading, even rumors [48,147].
As documented in Dominguez and Panthaki [48], much
of the news that affects the market is non-fundamental.

Numerous asymmetries have been documented in
the responses to news. The effects of US macro an-
nouncements tend to be larger than the effect of non-
US news [59,82]. Ehrmann and Fratzscher [54] attribute
this asymmetry, at least in part, to the tendency for non-
US macroeconomic statistical figures to be released at un-
scheduled times and with a greater lag. Ehrmann and
Fratzscher also shows that exchange rates respond more to
weak than strong European news, and Andersen et al. [3]
report a similar pattern with respect to US announce-
ments. This asymmetry is not well understood.

Carlson and Lo [29] shows that many interdealer limit
orders are not withdrawn upon the advent of unexpected
macro news. This might seem surprising, since by leaving
the orders dealers seem to expose themselves to picking-
off risk. It may not be the dealers themselves, however, that
are thus exposed. The limit orders left in place may be in-
tended to cover take-profit orders placed by customers, so
the customer may be the one exposed to risk.

To be concrete: suppose a customer places a take-profit
order to buy 5 at 140.50 when the market is at 140.60. The
dealer can ensure that he fills the order at exactly the re-
quested price by placing a limit order to buy 5 at 140.50 in
the interdealer market. Suppose news is then released im-
plying that the exchange rate should be 140.30. The dealer
loses nothing by leaving the limit order in place: the cus-
tomer still gets filled at the requested rate of 140.50.

This interpretation may appear to push the mystery
back one step, because now the customer is buying cur-
rency at 140.50 when the market price of 140.30 would
be more advantageous. Why wouldn’t customers change
their orders upon the news release, or withdraw them be-
forehand? This could reflect a rational response of cus-
tomers to the high costs of monitoring the market intra-
day. Indeed, as noted earlier it is to avoid those costs that
customers place orders in the first place. The Customers
that choose not to monitor the market may not even be
aware of the news.

Returns and Volatility

This section describes the basic statistical properties of re-
turns and order flow.

Returns

Major exchange rates are often described as following
a random walk, since it has long been well-documented

Market Microstructure, Foreign Exchange, Table 1
Autocorrelation of high-frequency returns. High-frequency au-
tocorrelation of DEM returns, using Reuters indicative quotes
over the period 1 October, 1992 through 30 September, 1993.
Source: [33]

5 min 10 min 15 min 30 min Hourly
�(1) –0.108 –0.093 –0.085 –0.066 –0.018
�(2) –0.019 –0.030 –0.018 0.008 0.006
�(3) –0.011 –0.002 0.006 0.024 –0.018

that daily returns tomajor exchange rates vis-à-vis the dol-
lar are not autocorrelated and are almost entirely unpre-
dictable. The random walk description is technically inac-
curate, of course, since the variance of returns can indeed
be forecast: it is statistically more accurate to describe the
exchange rate as a martingale. (Further, at the highest fre-
quencies returns are slightly negatively autocorrelated, as
shown in Table 1 [33]). Whatever the nomenclature, the
fact that current exchange rates provide better forecasts
than standard fundamentals-based models [134] has long
been a source of pessimism about exchange-rate theory in
general.

Though the unconditional autocorrelation of daily re-
turns is approximately zero, the conditional autocorrela-
tion is not. Research has long shown that trend-following
technical trading rules are profitable in major exchange
rates [140]. Though returns to these rules seems to have
declined in recent years, more subtle strategies remain
profitable on a risk-adjusted basis [35]. Markov switching
models also have predictive power for exchange rate re-
turns [46,50], though the switching variables must include
more than mean returns [117].

Daily returns are correlated across currencies, as one
might expect given exchange-rate responses to news. The
correlation between daily euro-dollar and sterling-dollar
returns, for example, is 70 percent, while correlations be-
tween these European exchange rates and dollar-yen are
smaller: both are 46 percent [12].

It has long been recognized that short-horizon ex-
change-rate returns are leptokurtotic. Kurtosis in euro-
dollar returns, for example, is 24, 19, and 14 at the fifteen-
minute, half-hour, and one hour horizons, respectively, all
significantly higher than the level of three associated with
the normal distribution [154]. Even at the two-day hori-
zon kurtosis is still statistically significantly above three,
though it has declined to five. These figures need not be
constant. Osler and Savaser [154] demonstrate that a num-
ber of properties of price contingent orders impart high
kurtosis to the distribution of returns. These properties in-
clude: high kurtosis in the orders’ own size distribution,
intraday seasonals in the execution of these orders; and
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the clustering patterns in their trigger rates described ear-
lier. Stop-loss orders can also contribute to high kurtosis
by contributing to price cascades. This analysis suggests
that changes inmarket reliance on price-contingent orders
could bring changes in the distribution of returns.

Within the overall distribution of returns there seems
to have been a shift during the 1990s from the smallest re-
turns, meaning those within one standard deviation of the
mean, towards returns between one and five standard de-
viations [34]. The frequency of the most extreme returns,
however, showed no trend.

Volatility

Unlike returns, volatility exhibits strong autocorrelation.
As shown in Table 2, the first-order autocorrelation for
daily volatility is typically above 0.50 and remains above
0.40 for at least a week. Evidence suggests that volatility is
so persistent as to be fractionally integrated [12].

As recommended by Baillie and Bollerslev [8], volatil-
ity is typically captured with a GARCH(1,1) model or
a close variant. Table 2b gives illustrative results from
Chang and Taylor [33] showing that the AR component of
the volatility process dominates (coefficients above 0.90)
but the MA component is still significant. The MA com-
ponent becomes increasingly important as the time hori-
zon is shortened, though it remains subordinate. Table 2b
also provides results suggesting that the double exponen-
tial distribution may fit return volatility better than the
normal distribution. The thickness-of-tails parameter, “v,”
is two for the normal distribution but lower for the double
exponential: estimates place it closer to unity than two.

Ederington and Lee [53] show, using 10-minute fu-
tures data for the DEM over July 3, 1989 through Septem-
ber 28, 1993, that the GARCH(1,1) model tends to under-
estimate the influence of the most recent shock and also
shocks at long lags. These effects are captured better with
an ARCH formulation that includes the lagged one-hour,
one-day, and one-week return shock:
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where ht is estimated conditional volatility and "t is the
shock to returns. These authors also find that daily and in-
traday seasonal patterns in volatility become fairly unim-
portant after controlling for announcements and ARCH
effects. They conclude that “much of the time-of-day pat-
terns and day-of-the-week patterns are due to announce-
ment patterns” (p. 536).

Volatility usually rises upon news announcements,
consistent with the analysis presented in III.C [53], but it
can fall: Chang and Taylor [33] find that US Federal Re-

Market Microstructure, Foreign Exchange, Table 2
Strong autocorrelation in return volatility. a Daily realized
volatilities constructed from five-minute returns based on
Reuters indicative quote, July 1, 1987-December 31, 1993.
Source: [160]. b Illustrative GARCH results assuming the nor-
mal distribution or the double-exponential distribution. Com-
plete Reuters indicative quote for DEM, October 1992 through
September 1993. Source: [33]

a USD/DEM USD/JPY USD/GBP
�(1) 0.62 0.64 0.63
�(2) 0.52 0.53 0.54
�(3) 0.48 0.47 0.50
�(4) 0.45 0.44 0.47
�(5) 0.46 0.43 0.48

b Hourly 30 Minutes 15 Minutes 5 Minutes
Normal Dist.

˛
0.045 0.035 0.098 0.100
(3.83) (4.36) (8.32) (13.82)

ˇ
0.932 0.953 0.853 0.864
(48.33) (79.74) (38.53) (75.89)

Double-Exponential Dist.

˛
0.053 0.054 0.106
(5.07) (4.86) (4.97)

ˇ
0.930 0.936 0.878
(59.91) (66.01) (26.64)

v
1.173 1.123 1.128
(41.71) (52.14) (58.82)

serve news reduces volatility. This is consistent with the
earlier finding that Fed news does not induce much ex-
tra trading. Volatility, like returns, can behave asymmetri-
cally. Chang and Taylor [33] show that, during 1992, the
volatility of dollar-mark was sensitive to US macro news
but insensitive to German macro news. Such asymmetries
need not be stable over time: Hashimoto [94] shows that
asymmetries in the behavior of volatility changed dramat-
ically around the Japanese bank failures of late 1997.

It is often hypothesized that volatility persistence de-
rives from persistence in the flow of information, based
on two premises: (i) volatility moves in parallel with trad-
ing volume, and (ii) trading volume is persistent because
the advent of news is persistent. There is evidence to sup-
port both of these premises. Volatility and volume move
together in most financial markets and foreign exchange is
no exception, as shown in Fig. 1. Foreign exchange trading
volume and volatility also move together at longer hori-
zons [18,75]. Evidence also indicates persistence in the
news process. Chang and Taylor [33], who count news re-
leases on the Reuters real-time information system, find
that autocorrelation in the number of news items is 0.29 at
the one-hour horizon.
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Market Microstructure, Foreign Exchange, Figure 3
Stop-loss and take-profit orders tend to be placed at round numbers. Data comprise the complete order book of the Royal Bank of
Scotland in euro- dollar, sterling-dollar, and dollar-yen during the period September 1, 1999 through April 11, 2000. Chart shows the
frequency with trigger rates ended in the 100 two-digit combinations from 00 to 99. Source: [151]

There is, however, little empirical evidence that di-
rectly traces volatility persistence in foreign exchange to
news persistence. In fact, the only direct evidence on this
point suggests that other factors are more important than
news. Berger et al. [12] finds that persistence in news is pri-
marily relevant to shorter-term volatility dynamics while
long-run persistence in volatility is captured primarily by
the low-frequency persistence in price impact, meaning
the impact on exchange-rates of order flow. Figure 6, taken
from Berger et al. [12], shows that daily price-impact co-
efficients for euro-dollar varied quite a bit during 1999–
2004, and the series displays strong persistence at low
frequencies. Further tests show that trading volume has
modest explanatory power even after controlling for order
flow.

Implied volatilities from exchange-traded options con-
tracts have also been studied. Kim and Kim [111] find
that implied volatilities in futures options are heavily in-
fluenced by volatility in the underlying futures price it-
self. They are not strongly influenced by news, and the
few macro news releases that matter tend to reduce im-
plied volatilities. Their analysis also indicates that implied
volatilities tend to be lower on Mondays and higher on
Wednesdays, though the pattern is not strong enough to
generate arbitrage trading profits after transaction costs.
Two studies show that daily volatility forecasts can be im-
proved by using intraday returns information in addition
to, or instead of, implied volatilities [132,160].

Order Flow and Exchange Rates,
Part I: Liquidity and Inventories

Customer currency demand usually must net to around
zero on trading days, as discussed earlier, and exchange-

rate adjustment seems likely to be the mechanism that in-
duces this outcome. If one group of customers decides to
purchase foreign currency over the day, on net, the cur-
rency’s value must rise to bring in the required liquid-
ity supply from another group of customers. This implies,
crudely, a relationship between net liquidity demand and
exchange-rate returns.

To identify this relationship empirically one must dis-
tinguish liquidity-demand trades from liquidity-supply
trades on a given day. We cannot simply look at trading
volume or, equivalently, total buys or total sells, since it is
the motivation behind the trades that matters. Instead we
need to compare the purchases and sales of liquidity con-
sumers. If they buy more than they sell then rates should
rise to induce overnight liquidity supply and vice versa.
The concept of “order flow” or, equivalently, “order im-
balances,” which we examine next, can be viewed as amea-
sure of net liquidity demand.

Interdealer Order Flow

In the interdealer market we identify liquidity demanders
with either (i) those placing market orders or (ii) those
calling other dealers to trade directly. When using trans-
action data from a broker, order flow is calculated as mar-
ket buy orders minus market sell orders; when using di-
rect dealing data, order flow is calculated as dealer-initi-
ated buy trades minus dealer-initiated sell trades.

Evans and Lyons [58] were the first to show that in-
terdealer order flow has substantial explanatory power for
concurrent daily exchange-rate returns, a result that has
been replicated in numerous studies [56,97]. Benchmark
results are provided in Berger et al. [12], which has the ad-
vantage of a relatively long dataset. That paper shows that
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Market Microstructure, Foreign Exchange, Figure 4
Frequency distribution of returns has shifted. Data comprise tick-by-tick Reuters indicative quotes over 1987–2001. Source: [34]

the raw correlation between daily returns and interdealer
order flow is 65 percent for euro-dollar, 42 percent for ster-
ling-dollar, and 49 percent for dollar-yen. Berger et al. es-
timates that an extra $1 billion in order flow in a given day

appreciates the euro, the pound, and the yen by roughly
0.40 percent, with R2s in the vicinity of 0.50. By contrast,
it is well known that the explanatory power of standard
fundamental variables is typically well below 0.10 [58].
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Evans and Lyons [58] and Rime, Sarno, and Sojli [166]
find that the overall explanatory power of interdealer order
flow for returns can be substantially increased by including
order flow from other currencies. In Evans and Lyons [58],
which uses daily interbank order flows for seven curren-
cies against the dollar over four months in 1996, the joint
explanatory power averages 65 percent and ranges as high
as 78 percent.

Since feedback trading is ubiquitous in foreign ex-
change, one must consider the possibility that these corre-
lations represent reverse causality – that returns are in fact
driving order flow. Two studies investigate this possibility.
Using daily data, Evans and Lyons [63] find that the influ-
ence of order flow on price survives intact after controlling
for feedback effects; using transactions data, Daniélsson
and Love [44] find that the estimated influence becomes
even stronger after controlling for feedback trading.

Dealers have long recognized the importance of cur-
rency flows in driving exchange rates, and have said as
much in surveys. In Gehrig and Menkhoff’s survey [77],
for example, over 86 percent of dealers said they rely on
analysis of flows in carrying out their responsibilities. In-
deed, the influence of order flow on exchange rates is
a critical assumption in their trading strategies, as illus-
trated in the following debate over optimal management
of stop-loss orders.

A dealer with a large stop-loss buy order could begin
filling the order after the exchange-rate rises to the trigger
price. Since the order-filling trades themselves will drive
the price up, however, the average price paid will exceed
the trigger rate, to the customer’s disadvantage. The dealer
could, alternatively, begin filling the order before the rate
hits the trigger price. The buy trades will push the price
up through the trigger rate and the average fill price will
be closer to the trigger rate. The risk here is that the ex-
change rate bounces back down below the trigger rate, in
which case the customer could justly complain of getting
inappropriately “stopped out.”

The key observation here is that the pros and cons of
both strategy options are driven by the impact of order
flow. Dealers do not view this as an hypothesis or as an as-
sumption. To them it is something they know, in the same
sense that one “knows” that the sun will disappear below
the horizon at the end of the day (pace Hume). Dealers see
order flow influence price too often and too consistently to
question it.

The estimated price impact of interdealer order flow
varies according to order size, time of day, and time hori-
zon. Price impact has a concave relationship to size [155],
consistent with evidence from equity markets [93,104].
This may reflect order splitting and other dealer strategies

for minimizing the impact of large trades [17]. At the daily
horizon, the price impact is linearly related to order flow,
which makes sense since splitting a large trade into smaller
individual transactions rarely takes more than a few hours.
On an intraday basis, the price impact of interdealer or-
der flow is inversely related to trading volume and volatil-
ity, as shown for dollar-yen in Fig. 7 [12]. As discussed
earlier, spreads have a similarly inverse relation to trad-
ing volume and volatility (Fig. 1). This suggests, logically
enough, that price impact is heavily influenced by spreads:
when spreads widen, a given-sized transaction has a bigger
price impact. Alternatively, however a third factor could
be at work: depth. Depth presumably varies inversely with
spreads and positively with trading volume intraday. Un-
fortunanely, information on depth is as yet almost nonex-
istent.

As time horizons lengthen the price impact of inter-
dealer order flow declines monotonically [12]. For the
euro, an extra $1 billion in order flow is estimated to
bring an appreciation of 0.55 at the one-minute horizon
but only 0.20 percent at the three-month horizon (Fig. 5,
left). The explanatory power of interdealer order flow also
varies with horizon but in a rising-falling pattern. The R2

is 0.36 at the one-minute horizon, reaches 0.50 at the 30-
minute horizon, stays fairly constant to the one-week hori-
zon, and then falls sharply to about 0.17 percent at the two-
month horizon (Fig. 5, right). Even at 17 percent, how-
ever, the explanatory power of order flow at three months
is substantially higher than has been achieved with other
approaches. A similar pattern is found in Froot and Ra-
madorai, using institutional investor order flow, though
they find a peak at roughly one month rather than one
week [74]. They attribute the initial rise to positive-feed-
back trading.

The positive relation between interdealer order flow
and exchange rates could be influenced by inventory ef-
fects as well as the liquidity effects described above. Inven-
tory effects were, in fact, the first connection between or-
der flow and asset prices to be analyzed in the broader mi-
crostructure literature, e. g. [177]. Dealers that provide liq-
uidity to other dealers are left with an inventory position
and thus inventory risk. Dealers charge a spread which
compensates them for this risk. The spread, in itself, gen-
erates a positive relationship between order flow and re-
turns: prices typically rise to the ask price upon buy orders
and fall to the bid price upon sell orders.

Customer Order Flow

Order flow in the customer market is measured as cus-
tomer-initiated buy trades minus customer-initiated sell
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Market Microstructure, Foreign Exchange, Figure 5
Responseof returns toorder flowat varioushorizons. Charts on the left showbeta coefficients from regressions of returns on contem-
poraneous interdealer order flow for time horizons ranging from one minute to three months. Charts on the right show coefficients
of determination from those same regressions. Underlying data compriseminute-by-minute EBS transaction and quote records from
1999–2004. [12]

Market Microstructure, Foreign Exchange, Figure 6
Daily price impact coefficients for euro-dollar, 1999–2004. Un-
derlying data comprise minute-by-minute EBS transaction and
quote records from 1999–2004. Source: [12]

trades. This is consistent with a liquidity interpretation
on a trade-by-trade basis, since each customer effectively
demands instantaneous liquidity from their dealer. Cus-
tomer order flow, however, is not ideally suited to measur-
ing customer net liquidity demand at daily or longer hori-
zons. If a customer is coming to the market in response

to an exchange-rate change, then the customer may be de-
manding liquidity from its own dealer at that instant while
effectively supplying liquidity to the overall market.

This distinction proves critical when interpreting the
empirical relation between daily customer order flow and
exchange rates. There should be a positive relation be-
tween daily order flow and returns for customer groups
that typically demand overnight liquidity. An increase in
their demand for foreign currency, for example, should in-
duce a rise in the value of foreign currency to elicit the re-
quired overnight supply. Implicit in that story, however,
is a negative relation between order flow and returns for
customer groups that typically supply overnight liquidity.

Researchers have documented repeatedly that, at the
daily horizon, financial-customer order flow is positively
related to returns while commercial-customer order flow
is negatively related to returns. Confirming evidence is
found in Lyons’ [122] study of monthly customer order
flows at Citibank; in Evans and Lyons [61] study of daily
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Market Microstructure, Foreign Exchange, Figure 7
Intraday Regression Betas and Average Trading Volume. Figure is based on the following regression:	st D ˛C ˇOFt C �t , where
	st is the return andOFt is contemporaneous order flow. Regressions based on one-minute EBS trade data from 1999–2004 are run
separately for each half hour of the trading day. Line shows estimated coefficients with standard error bands. Bars show order flow
measured relative to the days’ average (day’s average set at 100). Source: [12]

Market Microstructure, Foreign Exchange, Table 4
Autocorrelation coefficients for the number of exchange-rate
relevant news items, 1 October 1992 through 30 September,
1993. Reuters News data. Source: [33]

Hourly 30 Min 15 Min 10 Min 5 Min
�(1) 0.27 0.22 0.34 0.09 0.06
�(2) 0.29 0.16 0.12 0.09 0.04
�(3) 0.22 0.15 0.11 0.08 0.05

and weekly customer flows at the same bank; inMarsh and
O’Rourke’s [131] analysis of daily customer data from the
Royal Bank of Scotland, another large dealing bank; and
in Bjønnes et al. [18] comprehensive study of trading in
Swedish kroner, and in Osler et al.’s [154] study of a sin-
gle dealer at a medium-sized bank. The pattern is typically
examined using cointegration analysis where the key re-
lationship is between exchange-rate levels and cumulative
order flow.

This pattern suggests that financial customers are typ-
ically net consumers of overnight liquidity while com-
mercial customers are typically net suppliers. More di-
rect evidence that commercial customers effectively sup-
ply overnight liquidity, on average, comes from evidence
that commercial-customer order flow responds to lagged
returns, rising in response to lower prices and vice versa.

Marsh and O’Rourke [131] show this with daily data from
the Royal Bank of Scotland. Bjønnes et al. [18] show this
using comprehensive trading data on the Swedish krone
sampled twice daily.

It is easy to understand why financial customers would
demand liquidity: presumably they are speculating on fu-
ture returns based on some information that is indepen-
dent of past returns. Indeed, the identification of finan-
cial customers with speculation is explicit in Klitgaard and
Weir’s [112] study of currency futures markets. The IMM
requires the agents they deem large speculators to report
their positions on a weekly basis. Klitgaard andWeir show
that their weekly position-changes are strongly correlated
with concurrent exchange-rate returns. “[B]y knowing the
actions of futures market speculators over a given week,
an observer would have a 75 percent likelihood of cor-
rectly guessing an exchange-rate’s direction over that same
week” (p. 17).

It is not so immediately obvious why commercial cus-
tomers would supply overnight liquidity, since our first
image of a liquidity supplier is a dealer. Dealers supply
intraday liquidity knowingly and are effectively passive in
their trades with customers. By contrast, commercial cus-
tomers are not supplying liquidity either knowingly or
passively.
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Market Microstructure, Foreign Exchange, Table 5
Order flow carries information about exchange-rate fundamentals. The table shows the R2 statistics and associatedmarginal signifi-
cance levels for the ability of daily customer order flow at Citibank during the period 1994 to 2001 to forecast upcoming announce-
ments of key macro variables. Source: [57]

US Output Growth German Output Growth
Forecasting Variables 1 Mo. 2 Mo. 1 Qtr. 2 Qtrs. 1 Mo. 2 Mo. 1 Qtr. 2 Qtrs.

Output
0.002 0.003 0.022 0.092 0.004 0.063 0.069 0.006
(0.607) (0.555) (0.130) (0.087) (0.295) (0.006) (0.009) (0.614)

Spot Rate
0.001 0.005 0.005 0.007 0.058 0.029 0.003 0.024
(0.730) (0.508) (0.644) (0.650) (0.002) (0.081) (0.625) (0.536)

Order Flows
0.032 0.080 0.189 0.246 0.012 0.085 0.075 0.306
(0.357) (0.145) (0.002) (0.000) (0.806) (0.227) (0.299) (0.000)

All
0.052 0.086 0.199 0.420 0.087 0.165 0.156 0.324
(0.383) (0.195) (0.011) (0.000) (0.021) (0.037) (0.130) (0.000)

Commercial customers are, instead, just responding
to changes in relative prices in order to maximize profits
from their core real-side businesses. Suppose the foreign
currency depreciates. Domestic firms note that their for-
eign inputs are less expensive relative to domestic inputs
and respond by importing more, raising their demand for
the foreign currency. This effect, a staple of all interna-
tional economic analysis, has been well-documented em-
pirically at horizons of a quarter or longer, e. g. [5]. On
an intraday basis this effect is often evident in the behav-
ior of Japanese exporting firms, which hire professional
traders to manage their vast dollar revenues. These traders
monitor the market intraday, selling dollars whenever the
price is attractive. The vast majority of commercial cus-
tomers need to buy or sell currency only occasionally so
they can’t justify hiring professional traders. They can use
take-profit orders, however, to achieve the same goal, since
this effectively enlists their dealers to monitor the market
for them. At the Royal Bank of Scotland take-profit or-
ders are 75 (83) percent of price-contingent orders placed
by large corporations (middle-market) corporations [155],
but only 53 percent of price-contingent orders overall.

The evidence to date suggests the following crude por-
trait of day-to-day liquidity provision in foreign exchange
(a portrait first articulated in [18]). Financial customers
tend to demand liquidity from their dealers, who supply it
on an intraday basis. The dealing community as a whole,
however, does not provide overnight liquidity. Instead,
commercial customers supply the required overnight liq-
uidity, drawn to the market by new, more attractive prices.
Sager and Taylor [169] distinguish between “push” cus-
tomers, who demand liquidity, and “pull” customers, who
respond to price changes by providing liquidity. The mar-
ket structure just outlined effectively identifies financial
customers as short-run push customers and commercial
customers as short-run pull customers.

This picture is extremely preliminary and will doubt-
less change as new evidence arrives. There is, for exam-
ple, no theoretical or institutional reason why commer-
cial customers must exclusively supply overnight liquid-
ity or financial customers exclusively demand it. To the
contrary, there are good theoretical reasons why the roles
could sometimes be reversed. A change in commercial
currency demand could result from forces outside the
currency market, such as a war-induced rise in domes-
tic economic activity, rather than a response to previous
exchange-rate changes. In this case commercial end-users
would consume liquidity rather than supplying it.

Speculative demand could also respond to changes in
exchange-rate levels. Indeed, rational speculators are the
only overnight liquidity suppliers in the widely-respected
Evans and Lyons [58] model. In these models the trad-
ing day begins when agents arrive with arbitrary liquid-
ity demands. The agents trade with their dealers, leaving
the dealers with unwanted inventory. Dealers then trade
with each other, redistributing their aggregate inventory
but not reducing it. At the end of the trading day dealers
sell the unwanted inventory to rational investors who are
induced to supply the required liquidity by a change in the
exchange rate. If the initial liquidity demanders have sold
foreign currency, for example, the currency’s value de-
clines thus raising the risk premium associated with hold-
ing the currency. This encourages the risk-averse investors
to take bigger positions in foreign assets, and as they enact
the portfolio shift financial order flow is positive.

The Evans–Lyons scenario is necessarily simple. In
a model with many assets, negative-feedback trading
among financial customers requires that the currency has
no perfect substitutes [88]. This condition holds in foreign
exchange since exchange rates generally have low corre-
lation with each other and with equities. For the negative
feedback trading to be finite it is also required that specu-
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lators are risk-averse and/or face constraints on their trad-
ing. Though currency speculators appear to have a fairly
high risk tolerance, their trading is always administratively
constrained, as discussed earlier. The prevalence of con-
trarian technical trading strategies, such as those based on
support and resistance levels, provides a further reason
to expect negative-feedback trading among financial cus-
tomers.

Despite these reasons to expect negative-feedback
trading among financial customers, the evidence for it is
thin and mixed. Financial agents do place a hefty share of
take-profit orders [155], so a liquidity response from them
is a fact. But their liquidity responsemay not be substantial
relative to the overall market. Bjønnes et al. [18] study of
trade in Swedish kroner and Marsh and O’Rourke’s [131]
study of customer trades at the Royal Bank of Scotland
both find no sensitivity of financial order flow to lagged
returns.

The influence of order flow on exchange rates de-
scribed in this section works through liquidity effects.
The broader microstructure literature refers to this influ-
ence in terms of “downward-sloping demand,” highlight-
ing that the demand for the asset has finite, rather than
infinite, elasticity. Downward-sloping demand could ex-
plain why Froot and Ramadorai [74] find that the initial
influence of institutional investor order flow disappears
after roughly a year. Institutional investors – indeed, all
speculative agents – have to liquidate positions to realize
profits. When the positions are initially opened, the as-
sociated order flow could move the exchange rate in one
direction; when the positions are liquidated the reverse
order flow could move the exchange rate in the reverse
direction.

Finite elasticity of demand is the underlying reason for
exchange-rate movements in Hau and Rey’s [96] model of
equity and currency markets. Carlson et al. [30] develop
a related exchange-rate model in which financial and com-
mercial traders can be both liquidity suppliers and liquid-
ity demanders. This model, which takes its critical struc-
tural assumptions directly from the microstructure evi-
dence, predicts that financial (commercial) order flow is
positively (negatively) related to concurrent returns, con-
sistent with the evidence. It also predicts that these re-
lations are reversed in the long run, consistent with ev-
idence in Fan and Lyons [64] and Froot and Ramado-
rai [74]. Investors in the model have no long-run effect on
exchange rates because they ultimately liquidate all their
positions. Since commercial agents dominate long-run ex-
change rates, fundamentals such as prices and economic
activity are important in the long run even though themay
not dominate in the short run. In addition to being consis-

tent with the microstructure evidence, this model is also
consistent with most of the major puzzles in international
macroeconomics, including: the apparent disconnect be-
tween exchange-rates and fundamentals, the increase in
real-exchange-rate volatility upon the advent of floating
rates, the short-run failure and long-run relevance of pur-
chasing power parity, and the short-run failure of uncov-
ered interest parity.

Order Flow and Exchange Rates

The influence of order flow on exchange rates is another
aspect of the foreign exchange market that “does not seem
to tally closely with current theory . . . ” [81]. The equi-
librium exchange rate in standard models adjusts to en-
sure that domestic and foreign money supplies equal cor-
responding money demands. The currency purchases or
sales that accompany portfolio adjustments are not mod-
eled and are considered unimportant. Indeed, order flow
per se cannot be calculated in these models since they as-
sume continuous purchasing power parity and/or contin-
uous uncovered interest parity.

The contrast betweenmicrostructural reality and stan-
dard models is especially clear when we examine the
mechanism through which news affects exchange rates.
In macro-based models, the public release of information
generates an immediate revision of shared expectations of
future exchange rates, which in turn brings an immediate
exchange-rate adjustment that requires no trading. Trad-
ing is unlikely, in fact, since no rational speculator would
trade at any other price. Thus order flow in these models
has no role in the exchange-rate adjustment to news.

The evidence shows, however, that order flow is the
main conduit through which news influences exchange
rates. Roughly two thirds of the influence of news on ex-
change-rate levels and volatility comes from the associated
order flow [63,118]. During the “once-in-a-generation yen
volatility” of 1998, “order flow [was the] most important
. . . source of volatility,” according to the investigation of
Cai et al. [25], evenmore important than news and central
bank intervention.

Reassuringly, the idea that order flow affects exchange
rates is a natural extension of an important lesson learned
after the advent of floating rates in the 1970s.

[E]xchange rates should be viewed as prices of
durable assets determined in organized markets
(like stock and commodity exchanges) in which cur-
rent prices reflect the market’s expectations con-
cerning present and future economic conditions
relevant for determining the appropriate values of
these durable assets, and in which price changes are
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largely unpredictable and reflect primarily new in-
formation that alters expectations concerning these
present and future economic conditions (p. 726
in [73]).

There has long been extensive evidence that order flow
influences price in stock markets [38,101,174]. In bond
markets the evidence emerged later, due to constraints
on data availability, but is nonetheless substantial [24,67,
106,156,175,176]. Since exchange rates are asset prices
they should be determined like other asset prices and thus
order flow should be influential.

Order Flow and Exchange Rates, Part II: Information

So far we have considered two reasons why order flow
could affect exchange rates: liquidity effects and inventory
risk. This section considers a third and critically important
reason: order flow carries private information.

The information hypothesis is suggested by evidence
showing that much of the exchange-rate response to or-
der flow is permanent. Payne [157], who decomposes re-
turns into permanent and transitory components consis-
tent with Hasbrouck [93], finds that “the permanent com-
ponent accounts for . . . one quarter of all return varia-
tion” (p. 324). A permanent effect is implicit in Evans and
Lyons’ [58] evidence that order flow has strong explana-
tory power for daily exchange-rate returns, since daily re-
turns are well described as a random walk. A permanent
relation is also suggested by the finding, noted earlier,
that cumulative order flow is cointegrated with exchange
rates [18,110]. A permanent relation between order flow
and price is not consistent with the inventory analysis pre-
sented earlier. A permanent relation is consistent with liq-
uidity effects if the shifts in liquidity demand or supply are
permanent. A permanent relation is inevitable, however, if
order flow carries private fundamental information.

The influence of private fundamental information
on asset prices was originally analyzed in equity-in-
spired models [79,115], which begin with the observa-
tion that sometimes customers often have private infor-
mation about an asset’s true value that dealers do not
share. Since an informed customer only buys (sells) when
the dealer’s price is too low (high), dealers typically lose
when they trade with such customers. To protect them-
selves from this adverse selection, dealers charge a bid-
ask spread, ensuring that profits gained from trading with
uninformed customers balance the inevitable losses from
tradingwith informed customers [39]. Rational dealers en-
sure that their prices reflect the information communi-
cated by a customer’s choice to buy or sell [52,79]. Prices
are “regret-free” in the sense that a dealer would not wish

s/he had charged a higher (lower) price after learning that
the customer wishes to buy (sell). Due to the spread, prices
rise when informed customers buy and fall when informed
customers sell. Meanwhile, others update their conditional
expectation of the asset’s true value and adjust their trades
and quotes accordingly. Ultimately the information be-
comes fully impounded in price. Since the information is
fundamental, the effect is permanent.

Types of Information

Private fundamental information in the foreign exchange
market is likely to be structurally different from private
fundamental information in a stock market. The funda-
mental determinants of a firm’s value includemany factors
about which there can naturally be private information,
such as management quality, product quality, and a com-
petitor’s strength. The fundamental determinants of a cur-
rency’s value, by contrast are macroeconomic factors such
as economic activity, interest rates, and aggregate price
levels, most of which are revealed publicly.

The foreign exchange literature implicitly elaborates
multiple different interpretations of the private infor-
mation customers might bring to the market. These
vary along three dimensions: (i) whether the information
comes from commercial customers, real-money funds, or
leveraged investors; (ii) whether the information is fun-
damental; and (iii) whether the information is passively
or actively acquired. Though these three dimensions pro-
vide eight conceivable information categories, only some
of these appear to be relevant for research. For example,
only a small minority of the thousands of non-financial
firms around the world would ever attempt to acquire
either fundamental or non-fundamental information be-
fore trading. The four categories that seem likely to be
important, based on the current literature, are discussed
below.

Fundamental Information Passively Acquired by Com-
mercial Customers Information about exchange-rate
fundamentals may be “dispersed” among customers with-
out being under their control. This hypothesis is most
closely associated with Evans and Lyons:

The dispersed information we have in mind in fact
characterizes most variables at the center of ex-
change rate modeling, such as output, money de-
mand, inflation, [and] consumption preferences . . .
These variables are not realized at the macro level,
but rather first as dispersed micro realizations, and
only later aggregated by markets and/or govern-
ments. For some of these measures, such as risk
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preferences and money demands, government ag-
gregations of the underlying micro-level shocks do
not exist, leaving the full task of aggregation to mar-
kets. For other variables, government aggregations
exist, but publication lags underlying realizations by
1–4 months, leaving room for market-based aggre-
gation in advance of publication ([61], p. 3).

For concreteness, suppose the economy is expanding
rapidly and in consequence commercial firms are all trad-
ing actively. Each individual firm might not recognize the
generality of its experience but a dealer could potentially
see the high economic activity reflected in his commercial-
customer order flow. This information would provide the
dealer with a signal of GDP concurrent with its realization
and thus prior to the associated statistical release.

Fundamental Information Passively Acquired by Finan-
cial Customers A variant of the dispersed information
hypothesis postulates that the relevant fundamentals con-
cern capital markets as well as the real economy. For ex-
ample, high demand from institutional investors might in-
dicate that risk aversion is low [58,61,122]. It is not clear
whether structural features of financial markets should be
considered fundamental, in part because the definition of
the term fundamental is not entirely clear. It is clear, how-
ever, that any fundamental factor should be relevant to
long run equilibrium. Certain structural features of finan-
cial markets, like risk appetite, seem likely to influence
long-run international macro variables such as interna-
tional net asset positions (the US net asset position has
changed sign but once since 1970), and these in turn seem
likely to influence exchange rates. So it seems that some
deep financial-market parameters are fundamental, or at
least represent some intermediate category between fun-
damental and non-fundamental.

Fundamental Information Actively Sought by Cus-
tomers Certain financial customers – typically leveraged
investors – forecast exchange rates by combining exist-
ing public information with their own economic insights.
For example, many such agents attempt to profit from the
big returns associated with macro statistical releases by
generating private forecasts of upcoming announcements.
These customers thus actively generate private fundamen-
tal information, rather than passively reflecting informa-
tion that arises as a normal part of their business. This ac-
tively-acquired information could also be reflected in cus-
tomer order flow, so dealers could still generate their own
private signals by observing it. Dealers often report that
currency demand is highly correlated within certain types

of leveraged investors, permitting them to infer informa-
tion from observing the trades of just one or a few of these
investors.

Indirect evidence for the existence of actively-acquired
information comes from Marsh and MacDonald [124].
They find, in a sample of exchange-rate forecasts, that
a major cause of forecast heterogeneity “is the idiosyn-
cratic interpretation of widely available information, and
that this heterogeneity translates into economically mean-
ingful differences in forecast accuracy” (p. 665). They
also find that heterogeneity is a significant determinant
of trading volume, consistent with predictions in the lit-
erature that diversity of price forecasts generates trad-
ing [91,107,181,182].

Non-fundamental Information Some speculative tra-
ders may respond to non-fundamental information, like
noise traders. Others could respond to non-fundamental
hedging needs, as suggested in Bacchetta and van Win-
coop [7]. Evidence for the relevance of non-fundamental
information is provided in Osler [152], Dominguez and
Panthaki [48], and Cao, Evans and Lyons [27]. If the in-
formation in order flow is not fundamental it is likely to
have only a transitory influence on rates.

Trades based on non-fundamental information may
be informative to dealers even if they have only a tran-
sitory impact on the market, since dealers speculate at
such high frequencies. Indeed, Goodhart [81] insists that
dealers rely on nothing but non-fundamental information:
dealers’ “speculative activities are not based on any con-
sideration of longer-term fundamentals. . . . And to repeat,
. . . the extremely large-scale, very short-term speculative
activity in this market by the individual traders . . . is not
based on a long-term future view of economic fundamen-
tals” (pp. 456–457, italics in the original) Consistent with
this, US dealers assert that the high-frequency returns on
which they focus are unrelated to fundamentals [36]. For
example, “at the intraday horizon, PPP has no role accord-
ing to 93 percent of respondents” (p. 465).

The Evidence: Order Flow Does Carry Information

The evidence indicates fairly clearly that some foreign ex-
change order flow carries private information. For exam-
ple, Bjønnes, Osler, and Rime [21] show statistically that
banks with the most customer business have an informa-
tion advantage in the interdealer market, a proposition
that dealers themselves certainly support [36,81].

The broader microstructure literature identifies loca-
tion, specifically proximity to relevant decision-makers, as
another potential source of information advantage in fi-
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Market Microstructure, Foreign Exchange, Table 6
Net purchases for banks in four size categories. The table considers net purchases – the number of purchases minus the number of
sales – for four groups of banks vis-à-vis a Scandinavian bank during one week of 1998. Table shows how these net purchases are
correlated with contemporaneous returns and with net purchases for other bank categories. All numbers with absolute value over
0.24, 0.28, or 0.36 are significant at the 10 percent, 5 percent, and 1 percent level, respectively. Source: [21]

Return Biggest (Rank 1–20) Big Rank (21–50) Small (Rank 51–100) Smallest (Rank > 100)
Return 1.00
Biggest 0.55*** 1.00
Big 0.26* 0.29** 1.00
Small –0.43*** –0.66*** –0.28** 1.00
Smallest –0.44*** –0.79*** –0.32*** 0.41*** 1.00

nancial markets [40,95,129]. Location also appears to be
relevant in foreign exchange. Covrig and Melvin [41] find
that order flow from Japan tends to lead movements in
dollar-yen. Menkhoff and Schmeling [141] find that loca-
tion affects the information content of interbank trades
in the market for rubles. Their analysis indicates that
trades originating from the two major financial centers,
Moscow and St. Petersburg, have a permanent price im-
pact while trades originating from six peripheral cities do
not. D’Souza [49] shows that “trades are most informative
when they are initiated in a local country or in major for-
eign exchange centers of London and New York.”

If order flow carries exchange-rate relevant informa-
tion then one should be able to use it to forecast ex-
change rates. Studies consistently find that customer order
flow has predictive power for exchange rates. Evans and
Lyons [60] find that daily customer order flow at Citibank
has forecasting power for exchange-rate returns at hori-
zons up to one month. Gradojevic and Yang [83] finds that
customer and interbank order flow in the Canadian dollar
market jointly have forecasting power for exchange rates.
They also conclude that a non-linear forecasting structure,
specifically an artificial neural network, is superior to lin-
ear approaches. Both Evans and Lyons [60] and Grado-
jevic and Yang [83] conclude that return forecasts are im-
proved when customer order flow is disaggregated accord-
ing to customer type, which suggests that some partici-
pants are more informed than others. Curiously, Rosen-
berg and Traub [168] provide evidence that futures order
flow has predictive power for near-term spot returns. This
raises the possibility that some informed investors choose
to trade in futures markets.

Studies of the forecasting power of interdealer order
flow arrive at mixed conclusions. Sager and Taylor [170]
examine the predictive power of daily interdealer order
flow series, including two heavily filtered commercially
available order flow series, and the raw interdealer flows
examined in Evans and Lyons [58]. They estimate sin-

gle-equation regressions including order flow and interest
differentials as independent variables. Measuring perfor-
mance in terms of root mean squared error they find that
these series do not outperform the random walk when in-
formation on future fundamentals is unavailable. In con-
trast, Rime et al. [166] find that interdealer order flow does
outperform the random walk in predicting exchange rates
one day ahead. Using three exchange rates (euro-dollar,
dollar-yen, sterling-dollar) and associated Reuters (bro-
ker) order flow for one year they create forecasts based
on what is, in essence, a structural VAR. They use the
forecasts to create portfolios of the currencies. For fore-
cast horizons ranging from 14 to 24 hours, the portfolios’
Sharpe ratios range from 0.44 to 2.24 and average 1.59.
Sharpe ratios for the random walk model and a UIP-based
model are generally much lower.

What kind of information is carried by order flow? Ev-
idence is consistent with the presence of both passively-
acquired and actively-acquired fundamental information.
Evans and Lyons [61] show that Citibank customer or-
der flow has substantial predictive power for US and Ger-
man GDP growth, inflation, and money growth at hori-
zons ranging up to six months. The results are especially
strong at longer horizons, where regressions using only
order flow forecast between 21 percent and 58 percent of
changes in the fundamental variables. (By contrast, regres-
sions using only the lagged dependent variable or the spot
rate generally forecast less than 10 percent.) This suggests
that customer order flow concurrently reflects macro fun-
damentals and that the information may be passively ac-
quired.

Evidence also suggests that order flow carries actively-
acquired information about upcoming macro events and
news releases. Froot and Ramadorai [74] show that State
Street Corporation’s institutional-investor flows have sig-
nificant predictive power for changes in real interest rates
at horizons up to thirty days. This would appear to be ac-
tively-acquired information.
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Rime et al. [166] provide evidence that order flow car-
ries information about upcoming macro news releases.
Using thirty different news statistics (fifteen from the US,
six from Europe, nine from the UK), the authors run the
following regression:

Annki
ThursC j � EThursAnnk

ThursC j

D �
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OrderFlowThursCi C  ThursC j :

On the left is the news “surprise” for announcement-type k
(k D 1; 2; : : : ; 30), meaning the difference between the an-
nounced figure and the median survey forecast for that
announcement. On the right is cumulative interdealer or-
der flow for the period between the survey and the an-
nouncement. The estimated relationships are generally
quite strong: reported coefficients of determination range
up to 0.91 and average 0.45. Since the news releases all
lag the realization of the underlying macro aggregate by
a month or more, the order flow would not reflect concur-
rent macro developments but instead appears to have been
actively acquired.

This evidence suggests a strong focus on upcoming
announcements among speculative agents, a focus that is
quite evident in the market. Dealer communication with
active customers includes regular – often daily – informa-
tion on upcoming releases and extensive discussion of the
macro context relevant for interpreting these releases. The
agents that speculate on such announcements are typically
leveraged investors.

Further support for the view that some private in-
formation is actively acquired in foreign exchange comes
from Osler and Vandrovych [155]. They consider the in-
formation in price-contingent orders at the Royal Bank
of Scotland with the agents placing those orders disag-
gregated into eight groups: leveraged investors, institu-
tional investors, large corporations, middle-market corpo-
rations, broker-dealers, other banks, the bank’s own spot
dealers, and the bank’s own exotic options desk. The price
impact of executed orders, measured as the post-execu-
tion return over horizons ranging from five minutes to
one week, is evaluated for the three major currency pairs.
Results show that orders from leveraged investors have
a strong and lasting impact while orders from institu-
tional investors have little or no impact. Consistent with
the possible dominance of levered investors, further ev-
idence indicates financial order flow carries more infor-
mation than commercial order flow, at least at short hori-
zons [28,64,[154].

In short, the evidence is consistent with the hypothesis
that customer order flow carries information about macro

aggregates that is aggregated by dealers and then reflected
in interdealer order flow. The evidence suggests that the
customers acquire their information actively and perhaps
passively as well.

The Evidence: Is the Information Really Fundamental?

Not all researchers are convinced that the information
in foreign exchange order flow is fundamental. Berger et
al. [12] highlight their findings (reported earlier) that the
long-run price impact of interdealer order flow is smaller
than the initial impact, and that explanatory power also
declines at longer time horizons. They comment:

The findings . . . are consistent with an interpreta-
tion of the association between exchange rate re-
turns and order flow as reflecting principally a tem-
porary – although relatively long-lasting – liquidity
effect. They are also perhaps consistent with a be-
havioral interpretation . . . But our results appear to
offer little support to the idea that order flow has
a central role in driving long-run fundamental cur-
rency values – the ‘strong flow-centric’ view (p. 9).

Bacchetta and vanWincoop [7] suggest that this interpre-
tation of the result may bemore pessimistic than necessary
regarding the relevance of fundamental information in or-
der flow. Their model indicates that this pattern would be
predicted when order flow reflects both fundamental and
non-fundamental information. “In the short run, rational
confusion plays an important role in disconnecting the ex-
change rate from observed fundamentals. Investors do not
know whether an increase in the exchange rate is driven
by an improvement in average private signals about future
fundamentals or an increase in [non-fundamentals]. This
implies that [non-fundamentals] have an amplified effect
on the exchange rate . . . ” (p. 554)

Evidence presented in Froot and Ramadorai [74] also
suggests that the connection from order flow to exchange
rates is transitory though long-lasting. Their institutional-
flows dataset is large enough to permit a rigorous analysis
of order flow and returns at horizons of a year or more
(it extends from mid-1994 through early 2001 and cov-
ers 18 different currencies vs. the dollar), far longer than
horizons considered in most other papers. Like Berger et
al. [12], they find that the positive short-run correlation
between order flow and returns peaks and then declines.
Their correlation estimates reach zero at about 300 trading
days and then become statistically negative. The authors
note: “[O]ne can interpret the facts as suggesting that any
impact of flows on currencies is transitory . . . [and] any
information contained in flows is not about intrinsic value



Market Microstructure, Foreign Exchange M 5431

per se (p. 1550).” Since this conclusion is based initially on
crude correlations, the authors also undertake a sophisti-
cated VAR decomposition of returns into permanent and
transitory components, the results of which lead to the
same overall conclusion. This finding cannot be explained
in terms of the Bacchetta and van Wincoop [7] insights,
since these do not imply the ultimate disappearance of the
effect.

Could institutional-investor order flow carry informa-
tion about macro fundamentals and yet have zero price
impact after a year? It was suggested earlier that these ob-
servations are consistent when liquidity effects drive the
connection from order flow to exchange rates. If real-
money funds have roughly a one-year average investment
horizon, then the initial upward impact of any, say, pur-
chases – whether or not motivated by fundamental infor-
mation – would ultimately be offset by a downward im-
pact when the positions are unwound, leaving a zero im-
pact at the one-year horizon. It is also worth noting that
Froot and Ramadorai [74] analyze only institutional or-
der flow. As noted earlier, institutional investors typically
ignore the currency component of returns when making
portfolio allocations, so one would not expect their order
flow to have a permanent relation with exchange rates.
The trades of other customers might still carry informa-
tion.

Order flow could also have a transitory influence
if exchange-rate expectations are not fully rational, as
noted by both Berger et al. [12] and Froot and Ramado-
rai [74]. A tendency for professional exchange-rate fore-
casts to be biased and inefficient has been frequently doc-
umented [123]. This could explain why exchange rates ap-
parently overreact to certain macro announcements [60].
As in Keynes’s beauty contest, short-term traders could
profit by correctly anticipating news and how other mar-
ket participants will react to it, whether or not the reaction
to news is rational.

The potential relevance of the behavioral perspective
is underscored by extensive evidence for imperfect ra-
tionality among currency dealers presented in Oberlech-
ner [147]. Indeed, dealers themselves typically claim that
short-run dynamics are driven in part by “excess specula-
tion” [36]. One potential source of excess speculative trad-
ing is overconfidence, a human tendency towards which
has been extensively documented by psychologists [159].
Odean [150] shows that when agents overestimate the ac-
curacy of their information – a common manifestation of
overconfidence – they trade excessively and thereby gen-
erate excess volatility. Oberlechner and Osler [148] show,
based on a sample of over 400 North American dealers,
that currency dealers do not escape the tendency towards

overconfidence. Further, they find that overconfident deal-
ers are not driven out of the market: overconfidence is un-
related to a dealer’s rank or trading longevity. This sug-
gests that overconfidence may be a permanent structural
feature of currency markets.

Information as an Incomplete Explanation

It is important to recognize that “information” is at best
a partial explanation for the influence of order flow on ex-
change rates. An appeal to “information” quickly becomes
circular in the absence of a successful economic model of
the underlying connections between fundamentals and ex-
change rates.

This point is best clarified by illustration. Suppose
a speculator expects a soon-to-be-released trade balance
statistic to be higher than generally expected. According
to the information hypothesis, three things happen: (i) the
speculator evaluates whether a higher trade balance im-
plies a stronger or weaker home currency and then trades
accordingly; (ii) the associated order flow reveals to deal-
ers whether the currency is over- or undervalued; (iii) as
more dealers learn the information, it becomes progres-
sively impounded in the exchange rate.

The information research just summarized concen-
trate on parts (ii) and (iii) of this story. But part (i) is
also critical: Speculators must somehow evaluate the im-
plications of the trade balance for the exchange rate in
order to choose a position. To accomplish this, the spec-
ulator might rely on a model of how fundamentals and
exchange rates are connected. But that model cannot it-
self rely on the information hypothesis without becom-
ing circular: The information hypothesis asserts that ex-
change rates are determined by order flow because order
flow carries information; circularity arises if the informa-
tion in the order flow is that order flow determines ex-
change rates, which are determined by information. The
speculator might alternatively ignore fundamentals and
rely instead on a model of how other people think about
fundamentals influence exchange rates. But of course this
version of Keynes’ beauty contest is equally prone to cir-
cularity.

The good news is that models intended to analyze
the deep connections between fundamentals and exchange
rates can now be based on more than just “assumption
and hypotheses” [81]. Instead, they can have well-specified
microfoundations based on our new understanding of the
structure of currency markets and the exchange-rate de-
termination process. Indeed, in the philosophical outlook
of Karl Popper [161], reliance on the best available infor-
mation is a key test of a model’s scientific validity.
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Price Discovery in Foreign Exchange

Research so far indicates that order flow influences ex-
change rates at least in part because it carries information
brought to the market by customers. Research has also be-
gun to clarify the exact mechanism through which the in-
formation becomes embodied in exchange rates.

Adverse Selection and Customer Spreads

Researchers have tended to assume that the price discovery
process in foreign exchange conforms to the process dis-
cussed earlier in which adverse selection is key. This view
of price discovery has been extensively elaborated in the-
oretical work, e. g., [100], and many of its predictions are
fulfilled in the NYSE [14,89,158].

For structural reasons, this price discovery mechanism
cannot apply directly to the foreign exchange market. The
mechanism assumes a one-tier market, in which dealers
interact only with customers, while foreign exchange is
a two-tier market, in which dealers trade with customers
in the first tier and trade with each other in the sec-
ond tier. While this need not imply that adverse selec-
tion is entirely irrelevant, it does mean, at a minimum,
that the framework needs adjustment before it can be rel-
evant.

Empirical evidence shows that some of the key pre-
dictions of adverse selection do not hold in foreign ex-
change. The framework predicts, for example, that cus-
tomer spreads are widest for the trades most likely to carry
information, which would be large trades and trades with
financial customers. The reverse is true, however. Osler et
al. [154] analyzes the euro-dollar transactions of a single
dealer over four months in 2001 and finds that customer
spreads are smaller for large trades and for financial cus-
tomers. The authors test three other implications of ad-
verse selection, none of which gain support.

Further evidence for an inverse relationship between
customer spreads and trade size is provided in Ding [47],
which analyzes customer trading on a small electronic
communication network. Direct evidence that spreads are
narrowest for customer trades that carry the most infor-
mation comes fromRamadorai [162], which analyzes daily
flows through State Street’s global custody operations. He
finds that asset managers with the greatest skill in predict-
ing (risk-adjusted) returns pay the smallest spreads. Over-
all it appears that adverse selection does not drive spreads
in the customer foreign exchange market.

Adverse selection could, nonetheless, be an important
determinant of spreads in the interdealer market. Infor-
mation definitely appears to be asymmetric in that mar-
ket [21], and the evidence is consistent with the hypoth-

esis that spreads include a significant adverse selection
component. Adverse-selection models predict two pos-
sible relations between trades and spreads. First, quoted
spreads could widen with trade size if trade size is consid-
ered informative [52,78,126]. Evidence consistent with this
prediction is presented in Lyons [120], but he examined
a dealer who exclusively traded in the interdealer market,
a form of trading that may no longer exist; later dealer
studies fail to confirm this prediction [18,185]. It is possi-
ble, however, that trade direction is considered informa-
tive even while trade size is not, in which case spreads
could still include a significant adverse selection compo-
nent [99]. This is especially likely in limit-order markets,
where the liquidity supplier (limit-order trader) often de-
termines trade size, rather than the liquidity demander
(market-order trader). Bjønnes and Rime [18] find strong
evidence that trade direction is considered informative in
the interdealer market and that adverse selection thereby
influences interdealer spreads.

What Drives Customer Spreads?

The apparent irrelevance of adverse selection in the for-
eign exchange customer market raises an important ques-
tion: What does drive customer spreads? It appears that
structural factors may be at play, since spreads are also
widest for the least informed trades in other two-tier mar-
kets, including the London Stock Exchange [86], the US
corporate bond market [80], and the US municipal bond
markets [84,90].

Osler et al. [154] reviews three hypotheses suggested
in the broader microstructure literature that could explain
this pattern in foreign exchange markets. First, the pattern
could reflect the existence of fixed operating costs, which
can be covered by a small spread on a large trade or a large
spread on a small trade.

Fixed operating costs cannot, however, explain why
commercial customers pay higher spreads than finan-
cial customers. The “strategic dealing” hypothesis sug-
gests that dealers are strategically subsidizing informed-
customer trades in order to gather information they can
exploit during later interdealer trading [144,154].

Commercial customers could also pay higher spreads
under the “market power” hypothesis of Green et al. [84].
This suggests that dealers have transitory market power
relative to customers that do not carefully evaluate their
execution quality or who do not know market conditions
at the time they trade. Commercial customers in the for-
eign exchange market tend to be relatively unsophisti-
cated: they are less familiar with standard market practice
and typically do not monitor themarket on an intraday ba-
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sis. This may give dealers greater flexibility to extract wider
spreads.

Price Discovery in Foreign Exchange

If adverse selection does not describe the price discovery
process in foreign exchange, what does? Osler et al. [154]
propose an alternative price discovery mechanism con-
sistent with the foreign exchange market’s two-tier struc-
ture. The mechanism focuses on how dealers choose to of-
fload the inventory accumulated in customer trades. Deal-
ers typically use limit orders to control inventory [18], but
not always. Existing theory highlights important determi-
nants of this choice [71,87]: market orders provide speedy
execution at the cost of the bid-ask spread, while limit
orders provide uncertain execution at an uncertain time
but earn the bid-ask spread if execution does take place.
This trade-off creates incentives such that market orders
are more likely when a dealer’s inventory is high, consis-
tent with evidence in Bjønnes and Rime [18] and Osler et
al. [154]. It also implies that a dealer should be more likely
to place amarket order after trading with an informed cus-
tomer than after trading with an uninformed customer.

To clarify the logic of this second inference, suppose
that an informed customer buys from a dealer that pre-
viously had zero inventory. That dealer will have three
reasons to place a market order in the interdealer mar-
ket: (i) information that exchange-rate is likely to rise;
(ii) a non-zero (and therefore risky) inventory position;
and (iii) information that his (short) inventory position is
likely to lose value because prices are likely to rise. In con-
sequence, after an informed customer buy transaction the
dealer is relatively likely to place a market buy order. This
raises the traded price, consistent with the customer’s in-
formation.

After an uninformed customer purchase, by contrast,
a dealer has only one reason to place a market order: risky
inventory. If the dealer places a limit order rather than
a market order then the uninformed-customer purchase
would tend to be associated with negative downward re-
turns, as the limit buy order is executed against a market
sell.

One key testable implication of this proposed price
discovery mechanism is that the likelihood of an inter-
bank market order is higher after trades that are rela-
tively likely to carry information, specifically financial-cus-
tomer trades and large trades. Osler et al. [154] finds sup-
port for this implication using a probit analysis of their
dealer’s own trading choices. This indicates that the condi-
tional probability that the dealer places an interbank mar-
ket order is 9.5 percent for small commercial-customer

trades and almost twice as high, at 18.5 percent, after small
financial-customer trades. After large financial-customer
trades – the most informed of all – the corresponding like-
lihood is 40.2 percent.

This proposed price discovery mechanism is consis-
tent with much of the empirical evidence discussed so far.
For example, it is consistent with the signs of the cointe-
grating relationships between returns and order flow: pos-
itive for financial customers, negative for commercial cus-
tomers, positive for dealers. The positive cointegration be-
tween financial order flow and returns indicates that finan-
cial order flow carries fundamental information. The pos-
itive cointegration between interdealer order flow and re-
turns suggests that dealers’ market orders reflect the infor-
mation in their customer order flow. The negative cointe-
gration between commercial order flow and returns could
also be an outcome of the price discovery hypothesis: if
dealers place limit orders after trades with commercial
customers (and if commercial customers are indeed rel-
atively uninformed) then a commercial-customer buy will
be reflected in an interdealer market sell order, with an as-
sociated price decline.

The mechanism is also consistent with Rime et
al.’s [166] demonstration that interdealer order flow has
strong predictive power for upcoming macro statistical re-
leases, together with other evidence suggesting that lever-
aged investors bring themost information to themarket. If
leveraged investors are the most informed customers, then
under this price discovery hypothesis interdealer order
flow will reflect that group’s trades. Since interdealer or-
der flow has strong predictive power for upcoming macro
releases, the implication is that leveraged investors devote
much effort to forecasting those releases.

Summary and Future Directions

The currency microstructure evidence summarized here
provides many new insights about the economics of the
currency market and thus the economics of exchange-
rate determination. The field thus merits its alternative
moniker, “the new microeconomics of exchange rates.”

The new evidence reveals that the proximate cause of
most exchange-rate dynamics is order flow, which can be
interpreted as net liquidity demand. The critical role of or-
der flow is not, of course, in itself an economic explanation
for exchange-rate dynamics. Recognizing this, the new lit-
erature provides evidence for three economic mechanisms
through which order flow could influence exchange rates:
inventory effects, liquidity effects, and information.

The information mechanism raises a critical question:
What information is carried by order flow? The informa-
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tion apparently originates with customers; dealers then see
it reflected in their customer order flow. Some of the infor-
mation may be dispersed, passively-acquired information
about concurrent fundamentals. Some of the information
appears to be actively-acquired information about upcom-
ing macro news releases, with the most informative order
flow coming from leveraged investors. Some of the infor-
mation may be non-fundamental.

The literature also investigates the precise mechanism
through which a customer’s private information becomes
reflected in exchange rates. This price discovery mecha-
nism appears to differ strikingly from price discovery on
the NYSE, a difference that could reflect a key structural
difference across markets: foreign exchange dealers can
trade with each other as well as with customers, but the
NYSE has no interdealer market.

The literature addresses many questions of impor-
tance to researchers in microstructure per se. For example,
what determines spreads in foreign exchange? Customer
spreads in foreign exchange behave entirely differently
from those on, say, the NYSE. On the NYSE, market mak-
ers try to protect themselves from informed traders and, if
possible, they charge informed traders wider spreads. By
contrast, foreign exchange dealers actively court the busi-
ness of informed traders by quoting them narrow spreads.
This could reflect the ability of currency dealers to trade
with each other. Currency dealers seek trades with in-
formed customers because the customers’ order flow pro-
vides information the dealers can exploit in subsequent in-
terdealer trades.

Our knowledge of this market still has big gaps, of
course, which provide many fascinating questions for fu-
ture research. A partial list includes the following:

1. Why do interdealer spreads vary inversely with trad-
ing volume and volatility? Does this pattern reflect
fixed operating costs, the optimal bunching of liquid-
ity traders, or something else?

2. What determines intraday variations in the price im-
pact of order flow?While it looks like this is strongly in-
fluenced by the intraday pattern in interdealer spreads,
there is little hard evidence on this point. What other
factors might matter?

3. What determines longer-horizon variation in the price
impact of order flow? The relevance of this question is
enhanced, of course, by the evidence that variation in
price impact contributes importantly to the persistence
of volatility.

4. There is bound to be substantiallymore variation across
types of financial customers, and across types of cor-
porate customers, than has yet been identified. How

much technical trading is there?What fraction of inter-
national investors disregard the currency component
of returns when choosing portfolio allocations? Is this
fraction changing?

5. There is still much to learn about the nature of the in-
formation provided by order flow, how dealers perceive
that information, and how dealers use that information.
Dealers claim they don’t seek and don’t use fundamen-
tal information but the evidence reveals that much of
the information moving through the market is, in fact,
related to fundamentals.

6. How strong are inventory, liquidity effects, and infor-
mation effects in determining the connection between
order flow and exchange rates?

Even when these questions have been addressed, how-
ever, the larger question – the question that originally
motivated foreign exchange microstructure research –
will still remain. In dealing with this question the for-
eign exchange microstructure researchers have followed
Karl Popper’s [161] agenda for scientific inquiry in its
purest form. According to his philosophical perspective,
good scientists produce evidence that “falsifies” existing
paradigms and then create new paradigms consistent with
all the evidence, old and new. The new evidence revealed
by currency microstructure has falsified many aspects of
traditional macro-based models while shedding new light
on the economics of exchange-rate determination.

To develop the next generation of exchange-rate mod-
els, researchers now have at their disposal an extensive
body of knowledge about how exchange rates are actually
determined. This information brings with it the ability –
and the responsibility – to construct models with well-
specified microfoundations. A rigorous, empirically-rele-
vant paradigm for short-run exchange-rate dynamics is
much closer than it was a decade ago.
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Mathematical Basis of Cellular
Automata, Introduction to
ANDREW ADAMATZKY
University of the West of England, Bristol, UK

A cellular automaton is a discrete universe with discrete
time, discrete space and discrete states. Cells of the uni-
verse are arranged into regular structures called lattices or
arrays. Each cell takes a finite number of states and up-
dates its states in a discrete time, depending on the states
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of its neighbors, and all cells update their states in parallel.
Cellular automata are mathematical models of massively
parallel computing; computational models of spatially ex-
tended non-linear physical, biological, chemical and social
systems; and primary tools for studying large-scale com-
plex systems.

Cellular automata are ubiquitous; they are objects of
theoretical study and also tools of applied modeling in sci-
ence and engineering. Purely for ease of representation,
one can roughly split articles in this section into three
groups: cellular automata theory, cellular automata mod-
els of computation and cellular automata models of nat-
ural phenomena. Many topics, however, belong to several
groups.

We recommend that the reader begin with articles
on history and modern analysis of classifying cellular au-
tomata based on internal characteristics of their cell-state
transition functions, development of cellular automata
configurations in space and time, and decidability of the
cellular automata (see � Identification of Cellular Au-
tomata). Studies in dynamical behavior are essential in
progressing cellular automata theory. They include topo-
logical dynamics, for example, in relation to symbolic dy-
namics, surjectivity, and permutations (see � Topologi-
cal Dynamics of Cellular Automata); chaos, entropy and
decidability of cellular automata behavior (see � Chaotic
Behavior of Cellular Automata), and insights into cellular
automata as dynamical systems with invariant measures
(see� Ergodic Theory of Cellular Automata).

Self-reproducing patterns and gliders are amongst the
most remarkable features of cellular automata. Certain cel-
lular automata can reproduce configurations of cell-states,
for example, the von Neumann universal constructor, and
thus can be used in designs of self-replicating hardware
(see � Self-Replication and Cellular Automata). Gliders
are translating oscillators, or traveling patterns, of non-
quiescent states, for example, gliders in Conway’s Game
of Life. Gliders are particularly fascinating in two- and
three-dimensional spaces (see � Gliders in Cellular Au-
tomata).

Historically, an orthogonal lattice was the main sub-
strate for cellular automata implementation. In the last
decade the limit was lifted and nowadays you can find
cellular automata on non-orthogonal lattices and tilings
(see � Cellular Automata in Triangular, Pentagonal and
Hexagonal Tessellations), non-Euclidean geometries, such
as hyperbolic spaces (see � Cellular Automata in Hyper-
bolic Spaces) and various topological spaces (see � Dy-
namics of Cellular Automata in Non-compact Spaces).

Typically, a cell neighborhood is fixed during cellular
automaton development, and a cell updates its state de-

pending on current states of its neighbors. But even in
this very basic setup, the space-time dynamics of cellu-
lar automata are incredibly complex, as can be observed
from analysis of the simplest one-dimensional automata
where a transition rule applied to the sum of two states
is equal to the sum of its actions on the two states sepa-
rately (see � Additive Cellular Automata). The automata
dynamics becomes much richer if we allow the topology
of the cell neighborhood to be updated dynamically dur-
ing automaton development (see � Structurally Dynamic
Cellular Automata) or also allow a cell’s state to become
dependent on the cells’ previous states (see� Cellular Au-
tomata with Memory). Talking about non-standard cell-
transition rules, we must mention cellular automata with
injective global functions, where every configuration has
exactly one preceding configuration (see� Reversible Cel-
lular Automata), and also cellular automata with quan-
tum-bit cell-states and cell-transition functions incited by
principles of quantum mechanics (see � Quantum Cellu-
lar Automata).

The reader’s initial excursion into the theory of cellu-
lar automata themselves can conclude in reading about de-
cision problems of cellular automata expressed in terms of
filling the plane using tiles with colored edges (see�Tiling
Problem and Undecidability in Cellular Automata) and
about algebraic properties of cellular automata transfor-
mations, such as group representation of the Garden of
Eden theorem and matrix representation of cellular au-
tomata (see� Cellular Automata and Groups).

Firing squad synchronization is the oldest problem of
cellular automaton computation: all cells of a one-dimen-
sional cellular automaton are quiescent apart from one cell
in the firing state; we wish to design minimal cell-state
transition rules enabling all other cells to assume the fir-
ing state at the same time (see � Firing Squad Synchro-
nization Problem in Cellular Automata). Universality of
cellular automata is another classical issue. Two kinds of
universality are of most importance: computation univer-
sality, that is, an ability to compute any computable func-
tion or implement a functionally complete logical system,
and intrinsic, or simulation universality, such as an abil-
ity to simulate any cellular automaton (see� Cellular Au-
tomata, Universality of).

Readers can familiarize themselves with basics of space
and time complexity cellular-automata parallel computing
in (see � Cellular Automata as Models of Parallel Com-
putation). The knowledge will then be extended by mea-
sures of complexity, parallels between cellular automata
and dynamics systems, Kolmogorov complexity of cellu-
lar automata (see � Algorithmic Complexity and Cellular
Automata) and studies of cellular automata as acceptors of
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formal languages (see� Cellular Automata and Language
Theory). As demonstrated in (see� Evolving Cellular Au-
tomata) cellular automata can be evolved to perform diffi-
cult computational tasks.

Cellular automata models of natural systems such as
cell differentiation, road traffic, reaction-diffusion, and ex-
citable media (see�Cellular AutomataModeling of Phys-
ical Systems) are ideal candidates for studying all im-
portant phenomena of pattern growth (see � Growth
Phenomena in Cellular Automata); for studying trans-
formation of a system’s state from one phase to another
(see � Phase Transitions in Cellular Automata), and for
studying the ability of a system to be attracted to the states
where boundary between the system’s phases is indistin-
guishable (see � Self-organized Criticality and Cellular
Automata). Cellular automata models can be designed, in
principle, by reconstructing cell-state transition rules of
cellular automata from snapshots of space-time dynamics
of the system we wish to simulate (see � Identification of
Cellular Automata).
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Glossary

Manifolds Manifolds M are topological spaces that are
covered by a set of compatible local charts. A local
chart is a pair (U; �) where U is an open set on M
and � is a homeomorphism from U onto an open
set in Rn . If � is written as '(x) D (x1; : : : ; xn) then
x1; : : : ; xn are called coordinates of a point x in U.
Charts are said to be compatible if for any two charts
(U; �) and (V ;  ) the mapping  '�1 : �(U \ V) !
 (U \ V) is smooth, i. e. admits derivatives of all or-

ders. Suchmanifolds are also called smooth. Manifolds
on which the above mappings  '�1 are analytic are
called analytic.

Tangent and cotangent spaces The vector space of tan-
gent vectors at a point x in a manifold M will be de-
noted by TxM. The tangent bundle TM of M is the
union [fTxM : x 2 Mg. The cotangent space at x,
consisting of all linear functions on TxM will be de-
noted by T�x M. The cotangent bundle of M, denoted
by T�M is equal to the union [fT�x M : x 2 Mg.

Lie groups Lie groups G are analytic manifolds on which
the group operations are compatible with the mani-
fold structure, in the sense that both (g; h)! gh from
G � G onto G and g ! g�1 from G onto G are an-
alytic. The set of all n � n non-singular matrices is an
n2 dimensional Lie group undermatrix multiplication,
and so is any closed subgroup of it.

Absolutely continuous curves A parametrized curve
x : [0; T] ! Rn is said to be absolutely continu-
ous if each derivative (dxi)/(dt)(t) exists almost ev-
erywhere in [0; T]

R T
0 j(dxi)/(dt)(t)jdt < 1, and

x(t2)� x(t1) D
R t2
t1 (dx)/(dt)(t)dt for almost all points

t1 and t2 in [0; T]. This notion extends to curves on
manifolds by requiring that the above condition holds
in any system of coordinates.

Control systems and reachable sets A control system is
any system of differential equations in Rn or a man-
ifold M of the form dx

dt (t) D F(x(t); u(t)); where
u(t) D (u1(t); : : : ; um (t)) is a function, called control
function. Control functions are assumed to be in some
specified class of functionsU, called the class of admis-
sible controls. For purposes of optimizationU is usu-
ally assumed to consist of functions measurable and
bounded on compact intervals [t1; t2] that take values
in some a priori specified set U inRm .
Under the usual existence and uniqueness assump-
tions on the vector fields F, each control u(t) : R !
Rm and each initial condition x0 determine a unique
solution x(x0; u; t) that passes through x0 at t D 0.
These solutions are also called trajectories. A point y
is said to be reachable from x0 at time T if there ex-
ists a control u(t) defined on the interval [0; T] such
that x(x0; u; T) D y. The set of points reachable from
x0 at time T is called the reachable set at time T. The
set of points reachable from x0 at any terminal time T
is called the reachable set from x0.

Riemannian manifolds A manifold M together with
a positive definite quadratic form h ; i : TxM �

TxM ! R that varies smoothly with base point x
is called Riemannian. If x(t), t 2 [0; T] is a curve
on M then its Riemannian length is given by
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R T
0

qR T
0 h(dx)/(dt); (dx)/(dt)i dt. Riemannian metric

is a generalization of the Euclidean metric inRn given
by hx; yi D

Pn
iD1 xi yi .

Definition of the Subject

The Maximum Principle provides necessary conditions
that the terminal point of a trajectory of a control sys-
tem belongs to the boundary of its reachable set or to
the boundary of its reachable set at a fixed time T. In
practice, however, its utility lies in problems of optimiza-
tion in which a given cost functional

R t1
t0 f (x(t); u(t))dt is

to be minimized over the solutions (x(t); u(t)) of a con-
trol system dx

dt D F(x(t); u(t)) that conform to some spec-
ified boundary conditions at the end points of the in-
terval [t0; t1]. For then, the extended optimal trajectory
(x̄0(t); x̄(t); ū(t)) with x̄0(t) D

R t
t0 f (x̄(t); ū(t))dt must be

on the boundary of the reachable set associated with ex-
tended control system

dx0
dt
D f (x(t); u(t)) ;

dx
dt
D F(x(t); u(t)) : (1)

In the original publication [24] the Maximum Princi-
ple is stated for control systems in Rn in which the con-
trols u(t) D (u1(t); : : : ; um (t)) take values in an arbitrary
subset U of Rm and are measurable and bounded on each
interval [0; T], under the assumptions that the cost func-
tional f and each coordinate Fi of the vector field F in
Eq. (1) together with the derivatives @F

i

@x j are continuous
onRn � Ū , where Ū denotes the topological closure of U.

A control function ū(t) and the corresponding trajec-
tory x̄(t) of dx

dt D F(x(t); ū(t)) each defined on an interval
[0; T] are said to be optimal relative to the given boundary
submanifolds S0 and S1 of Rn if x̄(0) 2 S0; x̄(T) 2 S1, and

Z T

0
f (x̄(t); ū(t))dt �

Z S

0
f (x(t); u(t))dt (2)

for any other solution x(t) of dx
dt D F(x(t); u(t)) that satis-

fies x(0) 2 S0 and x(S) 2 S1. Then

Proposition 1 (The Maximum Principle (MP)) Sup-
pose that (ū(t); x̄(t)) is an optimal pair on the interval
[0; T]. Then there exist an absolutely continuous curve
p(t) D (p1(t); : : : ; pn(t)) on the interval [0; T] and a mul-
tiplier p0 � 0 with the following properties:

1. p20 C
Pn

iD1 p
2
i (t) > 0, for all t 2 [0; T],

2. dpi
dt (t) D �

@Hp0
@xi

(x̄(t); p(t); ū(t)), i D 1; : : : ; n, a. e.
in [0; T] where Hp0(x; p; u) D p0 f (x; u) C

Pn
iD1 pi

F i(x; u).
3. Hp0(x̄(t); p(t); ū(t)) DM(t) a. e. in [0; T] whereM(t)

denotes the maximum value ofHp0(x̄(t); p(t); u) rela-
tive to the controls u 2 U. Furthermore,

4. M(t) D 0 for all t 2 [0; T].
5. hp(0); vi D 0, v 2 Tx̄(0)S0 and hp(T); vi D 0, v 2

Tx̄(T)S1. These conditions, known as the transversality
conditions, become void when the manifolds S0 and S1
reduce to single points x0 and x1.

The maximum principle is also valid for optimal prob-
lems in which the length of the interval [0; T] is fixed,
in the sense that the optimal pair (x̄(t); ū(t)) satisfiesR T
0 f (x̄(t); ū(t))dt �

R T
0 f (x(t); u(t))dt for any other tra-

jectory (x(t); u(t)) with x(0) 2 S0 and x(T) 2 S1. In this
context the maximum principle asserts the existence of
a curve p(t) and the multiplier p0 subject to the same con-
ditions as stated above except that the maximal function
M(t) must be constant in the interval [0; T] and need
not be necessarily equal to zero. These two versions of
the (MP) are equivalent in the sense that each implies the
other [1].

Pairs (x(t); p(t)) of curves that satisfy the conditions of
the maximum principle are called extremal. The extremal
curves that correspond to the multiplier p0 ¤ 0 are called
normalwhile the ones that correspond to p0 D 0 are called
abnormal. In the normal case it is customary to reduce the
multiplier p0 to p0 D �1.

Since the original publication, however, the maximum
principle has been adapted to control problems on arbi-
trary manifolds [12] and has also been extended to more
general situations in which the vector fields that define the
control system are locally Lipschitz rather than continu-
ously differentiable [9,27]. On this level of generality the
Maximum Principle stands out as a fundamental princi-
ple in differential topology that not only merges classical
calculus of variations with mechanics, differential geom-
etry and optimal control, but also reorients the classical
knowledge in two major ways:

1. It shows that there is a natural “energy” Hamiltonian
for arbitrary variational problems and not just for prob-
lems of mathematical physics. The passage to the ap-
propriate Hamiltonians is direct and bypasses the Eu-
ler–Lagrange equation. The merits of this observation
are not only limited to problems with inequality con-
straints for which the Euler-equation is not applicable;
they also extend to the integration procedure of the ex-
tremal equations obtained through the integrals of mo-
tion.

2. The Hamiltonian formalism associated with (MP) fur-
ther enriched with geometric control theory makes di-
rect contact with the theory of Hamiltonian systems
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and symplectic geometry. In this larger context, the
maximumprinciple brings fresh insights to these classi-
cal fields and alsomakes their theory available for prob-
lems of optimal control.

Introduction

The Maximum Principle of Pontryagin and his collabo-
rators [1,12,24] is a generalization of C. Weierstrass’ nec-
essary conditions for strong minima [29] and is based on
the topological fact that an optimal solution must termi-
nate on the boundary of the extended reachable set formed
by the competing curves and their integral costs. An im-
portant novelty of Pontryagin’s approach to the calculus
of variations consists of liberating the variations along an
optimal trajectory of the constricting condition that they
must terminate at the given boundary data. Control theo-
retic context induces a natural class of variations that gen-
erates a cone of directions locally tangent to the reach-
able set at the terminal point defined by the optimal tra-
jectory. As a consequence of optimality, the direction of
the decreasing cost cannot be in the interior of this cone.
This observation leads to the separation theorem, a gen-
eralization of the classic Legendre transform in the cal-
culus of variations, that ultimately produces the appro-
priate Hamiltonian function. The maximum principle as-
serts that the Hamiltonian that corresponds to the optimal
trajectory must be maximal relative to the completing di-
rections, and it also asserts that each optimal trajectory is
the projection of an integral curve of the corresponding
Hamiltonian field.

The methodology used in the original publication ex-
tends the maximum principle to optimal control problems
on arbitrary manifolds where, combined with Lie theoretic
criteria for reachable sets, it stands out as amost important
tool of optimal control available for problems of mathe-
matical physics and differential geometry. Much of this ar-
ticle, particularly the selection of the illustrating examples
is devoted to justifying this claim.

The exposition begins with comparisons between
(MP) and the classical theory of the calculus of variations
in the absence of constraints. Then it proceeds to opti-
mal control problems in Rn with constraints amenable by
the (MP) stated in Proposition 1. This section, illustrated
by two famous problems of classical theory, the geodesic
problem on the ellipsoid of C.J.G. Jacobi and the mechani-
cal problem of C. Newman–J.Moser is deliberately treated
by control theoretic means, partly to illustrate the effec-
tiveness of (MP), but mostly to motivate extensions to ar-
bitrary manifolds and to signal important connections to
the theory of integrable systems.

The exposition then shifts to the geometric version of
the maximum principle for control problems on arbitrary
manifolds, with a brief discussion of the symplectic struc-
ture of the cotangent bundle. The maximum principle is
first stated for extremal trajectories (that terminate on the
boundary of the reachable sets) and then specialized to op-
timal control problems. The passage from the first to the
second clarifies the role of themultiplier. There is brief dis-
cussion of canonical coordinates as a bridge that connects
geometric version to the original formulation in Rn and
also leads to left invariant adaptations of the maximum
principle for problems on Lie groups.

Left invariant variational control problems on Lie
groups make contact with completely integrable Hamilto-
nian systems, Lax pairs and the existence of spectral pa-
rameters. For that reason there is a section on the Poisson
manifolds and the symplectic structure of the coadjoint or-
bits of a Lie group G which is an essential ingredient of the
theory of integrable systems.

The exposition ends with a brief discussion of the ab-
normal and singular extremals.

The Calculus of Variations
and the MaximumPrinciple

The simplest problems in the calculus of variations can
be formulated as optimal control problems of the form
U D Rn , dxdt (t) D u(t), S0 D fx0g and S1 D fx1g, with one
subtle qualification connected with the basic terminology.
In the literature on the calculus of variations one usually
assumes that there is a curve x̄(t) defined on an inter-
val [0; T] that provides a “local minimum” for the inte-
gral

R T
0 f (x(t); dxdt (t))dt in the sense that there is a “neigh-

borhood” N in the space of curves on [0; T] such thatR T
0 f (x̄(t); dx̄

dt (t))dt �
R T
0 f (x(t); dxdt (t))dt for any other

curve x(t) 2 N that satisfies the same boundary conditions
as x̄(t).

There are two distinctive topologies, strong and weak
on the space of admissible curves relative to which op-
timality is defined. In strong topology admissible curves
consist of absolutely continuous curves with bounded
derivatives on [0; T] in which an � neighborhood N con-
sists of all admissible curves x(t) such that kx̄(t)� x(t)k <
� for all t 2 [0; T]. In this setting local minima are called
strong minima. For weak minima admissible curves con-
sist of continuously differentiable curves on [0; T] with
an � neighborhood of x̄(t) defined by

kx̄(t)� x(t)kC
���
�
dx̄
dt

(t) �
dx
dt

(t)
���
� < � for all t 2 [0; T] :

(3)



Maximum Principle in Optimal Control M 5443

Evidently, any strong local minimum that is continuously
differentiable is also a weak local minimum. The converse,
however, may not hold (see p. 341 in [12]).

The Maximum Principle is a necessary condition for
local strong minima x̄(t) under suitable restriction of the
state space. It is a consequence of conditions (1) and (3)
in Proposition 1 that the multiplier p0 can not be equal
to 0. Then it may be normalized to p0 D �1 and (MP)
can be rephrased in terms of the excess function of Weier-
strass [7,29] as

f (x̄(t); u) � f
�
x̄(t);

dx̄
dt

(t)
�

�

nX

iD1

@ f
@ui

�
x̄(t);

dx̄
dt

(t)
�
(ūi �ui ); for all u 2 Rn ;

(4)

because the critical points ofH (x̄(t); p(t); u) D � f (x̄(t);
u)C

Pn
iD1 pi (t)ui relative to u 2 Rn are given by pi(t) D

@ f
@ui

(x̄(t); u). Since dx̄
dt (t) D ū(t) yields the maximum of

H (x̄(t); p(t); u) it follows that

pi(t) D
@ f
@ui

(x̄(t); ū(t)) : (5)

Combining Eq. (5) with condition 2 of the maximum
principle yields the Euler–Lagrange equation in integrated
form @ f

@ui
(x̄(t); ū(t)) �

R t
0
@ f
dxi (x̄(�); ū(�))d� D c, with c

a constant, which under further differentiability assump-
tions can be stated in its usual form

d
dt

�
@ f
@ui

(x̄(t); ū(t))
�
�
@ f
dxi

(x̄(�); ū(�))d� D 0 : (6)

As a way of illustration consider

Example 2 (The harmonic oscillator) The problem ofmin-
imizing

R T
0

1
2 (mu2�kx2)dt over the trajectories of dx

dt D u
leads to the family of Hamiltonians Hu D �

1
2 (mu2 �

kx2) C pu. According to the Maximum Principle every
optimal trajectory x(t) is the projection of a curve p(t) that
satisfies dp

dt D �
@Hu
@x D �kx(t), subject to the maximality

condition that

�
1
2
(mu(t)2 � kx(t)2)C p(t)u(t)

� �
1
2
(mv2 � kx(t)2)C p(t)v (7)

for any choice of v. That implies that the optimal control
that generates x(t) is of the form

u(t) D
1
m

p(t) (8)

which then further implies that optimal solutions are
the integral curves of a single Hamiltonian function
H D 1

2m p2 C 1
2 kx

2. This Hamiltonian is equal to the to-
tal energy of the oscillator. The Euler–Lagrange equation
d2x
dt2 D

du
dt D �

k
m x(t) is easily obtained by differentiating,

but there is no need for it since all the information is al-
ready contained in the Hamiltonian equations.

It follows from the above that the projections of the ex-

tremal curves are given by x(t) D A cos
q
t k
mCB sin

q
t k
m

for arbitrary constants A and B. It can be shown, by a sep-
arate argument [12], that the preceding curves are optimal

if and only if
q
t k
m � � . This example also illustrates that

the Principle of Least Action in mechanics may be valid
only on small time intervals [t0; t1] (in the sense that it
yields the least action).

Variational Problemswith Constraints

The early applications of (MP) are best illustrated
through time optimal problems for linear control systems
dx
dt (t) D Ax(t) C Bu(t) with control functions u(t) D
(u1(t); : : : ; ur (t)) taking values in a compact neighbor-
hood U of the origin in Rr . Here A and B are matrices of
appropriate dimensions such that the “controllability” ma-
trix [B;AB;A2B; : : : ;An�1B] is of rank n. In this situation
if (x(t); u(t)) is a time optimal pair then the corresponding
HamiltonianHp0(x; p; u) D p0 C hp(t);Ax(t) C Bu(t)i
defined by the Maximum Principle is equal to 0 almost
everywhere and is also maximal almost everywhere rela-
tive to the controls u 2 U . The rank condition together
with the fact that p(t) is the solution of a linear differen-
tial equation dp

dt D �A
T p(t) easily implies that the control

u(t) cannot take value in the interior of U for any conver-
gent sequence of times ftng otherwise, lim p(tn) D 0, and
therefore p0 D 0, which in turn contradicts condition 1
of Proposition 1. It then follows that each optimal control
u(t) must take values on the boundary of U for all but pos-
sibly finitely many times. This fact is known as the Bang-
Bang Principle, since when U is a polyhedral set then opti-
mal control “bangs” from one face of U to another.

In general, however, optimal controls may take values
both in the interior and on the boundary of U, and the
extremal curves could be concatenations of pieces gener-
ated by controls with values in the interior of U and the
pieces generated by controls with values on the boundary.
Such concatenations may exhibit dramatic oscillations at
the juncture points, as in the following example.

Example 3 (Fuller’s problem) Minimize 1
2
R T
0 x21(t)dt over

the trajectories of dx1
dt D x2; dx2dt D u(t) subject to the
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constraint that ju(t)j � 1. Here T may be taken fixed
and sufficiently large that admits an optimal trajectory
x(t) D (x1(t); x2(t)) that transfers the initial point a to
a given terminal point b in T units of time.

Evidently, the zero trajectory is generated by zero con-
trol and is optimal relative to a D b D 0. The (MP) re-
veals that any other optimal trajectory is a concatena-
tion of this singular trajectory and a bang-bang trajectory.
At the point of juncture, whether leaving or entering the
origin, optimal control oscillates infinitely often between
the boundary values ˙1 (in fact, the oscillations occur in
a geometric sequence [12,19]). This behavior is known as
Fuller’s phenomenon. Since the original discovery Fuller’s
phenomena have been detected inmany situations [18,30].

The Maximum Principle is the only tool available in the
literature for dealing with variational problems exhibiting
such chattering behavior. However, even for problems of
geometry andmechanics which are amenable by the classi-
cal methods the (MP) offers certain advantages as the fol-
lowing examples demonstrate.

Example 4 (Ellipsoidal Geodesics) This problem, initiated
and solved by C.G. Jacobi in 1839 [23] consists of finding
the curves of minimal length on a general ellipsoid

hx;A�1xi D
x21
a21
C

x22
a22
C � � � C

x2n
a2n
D 1 : (9)

Recall that the length of a curve x(t) on an inter-
val [0; T] is given by

R T
0 k

dx
dt (t)kdt, where k

dx
dt (t)k Dp

((dx1)/(dt))2 C � � � C ((dxn)/(dt))2. This problem can
be recast as an optimal control problem either as a time
optimal problem when the curves are parametrized by arc
length, or as the problem of minimizing the energy func-
tional 1

2
R T
0 k

dx
dt (t)k

2dt over arbitrary curves [15]. In the
latter formulation the associated optimal control prob-
lems consists of minimizing the integral 1

2
R T
0 ku(t)k

2dt
over the trajectories of dx

dt (t) D u(t) that satisfy hx(t);
A�1x(t)i D 1.

Since there are no abnormal extremals in this case, it fol-
lows that the adjoint curve p(t) associated with an op-
timal trajectory x(t) must maximize Hu D �

1
2kuk

2 C

hp(t); ui on the cotangent bundle of the manifold
x : hx(t);A�1x(t)i � 1 D 0 .

The latter is naturally identified with the constrains
G1 D G2 D 0, where G1 D hx(t);A�1x(t)i � 1 and
G2 D hp;A�1xi. According to the Lagrange multiplier
rule the correct maximum of Hu subject to these con-
strains is obtained by maximizing the function Gu D

� 1
2 jjujj

2Chp; uiC1G1C2G2 relative to u. The themax-
imal Hamiltonian is given by H D 1

2 jjpjj
2C1G1C2G2

obtained by substituting u D p. The correct multipliers 1
and 2 are determined by requiring that the integral curves
of the associated Hamiltonian vector field

�!
H respect the

constraints G1 D G2 D 0. It follows that 1 D
hA�1 p;pi
2jjA�1xjj

and 2 D 0. Hence the solutions are the projections of the
integral curves of

H D
1
2
kpk2C

hA�1p; pi
2kA�1xk2

G1 restricted to G1 D G2 D 0 :

(10)

The corresponding equations are

dx
dt
D
@H
@p
D p ; and

dp
dt
D �

@H
@x
D
hA�1p; pi
kA�1xk2

:

(11)

The projections of these equations on the ellipsoid that re-
side on the energy level H D 1

2 are called geodesics. It is
well known in differential geometry that geodesics are only
locally optimal (up to the first conjugate point).

The relatively simple case, when the ellipsoid degen-
erates to the sphere occurs when AD I. Then the above
Hamiltonian reduces to H D 1

2 (kpk
2)C hp;pi2kxk2 (kxk

2 � 1)
and the corresponding equations are given by

dx
dt
D p;

dp
dt
D kpk2x : (12)

It follows by an easy calculation that the projections
x(t) of Eqs. (12) evolve along the great circles because
x(t) ^ dx

dt (t) D x(0) ^ dx
dt (0).

The solutions in the general case can be obtained ei-
ther by the method of separation of variables inspired by
the work of C.G.J. Jacobi (see also [2]), or by the isospectral
deformation methods discovered by J. Moser [22], which
are somewhat mysteriously linked to the following prob-
lem.

Example 5 (Newmann–Moser problem) This problem
concerns the motion of a point mass on the unit sphere
hx; xi D 1 that moves in a force field with quadratic
potential V D 1

2 hx;Axi with A an arbitrary symmetric
matrix. Then the Principle of Least Action applied to
the Lagrangian L D 1

2k
dx
dt k

2 � 1
2 hx;Axi defines an opti-

mal control problem by maximizing
R T
0 L(x(t); u(t))dt

over the trajectories of dx
dt D u(t), subject to the con-

straintG1 D jjxjj2 � 1 D 0, whose extremal equations etc.
In fact, H D 1

2 (kpk
2 C hx;Axi)C 1G1 C 2G2, where

G2 D hx; pi; 1 D �
hp;xi
kxk2 and 2 D

kpk2

2kxk2 � hAx; xi.

dx
dt
D p;

dp
dt
D �Ax C (hAx; x � kpk2ix (13)
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Equations (13) can be recast in matrix form

dP
dt

(t) D [K(t); P(t)] ;
dK
dt

(t) D [P(t);A] (14)

with P(t) D x(t) ˝ x(t) � I and K(t) D x(t) ^ p(t) D
x(t)˝ p(t)� p(t)˝x(t), where [M;N] denotes the matrix
commutator NM �MN . Equations (14) admit a Lax pair
representation in terms of scalar parameter .

dL�
dt
D

�
1

P(t); L�(t)

�
;

where L�(t) D P(t) � K(t) � 2A ; (15)

that provides a basis for Moser’s method of proving inte-
grability of Eqs. (13). This method exploits the fact that
the spectrum of L�(t) is constant, and hence the functions
�k;� D Trace(Lk

�
) are constants of motion for each  and

k > 0. Moreover, these functions are in involution with
each other (to be explained in the next section). Remark-
ably, Eqs. (11) can be transformed to Eqs. (13) from which
then can be inferred that the geodesic ellipsoidal problem
is also integrable [22]. It will be shown later that this exam-
ple is a particular case of a more general situation in which
the same integration methods are available.

MaximumPrinciple onManifolds

The formulation of the maximum principle for con-
trol systems on arbitrary manifolds requires additional
geometric concepts and terminology [1,12]. Let M de-
note an n-dimensional smooth manifold with TxM and
T�x M denoting the tangent and the cotangent space at
a point x 2 M. The tangent bundle TM is equal to the
union [fTxM : x 2 Mg, and similarly the cotangent bun-
dle T�M is equal to fT�x M : x 2 Mg. In each of these cases
there is a natural bundle projection � on the base man-
ifold. In particular, x 2 M is the projection of a point
� 2 T�M if and only if � 2 T�x M.

The cotangent bundle T�M has a canonical symplectic
form ! that turns T�M into a symplectic manifold. This
implies that for each function H on T�M there is a vector
field EH on T�M defined by V(H) D !( EH;V) for all vec-
tor fields V on T�M. In the symplectic context H is called
Hamiltonian and EH is called the Hamiltonian vector field
corresponding to H.

Each vector field X on M defines a function HX(�) D
�(X(x)) on T�M. The corresponding Hamiltonian vector
field EHX is called the Hamiltonian lift of X. In particular,
control systems dx

dt (t) D F(x(t); u(t)) lift to Hamiltonians
Hu parametrized by controls withHu(�) D �(Xu(x)) D
�(F(x; u)), � 2 T�x M.

With these notations in place consider a control sys-
tem dx

dt (t) D F(x(t); u(t)) on M with control functions
u(t) taking values in an arbitrary set U in Rm. Suppose
that the system satisfies the same assumptions as in Propo-
sition 1. Let Ax0 (T) denote the reachable set from x0 at
time T and let Ax0 D [fAx0 (T) : T � 0g. The control u
that generates trajectory x(t) from x0 to the boundary of
eitherAx0 (T) orAx0 is called extremal. For extremal tra-
jectories the following version of the Maximum Principle
is available.

Proposition 6 (Geometric maximum principle (GMP))
Suppose that a trajectory x(t) corresponds to an extremal
control u(t) on an interval [0; T]. Then there exists an ab-
solutely continuous curve �(t) in T�M in the interval [0; T]
that satisfies the following conditions:

1. x(t) is the projection of �(t) in [0; T] and d�
dt (t) D

EHu(t)(�(t)), a. e. in [0; T], where Hu(t)(�) D �(F(x;
ū(t))), � 2 T�x M.

2. �(t) ¤ 0 for all t 2 [0; T].
3. Hu(t)(�(t)) D �(t)(F(x(t); u(t))) � �(t)(F(x(t); v)) for

all v 2 U a. e. in [0; T].
4. If the extremal curve is extremal relative to the fixed ter-

minal time then Hu(t)(�(t)) is constant a. e. in [0; T],
otherwise,Hu(t)(�(t)) D 0 a. e. in [0; T].

An absolutely continuous curve �(t) that satisfies the con-
ditions of the Maximum Principle is called an extremal.

Problems of optimization in which a cost functionalR T
0 f (x(t); u(t))dt is to be minimized over the trajectories
of a control system in M subject to the prescribed bound-
ary conditions with terminal time either fixed or variable
are reduced to boundary problems defined above in the
same manner as described in the introductory part. Then
each optimal trajectory x(t) is equal to the projection of an
extremal for the extended system (1) on M̃ D R �M rela-
tive to the extended initial conditions x̃0 D (0; x0). If T�M̃
is identified withR� � T�M and its points �̃ are written as
(�0; �) the Hamiltonian lifts of the extended control system
are of the form

Hu(�0; �) D �0 f (x; u)C �(F(x; ū(t)));
�0 2 R�; � 2 T�x M : (16)

For each extremal curve (�0(t); �(t)) associated with
the extended system �0(t) is constant because the Hamil-
tonian Hu(�0; �) is constant along the first factor of the
extended state space. In particular, �0 � 0 along the ex-
tremals that correspond to optimal trajectories. As before,
such extremals are classified as normal or abnormal de-
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pending whether �0 is equal to zero or not, and in the nor-
mal case the variable �0 is traditionally reduced to�1. The
Maximum principle is then stated in terms of the reduced
Hamiltonian on T�M in which �0 appear as parameters.
In this context Proposition 6 can be rephrased as follows:

Proposition 7 Let x(t) denote an optimal trajectory on an
interval [0; T] generated by a control u(t). Then there exist
a number �0 2 f0;�1g and an absolutely continuous curve
�(t) in T�M defined on the interval [0; T] that projects onto
x(t) and satisfies:

1. �(t) ¤ 0 whenever �0 D 0.
2. d�

dt (t) D EHu(t)(�0; �(t)) a. e. on [0; T].
3. Hu(t)(�0; �(t)) �Hv(�0; �(t)) for any v 2 U, a. e. in

[0; T].
When the initial and the terminal points are replaced
by the submanifolds S0 and S1 there are transversality
conditions:

4. �(0)(v) D 0, v 2 Tx(0)S0 and �(T)(v) D 0, v 2 Tx(T)S1.

The above version of (MP) coincides with the Euclidean
version when the variables are expressed in terms of the
canonical coordinates. Canonical coordinates are defined
as follows.

Any choice of coordinates (x1; x2; : : : ; xn) on M in-
duces coordinates (v1; : : : ; vn) of vectors in TxM rela-
tive to the basis @

@x1
; : : : ; @

@xn
and it also induces co-

ordinates (p1; p2; : : : ; pn) of covectors in T�x M relative
to the dual basis dx1; dx2; : : : ; dxn . Then (x1; x2; : : : ;
xn ; p1; p2; : : : ; pn) serves as a system of coordinates for
points � in T�M. These coordinates in turn define co-
ordinates for tangent vectors in T� (T�M) relative to the
basis @

@x1
; : : : ; @

@xn
; @
@p1
; : : : ; @

@pn
. The symplectic form !

can then be expressed in terms of vector fields X DPn
iD1 Vi

@
@xi
C Pi @@pi and Y D

Pn
iD1Wi

@
@xi
C Qi

@
@pi

as

!(x;p)(X;Y) D
nX

iD1

QiVi � PiWi : (17)

The correspondence between functions H and their
Hamiltonian fields EH is given by

EH(x; p) D
nX

iD1

@H
@pi

@

@xi
�
@H
@xi

@

@pi
; (18)

and the integral curves (x(t); p(t)) of EH are given by the
usual differential equations

dxi
dt
D
@H
@pi

;
dpi
dt
D �

@H
@xi

; i D 1; : : : ; n : (19)

Any choice of coordinates on T�M that preserves
Eq. (17) is called canonical. Canonical coordinates could
be defined alternatively as the coordinates that preserve
the Hamiltonian equations (19). In terms of the canoni-
cal coordinates the Maximum Principle of Proposition 7
coincides with the original version in Proposition 1.

Optimal Control Problems on Lie Groups

Canonical coordinates are not suitable for all variational
problems. For instance, variational problems in geome-
try and mechanics often have symmetries that govern the
solutions; to take advantage of these symmetries it may
be necessary to use coordinates that are compatible with
the symmetries and which may not necessarily be canon-
ical. That is particularly true for optimal problems on Lie
groups that are either right or left invariant.

To elaborate further, assume that G denotes a Lie
group (matrix group for simplicity) and that g denotes its
Lie algebra. A vector field X on G is called left-invariant if
for every g 2 G, X(g) D gA for some matrix A in g, i. e.,
X is determined by its tangent vector at the group iden-
tity. Similarly, right-invariant vector fields are defined as
the right translations of matrices in g. Both the left and
the right invariant vector fields form a frame on G, that is,
TgG D fgA : A 2 gg D fAg : A 2 gg for all g 2 G. There-
fore, the tangent bundle TG can be realized as the product
G � g either via the left translations (g;A)! gA, or via
the right translations (g;A)! Ag. Similarly, the cotan-
gent bundle T�G can be realized in two ways as G � g�

with g� equal to the dual of g. In the left-invariant real-
ization � 2 T�g G is identified with (g; l) 2 G � g� via the
formula l(A) D �(gA) for all A 2 g.

For optimal control problems which are left-invariant
it is natural to identify T�G as G � g� via the left transla-
tions, and likewise identify T�G as G � g� via the right
translations for right-invariant problems. In both cases
the realization T�G D G � g� rules out canonical coor-
dinates (assuming that G is non-abelian) and hence the
Hamiltonian equations (19) take on a different form.

For concreteness sake assume that T�G D G � g� is
realized via the left translations. Then it is natural to real-
ize (T�G) as (G � g�) � (g � g�) where ((g; l); (A; f )) 2
(G � g�) � (g � g�) denotes tangent vector (A; f ) at the
point (g; l). In this representation of T(T�G) the symplec-
tic form ! is given by the following expression:

!(g;l )((A1; f1); (A2; f2))
D f2(A1) � f1(A2) � l([A1;A2]) : (20)

Functions on G � g� that are constant over the first
factor, i. e., functions on g�, are called left-invariant
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Hamiltonians. If H is left invariant then integral curves
(g(t); l(t)) of the corresponding Hamiltonian vector field
EH are given by

dg
dt

(t) D g(t) dH(l(t)) ;

dl
dt

(t) D �ad�(dH(l(t))(l(t)))
(21)

where dH denotes the differential of H, and where
ad�(A) : g� ! g� is given by (ad�(A)(l))(X) D l([A;
X]), l 2 g�, X 2 g, [12,13].

On semi-simple Lie groups linear functions l in g�

can be identified with matrices L in g via an invariant
quadratic form h ; i so that Eqs. (21) become

dg
dt

(t) D g(t) dH(l(t)) ;

dL
dt

(t) D [dH(l(t); L(t))] :
(22)

For instance, the problem of minimizing the integral
1
2
R T
0 ku(t)k

2dt over the trajectories of

dg
dt

(t) D g(t)

 

A0 C

mX

iD1

ui (t)Ai

!

; u 2 Rm (23)

with A0;A1; : : : ;Am matrices in g leads to the following
Hamiltonians:

1. (Normal extrema) H D 1
2
Pm

iD1 H
2
i C H0.

2. (Abnormal extrema)H D H0 C
Pm

iD1 ui (t)Hi , subject
to Hi D 0, i D 1; : : : ;m,

with each Hi equal to the Hamiltonian lift of the left in-
variant vector field g ! gAi . In the left invariant rep-
resentation of T�G each Hi is a linear function on
g�, i. e., Hi(l) D l(Ai) and consequently both Hamil-
tonians above are left-invariant. In the abnormal case
dH D A0 C

Pm
iD1 ui (t)Ai , and

dg
dt

(t) D g(t)

 

A0 C

mX

iD1

ui (t)Ai

!

;

dL
dt

(t) D

"

A0 C

mX

iD1

ui (t)Ai ; L(t)

#

;

(24)

H1(t) D H2(t) D � � � D Hm(t) D 0 ; (25)

are the corresponding extremal equations.
In the normal case the extremal controls are given

by ui D Hi , i D 1; : : : ;m, and the corresponding Hamil-
tonian system is given by Eqs. (22) with dH D A0 CPm

iD1 Hi(t)Ai .

Left invariant Hamiltonian systems [Eqs. (21) and
(22)] always admit certain functions, called integrals of
motion, which are constant along their solutions. Hamil-
tonians which admit a “maximal” number of functionally
independent integrals of motion are called integrable. For
left invariant Hamiltonians on Lie groups there is a deep
and beautiful theory directed to characterizing integrable
systems [10,13,23]. This topic is discussed in more detail
below.

Poisson Bracket, Involution and Integrability

Integrals of motion are most conveniently discussed in
terms of the Poisson bracket. For that reason it becomes
necessary to introduce the notion of a Poisson manifold.
A manifold M that admits a bilinear and skew symmetric
form f ; g : C1(M)�C1(M)! C1(M) that satisfies the
Jacobi identity f f ; fg; hgg C fh; f f ; ggg C fg; fh; f gg D 0
and is a derivation f f g; hg D f fg; hg C gf f ; hg is called
Poisson. It is known that every symplecticmanifold is Pois-
son, and it is also known that every Poisson manifold ad-
mits a foliation in which each leaf is symplectic. In par-
ticular, the cotangent bundle T�M is a Poisson manifold
with f f ; hg(�) D !�( Ef (�); Eh(�)) for all functions f and h.
It is easy to show that F is an integral of motion for H if
and only if fF;Hg D 0 from which it follows that F is an
integral of motion for H if and only if H is an integral of
motion for F. Functions F and H for which fF;Hg D 0
are also said to be in involution. A function H on a 2n di-
mensional symplectic manifold S is said to be integrable or
completely integrable if there exist n functions '1; : : : ; 'n
with '1 D H which are functionally independent and fur-
ther satisfy f'i ; ' jg D 0 for each i and j. It is known that
such a system of functions is dimensionally maximal.

On Lie groups the dual g� of the Lie algebra g in-
herits a Poisson structure from the symplectic form !

[Eq. (17)], with f f ; hg(l)D l([d f ; dh]) for any functions f
and h on g�. In the literature on Hamiltonian systems
this structure is often called Lie–Poisson. The symplectic
leaves induced by the Poisson–Lie structure coincide with
the coadjoint orbits of G and the solutions of the equation
dl
dt (t) D �ad

�(dH(l(t))(l(t))) associated with Eqs. (21)
evolve on coadjoint orbits of G. Most of the literature
on integrable systems is devoted to integrability proper-
ties of the above equation considered as a Hamiltonian
equation on a coadjoint orbit, or to its semi-simple coun-
terpart dL

dt (t) D [dH(L(t)); L(t)]. In this setting integra-
bility is relative to the Poisson–Lie structure on each or-
bit, which may be of different dimensions. However, in-
tegrability can also be defined relative to the entire cotan-
gent structure in which case the system is integrable when-
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ever the number of independent integrals in involution is
equal to the dimension ofG. Leaving these subtleties aside,
left-invariant Hamiltonian systems on Lie groups (22) al-
ways admit certain integrals of motion. They fall into two
classes:

1. Hamiltonian lifts of right-invariant vector fields on G
Poisson commute with any left-invariant Hamiltonian
because right-invariant vector fields commute with left-
invariant vector fields. If X(g) D Ag denote a right
invariant vector field then its Hamiltonian lift FA is
equal to FA(L; g) D hL; g�1Agi. In view of the formula
fFA; FBg D F[A;B], the maximal number of functionally
independent Hamiltonian lifts of right-invariant vector
fields is equal to the rank of g. The rank of a semi-sim-
ple Lie algebra g is equal to the dimension of a maximal
abelian subalgebra of g. Such maximal abelian subalge-
bras are called Cartan subalgebras.

2. Each eigenvalue of L(t) is a constant of motion for
dL
dt (t) D [dH(L(t); L(t))]. If (L) and �(L) denote
eigenvalues of L then f;�g D 0. Equivalently, the
spectral functions 'k(L) D Trace(Lk) are in involution
and Poisson commute with H.

For three-dimensional Lie groups the above integrals are
sufficient for complete integrability. For instance, every
left-invariant Hamiltonian is completely integrable on
SO3 [12]. In general, it is difficult to determine when
the above integrals of motion can be extended to a com-
pletely integrable system of functions for a given Hamil-
tonian H [10,13,25]. Affirmative answers are known only
in the exceptional cases in which there are additional sym-
metries. For instance, integrable system (15) is a particular
case of the following more general situation.

Example 8 Suppose that a semi-simple Lie group G ad-
mits an involutive automorphism � ¤ I that splits the Lie
algebra g of G into a direct sum g D pC k with k D

fA : ��(A) D Ag and p D fA : ��(A) D �Ag. Such a de-
composition is known as a Cartan decomposition and the
following Lie algebraic conditions hold

[p;p] D k; [p; k] D p; [k; k] � k : (26)

Then L 2 g can be written as L D K C P with P 2 p and
K 2 k. Assume that H(L) D 1

2 hK;Ki C hA; Pi, for some
A 2 p where h ; i denotes a scalar multiple of the Cartan–
Killing form that is positive definite on k. This Hamilto-
nian describes normal extrema for the problem of mini-
mizing the integral 12

R T
0 kU(t)k2dt over the trajectories of

dg
dt

(t) D g(t)(AC U(t)); U(t) 2 k : (27)

With the aid of the above decomposition the Hamilto-
nian equations (22) associated with EH are given by

dg
dt
D g(AC K) ;

dK
dt
D [A; P] ;

dP
dt
D [A;K]C [K; P] :

(28)

Equations dK
dt D [A; P]; dPdt D [A;K]C [K; P] admit two

distinct types of integrals of motion. The first type is a con-
sequence of the spectral parameter representation

dM�

dt
D [N�;M�]; with M� D P � K C (2 � 1)A

and N� D
1

(P � A) ; (29)

from which it follows that ��;k D Trace(Mk
�
) are con-

stants of motion for each  2 R and k 2 ZC. The second
type follows from the observation that [A; P] is orthogo-
nal (relative to the Cartan–Killing form) to the subalgebra
k0 D fX 2 k : [A; X] D 0g. Hence the projection of K(t)
on k0 is constant. In many situations these two types of
integrals of motion are sufficient for complete integrabil-
ity [23].

Abnormal Extrema and Singular Problems

For simplicity of exposition the discussion will be confined
to control affine systems written explicitly as

dx
dt
D X0(x)C

mX

iD1

ui (t)Xi (x) ;

u D (u1; : : : ; um ) 2 U ; (30)

with X0; X1; : : : ; Xm smooth vector fields on a smooth
manifold M. Recall that abnormal extrema are absolutely
continuous curves �(t) ¤ 0 in T�M satisfying

1. d�
dt (t) D EH0(�(t))C

Pm
iD1 ui (t) EHi (�(t)) a. e. for some

admissible control u(t) where EH0; : : : ; EHm denote the
Hamiltonian vector fields associated with Hamiltonian
lifts Hi(�) D �(Xi(x)), � 2 T�x M, i D 0; : : : ;m, and

2. H0(�(t)) C
Pm

iD1 ui (t)Hi (�(t)) � H0(�(t)) C
Pm

iD1
viHi(�(t)) a. e. for any v D (v1; : : : ; vm) 2 U .

Abnormal extremals satisfy the conditions of the Max-
imum Principle independently of any cost functional and
can be studied in their own right. However, in prac-
tice, they are usually linked to some fixed optimization
problem, such as for instance the problem of minimizing
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1
2
R T
0 ku(t)k

2dt. In such a case there are several situations
that may arise:

1. An optimal trajectory is only the projection of a normal
extremal curve.

2. An optimal trajectory is the projection of both a normal
and an abnormal extremal curve.

3. An optimal trajectory is only the projection of an ab-
normal curve (strictly abnormal case).

When U is an open subset of R the maximality con-
dition (2) implies that Hi(�(t)) D 0, i D 1; : : : ;m.
Then extremal curves which project onto optimal trajec-
tories satisfy another set of constraints fHi ;Hjg(�(t)) D
�(t)([Xi ; Xj](x(t))) D 0, 1 � i; j � m, known as the Goh
condition in the literature on control theory [1]. Case (1)
occurs when X1(x(t)); : : : ; Xm(x(t)); [Xi ; Xj](x(t)), 1 �
i; j � m span Tx(t)M.

The remaining cases occur in the situations where
higher order Lie brackets among X0; : : : ; Xm are required
to generate the entire tangent space Tx(t)M along an opti-
mal trajectory x(t). In the second case abnormal extrema
can be ignored since every optimal trajectory is the pro-
jection of a normal extremal curve. However, that is no
longer true in Case (3) as the following example shows.

Example 9 (Montgomery [21]) In this example M D R3

with its points parametrized by cylindrical coordinates
r; �; z. The optimal control problem consists of minimiz-
ing 1

2
R T
0 (u21 C u22)dt over the trajectories of

dx
dt

(t) D u1(t)X1(x(t))C u2(t)X2(x(t)); where (31)

X1 D
@

@r
; X2 D

1
r

�
@

@�
� A(r)

@

@z

�
;

and A(r) D
1
2
r2 �

1
4
r4 ; (32)

or more explicitly over the solutions of the following sys-
tem of equations:

dr
dt
D u1 ;

d�
dt
D

u2
r
;

dz
dt
D �

u2
r
A(r) : (33)

Then normal extremal curves are integral curves of the
Hamiltonian vector field associated to H D 1

2 (H
2
1 C H2

2),
with H1 D pr ;H2 D

1
r (p� � A(r)pz ), where pr ; p� ; pz

denote dual coordinates of co-vectors p defined by p D
prdr C p� d� C pzdz.

An easy calculation shows that [X1; X2] D � dA
dr

@
@z

and [X1; [X1; X2]] D � d2A
dr2

@
@z . Hence, X1(x); X2(x); [X1;

X2](x) spans R3 except at x D (r; �; z) where dA
dr D 0,

that is, on the cylinder r D 1. Since [X1; [X1; X2]] ¤

0 on r D 1, it follows that X1; X2; [X1; X2]; [X1; [X1;

X2]] spanR3 at all points x 2 R3. The helix r D 1; z(�) D
A(1)�; � 2 R, generated by u1 D 0; u2 D 1, is a locally op-
timal trajectory (shown in [21]). It is the projection of an
abnormal extremal curve and not the projection of a nor-
mal extremal curve.

Trajectories of a control system that are the projec-
tions of a constrained Hamiltonian system are called sin-
gular [3]. For instance, the helix in the above exam-
ple is singular. The terminology derives from the sin-
gularity theory of mappings, and in the control theo-
retic context it is associated to the end point mapping
E : u[0;T] ! x(x0; u; T), where x(x0; u; t) denotes the tra-
jectory of dx

dt D F(x(t); u(t)), x(x0; u; 0) D x0, with the
controls u(t) in the class of locally bounded measurable
with values in Rm . It is known that the singular trajecto-
ries are the projections of the integral curves �(t) of the
constrained Hamiltonian system, obtained by the Maxi-
mum Principle:

d�
dt
D EH(�(t); u(t)) ;

dH
du

(�(t); u(t)) D 0 ; (34)

where H(�; u) D �(F(x; u)), � 2 T�x M. For an extensive
theory of singular trajectories see [3].

Future Directions

Since the original publications there has been a consider-
able effort to obtain the maximum principle under more
general conditions and under different technical assump-
tions. This effort seems to be motivated by two distinct
objectives: the first motivation is a quest for a high or-
der maximum principle [4,16,17], while the second mo-
tivation is an extension of the maximum principle to dif-
ferential inclusions and non-smooth problems [9,20,28].
Although there is some indication that the corresponding
theoretical approaches do not lead to common theory [5],
there still remains an open question how to incorporate
these diverse points of view into a universal maximum
principle.
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Glossary

Dynamical system A set acted upon by an algebraic ob-
ject. Elements of the set represent all possible states or
configurations, and the action represents all possible
changes.

Ergodic Ameasure-preserving system is ergodic if it is es-
sentially indecomposable, in the sense that given any
invariant measurable set, either the set or its comple-
ment has measure 0.

Lebesgue space A measure space that is isomorphic with
the usual Lebesgue measure space of a subinterval of
the set of real numbers, possibly together with count-
ably or finitely many point masses.

Measure An assignment of sizes to sets. A measure that
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takes values only between 0 and 1 assigns probabilities
to events.

Stochastic process A family of random variables (mea-
surable functions). Such an object represents a family
of measurements whose outcomes may be subject to
chance.

Subshift, shift space A closed shift-invariant subset of
the set of infinite sequences with entries from a finite
alphabet.

Definition of the Subject

Measure-preserving systems model processes in equilib-
rium by transformations on probability spaces or, more
generally, measure spaces. They are the basic objects of
study in ergodic theory, a central part of dynamical sys-
tems theory. These systems arise from science and tech-
nology as well as from mathematics itself, so applications
are found in a wide range of areas, such as statistical
physics, information theory, celestial mechanics, number
theory, population dynamics, economics, and biology.

Introduction: The Dynamical Viewpoint

Sometimes introducing a dynamical viewpoint into an ap-
parently static situation can help to make progress on ap-
parently difficult problems. For example, equations can be
solved and functions optimized by reformulating a given
situation as a fixed point problem, which is then addressed
by iterating an appropriate mapping. Besides practical ap-
plications, this strategy also appears in theoretical settings,
for example modern proofs of the Implicit Function The-
orem. Moreover, the introduction of the ideas of change
andmotion leads to new concepts, newmethods, and even
new kinds of questions. One looks at actions and orbits
and instead of always seeking exact solutions begins per-
haps to ask questions of a qualitative or probabilistic na-
ture: what is the general behavior of the system, what hap-
pens for most initial conditions, what properties of sys-
tems are typical within a given class of systems, and so on.
Much of the credit for introducing this viewpoint should
go to Henri Poincaré [29].

Two Examples

Consider two particular examples, one simple and the
other not so simple. Decimal or base 2 expansions of num-
bers in the unit interval raise many natural questions about
frequencies of digits and blocks. Instead of regarding the
base 2 expansion x D :x0x1 : : : of a fixed x 2 [0; 1] as be-
ing given, we can regard it as arising from a dynami-
cal process. Define T : [0; 1]! [0; 1] by Tx D 2x mod 1

(the fractional part of 2x) and let P D fP0 D [0; 1/2);
P1 D [1/2; 1]g be a partition of [0; 1] into two subintervals.
We code the orbit of any point x 2 [0; 1] by 0’s and 1’s by
letting xk D i if Tkx 2 Pi ; k D 0; 1; 2; : : : . Then reading
the expansion of x amounts to applying to the coding the
shift transformation and projection onto the first coordi-
nate. This is equivalent to following the orbit of x under T
and noting which element of the partition P is entered at
each time. Reappearances of blocks amount to recurrence
to cylinder sets as x is moved by T, frequencies of blocks
correspond to ergodic averages, and Borel’s theorem on
normal numbers is seen as a special case of the Ergodic
Theorem.

Another example concerns Szemerédi’s Theorem [34],
which states that every subset A � N of the natural
numbers which has positive upper density contains arbi-
trarily long arithmetic progressions: given L 2 N there are
s;m 2 N such that s; s C m; : : : ; s C (L � 1)m 2 A. Sze-
merédi’s proof was ingenious, direct, and long. Fursten-
berg [15] saw how to obtain this result as a corollary of
a strengthening of Poincaré’s Recurrence Theorem in er-
godic theory, which he then proved. Again we have an
apparently static situation: a set A � N of positive den-
sity in which we seek arbitrarily long regularly spaced
subsets. Furstenberg proposed to consider the character-
istic function 111A of A as a point in the space f0; 1gN of
0’s and 1’s and to form the orbit closure X of this point
under the shift transformation � . Because A has posi-
tive density, it is possible to find a shift-invariant mea-
sure � on X which gives positive measure to the cylin-
der set B D [1] D fx 2 X : x1 D 1g. Furstenberg’s Multi-
ple Recurrence Theorem says that given L 2 N there is
m 2 N such that �(B \ T�mB \ � � � \ T�(L�1)mB) > 0.
If y is a point in this intersection, then y contains a block of
L 1’s, each at distancem from the next. And since y is in the
orbit closure of 111A, this block also appears in the sequence
111A 2 f0; 1gN , yielding the result.

Aspects of the dynamical argument remain in new
combinatorial and harmonic-analytic proofs of the Sze-
merédi Theorem by T. Gowers [16,17] and T. Tao [35],
as well as the extension to the (density zero) set of prime
numbers by B. Green and T. Tao [18,36].

A Range of Actions

Here is a sample of dynamical systems of various kinds:

1. A semigroup or group G acts on a set X. There is given
a mapG � X ! X, (g; x)! gx, and it is assumed that

g1(g2x) D (g1g2)x for all g1; g2 2 G ; x 2 X (1)
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ex D x for all x 2 X ;
if G has an identity element e : (2)

2. A continuous linear operator T acts on a Banach or
Hilbert space V .

3. B is a Boolean �-algebra (a set together with a zero el-
ement 0 and operations _;^;0 which satisfy the same
rules as ;;[;\;c (complementation) do for �-algebras
of sets); N is a �-ideal in B (N 2 N ; B 2 B; B ^
N D B implies B 2 N ; and N1;N2; � � � 2 N implies
_1nD1Nn 2 N ); and S : B ! B preserves the Boolean
�-algebra operations and SN �N .

4. B is a Boolean �-algebra,� is a countably additive posi-
tive (nonzero except on the zero element ofB) function
on B, and S : B! B is as above. Then (B; �) is amea-
sure algebra and S is ameasure algebra endomorphism.

5. (X;B; �) is a measure space (X is a set, B is a �-al-
gebra of subsets of X, and � : B! [0;1] is count-
ably additive: If B1; B2; � � � 2 B are pairwise disjoint,
then �([1nD1Bn) D

P1
nD1 �(Bn)); T : X ! X is mea-

surable (T�1B � B) and nonsingular (�(B) D 0 im-
plies �(T�1B) D 0 – or, more stringently, � and �T�1

are equivalent in the sense of absolute continuity).
6. (X;B; �) is a measure space, T : X ! X is a one-to-

one onto map such that T and T�1 are both measur-
able (so that T�1B D B D TB), and �(T�1B) D �(B)
for all B 2 B. (In practice often T is not one-to-one, or
onto, or even well-defined on all of X, but only after
a set of measure zero is deleted.) This is the case of most
interest for us, and then we call (X;B; �; T) ameasure-
preserving system. We also allow for the possibility that
T is not invertible, or that some other group (such asR
orZd ) or semigroup acts on X, but the case ofZ actions
will be the main focus of this article.

7. X is a compact metric space and T : X ! X is a home-
omorphism. Then (X; T) is a topological dynamical sys-
tem.

8. M is a compact manifold (Ck for some k 2 [1;1]) and
T : M ! M is a diffeomorphism (one-to-one and onto,
with T and T�1 both Ck). Then (M; T) is a smooth
dynamical system. Such examples can arise from so-
lutions of an autonomous differential equation given
by a vector field on M. Recall that in Rn , an ordi-
nary differential equation initial-value problem x0 D
f (x); x(0) D x0 has a unique solution x(t) as long as
f satisfies appropriate smoothness conditions. The ex-
istence and uniqueness theorem for differential equa-
tions then produces a flow according to Ttx0 D x(t),
satisfying TsCt x0 D Ts (Ttx0). Restricting to a compact
invariant set (if there is one) and taking T D T1 (the
time 1 map) gives us a smooth system (M; f ).

Naturally there are relations and inclusions among these
examples of actions. Often problems can be clarified by
forgetting about some of the structure that is present or
by adding desirable structure (such as topology) if it is
not. There remain open problems about representation
and realization; for example, taking into account neces-
sary restrictions, which measure-preserving systems can
be realized as smooth systems preserving a smooth mea-
sure? Sometimes interesting aspects of the dynamics of
a smooth system can be due to the presence of a highly
nonsmooth subsystem, for example a compact lower-
dimensional invariant set. Thus one should be ready to
deal with many kinds of dynamical systems.

Where doMeasure-Preserving Systems Come from?

Systems in Equilibrium

Besides physical systems, abstract dynamical systems can
also represent aspects of biological, economic, or other
real-world systems. Equilibrium does not mean stasis, but
rather that the changes in the system are governed by laws
which are not themselves changing. The presence of an in-
variant measure means that the probabilities of observable
events do not change with time. (But of course what hap-
pens at time 2 can still depend on what happens at time 1,
or, for that matter, at time 3.)

We consider first the example of the wide and im-
portant class of Hamiltonian systems. Many systems that
model physical situations, for example a large number of
ideal charged particles in a container, can be studied by
means of Hamilton’s equations. The state of the entire sys-
tem at any time is supposed to be specified by a vector
(q; p) 2 R2n , the phase space, with q listing the coordinates
of the positions of all of the particles, and p listing the coor-
dinates of their momenta. We assume that there is a time-
independent Hamiltonian function H(q; p) such that the
time development of the system satisfies Hamilton’s equa-
tions:

dqi
dt
D
@H
@pi

;
dpi
dt
D �

@H
@qi

; i D 1; : : : ; n : (3)

Often the Hamiltonian function is the sum of kinetic and
potential energy:

H(q; p) D K(p)C U(q) : (4)

The potential energy U(q) may depend on interactions
among the particles or with an external field, while the ki-
netic energy K(p) depends on the velocities and masses of
the particles.

As discussed above, solving these equations with ini-
tial state (q; p) for the system produces a flow (q; p) !
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Tt(q; p) in phase space. According to Liouville’s Theo-
rem, this flow preserves Lebesgue measure on R2n . Cal-
culating dH/dt by means of the Chain Rule and using
Hamilton’s equations shows that H is constant on or-
bits of the flow, and thus each set of constant energy
X(H0) D f(q; p) : H(q; p) D H0g is an invariant set. Thus
one should consider the flow restricted to the appropriate
invariant set. It turns out that there are also natural invari-
ant measures on the sets X(H0), namely the ones given by
rescaling the volume element dS on X(H0) by the factor
1/jjOHjj. For details, see [25].

Systems in equilibrium can also be hiding inside sys-
tems not in equilibrium, for example if there is an attractor
supporting an SRB measure (for Sinai, Ruelle, and Bowen)
(for definitions of the terms used here and more explana-
tions, see the article in this collection by A. Wilkinson).
Suppose that T : M ! M is a diffeomorphism on a com-
pact manifold as above, and thatm is a version of Lebesgue
measure on M, say given by a smooth volume form. We
consider m to be a “physical measure”, corresponding to
laboratory measurements of observable quantities, whose
values can be determined to lie in certain intervals in R.
Quite possibly m is not itself invariant under T, and an
experimenter might observe strange or chaotic behavior
whenever the state of the system gets close to some com-
pact invariant set X. The dynamics of T restricted to X can
in fact be quite complicated –maybe a full shift, which rep-
resents completely undeterministic behavior (for example
if there is a horseshoe present), or a shift of finite type,
or some other complicated topological dynamical system.
Possibly m(X) D 0, so that X is effectively invisible to the
observer except through its effects. It can happen that there
is a T-invariant measure � supported on X such that

1
n

n�1X

kD0

mT�k ! � weak� ; (5)

and then the long-term equilibrium dynamics of the sys-
tem is described by (X; T; �). For a recent survey on SRB
measures, see [39].

Stationary Stochastic Processes

A stationary process is a family f ft : t 2 Tg of random
variables (measurable functions) on a probability space
(˝;F ; P). Usually T is Z;N , or R. For the remainder
of this section let us fix T D Z (although the following
definition could make sense for T any semigroup). We
say that the process f fn : n 2 Zg is stationary if its finite-
dimensional distributions are translation invariant, in the
sense that for each r D 1; 2; : : :, each n1; : : : ; nr 2 Z, each

choice of Borel sets B1; : : : ; Br � R, and each s 2 Z, we
have

Pf! : fn1 (!) 2 B1; : : : ; fnr (!) 2 Brg

D Pf! : fn1Cs (!) 2 B1; : : : ; fnrCs(!) 2 Brg : (6)

The fn represent measurements made at times n of some
random phenomenon, and the probability that a particular
finite set of measurements yield values in certain ranges is
supposed to be independent of time.

Each stationary process f fn : n 2 Zg on (˝;F ; P) cor-
responds to a shift-invariant probability measure � on the
set RZ (with its Borel �-algebra) and a single observable,
namely the projection �0 onto the 0’th coordinate, as fol-
lows. Define

� : ˝ ! RZ by �(!) D ( fn(!))1�1 ; (7)

and for each Borel set E � RZ, define �(E) D P(��1E).
Then examining the values of� on cylinder sets – for Borel
B1; : : : ; Br � R,

�fx 2 RZ : xni 2 Bi ; i D 1; : : : ; rg
D Pf! 2 ˝ : fn i (!) 2 Bi ; i D 1; : : : ; rg (8)

– and using stationarity of ( fn) shows that � is invariant
under � . Moreover, the processes ( fn) on ˝ and �0 ı � n

on RZ have the same finite-dimensional distributions, so
they are equivalent for the purposes of probability theory.

Construction ofMeasures

We review briefly (following [33]) the construction of
measures largely due to C. Carathéodory [8], with in-
put from M. Fréchet [13], H. Hahn [19], A. N. Kol-
mogorov [26], and others, then discuss the application to
construction of measures on shift spaces and of stochastic
processes in general.

The Carathéodory Construction

A semialgebra is a family S of subsets of a set X which is
closed under finite intersections and such that the com-
plement of any member of S is a finite disjoint union of
members of S. Key examples are

1. the familyH of half-open subintervals [a; b) of [0; 1);
2. in the space X D AZ of doubly infinite sequences on

a finite alphabet A, the family C of cylinder sets (deter-
mined by fixing finitely many entries)

fx 2 AZ : xn1 D a1; : : : ; xnr D arg ; (9)
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3. the family C1 of anchored cylinder sets

fx 2 AN : x1 D a1; : : : ; xr D arg (10)

in the space X D AN of one-sided infinite sequences on
a finite alphabet A.

An algebra is a family of subsets of a set X which is closed
under finite unions, finite intersections, and complements.
A �-algebra is a family of subsets of a set X which is
closed under countable unions, countable intersections,
and complements. If S is a semialgebra of subsets of X,
the algebraA(S) generated by S is the smallest algebra of
subsets of X which contains S.A(S) is the intersection of
all the subalgebras of the set 2X of all subsets of X and con-
sists exactly of all finite disjoint unions of elements of S.
Given an algebraA, the �-algebra B(A) generated by A
is the smallest �-algebra of subsets of X which containsA.

A nonnegative set function on S is a function � : S !
[0;1] such that �(;) D 0 if ; 2 S. We say that such a �
is

� finitely additive if whenever S1; : : : ; Sn 2 S are pair-
wise disjoint and S D [n

iD1Si 2 S, we have �(S) DPn
iD1 �(Si );

� countably additive if whenever S1; S2 � � � 2 S are pair-
wise disjoint and S D [1iD1Si 2 S, we have �(S) DP1

iD1 �(Si ); and
� countably subadditive if whenever S1; S2 � � � 2 S and

S D [1iD1Si 2 S, we have �(S) �
P1

iD1�(Si ).

Ameasure is a countably additive nonnegative set function
defined on a �-algebra.

Proposition 1 Let S be a semialgebra and � a nonneg-
ative set function on S. In order that � have an extension
to a finitely additive set function on the algebraA(S) gen-
erated by S, it is necessary and sufficient that � be finitely
additive on S.
Proof 1 The stated condition is obviously necessary. Con-
versely, given� which is finitely additive on S, it is natural
to define

�(
n[

iD1

Si) D
nX

iD1

�(Si ) (11)

whenever AD [n
iD1Si (with the Si pairwise disjoint) is in

the algebraA(S) generated by S. It is necessary to verify
that � is then well defined on A(S), since each element
of A(S) may have more than one representation as a fi-
nite disjoint union of members of S. But, given two such
representations of a single set A, forming the common re-
finement and applying finite additivity on S shows that �

so defined assigns the same value to A both times. Then
finite additivity onA(S) of the extended � is clear. �

Proposition 2 Let S be a semialgebra and � a nonnega-
tive set function on S. In order that � have an extension to
a countably additive set function on the algebraA(S) gen-
erated by S, it is necessary and sufficient that� be (i) finitely
additive and (ii) countably subadditive on S.
Proof 2 Conditions (i) and (ii) are clearly necessary. If �
is finitely additive on S, then by Proposition 1 � has an
extension to a finitely additive nonnegative set function,
which we will still denote by �, onA(S).

Let us see that this extension � is countably subaddi-
tive on A(S). Suppose that A1;A2; � � � 2A(S) are pair-
wise disjoint and their union A 2A(S). Then A is a finite
disjoint union of sets in S, as is each Ai :

AD
1[

iD1

Ai ; each Ai D

ni[

kD1

Sik ;

AD
m[

jD1

Rj ; each Ai 2A(S) ; each Sik ; Rj 2 S :
(12)

Since each Rj 2 S, by countable subadditivity of � on S,
and using Rj D Rj \ A,

�(Rj ) D �(
1[

iD1

ni[

kD1

Sik\Rj) �
1X

iD1

niX

kD1

�(Sik\Rj); (13)

and hence, by finite additivity of � onA(S),

�(A) D
mX

jD1

�(Rj) �
1X

iD1

niX

kD1

mX

jD1

�(Sik \ Rj)

D

1X

iD1

niX

kD1

�(Sik ) D
1X

iD1

�(Ai ) :

(14)

Now finite additivity of� on an algebraA implies that
� is monotonic on the algebra: if A; B 2A and A � B,
then �(A) � �(B). Thus if A1;A2; � � � 2A(S) are pair-
wise disjoint and their union A 2A(S), then for each n
we have

Pn
iD1 �(Ai ) D �([n

iD1Ai ) � �(A), and henceP1
iD1�(Ai ) � �(A). �

Theorem 1 In order that a nonnegative set function � on
an algebra A of subsets of a set X have an extension to
a (countably additive) measure on the �-algebraB(A) gen-
erated byA, it is necessary and sufficient that � be count-
ably additive onA.

Here is a sketch of how the extension can be constructed.
Given a countably additive nonnegative set function � on
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an algebra A of subsets of a set X, one defines the outer
measure �� that it determines on the family 2X of all sub-
sets of X by

��(E) D inf f
1X

iD1

�(Ai ) : Ai 2A; E � [1iD1Aig : (15)

Then �� is a nonnegative, countably subadditive, mono-
tonic set function on 2X .

Define a set E to be ��-measurable if for all T � X,

��(T) D ��(T \ E)C ��(T \ Ec) : (16)

This ingenious definition can be partly motivated by not-
ing that if �� is to be finitely additive on the familyM of
��-measurable sets, which should contain X, then at least
this condition must hold when T D X. It is amazing that
then this definition readily, with just a little set theory and
a few "’s, yields the following theorem.

Theorem 2 Let � be a countably additive nonnegative set
function on an algebraA of subsets of a set X, and let ��

be the outer measure that it determines on the family 2X

of all subsets of X as above. Then the family M of ��-
measurable subsets of X is a �-algebra containingA (and
hence B(A)) and all subsets of X which have �� measure
0. The restriction ��jM is a (countably additive) measure
which agrees on A with �. If � is �-finite on A (so that
there are X1; X2; � � � 2A with �(Xi ) <1 for all i and
X D [1iD1Xi), then � on B(A) is the only extension of �
onA to B(A).

In this way, beginning with the semialgebra H of half-
open subintervals of [0; 1) and �[a; b) D b � a, one ar-
rives at Lebesguemeasure on the �-algebraM of Lebesgue
measurable sets and on its sub-�-algebra B(H ) of Borel
sets.

Measures on Shift Spaces

The measures that determine stochastic processes are also
frequently constructed by specifying data on a semial-
gebra of cylinder sets. Given a finite alphabet A, de-
note by ˝(A) D AZ and ˝C(A) D AN the sets of two
and one-sided sequences, respectively, with entries from
A. These are compact metric spaces, with d(x; y) D 2�n

when n D inffjkj : xk ¤ ykg. In both cases, the shift trans-
formation � defined by (�x)n D xnC1 for all n is a home-
omorphism.

Suppose (cf. [3]) that for every k D 1; 2; : : : we are
given a function gk : Ak ! [0; 1], and that these functions
satisfy, for all k,

1. gk(B) � 0 for all B 2 Ak ;

2.
P

i2A gkC1(Bi) D gk(B) for all B 2 Ak ;
3.
P

i2A g1(i) D 1.
Then Theorems 1 and 2 imply that there is a unique
measure � on the Borel subsets of˝C(A) such that for
all k D 1; 2; : : : and B 2 Ak

�fx 2 ˝C(A) : x1 : : : xk D Bg D gk(B) : (17)

If in addition the gk also satisfy
4.
P

i2A gkC1(iB) D gk(B) for all k D 1; 2; : : : and all
B 2 Ak , then there is a unique shift-invariant mea-
sure � on the Borel subsets of˝C(A) (also˝(A)) such
that for all n, all k D 1; 2; : : : and B 2 Ak

�fx 2 ˝C(A) : xn : : : xnCk�1 D Bg D gk(B) : (18)

This follows from the Carathéodory theorem by begin-
ning with the semialgebra C1 of anchored cylinder sets
or the semialgebra C of cylinder sets determined by
finitely many consecutive coordinates, respectively.

There are two particularly important examples of this con-
struction. First, let our finite alphabet be A D f0; : : : ;
d � 1g, and let p D (p0; : : : ; pd�1) be a probability vec-
tor: all pi � 0 and

Pd�1
iD0 pi D 1. For any block B D

b1 : : : bk 2 Ak , define

gk(B) D pb1 : : : pbk : (19)

The resulting measure �p is the product measure on
˝(A) D AZ of infinitely many copies of the probability
measure determined by p on the finite sample space A.
The measure-preserving system (˝;B; �; �) (with B the
�-algebra of Borel subsets of ˝(A), or its completion), is
denoted by B(p) and is called the Bernoulli system deter-
mined by p. This system models an infinite number of in-
dependent repetitions of an experiment with finitely many
outcomes, the ith of which has probability pi on each trial.

This construction can be generalized tomodel stochas-
tic processes which have some memory. Again let AD f0;
: : : ; d � 1g, and let p D (p0; : : : ; pd�1) be a probability
vector. Let P be a d � d stochastic matrix with rows and
columns indexed by A. This means that all entries of P
are nonnegative, and the sum of the entries in each row
is 1. We regard P as giving the transition probabilities be-
tween pairs of elements of A. Now we define for any block
B D b1 : : : bk 2 Ak

gk(B) D pb1Pb1b2Pb2b3 : : : Pbk�1bk : (20)

Using the gk to define a nonnegative set function �p;P on
the semialgebraC1 of anchored cylinder subsets of˝C(A),
one can verify that �p;P is (vacuously) finitely additive
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and countably subadditive on C1 and therefore extends
to a measure on the Borel �-algebra of ˝C(A), and its
completion. The resulting stochastic process is a (one-step,
finite-state)Markov process. If p and P also satisfy

pP D p ; (21)

then condition 4. above is satisfied, and the Markov pro-
cess is stationary. In this case we call the (one or two-sided)
measure-preserving system the Markov shift determined
by p and P. Points in the space are conveniently pictured
as infinite paths in a directed graph with vertices A and
edges corresponding to the nonzero entries of P. A process
with a longermemory, say of lengthm, can be produced by
repeating the foregoing construction after recoding with
a sliding block code to the new alphabet Am : for each
! 2 ˝(A), let (�(!))n D !n!nC1 : : : !nCm�1 2 Am .

The Kolmogorov Consistency Theorem

There is a generalization of this method to the construc-
tion of stochastic processes indexed by any set T. (Most
frequently T D Z;N;R;Zd , or Rd ). We give a brief de-
scription, following [4].

Let T be an arbitrary index set. We aim to produce
a R-valued stochastic process indexed by T, that is to say,
a Borel probability measure P on˝ D RT , which has pre-
specified finite-dimensional distributions. Suppose that
for every ordered k-tuple t1; : : : ; tk of distinct elements of
T we are given a Borel probability measure �t1:::tk on Rk .
Denoting f 2 RT also by ( ft : t 2 T), we want it to be the
case that, for each k, each choice of distinct t1; : : : tk 2 T ,
and each Borel set B � Rk ,

Pf( ft : t 2 T) : ( ft1 ; : : : ; ftk ) 2 Bg D �t1:::tk (B) : (22)

For consistency, we will need, for example, that

�t1 t2 (B1 � B2) D �t2 t1 (B2 � B1) ; since (23)

Pf( ft1 ; ft2 ) 2 A1�A2g D Pf( ft2 ; ft1 ) 2 A2 �A1g : (24)

Thus we assume:

1. For any k D 1; 2; : : : and permutation � of 1; : : : ; k, if
�	 : Rk ! Rk is defined by

�	 (x	1; : : : ; x	k) D (x1; : : : ; xk) ; (25)

then for all k and all Borel B � Rk

�t1:::tk (B) D �t
1:::t
k (�
�1
	 B) : (26)

Further, since leaving the value of one of the ft j free
does not change the probability in (22), we also should
have

2. For any k D 1; 2; : : :, distinct t1; : : : ; tk ; tkC1 2 T , and
Borel set B � Rk ,

�t1:::tk (B) D �t1:::tk tkC1 (B �R) : (27)

Theorem 3 (Kolmogorov Consistency Theorem [26])
Given a system of probability measures�t1:::tk as above in-
dexed by finite ordered subsets of a set T, in order that there
exist a probability measure P onRT satisfying (22) it is nec-
essary and sufficient that the system satisfy 1. and 2. above.

When T D Z;R, or N , as in the example with the gk
above, the problem of consistency with regard to permuta-
tions of indices does not arise, since we tacitly use the order
in T in specifying the finite-dimensional distributions.

In case T is a semigroup, by adding conditions on the
given data �t1:::tk it is possible to extend this construction
also to produce stationary processes indexed by T, in par-
allel with the above constructions for T D Z orN .

Invariant Measures
on Topological Dynamical Systems

Existence of InvariantMeasures

Let X be a compact metric space and T : X ! X a home-
omorphism (although usually it is enough just that T be
a continuous map). Denote by C(X) the Banach space of
continuous real-valued functions onX with the supremum
norm and byM(X) the set of Borel probability measures
on X. Given the weak� topology, according to which

�n ! � if and only if
Z

X
fn d�!

Z

X
f d�

for all f 2 C(X) ; (28)

M(X) is a convex subset of the dual space C(X)� of all
continuous linear functionals from C(X) to R. With the
weak� topology it is metrizable and (by Alaoglu’s Theo-
rem) compact.

Denote byMT (X) the set of T-invariant Borel proba-
bility measures on X. A Borel probability measure � on X
is inM(X) if and only if

�(T�1B) D �(B) for all Borel sets B � X ; (29)

equivalently,

�( f T) D
Z

X
f ıT d� D

Z

X
f d� for all f 2 C(X): (30)

Proposition 3 For every compact topological dynamical
system (X; T) (with X not empty) there is always at least
one T-invariant Borel probability measure on X.
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Proof 3 Letm be any Borel probability measure on X. For
example, we could pick a point x0 2 X and let m be the
point mass ıx0 at x0 defined by

ıx0 ( f ) D f (x0) for all f 2 C(X) : (31)

Form the averages

Anm D 1
n

n�1X

iD0

mT�i ; (32)

which are also in M(X). By compactness, fAnmg has
a weak� cluster point �, so that there is a subsequence

Ankm! � weak� : (33)

Then � 2M(X); and � is T-invariant, because for each
f 2 C(X)

j�( f T)��( f )j D lim
k!1

1
nk
j�( f Tnk )��( f )j D 0 ; (34)

both terms inside the absolute value signs being bounded.
�

Ergodicity and Unique Ergodicity

Among the T-invariant measures on X are the ergodic
ones, those for which (X;B; �; T) (withB the �-algebra of
Borel subsets of X) forms an ergodic measure-preserving
system. This means that there are no proper T-invariant
measurable sets:

B 2 B ; �(T�1B4B) D 0 implies �(B) D 0 or 1 : (35)

Equivalently (using the Ergodic Theorem), (X;B; �; T) is
ergodic if and only if for each f 2 L1(X;B; �)

1
n

n�1X

kD1

f (Tkx)!
Z

X
f d� almost everywhere : (36)

It can be shown that the ergodic measures on (X; T)
are exactly the extreme points of the compact convex set
MT (X), namely those � 2MT (X) for which there do not
exist �1; �2 2MT (x) with �1 ¤ �2 and s 2 (0; 1) such
that

� D s�1 C (1 � s)�2 : (37)

The Krein-Milman Theorem states that in a locally con-
vex topological vector space such as C(X)� every compact
convex set is the closed convex hull of its extreme points.
Thus every nonempty such set has extreme points, and so

there always exist ergodic measures for (X; T). A topolog-
ical dynamical system (X; T) is called uniquely ergodic if
there is only one T-invariant Borel probability measure on
X, in which case, by the foregoing discussion, that measure
must be ergodic.

There are many examples of topological dynamical
systems which are uniquely ergodic and of others which
are not. For now, we just remark that translation by
a generator on a compact monothetic group is always
uniquely ergodic, while group endomorphisms and auto-
morphisms tend to be not uniquely ergodic. Bernoulli and
(nonatomic) Markov shifts are not uniquely ergodic, be-
cause they have many periodic orbits, each of which sup-
ports an ergodic measure.

Finding Finite InvariantMeasures Equivalent
to a Quasi-InvariantMeasure

Let (X;B;m) be a �-finite measure space, and suppose
that T : X ! X is an invertible nonsingular transforma-
tion. Thus we assume that T is one-to-one and onto
(maybe after a set of measure 0 has been deleted), that T
and T�1 are both measurable, so that

TB D B D T�1B ; (38)

and that T and T�1 preserve the �-ideal of sets of mea-
sure 0:

m(B) D 0 if and only if m(T�1B) D 0
if and only if m(TB) D 0 :

(39)

In this situation we say thatm is quasi-invariant for T.
A nonsingular system (X;B;m; T) as above may

model a nonequilibrium situation in which events that are
impossible (measure 0) at any time are also impossible at
any other time.When dealing with such a system, it can be
useful to know whether there is a T-invariant measure �
that is equivalent to m (in the sense of absolute continu-
ity – they have the same sets of measure 0–in which case we
write � � m), for then one would have available machin-
ery of the measure-preserving situation, such as the Er-
godic Theorem and entropy in their simplest forms. Also,
it is most useful if the measures are �-finite, so that tools
such as the Radon-Nikodym and Tonelli-Fubini theorems
will be available.

We may assume that m(X) D 1. For if X D [1iD1Xi
with each Xi 2 B and m(Xi ) <1, disjointifying (replace
Xi by Xi n Xi�1 for i � 2) and deleting any Xi that have
measure 0, we may replacem by

1X

iD1

mjXi

2im(Xi )
: (40)
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Definition 1 Let (X;B;m) be a probability space and
T : X ! X a nonsingular transformation. We say that
A; B 2 B are T-equivalent, and write A �T B, if there are
two sequences of pairwise disjoint sets, A1;A2; : : : and
B1; B2; : : : and integers n1; n2; : : : such that

AD
1[

iD1

Ai ; B D
1[

iD1

Bi ; and Tni Ai D Bi for all i :

(41)

Definition 2 Let (X;B;m; T) be as above. A measurable
set A � X is called T-nonshrinkable if A is not T-equiva-
lent to any proper subset: whenever B � A and B �T Awe
have m(A n B) D 0.

Theorem 4 (Hopf [23]) Let (X;B;m) be a probability
space and T : X ! X a nonsingular transformation. There
exists a finite invariant measure � � m if and only if X is
T-nonshrinkable.

Proof 4 We present just the easy half. If � � m is T-in-
variant and X �T B, with corresponding decompositions
X D [1iD1Xi ; B D [1iD1Bi , then

�(B) D
1X

iD1

�(Bi ) D
1X

iD1

�(Tni Xi )

D

1X

iD1

�(Xi ) D �(X) ;

(42)

so that �(X n B) D 0 and hence m(X n B) D 0.
For the converse, one tries to show that if X is T-non-

shrinkable, then for each A 2 B the following limit exists:

lim
n!1

1
n

n�1X

kD0

m(TkA) : (43)

The condition of T-nonshrinkability not being easy to
check, subsequent authors gave various necessary and suf-
ficient conditions for the existence of a finite equivalent
invariant measure:

1. Dowker [11].Whenever A 2 B and m(A) > 0,
lim infn!1 m(TnA) > 0.

2. Calderón [6].Whenever A 2 B and m(A) > 0;
lim in fn!1 1

n
P1

kD0 m(TkA) > 0.
3. Dowker [12].Whenever A 2 B and m(A) > 0,

lim supn!1
1
n
P1

kD0 m(TkA) > 0.

Hajian and Kakutani [20] showed that the condition

m(A) > 0 implies lim sup
n!1

m(TnA) > 0 (44)

is not sufficient for existence of a finite equivalent invariant
measure. They also gave another necessary and sufficient
condition.

Definition 3 A measurable set W � X is called wander-
ing if the sets TiW; i 2 Z, are pairwise disjoint.W is called
weakly wandering if there are infinitely many integers ni
such that TniW and Tn jW are disjoint whenever ni ¤ nj .

Theorem 5 (Hajian-Kakutani [20]) Let (X;B;m) be
a probability space and T : X ! X a nonsingular transfor-
mation. There exists a finite invariant measure � � m if
and only if there are no weakly wandering sets of positive
measure.

Finding 	 -finite Invariant Measures Equivalent
to a Quasi-InvariantMeasure

First Necessary and Sufficient Conditions

While being able to replace a quasi-invariant measure by
an equivalent finite invariant measure would be great, it
may be impossible, and then finding a �-finite equivalent
measure would still be pretty good. Hopf’s nonshrinkabil-
ity condition was extended to the �-finite case by Halmos:

Theorem 6 (Halmos [21]) Let (X;B;m) be a probability
space and T : X ! X a nonsingular transformation. There
exists a �-finite invariant measure � � m if and only if X
is a countable union of T-nonshrinkable sets.

Another necessary and sufficient condition is given easily
in terms of solvability of a cohomological functional equa-
tion involving the Radon-Nikodym derivative w of mT
with respect tom, defined by

m(TB) D
Z

B
w dm for all B 2 B : (45)

Proposition 4 ([21]) Let (X;B;m) be a probability space
and T : X ! X a nonsingular transformation. There exists
a �-finite invariant measure � � m if and only if there is
a measurable function f : X ! (0;1) such that

f (Tx) D w(x) f (x) a.e. (46)

Proof 5 If � � m is �-finite and T-invariant, let
f D dm/d� be the Radon-Nikodym derivative of m with
respect to �, so that

m(B) D
Z

B
f d� for all B 2 B : (47)

Then for all B 2 B, since �T D �,

m(TB) D
Z

TB
f d� D

Z

B
f T d� ; while also

m(TB) D
Z

B
w dm D

Z

B
w f dm ;

(48)
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so that f T D w f a.e.
Conversely, given such an f , let

�(B) D
Z

B

1
f dm for all B 2 B : (49)

Then for all B 2 B

�(TB) D
Z

TB

1
f dm D

Z

B

1
f T dmT

D

Z

B

1
f T w dm D

Z

B

1
f dm D �(B) :

(50)

�

Conservativity and Recurrence

Definition 4 A nonsingular system (X;B;m; T) (with
m(X) D 1) is called conservative if there are no wandering
sets of positive measure. It is called completely dissipative
if there is a wandering setW such that

m

 
1[

iD�1

TiW

!

D m(X) : (51)

Note that if (X;B;m; T) is completely dissipative, it is
easy to construct a �-finite equivalent invariant measure.
With W as above, define � D m on W and push � along
the orbit ofW, letting� D mT�n on each TnW . We want
to claim that this allows us to restrict attention to the con-
servative case, which follows once we know that the system
splits into a conservative and a completely dissipative part.

Theorem 7 (Hopf Decomposition [24]) Given a nonsin-
gular map T on a probability space (X;B;m), there are dis-
joint measurable sets C and D such that

1. X D C [ D;
2. C and D are invariant: TC D C D T�1C, TD D D D

T�1D;
3. TjC is conservative;
4. If D ¤ ;, then TjD is completely dissipative.

Proof 6 Assume that the familyW of wandering sets with
positive measure is nonempty, since otherwise we can take
C D X and D D ;. Partially orderW by

W1 � W2 if m(W1 nW2) D 0 : (52)

We want to apply Zorn’s Lemma to find a maximal ele-
ment inW . Let fW� :  2 �g be a chain (linearly ordered
subset) inW . Just forming [�2�W� may result in a non-
measurable set, so we have to use the measure to form

a measure-theoretic essential supremum of the chain. So
let

s D supfm(W�) :  2 �g ; (53)

so that s 2 (0; 1]. If there is a  such thatm(W�) D s, letW
be thatW�. Otherwise, for each k choose k 2 � so that

sk D m(W�k ) " s ; (54)

and let

W D
1[

kD1

W�k : (55)

We claim that in either case W is an upper bound for the
chain fW� :  2 �g. In both cases we have m(W) D s.

Note that if ; � 2 � are such that m(W�) � m(W� ),
then W� � W� . For if W� � W�, then m(W� nW�) D 0,
and thus

m(W� ) D m(W� \W�)C m(W� nW�) D m(W� \W�)
� m(W� \W�)C m(W� nW� )
D m(W�) � m(W� ) ;

(56)

so that m(W� nW� ) D 0;W� � W� , and hence
W� DW� .

Thus in the first case W 2W is an upper bound for
the chain. In the second case, by discarding the measure 0
set

Z D
1[

kD1

(W�k nW�kC1 ) ; (57)

we may assume thatW is the increasing union of theW�k .
Then W � W�k for all k, and W is wandering: if some
TnW \W ¤ ;, then theremust be a k such that TnW�k\

W�k ¤ ;.
Moreover, W� � W for all  2 �. For let  2 �

be given. Choose k with sk D m(W�k ) > m(W�). By
the above, we have W�k � W�. Since W is the increasing
union of the W�k , we have W � W�k for all k. Therefore
W � W�, and W is an upper bound inW for the given
chain.

By Zorn’s Lemma, there is a maximal element W�

in W . Then D D [1iD�1TiW� is T-invariant, TjD is
completely dissipative, andC D X n D cannot contain any
wandering set of positive measure, by maximality of W�,
so TjC is conservative. �
Because of this decomposition, when looking for a �-finite
equivalent invariantmeasurewemay assume that the non-
singular system (X;B;m; T) is conservative, for if not we
can always construct one on the dissipative part.
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Remark 1 If (X;B;m) is nonatomic and T : X ! X is
nonsingular, invertible, and ergodic, in the sense that if
A 2 B satisfies T�1AD AD TA then either m(A) D 0 or
m(Ac ) D 0, then T is conservative. For if W is a wan-
dering set of positive measure, taking any A � W with
0 < m(A) < m(W) and forming[1iD�1TiAwill produce
an invariant set of positive measure whose complement
also has positive measure.

We want to reduce the problem of existence of a �-finite
equivalent invariant measure to that of a finite one by us-
ing first-returnmaps to sets of finite measure. For this pur-
pose it will be necessary to know that every conservative
nonsingular system is recurrent: almost every point of each
set of positive measure returns at some future time to that
set. This is easy to see, because for each B 2 B, the set

B� D
1[

iD1

T�i B (58)

is wandering. In fact much more is true.

Theorem 8 ([21]) For any nonsingular system (X;B;m;
T) the following properties are equivalent:

1. The system is incompressible: for each B 2 B such that
T�1B � B, we have m(B n T�1B) D 0.

2. The system is recurrent; for each B 2 B, with B� defined
as above, m(B n B�) D 0.

3. The system is conservative: there are no wandering sets
of positive measure.

4. The system is infinitely recurrent: for each B 2 B, almost
every point of B returns to B infinitelymany times, equiv-
alently,

m

 

B n
1\

nD0

1[

iDn

T�i B

!

D m

 

B n
1\

nD0

T�nB�
!

D 0 :

(59)

There is a very slick proof by F. B.Wright [38] of this result
in the even more general situation of a Boolean �-algebra
homomorphism (reproduced in [28]).

Using First-ReturnMaps,
and Counterexamples to Existence

Now given a nonsingular conservative system (X;B;m; T)
and a set B 2 B, for each x 2 B there is a smallest
nB(x) � 1 such that

TnB (x) 2 B : (60)

We define the first-return map TB : B! B by

TB(x) D TnB(x)(x) for all x 2 B : (61)

Using derivative maps, it is easy to reduce the problem
of existence of a �-finite equivalent invariant measure to
that of existence of finite equivalent invariant measures, in
a way.

Theorem 9 (see [14]) Let T be a conservative nonsingu-
lar transformation on a probability space (X;B;m). Then
there is a �-finite T-invariant measure � � m if and only
if there is an increasing sequence of sets Bn 2 B with
[1nD1Bn D X such that for each n the first-return map TBn

has a finite invariant measure equivalent to m restricted
to Bn.

Proof 7 Given a �-finite equivalent invariant measure �,
let the Bn be sets of finite �-measure that increase to X.
Conversely, given such a sequence Bn with finite invariant
measures �n for the first-return maps TBn , extend �1 in
the obvious way to an (at least �-finite) invariant measure
on the full orbit A1 D [

1
iD�1TiB1. Then replace B2 by

B2 n A1, and continue. �
There are many more checkable conditions for existence
of a �-finite equivalent invariant measure in the literature.
There are also examples of invertible ergodic nonsingular
systems for which there does not exist any �-finite equiv-
alent invariant measure due to Ornstein [27] and subse-
quently Chacon [9], Brunel [5], L. Arnold [2], and others.

Invariant Measures for Maps of the Interval or Circle

Finally we mention sample theorems from a huge array of
such results about existence of finite invariant measures
for maps of an interval or of the circle.

Theorem 10 (“Folklore Theorem” [1]) Let X D (0; 1)
and denote by m Lebesgue measure on X. Let T : X ! X
be a map for which there is a finite or countable partition
˛ D fAig of X into half-open intervals [ai ; bi ) satisfying
the following conditions. Denote by A0

i the interior of each
interval Ai . Suppose that

1. for each i, T : A0
i ! X is one-to-one and onto;

2. T is C2 on each A0
i ;

3. there is an n such that

inf
i

inf
x2A0

i

j(Tn)0(x)j > 1 ; (62)

4. for each i,

sup
x;y;z2A0

i

j
T 00(x)

T 0(y)T 0(z)
j <1 : (63)

Then for each measurable set B, limn!1 m(T�nB)
D �(B) exists and defines the unique T-invariant er-
godic probability measure on X that is equivalent to m.
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Moreover, the partition ˛ is weakly Bernoulli for T,
so that the natural extension of T is isomorphic to
a Bernoulli system.

A key example to which the theorem applies is that of the
Gauss map Tx D 1/x mod 1 with the partition for which
Ai D [1/(i C 1); 1/i) for each i D 1; 2; : : : . Coding orbits
toNN by letting a(x) D ai if x 2 Ai carries T to the shift
on the continued fraction expansion [a1; a2; : : : ] of x. It
was essentially known already to Gauss that T preserves
the measure whose density with respect to Lebesgue mea-
sure is 1/((1C x) log 2).

Theorem 11 (see [22]) Let X D S1, the unit circle, and
let T : X ! X be a (noninvertible) C2 map which is ex-
panding, in the sense that jT 0(x)j > 1 everywhere. Then
there is a unique finite invariant measure � equivalent
to Lebesgue measure m, and in fact � is ergodic and the
Radon-Nikodym derivative d�/dm has a continuous ver-
sion.

SomeMathematical Background

Lebesgue Spaces

Definition 5 Twomeasure spaces (X;B; �) and (Y ;C; �)
are isomorphic (sometimes also called isomorphic mod
0) if there are subsets X0 � X and Y0 � Y such
that �(X0) D 0 D �(Y0) and a one-to-one onto map
� : X n X0 ! Y n Y0 such that � and ��1 are measurable
and �(��1C) D �(C) for all measurable C � Y n Y0.

Definition 6 A Lebesgue space is a finite measure space
that is isomorphic to a measure space consisting of a (pos-
sibly empty) finite subinterval of R with the �-algebra of
Lebesgue measurable sets and Lebesgue measure, possibly
together with countably many atoms (point masses).

The measure algebra of a measure space (X;B; �) con-
sists of the pair (B̂; �̂), with B̂ the Boolean �-algebra (see
Sect. “A Range of Actions”, 3.) of Bmodulo the �-ideal of
sets of measure 0, together with the operations induced by
set operations in B, and �̂ is induced on B̂ by � on B. Ev-
ery measure algebra (B̂; �̂) is a metric space with the met-
ric d(A; B) D �̂(A4B) for all A; B 2 B̂. It is nonatomic if
whenever A; B 2 B̂ and A < B (which means A^ B D A),
either AD 0 or A D B. A homomorphism of measure al-
gebras  : (Ĉ; �̂)! (B̂; �̂) is a Boolean �-algebra homo-
morphism such that �̂(Ĉ) D �̂(C) for all Ĉ 2 Ĉ. The in-
verse of any factor map � : X ! Y from a measure space
(X;B; �) to a measure space (Y ;C; �) induces a homo-
morphism of measure algebras (Ĉ; �̂)! (B̂; �̂). We say
that a measure algebra is normalized if the measure of the
maximal element is 1: �̂(00) D 1.

We work within the class of Lebesgue spaces because
(1) they are the ones commonly encountered in the wide
range of naturally arising examples; (2) they allow us to
assume if we wish that we are dealing with a familiar space
such as [0; 1] or f0; 1gN ; and (3) they have the following
useful properties.

� (Carathéodory [7]) Every normalized and nonatomic
measure algebra whose associated metric space is sep-
arable (has a countable dense set) is measure-algebra
isomorphic with the measure algebra of the unit inter-
val with Lebesgue measure.

� (von Neumann [37]) Every complete separable metric
space with a Borel probability measure on the comple-
tion of the Borel sets is a Lebesgue space.

� (von Neumann [37]) Every homomorphism  : (Ĉ;
�̂) ! (B̂; �̂) of the measure algebras of two Lebesgue
spaces (Y ;C; �) and (X;B; �) comes from a factor
map: there are a set X0 � X with�(X0) D 0 and amea-
surable map � : X n X0 ! Y such that  coincides
with the map induced by ��1 from Ĉ to B̂.

Rokhlin Theory V. A. Rokhlin [31] provided an ax-
iomatic, intrinsic characterization of Lebesgue spaces. The
key ideas are the concept of a basis and the correspondence
of factors with complete sub-�-algebras and (not necessar-
ily finite or countable) measurable partitions of a special
kind.

Definition 7 A basis for a complete measure space
(X;B; �) is a countable family C D fC1;C2; : : : g of mea-
surable sets which generatesB: For each B 2 B there is C 2
B(C) (the smallest �-algebra of subsets of X that contains
C) such that B � C and �(C n B) D 0; and separates the
points of X: For each x; y 2 X with x ¤ y, there is Ci 2 C
such that either x 2 Ci ; y … Ci or else y 2 Ci ; x … Ci .

Coarse sub-�-algebras of B may not separate points of X
and thus may lead to equivalence relations, partitions, and
factor maps. Partitions of the following kind deserve care-
ful attention.

Definition 8 Let (X;B; �) be a complete measure space
and � a partition of X, meaning that up to a set of mea-
sure 0, X is the union of the elements of � , which are
pairwise disjoint up to sets of measure 0. We call � an R-
partition if there is a countable family D D fD1;D2; : : : g

of �-saturated sets (that is, each Di is a union of elements
of �) such that

for all distinct E; F 2 � ; there is Di such that
either E � Di ; F ª Di (so F � Dc

i )
or F � Di ; E ª Di (so E � Dc

i ) :
(64)
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Any such family D is called a basis for � .

Note that each element of an R-partition is necessarily
measurable: if C 2 � with basis fDig, then

C D
\
fDi : C � Dig : (65)

Every countable or finite measurable partition of a com-
plete measure space is an R-partition. The orbit partition
of a measure-preserving transformation is often not an
R-partition. (For example, if the transformation is ergodic,
the corresponding factor space will be trivial, consisting
of just one cell, rather than corresponding to the partition
into orbits as required.)

For any set B � X, let B0 D B and B1 D Bc D X n B.

Definition 9 A basis C D fC1;C2; : : : g for a complete
measure space (X;B; �) is called complete, and the space is
called complete with respect to the basis, if for every 0,1-se-
quence e 2 f0; 1gN ,

1\

iD1

Cei
i ¤ ; : (66)

C is called complete mod 0 (and (X;B; �) is called com-
plete mod 0 with respect to C, if there is a complete mea-
sure space (X 0;B0; �0) with a complete basis C0 such that
X is a full-measure subset of X 0, and Ci D C0i \ X for all
i D 1; 2; : : : .

From the definition of basis, each intersection in (66) con-
tains at most one point. The space f0; 1gN with Bernoulli
1/2; 1/2 measure on the completion of the Borel sets has
the complete basis Ci D f! : !i D 0g.

Proposition 5 If a measure space is complete mod 0 with
respect to one basis, then it is complete mod 0 with respect
to every basis.

Theorem 12 ([31]) A measure space is a Lebesgue space
(that is, isomorphic mod 0 with the usual Lebesgue measure
space of a possibly empty subinterval of R possibly together
with countably many atoms) if and only if it has a complete
basis.

In a Lebesgue space (X;B; �) there is a one-to-one onto
correspondence between complete sub-�-algebras of B
(that is, those for which the restriction of the measure
yields a complete measure space) and R-partitions of X:

Given an R-partition � , let B(�) denote the �-algebra
generated by � , which consists of all sets inB that are �-sat-
urated – unions of members of � – and letB(�) denote the
completion of B(�) with respect to �.

Conversely, given a complete sub-�-algebra C � B,
define an equivalence relation on X by x � y if for all

A 2 C, either x; y 2 A or else x; y 2 Ac . Themeasure alge-
bra (Ĉ; �̂) has a countable dense set Ĉ0 (take a countable
dense set fB̂ig for (B̂; �̂) and, for each i; j for which it is
possible, choose Ĉi j within distance 1/2 j of B̂i). Then rep-
resentatives Ci 2 C of the Ĉi j will be a basis for the parti-
tion � corresponding to the equivalence relation�.

Given any family fB�g, of complete sub-�-algebras
of B, their join is the intersection of all the sub-�-algebras
that contain their union:

_

�

B� D B(
[

�

B�) ; (67)

and their infimum is just their intersection:

^

�

B� D B(
\

�

B�) : (68)

These �-algebra operations correspond to the supremum
and infimumof the corresponding families ofR-partitions.
We say that a partition �1 is finer than a partition �2, and
write �1 � �2, if every element of �2 is a union of ele-
ments of �1. Given any family f��g of R-partitions, there
is a coarsest R-partition

W
� �� which refines all of them,

and a finest R-partition
V
� �� which is coarser than all of

them. We have
_

�

B(��) D B(
_

�

��) ;
^

�

B(��) D B(
^

�

��) : (69)

Now we discuss the relationship among factor maps
� : X ! Y from a Lebesgue space (X;B; �) to a com-
plete measure space (Y ;C; �), complete sub-�-algebras
of B, and R-partitions of X. Given such a factor map � ,
BY D �

�1C is a complete sub-�-algebra of B, and the
equivalence relation x1 � x2 if �(x1) D �(x2) determines
an R-partition �Y . (A basis for � can be formed from
a countable dense set in B̂Y as above.)

Conversely, given a complete sub-�-algebra C � B,
the identity map (X;B; �)! (X;C; �) is a factor map.
Alternatively, given an R-partition of X, we can form
a measure space (X/�;B(�); �� ) and a factor map
�� : X ! X/� as follows. The space X/� is just � itself; that
is, the points of X/� are the members (cells, or atoms) of
the partition � . B(�) consists of the �-saturated sets in B
considered as subsets of � , and �� is the restriction of �
to B(�). Completeness of (X;B; �) forces completeness of
(X/�;B(�); �� ). The map �� : X ! X/� is defined by let-
ting �(x) D �(x) D the element of � to which x belongs.
Thus for a Lebesgue space (X;B; �), there is a perfect cor-
respondence among images under factor maps, complete
sub-�-algebras of B, and R-partitions of X.
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Theorem 13 If (X;B; �) is a Lebesgue space and (Y ;C; �)
is a complete measure space that is the image of (X;B; �)
under a factor map, then (Y ;C; �) is also a Lebesgue space.

Theorem 14 Let (X;B; �) be a Lebesgue space, (Y ;C; �)
a separable measure space (that is, one with a countable
basis as above, equivalently one with a countable dense set
in its measure algebra), and � : X ! Y a measurable map
(��1C � B). Then ' is also forward measurable: if A � X
is measurable, then �(A) � Y is measurable.

Theorem 15 Let (X;B; �) be a Lebesgue space.

1. Every measurable subset of X, with the restriction of B
and �, is a Lebesgue space. Conversely, if a subset A of
X with the restrictions of B and � is a Lebesgue space,
then A is measurable (A 2 B).

2. The product of countably many Lebesgue spaces is
a Lebesgue space.

3. Every measure algebra isomorphism of (B̂; �̂) (defined
as above) is induced by a point isomorphism mod 0.

Disintegration of Measures Every R-partition � of
a Lebesgue space (X;B; �) has associated with it a canon-
ical system of conditional measures: Using the notation of
the preceding section, for �� -almost every C 2 X/� , there
are a �-algebra BC of subsets of C and a measure mC on
BC such that:

1. (C;BC ;mC ) is a Lebesgue space;
2. for every A 2 B, A\ C 2 BC for �� -almost every

C 2 � ;
3. for every A 2 B, the map C ! mC (A\ C) is B(�)-

measurable on X/� ;
4. for every A 2 B,

�(A) D
Z

X/�
mC (A\ C) d�� (C) : (70)

It follows that for f 2 L1(X), (a version of) its condi-
tional expectation (see the next section) with respect to the
factor algebra corresponding to � is given by

E( f jB(�)) D
Z

C
f dmC on �� - a.e. C 2 � ; (71)

since the right-hand side is B(�)-measurable and for each
A 2 B(�), its integral over any B 2 B(�) is, as required,
�(A\ B) (use the formula on B/(�jB)).

It can be shown that a canonical system of conditional
measures for an R-partition of a Lebesgue space is es-
sentially unique, in the sense that any two measures mC
and m0C will be equal for �� -almost all C 2 � . Also, any

partition of a Lebesgue space that has a canonical system
of conditional measures must be an R-partition.

These conditional systems of measures can be used to
prove the ergodic decomposition theorem and to show
that every factor situation is essentially projection of
a skew product onto the base (see [32]).

Theorem 16 Let (X;B; �) be a Lebesgue space. If � is an
R-partition of X, f(C;BC ;mC )g is a canonical system of
conditional measures for � , and A 2 B, define �(AjC) D
mC (A\ C). Then:

1. for every A 2 B, �(Aj�(x)) is a measurable function of
x 2 X;

2. if (�n) is an increasing sequence of R-partitions of X, then
for each A 2 B

�(Aj�n(x))! �(Aj
_

n
�n(X)) a.e. d� ; (72)

3. if (�n) is a decreasing sequence of R-partitions of X, then
for each A 2 B

�(Aj�n(x))! �(Aj
^

n
�n(X)) a.e. d� : (73)

This is a consequence of the Martingale and Reverse Mar-
tingale Convergence Theorems. The statements hold just
as well for f 2 L1(X) as for f D 111A for some A 2 B.

Conditional Expectation

Let (X;B; �) be a �-finite measure space, f 2 L1(X), and
F � B a sub-�-algebra of B. Then

�(F) D
Z

F
f d� (74)

defines a finite signed measure on F which is abso-
lutely continuous with respect to � restricted to F . So
by the Radon-Nikodym Theorem there is a function
g 2 L1(X;F ; �) such that

�(F) D
Z

F
g d� for all F 2 F : (75)

Any such function g, which is unique as an element of
L1(X;F ; �) (and determined only up to sets of �-mea-
sure 0) is called a version of the conditional expectation of
f with respect toF , and denoted by

g D E( f jF) : (76)

As an element of L1(X;B; �), E( f jF) is characterized by
the following two properties:

E( f jF) is F-measurable ; (77)
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Z

F
E( f jF) d� D

Z

F
f d� for all F 2 F : (78)

We think of E( f jF)(x) as our expected value for f if
we are given the information in F , in the sense that for
each F 2 F we know whether or not x 2 F . When F is
the �-algebra generated by a finite measurable partition ˛
of X and f is the characteristic function of a set A 2 B, the
conditional expectation gives the conditional probabilities
of A with respect to all the sets in ˛:

E(111AjF)(x) D �(Aj˛(x))
D �(A\ F)/�(F) if x 2 F 2 ˛ :

(79)

We write E( f ) D E( f jf;; Xg) D
R
X f d� for the ex-

pectation of any integrable function f . A measurable func-
tion f on X is independent of a sub-�-algebraF � B if for
each (a; b) � R and F 2 F we have

�( f�1(a; b)) \ F) D �( f�1(a; b))�(F) : (80)

A function � : R! R is convex if whenever t1; : : : ; tn � 0
and

Pn
iD1 ti D 1,

�(
nX

iD1

ti xi) �
nX

iD1

ti �(xi) for all x1; : : : ; xn 2 R : (81)

Theorem 17 Let (X;B; �) be a probability space and
F � B a sub-�-algebra.

1. E(�jF) is a positive contraction on Lp(X) for each p � 1.
2. If f 2 L1(X) is F-measurable, then E( f jF) D f

a.e. If f 2 L1(X) is F-measurable, then E( f gjF) D
fE(gjF) for all g 2 L1(X).

3. If F1 � F2 are sub-�-algebras of B, then E(E
( f jF2)jF1) D E( f jF1) a.e. for each f 2 L1(X).

4. If f 2 L1(X) is independent of the sub-�-algebra F �
B, then E( f jF) D E( f ) a.e.

5. If � : R! R is convex, f and � ı f 2 L1(X), and
F � B is a sub-�-algebra, then �(E( f jF)) � E(� ı
f jF) a.e.

The Spectral Theorem

A separable Hilbert space is one with a countable dense
set, equivalently a countable orthonormal basis. A normal
operator is a continuous linear operator S on a Hilbert
spaceH such that SS� D S�S, S� being the adjoint opera-
tor defined by (S f ; g) D ( f ; S�g) for all f ; g 2H . A con-
tinuous linear operator S is unitary if it is invertible and
S� D S�1. Two operators S1 and S2 on Hilbert spaces

H1 and H2, respectively, are called unitarily equivalent
if there is a unitary operator U : H1 !H2 which car-
ries S1 to S2: S2U D US1. The following brief account fol-
lows [10,30].

Theorem 18 Let S : H !H be a normal operator on
a separable Hilbert spaceH . Then there are mutually sin-
gular Borel probability measures �1; �1; �2; : : : such that
S is unitarily equivalent to the operator M on the direct sum
Hilbert space

L2(C; �1)˚ L2(C; �1)˚

 2M

kD1

L2(C; �2)

!

˚ � � � ˚

 mM

kD1

L2(C; �m )

!

˚ : : : (82)

defined by

M(( f1;1(z1;1); f1;2(z1;2); : : : );
( f1;1(z1;1)); ( f2;1(z2;1); f2;2(z2;2)); : : : )

D (z1;1 f1;1(z1;1); z1;2 f1;2(z1;2); : : : );
(z1;1 f1;1(z1;1)); (z2;1 f2;1(z2;1); z2;2 f2;2(z2;2)); : : : ) :

(83)

The measures�i are supported on the spectrum �(S) of S,
the (compact) set of all  2 C such that S � I does not
have a continuous inverse. Some of the �i may be 0. They
are uniquely determined up to absolute continuity equiv-
alence. The smallest absolute continuity class with respect
to which all the �i are absolutely continuous is called the
maximum spectral type of S. A measure representing this
type is

P
i �i /2i . We have in mind the example for which

H D L2(X;B; �) and S f D f ı T (the “Koopman oper-
ator”) for a measure-preserving system (X;B; �; T) on
a Lebesgue space (X;B; �), which is unitary: it is linear,
continuous, invertible, preserves scalar products, and has
spectrum equal to the unit circle.

The proof of Theorem 18 can be accomplished by
first decomposing H (in a careful way) into the di-
rect sum of pairwise orthogonal cyclic subspaces Hn :
eachHn is the closed linear span of fSi (S�) j fn : i; j � 0g
for some fn 2H . This means that for each n the set
fp(S; S�) fn : p is a polynomial in two variablesg is dense
in Hn . Similarly, by the Stone-Weierstrass Theorem the
set Pn of all polynomials p(z; z) is dense in the set
C(�(SjHn)) of continuous complex-valued functions on
�(SjHn). We define a bounded linear functional �n on
Pn by

�(p) D (p(S; S�) fn ; fn) (84)
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and extend it by continuity to a bounded linear func-
tional on C(�(SjHn)). It can be proved that this func-
tional is positive, and therefore, by the Riesz Representa-
tion Theorem, it corresponds to a positive Borel measure
on �(SjHn).

The various L2 spaces and multiplication operators in-
volved in the above theorem can be amalgamated into
a coherent whole, resulting in the following convenient
form of the Spectral Theorem for normal operators

Theorem 19 Let S : H !H be a normal operator on
a separable Hilbert space H . There are a finite mea-
sure space (X;B; �) and a bounded measurable function
h : X ! C such that S is unitarily equivalent to the opera-
tor of multiplication by h on L2(X;B; �).
The form of the Spectral Theorem given in Theorem 18
is useful for discussing absolute continuity and multiplic-
ity properties of the spectrum of a normal operator. An-
other form, involving spectral measures, has useful conse-
quences such as the functional calculus.

Theorem 20 Let S : H !H be a normal operator on
a separable Hilbert spaceH . There is a unique projection-
valued measure E defined on the Borel subsets of the spec-
trum �(S) of S such that E(�(S)) D I (D the identity on
H );

 

E

 
1[

iD1

Ai

!!

f D
1X

iD1

(E(Ai )) f (85)

whenever A1;A2; : : : are pairwise disjoint Borel subsets
of �(S) and f 2H , with the series converging in norm; and

S D
Z


(S)
 dE() : (86)

Spectral integrals such as the one in (86) can be defined
by reducing to complex measures � f ;g(A) D (E(A) f ; g),
for f ; g 2H and A � �(S) a Borel set. Given a bounded
Borel measurable function � on �(S), the operator

V D �(S) D
Z


(S)
�() dE() (87)

is determined by specifying that

(V f ; g) D
Z


(S)
�() d� f ;g for all f ; g 2H : (88)

Then

Sk D
Z


(S)
k dE() for all k D 0; 1; : : : : (89)

These spectral integrals sometimes behave a bit
strangely:

If V1 D
Z


(S)
�1() dE()

and V2 D
Z


(S)
�2() dE() ;

then V1V2 D
Z


(S)
�1()�2() dE() :

(90)

Finally, if f 2H and � is a finite positive Borel mea-
sure that is absolutely continuous with respect to � f ; f ,
then there is g in the closed linear span of fSi(S�) j f : i; j �
0g such that � D �g;g .

Theorem 20 can be proved by applying Theorem 19,
which allows us to assume that H D L2(X;B; �) and S
is multiplication by h 2 L1(X;B; �). For any Borel set
A � �(S), let E(A) be the projection operator given by
multiplication by the 0; 1-valued function 111A ı h.

Future Directions

The mathematical study of dynamical systems arose in the
late nineteenth and early twentieth century, along with
measure theory and probability theory, so it is a young
field with many interesting open problems. New questions
arise continually from applications and from interactions
with other parts of mathematics. Basic aspects of the prob-
lems of classification, topological or smooth realization,
and systematic construction of measure-preserving sys-
tems remain open. There is much work to be done to un-
derstand the relations among systems and different types
of systems (factors and relative properties, joinings and
disjointness, various notions of equivalence with associ-
ated invariants). There is a continual need to determine
properties of classes of systems and of particular systems
arising from applications or other parts of mathematics
such as probability, number theory, geometry, algebra, and
harmonic analysis. Some of these questions are mentioned
in more detail in the other articles in this collection.
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Glossary

Mechanism A machine or part of a machine that per-
forms a particular task computation: the use of a com-
puter for calculation.

Computable Capable of being worked out by calculation,
especially using a computer.

Simulation The term simulation will be used to denote
both the modeling of a physical system by a computer
as well as the modeling of the operation of a computer
by a mechanical system; the difference will be clear
from the context.

Definition of the Subject

Mechanical devices for computation appear to be largely
displaced by the widespread use of microprocessor-based
computers that are pervading almost all aspects of our
lives. Nevertheless, mechanical devices for computation
are of interest for at least three reasons:

(a) Historical: The use of mechanical devices for compu-
tation is of central importance in the historical study
of technologies, with a history dating back thousands
of years and with surprising applications even in rela-
tively recent times.

(b) Technical & Practical: The use of mechanical de-
vices for computation persists and has not yet been
completely displaced by widespread use of micropro-
cessor-based computers. Mechanical computers have
found applications in various emerging technologies
at the micro-scale that combine mechanical functions
with computational and control functions not feasi-
ble by purely electronic processing. Mechanical com-
puters also have been demonstrated at the molecu-
lar scale, and may also provide unique capabilities at
that scale. The physical designs for these modern mi-
cro and molecular-scale mechanical computers may
be based on the prior designs of the large-scale me-
chanical computers constructed in the past.

(c) Impact of Physical Assumptions on Complexity of
Motion Planning, Design, and Simulation: The study
of computation done by mechanical devices is also of
central importance in providing lower bounds on the
computational resources such as time and/or space
required to simulate a mechanical system observ-
ing given physical laws. In particular, the problem
of simulating the mechanical system can be shown
to be computationally hard if a hard computational
problem can be simulated by the mechanical system.
A similar approach can be used to provide lower
bounds on the computational resources required to
solve various motion planning tasks that arise in the
field of robotics. Typically, a robotic motion plan-
ning task is specified by a geometric description of
the robot (or collection of robots) to be moved, its
initial and final positions, the obstacles it is to avoid,
as well as a model for the type of feasible motion and
physical laws for the movement. The problem of plan-
ning, such as the robotic motion-planning task, can be
shown to be computationally hard if a hard computa-
tional problem can be simulated by the robotic mo-
tion-planning task.

Introduction

Abstract Computing Machine Models

To gauge the computational power of a family of mechan-
ical computers, we will use a widely known abstract com-
putational model known as the Turing machine, defined
in this section.

The TuringMachine

The Turing machinemodel formulated by Alan Turing [1]
was the first complete mathematical model of an abstract
computing machine that possessed universal computing
power. The machine model has (i) a finite state transi-
tion control for logical control of the machine processing,
(ii) a tape with a sequence of storage cells containing sym-
bolic values, and (iii) a tape scanner for reading and writ-
ing values to and from the tape cells, which could be made
to move (left and right) along the tape cells.

A machine model is abstract if the description of the
machine transition mechanism or memory mechanism
does not provide specification of the mechanical appara-
tus used to implement them in practice. Since Turing’s de-
scription did not include any specification of the mechan-
ical mechanism for executing the finite state transitions, it
can’t be viewed as a concrete mechanical computing ma-
chine, but instead is an abstract machine. Still it is valu-
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able computational model, due to it simplicity and very
widespread use in computational theory.

A universal Turing machine simulates any other Tur-
ing machine; it takes its input a pair consisting of a string
providing a symbolic description of a Turing machine M
and the input string x, and simulates M on input x. Be-
cause of its simplicity and elegance, the Turing machine
has come to be the standard computing model used for
most theoretical works in computer science. Informally,
the Church–Turing hypothesis states that a Turing ma-
chine model can simulate a computation by any “reason-
able” computational model (we will discuss some other
reasonable computational models below).

Computational Problems

A computational problem is: given an input string specified
by a string over a finite alphabet, determine the Boolean
answer: 1 is the answer is YES, and otherwise 0. For sim-
plicity, we generally will restrict the input alphabet to be
the binary alphabet {0,1}. The input size of a computa-
tional problem is the number of input symbols; which is
the number of bits of the binary specification of the in-
put. (Note: It is more common tomake these definitions in
terms of language acceptance. A language is a set of strings
over a given finite alphabet of symbols. A computational
problem can be identified with the language consisting of
all strings over the input alphabet where the answer is 1.
For simplicity, we defined each complexity class as the cor-
responding class of problems.)

Recursively Computable Problems
and Undecidable Problems

There is a large class of problems, known as recursively
computable problems, that Turing machines compute in
finite computations, that is, always halting in finite time
with the answer. There are certain problems that are not
recursively computable; these are called undecidable prob-
lems. The Halting Problem is: given a Turing Machine de-
scription and an input, output 1 if the Turingmachine ever
halts, and else output 0. Turing proved the halting problem
is undecidable. His proof used a method known as a diag-
onalization method; it considered an enumeration of all
Turing machines and inputs, and showed a contradiction
occurs when a universal Turing machine attempts to solve
the Halting problem for each Turing machine and each
possible input.

Computational Complexity Classes

Computational complexity (see [2]) is the amount of com-
putational resources required to solve a given computa-

tional problem. A complexity class is a family of problems,
generally defined in terms of limitations on the resources
of the computational model. The complexity classes of in-
terest here will be associated with restrictions on the time
(number of steps until the machine halts) and/or space
(the number of tape cells used in the computation) of Tur-
ing machines. There are a number of notable complexity
classes:

P is the complexity class associated with efficient com-
putations, and is formally defined to be the set of problems
solved by Turing machine computations running in time
polynomial to the input size (typically, this is the number
of bits of the binary specification of the input).

NP is the complexity class associated with combinato-
rial optimization problems which, if solved, can be easily
determined to have correct solutions. It is formally defined
to be the set of problems solved by Turing machine com-
putations using nondeterministic choice running in poly-
nomial time.

PSPACE is the complexity class defined as the set of
problems solved by Turing machines running in space
polynomial to the input size.

EXPTIME is the complexity class defined as the set
of problems solved by Turing machine computations run-
ning in time exponential to the input size.

NP and PSPACE are widely considered to have in-
stances that are not solvable in P, and it has been proved
that EXPTIME has problems that are not in P.

Polynomial Time Reductions

A polynomial time reduction from a problem Q0 to a prob-
lem Q is a polynomial time Turing machine computation
that transforms any instance of the problem Q0 into an in-
stance of the problem Q which has an answer YES if and
only if the problem Q0 has an answer YES. Informally, this
implies that problem Q can be used to efficiently solve the
problem Q0. A problem Q is hard for a family F of prob-
lems if for every problem Q0 in F, there is a polynomial
time reduction from Q0 to Q. Informally, this implies that
problem Q can be used to efficiently solve any problem
in F. A problem Q is complete for a family F of problems if
Q is in C and also hard for F.

Hardness Proofs for Mechanical Problems

We will later consider various mechanical problems and
characterize their computation power:

� Undecidable mechanical problem; this was typically
proven by a computable reduction from the halting
problem for a universal Turing machine problem to an
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instance of the mechanical problem; this is equivalent
to showing the mechanical problem can be viewed as
a computational machine that can simulate a universal
Turing machine computation.

� Mechanical problems that are hard for NP, PSPACE, or
EXPTIME; typically this was proved by a polynomial
time reduction from the problems in the appropriate
complexity class to an instance of the mechanical prob-
lem; again, this is equivalent to showing the mechani-
cal problem can be viewed as a computational machine
that can simulate a Turingmachine computation in the
appropriate complexity class.

The simulation proofs in either case often provide insight
into the intrinsic computational power of the mechanical
problem or mechanical machine.

Other Abstract Computing Machine Models

There are a number of abstract computing models dis-
cussed in this Chapter, that are equivalent, or nearly equiv-
alent, to conventional deterministic Turing machines.

� Reversible Turing machines A computing device is
(logically) reversible if each transition of its computa-
tion can be executed both in the forward direction as
well as in the reverse direction, without loss of informa-
tion. Landauer [3] showed that irreversible computa-
tions must generate heat in the computing process, and
that reversible computations have the property that if
executed slowly enough, can (in the limit) consume no
energy in an adiabatic computation. A reversible Turing
machine model allows the scan head to observe 3 con-
secutive tape symbols and to execute transitions both
in the forward as well as in the reverse direction. Ben-
nett [4] showed that any computing machine (e. g., an
abstract machine such as a Turing machine) can be
transformed to do only reversible computations, which
implied that reversible computing devices are capable
of universal computation. Bennett’s reversibility con-
struction required extra space to store information to
insure reversibility, but this extra space can be reduced
by increasing the time. Vitanyi [5] gave trade-offs be-
tween time and space in the resulting reversible ma-
chine. Lewis and Papadimitriou [95] showed that re-
versible Turing machines are equivalent in computa-
tional power to conventional Turing machines when
the computations are bounded by polynomial time, and
Crescenzi and Papadimitriou [6] proved a similar result
when the computations are bounded by polynomial
space. This implies that the definitions of the complex-
ity classes P and PSPACE do not depend on the Tur-

ing machines being reversible or not. Reversible Turing
machines are used in many of the computational com-
plexity proofs to be mentioned involving simulations
by mechanical computing machines.

� Cellular automata These are sets of finite state ma-
chines that are typically connected together by a grid
network. There are known efficient simulations of
the Turing machine by cellular automata (e. g., see
Wolfram [7] for some known universal simulations).
A number of the particle-based mechanical machines
to be described are known to simulate cellular au-
tomata.

� Randomized Turing machines The machine can
make random choices in its computation.While the use
of randomized choice can be very useful in many effi-
cient algorithms, there is evidence that randomization
only provides limited additional computational power
above conventional deterministic Turing machines (In
particular, there are a variety of pseudo-random num-
ber generation methods proposed for producing long
pseudo-random sequences from short truly random
seeds, which are widely conjectured to be indistin-
guishable from truly random sequences by polynomial
time Turning machines.) A number of the mechanical
machines to be described using Brownian-motion have
natural sources of random numbers.

There are also a number of abstract computing machine
models that appear to bemore powerful than conventional
deterministic Turing machines.

� Real-valued Turing machines According to Blum et
al. [8], each storage cell or register in these machines
can store any real value (that may be transcenden-
tal). Operations are extended to allow infinite precision
arithmetic operations on real numbers. To our knowl-
edge, none of the analog computers that we will de-
scribe in this chapter have this power.

� Quantum computers A quantum superposition is
a linear superposition of basis states; it is defined by
a vector of complex amplitudes whose absolute mag-
nitudes sum to 1. In a quantum computer, the quan-
tum superposition of basis states is transformed in each
step by a unitary transformation (this is a linear map-
ping that is reversible and always preserves the value of
the sum of the absolute magnitudes of its inputs). The
outputs of a quantum computation are read by obser-
vations that that project the quantum superposition to
classical values; a given state is chosen with probabil-
ity defined by the magnitude of the amplitude of that
state in the quantum superposition. Feynman [9] and
Benioff [10] were the first to suggest the use of quan-
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tum mechanical principles for doing computation, and
Deutsch [11] was the first to formulate an abstract
model for quantum computing and show it was univer-
sal. Since then, there is a large body of work in quan-
tum computing (see Gruska [12] and Nielsen [13])
and quantum information theory (see Jaeger [14] and
Reif [15]). Some of the particle-based methods for me-
chanical computing described belowmake use of quan-
tum phenomena, but generally are not considered to
have the full power of quantum computers.

The Computational Complexity of Motion Planning
and Simulation ofMechanical Devices

Complexity of Motion Planning
for Mechanical Devices with Articulated Joints

The first known computational complexity result involv-
ing mechanical motion or robotic motion planning was
in 1979 by Reif [16]. He considered a class of mechan-
ical systems consisting of a finite set of connected poly-
gons with articulated joints, which were required to be
moved between two configurations in three dimensional
space avoiding a finite set of fixed polygonal obstacles. To
specify the movement problem (as well as the other move-
ment problems described below unless otherwise stated),
the object to be moved, as well as its initial and final
positions, and the obstacles are all defined by linear in-
equalities with rational coefficients with a finite number of
bits. He showed that this class of motion planning prob-
lems is hard for PSPACE. Since it is widely conjectured
that PSPACE contains problems which are not solvable
in polynomial time, this result provided the first evidence
that these robotic motion planning problems were not
solvable in time polynomial in n if the number of degrees
of freedom grew with n. His proof involved simulating
a reversible Turing machine with n tape cells by a mechan-
ical device with n articulated polygonal arms that had to
be maneuvered through a set of fixed polygonal obstacles
similar to the channels in Swiss-cheese. These obstacles
where devised to force the mechanical device to simulate
transitions of the reversible Turing machine to be simu-
lated, where the positions of the arms encoded the tape cell
contents, and tape read/write operations were simulated
by channels of the obstacles which forced the arms to be
reconfigured appropriately. This class of movement prob-
lems can be solved by reduction to the problem of find-
ing a path in a O(n) dimensional space avoiding a fixed set
of polynomial obstacle surfaces, which can be solved by
a PSPACE algorithm from Canny [17]. Hence this class of
movement problems are PSPACE complete. (In the case
where the object to be moved consists of only one rigid

polygon, the problem is known as the piano mover’s prob-
lem and has a polynomial time solution by Schwartz and
Sharir [18].)

Other PSPACE Completeness Results
for Mechanical Devices

There were many subsequent PSPACE completeness re-
sults for mechanical devices (two of which we mention be-
low), which generally involvedmultiple degrees of freedom:

� The Warehouseman’s Problem In 1984 Schwartz
and Sharir [19] showed that moving a set of n dis-
connected polygons in two dimensions from an initial
position to a final position among a finite set of fixed
polygonal obstacles is PSPACE hard.

There are two classes of mechanical dynamic systems, the
Ballistic machines and the Browning Machines described
below, that can be shown to provide simulations of poly-
nomial space Turing machine computations.

Ballistic Collision-Based Computing Machines
and PSPACE

A ballistic computer (see Bennett [20,21]) is a conservative
dynamical system that follows a mechanical trajectory iso-
morphic to the desired computation. It has the following
properties:

� Trajectories of distinct ballistic computers can’t be
merged,

� All operations of a computational must be reversible,
� Computations, when executed at constant velocity, re-

quire no consumption of energy,
� Computations must be executed without error, and

need to be isolated from external noise and heat
sources.

Collision-based computing [22] is computation by a set of
particles, where each particle holds a finite state value, and
state transformations are executed at the time of collisions
between particles. Since collisions between distinct pairs of
particles can be simultaneous, themodel allows for parallel
computation. In some cases the particles can be configured
to execute cellular automata computations [23]. Most pro-
posed methods for Collision-based computing are ballistic
computers as defined above. Examples of concrete physi-
cal systems for collision-based computing are:

� The billiard ball computers Fredkin and Toffoli [24]
considered a mechanical computing model, the billiard
ball computer, consisting of spherical billiard balls with
polygonal obstacles, where the billiard balls were as-
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sumed to have perfect elastic collisions with no friction.
They showed in 1982 that a Billiard Ball Computer,
with an unbounded number of billiard balls, could
simulate a reversible computing machine model that
used reversible Boolean logical gates known as Toffoli
gates. When restricted to a finite set of n spherical bil-
liard balls, their construction provides a simulation of
a polynomial space-reversible Turing machine.

� Particle-like waves in excitable medium Certain
classes of excitable medium have discrete models
that can exhibit particle-like waves which propa-
gate through the media [25]. Using this phenomena,
Adamatzky [26] gave a simulation of a universal Tur-
ing Machine. If restricted to n particle-waves, his simu-
lation provides a simulation of a polynomial space Tur-
ing Machine.

� Soliton computers A soliton is a wave packet that
maintains a self-reinforcing shape as it travels at con-
stant speed through a nonlinear dispersive media.
A soliton computer [27,28] makes use of optical soli-
tons to hold state, and state transformations are made
by colliding solitons.

Brownian Machines and PSPACE

In a mechanical system exhibiting fully Brownian motion,
the parts move freely and independently, up to the con-
straints that either link the parts together or forces the
parts exert on each other. In a fully Brownian motion, the
movement is entirely due to heat and there is no other
source of energy driving the movement of the system. An
example of a mechanical system with fully Brownian mo-
tion is a set of particles exhibiting Browning motion, as
with electrostatic interaction. The rate of movement a of
mechanical system with fully Brownian motion is deter-
mined entirely by the drift rate in the randomwalk of their
configurations.

In other mechanical systems, known as driven Brow-
nian motion, the system’s movement is only partly due to
heat; in addition, there is a source of energy driving the
movement of the system. Examples of driven Brownian
motion systems are:

� Feynman’s Ratchet and Pawl [29], which is a mechani-
cal ratchet system that has a driving force but that can
operate reversibly.

� Polymerase enzyme, which uses ATP as fuel to drive
their average movement forward, but also can operate
reversibly.

There is no energy consumed by fully Brownian motion
devices, whereas driven Brownian motion devices require

power that grows as a quadratic function of the drive rate
in which operations are executed (see Bennett [21]).

Bennett [20] provides two examples of Brownian com-
puting machines:

� An enzymatic machine This is a hypothetical bio-
chemical device that simulates a Turing machine, us-
ing polymers to store symbolic values in a manner
to similar to Turing machine tapes, and uses hypo-
thetical enzymatic reactions to execute state transitions
and read/write operations into the polymer memory.
Shapiro [30] also describes a mechanical Turing ma-
chine whose transitions are executed by hypothetical
enzymatic reactions.

� A clockwork computer This is a mechanism with
linked articulated joints, with a Swiss-cheese like set of
obstacles, which force the device to simulate a Turing
machine. In the case where the mechanism of Bennett’s
clockwork computer is restricted to have a linear num-
ber of parts, it can be used to provide a simulation of
PSPACE similar that of [16].

Hardness Results for Mechanical Devices
with a Constant Number of Degrees of Freedom

There were also additional computation complexity hard-
ness results for mechanical devices, which only involved
a constant number of degrees of freedom. These results ex-
ploited special properties of the mechanical systems to do
the simulation.

� Motion planning with moving obstacles Reif and
Sharir [31] considered the problem of planning themo-
tion of a rigid object (the robot) between two locations,
while avoiding a set of obstacles, some of which are
rotating. They showed this problem is PSPACE hard.
This result was perhaps surprising, since the number
of degrees of freedom of movement of the object to be
moved was constant. However, the simulation used the
rotational movement of obstacles to force the robot to
be moved only to a position that encoded all the tape
cells ofM. The simulation of a Turing machineM was
made by forcing the object between such locations (that
encoded the entire n tape cell contents ofM) at partic-
ular times, and further forced that object to move be-
tween these locations over time in a way that simulated
state transitions ofM.

NP Hardness Results for Path Problems
in Two and Three Dimensions

Shortest path problems in fixed dimensions involve only
a constant number of degrees of freedom. Nevertheless,
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there are a number of NP hardness results for such prob-
lems. These results also led to proofs that certain phys-
ical simulations (in particular, simulation of multi-body
molecular and celestial simulations) are NP hard, and
therefore not likely efficiently computable with high pre-
cision.

� Finding shortest paths in three dimensions Con-
sider the problem of finding a shortest path of a point
in three dimensions (where distance is measured in
the Euclidean metric) avoiding fixed polyhedral obsta-
cles whose coordinates are described by rational num-
bers with a finite number of bits. This shortest path
problem can be solved in PSPACE [17], but the pre-
cise complexity of the problem is an open problem.
Canny and Reif [32] were the first to provide a hard-
ness complexity result for this problem; they showed
the problem is NP hard. Their proof used novel tech-
niques called free path encoding that used 2n homotopy
equivalence classes of shortest paths. Using these tech-
niques, they constructed exponentially many shortest
path classes (with distinct homotopy) in single-source
multiple-destination problems involving O(n) polygo-
nal obstacles. They used each of these paths to encode
a possible configuration of the nondeterministic Tur-
ing machine with n binary storage cells. They also pro-
vided a technique for simulating each step of the Turing
machine by the use of polygonal obstacles whose edges
forced a permutation of these paths that encoded the
modified configuration of the Turing machine. These
encodings allowed them to prove that the single-source
single-destination problem in three dimensions is NP-
hard. Similar free path encoding techniques were used
for a number of other complexity hardness results for
the mechanical simulations described below.

� Kinodynamic planning Kinodynamic planning is
the task of motion planning while subject to simul-
taneous kinematic and dynamic constraints. The al-
gorithms for various classes of kinodynamic planning
problems were first developed in [33]. Canny and
Reif [32] also used free path encoding techniques to
show that two dimensional kinodynamic motion plan-
ning with a bounded velocity is NP-hard.

� Shortest curvature-constrained path planning in two
dimensions We now consider curvature-constrained
shortest path problems which involve finding a shortest
path by a point among polygonal obstacles, where the
there is an upper bound on the path curvature. A class
of curvature-constrained shortest path problems in two
dimensions were shown to be NP hard by Reif and
Wang [34] by devising a set of obstacles that forced the

shortest curvature-constrained path to simulate a given
nondeterministic Turing machine.

PSPACE Hard Physical Simulation Problems

� Ray tracing with a rational placement and geome-
try Ray tracing is defined as determining if a light ray
reaches some given final position, given an optical sys-
tem and the position and direction of the initial light
ray. This problem of determining the path of light ray
through an optical systemwas first formulated by New-
ton in his book on Optics. Ray tracing has been used
for designing and analyzing optical systems. It is also
used extensively in computer graphics to render scenes
with complex curved objects under global illumination.
Reif, Tygar, and Yoshida [35] showed the problem of
ray tracing in various three dimensional optical sys-
tems, where the optical devices either consist of reflec-
tive objects defined by quadratic equations or refrac-
tive objects defined by linear equations, but in either
case the coefficients are restricted to be rational. They
showed that these ray tracing problems are PSPACE
hard. Their proof used free path encoding techniques
for simulating a nondeterministic linear space Turing
machine, where the position of the ray as it enters a re-
flective or refractive optical object (such as a mirror or
prism face) encodes the entire memory of the Turing
machine to be simulated, and further steps of the Tur-
ing machine are simulated by optically inducing appro-
priate modifications in the position of the ray as it en-
ters other reflective or refractive optical objects. This
result implies that the apparently simple task of highly
precise ray tracing through complex optical systems is
not likely to be efficiently executed by a computer in
polynomial time. It is another example of the use of
a physical system to do powerful computations.

� Molecular and gravitational mechanical systems
A quite surprising example of using physical systems to
do computation is the work of Tate and Reif [36] on the
complexity of n-body simulations, where they showed
that certain n-body simulation problems are PSPACE
hard, and therefore not likely to be efficiently com-
putable with high precision. In particular, they con-
sidered multi-body systems in three dimensions with
n particles and inverse polynomial force laws between
each pair of particles (e. g., molecular systems with
Columbic force laws or celestial simulations with grav-
itational force laws). It is quite surprising that such
systems can be configured to do computation. Their
hardness proof made use of free path encoding tech-
niques similar to the proof of PSPACE-hardness of ray
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tracing. A single particle, which we will call the mem-
ory-encoding particle, is distinguished. The position of
a memory-encoding particle as it crosses a plane en-
codes the entire memory of the Turing machine to be
simulated, and further steps of the Turing machine are
simulated by inducing modifications in the trajectory
of the memory-encoding particle. The modifications
in the trajectory of the memory-encoding particle are
made by the use of other particles that have trajectories
which induce force fields that essentially act like force-
mirrors, causing reflection-like changes in the trajec-
tory of the memory-encoding particle. Hence, highly
precise n-body molecular simulation is not likely to be
efficiently executed by a polynomial time computer.

A Provably Intractable Mechanical Simulation
Problem: Compliant Motion Planning
with Uncertainty in Control

Next, we consider compliant motion planning with uncer-
tainty in control. Specifically, we consider a point in 3 di-
mensions which is commanded to move in a straight line,
but whose actual motion may differ from the commanded
motion, possibly involving sliding against obstacles. Given
that the point initially lies in some start region, the prob-
lem is to find a sequence of commanded velocities that is
guaranteed to move the point to the goal. This problem
was shown by Canny and Reif [32] to be non-determinis-
tic EXPTIME hard, making it the first provably intractable
problem in robotics. Their proof used free path encoding
techniques that exploited the uncertainty of position to en-
code exponential number of memory bits in a Turing ma-
chine simulation.

Undecidable Mechanical Simulation Problems

� Motion planning with friction Consider a class of
mechanical systems whose parts consist of a finite
number of rigid objects defined by linear or quadratic
surface patches connected by frictional contact link-
ages between the surfaces. (Note: this class of mech-
anisms is similar to the analytical engine developed
by Babbage described in the next sections, except that
there are smooth frictional surfaces rather than toothed
gears). Reif and Sun [37] proved that an arbitrary Tur-
ing machine could be simulated by a (universal) fric-
tional mechanical system in this class consisting of a fi-
nite number of parts. The entire memory of a univer-
sal Turing machine was encoded in the rotational posi-
tion of a rod. In each step, the mechanism used a con-
struct similar to Babbage’s machine to execute a state
transition. The key idea in their construction is to uti-

lize frictional clamping to allow for setting arbitrary
high gear transmission. This allowed the mechanism
to make state transitions for arbitrary number of steps.
Simulation of a universal Turing machine implied that
the movement problem is undecidable when there are
frictional linkages. (A problem is undecidable if there
is no Turing machine that solves the problem for all
inputs in finite time.) It also implied that a mechani-
cal computer could be constructed with only a constant
number of parts that has the power of an unconstrained
Turing machine.

� Ray tracing with non-rational postitioning Con-
sider again the problem of ray tracing in a three di-
mensional optical systems, where the optical devices
again may either consist of reflective objects defined
by quadratic equations, or refractive objects defined by
linear equations. Reif et al. [35] also proved that in the
case where the coefficients of the defining equations are
not restricted to be rational and include at least one ir-
rational coefficient, then the resulting ray tracing prob-
lem could simulate a universal Turing machine, and so
is undecidable. This ray tracing problem for reflective
objects is equivalent to the problem of tracing the tra-
jectory of a single particle bouncing between quadratic
surfaces, which is also undecidable by this same re-
sult of [35]. An independent result of Moore [38] also
showed that the problem of tracing the trajectory of
a single particle bouncing between quadratic surfaces
is undecidable.

� Dynamics and nonlinear mappings Moore [39],
Ditto [40] andMunakata et al. [41] have also given uni-
versal Turing machine simulations of various dynami-
cal systems with nonlinear mappings.

ConcreteMechanical Computing Devices

Mechanical computers have a very extensive history; some
surveys are given in Knott [42], Hartree [43], Engineer-
ing Research Associates [44], Chase [45], Martin [46],
and Davis [47]. Norman [48] recently provided a unique
overview of mechanical calculators and other histori-
cal computers, summarizing the contributions of notable
manuscripts and publications on this topic.

Mechanical Devices for Storage and Sums of Numbers

Mechanical methods such as notches on stones and bones,
or knots and piles of pebbles, have been used since the
Neolithic period for storing and summing integer values.
One example of such a device, the abacus, which may have
been developed in Babylonia approximately 5000 years
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ago, makes use of beads sliding on cylindrical rods to fa-
cilitate addition and subtraction calculations.

Analog Mechanical Computing Devices

Computing devices are considered here to be analog (as
opposed to digital) if they don’t provide a method for
restoring calculated values to discrete values, whereas dig-
ital devices provide restoration of calculated values to dis-
crete values. (Note that both analog and digital comput-
ers use some kind of physical quantity to represent val-
ues that are stored and computed, so the use of physical
encoding of computational values is not necessarily the
distinguishing characteristic of analog computing.) De-
scriptions of early analog computers are given by Hors-
burgh [49], Turck [50], Svoboda [51], Hartree [43], Engi-
neering Research Associates [44], and Soroka [52]. There
are a wide variety of mechanical devices used for analog
computing:

� Mechanical devices for astronomical and celestial
calculation While we do not have sufficient space in
this article to fully discuss this rich history, we note
that various mechanisms for predicting lunar and so-
lar eclipses using optical illumination of configurations
of stones and monoliths (for example, Stonehenge) ap-
pear to date to the Neolithic period. Mechanical mech-
anisms for more precisely predicting lunar and solar
eclipsesmay have been developed in the classical period
of ancient history. The most impressive and sophis-
ticated known example of an ancient gear-based me-
chanical device is the Antikythera Mechanism, which
is thought to have been constructed by Greeks in ap-
proximately 2200 years ago. Recent research [53] pro-
vides evidence it may have been used to predict celes-
tial events such as lunar and solar eclipses by the analog
calculation of arithmetic-progression cycles. Like many
other intellectual heritages, some elements of the de-
sign of such sophisticated gear-based mechanical de-
vices may have been preserved by the Arabs after that
period, and then transmitted to the Europeans in the
middle ages.

� Planimeters There is a considerable history of me-
chanical devices that integrate curves. A planimeter is
a mechanical device that integrates the area of the re-
gion enclosed by a two dimensional closed curve, where
the curve is presented as a function of the angle from
some fixed interior point within the region. One of the
first known planimeters was developed by J.A. Her-
mann in 1814 and improved (as the polar planimeter)
by Hermann in 1856. This led to a wide variety of me-
chanical integrators known as wheel-and-disk integra-

tors, whose input is the angular rotation of a rotating
disk and whose output, provided by a tracking wheel,
is the integral of a given function of that angle of ro-
tation. More general mechanical integrators known as
ball-and-disk integrators, whose input provided 2 de-
grees of freedom (the phase and amplitude of a com-
plex function), were developed by James Thomson in
1886. There are also devices, such as the Integraph
of Abdank Abakanoviez (1878) and C.V. Boys (1882),
which integrate a one-variable real function of x pre-
sented as a curve y D f (x) on the Cartesian plane. Me-
chanical integrators were later widely used inWWI and
WWII military analog computers for solution of ballis-
tics equations, artillery calculations and target tracking.
Various other integrators are described in Morin [54].

� Harmonic Analyzers A Harmonic Analyzer is a me-
chanical device which calculates the coefficients of the
Fourier Transform of a complex function of time, such
as a sound wave. Early harmonic analyzers were devel-
oped by Thomson [55] and Henrici [56] using multi-
ple pulleys and spheres, known as ball-and-disk inte-
grators.

� Harmonic Synthesizers A Harmonic Synthesizer is
a mechanical device that interpolates a function, given
the Fourier coefficients. Thomson (then known as Lord
Kelvin) [57] developed the first known Harmonic An-
alyzer in 1886 which used an array of James Thom-
son’s (his brother) ball-and-disk integrators. Kelvin’s
Harmonic Synthesizer made use of these Fourier co-
efficients to reverse this process and interpolate func-
tion values, by using a wire wrapped over the wheels
of the array to form a weighted sum of their angular
rotations. Kelvin demonstrated the use of these ana-
log devices predicted the tide heights of a port: first
his Harmonic Analyzer calculated the amplitude and
phase of the Fourier harmonics of solar and lunar
tidal movements, and then his Harmonic Synthesizer
formed their weighted sum to predict the tide heights
over time. Many other Harmonic Analyzers were later
developed, including one by Michelson and Stratton
(1898) which performed Fourier analysis using an ar-
ray of springs. Miller [58] gives a survey of these early
Harmonic Analyzers. Fisher [59] made improvements
to the tide predictor, and later Doodson and Légé in-
creased the scale of this design to a 42-wheel version
that was used up to the early 1960s.

� Analog equation solvers There are various mechan-
ical devices for calculating the solution of sets of equa-
tions. Kelvin also developed one of the first known
mechanical mechanisms for equation solving, involv-
ing the motion of pulleys and tilting plate that solved
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sets of simultaneous linear equations specified by the
physical parameters of the ropes and plates. In the
1930s, John Wilbur increased the scale of Kelvin’s de-
sign to solve nine simultaneous linear algebraic equa-
tions. Leonardo Torres Quevedo constructed various
rotational mechanical devices, for determining the real
and complex roots of a polynomial. Svoboda [51] de-
scribes the state of art in the 1940s of mechanical analog
computing devices using linkages.

� Differential Analyzers A Differential Analyzer is
a mechanical analog device using linkages for solv-
ing ordinary differential equations. Vannevar Bush [60]
developed the first Differential Analyzer at MIT in
1931, which used a torque amplifier to link multi-
ple mechanical integrators. Although it was consid-
ered a general-purpose mechanical analog computer,
this device required a physical reconfiguration of the
mechanical connections to specify a given mechanical
problem to be solved. In subsequent Differential Ana-
lyzers, the reconfiguration of the mechanical connec-
tions was made automatic by resetting electronic relay
connections. In addition to the military applications al-
ready mentioned above, analog mechanical computers
incorporating differential analyzers have been widely
used for flight simulations and for industrial control
systems.

� Mechanical simulations of physical processes: Crys-
tallization and packing There are a variety of
macroscopic devices used for simulations of physical
processes, which can be viewed as analog devices. For
example, a number of approaches have been used for
mechanical simulations of crystallization and packing:
– Simulation using solid macroscopic ellipsoids bod-

ies Simulations of kinetic crystallization processes
have been made by collections of macroscopic solid
ellipsoidal objects – typically of diameter of a few
millimeters – which model the molecules compris-
ing the crystal. In these physical simulations, ther-
mal energy is modeled by introducing vibrations;
a low level of vibration is used tomodel freezing and
increasing the level of vibrations models melting. In
simple cases, the molecule of interest is a sphere,
and ball bearings or similar objects are used for
the molecular simulation. For example, to simulate
the dense random packing of hard spheres within
a crystalline solid, Bernal [61] and Finney [62] used
up to 4000 ball bearings on a vibrating table. In ad-
dition, to model more general ellipsoidal molecules,
orzo pasta grains as well as M&M candies (Jerry
Gollub at Princeton University) have been used.
Also, Cheerios have been used to simulate the liq-

uid state packing of benzene molecules. To model
more complex systems mixtures of balls of different
sizes and/or composition have been used; for exam-
ple a model ionic crystal formation has been made
by use a mixture of balls composed of different ma-
terials that acquired opposing electrostatic charges.

– Simulations using bubble rafts [63,64] These are
the structures that assemble among equal sized bub-
bles floating on water. They typically they form two
dimensional hexagonal arrays, and can be used for
modeling the formation of close packed crystals.
Defects and dislocations can also be modeled [65];
for example, the deliberate introduction of defects
in the bubble rats have been used to simulate crystal
dislocations, vacancies, and grain boundaries. Also,
impurities in crystals (both interstitial and substitu-
tional) have been simulated by introducing bubbles
of other sizes.

� Reaction-diffusion chemical computers Adamatz-
ky [66,67] described a class of analog computers where
there is a chemical medium which has multiple chem-
ical species, where the concentrations of these chemi-
cal species vary spatially and which diffuse and react in
parallel. The memory values (as well as inputs and out-
puts) of the computer are encoded by the concentra-
tions of these chemical species at a number of distinct
locations (also known as micro-volumes). The com-
putational operations are executed by chemical reac-
tions whose reagents are these chemical species. Exam-
ple computations [66,67] include: (i) Voronoi diagram;
this is to determine the boundaries of the regions clos-
est to a set of points on the plane, (ii) Skeleton of planar
shape, and (iii) a wide variety of two dimensional pat-
terns periodic and aperiodic in time and space.

Digital Mechanical Devices for Arithmetic Operations

Recall that we have distinguished digital mechanical de-
vices from the analog mechanical devices described above
by their use of mechanical mechanisms for insuring the
values stored and computed are discrete. Such discretiza-
tion mechanisms include geometry and structure (e. g.,
the notches of Napier’s bones described below), or cogs
and spokes of wheeled calculators. Surveys of the his-
tory of some these digital mechanical calculators are given
by Knott [42], Turck [50], Hartree [43], Engineering Re-
search Associates [44], Chase [45], Martin [46], Davis [47],
and Norman [48].

� Leonardo da Vinci’s mechanical device and mechan-
ical counting devices This intriguing device, which
involved a sequence of interacting wheels positioned on
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a rod, which appear to provide a mechanism for digital
carry operations, was illustrated in 1493 in Leonardo
da Vinci’s Codex Madrid [68]. A working model of its
possible mechanics was constructed in 1968 by Joseph
Mirabella. It’s function and purpose is not decisively
known, but it may have been intended for counting ro-
tations (e. g., for measuring the distance traversed by
a cart). There are a variety of apparently similar me-
chanical devices used to measuring distances traversed
by vehicles.

� Napier’s Bones In 1614 John Napier [69] developed
a mechanical device (known as Napier’s Bones) which
allowed multiplication and division (as well as square
and cube roots) to be done by addition and multiplica-
tion operations. It consisted of rectilinear rods, which
provided amechanical transformation to and from log-
arithmic values. In 1623, Wilhelm Shickard developed
a six digit mechanical calculator that combined the use
of Napier’s Bones using columns of sliding rods, with
the use of wheels used to sum up the partial products
for multiplication.

� Slide rules Edmund Gunter devised in 1620
a method for calculation that used a single log scale
with dividers along a linear scale; this anticipated key
elements of the first slide rule described by William
Oughtred [70] in 1632. A very large variety of slide
machines were later constructed.

� Pascaline: Pascal’s wheeled calculator Blaise Pas-
cal [71] developed a calculator in 1642 known as the
Pascaline that could calculate all four arithmetic oper-
ations (addition, subtraction, multiplication, and divi-
sion) on up to eight digits. A wide variety of mechanical
devices were then developed that used revolving drums
or wheels (cogwheels or pinwheels) to do various arith-
metical calculations.

� Stepped drum calculators Gottfried Wilhelm von
Leibniz developed an improved calculator known as
the Stepped Reckoner in 1671, which used a cylinder
known as a stepped drum with nine teeth of differ-
ent lengths that increase in equal amounts around the
drum. The stepped drum mechanism allowed the use
of a moving slide for specifying a number to be input
to themachine, andmade use of the revolving drums to
do the arithmetic calculations. Charles Xavier Thomas
de Colbrar developed a widely used arithmetic me-
chanical calculator based on the stepped drum known
as the Arithometer in 1820. Other stepped drum cal-
culating devices included Otto Shweiger’s Millionaire
calculator (1893) and Curt Herzstark’s Curta (early
1940s).

� Pinwheel calculators Frank S. Baldwin and W.T.

Odhner independently invented another class of calcu-
lators in the 1870s, known as pinwheel calculators; they
used a pinwheel for specifying a number input to the
machine and used revolvingwheels to do the arithmetic
calculations. Pinwheel calculators were widely used up
to the 1950s, for example in William S. Burroughs’ cal-
culator/printer and the German Brunsviga.

Digital Mechanical Devices
for Mathematical Tables and Functions

� Babbage’s Difference Engine Charles Babbage [72,
73] invented a mechanical device in 1820 known as the
Difference Engine for calculating the tables of an ana-
lytical function (such as the logarithm), which summed
the change in values of the function when a small dif-
ference is made in the argument. For each table entry,
the difference calculation required a small number of
simple arithmetic computations. The device made use
of columns of cogwheels to store digits of numerical
values. Babbage planned to store 1000 variables, each
with 50 digits, where each digit was stored by a unique
cogwheel. It used cogwheels in registers for the re-
quired arithmetical calculations, and also made use of
a rod-based control mechanism specialized for control
of these arithmetic calculations. The design and oper-
ation of the mechanisms of the device were described
by a symbolic scheme developed by Babbage [74]. He
also conceived of a printing mechanism for the device.
In 1801, Joseph-Marie Jacquard invented an automatic
loom that made use of punched cards for the specifica-
tion of fabric patterns woven by his loom, and Charles
Babbage proposed the use of similar punched cards
for providing inputs to his machines. He demonstrated
over a number of years certain key portions of the me-
chanics of the device but never completed a complete
function device.

� Other Difference Engines In 1832 Ludgate [75] in-
dependently designed, but did not construct, a me-
chanical computing machine similar but smaller in
scale to Babbage’s Analytical Engine. In 1853 Pehr and
Edvard Scheutz [76] constructed in Sweden a cog wheel
mechanical calculating device (similar to the Differ-
ence Engine originally conceived by Babbage) known
as the TabulatingMachine, for computing and printing
out tables of mathematical functions. This (and a later
construction of Babbage’s Difference Engine by Doron
Swade [77] of the London Science Museum) demon-
strated the feasibility of Babbage’s Difference Engine.

� Babbage’s Analytical Engine Babbage further con-
ceived (but did not attempt to construct) a mechani-
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cal computer known as the Analytical Engine to solve
more general mathematical problems. Lovelace’s ex-
tended description of Babbage’s Analytical Engine [78]
(translation of “Sketch of the Analytical Engine” by L.F.
Menabrea) describes, in addition to arithmetic opera-
tions, also mechanisms for looping and memory ad-
dressing. However, the existing descriptions of Bab-
bage’s Analytical Engine appear to lack the ability to
execute a full repertory of logical and/or finite state
transition operations required for general computa-
tion. Babbage’s background was very strong in ana-
lytic mathematics, but he (and the architects of simi-
lar cog-wheel based mechanical computing devices at
that date) seemed to have lacked knowledge of sequen-
tial logic and it’s Boolean logical basis, which was re-
quired for controlling the sequence of complex compu-
tations. This (and his propensity for changing designs
prior to the completion of the machine construction)
might have been the real reason for the lack of complete
development of a universal mechanical digital comput-
ing device in the early 1800’s.

� Subsequent electromechanical digital computing de-
vices with cog-wheels Other electromechanical digi-
tal computing devices (see [44]) developed in the late
1940s and 1950s which contain cog-wheels included
Howard Aiken’s Mark 1 [79], constructed at Harvard
University, and Konrad Zuse’s Z series computer, con-
structed in Germany.

Mechanical Devices for Timing, Sequencing
and Logical Control

We will use the term mechanical automata here to de-
note mechanical devices that exhibit autonomous control
of their movements. These can require sophisticated me-
chanical mechanisms for timing, sequencing and logical
control.

� Mechanisms used for timing control Mechanical
clocks, and other mechanical devices for measuring
time have a very long history, and include a very wide
variety of designs, including the flow of liquids (e. g.,
water clocks), or sands (e. g., sand clocks), and more
conventional pendulum-and-gear based clock mech-
anisms. A wide variety of mechanical automata and
other control devices make use of mechanical timing
mechanisms to control the order and duration of events
automatically executed (for example, mechanical slot
machines dating up to the 1970s made use of such me-
chanical clock mechanisms to control the sequence of
operations used for payout of winnings). As a conse-

quence, there is an interwoven history in the develop-
ment of mechanical devices for measuring time and the
development of devices for the control of mechanical
automata.

� Logical control of computations A critical step in
the history of computing machines was the develop-
ment in the middle 1800’s of Boolean logic by George
Boole [80,81]. Boole’s innovation was to assign values
to logical propositions: 1 for true propositions and 0 for
false propositions. He introduced the use of Boolean
variables which are assigned these values, as well the
use of Boolean connectives (“and,” and “or”) for ex-
pressing symbolic Booelan logic formulas. Boole’s sym-
bolic logic is the basis for the logical control used in
modern computers. Shannon [82] was the first to make
use of Boole’s symbolic logic to analyze relay circuits
(these relays were used to control an analog computer,
namely MIT’s Differential Equalizer).

� The Jevons’ logic piano: A mechanical logical in-
ference machine In 1870 William Stanley Jevons
(who also significantly contributed to the develop-
ment of symbolic logic) constructed a mechanical de-
vice [83,84] for the inference of logical proposition that
used a piano keyboard for inputs. This mechanical in-
ference machine is less widely known than it should
be, since it may have had impact in the subsequent
development of logical control mechanisms for ma-
chines.

� Mechanical logical devices used to play games Me-
chanical computing devices have also been constructed
for executing the logical operations for playing games.
For example, in 1975, a group of MIT undergradu-
ates including Danny Hillis and Brian Silverman con-
structed a computing machine made of Tinkertoys that
plays a perfect game of tic-tac-toe.

Mechanical Devices Used in Cryptography

� Mechanical cipher devices using cogwheels Me-
chanical computing devices that used cogwheels were
also developed for a wide variety of other purposes be-
yond merely arithmetic. A wide variety of mechanical
computing devices were developed for the encryption
and decryption of secret messages. Some of these (most
notably the family of German electromechanical cipher
devices known as Enigma Machines [85] developed in
the early 1920s for commercial use and refined in the
late 1920s and 1930s for military use) made use of sets
of cogwheels to permute the symbols of text message
streams. Similar (but somewhat more advanced) elec-
tromechanical cipher devices were used by the USSR
up to the 1970s.
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� Electromechanical computing devices used in
breaking cyphers In 1934 Marian Rejewski and
a team including Alan Turing constructed an electri-
cal/mechanical computing device known as the Bomb,
which had an architecture similar to the abstract Tur-
ing machine described below, and which was used to
decrypt ciphers made by the German Enigma cipher
device mentioned above.

Mechanical and Electro-Optical Devices
for Integer Factorization

� Lehmer’s number sieve computer In 1926 Derrick
Lehmer [86] constructed amechanical device called the
“number sieve computer” for various number theoretic
problems including factorization of small integers and
solutions of Diophantine equations. The device made
use of multiple bicycle chains that rotated at distinct
periods to discover solutions (such as integer factors)
to these number theoretic problems.

� Shamir’s TWINKLE Adi Shamir [87,88,89] pro-
posed a design for a optical/electric device known
as TWINKLE for factoring integers, with the goal of
breaking the RSA public key cryptosystem. This was
unique among mechanical computing devices in that
it used time durations between optical pulses to encode
possible solution values. In particular, LEDs were made
to flash at certain intervals of time (where each LED
is assigned a distinct period and delay) at a very high
clock rate so as to execute a sieve-based integer factor-
ing algorithm.

Mechanical Computation at the Micro Scale:
MEMS Computing Devices

Mechanical computers can have advantages over elec-
tronic computation at certain scales; they are already hav-
ing widespread use at the microscale. MEMS (Micro-
Electro-Mechanical Systems) are manufactured by litho-
graphic etching methods similar in nature to the pro-
cesses in which microelectronics are manufactured, and
have a similar microscale. A wide variety of MEMS de-
vices [90] have been constructed for sensors and actua-
tors, including accelerometers used in automobile safety
devices and disk readers, and many of these MEMS de-
vices execute mechanical computation do their task. Per-
haps the MEMS device most similar in architecture to the
mechanical calculators described above is the Recodable
Locking Device [91] constructed in 1998 at Sandia Labs,
which made use of microscopic gears that acted as a me-
chanical lock, and which was intended for mechanically
locking strategic weapons.

Future Directions

Mechanical Self-Assembly Processes

Most of the mechanical devices discussed in this chap-
ter have been assumed to be constructed top-down; that
is they are designed and then assembled by other mecha-
nisms generally of large scale. However a future direction
to consider are bottom-up processes for assembly and con-
trol of devices. Self-assembly is a basic bottom-up process
found in many natural processes and in particular in all
living systems.

� Domino Tiling Problems The theoretical basis for
self-assembly has its roots in Domino Tiling Problems
(also known as Wang tilings) as defined by Wang [92]
(also see the comprehensive text of Grunbaum et
al. [93]). The input is a finite set of unit size square tiles,
each of whose sides are labeled with symbols over a fi-
nite alphabet. Additional restrictions may include the
initial placement of a subset of these tiles, and the di-
mensions of the region where tiles must be placed. As-
suming an arbitrarily large supply of each tile, the prob-
lem is to place the tiles, without rotation (a criterion
that cannot apply to physical tiles), to completely fill
the given region so that each pair of abutting tiles have
identical symbols on their contacting sides.

� Turing-universal and NP complete self-assemblies
Domino tiling problems over an infinite domain with
only a constant number of tiles were first proved by [94]
to be undecidable. Lewis and Papadimitriou [95]
showed the problem of tiling a given finite region is NP
complete.

� Theoretical models of tiling self-assembly processes
Domino tiling problems do not presume or require
a specific process for tiling. Winfree [96] proposed
kinetic models for self-assembly processes. The sides
of the tiles are assumed to have some methodology
for selective affinity, which we call pads. Pads func-
tion as programmable binding domains, which hold to-
gether the tiles. Each pair of pads have specified bind-
ing strengths (a real number on the range [0,1] where
0 denotes no binding and 1 denotes perfect binding).
The self-assembly process is initiated by a singleton tile
(the seed tile) and proceeds by tiles binding together at
their pads to form aggregates known as tiling assem-
blies. The preferential matching of tile pads facilitates
the further assembly into tiling assemblies.

� Pad binding mechanisms These provide a mecha-
nism for the preferential matching of tile sides can be
provided by various methods:
– magnetic attraction, e. g., pads with magnetic ori-

entations (these can be constructed by curing fer-
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rite materials; e. g., PDMS polymer/ferrite compos-
ites) in the presence of strongmagnet fields, and also
pads with patterned strips of magnetic orientations,

– capillary force, using hydrophobic/hydrophilic (cap-
illary) effects at surface boundaries that generate lat-
eral forces,

– shape matching (also known as shape complemen-
tarity or conformational affinity), using the shape of
the tile sides to hold them together.

– (Also see the sections below discussion of the used of
molecular affinity for pad binding.)

� Materials for tiles There are a variety of distinct
materials for tiles, at a variety of scales: White-
sides (see [97] and http://www-chem.harvard.edu/
GeorgeWhitesides.html) has developed and tested
multiple technologies for meso-scale self-assembly, us-
ing capillary forces, shape complementarity, and mag-
netic forces. Rothemund [98] gave some of the most
complex known meso-scale tiling assemblies using
polymer tiles on fluid boundaries with pads that use
hydrophobic/hydrophilic forces. A materials science
group at the U. of Wisconsin (http://mrsec.wisc.edu/
edetc/selfassembly) has also tested meso-scale self-as-
sembly using magnetic tiles.

� Meso-Scale Tile Assemblies Meso-Scale Tiling As-
semblies have tiles of size a few millimeters up to a few
centimeters. They have been experimentally demon-
strated by a number of methods, such as the placement
of tiles on a liquid surface interface (e. g., at the inter-
face between two liquids of distinct density or on the
surface of an air/liquid interface), and using mechani-
cal agitation with shakers to provide a heat source for
the assembly kinetics (that is, a temperature setting is
made by fixing the rate and intensity of shaker agita-
tion).

� Applications of Meso-scale Assemblies The are
a number of applications, including:
– Simulation of the thermodynamics and kinetics of

molecular-scale self-assemblies.
– For placement of a variety of microelectronics and

MEMS parts.

Mechanical Computation at the Molecular Scale:
DNA Computing Devices
Due to the difficulty of constructing electrical circuits
at the molecular scale, alternative methods for compu-
tation, and in particular mechanical methods, may pro-
vide unique opportunities for computing at the molecular
scale. In particular the bottom-up self-assembly processes
described above have unique applications at the molecular
scale.

� Self-assembled DNA nanostructures Molecular-
scale structures known as DNA nanostructures (see
surveys by Seeman [99] and Reif [100]) can be made
to self-assemble from individual synthetic strands of
DNA. When added to a test tube with the appropri-
ate buffer solution, and the test tube is cooled, the
strands self-assemble into DNA nanostructures. This
self-assembly of DNA nanostrucures can be viewed
as a mechanical process, and in fact can be used to
do computation. The first known example of a com-
putation by using DNA was by Adleman [101,102]
in 1994; he used the self-assembly of DNA strands to
solve a small instance of a combinatorial optimization
problem known as the Hamiltonian path problem.

� DNA tiling assemblies The Wang tiling [92] para-
digm for self-assembling structures was the basis for
scalable and programmable approach proposed by
Winfree et al. [103] for doing molecular computation
using DNA. First a number of distinct DNA nanostruc-
tures known as DNA tiles are self-assembled. End por-
tions of the tiles, known as pads, are designed to allow
the tiles to bind together a programmable manner sim-
ilar to Wang tiling, but in this case uses the molecular
affinity for pad binding due to the hydrogen-bonding of
complementary DNA bases. This programmable con-
trol of the binding together of DNA tiles provides a ca-
pability for doing computation at the molecular scale.
When the temperature of the test tube containing these
tiles is further lowered, the DNA tiles bind together
to form complexly patterned tiling lattices that corre-
spond to computations.

� Assembling patterned DNA tiling assemblies Pro-
grammed patterning at the molecular scale can be pro-
duced by the use of strands of DNA that encode the
patterns; this was first done by Yan et al. [104] in the
form of bar-cord striped patterns, and more recently
Rothemund [105] self-assembled complex 2D molecu-
lar patterns and shapes. Another method for themolec-
ular patterning of DNA tiles is via computation done
during the assembly.

� Computational DNA tiling assemblies The first ex-
perimental demonstration of computation via the self-
assembly of DNA tiles was in 2000 by Mao et al. [106],
and Yan et al. [107], which provided a 1 dimensional
computation of a binary-carry computation (known as
prefix-sum) associated with binary adders. Rothemund
et al. [108] in 2004 demonstrated a 2 dimensional com-
putational assembly of tiles displaying a pattern known
as the Sierpinski triangle, which is themodulo 2 version
of Pascal’s triangle.

� Other autonomous DNA devices DNA nanostruc-

http://www-chem.harvard.edu/GeorgeWhitesides.html
http://www-chem.harvard.edu/GeorgeWhitesides.html
http://mrsec.wisc.edu/edetc/selfassembly
http://mrsec.wisc.edu/edetc/selfassembly
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tures can also be made to make sequences of move-
ment, and a demonstration of an autonomous mov-
ing DNA robotic device that moved without outside
mediation across a DNA nanostructure was given by
Yin et al. [109]. The design of an autonomous DNA
device that moves under programmed control is de-
scribed in [110]. Surveys of DNA autonomous devices
are given in [111] and [112].
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Glossary

Lie group action A process by which a Lie group, acting
as a symmetry, moves points in a space. When points
in the space that are related by a group element are
identified, one obtains the quotient space.

Free action An action that moves every point under any
nontrivial group element.

Proper action An action that obeys a compactness condi-
tion.

Momentummapping A dynamically conserved quantity
that is associated with the symmetry of a mechanical
system. An example is angular momentum, which is
associated with rotational symmetry.

Symplectic reduction A process of reducing the dimen-
sion of the phase space of a mechanical system by
restricting to the level set of a momentum map and
also identifying phase space points that are related by
a symmetry.

Poisson reduction A process of reducing the dimension
of the phase space of a mechanical system by identify-
ing phase space points that are related by a symmetry.

Equivariance Equivariance of a momentum map is
a property that reflects the consistency of the mapping
with a group action on its domain and range.

Momentum cocycle A measure of the lack of equivari-
ance of a momentummapping.

Singular reduction A reduction process that leads to
non-smooth reduced spaces. Often associated with
non-free group actions.

Coadjoint orbit The orbit of an element of the dual of the
Lie algebra under the natural action of the group.

KKS (Kostant-Kirillov-Souriau) form The natural sym-
plectic form on coadjoint orbits.

Cotangent bundle A mechanical phase space that has
a structure that distinguishes configurations and mo-
menta. The momenta lie in the dual to the space of ve-
locity vectors of configurations.

Shape space The space obtained by taking the quotient of
the configuration space of a mechanical system by the
symmetry group.

Principal connection A mathematical object that de-
scribes the geometry of how a configuration space is
related to its shape space. Related to geometric phases
through the subject of holonomy. In turn related to lo-
comotion in mechanical systems.

Mechanical connection A special (principal) connection
that is built out of the kinetic energy and momentum
map of a mechanical system with symmetry.

Magnetic terms These are expressions that are built out
of the curvature of a connection. They are so named

because terms of this form occur in the equations of
a particle moving in a magnetic field.

Definition of the Subject

Reduction theory is concerned with mechanical systems
with symmetries. It constructs a lower dimensional re-
duced space in which associated conservation laws are en-
forced and symmetries are “factored out” and studies the
relation between the dynamics of the given systemwith the
dynamics on the reduced space. This subject is important
in many areas, such as stability of relative equilibria, geo-
metric phases and integrable systems.

Introduction

Geometric mechanics has developed in the last 30 years or
so into a mature subject in its own right, and its applica-
tions to problems in Engineering, Physics and other phys-
ical sciences has been impressive. One of the important as-
pects of this subject has to do with symmetry; even things
as apparently simple as the symmetry of a system such as
the n-body problem under the group of translations and
rotations in space (the Euclidean group) or a wheeled ve-
hicle under the planar Euclidean group turns out to have
profound consequences. Symmetry often gives conserva-
tion laws through Noether’s theorem and these conserva-
tion laws can be used to reduce the dimension of a system.

In fact, reduction theory is an old and time-honored
subject, going back to the early roots of mechanics through
the works of Euler, Lagrange, Poisson, Liouville, Jacobi,
Hamilton, Riemann, Routh, Noether, Poincaré, and oth-
ers. These founding masters regarded reduction theory as
a useful tool for simplifying and studying concrete me-
chanical systems, such as the use of Jacobi’s elimination
of the node in the study of the n-body problem to deal
with the overall rotational symmetry of the problem. Like-
wise, Liouville and Routh used the elimination of cyclic
variables (what we would call today an Abelian symmetry
group) to simplify problems and it was in this setting that
the Routh stability method was developed.

The modern form of symplectic reduction theory
begins with the works of Arnold [7], Smale [168],
Meyer [117], and Marsden and Weinstein [110]. A more
detailed survey of the history of reduction theory can be
found in the first sections of this article. As was the case
with Routh, this theory has close connections with the sta-
bility theory of relative equilibria, as in Arnold [8] and
Simo, Lewis, and Marsden [166]. The symplectic reduc-
tion method is, in fact, by now so well known that it is used
as a standard tool, often without much mention. It has
also entered many textbooks on geometric mechanics and
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symplectic geometry, such as Abraham and Marsden [1],
Arnold [9], Guillemin and Sternberg [57], Libermann and
Marle [89] and Mcduff and Salamon [116]. Despite its rel-
atively old age, research in reduction theory continues vig-
orously today.

It will be assumed that the reader is familiar with the
basic concepts in [104]. For the statements of the bulk of
the theorems, it is assumed that the manifolds involved
are finite dimensional and are smooth unless otherwise
stated. While many interesting examples are infinite-di-
mensional, the general theory in the infinite dimensional
case is still not in ideal shape; see, for example, Cher-
noff and Marsden [39], Marsden and Hughes [96] and
Mielke [118] and examples and discussion in [92].

Notation

To keep things reasonably systematic, we have adopted the
following universal conventions for some common maps
and other objects:
Configuration space of a mechanical system: Q
Phase space: P
Cotangent bundle projection: �Q : T�Q ! Q
Tangent bundle projection: �Q : TQ ! Q
Quotient projection: �P;G : P! P/G
Tangent map: T' : TM ! TN for the tangent of a map

' : M ! N
Thus, for example, the symbol �T�Q;G denotes the

quotient projection from T�Q to (T�Q)/G.

� The Lie algebra of a Lie group G is denoted g.
� Actions of G on a space is denoted by concatenation.

For example, the action of a group element g on a point
q 2 Q is written as gq or g � q

� The infinitesimal generator of a Lie algebra element
� 2 g for an action of G on P is denoted �P , a vector
field on P

� Momentum maps are denoted J : P ! g�.
� Pairings between vector spaces and their duals are de-

noted by simple angular brackets: for example, the pair-
ing between g and g� is denoted h�; �i for � 2 g� and
� 2 g

� Inner products are denoted with double angular brack-
ets: hhu; vii.

Symplectic Reduction

Roughly speaking, here is how symplectic reduction goes:
given the symplectic action of a Lie group on a symplectic
manifold that has a momentum map, one divides a level
set of the momentum map by the action of a suitable sub-
group to form a new symplectic manifold. Before the di-

vision step, one has a manifold (that can be singular if the
points in the level set have symmetries) carrying a degen-
erate closed 2-form. Removing such a degeneracy by pass-
ing to a quotient space is a differential-geometric opera-
tion that was promoted by Cartan [26].

The “suitable subgroup” related to a momentummap-
ping was identified by Smale [168] in the special context
of cotangent bundles. It was Smale’s work that inspired
the general symplectic construction by Meyer [117] and
the version we shall use, which makes explicit use of the
properties of momentum maps, by Marsden and Wein-
stein [110].

Momentum Maps

Let G be a Lie group, g its Lie algebra, and g� be its dual.
Suppose that G acts symplectically on a symplectic mani-
fold P with symplectic form denoted by ˝ . We shall de-
note the infinitesimal generator associated with the Lie
algebra element � by �P and we shall let the Hamilto-
nian vector field associated to a function f : P ! R be de-
noted Xf .

A momentum map is a map J : P! g�, which is de-
fined by the condition

�P D XhJ;�i (1)

for all � 2 g, and where hJ; �i : P! R is defined by the
natural pointwise pairing. We call such a momentummap
equivariant when it is equivariant with respect to the
given action on P and the coadjoint action ofG on g�. That
is,

J(g � z) D Ad�g�1 J(z) (2)

for every g 2 G, z 2 P, where g � z denotes the action of g
on the point z, Ad denotes the adjoint action, and Ad� the
coadjoint action. Note that when we write Ad�g�1 , we lit-
erally mean the adjoint of the linear map Adg�1 : g! g.
The inverse of g is necessary for this to be a left action
on g�. Some authors let that inverse be understood in the
notation. However, such a convention would be a nota-
tional disaster since we need to deal with both left and
right actions, a distinction that is essential in mechanics.
A quadruple (P;˝;G; J), where (P;˝) is a given symplec-
tic manifold and J : P! g� is an equivariant momentum
map for the symplectic action of a Lie group G, is some-
times called aHamiltonian G-space.

Taking the derivative of the equivariance identity (2)
with respect to g at the identity yields the condition of in-
finitesimal equivariance:

TzJ(�P(z)) D �ad�� J(z) (3)
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for any � 2 g and z 2 P. Here, ad� : g! g; � 7! [�; �] is
the adjoint map and ad�� : g� ! g� is its dual. A compu-
tation shows that (3) is equivalent to

hJ; [�; �]i D fhJ; �i; hJ; �ig (4)

for any �; � 2 g, that is, hJ; �i : g! F(P) is a Lie algebra
homomorphism, whereF(P) denotes the Poisson algebra
of smooth functions on P. The converse is also true if the
Lie group is connected, that is, if G is connected then an
infinitesimally equivariant action is equivariant (see §12.3
in [104]).

The idea that an action of a Lie group G with Lie alge-
bra g on a symplectic manifold P should be accompanied
by such an equivariant momentum map J : P! g� and
the fact that the orbits of this action are themselves sym-
plectic manifolds both occur already in Lie [90]; the links
withmechanics also rely on the work of Lagrange, Poisson,
Jacobi andNoether. Inmodern form, the momentummap
and its equivariance were rediscovered by Kostant [78]
and Souriau [169,170] in the general symplectic case and
by Smale [168] for the case of the lifted action from aman-
ifold Q to its cotangent bundle P D T�Q. Recall that the
equivariant momentummap in this case is given explicitly
by

˝
J(˛q); �

˛
D
˝
˛q ; �Q (q)

˛
; (5)

where ˛q 2 T�q Q; � 2 g, and where the angular brackets
denote the natural pairing on the appropriate spaces.

Smale referred to J as the “angular momentum” by
generalization from the special case G D SO(3), while
Souriau used the French word “moment”. Marsden and
Weinstein [110], followed usage emerging at that time and
used the word “moment” for J, but they were soon cor-
rected by Richard Cushman and Hans Duistermaat, who
suggested that the proper English translation of Souriau’s
French word was “momentum,” which fit better with
Smale’s designation as well as standard usage in mechan-
ics. Since 1976 or so, most people who have contact with
mechanics use the term momentum map (or mapping).
On the other hand, Guillemin and Sternberg popular-
ized the continuing use of “moment” in English, and
both words coexist today. It is a curious twist, as comes
out in work on collective nuclear motion Guillemin and
Sternberg [56] and plasma physics (Marsden and Wein-
stein [111] and Marsden, Weinstein, Ratiu, Schmid, and
Spencer [114]), that moments of inertia and moments of
probability distributions can actually be the values of mo-
mentum maps! Mikami and Weinstein [119] attempted
a linguistic reconciliation between the usage of “moment”
and “momentum” in the context of groupoids. See [104]

for more information on the history of the momentum
map and Sect. “Reduction Theory: Historical Overview”
for a more systematic review of general reduction theory.

Momentum Cocycles
and Nonequivariant MomentumMaps

Consider a momentum map J : P! g� that need not be
equivariant, where P is a symplectic manifold on which
a Lie group G acts symplectically. The map � : G ! g�

that is defined by

�(g) :D J(g � z) � Ad�g�1 J(z) ; (6)

where g 2 G and z 2 P is called a nonequivariance ormo-
mentum one-cocycle. Clearly, � is a measure of the lack of
equivariance of the momentum map.

We shall now prove a number of facts about � . The
first claim is that � does not depend on the point z 2 P pro-
vided that the symplectic manifold P is connected (other-
wise it is constant on connected components). To prove
this, we first recall the following equivariance identity for
infinitesimal generators:

Tq˚g
�
�P(q)


D (Adg�)P(g � q) ;

i. e.; ˚�g �P D
�
Adg�1�


P : (7)

This is an easy Lie group identity that is proved, for exam-
ple, in [104]; see Lemma 9.3.7.

One shows that �(g) is constant by showing that its
Hamiltonian vector field vanishes. Using the fact that
�(g) is independent of z along with the basic identity
Adgh D AdgAdh and its consequence Ad�(gh)�1 D Ad�g�1
Ad�h�1 , shows that � satisfies the cocycle identity

�(gh) D �(g)C Ad�g�1�(h) (8)

for any g; h 2 G. This identity shows that � produces
a new action 	 : G � g� ! g� defined by

	(g; �) :D Ad�g�1�C �(g) (9)

with respect to which the momentum map J is obviously
equivariant. This action 	 is not linear anymore – it is an
affine action.

For � 2 g, let ��(g) D h�(g); �i. Differentiating the
definition of � , namely

��(g) D hJ(g � z); �i �
˝
J(z);Adg�1�

˛

with respect to g at the identity in the direction � 2 g

shows that

Te��(�) D ˙(�; �) ; (10)
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where˙(�; �), which is called the infinitesimal nonequiv-
ariance two-cocycle, is defined by

˙(�; �) D hJ; [�; �]i � fhJ; �i; hJ; �ig : (11)

Since � does not depend on the point z 2 P, neither
does ˙ . Also, it is clear from this definition that ˙ mea-
sures the lack of infinitesimal equivariance of J. Another
way to look at this is to notice that from the derivation of
Eq. (10), for z 2 P and � 2 g, we have

TzJ(�P(z)) D �ad�� J(z)C˙(�; �) : (12)

Comparison of this relation with Eq. (3) also shows the
relation between˙ and the infinitesimal equivariance of J.

The map ˙ : g � g! R is bilinear, skew-symmetric,
and, as can be readily verified, satisfies the two-cocycle
identity

˙([�; �]; �)C˙([�; �]; �)C˙([�; �]; �) D 0 ; (13)

for all �; �; � 2 g.

The Symplectic Reduction Theorem

There are many precursors of symplectic reduction the-
ory. When G is Abelian, the components of the momen-
tum map form a system of functions in involution (i. e.
the Poisson bracket of any two is zero). The use of k such
functions to reduce a phase space to one having 2k fewer
dimensions may be found already in the work of Lagrange,
Poisson, Jacobi, and Routh; it is well described in, for ex-
ample, Whittaker [179].

In the nonabelian case, Smale [168] noted that Ja-
cobi’s elimination of the node in SO(3) symmetric prob-
lems can be understood as division of a nonzero angu-
lar momentum level by the SO(2) subgroup which fixes
the momentum value. In his setting of cotangent bundles,
Smale clearly stated that the coadjoint isotropy group G�
of � 2 g� (defined to be the group of those g 2 G such
that g � � D �, where the dot indicates the coadjoint ac-
tion), leaves the level set J�1(�) invariant (Smale [168],
Corollary 4.5). However, he only divided byG� after fixing
the total energy as well, in order to obtain the “minimal”
manifold on which to analyze the reduced dynamics. The
goal of his “topology and mechanics” program was to use
topology, and specifically Morse theory, to study relative
equilibria, which he did with great effectiveness.

Marsden and Weinstein [110] combined Souriau’s
momentum map for general symplectic actions, Smale’s
idea of dividing the momentum level by the coadjoint
isotropy group, and Cartan’s idea of removing the degen-
eracy of a 2-form by passing to the leaf space of the form’s

null foliation. The key observation was that the leaves of
the null foliation are precisely the (connected components
of the) orbits of the coadjoint isotropy group (a fact we
shall prove in the next section as the reduction lemma). An
analogous observation was made in Meyer [117], except
that Meyer worked in terms of a basis for the Lie algebra g

and identified the subgroupG� as the group which left the
momentum level set J�1(�) invariant. In this way, he did
not need to deal with the equivariance properties of the
coadjoint representation.

In the more general setting of symplectic manifolds
with an equivariant momentum map for a symplectic
group action, the fact that G� acts on J�1(�) follows di-
rectly from equivariance of J. Thus, it makes sense to form
the symplectic reduced space which is defined to be the
quotient space

P� D J�1(�)/G� : (14)

Roughly speaking, the symplectic reduction theorem
states that, under suitable hypotheses, P� is itself a sym-
plectic manifold. To state this precisely, we need a short
excursion on level sets of the momentum map and some
facts about quotients.

Free and Proper Actions

The action of a Lie groupG on amanifoldM is called a free
action if g � m D m for some g 2 G and m 2 M implies
that g D e, the identity element.

An action of G on M is called proper when the map
G �M ! M �M; (g;m) 7! (g � m;m) is a proper map –
that is, inverse images of compact sets are compact. This
is equivalent to the statement that if mk is a convergent
sequence in M and if gk � mk converges in M, then gk has
a convergent subsequence in G.

As is shown in, for example, [2] and Duistermaat and
Kolk [48], freeness, together with properness implies that
the quotient space M/G is a smooth manifold and that the
projection map � : M ! M/G is a smooth surjective sub-
mersion.

Locally Free Actions

An action ofG onM is called infinitesimally free at a point
m 2 M if �M(m) D 0 implies that � D 0. An action of G
on M is called locally free at a point m 2 M if there is
a neighborhoodU of the identity inG such that g 2 U and
g � m D m implies g D e.

Proposition 1 An action of a Lie group G on amanifoldM
is locally free at m 2 M if and only if it is infinitesimally free
at m.
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A free action is obviously locally free. The converse is not
true because the action of any discrete group is locally free,
but need not be globally free. When one has an action that
is locally free but not globally free, one is lead to the theory
of orbifolds, as in Satake [164]. In fact, quotients of mani-
folds by locally free and proper group actions are orbifolds,
which follows by the use of the Palais slice theorem (see
Palais [144]). Orbifolds come up in a variety of interesting
examples involving, for example, resonances; see, for in-
stance, Cushman and Bates [44] and Alber, Luther, Mars-
den, and Robbins [3] for some specific examples.

Symmetry and Singularities

If � is a regular value of J then we claim that the action
is automatically locally free at the elements of the corre-
sponding level set J�1(�). In this context it is convenient
to introduce the notion of the symmetry algebra at z 2 P
defined by

gz D f� 2 g j �P(z) D 0g :

The symmetry algebra gz is the Lie algebra of the
isotropy subgroup Gz of z 2 P defined by

Gz D fg 2 G j g � z D zg :

The following result (due to Smale [168] in the special case
of cotangent bundles and in general to Arms, Marsden,
and Moncrief [5]), is important for the recognition of reg-
ular as well as singular points in the reduction process.

Proposition 2 An element� 2 g� is a regular value of J if
and only if gz D 0 for all z 2 J�1(�).

In other words, points are regular points precisely when
they have trivial symmetry algebra. In examples, this gives
an easy way to recognize regular points. For example, for
the double spherical pendulum (see, for example,Marsden
and Scheurle [108] or [95]), one can say right away that the
only singular points are those with both pendula pointing
vertically (either straight down or straight up). This result
holds whether or not J is equivariant.

This result, connecting the symmetry of z with the reg-
ularity of �, suggests that points with symmetry are bifur-
cation points of J. This observation turns out to havemany
important consequences, including some related key con-
vexity theorems.

Now we are ready to state the symplectic reduction
theorem. We will be making two sets of hypotheses; other
variants are discussed in the next section. The following
notation will be convenient in the statement of the results.

SR (P;˝) is a symplectic manifold, G is a Lie group that
acts symplectically on P and has an equivariant mo-
mentum map J : P ! g�.

SRFree G acts freely and properly on P.
SRRegular Assume that� 2 g� is a regular value of J and

that the action of G� on J�1(�) is free and proper

From the previous discussion, note that condition SR-
Free implies condition SRRegular. The real difference is
that SRRegular assumes local freeness of the action of G
(which is equivalent to � being a regular value, as we have
seen), while SRFree assumes global freeness (on all of P).

Theorem 3 (Symplectic reduction theorem) Assume
that condition SR and that either the condition SRFree
or the condition SRRegular holds. Then P� is a symplec-
tic manifold, and is equipped with the reduced symplectic
form˝� that is uniquely characterized by the condition

���˝� D i��˝ ; (15)

where �� : J�1(�)! P� is the projection to the quotient
space and where i� : J�1(�)! P is the inclusion.

The above procedure is often called point reduction be-
cause one is fixing the value of the momentum map at
a point� 2 g�. An equivalent reductionmethod called or-
bit reduction will be discussed shortly.

Coadjoint Orbits

A standard example (due to Marsden and Wein-
stein [110]) that we shall derive in detail in the next sec-
tion, is the construction of the coadjoint orbits in g� of
a group G by reduction of the cotangent bundle T�G with
its canonical symplectic structure and with G acting on
T�G by the cotangent lift of left (resp. right) group mul-
tiplication. In this case, one finds that (T�G)� D O�, the
coadjoint orbit through � 2 g�. The reduced symplectic
form is given by the Kostant, Kirillov, Souriau coadjoint
form, also referred to as the KKS form:

!�O�(�)(ad
�
� �; ad

�
��) D �h�; [�; �]i ; (16)

where �; � 2 g; � 2 O�, ad� : g! g is the adjoint oper-
ator defined by ad�� :D [�; �] and ad�� : g� ! g� is its
dual. In this formula, one uses the minus sign for the left
action and the plus sign for the right action. We recall
that coadjoint orbits, like any group orbit is always an im-
mersed manifold. Thus, one arrives at the following result
(see also Theorem 7):

Corollary 4 Given a Lie group G with Lie algebra g and
any point � 2 g�, the reduced space (T�G)� is the coad-
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joint orbit O� through the point �; it is a symplectic mani-
fold with symplectic form given by (16).

This example, which “explains” Kostant, Kirillov and
Souriau’s formula for this structure, is typical of many of
the ensuing applications, in which the reduction proce-
dure is applied to a “trivial” symplectic manifold to pro-
duce something interesting.

Orbit Reduction

An important variant of the symplectic reduction theo-
rem is called orbit reduction and, roughly speaking, it con-
structs J�1(O)/G, whereO is a coadjoint orbit in g�. In the
next section – see Theorem 8 – we show that orbit reduc-
tion is equivalent to the point reduction considered above.

Cotangent Bundle Reduction

The theory of cotangent bundle reduction is a very impor-
tant special case of general reduction theory. Notice that
the reduction of T�G above to give a coadjoint orbit is
a special case of the more general procedure in which G
is replaced by a configuration manifold Q. The theory of
cotangent bundle reduction will be outlined in the histor-
ical overview in this chapter, and then treated in some de-
tail in the following chapter.

Mathematical Physics Links

Another example in Marsden and Weinstein [110] came
from general relativity, namely the reduction of the cotan-
gent bundle of the space of Riemannian metrics on a man-
ifold M by the action of the group of diffeomorphisms
ofM. In this case, restriction to the zero momentum level
is the divergence constraint of general relativity, and so
one is led to a construction of a symplectic structure on
a space closely related to the space of solutions of the
Einstein equations, a question revisited in Fischer, Mars-
den, and Moncrief [51] and Arms, Marsden, and Mon-
crief [6]. Here one sees a precursor of an idea of Atiyahf
and Bott [11], which has led to some of the most spectacu-
lar applications of reduction in mathematical physics and
related areas of pure mathematics, especially low-dimen-
sional topology.

Singular Reduction

In the preceding discussion, we have been making hy-
potheses that ensure the momentum levels and their quo-
tients are smooth manifolds. Of course, this is not always
the case, as was already noted in Smale [168] and analyzed
(even in the infinite-dimensional case) in Arms, Marsden,

and Moncrief [5]. We give a review of some of the current
literature and history on this singular case in Sect. “Reduc-
tion Theory: Historical Overview”. For an outline of this
subject, see [142] and for a complete account of the tech-
nical details, see [138].

Reduction of Dynamics

Along with the geometry of reduction, there is also a the-
ory of reduction of dynamics. The main idea is that a G-in-
variant HamiltonianH on P induces a HamiltonianH� on
each of the reduced spaces, and the corresponding Hamil-
tonian vector fields XH and XH� are ��-related. The re-
verse of reduction is reconstruction and this leads one to
the theory of classical geometric phases (Hannay–Berry
phases); see Marsden, Montgomery, and Ratiu [98].

Reduction theory has many interesting connections
with the theory of integrable systems; we just mention
some selected references Kazhdan, Kostant, and Stern-
berg [72]; Ratiu [154,155,156]; Bobenko, Reyman, and
Semenov-Tian-Shansky [22]; Pedroni [148]; Marsden and
Ratiu [103]; Vanhaecke [174]; Bloch, Crouch, Marsden,
and Ratiu [19], which the reader can consult for further
information.

Symplectic Reduction – Further Discussion

The symplectic reduction theorem leans on a few key lem-
mas that we just state. The first refers to the reflexivity of
the operation of taking the symplectic orthogonal comple-
ment.

Lemma 5 Let (V ;˝) be a finite dimensional symplectic
vector space and W � V be a subspace. Define the sym-
plectic orthogonal to W by

W˝ D fv 2 V j ˝(v;w) D 0 for all w 2 Wg :

Then


W˝

�˝
D W : (17)

In what follows, we denote by G � z and G� � z the G and
G�-orbits through the point z 2 P; note that if z 2 J�1(�)
then G� � z � J�1(�).

The key lemma that is central for the symplectic reduc-
tion theorem is the following.

Lemma 6 (Reduction lemma) Let P be a Poisson mani-
fold and let J : P ! g� be an equivariant momentum map
of a Lie group action by Poisson maps of G on P. Let G � �
denote the coadjoint orbit through a regular value � 2 g�

of J. Then
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Mechanical Systems: Symmetries and Reduction, Figure 1
The geometry of the reduction lemma

(i) J�1(G � �) D G � J�1(�) D fg � z j g 2 G and
J(z) D �g;

(ii) G� � z D (G � z) \ J�1(�);
(iii) J�1(�) and G � z intersect cleanly, i. e.,

Tz (G� � z) D Tz (G � z) \ Tz(J�1(�));

(iv) if (P;˝) is symplectic, then
Tz(J�1(�)) D (Tz(G � z))˝ ; i. e., the sets

Tz (J�1(�)) and Tz (G � z)

are˝-orthogonal complements of each other.

Refer to Fig. 1 for one way of visualizing the geome-
try associated with the reduction lemma. As it suggests,
the two manifolds J�1(�) and G � z intersect in the or-
bit of the isotropy group G� � z and their tangent spaces
TzJ�1(�) and Tz (G � z) are symplectically orthogonal and
intersect in the space Tz

�
G� � z


. Notice from the state-

ment (iv) that Tz (J�1(�))˝ � Tz(J�1(�)) provided that
G� � z D G � z. Thus, J�1(�) is coisotropic if G� D G; for
example, this happens if � D 0 or if G is Abelian.

Remarks on the Reduction Theorem

1. Even if ˝ is exact; say ˝ D �d	 and the action of G
leaves 	 invariant, ˝� need not be exact. Perhaps
the simplest example is a nontrivial coadjoint orbit of
SO(3), which is a sphere with symplectic form given
by the area form (by Stokes’ theorem, it cannot be ex-
act). That this is a symplectic reduced space of T�SO(3)
(with the canonical symplectic structure, so is exact) is
shown in Theorem 7 below.

2. Continuing with the previous remark, assume that

˝ D �d	 and that the G� principal bundle J�1(�)!
P� :D J�1(�)/G� is trivializable; that is, it admits
a global section s : P� ! J�1(�). Let 	� :D s� i��	 2
˝1(P�). Then the reduced symplectic form ˝� D

�d	� is exact. This statement does not imply that the
one-form 	 descends to the reduced space, only that the
reduced symplectic form is exact and one if its primi-
tives is 	�. In fact, if one changes the global section,
another primitive of ˝� is found which differs from
	� by a closed one-form on P�.

3. The assumption that � is a regular value of J can be re-
laxed. The only hypothesis needed is that � be a clean
value of J, i. e., J�1(�) is a manifold and Tz(J�1(�)) D
ker Tz J. This generalization applies, for instance, for
zero angular momentum in the three dimensional two
body problem, as was noted by Marsden and Wein-
stein [110] and Kazhdan, Kostant, and Sternberg [72];
see also Guillemin and Sternberg [57].
Here are the general definitions: If f : M ! N is
a smooth map, a point y 2 N is called a clean value
if f�1(y) is a submanifold and for each x 2 f�1(y),
Tx f�1(y) D ker Tx f . We say that f intersects a sub-
manifold L � N cleanly if f�1(L) is a submanifold
of M and Tx ( f�1(L)) D (Tx f )�1(Tf (x)L). Note that
regular values of f are clean values and that if f inter-
sects the submanifold L transversally, then it intersects
it cleanly. Also note that the definition of clean inter-
section of two manifolds is equivalent to the statement
that the inclusion map of either one of them intersects
the other cleanly. The reduction lemma is an example
of this situation.

4. The freeness and properness of theG� action on J�1(�)
are used only to guarantee that P� is a manifold; these
hypotheses can thus be replaced by the requirement
that P� is a manifold and �� : J�1(�)! P� a submer-
sion; the proof of the symplectic reduction theorem re-
mains unchanged.

5. Even if � is a regular value (in the sense of a regular
value of the mapping J), it need not be a regular point
(also called a generic point) in g�; that is, a point whose
coadjoint orbit is of maximal dimension. The reduction
theorem does not require that � be a regular point. For
example, if G acts on itself on the left by group mul-
tiplication and if we lift this to an action on T�G by
the cotangent lift, then the action is free and so all �
are regular values, but such values (for instance, the
zero element in so(3)�) need not be regular. On the
other hand, in many important stability considerations,
a regularity assumption on the point � is required; see,
for instance, Patrick [145], Ortega and Ratiu [136] and
Patrick, Roberts, and Wulff [146].
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Nonequivariant Reduction

We now describe how one can carry out reduction for
a nonequivariant momentum map.

If J : P! g� is a nonequivariant momentum map on
the connected symplectic manifold P with nonequivari-
ance group one-cocycle � consider the affine action (9)
and let eG� be the isotropy subgroup of � 2 g� relative
to this action. Then, under the same regularity assump-
tions (for example, assume that G acts freely and prop-
erly on P, or that � is a regular value of J and that eG�
acts freely and properly on J�1(�)), the quotient man-
ifold P� :D J�1(�)/eG� is a symplectic manifold whose
symplectic form is uniquely determined by the relation
i��˝ D ���˝�. The proof of this statement is identical to
the one given above with the obvious changes in themean-
ing of the symbols.

When using nonequivariant reduction, one has to re-
member that G acts on g� in an affine and not a linear
manner. For example, while the coadjoint isotropy sub-
group at the origin is equal to G; that is, G0 D G, this is
no longer the case for the affine action, where eG0 in gen-
eral does not equal G.

Coadjoint Orbits as Symplectic Reduced Spaces

We now examine Corollary 4 – that is, that coadjoint
orbits may be realized as reduced spaces – a little more
closely. Realizing them as reduced spaces shows that they
are symplectic manifolds See, Chap. 14 in [104] for a “di-
rect” or “bare hands” argument. Historically, a direct ar-
gument was found first, by Kirillov, Kostant and Souriau
in the early 1960’s and the (minus) coadjoint symplectic
structure was found to be

!�� (ad
�
� �; ad

�
��) D �h�; [�; �]i (18)

Interestingly, this is the symplectic structure on the
symplectic leaves of the Lie–Poisson bracket, as is shown
in, for example, [104]. (See the historical overview in
Sect. “Reduction Theory: Historical Overview” below and
specifically, see Eq. (21) for a quick review of the Lie–
Poisson bracket).

The strategy of the reduction proof, as mentioned in
the discussion in the last section, is to show that the
coadjoint symplectic form on a coadjoint orbit O� of the
point �, at a point � 2 O, may be obtained by symplecti-
cally reducing T�G at the value �. The following theorem
(due to Marsden and Weinstein [110]), and which is an
elaboration on the result in Corollary 4, formulates the re-
sult for left actions; of course there is a similar one for right
actions, with the minus sign replaced by a plus sign.

Theorem 7 (Reduction to coadjoint orbits) Let G be
a Lie group and let G act on G (and hence on T�G by
cotangent lift) by left multiplication. Let � 2 g� and let
JL : T�G ! g� be the momentum map for the left ac-
tion. Then � is a regular value of JL, the action of G is
free and proper, the symplectic reduced space J�1L (�)/G� is
identified via left translation with O�, the coadjoint orbit
through �, and the reduced symplectic form coincides with
!� given in Eq. (18).

Remarks

1. Notice that, as in the general Symplectic Reduction
Theorem 3, this result does not require � to be a reg-
ular (or generic) point in g�; that is, arbitrarily nearby
coadjoint orbits may have a different dimension.

2. The form !� on the orbit need not be exact even
though ˝ is. An example that shows this is SO(3),
whose coadjoint orbits are spheres and whose symplec-
tic structure is, as shown in [104], a multiple of the area
element, which is not exact by Stokes’ Theorem.

Orbit Reduction

So far, we have presented what is usually called point re-
duction. There is another point of view that is called orbit
reduction, which we now summarize.We assume the same
set up as in the symplectic reduction theorem, with P con-
nected, G acting symplectically, freely, and properly on P
with an equivariant momentum map J : P ! g�.

The connected components of the point reduced
spaces P� can be regarded as the symplectic leaves of
the Poisson manifold (P/G; f�; �gP/G ) in the following way.
Form a map

�
i�
�
: P� ! P/G defined by selecting an

equivalence class [z]G� for z 2 J�1(�) and sending it to
the class [z]G . This map is checked to be well-defined and
smooth. We then have the commutative diagram

One then checks that
�
i�
�
is a Poisson injective im-

mersion. Moreover, the
�
i�
�
-images in P/G of the con-

nected components of the symplectic manifolds
�
P�;˝�



are its symplectic leaves (see [138] and references therein
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for details). As sets,
�
i�
� �
P�

D J�1

�
O�

/G ;

where O� � g� is the coadjoint orbit through � 2 g�.
The set

PO� :D J�1
�
O�

/G

is called the orbit reduced space associated to the orbitO�.
The smooth manifold structure (and hence the topology)
on PO� is the one that makes the map

�
i�
�
: P� ! PO�

into a diffeomorphism.
For the next theorem, which characterizes the sym-

plectic form and the Hamiltonian dynamics on PO� , re-
call the coadjoint orbit symplectic structure of Kirillov,
Kostant and Souriau that was established in the preceding
Theorem 7:

!�O�(�)(�g� (�); �g� (�)) D �h�; [�; �]i ; (19)

for �; � 2 g and � 2 O�.
We also recall that an injectively immersed submani-

fold of S of Q is called an initial submanifold of Q when
for any smooth manifold P, a map g : P! S is smooth if
and only if � ı g : P! Q is smooth, where � : S ,! Q is the
inclusion.

Theorem 8 (Symplectic orbit reduction theorem) In the
setup explained above:

(i) The momentum map J is transverse to the coadjoint
orbit O� and hence J�1(O�) is an initial submanifold
of P. Moreover, the projection �O� : J�1

�
O�

! PO�

is a surjective submersion.
(ii) PO� is a symplectic manifold with the symplectic form

˝O� uniquely characterized by the relation

��O�˝O� D J�O�!
�
O� C i�O�˝ ; (20)

where JO� is the restriction of J to J�1
�
O�

and

iO� : J�1
�
O�

,! P is the inclusion.

(iii) The map
�
i�
�
: P� ! PO� is a symplectic diffeomor-

phism.
(iv) (Dynamics). Let H be a G-invariant function on P and

define eH : P/G ! R by H D eH ı � . Then the Hamil-
tonian vector field XH is also G-invariant and hence
induces a vector field on P/G, which coincides with the
Hamiltonian vector field XeH.Moreover, the flow of XeH
leaves the symplectic leaves PO� of P/G invariant. This
flow restricted to the symplectic leaves is again Hamil-
tonian relative to the symplectic form ˝O� and the
Hamiltonian function eHO� given by

eHO� ı �O� D H ı iO� :

Note that if O� is an embedded submanifold of g� then J
is transverse toO� and hence J�1(O�) is automatically an
embedded submanifold of P.

The proof of this theorem when O� is an embedded
submanifold of g� can be found in Marle [91], Kazhdan,
Kostant, and Sternberg [72], with useful additions given
in Marsden [94] and Blaom [17]. For nonfree actions and
whenO� is not an embedded submanifold of g� see [138].
Further comments on the historical context of this result
are given in the next section.

Remarks

1. A similar result holds for right actions.
2. Freeness and properness of the G�-action on J�1(�)

are only needed indirectly. In fact these conditions are
sufficient but not necessary for P� to be a manifold.
All that is needed is for P� to be a manifold and ��
to be a submersion and the above result remains un-
changed.

3. Note that the description of the symplectic structure on
J�1(O)/G is not as simple as it was for J�1(�)/G, while
the Poisson bracket description is simpler on J�1(O)/G.
Of course, the symplectic structure depends only on the
orbit O and not on the choice of a point � on it.

Cotangent Bundle Reduction

Perhaps the most important and basic reduction theorem
in addition to those already presented is the cotangent
bundle reduction theorem. We shall give an exposition of
the key aspects of this theory in Sect. “Cotangent Bundle
Reduction” and give a historical account of its develop-
ment, along with references in the next section.

At this point, to orient the reader, we note that one
of the special cases is cotangent bundle reduction at zero
(see Theorem 10). This result says that if one has, again
for simplicity, a free and proper action of G on Q (which
is then lifted to T�Q by the cotangent lift), then the re-
duced space at zero of T�Q is given by T�(Q/G), with its
canonical symplectic structure. On the other hand, reduc-
tion at a nonzero value is a bit more complicated and gives
rise to modifications of the standard symplectic structure;
namely, one adds to the canonical structure, the pull-back
of a closed two form on Q to T�Q. Because of their phys-
ical interpretation (discussed, for example, in [104]), such
extra terms are called magnetic terms. In Sect. “Cotangent
Bundle Reduction”, we state the basic cotangent bundle re-
duction theorems along with providing some of the other
important notions, such as the mechanical connection and
the locked inertia tensor. Other notions that are important
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in mechanics, such as the amended potential, can be found
in [95].

Reduction Theory: Historical Overview

We have already given bits an pieces of the history of sym-
plectic reduction and momentummaps. In this section we
take a broader view of the subject to put things in historical
and topical context.

History before 1960

In the preceding sections, reduction theory has been pre-
sented as a mathematical construction. Of course, these
ideas are rooted in classical work on mechanical systems
with symmetry by suchmasters as Euler, Lagrange, Hamil-
ton, Jacobi, Routh, Riemann, Liouville, Lie, and Poincaré.
The aim of their work was, to a large extent, to eliminate
variables associated with symmetries in order to simplify
calculations in concrete examples. Much of this work was
done using coordinates, although the deep connection be-
tweenmechanics and geometry was already evident.Whit-
taker [179] gives a good picture of the theory as it existed
up to about 1910.

A highlight of this early theory was the work of
Routh [161,163] who studied reduction of systems with
cyclic variables and introduced the amended potential for
the reduced system for the purpose of studying, for in-
stance, the stability of a uniformly rotating state – what
we would call today a relative equilibrium, terminology in-
troduced later by Poincaré. Smale [168] eventually put the
amended potential into a nice geometric setting. Routh’s
work was closely related to the reduction of systems
with integrals in involution studied by Jacobi and Liou-
ville around 1870; the Routh method corresponds to the
modern theory of Lagrangian reduction for the action of
Abelian groups.

The rigid body, whose equations were discovered by
Euler around 1740, was a key example of reduction – what
we would call today either reduction to coadjoint orbits or
Lie–Poisson reduction on the Hamiltonian side, or Euler–
Poincaré reduction on the Lagrangian side, depending on
one’s point of view. Lagrange [81] already understood re-
duction of the rigid body equations by a method not so far
from what one would do today with the symmetry group
SO(3).

Many later authors, unfortunately, relied so much on
coordinates (especially Euler angles) that there is little
mention of SO(3) in classical mechanics books written be-
fore 1990, which by today’s standards, seems rather sur-
prising! In addition, there seemed to be little apprecia-
tion until recently for the role of topological notions; for

example, the fact that one cannot globally split off cyclic
variables for the S1 action on the configuration space of
the heavy top. The Hopf fibration was patiently waiting
to be discovered in the reduction theory for the classical
rigid body, but it was only explicitly found later on by
H. Hopf [64]. Hopf was, apparently, unaware that this ex-
ample is of great mechanical interest – the gap between
workers in mechanics and geometers seems to have been
particularly wide at that time.

Another noteworthy instance of reduction is Jacobi’s
elimination of the node for reducing the gravitational (or
electrostatic) n-body problem bymeans of the group SE(3)
of Euclidean motions, around 1860 or so. This example
has, of course, been a mainstay of celestial mechanics. It
is related to the work done by Riemann, Jacobi, Poincaré
and others on rotating fluid masses held together by grav-
itational forces, such as stars. Hidden in these examples is
much of the beauty of modern reduction, stability and bi-
furcation theory for mechanical systems with symmetry.

While both symplectic and Poisson geometry have
their roots in the work of Lagrange and Jacobi, it ma-
tured considerably with the work of Lie [90], who discov-
ered many remarkably modern concepts such as the Lie–
Poisson bracket on the dual of a Lie algebra. See Wein-
stein [176] and Marsden and Ratiu [104] for more details
on the history. How Lie could have viewed his wonderful
discoveries so divorced from their roots in mechanics re-
mains a mystery. We can only guess that he was inspired
by Jacobi, Lagrange and Riemann and then, as mathemati-
cians often do, he quickly abstracted the ideas, losing valu-
able scientific and historical connections along the way.

As we have already hinted, it was the famous paper
Poincaré [153] where we findwhat we call today the Euler–
Poincaré equations – a generalization of the Euler equa-
tions for both fluids and the rigid body to general Lie alge-
bras. (The Euler–Poincaré equations are treated in detail
in [104]). It is curious that Poincaré did not stress either
the symplectic ideas of Lie, nor the variational principles
of mechanics of Lagrange and Hamilton – in fact, it is not
clear to what extent he understood what we would call to-
day Euler–Poincaré reduction. It was only with the devel-
opment and physical application of the notion of a man-
ifold, pioneered by Lie, Poincaré, Weyl, Cartan, Reeb,
Synge and many others, that a more general and intrin-
sic view of mechanics was possible. By the late 1950’s, the
stage was set for an explosion in the field.

1960–1972

Beginning in the 1960’s, the subject of geometric mechan-
ics indeed did explode with the basic contributions of peo-
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ple such as (alphabetically and nonexhaustively) Abraham,
Arnold, Kirillov, Kostant, Mackey, MacLane, Segal, Stern-
berg, Smale, and Souriau. Kirillov and Kostant found deep
connections between mechanics and pure mathematics in
their work on the orbit method in group representations,
while Arnold, Smale, and Souriau were in closer touch
with mechanics.

The modern vision of geometric mechanics combines
strong links to important questions in mathematics with
the traditional classical mechanics of particles, rigid bod-
ies, fields, fluids, plasmas, and elastic solids, as well as
quantum and relativistic theories. Symmetries in these
theories vary from obvious translational and rotational
symmetries to less obvious particle relabeling symmetries
in fluids and plasmas, to the “hidden” symmetries under-
lying integrable systems. As we have already mentioned,
reduction theory concerns the removal of variables using
symmetries and their associated conservation laws. Vari-
ational principles, in addition to symplectic and Poisson
geometry, provide fundamental tools for this endeavor. In
fact, conservation of the momentum map associated with
a symmetry group action is a geometric expression of the
classical Noether theorem (discovered by variational, not
symplectic methods).

Arnold and Smale

The modern era of reduction theory began with the fun-
damental papers of Arnold [7] and Smale [168]. Arnold
focused on systems whose configuration manifold is a Lie
group, while Smale focused on bifurcations of relative
equilibria. Both Arnold and Smale linked their theory
strongly with examples. For Arnold, they were the same
examples as for Poincaré, namely the rigid body and fluids,
for which he went on to develop powerful stability meth-
ods, as in Arnold [8].

With hindsight, we can say that Arnold [7] was picking
up on the basic work of Poincaré for both rigid body mo-
tion and fluids. In the case of fluids, G is the group of (vol-
ume preserving) diffeomorphisms of a compact manifold
(possibly with boundary). In this setting, one obtains the
Euler equations for (incompressible) fluids by reduction
from the Lagrangian formulation of the equations of mo-
tion, an idea exploited by Arnold [7] and Ebin and Mars-
den [49]. This sort of description of a fluid goes back to
Poincaré (using the Euler–Poincaré equations) and to the
thesis of Ehrenfest (as geodesics on the diffeomorphism
group), written under the direction of Boltzmann.

For Smale, the motivating example was celestial me-
chanics, especially the study of the number and stability
of relative equilibria by a topological study of the energy-

momentum mapping. He gave an intrinsic geometric ac-
count of the amended potential and in doing so, discov-
ered what later became known as the mechanical connec-
tion. (Smale appears to not to have recognized that the
interesting object he called ˛ is, in fact, a principal con-
nection; this was first observed by Kummer [79]). One of
Smale’s key ideas in studying relative equilibria was to link
mechanics with topology via the fact that relative equilib-
ria are critical points of the amended potential.

Besides giving a beautiful exposition of the momen-
tum map, Smale also emphasized the connection between
singularities and symmetry, observing that the symmetry
group of a phase space point has positive dimension if
and only if that point is not a regular point of the mo-
mentum map restricted to a fiber of the cotangent bundle
(Smale [168], Proposition 6.2) – a result we have proved
in Proposition 2. He went on from here to develop his
topology and mechanics program and to apply it to the
planar n-body problem. The topology and mechanics pro-
gram definitely involved reduction ideas, as in Smale’s
construction of the quotients of integral manifolds, as in
Ic;p/S1 (Smale [168], page 320). He also understood Ja-
cobi’s elimination of the node in this context, although
he did not attempt to give any general theory of reduction
along these lines.

Smale thereby set the stage for symplectic reduction:
he realized the importance of the momentum map and of
quotient constructions, and he worked out explicit exam-
ples like the planar n-body problem with its S1 symmetry
group. (Interestingly, he pointed out that one should really
use the nonabelian group SE(2); his feeling of unease with
fixing the center of mass of an n-body system is remark-
ably perceptive).

Synthesis

The problem of synthesizing the Lie algebra reduction
methods of Arnold [7] with the techniques of Smale [168]
on the reduction of cotangent bundles by Abelian groups,
led to the development of reduction theory in the gen-
eral context of symplectic manifolds and equivariant mo-
mentum maps in Marsden and Weinstein [110] and
Meyer [117], as we described in the last section. Both of
these papers were completed by 1972.

Poisson Manifolds

Meanwhile, things were also gestating from the viewpoint
of Poisson brackets and the idea of a Poisson manifold was
being initiated and developed, with much duplication and
rediscovery (see, Section 10.1 in [104] for additional infor-
mation).
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A basic example of a noncanonical Poisson bracket is
the Lie–Poisson bracket on g�, the dual of a Lie algebra g.
This bracket (which comes with a plus or minus sign) is
given on two smooth functions on g� by

f f ; gg˙(�) D ˙
�
�;

�
ı f
ı�
;
ıg
ı�

�	
; (21)

where ı f /ı� is the derivative of f , but thought of as
an element of g. These Poisson structures, including the
coadjoint orbits as their symplectic leaves, were known to
Lie [90], although, as we mentioned previously, Lie does
not seem to have recognized their importance in mechan-
ics. It is also not clear whether or not Lie realized that
the Lie Poisson bracket is the Poisson reduction of the
canonical Poisson bracket on T�G by the action ofG. (See,
Chap. 13 in [104] for an account of this theory). The first
place we know of that has this clearly stated (but with
no references, and no discussion of the context) is Bour-
baki [24], Chapter III, Section 4, Exercise 6. Remarkably,
this exercise also contains an interesting proof of the Du-
flo–Vergne theorem (with no reference to the original pa-
per, which appeared in 1969). Again, any hint of links with
mechanics is missing.

This takes us up to about 1972.

Post 1972

An important contribution was made by Marle [91], who
divides the inverse image of an orbit by its characteristic
foliation to obtain the product of an orbit and a reduced
manifold. In particular, as we saw in Theorem 8, P� is
symplectically diffeomorphic to an “orbit-reduced” space
P� Š J�1(O�)/G, where O� is a coadjoint orbit of G.
From this it follows that the P� are symplectic leaves in the
Poisson space P/G. The related paper of Kazhdan, Kostant,
and Sternberg [72] was one of the first to notice deep links
between reduction and integrable systems. In particular,
they found that the Calogero–Moser systems could be ob-
tained by reducing a system that was trivially integrable;
in this way, reduction provided a method of producing
an interesting integrable system from a simple one. This
point of view was used again by, for example, Bobenko,
Reyman, and Semenov–Tian–Shansky [22] in their spec-
tacular group theoretic explanation of the integrability of
the Kowalewski top.

Noncanonical Poisson Brackets

The Hamiltonian description of many physical systems,
such as rigid bodies and fluids in Eulerian variables, re-
quires noncanonical Poisson brackets and constrained

variational principles of the sort studied by Lie and
Poincaré. As discussed above, a basic example of a non-
canonical Poisson bracket is the Lie–Poisson bracket on
the dual of a Lie algebra. From the mechanics perspec-
tive, the remarkably modern book (but which was, unfor-
tunately, rather out of touch with the corresponding math-
ematical developments) by Sudarshan andMukunda [172]
showed via explicit examples how systems such as the rigid
body could be written in terms of noncanonical brack-
ets, an idea going back to Pauli [147], Martin [115] and
Nambu [129]. Others in the physics community, such as
Morrison and Greene [128] also discovered noncanonical
bracket formalisms for fluid and magnetohydrodynamic
systems. In the 1980’s, many fluid and plasma systems
were shown to have a noncanonical Poisson formulation.
It was Marsden andWeinstein [111,112] who first applied
reduction techniques to these systems.

The reduction philosophy concerning noncanonical
brackets can be summarized by saying

Any mechanical system has its roots somewhere as
a cotangent bundle and one can recover noncanon-
ical brackets by the simple process of Poisson reduc-
tion. For example, in fluid mechanics, this reduction
is implemented by the Lagrange-to-Euler map.

This view ran contrary to the point of view, taken by
some researchers, that one should proceed by analogy or
guesswork to find Poisson structures and then to try to
limit the guesses by the constraint of Jacobi’s identity.

In the simplest version of the Poisson reduction pro-
cess, one starts with a Poisson manifold P on which
a group G acts by Poisson maps and then forms the quo-
tient space P/G, which, if not singular, inherits a natural
Poisson structure itself. Of course, the Lie–Poisson struc-
ture on g� is inherited in exactly this way from the canon-
ical symplectic structure on T�G. One of the attractions of
this Poisson bracket formalism was its use in stability the-
ory. This literature is now very large, but Holm, Marsden,
Ratiu, andWeinstein [63] is representative.

The way in which the Poisson structure on P� is re-
lated to that on P/G was clarified in a generalization of
Poisson reduction due toMarsden and Ratiu [103], a tech-
nique that has also proven useful in integrable systems
(see, e. g., Pedroni [148] and Vanhaecke [174]).

Reduction theory for mechanical systems with sym-
metry has proven to be a powerful tool that has enabled
key advances in stability theory (from the Arnold method
to the energy-momentum method for relative equilibria)
as well as in bifurcation theory of mechanical systems,
geometric phases via reconstruction – the inverse of re-
duction – as well as uses in control theory from sta-
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bilization results to a deeper understanding of locomo-
tion. For a general introduction to some of these ideas
and for further references, see Marsden, Montgomery,
and Ratiu [98]; Simo, Lewis, and Marsden [166]; Mars-
den and Ostrowski [99]; Marsden and Ratiu [104]; Mont-
gomery [122,123,124,125,126]; Blaom [16,17] and Kanso,
Marsden, Rowley, and Melli-Huber [71].

Tangent and Cotangent Bundle Reduction

The simplest case of cotangent bundle reduction is the
case of reduction of P D T�Q at � D 0; the answer
is simply P0 D T�(Q/G) with the canonical symplectic
form. Another basic case is when G is Abelian. Here,
(T�Q)� Š T�(Q/G), but the latter has a symplectic struc-
ture modified by magnetic terms, that is, by the curvature
of the mechanical connection.

An Abelian version of cotangent bundle reduction was
developed by Smale [168]. Then Satzer [165] studied the
relatively simple, but important case of cotangent bundle
reduction at the zero value of the momentum map. The
full generalization of cotangent bundle reduction for non-
abelian groups at arbitrary values of the momentum map
appears for the first time in Abraham and Marsden [1].
It was Kummer [79] who first interpreted this result in
terms of a connection, now called themechanical connec-
tion. The geometry of this situation was used to great effect
in, for example, Guichardet [54,66], Iwai [67], and Mont-
gomery [120,123,124]. We give an account of cotangent
bundle reduction theory in the following section.

The Gauge Theory Viewpoint

Tangent and cotangent bundle reduction evolved into
what we now term as the “bundle picture” or the “gauge
theory of mechanics”. This picture was first developed
by Montgomery, Marsden, and Ratiu [127] and Mont-
gomery [120,121]. That work was motivated and influ-
enced by the work of Sternberg [171] andWeinstein [175]
on a “Yang–Mills construction” which is, in turn, moti-
vated by Wong’s equations, i. e., the equations for a par-
ticle moving in a Yang–Mills field. The main result of
the bundle picture gives a structure to the quotient spaces
(T�Q)/G and (TQ)/G when G acts by the cotangent and
tangent lifted actions. The symplectic leaves in this pic-
ture were analyzed by Zaalani [182], Cushman and Śni-
atycki [47] and Marsden and Perlmutter [102]. The work
of Perlmutter and Ratiu [149] gives a unified study of the
Poisson bracket on (T�Q)/G in both the Sternberg and
Weinstein realizations of the quotient.

As mentioned earlier, we shall review some of the ba-
sics of cotangent bundle reduction theory in Sect. “Cotan-

gent Bundle Reduction”. Further information on this the-
ory may be found in [1,95], and [92], as well as a number
of the other references mentioned above.

Lagrangian Reduction

A key ingredient in Lagrangian reduction is the classical
work of Poincaré [153] in which the Euler–Poincaré equa-
tions were introduced. Poincaré realized that the equations
of fluids, free rigid bodies, and heavy tops could all be de-
scribed in Lie algebraic terms in a beautiful way. The im-
portance of these equations was realized by Hamel [58,59]
and Chetayev [40], but to a large extent, the work of
Poincaré lay dormant until it was revived in the Russian
literature in the 1980’s.

The more recent developments of Lagrangian reduc-
tion were motivated by attempts to understand the rela-
tion between reduction, variational principles and Clebsch
variables in Cendra and Marsden [34] and Cendra, Ibort,
and Marsden [33]. In Marsden and Scheurle [109] it was
shown that, for matrix groups, one could view the Euler–
Poincaré equations via the reduction of Hamilton’s varia-
tional principle from TG to g. The work of Bloch, Krish-
naprasad, Marsden and Ratiu [21] established the Euler–
Poincaré variational structure for general Lie groups.

The paper of Marsden and Scheurle [109] also consid-
ered the case of more general configuration spaces Q on
which a groupG acts, which wasmotivated by both the Eu-
ler–Poincaré case as well as the work of Cendra and Mars-
den [34] and Cendra, Ibort, and Marsden [33]. The Eu-
ler–Poincaré equations correspond to the case Q D G. Re-
lated ideas stressing the groupoid point of view were given
in Weinstein [177]. The resulting reduced equations were
called the reduced Euler–Lagrange equations. This work is
the Lagrangian analogue of Poisson reduction, in the sense
that no momentum map constraint is imposed.

Lagrangian reduction proceeds in a way that is very
much in the spirit of the gauge theoretic point of view of
mechanical systems with symmetry. It starts with Hamil-
ton’s variational principle for a Lagrangian system on
a configuration manifold Q and with a symmetry group G
acting on Q. The idea is to drop this variational principle
to the quotient Q/G to derive a reduced variational princi-
ple. This theory has its origins in specific examples such as
fluid mechanics (see, for example, Arnold [7] and Brether-
ton [25]), while the systematic theory of Lagrangian reduc-
tion was begun inMarsden and Scheurle [109] and further
developed in Cendra, Marsden, and Ratiu [35]. The lat-
ter reference also introduced a connection to realize the
space (TQ)/G as the fiber product T(Q/G) � g̃ of T(Q/G)
with the associated bundle formed using the adjoint action
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of G on g. The reduced equations associated to this con-
struction are called the Lagrange–Poincaré equations and
their geometry has been fairly well developed. Note that
a G-invariant Lagrangian L on TQ induces a Lagrangian l
on (TQ)/G.

Until recently, the Lagrangian side of the reduction
story had lacked a general category that is the Lagrangian
analogue of Poisson manifolds in which reduction can be
repeated. One candidate is the category of Lie algebroids,
as explained in Weinstein [177]. Another is that of La-
grange–Poincaré bundles, developed in Cendra, Marsden,
and Ratiu [35]. Both have tangent bundles and Lie algebras
as basic examples. The latter work also develops the La-
grangian analogue of reduction for central extensions and,
as in the case of symplectic reduction by stages, cocycles
and curvatures enter in a natural way.

This bundle picture and Lagrangian reduction has
proven very useful in control and optimal control prob-
lems. For example, it was used in Chang, Bloch, Leonard,
Marsden and Woolsey [38] to develop a Lagrangian and
Hamiltonian reduction theory for controlled mechanical
systems and in Koon and Marsden [76] to extend the
falling cat theorem of Montgomery [123] to the case of
nonholonomic systems as well as to nonzero values of the
momentum map.

Finally we mention that the paper Cendra, Marsden,
Pekarsky, and Ratiu [37] develops the reduction theory
for Hamilton’s phase space principle and the equations on
the reduced space, along with a reduced variational princi-
ple, are developed and called the Hamilton–Poincaré equa-
tions. Even in the case Q D G, this collapses to an inter-
esting variational principle for the Lie–Poisson equations
on g�.

Legendre Transformation

Of course the Lagrangian and Hamiltonian sides of the re-
duction story are linked by the Legendre transformation.
This mapping descends at the appropriate points to give
relations between the Lagrangian and the Hamiltonian
sides of the theory. However, even in standard cases such
as the heavy top, onemust be careful with this approach, as
is already explained in, for example, Holm, Marsden, and
Ratiu [61]. For field theories, such as the Maxwell–Vlasov
equations, this issues is also important, as explained in
Cendra, Holm, Hoyle and Marsden [31] (see also Tulczy-
jew and Urbański [173]).

Nonabelian Routh Reduction

Routh reduction for Lagrangian systems, which goes back
Routh [161,162,163] is classically associated with systems

having cyclic variables (this is almost synonymous with
having an Abelian symmetry group). Modern expositions
of this classical theory can be found in Arnold, Koslov,
and Neishtadt [10] and in [104], §8.9. Routh Reduction
may be thought of as the Lagrangian analog of symplec-
tic reduction in that a momentum map is set equal to
a constant. A key feature of Routh reduction is that when
one drops the Euler–Lagrange equations to the quotient
space associated with the symmetry, and when the mo-
mentummap is constrained to a specified value (i. e., when
the cyclic variables and their velocities are eliminated us-
ing the given value of the momentum), then the resulting
equations are in Euler–Lagrange form not with respect to
the Lagrangian itself, but with respect to a modified func-
tion called the Routhian. Routh [162] applied his method
to stability theory; this was a precursor to the energy-mo-
mentummethod for stability that synthesizes Arnold’s and
Routh’s methods (see Simo, Lewis and Marsden [166]).
Routh’s stability method is still widely used in mechanics.

The initial work on generalizing Routh reduction to
the nonabelian case was that of Marsden and Scheur-
le [108]. This subject was further developed in Jalnapurkar
and Marsden [69] andMarsden, Ratiu and Scheurle [105].
The latter reference used this theory to give some nice for-
mulas for geometric phases from the Lagrangian point of
view.

Semidirect Product Reduction

In the simplest case of a semidirect product, one has a Lie
group G that acts on a vector space V (and hence on
its dual V�) and then one forms the semidirect product
S D GsV , generalizing the semidirect product structure
of the Euclidean group SE(3) D SO(3)sR3.

Consider the isotropy group Ga0 for some a0 2 V�.
The semidirect product reduction theorem states that each
of the symplectic reduced spaces for the action of Ga0 on
T�G is symplectically diffeomorphic to a coadjoint orbit
in (g sV)�, the dual of the Lie algebra of the semidirect
product. This semidirect product theory was developed by
Guillemin and Sternberg [55,56], Ratiu [154,157,158], and
Marsden, Ratiu, and Weinstein [106,107].

The Lagrangian reduction analog of semidirect prod-
uct theory was developed by Holm, Marsden and
Ratiu [61,62]. This construction is used in applications
where one has advected quantities (such as the direction
of gravity in the heavy top, density in compressible fluids
and the magnetic field in MHD) as well as to geophysical
flows. Cendra, Holm, Hoyle andMarsden [31] applied this
idea to the Maxwell–Vlasov equations of plasma physics.
Cendra, Holm, Marsden, and Ratiu [32] showed how La-
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grangian semidirect product theory fits into the general
framework of Lagrangian reduction.

The semidirect product reduction theorem has been
proved in Landsman [82], Landsman [83], Chap. 4 as an
application of a stages theorem for his special symplectic
reduction method. Even though special symplectic reduc-
tion generalizes Marsden–Weinstein reduction, the spe-
cial reduction by stages theorem in Landsman [82] stud-
ies a setup that, in general, is different to the ones in the
reduction by stages theorems of [92].

Singular Reduction

Singular reduction starts with the observation of
Smale [168] that we have already mentioned: z 2 P is
a regular point of a momentum map J if and only if z has
no continuous isotropy. Motivated by this, Arms, Mars-
den, and Moncrief [5,6] showed that (under hypotheses
which include the ellipticity of certain operators andwhich
can be interpreted more or less, as playing the role of
a properness assumption on the group action in the finite
dimensional case) the level sets J�1(0) of an equivariant
momentum map J have quadratic singularities at points
with continuous symmetry. While such a result is easy to
prove for compact group actions on finite dimensional
manifolds (using the equivariant Darboux theorem), the
main examples of Arms, Marsden, and Moncrief [5] were,
in fact, infinite dimensional – both the phase space and the
group. Singular points in the level sets of the momentum
map are related to convexity properties of the momentum
map in that the singular points in phase space map to
corresponding singular points in the the image polytope.

The paper of Otto [143] showed that if G is a Lie group
acting properly on an almost Kähler manifold then the or-
bit space J�1(�)/G� decomposes into symplectic smooth
manifolds constructed out of the orbit types of the G-ac-
tion on P. In some related work, Huebschmann [65] has
made a careful study of the singularities of moduli spaces
of flat connections.

The detailed structure of J�1(0)/G for compact Lie
groups acting on finite dimensional manifolds was deter-
mined by Sjamaar and Lerman [167]; their work was ex-
tended to proper Lie group actions and to J�1(O�)/G by
Bates and Lerman [12], with the assumption that O� be
locally closed in g�. Ortega [130] and [138] redid the en-
tire singular reduction theory for proper Lie group ac-
tions starting with the point reduced spaces J�1(�)/G�
and also connected it to the more algebraic approach of
Arms, Cushman, and Gotay [4]. Specific examples of sin-
gular reduction, with further references, may be found in
Lerman, Montgomery, and Sjamaar [84] and [44]. One of

these, the “canoe” is given in detail in [92]. In fact, this
is an example of singular reduction in the case of cotan-
gent bundles, and much more can be said in this case; see
Olmos and Dias [150,151]. Another approach to singular
reduction based on the technique of blowing up singular-
ities, and which was also designed for the case of singular
cotangent bundle reduction, was started in Hernandez and
Marsden [60] and Birtea, Puta, Ratiu, and Tudoran [14],
a technique which requires further development.

Singular reduction has been extensively used in the
study of the persistence, bifurcation, and stability of rel-
ative dynamical elements; see [41,42,53,85,86,132,134,135,
136,139,146,159,160,180,181].

Symplectic Reduction Without MomentumMaps

The reduction theory presented so far needs the exis-
tence of a momentummap. However, more primitive ver-
sions of this procedure based on foliation theory (see Car-
tan [26] and Meyer [117]) do not require the existence of
this object. Working in this direction, but with a mathe-
matical program that goes beyond the reduction problem,
Condevaux, Dazord, and Molino [43] introduced a con-
cept that generalizes the momentum map. This object is
defined via a connection that associates an additive holon-
omy group to each canonical action on a symplectic mani-
fold. The existence of the momentummap is equivalent to
the vanishing of this group. Symplectic reduction has been
carried out using this generalized momentum map in Or-
tega and Ratiu [140,141].

Another approach to symplectic reduction that is able
to avoid the possible non-existence of themomentummap
is based on the optimal momentum map introduced and
studied in Ortega and Ratiu [137], Ortega [131], and [92].
This distribution theoretical approach can also deal with
reduction of Poisson manifolds, where the standard mo-
mentum map does not exist generically.

Reduction of Other Geometric Structures

Besides symplectic reduction, there are many other geo-
metric structures on which one can perform similar con-
structions. For example, one can reduce Kähler, hyper-
Kähler, Poisson, contact, Jacobi, etc. manifolds and this
can be done either in the regular or singular cases. We re-
fer to [138] for a survey of the literature for these topics.

The Method of Invariants

This method seeks to parametrize quotient spaces by
group invariant functions. It has a rich history going back
to Hilbert’s invariant theory. It has been of great use in
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bifurcation with symmetry (see Golubitsky, Stewart, and
Schaeffer [52] for instance). In mechanics, the method was
developed by Kummer, Cushman, Rod and coworkers in
the 1980’s; see, for example, Cushman and Rod [45]. We
will not attempt to give a literature survey here, other than
to refer to Kummer [80], Kirk, Marsden, and Silber [73],
Alber, Luther, Marsden, and Robbins [3] and the book
of Cushman and Bates [44] for more details and refer-
ences.

Nonholonomic Systems

Nonholonomic mechanical systems (such as systems with
rolling constraints) provide a very interesting class of sys-
tems where the reduction procedure has to be modified.
In fact this provides a class of systems that gives rise to
an almost Poisson structure, i. e. a bracket which does not
necessarily satisfy the Jacobi identity. Reduction theory for
nonholonomic systems has made a lot of progress, but
many interesting questions still remain. In these types of
systems, there is a natural notion of amomentummap, but
in general it is not conserved, but rather obeys a momen-
tum equation as was discovered by Bloch, Krishnaprasad,
Marsden, and Murray [20]. This means, in particular, that
point reduction in such a situation may not be appropri-
ate. Nevertheless, Poisson reduction in the almost Poisson
and almost symplectic setting is interesting and from the
mathematical point of view, point reduction is also inter-
esting, although, as remarked, one has to be cautious with
how it is applied to, for example, nonholonomic systems.
A few references are Koiller [75], Bates and Sniatycki [13],
Bloch, Krishnaprasad, Marsden, and Murray [20], Koon
and Marsden [77], Blankenstein and Van Der Schaft [15],
Cushman, Śniatycki [46], Planas-Bielsa [152], and Ortega
and Planas-Bielsa [133].We refer to Cendra,Marsden, and
Ratiu [36] and Bloch [18] for a more detailed historical re-
view.

Multisymplectic Reduction

Reduction theory is by no means completed. For exam-
ple, for PDE’s, the multisymplectic (as opposed to sym-
plectic) framework seems appropriate, both for relativis-
tic and nonrelativistic systems. In fact, this approach has
experienced somewhat of a revival since it has been re-
alized that it is rather useful for numerical computation
(see Marsden, Patrick, and Shkoller [100]). Only a few in-
stances and examples of multisymplectic and multi-Pois-
son reduction are really well understood (see Marsden,
Montgomery, Morrison, and Thompson [97]; Castrillón-
López, Ratiu and Shkoller [30], Castrillón-López, Garcia

Pérez and Ratiu [27], Castrillón-López and Ratiu [28],
Castrillón-López and Marsden [29]), so one can expect to
see more activity in this area as well.

Discrete Mechanical Systems

Another emerging area, also motivated by numerical anal-
ysis, is that of discrete mechanics. Here the idea is to re-
place the velocity phase space TQ by Q � Q, with the
role of a velocity vector played by a pair of nearby points.
This has been a powerful tool for numerical analysis,
reproducing standard symplectic integration algorithms
and much more. See, for example, Wendlandt and Mars-
den [178], Kane, Marsden, Ortiz and West [70], Marsden
and West [113], Lew, Marsden, Ortiz, and West [87] and
references therein. This subject, too, has its own reduc-
tion theory. See Marsden, Pekarsky, and Shkoller [101],
Bobenko and Suris [23] and Jalnapurkar, Leok, Marsden
and West [68]. Discrete mechanics also has some intrigu-
ing links with quantization, since Feynman himself first
defined path integrals through a limiting process using the
sort of discretization used in the discrete action principle
(see Feynman and Hibbs [50]).

Cotangent Bundle Reduction

As mentioned earlier, the cotangent bundle reduction the-
orems are amongst the most basic and useful of the sym-
plectic reduction theorems. Here we only present the reg-
ular versions of the theorems. Cotangent bundle reduction
theorems come in two forms – the embedding cotangent
bundle reduction theorem and the bundle cotangent bun-
dle reduction theorem. We start with a smooth, free, and
proper, left action

˚ : G � Q ! Q

of the Lie groupG on the configuration manifoldQ and lift
it to an action on T�Q. This lifted action is symplectic with
respect to the canonical symplectic form on T�Q, which
we denote ˝can, and has an equivariant momentum map
J : T�Q ! g� given by

hJ(˛q); �i D
˝
˛q ; �Q (q)

˛
;

where � 2 g. Letting � 2 g�, the aim of this section is to
determine the structure of the symplectic reduced space
((T�Q)�;˝�), which, by Theorem 3, is a symplectic man-
ifold. We are interested in particular in the question of to
what extent ((T�Q)�;˝�) is a synthesis of a cotangent
bundles and a coadjoint orbit.
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Cotangent Bundle Reduction: Embedding Version

In this version of the theorem, we first form the quotient
manifold

Q� :D Q/G� ;

which we call the �-shape space. Since the action of G
on Q is smooth, free, and proper, so is the action of the
isotropy subgroupG� and therefore,Q� is a smoothman-
ifold and the canonical projection

�Q;G� : Q ! Q�

is a surjective submersion.
Consider the G�-action on Q and its lift to T�Q. This

lifted action is of course also symplectic with respect to
the canonical symplectic form ˝can and has an equivari-
ant momentummap J� : T�Q ! g�� obtained by restrict-
ing J; that is, for ˛q 2 T�q Q,

J�(˛q) D J(˛q)jg� :

Let �0 :D �jg� 2 g�� be the restriction of � to g�. Notice
that there is a natural inclusion of submanifolds

J�1(�) � (J�)�1(�0) : (22)

Since the actions are free and proper, � and �0 are regular
values, so these sets are indeed smooth manifolds. Note
that, by construction, �0 is G�-invariant.

There will be two key assumptions relevant to the em-
bedding version of cotangent bundle reduction. Namely,
CBR1 In the above setting, assume there is a G�-invariant

one-form ˛� on Q with values in (J�)�1(�0);
and the condition (which by (22), is a stronger condition)
CBR2 Assume that ˛� in CBR1 takes values in J�1(�).

For � 2 g� and q 2 Q, notice that, under the condi-
tion CBR1,

(i�Q˛�)(q) D hJ(˛�(q)); �i D h�
0; �i ;

and so i�Q˛� is a constant function on Q. Therefore, for
� 2 g�,

i�Qd˛� D £�Q˛� � di�Q˛� D 0 ; (23)

since the Lie derivative is zero by G�-invariance of ˛�. It
follows that

There is a unique two-form ˇ� on Q� such that

��Q;G�ˇ� D d˛� :

Since �Q;G� is a submersion, ˇ� is closed (it need not be

exact). Let

B� D ��Q�ˇ� ;

where �Q� : T�Q� ! Q� is (following our general con-
ventions for maps) the cotangent bundle projection. Also,
to avoid confusion with the canonical symplectic form
˝can on T�Q, we shall denote the canonical symplectic
form on T�Q�, the cotangent bundle of �-shape space,
by !can.

Theorem 9 (Cotangent bundle reduction – embedding
version)

(i) If conditionCBR1 holds, then there is a symplectic em-
bedding

'� : ((T�Q)�;˝�)! (T�Q�; !can � B�) ;

onto a submanifold of T�Q� covering the base Q/G�.
(ii) Themap '� in (i) gives a symplectic diffeomorphism of

((T�Q)�;˝�) onto (T�Q�; !can � B�) if and only if
g D g�.

(iii) If CBR2 holds, then the image of '� equals the vector
subbundle [T�Q;G� (V)]ı of T�Q�, where V � TQ
is the vector subbundle consisting of vectors tangent
to the G-orbits, that is, its fiber at q 2 Q equals
Vq D f�Q (q) j � 2 gg, and ı denotes the annihilator
relative to the natural duality pairing between TQ�
and T�Q�.

Remarks

1. A history of this result can be found in Sect. “Reduction
Theory: Historical Overview”.

2. As shown in the appendix on Principal Connec-
tions (see Proposition A2) the required one form
˛� may be constructed satisfying condition CBR1
from a connection on the �-shape space bundle
�Q;G� : Q ! Q/G� and an ˛� satisfying CBR2 can be
constructed using a connection on the shape space bun-
dle �Q;G : Q ! Q/G.

3. Note that in the case of Abelian reduction, or, more
generally, the case in which G D G�, the reduced space
is symplectically diffeomorphic to T�(Q/G) with the
symplectic structure given by˝can � B�. In particular,
if � D 0, then the symplectic form on T�(Q/G) is the
canonical one, since in this case one can choose ˛� D 0
which yields B� D 0.

4. The term B� on T�Q is usually called a magnetic
term, a gyroscopic term, or a Coriolis term. The ter-
minology “magnetic” comes from the Hamiltonian de-
scription of a particle of charge e moving accord-
ing to the Lorentz force law in R3 under the in-
fluence of a magnetic field B. This motion takes
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place in T�R3 but with the nonstandard symplectic
structure dqi ^ dpi � e

c B; i D 1; 2; 3, where c is the
speed of light and B is regarded as a closed two-
form: B D Bxdy ^ dz � Bydx ^ dz C Bzdx ^ dy (see
§6.7 in [104] for details)

The strategy for proving this theorem is to first deal
with the case of reduction at zero and then to treat the gen-
eral case using a momentum shift.

Reduction at Zero

The reduced space at � D 0 is, as a set,

(T�Q)0 D J�1(0)/G

since, for � D 0;G� D G. Notice that in this case, there
is no distinction between orbit reduction and symplectic
reduction.

Theorem 10 (Reduction at zero) Assume that the ac-
tion of G on Q is free and proper, so that the quotient Q/G
is a smooth manifold. Then 0 is a regular value of J and
there is a symplectic diffeomorphism between (T�Q)0 and
T�(Q/G) with its canonical symplectic structure.

The Case G D G�
If one is reducing at zero, then clearly G D G�. However,
this is an important special case of the general cotangent
bundle reduction theorem that, for example, includes the
case of Abelian reduction. The key assumption here is that
G D G�, which indeed is always the case if G is Abelian.

Theorem 11 Assume that the action of G on Q is free
and proper, so that the quotient Q/G is a smooth manifold.
Let � 2 g�, assume that G D G�, and assume that CBR2
holds. Then� is a regular value of J and there is a symplectic
diffeomorphism between (T�Q)� and T�(Q/G), the latter
with the symplectic form!can � B�; here,!can is the canon-
ical symplectic form on T�(Q/G) and B� D ��Q/Gˇ�,
where the two form ˇ� on Q/G is defined by

��Q;Gˇ� D d˛� :

Example

Consider the reduction of a general cotangent bundle
T�Q by G D SO(3). Here G� Š S1, if � ¤ 0, and so the
reduced space is embedded into the cotangent bundle
T�(Q/S1). A specific example is the case of Q D SO(3).
Then the reduced space (T�SO(3))� is S2

k�k
, the sphere

of radius k�k which is a coadjoint orbit in so(3)�. In
this case, Q/G� D SO(3)/S1 Š S2

k�k
and the embedding

of S2
k�k

into T�S2
k�k

is the zero section.

Magnetic Terms and Curvature

Using the results of the preceding section, we will now
show how one can interpret the magnetic term B� as the
curvature of a connection on a principal bundle.

We saw in the preamble to the Cotangent Bundle
Reduction Theorem 9 that i�Qd˛� D 0 for any � 2 g�,
which was used to drop d˛� to the quotient. In the lan-
guage of principal bundles, this may be rephrased by say-
ing that d˛� is horizontal and thus, once a connection is
introduced, the covariant exterior derivative of ˛� coin-
cides with d˛�.

There are twomethods to construct a form ˛� with the
properties in Theorem 9. We continue to work under the
general assumption that G acts on Q freely and properly.

First Method

Construction of ˛� from a connection A� 2 ˝1(Q;g�)
on the principal bundle �Q;G� : Q ! Q/G�.

To carry this out, one shows that the choice

˛� :D h�0;A�i 2 ˝1(Q)

satisfies the condition CBR1 in Theorem 9, where, as
above, �0 D �jg� . The two-form d˛� may be interpreted
in terms of curvature. In fact, one shows that d˛� is the
�0-component of the curvature two-form. We summarize
these results in the following statement.

Proposition 12 If the principal bundle �Q;G� : Q !

Q/G� with structure group G� has a connectionA�, then
˛�(q) can be taken to equalA�(q)��0 and B� is induced
on T�Q� by d˛� (a two-form on Q), which equals the
�0-component of the curvature B� ofA�.

Second Method

Construction of ˛� from a connection A 2 ˝1(Q;g) on
the principal bundle �Q;G : Q ! Q/G. One can show that
the choice (A1), that is,

˛� :D h�;Ai 2 ˝1(Q)

satisfies the condition CBR2 in Theorem 9.
As with the first method, there is an interpretation of

the two-form d˛� in terms of curvature as follows.

Proposition 13 If the principal bundle �Q;G : Q ! Q/G
with structure group G has a connection A, then ˛�(q)
can be taken to equal A(q)�� and B� is the pull back to
T�Q� of d˛� 2 ˝2(Q), which equals the �-component of
the two form BC [A;A] 2 ˝2(Q;g), where B is the cur-
vature ofA.
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Coadjoint Orbits

We now apply the Cotangent Bundle Reduction Theo-
rem 9 to the case Q D G and with the G-action given by
left translation. The right Maurer–Cartan form �R is a flat
connection associated to this action (see Theorem A13)
and hence

d˛�(g)(ug ; vg) D
˝
�; [�R ; �R](g)(ug ; vg)

˛

D
˝
�; [TgRg�1ug ; TgRg�1vg]

˛
:

Recall from Theorem 7 that the reduced space (T�G)�
is the coadjoint orbit O� endowed with the negative or-
bit symplectic form !�� and, according to the Cotan-
gent Bundle Reduction Theorem, it symplectically em-
beds as the zero section into (T�O�; !can � B�), where
B� D ��O�ˇ�, �O� : T

�O� ! O� is the cotangent bun-
dle projection, ��G;G�ˇ� D d˛�, and �G;G� : G ! O� is
given by �G;G� (g) D Ad�g�. The derivative of �G;G� is
given by

Tg�G;G�(TeLg�) D
d
dt

ˇ̌
ˇ̌
tD0

Ad�g exp(t�)� D ad��Ad
�
g�

for any � 2 g. Then a computation shows thatˇ� D �!�� .
Thus, the embedding version of the cotangent bundle re-
duction theorem produces the following statement which,
of course, can be easily checked directly.

Corollary 14 The coadjoint orbit (O�; !�� ) symplectically
embeds as the zero section into the symplectic manifold
(T�O�; !can C �

�
O�!

�
� ).

Cotangent Bundle Reduction: Bundle Version

The embedding version of the cotangent bundle reduc-
tion theorem presented in the preceding section states that
(T�Q)� embeds as a vector subbundle of T�(Q/G�). The
bundle version of this theorem says, roughly speaking, that
(T�Q)� is a coadjoint orbit bundle over T�(Q/G) with
fiber the coadjoint orbit O through �.

Again we utilize a choice of connectionA on the shape
space bundle �Q;G : Q ! Q/G. A key step in the argu-
ment is to utilize orbit reduction and the identification
(T�Q)� Š (T�Q)O.

Theorem 15 (Cotangent bundle reduction – bundle ver-
sion) The reduced space (T�Q)� is a locally trivial fiber
bundle over T�(Q/G) with typical fiberO.

This point of view is explored further and the exact nature
of the coadjoint orbit bundle is identified and its symplec-
tic structure is elaborated in [92].

Poisson Version

This same type of argument as above shows the following,
which we state slightly informally.

Theorem The Poisson reduced space (T�Q)/G is dif-
feomorphic to the coadjoint bundle of �Q;G : Q ! Q/G.
This diffeomorphism is implemented by a connection
A 2 ˝1(Q;g). Thus the fiber of (T�Q)/G ! T�(Q/G) is
isomorphic to the Lie–Poisson space g�.

There is an interesting formula for the Poisson struc-
ture on (T�Q)/G that was originally computed in Mont-
gomery, Marsden, and Ratiu [127], Montgomery [121].
Further developments in Cendra, Marsden, Pekarsky, and
Ratiu [37] and Perlmutter and Ratiu [149] gives a uni-
fied study of the Poisson bracket on (T�Q)/G in both the
Sternberg and Weinstein realizations of the quotient. Fi-
nally, we refer to, for instance, Lewis, Marsden, Mont-
gomery and Ratiu [88] for an application of this result; in
this case, the dynamics of fluid systems with free bound-
aries is studied.

Coadjoint Orbit Bundles

The details of the nature of the bundle and its associ-
ated symplectic structure that was sketched in Theorem 15
is due to Marsden and Perlmutter [102]; see also Za-
alani [182] Cushman and Śniatycki [47], and [149]. An ex-
position may be found in [92].

Future Directions

One of the goals of reduction theory and geometric me-
chanics is to take the analysis of mechanical systems with
symmetries to a deeper level of understanding. But much
more needs to be done. As has already been explained,
there is still a need to put many classical concepts, such as
quasivelocities, into this context, with a resultant strength-
ening of the theory and its applications. In addition, links
with Dirac structures, groupoids and algebroids is under
development and should lead to further advances. Finally
we mention that while much of this type of work has been
applied to field theories (such as electromagnetism and
gravity), greater insight is needed for many topics, stress-
energy-momentum tensors being one example.
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Appendix: Principal Connections

In preparation for the next section which gives a brief ex-
position of the cotangent bundle reduction theorem, we
now give a review and summary of facts that we shall need
about principal connections. An important thing to keep
in mind is that the magnetic terms in the cotangent bundle
reduction theorem will appear as the curvature of a con-
nection.

Principal Connections Defined

We consider the following basic set up. LetQ be amanifold
and let G be a Lie group acting freely and properly on the
left on Q. Let

�Q;G : Q ! Q/G

denote the bundle projection from the configuration man-
ifold Q to shape space S D Q/G. We refer to �Q;G : Q !
Q/G as a principal bundle.

One can alternatively use right actions, which is com-
mon in the principal bundle literature, but we shall stick
with the case of left actions for the main exposition.

Vectors that are infinitesimal generators, namely those
of the form �Q (q) are called vertical since they are sent to
zero by the tangent of the projection map �Q;G .

Definition A1 A connection, also called a principal con-
nection on the bundle �Q;G : Q ! Q/G is a Lie algebra
valued 1-form

A : TQ ! g

where g denotes the Lie algebra of G, with the following
properties:

(i) the identityA(�Q (q)) D � holds for all � 2 g; that is,
A takes infinitesimal generators of a given Lie algebra
element to that same element, and

(ii) we have equivariance:A(Tq˚g(v)) D Adg(A(v))

for all v 2 TqQ, where ˚g : Q ! Q denotes the given ac-
tion for g 2 G and where Adg denotes the adjoint action
of G on g.

A remark is noteworthy at this point. The equivariance
identity for infinitesimal generators noted previously (see
(7)), namely,

Tq˚g
�
�Q (q)


D (Adg�)Q (g � q) ;

shows that if the first condition for a connection holds, then
the second condition holds automatically on vertical vectors.

If the G-action on Q is a right action, the equivari-
ance condition (ii) in Definition A1 needs to be changed to
A(Tq˚g(v)) D Adg�1 (A(v)) for all g 2 G and v 2 TqQ.

Associated One-Forms

SinceA is a Lie algebra valued 1-form, for each q 2 Q, we
get a linear mapA(q) : TqQ ! g and so we can form its
dual A(q)� : g� ! T�q Q. Evaluating this on � produces
an ordinary 1-form:

˛�(q) DA(q)�(�) : (A1)

This 1-form satisfies two important properties given in
the next Proposition.

Proposition A2 For any connection A and � 2 g�, the
corresponding 1-form ˛� defined by (A1) takes values in
J�1(�) and satisfies the following G-equivariance property:

˚�g ˛� D ˛Ad�g � :

Notice in particular, if the group is Abelian or if � is G-in-
variant, (for example, if � D 0), then ˛� is an invariant
1-form.

Horizontal and Vertical Spaces

Associated with any connection are vertical and horizontal
spaces defined as follows.

Definition A3 Given the connection A, its horizontal
space at q 2 Q is defined by

Hq D fvq 2 TqQ jA(vq) D 0g

and the vertical space at q 2 Q is, as above,

Vq D f�Q (q) j � 2 gg :

The map

vq 7! verq(vq) :D [A(q)(vq)]Q (q)
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is called the vertical projection, while the map

vq 7! horq(vq) :D vq � verq(vq)

is called the horizontal projection.

Because connections map infinitesimal generators of a Lie
algebra elements to that same Lie algebra element, the ver-
tical projection is indeed a projection for each fixed q onto
the vertical space and likewise with the horizontal projec-
tion.

By construction, we have

vq D verq(vq)C horq(vq)

and so

TqQ D Hq ˚ Vq

and the maps horq and verq are projections onto these
subspaces.

It is sometimes convenient to define a connection by
the specification of a space Hq declared to be the horizon-
tal space that is complementary to Vq at each point, varies
smoothly with q and respects the group action in the sense
that Hg�q D Tq˚g(Hq). Clearly this alternative definition
of a principal connection is equivalent to the definition
given above.

Given a point q 2 Q, the tangent of the projection
map �Q;G restricted to the horizontal space Hq gives
an isomorphism between Hq and T[q](Q/G). Its inverse
�
Tq�Q;G jHq

��1 : T	Q;G (q)(Q/G)! Hq is called the hori-
zontal lift to q 2 Q.

TheMechanical Connection

As an example of defining a connection by the specifica-
tion of a horizontal space, suppose that the configuration
manifold Q is a Riemannian manifold. Of course, the Rie-
mannian structure will often be that defined by the kinetic
energy of a given mechanical system.

Thus, assume that Q is a Riemannian manifold, with
metric denoted hh; ii and that G acts freely and prop-
erly on Q by isometries, so �Q;G : Q ! Q/G is a princi-
pal G-bundle.

In this context we may define the horizontal space at
a point simply to be the metric orthogonal to the vertical
space. This therefore defines a connection called the me-
chanical connection.

Recall from the historical survey in the introduction
that this connection was first introduced by Kummer [79]
following motivation from Smale [168] and [1]. See also
Guichardet [54], who applied these ideas in an interest-
ing way to molecular dynamics. The number of references

since then making use of the mechanical connection is too
large to survey here.

In Proposition A5 we develop an explicit formula for
the associated Lie algebra valued 1-form in terms of an in-
ertia tensor and the momentum map. As a prelude to this
formula, we show the following basic link with mechanics.
In this context we write themomentummap on TQ simply
as J : TQ ! g�.

Proposition A4 The horizontal space of the mechanical
connection at a point q 2 Q consists of the set of vectors
vq 2 TqQ such that J(vq) D 0.

For each q 2 Q, define the locked inertia tensor I(q) to be
the linear map I(q) : g! g� defined by

hI(q)�; �i D hh�Q (q); �Q (q)ii (A2)

for any �; � 2 g. Since the action is free, I(q) is nondegen-
erate, so (A2) defines an inner product. The terminology
“locked inertia tensor” comes from the fact that for cou-
pled rigid or elastic systems, I(q) is the classical moment
of inertia tensor of the rigid body obtained by locking all
the joints of the system. In coordinates,

Iab D gi jKi
aK

j
b ; (A3)

where [�Q (q)]i D Ki
a(q)� a define the action functions Ki

a .
Define the map A : TQ ! g which assigns to each

vq 2 TqQ the corresponding angular velocity of the locked
system:

A(q)(vq) D I(q)�1(J(vq)) ; (A4)

where L is the kinetic energy Lagrangian. In coordinates,

Aa D Iab gi jKi
bv

j (A5)

since Ja(q; p) D piKi
a(q).

We defined the mechanical connection by declaring its
horizontal space to be the metric orthogonal to the vertical
space. The next proposition shows thatA is the associated
connection one-form.

Proposition A5 The g-valued one-form defined by (A4)
is the mechanical connection on the principal G-bundle
�Q;G : Q ! Q/G.

Given a general connectionA and an element� 2 g�, we
can define the �-component ofA to be the ordinary one-
form ˛� given by

˛�(q) DA(q)�� 2 T�q Q; i. e.;
˝
˛�(q); vq

˛

D
˝
�;A(q)(vq )

˛
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Mechanical Systems: Symmetries and Reduction, Figure 2
The extremal characterization of the mechanical connection

for all vq 2 TqQ. Note that ˛� is aG�-invariant one-form.
It takes values in J�1(�) since for any � 2 g, we have

˝
J(˛�(q)); �

˛
D
˝
˛�(q); �Q

˛
D h�;A(q)(�Q (q))i

D h�; �i :

In the Riemannian context, Smale [168] constructed
˛� by a minimization process. Let ˛]q 2 TqQ be the tan-
gent vector that corresponds to ˛q 2 T�q Q via the metric
hh; ii on Q.

Proposition A6 The 1-form ˛�(q) DA(q)�� 2 T�q Q
associated with the mechanical connectionA given by (A4)
is characterized by

K(˛�(q)) D inffK(ˇq) j ˇq 2 J�1(�) \ T�q Qg ; (A6)

where K(ˇq) D 1
2kˇ

]
qk

2 is the kinetic energy function on
T�Q. See Fig. 2.

The proof is a direct verification. We do not give
here it since this proposition will not be used later in
this book. The original approach of Smale [168] was to
take (A6) as the definition of ˛�. To prove from here
that ˛� is a smooth one-form is a nontrivial fact; see the
proof in Smale [168] or of Proposition 4.4.5 in [1]. Thus,
one of the merits of the previous proposition is to show
easily that this variational definition of ˛� does indeed
yield a smooth one-form on Q with the desired proper-
ties. Note also that ˛�(q) lies in the orthogonal space to
T�q Q \ J�1(�) in the fiber T�q Q relative to the bundlemet-
ric on T�Q defined by the Riemannianmetric onQ. It also
follows that ˛�(q) is the unique critical point of the kinetic
energy of the bundle metric on T�Q restricted to the fiber
T�q Q \ J�1(�).

Curvature

The curvature B of a connectionA is defined as follows.

Definition A7 The curvature of a connection A is the
Lie algebra valued two-form on Q defined by

B(q)(uq ; vq) D dA(horq(uq); horq(vq)) ; (A7)

where d is the exterior derivative.

When one replaces vectors in the exterior derivative with
their horizontal projections, then the result is called the
exterior covariant derivative and one writes the preceding
formula for B as

B D dAA :

For a general Lie algebra valued k-form ˛ on Q, the exte-
rior covariant derivative is the k C 1-form dA˛ defined
on tangent vectors v0; v1; : : : ; vk 2 TqQ by

dA˛(v0; v1; : : : ; vk)
D d˛

�
horq(v0); horq(v1); : : : ; horq(vk)


: (A8)

Here, the symbol dA reminds us that it is like the exterior
derivative but that it depends on the connectionA.

Curvaturemeasures the lack of integrability of the hor-
izontal distribution in the following sense.

Proposition A8 On two vector fields u, v on Q one has

B(u; v) D �A
�
[hor(u); hor(v)]


:

Given a general distribution D � TQ on a manifold Q
one can also define its curvature in an analogous way di-
rectly in terms of its lack of integrability. Define vertical
vectors at q 2 Q to be the quotient space TqQ/Dq and de-
fine the curvature acting on two horizontal vector fields u,
v (that is, two vector fields that take their values in the dis-
tribution) to be the projection onto the quotient of their
Jacobi–Lie bracket. One can check that this operation de-
pends only on the point values of the vector fields, so in-
deed defines a two-form on horizontal vectors.

Cartan Structure Equations

We now derive an important formula for the curvature of
a principal connection.

Theorem A9 (Cartan structure equations) For any vec-
tor fields u, v on Q we have

B(u; v) D dA(u; v) � [A(u);A(v)] ; (A9)

where the bracket on the right hand side is the Lie bracket
in g. We write this equation for short as

B D dA � [A;A] :
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If theG-action onQ is a right action, then the Cartan Struc-
ture Equations read B D dAC [A;A].

The following Corollary shows how the Cartan Struc-
ture Equations yield a fundamental equivariance property
of the curvature.

Corollary A10 For all g 2 G we have ˚�g B D Adg ı B.
If the G-action on Q is on the right, equivariance means
˚�g B D Adg�1 ı B.

Bianchi Identity

TheBianchi Identity, which states that the exterior covari-
ant derivative of the curvature is zero, is another important
consequence of the Cartan Structure Equations.

Corollary A11 If B D dAA 2 ˝2(Q;g) is the curvature
two-form of the connection A, then the Bianchi Identity
holds:

dAB D 0 :

This form of the Bianchi identity is implied by another ver-
sion, namely

dB D [B;A]^;

where the bracket on the right hand side is that of Lie al-
gebra valued differential forms, a notion that we do not
develop here; see the brief discussion at the end of §9.1
in [104]. The proof of the above form of the Bianchi iden-
tity can be found in, for example, Kobayashi and No-
mizu [74].

Curvature as a Two-Form on the Base

Wenow show how the curvature two-form drops to a two-
form on the base with values in the adjoint bundle.

The associated bundle to the given left principal bun-
dle �Q;G : Q ! Q/G via the adjoint action is called the
adjoint bundle. It is defined in the following way. Con-
sider the free proper action (g; (q; �)) 2 G � (Q � g) 7!
(g �q;Adg�) 2 Q�g and form the quotient g̃ :D Q�Gg :D
(Q � g)/G which is easily verified to be a vector bundle
�g̃ : g̃ ! Q/G, where �g̃(g; �) :D �Q;G (q). This vector
bundle has an additional structure: it is a Lie algebra bun-
dle; that is, a vector bundle whose fibers are Lie algebras.
In this case the bracket is defined pointwise:

[�g̃(g; �); �g̃(g; �)] :D �g̃(g; [�; �])

for all g 2 G and �; � 2 g. It is easy to check that this de-
fines a Lie bracket on every fiber and that this operation is
smooth as a function of �Q;G(q).

The curvature two-form B 2 ˝2(Q;g) (the vector
space of g-valued two-forms on Q) naturally induces
a two-form B on the base Q/G with values in g̃ by

B(�Q;G (q))
�
Tq�Q;G(u); Tq�Q;G(v)



:D �g̃

�
q;B(u; v)


(A10)

for all q 2 Q and u; v 2 TqQ. One can check that B is well
defined.

Since (A10) can be equivalently written as ��Q;GB D
�g̃ ı

�
idQ � B


and �Q;G is a surjective submersion, it fol-

lows thatB is indeed a smooth two-form on Q/G with val-
ues in g̃.

Associated Two-Forms

Since B is a g-valued two-form, in analogy with (A1), for
every � 2 g� we can define the �-component of B, an or-
dinary two-form B� 2 ˝2(Q) on Q, by

B�(q)(uq ; vq) :D
˝
�;B(q)(uq ; vq)

˛
(A11)

for all q 2 Q and uq ; vq 2 TqQ.
The adjoint bundle valued curvature two-form B in-

duces an ordinary two-form on the base Q/G. To obtain
it, we consider the dual g̃� of the adjoint bundle. This is
a vector bundle over Q/G which is the associated bundle
relative to the coadjoint action of the structure group G of
the principal (left) bundle �Q;G : Q ! Q/G on g�. This
vector bundle has additional structure: each of its fibers
is a Lie–Poisson space and the associated Poisson ten-
sors on each fiber depend smoothly on the base, that is,
�g̃� : g̃� ! Q/G is a Lie–Poisson bundle over Q/G.

Given � 2 g�, define the ordinary two-form B� on
Q/G by

B�
�
�Q;G (q)

 �
Tq�Q;G(uq); Tq�Q;G (vq)



:D
˝
�g̃�(q; �);B(�Q;G (q))

�
Tq�Q;G (uq); Tq�Q;G (vq)

˛

D
˝
�;B(q)(uq ; vq)

˛
D B�(q)(uq ; vq) ;

(A12)

where q 2 Q, uq ; vq 2 TqQ, and in the second equality
h; i : g̃� � g̃! R is the duality pairing between the coad-
joint and adjoint bundles. Since B is well defined and
smooth, so is B�.

Proposition A12 Let A 2 ˝1(Q;g) be a connection
one-form on the (left) principal bundle �Q;G : Q ! Q/G
and B 2 ˝2(Q;g) its curvature two-form on Q. If
� 2 g�, the corresponding two-forms B� 2 ˝2(Q) and
B� 2 ˝2(Q/G) defined by (A11) and (A12), respectively,
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are related by ��Q;GB� D B�. In addition, B� satisfies the
following G-equivariance property:

˚�g B� D BAd�g � :

Thus, if G D G� then d˛� D B� D ��Q;GB�, where
˛�(q) DA(q)�(�).

Further relations between ˛� and the �-component of the
curvature will be studied in the next section when dis-
cussing the magnetic terms appearing in cotangent bundle
reduction.

The Maurer–Cartan Equations

A consequence of the structure equations relates curvature
to the process of left and right trivialization and hence to
momentum maps.

TheoremA13 (Maurer–cartan equations) Let G be a Lie
group and let �R : TG ! g be the map (called the right
Maurer–Cartan form) that right translates vectors to the
identity:

�R(vg) D TgRg�1 (vg ) :

Then

d�R � [�R ; �R] D 0 :

There is a similar result for the left trivialization �L,
namely the identity

d� L C [� L ; � L] D 0 :

Of course there is much more to this subject, such
as the link with classical connection theory, Riemannian
geometry, etc. We refer to [92] for further basic infor-
mation and references and to Bloch [18] for applications
to nonholonomic systems, and to Cendra, Marsden, and
Ratiu [35] for applications to Lagrangian reduction.
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Glossary

A social choice function A function that determines a so-
cial choice according to players’ preferences over the
different possible alternatives.

Amechanism A game in incomplete information, in
which player strategies are based on their private pref-
erences. A mechanism implements a social choice
function f if the equilibrium strategies yield an out-
come that coincides with f .

Dominant strategies An equilibrium concept where the
strategy of each player maximizes her utility, nomatter
what strategies the other players choose.

Bayesian–Nash equilibrium An equilibrium concept
that requires the strategy of each player to maximize
the expected utility of the player, where the expectation
is taken over the types of the other players.

VCGmechanisms A family of mechanisms that imple-
ment in dominant strategies the social choice function
that maximizes the social welfare.

Definition of the Subject

Mechanism design is a sub-field of economics and game
theory that studies the construction of social mechanisms
in the presence of rational but selfish individuals (play-
ers/agents). The nature of the players dictates a basic con-
trast between the social planner, that aims to reach a so-
cially desirable outcome, and the players, that care only
about their own private utility. The underlying question
is how to incentivize the players to cooperate, in order
to reach the desirable social outcomes. A mechanism is
a game, in which each agent is required to choose one ac-
tion among a set of possible actions. The social designer
then chooses an outcome, based on the chosen actions.
This outcome is typically a coupling of a physical outcome,
and a payment given to each individual. Mechanism de-
sign studies how to design the mechanism such that the
equilibrium behavior of the players will lead to the socially
desired goal. The theory of mechanism design has greatly
influenced several sub-fields of micro-economics, for ex-
ample auction theory and contract theory, and the 2007
Nobel prize in Economics was awarded to Leonid Hur-
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wicz, Eric Maskin, and RogerMyerson “for having laid the
foundations of mechanism design theory”.

Introduction

It will be useful to start with an example of a mechanism
design setting, the well-known “public project” problem
(Clarke [8]): a government is trying to decide on a cer-
tain public project (the common example is “building
a bridge”). The project costs C dollars, and each player,
i, will benefit from it to an amount of vi dollars, where this
number is known only to the player herself. The govern-
ment desires to build the bridge if and only if

P
i vi > C.

But how should this condition be checked? Clearly, ev-
ery player has an interest in over-stating its own vi, if
this report is not accompanied by any payment at all, and
most probably agents will understate their values, if asked
to pay some proportional amount to the declared value.
Clarke describes an elegant mechanism that solves this
problem. His mechanism has the fantastic property that,
from the point of view of every player, no matter what
the other players declare, it is always in the best interest of
the player to declare his true value. Thus, truthful report-
ing is a dominant-strategy equilibrium of the mechanism,
and under this equilibrium, the government’s goal is fully
achieved. A more formal treatment of this result is given
in Sect. “Quasi-Linear Utilities and the VCG Mechanism”
below.

Clarke’s paper, published in the early 1970s, was part
of a large body of work that started to investigate mech-
anism design questions. Most of the early works used
two different assumptions about the structure of players’
utilities. Under the assumption that utilities are general,
and that the influence of monetary transfers on the util-
ity are not well predicted, the literature have produced
mainly impossibilities, which are described in Sect. “For-
mal Model and Early Results”. The assumption that utili-
ties are quasi-linear in money was successfully used to in-
troduce positive and impressive results, as discussed in de-
tail in Sects. “Quasi-Linear Utilities and the VCG Mech-
anism” and “The Importance of the Domain’s Dimen-
sionality”. These mechanisms apply the solution concept
of dominant-strategy equilibrium, which is a strong so-
lution concept that may prevent several desirable proper-
ties from being achieved. To overcome its difficulties, the
weaker concept of a Bayesian–Nash equilibrium is usually
employed. This concept, and one main possibility result
that it provides, are described in Sect. “Budget Balanced-
ness and Bayesian Mechanism Design”. The last impor-
tant model that this entry covers aims to capture settings
where the players’ values are not fully observed by each

player separately. Rather, each player receives a signal that
gives a partial indication to her valuation. Mechanism de-
sign for such settings is discussed in Sect. “Interdependent
Valuations”.

One of the most impressive applications of the general
mechanism design literature is auction theory. An auction
is a specific form of a mechanism, where the outcome is
simply the specific allocation of the goods to the players,
plus the prices they are required to pay. Vickrey [28] initi-
ated the study of auctions in a mechanism design setting,
and in fact perhaps the study of mechanisms itself. After
the fundamental study of general mechanism design in the
1970s, in the 1980s the focus of the research community
returned to this important application, and many models
were studied.

We note that there are several other entries in this
book that are strongly related to the subject of “mecha-
nism design”. In particular, the entry on � Game Theory,
Introduction to gives a broader background on the math-
ematical methods and tools that are used by mechanism
designers, and the entry on � Implementation Theory
handles similar subjects to this entry from a different point
of view.

FormalModel and Early Results

A social designer wishes to choose one possible out-
come/alternative out of a set A of possible alternatives.
There are n players, each has her own preference order
�i over A. This preference order is termed the player’s
“type”. The set (domain) of all valid player preferences is
denoted by Vi. The designer has a social choice function
f : V1 � � � � � Vn ! A, that specifies the desired alterna-
tive, given any profile of individual preferences over the
alternatives. The problem is that these preferences are pri-
vate information of each player – the social designer does
not know them, and thus cannot simply invoke f in order
to determine the social alternative. Players are assumed to
be strategic, and therefore we are in a game-theoretic situ-
ation.

To implement the social choice function, the designer
constructs a “game in incomplete information”, as follows.
Each player is required to choose an action out of a set of
possible actions Ai , and a target function g : A1 � � � � �

An ! A specifies the chosen alternative, as a function
of the players’ actions. A player’s choice of action may,
of-course, depend on her actual preference order. Fur-
thermore, we assume an incomplete information setting,
and therefore it cannot depend on any of the other play-
ers’ preferences. Thus, to play the game, player i chooses
a strategy si : Vi !Ai .
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A strategy si(�) dominates another strategy s0i(�) if, for
every tuple of actions a�i of the other players, and for ev-
ery preference �i2 Vi , g(si (�i ); a�i ) �i g(ai ; a�i)), for
any ai 2Ai . In other words, no matter what the other
players are doing, the player cannot improve her situation
by using an action other than si (�i ).

A mechanism implements the social choice function f
in dominant strategies if there exist dominant strategies
s1(�); : : : ; sn(�) such that f (�1; : : : ;�n) D g(s1(�1); : : : ;
sn(�n)), for any profile of preferences �1; : : : ;�n . In
other words, a mechanism implements the social choice
function f if, given that players indeed play their equilib-
rium strategies (in this case the dominant strategies equi-
librium), the outcome of the mechanism coincides with f ’s
choice.

The theory of mechanism design asks: given a specific
problem domain (an alternative set and a domain of pref-
erences), and a social choice function, how can we con-
struct a mechanism that implements it (if at all)? As we
shall see below, the literature uses a variety of “solution
concepts”, in addition to the concept of dominant strate-
gies equilibrium, and an impressive set of understandings
have emerged.

The concept of implementing a function with a dom-
inant-strategy mechanism seems at first too strong, as it
requires each player to know exactly what action to take,
regardless of the actions the others take. Indeed, as we will
next describe in detail, if we do not make any further as-
sumptions then this notion yields mainly impossibilities.
Nevertheless, it is not completely empty, and it may be
useful to start with a positive example, to illustrate the new
notions defined above.

Consider a voting scenario, where the society needs to
choose one out of two candidates. Thus, the alternative set
contains two alternatives (“candidate 1” and “candidate
2”), and each player either prefers 1 over 2, 2 over 1, or
is indifferent between the two. It turns out that the ma-
jority voting rule is the dominant strategy implementable,
by the following mechanism: each player reports her top
candidate, and the candidate that is preferred by the ma-
jority of the players is chosen. This mechanism is a “direct-
revelation” mechanism, in the sense that the action space
of each player is to report a preference, and g is exactly f .
In a direct-revelation mechanism, the hope is that truth-
ful reporting (i. e. si(�i ) D�i ) is a dominant strategy. It is
not hard to verify that in this two candidates setting, this
is indeed the case, and hence the mechanism implements
in dominant-strategies the majority voting rule.

An elegant generalization for the case of a “single-
peaked” domain is as follows. Assume that the alternatives
are numbered as AD fa1; : : : ; ang, and the valid prefer-

ences of a player are single-peaked, in the sense that the
preference order is completely determined by the choice
of a peak alternative, ap. Given the peak, the preference
between any two alternatives ai ; a j is determined accord-
ing to their distance from ap, i. e. ai �i a j if and only if
j j � pj � ji � pj. Now consider the social choice function
f (p1; : : : ; pn) D median(p1; : : : ; pn), i. e. the chosen al-
ternative is the median alternative of all peak alternatives.

Theorem 1 Suppose that the domain of preferences is sin-
gle-peaked. Then the median social choice function is imple-
mentable in dominant strategies.

Proof Consider the direct revelationmechanism inwhich
each player reports a peak alternative, and the mechanism
outputs the median of all peaks. Let us argue that reporting
the true peak alternative is a dominant strategy. Suppose
the other players reported p�i , and that the true peak of
player i is pi. Let pm be the median index. If pi D pm then
clearly player i cannot gain by declaring a different peak.
Thus, assume that pi < pm, and let us examine a false dec-
laration p0i of player i. If p0i � pm then pm remains theme-
dian, and the player did not gain. If p0i > pm then the new
median is p0m � pm, and since pi < pm, this is less pre-
ferred by i. Thus, player i cannot gain by declaring a false
peak alternative if the true peak alternative is smaller or
equal to the median alternative. A similar argument holds
for the case of pi > pm. �

In a voting situation with two candidates, the median rule
becomes the same as the majority rule, and the domain is
indeed single-peaked.When we have three or more candi-
dates, it is not hard to verify that the majority rule is differ-
ent than the median rule. In addition, one can also check
that the direct-revelation mechanism that uses the major-
ity rule does not have truthfulness as a dominant strategy.

Of-course, many times one cannot order the candi-
dates on a line, and any preference ordering over the can-
didates is plausible. What voting rules are implementable
in such a setting? This question was asked by Gibbard [12]
and Satterthwaite [27], who provided a beautiful and fun-
damental impossibility. A domain of player preferences is
unrestricted if it contains all possible preference orderings.
In our voting example, for instance, the domain is un-
restricted if every ordering of the candidates is valid (in
contrast to the case of a single-peaked domain). A social
choice function is dictatorial if it always chooses the top
alternative of a certain fixed player (the dictator).

Theorem 2 ([12,27]) Every social choice function over an
unrestricted domain of preferences, with at least three alter-
natives, must be dictatorial.
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The proof of this theorem, and in fact of most other impos-
sibility theorems in mechanism design, uses as a first step
the powerful direct-revelation principle. Though the ex-
amples we have seen above use a direct revelation mecha-
nism, one can try to construct “complicated” mechanisms
with “crazy” action spaces and outcome functions, and by
this obtain dominant strategies. How should one reason
about such vast space of possible constructions? The rev-
elation principle says that one cannot gain extra power by
such complex constructions, since if there exists an imple-
mentation to a specific function then there exists a direct-
revelation mechanism that implements it.

Theorem 3 (The Direct Revelation Principle) Any im-
plementable social choice function can also be implemented
(using the same solution concept) by a direct-revelation
mechanism.

Proof Given a mechanism M that implements f , with
dominant strategies s�i (�), we construct a direct revela-
tion mechanism M0 as follows: for any tuple of prefer-
ences �D (�1; : : : ;�n), g0(�) D g(s�(�)). Since s�i (�) is
a dominant strategy in M, we have that for any fixed
��i2 V�i and any �i2 Vi , the action ai D s�i (�i ) is
dominant when i’s type is �i . Hence declaring any other
type �̃i that will “produce” an action ãi D s�i (�̃i ), can-
not increase i’s utility. Therefore, the strategy �i in M0 is
dominant. �
The proof uses the dominant-strategies solution concept,
but any other equilibrium definition will also work, us-
ing the same argumentation. Though technically very sim-
ple, the revelation principle is fundamental. It states that,
when checking if a certain function is implementable, it is
enough to check the direct-revelation mechanism that is
associated with it. If it turns out to be truthful, we still may
want to implement it with an indirect mechanism that will
seem more natural and “real”, but if the direct-revelation
mechanism is not truthful, then there is no hope of imple-
menting the function.

The proof of the theorem of Gibbard and Satterthwaite
relies on the revelation principle to focus on direct-rev-
elation mechanisms, but this is just the beginning. The
next step is to show that any non-dictatorial function is
non-implementable. The proof achieves this by an inter-
esting reduction to Arrow’s theorem, from the field of so-
cial choice theory. This theory is concerned with the pos-
sibilities and impossibilities of social preference aggrega-
tions that will exhibit desirable properties. A social wel-
fare function F : V ! R aggregates the individuals’ pref-
erences into a single preference order over all alternatives,
whereR is the set of all possible preference orders over A.
Arrow [2] describes few desirable properties from a social

welfare function, and shows that no social choice function
can satisfy all:

Definition 1 (Arrow’s desirable properties)

1. A social welfare function satisfies “weak Pareto” if
whenever all individuals strictly prefer alternative a to
alternative b then, in the social preference, a is strictly
preferred to b.

2. A social welfare function is “a dictatorship” if there ex-
ists an individual for which the social preference is al-
ways identical to his own preference.

3. A social welfare function F satisfies the “Independence
of Irrelevant Alternatives” property (IIA) if, for any
preference orders R; R̃ 2 R and any a; b 2 A,

a >F(R) b and b >F(R̃) a) 9i : a >Ri b and b >R̃ i a

(where a >Ri b iff a is preferred over b in Ri). In other
words, if the social preference between a and b was
flipped when the individual preferences were changed
from R to R̃, then it must be the case that some individ-
ual flipped his own preference between a and b.

Arrow’s impossibility theorem holds for the unrestricted
domain of preferences, i. e. when all preference orders are
possible:

Theorem 4 ([2]) Assume jAj � 3. Any social welfare func-
tion over an unrestricted domain of preferences that satisfies
both weak Pareto and Independence of Irrelevant Alterna-
tives must be a dictatorship.

Gibbard and Satterthwaite’s proof reveals an interesting
and important connection between the concept of imple-
mentation in dominant strategies, and Arrow’s condition
of IIA. The proof shows how to construct, from a given im-
plementable social choice function f , a social welfare func-
tion, F, that satisfies IIA and weak Pareto. In addition, F
always places the alternative chosen by f as the most pre-
ferred alternative. By Arrow’s theorem, the resulting so-
cial welfare function must be dictatorial. In turn, this im-
plies that f is dictatorial. The construction of F from f is
the straight-forward one: the top alternative is f ’s choice
to the original preferences, say a. Then a is lowered to be
the least preferred alternative in all the preferences, and f ’s
new choice is placed second, etc. The interesting exercise
is to show that the implementability of f implies that F sat-
isfies Arrow’s conditions. In fact, as the proof shows that
any implementable social choice function f entails a social
welfare function F that “extends” f and satisfies Arrow’s
conditions, it actually provides a strong argument for the
reasonability of Arrow’s requirement – they are simply im-
plied by the implementability requirement.
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In view of these strong impossibility results, it is natu-
ral to ask whether the entire concept of a mechanism can
yield positive constructions. The answer is a big yes, un-
der the “right” set of assumptions, as discussed in the next
sections.

Quasi-Linear Utilities and the VCGMechanism

The model formalization of the previous section ignores
the existence of money, or, more accurately, the fact that
it has a more or less predictable effect on a player’s util-
ity. The quasi-linear utilities model takes this into account,
and players are assumed to have monetary value for each
alternative.

Formally, the type of a player is a valuation func-
tion vi : A! < that describes the monetary value that
the player will obtain from each chosen alternative (as be-
fore vi is taken from a domain of valid valuations Vi and
V D V1�� � ��Vn). Note that the value of a player does not
depend on the other players’ values (this is termed the pri-
vate value assumption). The mechanism designer can now
additionally pay each player (or charge money from her),
and the total utility of player i if the chosen outcome is a
and in addition she pays a price Pi is vi(a) � Pi . A direct
mechanism for quasi-linear utilities includes an outcome
function f : V ! A (as before), as well as price functions
pi : V ! < for each player i (the definition of an indirect
mechanism is the natural parallel of the definition of the
previous section; the revelation principle holds for quasi-
linear utilities as well, and we focus here on direct mech-
anisms). The implicit assumption is that a player aims to
maximize her resulting utility, vi ( f (vi ; v�i ))� pi (vi ; v�i ),
and this leads us to the definition of a truthful mechanism,
that parallels that of the previous section:

Definition 2 (Truthfulness, or Incentive Compatibility,
or Strategy-Proofness) A direct revelationmechanism is
“truthful” (or incentive-compatible, or strategy-proof) if
the dominant strategy of each player is to reveal her true
type, i. e. if for every v�i 2 V�i and every vi ; v0i 2 Vi ,

vi( f (vi ; v�i ))� pi (vi ; v�i ) � vi ( f (v0i ; v�i ))� pi (v0i ; v�i )

Using this framework, we can return to the example from
Sect. “Introduction” (“building a bridge”), and construct
a truthful mechanism to solve it. Recall that, in this prob-
lem, a government is trying to decide on a certain public
project, which costs C dollars. Each player, i, will benefit
from it to an amount of vi dollars, where this number is
known only to the player herself. The government desires
to build the bridge if and only if

P
i vi � C. Clarke [8]

designed the following mechanism. Each player reports
a value, ṽi , and the bridge is built if and only if

P
i ṽi � C.

If the bridge is not built, the price of each player is 0. If the
bridge is built then each player, i, pays the minimal value
she could have declared to maintain the positive decision.
More precisely, if

P
i 0¤i ṽi 0 � C then she still pays zero,

and otherwise she pays C �
P

i 0¤i ṽi 0 .

Theorem 5 Bidding the true value is a dominant strategy
in the Clarke mechanism.

Proof Consider the truthful bidding for player i, vi, vs. an-
other possible bid ṽi (fixing the bids of the other play-
ers to arbitrarily be ṽ�i). If with vi the project was re-
jected then vi < C �

P
i 0¤i ṽi 0 . In order to change the

decision to an accept, the player would need to de-
clare ṽi � C �

P
i 0¤i ṽi 0 . In this case i’s payment will be

C �
P

i 0¤i ṽi 0 which is smaller than vi, as observed above.
Thus, i’s resulting utility will be negative, hence bidding ṽi
did not improve her utility.

On the other hand, assume that with vi the project is
accepted. Therefore, the player’s utility from declaring vi
is non-negative. Note that the price that the player pays in
case of an accept does not depend on her bid. Thus, the
only way to change i’s utility (if at all) is to declare some ṽi
that will cause the project to be rejected. But in this case i’s
utility will be zero, hence she did not gain any benefit. �

Subsequently, Groves [13] made the remarkable observa-
tion that Clarke’s mechanism is in fact a special case of
a much more general mechanism, that solves the welfare
maximization problem on any domain with private values
and quasi-linear utilities. For a given set of player types
v1; : : : ; vn , the welfare obtained by an alternative a 2 A
is
P

i vi (a). A social choice function is termed a welfare
maximizer if f (v) is an alternative with maximal welfare,
i. e. f (v) 2 argmaxa2Af

Pn
iD1 vi(a)g.

Definition 3 (VCGMechanisms) Given a set of alterna-
tivesA, and a domain of players’ types V D V1 � : : : � Vn ,
a VCG mechanism is a direct revelation mechanism such
that, for any v 2 V ,

1. f (v) 2 argmaxa2A
˚Pn

iD1 vi (a)
�
.

2. pi(v) D �
P

j¤i v j( f (v))C hi (v�i ), where hi : V�i !
< is an arbitrary function.

Ignore for a moment the term hi (v�i ) in the payment
functions. Then the VCG mechanism has a very natural
interpretation: it chooses an alternative with maximal wel-
fare according to the reported types, and then, by making
additional payments, it equates the utility of each player to
that maximal welfare level.
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Theorem 6 ([13]) Any VCG mechanism truthfully imple-
ments the welfare maximizing social choice function.

Proof We argue that si (vi ) D vi is a dominant strategy
for i. Fix any v�i 2 V�i as the declarations (actions) of
the other players, any v0i ¤ vi , and assume by contradic-
tion that vi ( f (vi ; v�i )) � pi (vi ; v�i ) < vi( f (v0i ; v�i )) �
pi (v0i ; v�i ). Replacing pi (�) with the specific VCG pay-
ment function, and eliminating the term hi (v�i ) from
both sides, we get: vi ( f (vi ; v�i ))C

P
j¤i v j( f (vi ; v�i )) <

vi ( f (v0i ; v�i )) C
P

j¤i v j( f (v
0
i ; v�i )). Therefore, it must

be that f (vi ; v�i ) ¤ f (v0i ; v�i ). Denote f (vi ; v�i ) D a
and f (v0i ; v�i ) D b. The above equation is now vi(a) CP

j¤i v j(a) < vi (b) C
P

j¤i v j(b), or, equivalently,
Pn

iD1 vi(a) <
Pn

iD1 vi (b), a contradiction to the fact that
f (vi ; v�i ) D a, since f (�) is a welfare maximizer. �

Thus, we see that the welfare maximizing social choice
function can always be implemented, no matter what the
problem domain is, under the assumption of quasi-lin-
ear utilities. The VCG mechanism is named after Vickrey,
whose seminal paper [28] on auction theory was the first to
describe a special case of the above mechanism (this is the
second price auction; see the entry on auction theory for
more details), after Clarke, who provided the second ex-
ample, and after Groves himself, that finally pinned down
the general idea.

Clarke’s work can be viewed, in retrospect, as a sugges-
tion for one specific form of the function hi (v�i ), namely
hi (v�i ) D

P
j¤i vi( f (v�i )) (this is a slight abuse of no-

tation, as f is defined for n players, but the intention is
the straight-forward one – f chooses an alternative with
maximal welfare). This form for the hi (�)’s gives the fol-
lowing property: if a player does not influence the so-
cial choice, her payment is zero, and, in general, a player
pays the “monetary damage” to the other players (i. e.
the welfare that the others lost) as a result of i’s partic-
ipation. Additionally, with Clarke’s payments, a truthful
player is guaranteed a non-negative utility, no matter what
the others declare. This last property is termed “individual
rationality”.

The Importance of the Domain’s Dimensionality

The impressive property of the VCGmechanism is its gen-
erality with respect to the domain of preferences – it can
be used for any domain. On the other hand, VCG is re-
strictive in the sense that it can be used only to implement
one specific goal, namely welfare maximization. Given the
possibility that VCG presents, it is natural to ask if the as-
sumption of quasi-linear utilities and private values allows
the designer to implement many other different goals. It

turns out that the answer depends on the “dimensionality”
of the domain, as is discussed in this section.

Single-Dimensional Domains

Consider first a domain of preferences for which the type
vi (�) can be completely described by a single number vi, in
the following way. For each player i, a subset of the alterna-
tives are “losing” alternatives, and her value for all these al-
ternatives is always 0. The other alternatives are “winning”
alternatives, and the value for each “winning” alternative is
the same, regardless of the specific alternative. Such a do-
main is “single dimensional” in the sense that one single
number completely describes the entire valuation vector.
As before, this single number (the value for winning), is
private to the player, and here this is the only private infor-
mation of the player. The public project domain discussed
above is an example of a single-dimensional domain: the
losing alternative is the rejection of the project, and the
winning alternative is the acceptance of the project.

A major drawback of the VCG mechanism, in general,
and with respect to the public project domain in particu-
lar, is the fact that the sum of payments is not balanced
(a broader discussion on this is given in Sect. “Budget
Balancedness and Bayesian Mechanism Design” below).
In particular, the payments for the public project domain
may not cover the entire cost of the project. Is there a dif-
ferent mechanism that always covers the entire cost? The
positive answer that we shall soon see crucially depends
on the fact that the domain is single-dimensional, and this
turns out to be true for many other problem domains as
well.

The following mechanism for the public project prob-
lem assumes that the designer can decide not only if the
project will be built, but also which players will be al-
lowed to use it. Thus, we now have many possible alter-
natives, that correspond to the different subsets of players
that will be allowed to utilize the project. This is still a sin-
gle-dimensional domain, as each player only cares about
whether she is losing or winning, and so the alternatives,
from the point of view of a specific player, can be divided to
the two winning/losing subsets. The following cost-shar-
ing mechanism was proposed by Moulin [20] in a gen-
eral cost-sharing framework. The mechanism is a direct-
revelation mechanism, where each player, i, first submits
her winning value, vi. The mechanism then continues in
rounds, where in the first round all players are present, and
in each round one or more players are declared losers and
retire. Suppose that in a certain round x players remain.
If all remaining players have vi � C/x then they are de-
claredwinners, and each one pays C/x . Otherwise, all play-
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ers with vi < C/x are declared losers, and “walk out”, and
the process repeats. If no players remain then the project
is rejected.

Clearly, the cost sharing mechanism always recovers
the cost of the project, if it is indeed accepted. But is
it truthful? One can analyze it directly, to show that in-
deed the dominant strategy of each player is to declare
her true winning value. Perhaps a better way is to un-
derstand a characterization of truthfulness for the gen-
eral abstract setting of a single-dimensional domain. For
simplicity, we will assume that we require mechanisms
to be “normalized”, i. e. that a losing player will pay ex-
actly zero to the mechanism. Now, a mechanism is said
to be “value-monotone” if a winner that increases her
value will always remain a winner. More formally, for all
vi 2 Vi and v�i 2 V�i , if i is a winner in the declaration
(vi ; v�i ) then i is a winner in the declaration (v0i ; v�i ),
for all v0i � vi . Note that a value-monotone mechanism
casts a “threshold value” function v�i (v�i ) such that, for
every v�i , player i wins when declaring vi > v�i (v�i ), and
looses when declaring vi < v�i (v�i ). Quite interestingly,
this structure completely characterizes incentive compati-
bility in single-dimensional domains:

Theorem 7 A normalized direct-revelation mechanism
for a single-dimensional domain is truthful if and only if
it is value monotone and the price of a winning player is
v�i (v�i ).

Proof The first observation is that the price of a winner
cannot depend on her declaration, vi (only on the fact that
she wins, and on the declaration of the other players). Oth-
erwise, if it can depend on her declaration, then there are
two possible bids vi and v0i such that i wins with both bids
and pays pi and p0i , where p0i < pi . But then if the true
value of i is vi then bidding v0i instead of vi will increase i’s
utility, contradicting truthfulness.

We now show that a truthful mechanism must be
value-monotone. Assume by contradiction that a decla-
ration of (vi ; v�i ) will cause i to win, but a declaration
of (v0i ; v�i ) will cause i to lose, for some v0i > vi . Sup-
pose that i pays pi for winning (when the others declare
v�i ). Since we assume a normalized mechanism, truthful-
ness implies that pi � vi . But then when the true type of
a player is v0i , her utility from declaring the truth will be
zero (she loses), and she can increase her utility by declar-
ing vi, which will cause her to win and to pay pi, a contra-
diction.

Thus, a truthful mechanism must be value-monotone,
and there exists a threshold value v�i (v�i ). To see that this
defines pi, let us first check the case of pi < v�i (v�i ). In this
case, if the type of i is vi with pi < vi < v�i (v�i ), she will

lose (by the definition of v�i (v�i )), and by bidding some
false large enough v0i she can win and get a positive util-
ity of vi � pi . On the other hand, if pi > v�i (v�i ) then
with type vi such that pi > vi > v�i (v�i ) a player will have
negative utility of vi � pi ) from declaring the truth, and
she can strictly increase it by losing, again a contradiction.
Therefore, it must be that pi D v�i (v�i ).

To conclude, it only remains to show that a value-
monotone mechanism with a price for a winner
pi D v�i (v�i ) is indeed truthful. Suppose first that with the
truthful declaration i wins. Then vi > v�i (v�i ) D pi and i
has a positive utility. If she changes the declaration and re-
mains a winner, her price does not change, and if she be-
comes a loser her utility decreases to zero. Thus, a winner
cannot increase her utility. Similarly, a loser can change
her utility only by becoming a winner, i. e. by declaring
v0i > v�i (v�i ) > vi , but since she will then pay v�i (v�i ) her
utility will now decrease to be negative. Thus, a loser can-
not increase her utility either, and the mechanism is there-
fore truthful. �

This structure of truthful mechanisms is very powerful,
and reduces the mechanism design problem to the al-
gorithmic problem of designing monotone social choice
functions. Another strong implication of this structure is
the fact that the payments of a truthful mechanism are
completely derived from the social choice rule. Conse-
quently, if two mechanisms always choose the same set of
winners and losers, then the revenues that they raise must
also be equal. Myerson [21] was perhaps the first to ob-
serve that, in the context of auctions, and named this the
“revenue equivalence” theorem.

As a result of this characterization, one can easily ver-
ify that the above-mentioned cost-sharing mechanism is
indeed truthful. It is not hard to check that the two con-
ditions of the theorem hold, and therefore its truthfulness
is concluded. This is just one example of the usefulness of
the characterization.

Multi-Dimensional Domains

In the more general case, when the domain is multi-di-
mensional, the simple characterization from above does
not fit, but it turns out that there exists a nice gener-
alization. We describe two properties, cyclic monotonic-
ity (Rochet [26]) and weak monotonicity (Bikhchandani
et al. [7]), which achieve that. The exposition here also re-
lies on [14]. It will be convenient to use the abstract so-
cial choice setting described above: there is a finite set A
of alternatives, and each player has a type (valuation func-
tion) v : A! < that assigns a real number to every possi-
ble alternative. vi (a) should be interpreted as i’s value for
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alternative a. The valuation function vi (�) belongs to the
domain Vi of all possible valuation functions.

Our goal is to implement in dominant strategies the
social choice function f : V1 � � � � � Vn ! A. As before,
it is not hard to verify that the required price func-
tion of a player i may depend on her declaration only
through the choice of the alternative, i. e. that it takes
the form pi : V�i � A! <, for every player i. For truth-
fulness, these prices should satisfy the following prop-
erty. Fix any v�i 2 V�i , and any vi ; v0i 2 Vi . Suppose that
f (vi ; v�i ) D a and f (v0i ; v�i ) D b. Then it is the case that:

vi(a) � pi (a; v�i ) � vi (b) � pi (b; v�i ) (1)

In other words, player i’s utility from declaring his true
vi is no less than his utility from declaring some lie, v0i ,
no matter what the other players declare. Given a social
choice function f , the underlying question is what condi-
tions should it satisfy to guarantee the existence of such
prices.

Fix a player i, and fix the declarations of the others
to v�i . Let us assume, without loss of generality, that f
is onto A (or, alternatively, define A0 to be the range of
f (�; v�i), and replace A with A0 for the discussion below).
Since the prices of Eq. (1) now become constant, we sim-
ply seek an assignment to the variables fpaga2A such that
vi (a)� vi(b) � pa � pb for every a; b 2 A and vi 2 Vi
with f (vi ; v�i ) D a. This motivates the following defini-
tion:

ıa;b
:
D inffvi(a) � vi(b) j vi 2 Vi ; f (vi ; v�i ) D ag (2)

With this we can rephrase the above assignment problem,
as follows.We seek an assignment to the variables fpaga2A
that satisfies:

pa � pb � ıa;b 8a; b 2 A (3)

By adding the two inequalities pa � pb � ıa;b and pb �
pa � ıb;a we get that a necessary condition to the exis-
tence of such prices is the inequality ıa;b C ıb;a � 0. Note
that this inequality is completely determined by the social
choice function. This condition is termed the non-nega-
tive 2-cycle requirement. Similarly, for any k distinct alter-
natives a1; : : : ak we have the inequalities

pa1 � pa2 � ıa1;a2
:::

pak�1 � pak � ıak�1;ak
pak � pa1 � ıak ;a1

and we get that any k-cyclemust be non-negative, i. e. thatPk
iD1 ıai ;aiC1 � 0, where akC1 � a1. It turns out that this

is also a sufficient condition:

Theorem 8 There exists a feasible assignment to (3) if and
only if there are no negative-length cycles.

One constructive way to prove this is by looking at
the “allocation graph”: this is a directed weighted graph
G D (V ; E) where V D A and E D A� A, and an edge
a! b (for any a; b 2 A) has weight ıa;b . A standard ba-
sic result of graph theory states that there exists a feasible
assignment to (3) if and only if the allocation graph has no
negative-length cycles. Furthermore, if all cycles are non-
negative, the feasible assignment is as follows: set pa to the
length of the shortest path from a to some arbitrary fixed
node a� 2 A.

With the above theorem, we can easily state a condi-
tion for implementability:

Definition 4 (Cycle Monotonicity) A social choice func-
tion f satisfies cycle monotonicity if for every player i,
v�i 2 V�i , some integer k � jAj, and v1i ; : : : ; v

k
i 2 Vi ,

kX

jD1

[v ji (a j) � v ji (a jC1)] � 0

where a j D f (v ji ; v�i ) for 1 � j � k, and akC1 D a1.

Theorem 9 f satisfies cycle monotonicity if and only if
there are no negative cycles.

Corollary 1 A social choice function f is dominant-strat-
egy implementable if and only if it satisfies cycle monotonic-
ity.

This interesting structure implies, as another corollary,
the fact that the prices are uniquely determined by the
social choice function, for every connected domain (this
was discussed above for the special case of single-di-
mensional domains). Very briefly, from the above, it fol-
lows that any two alternatives with ıab C ıba D 0 have
pa � pb D ıab D �ıba . Thus, determining the price of
one alternative completely determines the price of the sec-
ond alternative. A short argument that we omit shows that
the connectedness of the domain implies that for any two
alternatives a and b, there’s a path a1; : : : ; ak (with a1 D a
and ak D b) such that ıai ;aiC1 C ıaiC1;ai D 0 for every
1 � i < k. Thus, fixing the price of one alternative com-
pletely determines the prices of all other alternatives. In
particular, if there exists one alternativewhose price is nor-
malized to be (always) zero, then all other prices have also
been completely determined by the ıab’s weights (who in
turn are completely determined by the function f ).
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Cycle monotonicity satisfies our motivating goal:
a condition on f that involves only the properties of f ,
without existential price qualifiers. However, it is quite
complex. k could be large, and a “shorter” condition would
have been nicer. “Weak monotonicity” (W-MON) is ex-
actly that:

Definition 5 (WeakMonotonicity) A social choice func-
tion f satisfiesW-MON if for every player i, every v�i , and
every vi ; v0i 2 Vi with f (vi ; v�i ) D a and f (v0i ; v�i ) D
b; v0i (b) � vi(b) � v0i(a) � vi (a).

In other words, if the outcome changes from a to b when i
changes her type from vi to v0i then i’s value for b has in-
creased at least as i’s value for a in the transition vi to v0i .
W-MON is equivalent to cycle monotonicity with k D 2,
or, alternatively, to the requirement of no negative 2-cy-
cles. Hence it is necessary for truthfulness. As it turns out,
it is also a sufficient condition on many domains. Very re-
cently, Monderer [19] shows that weakmonotonicity must
imply cycle monotonicity if and only if the closure of the
domain of valuations is convex. Thus, for such domains,
it is enough to look at the more simple condition of weak
monotonicity.

The Implementability of Non-Welfare-Maximizing So-
cial Goals Now that the conditions for implementabil-
ity are completely understood, it should be asked what
forms of social choice functions satisfy them. We already
saw that the welfare-maximizer function satisfies them, for
any domain, and we ask what other implementable func-
tions exist? For the single-dimensional case, we saw an-
other example of a truthful mechanism, and the literature
contains many more. For the multi-dimensional case, “in-
teresting” examples are more rare, and a beautiful result
by Roberts [25] shows that when the domain has full di-
mensionality then only weighted welfare maximizers are
implementable. In other words, weak monotonicity im-
plies welfare maximization. More precisely, a function f is
an “affine maximizer” if there exist weights k1; : : : ; kn and
fCxgx2A such that, for all v 2 V ,

f (v) 2 argmaxx2Af˙
n
iD1kivi(x)C Cxg

Roberts [25] shows that, if jAj � 3 and Vi D <
A for all i,

then f is dominant-strategy implementable if and only if it
is an affine maximizer.

However, most interesting domains are restricted in
some meaningful way, and for this wide intermediary
range of domains the current knowledge is rather scarce.
One impossibility result that extends the result of Roberts
to a restricted multi-dimensional case is given by Lavi

et al. [18], who study multi-item auctions. In a multi-
item auction, one seller (the mechanism designer) wants
to allocate items to players (i. e. an alternative is an allo-
cation of the items to the players). [18] shows that every
social choice function for multi-item auctions, that addi-
tionally satisfy four other social choice properties, must be
an affine maximizer.

Before concluding the discussion on dominant-strat-
egy implementation, we demonstrate the necessity for
non-welfare-maximizers by considering the following
“scheduling domain”. A designer wishes to assign n tasks/
jobs to m workers, where worker i needs ti j time units to
complete job task j, and incurs a cost of ti j for its process-
ing time (one dollar per time unit). Importantly, this cost
is private information of the worker, and workers are as-
sumed to be strategic, each one selfishly trying to mini-
mize its own cost. The load of worker i is the sum of costs
of the jobs assigned to her, and the maximal load over all
workers (in a given schedule) is termed the “makespan”
of the schedule. The welfare maximizing social goal would
put each task on the most efficient worker (for that task),
which may result in a very high makespan. For example,
consider a setting with two workers and n tasks. The first
worker incurs a cost of 1 for every task, and the second
worker incurs a cost of 1C � for every task. The social wel-
fare is the minus of the sum of the costs of the two work-
ers, and the VCGmechanism will therefore assign all tasks
to the first worker. This is a very highly unbalanced alloca-
tion, which takes twice the time that the workers optimally
need in order to finish all tasks (roughly splitting the work
among them).

Thus, one may wish to consider a social goal differ-
ent from welfare maximization, namely makespan mini-
mization. This goal aims to construct a balanced alloca-
tion, in order to minimize the completion time of the last
task. Such an allocation can also be viewed as being a more
“fair” allocation, in the sense of Rawls’ max-min fairness
criteria. Because of the strategic nature of the workers,
we wish to design a truthful mechanism. While VCG is
truthful, its outcome may be far from optimal, as demon-
strated above. Nisan and Ronen [23], who have first stud-
ied this problem in the context of mechanism design, ob-
served that VCG provides only an “m-approximation” to
the optimal makespan, meaning that VCGmay sometimes
produce a makespan that is m times larger than the op-
timal makespan. More importantly, they have shown that
no truthful deterministicmechanism can obtain an approx-
imation ratio better than 2. To date, the question of closing
this gap betweenm and 2 remains open.

Archer and Tardos [1], on the other hand, considered
a natural restriction of this domain, thatmakes it single-di-
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mensional, and showed with this they can construct many
possibilities (for example, a truthful optimal mechanism).
Thus, here too we see the contrast between single-dimen-
sionality and multi-dimensionality. Lavi and Swamy [17]
suggest a multi-dimensional special case, and give a truth-
ful 2-approximation for the special case where the process-
ing time of each job is known to be either “low” or “high”.
This special case keeps the multi-dimensionality of the do-
main. The construction of this result does not rely on ex-
plicit prices, but rather uses the cycle-monotonicity condi-
tion described above, to construct a monotone allocation
rule.

Budget Balancedness
and BayesianMechanismDesign

The previous sections portray a concrete picture of the
advantages and the disadvantages of the solution concept
of truthfulness in dominant strategies. On the one hand,
this is a strong and convincing concept, which admits
many positive results. However, there are several prob-
lems to all these results, that cannot be solved by a truthful
mechanism. Among these, the budget-imbalance problem
was briefly mentioned, and this section looks again at this
problem, as a motivation to the definition of the Bayesian–
Nash solution concept.

To recall the budget-imbalance problem of the VCG
mechanism, let us consider a specific input to the Clarke
mechanism from Sect. “Quasi-Linear Utilities and the
VCG Mechanism”: suppose the cost of the project is $100,
and there are 102 players, each values the project by $1.
It is a simple exercise to check that the Clarke mechanism
will indeed choose to perform the project, and that each
player will pay a price of zero (since the project would have
been conducted even if a single player is removed). Thus,
the mechanism designer does not cover the project’s cost.
As described above, this problem, for this specific domain,
can be fixed by considering the cost-sharing mechanism
discussed in Sect.. “The Importance of the Domain’s Di-
mensionality”. However, this mechanism may sometimes
choose not to perform the project although the society as
a whole will benefit from performing it (i. e. it is not “so-
cially efficient”), and, even more importantly, it is a solu-
tion only for the concrete domain of a public project. Is
there a general mechanism (in the sense that VCG is gen-
eral) that is both socially efficient and budget-balanced?
In this section we describe such a mechanism, that was
independently discovered by d’Aspremont and Ge’rard–
Varet [10] and by Arrow [3]. Its incentive compatibility
will not be in dominant strategies. Instead, it is assumed
that player types are drawn i.i.d. from some fixed and

known cumulative distribution function F (the assump-
tion that the types are drawn from the same distribution
is not important, and is made here only for the ease of no-
tation; the assumption that types are not correlated is im-
portant and cannot be removed in general). The solution
concept of a Bayesian–Nash equilibrium is a natural exten-
sion of the regular Nash equilibrium concept, for a setting
in which the distribution F is known to all players (this
is termed the “common-prior” assumption), and where
players aim to maximize the expectation of their quasi-lin-
ear utility.

Definition 6 A direct mechanismM D ( f ; p) is Bayesian
incentive compatible if for every player i, and for every
vi ; v0i 2 Vi ,

Ev�i [vi ( f (vi ; v�i )) � pi (vi ; v�i )]
� Ev�i [vi ( f (v

0
i ; v�i )) � pi(v0i ; v�i )]

In other words, Bayesian incentive compatibility requires
that a player will maximize her expected utility by declar-
ing her true type. An alternative formulation is that truth-
fulness in a Bayesian incentive compatible mechanism
should be a “Bayesian–Nash equilibrium” (where the for-
mal equilibrium definition naturally follows the above def-
inition). This is an “ex-interim” equilibrium: the type of
the player is already known to her, and the averaging is
over the types of the others. A weaker equilibrium notion
would be an “ex-ante” notion, where the player should de-
cide on a strategy before knowing her own type, and so the
averaging is done over her own types as well. A stronger
notion would be an “ex-post” notion, where no-averaging
is done at all, and the above inequality is required for ev-
ery realization of the types of the other players. It can be
shown that this stronger ex-post condition is equivalent to
the requirement of dominant-strategy incentive compati-
bility. As a Bayesian–Nash equilibrium only considers the
average over all possible realizations, it is clearly a weaker
requirement than dominant-strategy implementability.

We will demonstrate the usefulness of this weaker no-
tion by describing a general mechanism that is both ex-
post socially efficient and ex-post budget balanced, and is
Bayesian incentive-compatible. Define,

xi(vi ) D Ev�i

2

4
X

j¤i

v j( f (vi ; v�i ))

3

5

The “budget-balanced” (BB) mechanism asks the play-
ers to report their types, and then chooses the welfare-
maximizing allocation according to the reported types (as
VCG does). It then charges some payment pi(vi ; v�i ) D
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�xi(vi )Chi (v�i ), for some function hi (�) that will be cho-
sen later on in a specific way that balances the budget. But
let us first verify that the mechanism is Bayesian incentive
compatible, regardless of the choice of the functions hi (�).
Note that, for any realization of v�i , we have that,

vi( f (vi ; v�i ))C
X

j¤i

v j( f (vi ; v�i ))

� vi ( f (v0i ; v�i ))C
X

j¤i

v j( f (v0i ; v�i ))

as the mechanism chooses the maximal-welfare alterna-
tive for the given reports. Clearly, taking the expectation
on both sides will maintain the inequality. Therefore we
get:

Ev�i [vi ( f (vi ; v�i )) � pi (vi ; v�i )]

D Ev�i [vi( f (vi ; v�i ))]C Ev�i

2

4
X

j¤i

v j( f (vi ; v�i ))

3

5

C Ev�i [hi (v�i )]

� Ev�i [vi ( f (vi ; v�i ))]C Ev�i

2

4
X

j¤i

v j( f (vi ; v�i ))

3

5

C Ev�i [hi (v�i )]
D Ev�i [vi( f (v

0
i ; v�i )) � pi(v0i ; v�i )]

which proves Bayesian incentive compatibility. To bal-
ance the budget, consider the specific function, hi (v�i ) D
1/(n � 1)

P
j¤i x j(v j). Notice that the term x j(v j) ap-

pears (n � 1) times in the sum
Pn

iD1 hi (v�i ) for any
j D 1; : : : ; n. Therefore

Pn
iD1 hi (v�i ) D 1/(n � 1)Pn

jD1(n � 1)x j(v j) D
Pn

iD1 xi(vi ). To conclude, we havePn
iD1 pi (vi ; v�i ) D

Pn
iD1 hi (v�i ) �

Pn
iD1 xi(vi ) D 0,

and the budget balancedness follows.
It is worth noting that such an exercise cannot be em-

ployed for the VCG mechanism, as there the “parallel”
xi(�) term should depend on the entire vector of declara-
tions, not only on i’s own declarations. This is the exact
point where the averaging of the others’ valuations is cru-
cial.

In addition to the difference in the solution con-
cept, one other important advantage of VCG, in compar-
ison with the BB mechanism, is the fact that VCG (with
the Clarke payments) is ex-post “individually rational”: if
a player declares her true valuation, it is guaranteed that
she will not pay more than her value, no matter what the
others will declare. Here, on the contrary, there is no rea-
son why this should be true, in general. Can the solu-
tion concept of Bayesian incentive compatibility be used

to construct a general budget-balanced and individually
rational mechanism? In an important and influencing re-
sult, Myerson and Satterthwaite [22] have shown that this
is impossible: there is no general mechanism that satisfies
the four properties (1) Bayesian incentive compatibility,
(2) budget balancedness, (3) individual rationality, and (4)
social efficiency. The proof uses a simple, natural exchange
setting, where two traders (one buyer and one seller) wish
to exchange an item. The seller has a cost c of producing
the item, and the buyer obtains a value v from receiving it.
Myerson and Satterthwaite show that there is no Bayesian
incentive compatible mechanism that decides to perform
the exchange if and only if v > c, such that Bayesian in-
centive compatibility and individual rationality are main-
tained, and the price that the buyer pays exactly equals the
payment that the seller gets. In particular, VCG violates
this last property, while BB satisfies it, but violates indi-
vidual rationality (i. e. for some realizations of the values,
a buyer may pay more than her value, or the seller may get
less than her cost).

Besides this disadvantage of the BB mechanism, there
are also additional disadvantages that result from the un-
derlying assumptions of the solution concept itself. In par-
ticular, Bayesian incentive compatibility entails two strong
assumptions about the characteristics of the players. First,
it assumes that players are risk-neutral, i. e. care only about
maximizing the expectation of their profit (value minus
price). Thus, when players dislike risk, for example, and
prefer to decrease the variance of the outcome, even on
the expense of lowering the achieved expected profit, the
rational of the Bayesian–Nash equilibrium concept breaks
down. Second, the assumption of a common-prior, i. e.
that all players agree on the same underlying distribu-
tion, seems strong and somewhat unrealistic. Often, play-
ers have different estimations about the underlying statis-
tical characteristics of the environment, and this concept
does not handle this well. Note that the solution concept
of dominant-strategies does not suffer from any of these
problems, which strengthens even more its importance.
Unfortunately, the classical economics literature mainly
ignores these disadvantages and problems. A well-known
exception is the critique known as Wilson’s critique [29],
who raises the above mentioned problems, and argues in
favor of “detail-free” mechanisms. Recently, this critique
gained more popularity, and detail-free solution concepts
are re-examined. For some examples, see [5,6,11].

Interdependent Valuations

Up to now, this entry described “private value”models, i. e.
models where the valuation (or the preference relation) of
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a player does not depend on the types of the other play-
ers. There are many settings in which this assumption is
unrealistic, and a more suitable assumption is that the val-
uation of a specific player is affected by the valuations of
the other players. This last statement may entail two inter-
pretations. The first is that the distribution over the valu-
ations of a specific player is correlated with the distribu-
tion over the valuations of the other players, and, thus,
knowing a player’s actual valuation gives partial knowl-
edge about the valuations of the other players. This first in-
terpretation is still termed a private value model (but with
correlated values instead of independent values), since af-
ter the player becomes aware of the actual realization of
her valuation, she completely and fully knows her values
for the different outcomes.

In contrast, with interdependent valuations, the actual
valuation of a player depends on the actual valuations of
the other players. Thus, a player does not fully know her
own valuation. She only partially knows it, and can deter-
mine her full valuation only if given the others’ valuations
as well. A classic example is a setting where a seller sells
an oil field. The oil, of-course, is not seen on the ground
surface, and the only way to exactly determine how much
oil is there (and, by this, determine the actual worth of
the field) is to extract it. Before buying the field, though,
the potential buyers are only allowed to make preliminary
tests, and by this to determine an estimation of the value of
the field, which is not completely accurate. If all the buy-
ers that are interested in the field have the same techni-
cal capabilities, it seems reasonable to assume that the true
value of the field is the average over all the estimations ob-
tained by the different oil companies. Intuitively, a player
that participates in an auction mechanism that determines
who will buy the field, and at what price, has to act some-
how as if she knows the value of the field, although she
doesn’t. Clearly, this creates different complications. Such
a model is very natural in auction settings, and indeed the
entry on auctions handles the subject of interdependent
valuations more broadly. Since this issue is also very rele-
vant to general mechanism design theory, we describe here
one specific, rather general result for mechanisms with in-
terdependent valuations, to exemplify the definitions and
the techniques being employed.

In the formal model of interdependent valuations,
player i receives a signal si 2 Si , which may be multi-di-
mensional. Her valuation for a specific alternative a 2 A
is a function of the signals s1; : : : ; sn , i. e. vi : A � S1 �
� � � � Sn ! <. The case where vi (a; s1; : : : ; sn) D v j(a;
s1; : : : ; sn) for all players i; j and all a; s1; : : : ; sn is termed
the “common value” case, as the actual values of all players
are identical, and only their signals are different (as in the

oil field example). The other extreme is when i’s valuation
depends only on i’s signal, i. e. vi (a; s1; : : : ; sn) D vi(a; si ),
which is a return to the private value case. The entire range
in general is termed the case of interdependent valuations.
All the results described in the previous sections fail when
wemove to interdependent valuations. For example, in the
VCG mechanism, a player is required to report her valu-
ation function, which is not fully known to her in the in-
terdependent valuation case. It turns out that the straight-
forward modification of reporting the players’ signals does
not maintain the truthfulness property, and, in fact, some
strong impossibilities exist (Jehiel et al. [15]). However, in-
terdependent valuations may also enable possibilities, and
the classic result of Cremer and McLean [9] will be de-
scribed here to exemplify this. This result shows how to
use the interdependencies in order to increase the revenue
of themechanism designer, so that the entire surplus of the
players can be extracted. [9] study an auction setting where
there is one item for sale. n bidders have interdependent
values for the item, and it is assumed that the signal that
each player receives is single-dimensional, i. e. each player
receives a single real number as her signal. The valuation
functions are assumed to be known to the mechanism de-
signer, so that the only private information of the players
are their signals. It is also assumed that the valuation func-
tions are monotonically non-decreasing in the signals. For
simplicity, it is assumed here that the signal space is dis-
cretisized to be Si D f0; �; 2�; : : : g. The last (and cru-
cial) assumption is that the valuation functions satisfy the
“single-crossing” property: if vi(si ; s�i ) � v j(si ; s�i ) then
vi (si C �; s�i ) � v j(si C �; s�i ). This says that i’s sig-
nal affects i’s own value (weakly) more than it affects the
value of any other player. This last assumption is strong,
but in some sense necessary, as it is possible to construct
interdependent valuation functions (that violate single-
crossing) for which no truthful mechanism can be effi-
cient (i. e. allocate the item to the player with the highest
value).

Consider the following CM mechanism for this prob-
lem: each player reports her signal, and the player with
the highest value (note that this may be different than the
player with the highest signal) receives the object. In order
to determine her payment, define the “threshold signal”
Ti (s�i ) of any player i to be theminimal signal that will en-
able her to win (given the signals of the other players), i. e.
Ti (s�i ) D minfs̃ i 2 Si j vi(s̃ i ; s�i ) � max j¤i v j(s̃ i ; s�i )g.
The payment of the winner, i, is her value if her signal was
Ti (s�i ), i. e. Pi (s�i ) D vi(Ti (s�i ); s�i ). Clearly, if all play-
ers report their true signals, then the player with the high-
est value receives the item. Truthful reporting is also an ex-
post Nash equilibrium, which means the following: if all
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other players report the true signal (no matter what that
is) then it is a best response for i to report her true signal
as well.

To verify that truthfulness is indeed an ex-post Nash
equilibrium, notice first that each player has a price for
winning which does not depend on her declaration. Now,
truthful reporting will ensure winning (given that the oth-
ers are truthful as well) if and only if the true value of the
player is higher than her price (i. e. iff winning will yield
a positive utility). Thus, when a player “wants to win”,
truthful reporting will do that, and when a player “wants to
lose”, truthful reporting will do that as well, and so truth-
fulness will always maximize the player’s utility.

The notion of an ex-post equilibrium is stronger than
Bayesian–Nash equilibrium, since, here, even after the sig-
nals are revealedno player regrets her declaration (while in
Bayesian–Nash equilibrium, since only the expected util-
ity is maximized, there are some realizations for which
a player can deviate and gain). On the other hand, ex-post
equilibrium is weaker than dominant strategies, in which
truthfulness is the best strategy no matter what the others
choose to declare, while here truthfulness is a best response
only if the others are truthful as well.

As seen above, both for the VCGmechanism as well as
for the BB mechanism, adding a “constant” to the prices
(i. e. setting P̃i (s�i ) D Pi C hi (s�i )) maintains the strate-
gic properties of the mechanism, since the function hi (�)
does not depend on the declaration of player i. The cor-
relation in the values can help the mechanism designer to
extract more payments from the players, as follows. Con-
sider the matrix that describes the conditional probability
for a specific tuple of signals of the other players, given i’s
own signal. There is a row for every signal si of i, a col-
umn for every tuple of signals s�i of the other players,
and the cell (si ; s�i ) contains the conditional probability
Pr(s�i jsi). In the private value case, the signals of the play-
ers are not correlated, hence the matrix has rank one (all
rows are identical). As the correlation between the signals
“increases”, the rank increases, and we consider here the
case when the matrix has full row rank. Let qi (si ; s�i ) be
an indicator to the event that i is the winner when the sig-
nals are (si ; s�i ). The expected surplus of player i in the
CMmechanism isU�i (si ) D

P
s�i

Pr(s�i jsi) � (qi (si ; s�i ) �
vi (si ; s�i ))� Pi (s�i )). (Pi (s�i ) is defined to be zero when-
ever i is not a winner). Now find “constants” hi (s�i ) such
that, for every si,

P
s�i

hi (s�i ) � Pr(s�i jsi) D U�i (si ). Note
that such an hi (�) function exists: we have a system of lin-
ear equations, where the variables are the function values
hi (s�i ) for all possible tuples s�i , and the qualifiers are the
probabilities and the expected surplus. Since the matrix of
qualifies has full row rank, a solution exists. It is now not

hard to verify that, with prices P̃i (�), the expected utility of
a truthful player is zero.

As mentioned above, truthfulness is still an ex-post
equilibrium of this mechanism. It is not ex-post individu-
ally rational, though, but rather only ex-ante, since a player
pays her expected surplus even if the actual signals cause
her to lose. Thus, this mechanism can be considered a fair
lottery. Also note that the crucial property was the correla-
tion between the values, the interdependence assumption
was not important.

Future Directions

As surveyed here, the last three decades have seen the the-
ory of mechanism design being developed in many differ-
ent directions. The common thread of all settings is the re-
quirement to implement some social goal in the presence
of incomplete information – the social designer does not
know the players’ preferences for the different outcomes.
We have seen several alternative assumptions about the
structure of players’ preferences, the different equilibria
solution concepts that are suitable for the different cases,
and several positive examples for elegant solutions. We
have also discussed some impossibilities, demonstrating
that some attractive definitions may turn out almost pow-
erless. One relatively new research direction inmechanism
design is the analysis of new models for the emerging In-
ternet economy, and the development of new alternative
solution concepts that better suit this setting. A very re-
cent example is the new model of “dynamic mechanism
design”, where the parameters of the problem (e. g. the
number of players, or their types) vary over time. Such set-
tings become more and more important as the economic
environment becomes more dynamic, for example due to
the growing importance of the electronic markets. Exam-
ples for such models include e. g. the works by Lavi and
Nisan [16] in the context of computer science models, and
by Athey and Segal [4] in a more classical economic con-
text, among many other works that study such dynamic
settings.

The Internet environment also strengthens the ques-
tion marks posed on the solution concept of Bayesian in-
centive compatibility, which was the most common solu-
tion concept in mechanism design literature in the 1980s
and throughout the 1990s, due to the accompanying as-
sumption of a common prior. Such an assumption seems
problematic in general, and in particular in an environ-
ment like the Internet, that brings together players from
many different parts of the world. It seems that the re-
search community agrees more and more that alternative,
detail-free solution concepts should be sought. The de-
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scription of more recently new solution concepts is be-
yond the scope of this entry, and the interested reader is
referred, for example, to the papers by [5,6,11] for some
recent examples.

Another aspect of mechanism design that is largely ig-
nored in the classic research is the computational feasi-
bility of the mechanisms being suggested. This question
is not just a technicality – some classic mechanisms im-
ply heavy computational and communicational require-
ments that scale exponentially as the number of play-
ers increase, making them completely infeasible for even
moderate numbers of players. The computer science com-
munity has begun looking at the design of computation-
ally efficient mechanisms, and the recent book by Nisan
et al. [24] contains several surveys on the subject.
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Glossary

Active membranes P systems whose rules involve not
only objects, but also membranes, are called systems
with active membranes. By using such rules one can
both specify the way the objects can be processed and
moved (for instance, the rule a[i]i ! [i b]i says that
object a can enter membrane with label i and gets
transformed into b), and the way the membrane struc-
ture itself can be transformed (membranes can be dis-
solved, created, divided, merged, etc.).

Evolution rule The multisets of objects evolve by means
of rules corresponding to chemical reactions and to
other processes taking place in a cell. The abstract
counterpart of a chemical reaction is a multiset rewrit-
ing rule, of the form u ! v, where u and v are strings
representing multisets. For instance, aad ! abc is
a rule with the meaning that 2 copies of object a re-
act with one copy of object d, these copies are con-
sumed, and as a result we produce one copy of each
of a; b, and c (hence one copy of a is reproduced).
Such a rule is said to be cooperative (several objects re-
act); particular cases are those of catalytic rules, of the
form ca! cv, with c being a catalyst which assists ob-
ject a in getting transformed in the multiset v, and of
non-cooperative rules, where only one object evolves,
a! u (a is an object and u a multiset).
Besides such multiset rewriting rules, there are many
other types of rules corresponding to bio-chemi-
cal processes or mathematically inspired: rules for
handling membranes (create, merge, divide, etc.), to
move objects across membranes, and combinations of
rules.

Halting Successful computations are usually defined in
terms of halting: a computation stops when it reaches
a configuration where no rule can be applied in the
whole system. A weaker condition is to consider the
computation finished when at least one compartment
of the system cannot apply any of its rules (this is called
local halting).

Membrane structure The cells are separated from the
environment by a membrane; the internal compart-
ments of a cell (nucleus, mitochondria, Golgi appa-
ratus, vesicles, etc.) are also delimited by membranes.
A membrane is a separator of a compartment, and it
also has filtering properties (only certain substances,
in certain conditions, can pass through a membrane).
In a cell, the membranes are hierarchically arranged,
and they delimit “protected reactors”, compartments
where specific chemicals evolve according to specific
reactions. Such a cell-like arrangement of membranes

is called membrane structure. In membrane comput-
ing, the complexity (number of membranes and of lev-
els) of membrane structures is not restricted.
A cell-like (hence hierarchical) membrane structure
corresponds to a tree, hence a natural representation
is by means of a tree or any mathematical representa-
tion of a tree, for instance, by means of expressions of
labeled parentheses (a pair of parentheses is associated
with a membrane). For instance [1[2 ]2[3 ]3]1 describes
the membrane structure consisting of two membranes,
with labels 2 and 3, placed in a membrane with label 1.
Besides cell-like membrane structures, in membrane
computing one also considers tissue-like systems,
hence with elementary membranes (i. e., membranes
without any membrane inside) placed in the nodes of
an arbitrary graph.

Multiset A multiset is a set with multiplicities associ-
ated with its elements. For instance, f(a; 2); (b; 3)g
is the multiset consisting of 2 copies of element a
and 3 copies of element b. Mathematically, a multi-
set is identified with a mapping � from a universe
set U (an alphabet) to N, the set of natural num-
bers, � : U �! N. In the previous case, U can be
any superset of fa; bg, for instance, U D fa; b; cg, and
�(a) D 2; �(b) D 3; �(c) D 0. A compact representa-
tion of a multiset is by strings: any string w overU rep-
resents a multiset, with the number of occurrences of
a symbol in w being the multiplicity of that element in
the multiset represented by w. Consequently, any per-
mutation of a string represents the same multiset. In
the previous case, any permutation of the string a2b3,
for instance, ab2ab represents the multiset � defined
above.Multisets can also be considered on infinite uni-
verse sets or even with multiplicities being negative or
non-integer numbers.
In membrane computing, multisets model solutions,
chemical “objects” (ions, small molecules, macro-
molecules, etc.) swimming in water, in the same com-
partment of a cell, with the multiplicity of each ob-
ject relevant for the bio-chemistry taking place in that
compartment.

P system The computing devices investigated in mem-
brane computing are called P systems. Basically, such
a system consists of a membrane structure, with mul-
tisets of objects placed in its compartments and sets
of evolution rules associated with either the compart-
ments or themembranes. The objects evolve according
to the local rules (the objects can also pass across mem-
branes, from a compartment to an adjacent compart-
ment). Also the membrane structure can evolve. De-
pending on the form of the membrane structure, there
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are cell-like P systems, tissue-like P systems, with neu-
ral P systems being an important subclass of the latter.
Specifying a P systemmeans to define its initial config-
uration (the membrane structure and the multisets of
objects present in each compartment) and its evolution
rules, as well as the way of using the rules (hence the
transition among configurations), the successful com-
putations, and the output of a computation. There are
many possibilities from all these points of view.

Parallelism Most computer science investigations in
membrane computing deal with synchronized P sys-
tems, where a global clockmarks the time for the whole
system and each compartment/membrane evolves in
each time unit, hence in a parallel way. In many cases,
the rules are also used in parallel in each compart-
ment: (like in bio-chemistry) all rules which can be
applied are applied to the existing objects. This is the
so-called maximal parallelism (objects are assigned to
rules until no further rule can be applied). There are
many variants: minimal parallelism (if at least one rule
can be used in a compartment of a P system, then at
least one must be used), bounded parallelism (at least,
at most, or exactly k rules are used, for a given k),
and so on. The rules can also be used sequentially
(one in each compartment), or the system can be asyn-
chronous.

Spiking neural P system Neurons are linked in a tissue-
like way, communicating along axons by means of
spikes, electrical impulses of a constant shape and volt-
age, with the frequency (distance in time between con-
secutive spikes) carrying information. Based on these
neurological facts, spiking neural P systems are de-
fined: neurons are represented by membranes, where
copies of the single object a, representing the spike, are
placed; these membranes are associated with nodes of
a graph whose edges represent the synapses; rules for
processing spikes are provided in each neuron, and in
this way computations are defined.

Symport/antiport An important way of selectively pass-
ing chemicals across biological membranes is the cou-
pled transport through protein channels. The process
of moving two or more objects in the same direction is
called symport; the process of simultaneously moving
two or more objects across a membrane, in opposite
directions, is called antiport. For uniformity, the par-
ticular case of moving only one object is called uniport.
In membrane computing, a symport rule is written in
the form (u; in) or (u; out), meaning that the objects
specified by (the multiset represented by) the string u
can enter, or respectively exit, the membrane to which
the rule is associated. An antiport rule is written in the

form (u; out; v; in), meaning that the objects of u exit
from and, simultaneously, those of v enter in the mem-
brane with which the rule is associated.

Tissue P system P systems consisting of one-membrane
cells placed in the nodes of a graph are called tissue-like
P systems. The channels between cells can be given in
advance, fixed, or they can evolve during the compu-
tation. A class of tissue-like P systems with a dynamic
structure of channels among cells is that of population
P systems (with motivation and applications related to
populations/colonies of bacteria).

Universality A computing model which is equivalent
in power with Turing machines (the Standardabwe-
ichung model of algorithmic computing) is said to
be computationally complete, or Turing complete. In
membrane computing, many classes of P systems are
Turing complete. Because the proofs are construc-
tive (Turing machines or equivalent devices, such as
counter/register machines, Chomsky grammars, etc.,
are simulated by means of P systems), the comput-
ing completeness also means universality in the re-
stricted sense, of the existence of a programmable de-
vice, which can simulate any device in a given class af-
ter taking as input a “code” of the particular device.

Definition of the Subject

Membrane computing is a branch of natural computing
initiated in [9] which abstracts computing models from
the architecture and the functioning of living cells, as well
as from the organization of cells in tissues, organs (brain
included) or other higher order structures. The initial goal
of membrane computing was to learn from the cell biol-
ogy something possibly useful to computer science, and
the area fast developed in this direction. Several classes of
computing models (called P systems) were defined in this
context, inspired from biological facts or motivated from
mathematical or computer science points of view. A se-
ries of applications were reported in the last years, in biol-
ogy/medicine, linguistics, computer graphics, economics,
approximate optimization, cryptography, etc.

The main ingredients of a P system are (i) the mem-
brane structure, (ii) the multisets of objects placed in the
compartments of the membrane structure, and (iii) the
rules for processing the objects and the membranes. Thus,
membrane computing can be defined as a framework for
devising cell-like or tissue-like computing models which
process multisets in compartments defined by means of
membranes. These models are (in general) distributed and
parallel. When a P system is considered as a computing
device, hence it is investigated in terms of (theoretical)
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computer science, the main issues investigated concern
the computing power (in comparison with standard mod-
els from computability theory, especially Turing machines
and their restrictions) and the computing efficiency (the
possibility of using the parallelism for solving computa-
tionally hard problems in a feasible time). Computation-
ally and mathematically oriented ways of using the rules
and of defining the result of a computation are considered
in this case (e. g., maximal or minimal parallelism, halt-
ing, counting objects). When a P system is constructed as
a model of a bio-chemical process, then it is examined in
terms of dynamical systems, with the evolution in time be-
ing the issue of interest, not a specific output.

Membrane computing is the first systematic frame-
work for studying cell-inspired computing models, but af-
ter a considerable theoretical development, the domain
returned to the originating area, biology, proving to be
a promising modeling framework.

From a theoretical point of view, P systems are both
powerful (most classes are Turing complete, even when
using ingredients of a reduced complexity – a small num-
ber of membranes, rules of simple forms, ways of con-
trolling the use of rules directly inspired from biology)
and efficient (many classes of P systems, especially those
with an enhanced parallelism, can solve computation-
ally hard problems – typically NP-complete problems,
but also harder problems – in a feasible time – typically
polynomial). Then, as a modeling framework, membrane
computing is rather adequate for handling discrete (bio-
logical) processes, having many attractive features: easy
understandability, scalability and programmability, inher-
ent compartmentalization and non-linearity, etc. Ideas
from cell biology as captured by membrane computing
proved to be rather useful in handling various computer
science topics – one typical example is that of membrane
evolutionary algorithms, used for solving optimization
problems.

Introduction

The literature of membrane computing has grown very
fast (already in 2003, Thompson Institute for Scientific
Information, ISI, has qualified the initial paper as “fast
breaking” and the domain as “emergent research front
in computer science” – see http://esi-topics.com), while
the bibliography of the field counts, at the middle of
2007, almost 900 titles – see the web site from http://
psystems.disco.unimib.it, with amirror at http://bmc.hust.
edu.cn/psystems. Moreover, the domain is now very di-
verse, as a consequence of the many motivations of in-
troducing new variants of P systems: to be biologically

oriented/realistic, mathematically elegant, computation-
ally powerful and efficient. That is why it is possible to give
here only a few basic notions and only a few (types of) re-
sults and of applications. The reader interested in details
should consult the monograph [10], the volume [2], where
a friendly introduction to membrane computing can be
found in the first chapter, and the comprehensive bibli-
ography from the above mentioned web page.

The field started by looking to the cell in order to learn
something possibly useful to computer science, but then
the research also considered cell organization in tissues
(in general, populations of cells, such as colonies of bac-
teria), and, recently, also neurons organization in brain.
Thus, at the moment there are three main types of P sys-
tems: (i) cell-like P systems, (ii) tissue-like P systems, and
(iii) neural-like P systems.

The first type imitates the (eukaryotic) cell, and its
basic ingredient is the membrane structure, a hierarchi-
cal arrangement of membranes (understood as three di-
mensional vesicles), delimiting compartments where mul-
tisets of symbol objects are placed; rules for evolving these
multisets as well as the membranes are provided, also lo-
calized, acting in specified compartments or on specified
membranes. The objects not only evolve, but they also
pass through membranes (we say that they are “commu-
nicated” among compartments). The rules can have sev-
eral forms, and their use can be controlled in various ways:
promoters, inhibitors, priorities, etc.

In tissue-like P systems, several one-membrane cells
are considered as evolving in a common environment.
They contain multisets of objects, while also the environ-
ment contains objects. Certain cells can communicate di-
rectly (channels are provided between them) and all cells
can communicate through the environment. The channels
can be given in advance or they can be dynamically es-
tablished – this latter case appears in so-called population
P systems.

Finally, there are two types of neural-like P systems.
One of them are similar to tissue-like P systems in the fact
that the cells (neurons) are placed in the nodes of an ar-
bitrary graph and they contain multisets of objects, but
they also have a state which controls the evolution. An-
other promising variant was recently introduced, under
the name of spiking neural P systems, where one uses only
one type of objects, the spike, and the main information
one works with is the distance between consecutive spikes.

The cell-like P systems were introduced first and their
theory is now very well developed; tissue-like P systems
have also attracted a considerable interest, while the neu-
ral-like systems, mainly under the form of spiking neural
P systems, are only recently investigated.

http://esi-topics.com
http://psystems.disco.unimib.it
http://psystems.disco.unimib.it
http://bmc.hust.edu.cn/psystems
http://bmc.hust.edu.cn/psystems
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In what follows, in order to let the reader get a flavor of
membrane computing, we will discuss in some detail only
cell-like P systems and spiking neural P systems, and we
refer to the area literature for other classes.

Cell-like P Systems

Because in this section we only consider cell-like P sys-
tems, they will be simply called P systems.

In short, such a system consists of a hierarchical ar-
rangement of membranes, which delimit compartments,
where multisets (sets with multiplicities associated with
their elements) of abstract objects are placed. These ob-
jects correspond to the chemicals from the compartments
of a cell; the chemicals swim in water (many of them are
bound on membranes, but we do not consider this case
here), and their multiplicity matters – that is why the data
structure most adequate to this situation is the multiset
(a multiset can be seen as a string modulo permutation,
that is why in membrane computing one usually repre-
sents the multisets by strings). In what follows the objects
are supposed to be unstructured, hence we represent them
by symbols from a given alphabet. There also are classes of
P systems dealing with string objects.

The objects evolve according to ruleswhich are also as-
sociated with the regions. The rules say both how the ob-
jects are changed and how they can be moved (communi-
cated) across membranes. There also are rules which only
move objects across membranes, as well as rules for evolv-
ing the membranes themselves (e. g., by destroying, cre-
ating, dividing, or merging membranes). By using these
rules, we can change the configuration of a system (the
multisets from their compartments as well as the mem-
brane structure); we say that we get a transition among
system configurations.

The rules can be applied in many ways. The basic
mode imitates the biological way chemical reactions are
performed – in parallel, with the mathematical additional
restriction to have a maximal parallelism: one applies
a bunch of rules which are maximal, no further object can
evolve at the same time by any rule. Besides this mode,
there were considered several others: sequential (one rule
is used in each step), bounded parallelism (the number of
membranes to evolve and/or the number of rules to be
used in any step is bounded in advance), minimal paral-
lelism (in each compartment where a rule can be used, at
least one rulemust be used). In all cases, a common feature
is that the objects to evolve and the rules by which they
evolve are chosen in a non-deterministic manner. A se-
quence of transitions forms a computation and with com-
putations which halt (reach a configuration where no rule

is applicable) we associate a result, for instance, in the form
of the multiset of objects present in the halting configura-
tion in a specified membrane.

This way of using a P system, starting from an initial
configuration and computing a number, is a grammar-like
(generative) one. We can also work in an automata style:
an input is introduced in the system, for instance, in the
form of a number represented by the multiplicity of an ob-
ject placed in a specified membrane, and we start comput-
ing; the input number is accepted if and only if the com-
putation halts. A combination of the two modes leads to
a functional behavior: an input is introduced in the system
(at the beginning, or symbol by symbol during the com-
putation) and also an output is produced. In particular, we
can have a decidability case, where the input encodes a de-
cision problem and the output is one of two special objects
representing the answers yes and no to the problem.

The generalization of this approach is obvious. We
start from the cell, but the abstract model deals with very
general notions: membranes interpreted as separators of
regions with filtering capabilities, objects and rules as-
signed to regions; the basic data structure is the multiset.
Thus, membrane computing can be interpreted as a bio-in-
spired framework for distributed parallel processing of mul-
tisets.

As briefly introduced above, the P systems are syn-
chronous systems, and this feature is useful for theoreti-
cal investigations (e. g., for obtaining universality results or
results related to the computational complexity of P sys-
tems). Also non-synchronized systems were considered,
asynchronous in the standard sense or even time-free, or
clock-free (e. g., generating the same output, irrespective
of the duration associated with the evolution rules). Simi-
larly, in applications to biology, specific strategies of evo-
lution are considered. We do not enter here into details,
rather we refer the reader to the bibliography given below.

Ingredients of P Systems

Let us now go into some more specific details – still re-
maining at an informal level.

As said above, we look to the cell structure and func-
tioning, trying to get suggestions for an abstract comput-
ing model. The fundamental feature of a cell is its com-
partmentalization through membranes. Accordingly, the
main ingredient of a P system is the membrane structure,
a hierarchical arrangement of membranes, which delimit
compartments. Figure 1 illustrates this notion and the re-
lated terminology.

We distinguish the external membrane (correspond-
ing to the plasma membrane and usually called the skin
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Membrane Computing, Figure 1
Amembrane structure

membrane) and several internal membranes; a membrane
without any other membrane inside it is said to be ele-
mentary. Eachmembrane determines a compartment, also
called region, the space delimited from above by it and
from below by themembranes placed directly inside, if any
exists. The correspondence membrane–region is one-to-
one, so that we identify by the same label a membrane and
its associated region.

In the basic class of P systems, each region contains
a multiset of symbol-objects, described by symbols from
a given alphabet.

The objects evolve by means of evolution rules, which
are also localized, associated with the regions of the
membrane structure. The typical form of such a rule is
cd ! (a; here)(b; out)(b; in), with the following mean-
ing: one copy of object c and one copy of object d react
and the reaction produces one copy of a and two copies
of b; the newly produced copy of a remains in the same
region (indication here), one of the copies of b exits the
compartment, going to the surrounding region (indication
out) and the other enters one of the directly inner mem-
branes (indication in). We say that the objects a; b; b are
communicated as indicated by the commands associated
with them in the right hand member of the rule. When
an object exits the skin membrane, it is “lost” in the en-
vironment, it never comes back into the system. If no in-
ner membrane exists (that is, the rule is associated with an
elementary membrane), then the indication in cannot be
followed, and the rule cannot be applied.

A membrane structure and the multisets of objects
from its compartments identify a configuration of a P sys-
tem. By a non-deterministicmaximally parallel use of rules
as suggested above we pass to another configuration; such

a step is called a transition. A sequence of transitions con-
stitutes a computation. A computation is successful if it
halts, it reaches a configuration where no rule can be ap-
plied to the existing objects. With a halting computation
we can associate a result in various ways. The simplest pos-
sibility is to count the objects present in the halting config-
uration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave
the system during the computation, and this is called exter-
nal output. In both cases the result is a number. If we dis-
tinguish among different objects, then we can have as the
result a vector of natural numbers. The objects which leave
the system can also be arranged in a sequence according to
the moments when they exit the skin membrane, and in
this case the result is a string.

Because of the non-determinism of the application of
rules, starting from an initial configuration, we can get sev-
eral successful computations, hence several results. Thus,
a P system computes (one also uses to say generates) a set
of numbers, or a set of vectors of numbers, or a language.

Many classes of P systems can be obtained by consid-
ering various possibilities for the various ingredients. We
enumerate here several of these possibilities, without ex-
hausting the list:

� Objects: symbols, strings of symbols, spikes, arrays,
trees, numerical variables, other data structures, com-
binations.

� Data structure: multisets, sets (languages in the case of
strings), fuzzy sets or fuzzy multisets.

� Place of objects: in compartments, on membranes,
combined.

� Forms of rules: multiset rewriting, symport/antiport,
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communication rules, boundary rules, with active
membranes, combined, string rewriting, array/trees
processing, spike processing.

� Controls on rules: catalysts, priority, promoters, in-
hibitors, activators, sequencing, energy.

� Formofmembrane structure: cell-like (tree), tissue-like
(arbitrary graph).

� Type of membrane structure: static, dynamical, pre-
computed (arbitrarily large).

� Timing: synchronized, non-synchronized, local syn-
chronization, time-free.

� Ways of using the rules: maximal parallelism, minimal
parallelism, bounded parallelism, sequential.

� Successful computations: global halting, local halting,
with specified events signaling the end of a computa-
tion, non-halting.

� Modes of using a system: generative, accepting, com-
puting an input-output function, deciding.

� Types of evolution: deterministic, non-deterministic,
confluent, probabilistic.

� Ways to define the output: internal, external, traces,
tree of membrane structure, spike train.

� Types of results: set of numbers, set of vectors of num-
bers, languages, set of arrays, yes/no.

We refer to the literature for details and we only add here
the fact that when using P systems as models of biologi-
cal systems/processes, we have to apply the rules in ways
suggested by bio-chemistry, according to reaction rates or
probabilities; in many cases, these rates are computed dy-
namically, depending on the current population of objects
in the system.

In general, a (cell-like) P system is formalized as a con-
struct ˘ D (O; �;w1; : : : ;wm ; R1; : : : ; Rm ; i0), where O
is the alphabet of objects, � is the membrane structure
(with m membranes), w1; : : : ;wm are multisets of objects
present in the m regions of � at the beginning of a com-
putation, R1; : : : ; Rm are finite sets of evolution rules asso-
ciated with the regions of �, and i0 is the label of a mem-
brane, used as the output membrane.

We end this section with a simple example, illustrating
the architecture and the functioning of a (cell-like) P sys-
tem. Figure 2 indicates the initial configuration (the rules
included) of a system which computes a function, namely
n �! n2, for any natural number n � 1. Besides catalytic
and non-cooperating rules, the system also contains a rule
with promoters, b2 ! b2(e; in)jb1 : the object b2 evolves to
b2e only if at least one copy of object b1 is present in the
same region.

In symbols, the system is given as follows:

˘ D (O;C; �;w1;w2; R1; R2; i0); where:

Membrane Computing, Figure 2
A P systemwith catalysts and promoters

O D fa; b1; b01; b2; c; eg (the set of objects)
C D fcg (the set of catalysts)
� D [1[2]2]1 (membrane structure)
w1 D c (initial objects in region 1)
w2 D  (initial objects in region 2)
R1 D fa! b1b2; cb1 ! cb01; b2 ! b2einjb1g

(rules in region 1)
R2 D ; (rules in region 2)
i0 D 2 (the output region):

We start with only one object in the system, the catalyst c.
If we want to compute the square of a number n, then we
have to input n copies of the object a in the skin region
of the system. In that moment, the system starts work-
ing, by using the rule a! b1b2, which has to be applied
in parallel to all copies of a; hence, in one step, all objects a
are replaced by n copies of b1 and n copies of b2. From
now on, the other two rules from region 1 can be used.
The catalytic rule cb1 ! cb01 can be used only once in each
step, because the catalyst is present in only one copy. This
means that in each step one copy of b1 gets primed. Simul-
taneously (because of the maximal parallelism), the rule
b2 ! b2(e; in)jb1 should be applied as many times as pos-
sible and this means n times, because we have n copies of
b2. Note the important difference between the promoter
b1, which allows using the rule b2 ! b2(e; in)jb1 , and the
catalyst c: the catalyst is involved in the rule, it is counted
when applying the rule, while the promoter makes possi-
ble the use of the rule, but it is not counted; the same (copy
of an) object can promote any number of rules. Moreover,
the promoter can evolve at the same time by means of an-
other rule (the catalyst is never changed).

In this way, in each step we change one b1 to b01 and
we produce n copies of e (one for each copy of b2); the
copies of e are sent to membrane 2 (the indication in from
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the rule b2 ! b2(e; in)jb1 ). The computation should con-
tinue as long as there are applicable rules. This means ex-
actly n steps: in n steps, the rule cb1 ! cb01 will exhaust
the objects b1 and in this way neither this rule can be ap-
plied, nor b2 ! b2(e; in)jb1 , because its promoter does no
longer exist. Consequently, in membrane 2, considered as
the output membrane, we get n2 copies of object e.

Note that the computation is deterministic, always
the next configuration of the system is unique, and
that, changing the rule b2 ! b2(e; in)jb1 with b2 !
b2(e; out)jb1 , the n2 copies of e will be sent to the envi-
ronment, hence we can read the result of the computation
outside the system, and in this case membrane 2 is useless.

Spiking Neural P Systems

Spiking neural P systems (SN P systems) were introduced
in [5] with the aim of defining P systems based on ideas
specific to spiking neurons, recently much investigated in
neural computing.

Very shortly, an SN P system consists of a set of neu-
rons (cells, consisting of only one membrane) placed in the
nodes of a directed graph and sending signals (spikes, de-
noted in what follows by the symbol a) along synapses (arcs
of the graph). Thus, the architecture is that of a tissue-
like P system, with only one kind of object present in the
cells. The objects evolve by means of spiking rules, which
are of the form E/ac ! a; d, where E is a regular expres-
sion over fag and c; d are natural numbers, c � 1; d � 0.
Themeaning is that a neuron containing k spikes such that
ak 2 L(E); k � c, can consume c spikes and produce one
spike, after a delay of d steps. This spike is sent to all neu-
rons to which a synapse exists outgoing from the neuron
where the rule was applied. There also are forgetting rules,
of the form as ! , with the meaning that s � 1 spikes
are forgotten, provided that the neuron contains exactly s
spikes. We say that the rules “cover” the neuron, all spikes
are taken into consideration when using a rule. The sys-
tem works in a synchronized manner, i. e., in each time
unit, each neuron which can use a rule should do it, but
the work of the system is sequential in each neuron: only
(at most) one rule is used in each neuron. One of the neu-
rons is considered to be the output neuron, and its spikes
are also sent to the environment. The moments of time
when a spike is emitted by the output neuron are marked
with 1, the other moments are marked with 0. This binary
sequence is called the spike train of the system – it might
be infinite if the computation does not stop.

In the spirit of spiking neurons, the result of a com-
putation is encoded in the distance between consecutive
spikes sent into the environment by the (output neuron of

the) system. For example, we can consider only the dis-
tance between the first two spikes of a spike train, or the
distance between the first k spikes, the distances between
all consecutive spikes, taking into account all intervals or
only intervals that alternate, all computations or only halt-
ing computations, etc.

An SN P system can also be used in the accepting
mode: a neuron is designated as the input neuron and two
spikes are introduced in it, at an interval of n steps; the
number n is accepted if the computation halts.

Another possibility is to consider the spike train itself
as the result of a computation, and then we obtain a (bi-
nary) language generating device.We can also consider in-
put neurons and then an SN P system can work as a trans-
ducer. Languages on arbitrary alphabets can be obtained
by generalizing the form of rules: take rules of the form
E/ac ! ap; d, with the meaning that, provided that the
neuron is covered by E, c spikes are consumed and p spikes
are produced, and sent to all connected neurons after d
steps (such rules are called extended). Then, with a step
when the system sends out i spikes, we associate a sym-
bol bi, and thus we get a language over an alphabet with
as many symbols as the number of spikes simultaneously
produced. Another natural extension is to consider several
output neurons, thus producing vectors of numbers, not
only single numbers.

Also for SN P systems we skip the technical details, but
we consider a simple example. We give it first in a formal
manner (if a rule E/ac ! a; d has L(E) D facg, then we
write it in the simplified form ac ! a; d):

˘1 D (O; �1; �2; �s ; syn; out); with
O D fag (alphabet, with only one object, the spike)

�1 D (2; fa2/a! a; 0; a! g)
(first neuron: initial spikes, rules)

�2 D (1; fa! a; 0; a! a; 1g)
(second neuron: initial spikes, rules)

�3 D (3; fa3 ! a; 0; a! a; 1; a2 ! g)
(third neuron: initial spikes, rules)

syn D f(1; 2); (2; 1); (1; 3); (2; 3)g (synapses)
out D 3 (output neuron):

This system is represented in a graphical form in Fig. 3
and it functions as follows. All neurons can fire in the first
step, with neuron �2 choosing non-deterministically be-
tween its two rules. Note that neuron �1 can fire only if
it contains two spikes; one spike is consumed, the other
remains available for the next step.
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Membrane Computing, Figure 3
An SN P system generating all natural numbers greater than 1

Both neurons �1 and �2 send a spike to the output
neuron, �3; these two spikes are forgotten in the next step.
Neurons �1 and �2 also exchange their spikes; thus, as
long as neuron �2 uses the rule a! a; 0, the first neuron
receives one spike, thus completing the needed two spikes
for firing again.

However, at any moment, starting with the first step
of the computation, neuron �2 can choose to use the rule
a! a; 1. On the one hand, this means that the spike of
neuron �1 cannot enter neuron �2, it only goes to neu-
ron �3; in this way, neuron �2 will never work again be-
cause it remains empty. On the other hand, in the next step
neuron �1 has to use its forgetting rule a! , while neu-
ron �3 fires, using the rule a! a; 1. Simultaneously, neu-
ron �2 emits its spike, but it cannot enter neuron �3 (it is
closed this moment); the spike enters neuron �1, but it is
forgotten in the next step. In this way, no spike remains in
the system. The computation endswith the expelling of the
spike from neuron �3. Because of the waiting moment im-
posed by the rule a! a; 1 from neuron �3, the two spikes
of this neuron cannot be consecutive, but at least two steps
must exist in between.

Thus, we conclude that˘ computes/generates all nat-
ural numbers greater than or equal to 2.

Computing Power

As we have mentioned before, many classes of P systems,
combining various ingredients (as described above or sim-
ilar) are able of simulating Turing machines, hence they
are computationally complete. Always, the proofs of results
of this type are constructive, and this has an important
consequence from the computability point of view: there
are universal (hence programmable) P systems. In short,
starting from a universal Turing machine (or an equiva-

lent universal device), we get an equivalent universal P sys-
tem. Among others, this implies that in the case of Turing
complete classes of P systems, the hierarchy on the number
of membranes always collapses (at most at the level of the
universal P systems). Actually, the number of membranes
sufficient in order to characterize the power of Turing ma-
chines by means of P systems is always rather small.

We only mention here three of the most interesting
(types of) universality results for cell-like P systems:

1. P systems with symbol-objects with catalytic rules, us-
ing only two catalysts and two membranes, are univer-
sal.

2. P systems with symport/antiport rules of a restricted
size (example: three membranes, symport rules of
weight 2, and no antiport rules, or three membranes
and minimal symport and antiport rules) are universal.

3. P systems with symport/antiport rules (of arbitrary
size), using only three membranes and only three ob-
jects, are universal.

There are several other similar results, improvements or
extensions of them. Many results are also known for tis-
sue-like P systems. Details can be found, e. g., in the pro-
ceedings of the yearly Workshops of Membrane Comput-
ing mentioned in the bibliography of this chapter. For in-
stance, universality results were obtained also in the case
of P systems working in the accepting mode, and an inter-
esting problem appears in this case, because we can then
use deterministic systems. Most universality results were
obtained in the deterministic case, but there also are sit-
uations where the deterministic systems are strictly less
powerful than the non-deterministic ones. This is proven
in [4], for the accepting catalytic P systems.

The hierarchy on the number of membranes collapses
in many cases also for non-universal classes of P systems,
but there also are cases when “the number of membrane
matters”, to cite the title of [3], where two classes of P sys-
temswere defined for which the hierarchies on the number
of membranes are infinite.

Also various classes of SN P systems are computation-
ally complete, as devices which generate or accept sets of
numbers. This is true when no bound is imposed on the
number of spikes present in any neuron; if such a bound
exists, then the sets of numbers generated (or accepted) are
semilinear.

It is worth noting that the proofs of computational
completeness are based on simulating various types of
grammars with restricted derivation (mainly matrix gram-
mars with appearance checking) or on simulating register
machines. In the case of SN P systems, this has an inter-
esting consequence: starting the proofs from small univer-
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sal register machines, as those produced in [6], one can
find small universal SN P systems. For instance, as shown
in [8], there are universal computing SN P systems with 84
neurons using standard rules and with only 49 neurons us-
ing extended rules. In the generative case, the best results
are 79 and 50 neurons, respectively. Of course, these re-
sults are probably not optimal, hence it is a research topic
to improve them.

Computational Efficiency

The computational power (the “competence”) is only one
of the important questions to be dealt with when defin-
ing a new (bio-inspired) computing model. The other
fundamental question concerns the computing efficiency.
Because P systems are parallel computing devices, it is
expected that they can solve hard problems in an effi-
cient manner – and this expectation is confirmed for sys-
tems provided with ways for producing an exponential
workspace in a linear time. Three main such biologically
inspired possibilities have been considered so far in the lit-
erature, and all of them were proven to lead to polynomial
solutions to NP-complete problems.

These three ideas are membrane division, membrane
creation, and string replication. The standard problems
addressed in this framework were decidability problems,
starting with SAT, the Hamiltonian Path problem, the
Node Covering problem, but also other types of problems
were considered, such as the problem of inverting one-way
functions, or the Subset-sum and the Knapsack problems
(note that the last two are numerical problems, where the
answer is not of the yes/no type, as in decidability prob-
lems).

Roughly speaking, the framework for dealing with
complexity matters is that of accepting P systems with in-
put: a family of P systems of a given type is constructed
starting from a given problem, and an instance of the prob-
lem is introduced as an input in such systems; working
in a deterministic mode (or a confluent mode: some non-
determinism is allowed, provided that the branching con-
verges after a while to a unique configuration, or, in the
weak confluent case, all computations halt and all of them
provide the same result), in a given time one of the answers
yes/no is obtained, in the form of specific objects sent to
the environment. The family of systems should be con-
structed in a uniform mode by a Turing machine, working
a polynomial time.

This direction of research is very active at the present
moment. More and more problems are considered, the
membrane computing complexity classes are refined,
characterizations of the P6DNP conjecture were obtained

in this framework, several characterizations of the class P,
even problems which are PSPACE-complete were proven
to be solvable in polynomial time by means of membrane
systems provided with membrane division or membrane
creation. An important (and difficult) problem is that of
finding the borderline between efficiency and non-effi-
ciency: which ingredients should be used in order to be
able to solve hard problems in a polynomial time? Many
results in this respect were reported by M.J. Pérez-Jiménez
and his co-workers (see the bibliography below), but still
many problems remain open in this respect.

Similarly, so far, the efficiency issue was only very pre-
liminarily investigated for SN P systems.

Applications

There are many features of membrane computing which
make it attractive for applications in several disciplines, es-
pecially for biology.

First, there are several keywords which are genuinely
proper to membrane computing and which are of inter-
est for many applications: distribution (with the important
system-part interaction, emergent behavior, non-linearly
resulting from the composition of local behaviors), pro-
grammability, scalability/extensibility, transparency (mul-
tiset rewriting rules are nothing else than reaction equa-
tions as customarily used in chemistry and bio-chemistry),
parallelism, non-determinism, communication, and so on
and so forth.

Now, in what concerns the applications themselves re-
ported up to now, they are developed at various levels. In
many cases, what is actually used is the language of mem-
brane computing, having in mind three dimensions of this
aspect: (i) the long list of concepts either newly introduced,
or related in a new manner in this area, (ii) the mathe-
matical formalism of membrane computing, and (iii) the
graphical language, the way to represent cell-like struc-
tures or tissue-like structures, togetherwith the contents of
the compartments and the associated evolution rules (the
“evolution engine”). The next level is to use tools, tech-
niques, results of membrane computing, and here there
appears an important question: to which aim? Solving
problems already stated, e. g., by biologists, in other terms
and another framework, could be an impressive achieve-
ment, and this is the most natural way to proceed – but
not necessarily the most efficient one, at least in the long
term. New tools can suggest new problems, which either
cannot be formulated in a previous framework or have no
chance to be solved in the previous framework.

Applications of all these types were reported in the lit-
erature of membrane computing and, as expected, most of
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them were carried out in biology. These applications are
usually based on experiments using programs for simu-
lating/implementing P systems on usual computers, and
there are already several such programs, more and more
elaborated (e. g., with better and better interfaces, which
allow for the friendly interaction with the program). An
overview of membrane computing software reported in
literature (some programs are available in the web page
http://psystems.disco.unimib.it) can be found in the vol-
ume [2]. Several applications are presented in detail – soft-
ware included – at the web page of Sheffield membrane
computing research group, http://www.dcs.shef.ac.uk/
~marian/PSimulatorWeb/P_Systems_applications.htm,
and at the page of Verona group, http://www.di.univr.it/
dol/main?ent=arearic&id=21.

Of course, when using a P system for simulating a bio-
logical process we are no longer interested in its comput-
ing behavior (power, efficiency, etc.), but in its evolution in
time; the P system is then interpreted as a dynamical sys-
tem, and its trajectories are of interest, its “life”. Moreover,
the ingredients we use are different from those considered
in theoretical investigations. For instance, in mathemati-
cal terms, we are interested in results obtained with a min-
imum of premises and with weak prerequisites, while the
rules are used in ways inspired from automata and lan-
guage theory (e. g., in a maximally or minimally parallel
way), but when dealing with applications the systems are
constructed in such a way to capture the features of real-
ity (for instance, the rules are of a general form, they are
applied according to probabilistic strategies, based on sto-
ichiometric calculations, the systems are not necessarily
synchronized, and so on).

The typical applications run as follows. One starts
from a biological process described in general in graphi-
cal terms (chemicals are related by reactions represented
in a graph-like manner, with special conventions for cap-
turing the context-sensitivity of reactions, the existence of
promoters or inhibitors, etc.) or already available in data
bases in SBML (system biology mark-up language) form;
these data are converted into a P system which is intro-
duced in a simulator; the way the evolution rules (reac-
tions) are applied is the key point in constructing this sim-
ulator (often, the classical Gilespie algorithm is used in
compartments, or multi-compartmental variants of it are
considered); as a result, the evolution in time of the mul-
tiplicity of certain chemicals is displayed, thus obtaining
a graphical representation of the interplay in time of cer-
tain chemicals, their growth and decay, and so on. Many
illustrations of this scenario can be found in the literature,
many times dealing with rather complex processes.

Besides applications in biology, applications were re-

ported in computer graphics (where the compartmental-
ization seems to add a significant efficiency to well-known
techniques based on L systems), linguistics (both as a rep-
resentation language for various concepts related to lan-
guage evolution, dialog, semantics, and making use of the
parallelism, in solving parsing problems in an efficient
way), economics (where many bio-chemical metaphors
find a natural counterpart, with the mentioning that the
“reactions” which take place in economics, for instance, in
market-like frameworks, are not driven only by probabil-
ities/stoichiometric calculations, but also by psychological
influences, which makes the modeling still more difficult
than in biology), computer science (in devising sorting and
ranking algorithms), cryptography, etc.

A very promising direction of research, namely, apply-
ing membrane computing in devising approximate algo-
rithms for hard optimization problems, was initiated by
Nishida, in [7], who proposed membrane algorithms, as
a new class of distributed evolutionary algorithms. These
algorithms can be considered as a high level (distributed
and dynamically evolving their structure during the com-
putation) evolutionary algorithms. In short, candidate so-
lutions evolve in compartments of a (dynamical) mem-
brane structure according to local algorithms, with better
solutions migrating down in the membrane structure; af-
ter a specified halting condition is met, the current best
solution is extracted as the result of the algorithm.

Nishida has checked this strategy for the traveling
salesman problem, and the results weremore than encour-
aging for a series of benchmark problems: the convergence
is very fast, the number of membranes is rather influen-
tial on the quality of the solution, the method is reliable,
both the average quality and the worst solutions were good
enough and always better than the average and the worst
solutions given by simulated annealing.

Similarly good results were obtained in a series of sub-
sequent papers which have followed the same approach in
addressing other hard optimization problems. In the bibli-
ography below we have recalled a few recent titles, dealing
mainly with the application of membrane algorithms in
solving hard optimization problems. Always, benchmark
problems were considered and the results were compared
with those provided by other methods, existing in litera-
ture.

Future Directions

Although so much developed in the less than nine years
since the investigationswere initiated,membrane comput-
ing still has a large number of open problems and research
topics which wait for research efforts, and new areas are

http://psystems.disco.unimib.it
http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/P_Systems_applications.htm
http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/P_Systems_applications.htm
http://www.di.univr.it/dol/main?ent=arearic�egingroup uppercase {count@ 38}elax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup id=21
http://www.di.univr.it/dol/main?ent=arearic�egingroup uppercase {count@ 38}elax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup id=21
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continuously appearing – the most recent one is the study
of spiking neural P systems.

A general class of theoretical questions concerns the
borderline between universality and non-universality or
between efficiency and non-efficiency, i. e., concerning the
succinctness of P systems able to compute at the level of
Turing machines or to solve hard problems in polynomial
time, respectively. Then, because universality implies un-
decidability of all non-trivial questions, an important issue
is that of finding classes of P systems with decidable prop-
erties.

This is also related to the use of membrane computing
as a modeling framework: if no insights can be obtained in
an analytical manner, algorithmically, then what remains
is to simulate the system on a computer. To this aim, bet-
ter programs are still needed, maybe parallel implementa-
tions, able to handle real-life questions (for instance, in the
quorum sensing area, existing applications deal with hun-
dreds of bacteria, but biologists would need simulations at
the level of thousands of bacteria in order to get convinc-
ing results).

Several research topics concern the neural inspiration
for membrane computing, starting with the need of intro-
ducing a more elaborated model of neural nets. An im-
portant question in this respect is to use neuro-inspired
models for efficiently solving problems, maybe borrow-
ing ideas from the traditional neural computing (learning,
solving pattern matching problems, etc.). This issue seems
to also open new research directions for the traditional
computability theory. Here is only one example. Efficiency
is usually achieved in membrane computing by means
of tools which allow producing an exponential working
space in a linear time, and the standard way to do it is
membrane division. However, in SN P systems we do not
have such possibilities, the number of neurons remains the
same and the number of spikes only increases polynomi-
ally with respect to the number of steps of a computation.
How to introduce possibilities of generating an exponen-
tial workspace in a linear time remains as a research topic.
Still, with inspiration from the fact that the brain consists
of a huge number of neurons out of which only a small part
are used, in [1] one proposes a way (illustrated for SAT)
to address computationally hard problems in this frame-
work, by assuming that an arbitrarily large SN P system is
given “for free”, pre-computed, with a structure as regu-
lar as possible, and without spikes inside; solving a prob-
lem starts by introducing a polynomial number of spikes
in a polynomially bounded number of neurons; then, by
moving spikes along synapses, the system self-activates,
and a specific output provides the answer to the problem.
This way of solving problems, by activating a pre-com-

puted resource, is not at all usual in computability and is
a research direction worth exploring.
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Păun G, Rozenberg G (2002) A guide to membrane computing.
Theor Comput Sci 287(1):73–100
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Glossary

Bibliome The collection of primary literature, review lit-
erature and textbooks on a particular topic.

Biochemically, genetically and genomically (BiGG)
structured reconstruction A structured genome-scale

metabolic network reconstruction which incorpo-
rates knowledge about the genomic, proteomic, and
biochemical components, including relationships be-
tween each component in a particular organism or
cell (See Sect. “Reconstructions, Knowledge Bases, and
Models”).

Biomass function A pseudo-reaction representing the
stoichiometric consumption of metabolites necessary
for cellular growth (i. e., to produce biomass). When
this pseudo-reaction is placed in a model, a flux
through it represents the in silico growth rate of the
organism or population (See Sect. “Constraint-Based
Methods of Analysis”).

Constraint-based reconstruction and analysis (COBRA)
A set of approaches for constructing manually curated,
stoichiometric network reconstructions and analyzing
the resulting models by applying equality and inequal-
ity constraints and computing functional states. In
general, mass conservation and thermodynamics (for
directionality) are the fundamental constraints. Addi-
tional constraints reflecting experimental conditions
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and other biological constraints (such as regulatory
states) can be applied. The analysis approaches gener-
ally fall into two classes: biased and unbiased methods.
Biased methods involve the application of various op-
timization approaches which require the definition
of an objective function. Unbiased methods do not
require an objective function (See Sect. “Constraint-
Based Modeling”).

Convex space A multi-dimensional space in which
a straight line can be drawn from any two points,
without leaving the space (see Sect. “Constraint-Based
Methods of Analysis”).

Extreme pathways (ExPa) analysis An approach for cal-
culating a unique, linearly independent, but biochem-
ically feasible reaction basis that can describe all pos-
sible steady state flux combinations in a biochemi-
cal network. ExPas are closely related to Elementary
Modes (See Sect. “Constraint-Based Methods of Anal-
ysis”).

Flux-balance analysis (FBA) The formalism in which
a metabolic network is framed as a linear program-
ming optimization problem. The principal constraints
in FBA are those imposed by steady state mass con-
servation of metabolites in the system (See Sect. “Con-
straint-Based Methods of Analysis”).

Gene-protein-reaction association (GPR) A mathemat-
ical representation of the relationships between gene
loci, gene transcripts, protein sub-units, enzymes, and
reactions using logical relationships (and/or) (See Sect.
“Reconstructions, Knowledge Bases, and Models”).

Genome-scale The characterization of a cellular func-
tion/system on its genome scale, i. e., incorpora-
tion/consideration of all known associated compo-
nents encoded in the organism’s genome.

Isocline A line in a phenotypic phase plane diagram,
along which the ratio between the shadow prices for
two metabolites is fixed (See Sect. “Constraint-Based
Methods of Analysis”).

Knowledge base A specific type of reconstruction which
also accounts for the following information: molecular
formulae, subsystem assignments, GPRs, references to
primary and review literature, and additional pertinent
notes (See Sect. “Reconstructions, Knowledge Bases,
and Models”).

Line of optimality The isocline in a phenotypic phase
plane diagram that achieves the highest value of the ob-
jective in the phase plane (See Sect. “Constraint-Based
Methods of Analysis”).

Linear programming problem A class of optimization
problems in which a linear objective function is max-
imized or minimized subject to linear equality and

inequality constraints (See Sect. “Constraint-Based
Methods of Analysis”).

Metabolic network null space The set of independent
vectors that satisfy the equations: S � v D 0; i. e., a flux
basis satisfying the steady state conditions, also re-
ferred to as the steady state flux solution space (See
Sect. “Constraint-Based Methods of Analysis”).

Network reconstruction An assembly of the components
and their interconversions for an organism, based on
the genome annotation and the bibliome (See Sect.
“Reconstructions, Knowledge Bases, and Models”).

Objective function A function which is maximized or
minimized in optimization problems. In FBA, the
objective function is a linear combination of fluxes.
For prokaryotes and simple eukaryotes grown in the
laboratory under controlled conditions, the biomass
function is often used as the objective function (See
Sect. “Constraint-Based Methods of Analysis”).

Open reading frame (ORF) A DNA segment that has
a start and stop site for translation and can encode for
a protein product (see Sect. “The Human Metabolic
Network Reconstruction: Characterizing the Knowl-
edge Landscape and a Framework for Drug TargetDis-
covery”).

Phenotypic phase plan (PhPP) analysis A constraint-
based method of analysis which uses FBA simula-
tions to perform a sensitivity analysis by optimizing
the objective function as two uptake fluxes are var-
ied simultaneously. The results of generally displayed
graphically. Isoclines and the line of optimality can be
used to characterize different functional states in the
phase plane (See Sect. “Constraint-Based Methods of
Analysis”).

Sensitivity analysis The analysis of how the output of
a model changes as input parameters are varied (See
Sect. “Constraint-Based Methods of Analysis”).

Shadow price For FBA optimization problems, the (neg-
ative) change in the objective function divided by the
change in the availability of a particular metabolite
(i. e., the negative sensitivity of the objective func-
tion with respect to a particular metabolite) (See
Sect. “Constraint-Based Methods of Analysis”).

Single nucleotide polymorphism (SNP) A genetic se-
quence variation that involves a change or variation
of a single base (See Sect. “Causal SNP Classification
Using Co-sets”).

Solution space The set of feasible solutions for a system
under a defined set of constraints (See Sect. “Con-
straint-Based Methods of Analysis”).

Uniform random sampling (Monte Carlo sampling)
A constraint-based method of analysis that usesMonte
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Carlo sampling methods to obtain a uniform distribu-
tion of random samples from the allowable flux space
in order to find the range and probability distribu-
tions for reaction fluxes (See Sect. “Constraint-Based
Methods of Analysis”).

Definition of the Subject

Systems biology has various definitions. Common features
among accepted definitions generally involve the descrip-
tion and analysis of interacting biomolecular components.
Systems analysis of biological network is quickly demon-
strating its utility as it helps to characterize biomolecu-
lar behavior that could not otherwise be produced by the
individual components alone [46]. Three areas in which
systems analysis has been implemented in biology in-
clude: (1) the generation and statistical analysis of high-
throughput data in an effort to catalog and character-
ize cellular components; (2) the construction and analy-
sis of computational models for various biological systems
(e. g., metabolism, signaling, and transcriptional regula-
tion); and (3) the integration of the knowledge of parts
and computational models to predict and engineer bio-
logical systems (synthetic biology) [18,45,46].Metabolism,
as a system, has played an important role in the develop-
ment of systems biology, especially in the modeling sense.
This is because the network components (e. g., enzymes
and metabolites) have been studied in detail for decades,
and many links between components have been experi-
mentally characterized. Metabolic systems biology, com-
pared to systems biology in general, entails the computa-
tional analysis of these enzymes and metabolites and the
metabolic pathways in which they participate. Metabolic
systems biology, using genome-scale metabolic network
reconstructions and their models, has helped (1) to elu-
cidate biomolecular function [75]; (2) to predict pheno-
typic behavior [21]; (3) to discover new biological knowl-
edge [19,75]; and (4) to design experiments for engi-
neering applications [3,54]. Constraint-Based methods
have played a pivotal role in the analysis of large and
genome-scale metabolic networks. The structure, math-
ematical formulation, and analytical techniques of con-
straints-based methods have also paved the way for the
successful modeling of other complex biological networks,
such as transcriptional regulation [5,19,30,34] and signal-
ing networks [60].

Introduction

The analysis of network capabilities, prediction of cellu-
lar phenotypes, and in silico hypothesis generation are
among the goals in metabolic systems biology. In order to

build the models that enable such analysis, a large amount
of knowledge about the biological system is required.
For a growing number of organisms detailed knowledge
about the molecular components and their interactions
is becoming available. The increasing availability of var-
ious types of high-throughput data, such as transcrip-
tomic, proteomic, metabolomic, and interactomic (e. g.,
protein-protein, protein-DNA), has facilitated their iden-
tification.

Biological networks are too complex to be described by
traditional mechanistic modeling approaches. This is due
to the large number of components, the various physic-
ochemical interactions, and complex hierarchical organi-
zation in space and time. Consequently, constraint-based
modeling approaches have been developed which com-
bine fundamental physicochemical constraints withmath-
ematical methods to circumvent the need for compre-
hensive parametrization. These models are able to retain
critical mechanistic aspects such as network structure via
stoichiometry and thermodynamics. However, these con-
straints will not yield a uniquely determined system, but
rather an underdetermined system of linear equations.
Hence it is important to develop methods to characterize
the functional properties of the solution spaces. There has
been intense activity in developing such methods, many
of which have been reviewed in Price, et al. [70] and are
listed later in this chapter. The general principles underly-
ing genome-scale modeling techniques will be further de-
scribed in this chapter.

This chapter will introduce the reconstruction process
and describe some constraint-based methods of analysis.
This will be followed by example studies involving E. coli
and human metabolism in which these constraint-based
approaches have been successfully implemented for:

� Predicting phenotypes and outcomes of adaptive evo-
lution in E. coli (Sect. “Growth Predictions of Evolved
Strains”);

� Discovering gene function in E. coli (Sect. “Discovery
of Gene Function”);

� Characterizing healthy and disease states in the hu-
man cardiomyocyte mitochondria (Sec. “Effects of Per-
turbed Mitochondrial States”);

� Functionally classifying correlated reaction sets to un-
derstand disease states and potential treatment targets
in humanmetabolism (Sect. “Causal SNPClassification
Using Co-sets”):

� Expanding genome-scale modeling to human meta-
bolism (Sect. “The Human Metabolic Network Recon-
struction: Characterizing the Knowledge Landscape
and a Framework for Drug Target Discovery”).
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Reconstructions, Knowledge Bases, andModels

Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

T.S. Eliot, “The Rock”, Faber & Faber 1934.

A reconstruction is an assembly of the components and
their interactions for an organism, based on the genome
annotation and the bibliome. A knowledge base is a very
specific type of reconstruction which also accounts for
the following information: molecular formulae, subsystem
assignments, gene-protein-reaction associations (GPRs),
references to primary and review literature, and addi-
tional notes regarding data quality and sources. Therefore,
this knowledge base represents an assimilation of the cur-
rent state of knowledge about biochemistry of the par-
ticular organism. A knowledge base also highlights miss-
ing information (e. g., network gaps and missing GPRs).
Throughout the remainder of the chapter we will refer to
knowledge bases and reconstruction interchangeably even
though we have defined them distinctly.

Amodel is the result of converting a knowledge base or
reconstruction into a computable, mathematical form by
translating the networks into amatrix format and by defin-
ing system boundaries (see Sect. “From Reconstruction to
Models”). It is important to note that a single reconstruc-
tion or knowledge base may yield multiple condition spe-
cific models (Fig. 1). The relationships between a genome
and its derivative proteomes and phentoypes are analo-
gous to the relationships between a knowledge base, the re-
sulting models, and the possible functional states (Fig. 1).

Reconstructions, in a way, reverse the concern voiced
above by T.S. Eliot by structuring data to provide informa-
tion and processing information to find knowledge, which
is then cataloged in a knowledge base. The models derived
from this knowledge base can then be used for in silico
hypothesis generation and predictive modeling, which can
lead to biological discovery and provide insight into how
biological systems operate.

There are two prominent approaches for network re-
constructions top-down and bottom-up. Top-down re-
constructions rely on high-throughput data, genome se-
quence, and genome annotation to computationally piece
together component interaction networks based on sta-
tistical measures. Top-down reconstructions often aim to
characterize the entire network. However, the resulting
network links may be “soft”, since they are based on sta-
tistical approaches. Top-down approaches may lead to
the discovery of previously unknown components and re-
lationships. Bottom-up reconstructions, in contrast, aim
to be accurate and well-defined in their scope, as the

Metabolic Systems Biology, Figure 1
An analogy between genomes and knowledge bases. Regula-
tion plays a significant role in defining phenotypes for a given
genome. The regulatory program is driven by environmental
cues. Similarly models derived from a knowledge base are sub-
ject to the constraints reflecting the regulatory andenvironmen-
tal factors (which also govern the proteome). The set of candi-
date functional states of different models reflects all of the pos-
sible phenotypes

components and interactions are experimentally verified.
The bottom-up reconstruction process requires extensive
manual curation and validation of its content to ensure the
desired accuracy and self-consistency. This process results
in a Biochemically, Genetically and Genomically (BiGG)
structured knowledge base, in which genes are connected
to the proteins and enzymes they encode, and each en-
zyme is connected to the reactions it catalyzes, also known
as a gene-protein-reaction-association (GPR). Bottom-up
reconstructions have been shown to be useful for many
applications such as generating hypotheses and analyzing
system processes.

The Reconstruction Process

The bottom-up reconstruction of genome-scale metabolic
networks is a well established procedure that has been con-
ducted for many organisms [73] and can be carried out in
an algorithmic manner (Fig. 2). Briefly, the main phases
are: (1) the generation of an initial component list based on
genome annotation, (2) the manual curation of this initial
list based on primary and review literature, (3) the func-
tional validation of network capabilities using experimen-
tal data, and (4) simulation and analysis. This last stepmay
lead to iterative improvements through reconciliation of
the network with new data.

Step 1: Generation of the Initial Component List The
first step in the reconstruction of a metabolic network is
the selection of an organism and generation of a list of all
currently known components (e. g., genes, proteins, and
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Metabolic Systems Biology, Figure 2
The reconstruction process. First, a component list is generated from the genome annotation and information in various databases.
Second, the component list is manually curated using primary and review literature. Furthermore, the reactions aremass and charge
balanced and assembled into pathways. Third, debugging of the reconstruction is done by computationally testing the properties
and capabilities of the reconstruction to ensure that the derivedmodels have capabilities similar to the organism. Pathwaygapsmay
be filled if supported by experimental evidence or if required for network functionality. Fourth, simulation and analysis is conducted
to reconcile the reconstruction with experimental data, whichmay lead to further iterations and refinements of the reconstruction

metabolites) involved in its metabolism. A sequenced and
annotated genome is a prerequisite for building genome-
scale networks. The quality of the reconstruction depends
greatly on the quality of the annotation and the available
literature describing the physiology and biochemistry of
the organism. Parsing of the genome annotation for genes
with metabolic functions results in the initial component
list, and this list may be extended by obtaining associ-
ated reactions for these functions from databases such as
KEGG [43], BRENDA [82], ExPASy [29], Reactome [99],
and MetaCyc [17]. It is critical to manually curate this list,
since the specific enzymes in the reconstructed organism
may not act upon all of the substrates and cofactors in-
cluded in the reactions in these databases.

Step 2: ManualCuration Once a component list is com-
piled, biochemical reactions must be manually defined,
verified, assigned a confidence score, and assembled into
pathways. For each reaction in the network, several prop-
erties must be defined, such as substrate specificity and
their corresponding products, reaction stoichiometry, re-
action directionality, subcellular localization, and chem-
ical formulae for the metabolites with their correspond-
ing charges. In addition, all genes and their associated

gene products are connected to reactions in GPRs, using
Boolean logic to describe each association. This thorough
description of each reaction involves manual curation, as
information is gathered from the primary literature, re-
view articles, and organism-specific books. The complete-
ness of this description depends heavily on how exten-
sively the organism has been studied. Confidence scores
for the reactions are a measure for the level of experimen-
tal support for the inclusion of a gene and its associated re-
action(s). Generally, confidence scores have been defined
on a scale from 1 to 4 and are assigned to each reaction
in a reconstruction. Direct biochemical characterization of
reaction activity is considered the gold standard; therefore
reactions with such data receive a confidence score of 4.
A score of 3 is given to reactions that are supported by
genetic data, such as gene cloning. When a reaction is sup-
ported by sequence homology, physiological data, or local-
ization data, the reaction is given a confidence score of 2.
Reactions that are added only because they were needed
for modeling purposes would receive a score of 1 (for
a more detailed description, refer to Reed et al. [73]).

Step 3: Debugging and Functional Validation of
the Reconstruction Even for well studied organisms,
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a metabolic reconstruction at this stage will have a sub-
stantial number of gaps, resulting in limited network func-
tionality. These gaps exist because the annotation of the
genome is often incomplete. For example, even in E. coli,
20% of all genes do not have known functions, according
to the latest genome annotation [77].

Gaps can be classified as knowledge or scope gaps.
Knowledge gaps result from a lack of knowledge about
the presence of transport and/or biochemical transfor-
mations for a particular metabolite in the target organ-
ism. Preferably, these gaps will be filled using primary lit-
erature. Alternatively, reactions may be included as hy-
potheses that require experimental verification and there-
fore are assigned a low confidence score. After convert-
ing the reconstruction into a mathematical format (see
Fig. 3b and Sect. “From Reconstruction to Models”), com-
putational algorithms can be used to assist the gap-filling
process [55,78]. Using tools such as flux balance analysis
(FBA) the reconstruction can be tested for the functional-
ity of all physiologically relevant pathways. For example, if
an amino acid is known to be non-essential for an organ-
ism, the complete biosynthetic pathway is needed, even if

Metabolic Systems Biology, Figure 3
Converting a reconstruction into amodel. The conversion of a reconstruction into amodel involves the definition of systembound-
aries (top) and the conversion to a mathematical format (bottom). a Biochemical reactions can be written as conversions from reac-
tant(s) into product(s). b Input and output fluxes that transport metabolites in and/or out of the system are defined (designated by
bx ). The dashed line indicates an open system. c In a cell, for example, the cell membrane acts as a natural boundary. In amodel it can
be represented by an open system boundary, allowing the transfer of metabolites across the cell membrane. The complete mathe-
matical representation of the network, containing the entire set of internal reactions with exchange (transport) reactions, is termed
the stoichiometric matrix, S. Abbreviations: Sint = internal reactions, Sexch = exchange reactions across the open system boundaries,
Sext = extracellular metabolites

some of the required genes have not been annotated in the
genome. Scope gaps involve transformations that that are
outside the scope of interest in the network, such as DNA
methylation reactions and tRNA charging. These gaps will
not be filled, but it is important to document and classify
these in the knowledge base.

Step 4: Simulation and Analysis Once the network is
manually curated and debugged, its capabilities and accu-
racy should be tested by comparing in silico with experi-
mental observations. These tests may include gene essen-
tiality studies and evaluation of growth phenotypes under
various conditions [55,73]. This step includes the simula-
tion and analysis of secretion products and alternate nu-
trient sources. Additional experimental studies and newly
generated data will lead to further iterations and refine-
ment of the reconstruction content.

From Reconstruction to Models

A network reconstruction is converted into a mathemat-
ical model in two steps. First, system boundaries and the
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relevant inputs and outputs are defined. Second, the net-
work is represented by a matrix. In this matrix, each
column represents a reaction and each row represents
a unique metabolite. The elements of the matrix are the
stoichiometric coefficients for each metabolite in each re-
action (reactants are negative and products are positive).
The collection of reactions represented in this manner is
called the stoichiometric matrix, S. At this stage condition
specific constraints (e. g., measured uptake and secretion
rates, or known regulatory constraints) will be applied to
external and internal reactions, thus resulting in a distinct,
condition-specific set. Different sets of constraints applied
to the same reconstruction will result in different models.

Constraint-BasedModeling

As discussed above, constraint-based modeling has en-
abled the analysis of genome-scale networks in a mecha-
nistic and predictive manner without relying on data-in-
tensive parametrization. In addition, this technique has
provided great flexibility, allowing different methods to
be used while requiring few changes to the model struc-
ture. The strengths of this modeling approach are demon-
strated in the size of the networks that can be modeled
(e. g. the human metabolic network involves about 3,300
reactions [20]) and the ability it has to make predictions
despite incomplete knowledge of the system. This section
will focus on the types of constraints and some of the as-
sociated methods.

Biological Basis for Constraints

Constraints on cells can be grouped into three major
classes: physicochemical, environmental, and regulatory
constraints. Physicochemical constraints, the first type,
are inviolable “hard” constraints on cell function. These
constraints include osmotic balance, electroneutrality, the
laws of thermodynamics, and mass and energy conserva-
tion. Spatial constraints, another type of physicochemical
constraints, affect the function of biological systems due to
mass transport limitations and molecular crowding. The
second class of constraints, environmental constraints, are
condition and time dependent, and include variables such
as pH, nutrients, temperature, and extracellular osmolar-
ity. Since environmental conditions and their effects on
a cell can vary widely, predictive models rely heavily on
well-defined experimental conditions. The third type of
constraints, regulatory constraints, are self-imposed con-
straints in which pathway fluxes are modulated by al-
losteric regulation of enzymes and/or by gene expression
via transcriptional control. These constraints are “soft”
and can be altered through evolutionary processes [35].

These collective constraints contribute to a specific phe-
notype; therefore, their consideration in constraint-based
modeling will assist the identification of relevant func-
tional states.

The Mathematical Description of Constraints

Constraints can be quantitatively represented by balances
and bounds, where balances are equalities and bounds are
inequalities. The conservation of mass dictates that there
is no net accumulation or depletion of metabolites at the
steady state. This mass balance can be described mathe-
matically as

S � v D 0 ; (1)

where S is the m � n stoichiometric matrix (with m
metabolites and n reactions), and v(n � 1) is the flux vec-
tor, which represents the flux through each network re-
action [98]. Similar steady state balance representations
can be used for other physicochemical constraints, such as
electroneutrality [42,57], osmotic pressure [12,41,49], and
thermodynamic constraints around biochemical loops [7].

Bounds can be added as additional constraints. En-
vironmental and regulatory constraints can be added by
placing bounds on individual chemical transformations.
For example, upper and lower flux rate limits

vmin 6 v i 6 vmax (2)

can be placed on the ith reaction or transporter, to reflect
experimentally measured enzyme capacity or metabolite
uptake rates in a given environment. Thermodynamic
constraints for each reaction can be applied by constrain-
ing the reaction directionality or by applying a set of linear
thermodynamic constraints to eliminate thermodynami-
cally infeasible fluxes [32].

Constraint-Based Methods of Analysis

A plethora of methods have been developed to analyze
constraint-based models and many have been reviewed
thoroughly [70]. Table 1 provides a list of methods and
potential questions they can address. Constraint-Based
methods can be grouped into biased and unbiased ap-
proaches.

Biased Methods Biased methods necessitate an objec-
tive function, i. e., a reaction or pseudo-reaction for which
one optimizes. Some examples of commonly used objec-
tive functions include biomass production, ATP produc-
tion, or the production of a byproduct of interest [80,100].
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Metabolic Systems Biology, Table 1
There are numerous methods that have been developed to analyze constraint-based reconstructions of metabolic networks using
experimental data to answer biological questions. Below is a list of some of these methods and questions they can help to answer

Method Question Examples
Alternate Optima How many flux states can be attained by maximizing or minimizing an objective function (e. g.,

maximum growth or ATP production)?
[53,56,74,
96,100]

Energy Balance Analysis How can one evaluate the thermodynamic feasibility of FBA simulation results? [7]
ExPa/ElMo How does one define a biochemically feasible, unique set of reactions that span the steady

state solution space?
[64,81,
85]

FBA What is the maximum (or minimum) of a specified cellular objective function? [27,65,
80,97]

Flux Confidence Interval What are the confidence intervals of flux values when fluxomic data is mapped to a constraint
based model?

[4]

Flux Coupling What are the sets of network reactions that are fully coupled, partially coupled, or directionally
coupled?

[14]

Flux Variability Analysis What is the maximum andminimum flux for every reaction under a given set of constraints
(i. e., what is the bounding box of the solution space)?

[56]

Gap-Fill/Gap-Find What are the candidate reactions that can fill network gaps, thus helping improve the model
and providing hypotheses for unknown pathways that can be experimentally validated?

[78]

Gene Annotation
Refinement Algorithm

Which reactions are likely missing from the network, given a set of phenotypic observations?
What are the candidate gene products with which corresponding reactions could fill the gap?

[75]

Gene Deletion Analysis Which are the lethal gene deletions in an organism? [22]
K-cone analysis Given a set of fluxes and concentrations for a particular steady state, what is the range of

allowable kinetic constants?
[25]

Metabolite Essentiality How does metabolite essentiality contribute to cellular robustness? [44]
Minimization of
Metabolic Adjustment
(MOMA)

Can suboptimal growth predictions be more consistent with experimental data in wild type
and knock-out strains?

[86]

Net Analysis Given metabolomic data, what are the allowable metabolite concentration ranges for other
metabolites, and what are the likely regulated steps in the pathway based on nonequilibrium
thermodynamics?

[51]

Objective function finder
/ ObjFind

What are the different possible cellular objectives? [13,50,
83]

Optimal Metabolic
Network Identification

Given experimentally measured flux data, what is the most likely set of active reactions in the
network under the given condition that will reconcile data with model predictions?

[33]

OptKnock / OptGene How can one design a knock-out strain that is optimized for byproduct secretion coupled to
cellular growth?

[15,66]

OptReg What are the optimal reaction activations/inhibitions and eliminations to improve biochemical
production?

[68]

OptStrain Which reactions (not encoded by the genome) need to be added in order to enable a strain to
produce a foreign compound?

[67]

PhPP How does an objective function change as a function of two metabolite exchange rates? [37,95]
rFBA How do transcriptional regulatory rules affect the range of feasible in silico phenotypes? [19]
Regulatory On/Off
Minimization (ROOM)

After a gene knockout, what is the most probable flux distribution that requires a minimal
change in transcriptional regulation?

[87]

Robustness analysis How does an objective function change as a function of another network flux? [23]
SR-FBA To what extent do different levels of metabolic and transcriptional regulatory constraints

determine metabolic behavior?
[88]

Stable Isotope Tracers How can intracellular flux predictions be experimentally validated, and which pathways are
active under the different conditions?

[79]

Thermodynamics based
Metabolic Flux Analysis

How can one use thermodynamic data to generate thermodynamically feasible flux profiles? [32]

Uniform Random
Sampling

What are the distributions of network states that have not been excluded based on
physicochemical constraints and/or experimental measurements? What are the completely or
partially correlated reaction sets?

[1,71,93,
101]
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Metabolic Systems Biology, Figure 4
Phenotypic Phase Plane plot. PhPPs have been used to show that E. coli grown on a single carbon source does not always grow
optimally (compared to in silico predictions). However, after growing exponentially on at least one such substrate, E. coliwas shown
to evolve to the line of optimality (yellow line) predicted in PhPPs [37]

For example, when bacteria are cultured in conditions se-
lecting for growth, the cellular objective function is well-
approximated bymaximizing biomass production [21,86].

Flux Balance Analysis (FBA) is the formulation of lin-
ear programming problems for stoichiometric metabolic
networks. Most of the biased methods employ variations
or adaptations of FBA. For example, in Flux Variability
Analysis (FVA) [56] every reaction in a condition-specific
model is maximized and minimized. Gene Deletion Anal-
ysis [22], another FBA-based approach, involves the se-
quential deletion each gene in a model and optimization
for growth in order to define the in silico knock-out phe-
notypes.

In Phenotypic Phase Plane (PhPP) analysis, a sensi-
tivity analysis is conducted by varying two uptake or se-
cretion network fluxes while calculating the optimal so-
lution for the objective function (e. g., biomass produc-
tion). These dependencies can be depicted graphically
(Fig. 4). Each optimal solution is associated with a shadow
price representing the change of the objective value when
changing the availability of an external compound. The
shadow prices can be used to define isoclines. An iso-
cline is a line along which the shadow price is constant
(Fig. 4). The line of optimality is a special isocline, which
achieves the optimal objective [24] (yellow line in Fig. 4).
The regions in PhPP plots can be classified into various
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regions using isoclines: (1) futile regions occur when an
increase in substrate availability leads to a decrease in the
objective value; (2) single substrate limited regions oc-
cur when only one substrate increases the objective value;
and (3) dual substrate limited regions occur when in-
creases in either substrate leads to increases in the objec-
tive value [21,24]. PhPP has proven useful in designing ex-
periments and predicting evolvedmicrobial growth on dif-
ferent substrates [37].

Unbiased Methods Unbiased methods do not require
the explicit definition of an objective function. These
methods are of great use when the cellular objectives are
not known or when a global view of all feasible in sil-
ico phenotypes is desired. At least three unbiased ap-
proaches have been developed which characterize the
steady state solution space of the network include: ExPa
analysis [62,69,81,102], Elementary Mode (ElMo) anal-
ysis [28,84,85,90], and uniform random sampling [1,71,
93,101].

ExPa and ElMo Analysis have been useful over the
past decade in elucidating metabolic network properties.
ExPas are biochemically meaningful non-negative linear
combinations of convex basis vectors of the steady state
solution space [64,81]. ElMos are non-unique convex ba-
sis vectors that span the steady state solution space; hence
they are a superset of ExPas. The main difference between
ExPas and ElMos is in the definition of exchange reactions.
In fact, when all exchange fluxes are set to be irreversible,
ExPas and ElMos become identical [58]. The utility of
ExPa and ElMo analysis has been demonstrated in deter-
mining network rigidity and redundancy in pathogenic
microbes [61,69], proposing new media [38], and predict-
ing regulatory points based on network structure [90].
The potential of ExPas and ElMos is limited, however, by
the complexity and size of genome-scale metabolic net-
works, as the number of pathways increases dramatically
for larger networks [48,102]. For example the core E. coli
model (consisting of approximately 86 reactions) has ap-
proximately 20,000 ExPas in rich media growth condi-
tions [58]. The number of ExPas in E. coli iJR904 [76],
which consists of � 900 reactions, has been estimated to
be on the order of 1018 ExPas [102]. Even more impres-
sive is the estimate of 1029 ExPas for the human metabolic
network reconstruction [102]. These incredible pathway
number estimates not only present insurmountable com-
putational challenges but also significant difficulties in the
analysis of ExPas and ElMos.

Another unbiased method is uniform random sam-
pling of metabolic networks [1,101]. Uniform random
sampling involves enumerating the candidate flux distri-

butions in the steady state solution space until a statisti-
cal criterion is satisfied, e. g., a uniform set of flux distri-
butions (Fig. 5a). There have been different approaches in
implementing these procedures [71,93,101]. The distribu-
tion of random samples provides both a range of allow-
able fluxes and a probability distribution for flux values
for the given set of constraints (Figs. 5b–d). This method
not only allows for the analysis of the entire convex flux
spaces of metabolic networks, but it can also be employed
to study concave flux spaces and systems with non-lin-
ear constraints [72]. Thus it is apparent that uniform ran-
dom sampling is a useful method that provides informa-
tion about a metabolic network and a global view of all
possible in silico phenotypes.

Co-set Analysis: Overlap between Biased and Unbiased
Methods Since biased methods are a subset of unbiased
methods, these two differentmethods can be used to calcu-
late similar quantities, such as functionally correlated reac-
tions, as demonstrated by co-set analysis. Correlated reac-
tion sets (co-sets) are sets of reactions that are perfectly
correlated (R2 D 1) at the steady state (Fig. 6a-b) [63].
Reaction co-sets can be computed using different meth-
ods, such as flux coupling [14], ExPa analysis [62], or uni-
form random sampling [71,93]. There are pros and cons
to using any of these methods. Flux coupling allows the
identification of directionally coupled reactions, but re-
quires a stated cellular objective. While ExPa analysis al-
lows for the enumeration of co-sets without stating an
objective, practical considerations such as computational
time currently make ExPa analysis calculations infeasi-
ble for genome-scale models. For large networks, co-sets
may be computed more rapidly using uniform random
sampling. This method also allows the pairwise correla-
tion coefficients of all reactions to be computed; therefore,
partially correlated reaction sets (R2 < 1) can be identi-
fied. These may be of interest when sampling the net-
work under different environmental conditions or disease
states [93].

Implementation of Constraint-Based Methods In or-
der to make these analytical tools accessible to the sci-
entific community, many of the methods in Table 1
have been implemented in MATLAB and released in the
COBRA toolbox [8,103]. Other packages that implement
various constraint-based methods include CellNetAna-
lyzer (FBA, ElMo analysis, and topological analysis) [47,
104] and MetaFluxNet (FBA, reaction deletion analysis,
and network visualization) [52]. These software packages
and toolboxes are free of charge to the academic commu-
nity.
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Metabolic Systems Biology, Figure 5
Uniform sampling of the solution space under normal andperturbedmetabolic states. aUniform random sampling of the solution
space can be used to assign ranges of feasible fluxes and probability distributions for each reaction in the network. b–d The sample
points can be visualized with a histogram for each network reaction (black lines). Measured changes in flux bounds (min/max) of
network fluxes can be applied as network constraints, yielding altered flux distributions (red lines). These changes may reduce the
maximum flux value (b), shift the most probable flux value (c), or leave the distribution unaltered (D)

Metabolic Systems Biology
and Constraint-BasedModeling: Applications

As previously discussed, the past couple of decades have
witnessed the development and analysis of constraint-
based models. This has resulted in a wide array of ana-
lytical methods which have been employed to deepen the
understanding of how biological systems function. The re-
mainder of this chapter will discuss examples in which
constraint-based models and methods were used to pre-
dict growth rates of evolved prokaryotic strains, design ex-
periments, identify gene functions, characterize the effects
of diseases and metabolic perturbations, classify genetic
disorders, and propose alternative drug targets.

Growth Predictions of Evolved Strains

It has been hypothesized that incorrect log-phase growth
predictions are caused by incomplete adaptation to a par-
ticular environmental given condition [37]. To test this
hypothesis, Escherichia coli K-12 MG1655 was grown on
different carbon sources (acetate, succinate, malate, glu-
cose and glycerol) at varying concentrations and temper-
atures. PhPP analysis was carried out to identify the dif-
ferent phases and growth optimality for the different car-
bon sources (Fig. 4). Optimal growth in all of the sub-
strates, except glycerol, were measured and found to lie
on the calculated line of optimality (yellow line in Fig. 4).
It was observed that after selecting for growth, the adap-
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Metabolic Systems Biology, Figure 6
Mapping of SNPs onto reaction co-sets. a–c The identification of co-sets in a metabolic network leads to functionally grouped reac-
tion sets. The reactions within each co-set are predicted to have similar disease phenotypes [39]. The same concept can be applied
to the identification of alternative drug target candidates in humans to treat diseases [20] and potentially for the identification of
alternative anti-microbial drug targets in human pathogens [40]

tive evolution of the parental strains (� 500 generations)
led to increased growth rates while remaining on the line
of optimality. This improved performance resulted from
increased uptake of the carbon sources. The glycerol case
however, showed that E. coli grows sub-optimally on this
carbon source, i. e., the experimentally measured growth
rate did not lie on the line of optimality; however, after 40
days (� 700 generations) the growth of the evolved strain
moved to the line of optimality [37], and continued to
evolve a higher growth rate while remaining on the line.

Discovery of Gene Function

When coupled with experimental data, genome-scale con-
straint based models can aid in hypothesis generation
and can suggest functions for previously uncharacterized
genes [55]. FBA was used to predict growth phenotypes
of E. coli on a number of different carbon sources. Exper-
imental growth phenotype data [11] was compared with
the computational predictions to identify cases in which
the model failed to accurately predict growth phenotypes
(growth vs. non-growth) (Fig. 7a). In 54 cases, the model
failed to predict experimentally measured growth pheno-
types. Four failure modes were remedied using the lit-
erature, while the remaining 50 cases suggested incom-
plete knowledge. The computational algorithm outlined in
Fig. 7b was used to predict potential reactions or trans-
porters that could reconcile the model predictions and ex-
perimental results. Therefore, a universal database of all

known metabolic reactions in living organisms [43] was
queried and the minimum number of reactions needed to
restore in silico growth of the model were computed. So-
lutions were found for 26 of the failure modes. A subset of
the predicted solutions was chosen for experimental veri-
fication, and two sets will be discussed here.

The computational algorithm suggested the simplest
solution to achieve growth on D-malate was decarboxyla-
tion of D-malate into pyruvate. A library of E. coli knock-
out mutants showed that three mutant strains demon-
strated altered growth on D-malate:�dctA (slow growth),
�yeaT, and �yeaU (both no growth). Through subse-
quent sequence homology analysis, gene expression mea-
surement (with RT-PCR), and chromatin immunoprecipi-
tation experiments, it was demonstrated that DctA is likely
a transporter for D-malate, YeaU converts D-malate to
pyruvate, and YeaT is a positive regulator that increases
expression of yeaU.

Another example was L-galactonate. Affymetrix gene-
expression data was used to identify genes involved with
L-galactonate catabolism. Two candidates were found
to be greatly upregulated: yjjL and yjjN. After addi-
tional experiments, these genes were annotated as follows:
yjjL transports L-galactonate, yjjN is responsible for the
L-galactonate oxidoreductase activity, and yjjM regulates
their gene expression (Fig. 7c).

Successful in silico predictions can help to validate
a model and unsuccessful predictions can provide oppor-
tunities to expand knowledge. These studies demonstrated
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Metabolic Systems Biology, Figure 7
Refining genome annotation through computational prediction and experimental validation. a The validity of a metabolic model
can be tested by comparing simulation outcomes with experimental results. In cases where the model fails to accurately predict the
experimental outcome, b a computational algorithm can be employed that will predict the minimum number of reactions needed
to reconcile the erroneous no-growth predictions from the model with the experimental data that demonstrates growth (Eq. 2). The
reactions are selected from two matrices, U (containing all known metabolic reactions) and X (containing exchange reactions). The
vectors v, y and z represent the steady state flux vectors for all of the reactions in S,U, and X respectively (Eq. 1, each with minimum
and maximum fluxes as dictated in Eqs. 3–5. Vectors a and b are binary vectors in which an element is 1 only if the corresponding
reaction in U or X is added to reconcile model with the experimental data. c For predicted sets of reactions, various experimental
methods (e. g., growth phenotyping of gene knockout strains, measurement of gene expression levels, etc.) can be employed to
validate predicted reaction sets. Accurate predictions of gene function allow for annotation of the associated genes and the corre-
sponding reactions can be added to the network reconstruction for future use in models. Figure adapted with permission from [75].
Copyright© 2006 by The National Academy of Sciences of the United States of America, all rights reserved

that failed predictions could be used to algorithmically
generate experimentally testable hypotheses and lead to re-
finement of the genome annotation.

Effects of Perturbed Mitochondrial States

A constraint-based network of a human cardiomyocyte
mitochondrion has been used to evaluate candidate func-
tional states in healthy and diseased individuals as well
as investigate currently used therapies [93]. Uniform ran-
dom sampling was used to assess all candidate metabolic
flux states to characterize the effects of various metabolic
perturbations, such as diabetes, ischemia, and various di-
ets [93]. For each condition, additional constraints were
applied to the network to represent the various conditions,
e. g., uptake and secretion rates. It was found that the per-
turbations witnessed in diabetes and ischemia lead to a sig-

nificant reduction of the size of the solution space, render-
ing the metabolic network less flexible to variations in nu-
trient availability (see Fig. 5).

Sampling under normal physiological conditions was
found to be consistoent with experimental data, thus
providing necessary network validation. Diabetic disease
states were then simulated by increasing mitochondrial
fatty acid uptake while decreasing cellular glucose uptake.
The consequences of these constraints on the steady state
solution space were found to be dramatic, meaning that
for most network reactions, the range of flux values (flex-
ibility) was significantly decreased. In particular, the oxy-
gen requirement of the diabetic model was dramatically
increased, which is consistent with the increased risk of
cardiac complications seen in diabetic patients [91]. An-
other interesting observation was that the flux through
mitochondrial pyruvate dehydrogenase was found to be
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severely restricted due to network stoichiometry when
fatty acid uptake was increased. Many prior studies had
focused on potential inhibitory mechanisms leading to the
decrease in pyruvate dehydrogenase in diabetic patients.
However, the results of this study suggested that stoichi-
ometry rather than inhibition may cause the reduced flux.

Causal SNP Classification Using Co-sets

Since reactions that are part of co-sets are either all on or
off together, from the disease viewpoint, any enzyme de-
ficiency that affects a reaction in a particular co-set would
be expected to have disease phenotypes that are similar to
the symptoms associated with enzymopathies of any other
enzyme contained within the co-set (Fig. 6). The co-sets
for the human cardiomyocyte mitochondrion were ana-
lyzed in the context of single nucleotide polymorphisms
(SNPs), single base pair variations in the genes of indi-
viduals [39]. Causal SNPs result in altered phenotypes as
a direct consequence of the altered genome sequence. The
Online Mendelian Inheritance in Man (OMIM) database,
which catalogs human genetic disorders, [31] and pri-
mary/review literature were used to map the nuclear en-
codedmitochondrial diseases caused by SNPs onto the co-
sets using GPRs.

The resulting analysis largely confirmed the hypothesis
that causal SNPs in the same reaction co-set often exhib-
ited similar disease phenotypes. This phenotypic coher-
ence was observed for the three different types of co-sets
identified: Type A Co-sets which included sets of genes
that code for sub-units of a single enzyme complex, Type
B Co-sets which involved reactions in a linear pathway,
and Type C Co-sets which involved non-contiguous re-
actions (see Fig. 6). Examples of diseases which exhibited
similar phenotypes included porphyrias (Type B Co-set),
fatty acid oxidation defects (Type B Co-set) and failure to
thrive due to neurological problems (Type C Co-set).

It is important to recognize that these co-sets are con-
dition dependent and have the potential to change as envi-
ronmental conditions and nutrient availability vary. Fur-
thermore it is not expected that the co-sets always have
perfect agreement with clinical observations, since there
are additional levels of information that are currently not
accounted for in the models. This case study lent cred-
ibility to the hypothesis that co-sets can be used to un-
derstand and classify causal relationships in disease states.
This concept can also be applied for proposing alternative
drug targets for the treatment of disease (see Sect. “The
Human Metabolic Network Reconstruction: Characteriz-
ing the Knowledge Landscape and a Framework for Drug
Target Discovery”) [20,40] and may serve as a rich source

of hypothesis generation for alternative or new treatments
for diseases.

The HumanMetabolic Network Reconstruction:
Characterizing the Knowledge Landscape
and a Framework for Drug Target Discovery

While the human cardiac mitochondrion reconstruc-
tion has proven useful in the study of normal and dis-
eased states, it only covers a small percentage of human
metabolism. In order to account for cellular human meta-
bolism more comprehensively, a genome-scale human re-
construction was created through a group effort resulting
in the first manually curated humanmetabolic reconstruc-
tion, Recon 1 [20]. Recon 1 accounts for the functions of
1,496 ORFs, 2,766 metabolites, and 3,311 reactions. It ac-
counts for the following compartments: cytoplasm, mito-
chondria, nucleus, endoplasmic reticulum, Golgi appara-
tus, lysosome, peroxisome and the extracellular environ-
ment. The network reconstruction was reconciled against
288 known metabolic functions in human.

Confidence scores were used to define the knowledge
landscape of human metabolism. Of special interest are
subsystems with low confidence scores, or experimen-
tal evidence, rendering them good candidates for exper-
imental studies. For example, intracellular transport re-
actions and vitamin associated pathways were found to
be consistently poorly characterized. Hence, the knowl-
edge landscape provides an assessment of our current sta-
tus of knowledge of human metabolism and a platform
for discovery when combined with in silico methods (see
Sect. “Discovery of Gene Function”).

Another application of Recon 1 is the prediction of
drug targets and consequences of metabolic perturba-
tions using co-sets. For example, under aerobic glucose
conditions, over 250 co-sets were identified. One of the
largest co-sets contained the primary metabolic target,
3-Hydroxy-3-methylglutaryl-CoA Reductase, for the an-
tilipidemic statin drugs. Following the logic of the SNPs
study, the remaining members of the set are candidate
drug targets for the treatment of hyperlipidemia.

Future Directions

A number of examples were discussed in this chapter
demonstrating the use of constraint-based methods in bio-
logical discovery, disease characterization, and drug target
prediction. Stemming from the success in these and many
other applications, constraint-based genome-scale model-
ing will continue to be an actively growing area of research.
Three general branches may include (1) the imposition of
additional constraints, (2) the use of these models for bio-
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logical discovery, and (3) the reconstruction of additional
networks for other cellular processes.

The imposition of further constraints will reduce the
size of the solution space through the elimination of bi-
ologically irrelevant flux distributions. Such constraints
may include molecular crowding [9], regulation of en-
zymatic activity, and thermodynamic constraints [26,32].
Recently, approaches have been developed for the in-
corporation of metabolomic data into constraints-based
models [10,16,51]. The availability of metabolomic data
may also enable the application of additional physico-
chemical constraints, such as electroneutrality and os-
motic balance [36,49]. There have also been increasing ef-
forts to incorporate kinetic aspects into constraint-based
modeling [25,89].

Furthermore, the algorithm shown in Fig. 7 demon-
strated that there is still much that may be learned about
metabolic networks, even in well studied organisms like
E. coli. In addition, there are numerous ongoing research
studies investigating human metabolism using Recon 1.
Moreover, methods are being developed to use to con-
straint-based methods for engineering purposes which in-
clude strain design using bi-level optimizations [15,68]
and genetic algorithms [66]. The uses of constraint-based
models are also increasing to areas such as the investiga-
tion of antimicrobial agents [2,40,94].

Reconstruction of signaling networks in the con-
straint-based framework has been performed for the
JAK-STAT pathways [59,60]. To date, there have been
multiple efforts to formulate transcriptional regula-
tory networks based on literature and high-throughput
data [5,6,19,30,34,88]. Amore rigorous approach would be
to describe the processes in a stoichiometric manner. This
is exceedingly difficult and time-consuming, but recently
progress has been made and is anticipated to be described
in the near future [92]. As additional types of network re-
constructions are developed and integrated with the con-
current development of newmethods for analysis, the pre-
dictive capabilities and utility of these models are likely to
expand.
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Glossary

Cowles commission approach An approach to structural
econometric modeling identified with the pioneering

work of the Cowles Foundation during the 1940s and
1950s.

Endogenous variable A variable whose value is deter-
mined within a specified model.

Exogenous A variable that is assumed given for the pur-
poses of analysis because its value is determined out-
side the model of interest.

Reduced formmodels A stochastic model with relation-
ships between endogenous variables on the one hand
and all exogenous variables on the other.

Structural model A stochastic model with interdepen-
dent endogenous and exogenous variables.

Treatment effects An effect attributed to a change in the
value of some policy variable analogous to a treatment
in a clinical trial.

Definition of the Subject

Microeconometrics deals with model-based analysis of in-
dividual-level or grouped data on the economic behavior
of individuals, households, establishments or firms. Re-
gression methods applied to cross-section or panel (lon-
gitudinal) data constitute the core subject matter. Mi-
croeconometric methods are also broadly applicable to
social and mathematical sciences that use statistical mod-
eling. The data used in microeconometric modeling usu-
ally come from cross section and panel surveys, censuses,
or social experiments. A major goal of microeconometric
analysis is to informmatters of public policy. The methods
of microeconometrics have also proved useful in provid-
ing model-based data summaries and prediction of hypo-
thetical outcomes.

Introduction

Microeconometrics takes as its subject matter the regres-
sion-based modeling of economic relationships using data
at the levels of individuals, households, and firms. A dis-
tinctive feature microeconometrics derives from the low
level of aggregation in the data. This has immediate impli-
cations for the functional forms used to model analyze the
relationships of interest. Disaggregation of data brings to
the forefront heterogeneity of individuals, firms, and or-
ganizations. Modeling such heterogeneity is often essen-
tial for making valid inferences about the underlying re-
lationships. Typically aggregation reduces noise and leads
to smoothing due to averaging of movements in opposite
directions whereas disaggregation leads to loss of conti-
nuity and smoothness. The range of variation in micro
data is also typically greater. For example, household’s av-
erage weekly consumption of (say) meat is likely to vary
smoothly, while that of an individual household in a given
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week may be frequently zero, and may also switch to pos-
itive values from time to time. Thus, micro data exhibit
“holes, kinks and corners” [80]. The holes correspond to
nonparticipation in the activity of interest, kinks corre-
spond to the switching behavior, and corners correspond
to the incidence of nonconsumption or nonparticipation
at specific points of time. Consequently, discreteness and
nonlinearity of response are intrinsic to microeconomet-
rics.

Another distinctive feature of microeconometrics de-
rives from the close integration of data and statistical mod-
eling assumptions employed in analyzing them. Sample
survey data, the raw material of microeconometrics, are
subject to problems of complex survey methodology, de-
partures from simple random sampling assumptions, and
problems of sample selection, measurement errors, in-
complete and/or missing data – problems that in princi-
ple impede the generalization from sample to population.
Handling such issues is an essential component of microe-
conometric methodology.

An important application of microeconometrics is to
tests predictions of microeconomic theory. Tests based on
micro data are more attractive and relatively more persua-
sive because (a) the variables involved in such hypotheses
can be measured more directly, (b) the hypotheses under
test are likely to be developed from theories of individual
behavior, and (c) a realistic portrayal of economic activity
should accommodate a broad range of outcomes and re-
sponses that are a consequence of individual heterogene-
ity and that are predicted by underlying theory. In many
public policy issues one is interested in the behavioral re-
sponses of a specific group of economic agents under some
specified economic environment. One example is the im-
pact of unemployment insurance on the job search behav-
ior of young unemployed persons. To address these issues
directly it is essential to use micro data.

The remainder of this article is organized as follows.
In the next section I provide a historical perspective of the
development of microeconometrics and sketch the topics
in which important advances have occurred. In Sect. “His-
torical Background” we detail two models – the discrete
choice model and the selection model – that are land-
mark developments in microeconometrics and provide
important reference points for the remainder of the article.
Sect. “Two Leading Examples” outlines three dominant
modeling methodologies for structural modeling in mi-
croeconometrics. The final Sect. “Causal Modeling” sur-
veys some of the major challenges in microeconometrics
and the available modeling tools for dealing with these
challenges. To stay within space constraints, I emphasize
developments that have influenced microeconomic data

analysis, and pay less attention to general theoretical an-
alyzes.

Historical Background

Analysis of individual data has a long history. Engel [23],
Allen and Bowley [2], Houthakker [43], and Prais and
Houthakker [79] all made pioneering contributions to the
research on consumer behavior using household budget
data. Other seminal studies include Marschak and An-
drews [77] in production theory, and Stone [86], and To-
bin [88] in consumer demand. Nevertheless, the path-
breaking econometric developments initiated by the Cow-
les Foundation during the 1940s and 1950sweremotivated
by concerns of macroeconomic modeling. The initial im-
pact of this research was therefore largely on the devel-
opment of large-scale multi-equation aggregate models of
sectors and the economy. Although the Cowles Commis-
sion work was centered on the linear simultaneous equa-
tions model (SEM), while modernmicroeconometrics em-
phasizes nonlineairties and discreteness, the SEM concep-
tual framework has proved to be a crucial and formative
influence in structural microeconometric modeling.

The early microeconometric work, with the important
exception of Tobin [88], relied mainly on linear models,
with little accommodation of discreteness, kinks, and cor-
ners. Daniel McFadden’s [68] work on analysis of discrete
choice and James Heckman’s [30,31,32,33] work on mod-
els of truncation, censoring and sample selection, which
combined discrete and continuous outcomes, were path-
breaking developments that pioneered the development
of modern microeconometrics. These developments over-
lapped with the availability of large micro data sets begin-
ning in the 1950s and 1960s.

These works were a major departure from the over-
whelming reliance on linearmodels that characterized ear-
lier work. Subsequently, they have led to major method-
ological innovations in econometrics. Among the earlier
textbook level treatment of this material (and more) are
Maddala [76] and Amemiya [3]. As emphasized by Heck-
man [35], McFadden [73] and others, many of the fun-
damental issues that dominated earlier work based on
market data remain important, especially concerning the
conditions necessary for identifiability of causal economic
relations. But the style of microeconometrics is sufficiently
distinct to justify writing a text that is exclusively devoted
to it.

Modern microeconometrics based on individual,
household, and establishment level data owes a great deal
to the greater availability of data from cross section and
longitudinal sample surveys and census data. In the last
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two decades, with the expansion of electronic recording
and collection of data at the individual level, data vol-
ume has grown explosively. So too has the available com-
puting power for analyzing large and complex data sets.
In many cases event level data are available; for exam-
ple, marketing science often deals with purchase data col-
lected by electronic scanners in supermarkets, and indus-
trial organization literature contains econometric analyzes
of airline travel data collected by online booking systems.
New branches of economics, such as social experimenta-
tion and experimental economics, have opened up that
generate “experimental” data. These developments have
created many new modeling opportunities that are absent
when only aggregated market level data are available. At
the same time the explosive growth in the volume and
types of data has also given rise to numerous methodolog-
ical issues. Processing and econometric analysis of such
large micro data bases, with the objective of uncovering
patterns of economic behavior, constitutes the core of mi-
croeconometrics. Econometric analysis of such data is the
subject matter of this book.

Areas of Advances

Both historically and currently, microeconometrics con-
centrates on the so-called limited dependent variable
(LDV) models. The LDV class deals with models in which
the outcome of interest has a limited range of varia-
tion, in contrast to the case where variation is continuous
and on the entire real line. Examples are binary valued
outcomes, polychotomous outcomes, non-negative inte-
ger-valued outcomes, and truncated or censored variables
where values outside a certain range are not observed. An
example of censoring arises in modeling the labor sup-
ply of working women. Here the data refers to the num-
ber of hours of work of the employed women even though
from an empirical perspective the economist is interested
in both the decision to participate in the labor force (ex-
tensive margin) and also in the choice of hours of work
(intensive margin) conditional on participation. From this
perspective the sample on hours of work is censored and
the analysis of hours of work of only those who participate
potentially suffers from “selection bias”. Analysis of tran-
sitions between states and of time spent in a state, e. g. un-
employment, using the methods of hazard (survival) anal-
ysis also confronted the issue of truncation and censoring,
since in many cases the spells of unemployment (dura-
tions) were only partially observed. Many economic out-
comes such as choice of occupation or travel model, and
event counts are inherently discrete and hence fall in the
LDV class. Many others involve interdependent discrete

and continuous outcomes, e. g. participation and hours of
work.

� LDV topics have maintained their core status in the
area. But their scope has expanded to include count
data models [12] and a much wider variety of selection
models. Whereas in 1975 virtually all of the models of
discrete choice were static and cross sectional, now dis-
crete choice analysis has developed in many directions,
including dynamic aspects which permit dependence
between past, current and future discrete choices. Dy-
namic discrete choice modeling is now embedded in
dynamic programming models [22,83]. Individuals of-
ten state their preferences over hypothetical choices (as
when they are asked to reveal preferences over goods
and services not yet in the market place), and they also
reveal their preferences in the market place. Modern
discrete choice analysis integrates stated preferences
and revealed preferences [89,90].

� In 1975 the subject of multivariate and structural es-
timation of discrete response models required further
work in almost every respect. In modern microecono-
metric models generally, and discrete choice models
specifically, there is greater emphasis on modeling data
using flexible functional forms and allowing for hetero-
geneity. This often leads to mixture versions of these
models. Advances in computer hardware and software
technologies have made simulation-based methods of
all types, including Bayesian Markov chain Monte
Carlo methods, more accessible to practitioners. Vari-
eties of LDV models that were previously outside the
reach of practitioners are now widely used. Inference
based on resampling methods such as bootstrap that
do not require closed form expressions for asymptotic
variances are now quite common in microeconomet-
rics.

� Extensions of many, if not most, LDV models to allow
for panel data are now available [44]. Random effects
panel models are especially amenable to simulation-
based estimation. There have been important advances
in handling advanced linear panel data models (includ-
ing dynamic panels) and nonlinear panel data mod-
els – especially models for binary andmultinomial out-
comes, censored variables, count variables, all of which
are now more accessible to practitioners.

� Bayesian approaches are well-suited for analyzing com-
plex LDV because they efficiently exploit the underly-
ing latent variable structure. Bayesian analysis of LDV
models is well-developed in the literature, but its incor-
poration into mainstream texts still lags [53]. Special-
ized monographs and texts, however, fill this gap.
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� Treatment evaluation, which deals with measurement
of policy impact at micro level, is now conspicuous and
major new topic. The impact of the topic is broad be-
cause treatment evaluation is discussed in the context
of many different LDV models, using a variety of para-
metric and semi- or nonparametric approaches, under
a variety of different assumptions about the impact of
treatment. The literature on this topic is now very ex-
tensive, see Heckman and Robb [36], Imbens and An-
grist [45], Heckman and Vytlacil [39], and Lee [58] for
a monograph-length treatment.

� Topic related to data structures now receive more at-
tention. This includes the pros and cons of observa-
tional data and those from social and natural exper-
iments. These topics arise naturally in the context of
treatment evaluation. Other data related topics such
as survey design and methodology, cross sectional and
spatial dependence, clustered observations, and miss-
ing data also get greater attention.

� As regards estimation and inference, the classical meth-
ods of maximum likelihood, least squares and method
of moments were previously dominant, with some ex-
ceptions. These methods typically make strong distri-
butional and functional form assumptions that are of-
ten viewed with skepticism because of their potential
impact on policy conclusions. By contrast, there is now
a greater variety of semiparametric estimators in use,
of which quantile regression is a leading example [51].
Nonparametric regression is another new topic. There
is now a large literature dealing with most standard
models and issues from a semi-parametric viewpoint.

Two Leading Examples

To illustrate some salient features of microeconometrics,
the structure of two leading models, the first one for dis-
crete choice and the second for sample selection, will be
described and explained. Latent variables play a key role
in the specification of both models, and in the specification
of LDV models more generally. Distributional and struc-
tural restrictions are usually imposed through the latent
variable specifications. Estimation of the models can also
exploit the latent variable structure of such models.

Example 1: Random Utility Model

McFadden played a major role in the development of the
random utility model (RUM) that provides the basis of
discrete choice analysis; see McFadden [68,70,71,72]. Dis-
crete choice models, firmly established in the analysis of
transport mode choice, are now used extensively to model

choice of occupations, purchase of consumer durables and
brand choice.

The RUM framework is an extension of Thur-
stone [87]. In the binary RUM framework the agent
chooses between alternatives 0 and 1 according to which
leads to higher satisfaction or utility which is treated as
a latent variable. The observed discrete variable y then
takes value 1 if alternative 1 has higher utility, and takes
value 0 otherwise. The additive random utility model
(ARUM) specifies the utilities of alternatives 0 and 1 to be

U0 D V0 C "0
U1 D V1 C "1 ;

(1)

where V0 and V1 are deterministic components of utility
and "0 and "1 are random components of utility. The al-
ternative with higher utility is chosen. We observe y D 1,
say, if U1 > U0. Due to the presence of the random com-
ponents of utility this is a random event with

Pr
�
y D 1jV0;V1

�
D Pr [U1 > U0]
D Pr [V1 C "1 > V0 C "0]
D Pr ["0 � "1 < V1 � V0]
D F (V1 � V0) ; (2)

where F is the c.d.f. of ("0 � "1). This yields Pr[y D 1] D
F(x0ˇ) if V1 � V0 D x0ˇ. Different choices of the func-
tional form F generate different parametric models of bi-
nary choice (outcome).

The additive RUM model has multivariate extensions.
In the general m-choice multinomial model the utility of
the jth choice is specified to be given by

Uj D Vj C " j ; j D 1; 2; : : : ;m ; (3)

where Vj, the deterministic component of utility may be
specified to be a linear index function, e. g. Vi j D x0i jˇ or
Vi j D x0iˇ j , and " j denotes the random component of util-
ity. Suppressing the individual subscript i for simplicity,
using algebraic manipulations similar to those for the bi-
nary case, we obtain

Pr[y D j] D Pr
�
Uj � Uk ; all k ¤ j

�

D Pr
�
e"k j � �eVk j ; all k ¤ j

�
; (4)

where the tilda and second subscript j denotes differencing
with respect to reference alternative j.

Consider an individual choosing a mode of transport
to work where the choice set consists of train, bus, or pri-
avte car. Each mode has associated with it a determinis-
tic utility that depends upon attributes (e. g. money cost,
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time cost) of the mode and a random idiosyncratic com-
ponent (“error”). Empirically the goal is to model condi-
tional choice probabilities in terms of the mode attributes.
Different multinomial models can be generated by dif-
ferent assumptions about the joint distribution of the er-
ror terms. These models are valid statistically, with prob-
abilities summing to one. Additionally they are consistent
with standard economic theory of rational decision-mak-
ing. The idiosyncratic components of choice should ex-
hibit correlation across choices if the alternatives are simi-
lar. For example, if the random components have indepen-
dent type I extreme value distributions (a strong assump-
tion!), then

Pr[y D j] D
eVj

eV1 C eV2 C � � � eVm
: (5)

This is the conditional logit (CL) model when Vj D x0jˇ,
which means that attributes vary across choices only,
and the multinomial legit (MNL) when Vj D x0ˇ j , which
means that attributes are individual- but not choice-spe-
cific. Assuming that the random components have a joint
multivariate normal distribution, which permits idiosyn-
cratic components of utility to be correlated, generates
the multinomial probit (MNP) model. The MNL is a spe-
cial case of the Luce [59] model; it embodies an impor-
tant structural restriction that the odds ratio for pair (i; j),
Pr[y D i]/ Pr[y D j], is independent of all other avail-
able alternatives IIA). The MNP is the less restrictive
Thurstone model, which allows for dependence between
choices.

Multinomial Logit and Extensions The MNL model is
much easier to compute than the MNP, but there is moti-
vation for extending the MNL to allow for dependence in
choices. One popular alternative is based on the general-
ized extreme value (GEV) model proposed by McFadden
et al. [70], which leads to the nested logit (NL) model.

The GEV distribution is

F ("1; "2; : : : ; "m) D exp
�
�G

�
e�"1 ; e�"2 ; : : : ; e�"m

�

where the function G(Y1;Y2; : : : ;Ym )is chosen to satisfy
several assumptions that ensure the joint distribution and
resulting marginal distributions are well-defined.

If the errors are GEV distributed then an explicit solu-
tion for the probabilities in the RUM can be obtained, with

p j D Pr[y D j] D eVj
G j
�
e�V1 ; e�V2 ; : : : ; e�Vm



G
�
e�V1 ; e�V2 ; : : : ; e�Vm

 ; (6)

where Gj(Y1;Y2; : : : ;Ym) D @G(Y1;Y2; : : : ;Ym)/@Yj , see

McFadden (p. 81 in [70]). A wide range of models can be
obtained by different choices of G(Y1;Y2; : : : ;Ym).

The nested logit model of McFadden [70] arises when
the error terms " jk have the GEV joint cumulative distri-
bution function

F(") D exp
�
�G

�
e�"11 ; : : : ; e�"1K1 ; : : :

; e�"J1 ; : : : ; e�"JKJ
�

(7)

for the following particular specification of the function
G(�),

G(Y) D G
�
Y11; : : : ;Y1K1 ; : : : ;YJ1; : : : ;YJKJ



D

JX

jD1

0

@
K jX

kD1

Y1/� j
jk

1

A

1�� j

: (8)

The parameter � j is a function of the correlation between
" jk and " j l (see [13], p. 509).

The nested logit model specifies choice-making as a hi-
erarchical process. A simple example is to consider choice
of a television, where one first decides whether to buy
a LCD screen or a plasma screen, and then conditional on
that first choice which brand.

TV
	 Ÿ

LCD Plasma
	 Ÿ 	 Ÿ

Brand A Brand B Brand 1 Brand 2

The random components in an RUM are permitted to be
correlated for each option within the LCD and plasma
groups, but are uncorrelated across these two groups. The
GEV model can be estimated recursively by fitting a se-
quence of MNL models.

Multinomial Probit Another way to remove the IIA re-
striction is to assume that the unobserved components
have a joint multivariate normal distribution. Beginning
with m-choice multinomial model, with utility of the
jth choice given by Uj D Vj C " j; j D 1; 2; : : : ;m, where
" �N [0;˙ ], where the m � 1 vector " D ["1 : : : "m]0.

If the maximum likelihood equations have a unique
solution for the parameters of interest, the model is said
to be identified. In case that the number of equations is in-
sufficient to yield unique estimates, restrictions on ˙ are
needed to ensure identification. Bunch [11] demonstrated
that all but one of the parameters of the covariance matrix
of the errors " j � "1 is identified. This can be achieved if
we normalize "1 D 0, say, and then restrict one covariance
element. Additional restrictions on˙ or ˇmay be needed
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for successful application, especially inmodels where there
are no alternative-specific covariates [47]. That is, even
when aMNPmodel is technically identified, the identifica-
tion may be fragile in some circumstances, thus requiring
further restrictions.

A natural estimator for this model is maximum likeli-
hood. But, as mentioned in Sect. “Introduction”, this poses
a computational challenge as there is no analytical ex-
pression for the choice probabilities. For example, when
m D 3,

p1 D Pr[y D 1] D
Z �eV 31

�1

Z �eV 21

�1

f (e"21;e"31) de"21 de"31 ;

where f (e"21;e"31) is a bivariate normal with as many as two
free covariance parameters andeV21 andeV31 depend on re-
gressors and parameters ˇ. This bivariate normal integral
can be quickly evaluated numerically, but a trivariate nor-
mal integral is the limit for numerical methods. In practice
it is rare to see MNP applied when there are more than 4
choices.

Simulation methods are a potential solution for higher
dimensional models [89]. For Monte Carlo integration
over a region of the multivariate normal, a very popu-
lar smooth GHK simulator simulator is the GHK simu-
lator, due to Geweke [25], Hajivassiliou et al. [29] and
Keane [48]; see Train [89] for details. This discussion takes
ˇ and ˙ as given but in practice these are estimated. The
maximum simulated likelihood estimator (MSL) maxi-
mizes

bLN (ˇ;˙ ) D
NX

iD1

mX

jD1

yi j lnbpi j ;

where thebpi j are obtained using the GHK or other sim-
ulator. Consistency requires the number of draws in the
simulator S !1 as well as N !1. The method is very
burdensome, especially in high dimensions. This increases
the appeal of alternative estimation procedures such as the
method of simulated moments (MSM). The MSM estima-
tor of ˇ and˙ solves the estimating equations

NX

iD1

mX

jD1

(yi j �bpi j)zi D 0 ;

where the bpi j are obtained using an unbiased simulator.
Because, consistent estimation is possible even if S D 1,
MSM is computationally less burdensome.

Finally, Bayesian methods that exploit the latent vari-
able structure using data augmentation approach and
Markov chain Monte Carlo methods have been used suc-

cessfully; see Albert and Chib [1] and McCulloch and
Rossi [67].

Choice probability models are of interest on their own.
More usually, however, they are of interest when linked to
models of other outcomes. In observational data it is com-
mon to study outcomes that are jointly determined with
the choices, often through the common dependence of the
two on idiosyncratic elements. Even when the main inter-
est is in the outcome variable,modeling of the choice com-
ponent is integral to the analysis. Selection models are an
example of such joint models.

Example 2: Sample Selection Models

One of the most important classes of microeconometric
models is the sample selection model. Goal of modeling is
usually valid inference about a target population. Sample
selection problem refers to the problem of making valid
inference because the sample used is not representative of
the target population. Observational studies are generally
based on pure random samples. A sample is broadly de-
fined to be a selected sample if, for example, it is based
in part on values taken by a dependent variable. A vari-
ety of selection models arise from the many ways in which
a sample may be selected, and some of these may easily go
undetected.

There is a distinction between self-selection, in which
the outcome of interest is determined in part by individ-
ual choice of whether or not to participate in the activity
of interest, and sample-selection, in which the participants
in the activity of interest are over- or under-sampled. Se-
lection models involve modeling the participation into the
activity of interest, e. g., the labor force. The outcomes of
those who participate can be compared with those of non-
participants, which generates the counterfactual of inter-
est. Generating and comparing counterfactuals is a fun-
damental aspect of selection models. Elsewhere this topic
of counterfactual analysis is called treatment evaluation.
When treatment evaluation is based on observational data,
issues of sample selection and self-selection almost always
arise.

In the example given below, consistent estimation
relies on relatively strong distributional assumptions,
whereas the modern trend is to do so under weaker as-
sumptions. The example illustrates several features of mi-
croeconometric models; specifically, the model is mixed
discrete-continuous and involves truncation and latent
variables.

Let y�2 denote the outcome of interest that is observed
if y�1 > 0. For example, y�1 determines whether or not to
work (participation) and y�2 determines how many hours
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to work (outcome). The bivariate sample selection model
has a participation equation,

y1 D
�

1 if y�1 > 0
0 if y�1 � 0 ; (9)

and an outcome equation,

y2 D
�

y�2 if y�1 > 0
� if y�1 � 0 : (10)

This model specifies that y2 is observed when y�1 > 0, pos-
sibly taking a negative value, while y2 need not take on any
meaningful value when y�1 � 0.

The standard specification of the model is a linear
model with additive errors for the latent variables, so

y�1 D x01ˇ1 C "1

y�2 D x02ˇ2 C "2 ;
(11)

where problems arise in estimating ˇ2 if "1 and "2 are cor-
related. If ˇ2 were estimated using a regression of y2 on
x2 using only the part of the sample for which y2 D y�2 ,
the resulting estimates would suffer from sample selec-
tion bias. The classic early application of this model was
to labor supply, where y�1 is the unobserved desire or
propensity to work, while y2 is actual hours worked. Heck-
man [33] used this model to illustrate estimation given
sample selection. A popular parametric specification as-
sumes that the correlated errors are joint normally dis-
tributed and homoskedastic, with

�
"1
"2

�
�N

��
0
0

�
;

�
1 �12
�12 �22

��
: (12)

which uses the normalization �21 D 1 because y�1 is a latent
variable that needs ameasurement scale. Under general as-
sumptions, and not just bivariate normality, the bivariate
sample selection model therefore has likelihood function

L D
nY

iD1

˚
Pr
�
y�1i � 0

��1�y1i

˚
f
�
y2i j y�1i > 0


� Pr

�
y1i� > 0

��y1i ; (13)

where the first term is the contribution when y�1i � 0,
since then y1i D 0, and the second term is the contribu-
tion when y�1i > 0. The model is easily estimated if it is
specialized to the linear models with joint normal errors,
see Amemiya [3]. An important component of the identi-
fication strategy is the use of exclusion restriction(s). This
refers to the restriction that some component(s) of x1 af-
fects the choice variable y1 only, and not the outcome vari-
able. The intuition is that this provides a source of inde-
pendent variation in y1 that can robustly identify the pa-
rameters in the y2-equation.

The maximum likelihood approach to the estimation
of self-selection models can be extended to the polychoto-
mous choice withm-alternatives by first specifying a para-
metric model for choice probability that takes the form
of a multinomial or nested logit, or multinomial probit,
and then specifying a joint distribution between the out-
come of interest and the choice probabilities; see, for ex-
ample, Dubin andMcFadden [20]. While straight-forward
in principle, this approach does pose computational chal-
lenges. This is because analytic expressions for such joint
distributions are in general not available. The problem can
be addressed either by using simulation-based methods or
by taking a semi-parametric formulation that permits two-
step estimation of the model parameters. This topic is dis-
cussed further in Sect. “Causal Modeling”.

Manski [61] andHeckman [31] were early advocates of
flexible semi-parametric estimation methods, of which the
“two-step Heckman procedure” is a leading example. This
influential modern approach seeks to avoid strong distri-
butional and functional form assumptions and yet obtain
consistent estimates with high efficiency within this class
of estimators. Following in that tradition, there is a large
literature, surveyed in Lee [56], that follows the semi-para-
metric approach. As the dependence between choices and
outcomes are central to the issue, semi-parametric IV es-
timators are a natural choice. One strand of the literature,
represented by Blundell and Powell [9], approaches this is-
sue form a general semiparametric IV viewpoint, whereas
another, represented by Lee [58] approaches this from the
perspective of linear simultaneous equations viewpoint.
Whereas the latent variable approach dominates discrete
choice and selection models, some econometricians, e. g.
Manski [62], espouse a less restrictive model that uses the
basic probability formulation of the problem, with little
other structure, that can still deliver informative bounds
on some counterfactual outcomes. (There are also other
econometric contexts in which the bounds approach can
be applied; see [63].)

Causal Modeling

An important motivation for microeconometrics stems
from issues of public policies that address social and eco-
nomic problems of specific groups whose members react
to policies in diverse ways. Then microeconometric mod-
els are used to evaluate the impact of policy. A leading ex-
ample is the effect of training on jobless workers as defined
in terms of their post-training wage. Accordingly, an im-
portant topic in microeconometrics is treatment evalua-
tion. The term treatment refers to a policy and the analogy
is with the model of a clinical trial with randomized as-
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signment to treatment. The goal is to estimate the average
effect of the treatment.

Heckman [35] has pointed out that there are two types
of policy evaluation questions. The first type seeks to eval-
uate the effect of an existing program or policy on partic-
ipants relative to an alternative program or no program
at all, i. e. a treatment effect. The second formulation ad-
dresses a more difficult and ambitious task of evaluating
the effect of a new program or policy for which there are
no historical antecedents, or of an existing program in
a new economic environment. A basic tenet of economet-
ric modeling for policy analysis is that a structural model
is required to address such policy issues.

As to how exactly to define a structural model is
a difficult and unsettled issue. Indeed it is easier to say
what structural models are not than to define what they
are. Some modelers define structural models as those
that identify parameters that are invariant with respect
to policies themselves; others define structural models as
those that involve mathematical-statistical relationships
between jointly dependent variables, and yet others de-
fine them as relationships based on dynamic optimizing
models of economic behavior that embody “fundamental”
taste, technology and preference parameters.

In the next section I shall provide an overview of three
major approaches to causal modeling in microeconomet-
rics. Three dominant approaches are based on, respec-
tively, moment conditions, the potential outcome model,
and the dynamic discrete choice approach.

Structural Modeling

Broadly, structural model refers to causal rather than as-
sociative modeling. Cameron and Trivedi [13] provide
a definition of a structure that is based on the distinction
between exogenous variablesZ, that are taken by the mod-
eler as given, and endogenous variables Y, that the mod-
eler attempts to explain within the model; this distinction
derives from the classic Cowles Commission approach for
the dynamic linear SEM mentioned earlier. The dynamic
linear structural SEM specifies a complete model for G en-
dogenous variables, specified to be related to K exogenous
a pre-determined variables (e. g. lagged values of Y).

Accordingly, a structure consists of

1. a set of variables W (“data”) partitioned for conve-
nience as [Y~Z];

2. a joint probability distribution ofW, F(W);
3. an a priori ordering of W according to hypothetical

cause and effect relationships and specification of a pri-
ori restrictions on the hypothesized model;

4. a parametric, semiparametric or nonparametric speci-
fication of functional forms and the restrictions on the
parameters of the model.

Suppose that the modeling objective is to explain the val-
ues of observable vector-valued variable y, y0 D (y1;
: : : ; yG ), whose elements are functions of some other el-
ements of y, and of explanatory variables z and a purely
random disturbance u. Under the exogeneity assumption
interdependence between elements of z is not modeled.
The ith observation satisfies the set of implicit equations

g (wi ;ui j�0) D 0 ; (14)

where g is a known function. By the Cameron–Trivedi def-
inition this is a structural model, and to �0 is the vector of
structural parameters. This corresponds to point 4 given
earlier in this section. If there is a unique solution for yi
for every (zi ;ui), i. e.

yi D f (zi ;ui j�) ; (15)

then this is referred to as the reduced form of the struc-
tural model, where � is a vector of reduced form parame-
ters that are functions of � . The reduced form is obtained
by solving the structural model for the endogenous vari-
ables yi , given (zi ;ui). The reduced form parameters �
are functions of � . If the objective of modeling is infer-
ence about elements of � , then (14) provides a direct route.
Estimation of systems of equations like (14) is referred to
as structural estimation in the classic Cowles Commission
approach; see Heckman [34]. When the object of model-
ing is conditional prediction, the reduced form model is
relevant.

Moment Condition Models

The classic causal model is a moment-condition model,
derived from such a framework, consists of a set of r mo-
ment conditions of the form

E[g(wi ;�0)] D 0 ; (16)

where � is a q � 1 vector, g(�) is an r � 1 vector function
with r � q and �0 denotes the value of � in the data gen-
erating process (d.g.p). The vector w includes all observ-
ables including, where relevant, a dependent (possibly vec-
tor-valued) variable y, potentially endogenous regressors x
and exogenous variables z. The expectation is with respect
to all stochastic components of w and hence y, x and z.

Estimation methods for moment condition models in-
clude fully parametric approaches such as maximum like-
lihood as well as semi-parametric methods such as the
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generalized method of moments (GMM) and instrumen-
tal variables (IV).

To make valid econometric inference on � , it must
be assumed or established that this parameter is identifi-
able; see Heckman [34] and Manski [62]. In other words,
it is assumed that there is no set of observationally equiva-
lent moment conditions. Identification may be established
using (strong) parametric restrictions or using (weaker)
semiparametric restrictions. The latter approach is cur-
rently favored in theoretical work. Point identification was
emphasized in the classic Cowles Foundation but partial
identification in many situations may be more attainable,
especially if weaker restrictions on probability distribu-
tions of data are used; seeManski [63]. However, assuming
point identification and given sufficient data, in principle
these moment conditions lead to a unique estimate of the
parameter � . Potentially there are many reasons for loss
of identifiability. Some of these are discussed in the next
section where we also consider identification strategies.

The above approach has limitations. First, the defini-
tion of structure is not absolute because the distinction be-
tween endogenous Y and exogenous Z may be arbitrary.
Second, the parameters � need not be tied to fundamental
(or “deep”) parameters; indeed it includes both the policy
parameters that are of intrinsic interest and others that are
not. If, however, the moment conditions are derived either
from a model of optimization, or from some fundamen-
tal postulates of economic behavior such as the efficient
market hypothesis, then at least some subset of parame-
ters � can have a “structural” interpretation that is based
on preference or technology parameters. Some econome-
tricians prefer a narrower definition of a causal parameter
which focuses only on the impact of the policy on the out-
come of interest; the remaining parameters are treated as
non-causal. Third, the approach is often difficult to imple-
ment in a way that provides information about either of
the types of policy issues mentioned at the beginning of
this section.

In response to these difficulties of the conventional ap-
proach two alternative approaches have emerged. The first
is the potential outcome model (POM) that can be histor-
ically traced back to Neyman and Fisher. The second (and
more modern) approach is based on dynamic stochastic
Markov models. The first is easier to implement and hence
currently dominates the applied literature. Next I will pro-
vide a brief overview of each approach.

Treatment Effect Models

This section deals with two closely related approaches in
the treatment evaluation literature which targets an im-

portant structural parameter and its variants. Treatment
effect models have been used extensively to study, to give
just a few examples, the effect of: schooling on earnings,
the class size on scholastic performance, unions on wages,
and health insurance on health care use. Although inmany
cases the treatment variable is dichotomous, the frame-
work can handle polychotomous treatment variables also.
Treatment need not be discrete; the framework can handle
ordered as well as continuously varying treatments.

Potential Outcome Models Much econometric estima-
tion and inference are based on observational data. Identi-
fication of and inference on causal parameters is very chal-
lenging in such a modeling environment. Great simplifi-
cation in estimating causal parameters arise if one can use
data from properly designed and implemented controlled
social experiments. Although such experiments have been
implemented in the past they are generally expensive to or-
ganize and run. Econometricians therefore seek out data
generated by quasi- or natural experiments which may
be thought of as settings in which some causal variable
changes exogenously and independently of other explana-
tory variables. This is an approximation to a controlled
trial.

Random assignment implies that individuals exposed
to treatment are chosen randomly, and hence the treat-
ment assignment does not depend upon the outcome and
is uncorrelated with the attributes of treated subjects. The
great resulting simplification in relating outcomes to pol-
icy changes is unfortunately rarely achievable because ran-
dom assignment of treatment is generally not feasible in
economics. Most analyzes have to depend upon observa-
tional data.

As an example, suppose one wants to study the ef-
fect of unions on wages using data from unionized
and nonunionized workers. Here being a unionized
worker is the treatment. For the unionized worker, be-
ing a nonunion worker is the counterfactual. The purpose
of the causal model is to estimate the mean difference in
wages of unionized and nonunionized workers, the differ-
ence being attributed to being in the union.

A major obstacle for causality modeling stems from
the so-called fundamental problem of causal infer-
ence [40]. Accordingly, in an observational setting one can
only observe an individual in either the treated or the un-
treated state, and not both. Hence one cannot directly ob-
serve the effect of the treatment. Consequently, nothing
more can be said about causal impact without some hy-
pothesis about the counterfactual, i. e. what value of the
outcome would have been observed in the absence of the
change in policy variable.
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The POM, also known as the Rubin causal model
(RCM), provides a solution to the problem of establish-
ing a counterfactual for policy evaluation. Causal param-
eters based on counterfactuals provide statistically mean-
ingful and operational definitions of causality. In the POM
framework the term “treatment” is used interchangeably
with “cause”. All policy changes and changes in the policy
environment are broadly covered by the term treatment.
Given a group impacted by policy, and another one that is
not, a measure of causal impact is the average difference in
the outcomes of the treated and the nontreated groups. Ex-
amples of treatment-outcome pairs are: health insurance
and health care utilization; schooling and wages; class size
and scholastic performance. Of course, the fact that with
observational data a treatment is often chosen, not ran-
domly assigned, is a significant complication.

In the POM framework, assuming that every element
of the target population is potentially exposed to the treat-
ment, the variables (y1i ; y0i ;Di ; xi ), i D 1; : : : ;N , forms
the basis of treatment evaluation. The categorical vari-
able D takes the values 1 and 0, respectively when treat-
ment is or is not received; y1i measures the response for
individual i receiving treatment, and y0i when not receiv-
ing treatment, xi is the vector of exogenous covariates.
That is, yi D y1i if Di D 1 and yi D y0i if Di D 0. Re-
ceiving and not receiving treatment are mutually exclusive
states so only one of the two measures is available for any
given i; the unavailable measure is the counterfactual. The
effect of the cause D on outcome if individual i is mea-
sured by (y1i � y0i). The average causal effect of Di D 1,
relative to Di D 0, is measured by the average treatment
effect (ATE):

ATE D E[yjD D 1; x] � E[yjD D 0; x] ; (17)

where expectations are with respect to the probability dis-
tribution over the target population. Unlike the conven-
tional structural model that emphasizes marginal effects
the POM framework emphasizes ATE and parameters re-
lated to it.

POM can lead to causal statements if the counterfac-
tual can be clearly stated and made operational. In ob-
servational data, however, a clear distinction between ob-
served and counterfactual quantities may not be possi-
ble. Then ATE will estimate a weighted function of the
marginal responses of specific subpopulations. Despite
these difficulties, the identifiability of the ATE parameter
may be an easier research target.

Matching Methods In the POM framework a causal pa-
rameter may be unidentified because there is no suitable
comparison or control group that provides the benchmark

for estimation. In observational studies, by definition there
are no experimental controls. Therefore, there is no direct
counterpart of the ATE calculated as a mean difference be-
tween the outcomes of the treated and nontreated groups.
In other words, the counterfactual is not identified.

Matching methods provide a potential solution by cre-
ating a synthetic sample which includes a comparison
group that mimics the control group. Such a sample is
created by matching. Potential comparison units, that are
not necessarily drawn from the same population as the
treated units, are those for whom the observable charac-
teristics, x, match those of the treated units up to some
selected degree of closeness. In the context of the union-
ization example, one would match, as closely as possible,
unionized with nonunionized workers in terms of a vector
of observable characteristics. Of course, if there are signifi-
cant unobserved sources of differences that cannot be con-
trolled, then this could lead to omitted variable bias. Given
a treated sample plus well matched controls, under certain
assumptions it becomes possible to identify parameters re-
lated to the ATE.

Matching may produce good estimates of the aver-
age effect of the treatment on the treated, i. e. the ATET
parameter if (1) we can control for a rich set of x vari-
ables, (2) there are many potential controls. It also requires
that treatment does not indirectly affect untreated obser-
vations. The initial step of establishing the nearest matches
for each observation will also clarify whether comparable
control observations are available.

Suppose the treated cases are matched in terms of all
observable covariates. In a restricted sense all differences
between the treated and untreated groups are controlled.
Given the outcomes y1i and y0i , for the treatment and
control, respectively, the average treatment effect is

E
�
y1i jDi D 1

�
� E

�
y0i jDi D 0

�

D E[y1i � y0i jDi D 1]C
˚
E
�
y0i jDi D 1

�

�E
�
y0i jDi D 0

��
: (18)

The first term in the second line is the ATET, and the sec-
ond bracketed term is a “bias” term which will be zero if
the assignment to the treatment and control is random.
The sample estimate of ATET is a simple average of the
differential due to treatment.

There is an extensive literature on matching estima-
tors covering both parametric and nonparametric match-
ing estimators; see Lee [58] for a survey. Like the POM
framework, the approach is valid for evaluating policy that
is already in operation and one that does not have general
equilibrium effects. An important limitation is that the ap-
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proach is vague and uninformative about the mechanism
through which the treatment effects occur.

Dynamic Programming Models

Dynamic programming (DP) models represent a relatively
new approach to microeconometric modeling. It empha-
sizes structural estimation and is often contrasted with
“atheoretical” models that are loosely connected to the un-
derlying economic theory. The distinctive characteristics
of this approach include: a close integration with underly-
ing theory; adherence to the assumption of rational opti-
mizing agents; generous use of assumptions and restric-
tions necessary to support that close integration; a high
level of parametrization of the model; concentration on
causal parameters that play a key role in policy simulation
and evaluation; and an approach to estimation of model
parameters that is substantially different from the standard
approaches used in estimating moment condition models.
The special appeal of the approach comes from the poten-
tial of this class of models to address issues relating to new
policies or old policies in a new environment. Further, the
models are dynamic in the sense that they can incorpo-
rate expectational factors and inter-temporal dependence
between decisions.

There are many studies that follow the dynamic
programming approach. Representative examples are
Rust [81]; Hotz and Miller [42]; Keane and Wolpin [50].
Some key features of DP models can be exposited using
a model due to Rust and Phelan [85] which provides an
empirical analysis of how the incentives and constraints
of the US social security and Medicare insurance system
affects the labor supply of old workers. Some of the key
constraints arise due to incomplete markets, while individ-
ual behavior is based in part on expectations about future
income streams. Explaining transitions from work to re-
tirement is a challenging task not only because it involves
forward-looking behavior in a complex institutional envi-
ronment but also because a model of retirement behavior
must also capture considerable heterogeneity in individual
labor supply, discontinuities in transitions from full time
work to not working, and presence of part-time workers
in the population, and coordination between labor supply
decisions and retirement benefits decisions.

The main components of the DP model are as follows.
State variable is denoted by st, control variable by dt. ˇ is
the intertemporal discount factor. In implementation all
continuous state variables are discretized – a step which
greatly expands the dimension of the problem. Hence all
continuous choices become discrete choices, dt is a dis-
crete choice sequence, and the choice set is finite. For ex-

ample, in Rust and Phelan [85] total family income is dis-
cretized into 25 intervals, social security state into 3 states,
and employment state (hours worked annually) into 3 dis-
crete intervals, and so forth. There is a single period util-
ity function ut(s; d; �u) and pt(stC1jst ; dt ; �p; ˛) denotes
the probability density of transitions from st to stC1. The
optimal decision sequence is denoted by ı D (ı0; : : : ; ıT )
where dt D ıt(st) and is the optimal solution that maxi-
mizes the expected discounted utility:

Vt(s) D max
ı

Eı

8
<

:

TX

jDt

ˇ j�tu j(s j; dj ; �u)jst D s

9
=

;
: (19)

The model takes Social Security and Medicare pol-
icy parameters, ˛, as known. The structural parameters
� D (ˇ; �u ; �p) are to be estimated. To specify the stochas-
tic structure of themodel the state variables are partitioned
as s D (x; �), where x is observable and � is unobservable
(for the econometrician); �t(d) can be thought of as the
net utility or disutility impact due to factors unobserved
by the econometrician at time t.

An important assumption, due to Rust [81], which re-
stricts the role of � permits the following decomposition
of the joint probability distribution of (xtC1; �tC1):

Pr
�
xtC1; �tC1jxt; �t ; dt

�

D Pr
�
�tC1jxtC1

�
Pr
�
xtC1jxt; dt

�
:

Note that the first term on the right-hand side implies se-
rial independence of unobservables; the second term has
a Markov structure and implies that �t affects xt only
through dt .

vt(xt ; dt ; �; ˛) D ut(xt; dt ; �u)

Cˇ

Z
log

2

4
X

dtC12D(xtC1)

expfvtC1(xtC1; dtC1; �; ˛)g

3

5

pt(xtC1jxt; dt ; �p ; ˛) ; (20)

Estimation of the model, based on panel data fxit ; di
t g,

uses the likelihood function

L(�) D L(ˇ; �u ; �p)

D

IY

iD1

TiY

tD1

Pt(di
t jx

i
t ; �u)pt(x

i
t jx

i
t�1; d

i
t�1; �p) : (21)

This is a high dimensional model because a large num-
ber of state variables and associated parameters are needed
to specify the future expectations. (This complexity is
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highlighted to emphasize that DP models run into dimen-
sionality problems very fast.) First, strong assumptions are
needed to address the unobservable and subjective aspects
of decision-making because there are a huge number of
possible future contingencies to take into account. Second,
restrictions are needed to estimate the belief arrays. Con-
sistent with tenets of rational agents the model assumes
rational expectations. To impose exclusion restrictions pt
is decomposed into a product of marginal and conditional
densities.

As a simplification a two-stage estimation procedure
is used: (1) estimate �p using first stage partial likelihood
function involving only products of the pt terms; (2) esti-
mate �p by solving the DP problem numerically, and esti-
mate (ˇ; �u) using a second stage partial likelihood func-
tion consisting of only products of Pt. The two-stage esti-
mation procedure is not as efficient as the full maximum
likelihood estimation since the error in �̂p contaminates
the estimated covariance matrix for �u .

Space limitations do not permit us to provide the de-
tails of the computational procedure, for which we refer
the reader to Rust [81]. In outline, at the first step the
procedure estimates the transition probability parameters
�p using the partial likelihood function and at the second
stage a Nested Fixed Point (NFP) algorithm is used to es-
timate the remaining parameters.

NewDirections in StructuralModeling

The motivation for many of the recent developments lies
in the difficulties and challenges of identifying causal pa-
rameters under fewer distributional and functional form
restrictions. Indeed an easily discernible trend in modern
research is steadymovement away from strong parametric
models and towards semi-parametricmodels. Increasingly
semiparametric identification is the stated goal of theo-
retic research [41]. Semiparametric identification means
that unique estimates of the relevant parameters can be ob-
tained without making assumptions about distribution of
data, and some times it also means that assumptions about
functional forms can also be avoided. Potentially there are
numerous ways in which the identification of key model
parameters can be compromised. The solution strategy in
such cases is often model specific. This section provides
a selective overview of recent developments in microe-
conometrics that address such issues.

Endogeneity and Multivariate Modeling

Structural nonlinear models involving LDVs arise com-
monly in microeconometrics. A leading example of
a causal model involves modeling the conditional distri-

bution (or moments) of a continuous outcome (y) which
depends on variables (x;D) where D is an endogenous bi-
nary treatment variable. For example, y is medical expen-
diture and D is a binary indicator of health insurance sta-
tus. The causal parameter of interest is the marginal effect
of D on y. More generally y could be binary, count, an or-
dered discrete variable, or a truncated/censored continu-
ous variable. More generally the issue is that multivariate
modeling. Currently there is no consensus on econometric
methodology for handling this class of problems. Some of
the currently available approaches are now summarized.

Control Functions A fully parametric (“full informa-
tion”) estimation strategy requires the specification of the
joint distribution of (y;D), which is often difficult be-
cause such a joint distribution is rarely available. Another
(“limited information”) strategy is to estimate only the
conditional model, quite often only the conditional mean
E[yjx;D], controlling for endogeneity of treatment. If the
model is additively separable in E[yjx;D] and the stochas-
tic error " which is correlated with d so that E("D) ¤ 0,
then a two-step procedure may be used. This involves re-
placing D by its projection on a set of exogenous instru-
mental variables z (usually including x), denotedbD(z), and
estimating the conditional expectation E[yjx;bD(z)]. Un-
fortunately, this approach does not always yield a consis-
tent estimate of the causal parameter; for example, if the
conditional mean is nonlinear in (x;D). Therefore this ap-
proach is somewhat ad hoc.

Another similar strategy, called the control function
approach, involves replacing E[yjx;D] by E[yjx;w;D].
Here w is a set of additional variables in the conditional
mean function such that the assumption E("Djw) D 0;
that is D can be treated as exogenous, given the presence
of w in the conditional mean function. Again such an ap-
proach does not in general identify the causal parameter
of interest. Additional restrictions are often necessary for
structural identification. In a number of cases where the
approach has been shown to work some functional form
and structural restrictions are invoked, such as additive
separability and a triangular error structure.

Consider the following example of an additively sep-
arable model with a triangular structure. Let y1 be the de-
pendent variable in the outcome equation, which is written
as

y1 D E
�
y1jD; x

�
C u1 C u2 ;

where (u1 C u2) is the composite error. Let D denote the
treatment indicator for which the model is

D D E
�
Djz

�
C u2 :
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A simple assumption on the distribution of the error terms
takes them to be zero-mean and mutually uncorrelated.
In this case the control function approach can be used.
Specifically a consistent estimate of u2, say bu2, can be
included as an additional regressor to the y1 equation.
This type of argument has been used for handling en-
dogeneity in regression models that are specified for, in-
stead of the conditional mean, the conditional median or
conditional quantile regression; see Chesher [14], Ma and
Koenker [60]. The control function approach has been
adapted for treating endogeneity problems in semipara-
metric and nonparametric framework [9].

Latent Factor Models Another “full information” ap-
proach that simultaneously handles discrete variation and
endogeneity also imposes a restriction on the structure of
dependence using latent factors and resorts to simulation-
assisted estimation. An example is Deb and Trivedi [18]
who develop a joint model of counts, with a binary in-
surance plan variable (D) as a regressor, and a model for
the choice of insurance plan. Endogeneity in their model
arises from the presence of correlated unobserved hetero-
geneity in the outcome (count) equation and the binary
choice equation. Their model has the following structure:

Pr
�
Yi D yi jxi ;Di ; l ji

�
D f

�
x0iˇ C �1Di C li


:

Pr
�
Di D 1jzi ; l ji

�
D g

�
z0i˛C ı li


:

Here li is latent factor reflecting unobserved hetero-
geneity and ı is an associated factor loading. The joint dis-
tribution of selection and outcome variables, conditional
on the common latent factor, can be written as

Pr
�
Yi D yi ;Di D 1jxi ; zi ; li

�

D f
�
x0iˇ C �1Di C li


� g

�
z0i˛ j C ı li


; (22)

because
�
y;D


are conditionally independent.

The problem in estimation arises because the li are un-
known. Although the li are unknown, assume that the dis-
tribution of li, h, is known and can therefore be integrated
out of the joint density, i. e.,

Pr
�
Yi D yi ;Di D 1jxi ; zi

�

D

Z �
f
�
x0iˇ C �1Di C li


� g

�
z0i˛ j C ı li

�

h (li) dli :

Cast in this form, the unknown parameters of the model
may be estimated by maximum likelihood.

The maximum likelihood estimator maximizes the
joint likelihood function L(�1;�2jyi ;Di ; xi ; zi ), where

�1 D (ˇ; �1; ) and �2 D (˛; ı), refer to parameters in the
outcome and plan choice equations respectively, and L
refers to the joint likelihood.

The main problem of estimation, given suitable speci-
fications for f , g and h, is the fact that the integral does not
have, in general, a closed form solution. The maximum
simulated likelihood (MSL) estimator involves replacing
the expectation by a simulated sample average, i. e.,

ePr[Yi D yi ;Di D 1jxi ; zi ]

D
1
S

SX

sD1

�
f
�
x0iˇ C �1Di C

X

j
el i s

�

�g


z0i˛C ıel i s

�i
; (23)

where el i s is the sth draw (from a total of S draws) of
a pseudo-random number from the density h and ePr de-
notes the simulated probability.

The above approach, developed for an endogenous
dummy regressor in a count regression model, can be ex-
tended to multiple dummies (e. g. several types of health
insurance), and multiple outcomes, discrete or continu-
ous (e. g. severalmeasures of health care utilization such as
number of doctor visits, prescribed medications). The lim-
itation comes from the heavy burden of estimation com-
pared with an IV type estimator. Further, as in any simul-
taneous equation model, identifiability is an issue. Applied
work typically includes some nontrivial explanatory vari-
ables in the z vector that are excluded from the x vector. As
an example, consider insurance premium which would be
a good predictor of insurance status but will not directly
affect health care use.

Instrumental Variables and Natural Experiments

If identification is jeopardized because the treatment vari-
able is endogenous, then a standard solution is to use valid
instrumental variables. To identify the treatment effect pa-
rameter we need exogenous sources of variation in the
treatment. Usually this means that the model must include
at least the minimum number of exogenous variables (in-
struments) that affect the outcome only through the treat-
ment – an assumption usually called an exclusion or iden-
tification restriction. This requirement may be difficult to
satisfy. Keane [49] gives an example where there are no
possible instruments. Even this extreme possibility is dis-
counted, agreement on valid instruments is often difficult,
and when such agreement can be established the instru-
ments may be “weak” in the sense that they do not account
for substantial variation in the endogenous variables they
are assumed to affect directly. The choice of the instru-



Microeconometrics M 5565

mental variable as well as the interpretation of the results
obtained must be done carefully because the results may
be sensitive to the choice of instruments. In practice, such
instrumental variables are either hard to find, or they may
generate only a limited degree of variation in the treatment
by impacting only a part of the relevant population.

A natural experiment may provide a valid instrument.
The idea here is simply that a policy variable may exoge-
nously change for some subpopulation while remaining
unchanged for other subpopulations. For example, min-
imum wage laws in one state may change while they re-
main unchanged in a neighboring state. Such events create
natural treatment and control groups. Data on twins of-
ten provide data with both natural treatment and control,
as has been argued in many studies that estimate the re-
turns to schooling; see Angrist and Krueger [5]. If the nat-
ural experiment approximates randomized treatment as-
signment, then exploiting such data to estimate structural
parameters can be simpler than estimation of a larger si-
multaneous equations model with endogenous treatment
variables. However, relying on data from natural experi-
ments is often not advisable because of such events are rare
and because the results from them may not generalize to
a broader population.

Limitations of the IVApproach Some limitations of the
IV approach, e. g. the weak IV problem, are general but
certain others are of special relevance to microeconomet-
rics. One of these is a consequence of heterogeneity in the
impact of the policy on the outcome. Consideration of this
complication has led to significant refinements in the in-
terpretation of results obtained using the IV method.

In many applications of the POM framework, the un-
derlying assumption is that there exists a comparison
group and a treatment that is homogeneous in its response
to the treatment. In the heterogeneous case, the change in
the participation in treatment generated by the variation in
the instrument may depend both upon which instrument
varies, and on the economic mechanism that links the par-
ticipation to the instrument. As emphasized by Heckman
and Vytlacil [38], Keane [49] and others, a mechanical ap-
plication of the IV approach has a certain black box char-
acter because it fails to articulate the details of the mecha-
nism of impact. Use of different instruments identify dif-
ferent policy impact parameters because they may impact
differently on different members of the population. Heck-
man and Vytlacil [38] emphasize that the presence of un-
observed heterogeneity and selection into treatment may
be based on unobserved gains, a condition they call essen-
tial heterogeneity. The implication for the choice of IVs is
that these may be independent of the idiosyncratic gains

in the overall population, but conditional on those who
self-select into treatment, they may no longer be indepen-
dent of the idiosyncratic gains in this subgroup. Further,
as a consequence of the dependence between treatment
choice and IV estimates different IVs identify different pa-
rameters. In this context, an a priori specification of the
choice model for treatment is necessary for the interpreta-
tion of IV estimators.

The concept of local instrumental variables is related to
the local average treatment (LATE) parameter introduced
by Imbens and Angrist [45]. To illustrate this we consider
the following canonical linear model.

The outcome equation is a linear function of observ-
able variables x and a participation indicator D:

yi D x0iˇ C ˛Di C ui ; (24)

and the participation decision depends upon a single vari-
able z, referred to as an instrument,

D�i D �0 C �1zi C vi ; (25)

where D�i is a latent variable with its observable counter-
part generated by

Di D

�
0 if D�i � 0
1 if D�i > 0 : (26)

There are two assumptions: (1) There is an exclusion re-
striction as the variable z that appears in the equation forD
that does not appear in the equation for x. (2) Conditional
on (x; z) Cov [z; v] D Cov [u; z] D Cov [x; u] D 0, but
Cov [D; z] ¤ 0. It is straightforward to show that the IV
estimator of the treatment effect parameter ˛ is

˛IV D
E
�
yjz0

�
� E

�
yjz
�

Pr [D (z0) D 1] � Pr [D (z) D 1]
; (27)

which is well-defined if Pr
�
D
�
z0

D 1

�
�Pr [D (z) D 1] ¤

0. The sample analog of ˛IV is the ratio of the mean differ-
ence between the treated and the nontreated divided by the
change in the proportion treated due to the change in z.

Why does this measure a “local” effect? This is because
the treatment effect applies to the “compliers” only, that
is those who are induced to participate in the treatment
as a result of the change in z; see Angrist et al. [6]. Thus
LATE depends upon the particular values of z used to
evaluate the treatment and on the particular instrument
chosen. Those who are impacted may not be representa-
tive of those treated, let alone the whole population. Con-
sequently the LATE parameter may not be informative
about the consequences of large policy changes brought
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about by changes in instruments different from those his-
torically observed.

If more than one instrument appears in the participa-
tion equation, as when there exist overidentifying restric-
tions, the LATE parameter estimated for each instrument
will in general differ. However, a weighted average may be
constructed.

Omitted Variables, Fixed and Random Effects

Identification may be threatened by the presence of a large
number of nuisance or incidental parameter. For exam-
ple, in a cross section or panel data regression model
the conditional mean function may involve an individual
specific effect ˛i , i. e. E[yi jxi ; ˛i ] or E[yi tjxi t; ˛i ] where
i D 1; : : : ;N , t D 1; : : : ; T . The parameters ˛i may be in-
terpreted as omitted unobserved factors. Two standard
statistical models for handling them are fixed and random
effect formulations. In a fixed-effect (FE) model the ˛i
are assumed to be correlated with the observed covariates
xi , i. e. E[jxi tj˛i ] ¤ 0, whereas in the random effects (RE)
model E[jxi tj˛i] D 0 is assumed. Because the FE model is
less restrictive, it has considerable appeal in microecono-
metrics.

FE Models In FE models this effect cannot be identi-
fied without multiple observations on each individual, i. e..
panel data. Identification is tenuous even with panel data
if the panel is short, i. e. T is small; see Lancaster [54] about
the incidental parameters problem. The presence of these
incidental parameters in the model also hinders the iden-
tification of other parameters of direct interest. A feasible
solution in the case where both N and T are large, is to in-
troduce dummy variables for each individual and estimate
all the parameters. The resulting computational problem
has a large dimension but has been found to be feasible
not only in the standard case of linear regression but also
for some leading nonlinear regressions such as the Probit,
Tobit and Poisson regressions [26,27].

If the panel is short, the ˛i (i D 1; : : : ;N) cannot be
identified and no consistent estimator is available. Then
the identification strategy focuses on the remaining pa-
rameters that are estimated after eliminating ˛i by a trans-
formation of the model. Consider, as an example, the lin-
ear model with both time-varying and time-invariant ex-
ogenous regressors (x0i t; z

0
i )

yi t D ˛i C x0i tˇ C z0i� C "i t ; (28)

where ˇ and  are common parameters, while ˛1; : : : ; ˛N
are incidental parameters if the panel is short as then each
˛i depends on fixed T observations and there are infinitely

many ˛i since N !1. Averaging over T observations
yields

ȳ i D ˛i C x̄0iˇ C z0i� C "̄i : (29)

On subtracting we get the “within model”

yi t � ȳ i D (xi t � x̄i)0ˇ C ("i t � "̄i) ;
i D 1; : : : ;N ; t D 1; : : : ; T ; (30)

where the ˛i term and the time-invariant variables zi dis-
appear. A first difference transformation yi t � yi;t�1 can
also eliminate the ˛i . The remaining parameters can be
consistently estimated, though the disappearance of vari-
ables from the model means that prediction is no longer
feasible.

Unfortunately this elimination “trick” does not gener-
alize straight-forwardly to other models, especially non-
linear nonnormal models with fully specified distribution.
There is no unified solution to the incidental parameters
problem, only model-specific approaches. In some special
cases the conditional likelihood approach does solve the
incidental parameter problem, e. g. linear models under
normality, logit models (though not probit models) for bi-
nary data, and some parametrizations of the Poisson and
negative binomial models for count data. The RE model,
by contrast, can be applied in more widely.

RE Panel Models If the unobservable individual effects
˛i , ˛i > 0, are random variables that are distributed in-
dependently of the regressors, the model is called the ran-
dom effects (RE) model. Usually the additional assump-
tions that both the random effects and the error term are
also employed, i. e.,˛i � [˛; �2˛], and "i t � [0; �2" ] are also
employed. More accurately this is simply the random in-
tercept model. As a specific example consider the Poisson
individual-specific effects model which specifies

yi t � Poisson[˛i exp(x0i tˇ)] :

If we assume gamma distributed random effects dis-
tributed with mean 1, variance 1/� D � and density
g(˛i j�) D ��˛

��1
i e�˛i�/� (�), there is a tractable analyti-

cal solution for the unconditional joint density for the ith
observation

R hQT
tD1 f (yi tjxi t; ˛i ;ˇ; )

i
g(˛i j�)d˛i (see

Cameron and Trivedi ([13]: chapter 23.7 for algebraic de-
tails). However, under other assumptions about the distri-
bution (e. g. log-normal) a closed form unconditional den-
sity usually does not arise, and estimation is then based on
numerical integration – an outcome that is fairly common
for nonlinear random effect models.
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Modeling Heterogeneity

To accommodate the diversity and complexity of re-
sponses to economic factors, it is often necessary to al-
low for variation in the model parameters. There are many
specification strategies to accomplish such a goal. One of
the most popular and well-established strategy is to model
heterogeneity using some type of mixturemodel. Typically
the specification of a mixture model involves two steps. In
the first step a conditional distribution function F(yjx; �)
is specified where x is an observed vector of covariates
and � is an unobserved heterogeneity term, referred to
as frailty in biostatistics. In the second step a distribution
G(�) is specified for � and a mixture model is derived. The
distribution of � may be continuous or discrete. Poisson-
gamma mixture for count data and Weibull–gamma mix-
tures for survival data are two leading examples based on
continuous heterogeneity assumption. The mixed multi-
nomial logit model (MMNL) is another example [75].

The mixture class of models is very broad and includes
two popular subclasses, the random coefficient approach
and the latent class approach. While relatively simple in
formulation, such mixture approaches often generate ma-
jor identification and computational challenges [24]. Here
I provide two examples that illustrate the issues associated
with their use.

Latent Class Models Consider the following two-com-
ponent finite mixture model. If the sample is a prob-
abilistic mixture from two subpopulations with p.d.f.
f1(yj�1(x)) and f2(yj�2 (x)), then � f1(:)C (1 � �) f2(:),
where 0 � � � 1, defines a two-component finite mix-
ture. That is, observations are draws from f 1 and f 2, with
probabilities � and 1 � � respectively. The parameters to
be estimated are (�;�1; �2). The parameter � may be fur-
ther parameterized.

At the simplest level we think of each subpopulation as
a “type”, but in many situations a more informative inter-
pretation may be possible. There may be an a priori case
for such an interpretation if there is some characteristic
that partitions the sampled population in this way. An al-
ternative interpretation is simply that the linear combina-
tion of densities is a good approximation to the observed
distribution of y. Generalization to additive mixtures with
three or more components is in principle straight-forward
but subject to potential problems of the identifiability of
the components.

Formally the marginal (mixture) distribution is

h
�
ti jxi ; � j ;ˇ


D

mX

jD1

f
�
ti jxi ; � j ;ˇ


� j
�
� j

; (31)

where � j is an estimated support point and � j is the asso-
ciated probability. This representation of unobserved het-
erogeneity is thought of as semiparametric because it uses
a discrete mass point distribution. The specification has
been found to be very versatile. It has been used to model
duration data where the variable of interest is the length
of time spent in some state, e. g. unemployment, and indi-
viduals are thought to differ both interms of their observ-
able and unobservable characteristics; see Heckman and
Singer [37].

The estimation of the finite mixture model may
be carried out either under the assumption of known
or unknown number of components. More usually the
proportions � j; j D 1; : : : ;m are unknown and the esti-
mation involves both the � j and the component param-
eters. The maximum likelihood estimator for the latter
case is called Nonparametric Maximum Likelihood Esti-
mator (NPMLE), where the nonparametric component is
the number of classes. Estimation is challenging, especially
if m is large because the likelihood function is generally
multi-modal and gradient-based methods have to be used
with care. If the number of components is unknown, as
is usually the case, then some delicate issues of inference
arise. In practice, onemay consider model comparison cri-
teria to select the “best” value of m. Baker and Melino [8]
provide valuable practical advice for choosing this param-
eter using an information criterion.

LC models are very useful for generating flexible func-
tional forms and for approximating the properties of non-
parametricmodels. For this reason it has been usedwidely.
Deb and Trivedi [16,17] use the approach for modeling
mixtures of Poisson and negative binomial regressions.
McFadden and Train [75] show that latent class multino-
mial logit model provides an arbitrarily good approxima-
tion to any multinomial choice model based on the RUM.
This means that it provides one way of handling the IIA
problem confronting the users of the MNL model. Dy-
namic discrete choice models also use the approach.

LC models generate a computational challenge arising
from having to choose m and to estimate corresponding
model parameters for a givenm, and there is the model se-
lection problem. Often there is no prior theory to guide
this choice which in the end may be made largely on
grounds of model goodness-of-fit. Akaike’s or Bayes pe-
nalized likelihood (or information) criterion (AIC or BIC)
is used in preference to the likelihood ratio test which is
not appropriate because of the parameter boundary hy-
pothesis problem. The dimension of parameters to be es-
timated is linear in m, the number of parameters can be
quite large in many microeconometric applications that
usually control for many socio-demographic factors. This
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number can be decreased somewhat if some elements are
restricted to be equal, for example by allowing the inter-
cept but not the slope parameters to vary across the latent
classes; see, for example, Heckman and Singer [37].

When the model is overparametrized, perhaps because
the intergroup differences are small, the parameters can-
not be identified. The problem is reflected in slow conver-
gence in computation due to the presence of multiple op-
tima, or a flat likelihood surface. The computational algo-
rithm may converge to different points depending on the
starting values.

Interpretation of the LC model can be insightful be-
cause it has the potential to capture diverse responses to
different stimuli. However, a potential limitation is due to
the possibility that additional components may simply re-
flect the presence of outliers. Though this is not necessarily
a bad thing, it is useful to be able to identify the outlying
observations which are responsible for one or more com-
ponents.

Random Coefficient Models Random coefficient (RC)
models provide another approach to modeling hetero-
geneity. The approach has gained increasing popularity
especially in the applications of discrete choice modeling
to marketing data. In this section I provide an exposition
of the random coefficient logit model based on Train [89]
where a more comprehensive treatment is available. The
random coefficient models extend the RUM model of
Sect. “Introduction” which restricts the coefficients of pa-
rameters to be constant across individuals. If individuals
have different utility functions then that is a misspecifica-
tion. The RC framework is one of a number of possible
ways of relaxing that restriction.

The starting point is the RUM framework pre-
sented in Sect. “Introduction”. Assume individual i(i D
1; 2; : : : ;N) maximizes utilityUij by choosing alternative j
from her choice set Mn D (0; 1). The utility Unj has ob-
served (systematic) part V(Xi j ;ˇ i) and random part "i j ;

Ui j D V(Xi j ;ˇ i)C "i j ;
j D 0; 1 ; i D 1; 2; : : : ;N : (32)

Vector Xn j in V(:; :) represents observed attributes of al-
ternatives, characteristics of the individual i as well as al-
ternative-specific constants. ˇ i is the vector of coefficients
associated with Xi j . Error term "i j captures unobserved
individual characteristics/unobserved attributes of the al-
ternative j and follows some distribution D(�"), where
�" is the unknown parameter vector to be estimated. Of
course, Uij is latent, so we use an indicator function, yij,
such that yi j D 1 if Ui j � Uik8k ¤ j and yi j D 0 other-

wise. Probability that individual i chooses alternative j is

Pi j D P( jjXi ;ˇ i ;�") D P(yi j D 1)
D P(Ui j � Uii8i ¤ j) ;

and the probability that alternative j is chosen is
P(yi j jXi ;ˇ i ;�") D Pyi j

i j , which, under the independence
assumption, leads to the likelihood

L(ˇ;�") D
NY

iD1

Y

j2Mi

Pyi j
i j : (33)

Different assumptions on the error structure lead to
different discrete choice models. The kth component of
the vector ˇ i , which represents the coefficient of some at-
tribute k, can be decomposed as ˇi k D bC ı0!i C �k�i k ,
if the coefficient is random and simply ˇnk D b, if the
coefficient is non-random. Here b represents the average
taste in the population for provider attribute k,!i is a vec-
tor of choice-invariant characteristics that generates indi-
vidual heterogeneity in the means of random coefficients
ˇ i , and ı is the relevant parameter vector. Finally, �i k is
the source of random taste variation, which is be assumed
to have a known distribution, e. g. normal.

If random parameters are not correlated then � D
diag(�1; �2; : : : ; �K ) is a diagonal matrix. To allow for cor-
related parameters,� is specified as a lower triangularma-
trix so that the variance-covariance matrix of the random
coefficients becomes � � 0 D ˙ . Non-random parameters
in the model can be easily incorporated in this formula-
tion by specifying the corresponding rows in D and � to
be zero. The conditional choice probability that individ-
ual i chooses alternative j, conditional on the realization of
�i , is

P
�
jj�i ;�


D

exp
�
� j C ˇ

0
i X̃i j



1C exp
�
�i C ˇ

0
iX̃i j

 ; (34)

where � D (b;D;� ) and �i has distribution G with mean
vector 0 and variance-covariance matrix I.

Unconditional choice probability Pij for alternative j is
given by

Pi j D
Z

�i

P
�
jj�i ;�


dF�(�i) ; (35)

where F�(:) is the joint c.d.f. of �i . The choice probability
can be interpreted as a weighted average of logit probabili-
ties with weights given by themixing c.d.f. F�(:). Following
(10), the log-likelihood for � is given by:

L(�) D
NX

iD1

1X

jD0

yi j log Pi j : (36)
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The unconditional choice probability Pnj involves an
integral over the mixing distribution, but the log-like-
lihood function does not generally have a closed form.
Hence one cannot differentiate the log-likelihood function
with respect to the parameter vector � D (b;D;� ) and
solve the first order conditions in order to obtain the pa-
rameter estimates. Instead, one estimates the choice prob-
ability Pij through simulation and then maximize the re-
sulting simulatedmaximum likelihood (SML) with respect
to the parameter vector.

Train [89] shows that this mixed logit framework leads
to a tractable, unbiased and smooth simulator for the
choice probability defined by:

P̂i j D P̂( jjXi ;�) D
1
S

SX

sD1

P( jjXi ;ˇ
s
i ;�) ; (37)

where ˇs
i D bCD!i C � �

s
i and �

s
i is the sth (s D 1; 2;

: : : ; S) draw from the joint distribution of �si , i. e., from
f (�i ).

The log-likelihood function can be approximated by
maximum simulated log-likelihood (MSL) given by

SL(�ˇ ) D
NX

iD1

1X

jD0

yi j log P̂i j

D

NX

iD1

1X

jD0

yi j log

"
1
S

SX

sD1

P( jjXi ;ˇ
s
i ;�)

#

: (38)

Note that although P̂j is unbiased for Pj, ln(P̂j) is not un-
biased for ln(Pj), therefore the simulator generates some
bias. To avoid bias, the simulation approximation should
be improved. That means one must choose S to be suffi-
ciently large. How large is “sufficiently large”? There is no
fixed answer. But a result due to Gourieroux and Mon-
fort [28] states indicates that the number should increase
with the sample sizeN. Specifically, if the number of simu-
lations, S, increases faster than the square root of the num-
ber of observations, this bias disappears in large samples.
More pragmatically, the user should check that the results
do not change much if S is increased.

To simulate the choice probability Pij, one generally re-
quires a large number of pseudo-random draws from the
mixing distribution so that resulting simulation errors in
the parameter estimates are kept at a reasonable level. For-
tunately, advances in simulation methodology, such as the
use of quasi-random numbers, in place of pseudo-random
numbers, makes this feasible; see Train [89].

The preceding examples illustrate the point that ac-
commodating heterogeneity in a flexible manner comes
at a considerable computational cost. In many cases they
lead to simulation-assisted estimation, this being an area

Microeconometrics, Table 1
Alternative sample stratification schemes

Stratification
Scheme

Description

Simple random One strata covers entire sample space.
Pure exogenous Stratify on regressors only, not on

dependent variable.
Pure endogenous Stratify on dependent variable only, not on

regressors.
Augmented
sample

Random sample augmented by extra
observations from part of the sample space.

Partitioned Sample space split into mutually exclusive
strata that fill the entire sample space.

of microeconometrics that has developedmainly since the
1990s.

Nonrepresentative Samples

Microeconometric methods often invoke the assumption
that analysis is based on simple random samples (SRS).
This assumption is hardly ever literally true for survey
data. More commonly a household survey may first strati-
fies the population geographically into subgroups and ap-
plies differing sampling rates for different subgroups. An
important strand in microeconometrics addresses issues
of estimation and inference when the i.i.d. assumption no
longer applies because the data are obtained from strati-
fied and/or weighted samples. Stratified sampling methods
also lead to dependence or clustering of cross section and
panel observations. Clusters may have spatial, geographi-
cal, or economic dimension. In these cases the usual meth-
ods of establishing distribution of estimators based on the
SRS assumption need to be adapted.

Stratified Samples For specificity it is helpful to men-
tion some common survey stratification schemes. Table 1
based on Imbens and Lancaster [46] and Cameron and
Trivedi [13], provides a summary.

Econometricians have paid special attention to en-
dogenous stratification because this often leads to incon-
sistency of some standard estimation procedures such as
ML; see Manski and Lerman [64], Cosslett [15], Manski
and McFadden [65]. One example is choice-based sam-
pling for binary or multinomial data where samples are
chosen based on the discrete outcome y. For example, if
choice is between travel to work by bus or travel by car we
may over-sample bus riders if relatively few people com-
mute by bus. A related example is count data on number of
visits collected by on-site sampling of users, such as sam-
pling at recreational sites or shopping centers or doctors
offices. Then data are truncated, since those with y D 0 are
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not sampled, and additionally high frequency visitors are
over-sampled.

Endogenously stratified sampling leads to the den-
sity in the sample differing from that in the population
(Cameron and Trivedi, pp. 822–827 in [13]). If the sam-
ple and population strata probabilities are known, then the
standard ML and GMM estimation can be adapted to re-
flect the divergence. Typically this leads to weightedML or
weighted GMM estimation [46].

Clustered andDependent Samples Survey data are usu-
ally dependent. This may reflect a feature of the sur-
vey sampling methodology, such as interviewing several
households in a neighborhood. Consequently, the data
may be correlated within cluster due to presence of a com-
mon unobserved cluster-specific term. Potentially, such
dependence could also arise with SRS.

There are several different methods for controlling
for dependence on unobservables within cluster. If the
within cluster unobservables are uncorrelated with regres-
sors then only the variances of the regression parameters
need to be adjusted. This leads to cluster-correction-of-
variances methods that are now well-embedded in popu-
lar software packages such as Stata. If, instead, the within
cluster unobservables are correlated with regressors then
the regression parameters are inconsistent and fixed ef-
fects type methods are called for. The issues and available
methods closely parallel those for fixed and random effects
panels models. Further, methods may also vary according
to whether there are many small clusters or few large clus-
ters. Examples and additional detail are given in Cameron
and Trivedi [13].

An important new topic concerns dependence in cross
section and panel data samples between independently
obtained measures. Several alternative models are avail-
able to motivate such dependence. Social interactions [21]
between individuals or households, and spatial depen-
dence [7] where the observational unit is region, such as
state, and observations in regions close to each other are
likely to be interdependent, are examples. Models of so-
cial interaction analyze interdependence between individ-
ual choices (e. g. teenage smoking behavior) due to, for ex-
ample, peer group effects. Such dependence violates the
commonly deployed i.i.d. assumption, and in some cases
the endogeneity assumption. Lee [57] and Andrews [4] ex-
amine the econometric implications of such dependence.

Major Insights

A major role of microeconometrics is inform public pol-
icy. But public policy issues arise not only in the context of

existing policies whose effectiveness needs evaluation but
also for new policies that have never been tried and old
policies that are candidates for adoption in new economic
environments. No single approach to microeconometrics
is appropriate for all these policy settings. All policy evalu-
ation involves comparison with counterfactuals. The com-
plexity associated with generating counterfactuals varies
according to the type of policy under consideration as well
as the type of data on which models are based. A deeper
understanding of this fundamental insight is a major con-
tribution of modern microeconometrics.

A second major insight is the inherent difficulty of
making causal inferences in econometrics. Many differ-
ent modeling strategies are employed to overcome these
challenges. At one end of the spectrum are highly struc-
tured models that make heavy use of behavioral, distribu-
tional and functional form assumptions. Such models ad-
dress more detailed questions and provide, conditional on
the framework, more detailed estimates of the policy im-
pact. At the other end of the spectrum are methods that
minimize on assumptions and aim to provide informative
bounds for measures of policy impact. While the literature
remains unsettled on the relative merits and feasibility of
these approaches, the trend in microeconometrics is to-
wards fewer and less restrictive assumptions.

There is now a greater recognition of the challenges as-
sociated with analyzes of large complex data sets generated
by traditional sample surveys as well as other automated
and administrative methods. In so far as such challenges
are computational, advances in computer hardware and
software technologies have made a major contribution to
their solution.
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Glossary

Reynolds number A characteristic dimensionless num-
ber that determines the nature of fluid flow in a given
set up.

Stokes approximation A simplifying approximation of-
ten made in fluid mechanics where the terms arising
due to the inertia of fluid elements is neglected. This
is justified if the Reynolds number is small, a situation
that arises for example in the slow flow of viscous liq-
uids; an example is pouring honey from a jar.

Ion mobility Velocity acquired by an ion per unit applied
force.

Electrophoretic mobility Velocity acquired by an ion per
unit applied electric field.

Zeta-potential The electric potential at the interface of
an electrolyte and substrate due to the presence of in-
terfacial charge. Usually indicated by the Greek letter
zeta (�).

Debye layer A thin layer of ions next to charged interfaces
(predominantly of the opposite sign to the interfacial
charge) due to a balance between electrostatic attrac-
tion and random thermal fluctuations.

Debye length A measure of the thickness of the Debye
layer.

Debye–Hückel approximation The process of lineariz-
ing the equation for the electric potential; valid if the
potential energy of ions is small compared to their av-
erage kinetic energy due to thermal motion.

Electric double layer (EDL) The Debye layer together
with the set of fixed charges on the substrate consti-
tute an EDL. It may be thought of as a parallel plate
capacitor or a layer of dipoles .

Electrophoresis The motion of charged objects in a fluid
due to an imposed electric field.

Dielectrophoresis The phenomenon that results in a po-
larizable dielectric medium experiencing a force in
a non-uniform electric field.

Electroosmosis The motion of an ionic liquid relative to
a fixed charged substrate due to an imposed electric
field.

AC Electroosmosis or induced charge electroosmosis
(ICEO) Fluid flow caused by an electric field in an ionic

medium containing embedded polarizable objects
(such as metal cylinders). The effect is non-linear in
the electric field and can result in unidirectional flow
even with an AC voltage.

Thermocapillary effect Motion of fluid or object in fluid
due to spatial inhomogeneities in surface tension
caused by variations in the temperature field.

Marangoni effect Same as the Thermocapillary effect ex-
cept that the variation of surface tension is caused by
inhomogeneities in the concentration of a dissolved
chemical species such as a surfactant.

Electrowetting The phenomenon that results in changes
of contact angle of a conducting liquid drop placed on
a conducting plate when the electric potential of the
plate is changed.

Electrowetting on dielectric (EWOD) The same phe-
nomenon as electrowetting, except a thin dielectric
coating is applied on the metal plate so that the liquid
and the plate are not in electrical contact.

Definition of the Subject

Microfluidics is the science of manipulating fluids on spa-
tial scales anywhere between one to a hundred micron. In
SI units a micro-meter (μm) or micron refers to a mil-
lionth of a meter. To put this in perspective, the average
width of a human hair is about 80 microns and the di-
ameter of a hydrogen atom is 0.00005 micron. Thus, mi-
crofluidics involves engineering structures for manipulat-
ing fluids on scales that are microscopic in comparison to
human dimensions but that are nevertheless much larger
than atomic dimensions so that the systems can still be
treated in the continuum approximation. Microfluidic de-
vices are commonplace in the world of living things; for
example, the narrowest capillaries in the human circula-
tory system are of the order of 5–10 microns and the di-
ameter of a swimming bacteria maybe about 10 microns.
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However, devices engineered by humans that can be con-
sidered microfluidic is of much recent vintage. The meth-
ods as well as the motivation for designing microfluidic
devices entered an era of rapid development in the last
ten years or so, a trend that has continued to accelerate
to this date. The primary driving force behind this trend
has come from Molecular Biology and the Life Sciences
where progress has become dependent upon the ability to
perform analytical chemistry at heretofore unprecedented
speeds. As of 2006 there were about sixty companies in the
US engaged in marketing microfluidic products. Revenues
from such products reached 1.7 billion US dollars in 2003
and is projected to reach 2.7 billion US dollars in 2008.

Introduction

The idea of a microfluidic chip is derived from the con-
cept of a microelectronic chip. The difference is, channels
through which fluids flow take the place of conducting
pathways for electrons. The transistors and other micro-
electronic elements are replaced by mixers, separators and
othermicro-fluidic elements designed to perform the basic
tasks of analytical chemistry.

The Case for Microfluidics

The technology of microelectronics was invented and de-
veloped to fulfill a specific need: processing of digital infor-
mation in devices that are smaller, cheaper and faster. The
evolution of microfluidics is being driven by exactly the
same considerations except that the function that needs to
be performed is related to analytical chemistry. Applica-
tions in modern biology and medicine such as drug test-
ing, gene sequencing and gene expression studies require
the performance of extremely large numbers of repetitive
steps. For example, large banks of robots were employed
in the Human Genome Project which nevertheless took
eleven years and over three billion dollars to complete. An
analogy can be drawn with the Manhattan project where
large scale numerical calculations were laboriously per-
formed by rooms full of human ‘calculators’. However,
large scale automated laboratories for such functions as
gene sequencing can only be a temporary measure. The
ultimate enabling technology for ‘super-chemistry’ must
be minaturization, as it was for ‘super-computing’. This is
because (a) as device size shrinks, the time needed to per-
form a specific operation (such as electrophoretic separa-
tion) becomes smaller (b) a large number of identical steps
can be run in parallel on a small device (c) the amount
of sample and reagents consumed becomes much smaller
(d) the devices themselves can be mass produced lowering
the unit cost.

A Brief History of Microfluidics

Unlike microelectronics, which by now must be consid-
ered a mature technology, microfluidics is still in its in-
fancy. In fact microfluidics draws heavily from many of
the same technological breakthroughs that led to the cur-
rent sophistication in the manufacture of computer chips.
It is difficult to say whenmicrofluidics really began or what
the first “microfluidic device” was. If one uses the defini-
tion of microfluidics given in the introductory paragraph
as something that involves a device that manipulates fluid
on a 1–100 micron scale, then perhaps the ink jet printer
should qualify as one of the earliest microfluidic devices.
The first inkjet printer was patented by Siemens in 1951
and subsequently went through many stages of innova-
tions and improvement through the efforts of companies
such as HP, Xerox, IBM, Cannon, Epson and others. The
fluid mechanical principles involved are rich in complex-
ity and there are excellent reviews available on the sub-
ject [1]. An early example of a microfluidic chip is due to
Jacobson andRamseywho demonstratedDNARestriction
Fragment Analysis on a single chip under computer con-
trol [2]. The first commercial “Lab on a Chip” was the AG-
ILENT 2100 Bioanalyzer introduced in 1999. The number
of patents issued per year for inventions related to some
aspect of commercial microfluidic applications has grown
from a handful per year in the nineties to more than 350
patents a year.

Natural Microfluidic Systems

Microfluidic systems of beautifully elegant design are
commonplace in the natural world. A stunning example is
the fog harvesting Stenocara beetle of the Kalahari desert
in Namibia. The shell of this beetle is a patterned substrate
of alternating hydrophillic and hydrophobic areas [3]. The
beetle positions itself on top of sand dunes with its head
down and facing the ocean wind that blows in the early
morning fog. The surface patterning is designed to catch
the water droplets, grow them to a critical size and then de-
tach them. This size selection is important, for the droplets
need to be large enough to roll down by gravity against
the prevailing headwind and not be blown off the beetle’s
back. TheAfrican bombardier beetle (Stenaptinus insignis)
is armed with a potent microfluidics based weapon [4].
Its abdomen contains a reaction chamber which receives
a propellant (hydroquinone) and an oxidizer (hydrogen
peroxide) from separate storage organs. These two chem-
icals combine explosively in the presence of catalysts se-
creted within the reaction chamber. The result is a boiling
mixture of steam and corrosive liquid which the beetle is
able to deliver on to the target through a steerable nozzle
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Microfluidics, Figure 1
Left panel: Chipsets for the Agilent 2100 Bioanalyzer for performing various bio-analytical procedures Right panel: an example of
a microfluidic chip contained within the package. (Image: courtesy of Agilent Technologies)

Microfluidics, Figure 2
Examples of Microfluidic systems in the living world (A) the Stenocara beetle from Namibia (left) that harvests water droplets from
fog using a textured surfacewith alternating hydrophobic/hydrophillic areas as seen in themicroscope image (middle) (B) the African
“Bombardier Beetle” (Stenaptinus insignis) discharging a boiling toxic liquid jet (right) through steerable micro-nozzles (Images
reprinted with permission from Nature and Proc. Natl. Acad. Sci. USA – full citations in text)

with an accompanying loud bang! Other examples include
fluid flow through the proboscis of insects such as butter-
flies and mosquitoes, the flagellar propulsion of bacteria
such as E. Coli, propulsion by a single waving flagellum in
spermatozoa, use of cillia by numerous small animals for
moving fluids along and the interesting use of surface ten-
sion forces by insects and larva that live on the air water
interface in stagnant pools [5].

Understanding Microfluidics

A rich variety of microfluidic systems have arisen in the
natural world through millions of years of evolution and
natural selection. However, the history of microfluidics as
an area of human endeavor can be measured in decades. It
is therefore not surprising that practical microfluidic de-
vices are relatively few, many ideas such as the “Lab on

a Chip” exist mostly in concept and the most useful of mi-
crofluidic devices are probably yet to be conceived. In or-
der to translate concepts into practical devices, we must
learn to control fluids with great precision and speed at ul-
tra small scales. Such control can only be achieved through
a deep knowledge of the behavior of fluids on ultra small
scales. It is the purpose of this article to give an overview
of the mathematical laws that govern such fluid behavior
in the small.

Physics of Microfluidics

The laws of fluid motion for microfluidic systems are not
any different from those that govern large scale systems
such as the oceanic currents on intercontinental scales.
However, the relative importance of different forces and
effects change dramatically as we go from macro to mi-
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cro scales. Thus, for example, surface tension forces and
electrostatics play no role at all in the study of ocean
currents but are enormously important in the world of
microfluidics.

The remainder of this section is presented in three
subsections, Stokes Flow which deals with fluid motions
that are dominated by viscous resistance, Electrokinet-
ics which deals with the interaction of liquids with elec-
trostatic forces and finally the motion of fluids driven by
forces related to Surface Tension. The flow of gases is not
considered at all in this article because microfluidic de-
vices based on the flow of a gas is not very common. In the
case of gas flow, the most important physical effect to con-
sider is the likely break down of the classical gas dynamic
equations as the mean free path approaches the channel
diameter. The flow of rarefied gases have been reviewed by
Muntz [6].

Stokes Flow

In microfluidics, relevant physical dimensions are suffi-
ciently large in comparison to atomic scales that it is per-
missible to treat the fluid as if it were a continuum. Thus,
the fluid velocity u and pressure p are regarded as con-
tinuous functions of position x and time t, and they obey
the incompressible Navier–Stokes equations with a vol-
ume density of external forces fe

�0(@tuC u � ru) D �rpC �r2uC fe : (1)

This is supplemented by the continuity equation which
takes into account the fact that in a liquid the density
changes are slight, even for large changes in pressure:

r � u D 0 : (2)

In the above, �0 is the (constant) density of the fluid, p is
the pressure, u is the flow velocity.

The relative size of the term on the left of Eq. (1) (due
to fluid inertia) and the second term on the right (due to
viscosity) is characterized by the Reynolds number

Re D
UL�0
�

(3)

where U and L denote a characteristic velocity and
length for the flow. In most applications of microflu-
idics, Re
 1. In some applications, Re � 1. By contrast,
in large scale flows (aircraft engines, geophysical flows
etc.) Re	 1 is the rule. Because of the smallness of the
Reynolds number, Re, in microfluidics, most well known
flow instabilities leading to period doubling, chaos and fi-
nally turbulence are absent. Furthermore, the left hand

side of Eq. (1) which corresponds to fluid inertia can ei-
ther be neglected, or treated as a small perturbation. In the
former case, we arrive at the Stokes flow equations:

� rpC �r2uC fe D 0 (4)

which is often referred to as slow, creeping or highly
viscous flow. All of these terms mean the same thing,
namely Re D (UL�0)/�
 1. The unknown scalar field p
in Eq. (4) is determined by the constraint provided by
Eq. (2).

When the flow is bounded in one ormore spatial direc-
tions, boundary conditions must be specified to guarantee
unique solutions to Eqs. (4) and (2). Solid boundaries are
most commonly encountered where the classical “no slip”
boundary condition

u(P) D usolid(P) (5)

is employed: the fluid velocity at a point P on the solid fluid
interface must match the velocity of the solid, usolid(P) at
that interfacial point. The justification is empirical, and
based on the intuitive picture that on the micro-scale any
smooth surface is actually a rugged terrain of peaks and
valleys which effectively randomizes the direction of the
velocity vector of a molecule after it collides with the wall.
On the scale of macroscopic experiments, these boundary
conditions have always provided excellent agreement be-
tween theory and experiments except for describing the
motion of the contact line for drops moving on a sub-
strate. In these moving contact line problems, the no-slip
boundary conditions lead to a singularity of the stress
at the contact line [7]. In the flow of low density gases
through microchannels, the mean free path of molecules
could approach the channel diameter. In such cases devi-
ations from the Navier-Stokes equations with the no-slip
conditions have been observed [8,9]. In microfluidic sys-
tems, the validity of the no slip condition for liquid flow
have been questioned both from a theoretical as well as
an experimental perspective [10]. A consensus is yet to be
reached, however it seems that the deviation from the no-
slip condition, if there is such a deviation, is quite small.
The interpretation of experimental data is often compli-
cated by the presence of adsorbed gas microbubbles on
the interface, particularly if the interface is hydrophobic
in character [11].

Electrokinetics

Electrokinetics refers to mechanical effects that arise due
to the motion of ions in liquids. The working fluid in mi-
crofluidic systems is normally water which contains ions
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of both signs due to dissociated water molecules or other
ionic components: acids, salts, and molecules with dis-
sociable charged groups. Normally, a volume element of
such a fluid considered “infinitesimal” in the continuum
viewpoint still contains a sufficiently large number of ions
of either sign for statistical fluctuations to be unimportant
and for the fluid element to be considered charge neu-
tral. Therefore, the net algebraic transfer of momentum
due to any ambient electric field is also zero (even though
a non-zero electric current may exist in the fluid due to the
ordered motion of these ions). Electrokinetic effects arise
when this balance of positive and negative charges is dis-
turbed due to external factors. For example, at the silica
water interface, the hydrated silica often deprotonates re-
sulting in a net negative fixed surface charge on the sil-
ica surface. These fixed charges attract a layer of ions of
the opposite sign (and repel ions of like sign) resulting in
the creation of a fluid layer with a net positive charge next
to the interface. Similar effects arise at the surface of large
macromolecules, colloidal particles or surfactant micelles.
Thus, in the macroscopic description, the fluid in these so
calledDebye Layers experience an electrical force with vol-
ume density fe D ��er� where �e is the electric charge
density and � is the electric potential.

Ion Transport The electric potential � is related to the
charge density through the Poisson equation [12] of elec-
trostatics:

�r2� D �4��e ; (6)

" being the dielectric constant of the liquid (in CGS units).
If the electrolyte contains N species of ions with charges
ezk and concentration nk (k D 1; : : : ;N , and e is the mag-
nitude of the electron charge) then �e D

PN
kD1 ezknk .

Each ion species obeys a conservation equation

@nk
@t
Cr � jk D 0 : (7)

Here jk , the flux vector for the species k can be modeled by
the Nernst–Planck equation for ion transport [13]

jk D �vkzk enkr� � Dkrnk C nku : (8)

In Eq. (8), vk is the ion mobility: the velocity acquired by
the ion when acted upon by a unit of external force. It is
obviously related to the electrophoretic mobility: the ve-
locity per unit of electric field as �(ep)

k D ezkvk . The diffu-
sivity of the kth species is Dk and u is the fluid velocity.

The boundary conditions are those of no slip at the
wall for the velocity, u D 0, and no ion flux normal to

the wall jk � n̂ D 0 (n̂ is the unit normal directed into the
fluid). In the absence of external electric fields, the chem-
istry at the electrolyte substrate interface leads to the estab-
lishment of a potential, � D �. This so called �-potential
at an interface depends on a number of factors including
the nature of the substrate and ionic composition of the
electrolyte, the presence of impurities, the temperature,
the buffer pH and is even known to exhibit hysteresis ef-
fects with respect to pH [14]. Methods of determining the
�-potential and measured values for a wide variety of sur-
faces used in microfluidic technology have been reviewed
in [15] and [16].

Equilibrium Debye Layers The ion distribution near
a planar wall at z D 0 with potential �(z) is known from
statistical thermodynamics: nk D nk(1) exp(�zk e�/
kBT) where kB is the Boltzmann constant and T is the
absolute temperature of the solution. In order that this
expression be a steady solution of Eq. (7) we must have
the Einstein relation Dk/vk D kBT . Therefore Eq. (8) can
also be written as

jk D �nkvkr k C nku (9)

where  k D ezk� C kBT ln nk is called the chemical po-
tential for the species k. To determine � , one must
solve a self-consistent coupled problem because the
species concentrations depend upon � through nk D
nk(1) exp(�zk e�/kBT), but � also depends on the nk
through the Poisson equation, Eq. (6).

The Gouy–Chapman model Suppose that the system
is in the steady state and that there is no fluid flow
or imposed electric fields. Further suppose that the
geometry is such that the electrolyte-substrate inter-
face is an iso-surface of  k . Then it readily follows
from Eqs. (7), (9) and the boundary condition of no
flux into the wall that r k D 0 everywhere. Therefore,
nk D n(1)

k exp(�zk e�/kBT) where n(1)
k is the ion con-

centration where the potential � D 0; usually chosen as
a point very far from the wall. Using the solution for nk in
the charge density �e and substituting in Eq. (6), we get the
non-linear Poisson–Boltzmann equation for determining
the potential

r2� D �
4� e
�

NX

kD1

n(1)
k zk exp (�zk e�/kBT) : (10)

with the boundary condition � D � on walls.
Equation (10) was the starting point of a detailed in-

vestigation of the structure of the Electric Double Layer
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(EDL) by Gouy [17] and Chapman [18]. The description
of the EDL in terms of Eq. (10) is therefore known as the
Gouy–Chapman model of the EDL.

The Debye–Hückel approximation Equation (10) is
a nonlinear equation and solutions can only be con-
structed by numerical methods. Debye and Hückel lin-
earized it by expanding the exponential terms on the right
hand side in Taylor series and discarding all terms that are
quadratic or of higher order in � , which gives

r2� � �2� D 0 (11)

where

� D

" NX

kD1

4�z2k e
2n(1)

k
�kBT

#1/2

(12)

is a constant determined by the ionic composition of the
electrolyte. In arriving at Eq. (11) we used the condi-
tion

PN
kD1 n

(1)
k zk D 0 which expresses the fact that

the bulk solution (� D 0) is free of net charge. It is eas-
ily verified that � has units such that D D ��1 defines
a length scale that is called the Debye-Length. If a charged
plane at a potential � is introduced in an electrolyte where
the Debye–Hückel approximation is valid, then the solu-
tion to Eq. (11) may be written as � D � exp(��z) D
� exp(�z/D) where z is distance normal to the plate.
Thus, the potential due to the charged plate is shielded
by the free charges in solution and the effect of the charge
penetrates a distance of the order of the Debye-length D;
which gives a physical meaning to this very important
quantity. In microfluidic applications the Debye length is
typically between 1 to 10 nm.

The linearization proposed by Debye and Hückel is
justified provided that jzk�j 
 kBT/e uniformly in all
space and for all k. At room temperature kBT/e � 30mV.
However, for silica substrates j�j � 50 � 100mV in typi-
cal applications. Thus, the Debye–Hückel approximation
is often not strictly valid. Nevertheless, it is a very use-
ful approximation because it enormously simplifies math-
ematical investigations related to the Debye layer. Further,
all deductions from it are usually qualitatively correct and
even quantitative predictions from it outside its range of
formal validity tend not to differ from the true solution by
a large amount.

Thin Debye Layers and Apparent Slip The characteris-
tic width of microfluidic channels is typically of the order
of 10–100 μm, whereas the Debye length D � 1 � 10 nm.
Thus, the Debye layer is exceedingly thin compared

to characteristic channel diameters. Under those cir-
cumstances, the Navier–Stokes/Poisson–Boltzmann sys-
tem described in the last section may be replaced by a sim-
pler set of equations. Indeed, the EDL then forms a very
thin boundary layer at the solid fluid interface where the
electrical forces are confined.

In the outer region (that is, outside the EDL) we have
a fluid that is electrically conducting but charge neutral. Its
motion is therefore described by the Navier-Stokes equa-
tions without the electrical force term. Inside the EDL, the
problem reduces to that of an electric field parallel to a pla-
nar interface, therefore, the use of the Gouy–Chapman
model is justified. From the solution (18)

u(z !1) D �
��E0
4��

: (13)

In the language of asymptotic theory, this is the “outer
limit of the inner solution” [19] that becomes the bound-
ary condition for the outer problem. Thus, in the limit of
infinitely thin EDL, the standard no-slip boundary condi-
tions of fluid mechanics is replaced by the following ap-
parent slip condition:

u � usolid � us D �
�E�
4��

: (14)

In Eq. (14), usolid is the velocity of the solid, and u is the ve-
locity of the fluid at a point on the solid fluid interface, us is
the slip velocity. The electric field E is the field in the buffer
due to external sources and can be determined by solving
Laplace’s equation within the electrolyte with the bound-
ary condition E � n̂ D 0 on the wall (since the walls are in-
sulating and there can be no current flowing into them).
Equation (14) is known as the Helmholtz–Smoluchowski
(HS) slip boundary condition after the pioneering work
of [20] and [21]. It is the starting point for solutions of
more complex problems such as that of flow through axi-
ally inhomogeneous channels [22,23].

Electroosmosis In the presence of external fields and
fluid flow the equilibrium Gouy–Chapman model is gen-
erally not applicable and one must proceed from the full
electrokinetic equations presented earlier. However, if the
external field and fluid velocity are both along the iso-
surfaces of the charge density �e then the presence of the
flow or the imposed field does not alter the charge density
distribution which may still be obtained from the Gouy–
Chapman model. Examples where such a situation holds
would be

1. A planar uniformly charged substrate at z D 0 with an
applied electric field E0 that is tangential to the surface
(the x-direction).
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Microfluidics, Figure 3
A sketch showing the Debye layers formed at the walls of a parallel channel and the resultant electroosmotic flow in response to an
applied voltage (Image: courtesy of Prof. H. Bruus of the Technical University of Denmark)

2. A uniform infinite cylindrical capillary with an im-
posed electric field E0 along the axis (the x-direction).

3. A narrow slit with uniformly charged walls and an im-
posed constant electric field E0 along the slit (the x-di-
rection).

For any of the above geometries, the fluid flow equations
reduce to (assuming steady state and zero imposed pres-
sure gradient)

�r2u C �eE0 D �r2u �
�E0
4�
r2�(EDL) D 0 (15)

where u is the axial velocity and �(EDL) is the electric po-
tential for the equilibrium problem, that is, without the ex-
ternal field or flow. Therefore,

u D
�E0
4��

�(EDL) C � (16)

where � satisfies

r2� D 0 (17)

and � D �(�E0�)/(4��) at the boundaries. Assuming an
infinitely long channel, by symmetry, solutionsmust be in-
dependent of the axial co-ordinate x. The only such solu-
tion is � D �(��E0)/(4��). Therefore, the velocity is de-
termined in terms of the potential distribution in the equi-
librium EDL:

u D
�E0
4��

h
�(EDL) � �

i
(18)

If we adopt the Debye–Hückel approximation then

�(EDL) D

8
ˆ̂<

ˆ̂
:

� exp(��z) for (1) infinite plane
� I0(�r)/I0(�a) for (2) infinite

cylindrical capillary
� cosh(�z)/ cosh(�b) for (3) narrow slit

(19)

where a is the capillary radius, r the distance from the axis
and I0 is the zero ordermodified Bessel function of the first
kind. In the last formula, 2b is the channel width and z is
the wall normal co-ordinate with origin on the plane (in
Case 1) or origin at a point equidistant between the two
walls (in Case 3). Since the fluid flow equation is linear in
this limit, clearly a pressure driven flow can be added to the
solution (superposition) in the event that both a pressure
gradient and an electric field are simultaneously applied.
The solution for an infinite capillary was first obtained by
Rice and Whitehead [24]. Solutions in a narrow slit were
obtained by Burgreen and Nakache [25] in the context
of the Debye–Hückel approximation as well as for a 1 : 1
electrolyte (that is, in our notation N D 2 and z1 D �z2)
directly from the full Poisson–Boltzmann equation.

Electrophoresis Electrophoresis refers to the transport
of small charged objects in a fluid due to an applied electric
field. Many macromolecules contain dissociable charge
groups on its surface, and therefore, spontaneously ac-
quire a charge in aqueous solution. They thereforemove in
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response to an applied electric field, and this motion is the
basis for separating macromolecules from solution using
such bioanalytical techniques as Capillary Electrophoresis
(CE), Slab Gel Electrophoresis (SGE) and Isoelectric Fo-
cussing (IEF). As far as the physics is concerned, electroos-
mosis and electrophoresis are essentially identical, in the
former case the reference frame is fixed to the substrate
and in the latter case the reference frame is fixed to the
fluid at infinitely large distances from the object.

Uniformly Charged Sphere The simplest ‘classic’ prob-
lem in electrophoresis involves determining the velocity
of a uniformly charged dielectric sphere placed in an ionic
fluid (usually water with dissolved salts such as KCl). An
exact analytical solution to even this reduced problem
is unavailable except in certain special limits. These are
the limits of extremely large Debye length (corresponds
to very low ionic strengths) and extremely short Debye
length (corresponds to very high ionic strength).

Indeed, for low ionic strengths, the velocity v may be
obtained by simply equating the electric force qE to the
viscous force 6��av where E is the applied electric field, q
is the charge on the sphere, � is the dynamic viscosity of
the fluid and a is the particle radius, thus,

�(1)
ep D �ep(low salt) D

v
E
D

q
6��a

D
��

6��
(20)

where the second part of the equality follows on express-
ing the charge q in terms of the electrostatic potential � on
the surface of the sphere. The ratio v/E D �ep is called the
electrophoretic mobility.

For high ionic strengths, wemay invoke the Helmholtz
Smoluchowski apparent slip boundary conditions. Then
the problem reduces to solving a Stokes Flow problem for
a sphere with a pseudo ‘slip’ boundary condition. It is easy
to verify that since the electric potential � is irrotational as
well as solenoidal, the quantity

u D
��r�

4��
(21)

satisfies the Stokes flow equations. Further, by construc-
tion, the apparent slip boundary conditions hold on the
surface of the sphere. It can be easily shown that the flow
defined by Eq. (21) corresponds to zero net force and
torque on the particle. Therefore, it corresponds to the ac-
tual flow field in a reference frame fixed to the particle. The
flow speed at distant points gives the electrophoretic speed
of the particle, thus,

�(0)
ep D �ep(high salt) D

v
E
D

��

4��
: (22)

Therefore,

�(1)
ep D

2
3
�(0)
ep : (23)

Approximate solutions for intermediate Debye lengths
as well as situations where the nonlinear convective term
in the Navier–Stokes and species transport equations are
small but not negligible have been addresses by various re-
searchers. A careful review is provided by Saville [26].

Non-Spherical Shapes and Non-Uniform Charge For
a long time, Eq. (22) had been the basis for determin-
ing experimentally the zeta potentials of particles, though
the particles were not always spherical in shape. A formal
proof of the validity of Eq. (22) for particles of any shape
was provided by Morrison [27]. Morrison showed that in
the limit D/R! 0, where R is the smallest radius of cur-
vature on the surface of the particle, Eq. (22) remains valid
irrespective of the particle shape provided that �, " and �
are uniform, the particle is non-conducting and polariza-
tion effects are neglected.

The surface charge on small objects such as macro-
molecules, cells and crystalline colloidal objects like par-
ticles of clay are often distributed in a non-uniform man-
ner. The effect of non-uniformity of the � potential on
the movement of the particle was first investigated by An-
derson [28]. Anderson considered a spherical particle in
the limit of infinitely thin Debye layers. The distribution
of the zeta-potential on the particle surface was assumed
arbitrary but known. Anderson showed that in general
the particle would both translate and rotate. The transla-
tional velocity depended upon the average value of � (the
monopole) as well as on its quadrapole moment. The an-
gular velocity depended upon the dipole and quadrapole
moments and thus vanished in the case of a uniformly
charged particle.

Dielectrophoresis Particles that are uncharged but po-
larizable experience a force in a non-uniform electric field,
the resulting motion is known as dielectrophoresis. The
force density in a polarizable medium is

fe D (P � r)E (24)

where P is the dipole moment per unit volume and E is the
electric field. In an isotropic and linear medium, P D �E
where � is the susceptibility. Since � is usually positive,
the dielectrophoretic force is normally directed from re-
gions of weak electric field to that of strong fields. For
particles that are polarizable and also carry a net charge,
electrophoretic and dielectrophoretic effects act in con-
junction. The interplay of the two effects can be exploited
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Microfluidics, Figure 4
Dielectrophoretic trapping of fluorescently labeled particles on
amicrochip with an etched pattern consisting of a periodic array
of cylindrical obstacles. The overlayed picture shows the simu-
lated isopotentials experienced by particles. (Reproduced with
permission from [29])

for the design of elegant microfluidic elements. For exam-
ple, Cummings et al. have designed a device that is able to
separate live from dead bacterial cells in this way [29]. Fig-
ure 4 shows the trapping of cells labeled with a fluorescent
dye in a 2D array of cylindrical posts. Another important
aspect of dielectrophoresis is that unlike electrophoresis,
the effect does not disappear if the constant electric field is
replaced by an oscillating one. Thus, the dielectrophoretic
force can be fine tuned by adjusting the frequency. Since
a conducting object would develop a dipole moment in an
external field, conducting regions inside a dielectric fluid
(such as water droplets in oil) also experience the dielec-
trophoretic force.

AC Electroosmosis AC Electroosmosis [30,31,32] or
more generally Induced Charge Electroosmosis (ICEO)
refers to the flow of fluid due to the interaction of an
applied electric field with Debye layers, except that the
charges that give rise to the Debye layers are the polariza-
tion charges due to the original electric field. An example
is shown in Fig. 5 which shows an insulator coated metal
cylinder placed in an ionic medium. Switching on the elec-
tric field polarizes the cylinder causing the formation of
the Debye layers. The tangential electric field acting on the
unbalanced charges in the Debye layer drives a flow in the
indicated direction. Since the polarization charges them-

selves are due to the applied field, ICEO is quadratic in
the applied field. This nonlinearity opens up new possibil-
ities, for example with cleverly shaped electrodes flow rec-
tification can be achieved, that is, an oscillating field can
drive a flow with a DC component. ICEO has a further ad-
vantage that electrolysis and the formation of gas bubbles,
a disturbing side effect in direct current electroosmosis is
eliminated if only oscillating fields are employed. Through
careful design of metal on glass electrodes fluids can be ef-
fectively driven using the dielectrophoretic force by apply-
ing voltages that aremuch less than those required to drive
flows by electroosmosis.

Surface Tension

The surface energy of a spherical drop of liquid of radius R
is Es D 4�R2� where � is the surface tension coefficient. If
the drop rests on a surface which is taken as the zero level
of potential, then the gravitational potential energy is (� is
the fluid density) Eg D (4/3)�R3�g(R/2) D (2/3)��gR4.
Therefore, Eg/Es D (�gR2)/(6� ) D Bo/6. The dimension-
less number, Bo D �gR2/� is called the Bond number and
it measures the relative importance of gravity and surface
tension effects. The value R D Rc D

p
� /�g that makes

the Bond number unity is called the capillary length. For
water droplets, Rc D 1 � 3mm. Thus, droplets of water
smaller than one millimeter are dominated by surface ten-
sion forces, a fact that is readily apparent in the every-
day world from the nearly spherical shape of small water
droplets. The forces of surface tension can be used to ma-
nipulate small droplets on a surface to create a variety of
useful microfluidic devices.

The StaticMeniscus The shape of a liquid drop on a flat
substrate may be described by some function h(x, y) giving
the height of the free surface above the substrate at each
location (x, y). The function h(x, y) has a finite support, the
region D, which is the wetted area on the substrate. The
equilibrium shape is the function h(x, y) that minimizes
the total energy of the droplet

E[h(x; y)] D Elv C Els C Esv C Eg (25)

subject to the constraint of a fixed liquid volume, V
Z

D
hdS D V : (26)

Here dS D
q
1C h2x C h2ydxdy is a surface element on

the free surface (suffixes denote partial derivatives). The
interaction energies per unit area at the liquid-vapor,
liquid-solid and solid-vapor interfaces are denoted by Elv,
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Microfluidics, Figure 5
Illustration of the principle of operation of ICEO: Lines of electric field E around a cylindrical metal wire in an electrolyte before (a)
and after (b) double-layer charging in response to a suddenly applied dc field and the resulting ICEO streamlines (c). (Image: courtesy
of Prof. T.M. Squires of UCSB, also see reference [30])

Els and Esv and Eg is the gravitational potential energy.
These quantities are functionals of the shape function
h(x, y) and may be written as follows:

Elv D
Z

D
�lvdS; Els D

Z

D
�lsdxdy (27)

Esv D
Z

Dc
�svdxdy; Eg D

�g
2

Z

D
hdS (28)

where Dc denotes the region outside of D. The constraint
Eq. (26) is enforced by introducing the Lagrange multi-
plier, p, and minimizing the auxiliary functional

F[h(x; y)] D E[h(x; y)] � p
Z

D
hdS (29)

The problem of determining the equilibrium shape then
reduces to finding the shape for the domain D and the
function h(x, y) that minimizes F[h(x; y)]. The Lagrange
multiplier actually corresponds to the pressure within the
drop and F is the free energy. Usually, �lv is a constant,
for a patterned substrate �ls is a periodic function of x
and y. The Euler Lagrange equation for the variational
problem formulated above can be written down but an-
alytical solutions cannot be found easily. Numerical so-
lutions can be readily constructed with tools such as the
Surface Evolver [34]. Figure 6 shows the drop shape on
a substrate with a striped pattern of �ls determined from
a Lattice Boltzmann simulation [33].

An alternative to imprinting a periodic pattern of sur-
face energy on a substrate is to change its texture by sculpt-
ing it into a series of peaks and valleys as shown in Fig. 8.
The liquid drop in this case has a true minimum energy

Microfluidics, Figure 6
Computed equilibrium shape of a liquid droplet on a patterned
substrate consisting of alternating hydrophobic and hydrophilic
stripes (Image: reproduced with permission from [33])

state corresponding to complete wetting of the region be-
tween the grooves as well as a metastable state where the
drop only makes contact with the tops of the ridges (the
analogy is sometimes made to a “fakir” walking on a bed
of nails). In order to go from the metastable to the true
energy minimum the drop will need to go through in-
termediate states of greatly increased surface area (en-
ergy). If an external disturbance large enough to over-
come this energy barrier is not available, the drop remains
in the metastable state where the “effective” contact an-
gle is much larger than what it would be in the absence
of the texture. Contact angles very close to 180 degrees
can be generated in this way, and such surfaces are called
“super-hydrophobic”. The leaves of certain plants (such
as the lotus) naturally have a micro-textured surface and
exhibit super-hydrophobicity (Fig. 8). Super-hydrophobic
surfaces have many applications due to its water repellent
properties.
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Microfluidics, Figure 7
A static drop (left) and a drop sliding down (right) an inclined plane. In the latter case the advancing contact angle (�a) at the front of
the drop exceeds the receding contact angle (�r) at the rear. (Image: courtesy of Prof. A. Amirfazli of University of Alberta)

Moving Contact Lines The mathematical description of
a drop moving on a substrate is considerably more com-
plicated. Figure 7 shows a static drop on a level surface
and the same drop sliding down a tilted surface. Unlike
the static drop which has a symmetric shape and a contact
angle �s given by the Young–Dupré condition

�lv cos �s D �sv � �ls ; (30)

the moving drop is asymmetric. The contact angle at the
front of the drop, �a, which is called the advancing contact
angle exceeds �s whereas the contact angle at the rear, �r,
called the receding contact angle, is less than the equilib-
rium contact angle �s. When U is very close to zero, the
contact line moves in a ‘stick-slip’ fashion so that smooth
curves of �a and �r as a function of the speed U can no
longer be drawn. This phenomenon is called contact line
pinning. A consequence of contact line pinning is the phe-
nomenon of “contact angle hysteresis”. Contact angle hys-
teresis can be demonstrated by the following experiment
with the inclined plane. If one measures the sliding speed
of the drop (U) at different inclination angles (˛) of the
inclined plane one obtains a graph of the function ˛(U).
Extrapolating to U ! 0 we can obtain the critical angle
˛0 D limU!0 ˛(U). One might expect then that ˛0 is the
angle of the incline at which the drop would first start to
slide down. However, if a drop is first placed on a level sur-
face and then the surface is gradually tilted, the drop does
not start to slide when ˛ D ˛0. Instead, sliding first starts
at some larger inclination ˛ D ˛� > ˛0. This is known as
contact angle hysteresis. Contact angle hysterisis and stick
slip can be eliminated for certain molecularly smooth sub-
strates such as those with a monolayer coating. However,
for most solid liquid interfaces, they are the norm.

Propulsion Mechanisms The well known phenomenon
of capillary action is an example of how a liquid with a free
surface can be made to flow by manipulating the contact
angle. When a capillary is dipped into the horizontal free
surface of a liquid pool, the interfacial energies cause the
free surface to develop a curvature. Such curvature imme-
diately causes a local pressure drop by virtue of the Young
Laplace equation


p D �
�

1
R1
C

1
R2

�
(31)

where �p is the pressure jump across an interfacial point
and R1 and R2 are the principal radii of curvature at that
point. This sets up a pressure gradient which then causes
the liquid to flow and the contact line to move. The same
principle is involved in all cases of droplet motion, the dif-
ference lies only in the physical mechanism responsible for
changes in the local contact angle.

If the contact angle is shallow, very often the system
admits an asymptotic reduction where the fluid motion is
described in the lubrication limit. In such cases, an evo-
lution equation for the height of the free surface h(x; y; t)
can be constructed:

@h
@t
D L[h] (32)

where L is some (possibly nonlinear) differential operator
in the variables x and y.

Wettability Gradients If a drop is placed on a chemically
treated surface where the static contact angle �s varies,
pressure differences are created between the fore and aft
which drives a flow. An equation of the form (32) was de-
rived by Greenspan [35], who in addition to the smallness
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Microfluidics, Figure 8
a Lily leaf showing a rugose coating. SEM, scale bar = 3 µm.
b Water droplet on the top of leaves from the South Ameri-
can plant Setcreasea. c Industrial rugose surface of silica. SEM,
scalebar =1 µm.dWater droplet on industrial hydrophobic coat-
ings. Reprinted with permission from Nature Materials 4:277–
288, 2005

of �s assumed that the contact line moves with a velocity
vcl D �(� � �s)n̂ where n̂ is the unit normal to the contact
line on the plane of the substrate. He further modified the
no slip boundary condition as follows:

�
v �

˛

3h
@v
@z

�

zD0
D 0 : (33)

The constant ˛ is a dimensional constant chosen to be of
the order of 10�10 cm2. Equation (33) reduces to the clas-
sical non-slip boundary condition a short distance away
from the contact line while reducing to a zero shear stress
condition at the contact line itself. This is a way to work
around the difficulty of the shear stress singularity on the

contact line. Neglecting contact angle hysteresis and dis-
joining pressure effects Greenspan derived the following
equation for h(x; y; t)

@h
@t
C

�

3�
r �

�
h(h2 C ˛)r(r2h)

�
D 0 (34)

Greenspan applied Eq. (32) to some special situations
with insightful results, for example, he showed that if
�s varies slowly in the x direction, so that the fractional
change over the drop length is small, then droplets with
a circular wetted area of radius R0 move with a velocity
U D ��R0(d�s/dx), thus it migrates towards themore hy-
drophillic regions.

Thermocapillary Effects Spatial variations in temperature
cause corresponding variations in the coefficient of sur-
face tension � , which could drive a drop on a substrate.
The effect is often seen in the kitchen, heating a little oil
in a non-stick pan causes a dry spot to appear at the cen-
ter with the contact line moving radially out towards the
cooler edges of the fry pan. An equation similar to (34) can
be developed in this case as well. Since electrical heating
wires can be embedded in a substrate, microfluidic devices
based on controlled motion of droplets using thermocap-
illary effects are possible [36].

Marangoni Stresses Marangoni stresses arise when spa-
tial variations in surface tension is set up due to the pres-
ence of a trace chemical such as a surfactant. The classic
example of motion generated by Marangoni stresses is the
toy called the camphor boat. A receptacle at the rear of
the tiny ‘boat’ holds the camphor. The difference in con-
centration of the camphor between the fore and aft of the
boat creates a surface tension gradient which propels the
boat. Marangoni stresses can be exploited in microfluidics
by using a chemical coating on the substrate so that its wet-
tability can be modulated by shining UV light. Droplets
can then be directed to move in a specific pattern by spa-
tial modulation of the UV light on a substrate [36].

Electrowetting The contact angle of a liquid drop can be
modified by applying an electric voltage. In early applica-
tions the drop was placed directly on top of the electrode.
This however has the disadvantage of causing electrolysis
and the formation of gas bubbles within the liquid drop.
In modern applications, the drop is placed on a metal
electrode coated with a thin layer of a dielectric material.
This set up is called Electrowetting on Dielectric (EWOD).
When a voltage V is applied to the plate, the equilibrium
shape of the droplet will change. The new shape can be
obtained by repeating the calculation sketched in Sub-
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Microfluidics, Figure 9
Illustrating the physical phenomenon of Electrowetting on a di-
electric or EWOD (Image: courtesy of Prof. J. Loo, UCLA)

sect. “The Static Meniscus”, except that the electrostatic
energy must be included in the minimization of the total
energy. Such a calculation shows that the new contact an-
gle � can be related to the old one �0 through the relation

cos � D cos �0 C
�

8�d�lv
V2 : (35)

Here " is the dielectric constant of the insulator and d is its
thickness.

An interesting application of EWOD is the variable fo-
cus liquid lens [37] shown in Fig. 10. Application of a small
voltage (a few volts) can alter the contact angle and thereby
change the lens shape. Thus, variable focal length and fo-
cusing control can be achieved with no moving parts. If

Microfluidics, Figure 10
The liquid lens based on electrowetting by Varioptic: a water drop is deposited on a substrate made of metal, covered by a thin
insulating layer. The voltage applied to the substratemodifies the contact angle of the liquid drop. The liquid lens uses two isodensity
liquids, one is an insulator while the other is a conductor. The variation of voltage leads to a change of curvature of the liquid-liquid
interface, which in turn leads to a change of the focal length of the lens. (Image courtesy of Dr. B. Berge of Varioptic)

the lens is sufficiently small (Bond number much less than
unity) shape changes due to changes in orientation is neg-
ligible because gravity becomes insignificant. The liquid
lens is of course ubiquitous in the natural world; our eyes
are made of soft materials (liquids and gels) though shape
changes are brought about by pressure rather than elec-
trostatic actuation. It is interesting to observe that one of
the earliest microscopes invented by the Dutch inventor
Anton van Leeuwenhoek (1623–1723) used a small water
drop placed inside a hole in a brass plate as the lens.

The EWOD set up is being applied to implement early
versions of the “Lab on a Chip”. An array of individually
addressable electrodes under a dielectric layer is used to
move water drops along prescribed paths. By controlling
the electrode voltages with electronics, a drop can be di-
vided into daughter droplets or two drops (perhaps con-
taining two different chemicals) can be merged and the
contents stirred to create a microscopic reaction cham-
ber. A great advantage of the EWOD set up, is that large
voltages (and the consequent bulky power supplies) are
not needed. Thus, commercial products using EWOD are
likely to be more portable. One shortcoming is that evapo-
rative loss from small drops can be significant. Figure 11
shows shape oscillations of a drop in response to an ac
voltage. Such oscillations can be used to homogenize the
contents of the liquid drop.

Future Directions

Since “necessity is the mother of invention” there is no
doubt that the field of microfluidics will see rapid growth
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Microfluidics, Figure 11
Sequence of images showing a 7 µL KCl droplet oscillating in response to a 60V AC forcing at 180Hz. Images are 1ms apart and scale
bar corresponds to 0.5mm. Such oscillations may be used to mix the contents after reagent A and B are brought together by a pair
of coalescing daughter droplets (Image: courtesy of R. Miraghaie, J. D. Sterling and A. Nadim, the Keck Graduate Institute of Applied
Life Sciences. See also reference [38])

in the near future fueled by the demands of the bio-
sciences. The direction this growth might take is however
much more difficult to predict.

The field of microelectronics has grown from the 1947
Bell Labs Transistor to chips that run the Blackberrys and
iPods of today. Nevertheless, the basic elements of the
technology such as the use of silicon wafers, thin films,
photoresist and etching have not changed but have been
progressively refined and improved. The situation is very
different in the case of microfluidics. Let us first take the
case of materials. Initially glass and silicon wafers were
the only platforms being explored. But then soft materials
such as PDMS came into the picture [39,40]. Soft materi-
als have many advantages, for example chips can be mass
produced by stamping from a master copy, the flexibil-
ity of the material can be exploited for pneumatic pump-
ing [41], etc. However, they do have some drawbacks, for
example the zeta potential is hard to control and electroki-
netic pumping is not very efficient. It is unclear at this time
whether a unique platform will emerge for microfluidics
and if so, which one it is going to be.

Consider next the methods of moving fluids around.
Electrokinetic methods have the advantage that the volt-
age needed to achieve a certain flow speed is indepen-
dent of the channel diameter. By contrast, for pressure
driven flows, the pressure head needed scales inversely as
the cross-sectional area. Furthermore, electrokinetic flows
have a uniform rather than a parabolic profile and there-
fore cause less Taylor dispersion. On the other hand, elec-
trokinetic flows are very sensitive to surface contamina-
tion, a serious difficulty when dealing with proteins and

peptides. Currently both pressure driven and electroki-
netic approaches are being explored. One disadvantage of
both of these approaches is that while themicrofluidic chip
itself is small and portable, the power source (compressed
air for pressure driven flows or kilovolt power sources for
electrokinetic ones) is usually quite bulky. Two approaches
that seek to overcome this difficulty are pumping based on
ICEO [42] and the approach of EWODwhich only require
a few volts to move droplets around on a substrate. These
approaches have other drawbacks of their own, for exam-
ple small droplets tend to evaporate and ICEO involves the
added complexity of patterned electrodes on one or more
of the substrates. It still remains to be seen whether one
among these very different approaches would emerge as
the winner or if they would continue to co-exist as the sub-
ject matures.
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Glossary

Cumulated payoff It refers to the reward accumulation
or the score counting for all the individual strategies
being held by the agents in the game. Each strategy
has its own value of cumulated payoff. When a strategy
gives a winning or losing prediction for the next round
of the game (no matter whether the agents follow this
prediction), scores are added to or deducted from this
strategy respectively. It is also known as virtual point
or virtual score of the strategies. The way of rewarding
or penalizing is known as the payoff function.

Attendance In the contexts of the Minority Game, atten-
dance refers to the collective sum of all agents’ actions
at each round of the game. For the ordinary games,
it is equal to the difference in the number of agents
in choosing the two different choices or actions (in
early formulation, it is equal to the number of agents
in choosing one of the particular choice). The termi-
nology “attendance” origins from the ancestor form of
the Minority Game, the El Farol Bar problem by W.B.
Arthur, in which agents choose whether to attend a bar
at every round of the game.

Volatility Volatility in Minority Games is the time aver-
age variance of the attendance after each round of the
game. It is an inverse measure of the efficiency of re-
source distribution in the game. A high volatility cor-

responds to large fluctuations in attendance and hence
an inefficient game. A low volatility corresponds to
smaller fluctuations in attendance and hence an effi-
cient game.

Predictability It is an important macroscopic measurable
in the game and also the order parameter which char-
acterizes the major phase transition in the system. It
is usually denoted by H which is a measure of non-
uniform probabilistic outcome of the attendance given
a certain information provided to the agents. A higher
predictability refers to the case where attendance tends
to be positive or negative for a certain piece of infor-
mation, which makes the game outcome more pre-
dictable.

Symmetric and asymmetric phase The two important
phases of the system. The symmetric phase is also
known as crowded phase or the unpredictable phase.
The asymmetric phase is also known as uncrowded
phase, the dilute phase or the predictable phase. The
system’s behaviors, dynamics and characteristics are
different in these two phases. The two phases are
characterized by the order parameter, called the pre-
dictability H.

Endogenous and exogenous games Endogenous games
refer to games which utilize the past winning history to
generate signals or information for agents to make de-
cisions in the next round. Endogenous games are also
known as games with real history. Exogenous games
refer to games which utilize random signals or infor-
mation for agents to make decisions in the next round.
Exogenous games are also known as games with ran-
dom history, or external information.

On-line update and batch update On-line update refers
to the evaluation of payoffs of strategies after each
round of the game. Thus, the priority of strategies be-
ing employed by an agent may be altered after any
round of the game. The exogenous game or ran-
dom history game sometimes employ the batch update
method which refers to the evaluation of payoffs on
strategies only after a fixed number of rounds where
all the possible signals or information have appeared.
In games with ordinary batch update, all the possible
signals appear once in each batch before the update of
payoffs on strategies, the order of appearance of signals
in each batch is thus irrelevant.

Definition of the Subject

The Minority Game (MG) refers to the simple adaptive
multi-agent model of financial markets with the original
formulation introduced by Challet and Zhang in 1997. In
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this model of repeated games, agents choose between one
of the two decisions at each round of the game, using their
own simple inductive strategies. At each round, the mi-
nority group of agents win the game and rewards are given
to those strategies that predict the winning side. Daily ex-
amples of minority game include drivers choosing a less
crowded road or people choosing a less crowded restau-
rant. Unlike most economics models or theories that as-
sume investors are deductive in nature, a trial-and-error
inductive thinking approach is implicitly implemented in
the process of decision making when agents choose their
choices in the games. In this original formulation, the his-
tory or the information given to agents is a string of binary
bits that is composed of the winning sides in the past few
rounds.

While the original model is simple, many variants of
the model were later introduced. In some other contexts
and later literature, the term “Minority Games” is some-
times referred to as a class of multi-agent models that con-
tains all the variants of the original Minority Game. Most
of the models in this class of game share the principal fea-
tures that agents are inductive in nature. Thus, strategies
with accumulated virtual score are usually present in this
set of models. As a result, the original formulation of the
Minority Game by Challet and Zhang in 1997 is sometimes
referred to as the “original Minority Game” or the “basic
Minority Game”.

While investigating economical dynamics, physicists
found most of the economics models to be deductive in
nature. Since investors have an expectation of the future,
economical models conceptually differ from conventional
physical models in which variables have only historical de-
pendence. As a result, it becomes difficult for physicists
to develop and analyze the traditional financial models,
even with well-developedmathematical tools. The El Farol
bar problem and the Minority Game somehow tackle the
problem by assuming investors can be inductive in nature
with bounded rationality, in which they predict the future
by only examining the past states of the system, similar to
the ordinary physics models.

In the physics community, the basic Minority Game
and its variants are an interesting and newly established
class of complex and disordered systems that contain
a large amount of physical aspects. In addition to the mod-
eling purpose of the financial markets, it is also a simple
model where the Hamiltonian can be defined and analytic
solutions are developed in some regime of themodel, from
which the model is viewed with a complete physical sense.
It is also characterized by a clear two-phase structure with
very different collective behaviors in the two phases, as in
conventional physical systems. All these physical proper-

ties further raise the interest of physicists in understand-
ing and solving the model analytically, using the tech-
niques origin from statistical mechanics. Other than these
collective behaviors, physicists are also interested in the
dynamics of the games. Periodic attractors, anti-persis-
tence and crowd-anticrowd movement of agents are also
observed. In this way, the Minority Game and its vari-
ants serve as a useful tool and provide a new direction
for physicists in viewing and analyzing the underlying dy-
namics in the financial markets, and at the same time an-
alytical techniques from statistical physics can be widely
applicable.

On the other hand, for modeling purposes, Minority
Games serve as a class of simple models that are able to
produce some of the macroscopic features being observed
in the real financial markets. Such features are usually
termed stylized facts that include the fat-tail price return
distribution and volatility clustering. Crashes and bubbles
are also observed in some of the variants and other models
inspired by the Minority Game. The grand-canonical ver-
sions of the game suggest the conjecture of financial mar-
kets being a critical phenomenon in physics.

Because of the simplicity of the original model, a large
freedom is found in modifying the models to make the
models more realistic and closer to the real financial mar-
kets. Many details in the model can be fine-tuned to im-
itate the real markets. Minority Games setup a frame-
work of agent-based models where predictability of fi-
nancial data may be possible. Sophisticated models based
on games can be setup and implemented in real trading,
which show a great potential over the commonly adopted
statistical techniques in financial analysis. As a result, Mi-
nority Games having caught the interest of economists,
may induce some to switch to employing agent-based
models in understanding the underlying mechanism be-
hind socio-economics systems. Minority Games also shift
the emphasis of some economists to investigating the for-
mation of price pattern, rather than just performing data
analysis of the price pattern.

Introduction

The basic Minority Game was formulated by Damien
Challet and Yi-Cheng Zhang in 1997 [1] with their work
being published in a statistical physics journal. The model
was inspired by the El Farol Bar problem introduced by
W. Brian Arthur in 1994 [2] with his work being pre-
sented and published in an economical meeting and its
proceedings. This already shows the interdisciplinary na-
ture of the Minority Game with an economical origin, in
a physical perspective. TheMinority Game follows thema-
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jor conceptual structure being implemented in the El Farol
Bar problem, with somemodifications on the model struc-
ture.

In the original El Farol Bar problem, each individual of
a population choose whether to attend a bar each Thurs-
day evening. The bar has a limited number of seats and can
at most entertain x% of the population. If less than x% of
the population go to the bar, the show in the bar is consid-
ered to be enjoyable and it is better to attend the bar rather
than staying at home. On the other hand, if more than x%
of the population go to the bar, all the people in the bar
would have an unenjoyable show and staying at home is
considered to be a better choice than attending the bar.
In order to make decisions on whether to attend the bar,
all the individuals are equipped with a certain number of
strategies. These strategies provide them with predictions
of the attendance in the bar next week, based on the at-
tendance in the past few weeks. All individuals rank their
strategies according to their past performance and make
decisions by considering the attendance predicted by their
own best strategy.

Several changes were made to the model when the
Minority Game was formulated from the El Farol Bar
problem. Instead of using the history of past attendance,
a string of binary bits which records the past few winning
predictions or actions are employed as information. The
predictions of the strategies are the winning choices in the
next round, with no prediction about the actual size of at-
tendance. Thus, binary information and predictions are
implemented, which greatly reduce the dimensional space
of the system. In addition, the winning choice is deter-
mined by the minority choice (instead of the parameter x
in the Bar problem) at every round of the game, hence the
two choices are symmetric. Because of the minority rule,
the population is restricted to be an odd integer in the orig-
inal formulation.

These modifications of binary and symmetric actions
make the model more accessible for the physics commu-
nity. The first publication of the Minority Game led to
great interest among some statistical physicists who began
researching the Minority Game and formulating variants.
Some physicists began to identify the study of such a class
of models as within the field of econophysics. In 1999, R.
Savit et al. [3] published their work on the analysis of the
Minority Game, which is crucial to subsequent theoreti-
cal developments of the game. They discovered an impor-
tant control parameter ˛, which is defined as the ratio of
the total amount of possible information to the popula-
tion size. It rescales the macroscopic observables of the
game for different amounts of information and popula-
tion size. A phase transition is observed at the critical value

of ˛ which separate the two phases, namely the symmetric
phase and the asymmetric phase.

After discovery of the rescaling properties and the
phase transition of the Minority Game, great efforts were
put into solving the model analytically, using well-de-
veloped techniques in the field of statistical physics [4,
5,6,7,8,9,10,11,12,13,14,15,16,17]. In order to solve the
model, the basic Minority Game is sometimes modified
to increase the feasibility of the analytical approach. In
some variants of the Minority Game, the model is simpli-
fied to preserve only the major dynamical behaviors while
in some other variants, features are added to the game that
make the model more comparable to traditional physical
models. As a result, a large number of variants of the Mi-
nority Game were produced during attempts at analytic
description.

On the other hand, attempts were also made to make
the models more comparable to real financial markets.
Some physicists and even economists modified the basic
model by adding more features from real markets [18,
19,20,21,22,23,24,25,26,27,28]. Stylized facts are found in
the critical regime of the grand-canonical version [23,24,
25,26,27,28] of the Minority Game in which agents can
choose to refrain from participation in the game. This sug-
gests the conjecture of financial markets being in critical
state and further pushes the development of the model in
this direction. Some newmodels have also been developed
to include more financial aspects. Efforts are made to have
a better understanding of the market through the agent-
based approach. The macroscopic observations from the
models have become more realistic but at the same time,
the models have become more sophisticated. Because of
the analytic goal of solving the model in a physical sense
and for modeling purposes, there are a vast number of
variants of the Minority Game; it therefore constitutes
a class of models.

In the following sections, we briefly describe the for-
mulation of the basic model and its variants, and briefly
introduce the physical properties, the analytic approaches
of themodel and its link with financial markets.We review
the formulation of the basic Minority Game in Sect. “The
Minority Game”. Some major physical properties of the
basic Minority Game are given in Sect. “The Physical
Properties of the Minority Game”, the effect of temper-
ature is also discussed which was originally introduced
in the Thermal Minority Game (TMG). In Sect. “Vari-
ants of the Minority Game”, we review briefly some im-
portant variants of the Minority Game and their phys-
ical significance, these include the Evolutionary Minor-
ity Game (EMG), the TMG, the Minority Game with-
out information and the Grand-canonical Minority Game
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(GCMG) while their corresponding implications for the
financial markets and some other variants will be dis-
cussed in Sect. “Minority Games and Financial Markets”.
In Sect. “Analytic Approaches to the Minority Game”, we
briefly introduce some of the analytic approaches to the
Minority Game. In Sect. “Minority Games and Financial
Markets”, we review some of the financial features pro-
duced by Minority Games and their implications. Finally,
in Sect. “Future Directions”, we describe some of the pos-
sible directions for future development of the Minority
Game.

TheMinority Game

The basic Minority Game [1] is defined as follows. We
consider a population of N agents competing in repeated
games, where N is an odd integer. At each round of the
game, each agent has to choose between one of the two
actions, namely “0” and “1” (in most of the subsequent lit-
eratures, “�1” and “1” instead of “0” and “1” are used as
the actions, we shall keep the following discussions using
the actions “�1” and “1”), which can also be interpreted as
the“sell” and “buy” actions. These actions are sometimes
called the bid and is denoted by ai(t), corresponding to the
bid of agent i at time t. The minority choices win the game
at that round and all the winning agents are rewarded.

Before the game starts, every agent draws S strategies
from a strategy pool which help them to make decisions
throughout the game. There is no a priori best strategy.
These strategies can be visualized in the form of tables
where each strategy contains a “history column” (or “sig-
nal” column) and a “prediction column”. Each row of the
history column is a string of M bits, which represents the
history of the past winning actions in the previousM steps,
which is also known as signal or information. The his-
tory is evolving with time and is usually denoted by �(t).
The parameterM is sometimes known as the brain size or
the memory of the agents. An example of a strategy with
M D 3 is given in Table 1. For games with memoryM, the
total number of possible signals is 2M and thus the total
number of possible strategies in the strategy pool is 22M .
We note that for even a relatively smallM, such asM D 5,
the total number of possible strategies is already huge.

As shown in the strategy in Table 1, a history of “110”
corresponds to the case where the past three winning ac-
tions are “1”, “1” and “0”, and the corresponding predic-
tion of winning choice for the next round is “0”. Strategies
can be conveniently represented by P-dimensional vectors
that record only the P predictions, where P D 2M . If the
strategy gives a correct prediction on the winning choice,
one point is awarded to the strategy. All the S strategies

Minority Games, Table 1
An example of a strategy withM D 3

History Prediction
000 1
001 0
010 0
100 1
011 0
101 1
110 0
111 0

of an agent have to predict at every round of the game,
and points are given to those strategies (no matter whether
they are being selected by the agent to make real actions)
that give correct predictions. The scores of all the strate-
gies are accumulated which are thus known as the virtual
points, virtual scores or the cumulated payoffs of the strate-
gies. These scores start at zero in the basic Minority Game.
At every round of the game, agents make their decisions
according to the strategy with the highest virtual score at
that particular moment. If there is more than one strategy
with the highest score, one of these strategies is randomly
employed. Agents themselves who make the winning de-
cisions are also rewarded with points, and these are called
the real points of the agents (to be distinguished from the
virtual points of the strategies).

More explicitly, we define the attendance A(t) as the
collective sum of actions from all agents at time t. If we
denote the prediction of strategy s of agent i under the in-
formation �(t) to be a�(t)i;s at time t, which can be either
“�1” or “1”, each strategy can be represented by a P-di-
mensional vector Eai;s where all the entries are either “�1”
or “1”. The attendance A(t) can then be expressed as

A(t) D
NX

iD1

a�(t)i;s i (t) D

NX

iD1

ai(t) (1)

where si(t) denotes the best strategy of agent i at time t,
i. e.,

si(t) D argmax
s

Ui;s(t) (2)

and ai(t) denotes the real actions or so-called the bids of
the agents, i. e.,

ai(t) D a�(t)i;s i (t) : (3)

With this A(t), the cumulative virtual score or payoff Ui;s
of the strategy s of agent i can be updated by

Ui;s(t C 1) D Ui;s(t) � sign
h
a�(t)i;s A(t)

i
(4)
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where sign(x) is the sign function (in some literatures
where “0” and “1” are employed as actions, the last term
in Eq. (4) becomes � sign[(2a�(t)i;s � 1)A(t)]). Here one
point is added or deducted from the strategies which give
a correct or wrong prediction respectively, and this is usu-
ally called the step payoff scheme. We note that the nega-
tive sign in Eq. (4) corresponds to the minority nature of
the game, i. e., when a�(t)i;s and A(t) are of opposite signs,
a point is added to the strategy. The real gain of agent i at
time t is � sign

�
ai(t)A(t)

�
.

Thus, every agent is considered to be adaptive, they
can choose between their s strategies and the relative pref-
erence of using strategies changes with time and is adap-
tive to the market outcomes. They are also considered to
be inductive, making their decisions according to the best
choice they are aware of, with their limited number of
strategies, but not the global best choice given by all possi-
ble strategies (the one with the highest virtual score among
the entire strategy space). The game is also a self-contained
model, in which the agents make individual actions ac-
cording to the history, individual actions are then summed
up to give the history for the next round which is then used
by the agents to make predictions again.

As the total number of agents N in the game is an odd
integer, the minority side can always be determined and
the number of winners is always less than the number of
losers, implying the Minority Game to be a negative sum
game. Because of the minority nature of the game and as
the two actions are in symmetric, the time average of A(t)
always has a value of 0 (or hA(t)i D N/2 if “0” and “1” are
employed as actions). Hence, instead of the average atten-
dance, one may be more interested in the fluctuations of
attendance around the average values and this turns out to
be one of the most important macroscopic observables in
the subsequent development.We denote �2 to be the vari-
ance of attendance, also known as the volatility, given by

�2 D
˝
A2˛ � hAi2 (5)

with hAi D 0 for gameswith actions “�1” and “1”. �2 is an
inverse measure of the market efficiency in the game. We
consider two extreme cases of game outcomes. For the first
one, there is only one agent choosing one side while all the
others choose the opposite side. There is a single winner
and N � 1 losers which is considered to be highly ineffi-
cient in the sense of resource allocation, and the supply
and demand are highly unbalanced. For the second case,
(N � 1)/2 of the agents choose one side while (N C 1)/2
of the agents choose the opposite side. There are (N � 1)/2
winners and the supply and demand is maximally bal-

anced. Thus, one may expect to minimize fluctuations of
attendance for advantages of agents as a whole.

Some simplifications or modifications to the basic Mi-
nority Game are suggested and employed in later litera-
ture, where the major physical features of the models are
preserved. A. Cavagna [29,30] observed that the variance
of attendance is almost unaffected if the history string is
replaced by a random invented string, provided that all
agents receive the same string at the same time. That is,
instead of their self-generated winning history, they react
to a virtual random information that is completely unre-
lated to the previous winning groups. In this case, the sig-
nal strings are usually called information instead of history.
The games which feedback the real history are known as
endogenous games, while those games that employ random
history are called exogenous games. In exogenous games,
the total number of signals is no longer restricted to 2M ,
instead it can be any integer which is usually denoted by P,
and is sometimes known as the complexity of information.
Every random signal or information appears with a prob-
ability of 1/P. These random pieces of information make
the dynamics of the game more stochastic, which is very
advantageous for analytic approaches. In the endogenous
game, P D 2M .

As “�1” and “1” are employed as actions, instead of
adding or deducting one virtual point to the strategies,
the cumulated payoff Ui;s can be updated by the follow-
ing equation with a linear payoff scheme

Ui;s(t C 1) D Ui;s(t) � a�(t)i;s A(t) (6)

where A(t) is the attendance given by Eq. (1). A factor of
1/N , 1/

p
N or 1/P is always employed to rescale the last

term. While the real gain for agent i is �ai(t)A(t), the to-
tal gain for all the agents is

P
i �ai(t)A(t) D �A

2(t), pre-
serving the negative sum nature of the game. This modi-
fication is important for analysis while the qualitative be-
haviors of the game are preserved. It also has the meaning
of having a higher reward or larger penalty if a smaller mi-
nority or a larger majority group is predicted, respectively.

In the original game, the ordinary strategy space has
a size of 22M . Challet et al. [31] showed that a reduced strat-
egy space (RSS) can be employed in which the qualitative
behaviors of the game and the numerical values of vari-
ance are not largely affected. We first construct a set of 2M

uncorrelated strategies, in which every two strategies of
the set have exactly half of the predictions different. The
reduced strategy space is then formed by combining this
set with the set of their anti-correlated strategies, in which
every strategy in the latter set have exactly the opposite
prediction to their anti-partners in the former set. Hence,



Minority Games M 5593

the size of the reduced strategy space is 2M � 2 D 2MC1.
This virtue of the reduced strategy space simplifies the the-
oretical analysis in crowd-anticrowd approaches [4,5,6].
Although the dimension of the reduced strategy space is
highly reduced, the ordinary strategy space is commonly
employed in numerical simulations.

The Physical Properties of theMinority Game

Parameters introduced into the basic Minority Game in-
clude N , M (or P) and S corresponding to the population
size, the memory of the agents (the complexity or the total
amount of possible information) and the number of strate-
gies that each agent holds. The predictions a�i;s of strategies
are fixed for every agent throughout the game and are con-
sidered to be quenched disorders of the system in physics.
The cumulated payoffs of strategies that evolve with time
are considered to be dynamic variables or annealed vari-
ables of the system. The game is also a highly frustrated
model. Because of the minority nature of the model, frus-
tration results in the fact that not all the agents can be satis-
fied simultaneously. We focus our discussions on the case
of S D 2, where cases of larger S (not extensively large)
will be briefly discussed and have been shown to share very
similar behavior to the case of S D 2 [31].

Major Features: Phase Transition, Volatility
and Predictability

In 1999, Robert Savit, Radu Manuca and Rick Riolo [3]
found that the macroscopic behavior of the system does
not depend independently on the parameters N and M,
but instead depends on the ratio

˛ �
2M

N
D

P
N

(7)

(denoted by z in their original paper) which serves as
the most important control parameter in the game. This
scaling is also true for P ¤ 2M in exogenous games. The
volatility �2/N and the predictability H/N (which we are
going to define later) for different values of N and M de-
pend only on the ratio ˛. A plot of �2/N against the con-
trol parameter ˛ for an endogenous game is shown in
Fig. 1. We can see that the graph shows a data collapse of
�2/N for different values of N and M. The dotted line in
Fig. 1 corresponds to the coin-toss limit (random choice
limit), in which agents play by making random decisions
at every round of the game. This value of volatility in coin-
toss limit can be obtained by simply assuming a binomial
distribution of agents’ actions, with probability 0.5, where
�2/N D 0:5(1 � 0:5) � 4 D 1. When ˛ is small, the volatil-
ity of the game is larger than the coin-toss limit which

Minority Games, Figure 1
The simulation results of the volatility � 2/N as a function of the
control parameter˛ D 2M/N for games with S D 2 strategies for
each agent averaged over 100 samples. Endogenous informa-
tion and linear payoff are adopted in these simulations. Dotted
line shows the value of volatility in random choice limit. Solid
line shows the critical value of ˛ D ˛c � 0:3374. The resolution
of the curve can be improved to show � 2/N attains minimum at
˛ � ˛c

implies the collective behaviors of agents are worse than
the random choices. In early literature, it is known as the
worse-than-random regime.When ˛ increases, the volatil-
ity decreases and enters a region where agents are per-
forming better than the random choices, which is known
as the better-than-random regime. The volatility reaches
a minimum value which is substantially smaller than the
coin-toss limit. When ˛ further increases, the volatility in-
creases again and approaches the coin-toss limit.

These results also allow us to identify two phases in the
Minority Game, as separated by the minimum of volatility
in the graph. The value of ˛ where the rescaled volatility
attends its minimum is denoted by ˛c, which represents
the phase transition point. ˛c has a value of 0:3374 : : :
(for S D 2) by analytical calculations [8,14]. Generally, for
˛ < ˛c, the volatility �2 and the spread of volatility for dif-
ferent samples of simulation are proportional to N2. Be-
yond the transition point for ˛ > ˛c, the volatility �2 and
the spread of volatility are generally proportional to N.
These can be recognized by the asymptotic behavior of the
graph in Fig. 1 where the slope approaches � 1 for ˛ < ˛c
and approaches 0 for ˛ > ˛c.

In addition to the different scaling of volatility with N,
other quantities also show different behaviors in the two
phases. By examining the distributions of winning proba-
bilities for a particular action after different history strings,
R. Savit et al. [3] found that these distributions are com-
pletely different in the two phases. P(1j�) is defined as the
conditional probability of action “1” turns out to be the
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Minority Games, Figure 2
The histogram of the probabilities P(1j�) of winning action
to be “1” given information � (plotted as the decimal repre-
sentations of the binary strings of information), for games of
N D 101 agents and S D 2 in a symmetric phase with M D 5,
i. e., ˛ � 0:316 < ˛c and b asymmetric phase with M D 6, i. e.,
˛ � 0:634 > ˛c. Endogenous information and linear payoff are
adopted. The histogram in a would have been even more uni-
form if step payoff was adopted, as shown in the original pa-
per [3]

minority group after the history or information �, and the
histogram for P(1j�) is flat at 0.5 for all � when ˛ < ˛c,
as shown in Fig. 2a. For ˛ > ˛c as shown in Fig. 2b, this
histogram for P(1j�) is not flat and uniform. This result is
highly important as it implies that below ˛c, there is no ex-
tractable information from the history string of lengthM,
since the two actions have equal probability of winning
(both are 0.5) for any history string. However, beyond the
phase transition when ˛ > ˛c, there is an unequal win-
ning probability of the two actions, by just looking at the
past M winning actions of the game. Hence, we can call
the phase for ˛ < ˛c the unpredictable or the symmetric
phase, as agents cannot predict the winning actions from

Minority Games, Figure 3
The simulation results of the predictability H as a function of the
control parameter˛ D 2M/N for games with S D 2 strategies for
each agent averaged over 100 samples. Endogenous informa-
tion and linear payoff are adopted in these simulations

the past M-bit history (the winning probabilities are sym-
metric). On the contrary, the phase of ˛ > ˛c is called the
predictable or the asymmetric phase, as there is bias of win-
ning actions given the past M-bit history string (the win-
ning probabilities are asymmetric).

Owing to the results in these histograms, a useful
quantity can be defined to measure the “non-uniformity”
of the winning probabilities or the information content
given by the past M-bit history string. We denote H to be
the predictability of the game which is given by the follow-
ing formula,

H D
1
P

PX

�D1

hAj�i2 (8)

with P D 2M again. H/N is plotted as a function of ˛ in
Fig. 3. In the symmetric phase, hAj�i D 0 for all � as the
actions of “�1” and “1” are equally likely to appear after�.
Hence, H D 0 in the symmetric phase. In the asymmetric
phase, hAj�i ¤ 0 for all � as the actions of “�1” and “1”
are not equally likely after �. Hence, H > 0 in the asym-
metric phase. H begins to increase at ˛ D ˛c as shown in
Fig. 3. Analytic approaches are developed that are based
on the minimization of predictability H [7,8,9,10]. In ad-
dition to the predictability H, the fraction of frozen agents
also increases drastically before ˛c and decreases after-
ward. Frozen agents are agents that always use the same
strategy for making decisions. In contrast, fickle agents are
those who always switch strategies.

In exogenous games, the phase transition, the scaling
by ˛ and the properties of the two phases are preserved.
The symmetric and asymmetric winning probabilities are
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also preserved with � representing the random informa-
tion given to the agents in the conditional probabilities
P(1j�) (not the actual past history) [30,32]. The numeri-
cal values of volatility in the asymmetric phase are slightly
deviated from that in the endogenous games. Because the
winning probabilities are asymmetric, the probability of
history appearance is non-uniform in endogenous games,
while in exogenous games, we assume a uniform appear-
ance probability of all the random information � being
given to the agents.

Formation of Crowds, Anticrowds
and Anti-Persistence in the Symmetric Phase

In the symmetric phase with small ˛, the amount of avail-
able information P is small when compared to the num-
ber of agentsN . Agents are able to exploit the information
well and they react like a crowd which results in a large
volatility. From the point of view of the strategy space, the
number of independent strategies [4,5,6,31] (as discussed
in RSS) is smaller than N in the symmetric phase. Many
agents use identical strategies and react in the same or
similar ways, forming crowds and anticrowds giving large
volatility. This is sometimes known as the herd effect in
the minority game. On the other hand, in the asymmetric
phase with large ˛, the available information P is too large
and complex when compared to N. Agents are not able to
exploit all the information and they react in a way sim-
ilar to making random decisions, resulting in a volatility
approaching the coin-toss limit. In this case, the number
of independent strategies is greater than N and agents are
unlikely to use the same strategies, they act independently
and crowds are not formed. The phase transition occurs
when ˛c is roughly O(1), where N is roughly the same size
as the available information P.

In addition to formation of crowds, anti-persistence
of the winning actions exists in the symmetric phase.
For small ˛ in the symmetric phase, consecutive occur-
rence of the same signal leads to opposite winning ac-
tions [3,11,33], which is known as anti-persistence of the
Minority Game. For example, in the case of M D 2, if the
history “01” leads to a winning choice of “0”, then the next
appearance of the history “01” will lead to a winning choice
of “1”. This results in periodic dynamics of the game for
˛ < ˛c with a period of 2M � 2, where every history ap-
pears exactly twice with different winning actions for the
first and second occurrence. This kind of anti-persistence
disappears in the asymmetric phase. Instead, persistence
is more likely [11], in which the consecutive occurrence of
the same signal tends to have a higher probability in giving
out the same winning actions.

Dependence on Temperature and Initial Conditions

In 1999, Cavagna et al. [34] introduced the probabilistic
fashion, the temperature, to the decision-making process
of agents in amodel known as the ThermalMinority Game
(TMG). This stochasticity of temperature can also be im-
plemented in the basic game. Instead of choosing the best
strategy for sure, agents employ their strategy s with the
probabilities �i;s given by

Prob fsi(t) D sg D �i;s D
e� Ui;s (t)

P
s0 e

� Ui;s0 (t)
(9)

where si (t) denotes the strategy being employed by agent i
at time t. � is denoted by ˇ in the original formulation,
which corresponds to the inverse temperature (as in physi-
cal systems) of individual agents. It can also be interpreted
as the learning rate of the system [10]. Roughly speak-
ing, this is because the dynamics of scores take a time
of approximately 1/� to learn a difference in the cumu-
lated payoffs of the strategies. For small � , the system
takes a convergence time of order N/� to reach the steady
state [35,36], which also reveals the physical meaning of �
as the learning rate.

In the asymmetric phase, the final state of the system
and hence the volatility are independent of � [10]. In the
symmetric phase, the final state of the system is depen-
dent on � and the volatility of the system increases with
increasing � , provided that the system has reached the
steady state [36]. This property of the game is in contrast to
the ordinary physical systems, where fluctuations increase
with increasing temperature. In the Minority Game, fluc-
tuations increase with increasing � , i. e., decreasing tem-
perature, as � is implemented as an individual inverse
temperature in choosing strategies. As a result, in addition
to inverse temperature or learning rate, � can also be in-
terpreted as collective or global effective temperature of the
whole system, since global fluctuations increase with � .
In contrast to �2, predictability H is independent of � in
both symmetric and asymmetric phases [10].

In addition to dependence on � in the symmetry
phase, the final state of the system is dependent on the
initial conditions. For games with the same set of strate-
gies among agents (identical quenched disorders), the final
state of the system is dependent on the bias of initial virtual
scores (heterogeneous initial conditions of annealed vari-
ables) of the strategies [10,33]. For the case of S D 2, the
volatility of the system is smaller if larger differences are
assigned to the initial virtual scores (i. e., initial bias) of the
two strategies, given that the same � is implemented [9].
A system with a final state depending on the initial state of
the annealed variable corresponds to the spin glass phase,
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or the replica symmetry breaking (RSB) phenomenon in
physical systems. Thus, the symmetric phase also corre-
sponds to the behaviors of broken replica symmetry. On
the other hand, in the asymmetric phase, the final state of
the system and hence the values of volatility is independent
of the initial conditions. Thus, the asymmetric phase also
corresponds to the replica symmetry (RS) phase in physi-
cal systems.

The Cases of S > 2

Finally, the behaviors of the game are also dependent on S,
the number of strategies that each agent holds. As shown
in Fig. 4 where the volatility is plotted against ˛ D 2M/N ,
the volatility of the system is dependent on S. Data col-
lapse of volatility with different values of N and M is
still shown by plotting volatility against ˛, for each value
of S. While the generic shape of the curves is preserved
when S increases, the points of minimum volatility shift
to the right which suggests that the phase transition point
is a function of S. It is also suggested in [31,37] that for
the cases of S > 2, instead of ˛ D 2M/N , the important
control parameter should be 2MC1/SN. Since 2MC1 is the
number of important strategies in the reduced strategy
space and SN is the total number of strategies held by all
agents, when 2MC1 < SN, some agents are using identical
strategies and crowds and anticrowds are formed. On the
other hand, when 2MC1 > SN, most agents are using in-
dependent strategies and crowds are not formed. Numeri-
cal solutions from the replica approach for different values

Minority Games, Figure 4
The simulation results of the volatility as a function of the control
parameter ˛ D 2M/N for games with S D 2;3;4 strategies for
each agent averaged over 100 samples. Endogenous informa-
tion and linear payoff are adopted in these simulations. Volatil-
ity generally increaseswith the number of strategies Sper agent.
Data collapse of volatility is shown for different values of S

of S show the relation of ˛c(S) � ˛c(S D 2)C (S � 2)/2 to
a high degree of accuracy [9].

Variants of the Minority Game

After the first publication of Arthur’s bar problem and
the Minority Game, many variants of the game were es-
tablished and studied by the physics community and also
some economists. Some of these variant models were de-
veloped to further simplify the Minority Game or to in-
clude more features from the financial markets. Most of
the modifications include the use of different kinds of
strategies and payoff functions, the presence of different
kinds of agents and the increased flexibility in participa-
tion of agents, evolution of agents, replacement of poorly
performing agents by new agents and the individual con-
cerns for capital. In this section, some of these variants
are briefly introduced together with their physical signifi-
cance to the development of the Minority Game.We leave
their implications in regard to the financial markets to
Sect. “Minority Games and Financial Markets”.

The Evolutionary Minority Game or the Genetic Model

In 1999, N.F. Johnson et al. [20] introduced the Evolution-
ary Minority Game, which is usually simply described as
EMG in the literature or the Genetic Model in later liter-
ature. From the name of this model, we can see that the
evolution of agents is an important feature added to the
game. In addition, the strategies employed by agents are
alsomajormodifications. Unlike the basicMinority Game,
all agents in EMG hold only one strategy S D 1 and the
strategy table is identical for everyone. For example in the
case of M D 3, all agents hold one strategy as in Table 1.
Instead of having a column of fixed predictions, this col-
umn records themost recent past winning action or choice
for the corresponding history. Thus, this strategy table is
time dependent. To make decisions, all agents are assigned
a different probability pi at the beginning, with 0 � pi � 1,
which is defined as the probability that agent i acts accord-
ing to the strategy table, i. e., will follow the recent winning
action or the last outcome for that M-bit history. With
a probability 1� pi , agent i chooses the choice opposite
to the past winning action for that history. This probabil-
ity pi (rather than the strategy table) acts as a role of strat-
egy in making decisions for agents and is called “strategy”
in EMG or the “gene” value in Genetic Model. Hence, the
payoff or scores are rewarded or penalized subject to pi.

To enhance the evolutionary property of the game,
agents are allowed to modify the pi if the scores fall be-
low a threshold denoted by d, where d < 0, which is some-
times known as the death score. The new pi is being drawn
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with an equal probability in the range (pi � r/2; pi C r/2)
of width r, with either a periodic or reflective boundary
condition at pi D 0 or pi D 1. This corresponds to an evo-
lution of strategy (the probability pi), or the mutation of
the gene value pi with mutation range r, as a result the
EMG is also known as the Genetic Model. It is found that
in the ordinary EMG with the winning rule being the mi-
nority group (A(t) < N/2), the memoryM of the strategy
table is not relevant in affecting the major features (includ-
ing the steady state distribution P(pi )) of the system [38],
but may be relevant with other winning rules (winning
level other than N/2) [39]. Thus, the volatility is indepen-
dent of M in the ordinary EMG, in contrast to the basic
Minority Game.

In this ordinary model, one point is added to or de-
ducted from the strategy pi for winning or losing pre-
dictions. The possibility of having a non-unity price-to-
fine ratio R was introduced by Hod et al. [38,40]. For
R > 1, agents are in a wealthy regime since the gain is
larger than the loss in one game. For R < 1, agents are in
a tough regime. The system behaviors are dependent on R,
with two thresholds R(1)

c and R(2)
c , both R(1)

c and R(2)
c are

less than and close to 1, with R(1)
c > R(2)

c . In the regime
where R > R(1)

c , after a sufficiently long time of evolu-
tion, the agents self-segregated into two opposing groups
at pi D 0; 1 and a “U” shaped” P(p) distribution is found
as shown in the case of R D 1 in Fig. 5. This implies agents
tend to behave in an extremeway in a rich economy. In the
regime where R < R(2)

c , the agents cluster at pi D 0:5 and
an “inverse-U” shaped” distribution is found as shown in

Minority Games, Figure 5
The simulation results of the distribution P(pi) in a game of
N D 10001 agents with d D �4 and M D 3. The distribution is
obtained after 120000 time steps and averaged over 50 simula-
tions. Self-segregation and clustering of agents at different val-
ues of R are shown

the case of R D 0:97 in Fig. 5, implying agents tend to be
more cautious in a poor economy.

The Thermal Minority Game

In addition to the stochasticity in choosing strategies as in-
troduced by Eq. (9) discussed in Sect. “The Physical Prop-
erties of the Minority Game”, there are several other mod-
ifications from the basic Minority Game in the TMG [34].
In the original formulation, the strategy is a vector in
the P-dimensional real space RP denoted by Eai;s , with��Eai;s

�� D
p
P. Thus, the strategy space is the surface of

the P-dimensional hypersphere and the components of the
strategies are continuous. This is different from the dis-
crete strategies in the basic Minority Game. Every agent in
the game draws S vector strategies before the game starts.

The information processed by the strategies is a ran-
dom vector E�(t), with a unit-length in RP . The response
or the bid of the strategy is no longer integer and is given
by the inner product of the strategies and the information,
i. e., Eai;s � E�(t). Hence, the attendance A(t) is given by

A(t) D
NX

iD1

Eai;s i (t) � E�(t) (10)

with si(t) denoting the chosen strategy of agent i at time t.
The cumulated payoff of strategy can be updated by

Ui;s(t C 1) D Ui;s(t) � A(t)
�
Eai;s � E�(t)

�
: (11)

TMG can be considered as a continuous formulation of
the Minority Game, in which the game is no longer dis-
crete and binary. Since the response of the strategy in TMG
is defined as the inner product, i. e., a sum over all the P
entries of the vectors, all components of the strategy have
to predict at each round. This is a difference from the ba-
sic Minority Game where at each round, only one of the P
predictions on the strategy is effective. Despite these differ-
ences and the continuous formulation, TMG reproduces
the same collective behaviors as the basic MG [34,35].

The Simple Minority GameWithout Information

In this simplified Minority Game, no information is given
to agents and thus they have no strategy tables. Agents
choose between the choice +1 and� 1 according to the fol-
lowing probabilities,

Prob fai(t) D ˙1g �
e˙Ui (t)

eUi (t) C e�Ui (t)
(12)

and Ui (t) is updated by

Ui (t C 1) D Ui (t) �
�

N
A(t) (13)

where Ui (t) can be considered as the virtual score for
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agent i tomake a decision of “+1”, and�Ui (t) correspond-
ingly the virtual score for agent i to make a decision of
“�1”. IfUi (t) > 0, the past experience of the agents shows
that it is more successful to take action ai(t) D C1, and
vice versa. The learning rate or the temperature � is im-
plemented in this model. This model gives a very simple
analytic explanation of the system’s dependence on � . For
� < �c, the volatility is found to be proportional toN, i. e.,
�2 / N . For � > �c, �2 / N2. �c is found to be depen-
dent on the initial conditions Ui (0). In addition, �2 de-
creases with increasing Ui (0). Similar dependence of the
volatility on � and initial conditions, and the dependence
of �c on initial conditions are also found in the basic Mi-
nority Game.

The Grand-Canonical Minority Game

The grand-canonical Minority Game (GCMG) refers to
a subclass of Minority Games where the number of agents
who actively participate in the market is variable. Instead
of summing over all N agents, the collective action or the
attendance A(t) is effectively the sum of the actions of ac-
tive agents at time t. Agents can be active or inactive at any
time, depending on their potential profitability from the
market. The term “grand-canonical” originates from the
grand-canonical ensemble in statistical mechanics where
the number of particles in the observing system is variable.
In most of the formulations [23,26,28], when the highest
virtual score of the strategies that an agent holds is below
some threshold or �t (where � is usually a positive constant
being referred to as the interest rate and t is the number
of rounds or time steps since the beginning of the game),
the agent refrains from participating in that round of the
game. It is equivalent to the addition of an inactive strategy
for every agent from which agents become inactive, and
the virtual score of this strategy is �t. Physically, it cor-
responds to circumstances of gaining an interest of � at
each time step by keeping the capital in the form of cash,
so agents would only participate in the market if the gain
from investments in the market is greater than the inter-
est rate. In some other formulations, instead of the virtual
score of the strategies, the real score of the agents is used
to compare with the interest rate [24]. Winning probabil-
ities of strategies within a certain time horizon are also
considered [24,41]. Individual capital concerns can also be
implemented to achieve the grand-canonical nature of the
game [25,28], in which agents vary their investment size at
each time step by considering risk, gain potential or their
limited capital.

These grand-canonical modifications from the Minor-
ity Game are considered to be important and crucial in

producing the stylized facts of financial markets in the Mi-
nority Gamemodels [24,25,26,27,28], while preserving the
two-phase structure of the predictable and unpredictable
phase. The stylized facts being reproduced in the mod-
els include the fat-tail volatility or price return distribu-
tions and volatility clustering, when the systems are close
to the critical state. Numerical tests and analytical attempts
are carried out in the critical regime of the models. These
models serve as a tool for physicists in understanding how
macroscopic features are produced from the microscopic
dynamics of individuals, which also supports the conjec-
ture of self-organized criticality of the financial market in
which the financial market is always close to or attracted
to the critical state.

Analytic Approaches to the Minority Game

There are several analytic approaches to solving the Mi-
nority Game. Most of the approaches are based on the
models of the basic Minority Game with little modifica-
tions or simplification. It is found that in the asymmetric
phase with ˛ > ˛c, both equilibrium approaches and dy-
namics approaches are likely to describe the same behav-
ior of the system, and the equilibrium approach based on
the minimization of H gives an analytic solution in this
phase [7,8,9,10,12]. For the symmetric phase with ˛ < ˛c,
fluctuations in the dynamics have to be considered and the
solution is dependent on initial conditions. The final state
of the system is sensitive to initial conditions and pertur-
bations in the dynamics [10,12,14]. In this case, a solution
is available in the limit of � ! 0 or asymptotic behaviors
can be obtained in the limit of ˛ ! 0.

One of the early approaches to solving the Minority
Game was the crowd-anticrowd theory which provides
a qualitative explanation of the volatility dependence on
brain size M [4,5,6]. Consider the reduced strategy space
with strategies R D 1 : : : 2M to be the uncorrelated strate-
gies, R̄ to be the anti-correlated strategy of R (i. e., R
and R̄ always have opposite decisions), which constitute
the 2MC1 strategies in the RSS. We denote nR to be the
number of agents using the strategy R, nR̄ to be the num-
ber of agents using R̄ and h : : : i to be time averaging.
For R and R0 to be uncorrelated strategies, the time average
h
P

R¤R0(nR � nR̄)(nR0 � nR̄0 )i D 0 and thus the volatility
�2 can be expressed as

�2 D

2MX

RD1

(nR � nR̄ )
2 (14)

which physically corresponds to the contribution to the
global volatility from each crowd-anticrowd pair (R, R̄),
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as R and R̄ are always making opposite decisions. If we
consider a uniform distribution of all strategy combina-
tions among agents at the beginning of the game, nR
and nR̄ can be determined from the ranking of virtual
scores of strategies, since agents are always using the best
strategies they hold. In this case, the strategy with the high-
est virtual points would be themost popular strategy, while
its anti-correlated partner would have the lowest virtual
points and becomes the least popular strategy. This hap-
pens for small M where the number of strategies is small
and a large number of agents are using the best strategy.
On the contrary only a small number of agents are us-
ing its anti-correlated strategy, leading to a large jnR � nR̄ j
and a large volatility. For the cases of largeM, even for the
best strategy, nR is relatively small and the nR̄ may have
a similarmagnitude as nR, leading to a small jnR � nR̄ j and
a small volatility. This qualitatively explains the behaviors
of volatility with ˛ based on the size of crowd-anticrowd
pairs. The presence of temperature is also considered in
the extended crowd-anticrowd approach [6].

In addition to this crowd-anticrowd theory, a full an-
alytic approach can be developed. To solve the Minority
Game analytically, we employ some convenient notation
changes which make the tools in statistical physics more
applicable [7,8,9]. For the case of S D 2, we denote the
first strategy of an agent to be “+1” while the second one is
“� 1”, whereas the best strategy of agent i at time t is now
expressed as si(t) D ˙1. The real bid ai (t) of agent i at
time t can then be expressed as

ai(t) D a�(t)i;s i (t) D !
�(t)
i C si(t)�

�(t)
i (15)

where !�i D (a�i;C C a�i;�)/2 and ��i D (a�i;C � a�i;�)/2.
!
�
i and ��i are quenched disorders and are fixed at the be-

ginning of the game. !�i ; �
�
i D 0;˙1 and !�i �

�
i D 0 for

all �. si(t) is the dynamic variable and becomes explicit in
the action of agents, corresponding to the Ising spins in
physical systems. Thus, the attendance can be expressed as
a function of spin si(t) given by

A(t) D ˝�(t) C
NX

iD1

�
�(t)
i si(t) (16)

where˝� D
P

i !
�
i .

Other than the spin si(t), the virtual scores of the
strategies are also dynamic and we denote the difference
of the virtual scores of the two strategies of agent i to be
Yi (t) given by

Yi(t) D
�

2
(Ui;C(t) � Ui;�(t)) : (17)

This Yi (t) determines the relative probabilities of using
the two strategies with “inverse temperature” � and is up-
dated by

Yi (t C 1) D Yi(t) �
�

N
�
�(t)
i A(t) (18)

which is given by the update of the individual virtual
scores Ui;C(t) and Ui;�(t) in Eq. (6) with a factor of 1/N
in the last term. Thus, the probabilities Eq. (9) for using
the strategies si(t) D ˙1 at time t becomes

Prob fsi(t) D ˙1g D �i;˙ D
1˙ tanh Yi(t)

2
: (19)

From this equation, we can calculate the time average of
si (t) at equilibrium with probabilities Eq. (19), denoted
bymi, to be

mi D hsi i D htanh(Yi )i : (20)

The systemwill be stationary with hYi i � vi t, correspond-
ing to a stationary state solution of the set of mi. From
Eq. (18), vi can be expressed as

vi D �˝�i �
NX

jD1

�i� jmj :

where � � � denotes the average over �

(21)

For vi ¤ 0, hYi i diverges to˙1 and givesmi D ˙1, cor-
responding to the frozen agents who always use the same
strategy. For vi D 0, hYi i remains finite even after a long
time and jmi j < 1, corresponding to the fickle agents who
always switch their active strategy even in the stationary
state of the game. We can identify˝�i C

P
j¤i �i� jmj as

an external field while �2i is the self-interaction of agent i.
For an agent to be frozen, the magnitude of the external
field has to be greater than the self-interaction. In order to
have fickle agents in the stationary state, the self-interac-
tion term is crucial.

We note that the above equation of vi in Eq. (21) and
the corresponding conditions of frozen and fickle agents
are equivalent to the minimization of predictability H,
with H written in the form

H D
1
P

PX

�D1

"

˝� C

NX

iD1

�
�
i mi

#2

: (22)

Since mi’s are bounded in the range [�1;C1], H
either attains its minimum at dH/dmi D 0, giving
˝�i C

P
j �i� jmj D 0 (fickle agents) or at the bound-

ary of the range [�1;C1] of mi, giving mi D ˙1 (frozen
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agents). Thus, we can identifyH as the Hamiltonian where
the stationary state of the system is the ground state that
minimizes the Hamiltonian. From Eq. (16), the volatility
of the system can be expressed as

�2 D H C
NX

iD1

�2(1 � m2
i )C

X

i¤ j

�i� j

˝
(tanhYi � mi )(tanh Yj � mj)

˛
: (23)

The last term involves the fluctuations around the average
behavior of the agents and is related to the dynamics of the
system.

IdentifyingH as the Hamiltonian reduces the problem
to a conventional physical problem of finding the ground
state of the system by minimizing the Hamiltonian. Solv-
ing the problem involves averaging the quantity ln Z over
quenched disorders corresponding to the strategies a�i;˙
(now represented by !�i and ��i ) given to the agents at the
beginning of the game. We note that the system is a fully
connected system in which agents interact with all other
agents, and can be handled by the replica approach as in
spin glass models, under the assumption of replica sym-
metry. Given the fraction of frozen agents to be � , which
can be expressed as a function of ˛, ˛c D 0:3374 : : : [8] is
found to be the solution of the equation

˛ D 1 � �(˛) : (24)

In addition, this approach allows us to see that the sys-
tem with different initial conditions converges to the same
unique solution, corresponding to a single minima ofH in
the phase ˛ > ˛c (replica symmetry). This method allows
us to obtain a complete solution for theMinority Game for
all � in the phase ˛ > ˛c. Macroscopic quantities such as
�2 and H can be analytically calculated. For ˛ < ˛c, there
are multiple minima of H D 0 and the system’s final state
is not unique (replica symmetry breaking) and depends on
its initial state. In this case, dynamics has to be considered.
Breaking of replica symmetry is also considered in the case
with market impact [17].

We notice that in the long run, the characteristic
time in the dynamics is approximately proportional to N,
where all agents observe the performance of their strate-
gies among all P states with P D ˛N. This characteristic
time is also inversely proportional to � since the dynam-
ics of scores take a time of approximately 1/� to adapt
a change of scores, as discussed earlier. The real time t can
then be rescaled as

� D
�

N
t (25)

in which one characteristic time step � in the system corre-
sponds to N/� real time steps t. This is the reason for the
systems with small � having a convergence time of N/� .
We can hence write a dynamical equation for Yi in the
rescaled time by denoting the variable yi (�) D Yi (N�� )
which gives

dyi
d�
D �˝�i �

NX

jD1

�i� j tanh(yi )C �i (26)

where the first two terms on the right hand side represent
the average behavior of agents obtained by the average fre-
quency they play their strategies [10]. These two terms are
considered to be deterministic. The last term � i represents
the noise or the fluctuations around the average behavior.
The properties of these fluctuations are given by

h�(�)i D 0 (27)

˝
�(�)�(� 0)

˛
Š
� �2

N
�i� jı

�
� � � 0


: (28)

By writing the Fokker–Planck equation for the probability
distribution P

�
fyig; t


[10], many physical implications

can be obtained. We first note that the noise covariance
Eq. (28) is linearly related to � , revealing the role of �
as the global temperature of the system.When � ! 0, the
noise covariance vanishes and the minimization ofH gives
a valid solution, even for ˛ < ˛c. It can also be deduced
that in the asymmetric phase, the last term in Eq. (23) van-
ishes such that �2 is independent of � and initial condi-
tions. In the symmetric phase, this last term does not van-
ish and �2 is dependent on both � and initial conditions.

An alternative approach to derive dynamical equations
is the generating functional approach [14,15,16], which
monitors the dynamics using path integrals over time. The
approach was first used on the batch update version of the
Minority Game, in which agents update their virtual scores
only after a batch of P time steps and with � !1 as in
the basic Minority Game. The quenched disorder can be
averaged out in the dynamical equations and in the limit
of N !1, we obtain a representative “single” agent dy-
namical equation with the variable y(t), where y(t) repre-
sents the difference in the virtual scores of the two strate-
gies of this “single” agent after the tth batch. The dynam-
ics are stochastic but non-Markovian in nature, and can
be extended to regions inaccessible by the replica method.
This method again confirms the relation of Eq. (24) and
gives the same value of ˛c [14]. For ˛ > ˛c, the fraction
of frozen agents � is obtained analytically and the volatil-
ity is calculated to a high accuracy. For ˛ < ˛c in the
limit of ˛ ! 0, � is shown to diverge as � � ˛�1/2 for
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y(0) < yc, and vanishes as � � ˛1/2 for y(0) > yc, with
yc � 0:242 [14]. This approach was later extended to the
case of on-line update (update of virtual score after every
step) and the cases of � <1 [15,16].

Minority Games and FinancialMarkets

The basic Minority Game model is a simple model that is
used to describe the possible interaction of investors in the
financial markets. Despite its simplicity, some variants of
the game show certain predictive abilities for real finan-
cial data [22,24,41]. Though Minority Games are simple,
they setup a framework of agent-basedmodels from which
sophisticated trading models can be built, and implemen-
tation in real trading may be possible. Although these so-
phisticated models are usually used for private trading and
may not be open to the public, Minority Games are still
a useful tool to understand the dynamics in financial mar-
kets. There are several fundamental differences between
the basic game and the markets. The basic Minority Game
is a negative sum game in which the sum of gain of all
agents is negative. Agents are not concerned with capital
and cannot refrain from participation even if they found
the game unprofitable.Whether the simple payoff function
in Eq. (6) correctly represents the evaluation of strategies
by the real investor is questionable. We also note that the
symmetric phase corresponds to a phase of information
efficiency in which the game becomes unpredictable.

Although the basicMinority Game provides a very col-
orful collective behavior of agents from simple interac-
tions and dynamics, some details can affect the behaviors
andmodifications have to bemade in order to draw amore
direct correspondence of Minority Games to real financial
markets. Some variants of theMinority Game aremodified
to study a particular issue or aspect of the real markets.
While with the introduction of several financial aspects,
some variants of the game lead to a more realistic model of
the market, at the same time they complicate the models.
Among the different aspects, one of the primary issues is
to draw an analogy to trading where price dynamics have
to be introduced to the Minority Game. A common price
dynamic used in the game is to relate the attendance A(t)
to the price p(t), and thus the return r(t) in trading is given
by

r(t) � log[p(t C 1)] � log[p(t)] D
A(t)


(29)

where  is called the liquidity, which is used to control
the sensitivity of price on attendance. With this or simi-
lar price dynamics, the trading process can be defined in
the game.

After the introduction of price dynamics, the issue of
payoff function was also addressed. The mixed minority-
majority game originally proposed by M. Marsili [18] is
based on a simplified version of the Minority Game in
which there is no strategy table and no information (as dis-
cussed in Sect. “Variants of theMinority Game”). The pay-
off function in this model is based on the expectations of
the agents in relation to the price change in the next steps.
For simplicity, we consider the expectation Ei [A(t C 1)jt]
of agent i on the attendance A(t C 1) in the next step,
which is expressed as

Ei [A(t C 1)jt] D �˚iA(t) : (30)

For ˚i > 0, agents expect the attendance in the next step
to be negatively correlated with that in the present step
(i. e., the price fluctuates), revealing the minority nature of
the agents and they are called fundamentalists or contrar-
ian agents. For˚i < 0, agents expect the attendance in the
next step to be positively correlated with that in the present
step (i. e., a price trend develops), revealing the majority
nature of the agents and they are called trend followers. For
both fundamentalists and trend followers, if they expect
the price to go up in the next step, buying is considered
to be profitable, and vice versa. Thus, the payoff function
ıUi (t) D Ui (t C 1) � Ui(t) is proportional to the product
of the current decision ai(t) and the expectation of a price
change in the next step is given by

ıUi (t) / ai(t)Ei [A(t C 1)jt] D �˚i ai(t)A(t) (31)

with˚i > 0 and˚i < 0 corresponding to fundamentalists
and trend followers, respectively. Hence, fundamentalists
are considered to be playing a minority game while trend
followers play a majority game.

The two kinds of agents interact in the same game and
it was found that the ratio of fundamentalists to trend
followers is important in affecting the behaviors of the
system. If more than half of the agents are fundamental-
ists, the fundamentalists prevail and the game is minority
in nature with hA(t C 1)A(t)i < 0. On the other hand, if
more than half of the agents are trend followers, the trend
followers prevail and the game is majority in nature with
hA(t C 1)A(t)i > 0. Thus, the behaviors of both minor-
ity and majority agents are found to be self-sustained, de-
pending on the relative population of the agents.

The $-game [19] shares some similarity to the major-
ity nature of the trend followers in the mixed minority-
majority game, but with a crucial difference of using the
real attendance of the next step, not the expectations of
agents, in the payoff function. In the $-game, agents are
again equipped with strategy tables and the virtual score
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Minority Games, Table 2
The payoff functions of the Minority Game, the majority game
and the $-game, with˚ i set to˙1 in the mixed minority-major-
ity game

ıUi;s(t)

Minority Game �a�i;s(t)A(t)

Majority Game a�i;s(t)A(t)

$-game a�i;s(t � 1)A(t)

of strategy s is updated according to

Ui;s(t C 1) D Ui;s(t)C a�i;s(t � 1)A(t) : (32)

According to this payoff scheme, the present actions a�i;s(t)
would only change the payoff at the next step at t C 1. Sup-
pose an agent buys an asset, he gains by selling the asset in
the next step if the price rises, and vice versa. This payoff
scheme aims to model the mode of one-step speculating in
realistic markets though agents are not restricted to act op-
positely in consecutive steps in the model. Bubble-like be-
haviors are found in the model, in which agents buy (sell)
and push up (down) the price, leading to positive evalua-
tions of the buying actions such that agents are more likely
to buy (sell) again. This process continues and a persistent
price trend is observed. This persistent price trend is not
observed in real markets, and can be eliminated from the
model if agents are concerned with their limited capital,
risk or maximum holding of assets [19,21,22,28]. To sum-
marize the different payoff schemes in the Minority game,
majority game and the $-game, Table 2 shows the payoff
functions of the three games.

Other than the payoff functions, we consider the sta-
tionary state of collective behaviors in the system. The
stationary state of the Minority Game is not a Nash
Equilibrium. There are an extremely large number of
Nash Equilibria in the Minority Game [17,18] and one
example is (N C 1)/2 agents always make an action of
ai(t) D C1 while (N � 1)/2 agents always make an action
of ai(t) D �1. In this case, � D 1 and no individual has
the incentive to change his action by himself (the majority
group change if any of the losers moves). This state is not
stationary in the game. The stationary state of the game
is described by the minimization of predictability H, but
Nash Equilibria are states of minimum volatility �2. Phys-
ically, instead of competing with the other N � 1 play-
ers, agents are interacting with the total attendance A(t)
which includes also its own action. By subtracting their
own actions from the attendance, their cumulated payoffs

Eq. (13) in the simplified minority game becomes

Ui (t C 1) D Ui (t) �
�

N
�
A(t) � �ai(t)

�
(33)

where eta denotes themarket impact. The Minority Game
corresponds to the case of � D 0 in which Nash Equilib-
rium is not attained. In this simplified model, � > 0 brings
heterogeneity to the behaviors of agents and Nash Equilib-
rium is attained [18].

In some variants of theMinority Game, the role of par-
ticipants are studied. It was suggested that a symbiotic re-
lation is present between two kinds of traders [7,25,42],
namely the producers and the speculators. Producers are
agents who always participate and trade with only one
strategy. They have a primary interest in trading in the
market for business or other reasons. Speculators are
agents who speculate and have no interest in the intrinsic
values of the assets traded. They can refrain from partici-
pating in themarket at any time they found it unprofitable.
This model corresponds to one of the grand-canonical Mi-
nority Games. In this model, it was found that the gains
of producers are always negative but their losses decrease
with an increasing number of speculators, since specula-
tors provide liquidity to producers and make the market
more unpredictable. On the other hand, the gain of spec-
ulators generally increases with the number of producers,
since producers provide more information to speculators
which make the market more predictable. As a result, pro-
ducers and speculators are symbiotic.

In addition to studying the role of producers and spec-
ulators, the grand-canonical Minority Game plays a cru-
cial role in understanding financial markets [24,26,28].
By introducing the grand-canonical nature to the model,
agents can choose to refrain from participating in the mar-
ket when they found the game unprofitable. While observ-
ing the market as non-trading outsiders, they can partici-
pate in the market again once they found it profitable. The
predictable and unpredictable phases are usually preserved
in this class of models, where fat-tail distributions of price
return are found around the phase transition point. These
can be fitted by power laws. While outside the critical re-
gion, the fluctuation distributions becomes Gaussian. In
addition, volatility clustering, where high volatility is likely
to cluster in time, is also found and can be fitted by power
laws or other forms of function [25,26,28,43]. This sug-
gests that the dynamics of agents are correlated in time.

The observation of power laws in the model coincides
with the observations of fat-tail price return distributions
and volatility clustering in real markets in the high fre-
quency range [44]. While Gaussian fluctuations are not
found in real markets, these properties of the model pro-
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vide important implications or conjectures of financial
markets being in the critical state. It also suggests the pos-
sibility of a self-organized critical system as an explana-
tion of the behaviors of financial markets. In addition to
power laws, rescaling of financial market data of differ-
ent frequencies [45] also provides preliminary evidence of
the property of scale invariance in time in critical systems.
Although power laws in financial markets may have ori-
gins other than critical phenomenon [46], these conjec-
tures provide a potential perspective in understanding the
dynamics and behaviors of the markets. If financial mar-
kets exist as a critical phenomenon, their behaviors can be
understood qualitatively from the underlying nature of in-
teractions in similar systems within the same universality
class. In this case, microscopic details of the systems are
not crucial in affecting the generic behaviors for systems in
the same class. As financial markets are observed to be op-
erated close to informational efficiency, correspondingly,
the grand-canonical Minority Games show stylized facts
near the critical point of phase transition to the unpre-
dictable phase, i. e., the phase of informational efficiency.
In some versions of the grand-canonical minority game,
rarely large fluctuations resulting from a sudden participa-
tion of a larger number of speculators are also found which
draw analogy to market crashes.

Future Directions

In view of the exciting physical pictures brought along
by the grand-canonical Minority Games, more analytic
works can be developed to understand the dynamics of
the critical regime around which the fat-tail distributions
and the volatility clustering are found. The formation of
power laws and anomalous fluctuations may be under-
stood with the analytic tools. An analytic approach to the
grand-canonical minority game would also provide more
clues in proving or disproving the conjecture of the finan-
cial market being a self-organized critical phenomenon.

On the other hand, simple modeling that reveals the
dynamics of the financial market is still possible. Devel-
opment of other simple models that draw direct analogy
to the financial markets, together with analytic solution
is crucial in understanding how the markets work. Other
than the grand-canonical games, some variants of the basic
Minority Game are still simple and worth solving analyti-
cally. Although an analytic solution may not be available
for complicated models that introduce more and more
realistic aspects into the game, comprehensive modeling
based on the inductive nature of agent-based models pro-
vides us with a new perspective in understanding the fi-
nancial markets.

Other than modeling, efforts may be put in to im-
plementing Minority-Game strategies in real trading. Al-
though the strategies from the basic Minority Game and
its variants may not accurately describe the strategies for
real trading, the simplicity of the strategy does leave us
a large freedom in expanding, modifying and tuning with
respect to attaining profitability in real trading. Using Mi-
nority Games as a framework, a sophisticated real trading
system can be built that includes a comprehensive picture
of the trading mechanism. Predictive capacity may also
be obtained from this kind of agent-based model, which
goes beyond the standard economic assumption of de-
ductive agents and market efficiency. All these possible
future directions show great potential over the conven-
tional statistical tools in financial analysis. These develop-
ments may be used for private trading and may not be
accessible through public and academic literature. Some
work [22,24,41] has already shown potential in this direc-
tion of application.
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Definition of the Subject

Mobile agents are programs that, with varying degrees of
autonomy, can move between hosts across a network. Mo-
bile agents combine the notions of mobile code, mobile
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computation, and mobile state. They are location aware
and can move to new network locations through explicit
mobility operations. Mobile agents realize the notion of
moving the computation to the data as opposed to mov-
ing the data to the computation, which is an important
paradigm for distributed computing. Mobile agents are ef-
fective in operating in networks that tend to disconnect,
have low bandwidth, or high latency.

Introduction

Advances in computer communications and computing
power have changed the landscape of computing: comput-
ing devices ranging from the smallest embedded sensors to
the largest servers are routinely interconnected and must
interoperate. Their connections often are set up over un-
trusted and untrustworthy networks, with limited connec-
tivity and dynamic topologies. The computational capac-
ities of the devices as well as the communications band-
width between the devices are in a state of constant change
and users expect computer systems to dynamically adapt
to such changes. Systems should opportunistically take ad-
vantage of new resources while at the same time transpar-
ently compensate for failures of systems and communica-
tion links. Moreover, the characteristics of the applications
running on those devices are quite often dynamic, with
new software added to the system at run time.

While many of the characteristics of distributed sys-
tems have changed, the tools for developing distributed
software have not evolved. The majority of distributed
programming is still being done in languages and environ-
ments that were designed either for uni-processor hard-
ware systems or for static software systems in which the
locations and functionality of all clients and servers can
be specified a priori. This entry will look at different ap-
proaches using mobile agents, a new paradigm that eases
the task of developing modern distributed systems. In ad-
dition, the entry will look at programming languages and
middleware designed to support mobile agents, as well as
the security mechanisms required by those languages and
infrastructures.

Mobile agents are software agents with the additional
capability to move between computers across a network
connection. By movement, we mean that the running pro-
gram that constitutes an agent moves from one system to
another, taking with the agent the code that constitutes
the agent as well as the state information of the agent. The
movement of agents may be user-directed or self-directed
(i. e. autonomous). In the case of user-directed movement,
agents are configured with an itinerary that dictates the
movement of the agents. In the case of self-directed move-

ment, agents may move in order to better optimize their
operation. Mobility may also be a combination of user-
and self-directedness.

Classificationof Mobile Agent Capabilities

Mobile agents encompass three basic capabilities: mobile
code, mobile computation, and mobile state. These three
capabilities are shown in Fig. 1 below. Each of the capabil-
ities is an evolution of previously developed capabilities.
The following subsections describe each capability.

Mobile Computation

Mobile computation involves moving a computation from
one system to another. This capability is an evolution of
remote computation, which allows a system to exploit the
computational resources of another system over a network
connection. One of the original mechanisms for remote
computation was Remote Procedure Call (RPC). Java Re-
mote Method Invocation (RMI) is another example of re-
mote computation as are servlets and stored procedures.

The difference between mobile and remote compu-
tation is that mobile computation supports network dis-
connection. In a traditional remote computation model,
the system requesting the service (the client) must re-
main connected to the system providing the service (the
server) for the duration of the remote computation opera-
tion. Additionally, depending on the interface exposed by
the server, an interaction can require an arbitrary num-
ber of messages between client and server. If network con-

Mobile Agents, Figure 1
The Three Orthogonal Capabilities of Mobile Agents
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nectivity is lost, the remote computation will become an
orphaned computation that will either be terminated or
whose results will be discarded. Amobile computation, on
the other hand, is an autonomous entity. Once the com-
putation moves from the first system (which may nomi-
nally be called the client) to the second system (the server),
the computation continues to execute on the server even if
the client becomes disconnected. The agent returns to the
client with the results of the computation when (and if) the
connectivity is recovered.

Mobile Code

Mobile Code is the ability to move code from one system
to another. The code may be either source code that is
compiled or interpreted or binary code. Binary code may
further be either machine dependent or be some interme-
diate, machine-independent form.

Mobile code is used in other contexts besides mobile
agents. For example, system administrators use mobile
code in order to remotely install or upgrade software on
client systems. Similarly, a web browser uses mobile code
to pull an applet or script to execute as part of a web page.

Code may be mobile in two different ways: push and
pull. In the push model, the system sending the code
originates the code transfer operation whereas in the
pull model, the system receiving the code originates the
code transfer operation. An example of the pull model is
a web browser downloading components such as applets
or scripts. Remote installation is an example of the push
model. Mobile agent systems use the push model of code
mobility.

Pull mobility is often considered to bemore secure and
trustworthy because the host receiving the code is the one
that requested the code. Usually, the origin of the request
lies in some action carried out by a user of the system and
hence pull mobility is superficially more secure. Push mo-
bility on the other hand allows a system to send code to
the receiving system at unexpected or unmonitored times.
Hence pushmobility is less trustworthy from a user’s point
of view. In practice the overwhelming majority of secu-
rity exploits encountered in distributed systems originates
in careless user actions such as executing attachments re-
ceived via email.

Mobile code allows systems to be extremely flexible.
New capabilities can be downloaded to systems on the fly
thereby dynamically adding features or upgrading existing
features. Moreover, if capabilities can be downloaded on
demand, temporarily unused capabilities can also be dis-
carded. Swapping capabilities on an as-needed basis al-
lows systems to support small memory constrained de-

vices. Discarding capabilities after use can also help im-
prove system security.

Mobile State

Mobile state is an evolution of state capture, which allows
the execution state of a process to be captured. State cap-
ture has been traditionally used to checkpoint systems to
protect against unexpected system failure. In the event of
a failure, the execution of a process can be restarted from
the last checkpointed state thereby not wasting time by
restarting from the very beginning. Checkpointing is thus
very useful for long-running processes. Operating system
research has investigated capturing entire process states,
a variant of checkpointing, for load balancing purposes in
the early 1980s, but that avenue of research proved to be
a dead-end due to the coarse granularity of process and
semantic problems due to the impossibility of capturing
operating system resources such as open file descriptors.

Mobile state allows the movement of the execution
state of an agent to another system for continued execu-
tion. The key advantage provided by mobile state is that
the execution of the agent does not need to restart after
the agent moves to a new host. Instead, the execution con-
tinues at the very next instruction in the agent.

Not all mobile agent systems provide support for state
mobility [15]. The term strong mobility is used to describe
systems that can capture and move execution state with
the agent. Operationally, strong mobility guarantees that
all variables will have identical values and the program
counter will be at the same position. Weakly mobile-agent
systems, on the other hand, usually support the capture
of most of a program’s data, but restart the program from
a predefined program point and thus require some pro-
grammer involvement at each migration. The advantage
of strong mobility is that the result of migrating is well
defined and easier to understand, but its disadvantage is
that it is much more complex to implement efficiently.
The languages and systems that support strong mobility
are Telescript [57], D’Agents, NOMADS, and Ara, while
weak mobility is supported by a large number of mobile
agent frameworks [1,3,5,16,35,39,40,45]. Results by Bettini
and De Nicola suggest that strong mobility can be trans-
lated into weak mobility without affecting the application
semantics [2]. The result is partial as it only works for sin-
gle-threaded agents. Research is needed to be able to trans-
late multi-threaded strongly mobile agents.

A recent advance in this area comes in the form of
a modified Java-compatible VM. The IBM Jikes Research
VM is designed to support pluggable Just-in-Time (JIT)
compilers. Moreover, the VM is designed to allow re-
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compilation of a method midstream, which requires that
the state of the method be recoverable. The Mobile Jikes
RVM [31] exploits this capability to provide migration of
state but also provides good performance due to the Just-
in-Time compiler.

The most important advantage provided by strong
mobility is the ability to support external asynchronous
migration requests (also known as forced mobility). This
allows entities other than the agent (such as other system
components, an administrator, or the owner) to request
that an agent be moved. Forced mobility is useful for sur-
vivability, load-balancing, forced isolation, and replication
for fault-tolerance.

Classification of Mobile Systems

The classification of mobile systems by Picco and Vi-
gna distinguishes three broad approaches to mobility and
summarizes the previous description of mobility technolo-
gies:

1. Remote evaluation – Remote evaluation technologies
provide means for an application to invoke services on
another node by specifying the code, as well as the in-
put data, necessary to invoke the service. The code and
input data are sent to the remote node, and the remote
node then executes the code and sends the output data
back to the client.

2. Code on Demand – This approach supports software
components with dynamically loaded behavior. In this
approach, code fragments are requested as they are
needed, and dynamically compiled (if needed), verified
and linked into a running system.

3. Mobile Agents –Mobile agents (The term ‘mobile agent’
is slightly misleading, as mobility is not restricted to
agents, but can be usedwith any software component or
program. Unfortunately, the literature does not differ-
entiate between ‘mobile agents’ and ‘mobile programs’)
strengthen code-on-demand with support for mov-
ing running computations. Rather than simply mov-
ing code (and possibly input data), mobile agents view
a computation as a single entity and support the mi-
gration of a complete program to another node. This
transfer is often seamless, so that the computation can
proceed without disruption.

Remote Evaluation Remote evaluation is doubtlessly
the simplest way to achieve mobility. This approach is of-
ten used for system administration tasks in which small
programs written in a scripting language are submitted to
hosts on a secure network. Stamos coined the name [36]

to describe a technique where one computer sends an-
other computer a request in the form of a program. The
receiving computer executes the program in the request
and returns the result back to the sending computer.
A number of papers investigated this approach in the early
90’s [34,37,38], but the only noteworthy infrastructure
supporting this approach today is the SafeTCL scripting
language [4,29]. Themain drawback of scripting languages
is that they are not suited to the development of large and
reliable software systems because they often lack the basic
software engineering features (e. g. encapsulation and data
hiding) needed in large systems. Furthermore, the remote
evaluation paradigm is confined to classical client/server
settings and does not support detached operations well.

Code on Demand Code on demand is one of the main
innovations of SunMicrosystems’s Java programming lan-
guage. This approach allows applications to be delivered
piecemeal. The Java execution environment, called a Java
Virtual Machine (JVM), is able to find and load any miss-
ing components at run time. These components are dy-
namically linked into the running system, and compo-
nents that are never needed for a particular application
run are never sent across the network, conserving network
bandwidth. While dynamic loading is not a novel concept,
the idea of allowing potentially untrusted content to be
integrated into a running execution environment popu-
larized the concept of ‘safe programming languages’. The
subsection on security will look in more detail at the re-
quirement for safety. The success of Java owes as much
to the safety features that were installed to ensure secu-
rity as to its dynamic nature. Microsoft’s .NET infrastruc-
turez, and in particular the Common Language Runtime
(CLR), provide a similar functionality, but that technol-
ogy remains, as of this writing, untested and may not yet
provide a comparable level of security as Java, though in
the long run it is almost certainly going to play a ma-
jor role. To summarize, the advantage of code-on-demand
over remote evaluation is that a language such as Java
is a general-purpose programming language with several
mature implementations suited for building complex sys-
tems. The disadvantage of code on demand approaches
is that software is not location-aware; in other words the
code running in a Java system can not know where it is lo-
cated nor is it able to trigger its own migration. Standards
such as Java remote method invocation (RMI) extend the
pure code-on-demand approach with the means to trans-
fer data along with code under program control; they can
thus be used as a basis to implement mobile agent systems
but do not provide all of the functionality of amobile agent
system.
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Mobile Agents Mobile software agents improve on pre-
vious approaches by bundling code and data into compu-
tational entities that can control their own mobility. Mo-
bile agents programs can thus control their own deploy-
ment, perform load balancing, and program distributed
applications. Mobile-agent infrastructures can be imple-
mented as extensions to code-on-demand systems [1,3,
5,6,16,25,35,40,45], as extensions to remote evaluation sys-
tems, or as new programming languages [39,56]. The ad-
vantage of building on an existing language such as Java
is that the existing technology can be leveraged, but this
comes at the price of some conceptual complexity, since
the system designer must deal with inherent limitations
of Java. For example, Java does not provide adequate re-
source management and process isolation facilities to al-
low untrusted computations to execute on a trusted ma-
chine. Another advantage of mobile-agent systems is that
the infrastructure, not the programmer, is in charge of mi-
grating the state and code needed by the computation. Fi-
nally, since computations are first-class entities in mobile-
agent systems, they naturally can be associated with au-
thority, access rights, and resources.

It is important to realize that, at a basic level, all of
these approaches are equally powerful [30]. There is no
distributed application that can be implemented with one
technology and not any other [2]. Just as we now recog-
nize that high-level programming languages increase pro-
grammer productivity, high-levelmobility abstractions in-
crease productivity even further. The goal of mobile-agent
research is to find programming abstractions that are well
suited to the tasks at hand, and provide well-engineered,
efficient linguistic constructs to support these abstractions.
In the long run, mobile-agent languages must be supple-
mented with automated tools for reasoning about pro-
grams and validating their properties (by static analysis,
abstract interpretation or model checking). The goal of re-
search in this arena is not only to provide the verification
technology but also to design languages that are amenable
to verification. Just as it is much easier to verify Java code
than assembly, it is easier to verify programs that use mo-
bility explicitly than systems in which mobility is implicit.
In the long run we expect verification technologies to play
an essential role to ensure correctness and provide the
kind of security guarantees expected in critical informa-
tion systems.

Theoretical Foundations ofMobility

A theoretical model of a system allows formal reasoning
about the system. Formal reasoning can be used to estab-
lish guarantees about the behavior of the system. Under-

standing the semantics of mobile computation is essential
for reasoning about mobile agents. Reasoning about mo-
bility can, in turn, yield guarantees about the correctness
of mission critical software. Researchers have explored
a number of theoretical models based on process calculi
with encouraging results. Two of the approaches that have
been studied in this direction are Cardelli and Gordon’s
ambient calculus [11] and Vitek and Castagna’s Seal cal-
culus [50]. These models abstract both:

� Logical mobility (mobility of programs) and
� Physical mobility (mobility of nodes, such as handheld

devices).

The results obtained thus far include a number of type sys-
tems for controlling agent mobility [9,10,12], and a logic
for stating properties of agent programs [10]. These for-
malizations have wider applicability as shown by an ap-
plication of the ambient calculus as a query language for
XML [8]. The research on foundations of mobility is ac-
tively continuing; in the long run theoretical results can be
expected to feed back into languages and infrastructures.
The development of language-level abstractions will sim-
plify the task of writing mobile software agents.

Requirements Addressed byMobile Agents

A paradigm is as much defined by the features that are ex-
cluded as the features that are included. We now present
a list of the key required features as well as some features
that we explicitly do not expect mobile agent systems to
support. Mobile agents, like most modern distributed sys-
tems, have to address five issues that require infrastructure
support:
No global state The physical size of the network and the

number of hosts that can participate in a distributed
computation must scale to global networks of millions
of nodes (of which tens of thousands or more might be
participating in a single distributed computation). At
this size, there can be no assumption of shared state in
the programming model, nor can there be algorithms
that require synchronization, or that rely on up to-date
information.

Explicit localities Fluctuations in bandwidth, latency,
and reliability are so common that they cannot be hid-
den. Location of resources and of the computation that
accesses those resources must be explicit in the pro-
gramming model.

Restricted connectivity Failures of machines and com-
munication links can occur without warning or detec-
tion. Some of these failures may be temporary as ma-
chines may be restarted and connections reestablished,
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but others may be permanent. Thus, at any time,
a computation may communicate with only a subset
of the network, or be fully disconnected.

Dynamic configuration The network topology, both in
the physical sense and in the logical sense of available
services, changes over time. New hosts and commu-
nication links appear with no advance notice, while
other hosts disappear and reappear under a new name
and address. Applications should be able to adapt
to these changes and dynamically reconfigure them-
selves. Without the ability to dynamically reconfigure
its components, applications will have difficulty adapt-
ing to changes in locality and connectivity.

Security Since security requirements vary from applica-
tion to application, basic security mechanismsmust be
provided by the underlying infrastructure (type safe
programming language, checked array access, access
control mechanisms) and must be extended with tools
for automatic validation of security properties (model
checking, program analysis, proof-carrying code).

These five requirements – absence of global state, explicit
localities, restricted connectivity, dynamic configuration,
and security – drive many of the design decisions behind
current mobile agent systems. Mobile agent architectures
support the above requirements. Mobile agents do not de-
fine any notion of shared or global state. Furthermore, mo-
bile agents do not require that hosts be connectedwhile the
agents execute. In fact mobile agents have been repeatedly
advocated for disconnected operations (restricted connec-
tivity). Finally, mobile agents, through the use of mobile
code, support dynamic configuration. Security, the last is-
sue, remains a challenge that must be addressed through
infrastructural tools and services.

Mobile Agents, Figure 2
Components of a Typical Mobile Agent System

Components of aMobile Agent System

Figure 2 below shows the components of a mobile agent
system. This is not an exhaustive list and not all of the
components shown are essential to a mobile agent system.

Every mobile agent system includes an execution envi-
ronment that is responsible for receiving and hosting mo-
bile agents. Often, the execution environment runs in the
background as a daemon or service so that it is always
available to receive agents. The execution environment
provides a layer of separation between the mobile agent
and the host platform, which is important for security.

Execution environments communicate with each
other to provide mobility and messaging between agents.
These protocols may be built on top of other network com-
munication mechanisms provided by the infrastructure.

Most mobile agent systems use an interpreted or par-
tially compiled language for themobile agent code. In such
cases, the execution environment contains an interpreter
(or virtual machine, in the case of Java)

The remaining components in the execution envi-
ronment are capabilities provided by the infrastructural
layer. Not all of them are necessary for every mobile agent
system.

Security

The main technical, and social, obstacle to approaches
based on mobile software agents is security. Not only must
researchers devise technical solutions, but also users and
organizations must become confident enough in those so-
lutions to permit foreign programs to migrate to and exe-
cute on their machines [14,48]. If the organization respon-
sible for a database is not convinced of the quality of the
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security mechanisms, the department will never allowmo-
bile agents to visit the database. Although a mobile-agent
application can still function (by having its agents access
the database from across the network), the application will
use more network bandwidth and suffer higher latencies.

Thus the security and containment of untrusted mo-
bile code, and the objective analysis of proposed secu-
rity solutions, is a critical research area. When a host re-
ceives mobile code, it ideally should evaluate the secu-
rity implications of executing that particular code, but at
the least, it must determine the trustworthiness of the
agent’s sender (and programmer). Failure to properly con-
tain mobile code may result in serious damage to the host
or in the leakage of restricted information. Such damage
can bemalicious (e. g. espionage or vandalism) or uninten-
tional (programming failures or unexpected interactions
with other system components). Other consequences of
failing to contain mobile code include denial-of-service at-
tacks and the infiltration of privileged networks through
a downloaded Trojan horse or virus [22,28,48,52].

The symmetry of mobile-agent security concerns is re-
markable as both the agent and the environment in which
it executes must be protected from each other. Through
purposeful engineering on the part of its developer, an
agent may seek to obtain restricted data from the host on
which it is running on or damage the host in some way.
On the other hand, a host may seek to steal data from or
corrupt the agents that migrate to it [33]. In the civilian
environment, a (dishonest) company might gain an eco-
nomic advantage over a competitor via a malicious agent
or host, while in more critical environments such as in the
military, an adversary might gain a strategic or tactical ad-
vantage during an armed conflict.

To relate the security issues to Java programming, we
compare an agent to an Applet, a Java program “embed-
ded” inside a Web page and downloaded and executed
on a user’s machine whenever that user browses the web
page. The applet runs within an environment composed
of several layers, the first layer is the Java Development
Kit (JDK) and its class libraries, the second layer consists
of the Java Virtual Machine, the third layer is the operat-
ing system, and the last layer is the host device itself. The
distinction between these layers is important, since some
layers may be easier to subvert than others. For instance,
an application may trust a server that belongs to a known
organization, but may not trust the libraries found on that
server. In Java, this trust mismatch can occur if some of the
classes against which an applet is linked have been down-
loaded from the network [18,54]. There are two different
threats that must be considered when attempting to secure
mobile-agent applications:

Exogenous threats Attacks occurring outside of the mo-
bile-agent system. For example, if a host is running
both a mobile-agent system and a Web server, an ad-
versary might attack the host via a “standard” Web
server exploit, and gain access without every attacking
the mobile-agent system itself.

Endogenous threats Threats specific to a mobile-agent
system.

� Horizontal hostility (malicious agents): Attacks
between agents running on the same host in which
an agent tries to disrupt the execution of other co-
located agents.

� Vertical hostility (malicious agents & malicious
hosts): Attacks against an agent by the execution
environment, as well as attacks against the environ-
ment by an agent.

In the remainder, we consider only endogenous threats, as
they are specific to mobile agents. There are two different
viewpoints to take into account:

� For a host, it is necessary to provide protection mecha-
nisms so that agents cannot attack each other (horizon-
tal protection) or the host itself (vertical protection);

� For an agent, it may be necessary to protect it from
attacks initiated by the host (hostile host) and other
agents (horizontal).

We now consider each issue in turn.

Malicious Agents

Anumber of techniques have been used in the past to place
protection boundaries between so-called “untrusted code”
moved to a host and the remainder of the software run-
ning on that host. Traditional operating systems use vir-
tual memory to enforce protection between processes [13].
A process cannot read or write another processes’ mem-
ory and communication between processes requires traps
to the kernel. By limiting the traps an untrusted process
can invoke, it can be isolated to varying degrees from other
processes on the host. However there is usually little point
in sending a computation to a host if the computation can-
not interact with other computations there, load balanc-
ing being the only exception [27]. In the context of mobile
agent systems, an attractive alternative to operating sys-
tem protection mechanisms is to use language-based pro-
tectionmechanisms [52]. The attraction of language-based
protection is twofold: precision of protection and perfor-
mance. Language-based mechanisms allow access rights
to be placed with more precision than traditional virtual-
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memory systems, and the cost of cross-protection bound-
aries can often be reduced to zero, since checking is moved
from runtime to the language compiler [17,23].

Safe languages The requirement for language-based se-
curity is, first and foremost, safe languages. A safe lan-
guage is a language that enforces memory safety and
type safety. In other words, a safe language does not
permit arbitrary memory modifications, and carefully
constrains how data of one type is transformed into
data of another type. The objective of a safe language is
to permit reasoning about security properties of pro-
grams at the source level in a compositional manner.
It should be possible to check the code with automatic
tools to obtain the guarantee that the mobile agent is
not malicious. For this to be the true, it is necessary
to produce assured implementations of safe languages,
that is, implementations that do not contain hidden
security vulnerabilities. Well-known examples of safe
languages include Java and SafeTCL [18,29]. The Tele-
script agent language is a case of a safe language ex-
plicitly designed for secure mobile code [44]. Tradi-
tional languages, such as C, do not ensure memory or
type safety, and thus, it is much more difficult to ob-
tain trust in agents written in those languages. Even in
safe language, there are many opportunities for secu-
rity exploits. After many years, the research commu-
nity is closer to producing assured implementations of
the Java programming language, but much work re-
mains. The survey by Moreau and Hartel lists several
hundred papers on formalizing aspects of Java [20].
The difficulty in obtaining a clear specification of all
aspects of Java underscores the need for research in
semantics and formal techniques without which there
can be no hope of obtaining any assurance.

Sandboxing Protection against vertical attacks is a-
chieved by enforcing a separation between the user
code and the system, a technique popularized by the
well-known Java-sandbox security model; related ap-
proaches have been used in operating systems [18,19,
24]. In this model user code runs with restricted ac-
cess right within the same address space as the sys-
tem code. Security relies on type safety, language ac-
cess control mechanisms and dynamic checks. Over
the years, a number of faults were discovered and fixed
in this model [17,23,54,55]. The sandboxmodel is a ba-
sis for building more powerful security architectures
that are suited to agent systems [18]. Sandboxing alone
does not provide protection against horizontal attacks.
For this, it is necessary to extend the protection model
to include protection domains, which constrain how

one agent can interact with another. Protection do-
mains can be constructed in a safe language by provid-
ing a separate namespace for each component. Fully
disjoint namespaces are not desirable as they result
in disjoint applications [27]. Instead, if mobile agents
must interact, some degree of sharing among names-
paces is necessary. Several research systems have tried
to provide better isolation of Java applications [7,53],
but these attempts achieved limited success due to the
constraint of working above commercial Java Virtual
Machines (which allow only certain kinds of exten-
sions to Java’s basic security mechanisms). In the fu-
ture, protection domains must be integrated into the
Java Virtual Machine definition.

Denial of service Mobile agents can mount denial of ser-
vice attacks by using an excessive amount of CPU or
memory. An environment for mobile agents therefore
must provide support for tracking memory and CPU
usage, as well as support for termination. Termination
implies stopping all threads of an agent and reclaim-
ing its memory. Current Java systems fail to protect the
Java Virtual Machine against denial of service attacks,
since they support neither resource accounting nor full
agent termination. Providing efficient accounting and
termination support in a language-based system re-
mains an open research problem.

Beyond safe languages Safe languages must ensure that
an agent’s code obeys certain well-formedness rules.
In the case of Java, this assurance is obtained by ver-
ifying the bytecode of incoming agents with a com-
plex data flow analysis algorithm [17] and by imposing
some constraints on how programsmay be linked [23].
A large body of research on proof-carrying code [28]
is trying to broaden the set of agent languages to tra-
ditional unsafe languages such as C. Proof-carrying
code associates a security proof with each program.
The host need only check that the proof matches the
program to determine whether the program obeys the
desired security properties. Checking a proof against
a program is computationally much easier than ana-
lyzing the code directly to generate the proof, making
proof-carrying code an attractive approach. This direc-
tion of research is encouraging, as it may allow the ex-
pression of complex security properties, and verifica-
tion of a program’s compliance with those properties.

Malicious Hosts

Inmobile-agent computing, an agent’s ownermust be able
to trust that it is not subverted when visiting a series of
servers, some of which may have been compromised and
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made capable of malicious action against the agent [33].
Malicious servers are a particularly difficult problem, since
the server must have access to all of the agent’s code in
order to execute it. A small body of research has attempted
to solve this problem. The solutions fall into the following
categories:

1. Code Signing,
2. Replication,
3. Partial Result Authentication Codes,
4. Proof Verification,
5. Code Obfuscation, and
6. Encrypted Functions.

We will assess each approach in the following paragraphs.

Code Signing can be used to protect agents from mali-
cious hosts by attaching digital signatures to the code
of the mobile agent. Code signing is being used by Sun
Microsystems and Microsoft to provide guarantees of
authenticity for downloaded code. The technology can
be used to ensure that a server has not altered the code
of an agent while in transit. Code signing does not pro-
tect the agent’s data from being modified, nor does it
prevent the server from accessing the information con-
tained in the agent, but it does provide a basic level
of assurance that it is essential for some applications.
Furthermore, in a network in which servers can not be
compromised and agents come from a single source
code signing may be the best solution to security.

Replication was studied as a general method for mobile
agent computation security, marrying some ideas from
the fields of fault tolerance and cryptography [32,51].
The approach relies on the replication of agents and
servers. The same agent computation is performed
on several servers. Voting can then be used to move
from one phase of a distributed computation to the
next. While replication enjoys some pleasing theoret-
ical properties, it is heavily restricted in practice. It
supposes that computations are deterministic, and that
several servers with the same resources are available.
The connectivity assumptions also are not appropriate
in scenarios involving unreliable networks.

Partial Result Authentication Codes are very similar to
message authentication codes (MAC). Instead of au-
thenticating the origins of a message, however, they
authenticate the correctness of an intermediate agent
state or partial result. For example, if we consider the
values of selected program variables at some point dur-
ing execution, we can determine whether those values
could possibly have arisen from normal program ex-
ecution. If not, the program has been altered in some

way. PRACSs are computationally cheaper than digi-
tal signatures and have slightly different security prop-
erties (forward integrity): if an agent visits n servers
and some server inm (m < n) is malicious, the results
of servers 1 to m � 1 cannot be falsified. In some sce-
narios, mobile agents do not have intermediate results.
Nevertheless, this approach can be used to ensure that
results of a disconnected query are truthful [21].

Proof Verification is an approach in which a digitally
signed trace of an agent’s computation is returned
along with the result. This trace can then be validated –
amalicious host would affect the agent by changing the
results and thus producing a trace that does not cor-
respond to a valid computation [49]. Although tech-
niques for producing compact traces have been devel-
oped, the size and complexity of the trace remains an
issue.

Code Obfuscation aims at protecting a mobile agent’s
functioning bymaking it very hard to divert the agent’s
execution in a meaningful way. This is achieved by
transforming the code such that automated reverse en-
gineering cannot be applied. This prevents a malicious
host from locating the places in the code that should
be modified or that should be executed in a non-con-
formant way. Also, variables can be split all over the
program in order to make simple read-outs impossi-
ble. Although there are many tools and also commer-
cial products that use code obfuscation, especially in
the field of digital rights management, recent theoret-
ical results point at the impossibility of achieving per-
fect obfuscation [26].

Secure Coprocessors involve building a trusted execu-
tion environment for agents within a secure coproces-
sor [58,59]. This approach is based on tamper-proof
hardware and public key infrastructures. Some experi-
mental systems have been designed, but not validated.
Secure co-processors have the potential of providing
appropriate security for mobile-agent programs, but at
the cost of upgrading to more expensive hardware. Se-
cure coprocessors will be useful in some applications,
but not in all (or even the majority). However, trusted
coprocessors might be the only hard security anchor
available today for securing mobile agent applications.

Encrypted Functions that can be executed in their en-
crypted form are a software-only cryptographic ap-
proach to the malicious host problem. If available, this
would be the ideal way to protect any mobile agent
and its payload. The approach of computing with en-
crypted functions was demonstrated in [33], another
system was proposed in [46]. The conclusion is that
for special functions it is possible to let a mobile agent
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Mobile Agents, Table 1
Selected popular mobile agent systems and their key properties

Agent System Mobility support Base
language

Host
mobility

Quality of imple-
mentation

Availability Level of
support

Special Features

Telescript Mobile agent
(strong)

Telescript No Product Discontinued None First MA system

NOMADS Mobile agent
(strong)

Java No Prototype Free Medium Resource
Control

Java Code on demand Java No Product Commercial High
SafeTCL Remote evaluation Tcl No Product Open source High
D’Agents Mobile agent

(strong)
Java, Tcl,
Scheme

No Prototype Open source Medium Multi-language

JavaSeal Mobile agent
(weak)

Java No Prototype Open source Low Seal Calculus

Mole Mobile agent
(weak)

Java No Prototype Open source Low

Aglets Mobile agent
(weak)

Java No Product Open source Medium

Lime Mobile agent
(weak)

Java Yes Prototype Open source Medium Coordination
via Tuple-
spaces

Messenger Mobile code (weak) M0 No Prototype Open source Low

protect itself from a malicious host without having to
rely on trusted hardware or on-line help from remote
agents. However, the solutions proposed seem to be
impractical for today’s standards and no implementa-
tion has been reported so far.

Survey ofMobile Agent Systems

To summarize this entry, we now review some of the pop-
ular mobile-agent systems and classify them according
to the following characteristics: the type of mobility sup-
ported by the language or system, the language(s) in which
agents are written, whether host mobility (mobile devices)
is supported, and the quality, availability, and current level
of support of the implementation. The quality of imple-
mentation column discriminates products from research
prototypes. The availability column indicates which sys-
tems can be freely used, and which require a license. Fi-
nally, the level of support column indicates whether the
project is still active, and whether assistance is forthcom-
ing.

The general conclusions that emerge are that weakmo-
bility is by far the predominant approach. The only com-
mercial strongly mobile system (Telescript) was discontin-
ued several years ago, and the other two strongly mobile
system (D’Agents and NOMADS) are university research
prototypes. Java is themost popular agent implementation
language, due to both the popularity of the language and

its support for dynamic loading and advanced security fea-
tures. Most available systems are research prototypes, but
they have the advantage of being open source and thus
can be used as a starting point for further development.
A number of these projects have an active developer com-
munity, an important factor for the adoption of an infras-
tructure, although it is important to note that most open-
source systems do not enjoy the same kind of support as
commercial products.

While the above table is not an exhaustive list of ex-
isting mobile-agent systems (over 100 such systems have
been implemented in the last five years), it provides a good
overview of the most influential systems. The main con-
clusion to draw is that Java is the common thread in most
current mobile-agent implementations. Another, more re-
cent technology is Microsoft’s .NET with the Common
Language Runtime. Like Java, .NET is based on a virtual
machine and supports the dynamic loading of programs.
The suitability of .NET to mobile-agent applications has
not yet been completely evaluated.

ApplicationAreas

Information retrieval was the original application area en-
visioned for mobile agents. In bandwidth sensitive envi-
ronments, moving the mobile agent to the data, where
the agent can select a small desired subset, is more effi-
cient than moving large amounts of data to the user. Mo-
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bile agents allow bandwidth conservation and latency re-
duction in many information-retrieval and management
applications. A mobile agent that performs a multi-step
query against multiple databases can be dispatched close
to the location of the databases, avoiding the transmission
of intermediate results across the network. Similarly, in an
unreliable network environment, the same mobile agent
can continue its query task even if the network goes down
temporarily.

But, mobile agents can support or improve perfor-
mance in many other application areas. Mobile agents can
relocate themselves during execution, an essential prop-
erty for reactive and adaptive systems that must respond
to changing execution environments. As soon as a change
in operating conditions is detected, a mobile-agent appli-
cation can reconfigure itself to relocate its computations
away from a physical attack on the network or closer to
a critical database after a drop in network bandwidth. Mo-
bility also applies to the application’s data itself, enabling
new styles of pro-active applications where system wide
actions have to be performed even before any clients are
around. An example is the pre-caching of datasets to re-
mote geographical locations to ensure instant access to es-
sential information.

Mobile agents, with their capability to move code, al-
low new capabilities to be pushed dynamically to plat-
forms. This capability is useful when existing systems need
to be retasked or used for purposes not originally intended
when they were deployed. Migration of capabilities is also
important to accommodate changing circumstances and
environmental conditions.

Mobile agents also support disconnected operations.
In a mobile system, a client can send agents to a server be-
fore disconnecting. The agents can then perform their task
while the client is unreachable and communicate results
back whenever connectivity is regained. Similarly, a server
might send a component to a handheld or other portable
device to further reduce connectivity requirements.

Even if the network is stable,mobility still allows band-
width conservation and latency reduction. For example, if
a client application needs to perform a complex multi-step
query, it can send the query code to the network location
of the databases, avoiding the transmission of intermediate
results across the network. Although the database devel-
opers could add a new database operation that performed
the complex query, it is unreasonable to expect that de-
velopers can predict and address every client need in ad-
vance. Mobile agents allow a client application to make ef-
ficient use of network resources even when the available
services expose low-level, application-independent inter-
faces.

In all four cases – changing network conditions, dis-
connected operation, bandwidth conservation, and la-
tency reduction – the common thread is dynamic deploy-
ment and reconfiguration. Traditional programming lan-
guages constrain designers to commit to a particular sys-
tem structure at build time. The choice whether a particu-
lar service is implemented on the client or server side must
be made early and cannot be revisited if some of the ini-
tial assumptions about the application turn out to be in-
valid. Mobile agents, on the other hand, decouple system
design from system deployment, and turn control over de-
ployment to the applications themselves, allowing much
more flexible design patterns. An application can deploy
its components to the most attractive network locations
and redeploy those components when network conditions
change, leading to more efficient use of available resources
and faster completion times.

Additional application areas are discussed below:

Distributed Sensor Grids

Mobile agents can migrate to key locations in a network
of autonomous sensors and then filter the collected sen-
sor data to reduce bandwidth requirements and imple-
ment local management policies. Mobile agents are partic-
ularly useful when it is not possible to pre-install station-
ary agents on all of the sensors. In particular, the filtering
algorithm, which can be of arbitrary complexity, may de-
pend on the phenomenon being observed and change over
time. For example, different filtering agents can be used to
achieve different levels of accuracy. For high-end sensors,
onboard processing is possible, and agents can be sent to
the sensors themselves; in other cases, agents can be sent
to routers or gateway machines within and at the edge of
the sensor field. The agents can be relocated on the fly, al-
lowing the sensor application to optimize the placement of
its management and filtering code with respect to current
network loads.

By using automated monitoring algorithms, mobile
agents can act as customized monitors that wait for phe-
nomena of interest to be observed at distributed sensor lo-
cations and then notify human operators. Such a capability
can significantly reduce the workload of human operators.

In addition to acting as on-line filters, mobile agents
can also help perform data mining on off-line sensor data.
In particular, mobile agents can move to several sensors
and efficiently correlate information across the multiple
sensors in order to classify observed phenomenon.

Mobile agent technology can be particularly useful in
situations where both the sensors as well as the client sys-
tems are computationally weak and constrained by bat-
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tery. This is a common occurrence in sensor networks
where small sensors (such as unattended ground sen-
sors) are being tasked by users with small PDA or cell
phone client devices. Mobile agents carrying specific fil-
tering, fusion, or other algorithms can be pushed from
the PDA or cell phone to opportunistically discovered
nodes in the network fabric thereby supporting the weak
sensor and client platforms. Given the adaptive capabil-
ities of mobile agents, they can also relocate themselves
to other intermediate nodes when network configurations
change [42,47].

Unmanned Autonomous Systems

Unmanned autonomous systems require varying degrees
of remote tasking and monitoring but often operate in ex-
treme circumstances with varying network connectivity.
Mobile agents allow the dynamic configuration of the soft-
ware deployed on unmanned autonomous systems. New
capabilities such as new algorithms, missions, and func-
tions that were not anticipated when the system was origi-
nally designed and deployed can be dynamically deployed
while vehicles and sensors are in the field. This function-
ality is already used in outer space exploration projects
where communication latencies and physical inaccessibil-
ity to devices require mobile-agent like approaches. Fully
embracing mobile agent architectures will enable finer
granularity and improve ease of use. Mobile agent tech-
nologies further allow exchange of functions between plat-
forms, providing a very efficient and localized software up-
date mechanism.

Certain kinds of autonomous vehicles such as under-
sea vehicles lose network connectivity while submerged.
The capability of mobile agents to support disconnected
operation is important under these circumstances.

Space exploration vehicles such as the Mars rover
present a variation of the network disconnection prob-
lem – extremely long network latencies. Mobile agents, by
moving themselves to the remote nodes, overcome latency
problems.

Finally, mobile agents can reduce the bandwidth re-
quirements for relaying data from unmanned vehicles by
applying the necessary filtering and fusion algorithms on
the platform or close to the platform.

High Availability Systems

Some large-scale distributed systems must be able to
evolve and cannot tolerate downtime. Mobile agents pro-
vide a technology for dynamically upgrading such dis-
tributed systems with new procedures without interrupt-
ing their operation. Furthermore, mobile agents can pro-

vide additional fault tolerance, since an agent can be du-
plicated at any point of its computation and stored on sec-
ondary storage or sent to another platform.

Mobile-agent technology provides an attractive way to
implement distributed monitoring tools that enforce non-
local security policies over large-scale networks. Such non-
local monitoring can detect distributed denial of service
(DDOS) and other large-scale attacks and help pinpoint
the source of those attacks. Through the use of mobile
agents, this monitoring functionality can be deployed dy-
namically in response to previous attacks. For example,
if a network is under extensive DDOS attack, the DDOS
monitoring code can be dispatched on the fly to a larger
number of machines. Similarly, if a network comes under
a previously unknown attack, mobile agents can be imple-
mented and deployed to detect that particular attack on
the fly. The ability to dynamically distribute existing and
new monitoring code makes networks more robust to cy-
ber-attack, including attacks that are encountered for the
first time.

Agile Computing

Agile computing may be defined as opportunistically (or
on user demand) discovering and taking advantage of
available resources in order to improve capability, perfor-
mance, efficiency, fault tolerance, and survivability [43].
The term agile is used to highlight both the need to quickly
react to changes in the environment as well as the ability
to take advantage of transient resources only available for
short periods of time. Agile computing is a promising ap-
proach to building information systems that need to oper-
ate in highly dynamic environments..

Mobile agents are one approach to building agile com-
puting systems. Mobility of code is important in order to
be opportunistic. If an idle resource is found, the likeli-
hood that the system already has the code for a particular
service or capability is small. Mobile code can be used to
dynamically push the necessary services to systems.

State migration is also important for the purpose of
achieving a high degree of agility.Without state migration,
it would be difficult to quickly and dynamicallymove com-
putations to and away from systems as resource availabil-
ity changes.

Future Directions

Active research in mobile agents has petered out, with
most researchers migrating to other areas. The ideas and
technology heralded by mobile agents were extensions of
previous concepts that were integrated together. For ex-
ample,mobile computing extended remote invocation and
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mobile state extended process migration. To some extent,
the research area of mobile agents ended but the ideas con-
tinue to exist and continue to evolve and be used, but un-
der different labels.

The field of mobile agents also suffered from an iden-
tity crisis caused by the use of the word agent. Researchers
in the areas of Autonomous Agents and Multi Agent Sys-
tems regardedmobile agents as primarily belonging to dis-
tributed systems and networking. On the other hand, the
distributed systems community did not like the connota-
tions of the word “agent” and hence did not adopt the ter-
minology of mobile agents, even though the concepts in-
troduced are important and tend to get used anyway.

Much of the early research in the area of mobile
agents was published as part of the ECOOPMobile Object
Systems workshop series, the Mobile Agents conferences
(temporarily renamed Agent Systems and Applications /
Mobile Agents), and to a lesser extent the Autonomous
Agents and Multi–Agent Systems conference. The last
Mobile Agents conference was held in 2002. The Agents,
Interactions, Mobility, and Systems (AIMS) track at the
ACM Symposium on Applied Computing was the last
venue for publishing mobile agents-related papers. A col-
lection of these papers, revised and extended, were pub-
lished in a special issue entitled Mobile Software Agents
in the Scalable Computing: Practice and Experience jour-
nal. A recent book on mobile agents [41] provides a re-
view and survey of mobile agents and concepts and can
serve as a reference or a textbook for a course on mobile
agents.

One key unsolved research question with mobile
agents continues to be protection of the mobile agent that
is executing on a remote untrusted host. This continues to
be a challenge with no promising solutions on the horizon.
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Glossary

Bonding mechanism A mechanism that allows modules
to attach to other modules. Self-reconfigurable mod-
ules have the ability to selectively make and break at-
tachments to other modules.

Configuration The connectivity arrangement of modules
in a system which describes which modules is physi-
cally attached and adjacent to which.

Configuration recognition The process of automatically
determining a modular robot’s connectivity arrange-
ment.

Decentralized control A control system in which the
controller elements are not central in location (like
the brain) but are distributed throughout the system
with each component sub-system controlled by one or
more controllers.

Enumeration algorithm A routine that counts and dis-
plays the number of unique, non-isomorphic configu-
rations of a given modular robotic system.

Global bus Communication setup such that when one
unit talks all other units can listen, as opposed to
neighbor to neighbor communication in which com-
munication occurs only between two units.

Isomorphic configurations Modular structures that have
the same morphology but are arranged differently ac-
cording to their module labels.

Morphology The form or structure of some entity, more
specifically, the connectivity arrangement of modules
in a system independent of module labels.

Reconfiguration algorithm A method that transforms
a given robotic configuration to a desired configura-
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tion via a sequence of module detachments and reat-
tachments.

Definition of the Subject

Modular self-reconfigurable (MSR) robots are robots
composed of a large number of repeated modules that can
rearrange their connectedness to form a large variety of
structures. An MSR system can change its shape to suit
the task, whether it is climbing through a hole, rolling
like a hoop, or assembling a complex structure with many
arms.
These systems have three promises:

Versatility The ability to reconfigure allows a robot to
disassemble and/or reassemble itself to form mor-
phologies that are well-suited for a variety of given
tasks.

Robustness Since the system is composed of many re-
peated parts which can be rearranged during opera-
tion, faulty parts can be discarded and replaced with
an identical module on-the-fly, leading to self-repair.

Low cost MSR systems can lowermodule costs since mass
production of identical unit modules has an economic
advantage that scales favorably. Also, a range of com-
plex machines can be made from a set of modules sav-
ing the cost versus havingmultiple single-functionma-
chines for doing different tasks.

Introduction

Conceptually, the best known example of an MSR robot
would be the fictional T1000 liquid-metal robot from the
James Cameron film, Terminator 2: Judgment Day. In this
movie, a robot made from a futuristic liquid-like metal,
(possibly many million microscopic modules) can change
its shape, copy forms, or reconstitute itself to carry out sin-
ister aims.

Real robots that change their shape, made up of many
identical modules have been created and are being studied
by a wide variety of groups [33]. These robots are capa-
ble of more useful contributions to society than the T1000.
They promise to be versatile, low cost, and robust. While
these systems do not yet behave like liquid metal, systems
on the order of 100 modules have been built and promise
to be useful in search and rescue or space exploration.

The concept of modular self-reconfigurable robots can
be traced back to the “quick change” end effecter and
automatic tool changers in computer-controlled machin-
ing centers in the 1970’s. Here, special modules, each
with a common connection mechanism, were automati-
cally interchanged on the end of an electro-mechanical or

robotic arm. The concept of applying a common connec-
tion mechanism to an entirely modular robot was intro-
duced by Fukuda with the biologically-inspired CEllular
roBOT (CEBOT) in the late 1980’s [11]. Here each CE-
BOT module is 18 x 9 x 5 cm and weighs approximately
1.1 kg. These units have independent processors and mo-
tors, and can communicate with each other to approach,
connect, and separate automatically.

In the early 1990’s, modular reconfigurable robots
were shown to have the ability to perform the task of lo-
comotion. In 1994, Yim explored many statically stable
locomotion gaits with Polypod. Polypod [28] is an MSR
robot that is significantly lighter and smaller than CEBOT.
A module by itself could not locomote, but through the
collective behavior of the system of manymodules it could
move itself from place to place and achieve many differ-
ent locomotion gaits [29] such as a slinky, caterpillar, or
rolling track gait.

Through this work it became clear that controlling
a system with a large number of modules is complex. Ini-
tial Polypod control used a gait control table to program
simple gaits on a modular robot using prescribed motions.
In addition to the complexity of coordinated control, the
complexity of arbitrary configurations and the sequence of
reconfigurations to attain those configurations quickly de-
veloped into an interesting computational problem.

Chirikjian and Murata developed lattice style configu-
ration systems in [10,17]. As described in Sect. “Modular
Self-Reconfigurable Robot Review”, the lattice style robots
have modules which sit on a lattice and make it easier to
represent the configurations computationally. As a result
this style of system quickly became popular among com-
putational roboticists. This also presents the interesting is-
sue of the tradeoffs between issues solved electro-mechani-
cally versus computationally, which is developed further in
Sect. “Mechanical/Electrical/Computational Interaction”.

In the later 1990’s Rus [14] and Shen [6], also devel-
oped hardware but their larger contributions came in the
distributed programming aspects. This included seminal
trends in developing provable distributed algorithms [4]
and decentralized control based on local communica-
tion [23]. Two of the areas of research include configura-
tion self-recognition and kinematic planning of the mo-
tions for rearrangement between configurations.

This paper is structured as follows: Sect. “Modular
Self-Reconfigurable Robot Review” gives a classification
scheme for MSR robots, potential applications, and an
overview of robotic systems that are currently being de-
veloped. Section “Complexity in Robot Configurations”
discusses issues regarding complexity in the configura-
tions of MSR robots. In Sect. “Control Architectures”, we
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present architectures used for control in MSR systems. In
Sect. “Mechanical/Electrical/Computational Interaction”,
we discuss the interaction between mechanical, computer,
and electrical disciplines within modular robots. Lastly, in
Sect. “Future Directions” we present future directions in
MSR research.

Modular Self-ReconfigurableRobot Review

Categories of MSR Systems

There are several ways of categorizing MSR robotic sys-
tems. One is based on the regularity of locations for attach-
ing; lattice vs. chain vs. mobile, and another is based on the
methods of moving between those locations; stochastic vs.
deterministic.

Lattice A lattice based MSR system has modules ar-
ranged nominally in a 2D or 3D grid structure. For this
category, there are discrete positions that a given module
can occupy. In contrast to chain-based architectures where
modules are free to move in continuous space, the grid
based structure of lattice systems generally simplifies the

Modular Self-Reconfigurable Robots, Figure 1
Crystalline. The Crystalline system is a lattice style robot devel-
oped by Rus et al. [20] at Dartmouth University (then contin-
ued later at MIT) consists of modules that can expand and con-
tract their shape in order to reconfigure andmobilize the robotic
structure. Eachmodule has three actuators: one rack-and-pinion
device that allows all four sides to expand and effectively double
the side length of themodule andmechanical latches that allows
the module to make and break bonds to its neighbors. Locomo-
tion and shape metamorphosis was demonstrated experimen-
tally both in simulation andwith a physical implementation. The
ability to self-repair a system with a malfunctioning module was
demonstrated in simulation. The systemwas able to identify and
relocate the damaged module. Both centralized and distributed
planning algorithms were explored with Crystalline

Modular Self-Reconfigurable Robots, Figure 2
PolyBot, Yim et al. developed the PolyBot chain-type MSR sys-
tem at Palo Alto Research Center (PARC, formerly Xerox PARC).
Each 50mm cube shaped modules is equipped with a brush-
less flat motor and harmonic drive which provides a single rota-
tional DOF. Sensors provide information about neighbor prox-
imity and contact, orientation, joint position and force torque
feedback. Two hermaphroditic (electrically and mechanically)
faces of the module possess redundant spring contacts to trans-
mit power and communication and an SMA actuated mechan-
ical latch to bond to a neighbor module. PolyBot robotic sys-
tems have shown their versatility by demonstrating locomotion
as a biped, as a snake, as a rolling tread, and by climbing stairs,
poles, etc. The system has also demonstrated the ability to ma-
nipulate objects and self-reconfigure

reconfiguration process. Kinematics and collision detec-
tion are comparatively simple for lattice systems. An ex-
ample is shown in Fig. 1.

Chain A chain based MSR system consists of modules
arranged in groups of connected serial chains, forming
tree and loop structures. Since these modules are typically
arranged in an arbitrary point in space, the coordination
of a reconfiguration is complex. In particular, forward and
inverse kinematics, motion planning, and collision detec-
tion are problems that do not scale well as the number of
modules increases. An example is shown in Fig. 2

Mobile The mobile class of reconfiguration occurs with
modules moving in the environment disconnected from
other modules. When they attach, they can end up in
chains or in a lattice. Examples of mobile reconfiguration
devices include multiple wheeled robots that drive around
and link together to form trains, modules which float in
a liquid or outer space and dock with other modules.

Stochastic In a stochastic system, modules move in a 2D
or 3D environment randomly and form structures by
bonding to a substrate and/or other modules. Modules
move in the environment in a passive state. Once amodule
contacts the substrate or another module, it makes a de-
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cision about whether it will bond to the structure or re-
ject a bond. The time that it takes for the system to reach
a desired configuration is probabilistically bounded. The
reliance on environmental forces allows the mechanical
actuation to be simplified as only bonding actuation is re-
quired internal to the module. An example is shown in
Fig. 3.

Deterministic In deterministic MSR systems, modules
move or are manipulated directly from one position to an-
other in the lattice or chain. The positions of each mod-
ule in the system are known at all times. The amount of
time it takes for a system to change from one configura-
tion to another is determined. A module’s reconfiguration
mechanism requires a control structure that allows it to
coordinate and perform reconfiguration sequences with its
neighbors.

There are a growing number of existing physical sys-
tems that researchers are developing self-reconfigurable
robots. One indication that this number is getting large is
the development of a robot whose name is YaMoR (Yet
another Modular Robot) [16]. Table 1 lists many of the
other instantiated modular robot systems. In addition to
the name, class, and author, the table lists DOF. This de-
scribes the number of actuated degrees of freedom for
module motion (e. g. not latch degrees of freedom) as well
as whether the system motion is planar (2D) or can move
out of the plane (3D). The year is the estimated first public
disclosure.

Applications

Compared with fixed morphology robots, MSR robots are
flexible in that they can adapt to a wide range of tasks
and environments. However, this flexibility may compro-
mise performance or cost. Fixed morphology systems can
be optimized for a particular known task, therefore, MSR
robotic systems are particularly well-suited for tasks where
the operating conditions and ability requirements are not
known or not well specified a priori. The following set of
application examples illustrate some areas that would ben-
efit from the development of a mature MSR system.

Space The exploration of space presents numerous chal-
lenges, including an unpredictable environment and sig-
nificant limitations on the mass and volume of equipment
used to study that environment. Since one set of modules
can be reconfigured to perform many tasks, MSR robots
can solve both the unexpected challenges while occupy
little space and weight as compared to multiple devices.
Graceful degradation due to failure is particularly impor-

Modular Self-Reconfigurable Robots, Figure 3
Stochastic 3D. A stochastic MSR robotic system has been
demonstrated in both 2D and 3D by White et al. [26] at Cornell
University. The 2D system consisted of planar, square-shaped
modules with electromagnets on each face that allowed the
modules to selectively bond and release other modules. The
modules were shuffled about randomly on an oscillating air ta-
ble. The modules do not have onboard power nor do they have
the capability to influence their motion. One central module
acts as a powered substrate to which other modules may at-
tach to and build desired structures. The oscillating table causes
the modules to move about randomly, and when two modules
collide properly, they bond to one another via the electromag-
nets, determine if the new configuration is desired, and release
from each other if the configuration is not desired. Stochastic re-
configuration was also demonstrated in 3D where cube-shaped
modules floated about in an agitated oil environment. The first
generation of 3D modules (shown above) used electromagnets
toprovide thebonding force; a second generation used the force
caused by fluid that flowed through the faces of the modules



5622 M Modular Self-Reconfigurable Robots

Modular Self-Reconfigurable Robots, Table 1
List of self-reconfigurable modular systems

System name Class DOF Primary author Affiliation Year
CEBOT mobile various Fukuda et al. Nagoya 1988
Polypod chain 2 3D Yim Stanford 1993
Metamorphic lattice 3 2D Chirikjian JHU 1993
Fracta lattice 3 2D Murata MEL 1994
Tetrobot chain 1 3D Hamlin et al. RPI 1996
3D Fracta lattice 6 3D Murata et al. MEL 1998
Molecule lattice 4 3D Kotay and Rus Dartmouth 1998
CONRO chain 2 3D Will and Shen USC/ISI 1998
PolyBot chain 1 3D Yim et.al PARC 1998
TeleCube lattice 6 3D Suh et.al PARC 1998
Vertical lattice 2D Hosakawa et al. Riken 1998
Crystal lattice 4 2D Vona and Rus Dartmouth 1999
I-Cube lattice 3D Unsal CMU 1999
Pneumatic lattice 2D Inoue et.al. TiTech 2002
Uni Rover mobile 2 2D Hirose et al. TiTech 2002
MTRAN II hybrid 2 3D Murata et al. AIST 2002
Atron lattice 1 3D Stoy et al. U.S Denmark 2003
Swarm-bot mobile 3 2D Mondada et al. EPFL 2003
Stochastic 2D stochastic 0 2D White et al. Cornell U. 2004
Superbot hybrid 3 3D Shen et al. USC/ISI 2005
Stochastic 3D stochastic 0 3D White et al. Cornell U. 2005
Catom lattice 0 2D Goldstein et al. CMU 2005
Prog. parts stochastic 0 2D Klavins U. Washington 2005
Molecube chain 1 3D Zykov et al. Cornell U. 2005
YaMoR chain 1 2D Ijspeert et al. EPFL 2005
Miche lattice 0 3D Rus et al. MIT 2006

tant for robots operating in space – a component malfunc-
tion can potentially lead to mission failure. The redundant
nature of MSR systems gives them the ability to discard
failed modules. Modules can also be packaged in a conve-
nient way so as to meet the volume constraints of space-
craft. Once on site, modules can be used to build struc-
tures, navigate across terrain, perform scientific studies,
etc.

Search and Rescue Disaster areas such as those around
collapsed buildings or other structures present another
type of highly unstructured unpredictable environment
where the use of an MSR robot could be beneficial. For
example, the MSR system could take the form of a snake
which can more easily squeeze through small void spaces
to find victims. Once found, the robot could emit a locator
beacon and take the form of a shelter to protect the victim
until rescued.

Bucket of Stuff The term “Bucket of Stuff” is futuristic
idea coined by David Duff at the Palo Alto Research Cen-

ter [33]. The system would be a consumer product com-
prised of a container of reconfigurable modules that would
reconfigure to accomplish arbitrary household tasks. This
application can be seen as the most general practical goal
of MSR robotics: a system that can adapt to any task in
real time. A bucket of MSR modules could be used to form
the desired configuration for the end user such as cleaning
gutters to folding laundry.

Current Modular Robot Systems

In the previous section we presented historical examples of
MSR robotic systems. In the following section we present
MSR robotic systems under experimentation and develop-
ment at time of this publication.

Chain TheCKBot system is a reconfigurable robotic sys-
tem developed by Yim et al. at the University of Pennsyl-
vania. The CKBot system shown in Fig. 4, is a chain based
system building on earlier PolyBot work at the Palo Alto
Research Center. These modules utilize a servo to rotate
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Modular Self-Reconfigurable Robots, Figure 4
CKbot module cluster. 4 CKbot modules and one CKbot camera
module are joined together in a cluster. Several clusters can join
together attaching magnetically

one portion of the module with respect to the other. In ad-
dition to statically stable locomotion gaits, Sastra et al. [22]
have demonstrated a dynamic rolling gait for the CKBot
system that has proven to be the fastest battery pow-
ered modular reconfigurable robot system. Global inter-
module communication through CANbus as well as local
neighbor-to-neighbor communication is incorporated on
the modules. This system has also been used in some ini-
tial experiments in self-repair in with experiments in self-
reassembly after explosion described further in Sect. “Con-
trol Architectures”.

Lattice The ATRON system, shown in Fig. 5, developed
by Stoy et al. [13] at the University of Southern Denmark
looks to combine the reliability of reconfiguration pro-
vided by a lattice based module architecture while main-
taining some of the flexibility of motion of a chain based
system. Modules can distribute power via their bond-
ing mechanisms and use a power management system
for voltage regulation and battery charge maintenance.
A module consists of two hemispheres where one can ro-
tate continuously relative to the other. The bonding mech-
anism is extremely robust; eachmodule has 4 femalemetal
bars and 4 metal clasps that can be actuated to grab hold of
a neighbor’s bar. Reconfiguration is performed by having
one module grab another and then rotate somemultiple of

90 degrees to another position in the lattice structure. The
ATRON systemhas been used to explore the value of using
clusters of multiple modules to increase the manipulation,
reconfiguration and locomotion abilities of the system.

The Miche system developed by Rus et al. [12] at MIT
has demonstrated the ability to form desired configura-
tions from a collection of modules. In order to self-assem-
ble, a cluster of modules disassembles by rejecting mod-
ules that are not part of the goal configuration. Each face
of the cubemodule has a switchable magnet and a commu-
nication interface. After the user defines the desired shape
of the robotic system through the interface, a distributed
algorithm determines which modules should be rejected
from the system. These modules simply let go of the struc-
ture and fall due to gravity. Likemany of the stochastic sys-
tems, the hardware here de-emphasizes the actuation re-
quirements easing the ability to scale up the numbers and
scale down the size.

Hybrid

The M-TRAN system developed by Murata et al. [18] at
AIST/Tokyo Institute of Technology combines the posi-
tive capabilities of chain and lattice based systems to im-
plement a highly maneuverable and reconfigurable sys-
tem, Fig. 6. A module consists of one passive and one
active cube that can pivot about the link that connects
them and can form chains for performing tasks. How-
ever during reconfiguration, each of a module’s two cubes
can occupy a discrete set of positions in space when at-
tempting to align with another module and bond for re-
configuration as in a lattice system. The current genera-
tion of M-TRAN (III) modules utilizes a mechanical latch
as a bonding mechanism which is considerably faster,
stronger and more reliable than the previous generation’s
magnetic latch. A kinematics and dynamic simulator and
a GUI have been developed to aid the user in planning
a reconfiguration or motion sequence of operations. This
system has demonstrated the largest number of unique
self-reconfiguring parallel steps in a single demonstration
at 14.

The SUPERBOT system developed by Shen et al. [21]
at USC/ISI is another example of a hybrid system. Building
on the M-TRAN design and Shen’s earlier CONRO sys-
tem, one of the primary goals of this project is to develop
a system robust and flexible enough to operate in harsh
and uncertain environments such as space. Each module
has three degrees-of-freedom (two similar to M-TRAN
with an added twist degree-of-freedom) and has the ca-
pability of sharing power through its bonding mechanism
and communicating via high-speed infra-red light emit-



5624 M Modular Self-Reconfigurable Robots

Modular Self-Reconfigurable Robots, Figure 5
Atron system. The Atron system reconfigures in a lattice system, but can form chains as well. This image shows a four “legged” or
“wheeled” configuration depending on how the modules are actuated

Modular Self-Reconfigurable Robots, Figure 6
MTRAN III four legged configuration. MTRAN modules appear
similar to two cubes, one black one white. Walking occurs with
chain-like motions, but reconfiguration occurs with modules
at specific lattice positions. The cube half-modules checkboard
space sowhitemodules only attach to black. This eases theman-
ufacture as one canbemale and theother female. (The copyright
National Institute of Advanced Industrial Science and Technol-
ogy (AIST))

ting diodes (LED). A software hierarchy separates low level
device specific code from high level task driven routines.
The modules are controlled using hormone-inspired dis-
tributed controllers as developed for the CONRO project.
Various locomotive gates have also been demonstrated in
which modules traverse along carpet, sand, up a slope and
across a rope, and self-reconfiguration is planned for the
future.

Stochastic

Klavins et al. [3] at the University of Washington has
developed a 2D stochastic MSR system named Pro-
grammable Parts. Modules are shuffled about randomly
on a air hockey table by air jets. When a module collides
with another module it bonds using switchable permanent
magnets, communicates with the other module and de-
cides whether or not to remain attached. The group has
demonstrated that local rules can be developed that al-
low the system to tend toward and equilibrium of desired
configurations. Using theory from statistical mechanics
the group is working to develop methods for controlling
stochastic MSR systems at various different scales.

Complexity in Robot Configurations

Since MSR systems are designed to be versatile, with nu-
merous configurations for a set of modules, the problem of
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recognizing and choosing useful configurations is a central
area of research. The organized control of modular struc-
tures is often a complex task, involving coordinated com-
munication between modules (each which has a proces-
sor), central controllers, and in some cases, a human user.

The computational complexity of controlling exist-
ing MSR systems varies. Factors such as processor or-
ganization (centralized or decentralized), inter-module
communication schemes (i. e. global bus, local neigh-
bor-to-neighbor, both global and local), module labeling
(unique module IDs vs. unlabeled), and structural symme-
try all determine a modular systems’ complexity for con-
trol and coordinated computation. Ultimately, these hard-
ware parameters determine how computationally complex
the control schemes will be.

When a modular robot is controlled with a central
controller it is natural to employ identifying labels so the
central controller can designate explicit commands over
a global bus. Since all processors and modules access a bus
equally there is no indication of the relative location of
modules within a configuration. Some other mechanism
(e. g. the user who constructs the system, or a self-discov-
ery mechanism) must be used to locate each module in
a structure and thus map control to each module accord-
ingly.

In the case where a system contains both a global
bus and neighbor-to-neighbor communication capabili-
ties (CEBOT, M-TRAN, CKBot, PolyBot), the system can
determine a representation of the configuration (e. g., an
adjacency matrix). However, for most modular systems
adjacency is not enough to represent the full kinematics
of the relationship between two modules as two modules
maybe be attached together in different ways; for example,
two cube-shapedmodules may be attached face-to-face on
different faces, or with different orientations on each face.

Variants of adjacency matrices [19,27] that take into
account how structures are put together add essential
structural information, such as inter-module port connec-
tions. While this explicit representation is not required for
control, it is needed for things like simulation and any type
of autonomous behavior that relies on knowing its config-
uration and state. For example, self-repair or any type of
capability reasoning requires this explicit representation.

When doing self-discovery (automatically determin-
ing a configuration based on neighbor sensing/communi-
cation) it is often useful to see if a configuration is the same
as another configuration; for example, matching a config-
uration to one in a library of configurations. This problem
is related to finding the automorphism group of graph rep-
resentations, which is known to be a hard problem with no
known polynomial time algorithm [7].

The eigenvalues of the port-adjacency matrix (a gen-
eralized adjacency matrix that contains port connection
numbers to designate how modules are connected) is in-
variant under any of the n! ways a structure with unique
module IDs can be rearranged or relabeled. In graph the-
ory terminology, each relabeling is graph isomorphic to
one another. Module ID mappings between isomorphic
configurations can be found with a heuristic program such
as nauty [15], a sequential search through a three-dimen-
sional linked-list representation of the system, or with
eigenvectors corresponding to the shared eigenvalues of
the isomorphic structures [19].
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Consider the two isomorphic arrangements of the
H-shapedmodular CKBot structure and their correspond-
ing port-adjacency matrices, A1 and A2, in Fig. 7. Note
that the two configurations share the same characteris-
tic polynomial (and hence eigenvalues), as expected since
the configurations are rearrangements of the same shape.
The property that swapping two columns and two rows
of a square matrix does not change its determinant (row
swap and column swap each change the determinant by
a minus sign) corresponds to rearrangements or relabel-
ings of module IDs. The permutation matrix P that maps
the module IDs between the two isomorphic configura-
tions such thatA2 D PA1P�1 can be determined using the
methods described in [19].
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Modular Self-Reconfigurable Robots, Figure 7
Two isomorphic CKBot configurationsModules are rearranged,
but the connectivity is the same (similar to nodes on a graph re-
labeled)

In cases where neighbor-to-neighbor communication
is only present (ATRON, Conro hormone studies, Crys-
talline, Claytronics Atom), distributed algorithms that em-
ploy the processors of modules interacting together in par-
allel divide the computation required for configuration
recognition and motion planning. These MSR systems
typically use token-type messages where aggregate con-
figuration information is passed from module-to-module.
Complexity scaling is a critical issue for these distributed

systems as the number of inter-module messages for goal
configuration recognition and planning is immense for as
few as 10 modules. A major benefit of the decentralized
approach is that for such systems unique module IDs are
not necessary since each unit can only communicate with
an adjacent unit and thus the system is not limited by an
address space. Decentralized approaches also promise to
scale as computational resources scale with the number of
modules.

For a modular robotic system composed of n homoge-
neous units, each with c ports, and w ways of connecting
modules, an upper-bound number of structurally unique
configurations is (cw)n [19]. For example, given 11 CKBot
modules, each unit has 7 ports, each of which can be
uniquely connected to another module in 10 ways (3 ro-
tations for the each of the 3 top faces, and 1 orientation for
the bottom connection). Therefore an upper-bound to the
number of unique configurations is (10�7)11 Š 2:0�1020.
This number is an upper-bound since there are inherent
physical symmetries in certain structures that this approx-
imation double counts.

An enumeration algorithm that more precisely counts
the number of non-isomorphic configurations of a modu-
lar robot was developed by Chen [8]. Structural and kine-
matic symmetries were taken into account to find a pre-
cise number of unique configurations for a given number
of modules. In this method, Polya’s Enumeration Theo-
rem is employed to count a structural state only once. For
example, two cubes modules that can connect to one an-
other on any of the six faces (each in one orientation) has
36 ways of connecting. Chen’s approach takes into account
the 3-fold symmetry of the cubes to determine that there is
only one unique way of connecting the two modules. This
assumes that all six ports on the cubes are all the same;
if this symmetry is broken and one or both modules can
have multiple types of ports (revolute, helical, cylindrical,
etc.) then the algorithm takes these variations into account
to find the number of unique ways (greater than one) that
the two cubes can be connected.

Another challenge in the field of MSR robotics is the
development of reconfiguration algorithms: a method that
transforms a given robotic configuration to the desired
configuration via a sequence of module reconfigurations.
A naive centralized method is to perform an exhaustive
search of the configuration space (all reachable configura-
tions) beginning with the initial configuration until a path
(reconfiguration sequence) to the goal configuration is
found. Because it is possible for modules in an MSR sys-
tem tomove in parallel, the branching factor for the search
tree is O (mn) with n being the number of modules free to
move and m being the number of ways the module can
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move. Finding an optimal path might require searching
the whole space which is clearly intractable for large n.

Many groups have developed methods and tools for
doing self-reconfiguration planning [9,32] that include
centralized algorithms. Several groups [2,4,24,25] have
presented distributed reconfiguration algorithms. In these
cases, the reconfiguration algorithm is embedded on pro-
cessors running on every module. Each module has an
identical program with implicit or explicit knowledge of
the required goal states, but only local information about
the current state of neighboring modules.

One trend in developing these distributed systems is
the use of “meta-modules” – groups of modules together
considered to be a subset. As described further in Sect.
“Mechanical/Electrical/Computational Interaction”, there
is a tight coupling betweenmechanical properties, the con-
straints on motion and the ease of programming such
things as the reconfiguration problem. In many cases,
idealized cubes that move in known and unconstrained
fashions are used to develop algorithms. However, in the
physical world, there are added mechanical constraints
that enable themanufacture andmotion of the devices. Ex-
amples of these constraints include, blocking constraints
where modules may block motions under certain condi-
tions [35], checkerboard constraints in lattice configura-
tions where modules may only move to alternate posi-
tions (as if they were bi-partite) [18]. By grouping small
numbers of modules into a meta-module, many of these
constraints can be eased. For example the checkerboard
constraint and the blocking constraints can removed for
a group of modules moving in concert. However, the sys-
tem as a whole loses resolution based on the size of the
meta-module.

In [1] Abrams and Ghrist introduce the state complex
as an extension of the concept of the configuration space.
They present an algorithm that uses the added structure
defined by the state complex to optimize (with respect
to total reconfiguration time) a reconfiguration sequence
generated by local planner (such as the aforementioned
distributed algorithms.)

Control Architectures

Review of Existing Architectures

A design philosophy behind modular robots is that each
module is very simple. In fact, one group [5] proposed the
Ensemble Axiom “A [module] should include only enough
functionality to contribute to the desired functionality of
the ensemble.” A module by itself cannot achieve much,
but modules arranged together in a system can achieve
complex tasks such as manipulation and locomotion. Sim-

ilarly, the control of a single module is usually simple
whereas controlling a system of many modules becomes
difficult very quickly. For the overall system, different con-
trol architectures have been implemented which we will
describe in more detail.

In large part, the implementation of a control archi-
tecture depends on the communication structure upon
which it is built. Communication betweenmodules can be
achieved through a global bus such as CANbus (Controller
Area Network, a popular automotive and more recently
robotics communications protocol) and/or locally using
neighbor-to-neighbor communication such as infra-red
(IR) emitter/detector pairs. Many systems use both (Poly-
bot, CKBot, M-TRAN, CONRO and Superbot). Wireless
communication is also possible which is architecturally
similar to a global bus. In the YaMoR system [16], Blue-
tooth wireless is the solemeans of inter-module communi-
cation. ATRON and Crystalline modules [13,20] use only
local nearest neighbor IR communication.

As mentioned earlier, control architectures can be im-
plemented in either a centralized or decentralized fashion.
In most cases it is easier to develop and analyze a central-
ized approach. The advantage of decentralized control ar-
chitecture is that computation is shared among modules.
No single unit needs to do all the heavy computation. This
is also thought to be more robust and more easily lends it-
self to scaling to large numbers of modules. It is easier to
implement centralized control has using global communi-
cations and decentralized using local and there are many
examples of such. However, it is possible to implement
centralized on a local bus and decentralized on a global
bus.

An example of centralized control architecture is im-
plemented on [30]. Each module has its own controller
that positions its local actuator. In addition, a master con-
troller communicates to the module controllers to set local
behaviors such as setting desired joint angles under posi-
tion control. In other words, a designated unit sends com-
mands to all the individual modules and synchronizes the
action of the whole system. A simple method of imple-
menting this control is to use a gait control table. The gait
control table is an n � mmatrix wherem is the number of
modules and n is the number of steps of the gait. Each cell
in the table holds the desired joint angle for amodule. Each
column of angles corresponds to the sequence of joint an-
gles for a given module. The controller steps through this
table row by row and sends these angles to the correspond-
ing module. Typically stepping through the table occurs
at a specified rate, so the vertical axis can represent time.
Each module takes the next desired joint angle in the table
and interpolates in joint space. The time between steps sets
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the joint velocity so desired motions have C1 continuity in
joint space.

Shen et al. propose a control that is based on biological
hormone systems in [23]. The basic idea is that an inter-
module “hormone” message is a signal that triggers dif-
ferent actions in different modules while leaving the low-
level execution of these actions to the individual modules.
The obvious biological analogy occurs when a human ex-
periences sudden fear, and adrenaline hormones released
by the brain trigger fight-or-flight behaviors in the body
(i. e., the mouth opens, skin gets goose bumps, and the
legs jump). Based on this principle, Shen et al. designed
a control mechanism that lies somewhere between master
andmaster-less control in that typically one or more mod-
ules need to start the hormone messages. It reduces the
communication cost for locomotion controls, yet main-
tains some degree of global synchronization and execution
monitoring.

At its root, the hormone is a local message passing sys-
tem wheremodules can receive, act on or change messages
as they are passed from module to module. An advantage
of this type of control is that modules are treated identi-
cally without labels or identification numbers; instead the
topology of a configuration is the differentiator and thus
has a great bearing on the implementation. This lends it-
self well to simple locomotion control such as undulating
gaits however, developing arbitrary motions can be more
difficult to implement.

A fully decentralized planning system has been devel-
oped by Rus et al. In [4] an algorithm modeled after cellu-
lar automata is described. Cellular automata (CA) control
uses local rules that are the same for all modules. A rule
can be viewed as having a set of pre-conditions. If all those
preconditions are satisfied, then a certain action is applied.
For example, for a given cell, the pre-conditions could be
whether a cell exists at a certain location, whether a cell
does not exist at a certain location, and whether a cell is
empty. If all preconditions are satisfied, the cell moves it-
self in a certain direction. Rather than having one master
controller being in control of the whole system, modules
think for themselves in a parallel distributed fashion. All
modules run on the same rules and all modules are pro-
grammedwith the same code. Just as the hormonemethod
of control adds some complexity to the development of ar-
bitrary motions, it is also difficult to do in the CA case.

Completely centralized control architecture is rela-
tively straightforward to implement. But issues arise when
dealing with millions of modules such as reaching the lim-
its of bandwidth when using a global communication bus.
On the other hand it is hard to achieve complex tasks with
a completely decentralized architecture that requires only

local communication because it is hard to implement be-
havior in a distributed fashion.

Self-Assembly After Explosion

An example of a hybrid architecture in which global as
well as local communication is used is given in [34]. In
this work the ability for a modular robot to repair itself
is demonstrated by having the robot reassemble into one
connected component after disassembly from a high en-
ergy event. As a system assembles itself, the connectivity
of the robot changes many times. Having disparate dis-
connected pieces requires a level of decentralized control,
however as the system comes together, the modules must
act in a coordinated manner as well.

In [34] a demonstration is shown with 15 modules.
Modules are grouped into three clusters of five modules.
Clusters move as physically separate units, search for and
localize each other, and crawl toward each other to con-
nect using magnet faces and form one aggregate unit.

Within each cluster, the modules are attached using
screws and an electrical header is included in between
these modules to facilitate a global CANbus. The clusters
connect to each other using magnet faces without an elec-
trical header so communication is only achieved through
IR communication. Thus, this hybrid architecture con-
sisted of a global CANbus within a cluster and local IR
communication in between clusters.

The hardware in SAE work is hierarchical – modules
form clusters – clusters form systems – the control archi-
tecture follows that architecture as well. Each module has
an onboard controller that controls the position of the lo-
cal actuator. Within each cluster a controller communi-
cates on the CANbus to all the modules in that cluster.
The master cluster controller gives commands similar to
a gait control table to implement behaviors such as crawl-
ing, detecting a fallen condition and self-righting, search-
ing for other modules etc. Once clusters dock to each other
magnetically, the cluster controllers can communicate to
other cluster controllers using a combination of CAN and
IR. For this work, one cluster controller is designated as
the master whereas the other controllers are designated
as slaves and follow the coordinated messages sent by the
master cluster controller. For example, in the walking state
with all clusters connected, the master cluster controller
sends precisely timed messages to the other clusters to co-
ordinate tasks like walking and turning.

Mechanical/Electrical/Computational Interaction

MSR systems sit at an interesting junction between
mechanical, electrical, and computational interaction.
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Robotics in general, is highly interdisciplinary since it re-
quires expertise in all three of those areas. However, the
configurability aspect of MSR systems adds to the inter-
twining of these disciplines. Enabled with electronic tech-
nologies (such as communication architecture), modular
robotic structures introduce unique mechanical proper-
ties, which often require novel computational processes.

Electro-Mechanical Solutions
to Computational/Information Problems

The reconfiguration planning problem consists of de-
termining the motions of individual modules to attain
a global shape under a variety of constraints. One common
constraint is that the MSR systemmust maintain one con-
nected component (for example, if power is shared from
one module to the next if a module disconnects from the
group it loses power). Determining whether a module de-
tachment will sever the system into two or more pieces
is often computationally and communication bandwidth
intensive, as modules may be required to communicate
with every other module for this analysis (e. g., the sys-
tem may be in the shape of a large loop, in which case
a disconnection motion between two modules will still
leave a single connected component; however, that cannot
be determined until every module has communicated at
least once). If every module were to simultaneously check
whether a disconnection would violate the connectedness
constraint, there would be O(n2) messages and the com-
munications system would quickly become saturated.

One electro-mechanical solution for power distributed
systems (shared power between two or more modules) is
to use power distribution to determine connectivity. One
way this could be achieved would be to develop an intra-
module connector where power between connected faces
can be temporarily severed, to simulate an actual physical
disconnection. If power to either module is lost, it could
be concluded that that disconnection violates the connect-
edness constraint.

Computational Solutions to Mechanical Problems

Applying large forces or torques over some motion path is
usually solved mechanically by designing stronger motors
or leverage mechanisms. However, with modular robots,
this problem can be moved to the computational planning
domain. Robot systems with many redundant degrees-of–
freedom, such as those typically found with chain style
modular robots, can exploit configurations which have
large mechanical advantage [31].

The idea is to utilize the very large mechanical advan-
tage that can be obtained when a system’s Jacobian is near

a singularity. For example, when using a set of modules
that have parallel chains, one chain can be moved to be
near a singularity and have large mechanical advantage
(e. g. when a human knee is straight the Jacobian repre-
sentation of the leg loses rank and becomes singular, he
can carry much more weight then when it is bent). Conse-
quently, this chain then has a large mechanical advantage
which can in turn apply a large force in the desired di-
rection to move the system to a new position. Meanwhile,
another parallel chain can be reoriented to be near a sin-
gularity at the new position, and then apply large forces
yet again to a new position. By repeatedly switching a sub-
set of the motors supporting the load, a ratcheting kind
of action can be used to move links to desired positions
while under large external forces. If the size of each ratchet
motion can be made arbitrarily small, it can be arbitrar-
ily close to the singularity with very large mechanical ad-
vantage. Thus, weak motors can be used to provide large
forces. Of course, there are practical limits to this method,
e. g., sensing accuracy, material strengths, joint precision
etc.

The sequence of ratcheting actions that move the end
points through desired trajectories is potentially a compu-
tationally intensive problem. Hence, the problem of pro-
viding sufficiently large torques has now been solved not
from amechanical viewpoint but computationally instead.

This tight integration of computational and electro-
mechanical complexity can be viewed as a wider space
from which to find solutions, or as a more complex prob-
lem in finding optimal solutions. This is particularly in-
teresting in that it is likely that optimal solutions will not
be found by experts in one field, but by the interaction of
experts in several fields.

Future Directions

The grand challenges for MSR robotic systems were the
results of a workshop where a group of researchers in
the MSR robot community gathered and then presented
in [33]. A proposed ultimate goal for these systems would
be to one day use them in vast numbers for practical ap-
plications where un-supervised, adaptive self-organization
is needed. Five grand challenges that, if overcome, would
enable a next-generation of modular robots with vastly su-
perior capabilities are summarized here:

Big systems Most systems of modular robots have been
small in number, especially compared to, for exam-
ple, the number of components in a living cell (which
many researchers view as the best example of a self-
organizing, modular system). The demonstration of
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a system with at least 1000 individual units would sug-
gest that modular robots have come of age.

Self-repairing systems A demonstration of a self-healing
structure made up of many distributed, communicat-
ing parts would require rethinking algorithms for sens-
ing and estimation of the global state, as well as truly
robust hardware and algorithms for reconfiguration
that work from any initial condition. A concrete ex-
ample would be having a system blown up (randomly
separated into many pieces) then self-assembling, or
recovering from failure of a certain percentage of faulty
units.

Self-sustaining systems A demonstration of a system ac-
tively running for, say 1 year, in an isolated self-sus-
taining robotic ecology would require new techniques
in power management and energy harvesting, as well
as the ability to cope with the inevitable failures.

Self-replication and self-extension While simple robot-
ic self-replication has been demonstrated using few
high-level modules, a significant challenge remains
to demonstrate self-replication from elementary com-
ponents and raw materials. The demonstration of
a “seed” group of modular robots that can build copies
of themselves from raw materials would require ad-
vancing beyond a level of complexity that Von Neu-
mann identified as the equivalent of breaking the
sound barrier for engineered systems.

Reconciliation with thermodynamics If modular robots
are to be miniaturized to micro and/or nano-scale, or
if the ideas discovered in this community are even
to be tied to nanotechnology, the stochastic nature
of nanoscale systems must be addressed. Most exist-
ing modular robot systems overcome entropy through
brute force and unreasonable amounts of energy.
Molecular systems, on the other hand, employ random
diffusive processes and are robust to the intrinsic noise
found at the nanoscale. The demonstration of a system
where stochastic fluctuations are the dominant factor
would represent a fundamental advance.
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Glossary

Algorithmic self-assembly of DNA tiles Spontaneous
assembly of structures consisting of interlocking semi-
rigid DNA molecules (the tiles). Different tiles, con-
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taining different exposed ends, can be synthesized such
that their affinity to interlock can be predefined. Partic-
ular sets of tiles may be constructed that result in the
self-assembly of unique structures; each such set rep-
resents an algorithm for the assembly of the structure.

DNA Sierpinski triangle An algorithmically self-assem-
bled DNA structure with a pattern approximating the
Sierpinski gasket, a fractal.

DNA computing Generally, any use of the information-
carrying capacity of DNA to achieve some computa-
tional or decision-making goal. The term is also used
to refer specifically to the use of DNA in the manner
pioneered by Adleman as a massively parallel com-
putation substrate to solve certain combinatorial op-
timization problems.

DNA circuit A system consisting of multiple DNA logic
gates in which DNA is used as the signal carrier be-
tween the gates; the system performs a Boolean logic
function that may be more complex than the functions
achievable using single logic gates.

DNA binary counter A device that uses DNA as a com-
putational substrate to maintain its state, an integer bi-
nary numeral, and advances through successive states
which represent successive integers. An algorithmic
self-assembly implementation exists.

DNA logic gate Amolecular device using DNA as a com-
putational substrate to perform a Boolean logic func-
tion.

Deoxyribozyme An oligonucleotide synthesized such
that its structure gives rise to enzymatic activity that
can affect other oligonucleotides.

Deoxyribozyme-based automaton Amolecular automa-
ton which uses deoxyribozyme-based logic gates to
achieve its function.

Deoxyribozyme-based logic gate An implementation of
a DNA logic gate in which enzymatic activity of a de-
oxyribozyme is controlled by the presence or absence
of activating or inhibiting oligonucleotides.

Ligase An enzyme, in particular a deoxyribozyme, that
promotes the linking of two oligonucleotides into
a single longer oligonucleotide.

Modular design of nucleic acid catalysts A method for
the design of nucleic acid catalysts, in particular de-
oxyribozymes, wherein their nucleotide sequences are
chosen by stringing together motifs (such as recogni-
tion regions, stems, and loops) which have been estab-
lished to perform a desired function. With care, motifs
will not interfere and will achieve a combined complex
function.

Molecular automaton A device at the molecular scale
which performs a predefined function; this function is

seen at the macroscopic level as sampling the environ-
ment for molecular stimuli and providing

Molecular finite state automaton Adevice that performs
a language recognition function using molecules as
a computational substrate; the language symbols, the
states, and the transitions between states are realized
as molecules.

Molecular Mealy automaton A device using molecules
as a computational substrate to achieve a general-pur-
pose sequential logic function, viz., a finite state trans-
ducer.

Molecular logic gate A device using molecules as a com-
putational substrate to perform a Boolean logic func-
tion.

Oligonucleotide A single-stranded DNA molecule con-
sisting of a relatively small number of nucleotides, usu-
ally no more than a few dozen.

Phosphodiesterase An enzyme, in particular a deoxyri-
bozyme, that promotes the cleavage of an oligonu-
cleotide into two shorter oligonucleotides by catalyz-
ing the hydrolysis a phosphodiester bond.

Definition

Automata are devices that autonomously perform prede-
termined, often complex, functions. Historically, the term
referred to mechanical devices that imitated human be-
haviors, especially those that exhibited intelligence. In the
20th century, electronics made possible the development
of various complex automata, the prime example being the
computer. For its part, computer software was organized
as a hierarchy of automata operating within the computer
automaton. A rich formal theory of automata arose in the
fields of electronics and computer science to aid in the de-
sign and use of these now ubiquitous devices.

Molecular automata employ molecular-scale phenom-
ena of binding, dissociation, and catalytic action to achieve
predetermined functions. Different chemical implementa-
tions are possible, including proteins and inorganic reac-
tions, but the principal prototypes today use nucleic acid
chemistry, and this article will focus on this modality. Nu-
cleic acid automata may be able to interact directly with
signaling molecular processes in living tissues. Thus, they
provide a path towards autonomous diagnostic and thera-
peutic devices and even towards engineered control of cell
behavior.

Introduction

Humans appear to be naturally fascinated with the con-
struction of devices with parts that move independently,
contraptions that operate autonomously, and in partic-
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ular, machines with an appearance of intelligence. Each
technological advance throughout the ages has coincided
with the production of more and more sophisticated de-
vices; indeed, some argue that our strong innate urge to-
ward a mechanistic philosophy has led to the development
of automata [16].

Using tools at hand, ancient cultures created a variety
of automata, from the animated figures of Rhodes to the
singing figures of China. As with many human endeav-
ors, the 18th century was the era of splendor and variety
in automata, particularly among the French, and sophisti-
cation continued through the 19th: from courtly displays
(mechanical) to digesting ducks [33] (biomechanical) to
painting devices (mechanical, but emulating creative in-
telligence) [4,31].

Modern automata are almost uniquely defined by the
advent of computers. Just as electronics permitted build-
ing more complex systems than mechanics, software on
programmable computers permitted vastly more complex
systems. An entire discipline of automata theory devel-
oped to characterize the computational abilities and re-
source requirements of different devices; all of theoretical
computer science is an outgrowth of this effort.

The formal notion of an automaton centers on a de-
scription of the configuration, or state, of the device, and
of the transitions it makes from state to state. The states are
typically discrete. The transitions are discrete as well and
they occur in response to external stimuli formalized as the
consumption of discrete input symbols. Given a current
state and a current input symbol, the transition rules of
an automaton define what state the automaton may enter
next. A history of external stimuli is captured by an input
symbol string. The automaton may produce output sym-
bols. This has been formalized in two different but equally
expressive ways: either an output symbol is associatedwith
a specific state, or it is associated with a specific transition
between two states. In either case, the successive output
symbols form an output string.

Automata defined in this fashion are closely linked
with formal language theory. The input and the output
symbols are drawn from certain alphabets, and the in-
put and the output strings belong to languages over these
alphabets. Of particular interest are automata with a re-
stricted form of output: a yes or a no output is associated
with each state. Such automata can be viewed as language
recognizers under the following interpretation: if the state
in which the automaton finds itself upon consuming an
input string is a yes output state, that string is said to be-
long to the language, and otherwise not. More generally,
an automaton defines a correspondence between strings
in the input alphabet and strings in the output alphabet;

thus it can be understood as a language-translating de-
vice, or transducer. Language recognizers and transducers
play a central role in traditional accounts of computational
complexity, as well as in practical daily use, such as in web
query processing, under the name of parsers. If the out-
put alphabet consists of signals for mechanical actions, we
have the essence of robotic control.

The number of symbols in an alphabet is generally
taken to be finite. On the other hand, the number of states
of an automatonmight be finite or infinite. Finite state au-
tomata are readily implemented in electronics using a reg-
ister (to hold an encoding of the state) and a combina-
tional circuit (to compute the transitions). Indeed, only fi-
nite state automata can be physically implemented. Nev-
ertheless, a beautiful theory exists for classes of automata
with infinite state, this theory has led to useful program-
ming paradigms, and such automata can be simulated us-
ing finite resources as long as we are willing to accept that
they may occasionally run out of these resources and fail.
Examples include pushdown automata, in which the state
includes the contents of a semi-infinite push-down stack
of symbols, and the Turing machine, in which the state in-
cludes the contents of an infinite tape of symbols.

Even as electronic embodiments of automata permeate
the modern society, from mobile telephones to automated
bank tellers to navigational satellites, they are not read-
ily integrated into life processes: the environment of liv-
ing tissues presents an obstacle for the deployment, pow-
ering, and operation of electronics. Biocompatible alterna-
tives are needed.

With recent advances in molecular biology, research
is turning toward the taming of molecules for the devel-
opment of automata on the molecular scale. Within this
body of research several strands can be recognized. Firstly,
researchers have adapted molecular processes for explicit
emulation of mathematical theory. Secondly, researchers
have sought to enhance known cellular systems for alter-
native control of biological events. Additionally, however,
researchers are also beginning to engineer molecules for
completely novel purposes unrelated to their original de-
sign.

Regardless of the purpose, all of these automata fun-
damentally require similar mechanisms to operate au-
tonomously within their respective environments. Molec-
ular automata must have some ability to sense inputs
(molecular or other) within their external environment,
make a predetermined decision based on the sensed in-
put, and then autonomously produce an output that affects
their environment.

Here we review recent advances in the engineering of
molecular automata, and outline fundamental principles
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for engineering of molecular automata. Sect. “Molecular
Automata as Language Recognizers” treats molecular au-
tomata created as embodiments of the mathematical con-
cept of a language recognizer. Minimal formal background
is given, and recent research exemplars are introduced,
along with sufficient background in nucleic acid chem-
istry. We only treat exemplars that have been demon-
strated in the laboratory. Sect. “Molecular Automata as
Transducers and Controllers” treats molecular automata
that work as transducers, and is similarly organized. In
Sect. “Future Directions”, we speculate on the future uses
and developments of the molecular automata technology
in science and medicine.

Molecular Automata as Language Recognizers

Preliminaries

Finite State Automata A finite state automaton (some-
times just “finite automaton”) is a notional device that
reads strings of symbols drawn from a finite alphabet and
either accepts them or rejects them. Languages are sets of
strings, and the language recognized by the automaton is
defined to be the set of all strings which the automaton ac-
cepts.

We now consider how the automaton makes its deci-
sion. The automaton operates in a series of discrete steps,
and each step consumes one symbol of the input string.
The automaton exists in one of finitely many abstract
states, and each step of operation causes a transition be-
tween states. A transition function describes which next
states the automaton may enter upon consuming a partic-
ular symbol in a particular state. One state is designated
as the start state; this is the state of the automaton be-
fore any input is read. Upon starting, the automaton reads
the symbols from the input string and makes the indicated
transitions until the string has been exhausted. If the final
state in which it finds itself belongs to the designated sub-
set of accepting states, we say that it has accepted the input
string.

Formally, an alphabet˙ is a finite set of uninterpreted
symbols. In examples, the sets f0; 1g and fa; b; c; : : : g
are common; in computing ASCII and Unicode are
used. While it may seem plausible that the nucleotides
fA; T;G;Cg should be used directly as the alphabet in
molecular implementations of automata, device design,
such as the use of restriction enzymes with multi-nu-
cleotide recognition sites, often dictates a less dense repre-
sentation; for instance, each of a few unique short oligonu-
cleotides may stand for a symbol of the alphabet.

A string, or word, is a finite ordered sequence of sym-
bols. A string of no symbols is written ". Two strings s1 and

s2 can be concatenated to form s1s2. Any set of strings is
called a language. The notion of concatenation is extended
to languages, L1L2 D fs1s2js1 2 L1 ^ s2 2 L2g. A special
operator, the Kleene star, finitely iterates concatenation:
L? D " [ L [ LL [ LLL [ : : : If we identify single-sym-
bol strings with symbols, the set of all strings over an al-
phabet˙ is˙?.

Given a finite set of states Q, the transition func-
tion of an automaton is ı : Q �˙ ! Q. The start state
is S 2 Q, and the accepting (sometimes called final)
states are F � Q. To formalize the operation of the au-
tomaton, we define the configuration of the automaton
to be its current state paired with the unread input.
The initial configuration for input w is (S,w). The rela-
tion ` describes one step of operation: (s; x) ` (t; y) if
(9a 2 ˙)x D ay ^ ı(s; a) D t. The relation `? is the re-
flexive, transitive closure of ` and describes the complete
operation. If (S;w) `? (s; ") then the automaton accepts
w if and only if s 2 F.

Finite state automata as described are properly called
deterministic. Nondeterministic finite state automata are
an apparent generalization that permits transitions that
read strings rather than single symbols from the input at
each step of operation, which is described by a transition
relation ı � Q �˙? � Q. With a nondeterministic au-
tomaton, we say it has accepted the input string if there
is an accepting state among all states it may have reached
while consuming the entire input string.

In the conventional visual representation of a finite
state automaton, the transition diagram, (example shown
in Fig. 1), the states are shown as vertices in a graph, and
the transitions as directed edges labeled with symbols (or
with strings for nondeterministic automata).

The class of languages that can be recognized by a finite
state automaton is known as regular languages; the term
itself derives from an alternative description of the same
class using regular grammars (see below). Nondetermin-
istic automata recognize the same class of languages but
may require fewer states for the same language.

The fact that nondeterministic automata are no more
powerful than deterministic ones means that a number
of variations that seem to be “in between” can be freely
used. For instance, a deterministic automaton with a par-
tial transition function ı, i. e., in which the transition out
of some particular state on some particular input symbol is
not defined is really a nondeterministic automaton. Rather
than having an explicit “stuck” state with a self-loop for all
input symbols, as it would be required in a deterministic
description, the automaton is stuck by virtue of not having
any way out of a state. This is used in Benenson’s automata
description (Sect. “Benenson’s Finite Automaton”).
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Molecular Automata, Figure 1
Example finite state automaton. The alphabet fa;bg, states
fs0; s1g, start state s0, accepting states fs0g, and transition func-
tion given by the table in a define a deterministic finite state au-
tomaton, graphically shown in b. This automaton accepts pre-
cisely the strings that contain an even number of b’s. In c, the ac-
tions of the automaton in accepting the string baaba are shown

Finding functioning encodings for the symbols, states,
and transitions in a molecular implementation is a chal-
lenging task, and therefore prototypes have dealt with
small numbers of symbols and states, and it is of inter-
est to know how many different automata can be encoded
in a particular prototype. Considering deterministic au-
tomata alone, given that the transition functions ı maps
Q �˙ to Q, the number of possible such functions is
jQjjQjj˙ j ; there are jQj choices for the initial state, and
there are 2jQj choices for accepting states (any subset of
the set of states). Thus, there are jQj2jQjjQjjQjj˙ j different
automata descriptions. Of course, many of these describe
automata that are identical up to a relabeling of the states;
moreover, automatamay be different and yet recognize the
same language, so these calculations should not be taken
too seriously.

More Powerful Automata Pushdown automata are
a natural extension of finite state automata; these devices
include a notionally infinite pushdown stack. This struc-
ture allows the device to write an unbounded number
symbols to its scratch memory, but at any time only the
most recently written symbol can be read back (which also
erases it). These devices are capable of recognizing a larger
class of languages, called the context-free languages.

Turing machines add two pushdown stacks to a finite
state automaton, or, equivalently, an infinite read/write
tape. These devices are capable of recognizing any lan-

guage. All plausible models of what can be computed that
have been put forward have been shown equivalent to Tur-
ing machines; we say that they describe universal compu-
tation.

Wang Tiles and Self Assembly One form of univer-
sal computation has been designed from a specific set of
Wang tiles [47]. These are a mathematical model wherein
square unit tiles are labeled with specific “glue” symbols
on each edge. Each tile is only allowed to associate with
tiles that have matching symbols, and the tiles cannot be
rotated or reflected. The computational interest of Wang
tiles is the question of proving whether they can be used
to tile a plane. Any Turing machine can be translated into
a set of Wang tiles; the Wang tiles can tile the plane if and
only if the Turing machine will never halt.

Prototypes

Molecular Automata as LanguageRecognizers The en-
coding of finite automata states and transitions usingDNA
and restriction enzymes was first proposed by Rothe-
mund [34]. A detailed design was also offered by Gar-
zon [19]. Shapiro’s group extended this idea to an au-
tonomously operating cascade of cleavages of a double-
stranded DNA directed by oligonucleotides [1,6,8]. In ef-
fect, this group demonstrated the first molecular equiva-
lent of a finite automaton. What is now sometimes called
the Shapiro–Benenson–Rothemund automaton consists
of a mixture of two groups of DNA molecules (input and
“software”, i. e., transition rules) and the FokI restriction
enzyme (“hardware”). The automaton from [6] (Fig. 3) is
described in Sect. “Benenson’s Finite Automaton”.

DNA has also been applied in the construction of
Wang tiles and general self-assembly algorithms. Erik
Winfree was the first to note that planar self-assembly
of DNA molecules can be applied to this form of uni-
versal computation [48]. DNA molecules analogous to
Wang tiles can be constructed from double-crossover
(DX) molecules [18], which consist of two side-by-side
DNA duplexes that are joined by two crossovers (Fig. 2).
They have a rigid stable body, and open sticky ends for at-
tachment to other DX molecules. The sticky ends of these
DNA tiles may be labeled with certain sequences, analo-
gous to the symbols labeling the sides of Wang tiles. This
labeling allows the sticky ends to bind only to the tile ends
that have a complementary sequence of base pairs, which
corresponds to the rule that restricts Wang tiles to only
associate with tiles that have matching symbols. Triple
crossover (TX) molecules, consisting of three side-by-side
DNA duplexes are also good for this purpose [23]. It was
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Molecular Automata, Figure 2
a A four-arm junction and b its three-dimensional structure; c a DNA DX; and d a DNA TX. (From [28])

Molecular Automata, Figure 3
a The input molecule (I) is a double-stranded DNA with an overhang, and repeating motifs encoding symbols a (TGGCT), b (GCAGG)
and, finally, a terminator t (GTCGG). The same sequences define two states (S0 and S1) of the finite automaton, depending on where
FokI cleaves. Thus, S0 in a is defined as a GGCG overhang and in b it is defined as a CAGG overhang, while S1 is defined in a as
a TGGC overhang and in b as a GCAG overhang. States are similarly defined in t. b All possible transition rules in complex with
FokI (software-hardware complex) for a two-state, two-symbol automaton. Spacer sequences (squares with circles) between guide
sequence (GGATG) and targeting overhangs define the change of states, because they serve to adjust the cleavage position within
the next symbol. Overhangs define the initial state and symbol that is read by the transition rules

shown that universal computation could be accomplished
by self assembling these DNA tiles [50]. An appealing
interpretation is that a two-dimensional self-assembling
structure can be used to represent (in one dimension) the
time development of a one-dimensional (in the other di-
mension) cellular automaton. The first example of com-
puting performed by DNA self-assembly [29], a four-bit
cumulative XOR, is described in Sect. “DNA Self-Assem-
bly”. This is followed in Sect. “Algorithmic DNA Self-As-
sembly” by a detailed description of algorithmic self-as-

sembly of DNA tiles [5,35,36] used in the construction of
a binary counter and a Sierpinski triangle.

Benenson’s Finite Automaton The automaton de-
scribed by Benenson encodes finite automata states and
transitions using DNA and restriction enzymes. The in-
put (I) consists of repetitive sequences, with groups of five
base pairs (separated by three base-pairs in [6]) which de-
note input symbols (Fig. 3a), and, upon enzymatic cleav-
age, the state of the automaton as well. Two symbols in
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Molecular Automata, Figure 4
The effect of two transition rules, T4 and T5 on an input I from Fig. 3a is shown. The overhang at I (CAGG) defines an initial state
(S0) and a current input symbol, b. The input encodes the string baba. For clarity, only bases in overhangs, symbols, and the guide
sequence are shown. (i) Complexation between T4 and I directs the cleavage of I to I-7: Overhang CAGG on I is complementary to
an overhang GTCC on the T4 complex. Thus, the automaton is at the beginning of its “calculation” in the state S0 and will “read”
the next symbol b on the input. T4 complexes with the input and cleaves at the position 9/13 bases away within the region defining
the symbol a. Upon this cleavage the whole complex disintegrates, leaving the shortened input (I-7) with a new overhang in place,
TGGC, representing the next state S1 and the current symbol a. Thus, the automaton performed according to a transition rule T4 an
elementary step reading the first input symbol, b, and transitioned from state S0 into state S1, moving along the input (tape) to the
second symbol, a. (ii) The T5 complex recognizes overhang at the I-7 and the input again at the 9/13 position, which is now within
the next symbol, b; this leaves the new CAGG (S0) overhang. Thus, the automaton transitioned from state S1 into state S0, having
read the input symbol a. It alsomoved to the following input symbol b, on the (ever shrinking) input, now at I-16. (iii) The automaton
(actually, the T4 transition rule) recognizes and cleaves I-16 andmoves to the next symbol a, transitioning in this process to S1 state
and producing I-23. (iv) In the last step, I-23 is cleaved by T5 to I-32, producing the state S0 in the terminator symbol

the input are a (TGGCT) and b (GCAGG). The cleavage
that leaves the first four bases in an overhang is defined as
a transition to an S0 state, while the cleavage that leaves the
second four bases in an overhang is defined as a transition
to an S1 state.

Interactions of an input with transition rules occur as
follows: The readable input starts with an overhang of four
bases, and this overhang is recognized by a complemen-
tary overhang on a transition rule (software). All transition
rules are complexed with FokI (this is called the software-
hardware complex). FokI recognizes the “guide” sequence
in transition rules (GGATG), and then, upon interactions

with input, cleaves the input at the constant position, nick-
ing the DNA helix 9 and 13 positions away from the guide
sequences (Fig. 4). In this way, the transition rule directs
the cleavage of an input. As this process generates a new
overhang, within the next symbol, we say that cleavage
moves the automaton to read the next symbol, and that
at the same time it defines the new state of the automaton.
The structure of the transition rules defines whether a state
of the automaton changes or not, by a distance between an
overhang and the guide sequence.

This process is a cascade, because a new overhang can
be recognized by another (or the same) transition rule.
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With two states and two symbols, we can have a total of
eight transition rules (Fig. 3b), defining all possible transi-
tions, upon reading a symbol. (Keinan and colleagues also
reported three-state, three-symbol automata [40].)

We say that this automaton (or in biochemistry a cas-
cade) is capable of consuming input strings over a two-let-
ter alphabet fa; bg and transitioning between states de-
pending on the input and in accordance with a prepro-
grammed control, defined through the presence of an ar-
bitrary mixture of transition rule complexes (T1–T8). The
mechanism of this cascade is best explained through an ex-
ample, and we provide one in Fig. 4. For example, the tran-
sition function consisting of only transition rules T4 and
T5 can move the automaton back and forth between states
S0 and S1 endlessly, as long as it is moving along an input
made of symbols a and b in alternation, baba � � �, with the
final result S0. We invite the reader to try any other com-
bination of transition rules in Fig. 3b on the same input.
Some of them will stall the automaton.

Thus, through selecting a set of transition rules,
or software/hardware complexes (transition rules of the
form: if you find the system in state Sm and read a sym-
bol � 2 fa; bg from the input, go to state Sn and move to
the next input symbol), one could write a molecular “pro-
gram” able to read and degrade an input DNA molecule,
which encodes a defined set of symbols. Input molecules
for which transitions always succeed will be degraded up
to a terminator symbol, which will read the final state of an
automaton (“answer”). If there is no transition rule present
in the system that matches the current state and the cur-
rent symbol of the input at a certain stage of the degra-
dation, the automaton stalls and the input molecule is not
degraded to a terminator symbol. Thus, it can be said that
this system indeed works as a finite-state automaton and
thus recognizes the language abstractly specified by its set
of transition rules.

Whilst the laboratory demonstration was of finite state
automata, one could envisage pushdown automata or Tur-
ing machines; indeed Shapiro has a patent on a molecular
Turing machine [38].

DNA Self-Assembly The first DNA self-assembling au-
tomaton was a four-bit cumulative XOR [29]. The Boolean
function XOR evaluates to 0 if its two inputs are equal,
otherwise to 1. The “cumulative” (i. e., multi-argument)
XOR takes Boolean input bits x1; : : : ; xn , and computes the
Boolean outputs y1; : : : ; yn , where y1 D x1, and for i > 1,
yi D yi�1XORxi . The effect of this is that yi is equal to the
even or odd parity of the first i values of x. Eight types of
TX molecules were used in the implementation: two cor-
ner tiles, two input tiles, and four output tiles. The cor-

ner tiles connect a layer of input tiles to a layer of output
tiles. The input tiles represent xi D 0 and xi D 1. There
are two ways to get each of the two possible outputs of
a bitwise XOR, and so four output tiles were used, leaving
some interpretation to the human observer. One output
tile represents the state with output bit yi D 0 and input
bits xi D 0 and yi�1 D 0; another the state with output bit
yi D 0 and input bits xi D 1 and yi�1 D 1. The remain-
ing output tiles represent the two states with yi D 1. The
actual computation of the XOR operation is accomplished
by harnessing the way the output tiles connect to the input
tiles. Each output tile (yi) attaches to a unique combination
of one input tile (xi) and one output tile (yi�1), and leaves
one sticky end open that encodes its own value (yi) so that
another output tile may attach to it. Thus, only the output
tiles that represent the correct solution to the problem are
able to attach to the input tiles.

Algorithmic DNA Self-Assembly As another type of
DNA based paradigm capable of autonomous computing,
we give an example of algorithmic self-assembly of DNA
tiles, as first suggested, and then implemented by Winfree.
Algorithmic self-assembly is an extension of various DNA
nanotechnologies developed over the years by Seeman’s
group, and is based on a vision that one can encode in a set
of tiles the growth of an aperiodic crystal. While aperiodic
crystals seem on the surface irregular, the position of each
component of such crystal is actually precisely encoded by
a program.

The approach is based on a rigid set of DNA tiles,
such as double or triple crossover tiles. Unlike standard
(i. e., crossover-free) structures, such as three- and four-
way junctions, these molecules are sufficiently rigid to de-
fine precise positions of other tiles interacting with them,
which could lead to a regular crystal growth. This has led
to many impressive periodic 2D structures. Interactions
between tiles occur through complementary overhangs.
For example, each of the DAO-E tiles in Fig. 7 projects four
overhangs (schematically presented as different shapes),
each of which can be independently defined.

We examine two computations that have been demon-
strated by means of algorithmic self-assembly: a binary
counter, and a Sierpinski triangle.

The binary counter [5,36] uses seven different types of
tiles: two types of tiles representing 1, two types represent-
ing 0, and three types for the creation of a border (cor-
ner, bottom, and side tiles). The counter (Fig. 5) works
by first setting up a tile border with the border tiles—it
is convenient to think of the “side” border tiles as being
on the right, as then the counter will display the digits in
the customary order. Two border tiles bind together with
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Molecular Automata, Figure 5
A binary counter in the process of self-assembly. The seed tile starts off the assembly. The right side and bottom border tiles connect
to each other with double bonds, while all the other tiles connect with single bonds. A tile needs two single bonds (or one double
bond) to form a stable attachment to the structure; themarked attachment positions showwhere a tile can form a stable attachment

a strong, double bond, while all other tiles bind to each
other and to border tiles with a single bond. Since any tile
except a border tile must bind to two additional tiles in
order to have two bonds, but a border tile and another
border tile of the correct type will form a double bond
with each other, a stable border forms before other sta-
ble formations, composed of non-border tiles, are created.
The bottom and side border tiles are designed such that
the only tile that may bind in the border’s corner (to both
a side and a bottom border tile) is a specific type of 1 tile.
Only one of the 0 tiles may bind to both this 1 tile and the
bottom of the border, and this type of 0 tile may also bind
to itself and the bottom of the border, and thus may fill out
the left side of the first number in the counter with leading
zeros. The only type of tile which may bind both above the
1 in the corner and to the right side of the border is the
other type of 0 tile, and the only tile which may bind to the
left of it is a 1 tile—we get the number 10, or two in bi-
nary. The tile binding rules are such that this can continue
similarly up the structure, building numbers that always
increment by one.

We now look at how an aperiodic crystal corre-
sponding to the so-called Sierpinski triangle was con-

structed [35]. First we consider what this fascinating fig-
ure is in the abstract. The Sierpinski triangle (or gasket),
properly speaking, is a fractal, obtained from a triangle by
iteratively removing an inner triangle half its size ad infini-
tum; Fig. 6 is an approximation up to ten iterations. Any
physical realization will provide only a finite number of it-
erations and can thus only be an approximation of the true
fractal; some realizations have been fabricated in the past
with interesting physical properties [20].

A peculiar connection exists with Pascal’s triangle (Ta-
ble 1), the table of binomial coefficients

�n
k

. Each entry in

Pascal’s triangle is the sum of the two entries right above it,
according to the equality

�n
k

D
�n�1
k�1

C
�n�1

k

. If we turn

an initial section consisting of 2m rows of Pascal’s trian-
gle into an image by mapping odd numbers to black and
even numbers to white (Table 2), we get an approximation
to the Sierpinski triangle; various generalizations are pos-
sible, see [21,32]. Thus, we could generate the Sierpinski
triangle by first generating Pascal’s triangle, row by row,
using the above formula. But instead of computing the en-
tries of Pascal’s triangle, which are large numbers, we can
compute modulo 2, i. e., only keep track of whether the
numbers are odd or even. Supposing numbers were writ-
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Molecular Automata, Figure 6
A Sierpinski triangle as a fractal image

ten in binary, this is equivalent to keeping only the least
significant bit. In that case, the addition operation degen-
erates into an XOR. This is the chosen method for DNA
self-assembly of a Sierpinski triangle (Table 3).

The set of tiles that worked the best for the synthesis of
the Sierpinski triangle consists of 6 tiles, three R and three
S tiles (Fig. 7). The R tiles interact with the S tiles, and vice
versa. TheR tiles in row i calculate (display their overhang)
outputs to the S tiles in the row i C 1, based on inputs (in-
teractions with complementary overhangs) from the S tiles
in row i � 1 (Fig. 7c). Thus, each row is composed of either
R or S tiles. There are four tiles (S-00, S-11, R-00, R-11)
which are binary-encoded with values of 0 (Fig. 7a). These
are incorporated in the growing crystal between two ad-
jacent tiles in row i � 1 that have both the value 0 or both
the value 1. There are two tiles (R-01 and S-01) with values
of 1 (Fig. 7b), and they have additional loops that will show
as bright regions on the atomic force microscopy (AFM)
characterization (cf. Fig. 9). These tiles are incorporated in
between two tiles in row i � 1 that display different values.
Due to the C2-symmetry of the displayed overhangs two
tiles, there is no need to define any further tiles. In fact, the
tile R-11 is never used in this particular calculation, and is
redundant.

Assembly proceeds as follows: Winfree and colleagues
first constructed a long input (scaffold strand) DNA,
which contained binding sites for the S-00 tiles at regu-
lar distances. The input is necessary to ensure longer peri-
ods of growth (more than 70 individual rows were grown
from the input). The input also contained a small num-
ber of randomly distributed sites to which the S-01 tile

Molecular Automata, Table 1
The first eight rows of Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Molecular Automata, Table 2
Marks indicate the odd entries in the first eight rows of Pascal’s
triangle

�

� �

� �

� � � �

� �

� � � �
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Molecular Automata, Table 3
The computational schema for the construction of an approxi-
mation to a Sierpinski triangle

1
1 0 1

1 0 0 0 1
1 0 1 0 1 0 1

1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

binds. This is an initiation site, around which aperiodic
growth occurs. Thus, the first row, immediately on the in-
put strand, contains mostly S-00 tiles, and here and there
a single S-01 tile. The second row of R tiles assembles on
these tiles, with R-00 between all S-00 tiles and R-01 on
each side of S-01 (i. e., between S-01 and S-00 tiles). An
example of this type of crystal growth is shown in Fig. 8,
while Fig. 9 shows the actual AFM results.
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Molecular Automata, Figure 7
The DAO-E Sierpinski set of tiles, their corresponding schematic representations and the mechanism of their assembly. Each tile is
assigned a schematic rectangular representation. An overhang is represented by the shapes in each corner, with complements being
assigned the same shapes, but in black and gray. In cwe give an example of assembly

In principle, tiling of surfaces is Turing complete.
While it is certain that many interesting aperiodic crystals
can be encoded using DNA tiles, the main limitation for
further progress at this moment is the high error rate (1–
10%) of the addition of individual tiles. Explicit error cor-
rection using some form of redundancy or “self-healing”
tile sets to recover from errors is called for [49].

Molecular Automata as Transducers and Controllers

Preliminaries

Finite State Transducers A finite state transducer is
a variation of the deterministic finite state automaton
which, in addition to consuming one input symbol at each
step of operation, produces as output a string over some al-
phabet. A special case is the Mealy automaton [30], which

emits one output symbol at each step, so that the length of
the output is the same as the length of the input; an exam-
ple is shown in Fig. 10.

Molecular Automata as Language Recognizers Sha-
piro’s group used the same type of cascades as in their fi-
nite automata to create a molecular transducer as a proof-
of-concept for a diagnostic automaton [7]. This design
is explained in Sect. “Therapeutic and Diagnostic Au-
tomata”.

Using a conceptually different model, Stojanovic and
Stefanovic created molecular transducers from deoxyribo-
zyme-based logic gates (see Sect. “Deoxyribozyme-Based
Logic Gates as Transducers”), which have been used as
components for the construction of adders (Sect. “Adders
and Other Elementary Arithmetic and Logic Functions”)
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Molecular Automata, Figure 8
A schematic example of the assembly of an aperiodic 2D crystal from tiles encoding the Sierpinski triangle

Molecular Automata, Figure 9
AFM picture (bottom) of a representative aperiodic crystal encoding the Sierpinski triangle in its structure (schematic, top).
(From [35])
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Molecular Automata, Figure 10
Example Mealy automaton. The input alphabet, the states, and
the transition function are as in Fig. 1. The output alphabet is
fx; y; zg. Successive runs of as in the input are transduced alter-
nately into runs of xs and runs of ys; bs are transduced into zs

and automata for games strategies (Sects. “Automata for
Games of Strategy” and “Improved Automata for Games
of Strategy”).

Deoxyribozyme-Based Logic Gates as Transducers
Simple DNA logic-gate transducers have been constructed
from deoxyribozymes by Stojanovic and Stefanovic [43].
Deoxyribozymes are enzymes made of DNA that catalyze
DNA reactions, such as the cleavage of a DNA strand into
two separate strands, or the ligation of two strands into
one. These can be modified to include allosteric regulation
sites, to which specific control molecules can bind and so
affect the catalytic activity.

There is a type of regulation site to which a control
molecule must bind before the enzyme can complex with
(i. e., bind to) the substrate, thus this control molecule pro-
motes catalytic activity. Another type of regulation site al-
lows the control molecule to alter the conformation of the
enzyme’s catalytic core, such that even if the substrate has
bound to the enzyme, no cleavage occurs; thus this control
molecule suppresses or inhibits catalytic activity. This al-
losterically regulated enzyme can be interpreted as a logic
gate, the control molecules as inputs to the gate, and the
cleavage products as the outputs. This basic logic gate cor-
responds to a conjunction, such as e. g., a ^ b ^ :c, here
assuming two promotory sites and one inhibitory site, and
using a and b as signals encoded by the promotor input
molecules and c as a signal encoded by the inhibitor in-
put molecule. Deoxyribozyme logic gates are constructed
via a modular design [41,43] that combines molecular bea-
con stem-loops with hammerhead-type deoxyribozymes,
Fig. 11. A gate is active when its catalytic core is intact (not
modified by an inhibitory input) and its substrate recogni-
tion region is free (owing to the promotive inputs), allow-
ing the substrate to bind and be cleaved.

Correct functioning of individual gates can be exper-
imentally verified through fluorescent readouts (Fig. 21).
The inputs are compatible with sensor molecules [42] that
can detect cellular disease markers. Final products (out-

puts) can be tied to release of small molecules. All prod-
ucts and inputs (i. e., external signals) must be sufficiently
different to minimize the error rates of imperfect oligonu-
cleotidematching, and theymust not bond to one another.
The gates use oligonucleotides as both inputs and outputs,
so cascading gates is possible without external interfaces.
Two gates are coupled in series if the product of an “up-
stream” gate specifically activates a “downstream” gate.
A series connection of two gates, an upstream ligase and
a downstreamphosphodiesterase, has been experimentally
validated [44].

Prototypes

Therapeutic and Diagnostic Automata Using similar
principles to their finite automata (Sect. “Benenson’s Fi-
nite Automaton”), Shapiro’s groups created a molecu-
lar transducer to assess the presence or absence of a se-
ries of oligonucleotides, as a proof-of-concept for a diag-
nostic automaton [7]. The automaton analyzes up- and
down-regulated mRNA molecules that are characteristic
for some pathological states (Fig. 12a). The authors intro-
duced several new concepts in their work, primarily in or-
der to maximize the tightness of control over a diagnos-
tic cascade. We present here a somewhat simplified expla-
nation that focuses on the underlining principles and the
ability of these finite automata to analyze oligonucleotide
inputs.

Input molecules for diagnostic automata are similar to
those in Fig. 3. Each “symbol” in the input now contains
recognition sites (“diagnostic” symbol), which are, upon
cleavage by FokI, recognized by transition rules. In turn,
these transition rules are regulated by the expression of
genes (i. e., mRNA) characteristic for certain types of can-
cer.

If we are looking to diagnose an increase in certain
mRNA level, there are, potentially, two types of transi-
tion rules that can cleave each of the symbols after these
are exposed as overhangs through an action by FokI:
(1) YES!YES transitions, which will lead to the next step
of processing the input because a new overhang, recogniz-
able by the next set of transition rules, will be exposed; and
(2) YES!NO transitions, in which FokI cleaves off from
the site that is recognized by the next set of transition rules,
and, thus, these transitions cause the automaton to stall
(i. e., no existing transition rules recognize the new over-
hang).

The YES!YES transition is activated by the presence
of mRNA, through the removal of an inactivating (block-
ing) oligonucleotide from its complex with one of the
strands making a transition rule (Fig. 12b). In contrast,
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Molecular Automata, Figure 11
Examples of deoxyribozyme-based logic gates. a A YES gate showing deoxyribozyme core and molecular beacon allosteric control-
ling region; this gate is active in the presence of one activating input.bA two-input ANDgate produces outputs only if both inputs are
present. cA three-input ANDANDNOTgate produces outputs only if the two activating inputs (A and B) are present, and the inhibiting
input (C) is absent

the YES!NO transitions are deactivated by an mRNA,
because mRNA will compete for binding to one of the
strands in the transition rule, thus, effectively breaking up
the transition rule. In case we want to diagnose a downreg-
ulation of mRNA (genes 1 and 2 in Fig. 12a), the situation
is reversed: The lack of characteristic mRNA leaves the
YES!YES transition active, while the presence of it would
break this transition rule apart. In contrast, the presence of
mRNA will activate YES!NO transition by removing the
inactivating oligonucleotide.

A diagnostic automaton can be turned into a “thera-
peutic” automaton by modifying the events at the end of
the cascade. Instead of releasing a terminator symbol (cf.
Figs. 3 and 4, Shapiro and colleagues described a degra-

dation of a stem-loop, and a release of a linear oligonu-
cleotide, which had the potential for a therapeutic (anti-
sense) action. A further interesting detail was that a neg-
ative diagnosis could be coupled to a parallel cascade,
which can release another oligonucleotide, complemen-
tary to and blocking the activity of a therapeutic oligonu-
cleotide. The authors also described independent and par-
allel action of two different automata in the same solution.
From the perspective of this review, it is also important
that Winfree proved that these automata are capable of
general Boolean computing [39].

The “therapeutic automaton” is in many respects the
most challenging ex vivo molecular system that has ever
been constructed. Although there are many reasons to
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Molecular Automata, Figure 12
Therapeutic automata: a A diagnostic procedure is based on an analysis of a set of genes (e. g., Genes 1 to 4) which have the levels
of expression characteristic for a particular disease; these genes regulate the transition rules that process the input molecule (see
below). Input (I) molecule, similar to Fig. 3, encodes the symbols that are cleaved by these transition rules. Symbols are recognized
by two types of transition rules regulated by the mRNA molecule transcribed from a gene; one type leads to continuation of the
cascade, while the other leads to no further processing. b YES!YES transition rule for an upregulated gene 3 in this cascade (e. g.,
PIM1); in the absence of the gene this transition rule is deactivated by the inactivating strand that binds stronger to strand 2 of the
rule, displacing strand 1. c YES!NO Transition rule Gene 3 expressed is formed from two software strands, by a displacement of
a blocking (protector) strand. d Transition rule Gene 1 not expressed, is degraded in the presencemRNA for Gene 1, thus stalling the
automaton

doubt eventual practical applications as a “doctor in cell”,
it will always remain an extremely impressive intellectual
exercise, which will serve as an inspiration for different
systems.

Adders and Other Elementary Arithmetic and Logic
Functions Another type of transducing automaton is
a number adder, which accepts as input two numbers ex-
pressed as strings of bits (binary digits) and produces as
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Molecular Automata, Figure 13
Components of a molecular half-adder, which adds two binary inputs to produce a sum and carry digit. Top: Circuit diagram, truth
table of calculations and deoxyribozyme logic gates required for construction. Bottom: implementation of the deoxyribozyme-based
half adder. The sum output is seen by an increase in red channel (tertramethylrhodamine) fluorescence (0C 1 D 1 and1C 0 D 1),
and the carry output is seen by an increase in green channel (fluorescein) fluorescence (1C 1 D 2)

output the string of bits corresponding to their sum. On
the surface these may not appear to have direct relevance
with diagnostic and therapeutic automata, however adders
serve as extremely important computational components,
and their development begins to hint at the power in au-
tomaton building through the multiple layering of logic
gates.

In electronics, binary adders commonly use as a build-
ing block the full adder, which is a device that takes as
input three bits (normally two digits from two numbers,
and a carry-in bit) and produces a sum bit and a carry bit.
The full adder is commonly realized using two half-adders;
a half-adder takes as input two bits and produces a sum
bit and a carry bit. A half-adder, in turn, is realized using
simple logic gates. A logic gate takes some number of in-
put bits (often just one or two) and produces one output
bit as a Boolean function of the inputs, such as a negation
(NOT-gate) or a conjunction (AND-gate). Adders and logic
gates are simple circuits with obvious applications. Nu-
merous molecular devices with logic gate and adder func-
tions (as well as mixed-mode devices such as molecular-
optical) have been introduced in recent years [10,11,12,13,
14,15,17,22,24,51].

Logic gates built from deoxyribozymes were first de-
scribed by Stojanovic and Stefanovic [43], and were sub-
sequently used to build both a half-adder [45] and a full
adder [24]. A half-adder was achieved by combining three
two-input gates in solution, an AND gate for the carry bit,
and an XOR, realized using two ANDNOT gates (gates of

the form x ^ :y) for the sum bit. The two substrates used
are fluorogenically marked, one with red tetramethylrho-
damine (T), and the other with green fluorescein (F), sim-
ilar to Fig. 21, and the activity of the device can be fol-
lowed by tracking the fluorescence at two distinct wave-
lengths. The results, in the presence of Zn2C ions, are
shown in Fig. 13. When both inputs are present, only the
green fluorescein channel (carry bit) shows a rise in fluo-
rescence. When only input i1 is present or only input i2 is
present, only the red tetramethylrhodamine channel (sum
bit) rises. With no inputs, neither channel rises. Thus, the
two bits of output can be reliably detected and are correctly
computed.

A molecular full adder was similarly constructed, re-
quiring 7 molecular logic gates in total: three AND gates
for computation of the SUM bit, and four 3-input gates for
calculation of the CARRY bit (Fig. 14). The requirement
for a 3-input ANDAND gate as well as several ANDNO-
TANDNOT gates necessitated additional deoxyribozyme
logic gate design. This was achieved by precomplexing
gates with a complementary oligonucleotide that would
subsequently be removed by addition of inputs (Fig. 15).
The length of input increased to 30 nucleotides, and served
a dual function—to activate controlling elements directly
and to remove precomplexed oligonucleotides when nec-
essary. The combination of stem-loop regulation in cis
and controlling elements supplied in trans is reminiscent
of some classical in vivo regulatory pathways. This sim-
ple demonstration points towards the construction of even
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Molecular Automata, Figure 14
Components of a molecular full adder, which adds three binary inputs to produce a sum and carry digit. Left: circuit diagram, truth
table of calculations and deoxyribozyme-based logic gates required for construction. Right: implementation of the deoxyribozyme-
based full adder. The sum output is seen by an increase in red channel (tetramethylrhodamine) fluorescence, and the carry output is
seen by an increase in green channel (fluorescein) fluorescence

more complex artificial networks, which could mimic nat-
ural systems through the use of multifunctional regulatory
components.

Automata for Games of Strategy Initial construction
of networks capable of simple arithmetic operations sug-
gested the possibility that circuits of highly regulated de-
oxyribozymes could support complex molecular decision
trees. This was subsequently demonstrated by Stojanovic
and Stefanovic in the construction of the first interac-
tive molecular transducing automaton, designed to per-
fectly play the game of tic-tac-toe against a human oppo-
nent [46]. To understand how this was achieved, the struc-
ture of the game will be briefly examined.

A sequential game is a game in which players take
turns making decisions known as moves. A game of per-
fect information is a sequential game in which all the play-
ers are informed before every move of the complete state
of the game. A strategy for a player in a game of perfect
information is a plan that dictates what moves that player
will make in every possible game state. A strategy tree is

a (directed, acyclic) graph representation of a strategy (an
example is shown in Fig. 16). The nodes of the graph rep-
resent reachable game states. The edges of the graph rep-
resent the opponent’s moves. The target node of the edge
contains the strategy’s response to the move encoded on
the edge. A leaf represents a final game state, and can, usu-
ally, be labelled either win, lose, or draw. Thus, a path from
the root of a strategy tree to one of its leaves represents
a game. In a tree, there is only one path from the root of
the tree to each node. This path defines a set of moves
made by the players in the game. A player’s move set at
any node is the set of moves made by that player up to that
point in a game. For example, a strategy’s move set at any
node is the set of moves dictated by the strategy along the
path from the root to that node. A strategy is said to be
feasible if, for every pair of nodes in the decision tree for
which the opponent’s move sets are equal, one of the fol-
lowing two conditions holds: (1) the vertices encode the
same decision (i. e., they dictate the samemove), or (2) the
strategy’s move sets are equal. A feasible strategy can be
successfully converted into Boolean logic implemented us-
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Molecular Automata, Figure 15
Three-input ANDAND gate structure

Molecular Automata, Figure 16
The chosen strategy (game tree) for the symmetry-pruned game of tic-tac-toe, drawn as the diagram of a Mealy automaton. Each
state is labeled with the string of inputs seen on the path to it. Each edge is labeled a/b), where b is the output that is activated on
input a

Molecular Automata, Figure 17
The tic-tac-toe gameboardwith the field numbering convention

ing monotone logic gates, such as the deoxyribozyme logic
gates.

In the first implementation of the tic-tac-toe automa-
ton, the following simplifying assumptions were made to
reduce the number and complexity of needed molecular
species. The automaton moves first and its first move is
into the center (square 5, Fig. 17). To exploit symmetry,
the first move of the human, which must be either a side
move or a corner move, is restricted to be either square 1

(corner) or square 4 (side). (Any other response is a matter
or rotating the game board.)

The game tree in Fig. 16 represents the chosen strategy
for the automaton. For example, if the human opponent
moves into square 1 following the automaton’s opening
move into square 5, the automaton responds by moving
into square 4. If the human then moves into square 6, the
automaton responds by moving into square 3. If the hu-
man then moves into square 7, the automaton responds
by moving into square 2. Finally, if the human then moves
into square 8, the automaton responds by moving into
square 9, and the game ends in a draw.

This strategy is feasible; therefore, following a conver-
sion procedure, it is possible to reach a set of Boolean for-
mulas that realize it, given in Table 4. (For a detailed anal-
ysis of feasibility conditions for the mapping of games of
strategy to Boolean formulas, see [3].)
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Molecular Automata, Table 4
Boolean formulas resulting from the tic-tac-toe game tree. The inputs are designated ik, and the outputs are designated ok

o1 D i4
o2 D (i6 ^ i7 ^:i2) _ (i7 ^ i9 ^ :i1) _ (i8 ^ i9 ^ :i1)
o3 D (i1 ^ i6) _ (i4 ^ i9)
o4 D i1
o5 D 1
o6 D (i1 ^ i2 ^:i6) _ (i1 ^ i3 ^ :i6) _ (i1 ^ i7 ^ :i6) _ (i1 ^ i8 ^ :i6) _ (i1 ^ i9 ^:i6)
o7 D (i2 ^ i6 ^:i7) _ (i6 ^ i8 ^ :i7) _ (i6 ^ i9 ^ :i7) _ (i9 ^ i2 ^ :i1)
o8 D i9 ^ i7 ^ :i4
o9 D (i7 ^ i8 ^:i4) _ (i4 ^ i2 ^ :i9) _ (i4 ^ i3 ^ :i9) _ (i4 ^ i6 ^ :i9) _ (i4 ^ i7 ^:i9) _ (i4 ^ i8 ^ :i9)

Molecular Automata, Figure 18
Sequences of the nine oligonucleotide inputs used to indicate
humanmove positions in the MAYA automaton

Human interaction with the automaton is achieved by
the sequential addition of nine input oligonucleotides (i1–
i9). Each oligonucleotide is 15–17 nucleotides long and
has a unique sequence of A, T, C, and G’s, with no more
than 4 nucleotides in common between each oligonu-
cleotide sequence (Fig. 18). The input numbering directly
matches the square numbering of the tic-tac-toe game
board (Fig. 17). Hence, to signify a move into square 9,
the human would choose input i9 for addition.

The game is played in a standard laboratory plate, with
9 wells representing each square of the tic-tac-toe game
board. The automaton is pre-prepared by the addition of
fluorescent substrate and a specific set of deoxyribozyme-
based logic gates in each well. Thus the automaton moves
are predetermined by the inherent logic provided in each
well, and in the chosen arrangement the automaton never
loses because it plays according to a perfect strategy. The
arrangement of deoxyribozyme logic gates corresponding
to the above formulas is given in Fig. 19. This is the ini-
tial state of the nine wells of a well-plate in which the au-

tomaton is realized in the laboratory. The automaton was
named MAYA since it uses a Molecular Array of YES and
AND gates to determine responses to human moves.

An example game played against MAYA is shown in
Fig. 20. The play begins whenMg2C ions, a required cofac-
tor, are added to all nine wells, activating only the deoxyri-
bozyme in well 5, i. e., prompting the automaton to play its
first move into the center, since this well contains a single
active deoxyribozyme which begins cleaving to produce
fluorescent output. The human player detects this move
by monitoring wells for increase in fluorescence emissions
using a fluorescent plate reader.

After that, the game branches according to the hu-
man’s inputs. In response to the automaton’s first move,
the human player may choose either well 1 or well 4 in this
restricted game, and thus will add input oligonucleotide i1
or i4 to every well of the game board, so that each well of
the automaton receives information on the position of the
human move. This creates a chain reaction among the de-
oxyribozyme logic gates in each well, opening individual
stem-loops complementary to the chosen input. However
only one gate in one well of the board will become fully
activated in response to this first human move: the YESi1
gate placed in well 4 (if the human added i1 to every well)
or the YESi4 gate in well 1 (if the human added i4 to every
well). The activated gate subsequently cleaves to produce
fluorescent outputs, which is again detected by the human
via fluorescence monitoring.

Subsequent human moves are unrestricted, so the hu-
man may choose to play in any of the remaining wells
where neither player has yet moved. However at this point
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Molecular Automata, Figure 19
Realizing a tic-tac-toe automaton using deoxyribozyme logic. The center well contains a constitutively active deoxyribozyme. Each
of the eight remaining wells contains a number of deoxyribozyme logic gates as indicated. In the schematic, green numbers are
indices to the inputs that appear as positive literals in conjunctions; red as negative

the automaton is poised to win the game, either through
a diagonal three in a row (wells 1, 5, 9; if the human chose
to play in well 4) or through a horizontal three in a row
(wells 4, 5, 6; if the human chose to play in well 1). As-
suming perfect play, the human will choose to block an
automaton win by playing into well 9 (adding input i9 to
each well) or well 6 (adding input i6 to each well). This
would again cause a chain reaction with complementary
stem loops in every well, but again, only a single logic
gate would become fully activated (either gate i4ANDi9
or i1ANDi6 in well 3, depending on the human’s initial
moves). The game thus continues by repeated human in-
put addition and subsequent fluorescent monitoring until
either the human makes an error leading to an automaton
win, or there is a draw as illustrated in Fig. 20.

Improved Automata for Games of Strategy In order
further to probe the complexity with which a molecu-
lar automaton could be rationally constructed, a second
version of MAYA was constructed [27]. MAYA-II plays
a non-restricted version of tic-tac-toe where the automa-
ton still moves first in the middle square, but the human
player may choose to respond in any of the remaining
squares. The new automaton was also designed to be more
user-friendly than the original MAYA, allowing monitor-
ing of both the automaton and humanmoves using a dual-
color fluorescence output system, similar to the previously
constructed half and full adder [24,45] (Fig. 21).

The complexity of MAYA-II encompasses 76 possi-
ble games, of which 72 end in an automaton win and 4
end in a draw. The required arrangement of logic gates for
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Molecular Automata, Figure 20
A game of tic-tac-toe that ends in a draw because both the automaton and its human opponent play perfectly. As the human adds
input to indicate his moves, the automaton respondswith its ownmove, activating precisely one well, which is shown enlarged. The
newly activated gate is shown in light green. The bar chart shows the measured change in fluorescence in all the wells. Wells that are
logically inactive (contain no active gates) have black bars, and wells that are logically active have green bars (the newly active well
is light green)
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Molecular Automata, Figure 21
Dual color fluorescence output system utilized in MAYA-II. Automaton moves are determined using logic gates based on the de-
oxyribozyme E6 [9,24,45], which cleaves substrate ST (dual labeled with tetramethylrhodamine and black hole quencher 2) to pro-
duce product PT and an increase in tetramethylrhodamine fluorescence. Human moves are displayed using logic gates based on
the deoxyribozyme 8.17 [24,37,45],which cleaves substrate SF (dual labeled with fluorescein and black hole quencher 1) to produce
product PF and an increase in fluorescein fluorescence

Molecular Automata, Figure 22
Realizing the MAYA-II automaton using deoxyribozyme logic. The center well contains a constitutively active deoxyribozyme. Each
of the eight remaining wells contains a number of deoxyribozyme logic gates as indicated; boxed gates monitor human moves and
the rest determine deoxyribozyme moves. In the schematic, green numbers are indices to the inputs that appear as positive literals
in conjunctions; red as negative
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a perfect automaton strategy was determined by computer
modeling. However, using the gate limitations of the time,
a strategy using only 9 inputs could not be determined
by the program. Acceptable logic could be predicted by
increasing the number of inputs to 32 different oligonu-
cleotides. These inputs were coded inm where n refers to
the position of the human move (1–4, 6–9) and m corre-
sponds to the move order (1–4). For instance, to signify

Molecular Automata, Figure 23
MAYA-II example game. A game played against MAYA-II ends in an automaton win, since the human opponent made an error in
move 3. The human adds input to indicate their moves to every well, which causes a chain reaction to activate precisely one well
for each fluorescent color. Human moves are displayed in the fluorescein (green) fluorescence channel, and automaton moves are
displayed in the tetramethylrhodamine (red) fluorescence channel

a move into well 9 on the first move, the human would
add input i91 to all wells.

Using this input coding, the final arrangement of
logic gates for MAYA-II’s chosen strategy used 128 de-
oxyribozyme-based logic gates (Fig. 22); 32 gates monitor
and display the human player’s moves, and 96 gates cal-
culate the automaton’s moves based on the human-added
inputs. Essentially, successive automaton moves are con-
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structed as a hierarchy of AND gates, with YES gates re-
sponding to the first human move. Some NOT loops are
included to prevent secondary activation in already played
wells, or are redundant and included to minimize cumu-
lative nondigital behavior in side wells over several moves.
In doing this, MAYA-II is a step toward programmable
and generalizable MAYAs that are trainable to play any
game strategy.

Coordination of such a large number of rationally de-
signedmolecular logic gates was an unprecedentedmolec-
ular engineering challenge, taking several years of con-
struction. While spurious binding of oligonucleotides was
predicted to cause serious problems, this was not observed
in the building of the system. Instead, the most challeng-
ing aspect was titrating individual gates to produce similar
levels of fluorescent signals, since the individual oligonu-
cleotide input sequence could affect the catalytic activity of
the molecule.

MAYA-II perfectly plays a general tic-tac-toe game by
successfully signaling both human and automaton moves.
An example of play against the automaton is shown in
Fig. 23. It could be argued that by integrating more than
100molecular logic gates in a single system,MAYA-II rep-
resents the first “medium-scale integrated molecular cir-
cuit” in solution. This level of rationally-designed com-
plexity has important implications for the future of di-
agnostic and therapeutic molecular automata. Moreover,
the increased complexity of MAYA-II enabled refinement
of the deoxyribozyme logic gate model, allowing the de-
velopment of design principles for optimizing digital gate
behavior and the generation of a library of 32 known in-
put sequences for future “plug and play” construction of
complex automata. This library of known sequences is al-
ready being employed in the construction of other com-
plex DNA automata [26].

Future Directions

This review mostly focused on DNA-based automata, an
area of research that has its roots in Adleman’s early com-
puting experiments [2]. The early attempts to find appli-
cations for this type of DNA computing mostly focused
on some kind of competition with silicon, for example,
through massively parallel computing. After more then
a decade of intensive research, we can safely conclude that,
without some amazing new discovery, such applications
are very unlikely. Instead, it seems that the most likely ap-
plications will come from the simplest systems, in which
groups of molecules will have some diagnostic or thera-
peutic role. Further, approaches such asWinfree’s can lead
to completely new thinking inmaterials sciences. But aside

from practical considerations, experiments in which mix-
tures of molecules perform complex functions and execute
programs are of great interest for basic science. Mixtures
of molecules perform complex tasks in organisms, and
some of the systems we described provide us with tools to
understand how such complexity may have arisen at first.
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Glossary

Genome The totality of genetic material in an organism,
including all its genes.

Metabolite A small molecule that is either produced or
consumed by a chemical reaction that takes place in-
side an organism.

Graph A mathematical object that consists of nodes or
vertices. Pairs of nodes may be connected by edges.

Gene frequency or allele frequency The proportion of
genes in a population that have a specific genotype
(DNA sequence).

Paralogous genes Genes in the same genome that origi-
nated in a gene duplication event.

Orthologous genes Genes in the genomes of two differ-
ent species that shared a common ancestor in the an-
cestral species.

Nonsynonymous nucleotide substitution/amino acid
replacement substitution A nucleotide substitution in

a gene that changes the amino acid sequence of the
encoded protein.

Synonymous nucleotide substitution/amino acid re-
placement substitution A nucleotide substitution in

a gene that does not change the amino acid sequence
of the encoded protein.

Protein domain a protein region with a characteris-
tic function and structure that often also folds au-
tonomously.

Definition of the Subject

Molecular evolution is concerned with evolutionary
change of nucleic acids and proteins. It attempts to iden-
tify the evolutionary forces that cause these molecules to
change their structure over millions of years. Molecular
evolution as a research field emerged in the second half
of the 20th century, when information on DNA and pro-
tein sequences first became available. Although studies in
the field initially focused on the evolution of genes and

the proteins they encode, they increasingly concentrate on
the evolution of whole genomes. This was made possible
by the availability of whole genome sequences in the mid-
1990s.

Recently, technological developments have made it
possible to study molecular networks inside cells. These
networks encompass hundreds or thousands of proteins
that interact with each other, with DNA or RNA, and with
small metabolites. A molecule’s position in such a molec-
ular network, as well as its interaction partners may in-
fluence the tempo and mode of the molecule’s evolution.
In addition, change in individual molecules of a network
can influence the network’s structure on an evolutionary
time scale. These two topics form the core of this contri-
bution.

Introduction

Molecular Networks

Amolecular network is a highly heterogeneous assemblage
of different molecules, including small metabolites, RNA,
DNA, proteins, and protein complexes. Molecules in this
assemblage interact with each other in a variety of ways
to carry out important cellular functions. In any one cell,
the structure of this network changes as a function of the
cell’s physiological state, and as a function of the proteins
and RNAmolecules that are expressed at any one time. No
experimental technique is currently available that could
reveal the full complexity of a molecular network, much
less its temporal dynamics. However, much information is
available on (sub)networks that are characterized by one
kind of molecular interactions. Specifically, three kinds of
such networks have been characterized extensively in dif-
ferent organisms. The first kind is a protein interaction net-
work. It can be represented as a graph whose nodes are
proteins, and where two proteins are connected by an edge
if they physically interact inside a cell. The second kind
of network is a transcriptional regulation network. Here,
the nodes of the network are genes. A directed edge con-
nects a gene A to a gene B in such a network, if A encodes
a transcriptional regulator, a protein that binds to regula-
tory DNA near gene B, and if A activates or represses the
transcription of B. The third and final class of well-char-
acterized networks comprisesmetabolic reaction networks.
They are networks of chemical reactions that sustain life
by producing energy and biochemical building blocks for
cell growth. Metabolic networks consist of two kinds of
key parts, metabolites and metabolic enzymes. Metabolic
enzymes catalyze chemical reactions that convert metabo-
lites into other metabolites. These enzymes are encoded by
genes.
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Because these three kinds of networks, protein in-
teraction networks, transcriptional regulation networks,
and metabolic networks, are by far the best studied kinds
of biological networks, this contribution will focus on
them.

Molecular Evolution

Genes and the proteins they encode are key components
of the three networks introduced above. Genomic DNA in
general, and genes in particular can undergo three princi-
pal kinds of evolutionary genetic change (mutations). The
first kind is a deletion, whereby a gene or a part of it be-
comes eliminated from the genome. The second kind is
a duplication, whereby a stretch of genomic DNA becomes
duplicated, such that two copies of the DNA sequence
come to exist in the genome. The duplicate DNA can re-
side immediately adjacent or far away from the original,
depending on the mechanism of duplication. If such a du-
plication encompasses one or more genes, one speaks of
a gene duplication. Gene duplications have received con-
siderable attention since whole genome sequences have
become available, because they lead to an increase of the
number of genes in a genome, and because they may fa-
cilitate the evolution of genes with new functions. The
third kind of change is a point mutation. Here, a single
nucleotide changes. If the change occurs inside of a gene,
then the amino acid sequence of the encoded protein may
also change, leading to a potential change of function
in the protein. More complicated kinds of evolutionary
change also occur, such as rearrangements of parts or do-
mains within a protein. Their impact on network evolu-
tion is less intensely studied and has been reviewed else-
where [1].

This characterization of evolutionary genetic change
distinguishes different kinds of molecular events. In ad-
dition, one can also distinguish genetic change through
its effects on fitness. Here again, there are three possible
classes of change. The first class consists of neutral mu-
tations. Such mutations are causing a change in genomic
DNA that leaves an organism’s fitness unchanged. A sec-
ond class comprises beneficial mutations, mutations that
increase an organism’s fitness. Natural selection increases
the frequency of genes carrying such mutations in a popu-
lation. A third class consists of deleteriousmutationswhich
decrease the fitness of an organism, and are thus often
eliminated from populations. For this reason, deleterious
mutations contribute little to observed molecular varia-
tion, even though they may be the most frequent muta-
tions. Despite 40 years of research, it is still a matter of
debate whether most mutations that give rise to observed

variation in a population of organisms are neutral or ben-
eficial.

Molecular evolution as a research field emerged in the
second half of the 20th century, with the availability of the
first DNA and protein sequences. A key theoretical devel-
opment in the field was Kimura’s neutral theory of molec-
ular evolution [2]. This theory makes specific predictions
about the fate of neutral mutations. Specifically, the rate
at which neutral mutations arise that will eventually go to
fixation, that is, attain a frequency of one, equals the rate
of neutral mutations itself, and is constant and indepen-
dent of population size. The time neutral mutations take
to go to fixation is proportional to the size of a population.
These simple predictions do not hold for beneficial mu-
tations whose fate also depends on the amount of fitness
benefits they confer. These predictions of the neutral the-
ory are well corroborated, but Kimura and others made
additional claims that were more controversial. Specifi-
cally, they maintained that neutral mutations comprised
the vast majority of mutations that give rise to genetic vari-
ation in a population, a claim that gave rise to the neutral-
ist-selectionist controversy [3,4]. Although this debate has
not been fully resolved, recent analyzes based on whole-
genome data suggest that many mutations that occur in
a genome have beneficial effects [5,6].

Multiple sequence characteristics can be used to deter-
mine whether the DNA sequence of a gene has been sub-
ject to mostly negative selection that eliminates deleterious
mutations, to positive selection that has increased bene-
ficial mutations in frequency, or to no selection (neutral
evolution) [7]. One such characteristic, the ratio Ka/Ks of
non-synonymous to synonymous nucleotide substitution
is simple and widely used. In order to determine this ratio,
one compares two genes and themutations that have accu-
mulated since their common ancestry (either since a gene
duplication event for paralogous genes, or since a speci-
ation event for orthologous genes). Specifically, one es-
timates the number of non-synonymous mutations, mu-
tations that did change the amino acid sequence of the
encoded protein, and the number of synonymous muta-
tions, mutations that did not change the protein. Such
mutations are possible, because the genetic code is redun-
dant, that is, multiple codons may encode the same amino
acid. More specifically still, one estimates Ks, the fraction
of synonymous substitutions per synonymous nucleotide
site in a gene, and Ka, the fraction of amino acid replace-
ment substitutions per replacement site. These measures
of divergence account for the fact that different genes have
different length. From these estimates, one then calcu-
lates Ka/Ks. If this ratio is smaller than one, then the genes
in question have tolerated fewer amino acid replacement
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substitutions in their evolutionary history than synony-
mous substitutions. This means that the genes are under
negative or purifying selection, because some amino acid
substitutions have been eliminated from the evolutionary
record. If the ratio is equal to one (Ka D Ks), then an
equal number of silent and replacement substitutions have
been preserved. Such genes evolve neutrally. This pattern
of evolution is typical of pseudogenes, genes that have lost
their function through mutations. Finally, if the ratio is
greater than one, then more amino acid changing muta-
tions have been preserved than synonymous mutations,
meaning that the genes have been subject to net positive
selection. For the vast majority of genes, the ratio Ka/Ks
is much smaller than one, meaning that these genes are
under net negative or purifying selection. For these genes,
Ka/Ks is a good indicator of the evolutionary constraint
a gene is subject to: Genes with small Ka/Ks are said to be
more highly constrained than genes with a large Ka/Ks.

Molecular Networks and Molecular Evolution

Two principal kinds of genetic change can be distin-
guished in the molecular evolution of molecular networks.
First, there is change that affects the number of network
parts itself, either by adding network parts through dupli-
cation, or by eliminating network parts through deletion.
Second, there is change that leaves the network size unaf-
fected, but that changes existing network parts and their
interactions through point mutations. A comprehensive
analysis of network evolution would study both categories
of change, and it would analyze how such change affects
the structure of a network. Such an analysis would also
study how natural selection on network function would
influence the kinds of genetic change that can be toler-
ated on evolutionary time scales. Partly because of a lack
of necessary data, no such comprehensive analysis exists
for all of the molecular networks discussed here. One kind
of change and its impact on a network may have been
studied for one kind of network, but hardly at all for an-
other network. The next sections highlight insights avail-
able from studies focusing on one or the other kind of
change and its effects on the evolution of protein inter-
action networks, transcriptional regulation networks, and
metabolic networks.

Protein Interaction Networks

Characterizing Protein Interaction Networks

Two prominent experimental approaches exist to char-
acterize protein interaction networks (reviewed in [8]).
These approaches illustrate the kinds of data available for

evolutionary studies on such networks. The first approach
is the yeast two-hybrid assay [9], a technique to identify
interactions between two specific proteins A and B (not
necessarily from yeast). This assay first uses recombinant
DNA techniques to generate two hybrid proteins. In one
of these hybrids, protein A is fused to the transcriptional
activation domain of a yeast transcription factor. In the
other hybrid, the transcriptional activation domain of the
same transcription factor is fused to protein B. If protein
A and B interact in vivo, then their interaction physically
links the transcriptional activation and the DNA bind-
ing domain of the transcription factor, thus allowing tran-
scriptional activation of a suitably chosen “reporter” gene,
which can be easily detected. The two hybrid approach
has been applied to detect interactions of most protein
pairs A-B in a genome [10,11,12,13,14,15,16,17,18]. Even
for a small genome like that of the yeast Saccharomyces
cerevisiae, this requires screening millions of pairwise in-
teractions.

The first genome-wide protein interaction screens that
used the two-hybrid assay were carried out in the yeast
proteome itself. They yielded maps of protein interactions
involving some 1000 proteins [14,15]. Variations of the
approach have been applied successfully to analyze pro-
tein interactions in other microbes, such as the bacterium
Helicobacter pylori [16], and protein interactions between
viral and cellular proteins [11,12]. The yeast two-hybrid
approach has several commonly recognized shortcomings.
One of them is the use of fusion proteins, which can lead
to protein misfolding. Another problem is that the assay
forces coexpression of proteins in the same compartment
of a cell or an organism, although the proteins may not
co-localize in vivo. These shortcomings lead to potentially
high false positive and false negative error rates, i. e., to the
detection of spurious interactions, and to the failure to de-
tect actual interactions. These error rates may well exceed
50% [19,20]. This complication means that it is currently
difficult to evaluate which of the (vast) differences in net-
work composition and interactions observed among dis-
tantly related organisms is due to evolutionary divergence,
and which part is due to experimental error.

Another class of techniques to characterize protein in-
teraction networks identifies the proteins that are part of
a multiprotein complex [21,22,23]. Here, the departure
point of a typical experiment is some protein A of inter-
est, and the experiment asks which protein complexes –
groups of interacting proteins – this protein A is a part
of. In the experiment, protein A is reversibly attached to
a solid support via a chemical tag. This solid support is ex-
posed to a protein extract from cells. As a result, proteins
that can interact with A become attached to the support
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via protein A. Protein A and all proteins attached to it are
then released from the support, at which point the proteins
can be isolated and characterized, for example through
mass spectrometry. The whole approach is a variation of
affinity chromatography, a chemical separation technique
that takes advantage of specific binding of one molecule to
another. The largest-scale approaches so far have identi-
fied more than 400 protein complexes in the yeast Saccha-
romyces cerevisiae [21,22,23,24].

The yeast two-hybrid assay and affinity chromatogra-
phy based methods lead to different and complementary
kinds of information. The yeast two-hybrid assay yields in-
formation about pairwise protein interactions. In contrast,
affinity chromatography-based methods lead to informa-
tion about the proteins that occur in a protein complex,
where not all of the proteins in a complex may interact di-
rectly with each other.

Characterizing Network Structure

Perhaps the most basic and general question that one
can ask about protein interaction networks (or any other
molecular network) is why a network has its observed
structure. To answer this question ultimately requires an
evolutionary perspective, because any network’s structure
needs to be explained from its evolutionary history and
the evolutionary forces shaping it. To answer this question,
however, one has to first know what a network’s structure
is. Because molecular networks have thousands of parts,
visual inspection is of little use in identifying a network’s
structure, and it is not always clear what features of the
structure to focus on. Most existing work focuses on the
simplest structural network characteristics, three of which
are given below. Others are also in use, but many biologi-
cally sensible such characteristics may still await discovery.

Perhaps the simplest structural characteristic one can
study is the distribution of the number d of interactions
per protein, the so-called degree distribution of a network.
A second characteristic are degree correlations among
proteins, that is, one can ask whether highly (lowly) con-
nected proteins preferentially connect to highly (lowly)
connected other proteins. A third basic characteristic of
a molecular network is the clustering coefficient C [25].
To define the clustering coefficient C(v) of a node (pro-
tein) v in a graph, consider all kv nodes adjacent to
a node v, and count the number m of edges that exist
among these kv nodes (not including edges connecting
them to v). The maximally possible m is kv (kv � 1)/2, in
which case all kv nodes are connected to each other. Let
C(v) :D m/(kv (kv � 1)/2). C(v) measures the “cliquish-
ness” of the neighborhood of v, i. e., what fraction of the

nodes adjacent to v are also adjacent to each other. The
clustering coefficient C of the whole network is defined as
the average of C(v) over all v.

The degree distribution of protein interaction net-
works resembles a power law, P(d) � d�� , where � is
some constant [26,27], protein degrees are anticorrelated,
that is, highly connected proteins preferentially interact
with lowly connected proteins [28], and the clustering co-
efficient of protein interaction networks is much higher
than that of random networks with the same number of
interactions.

Protein Network Structure andMolecular Evolution

A variety of evolutionary models have attempted to ask
why networks have their observed structure with respect
to the above and some other simple structural features [29,
30,31,32,33,34,35,36,37]. These models rely on two main
ingredients, addition and deletion of network proteins
(caused by gene duplications and deletions) which can
change the size of a network, and “rewiring” of network
interactions driven by point mutations in the genes en-
coding network proteins. Both processes undoubtedly play
a role in network evolution. Network rewiring must oc-
cur, because individualmutations can change protein-pro-
tein interfaces necessary for interactions. Gene duplication
and gene deletion must also play a role, because genomes
vary in size by orders of magnitude, and so do the number
of genes, encoded proteins, and protein interaction net-
work size. In addition, some families of interacting pro-
teins such as heterodimerizing transcription factors have
arisen largely through gene duplication [38,39]. Further-
more, gene duplication plays a role in the evolution of new
protein complexes in yeast [40].

Beyond these generalities, the available models differ
widely in their assumptions, and about the importance
they ascribe to rewiring and duplication/deletion. They in-
clude differences in assumptions about

(i) Rates of duplication, deletion, and rewiring,
(ii) Whether these processes are random with respect to

network structure, or whether their rate depends on
a protein’s position in the network, and

(iii) Whether duplication/deletion and rewiring occur in-
dependently from one another or whether they are in
some way coupled.

Most existing models constitute mathematical proofs of
principle, that is, they attempt to show that a particular
network feature, such as the degree distribution could be
explained by a particular evolutionary process, whereas
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a few models attempt to stay close to available molecu-
lar evolution data. However, this data is currently very
limited, because no information is available about the
structure of protein interaction networks in closely re-
lated organisms. That is, the available data is either de-
rived from comparisons of protein content and/or net-
work structure of very distantly related organisms, or from
within one genome, such as from gene duplicates (whose
age can estimated) and their common interaction part-
ners [26,41]. Although such data is insufficient to vali-
date or refute any one of the models to the exclusion of
all others, a limited amount of evidence favors a preferen-
tial attachment mechanism of network evolution. In this
mechanism, proteins that have arisen early during net-
work evolution tend to be highly connected proteins, and
such highly connected proteins may acquire more interac-
tions subsequently [36,42,43,44], but see also Kunin [45].

Despite all their differences, existing network evolu-
tion models have an important unifying feature: None of
them require that natural selection molds any global fea-
ture of network structure, such as the degree distribu-
tion. This observation is significant, because early work on
molecular networks assumed that features of protein in-
teraction networks, such as the power-law degree distri-
bution reflect evolutionary optimization of some aspect of
network function. For example, in protein interaction net-
works and other networks with power-law degree distri-
butions, the mean distance between network nodes that
can be reached from each other (via a path of edges) is
very small and it increases only very little upon random
removal of nodes [46]. This distance can be thought of as
a measure of how compact a network is. In graphs with
other degree distributions, this mean distance can increase
substantially upon node removal. From this observation
emerged the proposition that robustly compact networks
confer some (unknown) advantages on a cell, and that the
power law degree distribution reflects the action of natural
selection on the degree distribution itself. The observation
alone that power-law degree distributions are ubiquitous
in biological and non-biological systems argues against
this proposition. The models mentioned above, none of
which require natural selection on the degree distribu-
tion, further speak against it. In addition, an even sim-
pler hypothetical explanation of observed network struc-
ture has been proposed. This hypothesis explains the de-
gree distribution and other network features by a random
model of desolvation energies among interacting protein
pairs [47].

One might be tempted to call network evolution in
the absence of natural selection optimizing a global net-
work feature neutral evolution. Doing so, however, would

neglect that natural selection almost certainly influences
which duplication/deletion/rewiring events are preserved
in the evolutionary record. In other words, even though
natural selection may not influence global network struc-
ture, it may affect the local events that change network
structure in evolutionary time. Multiple lines of evidence
hint at this influence of natural selection. The first comes
from a study on protein complexes. In the yeast Saccha-
romyces cerevisiae, over- or underexpression of members
of a protein complex may have adverse effects on fitness.
The likely reason is that such expression changes affect the
stoichiometric balance of the proteins in a cell which is
necessary for forming complexes with the correct protein
composition [48,49]. Gene duplications of proteins inter-
acting in a complex may be harmful, because such dupli-
cations effectively change gene expression, which distorts
this balance. In agreement with this observation, proteins
encoded by members of large gene families, genes that
have often undergone duplication, are underrepresented
in protein complexes [49]. A second, similar indication of
the influence of natural selection on network evolution is
that the number of proteins in a complex encoded by sin-
gle copy genes rises with complex size [50]. Thirdly, gene
duplications seem to have been preferentially preserved in
the sparsely connected regions of the yeast protein inter-
action network, regions that are characterized by low de-
gree [51] or low clustering coefficients [52]. This suggests
that gene duplications in densely connected network parts
may have deleterious effects.

Rather than focusing on global networks structure,
a limited amount of work has focused on small subgraphs
of a protein interaction network. Such subgraphs comprise
only few (3–5) proteins, are characterized by specific pat-
terns of interactions, and are also known as network mo-
tifs. Proteins that occur in larger and more densely con-
nected motifs have a greater likelihood to be preserved
across distantly related species [53,54].

All work discussed thus far has focused on the evolu-
tion of the network itself. Another line of inquiry asks how
a protein’s position within a network constrains the pro-
tein’s evolution. For example, as already discussed above,
gene duplications tend to be observed preferentially for
genes in sparsely connected parts of a network [51,55].
Also, proteins that have a more central role in the pro-
tein interaction network evolve more slowly [56]. In addi-
tion, early work suggested that proteins withmore interac-
tion partners are evolutionarily more constrained [57,58].
This association has become controversial, because it may
be caused by bias in protein interaction data sets, and be-
cause it may be explained by differences in gene expres-
sion level among proteins with different numbers of inter-
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action partners [59,60,61,62,63,64,65]. Specifically, highly
expressed proteins evolve more slowly, and much of the
observed variation in evolutionary rates among proteins
may be due to variation in expression level [66,67], leav-
ing only a minor role for the influence of protein-protein
interactions.

Rather than just considering the numbers of interac-
tions of a protein in a protein network when trying to ex-
plain evolutionary rate differences, it may be necessary to
distinguish between different kinds of interactions. One
important distinction here is that between transient and
permanent interactions. Proteins that enter permanent in-
teractions, thus forming stable complexes with other pro-
teins, evolve at lower rates than proteins that undergo
transient interactions, or proteins that are not known to
interact with other proteins [55,68]. A closely related dis-
tinction is that between proteins that havemultiple protein
interaction interfaces, and that can thus interact with mul-
tiple proteins at the same time, and between proteins that
have a single interaction interface, and that interact with
multiple partners successively and transiently. Multi-in-
terface proteins evolve more slowly, which may be readily
explained by the larger fraction of their surface that is con-
strained [69]. Yet other distinctions among interactions
may also affect evolutionary rates. For example, interac-
tions between proteins of different cellular functions may
constrain evolutionary rates particularly strongly [70].

In sum, models of protein on network evolution agree
that natural selection on global network structure is not
necessary to produce protein interaction networks with
the global features that have been studied so far. Nonethe-
less, these models differ in the relative importance they as-
cribe to deletion and duplication on one hand, and inter-
action rewiring on the other hand, in network evolution.
Studies focusing on the evolution of network parts within
an existing network suggest that a protein’s position in
a network influences these constraints. Nonetheless, this
influence may be minor compared to other factors, espe-
cially protein expression level.

Transcriptional RegulationNetworks

Characterizing Transcriptional Regulation Networks

In a transcriptional regulation network, transcription fac-
tors bind to regulatory DNA near network genes, and acti-
vate or repress the expression of these genes. Transcription
factors are proteins that are themselves encoded by genes
in the network. Transcriptional regulation networks thus
comprise two main kinds of genes, genes encoding tran-
scriptional regulators, and their regulatory target genes.
The two classes of genes overlap, because genes encoding

transcriptional regulators may themselves be transcrip-
tionally regulated. Even small genomes such as that of the
yeast Saccharomyces cerevisiae contain hundreds of genes
encoding transcriptional regulators.

Two principal approaches have been pursued to char-
acterize transcriptional regulation networks. One of them
is manual curation, whereby data from existing experi-
mental literature about the targets of individual transcrip-
tion factors, is assembled into a network [71,72]. The sec-
ond approach is high-throughput experimental analysis
of DNA binding by transcriptional regulators. This ap-
proach permits the genome-scale identification of regula-
tory DNA regions bound by transcription factors. It thus
provides hints which genes may be regulated by which
transcription factors, although transcription factor bind-
ing is only a necessary, but not a sufficient criterion for
transcriptional regulation. A prominent technique used in
this area is chromatin immunoprecipitation. In this tech-
nique, a transcriptional regulator is labeledwith an epitope
tag, a molecule that can be recognized by a specific anti-
body. Genomic DNA, some of which is bound by the reg-
ulator, is then isolated. This isolate is then exposed to the
antibody, in order to precipitate the DNA bound by the
regulator, hence the name immunoprecipitation. The pre-
cipitated DNA is then hybridized to a DNA microarray,
allowing its identification and localization in the genome.
In one prominent study using this technique putative can-
didate target genes of 106 yeast transcriptional regulators
were identified [73].

These two approaches to characterize transcriptional
regulation networks are complementary: Manual curation
may reveal high quality information about individual tran-
scriptional regulators, but it may capture only a limited
number of regulatory interactions. The high-throughput
approach, on the other hand, provides more comprehen-
sive information at the price of greater uncertainty about
the biological relevance of the observed interactions.

It is noteworthy that transcriptional regulation net-
works, as opposed to protein interaction networks, are di-
rected networks. This means that interactions occur from
a regulator to its target gene, but not necessarily vice versa.
In a graph representation of such a network, genes are thus
connected by directed edges.

Transcriptional Regulation Networks
and Molecular Evolution

The molecular evolution of transcriptional regulation net-
works has received less attention than that of protein inter-
action networks. In existing work, some parallels to evo-
lutionary patterns in protein interaction networks are ev-
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ident. First, a gene’s connectedness within the network
may have only a weak or no impact on its rate of evolu-
tionary change. Specifically, the number of target genes of
a transcriptional regulator does not affect the regulator’s
evolutionary rate, as indicated by the ratio Ka/Ks. Sim-
ilarly, the number of transcriptional regulators that reg-
ulate a given target gene does not strongly influence the
evolutionary rate of the target gene. Second, as in pro-
tein interaction networks, gene duplications are also very
important in the formation of transcriptional regulation
networks [74,75,76,77]. For example, a large proportion
of transcriptional regulators themselves are products of
duplicate genes. The exact proportion depends on how
duplicates are identified. For example, approaches that
identify duplicate genes through their domain architecture
may reveal that a majority of transcriptional regulators are
the results of gene duplication, whereas approaches based
on significant sequence similarity among transcriptional
regulator genes may ascribe a lesser role to duplication.
Thirdly, rewiring of transcriptional regulation interactions
has also played a prominent role in transcriptional reg-
ulation networks [78,79,80,81]. Such rewiring can be ac-
complished in two ways. First, a mutation may change
the DNA binding domain of a transcription factor, such
that the factor recognizes a different spectrum of regula-
tory DNA motifs. However, because any one transcrip-
tional regulator may regulate hundreds of genes, many
such changes are likely to be deleterious and may not be
preserved in the evolutionary record. Second and perhaps
more importantly, changes in a gene’s regulatory region
may affect which transcription factors can bind to and reg-
ulate a gene of interest. Because the regulatory DNA se-
quence motifs at which a transcription factor binds are
often very short, binding sites can be easily created or de-
stroyed through mutations. For example, in a study com-
paring gene expression patterns between the yeasts Can-
dida albicans and Saccharomyces cerevisiae, a strong ex-
pression correlation was found between cytoplasmatic and
ribosomal proteins in C. albicans but not in S. cerevisiae.
This difference was associated with a change in multiple
short regulatory DNA elements that drive the expression
of these genes [80].

How fast and to what extent gene functions diverge af-
ter gene duplication is a subject of considerable interest
to molecular evolutionists. Gene regulation and gene ex-
pression are an important aspect of gene function. Dupli-
cate genes in a transcriptional regulation network are thus
ideal study subjects to help answer this question. For ex-
ample, one can ask to what extent duplicate genes of dif-
ferent sequence similarity (and thus different age) share
transcription factors that bind at their regulatory regions.

The answer is that duplicate genes rapidly diverge in the
number of shared transcription factors they share [77,82].
Specifically, duplicate genes in yeast may lose 3% of com-
mon transcription factors for every 1% of sequence diver-
gence [82]. The process of divergence, however, does not
only involve loss of common transcription factor binding
sites. A gain of new sites unique to each member of a du-
plicate gene pair may be equally important [77,83].

One area that has received perhaps more attention
than in protein interaction networks is the analysis of
small and highly abundant genetic circuit motifs in tran-
scriptional regulation networks [22,84,85]. An example for
such a regulatory motif is a transcriptional feed-forward
loop, where a transcriptional regulator A regulates the ex-
pression of a regulator B, which regulates the expression
of some target gene C, which is also regulated by A. Mul-
tiple other classes of network motifs are known. A wide
spectrum of possibilities exist for the evolutionary origin
of these circuits. At the two extremes of this spectrum
stand two scenarios. First, these circuits may have arisen
through the duplication – and subsequent functional di-
versification – of one or a few ancestral circuits, that is,
through the duplication of each of their constituent genes
in a series of duplication events. Alternatively, most of
these circuits may have arisen independently by recruit-
ment of unrelated genes. In this case, abundant circuits
would have arisen through convergent evolution. Conver-
gent evolution – the independent origin of similar organ-
ismal features – is a strong indicator of optimal “design” of
a feature.

Because the complete genome sequence is available
for the yeast Saccharomyces cerevisiae, one can ask which
of these scenarios better reflects the evolutionary history
of transcriptional regulation motifs. The answer is that
the vast majority of highly abundant transcriptional reg-
ulation motifs have not originated through gene duplica-
tion, but independently and convergently [79]. What are
the favorable functional properties of such networks, the
properties that would drive such convergent evolution?
Answers are beginning to emerge from a mix of compu-
tational and experimental work [85,86,87]. For example,
a feed-forward loop may activate the regulated (‘down-
stream’) genes only if the upstream-most regulator is per-
sistently activated. It can thus filter intracellular gene ex-
pression noise, which is known to be ubiquitous.

Metabolic Networks

The Analysis of Genome-Scale Metabolic Networks

Complex chemical reaction networks comprising hun-
dreds to thousands of reactions sustain all of life. In
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free-living, heterotrophic organisms, these reaction net-
works transform food into energy and biosynthetic build-
ing blocks for growth and reproduction. Complete (or
nearly so) maps of core metabolism, comprising hun-
dreds of reactions and metabolites are available for sev-
eral model organisms [88,89,90]. These maps have been
assembled through painstaking analysis of decades worth
of biochemical literature, aided by genome sequence anal-
ysis, which may help determine whether a genome con-
tains a gene catalyzing a particular chemical reaction.

Some work in this area focuses on network structure,
by characterizing one of a variety of graph representa-
tions of a metabolic network. For example, metabolic net-
works can be represented as graphs whose nodes are en-
zymes and metabolites. Two nodes are connected if they
participate in the same chemical reactions. Structural net-
work analysis, however, has one key limitation: It does not
capture the flow of matter through a metabolic network,
which is at the heart of metabolic network function. This
function can be computationally analyzed, even though
information about enzymatic reaction rates in metabolic
networks is very limited. Central to any such computa-
tional analysis are approaches such as flux balance anal-
ysis that use only information about the stoichiometry
and reversibility of chemical reactions [91,92]. Flux bal-
ance analysis determines the rates (fluxes) at which indi-
vidual chemical reactions can proceed if fundamental con-
straints such as that of mass conservation have to be ful-
filled. Within the limits of such constraints, flux balance
analysis can determine the distribution of metabolic fluxes
that will maximize some metabolic property of interest.
The rate of biomass production is one of these proper-
ties. It is a proxy for cell growth-rate, itself an important
component of fitness in single-cell organism. Flux balance
analysis makes predictions that are often in good agree-
ment with experimental evidence in E. coli and the yeast S.
cerevisiae [90,93,94]. However, such predictions may fail
if an organism has not been subject to natural selection to
optimize growth in a particular environment.

Metabolic Networks andMolecular Evolution

Much as for the other two classes of networks, consider-
able attention has focused on the question how the struc-
ture of metabolic networks evolved [95,96,97,98,99,100,
101,102,103]. With some exceptions [93,104,105], most
work has not focused on metabolites, but on enzymes and
their role in network evolution. The reason is that the evo-
lution of metabolic enzymes can be better reconstructed
through gene sequence and protein structure compar-
isons.

In the evolution of metabolic network structure,
rewiring clearly has much lower importance than in the
previous networks discussed here. In contrast to protein
interaction networks and regulatory networks, where in-
teractions could form between a wide variety of different
proteins, in metabolic networks interactions are largely
dictated by chemistry. That is, only two enzymes that share
substrates or products of their reactions can be neighbors
in the network.

In contrast to rewiring, gene duplications and gene
deletions play an important role in network evolution.
Long before information on genome-scale metabolic re-
action networks became available, gene duplication al-
ready played an important role in two major hypothe-
ses about the evolution of metabolic pathways. The first
such hypothesis is that of “retrograde” evolution. Accord-
ing to this hypothesis, metabolic pathways evolved back-
wards from their (essential) end-products, through the ad-
dition of new enzymes produced by gene duplication, and
in response to the depletion of substrates that are nec-
essary for production of these end-products [106]. The
second, “patchwork evolution” hypothesis postulates that
enzymes originally had broad substrate specificities, and
that they subsequently evolved more specialized functions
through gene duplication [107]. Recent genome-scale an-
alyzes of metabolic network evolution suggest that both
processesmay occur, but that retrograde evolution by gene
duplication is relatively rare [96,100,108]. For example,
only a small fraction of adjacent enzymes in the same
pathway arose from gene duplication. In contrast, recruit-
ment of duplicate enzymes into new pathways is very fre-
quent [100]. Gene duplications can also produce isoen-
zymes, enzymes with the same catalytic function, and thus
the same position in a pathway, but possibly differential
regulation. The locations in a network where such dupli-
cations are most likely preserved are not random. For ex-
ample, isoenzymes are most often observed for enzymes
with high metabolic flux, enzymes through which a lot of
matter flows per unit time [109,110].

The phenomenon of horizontal gene transfer, which
can add new genes from a different organism to a net-
work has also received some attention in the analysis of
metabolic network evolution [111,112]. Genes encoding
metabolic enzymes are frequently transferred horizontally
among bacterial genomes. However, such transfer does
not affect all classes of enzymes equally. Specifically, pe-
ripheral network reactions, which are often reactions that
are involved in an organism’s response to specific environ-
mental demands, are more frequently added to a network
by horizontal transfer than central reactions [112]. This
does not mean, however, that central parts of metabolism
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are completely invariant. Even a metabolic cycle as central
as the tricarboxylic acid cycle can undergo substantial evo-
lutionary change [113].

Gene duplication and horizontal gene transfer are both
mechanisms by which metabolic networks can increase in
size. Gene deletions, in contrast, reduce network size. They
are especially important in the evolution of organelles
or organisms with reduced genome size, such as chloro-
plasts [114] and endosymbiotic cells [97]. In such cells, the
host cell provides most metabolites necessary for survival,
and metabolic networks are thus often drastically reduced
in size. Deletions of enzyme-coding genes have also been
studied in the evolution of individual pathways. Examples
include the vitamin B6 synthesis pathway, which has been
lost multiple times independently through gene deletions
during animal evolution [115].

As in the other two networks discussed above, some
work has also focused on the evolution of enzyme-coding
genes within a network and within metabolic pathways.
An example regards enzymes involved in the biosynthe-
sis of anthocyan, a plant pigment. In this pathway, up-
stream enzymes are subject to greater evolutionary con-
straints than downstream enzymes, as indicated by their
lower rate at which non-synonymous substitutions ac-
cumulate [116]. Here, the upstream enzymes are located
abovemetabolic branch points that lead to othermetabolic
pathways. It is thus possible that mutations in them are
more likely to be deleterious, because they affectmore than
one pathway. This evolutionary pattern of higher conser-
vation in upstream genes is, however, not universal [117].

More recent work has asked how the amount of
metabolic flux through an enzyme might affect its evo-
lutionary rate. Here, a negative association exists be-
tween the flux through individual enzymatic reactions in
yeast, as predicted by flux balance analysis, and the ra-
tio Ka/Ks [118]. That is, enzymes with high associated
metabolic flux can tolerate fewer amino acid changes. One
likely explanation is that the products of high-flux en-
zymes play a role in multiple metabolic pathways. Thus,
mutations in such enzymes, most of which reduce their
metabolic output, are more likely to have deleterious ef-
fects.

Summary and Outlook

Molecular evolution studies inmolecular networks are still
in their infancy, partly because genome-scale data on such
networks has only become available recently. A few com-
mon patterns emerge from existing work. With the pos-
sible exception of metabolic networks, a gene’s position
in a network has a limited influence on its rate of evo-

lution. In the evolution of network structure, both gene
duplications and gene deletions play an important role in
all three networks, and rewiring of existing interactions is
important in protein interaction networks and transcrip-
tional regulation networks. Natural selection may have
only a minor role in shaping those feature of global net-
work structure that have been studied, but many other
such features remain poorly investigated. In contrast, nat-
ural selection undoubtedly influences what kinds of mu-
tations can be tolerated during network evolution. A ma-
jor future challenge is to explain the structure of biologi-
cal networks in evolutionary terms through a quantitative
framework that accounts for all the rates of evolutionary
events that influence network structure.
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Glossary

Classical statistical mechanics Statistical mechanics re-
lates the macroscopic properties of matter to basic
equations governing the motion of the (many!) con-
stituents from which matter is built from. For classi-
cal statistical mechanics these equations are Newton’s
laws of classical mechanics.

Critical slowing down Divergence of the relaxation time
of the model describing the dynamics of a many-parti-
cle system when one approaches a second-order phase
transition (= “critical point” in the phase diagram).

Detailed balance principle Relation linking the transi-
tion probability for a move and the transition proba-
bility for the inverse move to the ratio of the probabil-
ity for the occurrence of these two states connected by
these moves in thermal equilibrium.

Equilibrium Statistical mechanics considers “thermal
equilibrium”, i. e. a many-body system in contact with
a (big) heat reservoir does not take up heat from this
reservoir, its macroscopic properties do not change
with time, and a few global properties (like tempera-
ture, pressure, particle number) suffice to characterize
the state of the system.

Ergodicity Property that ensures that ensemble averages
of statistical mechanics (taken with the proper prob-
ability distribution) agree with time averages taken
along the trajectory along which the system moves
through its state space.

Finite-size scaling Theory that describes the rounding
and shifting of singularities that thermodynamic prop-
erties exhibit when the state of a system changes from
one phase to another in the “thermodynamic limit”
(i. e., particle number N !1).

Importance sampling Monte Carlo method that chooses
the states that are generated according to the probabil-
ity distribution that one desires to realize. For example,
for statistical mechanics applications, states are chosen
with weights proportional to the “Boltzmann factor”
fexp[�energy of the state/temperature]g.
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Master equation Rate equation describing the “time”-
evolution of the probability that a state occurs as
a function of a “time” coordinate labeling the sequence
of states.

Molecular dynamics method Simulation method for in-
teracting many-body systems based on the numerical
solution of Newton’s equations of motion of classical
mechanics.

Monte Carlo step Unit of (pseudo) time in (dynamically
interpreted) importance sampling where, on the av-
erage, each degree of freedom in the system gets one
chance to be changed (or “updated”).

Quantum statistical mechanics Statistical mechanics re-
lates the macroscopic properties of matter to basic
equations governing the motion of the (many!) con-
stituents matter is built from. For quantum statisti-
cal mechanics, this basic equation is the Schrödinger
equation for themany bodywavefunction. If the eigen-
value spectrum of this equation could be obtained,
the canonical formalism of statistical mechanics could
be straightforwardly applied; since normally this is
not possible, one has to use a reformulation of the
Schroedinger equation in terms of path integrals.

Random number generator (RNG) Computer subrou-
tine to produce pseudorandom numbers that are
approximately uniformly distributed in the interval
from zero to unity. Approximately the subsequently
generated random numbers are uncorrelated. RNG’s
typically are deterministic algorithms and strictly pe-
riodic, but the period is large enough that for many
applications this periodicity does not matter.

Simple sampling Monte Carlo method that chooses
states uniformly and at random from the available
space.

Thermodynamic variables Macroscopic pieces of mat-
ter (solids, liquids, gases) in thermal equilibrium can
be characterized by a few state variables, “extensive”
thermodynamic variables (proportional to the particle
number, such as energy, volume) and “intensive” ones
(independent of the particle number, such as tempera-
ture, pressure).

Transition probability Probability that controls the
move from one state to the next one in a Markovian
Monte Carlo process.

Definition of the Subject

Monte Carlo simulation in statistical physics uses pow-
erful computers to obtain information on the collective
behavior of systems of many interacting particles, based
on the general framework of classical or quantum sta-

tistical mechanics. Typically these systems are too com-
plex to allow for a reliable treatment (i. e. with errors
that can be controlled) by analytical theory. Monte Carlo
simulation uses (pseudo)-random numbers generated also
on the computer, and hence is suitable to derive esti-
mates of probability distributions and averages derived
from them. Such probability distributions (such as the
so-called “canonical” distribution characterizing the equi-
librium state of matter at a given temperature and vol-
ume) are the basic objects of statistical thermodynamics.
While the latter field of physics provides a convenient for-
mal framework, it does in most cases not yield a conve-
nient tool for explicit calculation, and such an approach
is provided by Monte Carlo simulation. In fact, already
the first application of the Metropolis importance sam-
pling algorithm in 1953 addressed a problem of this kind,
namely the equation of state of hard disks. Since then
Monte Carlo simulation has become an extremely use-
ful and versatile tool of statistical physics, with applica-
tions varying from many subfields of physics (from con-
densed matter (i. e. liquids and solids) to elementary par-
ticles) to neighboring fields (physical chemistry, theoret-
ical biology, stochastic modeling of complex phenomena
in society such as traffic flows, stock market fluctuations,
etc.), where methodologies “borrowed” from physics are
increasingly applied.

Introduction

One important problem of statistical physics is the expla-
nation of the macroscopic properties of solids, liquids and
gases in terms of the atomistic description: 1 cm3 of a solid
contains about N D 1022 atoms, which in turn are com-
posed of electrons and nuclei. The basic interactions keep-
ing the atoms together are the Coulomb forces between
particles of opposite electrical charge, and these Coulomb
forces are also responsible for effective forces acting be-
tween atoms as a whole. In the present article, we are not
concerned with the quantum-mechanical problem of pre-
dicting these forces, but rather assume them to be known,
and deal only with the many-body problem of interacting
atoms in the framework of classical statistical mechanics.
Macroscopic properties (e. g. the density � of a fluid, the
magnetization density m of a ferromagnet, etc.) will be
denoted as “observables” A(X) which depend on the de-
grees of freedom of the N particles (these degrees of free-
dom are formally denoted as a vector x, which encom-
passes the configurational “phase space” of the system).
Statistical thermodynamics then shows that in a thermal
equilibrium state that is characterized by parameters such
as temperature T, pressure p etc., averages hAi are to be
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computed as

hAi D
Z

dXPeq(X)A(X) ; (1)

where Peq(X) the probability that in equilibrium the “mi-
crostate” (=point in phase space) X occurs. E. g., when
the equilibrium of a system is characterized by given vol-
ume V and given T, then Peq(X) is described by the so-
called “canonic distribution”

Peq(X) D (1/ZN) exp[�H (X)/kBT] ; (2)

where ZN D
R
dX exp[�H (X)/kBT] is called “partition

function”, kB is Boltzmann’s constant, and the “Hamil-
tonian” H (X) describes the interaction energies among
the particles (and possible contributions to the energy due
to external fields). For N particles in d-dimensional space
Eq. (1) would involve a dN-dimensional integral, and in
general the task posed by Eqs. (1), (2) cannot be carried
out analytically. Only when the particles do not interact
(i. e., an ideal gas, or related problems such as a harmonic
solid where one can reduce the problem to an ideal gas
of “phonons” describing the lattice vibrations, etc.), is the
problem easily tractable, since the multidimensional inte-
gration factorizes. In the case of interactions, analytically
soluble problems are extremely rare. E. g., the famous Ising
model of ferromagnetism

H D �
X

i¤ j

Ji jSi S j � H
X

i

Si ; S1 D ˙1 ; (3)

where the first term on the right hand side describes the
exchange interaction between spins at lattice sites i j of
a crystal lattice, while the second term describes the en-
ergy due to an external magnetic field, can be solved (in
the case of the interaction Jij being nonzero only for near-
est neighbor pairs on the lattice) in d D 1, but there the
system stays paramagnetic at all temperatures. In d D 2
dimensions and H D 0, one also can solve the problem,
though this requires very tedious and subtle mathemat-
ics, but no solution is known in either d D 2 or d D 3
for any more complicated cases (H ¤ 0, Jij nonzero for
next nearest or even more distant neighbors; etc.). An
approximate solution, where the pairwise interaction is
reduced to a coupling to an effective mean field (one
puts Si S j � Si hS ji C hSi iS j � hSi ihS ji) would reduce the
problem to an effective single-particle problem, simi-
lar to the problem of the ideal paramagnet (for which
ZN D ZN

1 ). However, comparison with the exactly known
cases in d D 1 and d D 2 shows that this mean field ap-
proximation is unsatisfactory, the obtained results may be
even qualitatively wrong (such as the prediction of ferro-
magnetism for d D 1), and uncontrollable errors occur. In

almost all cases of the statistical mechanics of many inter-
acting degrees of freedom, no analytical tools exist to solve
the problem either exactly or approximately with errors
that can always be controlled (in particular near the phase
transitions).

Monte Carlo simulation amounts to replacing the in-
tegration in Eq. (1) by a summation over a representative
statistical sample ofM points fX�g that is suitably chosen
(what this actuallymeans, will be discussed in the next sec-
tion). The choice of this sample requires randomnumbers,
which are produced on the computer via a pseudoran-
dom number generator (RNG). These random numbers
must be uniformly distributed between zero and unity, and
should be uncorrelated. Actually, all random numbers due
to RNG’s exhibit some residual correlations, which may
cause erroneous results in Monte Carlo simulations, and
hence devising “good” RNG’s is a matter of longstand-
ing concern (e. g., [11,12,14]). Of course, due to the finite-
ness ofM there occurs the so-called “statistical errors” (as
a matter of fact, for some algorithms statistical and sys-
tematic errors are not easy to disentangle, see [13]); but
by making M bigger and bigger, these errors can be made
smaller and smaller, and hence controlled, and techniques
exist to estimate these errors reliably [1].

Of course, the application outlined above refers only
to a subset of problems in statistical physics, but many
other problems can be reduced to it. E. g., the problem of
computing averages in quantum statistical mechanics can
be reduced to Eqs. (1), (2) by path-integral Monte Carlo
(PIMC) methods [7,13,20]. In this method, the quantum
character of particles enters, on the one hand, by replacing
each quantum particle by a chain of classical particles (the
coordinate along the chain is the “imaginary time” coordi-
nate of the path integral formalism).

While in this way the delocalization of quantum par-
ticles at low temperatures (note that Heisenberg’s uncer-
tainty principle forbids to specify both the spatial coordi-
nates and the momentum of a quantum particle precisely)
is elegantly taken into account, the statistics of the parti-
cles (for fermions the wave functions need to be strictly
antisymmetric with respect to the interchange of coordi-
nates for any pair of particles) is still a challenge for such
quantum Monte Carlo methods [7].

Also seemingly unrelated problems, such as the the-
ory of elementary particles which is a field theory of mat-
ter fields on the femtometer scale and of gauge fields re-
specting the basic symmetry principles of relativistic quan-
tum field theory, can be cast into a form closely related to
Eqs. (1), (2). The generating functional

Z D
Z
DAD ̄D exp[�Sg (A;  ̄ ;  )] (4)
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formally corresponds to the partition function in statisti-
cal mechanics. Equation (4) involves functional integra-
tion over the gauge fields (here A stands symbolically for
the vector potential of electrodynamics in the four-dimen-
sional continuum, 3 space + 1 time dimensions) and over
the fermionic matter field (described symbolically by  
and  ̄). The action Sg of the theory contains a coupling
constant g which is related to inverse temperature, when
one invokes the analogy to statistical mechanics. In fact,
to remove ultraviolet divergences that would otherwise
plague this quantum field theory one replaces the four-
dimensional continuum by a lattice and hence the theory
is called “lattice gauge theory” [15]. Monte Carlo simula-
tions based on this formalism promise to become a pow-
erful approach to unravel the properties of hadrons and
other elementary particles, beyond the regime of parame-
ters where analytical theories based on systematic expan-
sions in terms of small parameters (“perturbation theory”)
work.

While both in the case of Eqs. (2) and (4) the explicit
probability distribution of the interacting many-particle
system needs to be constructed itself in the course of the
Monte Carlo sampling, via Importance Sampling meth-
ods (as will be described in the next section), there exist
also simpler cases where a generation of “microstates” of
the N-particle system is straightforward, but the analysis
of the properties of these microstates is difficult and hence
requires large scale simulation. As an example, we men-
tion the “percolation problem” [19]. Suppose a ferromag-
net, described by Eq. (3), is randomly diluted with non-
magnetic atoms, such that a lattice site i carries a spin Si
with probability p and no spin with probability 1 � p, Jij
being nonzero only between nearest neighbor pairs of
spins. Then a ferromagnetic ground state of the lattice is
only possible if p exceeds the “percolation threshold” pc,
where for the first time an infinite “percolating cluster”
of magnetic atoms connected by “bonds” Jij and extend-
ing throughout the whole lattice occurs. Choosing ran-
dom numbers � uniformly distributed between zero and
unity, a chosen site is taken by a magnetic atom if � < p
and otherwise it is taken by a nonmagnetic atom. All lat-
tice sites are occupied independently of each other and
all configurations of the lattice generated in this way have
equal a priori probability. While the generation of a sam-
ple of states by such a “simple random sampling” strategy
hence is straightforward, the analysis of the (fractal) perco-
lation clusters near the percolation threshold is a difficult
task. Note that many other problems where simple sam-
pling suffices exist (e. g. generation of random walks on
lattices, a problem arising in the context of simulating flex-
ible macromolecules, or of diffusion processes). However,

we shall not dwell on simple sampling further but rather
refer to the literature [6,13].

TheMetropolis Importance Sampling Algorithm as
a Tool in Classical EquilibriumStatisticalMechanics

If we would choose microstates X of a many-body system
according to a simple sampling strategy to sample Eq. (2),
we would fail to get useful results, except for very small
values of N. In fact, the probability distribution Peq(X)
has a very sharp peak in phase space where all exten-
sive variables (extensive variables are proportional to N
for N !1) A(X) are close to their average values hAi.
This peak may be approximated by a Gaussian centered
at hAi, with a relative half-width of order 1/

p
N. Hence,

for a practically useful method, one should not sample
the phase space uniformly, but the points X� over which
the sampling is extended must be chosen preferentially
from the important region of phase space, i. e., the vicin-
ity of the peak of this probability distribution. This goal is
achieved by the importance sampling method (Metropo-
lis et al. [16]): One generates a Markov chain of M con-
figurations X� , in terms of a Markovian transition proba-
bility W(X� ! X0�) that rules the “Monte Carlo moves”
from an old state X� to a new state X0� . Starting from
some (arbitrary) initial state X1 one creates a “random
walk through phase space”, choosing W such that in the
limit of M !1 a point X� , is chosen with a probability
proportional to Peq(X), and hence the average in Eq. (1) is
approximated by a simple arithmetic average,

ĀD (M �M0)�1
MX

�DM0C1

A(X) : (5)

Here it is anticipated that in practice it is better to elimi-
nate the residual influence of the initial state X1 by elim-
inating the first M0 	 1 states from the average. A con-
dition sufficient to ensure that the points X� are actually
chosen proportional to the desired probability Peq(X�) is
known as the detailed balance principle,

Peq(X)W(X ! X0) D Peq(X 0)W(X 0 ! X) : (6)

Detailed considerations of how the Monte Carlo moves
X ! X0 need to be chosen and why the Monte Carlo
method actually converges to Eq. (2) can be found in
the literature (Binder and Heermann [6], Frenkel and
Smit [9]). Here we only emphasize that one major disad-
vantage of this method is that knowledge on the normal-
ization factor of Peq(X), the partition function Z (Eq. (2)),
is lost. This is unfortunate, since from Z one could obtain
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the free energy F via F D �kBT ln Z, as well as the en-
tropy. Findingways of obtaining F via alternative sampling
algorithms, that yield directly information on the energy
density of states, is an active area of research (see “Bibliog-
raphy” and Landau and Binder [13]).

It needs also to be pointed out that this Metropo-
lis method can be used for sampling any distribution
P(X): one simply has to choose a transition probabil-
ity W(X ! X0) that satisfies a detailed balance condition
with P(X) rather than Peq(X) as given in Eq. (2).

We continue by giving some comments on the prac-
tical implementation of Monte Carlo algorithms. One ob-
vious question is, what is meant in practice by the transi-
tion X ! X0? However, there is no general answer to this
question: the choice of the move may depend both on the
model under consideration and the simulation purpose.
Since Eqs. (2),(6) imply thatW(X ! X0)/W(X 0 ! X) D
exp(�ıH /kBT), ıH being the energy change caused by
the move from X to X 0, typically it is necessary to carry
out small changes ıX D X0 � X only. This is achieved in
practice by moving only one (or a few) degrees of freedom
at a time. Only in rare cases (“cluster algorithms” for Ising
models, “pivot algorithm” for self-avoiding walks, etc.) is
it possible to find algorithms involving a large ıX. It is
also useful to realize that oftenW(X ! X 0) can be written
as a product of an “attempt frequency” times an “accep-
tance rate”. By clever choice of the attempt frequency it is
sometimes possible to attempt larger moves and still have
a high acceptance and thus make the computations more
efficient.

The types of Monte Carlo moves can also be adjusted
to the choice of statistical ensemble that one wishes to
realize. E. g., for a grandcanonical ensemble the chemi-
cal potential � (in addition to volume V and tempera-
ture T) is a given variable. Suitable moves then include
particle insertions and deletions, i. e., the particle num-
ber N in the simulation box fluctuates, as well as the
pressure p (which can be sampled e. g. using the virial
theorem). Conversely, choosing the NpT ensemble one
must include moves where the volume V of the system
changes, V ! V 0 D V ˙�V . Also the chemical poten-
tial then fluctuates (and can be sampled using the Widom
particle insertion method). For details on all these aspects,
we refer to more detailed textbooks [9,13].

Another arbitrariness concerns the order in which par-
ticles are selected for considering a move. E. g., simulating
a lattice model one may go through the lattice in a type-
writer fashion. Sometimes it is advisable to use sublattices,
e. g. the “checker board algorithm” where white and black
sublattices are updated alternatively to allow an efficient
“vectorization” of the code. However, if the simulation

purpose is to extract dynamic information (invoking the
interpretation of the Markov chain in terms of a master
equation as will be discussed below), it is better to choose
lattice sites (or particle labels, respectively) at random.

We briefly mention the practical realization of the al-
gorithm, choosing the Ising model (Eq. (3)) as a simple
example. Then the move X ! X 0 simply may be a single
spin flip fSi ! �Sig, for instance. The transition proba-
bility can be chosen as

W(X ! X 0) D

(
exp(�ıH /kBT) if ıH > 0
1 otherwise :

(7)

One comparesW for this trial move with a random num-
ber �, uniformly distributed in the interval 0 < � < 1;
if W < �, the trial move is rejected and the old state is
counted once more in the average. Then another trial is
made. If W > �, on the other hand, the trial move is ac-
cepted, and the new configuration thus generated is taken
into account in the average, and serves as a starting point
for the next step.

Since successive states X� in this process differ only
very little, e. g. by a single spin flip in the case of the
Ising model, they are highly correlated. Therefore, it is not
straightforward to estimate the error of the average. Let us
assume that only every nth step is included in the average,
and that after n steps these correlations have completely
died out. Then the standard estimate for the statistical
error (ıA)2 of ĀD (M̃�1)

P
Ak with M̃ D (M � M0)/n,

Ak D A(X�) with � D kn, applies

(ıA)2 D [M̃(M̃ � 1)]�1
M̃X

kD1

(Ak � Ā)2 ; M̃ 	 1 : (8)

However, the judgment when correlations have died out is
subtle (see next section), and great care is needed to derive
reliable error estimates [1].

The Dynamic Interpretation
ofMonte Carlo Simulation and Application
to Study Dynamic Processes

Often it is useful to associate a time variable t to the index
� of successively generated states and to discuss the prob-
ability P(X; t) that a state X occurs at time t. This proba-
bility evolves according to the following master equation

d
dt

P(X; t) D �
X

X0
W(X ! X0)P(X; t)

C
X

X0
W(X0 ! X)P(X 0; t) : (9)
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Obviously the probability P(X; t) decreases due to all
processes that lead away from the considered state X (first
sum on the right hand side of Eq. (9)), while it increases
due to all processes that lead to the considered state from
other states X0 (second sum on the right hand side of
Eq. (9)). Thus,Monte Carlo sampling (i. e., the sequence of
generated states X1 ! X2 ! � � � ! X� ! X�C1 ! � � � )
can be interpreted as a numerical realization of a stochastic
time evolution described by the master equation, Eq. (9).

Of course, the units of the “time” in Eq. (9) are not
in an obvious way related to the units of physical time (as
it appears in the Newtonian equation of motion or in the
Schrödinger equation, respectively). Thus, it is common
practice to normalize the “Monte Carlo time unit” such
that in a systemwithN particles one attemptsN single par-
ticle moves per unit time. This is called “one Monte Carlo
step (MCS)”.

For the thermal equilibrium distribution P(X; t) D
Peq(X), Eq. (2) there is no change of probability with time
according to Eq. (9), since the right hand side of Eq. (9)
vanishes because of the detailed balance principle, Eq. (6).
Thus, thermal equilibrium arises as the stationary solution
of themaster equation.Markov processes for which Eq. (9)
holds involve a relaxation toward thermal equilibrium.

The time evolution of a physical system (whose tra-
jectory through phase space, according to classical statis-
tical mechanics follows from Newton’s equations of mo-
tion) in general will differ from the time evolution that
follows from Eq. (9), a stochastic rather than deterministic
trajectory through phase space. For example, Eq. (9) never
describes any propagating modes such as sound waves in
a fluid, phonons in a crystal, etc.

Nevertheless, often the trajectory described by Eq. (9)
does have physical significance: this is because often one
does not wish to describe the full set of dynamical variables
of a system, but rather a subset only: for instance, in a solid
where diffusion occurs via hopping of atoms over energy
barriers to the vacant lattice sites, the mean time between
successive hops is orders of magnitude larger than the time
scale of atomic vibrations. The latter can be well approxi-
mated as a heat bath, as far as diffusion is concerned, and –
at least in principle – the transition probability in Eq. (9)
describing such a hopping process in a solid can be esti-
mated either by Molecular Dynamics methods or by ap-
proximate analytic methods such as transition state the-
ory.

There are many examples where such a separation of
time scales for different degrees of freedom occurs. As
a rule of thumb, any slow relaxation phenomena may be
modeled by Monte Carlo: kinetics of nucleation, spinodal
decomposition in alloys, growth of ordered domains in

superstructure solids or in adsorbed mono-layers on sur-
faces, kinetic growth of rough interfaces, etc. Of course,
one must pay attention to build in the relevant conserva-
tion laws into the model properly (e. g., in a binary metal-
lic alloy the number of atoms of both species A,B is con-
served, while the number of vacancies and interstitials may
not be conserved). Often (such as in surface diffusion pro-
cesses) it is not a priori obvious what are the elementary
steps that one needs to include into such a “kinetic Monte
Carlo” study, and for a realistic description of their rates
extensive electronic structure calculations may be needed,
in order to be able to connect the Monte Carlo time unit
to physical time.

There are also some cases where a Monte Carlo de-
scription is a borderline case, as far as the faithful mod-
eling of relaxation phenomena is concerned. E. g., macro-
molecules in polymer melts undergo Brownian motion
(described approximately by analytic models such as
Rouse or reptation models, respectively). In such a case,
the heat bath for the slow conformational transitions of the
polymer is provided by the fast bond-length and bond an-
gle vibrations. However, a Monte Carlo description is not
useful for the modeling of polymer melts under flow [5].

Even if one is not interested in any dynamic proper-
ties of the model that is simulated by Monte Carlo, one
should be aware of important consequences of Eq. (9).
Since Eq. (9) implies that the arithmetic average Eq. (5) has
the meaning of a time average (tM D M/N, tM0 D M0/N,
A(X�) � A(t))

ĀD (tM � tM0 )
�1

tMZ

tM0

A(t)dt ; (10)

“ergodicity” is a problem here, as it is for Molecular
Dynamics simulations. By “ergodicity” it is meant that
time averages and ensemble averages agree, in the limit
of large enough time intervals tM � tM0 . However, near
a first order transition where (in the thermodynamic limit
N !1) several phases may coexist, each of these phases
plays the role of a separate “ergodic component” from
which a trajectory never escapes to another ergodic com-
ponent. A consequence of this problem is the observa-
tion of hysteresis. Sometimes the considered Monte Carlo
moves do not even allow one in principle to reach all
the states X� (a well-known example includes algorithms
with local moves for self-avoiding walks on lattices, see
Binder [5]). Also problems occur where the system de-
velops a “rugged free energy landscape”, e. g. spin glasses
(Binder and Young [4]), where a spectrum of relaxation
times develops that spans many decades of time. Similar
as in experiments, one then may observe phenomena such
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as “aging” in a Monte Carlo simulation, and it is diffi-
cult to judge whether or not thermal equilibrium has been
reached.

Time-displaced correlation functions hA(t)B(0)i de-
scribed by Eq. (9) are then estimated as

A(t)B(0) D (tM� t� tM0)
�1

tM�tZ

tM0

A(tC t0)B(t0)dt0 : (11)

Apart from its interest for the study of dynamical proper-
ties of the consideredmodels, Eq. (11) is useful to interpret
the error due to the correlation between subsequently gen-
erated configurations. When we do not assume that subse-
quent A0k s in Eq. (8) are uncorrelated, we rather obtain

h(ıA)2i D
Dh 1
M̃

M̃X

kD1

(Ak � hAi)
i2E
D

1
M̃

n
hA2i�hAi2C2

M̃X

kD1



1�

k
M̃

�
[hA0Aki�hAi2]

o
:

(12)

Now we remember that a time t D kıt D k(n/N) is asso-
ciated with the kth state, and transform the sum in Eq. (12)
to a time integral

h(ıA)2i D

1
M̃

[hA2i � hAi2]
n
1C

2
ıt

tM̃Z

0

(1 � t/tM̃)�AA(t)dt
o
; (13)

where a relaxation function �AA has been introduced,

�AA(t) D [hA(0)A(t)i � hAi2]/[hA2i � hAi2] : (14)

Defining a relaxation time

�AA D

1Z

0

�AA(t)dt (15)

one finds for �AA 
 M̃ıt D tobs, the “observation time ”
of the system during the course of the simulation, that

h(ıA)2i D
1
M̃

[hA2i � hAi2](1C 2�AA/ıt)

� 2(�AA/�obs)[hA2i � hAi2] ; (16)

where in the last step we have assumed �AA 	 ıt. Com-
paring to Eq. (8), we see that the error is enhanced by
a “dynamic factor” 1C 2�AA/ıt (or, equivalently, one has

to choose ıt so large that M̃ D �obs/�AA , to avoid cor-
relations between subsequent states). Near critical points
of second-order phase transitions, �AA diverges (“critical
slowing down”, see [10] for a detailed discussion).

For a discussion of nonlinear relaxation processes, it is
useful to consider the evolution of averages hA(t)i,

hA(t)i D
X

X

P(X; t)A(X) D
X

X

P(X; 0)A(X(t)) : (17)

Here we used the interpretation that the ensemble av-
erage involved is an average over an ensemble of ini-
tial states (weighted by P(X; 0)), which evolve according
to Eq. (9). In practice, Eq. (17) means an average over
a large number nrun 	 1 of statistically independent runs,
[Ā(t)]av D n�1run

Pnrun
`D1 A(t; `), where A(t; `) is the observ-

able A recorded at time t in the `th run. Then nonlinear
relaxation functions �n`

A (t) and relaxation times � (n`)A are
defined as

�
(n`)
A (t) D [hA(t)i� hA(1)i]/[hA(0)i� hA(1)i] ; (18)

�
(n`)
A D

1Z

0

�
(n`)
A (t)dt : (19)

Note that the condition that enough statesM0 at the begin-
ning of the Monte Carlo sampling were omitted to elimi-
nate the possible influence of the starting state X1, reads
tM0 	 �

(n`)
A . Again, however, care is needed when one

studies second-order phase transitions: then nonlinear re-
laxation functions may exhibit power law behavior rather
than exponential decay to equilibrium. E. g., for an Ising
model in thermal equilibrium we have [13] for the magne-
tization m(t) and susceptibility �(t) [assuming one starts
from a perfectly aligned state at Tc, and N !1]

m(t) / t�ˇ /z� ; �(t) / t� /z� ; t!1 ; (20)

where ˇ; � are the critical exponents of the order param-
eter and susceptibility in thermal equilibrium (assuming
a d-dimensional lattice of size L for L!1)

hjmji / (1 � t/Tc)ˇ ; �

� Ld [hm2i � hjmji2] / j1 � T/Tcj�� ; (21)

while � and z are the critical exponents of the correlation
length � and the relaxation time �mm ,

� / j1 � T/Tcj�� ; �mm / �
z : (22)

Also the nonlinear relaxation time diverges f� (n`)m /

� z�ˇ /�g. In fact, testing for Eqs. (20) is a possible approach
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to study critical phenomena by Monte Carlo methods,
avoiding the need to equilibrate the system (“nonequi-
librium relaxation method”). However, this approach re-
quires the use of very large systems, since all critical diver-
gences considered in Eqs. (21), (22) are rounded off when
the correlation length �(t) (which grows as �(t) / t1/z ,
see [18]) has grown to a value comparable to L. Such finite
size effects are also important to consider in the context
of equilibrium Monte Carlo studies, as will be discussed
in the next section. Note also that power law growth of
fluctuations also occurs for T < Tc, when we start an Ising
model in a disordered spin configuration, domains grow
according to a relation `(t) / t1/2 for their linear dimen-
sion and [18]

�(t) / td/2 : (23)

Then equilibrium is reached only when `(t) � L, implying
that � (n`)m / L2. This consideration shows that the choice
of the initial state in Monte Carlo sampling also should be
done with care: for T < Tc equilibrium is reached much
faster if we start from a well-ordered initial state, of course.

Overcoming the Limitations of Finite Size

While systematic analytic expansions or closed-form ap-
proximations often are useful for systems away from phase
boundaries where first- or second-order phase transitions
occur, suchmethods often are of doubtful value near phase
transitions. Thus, the study of phase transitions is one of
the most important fields where Monte Carlo simulations
are useful and important. However, sharp phase transi-
tions occur in the thermodynamic limit only, N !1. Of
course, this is no problem for real systems: even a small
water droplet freezing into a snowflake may still contain
N D 1018 water molecules, and thus the relative shift and
rounding of the transition are of order N�1/3 D 10�6 and
N�1/2 D 10�9, respectively. But the situation is different
for simulations, where an economical use of computer re-
sources requires to study rather small systems (of order
N D 102 to N D 106 are typical), and hence finite size ef-
fects need careful consideration [6].

It turns out, however, that these finite size effects are
not just only a limitation, but also a valuable tool to in-
fer properties of the infinite system from the finite size
behavior. As an example, we discuss the phase transition
of the Ising ferromagnet (Fig. 1), which has a second-or-
der transition at a critical temperature Tc, with critical be-
havior as characterized by Eqs. (21), (22). In a finite sys-
tem, of course, � cannot exceed L, and hence these critical
singularities are smeared out. Now finite size scaling the-
ory [8,17] implies that such finite size effects can be under-

Monte Carlo Simulations in Statistical Physics, Figure 1
Schematic evolution of the order parameter probability distribu-
tion PL(m) from T > Tc to T < Tc (from above to below, left part),
for an Ising ferromagnet (whereM is themagnetization per spin)
in a cubic box of volume V D Ld . The right part shows the corre-
sponding temperature dependence of the mean order parame-
ter hjMji, the susceptibility kBT�0 D Ld(hM2i � hjMji2), and the
reduced fourth-order cumulant UL D 1� hM4i/[3hM2i2]. Dash-
dotted curves indicate the singular variation that results in the
thermodynamic limit, L!1

stood from the principle that “L scales with �”. Hence it is
plausible that the magnetization probability PL(m) can be
written [2]

PL(m) D Lx P̃(L/�;mLx ) ; x D ˇ/� : (24)

Here PL(m) satisfies the normalization
R
dmPL(m) D 1; P̃

is a scaling function, and the result x D ˇ/� follows from
the fact that

hjmji D L�x m̃(L/�) D L�ˇ /� m̃(L/�) (25)

for L!1 must reduce to hjmji / ��ˇ /� . This is
only possible when m̃(� ! 1) / �x to cancel the
power of L and when x D ˇ/�. Since similarly hjmjki D
L�kˇ m̃k(L/�), one derives a similar scaling relation for the
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susceptibility,

kBT� � Ld (hm2i � hjmji2) D L� /� �̃(L/�) ; (26)

where the hyperscaling relation � /� D d � 2ˇ/� was in-
voked, and �̃(�) � m̃2 � m̃2. The fourth order cumu-
lant UL is a function of L/� only,

UL D 1 � hm4i/[3hm2i2] D Ũ(L/�) : (27)

For T > Tc and large L the distribution PL(m) tends to
a gaussian and henceUL ! 0; for the double-gaussian dis-
tribution for T < Tc, however, UL ! 2/3. For T D Tc fi-
nite size scaling implies UL D Ũ(0), independent of L. As
a consequence, when one studies UL as a function of tem-
perature for different choices of L one should find Tc from
a common intersection point. This “cumulant intersection
method” has become a very widespread and useful tool for
the study of critical phenomena [6].

Also the analysis of PL(m � 0) for T < Tc is very use-
ful [3]. The state of the system then is dominated by a two-
phase configuration, i. e. (because of periodic boundary
conditions) a slab-like domain with negative magnetiza-
tion is separated from a domain with positive magnetiza-
tion by two interfaces of area Ld�1. As a consequence, the
deep minimum of PL(m � 0) in Fig. 1 is described by

ln[PL(m � 0)/PL(m � Mspont)] D �2Ld�1 fint/kBT ;
(28)

where ˙Mspont characterizes the peak positions of PL(m)
for T < Tc, and f int is the interfacial free energy (per unit
area). As a consequence, one can extract estimates for f int
from an analysis of PL(m � 0) as well. This approach has
also found widespread applications for various systems
(including phase separation in simple fluids and fluid mix-
tures and polymer solutions and blends, colloid-polymer
mixtures, etc.).

A simple discussion of finite size effects at first order
transitions is similarly possible. The phases coexisting at
the first-order transition are again described by gaussians.
In a finite system these phases coexist not only right at the
transition, but over a finite parameter region. The relative
weights of these states are given in terms of the free energy
differences of these phases. From this phenomenological
description, energy and order parameter distributions and
their moments can be derived. One finds that the maxi-
mum of specific heat and susceptibility scale proportional
to the volume, i. e. kBT�max / Ld (instead of L� /� as at
a second-order transition, Eq. (26).

Extensions to Quantum StatisticalMechanics

In quantum mechanics, an observable A(X) now is repre-
sented by an quantum mechanical operator Â, and hence
Eq. (1) is replaced by

hÂi D Z�1Tr exp(�Ĥ /kBT)Â

D Z�1
X

n
hnj exp(�Ĥ /kBT)jni ; (29)

where Ĥ is the Hamiltonian of the system, and the states
jni form a complete, orthonormal set. In general, the
eigenvalues E˛ and eigenstates j˛i of the Hamiltonian are
not known (H j˛i D E˛ j˛i), and we wish to evaluate the
trace in Eq. (29) without attempting to diagonalize the
Hamiltonian. This can be achieved by path-integral Monte
Carlo (PIMC); other versions of quantum Monte Carlo
methods which focus on finding the ground state and its
energy are outside of consideration here.

The basic idea of PIMC can already be explained for
the simple case of a single particle in one dimension in
a potential V(x). In position representation, the Hamilto-
nian is

Ĥ D � „
2

2m
d2

dx2
C V (x) D Êkin C V̂ ; (30)

where ¯ is Planck’s constant. The problem is the fact
that the operators of kinetic energy Êkin and potential
energy V̂ do not commute, [Êkin; V̂] ¤ 0. If Êkin and V̂
commuted, we could replace exp[�(Êkin C V̂)/kBT] by
exp(�Êkin/kBT) exp(�V̂ /kBT), and by inserting the iden-
tity 1̂ D

R
dx0jx0ihx0j we would have solved the problem,

since hxj exp(�Êkin/kBT)jx0i amounts to dealing with the
(known) quantum mechanical propagator of a free parti-
cle. However, by neglecting the noncommutativity of Êkin
and V̂ we would have reduced the problem back to the
realm of classical mechanics, all quantum effects would
have been lost.

But, a related recipe is provided by the exact Trotter
product formula for two non-commuting operators Â and
B̂, P being an integer,

exp(ÂC B̂) �! [exp(Â/P) exp(B̂/P)]P for P!1 :

(31)

Using Eq. (31) the partition function can be written as

Z D lim
P!1

Z
dx1

Z
dx2 � � �

Z
dxphx1j exp(�Êkin/kBTP) exp(�V̂ /kBTP)jx2ihx2j

� � � hxpj exp(�Êkin/kBTP) exp(�V̂ /kBTP)jx1)i :
(32)
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Note the matrix elements can be worked out, with the
result (P!1)

Z D
�
mkBTP
2�„2

�P/2 Z
dx1 � � �dxp

exp

(

�
1

kBT

"
�

2

PX

sD1

(xs � xs�1)2 C
1
P

PX

sD1

V(xs)

#)

;

(33)

with the boundary condition xpC1 D x1 and the effec-
tive spring constant � D mP(kBT)2/„2. Equation (33) for-
mally corresponds to a classical partition function of
a “ring polymer” will P “monomers”. Its gyration radius
(which is of order „/

p
mkBT , i. e. of the same order as

the thermal de Broglie wavelength T D h/
p
2�mkBT of

the quantum particle) represents the region over which the
quantum particle typically is delocalized at temperature T.
If effects of quantum statistics are ignored (which is ad-
missible for crystals at low T, apart from solid helium) the
generalization of this formalism (Eqs. (32), (33)) to N par-
ticles is straightforward. In fact, useful applications to de-
scribe low temperature properties of crystals beyond the
harmonic approximation have been given [13]. Related
approaches also based on the Trotter formula can be devel-
oped for various lattice problems, e. g. the Ising model on
a d-dimensional lattice in a transverse field can be reduced
to an ordinary Ising problem (with no transverse field)
on a (d C 1)-dimensional lattice, but with anisotropic in-
teractions (the extra lattice direction corresponds to the
“imaginary time” coordinate s in Eq. (33) along the con-
tour of the ring polymer). But many problems of phys-
ical interest, e. g. the Hubbard Hamiltonian describing
strongly correlated fermions on a lattice, cannot yet be sat-
isfactorily simulated by such Monte Carlo methods at low
enough temperatures because of the “minus sign prob-
lem”: the distribution to be sampled f�(x)g is not always
positive, and hence cannot be interpreted as a probability
density suitable for importance sampling. The brute force
recipe consists of splitting �(x) into its sign (S) and its
absolute value (�̃ D j�(x)j), so that � D S�̃, and then the
quantum average can be formally rewritten as

hAi D hASi�̃/hSi�̃ ; (34)

where h� � � i�̃ means averaging with �̃ as weight func-
tion. However, this brute force approach works only for
rather small N , since the average of the sign behaves as
hSi�̃ / exp(�const. � N). Alleviating this problem is still
an active area of research.

Future Directions

There is still very active research going on to findmore effi-
cient algorithms, by a clever design of Monte Carlo moves
adapted to specific problems, by exploiting advanced com-
puter architecture (e. g. “parallel tempering” methods ex-
ploit parallel architectures by running n real replicas of
the system at closely spaced neighboring temperatures or
other control parameters in parallel and exchanging from
time neighboring temperatures, to allow for a faster re-
laxation of the system configurations), and by techniques
such as “multicanonical Monte Carlo” [1] or Wang–
Landau sampling of the energy density of states [13] or re-
lated methods of so-called “umbrella sampling”. The easy
availability of powerful desk-top computers has also facil-
itated the study of rather complex model systems (unlike
the early days of Monte Carlo, where the research had to
focus on “toy problems” such as the Ising model, the hard
disk and hard sphere fluids, the self-avoiding walk prob-
lem, percolation, etc.). While these classic problems still
are useful as a testbed for new methodologies of simula-
tion the analysis of simulation output, there is now much
emphasis on applications directed towards materials sci-
ences, soft and biological matter, and statistical mechan-
ics far from equilibrium. In this context, also “multiscale
simulation” methodology has become a very active field of
research: e. g., electronic structure calculation on the sub-
atomic scale is required to yield realistic input for poten-
tials that can then be used for instance in kinetic Monte
Carlo simulations. Monte Carlo methods developed in the
context of statistical physics are very popular for applica-
tions clearly going beyond physics, such as simulations of
sociological and economical processes (“econophysics”),
biologically motivatedmodels, etc. There also is a continu-
ous and fruitful exchange of know howwith the practition-
ers of other simulation techniques (classical and “ab ini-
tio” Molecular Dynamics, Lattice Boltzmann simulations
of transport phenomena), unlike in the past where the dif-
ferent “communities” of simulators worked in a rather dis-
junct manner.
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Glossary

Evolutionary game theory Evolutionary game theory
was developed as a transfer of traditional game theory
to biological contexts. Payoffs are no longer inter-
preted as representing preferences over outcomes. In
evolutionary game theory payoffs represent fitness.
A central idea is that strategies replicate according to
their performance in terms of fitness. More successful
strategies become more frequent, less successful be-
come less frequent. Evolutionary game theory focuses
on the success driven frequency dynamics of strate-
gies that are played in a population. The rationality
assumptions of traditional game theory are given up.

Game theory Game theory studies strategic interactions
among rational players. They have preferences over all
possible outcomes of their interaction, i. e. the game
that is played. Given their preferences all players try
to make the best out of the situations, knowing that
all others are doing that as well. A central question is:
Given the possible strategies and given the preferences,
what combination of strategies, one for each player,
would be a solution of a game among rational play-
ers? John vonNeumann, Oskar Morgenstern and John
Nash took decisive first steps in the 1940s to develop
the theory.

Moral dynamics Moral dynamics refers to the processes
by which moral behavior and moral attitudes emerge,
evolve, spread, erode or disappear. Moral attitudes is
broadly conceived and meant to include the whole in-
ternal side of morality: internalized norms, accepted
values, guiding virtues, certain types of moral disposi-
tions or morally transformed preferences, feelings like
guild, regret and shame. Moral behavior regards the
more external and at least partially observable side of
morality.
The study of moral dynamics normally focuses on very
basic problems in human interactions about which al-
most everybody would say that – from amoral point of
view – a certain type of behavior or attitude is prefer-
able: co-operating if there is an incentive for free rid-
ing, sharing if there is an incentive to be greedy, re-
ciprocating if there is an incentive not to do so. The
essential structure of these ‘morally critical’ situations
can be precisely described and analyzed by means of
traditional and evolutionary game theory.

Nash equilibrium The Nash equilibrium is the central



5678 M Moral Dynamics

solution concept in game theory. A Nash equilibrium
is a combination of strategies, one for each player,
in which each player’s strategy is a best response to
the others’ strategies. As a consequence, if all others
play their equilibrium strategy, then no one has an
incentive to deviate unilaterally from the equilibrium
strategy.

Replicator dynamics The replicator dynamics is a funda-
mental concept in evolutionary game theory: Strategies
that beat the average success, become more frequent;
strategies that perform below average become less fre-
quent. The replicator dynamics can be both, a biologi-
cal process that involves genes, and a cultural process
that involves imitation.

Social contract The notion of a social contract became fa-
mous by Hobbes’ Leviathan: In a state of nature, in
which life is nasty, brutish and short, the individuals
design and sign a contract to establish a central enforce-
ment agency that guarantees societal peace. Nowadays
the meaning of social contract is often a bit different:
What is meant is a set of fundamental moral arrange-
ments that make societal life possible altogether – for
instance, keeping promises, dividing fair, doing one’s
part and so on.

Definition of the Subject

Moral dynamics refers to the processes and phenomena
(collective or individual) by which moral behavior and
moral attitudes emerge, evolve, spread, erode or disap-
pear. Moral attitudes are broadly conceived and meant
to include the whole internal side of morality: internal-
ized norms, accepted values, guiding virtues, certain types
of moral dispositions or morally transformed preferences,
feelings like guild, regret and shame. Moral behavior re-
gards the more external and at least partially observable
side of morality: Certain types of actions or omissions in
certain situations in which, for instance, prescriptions or
proscriptions apply.

Especially in large-scale societies with a high frequency
of anonymous interactions there are lots of situations with
an inherent incentive to cheat, to betray, to be unfair etc. –
i. e. to act in a way that almost everybody considers to
be immoral. Often external and formal inspection, con-
trol and enforcement by central authorities are not possi-
ble, too expensive or highly unattractive for different rea-
sons. Morality is a kind of internal, decentralized and in-
formal control. Under certain conditions this type of con-
trol may work, when external, formal and centralized con-
trol is impossible or undesired. Therefore, the construc-
tion and study of models of moral dynamics could give

advice or at least some hints how to design societies and
institutions.

Introduction

Questions about the origin, status and functioning of
morality puzzled already the ancient Greek philosophers.
Nowadays problems of morality are addressed by many
disciplines, for instance sociology, psychology, economics,
and biology.

In the following we will focus on influential ap-
proaches that, firstly, try to understand moral dynamics
and, secondly, do that by means of constructing models,
that – compared to informal dynamical drafts – allow
a rigorous analysis, be it by means of computer simula-
tions or by paper and pencil methods.

Speaking of moral dynamics requires a sufficiently
clear concept of morality. One would expect that – af-
ter discussions of about 2500 years – moral philosophers
have done the conceptual clarification. Unfortunately,
they didn’t. The question “What is morality?” did not find
a single agreed-upon answer. Almost all fundamentals are
still questioned and debated, including the conceptual re-
quirements for an action or attitude to be called a moral
one.

Trying to avoid taking sides in the philosophical de-
bates, we will resort to the moral common sense.We focus
on situations for which almost everybody would say that
somehow ‘morality is at stake’ and that, from amoral point
of view, a certain type of behavior or attitude would be
preferable. The focal situations regard very basic problems
in human interactions: co-operation if there is an incentive
for free riding, sharing if there is an incentive to be greedy,
reciprocating as promised if there is an incentive not to do
so. The essential structure of these ‘morally critical’ situ-
ations can be precisely described and analyzed by means
of game theory. Games that stylize situations which most
of us regard as ‘morally critical’, are known under names
as prisoner’s dilemma, stag hunt, divide the cake, dictator
game, ultimatum game, game of trust – to mention some.

Game theory is the theory of rational decision making
in situations of mutual strategic interdependence. The de-
cisive concept for a rational solution of games is the so-
called Nash equilibrium, a combination of strategies, one
for each player, in which each player’s strategy is a best
response to the others’ strategies. Surprisingly, the ratio-
nal solution of all the games, that model ‘morally critical’
situations, is problematic: First, in some of the games the
rational solution is inefficient in the sense that there is an
alternative outcome, realized by a combination of strate-
gies different from the Nash-equilibrium, that all players
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strictly prefer to the equilibrium outcome. Second, some
other games have more than one Nash equilibrium. As
a consequence, equilibrium selection becomes a serious
problem. Both effects suggest that morality may come into
play where rationality gets into trouble [103]. That conjec-
ture gets further support by the results of thousands of lab-
oratory experiments in which persons had to play ‘morally
critical’ games. The test subjects either tend to deviate sys-
tematically from the one and only rational solution or –
if there are many such solutions – actually realize only
a small typical subset [22,27,51,60]. Again moral consid-
erations suggest themselves for an explanation.

In the following we present and discuss three influ-
ential approaches to model and analyze moral dynamics.
They all start with certain simple games that quintessen-
tially describe morally critical situations. In very different
ways they model and analyze processes by which ‘moral
solutions’ may evolve, be maintained or perish.

The first approach regards the evolution of cooperation
with a focus on the type of analysis pioneered by Robert
Axelrod [5,6,7,8,11,12]. Core of that approach were tour-
naments of strategies for iterated prisoner’s dilemmas. De-
spite of all the criticisms that the approach received, and
regardless of the fact, that the approach is not a fully de-
veloped evolutionary approach, Axelrod, nevertheless, pi-
oneered an evolutionary account of cooperation and other
kinds of interactions of similar importance. The second
approach is based on evolutionary game theory, especially
replicator dynamics, and aims at an explanation of a set
of basic moral arrangements of societal life. Evolutionary
game theory – explicitly and on purpose – gives up the
strong rationality assumptions that are constitutive for tra-
ditional game theory. Instead, success depending differen-
tial replication of strategies drives a biological or cultural
learning process. Brian Skyrms pioneered this approach to
explain the evolution of the social contract, understood as
a set of basic moral arrangements of societal life [94,97].
The third approach focuses on the evolution of trust, while
elaborating a middle ground between traditional and evo-
lutionary game theory: The indirect evolutionary approach
is a first step to model explicitly the evolution of moral at-
titudes (the internal side of morality) that accompany the
emergence of moral behavior (the external side of moral-
ity). The internal process is conceptualized as an endoge-
nous preference change that is driven by differential ma-
terial success of the behavior based on the preferences.
Thus, given their preferences, agents act rationally in the
sense of traditional game theory, while their preferences
undergo a dynamics in the spirit of evolutionary game the-
ory. Werner Güth, Menachem Yaari, and Hartmut Kliemt
pioneered the approach in collaboration [38,39,41].

Moral Dynamics, Table 1
Payoff matrix for a two-person prisoner’s dilemma (Tempta-
tion > Reward > Punishment > Sucker’s payoff)

Cooperation Defection
Cooperation R

R
S

T
Defection T

S
P

P

A concluding chapter discusses future directions and
tasks ahead.

Computer Tournaments:
The Evolution of Cooperation

Many social situations are a kind of social trap: Given the
possible actions of the individuals and their incentives, the
individuals tend to decide for actions that produce an in-
efficient, sub-optimal outcome, i. e. there is an alternative
outcome that everybody would strictly prefer to the real-
ized one.

The paradigm case for such a situation is the prisoner’s
dilemma. It is described in its normal form by the matrix
in Table 1.

The standard prisoner’s dilemma (abbreviation: PD)
is a two-person game in which both players have to de-
cide whether to cooperate or to defect. Both players prefer
mutual cooperation to mutual defection. But they disagree
about what is the best and what is the worst outcome: One-
sided defection of the row player is the best outcome for
the row player and at the same the worst outcome for the
column player. Conversely, one-sided defection of the col-
umn player is the best for the column player and the worst
for the row player. It is constitutive for the game that bind-
ing agreements are not possible (though communication
may nevertheless be possible). The players decide upon
their strategies simultaneously. Under these conditions ev-
ery player’s one and only best reply to whatever the other
player might do, is defection. Therefore mutual defection
is the only Nash-equilibrium of the game. At the same
time, it is the one and only outcome that is not Pareto-
optimal. Thus, the solution is a disaster. That disaster is
not due to a lag of rationality rather than a consequence
of rationality as worked out in game theory. With respect
to contexts in which a PD is played repeatedly, there is of-
ten, besides the condition T > R > P > S, a second one:
2R > TC S. The second condition makes sure that the
aggregated or average payoffs of two players that coordi-
nately switch between cooperation and defection are lower
than the payoffs of continuously cooperating players.
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A.W. Tucker was the first to characterize the struc-
ture of the PD in 1950. The game can be extended to
a version with more than two persons [90]. The name
of the game is motivated by the story that is often used
to illustrate the PD. In that story two prisoners are sus-
pected of having committed a crime. In the interrogation
they face the decision whether to confess or to maintain
silence. Already 1957 Duncan Luce and Howard Raiffa
notice the considerable attention that the game received
among game theorists [68]. That has never changed since
then [22,27,33,51,60]. In many fields, especially in social
psychology, experimental economics, some parts of soci-
ology, political science and later biology the PD became
something very close to what escherichia coli is in micro-
biology (though today the ultimatum game [42] receives
similar attention). The reason for that attraction is clearly
that the PD captures – lucidly and precisely – a situational
structure that, firstly, seems to be ubiquitous and, sec-
ondly, makes functioning cooperative relationships a rid-
dle: How is cooperation possible at all? How do human
or animal beings manage to establish cooperative relation-
ships if there is no policing central authority? Often recip-
rocal altruisms is another wording for cooperation. Then
the question is: How is reciprocal altruism possible at all?

From a moral point of view, the PD describes a type of
situation in which morality often – though not always – re-
quires a cooperative choice: Mutual cooperation may have
negative external effects for third parties, that are not play-
ers in the game. A price cartel is an instance for such a case,
well functioning criminal gangs another one. But with-
out negative externalities, the cooperative strategy is nor-
mally considered to be the moral choice: doing one’s part,
and not free-riding. Under that perspective the prisoner’s
dilemma illustrates and captures a conflict betweenmoral-
ity and self-interested rationality. Therefore, understand-
ing the emergence and maintenance of cooperation could
possibly contribute to an understanding of morality.

In some articles and a book that appeared in the
early1980s, Robert Axelrod worked out and made pub-
lic – and that extremely successful – a new method to
study problems of cooperation, namely computer based
competitions of strategies for iterated prisoner’s dilem-
mas [5,6,7,8,11,12]. The competition and the results –
published in The evolution of cooperation [8] – were a kind
of event. It made the PD and problems of cooperation well
known to an audience reaching far beyond the scientific
communities that had done the PD research until then.

Axelrod’s 14 participants in a first tournament were
scientists that were fairly familiar with the PD structure.
Many of the participants were leading experts in the field.
The participants had to submit a program that basically

embodied a rule. The rule selected for each move in
a finitely repeated PD that was played against the submit-
ted rule of another participant either the cooperative or the
defective strategy. The two rules that were matched for the
iterated PD had access to the whole history of their inter-
actions so far. The competition was organized as a round
robin tournament, i. e. all rules were matched with each
other–including their twin and RANDOM, a rule that with
equal probability cooperates and defects. Every participant
knew in advance that there were exactly 200 moves. The
payoffs in the matrix given by Table 1 were T D 5, R D 3,
P D 1 and S D 0. A very simple rule (more exactly, a su-
per game strategy in the game theoretical terminology) was
the winner: TIT FOR TAT (abbreviation: TFT), submitted
by Anatol Rapoport. TFT starts with a cooperative move.
Thereafter it simply does what the other player has done
in the previous move: Thus, TFT reacts with cooperation
on cooperation while defection is answered with defec-
tion. The results of the first tournament were analyzed and
made public, combined with an invitation to participate in
a second round robin tournament. Different from the first
one, there was no finite number of iterations rather than
a certain probability that there is no continuation after
a move. The expectedmedian length of the game was 200.

Much more super game strategies were submitted for
the second tournament. But again TFT was the winner. It
was also often the winner in semi-evolutionary contests
in which more successful super game strategies became
more and less successful less frequent (“semi-evolution-
ary” since there was no mutation; Axelrod refers to this
type of tournament as ecological).

In Axelrods explanation the overwhelming success of
TFT is due to four decisive properties. Firstly, TFT is nice:
it never defects first. Secondly, TFT is retaliatory: it re-
acts on every defection with retaliation in the next move.
Thirdly, TFT is forgiving: if the other player returns to co-
operation, TFT will cooperate in the very next move –
whatever the number of defection of the other player
might have been. Fourthly, TFT is clear: it is easy to find
out that defection will immediately be punished.

Axelrod’s approach induced a lot of follow-up tour-
naments and computational competitions in modified
and often extended or more elaborated settings [33,54]:
More or less sophisticated agents in terms of memory, er-
rors, learning, and complexity of their strategies were in-
troduced [4,12,20,64,66,83,88]. Special initial populations
were analyzed [30,53,55,66,67,68,72,76]. Payoffs were var-
ied [30,61,77,78] or noise was added [13,14,77]. Agents got
exit options [91,104].

Axelrod’s book The evolution of cooperation [8] was
a best selling book. There were 1000 quotations of his work
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by 1992; for the year 2000 the Social Science Citation Index
reports alreadymore than 2500 quotations [54]. However,
a significant fraction of them appeared in articles that cast
doubt on Axelrod’s theoretical claims. Ken Binmore pub-
lished one of themost carping criticisms [18,19]. The latter
appeared in 1998 in JASSS, the Journal of Artificial Soci-
eties and Social Simulations, where it is up to day – as the
journal’s statistics shows – among the most viewed articles
ever published in that journal.

Binmore frankly states his irritation about Axelrod’s
success – to Binmore’s mind a mere hype. The bubble
was produced as the combined effect of Axelrod’s scientif-
ically unjustified championing of TFT and the additional
severe misunderstandings of idolisers and science popu-
larisers. The core of Binmore’s criticism is twofold. Firstly,
the success of TFT is not as robust as Axelrod claims. On
the contrary, it is very sensitive to the special composite
of other strategies with which it interacts. In certain en-
vironments the strategy TIT FOR TAT, a strategy that is
not nice, is fairly successful [82,83,85,88]. TIT FOR TAT
starts with a defection and continues to do so until the
other also defects. Then it switches to cooperation and
continues to cooperate until the opponent defects. At that
point it returns to defection and continues the way it starts.
In noisier environments strategies that are more forgiv-
ing than TIT FOR TAT may fare better [82]. FRIEDMAN
is a nice strategy that never forgives. The strategy starts
with cooperation and continues do so until the other de-
fects. After the very first defection of its opponent FRIED-
MAN defects forever. Despite of its unforgiveness, FRIED-
MAN turns out to be very successful in many settings.
In general: The evolutionary success of TFT crucially de-
pends upon the environment–and that environment may
change. Axelrod’s tournaments do not knowmutation and
variation. New strategies cannot enter the stage and elim-
inated strategies are gone forever. The justification of far
reaching evolutionary claims about niceness or forgive-
ness asks for muchmore than such a setting. Necessary are
long run simulations that mimic all components of evolu-
tion: selection, variation, and mutation.

Under an evolutionary perspective it is important
to note that TFT lacks a certain type of stability. It is
not an evolutionary stable strategy – a key concept of
evolutionary game theory and developed in [74]. Let
S1; S2; : : : ; Si ; S j; : : : ; Sn be strategies. By U(Si ; S j) we de-
note the payoff for strategy Si if played against Sj. Now we
define:

A strategy Si is an evolutionary stable strategy if and
only if

(a) U(Si ; Si ) > U(S j ; Si ), for all j ¤ i and

(b) if U(Si ; Si ) D U(S j ; Si ) then U(Si ; S j) > U(S j ; S j),
for all j ¤ i.

If (a) holds, then the strategy combination hSi ; Si i is
a Nash equilibrium in the associated two person game.
Condition (b) makes sure that in a population where
everybody else plays strategy Si, natural selection works
against an invading strategy Sj. TFT does not meet con-
dition (b). It can be invaded, for instance by the uncondi-
tionally cooperating strategy ALL C. Such an invasionmay
then prepare the ground for other invaders, for instance,
the unconditionally and always defecting strategy ALL D,
which at least for a while could prey on ALL C.

A second line of criticism regards Axelrod’s neglect
of analytical insights that already exists [18,19,100,101]:
It is well known that – given the probability for another
iteration of the game is sufficiently high – equilibria of
super game strategies exist in which the players consis-
tently cooperate in all basic games. This insight is a corol-
lary of a fairly general theorem, the folk theorem. It got
its name since several people simultaneously proved it in
the 1950s. – The second line of criticism is less convinc-
ing than the first one. It presupposes that Axelrod was try-
ing to find out by simulation what rational players – ra-
tional understood in a game theoretical sense – would do.
If, instead, Axelrod intended to find and study heuristics
for boundedly rational behavior – and that seems to be the
case – then the second criticism misses the target.

By his computer tournaments Axelrod pioneered an
evolutionary account of cooperation. Additionally he pi-
oneered in The evolution of cooperation the study of spa-
tially structured problems of cooperation: Assumed is
a rectangular grid, such that agents interact only within
their (overlapping) local neighborhoods, i. e. the neighbors
in the north, south, east, and west. Such a framework – it is
a kind of cellular automaton – allows analyzing the spatial
dynamics of cooperation. Questions like “How does local
learning affect rise or decline of cooperation?” or “What
are the chances for small clusters to grow?” can be ad-
dressed.

Lots of others took up the spatial approach to coop-
eration [34,56,61,81,84,86,89]. Very natural further steps
are the use of other regular or irregular network struc-
tures [29] or the endogenization of the network.

An example for the latter is the study of the evolution
of support networks [49,50]. The general idea is to model
support relationships by a two person support game, played
with one another by neighboring agents, living on a torus
with a rectangular grid and lots of empty cells. Agents can
move and look for attractive partners. They play the game
simultaneously with all their direct neighbors.
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The support game is an asymmetric PD with a specific
structure: Both players become needy with certain prob-
abilities p1 and p2 – equal or unequal. It is assumed that
individuals belong to nine different risk classes which be-
come needy with probabilities 0:1; 0:2; : : : ; 0:9. The prob-
abilities remain constant throughout the iterated game.
The first move in the constitutive support game is a chance
move. According to the probabilities p1 and p2, chance de-
cides, whether both, only one player, or no one needs help.
A player in need of help can’t help anyone. In case the
other one needs help, a player, who does not need help, has
to decide whether to help or not. Helping is costly. Getting
help is a benefit. In this game it is a dominant strategy not
to help. That remains true even when the mutual support
is profitable for both players in terms of expected payoffs.
This inefficient solution makes the support game to a vari-
ant of the prisoners’ dilemma.

The model was constructed to answer the question:
What about networks of mutual support in a world:

� which is exclusively inhabited by more or less rational
egoists,

� who are unequal in that they need help with different
probabilities,

� must choose their partners themselves,
� and will choose those partners in opportunistic ways?

In the model all agents are assumed to know their own
and others’ probabilities to become needy. Costs, bene-
fits and probabilities to get a migration option in a period
are common knowledge. Given their own risk class, the
agents know about feasible best and worst neighborhoods
and form an aspiration level in terms of a ‘networking div-
idend’.

All the time agents make their guesses about continu-
ation probabilities for their actual neighboring relations.
Based on that they decide rationally, whether to engage
in mutual support or not: If, given the risk classes of the
players, costs, benefits and assumed continuation proba-
bilities, combinations of TFT- or FRIEDMAN-strategies
are an equilibrium, then the players engage in mutual sup-
port with a neighbor, otherwise not.

Figure 2 shows the evolved network of mutual sup-
port that started with the primordial soup shown in Fig. 1.
For an interpretation: Black cells are empty. Different col-
ors represent different risk classes according to the leg-
end besides the figures. Risk class 1 (dark blue) becomes
needy with a probability of 0.1, risk class 2 (light blue) with
a probability of 0.2 and so on. Short white lines connect-
ing two individuals indicate functioning support relations
between them. Round cells either do not meet their aspi-
ration level or don’t have any chance of finding partners

Moral Dynamics, Figure 1
Primordial soup – a random initial distribution

Moral Dynamics, Figure 2
Evolved network of mutual support after 2000 periods

for mutual support under the given conditions (costs, ben-
efits, chance to get a migration option). Filled cells meet
their aspirations.

Obviously, support networks can evolve even in
a world of rational egoists, differently endowed by nature
and choosing their partners opportunistically. However
these networks will be characterized by some class segrega-
tion. Other results – though not visible in the two figures –
are: For intermediate classes it is comparatively easier, to
find partners for mutual support. In terms of ‘network-
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ing dividend’ middle classes are the winners. The wider
the range of classes whose members could establish func-
tioning support relations among each other (this range in-
creases as the probability for getting a migration option
decreases) the higher the portion of agents ending up with
less than what they aspire. With the evolution of support
networks and despite the accompanying class segregation,
the equality of the payoff distribution increases. One might
summarize the situation a bit provocatively: rational ego-
ism, class segregation, increasing equality and increasing
wealth go hand in hand.

Looking back at all the findings about cooperation de-
scribed above from a moral point of view, one might get
mixed feelings: Lots of problems considered to be moral
problems, are problems of cooperation. The PD describes
the very essence of the problem. In the not repeated one
shot game rationality requires defection. That changes if
the game is repeated: If the shadow of the future [8] is
threatening enough, i. e. if the continuation probability for
the interaction is sufficiently high, then ongoing coopera-
tion is possible among rational players. But is that what
morality is considered to be? Or is it enlightened self-in-
terest only?

For an answer one has to note, that among rational
agents the ongoing cooperation is based on an equilib-
rium of conditional and retaliating super-game strategies
(while a strategy combination ALL C versus ALL C is
no equilibrium at all). One such conditional and retaliat-
ing super game strategy is the much-celebrated TFT. But
from a moral point of view, TFT does not have the best
press [65]. It looks like “An eye for an eye, a tooth for
a tooth”. As a principle of direct reciprocity it is not very
high in Kohlberg’s moral stage hierarchy [63]. Direct reci-
procity is very different from the golden rule “Do to others
what you would have them do to you!” – often considered
as the very essence of morality. For a super game strat-
egy like FRIEDMAN that answers the first defection with
eternal punishment, the moral evaluation would be even
worse.

One could try to defend TFT as a strategy of condi-
tional morality: If a player cooperates in a constitutive
game, then one could say that he suspends self-interested
rationality and follows requirements of morality. A TFT-
player is willing to do that, but only under the condition
that others do that as well. (Obviously, other super-game
strategies, for instance FRIEDMAN, could get a similar in-
terpretation.) But then again morality seems to be based
on enlightened self-interest and would not reach farther
than that: Often the actual continuation probability of an
interaction is too small for TFT played against TFT being
an equilibrium. Is it then morally right to defect and, for

instance, not to help the needy other? Or aren’t the players
morally obliged to cooperate nevertheless? One might an-
swer that – by and large – real world morality works only
if continuation probabilities are sufficiently high. But that
would also suggest that morality sometimes asks for more
than that what rational agents would do and real agents
sometimes really do. If that were true, then neither themo-
tivational nor the behavioral side of morality seems to be
fully captured.

Replicator Dynamics:
The Evolution of the Social Contract

Starting in the early 1990ies a series of articles and books
pioneered the use of evolutionary game theory to ex-
plain certain phenomena in which morality seems to
play a role [1,2,3,48,92,93,94,95,96,97,98,107,108]. Brian
Skyrms’ book Evolution of the Social contract [94] made
the approach widely known. However, the title is a bit ir-
ritating. Most people would think of the social contract as
a sort of contract that does not evolve. Rather, rational de-
cision makers would explicitly design and sign a contract
to establish a central enforcement agency – as in Hobbes’
state of nature [57]. But Skyrms’ project is different: He
works out how justice and fairness evolve among learning
agents that do not have the cognitive capacities and do not
meet the strong rationality and common knowledge as-
sumptions as assumed in standard game theory. Skyrms’
social contract regards the evolution of what Hume calls
artificial virtues [58,59]: A kind of moral dispositions, in-
vented by humans (and in that sense ‘artificial’), acquired
by some sort of character transformation and maintained
by the practice of mutual approval and disapproval. Thus,
the social contract, as understood by Skyrms, is neither an
explicit contract, nor is it about establishing a central en-
forcement agency. What is meant is a set of fundamental
moral arrangements that make societal life possible alto-
gether – for instance, dividing fair, doing one’s part and so
on.

Hume gave an evolutionary account of these funda-
mental moral arrangements [58,59], but it was a draft. In
a still informal and qualitative manner, modern Humean
philosophers and social scientists incorporated important
pieces of modern science into Hume’s picture [32,70,99].
Skyrms’ book Evolution of the social contract goes an im-
portant step further. It amounts to an explanation of fun-
damental moral arrangements by means of models and
simulations based on evolutionary game theory [46,47,
74,75,105]. Simple games precisely characterize certain
‘morally critical’ situations that humans face since ever.
Then evolutionary game theory is used to model and to
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analyze the evolutionary dynamics of such games: Which
strategies spread, which strategies go extinct? What are
the patterns and structures of the dynamics? Do strate-
gies become predominant? Do distributions and struc-
tures evolve that resemble the social contract, as we actu-
ally know it?

One of the simple games that are starting points for
a rigorous evolutionary analysis is the game of divide-the-
cake [93]. The cake in that game is a surplus or windfall.
No prior and eventually unequal effort is involved. Both
players demand some portion between zero and one. If the
two claims total to more than one, then the cake is gone –
a referee eats the cake. If the claims total to not more than
one, then both players get their claims. If the claims do not
add up to one, the referee gets the difference.

In experiments almost everybody facing the problem
of dividing the cake will claim half the cake [22,27,51,60].
Both claiming a half is a strict Nash equilibrium. It looks
just and fair to almost everybody. However, all pairs of
claims that sum up to one are strict Nash equilibria. There-
fore, why just the equal split? The approach under discus-
sion tries to give an answer based on concepts and no-
tions as developed by evolutionary game theory [46,47,74,
75,105].

The fundamental idea is that strategies replicate ac-
cording to their performance in terms of payoffs, now in-
terpreted as fitness. Strategies that beat the average be-
comemore frequent, strategies that perform below average
become less frequent. There are two important points to
note: Firstly, the evolutionary mechanism sketched above
allows for both, a biological interpretation that involves
genes, and a cultural interpretation that involves learn-
ing by imitating more successful others [21,102,105]. Sec-
ondly, different from traditional game theory, the mecha-
nism does not imply anything like anticipation and con-
siderations what others might do [95].

Claims in the divide-the-cake-game are strategies.
Once the intuitive ideas about the success driven dynam-
ics of strategy frequencies are made precise, the dynamics
of such strategies can rigorously be studied.

Let the strategies S1; S2; : : : ; Si ; S j ; : : : ; Sn be n possi-
ble strategies. xi is the frequency of strategy Si . The com-
position of the population is given by the vector
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If we now assume that the rate of increase of the frequency
xi of strategy Si – in formal terms: the time derivative of xi –
is directly proportional to, firstly, the current frequency xi
and, secondly, the difference between the average payoff for
strategy Si and the average payoff in the population, then
we are led to the replicator equations

ẋi D xi
�
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�
Ex
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�
:

The differential equations describe what is called the repli-
cator dynamics. It is a deterministic dynamics of selection;
mutation is not involved. The replicator equations were
introduced by Peter D. Tayler and Leo B. Jonker 1978
in [102]. The equations are analyzed in detail in [105].

Figure 3 shows the evolutionary dynamics for a sim-
plified version of the divide-the-cake game. Only three
strategies exist: S1 D demand 1/3; S2 D demand 2/3;
S3 D demand 1/2. The vertices of the simplex are the
points where one strategy has taken over the whole popu-
lation. Edges are sets of points where at least one strategy
has become extinct. All points inside the simplex represent
positive frequencies (which always total to one). Arrows
indicate the direction of the dynamics. The dynamics has
an unstable equilibrium in which half of the population

Moral Dynamics, Figure 3
Dynamics of the divide-the-cake game with three strategies.
Reprinted from [94] with kind permission of Cambridge UP
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plays S1, one third S2 and a sixths S3. There is an attrac-
tion towards half the population using strategy S1 and
the other half using S2. But there is also a major basin of
attraction toward universality of equal division.

The model for the dynamics of sharing can be mod-
ified and extended in a way that it covers fundamental
features of social reality: The population may be finite or
the cake may have a more or less granular structure (what
reduces the number of possible strategies). Random en-
counters are probably a rare event. More often encoun-
ters are correlated. That can be covered by strategy depen-
dent probabilities for the pairing of strategies. As a con-
sequence, like-minded people may meet more frequently.
Furthermore, themodel can get underlying network struc-
tures of all sorts [2]. Signaling can be added.

The evolutionary dynamics of other simple games was
analyzed in the same style, above all the PD, the stag-hunt
game and the ultimatum game. The stag-hunt game (also
known as assurance game) is again a stylized cooperation
problem–though less severe than the PD. The difference is
that both players now prefer mutual cooperation to their
own one-sided defection. As a consequence the game has
two Nash-equilibria, mutual cooperation and mutual de-
fection. The problem is to coordinate on one of them. The
ultimatum game [42] is about dividing a GermanMark (or
a dollar etc.), which is supposed to be a windfall. The two
players have different roles in the game: Player one makes
a proposal how to divide. Player two decideswhether to ac-
cept or to reject the proposal. In case of rejection nobody
gets anything at all. Given the players utilities are linear in
money, there is a unique Nash equilibrium: The proposer
offers the least possible amount, which player two is then
glad to accept since that amount is more than nothing.
However, there is overwhelming evidence [22,27,51,60]
from all over the world that real players behave very dif-
ferent: The offers made by player one are normally below
but remarkably close to 50% – and if not, then player one
runs a high risk of rejection.

The evolutionary analysis of all these simple games and
their extensions – especially adding correlated matching,
underlying networks, and signaling – leads to the general
result that there is often a profusion of possible equilib-
rium outcomes. Their dynamic stability properties differ.
But among them are often some that resemble very much
the moral arrangements that seem to be the ‘operating
system’ of huge parts of our societies. Additionally, these
equilibrium outcomes often have a remarkably huge basin
of attraction – at least under some structure, correlated en-
counters and signaling [2,96].

The approach based on evolutionary game theory was
often appreciated as an enlightening new perspective at

the social contract. Nevertheless, the approach received
a lot of criticisms as well. The robustness of the results was
questioned since they are sensitive to the learning mech-
anism [28]. But it seems possible to obtain robust results
if population structures as they existed among our ances-
tors are simulated.Another criticism stresses that coalition
formation is not taken serious enough [62].

The most severe criticisms of the approach argue
that evolutionary game theory is inherently inadequate
to conceptualize morality in a satisfying way. According
to D’Arms [26] the approach fails to explain morality
since essential ingredients of morality are left out: Inter-
nal sanctions, i. e. negative self-directed feelings, and ex-
ternal punitive or emotional sanctions imposed by others.
As a consequence one cannot distinguish between expla-
nations of behavior and explanations of moral norms that
require that behavior. Kitcher [62] makes a similar point
when stating that at best the simulations on the divide-
the-cake game reveal why we have the propensity to con-
form to arrangements, which we label as just. What they
do not explain is the origin of our conception of justice
as such. As a consequence – so the criticism goes – the
explanation does not account for the distinction of situ-
ations where others do not do their part, from other sit-
uations where they do something we dislike. With a fo-
cus on the ultimatum game Bicchieri [15] criticizes that
decisive ingredients are left out: As experimental results
show, there is no unique norm of fairness. There are sev-
eral and they are conditional upon the context. For in-
stance, it makes a difference whether or not the proposer
is thought of as a seller in a market, whether or not the
proposer and the receiver are supposed to distribute the
product of an exhausting joint venture. Norms, contexts
and situational clues, mutual expectations, preferences for
conformity given sufficiently many other conform as well,
all that plays a decisive role in morality as we know it. But
the evolutionary dynamics doesn’t account for any of these
essential details. To sum up this type of objections: Evolu-
tionary game theory is conceptually too poor to conceptu-
alize morality, as we know it. Alexander, after having writ-
ten a book length elaboration of and contribution to this
kind of evolutionary approach, seems to concede that the
criticisms are right to a high degree [2].

For a discussion of that objection it has to be clear, that
morality regards a very rich set of phenomena: The ex-
planandum includes norms, values and their mental repre-
sentation, more and less general principles, certain inten-
tions and motivations (for instance, acting out of a sense
of duty), all sorts of approval and disapproval to sanc-
tion behavior, intentions and motivations, special types of
reasons and arguments to justify (including apologizing)
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one’s own or to criticize others’ actions (or vice versa),
then furthermore, feelings and emotions like regret, shame
or bad consciousness, personal moral ideals . . . – a long
list, but for sure not complete. For all the elements enlisted
one would like to know how they function, how they work
together, and how they evolved.

It is obvious that evolutionary game theory does not
give an explanation of the rich explanandum. The ap-
proach explains the evolution of certain strategies. In the
differential equations that define the replicator dynamics
is nothing that directly corresponds to something like mo-
tivation, intentions, emotions, deliberations, representa-
tions, cognitive structures, discussions, approval and re-
proach – all that is not explicitlymodeled.

Not being explicit about the underlying processes is,
trivially, a disadvantage if explicitness is the only goal. But
there may be other goals: Given there are good reasons to
assume that a certain overall effect is the standard result
generated by a bunch of underlying processes in a target
system, then it can make a lot of sense to forget about the
underlying details and to generate directly the overall ef-
fect in a model. Doing that may allow one to analyze in
detail other aspects of the system, for instance dynamical
structures caused by the overall effect – a scientific goal
that otherwise may be out of reach.

With regard to the social contract, i. e. fundamental
moral arrangements of societal life, an assumed recurrent
and macroscopic overall effect is the following: As the re-
sult of complicated intra- and inter-agent processes, be-
havior that performs above average becomes more fre-
quent; behavior that performs below average becomes less
frequent. The replicator dynamics equations directly pro-
duce that effect without any deciphering of the underly-
ing processes. All the details that produce the effect are not
in the model. Rather, they are part of the ‘story’ that ac-
companies the model. An accompanying narrative hints
to underlying micro layer processes, summarily reports
what is known, and accumulates evidence and arguments
for the hypothesized overall effect. Therefore, macro mod-
els without an explicit micro foundation may nevertheless
have a solid scientific foundation. And if so – as in the
case of the replicator dynamics – then they are not ‘just
so stories’ based on fantasies about causal relations. It is
only fair to say that the micro layer processes involved in
the emergence and maintenance of fundamental moral ar-
rangements, are not well understood. At the same time,
it is interesting to understand macro properties of moral
arrangements and to analyze, for instance, stability prob-
lems.

In such an epistemic situation, there are at least two
reasonable scientific approaches: Firstly, one can try to get

a grasp of the micro layer, themicro-strategy. Once the mi-
cro layer is sufficiently well understood, one starts work-
ing on the macro phenomena. Secondly, one tackles macro
phenomena by models that are to a large extend indepen-
dent of a detailed understanding of the micro layer, the
macro-strategy. The micro-strategy runs the risk of never
to get that far. The macro-strategy, on the other side, may
be inherently blind for important phenomena and inapt to
distinguish where distinctions should be made – even on
the macro layer.

Under such a perspective criticisms of D’Arms,
Kitcher, Bicchieri, and Alexander are best understood as
pointing to inherent blind spots if the replicator dynamics
is applied to moral arrangements: For instance, many con-
ceptions of morality – moral common sense included –
make a distinction between mere behavioral conformity
with moral standards (‘moral conformity’) and behavior
for the sake of a moral standard (‘moral action’). Not only
in the tradition of Kant the two cases differ from a moral
point of view. (How much that differs varies from concep-
tion to conception; for a utilitarian it differs less than for
a Kantian.) The critical point is that the replicator dynam-
ics as used by Skyrms does not distinguish the two cases ex-
plicitly in the model. Of course, it is easy to distinguish the
two cases in the accompanying narrative. But that is differ-
ent from explicitly modeling it. As developed so far, the ap-
proach focuses on strategies; motivations that bring them
about are left out. Obviously the approach based on evolu-
tionary game theory and replicator dynamics isn’t the full
theory. But Skyrms, who pioneered the approach, did not
claim so either. His claims are modest: Perhaps the begin-
ning of an explanation of our concept of justice, not an
attempt to present the full theory of the evolution of the
social contract [94].

Indirect Evolutionary Approach:
The Evolution of Trust

The indirect evolutionary approach tries to model moral
attitudes (the internal side ofmorality) that, then,motivate
moral behavior (the external side of morality). The inter-
nal process is conceptualized as an endogenous preference
change, driven by differential material success of the be-
havior based on the preferences [36,39,41]. A forerunner
of such an approach is Hirshleifer [52] and Frank [31].

The central idea of the indirect evolutionary approach
can be applied to all games that are ‘morally critical’. The
starting point for the actual elaboration of the approach
was the trust problem, a two-person social dilemma: The
predicament is that one player has to move first with-
out any guarantee that the other player later reciprocates.
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Moral Dynamics, Figure 4
Trust predicament. The upper entries regard player 1, the lower
entries regard player 2

Such an interaction structure plays a central role already
in Hume’s analysis of trust and promises. In Fig. 4 a tree
characterizes the situation.

If the starred entries at the ends of the branches were
subjective utilities of rational players, the rational solu-
tion of the game can easily be found: At his decision node
the second mover will decide to exploit since 1� > r� (the
lower entries are the entries for the second mover).We as-
sume that the tree and the payoffs are common knowledge.
Therefore the first mover can foresee at his decision node
that the second mover will exploit. As a consequence, the
first mover’s alternative is either not to trust or being ex-
ploited. Since s� > 0 the first mover decides not to trust
and both players end up with the payoff s�. That result is
inefficient: If the first mover trusts and the second mover
rewards, both would receive r� with r� > s�. But rational
choice of both players does not allow getting to that effi-
cient solution – obviously a serious predicament.

A decisive first step of the indirect evolutionary ap-
proach is a different interpretation of the payoffs in Fig. 4:
The starred payoffs are not meant as subjective utilities
rather than a sort of objective or material payoffs that
measure success or fitness. They are linked to an evolu-
tionary process. A function translates the objective pay-
offs into motivating subjective utilities. To keep it simple,
it is assumed that the subjective utilities that correspond
1�; r�; s�; 0� are 1; r; s; 0.

Moral Dynamics, Figure 5
The trust game. The upper entries are utilities of player 1, the
lower entries are utilities of player 2. m is the moral and purely
motivational payoff component

The decisive second step is to introduce additionally
a purely motivational payoff component m as given in the
game tree in Fig. 5. Parameterm is endogenous. As a com-
ponent of the subjective utilities it affects choices. But –
and that is important to note –m does not measure fitness
or success. However, since choices influence the objective
payoffs, m indirectly affects fitness or success.

In a third step, the indirect evolutionary approach as-
sumes all players to be rational. Applying equilibrium
analysis to the game specified in Fig. 5, we get as the (sub-
game perfect) rational solutions:

(a) For m > (r � 1): The first mover does not trust; the
second mover exploits.

(b) For m < (r � 1): The first mover trusts; the second
mover rewards.

The precise value of m is behaviorally irrelevant: All play-
ers for whom the same inequality between m and (r � 1)
applies behave all in the same way. Players who do not ex-
ploit the first movers’ trust are referred to as the trustwor-
thy m-types. Players who do exploit are the untrustworthy
m-types.

Then, as step four, evolution comes into play: In
a large or even infinite population individuals are ran-
domly paired to play games of trust. The type composition
of the population is given by a parameter p, the fraction
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of trustworthy m-types. After a random matching, the two
roles – being either the first mover or the second mover –
are assigned in each pair with a type-independent proba-
bility of one half.

In such a setting type-detection and type-discrimina-
tion is crucial: Under the assumption of complete type in-
formation the first mover knows the second mover’s type.
As a rational player the first mover will trust if the second
mover is a m-type; is the second mover an untrustworthy
m-type, then the first mover does not trust. If we calculate
the objective, material success or fitness for both types, it
turns out that – whatever the composition of the popula-
tion may be – the trustworthy m-types fare better than the
untrustworthy m-type. Without any explicit specification
of the dynamics of the population composition, it is clear:
Under complete type information the dynamics leads to
a globally stable monomorphic population in which all are
trustworthy m-types. The same type of evolutionary anal-
ysis shows that if type information is private only, i. e. the
players only know their own type, the population share p
of the trustworthym-types is bound to decline towards s/r.
Below that threshold there is no evolutionary pressure to
drive out the trustworthy since no first mover will trust at
all. As a consequence trust can’t be exploited.

Both, complete type information and only private type
information, are extreme cases. More interesting is the
middle ground in between as analyzed in [37,38]: Assumed
is a certain hC; �i technology, which reveals at cost C,
(C > 0) with probability �, (0:5 < � < 1) the true type
of the second mover. An evolutionary analysis of a trust
game in which such a technology is available, shows: If the
costs of the technology are sufficiently low and the reliabil-
ity sufficiently high, then there exists a certain interval of
population compositions p around p D s/r in which ratio-
nal players in the first mover role will apply the technology.
As a consequence the population share p of the trustwor-
thy increases. To the right of that interval the share of the
trustworthy is so high that it is not worthwhile to spend the
cost to detect the untrustworthy. Therefore all first movers
trust. As a consequence, in that region of p the untrust-
worthy fare better than the trustworthy and their share
goes down. On the left side of the interval, there are so few
trustworthy that it is not worthwhile to seek them out. No
first mover will trust. If occasional mistakes are possible
and, therefore, a first mover from time to time mistakenly
trusts, then in this region of p the population share of the
trustworthy will tend to decline towards zero.

The indirect evolutionary approach is very flexible and
applicable to enriched and modified settings in which, for
instance, institutions exist or emerge or ex-post punish-
ment is possible [37,40,44,45].

There are five important characteristics of the indirect
evolutionary approach:

(a) The approach does not give up rational choice alto-
gether. In each single round of play the individuals are
assumed to be rational in the usual sense. They antic-
ipate the consequences, evaluate them and make their
choices in a case-by-case manner. Different from an
approach based on the replicator dynamics, the strate-
gies are not hard-wired rather than result of rational
choices based on the preferences that the individuals
actually have.

(b) Different from standard rational choice theory, pref-
erences are not given rather than subject to change.
That allows modeling the emergence of morality as
a preference transformation process. That idea has
a longer tradition [31,52]. In the indirect evolution-
ary approach the moral transformation of preferences
spreads if the transformation proves successful in non-
moral terms: The population share of the ‘moralized’
individuals increases if and only if in terms of objec-
tive, material payoffs they fare better in their interac-
tions than the non moralized individuals. If past expe-
rience proofs morality to be more successful in non-
moral terms, then and only then moralized prefer-
ences and moral choices based on them can spread.

(c) As a consequence of (a) and (b) the indirect evolution-
ary approach integrates a forward, backward, and side-
ward looking component in human decision-making:
Since the individual makes rational choices in each
round of play they are forward looking. The evolu-
tionary process, then, ‘compares’ past success and is
thereby at the same time backward and sideward look-
ing.

(d) The indirect evolutionary approach offers a frame-
work in which subjective motivational factors like
norms, internalization of norms, values, moral dispo-
sitions and attitudes become an explicit component
in the model. It is a simple and summary compo-
nent: A subjective preference component m is added
to a certain payoff. However, that is much more than
being just mentioned in an accompanying story that
interprets a replicator dynamics.

(e) The approach distinguishes a deep structure and a sur-
face structure. The deep structure regards the objective
and material payoffs. The surface structure regards
motivational factors. The motivational factor allows –
on the surface level – to account for a kind of intrinsic
moral motivation that is real and not a self-deception.
At the same time (and very much Humean in spirit)
that intrinsic moral motivation has on a deeper level
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an evolutionary history: It can evolve if and only if it
is worth while to have such an intrinsic motivation –
measured in a hard currency, i. e. in terms of material
and objective payoffs.

Future Directions

All approaches described and discussed above, do not
model explicitly internal cognitive processes within individ-
uals. Only accompanying interpretations hint to a rich set
of processes that are involved: normative deliberations of
all sorts, considerations about goals, norms, values, weigh-
ing pros and cons, certain emotions and emotional reac-
tions etc. This low resolution of the cognitive structures,
processes or capacities is in a sharp contrast with what is
going on in certain fields of agent based modeling, agent
theory and agent technology [33]. There, as a matter of
fact, agents with increasingly richer and stronger cogni-
tive structures and capacities were developed over the last
two decades. Partially that is due to research programs
and projects that directly aim at or necessarily need a high
resolution of the cognitive structure. Such programs and
projects can be found in cognitive psychology, artificial in-
telligence, and many fields where a technical use of agents
is intended. As a consequence, agent based models with
a – compared to the approaches in the chapters above –
rich internal cognitive structure can now be found all over
the fields of agent based modeling, multi agent systems,
and social simulations in general. Ideas and requirements
for agent architectures is a much-debated field. Lots of
proposals for how to construct agents were made. Agent
architectures, that explicitly account for norms, values,
virtues, moral emotions, deliberations etc. were required,
drafted and partially realized [23,24,25,79].

To avoid confusion, one should note here: First, agent-
basedmodeling as such does not necessarily require agents
with high cognitive capacities and an explicitly modeled,
rich cognitive structure. For instance, a cellular automaton
as applied to social processes, is an agent-basedmodel. The
assumed cognitive capacity may consist in not more than
being able to imitate in the next period what a majority
of neighbors does in the actual period. Additionally, such
a capacity is normally simply assumed and not explicitly
modeled. Second, low resolution with regard to the agents’
minds and cognitive structures, does not necessarily imply
that the individuals in the model are simple minded: If, for
instance, agents in a rational choice-based model are as-
sumed to play their equilibrium strategies (found out in
the model by checking in just one line of code whether or
not a certain inequation holds, which afore was analyti-
cally worked out by the model builder), then that may – on

the side of the agents – amount to the solution of a cogni-
tive task that normally is over-demanding for human be-
ings. Third, a comparatively high resolution of cognitive
processes and structures does not necessarily imply high
cognitive capacities of the constructed agents. A high res-
olution is difficult to model. As a consequence, often the
tasks that the agents have to solve are comparatively easy.
To sum up, the two dimensions ‘cognitive resolution’ and
‘cognitive capacities’ are independent – and agent based
modeling as such is compatible with all degrees of resolu-
tion and capacities.

One might question whether dynamical models of
population shares are agent-based models at all. Howso-
ever, for a better understanding of the complicated inter-
play of intra- and inter-agent processes of moral dynamics
it looks necessary and promising to cautiously increase
the complexity of the agents’ minds. Suitably constructed
agents could, for instance, allow differentiating between
behavioral norm conformity and actions motivated by
a norm for the sake of a norm. The so far non-existing
or only crude approaches to the internal side of moral-
ity could become much more refined. Such a refinement
implies more parameters, higher complexity and endan-
gers tractability. But it may well be the case that the exter-
nal side of morality can’t be understood sufficiently well
without going into some details of cognitive structures and
processes. At the moment there is a huge gap between
macroscopic models of moral dynamics and the known
variety of microscopic processes that seem to generate cer-
tain assumed overall effects. There isn’t any hope to fill
and close that gap in the near future – if ever. But bridges
can be built. Such bridges are models that explicitly model
and then study, for instance, punishment, detection, rep-
utation, matching, norm recognition, norm internaliza-
tion etc. that ‘somehow’ bring about macroscopic effects
like changes in the population shares of certain strategies
or types of players. Steps into that direction have been
taken since the study of moral dynamics started in the
1980s [9,16,80]. Much more will follow.

Research into that direction is the precondition to
master the probably most demanding explanatory task in
the study of moral dynamics: How did homo sapiens, who
used to live together in small groups, manage to learn liv-
ing together in large-scale societies, in which a high pro-
portion of interactions are no longer based on family ties
or good personal acquaintanceship – and nevertheless,
fairly often cooperation, fairness, trust, etc. prevail? That
question has a long scientific tradition. Already the ancient
Greeks were puzzling over that problem. In one of Plato’s
dialogs the sophist Protagoras gives a very modern answer
which – after some deciphering of the myth in which it
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is couched (a myth about Prometheus and Epimetheus) –
amounts to saying: A high blood toll was paid to learn the
lessons, but finally mankind invented both, moral virtues
and enforcement agencies [87]. About 2000 later David
Hume gave a very similar answer – no longer presented
by telling a myth, though still a draft [58,59]. Addition-
ally he stresses the importance of division of labor and
mentions reputation mechanisms. Some first steps are
done to develop models that could contribute to an an-
swer [2,16,17,18,70,94,106]. But a well-elaborated and suf-
ficiently precise answer is still missing.
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Glossary

Graph (network) A set G of objects called points, nodes,
or vertices connected by links called lines or edges.

Subgraph A subset of a graph G whose vertex and edge
sets are subsets of those of G.

Modularity A network is called modular if it is sub-
divided into relatively autonomous, internally highly
connected components.

Scale-free network A class of complex network showing
a high heterogeneity in the distribution of links among
its nodes. Such distribution decays as a power law.

Network motifs These are specific subgraphs that occur
in different parts of a network at frequencies much
higher than those found in randomized networks.

Definition of the Subject

Several nested levels of organization can be defined for any
complex system, being many of such levels describable in
terms of some type of network pattern. In this context,
complex networks both in nature and technology have
been shown to display overabundance of some character-
istic, small subgraphs (so called motifs) which appear to
be characteristic of the class of network considered. These
tiny modules offer a powerful way of classifying networks
and are the fingerprints of the rules generating network
complexity.

Introduction

Complex systems can be described, on a first approxi-
mation by means of a network [1,3,5,19]. In such a net-
work, the typical components of the system (atoms, pro-
teins, species, computers, humans or neurons) are simply
nodes with no further structure. They are linked to others
by means of an edge. The presence of such a link implies
that there is some type of causal relation. Such relation can
be the presence of a bond among atoms or electrostatic
forces among proteins. It can also be a trophic link (who
eats who) or a wire. It can also be a more abstract associ-
ation, such as friendship in a social network. The result-
ing web provides a glimpse of the topological complex-
ity of the network. An example of one such web is illus-
trated in Fig. 1a, where we display part of the network of
protein-protein interactions that is present inside human

http://jasss.soc.surrey.ac.uk/11/3/3.html
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Motifs in Graphs, Figure 1
Complexity in biological systems canbe seen atmultiple scales. Proteins for example, typically workwithin pathways and assemblies
andwe candefine a protein network or proteome as the graphof protein-protein interactions (a) where eachball corresponds to one
protein. Here part of the human proteinmap is shown and the colors indicate differentmodules, i. e. groups of proteins havingmore
connections between them than with the rest of the web. Looking closely, connections mean physical interactions among proteins,
as indicated in b. Different patterns of protein interactions can be described in terms of small subgraphs. By counting the frequency
of each one of these subgraphs, we obtain the so-called subgraph census, shown in c for our example (using sets of four elements)

cells. Each protein is indicated here as a sphere, although
in reality it has a complex structure (Fig. 1b). Each link
in this graph means that the two linked proteins interact
physically (Fig. 1b).

At the small scale, the network is thus represented in
terms of molecules, but as happens with all complex sys-
tems, cell behavior (largely resulting from the works of
proteins) cannot be reduced to the behavior of individual
units. Interactions need to be taken into account. Actu-
ally, most proteins perform their function by linking to
other proteins, forming complexes. When we look at the
map of protein interactions on a global scale, a complex
network emerges (Fig. 1a). These assemblies then are able
to interact with DNA, propagate external signals or build
transport machines able to carry vesicles through the cell.
Similarly, other complex networks will be describable at
different levels of detail. The ultimate goal of any such de-
scription is understanding how the system works and/or
how it has emerged.

An important message of complex systems approaches
is the notion thatmost complex systems cannot be reduced
to their elementary components. In particular, trying to
reduce complex patterns to the properties of the under-
lying basic units has failed in most cases to succeed. There
is quite a range of levels of analysis in any of those sys-
tems and each one involves typically some sort of emer-
gent property. Ideally, it would be great reducing the whole
complexity to the basic components. Since such a dream

is not possible, we might wonder if perhaps some type of
intermediate subsets of small size might be enough. Such
a goal guided the proposal of searching for special types of
subgraphs composed by a very small number of elements
that could capture the key characteristics of complexity
under the network perspective. The idea is not unreason-
able, since it takes into account a subset of elements and
their interactions. In other words, looking at small sub-
graphs (assuming their organization can be associated to
a given functional trait) is a good starting point towards
the analysis of higher-level complexity.

To this goal, several researchers developed a number
of tools and concepts to properly capture the statistical
relevance of some specific types of subgraphs. Subgraph
censuses [4,7,32] and later on network motifs [13,14] were
introduced in order to provide a small-scale, better char-
acterization of complex networks. Here we will summarize
their basic properties, how they are characterized and what
type of relevant information they provide. The power of
the approximation is illustrated with a case study on pro-
tein networks.

Levels of Network Complexity

Complex networks have been shown to exhibit a num-
ber of interesting properties. One of them is the pres-
ence of modularity. Roughly speaking, a modular system
is formed by quasi-independent parts that appear inte-
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grated within themselves but also exhibit a certain degree
of interdependency among them. Modularity is consid-
ered a prerequisite for the adaptation of complex organ-
isms and their evolvability [31]. It is particularly obvious
in cellular networks [21], where it can be detected at the
topological level. These networks include the webs of in-
teractions among proteins, genes, enzymes and metabo-
lites or signaling molecules. They are thus associated to the
processing of energy, matter and information within and
between cells. In many cases, modular structures appear to
be related to functional traits: a given set of closely related
proteins, for example, might be all associated to cell divi-
sion or communication. All these components interact in
a way or another at different times and spatial locations.
How many of them need to be considered in order to cap-
ture relevant information on functional traits?

In order to explore the problem of how to define dif-
ferent levels of complexity, let us first provide the ba-
sic ingredients that we need. Within the context of net-
work theory [1,3,5,19] the given system is represented as
a graph ˝ D (V ; E) composed by a set of N nodes (say
proteins) V D fvig and a set of links ei j 2 E indicating if
a connection exists between nodes vi and vj . Each node
in a graph, if connected to some other node, will have
a number of links k. This is known as the node degree.
Statistically, a very important description of the network
structure is provided by the so-called degree distribution
P(k) which measures the probability of a given node hav-
ing k links. Some real networks are homogeneous, mean-
ing that their degree distribution has a well-defined aver-
age value. In these networks, most (if not all) elements will
have a degree that does not strongly deviate from the av-
erage. By contrast, the majority of complex networks dis-
play a rather different architecture. This type of heteroge-
neous network is characterized by a probability distribu-
tion which falls off as a power law with a cut-off, i. e.

P(k) � (k C k0)��e�k/kc : (1)

Here k0 is a constant and 2 < � < 3 denotes the scaling ex-
ponent (typically close to � � 2:5). The cut-off kc is a char-
acteristic degree indicating the presence of a maximum
number of links. The hubs tend to have important roles
in technological but also in cellular systems [22] where
the most connected nodes are often cancer-related genes
and their failure typically involves some proliferative dis-
order. In this context, one possible attribute of an element
that can give relevant information is associated to its de-
gree. However, elements having only two nodes can be im-
portant in connecting hubs and thus degree alone is not
enough.

At its smallest scale, modules are defined by means
of subgraphs involving three or four elements [34]. These
subgraphs have received considerable attention in relation
with the so-called network motifs [13,14]. Roughly speak-
ing, motifs are patterns of interconnections occurring in
complex networks at numbers that are significantly higher
than those in randomized networks. The analysis of their
statistical distribution reveals that each class of natural
and artificial network seems to display common patterns
of motif abundances. The statistical pattern is thus inter-
preted as functionally meaningful. Under this view, mo-
tif abundances—as well as modularity—would be a conse-
quence of selection forces, perhaps reflecting optimization.

Subgraph Census

Here we define the basic concepts relating small subgraphs
and their abundance within complex networks. Sociolo-
gists pioneered this type of network analysis by developing
the n-subgraph census, or the enumeration of all possible
subgraphs with n nodes in the network. For example, in
Fig. 1 the 4-subgraph census is displayed in (c). We can
see that the number of subgraphs having a larger number
of links (i. e. more dense ones) rapidly decays (in an ex-
ponential fashion). The way this decay occurs and the fre-
quency distribution is characteristic for a given type of net-
work structure. In this case, subgraphs are undirected (no
arrows are taken into account) but directed links can also
be taken into account, which implies much larger com-
binatorics (Fig. 2). Within the social sciences, the 3-sub-
graph census (or triad census) enables us to quantify the
degree of network transitivity [4,7,32]. In a transitive so-
cial network, whenever a node i has ties with nodes j and k,
there is a link between j and k and thus these nodes form
a triangle (see Fig. 2). This suggests a simple transitivity
test by counting the number of subgraph triangles in the
network. However, any meaningful interpretation of sub-
graph counts requires a statistical significance test that sig-
nals important deviations from their expected value in the
network (see next section).

Assuming sparse graphs (hKi 
 N), the probability of
a given subgraph˝ i can be estimated. Following Itzkovitz
et al., we can see how this is calculated using the subgraph
example displayed in Fig. 4. Each node has a degree se-
quence given by the indegree list fKig and the outdegree
list fRig (with i D 1; : : : ;N). The lists would be completed
by the so-called mutual edges fMig, i. e. cases where there
is a pair of edges in both directions between two nodes. For
each subgraph, another degree sequence is provided by
two new lists, now fk jg and fr jg for the in- and outdegrees,
respectively. For our example, we have: fKjg D f2; 1; 1; 0g
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Motifs in Graphs, Figure 2
Some examples of subgraphs that can be constructed using
n D 3 or n D 4 nodes. At left we show all the subgraphs that can
be constructed using non-directed links (i. e. no arrows). A small
number of graphs are obtained, but when directedness is intro-
duced, even a very small number of nodes can generate a large
number of subgraphs as shown in b where almost all combina-
tions are shown for n D 3

and fRjg D f0; 1; 1; 2g. The idea is to compute the differ-
ent probabilities associated to each directed edge linking
all pairs of nodes. For example, the probability of having
a directed link from node 1 to node 2 (for K1R
 NhKi)
is approximately:

P(1! 2) D
K1R2

NhKi
; (2)

which can be interpreted as follows [9]: we perform K1 at-
tempts for the first node to connect to the target node with
a probability R2/NhKi. Similarly, we would have:

P(1! 3) D
(K1 � 1)R3

NhKi
(3)

being the approach used for all edges. The average num-
ber of appearances of ˝ i is finally computed by averag-
ing. A general derivation has been done by [9] where the
power-law distribution of connectivities is taken into ac-
count. Here, we assume real networks having a scale-free
in-degree distribution Pi(k) and an exponential out-degree
distribution Po(k) (the following is also valid for a network
with scale-free out-degree distribution and an exponential
in-degree distribution):

Pi(k) D
�i � 1
k1��i0

(k C k0)��i ; (4)

where k0 is the cut-off value for the distribution. The av-
erage number of appearances hGi of a given subgraph ˝ i
scales with the subgraph size and the exponent of the in-

degree distribution:

hGi � Nn�gCs��iC1 ; (5)

where s is the maximum in-degree in the subgraph
and n and g are the number of nodes and links in the
subgraph, respectively. This scaling is actually valid for
2 < �i < sC 1.

There are limitations to the above mean-field approx-
imation. The average number of subgraphs cannot mea-
sure the high diversity of subgraph types in scale-free net-
works. Regular networks often display a limited repertory
of connectivity patterns and they are more suitable for the
mean-field analysis (see Fig. 3). The subgraph distribu-
tion provides a more adequate quantification of the im-
pact of degree distribution in the local network structure.
There is empirical evidence that subgraph distributions in
scale-free networks are skewed and without a characteris-
tic scale. In this context, [35] proposed machine-learning
techniques that learn the observed subgraph distribution
rather than assuming a specific type distribution. This is
of uttermost importance since the choice of the model dis-
tribution strongly constrains what subgraphs are the most
significant, thus introducing unwanted biases in the inter-
pretation of the observed subgraph census.

NetworkMotifs

Network motifs are defined in terms of subgraphs which
appear much more often than expected from pure chance.
Specifically, they occur with a high frequency compared
with the expected frequency from an ensemble of ran-
domized graphs with identical degree structure [13,14].
Random networks are generated from the real network
by switching links while preserving specific network prop-
erties. Random networks keep the real in/out- degree se-
quence but they do not have degree-degree correlations.
Then, comparison between the real network and random
networks signals the overabundance of sub-structures can-
not be a consequence of network heterogeneity alone.

The subgraph ˝ i is a network motif when its
abundance is statistically significant as indicated by
the Z-score [13]:

Z(˝i) D
Nreal(˝i )� hNrand(˝i )i

�(Nrand(˝i ))
: (6)

Here Nreal(˝i ) is the number of times the sub-
graph appears in the network, whereas hNrand(˝i )i and
�(Nrand(˝i )) refer to the mean and standard deviation of
its appearances in the randomized ensemble, respectively.
In order to be significant, it is required that jZ(˝i)j > 2.
When Z(˝i ) > 2 (Z(˝i) < �2) the motif (antimotif) is
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� Motifs in Graphs, Figure 3
When looking at different networks, we find that their inter-
nal structure in terms of small subgraphs differs considerably.
Here four examples are shown. The first two aremodels, namely
a a tree and b a square lattice. The other two are real networks:
c a street network and d a protein interaction networks. The
right column displays the observed frequencies of subgraphs of
size four. As we can appreciate, different subgraphs appear to
be common in some nets but not in others. Heterogeneous net-
works, like the protein interaction network d, display a greater
variety of subgraph types than the regular networks a–cbecause
the rich number of different node connectivity patterns

Motifs in Graphs, Figure 4
The expected frequency of a given subgraph in a random net-
work can be computed by looking at the specific set of types
of links and their numbers. Here an example of a subgraph is
shown, indicating the basic quantities that can be defined in or-
der to predict its abundance (see text)

considered to be more (less) common than expected from
random.

From a practical point of view, network motif detec-
tion is a computationally intensive process. For instance,
current techniques cannot detect network motifs having
more than eight nodes. Motif detection requires three
hard computation subtasks: (1) counting the number of
subgraph instances, (2) grouping topologically equivalent
subgraphs in the same class and (3) generation of random
networks and comparison between observed and expected
subgraph frequencies. Subgraph sampling can be used to
accelerate the first task [11] but this technique is not accu-
rate and requires a costly bias correction [33]. Much work
has been done to efficiently group subgraphs having the
same topology [17]. In addition, we can efficiently assess

subgraph significance by comparing with theoretical es-
timations of the number of graphs with given degree se-
quence. This avoids the expensive, explicit generation of
random networks during the third task [33].

A handful of motifs appear to be shared by similar or
related types of networks. This is the case of Bi-parallel,
Bi-fan, the feed-forward loop (FFL) and its close variants
that appear both in electronic circuits and biological net-
works involving computations (i. e., transcriptional regu-
latory networks and neuronal networks). Such a common
point might be easily interpreted in functional terms: sim-
ilar subgraphs are abundant because they are selected or
chosen to perform a given function or task. This suggests
that we can classify complex networks into distinct func-
tional families based on the set of typical motifs. As shown
below, no evidence from statistical patterns supports this
view.

In this context, the significance profile (SP) enables
a classification of different networks according to their
motif abundances [14]. The significance profile is a vector
of normalized Z-scores defined as follows:

SP(˝i ) D
Z(˝i)

(
P

j Z2(˝ j))1/2
: (7)

This normalization emphasizes the relative impor-
tance of any given motif and enables a meaningful com-
parison across many different networks with a variable
number of nodes. Figure 5 shows the SP vectors for two
different types of networks using 3-size subgraphs. Al-
though this method was proposed to obtain similar classes
of networks, we must notice that networks with similar SP
of 3-size subgraphs have distinct SP of 4-size subgraphs.
This suggests that an effective network classification must
use SP of different subgraph sizes simultaneously. Still, it is
unclear what set of subgraphs is sufficient to discriminate
among all possible network classes. The limitation to the
maximum subgraph size handled by current motif detec-
tion algorithms may finally preclude the practical applica-
bility of SP-based network classification. In addition, the
comparison of real systems suggests the SP classification
is not always reliable. Networks with different functions
may have similar sets of motifs. Figure 5 shows that triad
significance profiles (TSP) for software networks [28] and
the transcription network in the bacteria E. coli [13] have
similar SPs but they are very different systems.

We may overcome some of the above limitations by
an adequate choice of the random network model used to
compute the Z-score (see Eq. (6)). For example, we can
assess the statistical abundance of subgraphs under differ-
ent considerations besides the fixed degree sequence. The
work in [8] showed that subgraph abundances of geomet-
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Motifs in Graphs, Figure 5
Triad significance profile (TSP) of networks representing the log-
ical software organization in several word-processor applica-
tions (above) and the direct transcription network in the bacteria
E. coli (below). Notice the remarkable similarity of TSP between
these functionally unrelated systems

ric networks, where the presence of links depends on the
spatial proximity of nodes, cannot be explained by spa-
tial embedding alone. On the other hand, the large-scale
network organization (i. e., described by the degree distri-
bution together with the hierarchical structure of the net-
work) alone might explain the natural frequencies of com-
mon motifs in biological networks [29]. Finally, standard
motif detection does not handle weighted networks, where
links have an associated level of activity, traffic flow or im-
portance. The topological motif definition can be extended
to take into account link weights. Here, the Z-score is re-
placed by the so-called motif intensity score and thus pro-
viding a dynamics perspective on subgraph importance.
[20] showed that weightedmotif definitions may consider-
ably modify the conclusions drawn from pure topological
statistics.

Dynamic Behavior of NetworkMotifs

We can further investigate the biological significance of
motifs by studying their dynamical properties. In this
context, a specific example of network motif, namely the
feed-forward loop motif in transcriptional regulatory net-
works, has received much more attention than other sys-
tems. This FFL motif can be decomposed into two dif-
ferent kinds, i. e., coherent and incoherent, depending on
the nature of individual interactions. Regulation links can
be positive (activation) or negative (repression). The FFL
is coherent (incoherent) if the overall sign of the indirect
path from the input to the output node has the same (dif-
ferent) sign as the direct link. The numerical analysis of
a specific instance of coherent FFL motif (i. e., with only
positive links and AND-like behavior of the joint regula-

tion of the output) shows this motif can filter out transient
or fluctuating input signals [23]. This theoretical predic-
tion was validated in experiments on motifs in real sys-
tems [15]. An extension of this work in [16] reported an
exhaustive analysis of the eight possible types of coher-
ent and incoherent FFL motifs in transcription networks.
Specifically, they found that incoherent FFL motifs speed
up the response time of the target gene expression follow-
ing stimulus steps in one direction (e. g., off to on) but not
in the other direction (on to off). This suggests the excess
of FFLmotifs might be explained in terms of selective pres-
sures towards robust functioning in noisy environments.

The above emphasizes the dynamics of motifs at the
local scale, where motifs are basic building blocks of func-
tional modules. However, the same network motif could
perform many different functions depending on global
system requirements. For example, robust functioning can
be achieved with flexible components that switch their
mode of operation to replace damaged or missing compo-
nents [27]. In general, the mapping between function and
structure is not unique but we can expect network topol-
ogy to strongly influence dynamics. For example, synthetic
models of brain networks suggest they are shaped in or-
der to maximize the number and diversity of network mo-
tifs [24]. Local structural variability allows a large space
of functional states. In this context, a related question is
what network features facilitate the emergence of collec-
tive synchronization (or the ability of the collective to co-
ordinate and form a global, coherent pattern). Numeri-
cal studies suggest the pattern of motif connections de-
termines its ability to synchronize, where denser network
motifs are more prone to synchronize than less connected
motifs [18].

Motifs as Fingerprints of Evolutionary Paths

An overabundance of some specific subgraphs seems
a reasonable evidence for some special role. This is of
course assuming that comparison is made against a ran-
dom version of the same system. Moreover, it also needs
assuming that changes in network structure are directly
related to selective pressures. Are the abundances of net-
work motifs evidence for such selection pressures? When
looking at the network organization, we surely will rec-
ognize some forms and shapes that can easily be inter-
preted as resulting from selective pressures. However, it
has been argued that not all patterns that we observe re-
sulting from evolutionary change are necessarily tied to
selective forces [12]. Such patterns are what evolutionary
biologists Stephen Jay Gould and Richard Lewontin called
spandrels [6]. The term spandrel was borrowed from Ar-
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Motifs in Graphs, Figure 6
Architectural and evolved spandrels. The left figure shows the ceiling of King’s College Chapel, in Cambridge. A spandrel is indicated
in a as surroundedby a yellowdashedline and appears profusely decorated. The network shown in b is the gene regulatorymap of E.
coli. Here nodes are genes and arrows point from a regulatory to a regulated gene. In c a specific motif, the so-called Feed-Forward
Loop (FFL) is shown. The location of this subgraph in the whole network is indicated in b bymeans of lighterarrows. Most FFL appear
together, forming larger, localized structures, which are the result of duplication events (see text)

chitecture. A spandrel is the space between two arches or
between an arch and a rectangular enclosure (an example
is depicted with discontinuous line in Fig. 6a). In evolu-
tionary biology, a spandrel is a phenotypic characteristic
that evolved as a side effect of a true adaptation. We can
summarize the features of evolutionary spandrels as fol-
lows:

1. They are the byproduct of building rules,
2. They have intrinsic, well-defined, non-random fea-

tures, and
3. Their structure reveals some of the underlying rules of

the system’s construction.

Looking at the picture in Fig. 6a, we can see that archi-
tectural spandrels are indeed well-defined, non-random
structures, arising as a side-consequence of a prior deci-
sion. Moreover, their geometric shape is fully constrained
by the dominant arches.

Let us now consider cellular networks as a case study.
Specifically, the patterns of protein interactions inside
cells. These networks are certainly functional structures
(as discussed in the Introduction) and are the result of
evolution. If we look at the abundance of given motifs,
we find that some of them (such as the FFL, Fig. 6c) are
more common than expected from chance (for example,
the FFL gives the “bump” in both top and bottom of Fig. 5).
On the other hand, looking at the presence of this mo-

tif on the network, we can see that these subgraphs ap-
pear clustered together. These clustered patterns are actu-
ally characteristic of all biological motifs in cellular webs.
What is the explanation for this structure? Let us forget
for a moment about functionality and just consider the
basic rules that make these networks grow. It is known
that the genome evolves by duplication and diversification.
Duplication refers to the accidental appearance of a redun-
dant copy of a given gene and diversification to the further
changes taking place in the wiring. Using a duplication
model we are actually considering an essential trait of bio-
logical evolution: it takes place through tinkering [10,25].
In this context, one important source of divergence be-
tween engineering (technology) and evolution is that the
engineer works according to a preconceived plan (in that
he foresees the product of his efforts) and second that in
order to build a new system a completely new design and
units can be used without the need to resort to previous
designs.

Jacob also mentions the point that the engineer will
tend to approach the highest level of perfection (measured
in some way) compatible with the technology available.
The main point is that natural selection does not work as
an engineer, but as a tinkerer, who knows what is going to
be produced but is limited by the constraints present at all
levels of biological organization as well as by historical cir-
cumstances. As shown below, tinkeringmight help explain
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how special subgraphs appear more commonly than ex-
pected by chance as a result of the extensive reuse of avail-
able parts.

Changes in wiring are associated to the emergence of
novelty and new functionalities. Below we consider such
simple approximation based on single-gene events. One
can use the simplest DDmodels of protein network evolu-
tion [25,30] which involves the following set of rules, to be
applied a given number of times, untilN nodes are present.
Assuming that we have a graph of size n, we iterate the fol-
lowing rules:

1. Duplication: choose a node at random and duplicate it,
thus generating a new node.

2. Link deletion: the new node shares a set of neighboring
nodes with its predecessor. For each common pair of
common links, we choose one of them and delete it with
some probability ı. This rule thus removes redundant
relations among proteins.

3. Link addition: a link is added among the chosen and re-
dundant nodes with probability ˛. This is a small num-
ber and allows new functionalities to emerge by linking
the twin proteins.

Tinkering by means of duplication and rewiring helps in
understanding how somemotifs might be so common and
why they appear together. In Fig. 7 we show some exam-
ples of how tinkering allows us to explain why some sub-
graphs are expected to bemore common.We can easily see
that some specific arrangements (such as the graph high-
lighted in green) are easily obtained by a single duplication
event. The architecture of cellular networks is not based on
geometry: Topology replaces geometry and substructures
need to be understood as subgraphs. Using the previous
set of rules, starting from a very small graph, it is very easy
to obtain a network similar to the one in Fig. 1a and with
exactly the same subgraph census, as displayed in Fig. 8. In
spite of the fact that the model does not consider possible
functional roles, the resulting network is very close to the
observed one, thus indicating that the topological patterns
are a byproduct of the growth rules.

From the previous definition, motif abundances need
to be understood as the spandrels of network biocomplex-
ity [26].Why? They follow the previous list: (a) their abun-
dance is matched by in silico models lacking real func-
tionality, and are thus a byproduct of the network build-
ing rules; (b) they exhibit highly non-random features at
several scales, and these are particularly obvious when
looking at the way in which motifs form clusters (Fig. 6b
and c). The aggregates strongly indicate that duplication-
rewiring processes, which generate the whole structure,
are also responsible for their presence and specific regu-

Motifs in Graphs, Figure 7
Duplication rules may explain natural motif frequencies. Here,
starting from a simple two-node system we generate different
subgraphs by means of duplication and rewiring rules

Motifs in Graphs, Figure 8
Subgraph census for the simple model of duplication and
rewiring. Here we used ı D 0:7 and ˛ D 0:1 and in a the ob-
served frequencies of subgraphs are shown, to be compared
with the ones found in human protein networks (inset, b)

larities. They result from the works of the tinkerer, and
their frequency and distribution within a given web have
no adaptivemeaning per se. The observation of a common
minimal subgraph is certainly interesting, but not relevant
in evolutionary terms, unless as integrated within a larger,
functionally relevant set of interacting units [26].

The picture provided by network biology is a multi-
scale one [2] and allows one to shift from the geometry of
architectural patterns to the no less fascinating universe of
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topological patterns. Evolutionary paths proceed through
extensive evolutionary tinkering, which largely influences
the architectural patterns to be found. The overall topol-
ogy of cellular maps includes a plethora of non-random
features, some of them not being functionally selected. As
the spandrels built by the architect, evolution plays the
role of a tinkerer unpurposely leading to network span-
drels. They include functional units, but the real relevance
of them is likely to reside in their combinatorial possibili-
ties, instead of intrinsic, individual properties.

Future Directions

The presence of subgraphs having a disproportionate
number of appearances open up the possibility of detect-
ing special properties of complex networks. They offer
a good way of classifying graphs into given groups and de-
termining the evolutionary paths that lead to such non-
random abundances. The previous examples illustrate just
one aspect of the possible spectrum of motif analysis, deal-
ing with topology. But networks are weighted, the nature
of the nodes is not uniform and in some cases we might
have dynamical information of how things change. Al-
though a pure topological perspective might not capture
all the desired traits, an appropriate choice of the infor-
mation contained in a subgraph might help in defining
real functional units. Future work should test how differ-
ent forms of defining motifs might overcome some of the
drawbacks of using pure topology. Moreover, it remains
open how motifs might somehow represent basic building
blocks of complex networks or are instead another level of
description of a nested hierarchy of complexity.
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Glossary

Camshift algorithm The Continuously Adaptive Mean
Shift (CAMSHIFT) algorithm is a tracking procedure

based on the mean shift algorithm that was developed
to cope with dynamically changing color probability
distributions derived from video sequences.

Kalman filter A dynamical system (filter) that estimates
the state of a linear system from measurements of its
outputs corrupted by Gaussian noise.

Linear matrix inequality Amatrix inequality of the form
A(x) :D

P
i xiAi � 0, where � 0 stands for negative

semidefinite. An LMI of this form defines a convex
constraint in the variables xi .

Mean shift algorithm A robust non-parametric tech-
nique for climbing density gradients to find the mode
(peak) of a probability density function.

Particle filter A sequential Monte Carlo method to ap-
proximate sequences of probability density functions
using a large set of random samples known as particles.
These particles are propagated over time using impor-
tant sampling and resampling techniques.

Robust identification A class of deterministic identifica-
tion techniques based on set descriptions of noise and
allowable systems. These techniques yield both a sys-
tem model compatible with the observed data and
a priori assumptions, and worst-case bounds on the
identification error.

Transfer matrix A (generically complex valued) matrix
that relates the Z-transforms of the input u(z) and
the output y(z) of a linear time invariant system:
y(z) D G(z)u(z).

Unscented Kalman filter Anonlinear estimationmethod
where the state distribution is approximated by
a Gaussian random variable chosen such that it cap-
tures the posterior mean and variance accurately up to
the 3rd order of their Taylor series expansion.

Unscented particle filter A particle filter that uses an un-
scented Kalman filter to generate the importance pro-
posal distribution for nonlinear non-Gaussian on-line
estimation.

Introduction

Recent hardware developments have rendered dynamic
vision – the confluence of computer vision and control–
a viable option for a large number of applications, rang-
ing from surveillance and manufacturing to assisting in-
dividuals with disabilities. This article discusses one of the
critical issues currently limiting widespread use of these
systems, namely their potential fragility when operating in
dense, cluttered environments, and shows that robustness
can be substantially enhanced by exploiting the predictive
power of dynamicmotionmodels learned from scene data.
The article is organized as follows: Sect. “Definition of
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the Subject” provides a brief overview of the subject. Sec-
tion “Introduction” illustrates, with a simple example, the
robustness challenges faced by dynamic vision methods
when operating in cluttered, partially stochastic environ-
ment, and shows how to address these challenges through
the use of dynamic motion models. These ideas are further
developed in Sect. “Illustrative Examples”, providing sev-
eral examples that include inter-frame tracking, robustifi-
cation of existing methods by incorporating motion mod-
els, and dynamic appearance modeling. Sections “Sum-
mary”, “Future Directions” and “Background Results on
Linear Spaces and Robust System Identification” summa-
rize the issues discussed in the article, briefly covered some
open issues and directions for further research, and sug-
gest additional references, respectively. Finally, in order to
make the article self-contained, we include an Appendix
summarizing the key results in Linear Vector Spaces and
Robust Identification used in the chapter.

Definition of the Subject

Dynamic vision and imaging – the confluence of com-
puter vision and control – is uniquely positioned to en-
hance the quality of life for large segments of the gen-
eral public in a cost effective way. Aware sensors endowed
with moderate tracking and scene analysis capabilities can
prevent crime, reduce time response to emergency scenes
and allow elderly people to continue living independently.
Enhanced imaging methods can substantially reduce the
amount of radiation required in medical imaging proce-
dures and in cancer therapy. Moreover, the investment re-
quired to accomplish these goals is relatively modest, since
a substantial portion of the necessary hardware infrastruc-
ture already exists, since a large number of imaging sen-
sors are already deployed and networked. For instance, the
number of outdoor surveillance cameras in public spaces
is already large (10,000 in Manhattan alone), and will in-
crease exponentially with the introduction of camera cell
phones capable of broadcasting and sharing live video
feeds in real time. Thus, dynamic vision and imaging is
arguably one of the few areas where both further advances
and widespread field deployment are being held up not by
the lack of a supporting infrastructure, but the lack of sup-
porting theory. The challenge now is to develop a theoreti-
cal framework that allows for robustly processing this vast
amount of information, within the constraints imposed
by the need for real time operation in dynamic, partially
stochastic scenarios. The goal of this chapter is to illus-
trate the central role that dynamicmodels and their associ-
ated predictions can play in developing a computationally
tractable robust dynamic framework, ultimately leading to

vision-based systems with enhanced autonomy, capable of
operating in stochastic, cluttered environments.

Introduction

In the past few years, dynamic vision systems – i. e. sys-
tems incorporating vision as an integral part of the deci-
sion making process – have emerged as a viable option for
a large number of applications, ranging from vision–based
assembly [1,2,3,4,5] to vision–assisted surgery [6,7,8,9,10],
assisting individuals with disabilities [11,12,13,14], and in-
telligent vehicle highway systems [15,16,17,18].

A requirement common to most dynamic vision ap-
plications, including the ones cited above, is the ability to
track objects in a sequence of frames. This problem has
been extensively studied in the past few years, leading to
several techniques. Some of these techniques can track un-
known objects [19,20,21,22,23,24,25], while others require
prior knowledge of the target [26,27,28,29,30]. Orwell et
al. [31] andCollins et al. [32] use color to track objects with
multiple cameras. Hager and Toyama [33] track primi-
tive features within small regions of interest (ROI) that
are warped and matched against canonical configurations.
Reid and Murray [34] use affine structure to track clus-
ters of corners. Calabi et al. [19] use differential invariant
signature curves to track objects. Cipolla and Blake [35]
use estimates of the divergence and the deformation of
closed contours to guide a robot manipulator. Blake and
Isard [36] use active contours and geometrical constraints
to model the likelihood of their deformations.

Correspondences between individual frames are usu-
ally integrated over time to improve robustness by exploit-
ing the dynamical properties of the target. Kalman filter-
based trackers use a model of the target dynamics and
the probability distribution of the process and measure-
ment noise to produce estimates of the future positions of
the target based on (noisy) measurements of its past loca-
tions. Condensation trackers and unscented Kalman Fil-
ters [37,38,39] generalize Kalman filter-based ones by al-
lowing more general (multimodal, nonlinear) models. In
this case, analytical propagation is not longer possible and
numerical methods must be used instead.

Most trackers assume a simple dynamic model such
as a system moving with constant velocity. While success-
ful in many scenarios, this approach suffers from the fact
that the tracker must rely on the assumed model of the
target dynamics to produce estimates of its future posi-
tions, introducing a potential source of fragility. A mis-
match between this model and the actual dynamics will
lead to incorrect predictions (this is the well known di-
vergence phenomenon, see for instance [40], page 133).
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Motion Prediction for Continued Autonomy, Figure 1
Kalman (top) and Unscented Particle Filter (bottom) based tracking of a jumping individual in the presence of occlusion

This lack of robustness is shown in Fig. 1 where the effects
of clutter are illustrated. As shown there, both a regular
Kalman filter-based tracker and an Unscented Particle Fil-
ter (UPF), lose the target (a jumping individual) in frame
95, due to occlusion.

The objective of this chapter is to show that all of the
issues noted above can be addressed by using a model of
the target motion to predict a region that is guaranteed to
contain it in the future (assuming that its motion modal-
ity does not change). These models can be efficiently ob-
tained from the available data – past target positions, a pri-
ori information onmotionmodalities, if available, etc. – by
exploiting robust identification methods developed in the
control community during the past decade. As we illus-
trate in this chapter with several examples, this approach
leads to systems capable of successfully tracking targets in
the presence of substantial clutter, occlusion and even ap-
pearance changes. Thus, incorporating these algorithms in
the control loop, leads to systems with increased auton-
omy, capable of successfully operating in dense, complex
environments with minimal intervention from human op-
erators.

Notation

In this chapter, dynamic properties of targets – such as
time evolution of features or appearance, will be repre-
sented using dynamical linear models such as the one
shown in Fig. 2. The model responds to some input sig-
nal u, with outputs y. The outputs are sequences of time
values of measured quantities, such as the target position,
size, or gray value.

Motion Prediction for Continued Autonomy, Figure 2
Linear operator Swith input u and output y

From an input–output viewpoint any linear model of
interest S will be represented by its convolution kernel
fsi; jg or by an infinite lower block triangular matrix TS
mapping (vector) sequences:
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When dealing with input–output sequences on the hori-
zon [0; n � 1], we will use the finite upper left submatrix
of n � n, Tn

S , obtained from the infinite matrix above.
In the sequel, we will also represent finite dimensional

Linear Time Invariant (LTI) systems by using either amin-
imal state–space realization:

xkC1 DAxk C Buk

yk DCxk C Duk
(2)

where the vectors x;u and y represent the states, inputs
and measurements, respectively, and where A;B;C andD
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are matrices of appropriate dimensions. Occasionally, we
will also use as an alternative representation (rational)
complex-valued transfer matrices:

S(z) :D
1X

kD0

skzk ;

where the coefficients sk of the expansion are called the
Markov parameters of S(z). It is a well known fact that the
coefficient sk coincides with the impulse response of S at
the kth time instant.

Finally, we summarize below some additional notation
used in this chapter:

x real–valued (unless otherwise stated) column
vector.

xk kth element of a vector x.
kxkp p-norm of a vector: kxkp

:
D

�Pm
kD1 jxkj

p 1
p ;

p 2 [1;1), kxk1
:
D maxkD1;:::;m jxkj.

	 (A) maximum singular value of the matrix A.
A > 0 A D AT is positive definite, i. e. xTAx > 0

8x 6D 0.
BX() open �-ball in a normed spaceX:
H1 Linear space of complex-valued matrix functions

with bounded analytic continuation inside the
unit disk, equipped with the norm: kGk1

:
D

supjzj<1 � (G(z)).

Using Predictive Models for Multiframe Tracking

In this section we briefly present an algorithm for identi-
fying predictive motion models and using these models in
the context of multiframe tracking. For the sake of clar-
ity, the theoretical foundations of the algorithm are post-
poned to the Appendix. The starting point is to express the
present value of a given target feature f (for instance the
position of the centroid) as the output of an unknown lin-
ear system, represented by a modelF , excited by a suitable
input, e. g.:

f (z) D F(z)e(z) ; y(z) D f (z)C �(z) (3)

where e represents a suitable driving signal, and f and y de-
note the value of the feature and its measurement, cor-
rupted bymeasurement noise �, respectively. In the sequel,
we will assume that the following a priori information is
available:

(a) A set membership description of the measurement
and process noise: �k 2N and ek 2 E. These sets can
be used to impose correlation constraints.

(b) The modelF admits a finite expansion of the form

F D

Fp
‚ …„ ƒ
NpX

jD1

p jF j CFnp :

Here F j are Np known, given models that contain all
the information available about possible modes of mo-
tion of the target. An example of this situation is track-
ing moving persons where the F j can be obtained
off-line by training with a representative set of mo-
tions [27,42]. If this information is not available the
problem reduces to purely non-parametric identifica-
tion by settingF j � 0. The second termFnp accounts
for dynamics not captured by the models F j . Thus,
it can be interpreted as the “approximation error” in-
curred when approximating F byFp .

(c) The magnitude of the impulse response of Fnp is
bounded above by k fnp(t)k2 � K�t for some known
� � 1 and some K > 0, where fnp(t) denotes the value
of the impulse response ofFnp at time t.

In this context, the next value of the target feature yk can
be predicted by first identifying the system F and then
using it to propagate its past n values. In turn, identi-
fying the system entails finding a model F(z) 2 S :

D˚
F(z) : F D Fp C Fnp

�
such that y � � D F e, precisely

the class of identification problem addressed in [43] and
briefly discussed in the Appendix. As shown there, such
a model exists if and only if the following set of equations
in the variables p;h and K is feasible:

MR(h) D
�
R2
� TT

h
Th K2R�2�

�
� 0 (4)

y � TuPp � Tuh 2N (5)

where Tx denotes the Toeplitz matrix associated with
a given sequence x D [x1; : : : ; xN], R�

:
D diag [1� � � � �N ],

P :
D [ f 1 f 2 � � � f Np], where f i is a column vector con-

taining the first n Markov parameters of the ith transfer
function Fi(z), and where h contains the first n Markov
parameters of Fnp(z).

In addition to providing an estimate of the next value
of the target feature, this approach also has the following
advantages:

(1) Model (in)validation: Assume that the set N is
described by a set of Linear Matrix Inequalities
(LMIs) [44] of the form:

N :
D

(

� 2 <N : L(�) D L0 C
NX

kD1

Lk�k�1 � 0

)

(6)
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where Li are given real-valued symmetric matrices.
Then Eqs. (4)–(6) reduce to a set of LMIs in the vari-
ables h;� and K2. This allows for finding the mini-
mum value of K2 such that the LMIs (4)–(6) are feasi-
ble. In turn, this value can be used as a “sanity check”
to assess the quality of the approximation. A large
value of K indicates that the non-parametric portion
of the modelFnp does not provide a good description
of the value of the feature, indicating that it may be
necessary to re–identify the set

˚
F i�. Infeasibility of

the LMIs indicates that the experimental data is not
compatible with the a priori assumptions, possibly in-
dicating either (i) a new target activity not described
by elements of the set fF ig or (ii) the target enter-
ing a region where the noise and clutter models are
no longer compatible with the description (6). Either
case points to the need for re-assessing the a priori in-
formation.

(2) Worst-case estimates of the prediction error By con-
struction, the operator found from the solution to
the LMIs (4) is such that its response to the input e
interpolates, within the experimental noise level �k ,
the given value of the feature fk ; k D 0; 2; : : : ;N � 1.
However, when used to predict the future value of the
feature, it is of interest to obtain bounds on the worst
case prediction error. This can be accomplished as fol-
lows: Given a sequence fykgN�1kD0 of measurements of
the value fk of the feature, define the consistency set
as:

T (y) :D
˚
F 2 S : fyk � (F  e)kgN�1kD0 2N

�
(7)

i. e., the set of all models consistent with both the
a priori information and the experimental data. Note
that the proposed method is interpolatory, that is,
it always generates a candidate operator Fid 2 T (y).
Thus, since the “true” operator Fo that maps the in-
put e to the feature values f must also belong to the
consistency set (see the Appendix) it follows that,
given the first N measurements yi ; i D 0; : : : ;N � 1
a bound on the worst case prediction error over the
horizon [0;M � 1], M > N, is given by:

kf̂ � fk`1[0;M�1] � sup
y

d
�
T (y)

�
D D(I) (8)

where d(:) and D(I) denote the diameter of the set
T (y), in the `1[0;M � 1] metric and the diameter of
information, respectively. Moreover, since the a pri-
ori sets (S;N ) are convex and symmetric, with points
of symmetry Fs D 0 and �s D 0 respectively, it can be

shown (see the Appendix) that:

D(I) � 2 sup
F2S(0)

kFk`1[0;M�1] (9)

where S(0) denotes the set of operators compatible
with the zero outcome: yk D 0; k D 0; 1; : : : ;N � 1.
As we will illustrate in the sequel with a simple exam-
ple, computing this bound reduces to a convex opti-
mization problem.

Illustrative Examples

In this section we illustrate the use of predictive mod-
els identified from image data with several examples. In
the first one we consider, for the sake of simplicity, static
tracking, and indicate how to use these models to both
predict future locations of the target and obtain worst
case bounds on the prediction error. In the remainder
of the examples we show how to combine these models
approach with existing Kalman and UPF techniques to
improve robustness. In all cases, the feature values were
measured using an implementation of the Camshift algo-
rithm in OpenCv [45]. The video sequences for these re-
sults as well as additional examples are available at http://
robustsystems.ee.psu.edu.

Inter-Frame Tracking and Prediction

In this example we consider the problem of predicting the
location of the centroid of the child shown in Fig. 3, from
past measurements of its coordinates, (xk ; yk), corrupted
by uncorrelated noise, �. For the sake of briefness we re-
port below only the results for the x coordinate, since those
for y are similar.

The following a priori information was used:

1. N D f� : k�k1 � 5:5g (This value was quantified
from fluctuations in the data takenwhen the person was
at rest).

2. E D ı(0), i. e. motion of the target was modeled as the
impulse response of the unknown operator F (this is
equivalent to lumping together the dynamics of the
plant and the input signal)

3. The parametric part of the model Fp 2 span(G);
G(z) :D [ z2

z2�2zC1 ;
z

z2�2zC1 ]
T

4. The reminder, nonparametric component, which ex-
plains the unmodeled dynamics has an exponential de-
cay with rate � D 0:99.

The experimental a posteriori data consisted of the first
N D 12 frames of the sequence. The resulting LMI prob-

http://robustsystems.ee.psu.edu
http://robustsystems.ee.psu.edu
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Motion Prediction for Continued Autonomy, Figure 3
Robust identification based tracking (black cross) versus Mean Shift (white cross)

Motion Prediction for Continued Autonomy, Table 1
Id error as a function of k. Target width is 30 pixels

Sample 13 14 15 16 17 18 19 20
Mean-Shift 25.90 35.93 41.32 45.63 54.65 57.53 65.05 64.80
Id-based 8.87 6.14 10.04 13.03 10.31 15.72 19.50 26.04
Worst case bound 13.00 15 17 19 21 23 25 27

lem was solved using MATLAB’s LMI Toolbox, leading to
Kopt D 1:35e�12 and p D [127:7763 � 135:0723]T. Note
that the very low value of K indicates that indeed the para-
metric part Fp provides an accurate model of the dynamics
of the target.

The advantage of using the predictive power of the
identified models is illustrated in Fig. 3, comparing the
position of the centroid predicted by the model without
using new measurements (black crosses), against the re-
sults of using a Mean Shift based tracking new measure-
ments (white crosses) implemented in Intel’s Open Source
Computer Vision Library [45]. Although Mean Shift is de-
signed to improve tracking robustness by exploiting color
information [46], it begins to track poorly in frame 19,
and by frame 21 it has completely lost the target due to
a combination of clutter andmoderate occlusion. The cor-
responding numerical values of the error, computed as the
difference between the predicted and actual values, ob-
tained using off-line image processing, are given in Ta-
ble 1. As shown there, the identified model is able to pre-
dict the location of the target, far beyond the point where
the Mean Shift tracker has failed.

Finally, notice that in this case computing the worst
case prediction error bound (9) reduces to a Linear Pro-
gramming problem in p D [p1 � � � pNp ]T and h D

[h0 � � � hN ]T. The last row in Table 1 shows the error
bounds as a function of k. As expected these values in-
crease with time, since no new data is being used beyond
k D 12. However, they became comparable with the width
of the target (30 pixels) only beyond k D 20.

Improving Robustness of Kalman and UPF Trackers

In this section we present several examples to illustrate
how to use the identifiedmodels to improve the robustness
of trackers, such as Kalman and UPF, that rely on a com-
bination of past measurements and the dynamics of the
target to estimate its future location. Proceeding as in the
previous example, we used a combination of a priori infor-
mation:

1. 5% noise level
2. E D ı(0), i. e. motion of the target was modeled as the

impulse response of the unknown operator F
3. Fp 2 span[ 1

z�1 ;
z

z�a ;
z

(z�1)2 ;
z2

(z�1)2 ;
z2�cos!z

z2�2 cos!zC1 ,
sin!z2

z2�2 cos!zC1 ]
where a 2 f0:9; 1; 1:2; 1:3; 2g and ! 2 f0:2; 0:45g

4. The reminder, nonparametric component, which ex-
plains the unmodeled dynamics has an exponential de-
cay rate with � D 0:99

and the a posteriori measurements from N D 20 frames,
where the targets were not occluded, to estimate their dy-
namics. These dynamics were then used in conjunction
with a Kalman filter, leading to the results shown in Figs. 4
to 11.

Figure 4a shows tracking results using a Kalman filter
based on the identified models for the sequence previously
shown in Fig. 1. Using the predictive power of this model,
the Kalman filter is now able to track the target past the
casual occlusion. Figure 4b illustrates the robustness of the
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Motion Prediction for Continued Autonomy, Figure 4
Combination of Kalman and CF based tracking in the presence of occlusion a Casual occlusion. bMalicious occlusion

approach on a similar sequence but with “malicious” oc-
clusion – i. e. the occluding person is making an effort to
hide the target from the camera.

It is worth mentioning that consistent experience sug-
gests that, for a given target and gait type, it is not nec-
essary to re–identify the dynamics of the target for each
sequence. For instance, the results at the bottom of Fig. 4
were obtained using the dynamics identified using the top
sequence.

Figures 5 and 6 show examples tracking a paper plane
and a bouncing ball, respectively. Figures 5a and 6a show
the results of tracking these targets using a Kalman filter
combined with simple constant velocity dynamics. In both
cases, the tracker fails to recapture the target after it is oc-
cluded. Figures 5b and 6b show that this problem is over-
come when the Kalman filter is combined with the iden-
tified models. In both examples, the blue trajectory corre-
sponds to the frames used during the identification and the
green trajectory corresponds to the trajectory “predicted”
by the tracker.

Dynamic Appearance Modeling

Arguably, one of the most important challenges that needs
to be solved in order to successfully track a target is to
overcome changes to its appearance that might occur over
time. These changes, including size, shape and color can be
due to several factors such as targetmotion, self-occlusion,
target articulations, and changes in illumination. Most
tracking algorithms focus on the target position and only
address changes in appearance indirectly by using prob-

abilistic methods to compare the target to some nominal
template using for example pixel statistics [45,46,47,48].
Other techniques focus on building adaptive appearance
models [49] or use linear subspaces [23,26,50]. For exam-
ple, Jepson et al. [49] use an online EM algorithm to adapt
the appearance of a target template over time. Hager and
Belhumeur [23], Black and Jepson [26] and Ho et al. [50],
among others, learn target appearance models using lin-
ear subspaces. While successful in many scenarios, these
approaches suffer from the fact that the obtained models
tend to be too rigid and fail to capture the dynamics of the
appearance changes.

The effects of appearance change on tracking algo-
rithms is illustrated in Fig. 7, showing a few frames from
a sequence where a blue and red football is tossed in the
air. The two rows show results for tracking the ball using
a combination of a Kalman Filter with motion dynamics
identified using the algorithm outlined in the previous sec-
tion, a combination shown there to be quite robust in the
absence of appearance changes. In the first row, the mea-
surements were obtained usingmean shift [45] to compare
the color distribution of the target against its initial distri-
bution. Since initially, only the blue side of the ball is vis-
ible, this approach fails to track the ball when it becomes
red. In the second row, the measurements were obtained
by using a search window where the color distribution is
updated using the previous frame. While this approach
can cope with color change as long as the ball remains vis-
ible, it fails to recover after the ball is occluded. This is due
to a combination of two facts: i) the visible color of the ball
at the time when the ball comes out from below the table
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Motion Prediction for Continued Autonomy, Figure 5
Paper airplane example. a Kalmanbased tracking using constant velocity dynamics.b Combination of Kalman and identifiedmodels
based tracking

Motion Prediction for Continued Autonomy, Figure 6
Bouncing Ball Example. a Kalman based tracking using constant velocity dynamics. b Combination of Kalman and identified models
based tracking

(red) is different to the visible colors just before the occlu-
sion (blue) and ii) the binder on the table is similar in color
to the blue on the ball.

The difficulties illustrated above suggest the need for
more sophisticated dynamic appearance models that in-
corporate multiframe time–evolution information and
have better predictive capabilities. These descriptions can
be obtained by modeling the evolution of relevant appear-
ance descriptors as the trajectories of a dynamical system.

In turn, these dynamics can be obtained using the same
robust identification approaches employed to identify the
motion dynamics. This idea is illustrated next with several
examples.

Consider first the problem of tracking the multicol-
ored football shown in Fig. 7. In this case, the bin counts
of the hue histogram of the target was used as appearance
descriptors. These histograms were computed in small re-
gions determined by amean shift algorithm comparing the
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Motion Prediction for Continued Autonomy, Figure 7
Color statistics from the first frame (top) and from the previous frame (bottom) fail to track a red and blue ball

hue values of the region against the current estimates of
the hue histograms. Proceeding as described in the previ-
ous section, we used a combination of a priori informa-
tion:

1. 10% noise level for the appearance parameters and 3%
for the location coordinates of the target.

2. E D ı(0), i. e. the histogram bin counts and the loca-
tion coordinates of the target were modeled as the im-
pulse response of unknown operators F

3. The parametric parts of the operators must sat-
isfy: Fp 2 span[ 1

zC1 ;
z

(z�1)2
z2�cos!z

z2�2 cos!zC1 ] where
! 2 f0:1; 0:12; 0:55g

4. A nonparametric component with an exponential de-
cay rate � D 0:99

and the a posteriori measurements from N D 21 frames,
where the target was not occluded, to estimate their dy-
namics. These dynamics were then used in conjunction
with Kalman filters, leading to the results shown in Figs. 8
and 9, the latter showing close agreement between the ac-
tual appearance of the ball and the model prediction. Note
that there are no measurements while the ball is occluded
by the table, but once they become available again, there
is a close match betweenmeasurements and predicted val-
ues.

The second example illustrates the use of identifica-
tion methods to track a target whose size changes as it ap-
proaches the camera. As shown in Fig. 10, a conventional
approach fails here due to a combination of occlusion and
size change. This difficulty can be solved by using identi-

fied models that capture not only the dynamics of the mo-
tion, but also the dynamics of the change in size. The latter
can be accomplished by using as appearance descriptors
the vertical and horizontal sizes of a box around the tar-
get, found by comparing the hue histogram of the target
against the initial hue histogram with a mean shift algo-
rithm (i. e. assuming that the colors of the target are ap-
proximately constant). Figure 11 shows that the resulting
tracking algorithm is able now to recover the target after
the occlusion and predict its correct size.

Finally, it should be noted that a salient feature of these
results is the fact that the combination Identified Mod-
els/Kalman Filter can substantially outperform the perfor-
mance of a (substantially more complex) Unscented Par-
ticle Filter (UPF) acting alone. Thus the use of identi-
fied models can both improve robustness and alleviate the
computational complexity of the problem.

Summary

In the past few years dynamic vision techniques have
proved to be a viable option for a large number of ap-
plications, ranging from surveillance and manufacturing
to assisting individuals with disabilities. Arguably, at this
point one of the critical factors limiting widespread use of
these techniques is the potential fragility of the resulting
systems. This chapter shows that in the case of multiframe
tracking this fragility can be addressed by using predic-
tive motion models identified from the image data using
robust identification tools recently developed in the con-
trol community. The advantages of this approach, and in
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Motion Prediction for Continued Autonomy, Figure 8
Identification-based dynamical appearancemodel. Tracking using dynamical appearance and motion models of a red and blue ball
is successful, even in the presence of occlusion. See text for details

Motion Prediction for Continued Autonomy, Figure 9
Measurements and estimated values using identified models of the a blue, and b red bin counts of the hue histogram of the ball
shown in Fig. 8 as it flies in front of the camera

Motion Prediction for Continued Autonomy, Figure 10
Tracking an approaching car using a Kalman based tracker based constant velocity assumption
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Motion Prediction for Continued Autonomy, Figure 11
Approaching car example. An increasing size car is successfully tracked in the presence of occlusion by using robust identification to
obtain a predictivemodel for the size and the motion dynamics of the target

particular its potential to result in robust algorithms when
combined with existing tracking techniques was illustrated
with several experimental results.

Future Directions

As illustrated in this chapter, the use of predictive motion
models can substantially enhance the robustness of dy-
namic vision systems, allowing for successful autonomous
operation in complex scenarios. However, the computa-
tional complexity entailed in finding these models grows
rapidly with the amount of data available, a situation aris-
ing for instance when attempting to track multiple targets
and/or combine information from several non-overlap-
ping sensors. Recent research (see for instance [51,52,53]
suggests that a substantial reduction in computational
complexity can be achieved by combining the identifica-
tion techniques discussed in this chapter with machine
learning and non-linear dimensionality tools to embed the
problems in lower dimensional spaces. However, further
research is required in order to develop a systematic pro-
cedure for finding optimal embeddings. In addition, the
algorithms described here assume that the motion of the
target can be adequately captured by a linear time invari-
ant model. While this assumption holds in many cases, it
will fail when the motion modality changes. An example
of this situation is a person who switches from walking to
running. Addressing this case requires extending the iden-
tification tools presented here to the case of switched (or
piecewise) linear systems. While this problem is currently
the object of considerable interest in the control commu-
nity, a comprehensive solution is not yet available.
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Appendix: Background Results on Linear Spaces
and Robust System Identification

In this appendix we summarize, for ease of reference, the
background results on linear spaces and robust identifica-
tion used in this chapter.

Linear Spaces

Algebraic structures are instrumental in understanding
many problems arising in systems theory from an abstract
point of view. In particular these tools are required to for-
malize and solve the optimal filtering and estimation prob-
lems arising in the context of multiframe tracking.

Field

Definition 1 A field (F ;&; ?) is an algebraic structure
composed of a setF and two operations & andF with the
following properties:

1. Set F is closed with respect to &, i. e. a; b 2 F H)

(a&b) 2 F .
2. Operation & is associative, i. e. (a&b)&c D

a&(b&c) D a&b&c for a; b; c 2 F .
3. Operation & is commutative, i. e. a&b D b&a for

a; b 2 F .
4. Set F contains the neutral element n& with respect to

&, that is, there exists n& such that a&n& D a for all
a 2 F .

5. Set F contains the inverse element aI& with respect to
&, that is, for all a 2 F there exists aI& 2 F , such that
a&aI& D n&.

6. Set F is closed with respect to F.
7. Operation F is associative.
8. Set F contains the neutral element n? with respect

to F.
9. Set F contains the inverse element aI? with respect

to F.
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10. Operation F is distributive with respect to &, i. e.
(a&b) ? c D (a ? c)&(b ? c) for a; b; c 2 F .

An example of a field is the set R of the real numbers,
equipped with operations (C;�) as (&; ?) respectively.
Here n& D 0, n? D 1, aI& D �a and aI? D a�1 (a ¤ 0).

Linear Vector Space

Definition 2 A setV is a linear vector space over the field
(F ;C;�) if and only if the following properties are satis-
fied (in the sequel the elements of F and V will be called
scalars and vectors respectively):

1. SetV is closed with respect to +.
2. Operation + is associative inV .
3. Operation + is commutative inV .
4. SetV contains the neutral element with respect to +.
5. SetV contains the inverse element with respect to +.
6. V is closed with respect to operation × between

scalars and vectors.
7. Operation × among scalars and vectors is associative

in the scalars, i. e. (a�b)�v D a� (b�v) D a�b�v
for a; b 2 F and v 2 V .

8. Distributive 1: (aC b) � v D (a � v)C (b � v) for
a; b 2 F and v 2 V .

9. Distributive 2: (u C v) � a D (u � a)C (v � a) for
a 2 F and u; v 2 V .

10. Field F contains the neutral element of operation ×
between vectors and scalars, i. e. n� � v D v for n� 2
F and v 2 V .

Examples of linear spaces over the field of real numbers
are the set of matrices in Rn�1 and the set of sequences of
real numbers, both equipped with the usual addition and
scalar multiplication operations. The former is an exam-
ple of a finite dimensional space, while the latter could be
finite or infinite dimensional depending upon whether fi-
nite or infinite sequences are considered.

Metric, Norm and Inner Products

Definition 3 A metric space (V ;m(�; �)) is defined in
terms of a linear vector space V and a real function (the
“metric”) m(�; �) : V �V ! RC, satisfying the following
conditions:

1. m(x; y) � 0 8x; y 2 V .
2. m(x; y) D 0 () x D y.
3. m(x; y) D m(y; x) 8x; y 2 V .
4. m(x; z) � m(x; y)C m(y; z) 8x; y; z 2 V .

Here RC
:
D fx 2 R; x � 0g.

Definition 4 A normed space (V ; k � k). is defined in
terms of a linear vector space V and a real function
k � k : V ! RC that satisfies the following conditions:

1. kxk � 0 8x 2 V .
2. kxk D 0 () x D 0.
3. k˛xk D j˛j � kxk 8x 2 V ; ˛ 2 F .
4. kx C yk � kxk C kyk 8x; y 2 V .

Here j � j represents the magnitude of a scalar.
The following are examples of normed spaces:

1. The linear space of n-dimensional real vectors,
equipped with the norm:

kxkp
:
D p

vuut
nX

iD1

jxi jp p � 1 (10)

kxk1
:
D max

1�i�n
jxi j (11)

2. The linear space of real sequences, equipped with the
norm:

kxkp
:
D p

vu
ut
1X

iD1

jxi jp p � 1 (12)

kxk1
:
D max

i�1
jxi j (13)

Robust Identification

The field of system identification concerns itself with
mechanisms and algorithms that process finite, partial,
and corrupted data to yield abstract mathematical descrip-
tions of real world systems.

Traditional identification approaches [55,56] assume
that the data is corrupted by a stochastic process with
known statistical properties and that the system to be iden-
tified has a prescribed model structure. Most of these iden-
tification procedures are based on least squares methods
that estimate the parameters of the hypothesized models
from the corrupted measurements. In these approaches
the only source of uncertainty is the noise in the measure-
ments while the prescribed model is assumed to be an ac-
curate representation of the real system.

In many situations, for example when measurements
are known within an accuracy range or when the avail-
able statistical information might be questionable, deter-
ministic bounded noise descriptions are a practical and
sound alternative to stochastic ones. Using this approach,
the problem of system identification can be formulated
as finding the sets of parameter values that are consistent
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with the known noise bounds. A survey of set member-
ship formulations for system identification can be found
in [57].

Noise description is only one of the factors affecting
the quality of an identified model. Perhaps a more im-
portant factor is the unrealistic presumption that a fixed
model structure may fully represent the system to be iden-
tified: In practice, only partial information of the physical
system is available,model parameters might change due to
different operation conditions, and real systems are often
too complex to be accurately modeled from first princi-
ples. These issues are addressed by robust system identifi-
cation, which departs from traditional approaches by us-
ing a deterministic worst-case approach with no prior as-
sumption about the order of the system. Instead, robust
identification procedures are based on a priori assump-
tions on the class of systems and noise and on the a posteri-
ori experimental data. Using this information robust sys-
tem identification algorithms find nominal models based
on the experimental data and worst-case identification er-
ror bounds over the set of models defined by the a priori
information.

Information Consistency and Diameter of Information
Due to the fact that the assumed a priori information is, in
general, a quantification of the engineering common sense
or simply a “leap of faith”, there is no guarantee that it will
be coherent with the a posteriori experimental data. Thus,
robust identification procedures must always first test the
consistency of both types of information.

Consistency can be better understood by considering
the set of all possible models which could have produced
the a posteriori data y, in accordance with the class of sys-
tems S and the measurement noise � 2N :

T (y) :D fg 2 S j y D E(g; �); � 2N g

where E(:; :) is the “experiment” operator. Intuitively, the
a priori information and the a posteriori experimental data
are consistent if there exists at least one element in S that
could have generated the observed experimental data. This
concept is formalized in the next definition:

Definition 5 The a priori information (S;N ) is consis-
tent with the experimental a posteriori information y if
and only if the set T (y) is nonempty.

Once consistency has been established, the computation
of a nominal model and a valid model error bound can be
attempted. There are two different types of algorithms to
accomplish this. The first type of procedures [58,59] are
guaranteed to converge, even when the information avail-

able is inconsistent. However, they might result on a nom-
inal model outside the consistency set. The second type
of procedures, and the type we use in the sequel, are in-
terpolatory algorithms [60]. As we show next, these algo-
rithms are always guaranteed to converge as the informa-
tion is completed. Moreover, they are optimal to a factor
of 2, in the sense that their worst-case error is never larger
than twice the minimum achievable error over the set of
all identification algorithms.

Worst Case Identification Error A salient feature of
robust identification is its ability to provide worst-case
bounds on the identification error. Given an identification
algorithmA mapping the a priori and a posteriori infor-
mation to candidate nominal model, its local error is de-
fined as follows:

e(A; y) D sup
g2T (y)

m
�
g;A(y;S;N )

�
(14)

that is, the maximum distance between the identified set
and any other plant in the set T (y). Note that this error is
related to the outcome of a specific experiment y. A global
error can be defined by considering the worst–case error
over the set of all possible experimental outcomes:

Definition 6 The worst case global error of a given algo-
rithmA(y;S;N ) is given by:

e(A) D sup
y2Y

e(A; y) (15)

where Y is the set of all possible experimental data, consis-
tent with sets S andN .

Next we briefly review how to obtain mathematically
tractable bounds for these errors. Recall that the set
T (y) � S is the smallest set of models that are indistin-
guishable from the view point of the input information.
Therefore, roughly speaking, its size gives lower and upper
bounds on the identification error defined above. In order
to formalize these ideas and obtain computable bounds we
need to introduce the following concepts:

Definition 7 The radius and diameter of a subset A of
a metric space (X;m) are

r(A) D inf
x2X

sup
a2A

m(x; a)

d(A) D sup
x;a2A

m(x; a) :

The radius can be interpreted as the maximum error, mea-
sured in the metric m(:), when considering the set A as
represented by a single “central” point (which might not
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belong toA). The diameter is the maximum distance be-
tween any two points in the set. Based on these concepts
of radius, we next quantify the “size” of the available infor-
mation.

Definition 8 The radius and diameter of information are
defined as:

R(I) :D sup
y2Y

r[T (y)]

D(I) :D sup
y2Y

d[T (y)]

where Y is the set of all possible experimental data consis-
tent with the sets S andN :

Y :
D fE(g; �) j g 2 S; � 2N g:

The following result gives worst–case bounds of the iden-
tification error based on these concepts:

Lemma 1 The worst case identification error defined in
(15) satisfies the following inequality:

e(A) � R(I) � 1
2
D(I) (16)

for any algorithmA. The following upper bound holds:

D(I) � e(AI) (17)

for any interpolation algorithmAI .

The bounds above are of theoretical importance. For in-
stance R(I) can be interpreted as an intrinsic error that
cannot be decreased by any identification algorithm, un-
less extra information is added to the problem. On the
other hand, these quantities are in general hard to com-
pute. Fortunately, in practically relevant cases, they lead to
mathematically tractable problems.

Definition 9 A set A in a linear space X is called sym-
metric if and only if there exists an element c 2 X such
that for any a 2 X for which c C a 2A then c � a 2A.
The element c is called the symmetry point of setA.

Lemma 2 If the a priori sets S and N are symmetric
and convex with respect to 0, and the experiment operator
E(g; �) is linear with respect to both g and � then the diam-
eter of information satisfies:

D(I) D sup
y2Y

d
�
T (y)

�
D d

�
T (y0)

�
; y0 D E(0; 0) (18)

Furthermore,

d
�
T (y0)

�
D 2 sup

g2T (y0)
m(g; 0) : (19)

Roughly speaking, the result above states that the experi-
ment that yields the least amount of information is the one
that results in a null outcome. Moreover, a bound on the
worst case identification error is given by twice the maxi-
mum distance from any element in T (yo) to the center of
symmetry of S.

Time–Domain Based Interpolatory Identification Algo-
rithms In this section we briefly review the properties
of the specific identification algorithm, based on time–
domain data, used in this paper to establish the existence
of operators with the appropriate features. To this effect
we need several preliminary results.

The first lemma considers the problem of the existence
of a causal linear discrete-time invariant operator such that
the first n terms of its transfer function are given:

Lemma 3 (Carathéodory–Fejér) Given a matrix valued
sequence fLign�1iD0 , there exists a causal, discrete-time, LTI
operator L(z) 2 BH1 such that

L(z) D L0 C L1zC L2z2 C : : : Ln�1zn�1 C : : : (20)

if and only if

(Tn
L)

TTn
L � I (21)

where I denotes the identity matrix of compatible dimen-
sion.

Proof See for instance Chap. 1 in [61]. �
In the sequel we consider operator families of the form S:

S :
D fS(z) D H(z)C P(z)g (22)

where operators S(z) are described in terms of a non-
parametric component H(z) 2 BH1(K) and a paramet-
ric component P(z). We will further assume that the para-
metric component P(z) belongs to the following class P of
affine operators:

P :
D fP(z) D pTGp(z); p 2 RNpg; (23)

where the Np components Gpi (z) of vector Gp(z) are
known, linearly independent, rational transfer functions.

The next lemma gives a necessary and sufficient con-
dition for two finite vector sequences to be related by an
operator in the family S.
Lemma 4 Given a scalar K, and two vector sequences
(u; y), there exists an operator S 2 S such that y D Su if
and only if there exists a vector h satisfying:

M(h) :D
�

I (TN
h )

T

TN
h

1
K2

�
� 0

y D TuPpC Tuh
(24)
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where (P)k
:
D [g1k g2k � � � g

Np
k ], with g ik denoting the kth

Markov parameter of the ith transfer function Gpi (z), hk
the kthMarkov parameter of the nonparametric component
H(z), respectively, and the scalar K is an upper bound of the
`2 induced norm of H(z).

Moreover, in this case all such operators S can be
parametrized in terms of a free parameter Q(z) 2 BH1.
In particular, the choice Q(z) D 0 leads to the “central”
model

Scentral(z) D Ho(z)C pTGp(z)

where an explicit state–space realization of Ho(z) is given
by:

Ho(z) D CH (zI � AH)�1 BH CDH

with

AH D
˚
A � [CT

�C� C (AT � I)]�1CT
�C�(A � I)

��1

BH D [CT
�C�(A

T � A � I) � (AT � I)A]�1CT
�

CH D KCC � KCC
�
A � [CT

�C� C (AT � I)]�1

� CT
�C�(A � I)

��1

DH D KCC
�
[CT
�C� C (AT � I)]

� A � CT
�C�(A � I)

��1
CT
� ;

(25)

and

A D
�

0 IN�N
0 0

�
; C� D [

NC1
‚ …„ ƒ
1 0 : : : 0];

CC D
hT

K
:

(26)

Proof See Theorem 18.5.2 in [62] and [43]. �
Finally, the following corollary addresses the issue that real
plants are subject to some unknown but bounded noise as
represented in Fig. 12.

Corollary 1 ([43]) Consider the problem of identifying
an operator S 2 S from measurements of its output y to
a known input u, corrupted by additive bounded noise �
in a given setN :

yk D (S  u)k C �k ; k D 0; 1; : : : ;N : (27)

Then there exist S 2 S that satisfies (27) if and only there
exists a pair of vectors (h;p) such that M(h) > 0 and
y � TuPp � Tuh 2N . In that case, one such operator is
given Scentral D pTGp C Ho, where Ho has the state–space
realization (25).

Motion Prediction for Continued Autonomy, Figure 12
Linear operator S with input u and output y corrupted with
noise �
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Glossary

Control parameter A parameter of internal or external
origin that when manipulated controls the system
in a nonspecific fashion and is capable of inducing
changes in the system’s behavior. These changes may
be a smooth function of the control parameter, or
abrupt at certain critical values. The latter, also referred
to as phase transitions, are of main interest here as they
only occur in nonlinear systems and are accompanied
by phenomena like critical slowing down and fluctua-
tion enhancement that can be probed for experimen-
tally.

Haken–Kelso–Bunz (HKB) model First published in
1985, the HKB model is the best known and probably
most extensively tested quantitative model in human
movement behavior. In its original form it describes
the dynamics of the relative phase between two os-
cillating fingers or limbs under frequency scaling. The
HKBmodel can be derived from coupled nonlinear os-
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cillators and has been successfully extended in various
ways, for instance, to situations where different limbs
like an arm and a leg, a single limb and a metronome,
or even two different people are involved.

Order parameter Order parameters are quantities that
allow for a usually low-dimensional description of the
dynamical behavior of a high-dimensional system on
a macroscopic level. These quantities change their val-
ues abruptly when a system undergoes a phase transi-
tion. For example, density is an order parameter in the
ice to water, or water to vapor transitions. In move-
ment coordination the most-studied order parameter
is relative phase, i. e. the difference in the phases be-
tween two or more oscillating entities.

Phase transition The best-known phase transitions are
the changes from a solid to a fluid phase like ice to wa-
ter, or from fluid to gas like water to vapor. These tran-
sitions are called first-order phase transitions as they
involve latent heat, which means that a certain amount
of energy has to be put into the system at the transition
point that does not cause an increase in temperature.
For the second-order phase transitions there is no la-
tent heat involved. An example from physics is heating
a magnet above its Curie temperature at which point it
switches from a magnetic to a nonmagnetic state. The
qualitative changes that are observed in many non-
linear dynamical systems when a parameter exceeds
a certain threshold are also such second-order phase
transitions.

Definition of the Subject

Movement Coordination is present all the time in daily
life but tends to be taken for granted when it works. One
might say it is quite an arcane subject also for science.
This changes drastically when some pieces of the locomo-
tor system are not functioning properly because of injury,
disease or age. In most cases it is only then that people
become aware of the complex mechanisms that must be
in place to control and coordinate the hundreds of mus-
cles and joints in the body of humans or animals to al-
low for maintaining balance while maneuvering through
rough terrains, for example. No robot performance comes
even close in such a task.

Although these issues have been around for a long time
it was only during the last quarter century that scientists
developed quantitative models for movement coordina-
tion based on the theory of nonlinear dynamical systems.
Coordination dynamics, as the field is now called, has be-
come arguably the most developed and best tested quanti-
tative theory in the life sciences.

More importantly, even though this theory was orig-
inally developed for modeling of bimanual finger move-
ments, it has turned out to be universal in the sense that it
is also valid to describe the coordination patterns observed
between different limbs, like an arm and a leg, different
joints within a single limb, like the wrist and elbow, and
even between different people that perform movements
while watching each other.

Introduction

According to a dictionary definition: Coordination is the
act of coordinating, making different people or things
work together for a goal or effect.

When we think about movement coordination the
“things” we make work together can be quite different like
our legs for walking, fingers for playing the piano, mouth,
tongue and lips for articulating speech, body expressions
and the interplay between bodies in dancing and ballet,
tactics and timing between players in team sports and so
on, not to forget other advanced skill activities like skiing
or golfing.

All these actions have one thing in common: they look
extremely easy if performed by people who have learned
and practiced these skills, and they are incredibly difficult
for novices and beginners. Slight differences might exist
regarding how these difficulties are perceived, for instance
when asked whether they can play golf some people may
say: “I don’t know, let me try”, and they expect to out-drive
Tiger Woods right away; there are very few individuals
with a similar attitude toward playing the piano.

The physics of golf as far as the ball and the club is
concerned is almost trivial: hit the ball with the highest
possible velocity with the club face square at impact, and
it will go straight and far. The more tricky question is
how to achieve this goal with a body that consists of hun-
dreds of different muscles, tendons and joints, and, im-
portantly, their sensory support in joint, skin and muscle
receptors (proprioception), in short, hundreds of degrees
of freedom. How do these individual elements work to-
gether, how are they coordinated? Notice, the question is
not how do we coordinate them? None of the skills men-
tioned above can be performed by consciously controlling
all the body parts involved. Conscious thinking sometimes
seems to do more harm than good. So how do they/we
do it? For some time many scientists sought the answer to
this question in what is calledmotor programs or, more re-
cently, internal models. The basic idea is straightforward:
when a skill is learned it is somehow stored in the brain
like a program in a computer and simply can be called
and executed when needed. Additional learning or train-



5720 M Movement Coordination

ing leads to skill improvement, interpreted as refinements
in the program. As intuitive as this sounds and even if one
simply ignores all the unresolved issues like how such pro-
grams gain the necessary flexibility or in what form they
might be stored in the first place, there are even deeper rea-
sons and arguments suggesting that humans (or animals
for thatmatter) don’t work like that. One of the most strik-
ing of these arguments is known as motor equivalence: ev-
erybody who has learned to write with one of their hands
can immediately write with the foot as well. This writing
may not look too neat, but it will certainly be readable
and represents the transfer of a quite complex and diffi-
cult movement from one end-effector (the hand) to an-
other (the foot) that is controlled by a completely different
set of muscles and joints. Different degrees of freedom and
redundancy in the joints can still produce the same output
(the letters) immediately, i. e. without any practice.

For the study of movement coordination a most im-
portant entry point is to look at situations where themove-
ment or coordination pattern changes abruptly. An exam-
ple might be the well-known gait switches from walk to
trot to gallop that horses perform. It turns out, however,
that switching among patterns of coordination is a ubiq-
uitous phenomenon in human limb movements. As will
be described in detail, such switching has been used to
probe human movement coordination in quantitative ex-
periments.

It is the aim of this article to describe an approach to
a quantitative modeling of human movements, called co-
ordination dynamics, that deals with quantities that are ac-
cessible from experiments and makes predictions that can
and have been tested. The intent is to show that coordi-
nation dynamics represents a theory allowing for quanti-
tative predictions of phenomena in a way that is unprece-
dented in the life sciences. In parallel with the rapid de-
velopment of noninvasive brain imaging techniques, co-
ordination dynamics has even pointed to new ways for the
study of brain functioning.

The Basic Law of Coordination: Relative Phase

The basic experiment, introduced by one of us [27,28], that
gave birth to coordination dynamics, the theory underly-
ing the coordination of movements, is easily demonstrated
and has become a classroom exercise for generations of
students: if a subject is moving the two index fingers in so-
called anti-phase, i. e. one finger is flexing while the other is
extending, and then the movement rate is increased, there
is a critical rate where the subject switches spontaneously
from the anti-phase movement to in-phase, i. e. both fin-
gers are now flexing and extending at the same time. On

the other hand, if the subject starts at a high or low rate
with an in-phase movement and the rate is slowed down
or sped up, no such transition occurs.

These experimental findings can be translated or
mapped into the language of dynamical systems theory as
follows [19]:

� At low movement rates the system has two stable at-
tractors, one representing anti-phase and one for in-
phase – in short: the system is bistable;

� When the movement rate reaches a critical value, the
anti-phase attractor disappears and the only possible
stable movement pattern remaining is in-phase;

� There is strong hysteresis: when the system is perform-
ing in-phase and the movement rate is decreased from
a high value, the anti-phase attractor may reappear but
the system does not switch to it.

In order to make use of dynamical systems theory for
a quantitative description of the transitions in coordinated
movements, one needs to establish a measure that allows
for a formulation of a dynamical system that captures
these experimental observations and can serve as a phe-
nomenological model. Essentially, the finger movements
represent oscillations (as will be discussed in more de-
tail in Subsect. “Oscillators for LimbMovements”) each of
which is described by an amplitude r and a phase '(t). For
the easiest case of harmonic oscillations the amplitude r
does not depend on time and the phase increases linearly
with time at a constant rate !, called the angular veloc-
ity, leading to '(t) D ! t. Two oscillators are said to be
in the in-phase mode if the two phases are the same, or
'1(t) � '2(t) D 0, and in anti-phase if the difference be-
tween their two phases is 180ı or � radians. Therefore, the
quantity that is most commonly used to model the exper-
imental findings in movement coordination is the phase
difference or relative phase

�(t) D '1(t)�'2(t) D

(
�(t) D 0 for in-phase
�(t) D � for anti-phase :

(1)

The minimal dynamical system for the relative phase
that is consistent with observations is known as the
Haken–Kelso–Bunz (or HKB) model and was first pub-
lished in a seminal paper in 1985 [19]

�̇ D �a sin� � 2b sin 2� with a; b � 0 : (2)

As is the case for all one-dimensional first order differen-
tial equations, (2) can be derived from a potential function

�̇ D �
dV (�)
d�

with V(�) D �a cos ��b cos 2� : (3)
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Movement Coordination, Figure 1
Dynamics of the HKB model at the coordinative, relative phase (�) level as a function of the control parameter k D b

a . Top row:
Phase space plots �̇ as a function of �.Middle: Landscapes of the potential function V(�). Bottom: Bifurcation diagram, where solid
lines with filled circles correspond to stable fixed points (attractors) and dashed lines with open circles denote repellers. Note that k
increases from right (k D 0) to left (k D 0:75)

One of the two parameters a and b that appear in (2)
and (3) can be eliminated by introducing a new time scale
� D ˛t, a procedure known as scaling and commonly used
within the theory of nonlinear differential equations, lead-
ing to

�̇(t) D
d�(t)
dt

!
d�
�
�
˛



d �
˛

D �a sin�

 �
˛

�
� 2b sin 2�


 �
˛

�

˛
d�̃(�)
d�

D �a sin �̃(�) � 2b sin 2�̃(�)

(4)

where �̃ has the same shape as � , it is just changing on
a slower or faster time scale depending on whether ˛ is
bigger or smaller than 1. After dividing by ˛ and letting
the so far undetermined ˛ D a (4) becomes

d�̃
d�
D �

a
˛„ƒ‚…
D1

sin �̃ � 2
b
˛„ƒ‚…
Dk

sin 2�̃ : (5)

Finally, by dropping the tilde ˜ (2) and (3) can be written
with only one parameter k D b

a in the form

�̇ D � sin� � 2k sin 2�

D �
dV (�)
d�

with V (�) D � cos � � k cos 2� : (6)

The dynamical properties of the HKB model’s collec-
tive or coordinative level of description are visualized in
Fig. 1 with plots of the phase space (�̇ as a function of �)
in the top row, the potential landscapesV(�) in the second
row and the bifurcation diagram at the bottom. The con-
trol parameter k, as shown, is the ratio between b and a,
k D b

a , which is inversely related to the movement rate:
a large value of k corresponds to a slow rate, whereas k
close to zero indicates that the movement rate is high.

In the phase space plots (Fig. 1 top row) for k D 0:75
and k D 0:5 there exist two stable fixed points at � D 0
and � D � where the function crosses the horizontal axis
with a negative slope, marked by solid circles (the fixed
point at�� is the same as the point at � as the function is
2�-periodic). These attractors are separated by repellers,
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zero crossings with a positive slope and marked by open
circles. For the movement rates corresponding to these
two values of k the model suggests that both anti-phase
and in-phase movements are stable. When the rate is in-
creased, corresponding to a decrease in the control param-
eter k down to the critical point at kc D 0:25 the former
stable fixed point at � D � collides with the unstable fixed
point and becomes neutrally stable indicated by a half-
filled circle. Beyond kc, i. e. for faster rates and smaller val-
ues of k the anti-phase movement is unstable and the only
remaining stable coordination pattern is in-phase.

The potential functions, shown in the second row in
Fig. 1, contain the same information as the phase space
portraits as they are just a different representation of the
dynamics. However, the strong hysteresis is more intuitive
in the potential landscape than in phase space, and can
best be seen through an experiment that starts out with
slow movements in anti-phase (indicated by the gray ball
in the minimum of the potential at � D �) and increasing
rate. After passing the critical value kc D 0:25 the slight-
est perturbation will put the ball on the downhill slope
and initiate a switch to in-phase. If the movement is now
slowed down again, going from right to left in the plots,
even though the minimum at � D � reappears, the ball
cannot jump up and occupy it but will stay in the deep
minimum at � D 0, a phenomenom known as hysteresis.

Finally, a bifurcation diagram is shown at the bottom
of Fig. 1, where the locations of stable fixed points for the
relative phase � are plotted as solid lines with solid circles
and unstable fixed points as dashed lines with open cir-
cles. Around kc D 0:25 the system undergoes a subcritical
pitchfork bifurcation. Note that the control parameter k in
this plot increases from right to left.

Evidently, the dynamical system represented by (2) is
capable of reproducing the basic experimental findings
listed above. From the viewpoint of theory, this is simply
one of the preliminaries for a model that have to be ful-
filled. In general, any model that only reproduces what is
built into it is not of much value. More important are cru-
cial experimental tests of the consequences and additional
phenomena that are predicted when the model is worked
through. Several such consequences and predictions will
be described in detail in the following sections. It is only
after such theoretical and experimental scrutiny that the
HKB model has come to qualify as an elementary law of
movement coordination.

Stability: Perturbations and Fluctuations

Random fluctuations, or noise for short, exist in all sys-
tems that dissipate energy. In fact, there exists a famous

theorem that goes back to Einstein, known as the dissipa-
tion-fluctuation theorem, which states that the amount of
random fluctuations in a system is proportional to its dis-
sipation of energy. There are effects from random noise on
the dynamics of relative phase that can be predicted from
theory both qualitatively and quantitatively, allowing for
the HKB model’s coordination level to be tested experi-
mentally. Later the individual component level will be dis-
cussed.

An essential difference between the dynamical systems
approach to movement coordination and the motor pro-
gram or internal model hypotheses is most distinct in re-
gions where the coordination pattern undergoes a sponta-
neous qualitative change as in the switch from anti-phase
to in-phase in Kelso’s experiment. From the latter point
of view, these switches simply happen, very much like in
the automatic transmission of a car: whenever certain cri-
teria are fulfilled, the transmission switches from one gear
to another. It is easy to imagine a similar mechanism to
be at work and in control of the transitions in movements:
as soon as a certain rate is exceeded, the anti-phase pro-
gram is somehow replaced by the in-phase module, which
is about all we can say regarding the mechanism of switch-
ing. On the other hand, by taking dynamic systems theory
seriously, one can predict and test phenomena accompa-
nying second-order phase transitions. Three of these phe-
nomena, namely, critical slowing down, enhancement of
fluctuations and critical fluctuations will be discussed here
in detail.

For a quantitative treatment it is advantageous to ex-
pand �̇ and V(�) in (6) into Taylor series around the
fixed point � D � and truncate them after the linear and
quadratic terms, respectively

�̇ D � sin � � 2k sin 2�
D �f�(� � �)C : : :g � 2kf2(� � �)C : : :g
� (1 � 4k)(� � �)

V (�) D � cos � � k cos 2�

D �f�1C (� � �)2 C : : :g

� kf1 � 4(� � �)2 C : : :g

� 1 � k � (1 � 4k)(� � �)2 :

(7)

A typical situation that occurs when a system ap-
proaches and passes through a transition point is shown
in Fig. 2. In the top row the potential function for � � 0
is plotted (dashed line) together with its expansion around
the fixed point � D � (solid). The bottom row consists of
plots of time series showing how the fixed point is or is
not approached when the system is initially at � D � C�.
The phenomena accompanying second-order phase tran-
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Movement Coordination, Figure 2
Hallmarks of a system that approaches a transition point: enhancement of fluctuations, indicated by the increasing size of the shaded
area; critical slowing down shown by the time it takes for the system to recover from a perturbation (bottom); critical fluctuations
occur where the top of the shaded area is higher than the closest maximum in the potential, initiating a switch even though the
system is still stable

sitions in a system that contains random fluctuations can
be best described by Fig. 2.

Critical slowing down corresponds to the time it takes
the system to recover from a small perturbation �. In
the vicinity of the fixed point the dynamics can be de-
scribed by the linearization of the nonlinear equation
around the fixed point (7). Such a linear equation can
be readily solved leading to

�(t) D � C
e(1�4k)t :

As long as k is larger than its critical value kc D 0:25
the exponent is negative and a perturbation will de-
cay exponentially in time. However, as the system
approaches the transition point, this decay will take
longer and longer as shown in the bottom row in Fig. 2.
At the critical parameter k D 0:25 the system will no
longer return to the former stable fixed point and be-
yond that value it will even move away from it. In
the latter parameter region the linear approximation
is no longer valid. Critical slowing down can be and
has been tested experimentally by perturbing a coor-
dination state and measuring the relaxation constant
as a function of movement rate prior to the transition.
The experimental findings [31,44,45] are in remark-
able agreement with the theoretical predictions of co-
ordination dynamics [43].

Enhancement of fluctuations is to some extent the
stochastic analog to critical slowing down. The ran-
dom fluctuations that exist in all dissipative systems
are a stochastic force that kicks the system away from
the minimum and (on average) up to a certain el-
evation in the potential landscape, indicated by the

shaded areas in Fig. 2. For large values of k the hori-
zontal extent of this area is small but becomes larger
and larger when the transition point is approached.
Assuming that the strength of the random force does
not change with the control parameter, the standard
deviation of the relative phase is a direct measure of
this enhancement of fluctuations and will be increas-
ing when the control parameter is moving towards its
critical value. Again experimental tests are in detailed
agreement with the stochastic version of the HKB
model [30,43,44].

Critical fluctuations can induce transitions even when
the critical value of the control parameter has not been
reached. As before, random forces will kick the sys-
tem around the potential minimum and up to (on av-
erage) a certain elevation. If this height is larger than
the hump it has to cross, as is the case illustrated in
Fig. 2 for k D 0:5, a transition will occur, even though
the fixed point is still classified as stable. In excellent
agreement with theory, such critical fluctuations were
observed in the original experiments by Kelso and col-
leagues [30] and have been found in a number of re-
lated experimental systems [31,42].

All these hallmarks point to the conclusion that transi-
tions in movement coordination are not simply a switch-
ing of gears but take place in a well defined way via the
instability of a former stable coordination state. Such phe-
nomena are also observed in systems in physics and other
disciplines where in situations far from thermal equilib-
rium macroscopic patterns emerge or change, a process
termed self-organization. A general theory of self-organiz-
ing systems, called synergetics [17,18], was formulated by
Hermann Haken in the early 1970s.
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The Oscillator Level

The foregoing description and analysis of bimanual move-
ment coordination takes place on the coordinative or col-
lective level of relative phase. Looking at an actual experi-
ment, there are two fingers moving back and forth and one
may ask whether it is possible to find a model on the level
of the oscillatory components from which the dynamics
of the relative phase can then be derived. The challenge
for such an endeavor is at least twofold: first, one needs
a dynamical system that accurately describes the move-
ments of the individual oscillatory components (the fin-
gers). Second, one must find a coupling function for these
components that leads to the correct relation for the rela-
tive phase (2).

Oscillators for Limb Movements

In terms of oscillators there is quite a variety to choose
from as most second order systems of the form

ẍ C � ẋ C !2x C N(x; ẋ) D 0 (8)

are potential candidates. Here ! is the angular frequency,
� the linear damping constant and N(x; ẋ) is a function
containing nonlinear terms in x and ẋ.

Best known andmost widely used are the harmonic os-
cillators, where N(x; ẋ)D0, in particular for the case with-
out damping �D0. In the search for a model to describe
human limb movements, however, harmonic oscillators
are not well suited, because they do not have stable limit
cycles. The phase space portrait of an harmonic oscillator
is a circle (or ellipse), but only if it is not perturbed. If such
a system is slightly kicked off the trajectory it is moving on,
it will not return to its original circle but continue to move
on a different orbit. In contrast, it is well known that if
a rhythmic human limb movement is perturbed, this per-
turbation decreases exponentially in time and the move-
ment returns to its original trajectory, a stable limit cycle,
which is an object that exists only for nonlinear oscilla-
tors [25,26].

Obviously, the amount of possible nonlinear terms to
choose from is infinite and at first sight, the task to find the
appropriate ones is like looking for a needle in a haystack.
However, there are powerful arguments that can be made
from both theoretical reasoning and experimental findings
that restrict the nonlinearities, as we shall see, to only two.
First, we assume that the function N(x; ẋ) takes the form
of a polynomial in x and ẋ and that this polynomial is of
the lowest possible order. So the first choice would be to
assume that N is quadratic in x and ẋ leading to an oscil-

lator of the form

ẍ C � ẋ C !2x C ax2 C bẋ2 C cxẋ D 0 : (9)

How do we decide whether (9) is a good model for rhyth-
mic finger movements? If a finger is moved back and forth,
that is, performs an alternation between flexion and exten-
sion, then this process is to a good approximation symmet-
ric: flexion is the mirror image of extension. In the equa-
tions a mirror operation is carried out by substituting x
by �x, and, in doing so, the equation of motion must not
change for symmetry to be preserved. Applied to (9) this
leads to

� ẍ C � (�ẋ)C !2(�x)C a(�x)2 C b(�ẋ)2

C c(�x)(�ẋ) D 0

� ẍ � � ẋ � !2x C ax2 C bẋ2 C cxẋ D 0

ẍ C � ẋ C !2x � ax2 � bẋ2 � cxẋ D 0

(10)

where the last equation in (10) is obtained by multiplying
the second equation by � 1. It is evident that this equa-
tion is not the same as (9). In fact, it is only the same if
a D b D c D 0, which means that there must not be any
quadratic terms in the oscillator equation if one wants
to preserve the symmetry between flexion and extension
phases of movement. The argument goes even further:
N(x; ẋ) must not contain any terms of even order in x and
ẋ as all of them, like the quadratic ones, would break the
required symmetry. It is easy to convince oneself that as
far as the flexion-extension symmetry is concerned all odd
terms in x and ẋ are fine.

There are four possible cubic terms, namely ẋ3, ẋx2,
xẋ2 and x3 leading to a general oscillator equation of the
form

ẍC � ẋC!2xC ıẋ3C �ẋx2C ax3C bxẋ2 D 0 : (11)

The effects that these nonlinear terms exert on the oscilla-
tor dynamics can be best seen by rewriting (11) as

ẍC ẋf� C �x2 C ıẋ2
„ ƒ‚ …

damping

gC xf!2 C ax2 C bẋ2„ ƒ‚ …
frequency

g D 0 (12)

which shows that the terms ẋ3 and ẋx2 are position and
velocity dependent changes to the damping constant � ,
whereas the nonlinearities x3 and xẋ2 mainly influence the
frequency. As the nonlinear terms were introduced to ob-
tain stable limit cycles and the main interest is in ampli-
tude and not frequency, we will let a D b D 0, which re-
duces the candidate oscillators to

ẍ C ẋf� C �x2 C ıẋ2g C !2x D 0 : (13)
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Nonlinear oscillators with either ıD0 or �D0 have been
studied for a long time and have been termed in the litera-
ture as van-der-Pol and Rayleigh oscillators, respectively.

Systems of the form (13) only show sustained oscilla-
tions on a stable limit cycle within certain ranges of the
parameters, as can be seen easily for the van-der-Pol oscil-
lator, given by (13) with ı D 0

ẍ C ẋf� C �x2
„ ƒ‚ …

�̃

g C !2x D 0 : (14)

The underbraced term in (14) represents the effective
damping constant, �̃ , now depending on the square of the
displacement, x2, a quantity which is non-negative. For the
parameters � and � one can distinguish the following four
cases:
 > 0; � > 0 The effective damping �̃ is always positive.

The trajectories are evolving towards the origin, which
is a stable fixed point.

 < 0; � < 0 The effective damping �̃ is always negative.
The system is unstable and the trajectories are evolving
towards infinity.

 > 0; � < 0 For small values of the amplitude x2 the ef-
fective damping �̃ is positive leading to even smaller
amplitudes. For large values of x2 the effective damp-
ing �̃ is negative leading to a further increase in ampli-
tude. The system evolves either towards the fixed point
or towards infinity depending on the initial conditions.

 < 0; � > 0 For small values of the amplitude x2 the ef-
fective damping �̃ is negative leading to an increase in
amplitude. For large values of x2 the effective damping
�̃ is positive and decreases the amplitude. The system
evolves towards a stable limit cycle.
The main features for the van-der-Pol oscillator are

shown in Fig. 3 with the time series (left), the phase space
portrait (middle) and the power spectrum (right). The
time series is not a sine function but has a fast rising in-
creasing flank and a more shallow slope on the decreasing
side. Such time series are called relaxation oscillations. The
trajectory in phase space is closer to a rectangle than to
a circle and the power spectrum shows pronounced peaks
at the fundamental frequency ! and its odd higher har-
monics (3!; 5!; : : :).

In contrast to the van-der-Pol case the damping con-
stant �̃ for the Rayleigh oscillator, the case � D 0 in (13),
depends on the square of the velocity ẋ2. Arguments
similar to those above lead to the conclusion that the
Rayleigh oscillator shows sustained oscillations for param-
eters � < 0 and ı > 0.

As shown in Fig. 4 the time series and trajectories of
the Rayleigh oscillator also exhibit relaxation behavior, but
in this case with a slow rise and fast drop. As for the

van-der-Pol, the phase space portrait is almost rectangu-
lar but the long and short axes are switched. Again the
power spectrum has peaks at the fundamental frequency
and contains odd higher harmonics.

Evidently, taken by themselves neither the van-der-Pol
nor Rayleigh oscillators are good models for human limb
movement for at least two reasons, even though they ful-
fill one requirement for a model: they have stable limit cy-
cles. First, human limb movements are almost sinusoidal
and their trajectories have a circular or elliptical shape.
Second, it has also been found in experiments with hu-
man subjects performing rhythmic limb movements that
when the movement rate is increased the amplitude of the
movement decreases linearly with frequency [25]. It can be
shown that for the van-der-Pol oscillator the amplitude is
independent of frequency and for the Rayleigh it decreases
proportional to !�2, both in disagreement with the exper-
imental findings.

It turns out that a combination of the van-der-Pol
and Rayleigh oscillator, termed the hybrid oscillator of the
form (13) fulfills all the above requirements if the parame-
ters are chosen as � < 0 and � � ı > 0.

As shown in Fig. 5 the time series for the hybrid oscilla-
tor is almost sinusoidal and the trajectory is elliptical. The
power spectrum has a single peak at the fundamental fre-
quency. Moreover, the relation between the amplitude and
frequency is a linear decrease in amplitude when the rate is
increased as shown schematically in Fig. 6. Taken together,
the hybrid oscillator is a good approximation for the tra-
jectories observed experimentally in human limb move-
ments.

The Coupling

As pointed out already, in a second step one has to find
a coupling function between two hybrid oscillators that
leads to the correct dynamics for the relative phase (2).
The most common realization of a coupling between
two oscillators is a spring between two pendulums, lead-
ing to a force proportional to the difference in locations
f12 D k[x1(t) � x2(t)]. It can easily be shown, that such
a coupling does not lead to the required dynamics on
the relative phase level. In fact, several coupling terms
have been suggested that do the trick, but none of them
is very intuitive. The arguably easiest form, which is one
of the possible couplings presented in the original HKB
model [19], is given by

f12 D (ẋ1 � ẋ2)
˚
˛ C ˇ(x1 � x2)2

�
: (15)

Combined with two of the hybrid oscillators, the dynami-
cal system that describes the transition from anti-phase to
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Movement Coordination, Figure 3
The van-der-Pol oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 4
The Rayleigh oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 5
The hybrid oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 6
Amplitude-frequency relation for the van-der-Pol (dotted),
Rayleigh (� !�2, dashed) and hybrid (� �!, solid) oscillator

in-phase in bimanual finger movements takes the form

ẍ1 C ẋ1
�
� C �x21 C ıẋ

2
1

C !2x1

D (ẋ1 � ẋ2)
˚
˛ C ˇ(x1 � x2)2

�

ẍ2 C ẋ2
�
� C �x22 C ıẋ

2
2

C !2x2

D (ẋ2 � ẋ1)
˚
˛ C ˇ(x2 � x1)2

�
:

(16)

A numerical simulation of (16) is shown in Fig. 7. In
the top row the amplitudes x1 and x2 are plotted as a func-
tion of time. The movement starts out in anti-phase at
! D 1:4 and the frequency is continuously increased to
a final value of ! D 1:8. At a critical rate !c the anti-
phase pattern becomes unstable and a transition to in-
phase takes place. At the bottom a continuous estimate of
the relative phase �(t) is shown calculated as
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Movement Coordination, Figure 7
Simulation of (16) where the frequency ! is continuously increased from ! D 1:4 on the left to ! D 1:8 on the right. Top: time
series of the amplitudes x1 and x2 undergoing a transition from anti-phase to in-phase when ! exceeds a critical value. Bottom:
Continuous estimate of the relative phase� changing from an initial value of� during anti-phase to 0when the in-phasemovement
is established. Parameters: � D �0:7, � D ı D 1, ˛ D �0:2, ˇ D 0:2, and! D 1:4 to 1:8

�(t) D '1(t) � '2(t) D arctan
ẋ1
x1
� arctan

ẋ2
x2
: (17)

The relative phase changes from a value of � during the
anti-phase movement to � D 0 when the in-phase pattern
has been established.

To derive the phase relation (2) from (16) is a little
lengthy but straightforward by using the ansatz (hypoth-
esis)

xk(t) D Ak(t)ei! t C A�k(t)e
�i! t (18)

then calculating the derivatives and inserting them
into (16). Next a slowly varying amplitude approximation
(Ȧ(t)
 !) and rotating wave approximation (neglect all
frequencies > !) are applied. Finally, introducing the rel-
ative phase � D '1 � '2 after writing Ak(t) in the form

Ak(t) D rei'k (t) (19)

leads to a relation for the relative phase � of the form (2)
from which the parameters a and b can be readily found
in terms of the parameters that describe the oscillators and
their coupling in (16)

a D �˛ � 2ˇr2 ; b D
1
2
ˇr2

with r2 D
�� C ˛(1 � cos�)

� C 3ı!2 � 2ˇ(1 � cos �)2
: (20)

Breaking and Restoring Symmetries

Symmetry Breaking Through the Components

For simplicity, the original HKB model assumes on both
the oscillator and the relative phase level that the two coor-
dinating components are identical, like two index fingers.

As a consequence, the coupled system (16) has a symme-
try: it stays invariant if we replace x1 by x2 and x2 by x1. For
the coordination between two limbs that are not the same
like an arm and a leg, this symmetry no longer exists – it is
said to be broken. In terms of the model, the main differ-
ence between an arm and a leg is that they have different
eigenfrequencies, so the oscillator frequencies! in (16) are
no longer the same but become !1 and !2. This does not
necessarily mean that during the coordination the compo-
nents oscillate at different frequencies; they are still cou-
pled, and this coupling leads to a common frequency ˝ ,
at least as long as the eigenfrequency difference is not too
big. But still, a whole variety of new phenomena originates
from such a breaking of the symmetry between the com-
ponents [5,22,23,29,37].

As mentioned in Subsect. “The Coupling” the dynam-
ics for the relative phase can be derived from the level of
coupled oscillators (16) for the case of the same eigenfre-
quencies. Performing the same calculations for two oscil-
lators with frequencies !1 and !2 leads to an additional
term in (2), which turns out to be a constant, commonly
called ı!. With this extension the equation for the relative
phase reads

�̇ D ı! � a sin� � 2b sin 2�

with ı! D
!2
1 � !

2
2

˝
� !1 � !2 : (21)

The exact form for the term ı! turns out to be the dif-
ference of the squares of the eigenfrequencies divided by
the rate˝ the oscillating frequency of the coupled system,
which simplifies to !1 � !2 if the frequency difference is
small. As before (21) can be scaled, which eliminates one
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Movement Coordination, Figure 8
Phase space plots for different values of the control parameters k and ı!. With increasing asymmetry (top to bottom) the functions
are shifted more and more upwards leading to an elimination of the fixed points near� D �� and � D 0 via saddle node bifurca-
tions at k D 0:5 for small ı! and k D 0:25 for ı! large, respectively

of the parameters, and �̇ can be derived from a potential
function

�̇ D ı! � sin � � 2k sin 2�

D �
dV (�)
d�

with V(�) D �ı! � � cos � � k cos 2� :

(22)

Plots of the phase space and the potential landscape for
different values of k and ı! are shown in Figs. 8 and 9, re-
spectively. From these figures it is obvious that the symme-
try breaking leads to a vertical shift of the curves in phase
space and a tilt in the potential functions, which has sev-
eral important consequences for the dynamics. First, for
a nonvanishing ı! the stable fixed points for the relative
phase are no longer located at � D 0 and � D ˙� but are
now shifted (see Fig. 8). The amount of this shift can be
calculated for small values of ı! and new locations for the
stable fixed points are given by

�(0) D
ı!

1C 4k
and �(	) D � �

ı!

1 � 4k
: (23)

Second, for large enough values of ı! not only the fixed
point close to � D � becomes unstable but also the in-
phase pattern loses stability undergoing a saddle node bi-
furcation as can be seen in the bottom row in Fig. 8. Be-
yond this point there are no stable fixed points left and the
relative phase will not settle down at a fixed value anymore

but exhibits phase wrapping. However, this wrapping does
not occur with a constant angular velocity, which can best
be seen in the plot on the bottom right in Fig. 9. As the
change in relative phase �̇ is the negative derivative of the
potential function, it is given by the slope. This slope is
large and almost constant for negative values of � , but for
small positive values, where the in-phase fixed point was
formerly located, the slope becomes less steep indicating
that � changes more slowly in this region before the dy-
namics picks up speed again when approaching � . So even
as the fixed point has disappeared the dynamics still shows
reminiscence of its former existence.

The dynamics of relative phase for the case of differ-
ent eigenfrequencies from a simulation of (22) in shown
in Fig. 10. Starting out at a slow movement rate on the
left, the system settles into the fixed point close to � D � .
When the movement rate is continuously increased, the
fixed point drifts upwards. At a first critical point a transi-
tion to in-phase takes place, followed by another drift, this
time for the fixed point representing the in-phase move-
ment. Finally, this state also looses stability and the relative
phase goes into wrapping. Reminiscence in the phase re-
gions of the former fixed point are still visible by a flatten-
ing of the slope around � �> 0. With a further increase of
the movement rate the function approaches a straight line.

The third consequence of this symmetry breaking is
best described using the potential function for small values
of ı! compared to the symmetric case ı! D 0. For the lat-
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Movement Coordination, Figure 9
Potential landscape for different values of the control parameters k andı!. With increasingasymmetry (top to bottom) the functions
get more and more tilted, destabilizing the system up to a point where there are no fixed points left on the bottom right. However,
remnants of the fixed point can still be seen as changes in the curvature of the potential

Movement Coordination, Figure 10
Relative phase � as a function of time. Shown is a 4-� plot of a simulation of (22) for ı! D 1:7 where the control parameter k is
continuously decreased from k D 2 on the left to k D 0 on the right. The system settles close to anti-phase and the fixed point drifts
as k is decreased (corresponding to a faster period of oscillation). At a first critical value a transition to in-phase takes place followed
by another fixed point drift. Finally, the in-phase fixed point disappears and the phase starts wrapping

ter, when the system is initially in anti-phase � D � and k
is decreased through its critical value a switch to in-phase
takes place as was shown in Fig. 1 (middle row). However,
the ball there does not necessarily have to roll to the left
towards � D 0 but with the same probability could roll to
the right ending up in the minimum that exists at � D 2�
and also represents an in-phase movement. Whereas the
eventual outcome is the same because due to the periodic-
ity � D 0 and � D 2� are identical, the two paths can very
well be distinguished. The curve in Fig. 7 (bottom), show-
ing the continuous estimate of the relative phase during
a transition, goes from � D � down to � D 0, but could,
in fact with the same probability, go up towards � D 2� .

In contrast, if the eigenfrequencies are different, also the
points �� and � , and 0 and 2� are no longer the same. If
the system is in anti-phase at � D � and k is decreased, it
is evident from the middle row in Fig. 9 that a switch will
not take place towards the left to � � 0, as the dynam-
ics would have to climb over a potential hill to do so. As
there are random forces acting on the dynamics a switch
to � � 0 will still happen from time to time, but it is not
equally probable to a transition to � � 2� , and it becomes
even more unlikely with increasing ı!.

These consequences, theoretically predicted to occur
when the symmetry between the oscillating components is
broken, can and have been tested, and have been found to
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be in agreement with the experimental results [21,29] (see
also [32,41]).

Asymmetry in the Mode of Coordination

Even though (16) is symmetric in the coordinating com-
ponents it can only describe a transition from anti-phase
to in-phase but not the other way around. Equation (16)
is highly asymmetric with respect to coordination mode.
This can be seen explicitly when we introduce variables
that directly reflect modes of coordination

 C D x1 C x2 and  � D x1 � x2 : (24)

For an in-phase movement we have x1Dx2 and  �
vanishes, whereas for anti-phase x1D�x2 and therefore
 C D 0. We can now derive the dynamics in the variables
 C and  � by expressing the original displacements as

x1 D
1
2
( C C  �) and x2 D

1
2
( C �  �) (25)

and inserting them into (16), which leads to

 ̈C C � ̇C C !
2 C C

�

12
d
dt
�
 3
C C 3 C 2

�



C
ı

4
�
 ̇3
C C 3 ̇C ̇2

�


D 0

 ̈� C � ̇� C !
2 � C

�

12
d
dt
�
 3
� C 3 � 2

C



C
ı

4
�
 ̇3
� C 3 ̇� ̇2

C


D 2 ̇�

�
˛ C ˇ 2

�


:

(26)

The asymmetry between in-phase and anti-phase is evi-
dent from (26), as the right-hand side of the first equation

Movement Coordination, Figure 11
Manipulandum used by Carson and colleagues [6]. a The original apparatus that allowed for variation in axis of rotation above,
below and in the middle of the hand. b The axis of rotation can be changed continuously, allowing us to introduce a parameter � as
a quantitativemeasure for the relative locations of the axes

vanishes and the equation is even independent of the cou-
pling parameters ˛ and ˇ. This is the reason that the origi-
nal HKB model only shows transitions from anti-phase to
in-phase and not vice versa.

Transitions to Anti-phase

In 2000 Carson and colleagues [6] published results from
an experiment in which subjects performed bimanual
pronation-supination movements paced by a metronome
of increasing rate (see also [2]). In this context an anti-
phase movement corresponds to the case where one arm
performs a pronation while the other arm is supinat-
ing. Correspondingly, pronation and supination with both
arms at the same time represents in-phase. In their exper-
iment Carson et al. used a manipulandum that allowed for
changing the axis of rotation individually for both arms as
shown in Fig. 11a.With increasing movement rate sponta-
neous transitions from anti-phase to in-phase, but not vice
versa, were found when the subjects performed prona-
tion-supination movements around the same axes for both
arms. In trials where one arm was rotating around the axis
above the hand and the other around the one below, anti-
phase was found to be stable and the in-phase movement
underwent a transition to anti-phase as shown for repre-
sentative trials in Fig. 12.

It is evident that the HKB model in neither its orig-
inal form (2) nor the mode formulation (26) is a valid
model for these findings. However, Fuchs and Jirsa [11]
showed that by starting from the mode description (26) it
is straightforward to extend HKB such that, depending on
an additional parameter � , either the in-phase or the anti-
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Movement Coordination, Figure 12
Relative phase over time for two representative trials from the Carson et al. experiment. Left: the axis of rotation is below the hand
for both arms and a switch from anti-phase to in-phase occurs as themovement speeds up. Right: with one axis above and the other
below the hand, the in-phase movement becomes unstable at higher rates leading to a transition to anti-phase

Movement Coordination, Figure 13
Simulation of (28) for � D 0 (top) and � D 1 (bottom) where the frequency! is continuously increased from! D 1:4 on the left to
! D 1:8 on the right. Time series of the mode amplitudes C (black) and � (gray) undergoing transitions from anti-phase to in-
phase (top) and from in-phase to anti-phase (bottom) when! exceeds a critical value. Parameters:� D �0:7, � D ı D 1,˛ D �0:2,
ˇ D 0:2, and! D 1:4 to 1:8

phase mode is a stable movement pattern at high rates.
The additional parameter corresponds to the relative loca-
tions of the axes of rotation in the Carson et al. experiment
which can be defined in its easiest form as

� D
jl1 � l2j

L
(27)

where l1, l2 and L are as shown in Fig. 11b. In fact, any
monotonic function f with f (0) D 0 and f (1) D 1 is com-
patible with theory and its actual shape has to be deter-
mined experimentally.

By looking at the mode Eqs. (26) it is clear that a sub-
stitution  C !  � and  � !  C to the left-hand side
of the first equation leads to the left-hand side of the sec-
ond equation and vice versa. For the terms on the right-

hand side representing the coupling this is obviously not
the case. Therefore, we now introduce a parameter � and
additional terms into (26) such that for � D 0 these equa-
tions remain unchanged, whereas for � D 1 we obtain (26)
with allC and � subscripts reversed

 ̈C C � ̇C C !
2 C C

�

12
d
dt
�
 3
C C 3 C 2

�



C
ı

4
�
 ̇3
C C 3 ̇C ̇2

�


D 2� ̇C

�
˛ C ˇ 2

C



 ̈� C � ̇� C !
2 � C

�

12
d
dt
�
 3
� C 3 � 2
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C
ı

4
�
 ̇3
� C 3 ̇� ̇2
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D 2(1 � �) ̇�

�
˛ C ˇ 2

�


:

(28)
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Movement Coordination, Figure 14
Simulation of (30)where the frequency! is continuously increased from! D 1:4 on the left to! D 1:8 on the right. Top: time series
of the amplitudes x1 and x2 undergoing a transition from in-phase to anti-phasewhen! exceeds a critical value. Bottom: Continuous
estimate of the relative phase � changing from an initial value of 0 during the in-phase to � when the anti-phase movement is
established. Parameters: � D �0:7, � D ı D 1,˛ D �0:2, ˇ D 0:2, � D 1 and! D 1:4 to 1:8

From (28) it is straight forward to go back to the rep-
resentation of the limb oscillators

ẍ1 C : : : D
1
2
�
 ̈C C  ̈�


C : : :

D  ̇�
�
˛ C ˇ 2

�


C �

˚
 ̇C

�
˛ C ˇ 2

C



�  ̇�
�
˛ C ˇ 2

�

�

ẍ2 C : : : D
1
2
�
 ̈C �  ̈�


C : : :

D � ̇�
�
˛ C ˇ 2

�


C �

˚
 ̇C

�
˛ C ˇ 2

C



C  ̇�
�
˛ C ˇ 2

�

 �

(29)

where the left-hand side which represents the oscillators
has been written only symbolically as all we are dealing
with is the coupling on the right. Replacing the mode am-
plitudes  C and  � in (29) using (24) one finds the gen-
eralized coupling as a function of x1 and x2

ẍ1 C : : : D (ẋ1 � ẋ2)
˚
˛ C ˇ(x1 � x2)2

�

C 2�
˚
˛ẋ2 C ˇ

�
ẋ2
�
x21 C x22


C 2ẋ1x1x2

��

ẍ2 C : : : D (ẋ2 � ẋ1)
˚
˛ C ˇ(x2 � x1)2

�

C 2�
˚
˛ẋ1 C ˇ

�
ẋ1
�
x21 C x22


C 2ẋ2x1x2

��
:

(30)

Like the original oscillator Eq. (16), Eq. (30) is invariant
under the exchange of x1 and x2 but in addition allows for
transitions from in-phase to anti-phase coordination if the
parameter � is chosen appropriately (� D 1, for instance),
as shown in Fig. 14.

As the final step, an equation for the dynamics of rel-
ative phase can be obtained from (30) by performing the
same steps as before, which leads to a modified form of the

HKB equation (2)

�̇ D �(1 � 2�)a sin� � 2b sin 2� (31)

and the corresponding potential function

�̇ D �
dV(�)
d�

with V(�) D �(1 � 2�)a cos � � b cos 2� : (32)

Both equations can be scaled again leading to

�̇ D �(1 � 2�) sin � � 2k sin 2�

D �
dV(�)
d�

with

V(�) D �(1 � 2�) cos � � k cos 2� :

(33)

The landscapes of the potential for different values of
the control parameters k and � are shown in Fig. 15. The
left column exhibits the original HKB case which is ob-
tained for � D 0. The functions in the most right column,
representing the situation for � D 1, are identical in shape
to the � D 0 case, simply shifted horizontally by a value
of � . These two extreme cases are almost trivial and were
the ones originally investigated in the Carson et al. exper-
iment with the axes of rotation either on the same side or
on opposite sides with respect to the hand. As the cor-
responding potential functions are shifted by � with re-
spect to each other, one could assume that for an inter-
mediate value of � between 0 and 1 the functions are also
shifted, just by a smaller amount. Such horizontal trans-
lations lead to fixed point drifts, as has been seen before
for oscillation components with different eigenfrequen-
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Movement Coordination, Figure 15
Potential landscape for different values of the control parameters k and �

cies. The theory, however, predicts that this is not the case.
In fact, for � D 0:5 theory predicts that the two coordi-
nation modes in-phase and anti-phase are equally stable
for all movement rates. The deep minima for slow rates
indicate high stability for both movement patterns and as
the rate increases both minima become more and more
shallow, i. e. both movement patterns become less stable.
Eventually, for high rates at k D 0 the potential is entirely
flat, which means that there are no attractive states what-
soever. Pushed only by the stochastic forces in the system,
the relative phase will now undergo a random walk. Note
that this is very different from the phase wrapping en-
countered before where the phase was constantly increas-
ing due to the lack of an attractive state. Here the relative
phase will move back and forth in a purely random fash-
ion, known in the theory of stochastic systems as Brown-
ian motion. Again experimental evidence exists from the
Carson group that changing the distance between the axes
of rotation gradually leads to the phenomena predicted by
theory.

Conclusions

The theoretical framework outlined above represents the
core of the dynamical systems approach to movement co-
ordination. Rather than going through the large variety
of phenomena that coordination dynamics and the HKB

model have been applied to, emphasis has been put on
a detailed description of the close connection between the-
oretical models and experimental results. Modeling the co-
ordination of movement as dynamical systems on both
the mesoscopic level of the component oscillators and the
macroscopic level of relative phase allowed for quantita-
tive predictions and experimental tests with an accuracy
that is virtually unprecedented in the life sciences, a field
where most models are qualitative and descriptive.

Extensions of the HKBModel

Beyond the phenomena described above, the HKB model
has been extended in various ways. Some of these exten-
sions (by no mean exhaustive) are listed below with very
brief descriptions; the interested reader is referred to the
literature for details.

� The quantitative description of the influence of noise
on the dynamics given in Sect. “Stability: Perturbations
and Fluctuations” can be done in a quantitative fash-
ion by adding a stochastic term to (2) [40,43] or its
generalizations (21) and (31) [11] and treating them as
Langevin equations within the theory of stochastic sys-
tems (see e. g. [16] for stochastic systems). In this case
the system is no longer described by a single time se-
ries for the relative phase but by a probability distribu-
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tion function. How such distributions evolve in time is
then given by the corresponding Fokker–Planck equa-
tion and allows for a quantitative description of the
stochastic phenomena such as enhancement of fluctu-
ations and critical fluctuations. An important quantity
that can be derived in this context and is also related to
the critical fluctuations is the mean-first-passage time,
which is the time it takes (on average) to move over
a hump in the potential function.

� When subjects flex a single finger between the beats
of a metronome, i. e. syncopate with the stimulus, and
the metronome rate is increased, they switch sponta-
neously to a coordination pattern where they flex their
finger on the beat, i. e. synchronize with the stimulus.
This so-called syncopation-synchronization paradigm
introduced by Kelso and colleagues [32] has been fre-
quently used in brain-imaging experiments.

� A periodic patterning in the time series of the rel-
ative phase was found experimentally in the case of
broken symmetry by Schmidt et al. [41] and suc-
cessfully derived from the oscillator level of the HKB
model [12,14].

� The metronome pacing can be explicitly included
into (2) and its generalizations [24]. This so-called
parametric driving allows us to explain effects in the
movement trajectory known as anchoring, i. e. the
variability of the movement is smaller around the
metronome beat compared to other regions in phase
space [10]. With parametric driving the HKB model
also makes correct predictions for the stability of multi-
frequency coordination, where the metronome cycle
is half of the movement cycle, i. e. there is a beat at
the points of maximum flexion and maximum exten-
sion [1]. There are also effects from more complicated
polyrhythms that have been studied [38,39,47,48,49].

� The effect of symmetry breaking has been studied in-
tensively in experiments where subjects were swinging
pendulums with different eigenfrequencies [8,37,46].

� Transitions are also found in trajectory formation, for
instance when subjects move their index finger such
that they draw an “8” and this movement is sped up
the pattern switches to a “0” [3,4,9].

Future Directions

One of the most exciting applications of movement co-
ordination and its spontaneous transitions in particular
is that they open a new window for probing the hu-
man brain, made possible by the rapid development of
brain-imaging technologies that allow for the recording
of brain activity in a noninvasive way. Electroencephalog-

raphy (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance tomography (fMRI) have been
used in coordination experiments since the 1990s to study
the changes in brain activations accompanying (or trig-
gering?) the switches in movement behavior [13,33,34].
Results from MEG experiments reveal a strong frequency
dependence of the dominating pattern with the contri-
bution of the auditory system being strongest at low
metronome/movement rates, whereas at high rates the
signals from sensorimotor cortex dominate [15,35]. The
crossover point is found at rates around 2Hz, right where
the transitions typically take place.

In two other studies the rate dependence of the audi-
tory and sensorimotor system was investigated separately.
In anMEG experiment Carver et al. [7] found a resonance-
like enhancement of a brain response that occurs about
50ms after a tone is delivered, again at a rate of about 2Hz.
In the sensorimotor system a nonlinear effect of rate was
shown as well. Using a continuation paradigm, where sub-
jects moved an index finger paced by a metronome which
was turned off at a certain time while the subjects were
to continue moving at the same rate, Mayville et al. [36]
showed that a certain pattern of brain activation drops
out when the movement rate exceeds about 1.5Hz. Even
though their contribution to behavioral transitions is far
from being completely understood, it is clear that such
nonlinear effects of rate exist in both the auditory and the
sensorimotor system in parameter regions where behav-
ioral transitions are observed.

Using fMRI brain areas have been identified that show
a dependence of their activation level as a function of rate
only, independent of coordination mode, whereas activa-
tion in other areas strongly depends on whether subjects
are syncopating or synchronizing regardless of how fast
they are moving [20].

Taken together, these applications of coordination dy-
namics to brain research have hardly scratched the sur-
face so far but the results are already very exciting as
they demonstrate that the experimental paradigms from
movement coordination may be used to prepare the brain
into a certain state where its responses can be studied.
With further improvement of the imaging technologies
and analysis procedures many more results can be ex-
pected to contribute significantly to our understanding of
how the human brain works.
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Glossary

Granularity Granularity is the relative size, scale, level of
detail, or depth of penetration that characterizes an ob-
ject or system.

Multi-granular computing Humans are good at viewing
and solving a problem at different grain-sizes (abstrac-
tion levels) and translating from one abstraction level
to the others easily. This is one of basic characteris-
tics of human intelligence. The aim of multi-granular
computing is intended to investigate the granulation
problem in human cognition and endow computers
with the same capability to make them more efficient
in problem solving.

Quotient set Given a universe X and an equivalence rela-
tion R on X, define a set [X] D f[x]jx 2 Xg; [x] D
fyjy � x; y 2 Xg. [X] is called a quotient set with
respect to R, or simply a quotient set.

Quotient space Given a topologic space (X; T), T is
a topology on X and R is an equivalence relation
on X. Define a quotient structure on [X] as [T] D
fujp�1(u) 2 T; u � [X]g, where p : X ! [X] is a nat-
ural projection from X to [X]. Construct a topologic
space ([X]; [T]). Space ([X]; [T]) is a quotient space
corresponding to R. There are authors who keep the
neighborhood system structured but remove the ax-
ioms of topology [13,14].

Quotient space model The quotient space model is
a mathematical model to represent a problem at dif-
ferent grain-sizes by using the concept of quotient
space in algebra. In the model a problem (or a sys-
tem) is described by a triple (X; T; f ), with universe
(domain) X, structure T and attribute f . If X repre-
sents the universe composed of the objects with the
finest grain-size, when we view the same universe X at
a coarser grain-size, we have a coarse-grained universe
denoted by [X]. Then we have a new problem space
([X]; [T]; [ f ]), where [X] is the quotient universe of X,
[T] the corresponding quotient structure and [f ] the
quotient attribute. The coarse space ([X]; [T]; [ f ]) is
called a quotient space of space (X; T; f ). Therefore,
a problem with different grain-sizes can be represented
by a family of quotient spaces.
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Definition of the Subject

On one hand, any system in the world, either natural or ar-
tificial, has a multi-granular structure. This is called struc-
tural granulation. On the other hand, man always concep-
tualizes the world at different granularities and handles
it hierarchically. This is called cognitive granulation. We
believe the granulation in cognition underlies the human
power in problem solving. Unfortunately, computers are
generally capable of dealing with problems in only one ab-
straction level so far. The motivation of the research on
multi-granular computing is intended to investigate the
granulation both in human cognition and real world and
endow the computers with the same capacity. This will
greatly reduce the computational complexity in the com-
puterized problem solving. This strategy can be used to
improve many algorithms in broad areas such as planning,
search, and machine learning.

The key to the multi-granular computing is to con-
struct a mathematical model for representing a problem at
different grain-sizes. We present an algebraic model (quo-
tient space model) of granulation that is used to analyze
both human cognition and real world, especially human
problem solving behaviors. The model was developed in
order to represent granules and compute with them easily.

Introduction

Granularity is the relative size, scale, level of detail, or
depth of penetration that characterizes an object or sys-
tem. This term has been used in astronomy, physics,
geography, photography, and information science and
technology frequently. When a system is divided into
components, it’s important to get the right degree of com-
ponentization. The fine-grained components give much
more details in constructing precisely the right function-
ality of a system. The coarse-grained components are eas-
ier to manage but may lose some important details. Per-
formance and management considerations tend to favor
the use of multi-granularity. For example, a text contains
several levels such as chapter, paragraph, sentence, and
word; each has a different grain-size. A video has scene,
shot, and frame. A country may be split into state, city,
and community. Man always conceptualizes an object (or
system) at different granularities and deals with it hierar-
chically. This is one of man’s characteristics that underlies
his/her power. The aim of multi-granular computing is in-
tended to investigate the granulation problem in human
cognition and endow computers with the same capabil-
ity. So multi-granular computing has widely been inves-
tigated for a long time. In the data and knowledge man-
agement research community, the formalization of the

concept of time granularity and its applications were ad-
dressed. A time granularity was defined by a countable
set of granules; each granule can be composed of a sin-
gle instant, a set of contiguous instants (time-interval), or
even a set of non-contiguous instants [3]. The paper [4]
investigates the algorithm, its computational complexity
and several optimization techniques to the temporal CSP
(Constraint Satisfaction Problem) involving constraints in
terms of different time granularities. In image process-
ing, a multiresolution model is used extensively and it is
a model which captures a wide range of levels of detail of
an object and which can be used to reconstruct any one
of those levels on demand. The overall goal of multireso-
lution modeling is to use information from objects with
different spatial granularities or extract the details from
complex models that are necessary for rendering a scene
and to get rid of the other, unnecessary details [10,11].
In GIS applications, the representation of multi-granu-
lar spatio-temporal objects in commercially available DB-
SMs was addressed [2]. The research works above mostly
focused on the specific application domain and lacks of
a general theoretical framework. The key to the investiga-
tion is to construct a multi-granular mathematical model
for a problem. Recently, there have been several mod-
els to deal with the issue such as fuzzy set [24], rough
set [20], and others [1,15,18]. Each has its own charac-
teristics. We presented a new model called quotient-space
model [25,26]. In the model a problem (or a system) is de-
scribed by a triple (X; T; f ). Universe (or domain) X rep-
resents the whole objects of the problem that we intended
to deal with. It may be a point set and its power may either
be finite or infinite. T is the structure of X and represents
the relationship among objects of X. Structure T may have
different forms but will be described by a topology on X in
the following discussion. Attribute f is a set of functions
defined on universe X and f : X ! Y may be multi-com-
ponent such as f D ( f1; f2; : : : ; fn); fi : X ! Yi , where Yi
is either a set of real numbers or other kinds of sets. Triple
(X; T; f ) is called a problem space (or simply a space). We
will focus on the granularity relationships.

Suppose that X represents the universe composed of
the components with the finest grain-size; each compo-
nent is regarded as indecomposable. When we view the
same universe X at a coarser grain-size, we have a coarse-
grained universe denoted by [X]. Then we have a new
problem space ([X]; [T]; [ f ]), where [X] is the quotient
universe of X, [T] is the corresponding quotient structure
and [f ] the quotient attribute. For example, text X consists
of a set of words. If “word” is regarded as an indecom-
posable component, then X is the finest universe. T is the
text structure, i. e., the syntactic relationship amongwords.
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Multi-Granular Computing and Quotient Structure, Figure 1
A text represented at different grain-sizes

f is the property of words. If considering “sentence” as
a new component, then we have a new (quotient) universe
[X] composed of a set of sentences; each sentence con-
sists of a set of words. Then [X] is a coarse grain-size uni-
verse. The quotient structure [T] represents the contex-
tual relationship among sentences. Quotient attribute [f ]
represents the property of each sentence [x]. Then, space
([X]; [T]; [ f ]) represents the same text with sentences as
its components. The coarse space ([X]; [T]; [ f ]) is called
a quotient space of (X; T; f ) (Fig. 1).

The coarse universe [X] can be defined in many ways.
Generally, universe [X] is defined by an equivalence rela-
tion R on X. Then [X] consists of the whole equivalence
classes obtained by R; each equivalence class in X is re-
garded as a component in [X]. Universe [X] can also be
defined by fuzzy relation and tolerence relation. In these
cases, the components may have blurry boundaries or they
may overlap each other.

Assume < is a family of equivalence relations on X.
Define an order relation ‘<’ on < as follows. Assume
R1; R2 2 <; then, R2 < R1 if only if for each pair x; y 2 X,
if xR1y, then xR2y, where xRy indicates that x and y are
R-equivalent. It implies that the universe X1 correspond-
ing to R1 is finer than the universeX2 corresponding to R2.
So the family of quotient spaces defined by R is a proper
mathematical model of the granulation in cognition.

A problem is represented at different granularities in
human cognition. As mentioned before, its corresponding
mathematical model is a family of quotient spaces; each
describes the problem at a certain abstraction level. The
main characteristic of our model is that the structure T is
represented at the model explicitly. Based on the ‘struc-
ture’ we investigate the relation and translation among dif-

ferent grain-size spaces. This will facilitate the multi-gran-
ular computing and reduce the computational complexity.

The Granularity Relation

The granularity relation can be represented by two basic
operations on different grain-size spaces. First, the decom-
position operation is the translation of a problem from
a coarse level to a fine one. In the crisp-granulation issue,
the universe is divided by equivalence relations, i. e., the
partition. Certainly, the decomposition can be extended to
fuzzy-granulation, tolerance relation, etc. In those cases,
either the boundaries among granules are blurry or there
is a superposition among granules. By a set of decomposi-
tions, we have a set of refined versions of the problem. Sec-
ond, the projection operation is the translation from a fine
level to a coarse one. By a set of projective operations; each
translates a fine-grained space to a coarse one. Then we
have a set of profiles of the problem, or a set of simpli-
fied versions of the problem. There are three basic kinds
of projective operations, i. e., based on universe X, struc-
ture T or attribute f . By the two operations, both refined
and simplified versions of the problem compose a multi-
granular model.

Some relations (properties) among different grain-size
spaces are shown below.

Truth Preserving Property

Assume a topological space (X; T). By projection p : (X;
T) ! ([X]; [T]), a coarse space is constructed from
(X; T). Since the granule in [X] is larger than that in X,
the details of (X; T) are missing in space ([X]; [T]). If the
properties of space (X; T) that we are interested in is still
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preserved in space ([X]; [T]), then we can also solve the
same problem in the simplified space. The truth preserv-
ing property among different grain-size worlds will help us
to simplify the problem solving.

Assume that R is an equivalence relation on X. From
R, we have a quotient set [X]. A quotient topology [T] in-
duced from T can be defined as follows.

[T] D
˚
u
ˇ̌
p�1(u) 2 T; u � [X]

�
:

In addition, p : X ! [X] is a natural projection and de-
fined as follows.

p(x) D [x]

p�1(u) D fx jp(x) 2 u g :

From topology [9], we have the following proposition.

Proposition 1 (Truth preserving property) If a problem
[A]! [B] on ([X]; [T]; [ f ]) has a solution path, and for
8[x]; p�1([x]) is connected on X. Then the corresponding
problem A! B has a solution path on (X; T; f ) conse-
quentially.

Proof 1 Since [A]! [B] has a solution path on ([X]; [T];
[ f ]), [A] and [B] fall on the same connected component C.
Let D D p�1(C). We show that D is a connected set on X.

By reduction to absurdity, assume D is a union of
two disjoint non-empty open closed sets D1 and D2.
8a 2 C, p�1(a) is connected on X. p�1(a) only be-
longs to one of D1 and D2. Therefore, Di ; i D 1; 2 con-
sists of elements of [X], i. e., there exist C1 and C2 such
that D1 D p�1(C1);D2 D p�1(C2). Since Di ; i D 1; 2, are
open closed sets, from the definition of natural map p, C1
and C2 are non-empty open closed sets on [X] also. Since
C1 and C2 are the partition of C, C is not a connected set.
There is a contradiction. �

In fact, in a topologic space, a problem solving (or reason-
ing) can be regarded as finding a connected set from the
initial state (or promise) to the final state (conclusion), i. e.,
finding the connectivity of sets in the space. The proposi-
tion shows that if there is a solution (connected) path in
the coarse-grained space ([X]; [T]), then there exists a so-
lution path in its original space (X; T). It shows that some
problems can be solved in its coarse space rather than the
original one. For example, the robotic motion planning is
to find the collision-free paths in a geometrical space. If
a simplified topologic space is constructed properly from
the geometrical one, by the truth preserving property, we
know that the problem can be transformed into that of
finding a connected path in the topological space, as long
as we only need to know if there exists any collision-free

path. Certainly, finding connected paths in a topological
space is much easier than that in the geometrical one.

In order for the truth preserving property to re-
main between spaces [X] and X, the condition that
8[x] 2 [X]; p�1([x]) is connected in X should be satis-
fied; that is, the connectivity of sets should be remained
when the grain-size becomes finer. Sometimes, this is hard
to come by, and we can obtain the following property.

Falsity Preserving Property

Proposition 2 (Falsity preserving property) The natu-
ral projection p : (X; T)! ([X]; [T]) is a continuous map-
ping. If A � X is a connected set on X, then p(A) is a con-
nected set on [X].

It means that the connectivity of sets remains unchanged
when the grain-size become coarser. This is easier to ob-
tain than the previous one in real problem solving. In fact,
in the quotient space model the human problem solving
(or reasoning) can be treated as finding the connectiv-
ity of sets in the problem space. The proposition shows
that if there is a solution (connected) path in the original
space (X; T), then there exists a solution path in its proper
coarse-grained space ([X]; [T]). Conversely, in the coarse-
grained space, if there does not exist a solution path, there
is no solution in the original space. This is called the ‘fal-
sity preserving’ property, i. e., ‘no-solution’ (region) prop-
erty is preserved between quotient spaces. The property
underlies the power of human hierarchical problem solv-
ing. If at the coarse level we do not find any solution in
some regions, then there is no solution in the correspond-
ing regions at the fine level. Therefore, the results obtained
from the coarse level can guide the problem solving in the
fine level effectively. In general, the coarse space is simpler
than the fine one, so the computational complexity will be
reduced by the hierarchical problem solving.

By using the structural (topological) relation among
the quotient spaces, we have the two basic properties
above. So the structure T plays an important role in our
model. We cannot always have the proper properties as
shown before. Sometime, we can only reach the properties
to a certain degree such as in a probabilistic sense.

Hierarchy

There are two basic modes adopted by multi-granular
computing, i. e., hierarchy and combination. The hier-
archy means hierarchical problem solving strategy, i. e.,
problem solving process carries on from a coarse level to
a fine one step by step. The combination means the inte-
gration of information observed from several coarse levels.
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The aim of hierarchical problem solving is to reduce the
computational complexity by using the information from
different grain-size worlds.

The Computational Complexity
Under Deterministic Model

Given a problem space (X; T; f ), X is a finite set. jXj is
the number of components in X. If we solve the prob-
lem from (X; T; f ) directly, i. e., find the goal from space
(X; T; f ), the computational complexity is c(jXj). As-
sume that c(�) only depends on the number of compo-
nents of X and is independent of its structure or other
attributes. The value of c(�) ranges over [0;1). Assume
that X0 is a quotient space of X. c is a complexity func-
tion of X. Suppose the number of components of X0 that
might contain the goal to be g at most. First, we consider
the simplest case: the “truth preserving property” comes
into existence precisely, i. e., g � 1. Now we have a set
X1; X2; : : : ; Xt; XtC1 D X of quotient spaces, where Xi is
a quotient space of XiC1; i D 1; 2; : : : ; t. We estimate the
asymptotic property of computational complexity denoted
by ct(jXj) under the hierarchical problem solving strategy
with t levels. Let jXj D en .

Suppose that X1 is a quotient space of X. We find the
goal of X from X1. At a cost of complexity c(jXj), we find
a unique component a1 2 X1 that contains the goal. As-
sume that each equivalence class has the same number of
components. Now the goal is within component a1 of X1.
If jX1j D en1 , from jXj D en , we have ja1j D en�n1 . The
total complexity for solving problem X by the hierarchical
strategy with two levels is

c1(jXj) D c(jX1j)C c(ja1j) D c(en1 )C c(en�n1 ) :

Regarding a1 as a set of X, if it’s too large, then a1 can
further be decomposed. Assume Y2 is a quotient space of
a1 and jY2j D en2 . The total complexity for solving X with
three hierarchical levels is

c2(jXj) D c(jX1j)C c(jY2j)C c(ja2j)
D c(en1 )C c(en2 )C c(en�n1�n2 ) :

Now the goal is within the component a2.
By induction, the total complexity for solving X using

hierarchical strategy with t levels is

ct(jXj) D c(en1)C c(en2 )C � � � C c(ent )

where n D
tX

iD1

ni : (1)

In each abstraction level, all components are classified into
b equivalence classes, b > 0, i. e., 8i; eni D b. Since n D

tP

iD1
ni , we have en D bt D eat , where b D ea; at D n; t D

n/a. Substituting t D n/a into (1), we have

ct(jXj) D t(c(b)) D c1n :

Then we have the following proposition:

Proposition 3 If a unique component that contains the
goal can be found at each abstraction level, i. e., g � 1, there
exists a hierarchical strategy such that X can be solved in
a linear time (O(n)) in spite of the form of the original com-
plexity c(jXj).

Example 1 We are givenN balls, one of which is known to
be lighter or heavier than the rest. Using a two-pan scale,
how to find the counterfeit ball such that the number of
weighs is minimal. First, in each weigh, we divide the balls
into three groups: on the left pan, the right pan and the ta-
ble denoted by ‘1’, ‘2’ and ‘0’, respectively. After n weighs,
each ball is assigned a ternary number with n digits de-
noted by ai D (ai1; a

i
2; : : : ; a

i
n); i D 1; 2; : : : ;N. From the

quotient-space model point of view, each weigh corre-
sponds to constructing a quotient space. After n weighs,
we have a tree with depth n composed by a sequence of
quotient spaces as shown in Fig. 2. Thenwe solve the prob-
lem hierarchically. Second, in each weigh, if the weight of
balls in the left pan is lighter than that in the right pan, then
denote as ‘1’. If the weight of balls in the right pan is lighter
than that in the left one, then denote as ‘2’. Otherwise, i. e.,
when the scale balances, denote as ‘0’. After n weighs, we
have another ternary number e D (e1; e2; : : : ; en) with n
digits. Obviously, if the counterfeit ball is lighter, when
e1 D 1, the ball is annotated as ‘1’; when e1 D 2, the ball
is annotated as ‘2’. Similarly, when e1 D 0, the counterfeit
ball is annotated as ‘0’. Therefore, we have ai D e, when
the counterfeit ball is lighter.

Similarly, we have ai D e0, when the counterfeit ball is
heavier, where e0 is a conjugate of e, i. e.,

e0 D

8
<̂

:̂

1 ; e D 2
2 ; e D 1 :
0 ; e D 0

In order to find the counterfeit ball uniquely, the tabs
cannot contain their conjugates. A ternary number with
n digits has 3n entities and (3nC 1)/2 pairs of conju-
gates. When weighing the balls for the first time, in or-
der to make two pans have the same number of balls, the
number of elements having ai1 D 1 and ai1 D 2 in a set
fai D (ai1; a

i
2; : : : ; a

i
n); i D 1; 2; : : : ;Ng of tabs should be

the same. So at most there are (3n � 1)/2 entities of 3n
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Multi-Granular Computing and Quotient Structure, Figure 2
The quotient-space model of ball weigh problem

ternary numbers with n digits that can be used as tabs.
Therefore, we have the following properties.

Property 1 A counterfeit ball can be found from
(3n � 1)/2 balls in n weighs.

Property 2 A set K of tabs for weighing balls can be con-
structed by a set of ternary numbers with n digits that satis-
fies the following conditions.

(1) At most one of each pair of conjugates is in set K
(2) The numbers of elements having ai1 D 1 and ai1 D 2 in

a set fai D (ai1; a
i
2; : : : ; a

i
n); i D 1; 2; : : : ;Ng of tabs

are the same.

Property 3 After n weighs, we have result e. If
e 2 K; e ¤ (0; 0; : : : ; 0), the tab of the counterfeit ball is
e, and the ball is lighter. If e D (0; 0; : : :; 0), the tab of the
counterfeit ball is e and we don’t knowwhether it’s lighter or
heavier. Otherwise, if e … K, the tab of the counterfeit ball
is e0 and it’s heavier.

From Property 2, we know the whole optimal solution
strategies of the problem. Any process with finite state
can be represented by a set of binary numbers (or ternary,
decimal numbers, etc.) i. e., a sequence of quotient spaces.
Then the process can be managed hierarchically.

Finally, we have the following algorithm.

Algorithm 1 A set K of tabs satisfies Property 2. Each
ball is assigned a tab from K. Then we have the whole tabs
denoted by ai D (ai1; a

i
2; : : : ; a

i
n); i D 1; 2; : : : ;N. Assume

that we have result (e1; e2; : : : ; em) after m weighs. Tak-
ing out all balls assigned by (e1; e2; : : : ; em; aimC1; : : : ) and
(e01; e

0
2; : : : ; e

0
m ; a

i
mC1; : : : ), i. e., its first m components are

(e1; e2; : : : ; em) and (e01; e
0
2; : : : ; e

0
m), if a

i
mC1 D 1, put the

ball on the left pan; if aimC1 D 2, put the ball on the right
pan; otherwise, aimC1 D 0, put it on the table. The process

finishes after n weighs. If necessary, we need to put some
true balls on the left and right pans such that the numbers
of balls on two pans are the same.

Combination

However, in human cognition, one usually learns things
from local fragments, integrates them and forms a global
picture gradually. It means inferring the fine-level repre-
sentation from the information collected at coarse levels.
The process is called combination (or information fusion).

For a problem space (X; T; f ), given the knowledge
of its two quotient spaces (X1; T1; f1) and (X2; T2; f2), the
‘combination’ operation is intended to have an overall un-
derstanding of (X; T; f ) from the known knowledge.

Let (X3; T3; f3) be the combination of (X1; T1; f1) and
(X2; T2; f2), and pi : (X; T; f )! (Xi ; Ti ; fi); i D 1; 2. In
order to have a proper (X3; T3; f3), the following three
combination principles should be satisfied at least.

8
<̂

:̂

pi X3 D Xi

pi T3 D Ti
pi f3 D fi ; i D 1; 2

In general, the solution satisfying the three principles is
not unique. In order to have a unique result, some criteria
must be added such that the solution is optimal. First, we
propose the following combination rule. Let the combina-
tion universe X3 be the least upper bound of universes X1
and X2. This implies that X3 is the coarsest one among the
universes that satisfy the first combination principle or the
finest one that we can get from the known universes X1
and X2. And let the combination topology T3 be the least
upper bound of topologies T1 and T2. This implies that
T3 is the coarsest one among the topologies that satisfy
the second combination principle or the finest one that we
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can get from the known topologies T1 and T2. This is also
the maximal amount of information that we can obtained
from the known knowledge. Therefore, the proposed X3
and T3 are optimal in some sense.

In most cases, the optimal criteria are domain depen-
dent. However, here we present a general criterion as fol-
lows.

D( f3; f1; f2) D min
f

D( f ; f1; f2) or max
f

D( f ; f1; f2) :

Where f ranges over all attribute functions on X3 that sat-
isfy the third combination principle.

It’s noted that in the combination principle pi f3 D
fi ; i D 1; 2, where pi may be a non-deterministic map-
ping. We’ll discuss the problem in Sect. “Combination”.

To show the rationality of the above combination prin-
ciples, in [25] we deduced the famous Dempster–Shafer
combination rule in belief theory [21] by the principles. It
shows that the D–S rule is the outcome of the combination
principles under certain optimal criteria.

Now we give an example to show how to use the com-
bination principle.

Example 2 Semantic concept detection, which is also
called high-level feature extraction in TRECVID (TREC-
Video Retrieval Evaluation) [19], is to automatically deter-
mine related video shots from a video dataset given some
semantic concepts. This technology is very useful for au-
tomatic or semi-automatic video indexing or annotation.
Usually, a small portion of data is annotated manually as
training data for machine learning programs. The result
of concept detection can be measured by the average pre-
cision, which summarizes the precision at all recall levels
and favors algorithms that detect more relevant shots [29].

In semantic concept detection, a video shot is described by
many features (attributes) with different modalities such
as auto-speech recognition text, visual texture, color of
segmented image regions and is related to some semantic
concept. The concept detection is to determine the rele-
vant concept of video shots from their features.

The Construction of Quotient-Space Model

A set
˚
C1;C2; : : : ;Ci ; : : : ;Ck� of concepts and a video

archive are given. Then we may extract a set of multi-
granular and multi-modular features (speech, image and
text) from each video shot. A quotient-space model for
concept detection is constructed as follows. In the model,
universe X represents a set of video shots. Based on some
extracted feature of video shots, for example, the color
of segmented image regions, X is classified into a set

Multi-Granular Computing and Quotient Structure, Figure 3
The combination of quotient spaces

fa1; a2; : : : ; akg of classes; each corresponds to a concept
Ci. Letting X1 D faig ; i D 1; 2; : : : ; k, X1 is called a pro-
jection of X, the quotient space of X. Each class ai con-
sists of a set of video shots and corresponds to concept
Ci. Based on another feature, for example, the auto-speech
recognition text, the same X is classified into a new set
fb1; b2; : : : ; bkg of classes. Then, we have a new space
X2 D

˚
bj
�
; j D 1; 2; : : : ; k (Fig. 3).

More quotient spaces can be constructed by us-
ing different features (attributes). Then, we have a set
f(X; T; f ); (Xn�1; Tn�1; fn�1); : : : ; (X0; T0; f0)g of quo-
tient spaces. T represents the relation among the sets of
video shots. f is the description of semantic concepts of
video shots that we are intended to handle. The problem is
how to construct a new space X3 based on the known in-
formation of X1 and X2 such that more relevant shots can
be detected from X3 when given a semantic concept. This
is the combination problem in quotient-space model the-
ory. Since a big gap is existed between a low-level feature
and a semantic concept, the correspondence between them
established by a small portion of training data has a prodi-
gious uncertainty. To reduce the uncertainty, it generally
uses the knowledge from different modalities.

The Combination of Quotient Spaces

Assume that (X1; T1; f1) and (X2; T2; f2) are the knowl-
edge about A D (X; T; f ) in two different abstraction
levels. The combination of (X1; T1; f1) and (X2; T2; f2)
is defined as a new abstraction level of A denoted by
(X3; T3; f3), which satisfies the following three basic prin-
ciples.

(1) X1 and X2 are quotient spaces of X3
(2) T1 and T2 are quotient structures of T3
(3) f 1 and f 2 are projections of f on X1 and X2, respec-

tively (X3; T3; f3) might need to satisfy some other op-
timal criteria.

We next discuss the combination of universe X and at-
tribute function f .
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The Combination of Universes Assume that (X1; T1;
f1) and (X2; T2; f2) are quotient spaces of (X; T; f ).R1 and
R2 are equivalence relations with respect to X1 and X2, re-
spectively.

Define the combination universe X3 as follows.
xR3y, xR1y and xR2y, where R3 is an equivalence

relation with respect to X3.
It is known that all equivalence classes on X form

a semi-order lattice under the relation <, where R1 <

R2 , if xR2y then xR1y. In terms of the semi-order
lattice, the combination of R1 and R2 can be defined as fol-
lows.

Definition 1 Assume that R1 and R2 are two equiva-
lence relations on X. If R3 is the least upper bound of
R1 and R2 among the semi-order lattice, then R3 is the
combination of R1 and R2. If X1 D faig and X2 D

˚
bj
�

are two partitions with respect to R1 and R2, respectively,
then the combination of X1 and X2 can be represented by
X3 D

˚
ai \ bj

ˇ̌
ai 2 X1; bj 2 X2

�
.

In the concept detection of video shots, X1 is the parti-
tion of X by the speech feature and X2 is the partition of
X by the image feature, the combination universe X3 is the
partition of X by both speech feature and image feature.
Obviously, X3 is the finest universe which we can get from
X1 and X2. It is also the coarsest one among the universes
which satisfy the above combination principle, that is, the
least upper bound.

The Combination of Attribute Functions Given (X1;

T1; f1) and (X2; T2; f2), we find the combination space
(X3; T3; f3) satisfying the following conditions.

(1) pi f3 D fi ; i D 1; 2, where pi : (X3; T3; f3)! (Xi ; Ti ;
fi) is a natural projection

(2) D( f ; f1; f2) is a given criterion such that

D( f3; f1; f2) D min
f

D( f ; f1; f2) or

max
f

D( f ; f1; f2) :

Where f ranges over all attribute functions on X3 that sat-
isfy condition (1). In fact, the solution satisfying condi-
tion (2) is not unique. The additional optimization crite-
ria are generally needed in order to have a unique solu-
tion. There have been several kinds of combination ap-
proaches [6,12,17], sometimes called information fusion.
We show one of the possible ways.

The Combination of Attribute Functions

A set
˚
x1; x2; : : : ; xN

�
of video shots and a set fC1;C2;

: : : ;Ci ; : : : ;Ckg of concepts are given. Using g differ-

ent kinds of features such as speech, image and text, to
classify the video shots by the annotated training sam-
ples, then we have g quotient spaces

˚
X1; X2; : : : ; Xg

�
.

For a concept Ci, there are g different classifications
fCi

1;C
i
2; : : : ;C

i
gg on g quotient spaces, respectively; each

class Ci
j ; j D 1; 2; : : : ; g , consists of a set of video shots.

Assume that each sample xi ; i D 1; 2; : : : ; p, of video
shots is an identically independent distributed n-dimen-
sional random variable. Then class Ci

j ; j D 1; 2; : : : ; g,
is a set of random variables; each can be described by
a probability density function. We choose normal dis-
tribution function N(x; �;˙) as its probabilistic model,
where mean � may be defined as the center of the class,
and

P
the variance matrix. Then concept Ci can be de-

fined as the combination of Ci
j ; j D 1; 2; : : : ; g , as follows.

Fi (x) D
X

j

˛ jN
�
x; � j ; ˙ j


; j D 1; 2; : : : ; g :

Fi(x) is a describer of concept Ci. From the combina-
tion principles in quotient space model, the weights ˛ j
can be chosen by some sort of optimization techniques.
Since Fi(x) is a g-component finite mixture density, the
maximum likelihood estimator can be used to estimate the
weights. According to the iterative EM (Expectation Max-
imization) algorithm presented in [7], we have the follow-
ing optimization procedures.

Let K D f(x1; y1); : : : ; (xp ; yp)g; xi 2 Rn ; yi 2
f0; 1gkg be a set of training samples. And its corresponding
classification based on the set

˚
C1;C2; : : : ;Ci ; : : : ;Ck�

of concepts is denoted by Ci D fCi
1;C

i
2; : : : ;C

i
gg; i D

1; 2; : : : ; k.

Initialization Let ˛(0)j D dj ; dj is the proportion of
number of video shots in Ci

j to the total number of video
shots in the ith concept.

�
(0)
j D r j ; r j is the radius of Ci

j :

�
(0)
j D a j ; a j is the center of Ci

j :

˙
(0)
j D (� (0)j )2In ; where In is a n-dimensional

unit matrix :

E Step The (k C 1)-iteration, calculate the posterior
probability of sample xi from the jth component as fol-
lows.

ˇ
(k)
i j D ˇ j



xi ; 	(k)

�
D

˛
(k)
j N



xi ; �(k)

j ; ˙
(k)
j

�

gP

jD1
˛
(k)
j N



xi ; �(k)

j ; ˙
(k)
j

� ;

( j D 1; : : : ; g ; i D 1; : : : ; p) ; (E-1)
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Multi-Granular Computing and Quotient Structure, Table 1
Comparison of uni-modal andmulti-modal semantic video concept detection results

Uni-Modal Cross-Modal
ASR Texture Region A+T A+R T+R A+T+R

US-flag 0.0335 0.0155 0.0375 0.0359 0.0506 0.0372 0.0521
Water 0.0034 0.1143 0.0814 0.1022 0.0735 0.1333 0.1211
Mountain 0.0033 0.0693 0.1104 0.0668 0.1066 0.1176 0.1154
Sports 0.0723 0.0769 0.2156 0.1465 0.2678 0.2802 0.3050
Average 0.0281 0.0690 0.1112 0.0879 0.1246 0.1421 0.1484

˛
(kC1)
j D

1
p

pX

iD1

ˇ
(k)
i j ; j D 1; : : : ; g : (E-2)

M Step Find the mean and variance matrices by itera-
tion.

�
(kC1)
j D

pP

iD1
ˇ
(k)
i j x

i

pP

iD1
ˇ
(k)
i j

; where ˇ(k)
i j D ˇ j(xi ; 	(k)) ;

( j D 1; : : : ; g ; i D 1; : : : ; p) ; (M-1)

˙
(kC1)
j D

pP

iD1
ˇ
(k)
i j (x

i � � j(kC1))(xi � �(kC1)
j )T

pP

iD1
ˇ
(k)
i j

;

( j D 1; : : : ; g) : (M-2)

Assume N(x; �;
P

) is a 1-dimensional normal distribu-
tion.

(�2j )
(kC1) D

pP

iD1
ˇ
(k)
i j

ˇ̌
ˇ(xi � �(kC1)

j )
ˇ̌
ˇ
2

pP

iD1
ˇ
(k)
i j

:

Finally, the function Fi(x) that we have is the describer
(attribute) of Ci. The function F(x) D fF1(x); : : : ; Fp(x)g
is the decision function of the set fC1;C2; : : : ;Ci ; : : : ;Cng

of concepts. F(x) integrates all information from g quo-
tient spaces.

In order to show the advantage of multi-granular and
multi-modal computing, Our experiments were carried
out on the TRECVID 2005’s test dataset for the high-level
feature extraction (HFE) task [19], which consists of 86.6
hours of news videos (45766 shots in 140 video clips).

Three uni-modal methods and four multi-modal
methods are compared. Uni-modal results are chosen
from TRECVID 2005 submissions. They include

� ASR, the 7th run from Fudan University [22], based on
auto-speech recognition text, which is a sub-modality
of the text;

� Texture, the 7th run fromNational University of Singa-
pore [5], based on visual texture, which is a visual sub-
modality; and

� Region, the 1st run from Tsinghua University [23],
based on color of segmented image regions, which is
also a visual sub-modality.

Therefore, the four multi-modal results are denoted as
‘AC T ’, ‘AC R’, ‘T C R’, and ‘AC T C R’, respectively.
We use the Bayes rule of Probabilistic Model Sup-
ported Rank Aggregation (PMSRA) [8] to integrate differ-
ent modalities or sub-modalities. The distribution family
adopted is the Gauss distribution.

Four concepts are chosen for comparison. They belong
to different types of concept. ‘US-flag’ is a concept of ob-
ject. ‘Water’ and ‘Mountain’ are typical concepts of scenes.
‘Sports’ is a kind of event.

Average precisions of the results based on all the uni-
modal and multi-modal methods are shown in Table 1.
On average, multi-modal strategies are significantly bet-
ter than the uni-modal ones. Specifically, we can see that
if there are no great disparities in performances, multi-
modal methods always bring significant improvement. On
the other hand, if their performances are too different,
which suggests the inconsistency between modalities, the
average precision based on multi-modal method may be
reduced a litte.

Future Directions

The quotient space model that we discuss previously is de-
fined by equivalence relations. The model should be ex-
tended to more general cases such as fuzzy relation, con-
sistency relation. In these cases, how to construct a proper
quotient structure from the original one, if the granular-
ity relation such as “truth preserving” and “falsity pre-
serving” properties still remains, more research works
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should be done in the future. Unfortunately, only a few
works [16,27,28] dealt the problems recently.
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Glossary

Nanostructures Nanostructures have at least two phys-
ical dimensions of size less than 100 nm. Their size
lies between atomic/molecular and microscopic struc-
tures/particles. Realistically sized nanostructures are
usually composed of millions of atoms. These de-
vices demonstrate new capabilities and functionalities
where the quantum nature of charge carriers plays an
important role in determining the overall device prop-
erties and performance.

Quantum dots Quantum dots (QDs) are solid-state
nanostructures that provide confinement of charge
carriers (electrons, holes, excitons) in all three spa-
tial dimensions typically on the nanometer scale. This
work focuses on semiconductor based quantum dots.

Atomistic simulation For device sizes in the range of
tens of nanometers, the atomistic granularity of con-
stituent materials cannot be neglected. Effects of atom-
istic strain, surface roughness, unintentional doping,
the underlying crystal symmetries, or distortions of
the crystal lattice can have a dramatic impact on the
device operation and performance. In an atomistic
simulation, one takes into account both the atom-
istic/granular and quantum properties of the underly-
ing nanostructure.

Strain Strain is the deformation caused by the action of
stress on a physical body. In nanoelectronic devices,
strain typically originates from the assembly of lattice-
mismatched semiconductors. Strain can be atomisti-
cally inhomogeneous and a small mechanical distor-
tion of 2–5% can strongly modify the energy spectrum,

in particular the optical bandgap, of the system by 30–
100%.

Band structure Band structure of a solid originates from
the wave nature of particles and depicts the allowed
and forbidden energy states of electrons in the mate-
rial. The knowledge of the band structure is the first
and essential step towards the understanding of the de-
vice operation and reliable device design for semicon-
ductor devices. Bandstructure is based on the assump-
tion of an infinitely extended (bulk) material with-
out spatial fluctuations (outside a simple repeated unit
cell). For nanometer scale devices with spatial varia-
tions on the atomic scale the traditional concept of
bandstructure is called into question.

Piezoelectricity A variety of advanced materials of in-
terest, such as GaAs, InAs, GaN, are piezoelectric.
Piezoelectricity arises due to charge imbalances on the
bonds between atoms. Modifications of the bond an-
gles or distances result in alterations in charge im-
balance. Any spatial non-symmetric distortion/strain
in nanostructures made of these materials will create
piezoelectric fields, which may significantly modify the
electrostatic potential landscape.

Tight binding Tight binding is an empirical model that
enables calculation of single-particle energies andwave
functions in a solid. The essential idea is the represen-
tation of the electronic states of the valence electrons
with a local basis that contains the critical physical el-
ements needed. The basis may contain orthogonal s,
p, d orbitals on one atom that connect/talk to orbitals
of a neighboring atom. The connection between atoms
and the resulting overlapping wavefunctions form the
bandstructure of a solid.

NEMO 3-D NEMO 3-D stands for NanoElectronic Mod-
eling in three dimensions. This versatile, open source
software package currently allows calculating single-
particle electronic states and optical response of var-
ious semiconductor structures including bulk materi-
als, quantum dots, impurities, quantum wires, quan-
tum wells and nanocrystals.

nanoHUB The nanoHUB is a rich, web-based resource
for research, education and collaboration in nanotech-
nology (www.nanoHUB.org). It was created by the
NSF-funded Network for Computational Nanotech-
nology (NCN) with a vision to pioneer the develop-
ment of nanotechnology from science to manufactur-
ing through innovative theory, exploratory simulation,
and novel cyberinfrastructure. The nanoHUB offers
online nanotechnology simulation tools which one can
freely access from his/her web browser.

Rappture Rappture (www.rappture.org) is a software

http://www.nanoHUB.org
http://www.rappture.org
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toolkit that supports and enables the rapid develop-
ment of graphical user interfaces (GUIs) for different
applications. It is developed by Network for Compu-
tational Nanotechnology at Purdue University, West
Lafayette.

Definition of the Subject

The rapid progress in nanofabrication technologies has led
to the emergence of new classes of nanodevices and struc-
tures which are expected to bring about fundamental and
revolutionary changes in electronic, photonic, computa-
tion, information processing, biotechnology, and medical
industries. At the atomic scale of novel nanostructured
semiconductors the distinction between new device and
new material is blurred and device physics and material
science meet. The quantum mechanical effects in the elec-
tronic states of the device and the granular, atomistic rep-
resentation of the underlying material become important.
Modeling and simulation approaches based on a contin-
uum representation of the underlying material typically
used by device engineers and physicists become invalid.
Typical ab initio methods used by material scientists do
not represent the bandgaps and masses precisely enough
for device design or they do not scale to realistically sized
devices which may contain millions of atoms. The variety of
geometries, materials, and doping configurations in semi-
conductor devices at the nanoscale suggests that a general
nanoelectronic modeling tool is needed. The Nanoelec-
tronic Modeling tool (NEMO 3-D) has been developed
to address these needs. Based on the atomistic valence-
force field (VFF)method and a variety of nearest-neighbor
tight-binding models (s; sp3s�; sp3d5s�), NEMO 3-D en-
ables the computation of strain for over 64 million atoms
and of electronic structure for over 52 million atoms, cor-
responding to volumes of (110 nm)3 and (101 nm)3, re-
spectively. Such extreme problem sizes involve very large-
scale computations, and NEMO 3-D has been designed
and optimized to be scalable from single CPUs to large
numbers of processors on commodity clusters and the
most advanced supercomputers. Excellent scaling to 8192
cores/CPUs has been demonstrated. NEMO 3-D is con-
tinually developed by the Network for Computational
Nanotechnology (NCN) under an open source license.
A web-based online interactive version for educational
purposes is freely available on the NCN portal http://www.
nanoHUB.org. This article discusses the theoretical mod-
els, essential algorithmic and computational components,
and optimization methods that have been used in the de-
velopment and the deployment of NEMO 3-D. Also, suc-
cessful applications of NEMO3-D are demonstrated in the

atomistic calculation of single-particle electronic states of
the following realistically-sized nanostructures each con-
sisting of multimillion atoms: (1) self-assembled quan-
tum dots including long-range strain and piezoelectric-
ity; (2) stacked quantum dots as used in quantum cas-
cade lasers; (3) Phosphorus (P) impurities in Silicon used
in quantum computation; (4) Si on SiGe quantum wells
(QWs); and (5) SiGe nanowires. These examples demon-
strate the broad NEMO 3-D capabilities and indicate the
necessity of multimillion atomistic electronic structure
modeling.

Introduction

Emergence of Novel Nanoscale Semiconductor Devices

The new industrial age and the new economy are driven in
large measure by unprecedented advances in information
technology. The electronics industry is the largest indus-
try in the world with global sales of over one trillion dol-
lars since 1998. If current trends continue, the sales vol-
ume of the electronics industry is predicted to reach three
trillion dollars and account for about 10% of gross world
product (GWP) by 2010 [93]. Basic to the electronic in-
dustry and the new information age are the semiconductor
devices that implement all needed information processing
operations. The revolution in the semiconductor industry
was initiated in 1947 with the invention and fabrication
of point-contact bipolar devices on slabs of polycrystalline
germanium (Ge) used as the underlying semiconductor el-
ement [1]. Later the development of the planar process and
the reliable and high-quality silicon dioxide (SiO2) growth
on silicon wafers, acting as an excellent barrier for the se-
lective diffusion steps, led to the invention of the silicon-
based bipolar integrated circuits in 1959. A metal–oxide–
semiconductor field-effect transistor (MOSFET), the most
critical device for today’s advanced integrated circuits,
was reported by Kahng and Atalla in 1960 [93]. By 1968,
both complementary metal–oxide–semiconductor devices
(CMOS) and polysilicon gate technology allowing self-
alignment of the gate to the source/drain of the device had
been developed. The industry’s transition from bipolar to
CMOS technology in the 1980s was mainly driven by the
increased power demand for high-performance integrated
circuits.

The most important factor driving the continuous
device improvement has been the semiconductor indus-
try’s relentless effort to reduce the cost per function on
a chip [96]. This is done by putting more devices on an in-
tegrated circuit chip while either reducing manufacturing
costs or holding them constant. Device scaling, which in-
volves reducing the transistor size while keeping the elec-

http://www.nanoHUB.org
http://www.nanoHUB.org
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tric field constant from one generation to the next, has
paved the way for a continuous and systematic increase
in transistor density and improvements in system per-
formance (described by Moore’s Law [69]) for the past
forty years. For example, regarding conventional/classical
silicon MOSFETs, the device size is scaled in all dimen-
sions, resulting in smaller oxide thickness, junction depth,
channel length, channel width, and isolation spacing. Cur-
rently, 65 nm (with a physical gate length of 35 nm) is the
state-of-the-art process technology, but even smaller di-
mensions are expected in the very near future.

However, recent studies by many researchers around
the globe reveal the fact that the exponential growth in in-
tegrated circuit complexity as achieved through conven-
tional scaling is finally facing its limits and will slow down
in very near future. Critical dimensions, such as transistor
gate length and oxide thickness, are reaching physical limi-
tations [96]. Maintaining dimensional integrity at the lim-
its of scaling is a challenge. Considering themanufacturing
issues, photolithography becomes difficult as the feature
sizes approach the wavelength of ultraviolet light. In addi-
tion, it is difficult to control the oxide thickness when the
oxide is made up of just a few monolayers. Processes will
be required approaching atomic-layer precision. In addi-
tion to the processing issues there are also some funda-
mental device issues [103]. As the silicon industry moves
into the 45 nm node regime and beyond, two of the most
important challenges facing us are the growing dissipation
of standby power and the increasing variability and mis-
match in device characteristics.

The Semiconductor Industry Association (SIA) fore-
casts [88] that the current rate of transistor performance
improvement can be sustained for another 10 to 15 years,
but only through the development and introduction of
new materials and transistor structures. In addition, a ma-
jor improvement in lithography will be required to con-
tinue size reduction. It is expected that these new tech-
nologies may extend MOSFETs to the 22 nm node (9 nm
physical gate length) by 2016. Intrinsic device speed may
exceed 1 THz and integration densities will be more than
1 billion transistors/cm2. In many cases, the introduction
of a new material requires the use of a new device struc-
ture, or vice versa. To fabricate devices beyond current
scaling limits, IC companies are simultaneously pushing
the planar, bulk silicon CMOS design while exploring al-
ternative gate stack materials (high-k dielectric [108] and
metal gates), band engineering methods (using strained
Si [102] or SiGe [72]), and alternative transistor structures.
The concept of a band-engineered transistor is to enhance
the mobility of electrons and/or holes in the channel by
modifying the band structure of silicon in the channel in

a way such that the physical structure of the transistor
remains substantially unchanged. This enhanced mobil-
ity increases the transistor transconductance (gm) and on-
drive current (Ion). A SiGe layer or a strained-silicon on re-
laxed SiGe layer is used as the enhanced-mobility channel
layer. Today there is also an extensive research in double-
gate (DG) structures, and FinFET transistors [23], which
have better electrostatic integrity and theoretically have
better transport properties than single-gated FETs. Some
novel and revolutionary technology such as carbon nano-
tubes, silicon nanowires, or molecular transistors might be
seen on the horizon, but it is not obvious, in view of the
predicted future capabilities of CMOS, how competitive
they will be.

A recent analysis based on fundamental quantum
mechanical principles, restated by George Bourianoff of
the Intel Corporation, reveals that heat/power dissipa-
tion will ultimately limit any logic device using an elec-
tronic charge [107] and operating at room temperature.
This limit is about 100 watts per square centimeter for
passive cooling techniques with no active or electrother-
mal elements. These fundamental limits have led to pes-
simistic predictions of the imminent end of technologi-
cal progress for the semiconductor industry and simul-
taneously have increased interest in advanced alternative
technologies that rely on something other than electronic
charge—such as spin or photon fields—to store compu-
tational state. Many advocate a focus on quantum com-
puters that make use of distinctively quantum mechanical
phenomena, such as entanglement and superposition, to
perform operations on data. Among a number of quantum
computing proposals, the Kane scalable quantum com-
puter is based on an array of individual phosphorus (P)
donor atoms embedded in a pure silicon lattice [41]. Both
the nuclear spins of the donors and the spins of the donor
electrons participate in the quantum computation. The
Loss–DiVincenzo quantum computer [63], also a scalable
semiconductor-based quantum computer, makes use of
the intrinsic spin degree of freedom of individual electrons
confined to quantum dots as qubits.

Since the invention of the point-contact bipolar tran-
sistor in 1947, advanced fabrication technologies, intro-
duction of new materials with unique properties, and
broadened understanding of the underlying physical pro-
cesses have resulted in tremendous growth in the number
and variety of semiconductor devices and literally changed
the world. To date, there are about 60 major devices,
with over 100 device variations related to them. A list of
most of the basic semiconductor devices (mainly based on
Ref. [93]) discovered and used over the past century with
the date of their introduction is shown in Table 1.
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Multimillion Atom Simulations with Nemo3D, Table 1
Major semiconductor devices with the approximate date of their
introduction

1874 Metal-semiconductor contact
1947 Bipolar junction transistors (BJT)
1954 Solar cell
1957 Heterojunction bipolar transistor (HBT)
1958 Tunnel diode
1959 Integrated circuits
1960 Field-effect transistors (FETs)
1962 Semiconductor lasers.
1966 Metal-semiconductor FET
1967 Nonvolatile semiconductor memory
1974 Resonant tunneling diode (RTD)
1990 Magnetoresistive Random Access Memory (MRAM)
1991 Carbon nanotubes
1994 Room-temperature single-electron memory cell (SEMC)
1994 Quantum Cascade Laser
1998 Carbon nanotube FET
1998 Proposal for Kane quantum computer
2001 15 nmMOSFET
2003 High performance Silicon nanowire FET

Need for Simulations

Simulation is playing key role in device development to-
day. Two issues make simulation important [96]. Product
cycles are getting shorter with each generation, and the de-
mand for production wafers shadows development efforts
in the factory. Consider the product cycle issue first. In
order for companies to maintain their competitive edge,
products have to be taken from design to production in
less than 18 months. As a result, the development phase of
the cycle is getting shorter. Contrast this requirement with
the fact that it takes 2–3 months to run a wafer lot through
a factory, depending on its complexity. The specifications
for experiments run through the factory must be near the
final solution. While simulations may not be completely
predictive, they provide a good initial guess. This can ulti-
mately reduce the number of iterations during the device
development phase.

The second issue that reinforces the need for simula-
tion is the production pressures that factories face. In or-
der to meet customer demand, development factories are
making way for production space. It is also expensive to
run experiments through a production facility. The dis-
placed resources could have otherwise been used to pro-
duce sellable product. Again, device simulation can be
used to decrease the number of experiments run through
a factory. Device simulation can be used as a tool to guide
manufacturing down a more efficient path, thereby de-
creasing the development time and costs.

Besides offering the possibility to test hypothetical de-
vices which have not (or could not have) yet been manu-
factured, device simulation offers unique insight into de-
vice behavior by allowing the observation of internal phe-
nomena that can not be measured. Thus, a critical facet of
the nanodevices development is the creation of simulation
tools that can quantitatively explain or even predict exper-
iments. In particular it would be very desirable to explore
the design space before, or in conjunction with, the (typi-
cally time consuming and expensive) experiments. A gen-
eral tool that is applicable over a large set of materials and
geometries is highly desirable. But the tool development
itself is not enough. The tool needs to be deployed to the
user community so it can be made more reliable, flexible,
and accurate.

Goal of this Article

The rapid progress in nanofabrication technologies has
led to the development of novel devices and structures
which could revolutionize many high technology indus-
tries. These devices demonstrate new capabilities and
functionalities where the quantum nature of charge carri-
ers plays an important role in determining the overall de-
vice properties and performance. For device sizes in the
range of tens of nanometers, the atomistic granularity of
constituent materials cannot be neglected: effects of atom-
istic strain, surface roughness, unintentional doping, the
underlying crystal symmetries, or distortions of the crystal
lattice can have a dramatic impact on the device operation
and performance.

The goal of this paper is to describe the theoretical
models and the essential algorithmic and computational
components that have been used in the development and
deployment of the Nanoelectronic Modeling tool NEMO
3-D on http://www.nanoHUB.org and to demonstrate
successful applications of NEMO 3-D in the atomistic cal-
culation of single-particle electronic states of different, re-
alistically sized nanostructures, each consisting of multi-
million atoms. We present some of the new capabilities
that have been recently added to NEMO 3-D to make it
one of the premier simulation tools for design and analy-
sis of realistic nanoelectronic devices, and thus a valid tool
for the computational nanotechnology community. These
recent advances include algorithmic refinements, perfor-
mance analysis to identify the best computational strate-
gies, and memory saving measures. The effective scala-
bility of NEMO 3-D code is demonstrated on the IBM
BlueGene, the Cray XT3, an Intel Woodcrest cluster, and
other Linux clusters. The largest electronic structure cal-
culation, with 52 million atoms, involved a Hamiltonian

http://www.nanoHUB.org
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matrix with over one billion complex degrees of freedom.
The performance impact of storing the Hamiltonain ver-
sus recomputing the matrix, when needed, is explored.
We describe the state-of-the-art algorithms that have been
incorporated in the code, including very effective Lanc-
zos, block Lanczos and Tracemin eigenvalue solvers, and
present a comparison of the different solvers. While sys-
tem sizes of tens of millions of atoms appear at first sight
huge and wasteful, we demonstrate that some physical
problems require such large scale analysis. We recently
showed [44] that the analysis of valley splitting in strained
Si quantum wells grown on strained SiGe required atom-
istic analysis of 10 million atoms to match experimental
data. The insight that disorder in the SiGe buffer increases
valley splitting in the Si quantum well would probably not
be predictable in a continuum effective mass model. Sim-
ilarly, the simulations of P impurities in silicon required
multi-million atom simulations [82]. In the following, we
describe NEMO 3-D capabilities in the simulation of dif-
ferent classes of nanodevices having carrier confinement
in 3, 2, and 1 dimensions in the GaAs/InAs and SiGe ma-
terials systems.

Single and Stacked Quantum Dots (confinement in 3
dimensions) Quantum dots (QDs) are solid-state semi-
conducting nanostructures that provide confinement of
charge carriers (electrons, holes, excitons) in all three spa-
tial dimensions resulting in strongly localized wave func-
tions, discrete energy eigenvalues and interesting physi-
cal and novel device properties [6,68,70,78,84,85]. Exist-
ing nanofabrication techniques tailor QDs in a variety of
types, shapes and sizes. Within bottom-up approaches,
QDs can be realized by colloidal synthesis at benchtop
conditions. Quantum dots thus created have dimensions
ranging from 2–10 nanometers, corresponding to 100–
100,000 atoms.

Self-assembled quantum dots (SAQDs) grown in
the coherent Stranski–Krastanov heteroepitaxial growth
mode nucleate spontaneously within a lattice mismatched
material system (for example, InAs grown on GaAs sub-
strate) under the influence of strain in certain phys-
ical conditions during molecular beam epitaxy (MBE)
and metalorganic vapor phase epitaxy (MOVPE) [3]. The
strain produces coherently strained quantum-sized islands
on top of a two-dimensional wetting-layer. The islands can
be subsequently buried. Semiconducting QDs grown by
self-assembly are of particular importance in quantum op-
tics [28,67], since they can be used as detectors of infrared
radiation, optical memories, and in laser applications.

The strongly peaked energy dependence of density of
states and the strong overlap of spatially confined electron

and hole wavefunctions provide ultra-low laser threshold
current densities, high temperature stability of the thresh-
old current, and high material and differential quantum
gain/yield. Strong oscillator strength and non-linearity in
the optical properties have also been observed [67]. Self-
assembled quantum dots also have potential for applica-
tions in quantum cryptography as single photon sources
and quantum computation [22,41]. In electronic applica-
tions QDs have been used to operate like a single-electron
transistor and demonstrate a pronounced Coulomb block-
ade effect. Self-assembled QDs, with an average height
of 1–5 nm, are typically of size (base length/diameter)
5–50 nm and consist of 5,000–2,000,000 atoms. Arrays
of quantum-mechanically coupled (stacked) self-assem-
bled quantum dots can be used as optically active regions
in high-efficiency, room-temperature lasers. Typical QD
stacks consist of 3–7 QDs with typical lateral extension of
10–50 nm and dot height of 1–3 nm. Such dots contain 5–
50 million atoms in total, where atomistic details of inter-
faces are extremely important [95].

Impurities (confinement in 3 dimensions) Impurities
have always played a vital role in semiconductors since the
inception of the transistor. Till the end of last century, sci-
entists and engineers had been interested in the macro-
scopic properties of an ensemble of dopants in a semicon-
ductor. As technology enters the era of nanoscale electron-
ics, devices which contain a few discrete dopants are be-
coming increasingly common. In recent years, there have
been proposals of novel devices that operate on purely
quantum mechanical principles using the quantum states
of isolated or coupled donors/impurities [36,41,97]. The
on-going extensive research effort on the Phosphorus (P)
donor based quantum computer architecture of Kane [41]
exemplifies an effort to harness the quantum nature of ma-
terials for the development of next generation electron-
ics. As researchers strive to establish atomic scale quantum
control over single impurities [19,87,91], precision model-
ing techniques are required to explore this new regime of
device operations [25,29,65,82].

Although effective mass based approaches have been
predominantly used in literature to study the physics of
impurities, realistic device modeling using this technique
have proved difficult in practice. Tight-binding meth-
ods [89] consider a more extensive Bloch structure for
the host material, and can treat interfaces, external gates,
strain, magnetic fields, and alloy disorder within a single
framework. When applied to realistic nanodevices of sev-
eral million atoms, this technique can prove very effec-
tive for devicemodeling [49].We present a semi-empirical
method for modeling impurities in Si that can be used for
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a variety of applications such as quantum computer archi-
tecture, discretely doped FinFETs, and impurity scattering
problems. Although we focus on P impurities in Si here,
the method is sufficiently general to be used on other im-
purities and hosts.

Quantum Wires (confinement in 2 dimensions) For
quite some time, nanowires have been considered
a promising candidate for future building block in com-
puters and information processing machines [17,50,64,98,
106]. Nanowires are fabricated from different materials
(metal, semiconductor, insulator and molecular) and as-
sume different cross-sectional shapes, dimensions and di-
ameters. Electrical conductivity of nanowires is greatly in-
fluenced by edge effects on the surface of the nanowire and
is determined by quantummechanical conductance. In the
nanometer regime, the impact of surface roughness or al-
loy disorder on electronic bandstructure must be atomisti-
cally studied to further gauge the transport properties of
nanowires.

Quantum Wells (confinement in 1 dimension) QW
devices are already a de-facto standard technology in
MOS devices and QW lasers. They continue to be exam-
ined carefully for ultra-scaled devices where interfacial de-
tails turn out to be critical. Composite channel materials
with GaAs, InAs, InSb, GaSb, and Si are being consid-
ered [78,81], which effectively constitute QWs. Si QWs
buffered/strained by SiGe are considered for Quantum
Computing (QC) devices where valley-splitting (VS) is an
important issue [27]. Si is desirable for QC due to its long
spin-decoherence times, scaling potential and integrabil-
ity within the present microelectronic manufacturing in-
frastructure. In strained Si, the 6-fold valley-degeneracy
of Si is broken into lower 2-fold and raised 4-fold val-
ley-degeneracies. The presence of 2-fold valley-degeneracy
is a potential source of decoherence which leads to leak-
age of quantum information outside qubit Hilbert space.
Therefore, it is of great interest to study the lifting of the
remaining 2-fold valley degeneracy in strained Si due to
sharp confinement potentials in recently proposed [27]
SiGe/Si/SiGe quantum well (QW) heterostructures based
quantum computing architectures.

Nanoscale DeviceModeling
and SimulationChallenges

The theoretical knowledge of the electronic structure of
nanoscale semiconductor devices is the first and most
essential step towards the interpretation and the under-
standing of the experimental data and reliable device de-

sign at the nanometer scale. The following is a list of
the modeling and simulation challenges in the design and
analysis of realistically sized engineered nanodevices.

Full Three-Dimensional Atomistic Representation

The lack of spatial symmetry in the overall geometry of the
nanodevices usually requires explicit three-dimensional
representation. For example, Stranski–Krastanov growth
techniques tend to produce self-assembled InGaAs/GaAs
quantum dots [68,77,84,85] with some rotational symme-
try, e. g. disks, truncated cones, domes, or pyramids [6].
These structures are generally not perfect geometric ob-
jects, since they are subject to interface interdiffusion, and
discretization on an atomic lattice. There is no such thing
as a round disk on a crystal lattice! The underlying crystal
symmetry imposes immediate restrictions on the realistic
geometry and influences the quantummechanics. Contin-
uummethods such as effective mass [79] and k � p [35,92]
typically ignore such crystal symmetry and atomistic reso-
lution.

The required simulation domain sizes of �1M atoms
prevent the usage of ab initio methods. Empirical meth-
ods which eliminate enough unnecessary details of core
electrons, but are finely tuned to describe the atom-
istically dependent behavior of valence and conduction
electrons, are needed. The current state-of-the-art leaves
2 choices: 1) pseudopotentials [20] and 2) Tight Bind-
ing [49]. Both methods have their advantages and disad-
vantages. Pseudopotentials use plane waves as a funda-
mental basis choice. Realistic nanostructures contain high
frequency features such as alloy-disorder or hetero-inter-
faces. This means that the basis needs to be adjusted (by
an expert) for every different device, which limit the po-
tential impact for non-expert users. Numerical implemen-
tations of pseudopotential calculations typically require
a Fourier transform between real and momentum space
which demand full matrix manipulations and full trans-
poses. This typically requires high bandwidth communi-
cation capability (i. e. extremely expensive) parallel ma-
chines, which limit the practical dissemination of the soft-
ware to end users with limited compute resources. Tight-
binding is a local basis representation, which naturally
deals with finite device sizes, alloy-disorder and hetero-
interfaces and it results in very sparse matrices. The re-
quirements of storage and processor communication are
therefore minimal compared to pseudopotentials and ac-
tual implementations perform extremely well on inexpen-
sive clusters [49].

Tight-binding has the disadvantage that it is based on
empirical fitting and some in the community continue
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Multimillion Atom Simulations with Nemo3D, Figure 1
NEMO 3-D modeling agenda: map electronic properties of in-
dividual atoms into realistic structures containing millions of
atoms, computation of nanoscale quantum dots that maps into
real applications

to question the fundamental applicability of tight-bind-
ing. The NEMO team has spent a significant effort to ex-
pand and document the tight-binding capabilities with re-
spect to handling of strain [12], electromagnetic fields [8],
and Coulomb matrix elements [59] and fit them to well
known and accepted bulk parameters [47,48,49]. With
tight-binding the NEMO team was able early on to match
experimentally verified, high-bias current-voltage curves
of resonant tunneling [7,46] that could not get modeled
by ether effective mass (due to the lack of physics) or
pseudopotential methods (due to the lack of open bound-
ary conditions). We continue to learn about the tight-
binding method capabilities, and we are in the process
of benchmarking it against more fundamental ab initio
approaches and pseudopotential approaches. Our current
Si/Ge parametrization is described in references [9,13].
Figure 1 depicts a range of phenomena that represent new
challenges presented by new trends in nanoelectronics and
lays out the NEMO 3-D modeling agenda.

Atomistic Strain

Strain that originates from the assembly of lattice-mis-
matched semiconductors strongly modifies the energy
spectrum of the system. In the case of the InAs/GaAs
quantum dots, this mismatch is around 7% and leads to
a strong long-range strain field within the extended neigh-
borhood (typically �25 nm) of each quantum dot [2].

Si/Ge core/shell structured nanowires are another exam-
ple of strain dominated atom arrangements [62]. Si quan-
tum wells and SiGe quantum computing architectures
rely on strain for state separation [27]. The strain can
be atomistically inhomogeneous, involving not only bi-
axial components but also non-negligible shear compo-
nents. Strain strongly influences the core and barrier ma-
terial band structures, modifies the energy bandgaps, and
lifts the heavy hole-light hole degeneracy at the zone cen-
ter. In the nanoscale regime, the classical harmonic lin-
ear/continuum elasticity model for strain is inadequate,
and device simulations must include the fundamental
quantum character of charge carriers and the long-dis-
tance atomistic strain effects with proper boundary con-
ditions on equal footing [58,101].

Piezoelectric Field

A variety of III-IV materials such as GaAs, InAs, GaN,
are piezoelectric. Any spatial non-symmetric distortion in
nanostructures made of these materials will create piezo-
electric fields, which will modify the electrostatic poten-
tial landscape. Recent spectroscopic analyzes of self-as-
sembled QDs demonstrate polarized transitions between
confined hole and electron levels [6]. While the contin-
uum models (effective mass or k � p) can reliably predict
aspects of the single-particle energy states, they fail to cap-
ture the observed non-degeneracy and optical polariza-
tion anisotropy of the excited energy states in the (001)
plane. These methods fail because they use a confinement
potential which is assumed to have only the shape sym-
metry of the nanostructure, and they ignore the underly-
ing crystal symmetry. The experimentally measured sym-
metry is significantly lower than the assumed continuum
symmetry because of (a) underlying crystalline symmetry,
(b) atomistic strain relaxation and (c) piezoelectric field.
For example, in the case of pyramid shaped quantum dots
with square bases, continuum models treat the underlying
material in C4� symmetry while the atomistic representa-
tion lowers the crystal symmetry to C2� . The piezoelec-
tric potential originating from the non-zero shear com-
ponent of the strain field must be taken into account to
properly model the associated symmetry breaking and the
introduction of a global shift in the energy spectra of the
system.

NEMO 3-D Simulation Package

Basic Features – Simulation Domains

NEMO 3-D [49,53,55,74,75] bridges the gap between the
large size, classical semiconductor device models and the
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Multimillion Atom Simulations with Nemo3D, Figure 2
Simulated dome shaped InAs quantum dot buried in GaAs. Two
simulation domains are shown, Delec: central smaller domain for
electronic structure calculation, and Dstrain: outer larger domain
for strain calculation. In the figure: s is the substrate height, c is
the cap layer thickness, h is the dot height, d is the dot diameter

molecular level modeling. This package currently allows
calculating single-particle electronic states and optical re-
sponse of various semiconductor structures including bulk
materials, quantum dots, quantum wires, quantum wells
and nanocrystals. NEMO 3-D includes spin in its fun-
damental atomistic tight binding representation. Spin is
therefore not added in as an afterthought into the the-
ory, but spin-spin interactions are naturally included in
the Hamiltonian. Effects of interaction with external elec-
tromagnetic fields are also included [8,32,49]. A schematic
view of InAs quantum dot embedded in a GaAs barrier
material the sample is presented in Fig. 2. The quantum
dot is positioned on a 0.6 nm thick wetting layer (dark
region). The simulation of strain is carried out in the
large computational boxDstrain, while the electronic struc-
ture computation is restricted to the smaller domain Delec.
Strain is long-ranged and penetrates around 25nm into
the dot substrate thus stressing the need for using large
substrate thickness in the simulations. NEMO 3-D en-
ables the computation of strain and electronic structure
in an atomistic basis for over 64 and 52 million atoms,
corresponding to volumes of (110 nm)3 and (101 nm)3,
respectively. These volumes can be spread out arbitrarily
over any closed geometry. For example, if a thin layer of
15 nm height is considered, the corresponding widths in
the x–y plane correspond to 298 nm for strain calculations
and 262 nm for electronic structure calculations. No other
atomistic tool can currently handle such volumes needed
for realistic device simulations. NEMO 3-D runs on serial

and parallel platforms, local cluster computers as well as
the NSF Teragrid.

Components andModels

The NEMO 3-D program flow consists of four main com-
ponents.

Geometry Construction The first part is the geome-
try constructor, whose purpose is to represent the treated
nanostructure in atomistic detail in the memory of
the computer. Each atom is assigned three single-preci-
sion numbers representing its coordinates, stored is also
its type (atomic number in short integer), information
whether the atom is on the surface or in the interior of
the sample (important later on in electronic calculations),
what kind of computation it will take part of (strain only
or strain and electronic), and what its nearest neighbor re-
lation in a unit cell is. The arrays holding this structural in-
formation are initialized for all atoms on all CPUs, i. e., the
complete information on the structure is available on each
CPU. By default most of this information can be stored
in short integer arrays or as single bit arrays, which does
not require significant memory. This serial memory allo-
cation of the atom positions, however, becomes significant
for very large systems which must be treated in parallel.

Strain The materials making up the QD nanostructure
may differ in their lattice constants; for the InAs/GaAs sys-
tem this difference is of the order of 7%. This lattice mis-
match leads to the appearance of strain: atoms throughout
the sample are displaced from their bulk positions. Knowl-
edge of equilibrium atomic positions is crucial for the sub-
sequent calculation of QD’s electronic properties, which
makes the computation of strain a necessary step in realis-
tic simulations of these nanostructures.

NEMO 3-D computes strain field using an atomistic
valence force field (VFF)method [42] with the Keating Po-
tential. In this approach, the total elastic energy of the sam-
ple is computed as a sum of bond-stretching and bond-
bending contributions from each atom. The local strain
energy at atom i is given by a phenomenological formula
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where the sum is carried out over the n nearest neighbors j
of atom i, Edi j and ERi j are the bulk and actual (distorted)
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distances between neighbor atoms, respectively, and ˛i j
and ˇi j are empirical material-dependent elastic param-
eters. The equilibrium atomic positions are found by min-
imizing the total elastic energy of the system. Several other
strain potentials [58,101] are also implemented in NEMO
3-D. While they modify some of the strain details they
roughly have the same computational efficiency.

Electronic Structure The single-particle energies and
wave functions are calculated using an empirical nearest-
neighbor tight-binding model. The underlying idea of this
approach is the selection of a basis consisting of atomic or-
bitals (such as s, p, d, and s�) centered on each atom. These
orbitals are further treated as a basis set for the Hamilto-
nian, which assumes the following form:

Ĥ D
X
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"
(�)
i cCi;�ci;� C

X
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t(��)i cCi;� ci;�

C
X

i; j;�;�

t(��)ij cCi;�c j;� ; (2)

where cCi;�(ci;�) is the creation (annihilation) operator of
an electron on the orbital � localized on atom i. In the
above equation, the first term describes the onsite orbital
terms, found on the diagonal of the Hamiltonian matrix.
The second term describes coupling between different or-
bitals localized on the same atom (only the spin-orbit cou-
pling between p-orbitals), and the third term describes
coupling between different orbitals on different atoms.
The restriction in the summation of the last term is that
the atoms i and j be nearest neighbors.

The characteristic parameters " and t are treated as
empirical fitting parameters for each constituent material
and bond type. They are usually expressed in terms of en-
ergy constants of � and � bonds between the atomic or-
bitals. For example, for a simple cubic lattice, the interac-
tion between the s orbital localized on the atom i at origin
and the orbital px localized on the atom j with coordinate
Edi j D ax̂ with respect to the atom i would simply be ex-
pressed as t(s;px )i j D Vsp
 . Most of the systems under con-
sideration, however, crystallize in the zinc-blende lattice,
which means that the distance between the nearest neigh-
bors is described by a 3-D vector Edi j D l x̂ C mŷ C nẑ,
with l, m, n being the directional cosines. These cosines
rescale the interaction constants, so that the element
describing the interaction of the orbitals s and px is
t(s;px )i j D lVsp
 . The parametrization of all bonds using
analytical forms of directional cosines for various tight-
binding models is given in [90]. NEMO 3-D provides the
user with choices of the sp3d5s�, sp3s�, and single s-orbital

models with and without spin, in zincblende, wurzite, and
simple cubic lattices.

Additional complications arise in strained structures,
where the atomic positions deviate from the ideal (bulk)
crystal lattice [40]. The presence of strain leads to dis-
tortions not only of bond directions, but also bond
lengths. In this case, the discussed interaction constant
t(s;px )i j D l 0Vsp
 (d/d0)�(s p
), where the new directional
cosine l 0 can be obtained analytically from the relaxed
atom positions, but the bond-stretch exponent �(sp�)
needs to be fitted to available data. The energy constants
parametrizing the on-site interaction change as well due
to bond renormalization [12,49].

The 20-band nearest-neighbor tight-binding model is
thus parametrized by 34 energy constants and 33 strain pa-
rameters, which need to be established by fitting the com-
puted electronic properties of materials to those measured
experimentally. This is done by considering bulk semi-
conductor crystals (such as GaAs or InAs) under strain.
The summation in the Hamiltonian for these systems is
done over the primitive crystallographic unit cell only. The
model makes it possible to compute the band structure of
the semiconductor throughout the entire Brillouin zone.
For the purpose of the fitting procedure, however, only
the band energies and effective masses at high symmetry
points and along the� line from � to C are targeted, and
the tight-binding parameters are adjusted until a set of val-
ues closely reproducing these target values is found. Search
for optimal parametrization is done using a genetic algo-
rithm, described in detail in [32,49]. Once it is known for
each material constituting the QD, a full atomistic calcu-
lation of the single-particle energy spectrum is carried out
on samples composed of millions of atoms. No further ma-
terial properties are adjusted for the nanostructure, once
they are defined as basic bulk material properties.

Post Processing of Eigenstates From the single-parti-
cle eigenstates various physical properties can be calcu-
lated in NEMO 3-D such as optical matrix elements [18],
Coulomb and exchange matrix elements [59], approxi-
mate single cell bandstructures from supercell bandstruc-
ture [10,11,17].

Algorithmic and Numerical Aspects

Parallel Implementation The complexity and general-
ity of physical models in NEMO 3-D can place high de-
mands on computational resources. For example, in the
20-band electronic calculation the discrete Hamiltonian
matrix is of order 20 times the number of atoms. Thus, in
a computation with 20 million atoms, the matrix is of or-
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Multimillion Atom Simulations with Nemo3D, Figure 3
Elastic energy convergence profile in a typical simulation of an
InAs/GaAs quantum dot with a total 64 million of atoms (inset –
linear scale)

der 400 million. Computations of that size can be handled
because of the parallelized design of the package. NEMO
3-D is implemented in ANSI C, CCC with MPI used for
message-passing, which ensures its portability to all major
high-performance computing platforms, and allows for an
efficient use of distributed memory and parallel execution
mechanisms.

Although the strain and electronic parts of the com-
putation are algorithmically different, the key element in
both is the sparse matrix-vector multiplication. This al-
lows the use of the same memory distribution model in
both phases. The computational domain is divided into
slabs along one dimension. All atoms from the same slab
are assigned to a single CPU, so if all nearest neighbors of
an atom belong to its slab, no inter-CPU communication
is necessary. The interatomic couplings are then fully con-
tained in one of the diagonal blocks of the matrix. On the
other hand, if an atom is positioned on the interface be-
tween slabs, it will couple to atoms belonging both to its
own and the neighboring slab. This coupling is described
by the off-diagonal blocks of the matrix. Its proper han-
dling requires inter-CPU communication. However, due
to the first-nearest-neighbor character of the strain and
electronic models, the messages need to be passed only be-
tween pairs of CPUs corresponding to adjacent domains –
even if the slabs are one atomic layer thick. Full duplex
communication patterns are implemented such that all
inter-processor communications can be performed in 2
steps [49].

Core Algorithms and Memory Requirements In the
strain computation, the positions of the atoms are com-
puted to minimize the total elastic strain energy. The total
elastic energy in the VFF approach has only one, global
minimum, and its functional form in atomic coordinates
is quartic. The conjugate gradient minimization algorithm
in this case is well-behaved and stable. Figure 3 shows the
energy convergence behavior in a typical simulation of an
InAs/GaAs quantum dot with a total of around 64 million
of atoms. The total elastic energy operator is never stored
in its matrix form, but the interatomic couplings are com-
puted on the fly. Therefore the only data structures allo-
cated in this phase are the vectors necessary for the con-
jugate gradient. The implementation used in NEMO 3-D
requires six vectors, each of the total size of 3 × number of
atoms (to store atomic coordinates, gradients, and inter-
mediate data), however all those vectors are divided into
slabs and distributed among CPUs as discussed above. The
final atom position vectors are by default stored on all the
CPU for some technical output details.

The electronic computation involves a very large
eigenvector computation (matrices of order of hundreds
of millions or even billion). The algorithms/solvers avail-
able in NEMO 3-D include the PARPACK library [66],
a custom implementation of the Lanczos method, Block
Lanczos method, the spectrum folding method [99] and
the Tracemin method [86]. The research group is also
exploring implementations of Lanczos with deflation
method.

The Lanczos algorithm employed here is not restarted,
and the Lanczos vectors are not reorthogonalized. More-
over, the spectrum of the matrix has a gap, which lies in
the interior of the spectrum. Typically, a small set of eigen-
values is sought, immediately above and below the gap.
The corresponding eigenstates are electron and hole wave
functions, assuming effectively nonzero values only inside
and in the immediate vicinity of the quantum dot. Also,
in the absence of the external magnetic field the eigen-
values are repeated, which reflects the spin degeneracy of
electronic states. The advantage of Lanczos algorithm is
that it is fast, while the disadvantage is that it does not
find the multiplicity and can potentially miss eigenvalues.
Some comparisons have shown that the Lanczos method
is faster by a factor of 40 for the NEMO 3-D matrix than
PARPACK. Block Lanczos with block size p finds p degen-
erate eigenvalues relatively fast compared to PARPACK
and Tracemin, however a potential instability exists as
well. The Tracemin algorithm finds the correct spectrum
of degenerate eigenvalues, but is slower than Lanczos.
PARPACK has been found to be less reliable for this prob-
lem, taking more time than Tracemin and missing some
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Multimillion Atom Simulations with Nemo3D, Table 2
Performance comparison of different eigenvalue solvers on 32 processors of PurdueUniversity Linux cluster (Xeon x86-64Dual Core
2.33GHz). Simulation was performed on an InAs QD structure with 268800 atoms. Time (in hours), Relative time, Number of matrix-
vector products (#MVP), Relative matrix-vector products, Memory (in GB) and number of correct eigenvalues and their multiplicity
(#Eig(mul)) for Lanczos, Block Lanczos with block size 2 (BLanczos2), PARPACK, Tracemin with Quadratic mapping(QTracemin) and
Tracemin with Chebyshev polynomial mapping(CTracemin)

Algorithm Time (HRS.) Relative Time #MVP ( ×1000) Relative MVP Memory (GB) #EIG.(MUL)
Lanczos 0.428 1.0 10.9 1.0 2.64 20(1)
BLanczos2 1.385 3.2 11.8 1.1 2.77 8(2)
PARPACK 18.04 42.2 59.3 5.4 2.64 8(2),4(1)
QTracemin 15.71 36.7 317.0 29.1 2.77 10(2)
CTracemin 13.70 32.1 528.8 48.5 2.64 10(2)

Multimillion Atom Simulations with Nemo3D, Table 3
List of spectrum between 1.0� 1.3 eV and the number of multiplicities obtained from different solvers. Number of searched eigen-
values was kept constant for these methods

Eigenvalues Lanczos BLanczos2 PARPACK QTracemin CTracemin
1.0361 1 – – 2 2
1.0969 1 2 – 2 2
1.0976 1 2 1 2 2
1.1624 1 2 2 2 2
1.1645 1 2 2 2 2
1.1748 1 2 2 2 2
1.2304 1 2 2 2 2
1.2312 1 2 2 2 2
1.2445 1 2 2 2 2
1.2448 1 – 2 2 2
1.2975 1 – 2 – –

of the eigenvalues and their multiplicity. Tables 2 and 3
give a comparison of Lanczos, Block Lanczos, PARPACK
and Tracemin with the number of eigenvalues searched
was kept constant. The majority of the memory allocated
in the electronic calculation in Lanczos is taken up by the
Hamiltonian matrix. This matrix is very large, but typi-
cally very sparse; this property is explicitly accounted for
in the memory allocation scheme. All matrix entries are, in
general, complex, and are stored in single precision. The
code has an option to not store the Hamiltonian matrix,
but to recompute it, each time it needs to be applied to
a vector. In the Lanczos method, this is required once in
each iteration. The PARPACK and Tracemin algorithms
require the allocation of a significant number of vectors
as a workspace, which is comparable to or larger than the
Hamiltonian matrix. This additional memory need may
require a matrix recompute for memory savings on mem-
ory-poor platforms like an IBM BlueGene.

Figure 4 shows thememory requirements for the dom-
inant phase of the code (electronic structure calculations).
It shows how the number of atoms that can be treated

grows as a function of the number of CPUs, for a fixed
amount of memory per CPU. The number of atoms can
be intuitively characterized by the length of one side of
a cube that would contain that many atoms. This length
is shown in Fig. 4, on the vertical axis on the right side of
each plot. This figure shows that the number of atoms that
can be treated in NEMO 3-D continues to grow for larger
CPU counts. The strain calculations have so far never been
memory limited. NEMO3-D is typically size limited in the
electronic structure calculation.

Optimization in NEMO 3-D In running a scientific ap-
plication that requires massive computation power, we
have to consider various issues that may occur, mainly due
to limited resource in a computer: Too small memory per
core can limit the size of the problem and unnecessary
loops in the code consumes additional time for calculation.
It is crucial to design an application in a way to maximize
floating operations per second and avoid inefficient loops.
InNEMO-3D, several optimization ideas are implemented
and those are introduced in the following sections.
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Multimillion Atom Simulations with Nemo3D, Figure 4
Number of atoms that canbe treated, as a function of the number of CPUs for different amounts ofmemory per CPU for the electronic
structure calculation. The vertical axis on the right side of each plot gives the equivalent length in nm of one side of the cube that
would contain the given number of atoms

Multimillion Atom Simulations with Nemo3D, Figure 5
The conceptual diagram of vectorization. In vectorized CPU, it is capable of n simultaneous operations in single CPU cycle

Vectorization Vectorization is a hardware dependent
optimization scheme that converts multiple single scalar
operations to single vector operation. The concept is
shown in Fig. 5. It is commonly used in graphic proces-
sors and supercomputers (e. g. Cray X1E machines) where
massive computation load and fast processing is needed.
Even recent processors in desktop computers, support
similar parallel data processing scheme. The most com-
mon technique to support parallelism is Single Instruc-
tion, Multiple Data (SIMD) algorithm. It was Intel who
first developed instruction sets known as Streaming SIMD
Extensions, or SSE, to support in their Pentium III pro-
cessors in 1999 [104]. Nowadays, AMD, Transmeta and
Via also support SSE features and new enhancements
are developed continuously (as of Oct. 2007, SSE5 is the
latest version). A couple of single and double precision
arithmetic can be carried out simultaneously resulting in
fast computation. Therefore, it is possible to make use of

SSE scheme in scientific applications with heavy complex
number calculations. In NEMO-3D, complex multiplica-
tion and addition occurs frequently in matrix-matrix mul-
tiply routine. To this certain application, major improve-
ment was achieved in real-complex multiplies. Figure 6
shows the speed improvement observed in NEMO-3D by
replacing SSE instructions to real-complex multiplication.

Matrix–Matrix Multiplier and BLAS The Basic Linear
Algebra Subprograms, or BLAS, are standardized inter-
face for performing basic matrix-vector and matrix-ma-
trix multiplication. The BLAS package is widely used in
high-performance computing and it has been optimized
to maximize the number of floating point operations for
specific CPUs. For example, Intel develops its own BLAS
package in the Math Kernel Library (MKL BLAS) highly
optimized to their processors. Compared to native C code
with double nested loops, benefits can be made from
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Multimillion Atom Simulations with Nemo3D, Figure 6
Comparison of electronic calculation time between SSE opti-
mized code and native C code. Simulated on a single node of
Xeon x86-64 Dual Core 2.33GHz CPU computers

BLAS, especially with matrix-matrix multiplication. From
the experiment shown in Fig. 7, highly-optimized BLAS
Matrix-matrix multiply instruction, or ZGEMM, is capa-
ble of utilizing the CPU to perform more floating point
operations per second, reducing the total calculation time.
Even for the block sizes N D 10, N D 20 corresponding
to sp3d5s� bands significant improvement can be seen by
performing block-wise operations. The data in Fig. 7 indi-
cates an excellent incentive for the Block Lanczos and the
Tracemin algorithms that perform multiple matrix-vector
multiplies for the same matrix to be blocked. For exam-
ple, at N D 10 a single vector multiply can be performed
at about 1.5 GFlops while 8 multiplies can be performed
at a rate of 3.6 GFlops. With the increase in relative per-
formance for increased block size the required total CPU
time increased sublinearly. Subsequent NEMO 3-D devel-
opment for general 3-D spatial structures will utilize the
ZGEMM multiply by arranging the data structures such
that no copy is needed.

Explicit Construction of Hamiltonian in Recompute Mode
The recompute mode enables NEMO-3D to run on lim-
ited memory computers by eliminating storage of the
Hamiltonian altogether and recomputing the matrix ele-
ments as they are needed.However, since the construction
of the Hamiltonian consumes significant time, reducing
the number of calculations in the construction of a ma-
trix element enhances the performance. In cases where no
external magnetic field is present, duplicate calculations
due to the spin degeneracy can be avoided. Also, since the

orbital interactions are known, unnecessary loops can be
avoided, and non-zero elements may be explicitly evalu-
ated. The doubly nested switch statements at the core of
the orbital-orbital interaction loops have been replaced by
customized expressions for the matrix elements for spe-
cific tight binding orbital arrangements such as sp3s� and
sp3d5s�. Simulation result indicates that the electronic cal-
culation time is reduced up to 40% (Fig. 8). This cus-
tomization increases computational performance but re-
duces the algorithmic generality.

Scaling Out of the two phases of NEMO 3-D, the
strain calculation is algorithmically and computationally
less challenging than the Lanczos diagonalization of the
Hamiltonian matrix.

To investigate the performance of NEMO 3-D pack-
age, computation was performed in a single dome shaped
InAs quantum dot nanostructure embedded in a GaAs
barriermaterial as shown in Fig. 2. TheHPC platform used
in the performance studies are shown in Table 4. These in-
clude a Linux clusters at the Rosen Center for Advanced
Computing (RCAC) at Purdue with Intel processors (dual
core Woodcrest). The other five platforms are a BlueGene
at the Rensselaer Polytechnic Institute (RPI), the Cray XT3
at the Pittsburgh Supercomputing Center (PSC), the Cray
XT3/4 at ORNL, JS21 at Indiana University, and a Wood-
crest machine at NCSA. Table 4 provides the relevant ma-
chine details. These platforms have proprietary intercon-
nects, that are higher performance than Gigabit Ether-
net (GigE) for the three Linux clusters at Purdue. In the
following, the terms processors and cores are used inter-
changeably.

Figure 9 shows the performance of NEMO 3-D for
each of the architectures. The wall clock times for 500 iter-
ations of the Lanczos method for the electronic structure
phase are shown as a function of the number of cores. The
benchmark problem includes eightmillion atoms. Figure 9
shows that the PU/Woodcrest cluster is close to the per-
formance of the Cray XT3 for lower core counts, while
the XT3 performs better for higher core counts, due to its
faster interconnect. The BlueGene’s slower performance is
consistent with its lower clock speed, while the scalability
reflects its efficient interconnect.

Recomputing the Hamiltonian causes a performance
reduction of about a factor of 4–6. Since the IBMBlueGene
L is memory-poor, we can operate NEMO 3-D only in the
Hamiltonian recomputed mode. Since the IBM BlueGene
runs about a factor of 4× slower than the other HPC plat-
forms one can see about a factor of 16 × better perfor-
mance in Cray XT3/4 since it runs fast and has enough
memory.
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Multimillion Atom Simulations with Nemo3D, Figure 7
a Performance plots of ZGEMM (Y=AX) included in different BLAS libraries. GFLOPS (109 Floating Operations/second) measures of
ZGEMM from MKL/BLAS (solid line) and general BLAS/LAPACK library (open markers) are plotted with varying size of A(N× N) and
column size of X(N×M). Simulated on a single node of Xeon x86-64 Dual Core 2.33 GHz CPU computer. b Total compute time of data
in a

Multimillion Atom Simulations with Nemo3D, Table 4
Specifications for the HPC platforms used in the performance comparisons

Platform Type CPU # of Cores Memory/
CORE

Interconnect Top 500
June 2007

Location

ORNL/Jaguar Cray XT3/4 Opteron x86-64 2.6GHz 23,016 2GB Native #2 ORNL
RPI/BGL BlueGene/L PowerPC 440 0.7 GHz 32,768 256MB Native #7 RPI
IUPU/Big Red IBM JS21 PowerPC 970 2.5 GHz 3,072 2GB Myrinet #8 IUPU
PSC/XT3 Cray XT3 Opteron x86-64 2.6GHz 4,136 1GB Native #30 PSC
PU/Xeon D Linux Cluster Xeon x86-64 Dual Core 2.33GHz 672 2GB/4GB Gigabit Ethernet #46 RCAC Purdue
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Multimillion Atom Simulations with Nemo3D, Figure 8
The electronic calculation time comparison of optimized/
unoptimized Hamiltonian construction in recompute mode.
Simulated on 4 nodes of Xeon x86-64 Dual Core 2.33GHz CPU
computers

Multimillion Atom Simulations with Nemo3D, Figure 9
Strong scaling of a constant problem size (8 million atoms)
on 6 different HPC platforms. Solid/dashed lines correspond to
a stored / recomputed Hamiltonian matrix. The largest number
of cores available were 8,192 on Cray XT3/4 and IBM BlueGene

In addition to the performance for the benchmark
cases end-to-end runs on the PU/Woodcrest cluster are
carried out next (Fig. 10). This involves iterating to con-
vergence and computing the eigenstates in the desired
range (4 conduction band and 4 valence band states). For
each problem size, measured inmillions of atoms, the end-
to-end cases were run to completion, for one choice of
number of cores.

Multimillion Atom Simulations with Nemo3D, Figure 10
a Wall clock time vs. number of atoms for end-to-end compu-
tations of the electronic structure of a quantum dot, for various
numbers of cores on the PU/Woodcrest cluster. Listed next to the
number of cores are the CPU hours/Million of atoms needed in
the simulation. b No. of Lanczos iteration vs. number of atoms
for one choice of number of cores

The numerical experiment is designed to demonstrate
NEMO 3-D’s ability to extract targeted interior eigenval-
ues and vectors out of virtually identical systems of in-
creasing size. A single dome shaped InAs quantum dot
embedded in GaAs is considered. The GaAs buffer is in-
creased in size to increase the dimension of the system
while not affecting confined states in the QD. It is veri-
fied [4] that the eigenvectors retain the expected symmetry
of the nanostructure.
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Multimillion Atom Simulations with Nemo3D, Figure 11
Wave function profiles of first 4 electron eigenstates in the conduction band. Green color shows active InAs region where confine-
ment takes place

Visualization

The simulation data of NEMO 3-D contains multivariate
wave functions and strain profiles of the device structure.
For effective 3-D visualizations of these results, a hard-
ware-accelerated direct volume rendering system [80] has
been developed, which is combined with a graphical user
interface based on Rappture. Rappture is a toolkit that
supports and enables the rapid development of graphical
user interfaces (GUIs) for applications, which is developed
by Network for Computational Nanotechnology at Pur-
due University. Two approaches can be followed: (1) The
legacy application is not modified at all and a wrapper
script translates Rappture I/O to the legacy code. (2) Rapp-
ture is integrated into the source code to handle all I/O.
The first step is to declare the parameters associated with
one’s tool by describing Rappture objects in the Extensi-
ble Markup Language (XML). Rappture reads the XML
description for a tool and generates the GUI automati-
cally. The second step is that the user interacts with the
GUI, entering values, and eventually presses the Simu-
late button. At that point, Rappture substitutes the cur-
rent value for each input parameter into the XML descrip-
tion, and launches the simulator with this XML descrip-
tion as the driver file. The third step shows that, using
parser calls within the source code, the simulator gets ac-
cess to these input values. Rappture has parser bindings for

a variety of programming languages, including C/CCC,
Fortran, Python, and MATLAB. And finally, the simula-
tor reads the inputs, computes the outputs, and sends the
results through run file back to the GUI for the user to ex-
plore. The visualization system uses data set with OPEN-
DX format that are directly generated from NEMO 3-D.
OPEN-DX is a package of open source visualization soft-
ware based on IBM’s Visualization Data Explorer. Fig-
ure 11 shows the wave functions of electron on the first
4 eigenstates in conduction band of quantum dot which
has 268,800 atoms in the electronic domain.

Release and Deployment of NEMO 3-D Package

NEMO 3-D was developed on Linux clusters at the Jet
Propulsion Lab (JPL) and was released with an open
source license in 2003. The originally released source
is hosted at http://www.openchannelfoundation.org web
site. As NEMO 3-D is undergoing further developments
by the NCN we are planning future releases of the NEMO
3-D source through http://www.nanoHUB.org. NEMO
3-D has been ported to different high performance com-
puting (HPC) platforms such as the NSF’s TeraGrid (the
Itanium2 Linux cluster at NCSA), Pittsburgh’s Alpha clus-
ter, Cary XT3, SGI Altix, IBM p690, and various Linux
clusters at Purdue University and JPL.

http://www.openchannelfoundation.org
http://www.nanoHUB.org
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Multimillion Atom Simulations with Nemo3D, Figure 12
Deployment of the NCN nanotechnology tools on http://www.nanoHUB.org: Remote access to simulators and compute power

The NEMO 3-D project is now part of a wider ini-
tiative, the NSF Network for Computational Nanotech-
nology (NCN). The main goal of this initiative is to sup-
port the National Nanotechnology Initiative through re-
search, simulation tools, and education and outreach. De-
ployment of these services to the science and engineering
community is carried out via web-based services, accessi-
ble through the nanoHUB portal http://www.nanoHUB.
org. The educational outreach of NCN is realized by en-
abling access to multimedia tutorials, which demonstrate
state-of-the-art nanodevice modeling techniques, and by
providing space for relevant debates and scientific events.
The second purpose of NCN is to provide a comprehen-
sive suite of nano simulation tools, which include elec-
tronic structure and transport simulators of molecular, bi-
ological, nanomechanical and nanoelectronic systems. Ac-
cess to these tools is granted to users via the web browsers,
without the necessity of any local installation by the re-
mote users. The definition of specific sample layout and
parameters is done using a dedicated Graphical User In-
terface (GUI) in the remote desktop (VNC) technology.
The necessary computational resources are further as-
signed to the simulation dynamically by the web-enabled
middleware, which automatically allocates the necessary
amount of CPU time and memory. The end user, there-
fore, has access not only to the code, a user interface, and
the computational resources necessary to run it but also
to the scientific and engineering community responsible
for its maintenance. The nanoHUB is currently considered
one of the leaders in science gateways and cyber infrastruc-
ture.

The process of web-based deployment of these tools is
depicted in Fig. 12. A user visits the http://www.nanoHUB.
org site and finds a link to a tool. Clicking on that link
will cause our middleware to create a virtual machine run-
ning on some available CPU. This virtual machine gives
the user his/her own private file system. The middleware
starts an application and exports its image over the Web
to the user’s browser. The application looks like an Applet
running in the browser. The user can click and interact
with the application in real time taking advantage of high-
performance distributed computing power available on lo-
cal clusters at Purdue University and on the NSF TeraGrid
or the open science grid.

Recently, a prototype graphical user interface (GUI)
based on the Rappture package (www.rappture.org) is in-
corporated within the NEMO 3-D package and a web-
based online interactive version (Quantum Dot Lab) for
educational purposes is freely available on www.nanohub.
org, [38]. The currently deployed NEMO 3-D educational
version is restricted to a single s orbital basis (single band
effective mass) model and runs in seconds. Users can gen-
erate and freely rotate 3-D wavefunctions interactively
powered by a remote visualization service. Quantum Dot
Lab was deployed in November 2005 and has been a popu-
lar tool used by 1,541 users who ran 12,616 simulations up
to August 2008. Monthly and annualized users and simu-
lation numbers are shown in Fig. 13.

The complete NEMO 3-D package is available to se-
lectedmembers of theNCN community through the use of
a nanoHUB workspace. A nanoHUB workspace presents
a complete Linux workstation to the user within the con-

http://www.nanoHUB.org
http://www.nanoHUB.org
http://www.nanoHUB.org
http://www.nanoHUB.org
http://www.nanoHUB.org
http://www.rappture.org
http://www.nanohub.org
http://www.nanohub.org


Multimillion Atom Simulations with Nemo3D M 5763

Multimillion Atom Simulations with Nemo3D, Figure 13
First row Number of monthly users who have run at least one simulation and number of monthly simulation runs executed by
nanoHUB users. Second row Number of total users who have run at least one simulation and total simulation runs executed by
nanoHUB users

text of a web browser. The workstation persists beyond
the browser lifetime enabling to user to perform long du-
ration simulations without requiring their constant atten-
tion. As shown in this paper the computational resources
required to perform device scale simulations are consider-
able and beyond the reach of many researchers. With this
requirement in mind NCN has joined forces with Tera-
grid [94] and the Open Science Grid [73] to seamlessly
provide the necessary backend computational capacity to
do computationally intensive computing. Computational
resources necessary for large scale parallel computing are
linked to nanoHUB through the Teragrid Science Gate-
ways program. Access to a Teragrid allocation is provided
for members of the NCN community. Development of
a more comprehensive NEMO 3-D user interface contin-
ues. The more comprehensive interface will provide ac-
cess to a broader audience and encourage the continued
growth of the nanoHUB user base.

Simulation Results

Strain and Piezoelectricity in InAs/GaAs Single QDs

The dome shaped InAs QDs that are studied first in this
work are embedded in a GaAs barrier material (schematic

shown in Fig. 2) and have diameter and height of 11.3 nm
and 5.65 nm respectively, and are positioned on a 0.6 nm-
thick wetting layer [6,60]. The simulation of strain is car-
ried out in the larger computational box (width Dstrain and
height H), while the electronic structure computation is
usually restricted to the smaller domain (width Delec and
height Helec). All the strain simulations in this category fix
the atom positions on the bottom plane to the GaAs lattice
constant, assume periodic boundary conditions in the lat-
eral dimensions, and open boundary conditions on the top
surface. The inner electronic box assumes closed bound-
ary conditions with passivated dangling bonds [61]. The
strain domain contains �3 M atoms while the electronic
structure domain contains�0.3M atoms.

Impact of Strain Strain modifies the effective confine-
ment volume in the device, distorts the atom bonds in
length and angles, and hence modulates the local Band-
structure and the confined states. Figure 14 shows the di-
agonal (biaxial) components of strain distribution along
the [001] direction in the quantum dot (cut through the
center of the dot). There are two salient features in this
plot: (a) The atomistic strain is long-ranged and penetrates
deep into both the substrate and the cap layers, and (b) all



5764 M Multimillion Atom Simulations with Nemo3D

Multimillion Atom Simulations with Nemo3D, Figure 14
Atomistic diagonal strain profile along the [001], z direction.
Dome shaped dot with Diameter, d = 11.3 nm and Height, h =
5.65nm. Strain is seen to penetrate deep inside the substrate
and the cap layer. Also, noticeable is the gradient in the trace
of the hydrostatic strain curve (Tr) inside the dot region that re-
sults in optical polarization anisotropy and non-degeneracy in
the electronic conduction band P. Atomistic strain thus lowers
the symmetry of the dot

the components of biaxial stress have a non-zero slope in-
side the quantum dot region. The presence of the gradient
in the trace of the hydrostatic strain introduces unequal
stress in the zincblende lattice structure along the depth,
breaks the equivalence of the [110] and [110] directions,
and finally breaks the degeneracy of the first excited elec-
tronic state (the so-called P level). Figure 15a shows the
wavefunction distribution for the first 8 (eight) conduction
band electronic states within the device region for the dot
(in a 2-D projection). Note the optical anisotropy and non-
degeneracy in the first excited (P) energy level. The first P
state is oriented along the [110] direction and the second P
state along the [110] direction. The individual energy spec-
trum is also depicted in this figure which reveals the value
of the P level splitting/non-degeneracy (defined as E110 –
E110) to be about 5.73meV.

As explained in [6], the shape-symmetry of a quantum
dot is lowered due mainly to three reasons, all originat-
ing from the fundamental atomistic nature of the under-
lying crystal: (1) The interface between the dot material
(InAs) and the barrier material (GaAs), even with a com-
mon anion (As atom), is not a reflection plane and hence
anisotropic with respect to the anion. The direct neigh-
bors above the anion plane (In atoms) that align in the
[110] direction are chemically different from the neigh-

Multimillion Atom Simulations with Nemo3D, Figure 15
a Conduction band wavefunctions and spectra (eV) for first
eight energy levels in the Dome shape quantum dot structure.
Atomistic strain is included in the calculation. Note the optical
anisotropy and non-degeneracy in the P energy level. The first
state is oriented along [110] direction and the second state along
[110] direction. b gradient in the hydrostatic strain along the
[001] direction through the center of the dot and the resulting
non-degeneracy and optical anisotropy in the P level as a func-
tion of the dot aspect ratio

bors under the anion plane (Ga atoms) that align in the
[110] direction. This creates a short-range interfacial po-
tential. It is important to note that these atomistic interfa-
cial potentials originating from different facets do not nec-
essarily compensate each other in dots where the base is
larger than the top (for example, pyramid, lens, truncated
pyramid). (2)Atomistic strain and relaxations (originating
from the atomic size difference between Ga and In atoms)
results in a propagation of the interfacial potential further
into the dot material and thus amplifies the magnitude of
the asymmetry. This component is not captured if the re-
laxation is performed using classic harmonic continuum-
elasticity approach. Noticeable is the fact that, symmetry
breaking due to atomistic relaxations can even be observed
in dots where the base is equal to the top (for example, box,
disk); however, the effect is magnified in dots of typical
shape, where the base is larger than the top (for example,
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Multimillion Atom Simulations with Nemo3D, Figure 16
a Substrate layer thickness dependence of the conduction band minimum and the P level splitting. Other structural parameters
remain constant (h = 5.65nm, d = 11.3 nm, c = 10 nm, andD = 31.3 nm). b The impact of cap layer thickness (with substrate, s = 30 nm
and other structural parameters remaining the same). Lanczos convergence tolerance = 1× 10�7

pyramid, lens, truncated pyramid) due to the presence of
a gradient in the magnitude of the strain tensor between
top and bottom as already explained in Fig. 15a. In or-
der to further characterize this effect, we have simulated
dome-shaped dots with varying base diameters (from 10
to 30 nm) keeping the dot height constant (at 5 nm). Fig-
ure 15b shows the gradient in the hydrostatic strain and
the resulting nondegeneracy in the P level as a function
of the dot aspect ratio (height/base). Also, shown in the
insets are the wavefunctions corresponding to the split P
levels in each of these dots. Note that the non-degeneracy
and the optical anisotropy diminish as the dot aspect ratio
decreases (approaching a disk shape). (3) Finally, a long-
ranged piezoelectric field develops in these dots in response
to the strain-induced displacement field, which is funda-
mentally anisotropic. We will discuss this effect in detail
in a subsequent section.

Need for a Deep Substrate and a Realistic Cap Layer
The strength of the NEMO 3-D package lies particularly
in its capability of simulating device structures with re-
alistic boundary conditions. Our simulation results based
on NEMO 3-D show a significant dependence of the dot
states and magnitude of level-splitting on the substrate
layer thickness, s (underneath the dot) and the cap layer
thickness, c (above the dot). The strain in the QD system
therefore penetrates deeply into the substrate and cannot
be neglected. Figure 16 shows such observed dependency
where E0 is the ground state energy and dEP is the mag-
nitude of the level splitting in the P electronic states due

to the inclusion of atomistic strain and relaxation. The
changes in both these quantities are calculated with re-
spect to the largest s (50 nm) and c (20 nm) respectively
in Figs. 16a,b. The wavefunction orientation was found to
remain unchanged irrespective of the substrate depth and
cap layer thickness. Figure 16a shows that it is indeed im-
portant to include enough of a substrate to capture the
long-range strain, while Fig. 16b indicates opportunities
to tune the eigen energy spectrum with different capping
layer thicknesses.

Figure 17 reveals the reason of a strong dependency
of the electronic ground state and the magnitude of non-
degeneracy in P level on the cap layer thickness. Here the
hydrostatic strain profiles for two different cap layer thick-
nesses (2 nm and 10 nm) are plotted. The P level splitting
in a device with 10 nm cap layer is found to be 5.73meV
and that for a 2 nm cap layer was 20.58meV. The reason of
the reduction in the splitting in the 10 nm cap layer device
can be attributed mainly to the change in the gradient of
hydrostatic strain inside the device region as depicted in
Fig. 17.

Impact of Piezoelectric Fields The presence of non-
zero off-diagonal strain tensor elements leads to the gen-
eration of a piezoelectric field in the quantum dot struc-
ture, which is incorporated in the simulations as an ex-
ternal potential by solving the Poisson equation on the
zincblende lattice. Figures 18a,b show the atomistic off-di-
agonal strain profiles in dome shaped quantum dots with
heights, h of 2.8 nm and 5.65 nm respectively. The off-di-
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Multimillion Atom Simulations with Nemo3D, Figure 17
The impact of cap layer thickness (with deep substrate, s =
30nm, and h = 5.65nm, d = 11.3 nm). Shown is the significant
variation of gradient/slope in the strain profile within the quan-
tum dot region. This results in a different splitting in the conduc-
tion band P energy level for the two different thicknesses of the
cap layer

agonal strain tensors are higher in the larger diameter dot.
The off-diagonal strain tensors are found to be larger in
the dome shaped dot. The off-diagonal strain tensors are
used to calculate the first-order polarization in the under-
lying crystal (see [6] for the governing equations) which
gives rise to a piezoelectric charge distribution throughout
the device region and then used to calculate the potential

Multimillion Atom Simulations with Nemo3D, Figure 18
Atomistic off-diagonal strain profile along the z (vertical) direction which in effect induces polarization in the quantumdot structure.
aDiameter, d = 11.3nmandHeight, h= 2.8 nmandbDiameter, d = 11.3 nmandHeight, h= 5.65nm. Note the increase in off-diagonal
stain in b

by solving the Poisson equation. The relevant parameters
for the piezoelectric calculation are taken from [6]. Exper-
imentally measured polarization constants of GaAs and
InAs materials (on unstrained bulk) values of �0:16 C/m2

and �0:045 C/m2 are used. The second order piezoelec-
tric effect [5] is neglected here because of unavailability of
reliable relevant polarization constants for an InAs/GaAs
quantum dot structures.

The calculated piezoelectric charge and potential sur-
face plots in the XY and XZ planes are shown in Figs. 19
and 20 respectively revealing a pronounced polarization
effect induced in the structure. It is found that piezoelec-
tric field alone favors the [110] orientation of the P level.
Also shown in Fig. 21 is the asymmetry in potential profile
due to atomistic strain and inequivalence in the piezoelec-
tric potential along [110] and [110] directions at a certain
height z = 1 nm from the base of the dot.

Study of Varying Sized Dots The impact of atomistic
strain and piezoelectric field on the ground state en-
ergy and magnitude of the P level energy splitting in
dome shaped quantum dots with varying diameter d and
dot height h is shown in Figs. 22 and 23 respectively.
The ground state energy for the strained system (without
piezoelectricity), E0, decreases with an increase in both d
and h because of an increase in the effective confinement
volume. Figures 22a and 23a also show the change (abso-
lute and relative to strain only) in the ground state en-
ergy due to the inclusion of piezoelectric potential in the
strained system. The percentage change in the ground
state energy is found to be monotonous in nature with



Multimillion Atom Simulations with Nemo3D M 5767

Multimillion Atom Simulations with Nemo3D, Figure 19
Charge surface plot of a dome shape quantum dot a in the XY
plane at z = 1 nm from the base of the dot, and b in the XZ plane
at y = Dstrain/2. Charge is induced mainly in the vicinity of the
boundary of the quantum dot. (d = 11.3 nm and h = 5.65nm)

an increase in dot diameter while the height dependency
shows saturation beyond a certain value. Figures 22b and
23b show the change of three quantities related to the first
excited P level namely split due to strain only (circle), split
due to strain combined with piezoelectricity (square) and
the contribution of the piezoelectric field only (triangle),
as a function of diameter d and dot height h. The piezo-
electric potential introduces a global shift in the energy
spectrum, and is found to be strong enough to flip the op-
tical polarization in certain sized quantum dots. In those
cases the piezoelectric contribution (triangle) dominates
over that resulting from the inclusion of atomistic strain
alone in the simulations (circle) as can be seen in dots (see
Fig. 22b; similar trend has also been found in [6]) with di-
ameters larger than 7 nm and (see Fig. 23b) height more
than 3 nm. Figure 24 explains the reason behind this ob-
servation. Here the piezoelectric potential profiles in dots

Multimillion Atom Simulations with Nemo3D, Figure 20
Piezoelectric potential surface plot of a dome shape quantum
dot a in the XY plane at z = 1nm from the base of the dot, and b
in the XZ plane at y D Dstrain/2. c Potential along [110] and [110]
directions at z = 1 nm from the base of the dot. Note the induced
polarization in the potential profile and the unequal values of
potential along the [110] and [110] directions (d = 11.3nm and h
= 5.65nm)

Multimillion Atom Simulations with Nemo3D, Figure 21
Potential along [110] and [110] directions at z = 1 nm from the
base of the dot. Note the induced polarization in the potential
profile and the unequal values of potential along the [110] and
[110] directions (d = 11.3nm and h = 5.65nm)
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Multimillion Atom Simulations with Nemo3D, Figure 22
Study of electronic structure with the variation of dot diameter,
d of the dome shaped quantum dot. a Conduction band mini-
mum/ground state in a strained system (circle) and change in the
conduction band minimum due to induced piezoelectricity (tri-
angle).b Split in the P level due to strain only (circle), split in the P
level due to strain and piezoelectricity (square), and impact of
piezoelectric potential alone (triangle) in the system (dot height,
h = 5.65nm)

with different height h are plotted along the z direction
through the dot center. Note the increase in piezoelectric
potential with dot height. The stronger piezoelectric po-
tential induced in the larger dot results in the orientational
flip in the P level electronic states.

Piezoelectricity Induced Polarization Flip Figure 25
shows the conduction band wavefunctions for the ground
and first three excited energy states in the quantum
dot structure with diameter of 11.3 nm and height, h of

Multimillion Atom Simulations with Nemo3D, Figure 23
Study of electronic structure with the variation of dot height,
h of the dome shaped quantum dot. a Conduction band min-
imum/ground state in a strained system (circle) and change in
the conduction band minimum due to induced piezoelectricity
(triangle). b Split in the P level due to strain only (circle), split in
the P level due to strain and piezoelectricity (square), and impact
of piezoelectric potential alone (triangle) in the system (dot di-
ameter, d = 11.3 nm)

5.65 nm. In Fig. 25a strain and piezoelectricity are not in-
cluded in the calculation. The weak anisotropy in the P
level is due to the atomistic interface and material discon-
tinuity. Material discontinuity mildly favors the [110] di-
rection in the dot. In Fig. 25b atomistic strain and relax-
ation is included resulting in a 5.73meV split in the P en-
ergy levels. Strain favors the [110] direction. In Fig. 25c
piezoelectricity is included on top of strain inducing a split
of �2:84meV in the P energy level. The first P state is
oriented along [110] direction and the second state along
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Multimillion Atom Simulations with Nemo3D, Figure 24
Piezoelectric potential in dome shaped quantum dots with h D
2.8 nm and h D5.65nm along the z direction through the center
of the dots. Noticeable is the stronger polarization in the larger
dot which results in a flip in the P level electronic states

Multimillion Atom Simulations with Nemo3D, Figure 25
Conduction band wavefunctions for first three energy levels
in the quantum dot structure with diameter, d = 11.3nm
and height, h = 5.65nm a without strain and piezoelec-
tricity, E[110] � E[110] = 1.69meV b with atomistic strain,
E[110] � E[110] = 5.73meV and c with strain and piezoelectricity,
E[110] � E[110] D �2:84meV. Piezoelectricity flips the wavefunc-
tions. An end-to-end computation involved about 4M atoms
and needed CPU time of about 8 hours with 16 processors

[110] direction and piezoelectricity alone induces a po-
tential of 8.57meV. Piezoelectricity thereby has not only
introduced a global shift in the energy spectrum but also
flipped the orientation of the P states [6] in this case.

Multimillion Atom Simulations with Nemo3D, Figure 26
Simulated InAs/GaAs double quantum dots with disk/cylindrical
shape. The dots are of equal size with radius r of 7nm and
height h of 1.5 nm. The separation d is varied from 0.5nm to
8 nm. Two simulation domains have been shown. The strain do-
main for 8nm spacing between the dots contained about 6 mil-
lion atoms

Stacked QuantumDot System

Self-assembled quantum dots can be grown as stacks
where the QD distance can be controlled with atomic layer
control. This distance determines the interaction of the ar-
tificial atomic states to form artificial molecules. The de-
sign of QD stacks becomes complicated since the struc-
tures are subject to inhomogeneous, long-range strain and
growth imperfections such as non-identical dots and in-
ter-diffused interfaces. Quantum dot stacks consisting of
two QD layers are simulated next (see Fig. 26). The InAs
quantum dots are disk shaped with diameter 7 nm and
height 1.5 nm positioned on a 0.6 nm thick wetting layer.
The substrate thickness under the first wetting layer is kept
constant at 30 nm and the cap layer on top of the top-
most dot is kept at 20 nm for all the simulations. The strain
simulation domain (Dstrain) contains 8–10 M atoms and
the electronic structure domain (Delec) contains 0.5–1.1M
atoms.

Figure 27 shows both the biaxial and hydrostatic strain
profiles along the z direction. As in the single dot, we see
a gradient in strain profile within the dot regions which re-
sults in strain-induced asymmetry. The hydrostatic com-
ponent which is responsible for conduction band well is
negative within the dot and approximately zero outside
the dot and the regions in-between the dots. The biaxial
component of strain which have more effect on hole states
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Multimillion Atom Simulations with Nemo3D, Figure 27
Atomistic a biaxial f"zz � ("xx C "yy)/2g and b hydrostatic
f"xx C yyC "zzg strain profile along the growth [001], z direc-
tion. Strain is seen to penetrate deep inside the substrate and
the cap layer. Also, noticeable is the gradient in the trace of the
hydrostatic strain curve (Tr) inside the dot region that results in
optical polarization anisotropy and non-degeneracy in the elec-
tronic conduction band P. Atomistic strain thus lowers the sym-
metry of the dot

is positive within dots and negative in-between the dots.
The magnitude for both is approximately equal. Figure 28
shows the band edge diagrams as a function of dot separa-
tions along the center of the dots in the growth direction
[001]. Strain enhances the coupling between the dots. Hy-
drostatic component of strain makes the conduction band
well shallower. Strain effects are more prominent on hole
states where biaxial component of strain splits the light
hole and heavy hole bands. Within the dot, heavy hole
lies above the light hole edge, implying significant band
mixing in the confining states. For very small separation
like 0.5 nm, the well within dots is even shallower than the
well in-between the dots. Figure 29 and Fig. 30 show the
electron and hole state energies respectively as a function
of inter-dot separation. In a system without inhomoge-

neous strain one would expect the identical dots to have
degenerate eigenstate energies for large dot separations.
Strain breaks the degeneracy even for large separations. As
the dot separation is narrowed the dots interact with each
other mechanically through the strain field as well as quan-
tum mechanically through wavefunction overlaps. Wave
function plots in XZ plane have been shown in Fig. 29 for
various dot separations. Noticeably, E2 for 4 nm separa-
tion is a p like state while it is s like state in 6 nm separation.
So there is a crossover between p to s for E2 as we increase
separation between the dots. Also, E1 for 2 nm separation
is confined more in the lower dot than the upper dot. This
is caused by strain coupling which promotes confinement
of the ground states in the lower dots in coupled quan-
tum dot systems [53]. The electronic states and wavefunc-
tions in a coupled QD system are thus determined through
a complicated interplay of strain, QD size, and wavefunc-
tion overlap. Only a detailed simulation can reveal that in-
terplay.

Phosphorus (P) Impurity in Silicon

Physics of P Impurity In a substitutional P impurity
in Si, the 4 electrons from the outermost shell of P form
bonds with the 4 neighboring Si atoms, while the 5th
electron can ionize to the conduction band at moderate
temperatures leaving a positively charged P atom with
a coulomb potential screened by the dielectric constant
of the host. At low temperatures, this potential can trap
an electron, and form an Hydrogen-like system except the
six fold degenerate conduction band valleys of Si give rise
to a six fold degenerate 1s type ground state. In practice,
this six fold degeneracy is lifted by strong coupling be-
tween the different valleys caused by deviations of the im-
purity potential from its coulombic nature in the vicinity
of the donor nucleus. If this so called valley-orbit interac-
tion is not taken into account, then the effective mass the-
ory (EMT) predicts a P donor ground state binding energy
of �33meV as opposed to the experimentally measured
value of �45:6meV [87]. The influence of valley-orbit in-
teraction is strongest for the six 1s states, and is negligible
for the excited states, which are affected by the bulk prop-
erties of the host [13]. The TB model considered here also
models the excited states well by its accurate representa-
tion of the Si band structure. Hence, we limit our atten-
tion here to the effect of valley-orbit interaction on the 1s
states.

Study Approaches Theoretical study of donors in Si
dates back to the 1950s when Kohn and Luttinger [51]
employed symmetry arguments and variational envelope
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Multimillion Atom Simulations with Nemo3D, Figure 28
Band edge diagrams for double quantum dot systems for several inter-dot spacing: a 0.5 nm b 1nm c 2nm and d 4 nm. Strainmakes
InAs conduction band potential wells shallower, enhancing the coupling between the dots. Noticeable is the effect on hole wells.
Strain splits the light hole and heavy hole bands. Within the dot, heavy hole lies above the light hole edge. As strain coupling de-
creases, heavy hole well becomemore andmore shallower (see b and d)

functions based on EMT to predict the nature of the
donor spectrum and wave functions with a fair amount
of success. Although many theorists who study donor
based nano devices still use the Kohn–Luttinger varia-
tional envelope functions, recent approaches [65,82,100]
have highlighted the need to consider a more extended set
of Bloch states than the six valley minima states and to go
beyond the basic EMT assumptions for accurate modeling
of impurities. Formodeling high precision donor electron-
ics, it is very important to model the basic Physics from
a consistent set of assumptions, and to obtain very accu-
rate numbers in addition to correct trends. Themodel pre-
sented here serves these purposes well, and can be used
conveniently for large-scale device simulation.

Numerical Study of the Valley–Orbit Interaction The
inset of Fig. 31 shows the lowest 6 1s type energy states of
a P donor in Si. When valley-orbit coupling is ignored, the
six lowest states are degenerate in energy. When Valley-
orbit coupling is taken into account, the six fold degener-
ate states split into a ground state of symmetry A1, a triply

degenerate state of symmetry T and a doubly degenerate
state of symmetry E. Valley-orbit interaction, which arises
due to the deviation of the impurity potential from its
bulk-like Coulombic nature, is typically modeled by a cor-
rection term for the impurity potential in the vicinity of
the donor site. The strength of this core-correcting poten-
tial determines the magnitude of the splitting of the six 1s
states, and varies from impurity to impurity. Here we con-
sider a core correcting cut-off potential U0 at the donor
site, reflecting a global shift of the orbital energies of the
impurity. Figure 31 shows how the energy splitting is af-
fected by the strength of U0. For small U0, the six 1s type
states are degenerate in energy. As U0 increases in mag-
nitude, we obtain the singlet, triplet and doublet compo-
nents, as mentioned earlier. Since the triplet (and doublet)
states remain degenerate irrespective of U0, we only plot
one state of the T (and E) manifold.

This single core-correction term was found to repro-
duce the donor eigen states within a few meV, and could
be adjusted to match the donor ground state binding en-
ergy within a �eV. In general however, the tight-bind-
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Multimillion Atom Simulations with Nemo3D, Figure 29
Dependence of six lowest electron energy levels on separation distance d between the dots. For electron energy levels, the state
names arementioned as s or p orbital states. Here 1 indicates bonding states whereas 2 indicates anti-bonding states. Wave function
plots in XZ plane have been shown for some dot separations. Noticeably, e2 for 4 nm separation is a p like state while it is s like
state in 6 nm separation. So there is a crossover between p to s for e2 as we increase separation between the dots. Also, e1 for 4 nm
separation is confined in lower dotmore than upper dot. This is caused by strain coupling which tries to confine ground states in the
lower dots in coupled quantum dot systems

Multimillion Atom Simulations with Nemo3D, Figure 30
Dependence of six lowest hole energy levels on separation dis-
tance d between the dots

ing parameters for Si can only reproduce the full band
structure within a limited accuracy. To model high pre-
cision donor electronics within a hundredth of a meV, as
is needed inmany quantum computing applications, addi-

Multimillion Atom Simulations with Nemo3D, Figure 31
Effect of central cell correction U0 on energy splitting. (inset)
Group V donor 1s states in Si splitting into 3 components due
to valley-orbit interaction

tional core-correction terms are required. In semi-empir-
ical Tight-binding, it is only natural to adjust the on-site
orbital energies of the P-donor slightly from their Si coun-
terparts to provide this additional correction. In Fig. 32, we
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Multimillion Atom Simulations with Nemo3D, Figure 32
Variation of 1s Binding energies with on-site orbital energies. The Triplet (Doublet) states remain degenerate. Hence only 1 triplet
(Doublet) is shown

show variation of the binding energy of the 1s manifold as
a function of the on-site orbital energies of the donor site.
The four on-site energies considered are Es, Ep, Ed and
Es� corresponding to the s, p, d, s� orbitals respectively.
The trends in the plots help us establish a recipe for op-
timizing the core-correction for a donor species to reflect
impurity eigen states within the precision of 0.01meV. For
example, if the only donor ground state of A1 symmetry
needs to have a higher binding energy, we can adjust ei-
ther Es or Es�, each of which will push the A1 state deeper
in energy without affecting the excited states (Figs. 32a,d).
Figure 32c shows that both the triplet and the doublet state
can be adjusted in energy by Ed without affecting the A1
state, while Fig. 32b shows that the triplet state alone is af-
fected by Ep. On the other hand, U0 reflects a global shift
of all the on-site energies, and can affect all the 1s states, as
already shown in Fig. 31b. In short there are enough de-
grees of freedom to empirically adjust the core-correction
to obtain very exact eigen values. Once a set of these pa-
rameters (U0, Es, Ep, Ed, Es�) is fixed, they can be used for
a variety of applications like Stark shift, charge qubits, etc.

without any additional modification. To model a generic
impurity, it is recommended that U0 be adjusted first so
that the ground state binding energy is reproduced accu-
rately. Then one can consider small deviations in a few of
these on-site energies to fit the excited states accurately. In
most cases, the parametersU0, Ep and Ed can be sufficient
for accurate modeling. The plots here were obtained by the
tight-binding sp3d5s� model without spin. Clearly, this is
an empirical process that does not account fully for the
different nature of the impurity atom in a host lattice. Ad-
ditional mapping which includes the change of the impu-
rity to host coupling matrices could be performed possible
based on an input from an ab initio method.

Solution Methods–Lanczos and Block Lanczos For
a realistic simulation involving a few impurities, one needs
to consider a lattice size of about 7 million atoms. In
atomistic Tight-Binding with a 20 orbital nearest neighbor
model, this involves solving a Hamiltonian with 140 mil-
lion rows and columns. Although this matrix is consider-
ably sparse, solving for interior eigen values occurring near



5774 M Multimillion Atom Simulations with Nemo3D

Multimillion Atom Simulations with Nemo3D, Table 5
Comparison of the single donor states relative to the conduction band minima of Si for Lanczos and Block Lanczos algorithms. The
Lanczos algorithm fails to capture degenerate states, while Block Lanczos is able to resolve degeneracies at the expense of compute
time. The eigenvalueswere obtained by the sp3d5s� spinmodel and shows spindegenerate eigen values aswell. The slight deviation
of the Eigen values from the experimental values is due to the finite size (i. e. confinement effect) of the simulation domain of 30nm3

Experiment [5] Lanczos Block Lanczos (Block Size 6) Symmetry
�45.59 �45.599 �45.599 1s (A1)
� 45.59 �45.599 1s (A1)
� 33.89 �33.932 �33.932 1s (T)
� 33.89 �33.932 1s (T)
� 33.89 �33.930 1s (T)
� 33.89 �33.930 1s (T)
� 33.89 �33.930 1s (T)
� 33.89 �33.930 1s (T)
� 32.58 �32.67 �32.670 1s (E)
� 32.58 �32.670 1s (E)
� 32.58 �32.670 1s (E)
� 32.58 �32.670 1s (E)

the conduction band poses a difficult problem. Compared
to many other algorithms, the parallel Lanczos algorithm
for eigen solution has proved very efficient. However, one
drawback of the Lanczos algorithm is its inability to find
degenerate and closely clustered eigen values with relia-
bility. A blocked version of Lanczos resolves this problem
at the cost of some additional compute time. Since there
are many degenerate eigen states present in the unper-
turbed impurity spectrum, the block Lanczos algorithm
was a suitable solution method for the problem outlined
here. Table 5 shows the comparison of eigen states ob-
tained from Lanczos, Block Lanczos, and experimentally
established values for single donors in bulk Si.While Lanc-
zos fails to capture the degeneracy of the triplet, doublet
and spin states, Block Lanczos resolves all the 12 eigen-
values reliably. The computational system considered here
spans a domain of 30.5 nm × 30.5 nm × 30.5 nm and con-
tains about 1.4 million atoms. Closed boundary condition
is applied in all three dimensions.

Typical Application–Donor Based Charge Qubits An
impurity based charge qubit involves a single electron
bound to two ionized P donors in Si. A qubit can be en-
coded based on the localization of the electron in either
of the two impurities [36]. When the Hamiltonian of such
a system is solved, a set of bonding and anti-bonding states
are obtained from the set of single impurity states. An im-
portant parameter in quantum computing applications is
the tunnel coupling between the two lowest eigen states.
This parameter depends on the separation of the two low-
est eigen states of the P2C problem, and is sensitive to

relative donor placements and gate voltages. Figure 33
shows the tunnel coupling as a function of donor separa-
tion along [100] and [110] calculated in tight binding. The
tunnel coupling tends to decay, as the impurities are lo-
cated farther apart. While variation of tunnel coupling is
found to be smooth along [100] direction, it is highly os-
cillatory along [110]. This is due to interference between
Bloch parts of the impurity wave functions contributed by
the Si crystal. These trends are already well established in
literature [39] from effective mass theory. The impurity
model in TB presented here is able to capture these effects
with convenience.

Unlike EMT, the methodology developed here can
consider a more extended Bloch structure of the host
and incorporate many realistic device effects such as fi-
nite device sizes, interfaces under one framework, and is
convenient for large scale device simulations. Treatment
of such factors enables precise comparison with experi-
mentally measured quantities, as was done in [82], where
the hyperfine stark effect for a P donor was calculated
in good agreement with experiment [19], and discrepan-
cies with previous EMT [29] based calculations were re-
solved. Further work is under way to study CTAP [33]
based architectures [37], charge qubits [36,39,52] and in-
vestigate donor-interface well hybridization in Si FinFET
devices [20,57,87].

Si on SiGe QuantumWell

Many quantum dot based [30] or impurity based [41]
quantum computing architectures are proposed to be fab-
ricated in Si/SiGe heterostures. Since silicon has multi-
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Multimillion Atom Simulations with Nemo3D, Figure 33
a Variation of tunnel coupling for a P2C system with impurity
separation along [100] & [110]. b Formation of Molecular states
for P2C

ple degenerate values it is critical to engineer these de-
generacies out of the system to avoid dephasing of qubits.
Miscut substrates (Fig. 34b) as opposed to flat substrates
(Fig. 34a) are often used to ensure uniform growth of
Si/SiGe heterostructures. However, a miscut modifies the
energy spectrum of a QW. In a flat QW the two degenerate
valleys in strained Si split in energy and the valley minima
occur at˙kx D 0. Valley splitting (VS) in a flat QW is a re-
sult of interaction among states in bulk z-valleys centered
at kz D k0, where k0 is position of the valley-minimum in
strained Si. The energy splitting between these two lowest
lying valleys is called as valley-splitting (VS). In quantum
computing devices, VS is an important design parameter
controlling the electron spin decoherence time [14,15,16].
In a miscut QW lowest lying valleys are degenerate with
minima at ˙k0x0 [44]. Thus atomic scale modulation of
surface topology leads to very different electronic struc-

tures in flat andmiscut QWs. As a consequence of this, flat
andmiscut QWs respond differently to the applied electric
and magnetic fields. In the presence of lateral confinement
in miscut QW the two degenerate valleys in Fig. 34c inter-
act and give rise to VS.

Traditional magnetic probe techniques such as Shub-
nikov de Haas oscillations are used to measure energy
spectrum of QWs. Valley and Spin splittings are deter-
mined by electron-valley resonance (EVR) [31] and elec-
tron-spin resonance (ESR) [26] techniques. In these mea-
surements in plane (lateral) confinement of the Landau-
levels is provided by the magnetic field. Figure 34d shows
the dependence of VS on applied magnetic field in flat and
ideal miscut QWs. Ideal miscut QWs refer to the mis-
cut QWs with no step roughness. VS in flat QW is in-
dependent of magnetic field because in these QWs VS
arises from z-confinement provided by the confining SiGe
buffers [44]. In miscut QWs, however, VS is the result of
the combined effect of the two confinements, the z-con-
finement provided by the SiGe buffers and the lateral con-
finement provided by the applied magnetic field. The two
degenerate valleys centered at ˙k0x0 along x0 direction in
the miscut QWs (Fig. 34c) interact and split in the pres-
ence of magnetic field. At low magnetic fields the depen-
dence of VS in miscut QWs on the applied magnetic field
is linear. In calculations of Fig. 34c,d QWs are assumed
to be perfect. Disorders such as step roughness and alloy
disorder in SiGe buffer which are inherently present is the
experiments are completely ignored. As a result calculated
VS is nearly an order of magnitude lower than the experi-
mentally measured values (Fig. 35d).

Miscut substrates undergo reconstruction to reduce
the surface free energy which gives rise to the step rough-
ness [105] (Fig. 35b,c). This type of step roughness dis-
order is present at the Si/SiGe interface. Another type of
disorder in Si/SiGe heterostructures is the random alloy
disorder in SiGe buffer. These two disorders are always
present in actual QW devices and thus need to be taken
into account in VS computations. Schematic of an elec-
tronic structure computation domain is shown in Fig. 35a.
QWs extend 15nm along y-direction to take into account
the step roughness disorder shown in Fig. 35c. x0 confine-
ment due to the magnetic field is incorporated through
the Landau gauge ( EA D Bx ŷ). The resulting vector poten-
tial ( EA) is introduced into the tight-binding Hamiltonian
trough the gauge invariant Peierl’s substitution [8,18,32].
Closed boundary conditions are used in x and z directions
while y-direction is assumed to be (quasi-)periodic. The
confinement induced by closed boundary conditions in di-
rection compete with the magnetic field confinement. The
lateral extension of the strain and the electronic structure
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Multimillion Atom Simulations with Nemo3D, Figure 34
a Schematic of a Si QW grown on [001] substrate. The crystal symmetry directions are along x[100]and z[001]. b Schematic of a 2°C
miscut QWunit cell. The unit cell is periodic along x0 and y directions and confined in z0 direction. Miscut angle is 2°C. The step height
is a/4 which corresponds to one atomic layer, where a is lattice constant. c Band structure of 5.26nm thick flat/miscut QW along x/x0

direction. Flat QW shows the presence of two non-degenerate valleys separated by an energy know as VS. Miscut QW shows the
presence of two degenerate valleys centered at˙k0

x0
. d VS in 10 nm thick flat (001) and 2°Cmiscut Si QWs. Electric field in z-direction

is 9 MV/m

Multimillion Atom Simulations with Nemo3D, Figure 35
a Schematics of the simulation domain. b Ideal steps on amiscut substrate. c Step disorder resulting from the surface reconstruction
on the miscut substrate. d VS of the first Landau-level in a 10 nm thick strained Si QW. The VS labeled as ‘No disorder’ is shown for
comparison and it is same as that of in Fig. 1d. VS increases due to the step-disorder. When alloy-disorder in SiGe buffer is included
along with the step disorder the computed VSmatches the experimentally measured values. Error bars represent the standard devi-
ation in VS. In the calculations of VS labeled as ‘No disorder’ and ‘Step disorder’ uniform biaxial strain of "jj D 0:013 is assumed

domain is set to 150 nm, which is about 7 times larger than
the maximum magnetic confinement length in a 2DEG at
B = 1.5T ('21 nm). For the magnetic field ranges of 1.5–
4T confinement is dominated by the magnetic field and no
lateral x-confinement effects due to the closed boundary
conditions are visible in simulations. Modulation doping
in Si/SiGe heterostructures induces built-in electric field.
In the simulations performed here constant electric field
of 9 MV/m is assumed in the QW growth direction.

Figure 35d shows the computed VS in 2°C miscut
QWs. VS in ideal miscut QWs is an order of magnitude
lower compared to the experimentally measured values. If
the step-roughness disorder is included in the simulations,
the computed VS is higher compared to that of an ideal
miscut QW. In these calculations surface roughness model
of [6] is used and the uniform biaxial strain of "jj D 0:013
which corresponds to Si0:7Ge0:3 buffer composition is as-
sumed. This VS, however, is slightly smaller than the ex-
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perimentally measured VS. This discrepancy can be an-
swered by adding SiGe buffers in the electronic structure
simulation domain. 3 nm of SiGe buffer is included on top
and bottom of the Si QW to take into account the wave-
function penetration into the finite barrier QW buffers.
Strain computation domain has the same x and y dimen-
sions as the electronic structure domain. To take into ac-
count the long range nature of strain [54] 40 nm of SiGe
buffer is included on both sides of Si QW. z-dimension
of the strain domain is 90 nm. Valance Force Field (VFF)
model of Keating [42] is employed to calculate the relaxed
geometries. The VS computed by taking both step and al-
loy-disorder into account is found to match closely to the
experimentally measured values.

The time required to compute the 10 million atom
strain calculation on 20 CPUs of an Intel x86-64 dual core
linux cluster is about 9 hours. The subsequent 2 million
atom electronic structure calculation requires 10 hours.

SiGe Nanowires

Semiconductor nanowires are being actively investigated
as the potential candidates for the end of the semicon-
ductor technology roadmap devices. They are also attrac-
tive for sensing applications due to their high surface-to-
volume ration. Several researchers have recently demon-
strated the nanowire field-effect transistors (FETs) fabri-
cated from pure elemental or compound semiconductors
like Si [24], Ge [33], and GaAs [76] as well as semicon-
ductor alloys like SiGe [45], and their III–V counterparts.
For the device design at the nanoscale, it is important to
understand and to be able to predict transport properties
of nanowires. Atomistic disorder such as alloy disorder,
surface roughness and inhomogeneous strain strongly in-
fluence the electronic structure and the charge transport
in nanoscale devices. To simulate nanodevices traditional
effective mass approaches should be abandoned [98] and
more accurate atomistic approaches should be adopted.
Here, SiGe alloy nanowires are studied from two dif-
ferent perspectives. First, the electronic structure where
bandstructure of a nanowire is obtained by projecting out
small cell bands from a supercell eigenspectrum [10,11]
and second, the transport where transmission coefficients
through the nanowire are calculated using an atomistic
wave function (WF) approach [17,64].

SiGe random alloy nanowires have two types of dis-
orders: atom disorder due to random alloying and in-
homogeneous strain disorder due to different Si-Si, Ge-
Ge, and Si-Ge bond lengths. These disorders break the
translational symmetry in semiconductor alloy nanowires.
Thus one runs into the problem of choosing a unit cell

for the bandstructure calculation. Disorder can be taken
into account by simulating larger repeating units (super-
cells) containing many small cells (Fig. 34). The nanowire
bandstructure obtained from the supercell calculation is
folded. The one dimensional version of the zone-unfold-
ing method [10,11] is used to project out the approx-
imate eigenspectrum of the nanowire supercell on the
small cell Brillouin-Zone. The probability sum rule [10] is
used to extract the approximate bandstructure of the alloy
nanowire from the projected probabilities. The small cell
bandstructure obtained by this method captures the effect
of SiGe alloy disorder on the electronic structure.

The nanowire geometry is specified in terms of con-
ventional Zincblende (cubic) unit cells as nx � ny � nz
where ni is the number of cubes in direction�i. The wire
dimensions are 40 × 6 × 6 (22.3 × 3.3 × 3.3 nm) i. e. it is
constructed from 40 1 × 6 × 6 slabs along [100] crystallo-
graphic direction. Figure 36a depicts a sliver cut through
the center of the SiGe nanowire indicating the atomisti-
cally resolved disorder of the wire. Only the central 5 nm
long portion of this 22 nm long wire is shown for visualiza-
tion purpose. All electronic structure and transport calcu-
lations have been done in 20-band sp3d5s� tight-binding
model with spin-orbit coupling. The bulk tight-binding
and strain Si and Ge parameters are taken from [9,13]. Re-
laxed wire geometries are calculated from Valance Force
Field approach.

The unfolding procedure to compute an approximate
bandstructure from the large supercell calculation requires
many eigenvectors. In practice these eigenstates are closely
spaced in energy and Lanczos algorithm requires about
50 000 iterations to resolve 575 states in the energy range
of interest. Such calculations require about 5.5 hours on 30
cores of an Intel x86-64 dual core linux cluster machine.

Figure 36b shows the conduction bandstructure of the
first slab out of 40 slabs along nanowire length. �4 valleys
are split into four separate bands while �2 valley bands
are doubly degenerate. Local band-edge plots of the lowest
�4 and �2 valley minima are shown in Fig. 36c. This so
called local bandstructure of each slab is calculated assum-
ing that this slab repeats infinitely along the nanowire. Due
to fluctuations in atomic arrangements along the nanowire
length one expects to see the different bandstructures for
each slab as shown in Fig. 37a. Variations of band-edges
along the nanowire length cause reflections which lead to
the formation of the localized states and peaks in transmis-
sion plots.

The NEMO 3-D team is currently developing with
Mathieu Luisier at ETH Zurich a new 3-D quantum trans-
port simulator [64]. Here we show a comparison of a 3-D
disordered system transport simulation with a NEMO 3-D
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Multimillion Atom Simulations with Nemo3D, Figure 36
a Atomistically resolved disorder in the Si0:8Ge0:2 40 × 6 × 6 nanowire. b Conduction bandstructure of the first slab assuming that
the slab is repeated infinitely. �4 valleys are split into four separate bands.�2 valley bands are doubly degenerate. c Bandedge
minima of lowest energy�4 and�2 valleys along length of the nanowire

Multimillion Atom Simulations with Nemo3D, Figure 37
a Bandstructures of 40 × 6 × 6 Si0.8Ge0.2 alloy nanowire in local bandstructure (gray), VCA (red) and zone-unfolding (blue) formula-
tions.b Transmission through 40 × 6× 6wire. Steps in transmission are identified as resulting fromnewbands appearing in projected
bandstructure. Note that atomistic, narrow 1Dwires result automatically into 1D localization

electronic structure calculation. The transmission coeffi-
cient (Fig. 37b) shows the noisy behavior due to random
SiGe alloy disorder and inhomogeneous strain disorder
in the wire. Steps in the transmission plot can be roughly
related to the unfolded bandstructure (Fig. 35a) from su-
percell calculations. Four separate �4 valley bands appear
as a single band with a finite energy spread in the pro-
jected bandstructure. These four bands turn on near 1.44
eV which corresponds to the conduction band transmis-
sion turn on. Two �2 valley bands turn on near 1.47 eV
which leads to a step in the transmission. 4 more channels
due to higher �4 valley sub-bands turn on near 1.57eV.
These transmission features can not be related to the con-
ventional virtual crystal approximation (VCA) bandstruc-

ture shown in Fig. 35a. Peaks in the transmission plot can
be related to the local density of states in the wire [43].

Projected supercell bandstructures and atomistic
transport calculations are found to be complimentary and
mutually supporting. Bothmethods provide better instight
into the transport through the disordered nanowires.

Summary and Future Directions

NEMO 3-D is introduced as a versatile, open source elec-
tronic structure code that can handle device domains rele-
vant for realistic large devices. Realistic devices containing
millions of atoms can be computed with reasonably, eas-
ily available cluster computers. NEMO3-D employs a VFF
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Keating model for strain and the 20-band sp3d5s� empir-
ical tight-binding model for the electronic structure com-
putation. It is released under an open source license and
maintained by the NCN, an organization dedicated to de-
velop and deploy advanced nanoelectronic modeling and
simulation tools. NEMO 3-D is not limited to research
computing alone; A first educational version including vi-
sualization capabilities has been released on http://www.
nanoHUB.org and has been used by hundreds of users for
thousands of simulations. The full version of NEMO3D
will soon be available for device engineers, material sci-
entists, educators, and students through the nanoHUB,
powered by the NSF Teragrid. Tool documentation, tuto-
rials, and case studies will be posted on nanoHUB as sup-
plemental material. We will generate and deliver tutorials
on parallelization and software development through the
nanoHUB.

NEMO 3-D demonstrates the capability to model
a large variety of relevant, realistically sized nanoelectronic
devices. The impact of atomistic strain and piezoelectricity
on the electronic structure in dome shaped quantum dots
is explored. Under the assumptions of realistic boundary
conditions, strain is found to be long-ranged and pene-
trate around 25 nm into the dot substrate thus stressing the
need for using large dimensions of these surrounding lay-
ers and at least 3 million atoms in the simulations. The true
symmetry of the quantum dots is found to be lower than
the geometrical shape symmetry because of the fundamen-
tal atomistic nature of the underlying zincblende crystal
lattice. Atomistic strain is found to induce further optical
polarization anisotropy favoring the [110] direction and
pronounced non-degeneracy in the quantum dot excited
states, magnitude (few meV) of which depends mainly on
the dot size and surrounding material matrix. First or-
der piezoelectric potential, on the other hand, favors the
[110] direction, reduces the non-degeneracy in the P states
and is found to be strong enough to flip the optical po-
larization in certain sized quantum dots [6]. Simulations
of QD stacks exemplify the complicated mechanical strain
and quantum mechanical interactions on confined elec-
tronic states. Molecular states can be observed when the
dots are in close proximity. Simulations of SiGe buffered
Si QWs indicate the importance of band-to-band inter-
actions that are naturally understood in the NEMO 3-D
basis. Valley splitting is computed as a function of mag-
netic field matching experimental data. Simulations of dis-
ordered SiGe alloyed nanowires indicate the critical im-
portance of the treatment of atomistic disorder. Typical
approaches of a smoothed out material (VCA) or consid-
erations of bandstructure in just individual slices clearly
fail to represent the disordered nanowire physics. A semi-

empirical tight binding model for Group V donors in Sil-
icon is presented. The dependence of valley-orbit inter-
action on on-site cut-off potential and orbital energies is
explored. A block based Lanczos algorithm was demon-
strated as a robust and reliable method of finding eigen-
values and vectors of the resulting system. The technique
outlined here enables high precision modeling of impurity
based quantum electronics with relative ease and accuracy.

All these NEMO 3-D calculations underline the im-
portance to represent explicitly the atomistically resolved
physical systemwith a physics based local orbital represen-
tation. Such million atom systems result in system sizes of
tens of millions and end-to-end 52 million atom simula-
tions representing one billion degree of freedom systems
were presented. The complexity of the system demands
the use of well qualified, tuned, optimized algorithms and
modern HPC platforms. Building and maintaining such
a code is not a light undertaking and requires a significant
group community effort.

Integrated circuit design faces a crisis – the 40 year
process of transistor downscaling has led to atomic-scale
features, making devices subject to unavoidable manufac-
turing irregularities at the atomic scale and to heat densi-
ties comparable to a nuclear reactor. A new approach to
design that embraces the atomistic, quantum mechanical
nature of the constituent materials is necessary to develop
more powerful yet energy miserly devices. We are in the
process of developing a general-purpose simulation en-
gine. It will model not only the electronic band structure
but also the out-of-equilibrium electron transport in re-
alistically extended devices using fully quantum mechani-
cal (QM) models in an atomistic material description con-
taining millions of atoms. The research will enable discov-
ery of new technologies for faster switching, smaller fea-
ture size, and reduced heat generation. Using this new ap-
proach, designers can directly address questions of quanti-
zation and spin, tunneling, phonon interactions, and heat
generation. It is widely accepted that the Non-Equilib-
rium Green Function Formalism (NEGF) QM statistical
mechanics theory, in conjunction with an atomistic basis,
can answer these questions. It is also widely perceived that
the problem is computationally hard to solve. A general-
ized approach to tri-level parallelism in voltage, energy,
and space is highly desired. Another task addresses the
bottleneck of calculating open boundary conditions (BCs)
for large cross sections for realistically large structures.
The BCs can be reused for each voltage point and each
charge self-consistent iteration. With a view to achieving
these goals, the necessary levels of parallelism to tackle
the problem on 200,000C CPUs have been designed and
demonstrated to scale well. Computer scientists and HPC

http://www.nanoHUB.org
http://www.nanoHUB.org
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experts embedded in the team will guide the implemen-
tation and explore performance, execution reliability, and
alternative hardware and algorithms. The new simulation
code named OMEN (with non-equilibrium Green func-
tion and 3-D atomistic representation) will be an open
source project and disseminated through the nanoHUB.
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Glossary

Autonomous robot An autonomous robot is a robot that
can perform tasks in unstructured environments with
minimal human guidance.

Planned path A planned path is a pre-determined, obsta-
cle-free, trajectory that a robot can follow to reach its
goal position from its starting position.

Complete path planner A complete path planner is an al-
gorithm that is guaranteed to find a path, if one exists.

Deadlocked path planning A deadlock is a situation in
path planning in which a solution cannot be found,

even though one exists. Typically, this is caused by
robots blocking each other’s paths, and the planner be-
ing unable to find a solution in which robots move out
of each other’s way.

Definition of the Subject

Multi-robot path planning and motion coordination ad-
dresses the problem of how teams of autonomous mo-
bile robots can share the same workspace while avoid-
ing interference with each other, and/or while achiev-
ing group motion objectives. Nearly all applications of
multiple autonomous mobile robots must address this is-
sue of motion coordination, either explicitly or implic-
itly. Multi-robot path planning and teaming has been ex-
tensively studied since the 1980s. While many techniques
have been developed to address this challenge, the general
centralized multi-robot path planning problem is known
to be intractable, meaning that optimal solutions cannot
be found in polynomial time. Thus, alternative techniques
that decouple aspects of the motion planning and coor-
dination problem have been proposed that trade off op-
timality for efficiency. A wide variety of applications can
benefit from teams of robots that can coordinate their mo-
tions effectively, including search and rescue, planetary ex-
ploration, mineral mining, transportation, agriculture, in-
dustrial maintenance, security and surveillance, and ware-
house management.

Introduction

Many practical applications of autonomous robots require
the use of multiple team members. Such teams have many
potential benefits, including faster task completion time
(through parallelism) and increased robustness (through
redundancy). Further, teams of robots can increase the ap-
plication domain of autonomous robots by providing so-
lutions to tasks that are inherently distributed, either in
time, space, or functionality. Since the 1980s, researchers
have addressed many issues in multi-robot teams, such
as control architectures, communication, task allocation,
swarm robots, learning, and so forth [83].

A critical issue in these mobile robot teams is coordi-
nating the motions of multiple robots interacting in the
same workspace. Regardless of the mission of the robots,
theymust be able to effectively share the workspace to pre-
vent interference between the teammembers. Solutions to
the motion coordination problem are approached in a va-
riety of ways, depending upon the underlying objectives of
the robot team. In some cases, the paths of the robots are
explicitly planned and coordinated in advance, as might be
needed in a busy warehouse management application, for

http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
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example. In other cases, planning is relaxed and empha-
sis is placed on mechanisms to avoid collision, applicable
for tasks such as automated hospital meal deliveries. In yet
other situations, the robots could have mechanisms with
little pre-planning that focus on coordinating robot mo-
tions in real-time using reactive, behavior-based, or con-
trol-theoretic approaches, such as would be used in a con-
voying or formation-keeping application.

The multi-robot path planning problem is defined
as follows: given a set of m robots in k-dimensional
workspace, each with an initial starting configuration
(e. g., position and orientation) and a desired goal con-
figuration, determine the path each robot should take to
reach its goal, while avoiding collisions with obstacles and
other robots in the workspace. More formally (adapting
the notation of [58,59]), letA be a rigid robot in a static
workspace W D Rk , where k D 2 or k D 3. The
workspace is populated with obstacles. A configuration q
is a complete specification of the location of every point
on the robot geometry. The configuration space C repre-
sents the set of all the possible configurations of A with
respect to W . Let O � W represent the region within
the workspace populated by obstacles. Let the closed set
A(q) �W denote the set of points occupied by the robot
when it is in the configuration q 2 C. Then, the C-space
obstacle region, Cobs, is defined as:

Cobs D fq 2 CjA(q)\ O ¤ ;g :

The set of configurations that avoid collision (called the
free space) is:

Cfree D C n Cobs :

A free path between two obstacle-free configurations cinit
and cgoal is a continuous map:

�[0; 1]! Cfree

such that �(0) D cinit and �(1) D cgoal.
For a team of m robots, define a state space that con-

siders the configurations of all the robots simultaneously:

X D C1 � C2 � � � � � Cm :

Note that the dimension of X is N, where N DPm
iD1 dim(C i ). The C-space obstacle region must now be

redefined as a combination of the configurations leading
to a robot-obstacle collision, together with the configura-
tions leading to robot-robot collision. The subset of X cor-
responding to robot Ai in collision with the obstacle re-
gion, O, is

Xi
obs D fx 2 XjAi(qi ) \ O ¤ ;g : (1)

The subset of X corresponding to robot Ai in collision
with robotA j is

Xi j
obs D fx 2 XjAi(qi ) \A j(q j) ¤ ;g : (2)

The obstacle region in X is then defined as the combina-
tion of Eqs. (1) and (2), resulting in

Xobs D

 m[

iD1

Xi
obs

!
[

0

@
[

i j;i¤ j

X i j
obs

1

A : (3)

With these definitions, the planning process for multi-
robot systems treats X the same as C, and Xobs the same
as Cobs, where cinit represents the starting configurations
of all the robots, and cgoal represents the desired goal con-
figurations of all the robots.

Typically, optimization criteria guide the choice of
a particular solution from an infinite number of possi-
ble solutions. Example criteria include minimized total
path lengths, minimized time to reach goals, and mini-
mized energy used to reach goals. Additional constraints
can introduce more complexity in the planning process,
such as navigational restrictions on the robots (e. g., maxi-
mum slope restrictions, inability to traverse rocky terrain,
etc.), or the need for multiple robots to move in tandem
with each other (e. g., a formation of robots moving over
uneven terrain). Since the general optimal motion plan-
ning problem for multiple moving objects is computation-
ally intractable (specifically, PSPACE-hard [47]), most ap-
proaches relax the requirement for global optimality, and
instead seek to locally optimize portions of the path plan-
ning problem.

Planning approaches can be categorized, or taxon-
omized, in various ways. One taxonomy evaluates ap-
proaches in terms of completeness (i. e., whether they are
guaranteed to find a solution if one exists), complexity
(i. e., the computational requirements of the search pro-
cess), and optimality (i. e., the quality of the resulting solu-
tion). Often, techniques that are complete and optimal are
too computationally intensive to use in practice. Alterna-
tively, techniques that achieve computational tractability
typically trade off optimality and/or completeness.

Another taxonomy of multi-robot path planning tech-
niques makes distinctions based on the amount of infor-
mation used during the planning process. Approaches that
use global information and plan directly in X are called
coupled, centralized approaches. These approaches treat
the robot team as a composite robot system, to which clas-
sical single-robot path planning algorithms are applied.
For example, the A* algorithm [45] can generate com-
plete and optimal solutions to the multi-robot path plan-
ning problem under a centralized and coupled approach.
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However, this type of planning approach requires com-
putation time that is exponential in the dimension of the
multi-robot configuration space. Thus, these approaches
can only be used in real-time for the smallest of problem
sizes. Sect. “Coupled, Centralized Approaches” describes
these coupled, centralized techniques.

To deal with the high-dimensionality of X, alternative
approaches decouple the path planning problem into inde-
pendent components that can find good solutions quickly,
although at the cost of losing optimality and complete-
ness. These decoupled techniques can either be central-
ized or decentralized. Common examples of decoupled ap-
proaches include those that separate path planning and
velocity planning. Typical approaches to decoupled plan-
ning will plan individual paths for a robot or set of robots,
followed by a second step to resolve any potential con-
flicts between the paths. Sect. “Decoupled Approaches”
describes some common techniques for decoupled multi-
robot path planning.

A broader problem in multi-robot teams is that of
motion coordination. Motion coordination encompasses
multi-robot path planning, but also includes other prob-
lems such as flocking, formation-keeping, multi-robot tar-
get tracking, and other similar objectives. These tasks do
not necessarily require advance planning of specific paths
for each robot, but do require the coordination of trajecto-
ries as the robots move, to avoid collisions with each other,
or to reach other group-level objectives, such as maintain-
ing a desired inter-robot distance. Sect. “Motion Coordi-
nation” describes some of these techniques. This chapter is
concluded with Sect. “Future Directions,” which offers re-
marks on the future directions and impact of multi-robot
path planning and motion coordination.

Coupled, Centralized Approaches

In coupled, centralized approaches to multi-robot path
planning, the robot team is considered to be a composite
robot system, to which a classical single-robot path plan-
ning algorithm is applied. Motion planning algorithms for
single mobile robot systems have been intensively studied
for years (see [40,48,58,97]). Examples of classical single-
robot path planning algorithms include sampling-based
planning, potential-field techniques, and combinatorial
methods. Sampling-based planners [54] avoid the explicit
construction of Cobs by sampling different configurations
to generate curves that represent collision-free paths in
Cfree. Potential field techniques (e. g., [9,10,114]) construct
real-valued functions that pull the robot toward the goal,
and repulse the robot away from obstacles, via a combi-
nation of force vector fields. Combinatorial methods con-

struct roadmaps through the configuration space using
techniques such as cell decomposition (e. g., [75,100]).

In an environment that contains a set of stationary ob-
stacles, single robot path planning methods such as graph
searching based on a geometric configuration of the en-
vironment are guaranteed to return optimal paths (in the
sense of a performance measure such as shortest distance)
in polynomial time if one exists. However, motion plan-
ning in a dynamic environment with moving obstacles
is inherently harder. Even for a simple case in two di-
mensions, the problem is PSPACE-hard and is not solv-
able in polynomial time [35,47]. Motion planning in dy-
namic environments was originally addressed by adding
the time dimension to the robot’s configuration space. The
approach in [29] discretizes the configuration-time space
to a sequence of slices of the configuration space at suc-
cessive time intervals, representing the motions of mov-
ing obstacles using the set of slices embodying space-time.
In [79], moving obstacles are represented as sheared cylin-
ders, and a methodology was proposed to provide opti-
mal tangent paths to the goal for a dynamic robot envi-
ronment.

Extending the problem still further, to multiple robot
path planning, requires even more computational re-
sources. An example centralized approach for generating
complete multi-robot path solutions is the work of Par-
sons and Canny [85], which takes a global cell decompo-
sition approach, incorporating obstacles and other robots
in a unified configuration space representation. This al-
gorithm first computes a decomposition of the free space
into cells; it then searches through the resulting adjacency
graph for a path. However, not surprisingly, the algorithm
is exponential in the number of robots. Other centralized
algorithms that represent the path planning problem as
a cross product of the configuration spaces of the individ-
ual robots include [9,96].

Because of the high dimension of the multi-robot
configuration space, centralized approaches that treat the
multi-robot team as a single composite robot tend to be
impractical computationally if the full search space is used.
Instead, techniques that reduce the size of the search space
have been shown to be practical for small-sized problems.
One way to reduce the search space is to weakly constrain
the allowable paths that robots can follow by limiting the
motion of the robots to lie on roadmaps in the environ-
ment. Intuitively, roadmaps are akin to automotive high-
ways, where robots move from their starting position to
a roadmap, move along the roadmap to the proximity of
the goal, and then move off the roadmap to the specific
goal location. More formally, a roadmap is defined as fol-
lows [24]:
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Definition 1 (Roadmap) A union of one-dimensional
curves is a roadmap RM if for all qstart and qgoal in Cfree
that can be connected by a path, the following properties
hold:

1. Accessibility: there exists a path from qstart 2 Cfree to
some q0start 2 RM,

2. Departability: there exists a path from q0goal 2 RM to
qgoal 2 Cfree, and

3. Connectivity: there exists a path in RM between q0start
and q0goal.

Typically, a roadmap RM is represented as a graph
G D (V ; E), in which the nodes V represent collision-free
configurations, and the edges E represent feasible paths.
(A feasible path is one that can be executed by robot Ai ,
based on its physical motion constraints.) Various algo-
rithms have been created that make use of the roadmap
concept for motion planning, both for single robots and
for multi-robot teams (e. g., [87,93,109]). The following
subsections present two such approaches for multi-robot
teams. The first, in work by Švestka and Overmars, is
a probabilistically complete approach, meaning that the
problem is solvable in finite time. Their approach creates
a coordinated path for a composite robot by making use
of the concept of super-graphs. The second, in work by
Peasgood, et al., [87], is a multi-phase approach that uses
a graph and spanning tree representation to create paths
through the environment. This approach is shown to have
linear-time complexity, and is thus scalable to much larger
robot teams.

Before presenting these two approaches, it is worth
noting thatmany other roadmapping approaches tomulti-
robot path planning have been proposed. For example, the
work of Ryan [93] reduces the search space by decompos-
ing the original map into subgraphs, planning paths be-
tween subgraphs, and then coordinating motions within
the subgraphs. This approach has been shown to be ef-
fective for up to 10 robots. In [26], Clark, et al., intro-
duce the concept of dynamic networks, which are formed
between robots that are within communication range.
Within this framework, only robots within the same net-
work use a centralized planner, which is based upon prob-
abilistic road maps [54]; otherwise, robots plan their paths
using decoupled planners based on optimizing priorities
(see Sect. “Decoupled Approaches”). In [95], efficiencies
in the probabilistic road map are achieved by delaying col-
lision checking along the roadmaps until necessary. The
speed-up achieved by this collision-checking (on the or-
der of a factor of 4 to 40) allows this technique to be
used more practically for small-sized multi-robot teams.

The authors incorporate this improved planning process
into three multi-robot path planning variants: a central-
ized version, a decoupled planner with global coordina-
tion, and a decoupled planner with pair-wise coordina-
tion.

Super-Graph Method (Švestka and Overmars)

In [109], Švestka and Overmars present an approach for
creating a composite roadmap, which represents a net-
work of feasible motions for the composite robot. This
composite roadmap is created as follows. First, a roadmap
for each individual robot is constructed using the standard
roadmap generation algorithm, Probabilistic Path Plan-
ner (PPP) [54]. Then, n such roadmaps are combined into
a roadmap for the composite robot, which can be used to
generate coordinated paths.

Specifically, the coordinated path for the composite
robot (A1; : : : ;An) is an n-tuple of paths feasible for all
robotsAi that, when executed simultaneously, introduce
no mutual collisions between the individual robots. For-
mally, let C[0;1] represent the configuration space from
time t D 0 to time t D 1, where the robot is at its starting
position at time 0, and is at its goal location at time 1. Let
s1; : : : ; sn and g1; : : : ; gn be given starting and goal con-
figurations for the n robots, where 8i 2 f1; : : : ; ng : si 2
Cfree ^ gi 2 Cfree. Let P represent a free path if P is in
Cfree for all times t (i. e., 8t 2 [0; 1] : P(t) 2 Cfree). Let
A\B ¤ ; (i. e.,A and B intersect) be represented by A˝B.
Then if P1; : : : ; Pn 2 C[0;1] are feasible paths, such that for
all i; j 2 f1; : : : ; ng

� Pi (0) D si ^ Pi (1) D gi
� i ¤ j) 8t 2 [0; 1] : :A(Pi (t))˝A(Pj(t))

then (P1; : : : Pn) is a coordinated path for (A1; : : :An)
solving the problem ((s1; : : : ; sn); (g1; : : : ; gn)).

Švestka and Overmars present an approach for con-
structing such a coordinated path for a composite
robot [109]. The basic idea is to seek paths along the
roadmap, G, that allow the robots to move from their
starting to their goal configurations, while disallowing
simultaneous motions or motions along paths that are
blocked by other robots. This type of path is called a G-dis-
cretized coordinated path. They introduce the concept of
super-graphs, which represent roadmaps for the compos-
ite robots created by combining n simple robot roadmaps.
Two variants of super-graphs are proposed – flat super-
graphs andmulti-level super-graphs.

In the flat super-graph, a node represents a feasible
placement of the n simple robots at the nodes of G, and
an edge represents a motion of exactly one simple robot
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Multiple Mobile Robot Teams, Path Planning andMotion Coordination in, Figure 1
An illustration of a coordinated path generated by the super-graph approach of Švestka and Overmars, for 5 nonholonomic car-like
robots (from [109])

along a non-blocked path of G. A disadvantage of the flat
super-graph is that its size is exponential in the number of
robots.

The second type of super-graph – the multi-level
super-graph – reduces the size of the super-graph data
structure by combining multiple nodes into a single node
of the graph. This approach makes use of the concept of
subgraphs. Whereas the nodes in a flat super-graph rep-
resent robots being located at particular nodes of G, the
nodes in a multi-level super-graph represent robots be-
ing located in a subgraph of G. The restriction placed on
node combinations is that the resultant subgraphs should
not interfere with each other, meaning that the nodes in
one subgraph cannot block paths in another subgraph. Ex-
perimental results have shown that the multi-level super-
graphs are typically much smaller than the equivalent flat
super-graphs.

Švestka and Overmars applied this approach to teams
of up to 5 nonholonomic, car-like robots in simulation.
An example of these results is shown in Fig. 1, illustrat-
ing the feasibility of this approach for small-sized multi-
robot teams. Nevertheless, this type of approach is ap-
propriate only for relatively small numbers of robots. For
much larger sizes of robot teams, decoupled approaches
are necessary (see Sect. “Decoupled Approaches”).

Spanning Tree Method (Peasgood, et al.)

Peasgood, et al., [87] present another roadmap-based
planner for multi-robot teams. This approach is a multi-

Multiple Mobile Robot Teams, Path Planning and Motion Coor-
dination in, Figure 2
An example multi-robot path planning problem using the span-
ning treemethod of Peasgood, et al., alongwith the correspond-
ing graph and spanning tree (from [87])
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Multiple Mobile Robot Teams, Path Planning andMotion Coordination in, Figure 3
The multi-phase solution of the multi-robot path planning problem in Fig. 2, using the spanning tree method of Peasgood, et al.
(from [87])

phase planner that uses a graph and spanning tree rep-
resentation to create and maintain obstacle-free paths
through the environment. Initially, a graph is created, in
which the nodes are the robots’ initial and goal positions,
and the edges represent the connectivity of the node po-
sitions. An example is illustrated in Fig. 2a, in which the
starting positions of the three robots (R1, R2, and R3)
are (C, B, A), while the goal positions are (A, C, B). Fig-
ure 2b shows the graph-based map for this example. Then,
a spanning tree of this graph is created, which is a con-
nected subset of the original graph that includes all the
nodes without cycles; Fig. 2c shows the example spanning
tree. The root of this spanning tree is chosen to be the
node that is closest to the geographic center of the map.
Then, in the first phase of the approach, a plan is gener-
ated that moves the robots to the leaves of the spanning
tree along collision-free paths, as shown in Fig. 3a. In the
second phase, the robots are moved into positions where
they can reach their goals without creating obstructions
for other robots. This is accomplished by processing the
robots in order according to the depth of their goals in the
spanning tree. This is shown in Fig. 3b,c. The third phase
moves robots to the remaining unfilled goal locations, as
shown in Fig. 3d. These three phases result in a sequence
of motions that allow only one robot to move at a time.
The final phase of the process seeks to improve the qual-
ity of the concurrent plan by allowing robots to move si-
multaneously when doing so does not introduce any colli-
sions.

Peasgood, et al., show that this algorithmic approach
results in time complexity that is linear in the number of
robots. To further improve the resulting path lengths, the
authors propose a hybrid planning approach, which uses

the regular multi-phase planner, but then also calls a de-
coupled planner (such as [15]), to attempt to find shorter
path solutions. For smaller-sized robot teams (less than
20), the decoupled planner can often find better solutions.
However, for larger-sized teams, themulti-phase approach
is more time-efficient (increasingly so as the team size
grows larger).

DecoupledApproaches

Decoupled approaches to multi-robot path planning typ-
ically trade off solution quality for efficiency by solving
some aspects of the problem independently. There are
many alternative ways of decomposing the planning prob-
lem. Most commonly, approaches plan individual paths
for robots, followed by methods for handling collision
avoidance.While decoupled approaches are typically more
efficient than centralized approaches, they lose complete-
ness. For instance, Fig. 4 shows an example of a situation
that is difficult for decoupled approaches to solve. In this
situation, robots must exchange positions in a narrow cor-
ridor. While a centralized approach would find a solution
in which the robots first move into the open space at the
end of the corridor to exchange places, a decoupled ap-
proach will have difficulties discovering this solution.

Decoupled approaches are typically divided into two
broad categories [58,59]: prioritized planning and path
coordination. Prioritized planning considers the motions
of the robots one at a time, in priority order, calculating
path information for the ith robot by treating the previ-
ous i � 1 robots as moving obstacles. Path coordination,
on the other hand, first plans independent paths for the
robots separately, then seeks to plan their velocities so as



Multiple Mobile Robot Teams, Path Planning and Motion Coordination in M 5789

Multiple Mobile Robot Teams, Path Planning andMotion Coordination in, Figure 4
An example multi-robot path planning problem that is difficult for decoupled approaches to solve. Here, the robots must exchange
positions by first moving into the open space at the end of the corridor. While a centralized approach can find this solution, most
decoupled approaches would fail (recreated from [58])

to avoid collisions along those paths. The following sub-
sections describe these approaches in more detail.

Prioritized Planning

The prioritized planning approach to multi-robot path
planning was first proposed by Erdmann and Lozano–
Peréz [29]. In this approach, priorities are assigned to
each robot. These priorities could be assigned randomly,
or they could be determined from motion constraints, in
which more-constrained robots are given higher priority.
A path is planned for the first robot using any single-
robot path planning approach. The path for each succes-
sive robot, Ai , then takes into account the plans for the
previous robots A1; : : : ;Ai�1, treating these higher-pri-
ority robots as moving obstacles.

More specifically, in the prioritized planning approach
of [29], the configuration space is extended to account
for time, since the time-varying motions of previously-
planned robots must be taken into account. Configura-
tion space-time is represented as a list of configuration
space slices at particular times – specifically, those times
corresponding to when a moving object changes its ve-
locity. Motions between slices can then be interpolated
via straight-line translations between these configuration
space slices. The configuration space-time can be con-
structed in O(m) time, where m D nr, for n edges in the
environment and r time slices.

Paths through configuration space-time are computed
using a visibility graph algorithm, which searches along
a visibility graph consisting of the vertices of the configura-
tion space obstacles (plus vertices for the start and goal po-
sitions), and the line-of-sight edges between the vertices.
Planners using this method have time complexity O(rn3),
although [29] also suggests a faster implementation. The
prioritized planning approach has been demonstrated in

several application domains, including the translation of
multiple planar robots, as well as the motion of two-link
planar articulated robot arms.

Other researchers who have studied prioritized path
planning for multiple mobile robots include [16,20,32,
121]. Both Ferrari, et al. [32] and Warren [121] used
a fixed priority scheme for the decoupled planner. In
the work of Buckley [20], a heuristic is applied to assign
higher priorities to robots that can move in a straight
line to their target location. Chun, et al. [25] use this
priority scheme to coordinate independently-generated
schedules online, as the conflicts arise. The work of
Azarm and Schmidt [6] considers all possible priority as-
signments, although the resulting approach is computa-
tionally complex. A more tractable method for finding
and optimizing priority schemes for decoupled priority-
based planners is presented by Bennewitz, et al., in [16].
The proposed approach performs a centralized, random-
ized search with hill-climbing (i. e., the A* search algo-
rithm [73]) to search the space of prioritization schemes
to find priority schemes that minimize the overall path
length. The resulting priority scheme can then be applied
in decoupled priority-based planners, such as Erdmann’s
method described above [29].

The advantage of prioritized planning approaches is
that they reduce the problem from a single planning prob-
lem in a very high-dimensional space to a sequence of
planning problems in much lower dimensional space. The
disadvantage, as with all decoupled approaches, is that
these approaches are not complete.

Path Coordination

Path coordination techniques decouple the planning prob-
lem into path planning and velocity planning (e. g., [52]).
The ideas are based on scheduling techniques for deal-
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ing with limited resources, inspired by the approaches de-
veloped for concurrent access to a database by multiple
users [124]. In the current context, the shared resource is
space. The decomposition of path and velocity planning
provides a solution through the complexity barrier caused
by the additional time dimension, and also provides solu-
tions that are relevant when robots move along fixed paths.

In the path coordination approach, the path planning
step first generates individual robot paths independently,
using common single-robot path planners. The second
step plans a velocity profile that each robot should follow
along its path so as to avoid collisions with other robots.
This approach is typically called fixed-path coordination,
since the paths planned in the first step are not altered in
the second step. Instead, only the velocities taken by the
robots along the paths are varied.

In more detail (using the notation of [59]), as-
sume that the path generated for each individual robot
in the first step constrains robot Ai to follow a path
�i : [0; 1]! C i

free. Then, an m-dimensional coordination
diagram X D [0; 1]m form robots is defined that is used to
schedule the motions along their paths so that they do not
collide [74]. In this diagram, the ith coordinate represents
the domain, Si D [0; 1], of the path of robot Ai . At state
(0; : : : ; 0) 2 X, every robot is in its initial starting config-
uration. At state (1; : : : ; 1) 2 X, every robot is at its goal
configuration. Within the coordination diagram, obsta-
cles form obstacle regions Xobs that must be avoided. Any
continuous, obstacle-free path, h : [0; 1]! X, for which
h(0) D (0; : : : ; 0) and h(1) D (1; : : : ; 1), is a valid path
that moves the robots from their starting positions to their
goals. The objective, therefore, is to find h : [0; 1]! Xfree,
in which Xfree D X n Xobs. An example coordination dia-
gram showing a valid path for the robots is illustrated in
Fig. 5.

Several authors have looked at variations of the path
coordination approach. In [62], Lee and Lee use a simi-
lar idea to plan the motions of two robots. Griswold and
Eem [41] take uncertainty of the moving obstacles into
account while using the same principle for path plan-
ning. Pan and Luo [77] use the concept of traversabil-
ity vectors to analyze the spatial relationship between the
robot and moving obstacles, and develop a search algo-
rithm to coordinate the robot motion. Rude [92] proposes
a space-time representation for collision avoidance in pre-
planned individual robot paths. In [43], Guo and Parker
present a decentralized path coordination approach that
also incorporates optimization issues into the planning,
including a global performance measurement to minimize
the weighted sum of the most expensive time to reach
the goals and all idle time, as well as individual opti-

Multiple Mobile Robot Teams, Path Planning and Motion Coor-
dination in, Figure 5
An example coordination diagram for three robots. Each axis
represents the domain of an individual robot’s path. The cylin-
drical objects are obstacles, and the path from (0, 0, 0) to (1, 1,
1) represents the coordinated velocity plans for moving all three
robots to their goals without collisions (adapted from [43])

mization goals for navigation over rough terrain. In [60],
LaValle and Hutchinson consider multiple robots with
independent goals and performance measures, and pro-
poses algorithms optimizing a scalarizing function that is
a weighted-average of individual performance functions.
Other approaches to optimal motion planning have been
proposed in [17,18,23,60,88,101], sometimes in the con-
text of robotic manipulator motion planning. In [22], one
robot is randomly chosen to stop, and time delays are in-
serted to resolve potential collisions. Path coordination
schedules, which are another form of velocity planning,
are studied in [17,74,102]. A priority-based method using
collision maps is presented in [78]. Extensions of the path
coordination approach to coordination on roadmaps have
been proposed by [39,60].

While all of these decoupled approaches typically al-
low good solutions to the multi-robot path planning prob-
lem, they can lead to deadlocks, in which solutions cannot
be found, even though they exist. In these cases, it may
be possible to make use of a centralized planner for small
portions of the original problem, in order to solve the im-
mediate deadlock problem.

Motion Coordination

Closely related to the topic of multi-robot path plan-
ning is the issue of multi-robot motion coordination. Un-
like multi-robot path planning or path coordination ap-
proaches, which plan and/or coordinate the complete
paths of all of the robots in advance, techniques formotion
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coordination focus on decentralized, online approaches
that allow robots to avoid and/or resolve conflict as the
situation arises during path execution, such as through the
use of traffic control rules. In traffic control applications,
individual robots still have independent starting and goal
positions, and must move so as to avoid conflict with each
other. Even broader concepts of motion coordination seek
to have the robots move according to some constraints
on the team as a whole, such as can be seen in formation
keeping, flocking/swarming, target search/tracking, disper-
sion/aggregation, and related topics. In these problems, the
motions of individual robots are no longer independent
of each other; instead, the group must move in synchrony
according to pre-defined motion constraints for the entire
team. The following subsections discuss some of the key
research in these areas of motion coordination.

Traffic Control

Traffic control approaches to multi-robot motion coor-
dination typically predefine traffic or control rules that
robots must obey as they move through the workspace.
Individual robots often move along paths to their goals
that they pre-plan in advance, based only on the individual
robot goals. Then, as regions involving shared resources
are reached (such as the space in an intersection), robots
follow the traffic or control rules to coordinate their mo-
tions with other robots who also need access to the shared
resources.

An early example of traffic control is the work of
Grossman [42], which addresses the motion of large num-
bers of Automatic Guided Vehicles (AGVs) in a factory.
Grossman defines three types of control possibilities: 1) re-
strict the roads so that there is a unique route between all
starting and goal positions; 2) allow AGVs to select their
own routes autonomously; and 3) control all AGVs’ paths
using centralized traffic control. Grossman shows that al-
lowing AGVs to select their routes autonomously (option
2) is preferred over the highly suboptimal restriction of
roads (option 1). Of course, as previously noted, the cen-
tralized approach (option 3) has high combinatorial com-
plexity.

The problem of the autonomous coordination of paths
(option 2) is formulated as follows. A set of r AGVs are al-
lowed to follow unconstrained paths in two dimensions,
on a grid-iron network of roadways, with n parallel roads
along each axis. Each section of roadway between inter-
sections is called an arc; in this formulation, there are
2n(n � 1) arcs in the network. Each intersection of road-
ways is called a node, representing the locations of ma-
chine tools to be serviced by the robots. It is assumed

that 1 � r � n2 � 1, and that all vehicles move at the same
speed, v. Each AGV has the task of moving from a source
location (i. e., starting position) to a sink location (i. e.,
a goal location). Defining S to be the average number of
time steps per task for each AGV, the average throughput
of all the AGVs together is W D (vr)/S. This throughput
must exactly match the throughput of all the n2 machine
tools, leading to a requirement that the AGV speed must
satisfy: v D (Sn2)/r. The price of r AGVs is considered
negligible in comparison to the price of the machine tools.
Thus, the problem is formulated as the problem of opti-
mizing the traffic control and the value of r so as to mini-
mize v in an n � n grid-iron floor plan. The constraints on
the traffic in this environment are as follows:

� At the end of each step, at most one AGV may be at
each node.

� During each step, no two AGVs may pass on the same
arc.

� All AGVs have equal priority.

Different policies are investigated, including a greedy pol-
icy and a benevolent policy. Simulation results show that
the benevolent policy performs the best, with a perfor-
mance close to the derived lower bound. This traffic policy
requires the AGVs to follow these rules:

1. From the AGVs own (i; j) location, determine in which
quadrant q the goal node (i0; j0) lies:
� Quadrant 1 has i0 > i and j0 � j.
� Quadrant 2 has j0 > j and i0 � i.
� Quadrant 3 has i0 < i and j0 � j.
� Quadrant 4 has j0 < j and i0 � i.

2. Depending on the value of q, try to move to an adjacent
node:
� If q is 1 then (i C 1; j).
� If q is 2 then (i; jC 1).
� If q is 3 then (i � 1; j).
� If q is 4 then (i; j � 1).

3. If that node is blocked, add 1 to q and try Step 2 again.
4. If that node is blocked, add 1 to q and try Step 2 again.
5. If that node is blocked, add 1 to q and try Step 2 again.
6. If all adjacent nodes are blocked, then wait at the cur-

rent node.

This policy leads to an overall counterclockwise flow of
traffic through the workspace. Based on analysis and simu-
lation results, the authors conjecture that this policy is the
optimal policy for AGVs without memory or task trading.

There are many variants on the traffic control and con-
flict resolution theme [5,53,65,117,118,125]. For example,
in [53], Kato, et al., categorize the traffic rules into three
types: 1) traffic rules to be applied to the current positions
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of the robot (examples include passage zone, stop, slow);
2) traffic rules to be applied to current positions and con-
ditions (examples include overtaking, avoiding obstacles,
crossing intersections); and, 3) traffic rules to ensure safety
in case of accidents or failures. These rules are illustrated
for robot teams operating in indoor hallway-types of set-
tings.

In [5], Asama, et al., propose two basic rules for avoid-
ing collisions:

� “If the colliding robot is nearby to the front and ap-
proaching, then avoid from the left”, and

� “If the colliding robot is nearby to the front and leaving,
then stop for a while”.

These rules are combined with a communication-based
negotiation process that resolves conflicts by setting pri-
orities based on the task requirements, the environmen-
tal situation, and robot performances. In the work of Yuta
and Premvuti [125], robots move along pre-planned paths
in network of roadways, which can involve conflicts at in-
tersections. These deadlock situations at intersections are
resolved through a “shunting” process, in which one robot,
acting as a leader, devises a solution for moving robots
through the intersection, and then broadcasts the instruc-
tions to the other robots for how to resolve the conflict.
Another approach to conflict resolution is to use tech-
niques from distributed computing, as illustrated in the
work of Wang [117,118], in which robots use a mutual ex-
clusion protocol to compete for the right to move along
certain pathways or to resolve conflicts at intersections.

In [67], Lumelsky, et al., present a decentralized ap-
proach for motion planning that has robots plan and ex-
ecute their paths “on the fly” in real time, resolving con-
flicts as they arise. The authors make an analogy to hu-
man cocktail parties, in which people do not plan optimal
paths in advance, nor consult with others about their in-
tended destinations; instead, they move toward their des-
tinations while avoiding collisions as they go. Their ap-
proach is based on maze-searching techniques, and makes
use of perpendicular bisectors and Voronoi diagrams [90]
to allow robots to avoid collisions.

Another approach that is closely related to the de-
coupled path coordination research described earlier is
the work of Alami, et al. [1,2]. This online plan-merging
paradigm does not require advance planning of all robot
paths in advance. Instead, robots move as needed, coordi-
nating their paths as new goal destinations arise. In this de-
centralized planning approach, robots also treat segments
of their paths as shared resources. However, when a robot
elaborates a new plan for itself, it must validate that plan
within the current multi-robot context. This is done by

collecting the plans from all the other robot team mem-
bers via communication, and “merging” its own plan into
the existing robot plans. This merging operation is done
without affecting the plans of other robots, thus allowing
them to continue on with their current executions. In this
approach, the environment is represented as a topological
graph of areas, routes, and crossings. Routes are composed
of lanes with direction, thus setting up a type of traffic pat-
tern through the environment. The motion planning ap-
proach makes use of a graph searching technique, plan-
ning dependency graphs, and synchronization points to
coordinate the motions of the robots. Figure 6 illustrates
the geometrical and topological planning space for this ap-
proach in a prototypical application.

More recent work in conflict resolution for multi-
robot teams is the work of Pallottino, et al., [76], which
considers a more realistic kinematic model of the robot
dynamics, recognizing that most robots cannot stop in-
stantly in order to avoid collisions. This model focuses
on large numbers of robots (e. g., 70) operating closely in
shared, open spaces. As with other techniques discussed
to this point, this approach also assumes robots have in-
dependent starting positions and goal destinations. This
approach is particularly relevant for applications of aerial
vehicles flying at constant altitude. This work makes use of
the concept of reserved region, which is an area for which
a robot claims exclusive ownership. The control policy is
defined for a set of discrete modes of operation, including
a hold state in which a robot is stopped, a straight state in
which the robot is moving forward without turning, and
two roll states – one for mild turns and a second for tight
turns. Control theoretic definitions of the motions of the
robots in each state are given, and the policy is shown to be
safe, meaning that it guarantees collision avoidance.Under
certain conditions, the approach is also shown to have the
property of liveness, meaning that all the robots are guar-
anteed to reach their destinations in finite time.

Reactive Approaches

Reactive-style methods for coordination are useful in
many applications, since they are fast, and can operate well
in real-time. One common reactive method makes use of
potential fields [55]. In the potential field approach, the
robot moves through space as if it is being acted upon
by a set of forces. Attractive forces pull the robot toward
a goal destination, while repulsive forces push the robot
away from obstacles and/or other robots. At each point in
the configuration space, the robot moves along the vector
representing the combined forces acting on that point in
the configuration space. These concepts have been applied
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Multiple Mobile Robot Teams, Path Planning andMotion Coordination in, Figure 6
Representations used for a prototypical application of the plan-merging paradigm of Alami, et al. (from [2])

to variousmulti-robot applications [121], includingmulti-
robot soccer [63]. Other potential field approaches to
multi-robot coordination include [27,64,119,120]. A well-
known issue in potential field methods, however, is their
susceptibility to deadlock due to local minima in the po-
tential field. Some techniques have been designed to over-
come this shortcoming [11].

Other reactive approaches for collision avoidance
based on local information include the work of Mata-

rić [70], which proposes behavior-based avoidance rules
in which robots either stop for a period of time or change
directions. Similar rules were proposed by Arkin [4] and
by Sugihara and Suzuki [107]. Shan and Hasegawa [99]
present behavior-based techniques for avoiding robot col-
lisions in narrow passages.

While all of the above techniques can work well for
relatively unconstrained situations, they are not analyzed
formally to provide guidance for setting the navigation
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Multiple Mobile Robot Teams, Path Planning and Motion Coor-
dination in, Figure 7
Example results for 5 robots in simulation performing adaptive
navigation to avoid collisions, using the approach of Fujimori,
et al. (from [34])

parameters. On the other hand, a more formal method
for determining reactive collision avoidance parameters is
given by Fujimori, et al., in [34]. These authors propose
a collision avoidance method based on an adaptive navi-
gation technique, in which the navigation law is given by
a first-order differential equation. Navigation of the robot
to the goal and obstacle avoidance are handled by switch-
ing the direction angle adaptively. Robots are assigned pri-
orities to determine which vehicles must yield to the oth-
ers. The proper value of the direction angle is calculated
theoretically, based on three robot modes of operation:
navigation mode, in which the robot is moving toward
the goal without interference; cooperative avoidance mode,
in which the robot avoids other robots; and, final mode,
when the robot is approaching near the goal. The approach
has been implemented in simulation for up to five mobile
robots, and on two physical robots. Figure 7 illustrates the
type of motions generated by this approach in a five-robot
simulation.

Coordinated Motion of Entire Team

A significant topic of current research is the control of
robot motions to achieve a group objective, such as main-
taining a formation while moving to a goal position, co-
operatively tracking moving targets, collective coverage
tasks, and so forth. Often, these topics are studied in the
context of swarm robot systems, involving large numbers
of homogeneous robots performing the same control al-

Multiple Mobile Robot Teams, Path Planning and Motion Coor-
dination in, Table 1
Categories of swarm behaviors

Relative motion
requirements

Swarm Behaviors

Relative to other robots Formations [80,107], Flocking,
Natural herding (as in herds of
cattle), Schooling, Sorting [13],
Clumping [13], Condensation,
Aggregation, Dispersion

Relative to the
environment

Search [36], Foraging [7], Grazing,
Harvesting, Deployment, Coverage,
Localization, Mapping, Exploration

Relative to external
agents

Pursuit, Predator-prey, Target
tracking, Forced
herding/shepherding (as in
shepherding sheep)

Relative to other robots
and the environment

Containment, Orbiting,
Surrounding, Perimeter search

Relative to other robots,
external agents, and the
environment

Evasion, Tactical overwatch,
Soccer [19,104,115,122]

gorithms. A complete survey of all the work in these areas
is beyond the scope of this chapter. However, this section
briefly outlines the areas of active research in this domain.

Many types of swarm behaviors have been studied,
such as foraging, flocking, chaining, search, herding, ag-
gregation, and containment. The majority of these swarm
behaviors deal with spatially distributed multi-robot mo-
tions, requiring robots to coordinate motions either (1)
relative to other robots, (2) relative to the environment,
(3) relative to external agents, (4) relative to robots and
the environment, or (5) relative to all (i. e., other robots,
external agents, and the environment). Table 1 categorizes
swarm robot behaviors according to these groupings (see
also [83]).

Much of the current research in swarm robotics is
aimed at developing specific solutions to one or more
of the swarm behaviors listed in Table 1. Some of these
swarm behaviors have received particular attention, no-
tably formations, flocking, search, coverage, and forag-
ing. In general, most current work in the development
of swarm behaviors is aimed at understanding the for-
mal control theoretic principles that can predictably con-
verge to the desired group behaviors, and remain in stable
states. The following subsections outline research in some
of these areas.

Flocking and Formations Coordinating the motions of
robots relative to each other has been a topic of interest
in multiple mobile robot systems since the inception of
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the field. In particular, much attention has been paid to
the flocking and formation control problems. The flock-
ing problem can be viewed as a subcase of the forma-
tion control problem, requiring robots to move together
along some path in the aggregate, but with only minimal
requirements for paths taken by specific robots. Forma-
tions are more strict, requiring robots to maintain certain
relative positions as they move through the environment.
In these problems, robots are assumed to have only min-
imal sensing, computation, effector, and communications
capabilities. A key question in both flocking and formation
control research is determining the design of local con-
trol laws for each robot that generate the desired emergent
collective behavior. Other issues include how robots coop-
eratively localize themselves to achieve formation control
(e. g., [71,72]), and how paths can be planned for permu-
tation-invariant multi-robot formations (e. g., [56]).

Early solutions to the flocking problem in artificial
agents were generated by Reynolds [91] using a rule-based
approach. Similar behavior- or rule-based approaches
have been used physical robot demonstrations and stud-
ies, such as in [8,70]. These earlier solutions were based
on human-generated local control rules that were demon-
strated to work in practice. More recent work is based on
control theoretic principles, with a focus on proving stabil-
ity and convergence properties inmulti-robot team behav-
iors. Examples of this work include [3,14,31,37,38,49,68,
110,113].

Foraging and Coverage Foraging is a popular testing
application for multi-robot systems, particularly for those
approaches that address swarm robotics, involving very
large numbers of mobile robots. In the foraging domain,
objects such as pucks or simulated food pellets are dis-
tributed across the planar terrain, and robots are tasked
with collecting the objects and delivering them to one or
more gathering locations, such as a home base. Foraging
lends itself to the study of weakly cooperative robot sys-
tems, in that the actions of individual robots do not have
to be tightly synchronized with each other. This task has
traditionally been of interest in multi-robot systems be-
cause of its close analogy to the biological systems that
motivate swarm robotics research. However, it also has
relevance to several real-world applications, such as toxic
waste cleanup, search and rescue, and demining. Addi-
tionally, since foraging usually requires robots to com-
pletely explore their terrain in order to discover the ob-
jects of interest, the coverage domain has similar issues to
the foraging application. In coverage, robots are required
to visit all areas of their environment, perhaps searching
for objects (such as landmines) or executing some action

in all parts of the environment (e. g., for floor cleaning).
The coverage application has real-world relevance to tasks
such as demining, lawn care, environmental mapping, and
agriculture.

In foraging and coverage applications, a fundamen-
tal question is how to enable the robots to quickly ex-
plore their environments without duplicating actions or
interfering with each other. Alternative strategies can
include basic stigmergy [13], forming chains [28], and
making use of heterogeneous robots [7]. Other research
demonstrated in the foraging and/or coverage domain in-
cludes [21,33,69,86,94,106,108,116].

Multi-Target Observation The domain of multi-target
observation requires multiple robots to monitor and/or
observe multiple targets moving through the environ-
ment. The objective is to maximize the amount of time,
or the likelihood, that the targets remain in view by some
team member. The task can be especially challenging if
there are more targets than robots. This application do-
main can be useful for studying strongly cooperative task
solutions, since robots may have to coordinate their mo-
tions or the switching of targets to follow in order to max-
imize their objective. In the context of multiple mobile
robot applications, the planar version of this testbed was
first introduced by Parker in [82] as CMOMMT (Coop-
erative Multi-robot Observation of Multiple Moving Tar-
gets). Similar problems have been studied by several re-
searchers, and extended to more complex problems such
as environments with complex topography or three di-
mensional versions for multiple aerial vehicle applications.
This domain is also related to problems in other areas,
such as art gallery algorithms, pursuit evasion, and sensor
coverage. This domain has practical application in many
security, surveillance, and reconnaissance problems. Re-
search applied to the multi-target observation problem in
multi-robot systems includes [12,51,57,61,66,111,123].

Future Directions

Many open issues in multi-robot path planning and coor-
dination remain. Current techniques typically do not scale
well to very large numbers of robots (e. g., thousands),
and many still have limitations for extensions to three di-
mensions (e. g., aerial robots). Many approaches have dif-
ficulty in highly stochastic environments; dynamic, online
replanning of paths and coordination strategies is impor-
tant in these contexts. Creating provably correct interac-
tion strategies in these domains is an ultimate goal. Devel-
oping path planning and motion coordination techniques
that incorporate practical motion and sensing constraints
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of physical robots is still an open issue. Integrating these
techniques onto physical robots remains uncommon, due
to the practical need to integrate these path planning and
coordination algorithms with complete sensing, naviga-
tion, and reasoning systems, as well as the practical dif-
ficulty of experiments involving large numbers of fallible
robots. Certainly, ongoing work is addressing these impor-
tant issues in multi-robot path planning and coordination;
it is likely that the research community will be successful
in developing solutions to extend the state of the art in this
domain.

Of course, understanding how to coordinate the mo-
tions of robots in a shared workspace has both prac-
tical and scientific interest. From a practical perspec-
tive, many real-world applications can potentially bene-
fit from the use of multiple mobile robot systems. Ex-
ample applications include container management in
ports [2], extra-planetary exploration [105], search and
rescue [50], mineral mining [98], transportation [112],
industrial and household maintenance [84], construc-
tion [103], hazardous waste cleanup [81], security [30,44],
agriculture [89], and warehouse management [46]. To
date, relatively few real-world implementations of these
multi-robot systems have occurred, primarily due to the
complexities of multiple robot systems and the rela-
tive newness of the supporting technologies. Neverthe-
less, many proof-of-principle demonstrations of physical
multi-robot systems have been achieved, and the expecta-
tion is that these systems will find their way into practical
implementations as the technology continues to mature.
Because of the fundamental need for motion coordination
for all applications of multi-robot systems, the work de-
scribed in this chapter is of critical importance.

From a scientific perspective, understanding interac-
tions between multiple autonomous robots might lead
to insights in understanding other types of complex sys-
tems, from natural interactions in biology and social sys-
tems to engineered complex systems involving multiple
interacting agents. Because multi-robot systems operate in
stochastic and unpredictable settings, the study of the in-
teraction dynamics in these settings can lead to discoveries
of broader impact to a wide range of complex nonlinear
systems.
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Glossary

Multivariate splines functions are smooth piecewise
polynomial functions over a triangulation of a polygo-
nal domain in the Euclidean space Rn for n � 2.

Box splines functions are a generalization of univariate
B-spline functions over integer knot sequence. For ex-
ample, B`;m;n is a box spline of degree `C mC n � 2
on three direction mesh. Bk;`;m;n is a box spline of de-
gree k C `C m C n � 2 on four direction mesh. They
are bivariate piecewise polynomial functions of certain
smoothness dependent on integers k; `;m; n.

Finite element andmacro-element Finite element and
macro-element are two special spline functions which
are defined over each triangle by using the same rules
for all triangles so that the spline functions are smooth
over the union of all triangles.

Minimal energy method is a global method to find
a spline function to interpolate a set of given data val-
ues over the vertices of a triangulation and minimize
the thin-plate energy functional.

Discrete least squares fitting is a global method to find
a spline s to fit a given set of scattered data by mini-
mizing the summation of the squares of the difference
of s at a given location and the given value at the given
location. The summation above is called the square of
the discrete L2 norm.

Penalized least squares fitting is another global method
to find a spline function s to fit a given set of scattered
data by minimizing the sum of the square of the dis-
crete L2 norm and the square of energy norm of the
spline function.

Wavelets are functions whose integer translates and dila-
tion’s form an orthonormal basis for L2(Rn).

Tight wavelet frame are functions whose integer trans-
lates and dilation’s form a tight frame for L2(Rn).

Introduction

Multivariate splines are smooth piecewise polynomial
functions over a triangulation of a polygonal domain in
Rn for n � 2. They are very efficient for evaluation and
manipulation on computer and very flexible for approx-
imating known or unknown functions or any given data
sets. More than 50 years ago, Courant started using a con-
tinuous piecewise linear finite element over a triangula-
tion of polynomial domain to approximate the solution of
a partial differential equation (PDE). This seminal study
generated a great deal of interest in constructing various
finite elements and macro elements over the period 1965–
1977 (e. g. [17,43,45]) as well as promoting the study of
the dimension of multivariate spline splines in 1979 ([46])
and their approximation orders in the period 1988–1998
(cf. [10,11,34]). A newperiod of study of computation with
multivariate splines took off at the beginning of this cen-
tury (cf., e. g. [5,35,48]).

They are extremely useful for numerical solution of
partial differential equations, construction of smooth sur-
faces to fit a given set of scattered data, etc. For exam-
ple, FEM (the finite element method) is a fundamen-
tal tool for solving viscous incompressible flow equations
and has direct application in the design of hydraulic tur-
bines and rheologically complex flows which appear in
many processes involving plastics or molten metals. An-
other example, CAGD (computer-aided geometric de-
sign) uses multivariate splines as a basic and effective tool
for many engineering research fields, e. g., designing car
hoods, ship hulls, and aircraft wings. They are one of the
subjects of study in applied and computational mathemat-
ics such as Numerical Analysis, Approximation Theory,
Computer-Aided Geometric Design, and Numerical Solu-
tion of PDE. They have found many applications in ap-
plied sciences.

In this article, we restrict our attention to multivari-
ate splines that are defined on polygonal domains in Eu-
clidean space Rn with n � 2. Spline functions, piecewise
polynomial functions defined on partitions of an interval
in R1 are called univariate splines which will not be dis-
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cussed any further in this article (cf. [7] and [47] for theory
and applications of univariate splines).

We shall give a definition of multivariate splines and
some examples of various spline spaces. Dimension and
approximation power of spline spaces will be briefly dis-
cussed. Then we will explain how to use these spline func-
tions for data interpolation and fitting, for numerical so-
lution of partial differential equations, for construction of
multivariate wavelets and frames.

Definition of the Subject

Let us start with Rn with n D 2. Let � be a collection of
triangles in whose union forms a polygonal domain ˝ in
R2.We say that� is a regular triangulation if it satisfies the
following property: for any t; t0 2 �, t \ t0 is either empty
or a common edge of t and t0 or a common vertex of t
and t0.

Given two integers d � 0 and 0 � r < d, let

Srd (�) :D
˚
s 2 Cr (˝) : sjt 2 Pd ;8 t 2 �

�

be the multivariate spline space of degree d and smooth-
ness r, where Pd denotes the space of all polynomials
of degree � d. It is a standard spline space. Typically,
S0d (�) is the continuous spline space of degree d which
is a very popular finite element space. Also we consider
super spline spaces. That is, let � D f�v ; v 2 V g be a set
of integers �v � 0 associated with vertices in V of � and
r D fre ; e 2 EIg be a set of integers re � 0 associated with
interior edges EI of �. Suppose that �v � r � 0 for all
v 2 V and re � r � 0 for all e 2 EI . Let

Sr;�d (�) D
˚
s 2 Srd (�); s 2 C�v at v 2 V

and s 2 Cre across e 2 EI
�

be the spline subspace of super smoothness �, smoothness
r and degree d. If r D (r; r; : : : ; r) and � D (r; r; : : : ; r),
then Sr;�d (�) D Srd (�). When r and � have constant com-
ponents, we just use Sr;�d (�) to denote the super spline
space. Typically, we consider S1;25 (�) which is the space
of all spline functions that are C1 across all interior edges
of � and are C2 at all vertices of �. When r is a vector of
different components we call a function in Sr;�d (�) a spline
of variable smoothness.

Next let d D fdt ; t 2 �g be a set of integers dt � 0 as-
sociated with triangles of�. Let r and � as above. Define

Sr;�d (�) D
˚
s 2 Sr;�d (�); sjt 2 Pdt ; t 2 �

�

with the spline space of variable smoothness �, r and vari-
able degree d associated with the vertices, interior edges

and triangles of�, where Pdt stands for the space of poly-
nomials of degree dt . This is a user-friendly spline space al-
lowing one to choose a spline function using polynomials
of less degree in certain areas and higher degree in other
areas. It is especially useful to trim off the oscillations of
interpolatory surfaces.

The definition of bivariate spline spaces can be easily
generalized to the multivariate setting and to the spherical
setting. We refer to [36] and references therein.

Various Spline Spaces

In addition to the continuous spline space S0d (�), the fol-
lowing spline spaces in the bivariate setting are very popu-
lar in the literature and in applications:

1. S13(�CT) is the C1 cubic spline space over Clough–
Tocher refinement of triangulations. In Fig. 1., the left
is a given triangulation � and the right is the Clough–
Tocher refinement�CT of�.

2. S12(�PS) denotes the C1 quadratic spline space over
Powell–Sabin refinement of triangulations. In Fig. 2,
the left is a given triangulation � and the right is
a Powell–Sabin refinement�PS of�.

3. S13(}C) stands for the C
1 cubic spline space over triangu-

lated quadrilaterals }C. One first decomposes a polyg-
onal domain into strictly convex quadrilaterals. Then
add two diagonals to each quadrilateral to obtain a tri-
angulation}C as shown in Fig. 3.

Multivariate Splines and Their Applications, Figure 1
A triangulation and its Clough–Tocher refinement

Multivariate Splines and Their Applications, Figure 2
A triangulation and its Powell–Sabin refinement
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Multivariate Splines and Their Applications, Figure 3
A quadriangulation and its associated triangulation

Multivariate Splines and Their Applications, Figure 4
A triangle and its Wang refinement

4. Let S25(�W) be the C2 quintic spline space over Wang’s
refinement of triangulations. In Fig. 4. we show a trian-
gle and its Wang’s refinement.

There are many other spline spaces discussed in the liter-
ature such as Powell–Sabin’s 12 split refinement method.
See [36] for details. Such spline spaces have been general-
ized to the spherical setting and the trivariate setting ex-
cept for the Wang refinement.

Another class of multivariate splines are box spline
functions which are a natural generalization of uniform
B-splines. They are piecewise polynomial functions de-
fined on a uniform triangulation. To be more precise, letD
be a set of non zero vectors in Rn (counting multiple of
a same vector) which span Rn . The box spline �D as-
sociates with the direction set D is the function whose
Fourier transform is defined by

�̂D(!) D
Y

�2D

1 � e�i��!

i� � !
:

It can be shown that box spline �D is a piecewise poly-
nomial function of degree � #D � d, where #D denotes
the cardinality of D. For more properties of box splines,
see [12]. In particular, for n D 2 and e1 D (1; 0)T; e2 D
(0; 1)T, and

D D fe1; : : : ; e1„ ƒ‚ …
`

; e2; : : : ; e2„ ƒ‚ …
m

; e1 C e2; : : : ; e1 C e2„ ƒ‚ …
n

g ;

Multivariate Splines and Their Applications, Figure 5
B-coefficients of 16�1111

the box spline �`;m;n based on such a direction set D is
called the 3-direction box spline whose Fourier transform
is

�̂`;m;n(�; �) D

 
1 � e�i�

i�

!` �
1 � e�i�

i�

�m

�

 
1 � e�i(�C�)

i(� C �)

!n

:

Similarly, box spline �`mnk based on a four direction mesh
is defined in terms of Fourier transform by

�̂`;m;n;k(�; �) D �̂`;m;n(�; �)

 
1 � e�i(���)

i(� � �)

!k

:

Box splines onR2 can be shown by using their coefficients
of polynomials in B-form which is explained in the next
section. For example, for box spline �1111, its B-coefficients
together with its underlying triangulation are shown in
Fig. 5. For another example, the B-coefficients and the un-
derlying triangulation of �2111 are shown in Fig. 6.

The B-form Representation of Spline Functions

It is standard in the literature to use the B-form represen-
tation for multivariate splines over triangulations since the
publication of [21] and [8].

We start with R2. Let T D hv1; v2; v3i be a non-de-
generate triangle with vi D (xi ; yi), i D 1; 2; 3. It is well-
known that every point v D (x; y) can be written uniquely
in the form

v D 1v1 C 2v2 C 3v3 ;

with

1 C 2 C 3 D 1 ;



Multivariate Splines and Their Applications M 5803

Multivariate Splines and Their Applications, Figure 6
B-coefficients of 48�2111

where 1, 2, and 3 are called the barycentric coordinates
of the point v D (x; y) relative to the triangle T. Moreover
each i is a linear polynomial in x; y. Let

Bd
i jk(v) D

d!
i! j!k!

i1
j
2

k
3 ; i C jC k D d :

They are called the Bernstein–Bézier polynomials of de-
gree d. In fact, the set

Bd D
˚
Bd
i jk (x; y; z) ; i C jC k D d

�

is a basis for the space of polynomials Pd . As a con-
sequence any polynomial p of degree d can be written
uniquely in terms of Bd

i jk ’s, i. e.,

p D
X

iC jCkDd

ci jk Bd
i jk :

The representation for polynomials is referred to as the B-
form with respect to T. cijk are called B-coefficients of p.
Let

Dd;T D

�
�i jk D

iv1 C jv2 C kv3
d

; iC jCk D d; T 2 �
�

be a set of the domain points of degree d over triangula-
tion �. The polynomial p can be displayed using its B-co-
efficients cijk over their domain points. See Fig. 5 for the

B-coefficients of spline function �1111 over all triangles.
Note that the coefficients located on an edge of two tri-
angles belong to both triangles in the sense that �1111 is
continuous across the edge and hence, the B-coefficients
over the common edge of two neighboring triangles are
the same.

Let s 2 Srd (�) be a spline function over triangulation
�. Since s restricted to each triangle T 2 � is a polynomial
of degree d, we may write

sjT D
X

iC jCkDd

cTi jk B
d
i jk ; T 2 � :

Such a representation is called the B-form representation
of the spline function s. We denote by c :D fcTi jk ; i C j C
k D d; T 2 �g the B-coefficient vector of s.

To evaluate a polynomial in B-form, there is the so-
called de Casteljau algorithm which we now describe.
For p D

P
iC jCkDd ci jk B

d
i jk , let us write ci jk D: c

(0)
i jk ()

with  D (1; 2; 3) being the barycentric coordinates of
v D (x; y) with respective to T and define for a positive
integer r � 1

c(r)i jk () D 1c
(r�1)
iC1; j;k()C2c

(r�1)
i; jC1;k()C3c

(r�1)
i; j;kCl () :
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We have then

p D
X

iC jCkDd�r

c(r)i jk()B
d�r
i jk ; 0 � r � d :

In particular, for r D d, we have

p D c(d)0;0;0()

which is the value of p at v D (x; y) whose barycentric co-
ordinates are  D (1; 2; 3) with 1 C 2 C 3 D 1.

Next we discuss how to take derivatives of polynomi-
als in B-form. We start with formulas for the directional
derivatives of p in a direction defined by a vector u.

Dup D d
X

iC jCkDd�1

c(1)i jk (a)B
d�1
i jk ;

with a D (a1; a2; a3) the T-coordinates of u; that is,

u D a1v1 C a2v2 C a3v3 ;

with

a1 C a2 C a3 D 0 :

Note that if u = v1 � v2 is the direction vector, the T-coor-
dinates of u are (1;�1; 0). In general, we have

Dm
u p(v) D

d!
(d � m)!

X

iC jCkDd�m

c(m)
i jk (a)B

d�m
i jk l (v) :

Note that for arbitrary direction vector u D (u1; u2) 2 R2,

Dup D u1
@

@x
pC u2

@

@y
p :

For a triangle T D hv1; v2; v3i, if we let u D v2 � v1 D
(x2 � x1; y2 � y1), v D v3 � v1 D (x3 � x1; y3 � y1), it
follows that

Dx p D
(y3 � y1)
2AT

Dup �
(y2 � y1)
2AT

Dvp

Dy p D
(x2 � x1)
2AT

Dvp �
(x3 � x1)
2AT

Dup ;

where AT is the area of T.
There are precise formulas for the integrals and inner

products of polynomials in B-form (cf. [14]).

Lemma 1 Let p be a polynomial of degree d with B-coeffi-
cients ci jk ; i C jC k D d on a triangle T. Then
Z

T
p(x; y)dxdy D

AT
�dC2

2


X

iC jCkDd

ci jk ;

where AT D area of T.

Lemma 2 Let q be another polynomial with B-coefficients
di jk ; i C jC k D d, the inner product of p and q over t is
given by

Z

t
p(x; y)q(x; y)dxdy D

AT
�2d
d
�2dC2

2


�
X

iC jCkDd
rCsCtDd

ci jk drst

 
i C r
i

! 
jC s
j

! 
k C t
k

!

:

We now discuss the smoothness conditions for a spline
function s in Srd (�). These are well-known conditions on
the coefficients of s that will assure that s has certain global
smoothness properties.

Theorem 1 Let t D hv1; v2; v3i and t0 D hv1; v2; v4i be
two triangles with common edge hv1; v2i. Then s is of class
Cr on t [ t0 if and only if

ct
0

i jm D
X

�C�C�Dm

ctiC�; jC�;�B
m
�;�;�(v4) ;

m D 0; : : : ; r ; i C j D d � m :

For a proof, see [21]. The geometric meaning of the
smoothness condition is striking. Indeed, let us consider
the coefficient cijk as a value at domain point � ijk and
connect all the coefficients by line segments as shown in
Fig. 7. Then the coefficients of two polynomials located at
and closest to the common interior edge form five planes
across the common edge as shown in Fig. 7 when these
polynomials form in C1 fashion. For the geometric mean-
ing of the other smoothness conditions in the bivariate set-
ting, see [30].

This theorem guarantees the existence of a matrix H
such that s is in Cr (˝) if and only if

Hc D 0 ;

where c encodes the B-coefficients of s.
More properties on the B-form above can be found

in [36]. The B-form for bivariate polynomials can be
easily generalized to the multivariate setting. Indeed, let
t D hv(0); : : : ; v(n)i 2 Rn be an n-simplex with nC 1 dis-
tinct points v(k); k D 0; 1; : : : ; n. Suppose that the n-sim-
plex t has nonzero volume. Then for any point x 2 Rn ,
x � v(0) can be uniquely expressed by a linear combina-
tion of v(i) � v(0); i D 1; : : : ; n. That is,

x D v(0) C
nX

iD1

i (v(i) � v(0)) :

Let 0 D 1 �
Pn

iD1 i . Then the (nC 1)-tuple (0; 1;
: : : ; n) is called the barycentric coordinate of x with re-
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Geometric meaning of C1 smoothness condition

spect to t. It is easy to see that each i is a linear func-
tion of x. Next let ZnC1 be the set of all multi-integers in
RnC1. For a multi-integer ˛ D (˛0; : : : ; ˛n) 2 ZnC1 with
j˛j D ˛0 C : : :C ˛n � 0, let

Bt
˛(x) :D

j˛j!
˛!
˛ ;

where ˛! D ˛0! : : : ˛n ! and

˛ D

nY

iD0


˛i
i :

Then it is clear that Bt
˛(x) is a polynomial of degree

j˛j in x. It can be shown that fBt
˛(x); ˛ 2 ZnC1; j˛j D dg

forms a basis for polynomials of degree� d (cf. [7]). Thus,
any polynomial p of total degree dmay be written in terms
of Bt

˛(x)’s as

p(x) D
X

j˛jDd

ct˛B
t
˛(x) (1)

for some coefficients ct˛ ’s depending on t. Thus, any spline
function s is given by

s(x) D
X

j˛jDd

ct˛B
t
˛(x) ; x 2 t 2 � (2)

with B-coefficient vector fct˛; j˛j D d; t 2 �g of length
d̂T , where T denotes the number of n-simplices in� and

d̂ D

 
d C n
n

!

:

This representation of the spline function s is called the
B-form of s. (Cf. [21] and [8].)

One simple property of the B-form of polynomials is:

Lemma 3 Let t D hv(0); : : : ; v(n)i be an n-simplex in Rn

and let p(x) be a polynomial of degree d given in B-form (1)
with respect to t. Then

p(v(k)) D ctdek ; 8 0 � k � n ;

where ek D (0; : : : ; 0; 1; 0; : : : ; 0) with 1 appearing in the
(k C 1)th place.

To evaluate p(x) in B-form (1), we use the so-called de
Casteljau algorithm. The derivative of p(x) in B-form can
be given in B-form again. The integration of a polyno-
mial p in B-form is a sum of all coefficients of p with mul-
tiplication by an appropriate constant. See, e. g. [14] for
all these properties. Another important property is the fol-
lowing Markov inequality:

Lemma 4 Let 1 � q � 1. There exists a constant N de-
pending only on d such that

kfct˛; j˛j D dgkq
N

� kpkq;t � kfct˛ ; j˛j D dgkq ;

for any polynomial p(x) D
P
j˛jDd c

t
˛Bt

˛(x), where kpkq;t
denotes the standard Lq norm over the n-simplex t and
kfct˛ ; j˛j D dgkq denotes the `q norm of the sequence
fct˛ ; j˛j D dg.

We refer the interested reader to [34] or [36] for a proof in
the bivariate setting which can be generalized to the mul-
tivariate setting easily.

Next we look at the smoothness conditions. Let

t1 D
D
v(0); : : : ; v(k); v(kC1); : : : ; v(n)

E

and

t2 D
D
v(0); : : : ; v(k); u(kC1); : : : ; u(n)

E

be two n-simplices in Rn and t̃ D hv(0); : : : ; v(k)i the
k-simplex which is a common facet of t1 and t2, with
0 � k < n. Let F be a function defined on t1 [ t2 by

F(x) D

(
pd (x) D

P
j˛jDn a˛B

t1
˛ (x) ; if x 2 t1

qd (x) D
P
j˛jDn b˛B

t2
˛ (x) ; if x 2 t2 :

Let us assume that F is well defined on t̃. Writing u( j) DPn
iD0 c ji v

(i); j D k C 1; : : : ; n, we have the following:

Theorem 2 Suppose that t1 and t2 are two n-simplices
such that t̃ D t1 \ t2 is a (n � 1)-simplex in Rn. Let F be
the function defined above. Then F 2 Cr (t1 [ t2) if and
only if the following conditions hold

b(˛0;:::;˛n�1;`) D
X

j� jD`

a(˛0;:::;˛n�1;0)C�B
t1
� (u

(n)) (3)

for 0 � ` � r.
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These are the well-known smoothness conditions (cf. [8]).
Next we look at the degree reduction conditions. These
conditions allow us to constrain the spline function to be
of variable degree over the simplices. Let

�i j c˛ D c˛Ce i � c˛Ce j

be a difference operator, where ei D (0; : : : ; 0; 1; 0; : : : ; 0)
2 ZnC1 with 1 in the ith entry and similar for ej. Induc-
tively, let

�k
i j D �i j(�k�1

i j )

for k � 2. For any multi-integer ˇ D (ˇ1; : : : ; ˇn), let

�ˇ D �
ˇ1
10 : : : �

ˇn
n0

be a difference operator of order jˇj. Our degree reduction
conditions are:

Theorem 3 Let p D
P
j˛jDd c˛B

t
˛ be a polynomial of de-

gree d in B-form with respect to t. Then p is a polynomial of
degree dt < d if

�ˇ c˛ D 0 ; dt < jˇj � d ; j˛j D d � jˇj ; (4)

where�ˇ c˛ D �ˇ c�j˛, that is, the difference operators are
applied first before the evaluation at the index ˛.

The conditions can be verified easily and are left to the in-
terested reader. It is easy to see that both conditions (3)
and (4) are linear relations among the B-coefficients of
polynomials.

Let us summarize the discussions above as follows: For
each spline function in

S :D Sr;�d (�)

the spline space of smoothness r, super smoothness � and
degree d for three fixed sequences �; r, and d associated
with the k-simplices with 0 � k < n � 1, interior n � 1
simplices, and n-simplices of�, we write

s D
X

t2#

X

j˛jDdt

ct˛Bt
˛ ; (5)

with c D (ct˛ ; j˛j D dt ; t 2 �) 2 RN ;N D
P

t2# d̂t with
d̂t D

�dtCn
n

and

Bt
˛(x) D

(
Bt
˛(x) ; if x 2 t

0 ; x 2 �nftg :

In addition, c satisfies the constraints Hc D 0 for the
smoothness conditions that S possesses and Jc D 0 for the
degree reduction conditions.

Dimension ofMultivariate Spline Spaces

The dimension of multivariate spline spaces is difficult to
determine when spline functions are smooth in the sense
that the smoothness of spline functions is greater or equal
to 1. If we consider a spline space without any smoothness,
then it is a piecewise polynomial function and the dimen-
sion of such a spline space is trivial. For example, in the
bivariate setting,

Theorem 4 For any triangulation�,

dim S�1d (�) D
(d C 1)(d C 2)

2
N

where N denotes the number of triangles in�.

If we consider a spline space which is a space of contin-
uous spline functions, then the dimension is also easy to
determine. (See, e. g. [36] for a proof.)

Theorem 5 For any triangulation�,

dim S0d (�) D V C (d � 1)E C

 
d � 1
2

!

N ;

where V ; E, and N are the number of vertices, edges, and
triangles in�.

When the smoothness of a spline space is bigger than or
equal to 1, the dimension of Srd (�) with r � 1 is difficult
to determine when d is small. If d � 3r C 2, we have the
following result in the bivariate setting (cf. [27]). LetVI ;VB
be the numbers of interior and boundary vertices of�, re-
spectively. Similarly, let EI ; EB be the numbers of interior
and boundary edges, and let N be the number of triangles
in �.

Theorem 6 Suppose � is a regular triangulation with no
holes. Then for all d � 3r C 2,

dim Srd (�) D
d2 C r2 � r C d � 2rd

2
VB

C(d�r)(d�2r)VIC
�2d2 C 6rd � 3r2 C 3r C 2

2
C�;

where � is � D
P

v2VI
�v . Here VI is the collection of all

interior vertices of� and

�v :D
d�rX

jD1

�
r C jC 1 � jmv


C

(6)

and mv stands for the number of edges attached to v with
different slopes.
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However, when d < 3r C 2, the dimension is extremely
difficult to determine for a general triangulation �. For
example, we still do not know the dimension of S13(�) in
the bivariate setting so far. See an open problem regarding
the dimension of trivariate spline spaces in the last sec-
tion. Nevertheless, we have a pretty good upper bound and
lower bound as explained below.

Let VI be the set of interior vertices of �. For each
v 2 VI , let mv be the number of edges attached to v with
different slopes. Suppose VI and EI are the numbers of in-
terior vertices and edges of�, respectively.

Theorem 7 For all 0 � r � d,

F C � � dim Srd (�)

where

F :D

 
d C 2
2

!

C

 
d � r C 1

2

!

EI

�

" 
d C 2
2

!

�

 
r C 2
2

!#

VI ; (7)

and � is as defined in the above theorem.

In order to have an upper bound, we need a concept of
admissible decomposition of a triangulation. Suppose� is
a regular triangulation of a domain ˝ without holes. Let
T1; : : :,Tn be a grouping of the triangles of� into disjoint
subsets, and for each i D 1; : : : ; n, let ˝ i be the union of
the triangles in

Si
jD1 T j . Let˝0 D ;. Suppose there exist

vertices v1; : : : ; vn such that:

1) For each 1 � i � n, Ti is the union of all triangles in
�n˝i�1 that share the vertex vi.

2) For each 2 � i � n, vi is on the boundary of˝i�1.

Then we say that T1; : : : ;Tn is an admissible decomposi-
tion of� with centers v1; : : : ; vn .

We can construct an admissible decomposition of any
regular triangulation � without holes by starting with
T1 :D star(v1) for some arbitrary vertex of�. Then we re-
peatedly choose a vertex on the boundary of˝i�1 and take
Ti to be all unchosen triangles attached to vi. Since the
starting vertex can be arbitrary, it is clear that any given�
has several different admissible decompositions. With the
above concept, we have

Theorem 8 Let 0 � r � d, and suppose T1; : : : ;Tn is an
admissible decomposition of� with centers v1; : : : ; vn. For
each vi, let ni be the number of interior edges of � attached
to vi but not attached to any vj with j < i. Let w̃i be the

number of such edges, where we count only edges with dif-
ferent slopes. Finally, let

e� i :D

(Pd�r
jD1

�
r C jC 1 � jw̃i


C
; if vi 2 VI ;

0 ; otherwise :

Then

dim Srd (�) � F C
nX

iD1

e� i ;

where F is as in (7).

For some special triangulations, we do know the dimen-
sion of spline spaces. For example, we know the dimension
of S13(�CT) S12(�PS), and S13(}C), where �CT; �PS; and }C
stand for the Clough–Tocher refinement of triangula-
tion �, the Powell–Sabin refinement of �, and triangu-
lated quadrangulation. These spline spaces will be dis-
cussed in Sect. “Construction of Finite Elements and
Macro-Elements”. For more information on the dimen-
sion of Srd (�CT); Srd (�PS) and Srd (}C) for some d < 3r C 2
dependent on r and triangulations, see [36].

Next we consider the dimension of trivariate spline
spaces. Suppose � is a tetrahedral partition of a bounded
domain ˝ 2 R3. Given an integer d � 0, let Pd be the
space of trivariate polynomials of degree d. Then we define
the associated space of C0 polynomial splines of degree d
over� as

S0d (�) :D
˚
s 2 C0(˝); sjT 2 Pd ; for all T 2 �

�
:

Theorem 9 The dimension of S0d (�) is

n :D V C (d � 1)E C

 
d � 1
2

!

F C

 
d � 1
3

!

N ;

where V ; E; F; T are the number of vertices, edges, faces,
and tetrahedra in�, respectively.

Recently, Alfeld and Schumaker continued to work on the
dimension of trivariate splines and found some reasonable
upper and lower bounds (cf. [2]).

Approximation Power of Spline Spaces

In this section we discuss how well smooth functions can
be approximated by bivariate splines. The results will be
useful in deriving error bounds for various practical inter-
polation and approximation methods to be discussed in
later sections.

Let ˝ be a polygonal domain in R2 and recall that
k � kq;˝ is the standard q-norm over˝ , for 1 � q � 1.
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Given m � 1, let Wm
q (˝) be the Sobolev space with asso-

ciated seminorm j � jm;q;˝ .
Fix 0 � r < d. Let m be the largest integer such that

for every polygonal domain ˝ and every regular triangu-
lation� of˝ with smallest angle � , for every f 2 Wm

q (˝),
there exists a spline s 2 Srd (�) with

k f � skq;˝ � K j�jmj f jm;q;˝ ;

where the constant K depends only on r; d , � , and the Lip-
schitz constant of the boundary of˝ . Then we say that Srd
has approximation power m in the q-norm. If this holds for
m D d C 1, we say that Srd has approximation power in the
q-norm.

Let us explain the approximation power of Srd for var-
ious values of r and d as follows:

� If r D 0, then the space S0d has full approximation
power in all of the q-norms.

� If r > 0 and d � 3r C 2, then the space Srd has full ap-
proximation power in all of the q-norms.

� If r > 0 and (3r C 2)/2 � d � 3r C 1, then in any
q-norm, the space Srd has approximation power at
most d.

� If r > 0 and d < (3r C 2)/2, then in any q-norm, the
space Srd has approximation power zero.

More precisely, we state the following theorems and leave
their proofs and references to [36].

Theorem 10 Suppose � is a regular triangulation of
a polygonal domain ˝ , and let 1 � q � 1. Then for every
f 2 WdC1

q (˝), there exists a spline s 2 S0d (�) such that

kD˛x D
ˇ
y ( f � s)kq;˝ � K j�jdC1�˛�ˇ j f jdC1;q;˝ ;

for all 0 � ˛ C ˇ � d. The constant K depends only on d,
the smallest angle in �, and the Lipschitz constant of the
boundary of˝ .

Theorem 11 Let d � 3r C 2 with r > 0, and suppose �
is a regular triangulation of ˝ . Then for every f 2
WdC1

q (˝), there exists a spline s 2 Srd (�) such that

kD˛x D
ˇ
y ( f � s)kq;˝ � K j�jdC1�˛�ˇ j f jdC1;q;˝ ;

for all 0 � ˛ C ˇ � d. If ˝ is convex, then the constant K
depends only on r; d, and the smallest angle in �. If ˝ is
not convex, then K also depends on the Lipschitz constant
of the boundary of˝ .

To explain the approximation power of Srd for r > 0
and d < 3r C 2, we consider a standard unit square
domain H D [0; 1] � [0; 1]. Let 0 < r < d < 3r C 2. We
first show that when d < (3r C 2)/2, Srd has approxima-
tion power zero. Given a positive integer n, let

0 D x0 < x1 < � � � < xn < xnC1 D 1 ;
0 D y0 < y1 < � � � < yn < ynC1 D 1 ;

with xi D yi D ih for i D 0; : : : ; n C 1, where h :D
1/(n C 1). We write �n for the associated uniform
type-I triangulation of H obtained by drawing in the
northeast diagonals.

Theorem 12 Suppose r > 0 and d < (3r C 2)/2 and
1 � q � 1. Then the approximation power of Srd (�n) in
the q-norm is zero.

Next we consider the case (3r C 2)/2 � d � 3r C 1 which
is difficult and delicate. The proof uses several different
techniques and box spline theory. We again refer to [36]
for a proof.

Theorem 13 Suppose (3r C 2)/2 � d � 3rC 1 and let
1 � q � 1. Then the approximation power of the space
Srd (�n) in the q-norm is at most d.

The approximation order of special spline spaces, e. g.,
Srd (�CT); Srd (�PS); Srd (}C) are summarized in [36].

We have very little information on the approximation
order for trivariate spline spaces. See the open problem in
the last section.

Construction of Finite Elements
andMacro-Elements

In this section, we describe some of the most useful finite
elements and macro-elements in R2 and R3. They are C1

finite element or C1 macro-elements. Mainly we present
their formulas using B-form and refer their verifications
to [36] where Cr finite element, macro-elements, and lo-
cally supported functions with r � 2 can be found. Other
explicit constructions of these finite elements can be found
in [13] and [16].

Bivariate Finite Element and Macro-Elements

A C1 Polynomial Macro-Element over Triangulations
Let T D hv1; v2; v3i be a triangle in a triangulation � of
a polygonal domain˝ .

Write vi D (xi ; yi ); i D 1; 2; 3. A C1 quintic finite ele-
ment s restricted to T can be explicitly given in terms of its
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Multivariate Splines and Their Applications, Figure 8
B-coefficients of quintic polynomials on triangle T

B-coefficients in Fig. 8 as follows:

cT500 D s(v1) ;

cT410 D [h2sx (v1)C ŵ2sy(v1)]/5C s(v1) ;

cT401 D [h3sx (v1)C ŵ3sy(v1)]/5C s(v1) ;

cT320 D [h22sxx (v1)C 2h2ŵ2sx y(v1)C ŵ2
2sy y(v1)]/20

C 2cT410 � s(v1) ;

cT311 D [h2h3sxx (v1)C (h2ŵ3 C h3ŵ2)sx y (v1)

C ŵ2ŵ3sy y(v1)]/20C cT401 C cT410 � s(v1) ;

cT302 D [h23sxx (v1)C 2h3ŵ3sx y(v1)C ŵ2
3sy y(v1)]/20

C 2cT401 � s(v1) ;

where hi :D xi � x1 and ŵi :D yi � y1 for i D 2; 3, and
s(v1); sx (v1); sy(v1), etc. are any given values at v1.

A similar formula for cT050; c
T
140; c

T
041; c

T
230; c

T
131; c

T
032

holds at v2 as well as cT005; c
T
104; c

T
014; c

T
203; c

T
113; c

T
023 holds at

v3 respectively.
Next we need to describe the coefficients for cT122; c

T
212;

cT221 as in Fig. 8. For e D hv2; v3i, let ue be a direction not
parallel to e. Write ue D ve �we and let (a1; a2; a3) be the
difference of the barycentric coordinates of ve and we with
respect to T. Then

cT122 D
16
30a1

Due s(�e) �
1
6
�
cT140 C 4cT131 C 4cT113 C cT104

�

�
a2
6a1

�
cT050 C 4cT041 C 6cT032 C 4cT023 C cT014

�

�
a3
6a1

�
cT041 C 4cT032 C 6cT023 C 4cT014 C cT005

�
;

where �e D (v2 C v3)/2. A similar formula holds for cT212
and cT221.

That is, the C1 quintic finite element can be de-
termined by using values and derivative values at
vi ; i D 1; 2; 3 as well as values at the midpoint of three
edges. The above explicit construction of the C1 quintic
finite element shows that for every function f 2 C2(˝),
there is a unique spline s 2 S15(�) solving the following
Hermite interpolation problem

D˛x D
ˇ
y s(v) D D˛x D

ˇ
y f (v); all v 2 V and 0 � ˛ C ˇ � 2;

Due s(�e ) D Due f (�e); all e 2 E ;

where V and E stand for the collections of vertices and
edges of�.

A C1 Clough–Tocher Macro-Element Let � be a trian-
gulation of a polygonal domain˝ . Denote by�CT the cor-
responding Clough–Tocher refinement of � by splitting
each triangle T 2 � at the barycenter of T.

A C1 cubic macro-element s restricted to each trian-
gle T can be determined by using the following formulas.
That is, the B-coefficients as shown in Fig. 9 can be com-
puted as follows:

c1 D s(v1) ;
c2 D s(v2) ;
c3 D s(v3) ;
c4 D [(x2 � x1)sx (v1)C (y2 � y1)sy(v1)]/3C s(v1) ;
c5 D [(xc � x1)sx (v1)C (yc � y1)sy(v1)]/3C s(v1) ;
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B-coefficients of sjT

c6 D [(x3 � x1)sx (v1)C (y3 � y1)sy(v1)]/3C s(v1) ;
c7 D [(x3 � x2)sx (v2)C (y3 � y2)sy(v2)]/3C s(v2) ;
c8 D [(xc � x2)sx (v2)C (yc � y2)sy(v2)]/3C s(v2) ;
c9 D [(x1 � x2)sx (v2)C (y1 � y2)sy(v2)]/3C s(v2) ;
c10 D [(x1 � x3)sx (v3)C (y1 � y3)sy(v3)]/3C s(v3) ;
c11 D [(xc � x3)sx (v3)C (yc � y3)sy(v3)]/3C s(v3) ;
c12 D [(x2 � x3)sx (v3)C (y2 � y3)sy(v3)]/3C s(v3) ;

where s(vi); sx (vi ); sy (vi ); i D 1; 2; 3 are given values.
To determine c13, let e :D hv1; v2i, let ue be a direction

not parallel to e. Suppose (a1; a2; a3) are the difference of
the barycentric coordinates of ve � we D ue . Then

c13 D
4
6a3

Due s(�e)�
1
2
(c5C c8)�

a1
2a3

(c1C 2c4C c9)

�
a2
2a3

(c4 C 2c9 C c2) :

A similar formula holds for c14 and c15.
Finally, we find the remaining coefficients

c16 D (c15 C c5 C c13)/3 ;
c17 D (c13 C c8 C c14)/3 ;
c18 D (c14 C c11 C c15)/3 ;
c19 D (c18 C c16 C c17)/3 :

For each triangle T in �, a C1 spline function s re-
stricted toT is determined by the data involving evaluation
at points in T. That is, the coefficients of s can be computed
locally, one triangle at a time.

A C1 Powell–Sabin Macro-Element Let� be a triangu-
lation of a polygonal domain˝ . Denote by�PS the corre-

Multivariate Splines and Their Applications, Figure 10
B-coefficients of sjT

sponding Powell–Sabin refinement of � by splitting each
triangle T 2 � at the incenter of T and then connect the
incenters of any two neighboring triangles.

Let TPS be the Powell–Sabin split of a triangle
T :D hv1; v2; v3i in�, and let (xc ; yc) be the incenter of T.
Then a C1 quadratic Powell–Sabin finite element s re-
stricted toT can be determined as follows. That is, its B-co-
efficients over triangle T as shown in Fig. 10 can be com-
puted using the following formulas:

c1 D s(v1) ;
c2 D s(v2) ;
c3 D s(v3) ;
c4 D [(x̂1 � x1)sx (v1)C (ŷ1 � y1)sy(v1)]/2C s(v1) ;
c5 D [(xc � x1)sx (v1)C (yc � y1)sy (v1)]/2C s(v1) ;
c6 D [(x̂3 � x1)sx (v1)C (ŷ3 � y1)sy(v1)]/2C s(v1) ;
c7 D [(x̂2 � x2)sx (v2)C (ŷ2 � y2)sy(v2)]/2C s(v2) ;
c8 D [(xc � x2)sx (v2)C (yc � y2)sy (v2)]/2C s(v2) ;
c9 D [(x̂1 � x2)sx (v2)C (ŷ1 � y2)sy(v2)]/2C s(v2) ;
c10 D [(x̂3 � x3)sx (v3)C (ŷ3 � y3)sy(v3)]/2C s(v3) ;
c11 D [(xc � x3)sx (v3)C (yc � y3)sy (v3)]/2C s(v3) ;
c12 D [(x̂2 � x3)sx (v3)C (ŷ2 � y3)sy(v3)]/2C s(v3) ;

where wi :D (x̂i ; ŷ i ) are the points on the edges of T. Af-
ter the above coefficients are computed, we can find the
remaining coefficients by using the following

c13 D r1c4 C s1c9 ;
c14 D r2c7 C s2c12 ;
c15 D r3c10 C s3c6 ;
c16 D r1c5 C s1c8 ;
c17 D r2c8 C s2c11 ;
c18 D r3c11 C s3c5 :
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A C1 Quadrilateral Macro-Element Let } be a strictly
convex quadrangulation of a polygonal domain ˝ . De-
note }C to be the triangulation obtained from } by draw-
ing in the diagonals of each quadrilateral. In this section
we discuss the cubic spline space 013(}C). Let V and E be
the sets of vertices and edges of }.

For each quadrilateral Q :D hv1; v2; v3; v4i, let vQ
be the intersection of the two diagonals of Q. Write
vQ D r1v1 C s1v3 D r2v4 C s2v2 for some r1; s1 and r2; s2.
A C1 cubic finite element s restricted to Q can be directly
computed from any given values and first derivative values
at each vertex as well as normal derivative values at each
edge. That is, its B-coefficients over Q as shown in Fig. 11
can be computed as follows:

c1 D s(v1) ;
c2 D s(v2) ;
c3 D s(v3) ;
c4 D s(v4) ;
c5 D [(x2 � x1)sx (v1)C (y2 � y1)sy(v1)]/3C s(v1) ;
c6 D [(xQ � x1)sx (v1)C (yQ � y1)sy(v1)]/3C s(v1) ;
c7 D [(x4 � x1)sx (v1)C (y4 � y1)sy(v1)]/3C s(v1) ;
c8 D [(x3 � x2)sx (v2)C (y3 � y2)sy(v2)]/3C s(v2) ;
c9 D [(xQ � x2)sx (v2)C (yQ � y2)sy(v2)]/3C s(v2) ;
c10 D [(x1 � x2)sx (v2)C (y1 � y2)sy(v2)]/3C s(v2) ;

and

c11 D [(x4 � x3)sx (v3)C (y4 � y3)sy(v3)]/3C s(v3) ;
c12 D [(xQ � x3)sx (v3)C (yQ � y3)sy(v3)]/3C s(v3) ;
c13 D [(x2 � x3)sx (v3)C (y2 � y3)sy(v3)]/3C s(v3) ;
c14 D [(x1 � x4)sx (v4)C (y1 � y4)sy(v4)]/3C s(v4) ;
c15 D [(xQ � x4)sx (v4)C (yQ � y4)sy(v4)]/3C s(v4) ;
c16 D [(x3 � x4)sx (v4)C (y3 � y4)sy(v4)]/3C s(v4) ;

where (xQ ; yQ ) :D vQ .
The coefficients c17; c18; c19; c20 can be computed from

cross-boundary information. That is, let e :D hv1; v2i, let
ue be a direction not parallel to e. Suppose (a1; a2; a3)
are the difference of the barycentric coordinates of
ve � we D ue . Then

c17 D
4
6a3

Due s(�e )�
1
2
(c6C c9)�

a1
2a3

(c1C2c5C c10)

�
a2
2a3

(c5 C 2c10 C c2) :

A similar formula holds for c18, c19 and c20.

Multivariate Splines and Their Applications, Figure 11
B-coefficients of sjQ

Finally, we can compute the remaining coefficients us-
ing the following formulas:

c21 D r2c20 C s2c17 ;
c22 D r1c17 C s1c18 ;
c23 D r2c19 C s2c18 ;
c24 D r1c20 C s1c19 :
c25 D r1r2c20 C s1r2c19 C r1s2c17 C s1s2c18 :

The dimension of S13(}C) is equal to 3V C E, where V
and E stand for the numbers of vertices and edges of quad-
rangulation }.

Trivariate Finite Element and Macro-Elements

Let � be a tetrahedral partition of a polygonal domain ˝
in R3. The first construction of C1 macro-elements over
tetrahedral partitions was obtained by Ženiček in [56].
See also [42]. In our notation, these finite-elements are
in S1;2;49 (�) which is the space of all spline functions in
S�19 (�) that are C1 over the union of all tetrahedra in �,
C2 around each edge of �, and C4 at each vertex of �.
Here, a function s is said to be C2 around an edge if s is
twice differentiable at each point of e and C4 at a vertex v
if s is four times differentiable at v.

Before we describe the construction, we need some no-
tation which will be also useful in later subsections. We
denote by Id (�) :D f(� ti; j;k;` : i C jC k C ` D d; t 2 �g
the collection of all domain points associated with S�1d (�).
We shall use the concept of 3D minimal determining set.
Let � be a proper subset of Id (�). � is a determining
set for a spline subspace S � S�1d (�) if any spline func-
tion s 2 Swhose B-coefficients associatedwith the domain
points in � are zero is zero everywhere. � is a minimal
determining set if � is a determining set and the cardi-
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Multivariate Splines and Their Applications, Figure 12
Indication of domain point subsets on a tetrahedron

nality of � is the smallest possible. Next we need addi-
tional notation: Letting e D hv1; v2i be an edge of t and
f D hv1; v2; v3i be a face of t, we denote

Dt
m(v1) D f�

t
i; j;k;` : i � d � m; i C jC k C ` D dg ;

E t
m (e) D f�

t
i; j;k;` : i C j � m; i C jC k C ` D dg ;

F t
m( f ) D f�

t
i; j;k;` : ` � m; i C jC k C ` D dg

for integer 0 � m � d.

C1 Splines of Degree 9 over Tetrahedral Partitions We
now fix d D 9 and specify the following domain point sets
to form a minimal determining set for S1;2;49 (�).

(1) For each vertex v 2 �, choose a tetrahedron tv in �
such that tv contains v. Let

Sv :D Dtv
4 (v) :

We note that the determination of the coefficients of
a spline s associated with domain points in Sv is equiv-
alent to the assignment of all derivatives of order 4 of s
at v. The domain points in Sv1 ; Sv2 ; Sv3 ; Sv4 aremarked
with ı’s in Fig. 12.

(2) For each edge e 2 �, choose a tetrahedron te in �
such that te contains e. Writing e D hu; vi, we let

Se :D E te
2 (e)n



Dte

4 (u) [D
te
4 (v)

�
:

The domain points in Se for all edges of a tetrahedron
are marked with }’s in Fig. 12.

(3) For each face f 2 �, choose a tetrahedron tf in� con-
taining f . Writing f D hu; v;wi and t f D hu; v;w; xi,
we let

S f :D F
t f
1 ( f )n



Dt f

4 (u) [Dt f
4 (v) [Dt f

4 (w)

[ E t f
2
�
hu; vi


[ E t f

2
�
hv;wi


[ E t f

2
�
hu;wi

�
:

The domain points in Sf for all faces are marked
with F’s in Fig. 12.

(4) For each tetrahedron t, let St be the remaining coeffi-
cients on t, i. e.,

St D f(t; i; j; k; `); i � 2; j � 2; k � 2; ` � 2g :

The domain points in St are marked with�’s in Fig. 6.

Let

� :D
[

v2#

Sv [
[

e2#

Se [
[

f2#

S f [
[

t2#

St :
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Then it can be shown that � forms a minimal determin-
ing set for S1;2;49 (�). Using � , we can construct a basis
s� ; � 2 � for S1;2;49 (�) as before. Thus, we have

dim S1;2;49 (�) D 35V C 8E C 7F C 4T ;

where V ; E; F; T denote the number of vertices, edges,
faces, and tetrahedra of �. It is well-known that one can
use S1;2;49 (�) to construct C1 spline interpolants. We omit
the details here.

The C1 Quintic Macro-Elements over 3D Clough–
Tocher Tetrahedral Partition Let � be a tetrahedral
partition of a polygonal domain ˝ in R3. In [1], Alfeld
generalized the well-known bivariate Clough–Tocher split
of triangles to the trivariate setting. He split each tetrahe-
dron t into four subtetrahedra at the center mt of t using
the triangular planes each of which consists of an edge of t
andmt . For simplicity, we denote the refinement of a tetra-
hedral partition � by �A. In this subsection, we present
the following version of the C1 macro-element on Alfeld’s
split of tetrahedra. Let

S1;2;35 (�A) D
˚
s 2 S�15 (�A) : s 2 C1(˝); s 2 C2(v);

v 2 �; s 2 C3(mt); t 2 �
�

be the space of all spline functions which are C1 globally
while C2 at each vertex of � and C3 at the center mt of
each tetrahedron t 2 �. Let

I5(�A) D
˚
� ti jk`; i C jC k C ` D 5; t 2 �A

�

be the collection of the domain points of S�15 (�A).

(1) For each vertex v of �, choose a tetrahedron tv in �A
containing v. Let

Sv :D Dtv
2 (v) :

The domain points in Sv for all vertices of a tetrahe-
dron are marked with ı’s in Figs. 13, 14, and 15.

(2) For each edge e of �, choose a tetrahedron te in �A
having an edge e. Writing e D hu; vi. Let

Se :D E te
1 (e)n



Dte

2 (u) [D
te
2 (v)

�
:

The domain points in Se for all edges of a tetrahedron
are marked with }’s in Figs. 13, 14, and 15.

(3) For each face f of �, choose a tetrahedron tf in �A
such that tf contains f . Writing f D hu; v;wi and
t f D h f ; xi, let

S f :D
˚
�
t f
2;1;1;1; �

t f
1;2;1;1; �

t f
1;1;2;1

�
:

The domain points in Sf for a tetrahedron are marked
with F’s in Figs. 13, 14, and 15.

Multivariate Splines and Their Applications, Figure 13
Domain point (on the first layer) on the Alfeld split of a tetrahe-
dron

Multivariate Splines and Their Applications, Figure 14
Domain point (on the second layer) on the Alfeld split of a tetra-
hedron

Multivariate Splines and Their Applications, Figure 15
Domain points (on the third layer) on the Alfeld split of a tetra-
hedron

(4) For each tetrahedron t D hu; v;w; xi 2 �, let mt be
the center of t and t1 D hu; v;w;mt i; t2 D hv;w;
x;mti; t3 D hw; u; x;mti; and t4 D hu; v; x;mti be
four tetrahedra in�A contained in t. Let

St :D
˚
�
t1
1;1;1;2; �

t2
1;1;1;2; �

t3
1;1;1;2; �

t4
1;1;1;2

�
:
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Then it can be shown (cf. [33]) that

� :D
[

v2#

Sv [
[

e2#

Se [
[

f2#

S f [
[

t2#

St

is a minimal determining set for S1;2;35 (�A), and

dim S1;2;35 (�A) D 10V C 2E C 3F C 4T ;

where V ; E; F; T denote the number of all vertices, edges,
faces, and tetrahedra of�. Also, there exists a locally sup-
ported basis for S1;2;35 (�A).

Next we describe an interpolatory scheme using this
C1 quintic macro-element. To this end, we need the fol-
lowing (cf. [42] for a detailed proof).

Lemma 5 Let T D hv1; v2; v3; v4i be a tetrahedron and
v5 be another point which does not lie on any of the four
planes each of which is spanned by one of the faces of T.
Given fi;˛; j˛j � 1; i D 1; 2; 3; 4; 5, there exists a unique
cubic polynomial p satisfying the following interpolation
conditions:

D˛p(vi ) D fi;˛; i D 1; 2; : : : ; 5 ; j˛j � 1 :

For each edge e, let me be the midpoint of e and let e?;1
and e?;2 be two directions which are perpendicular to e
and are linearly independent to each other. For each face
f D hv1; v2; v3i, let f1; f2; f3 be the three domain points
f(iv1C jv2C kv3)/5; (i; j; k) D (2; 2; 1); (1; 2; 2); (2; 1; 2)g
on f . Let nf be a normal unit vector of f . For each tetra-
hedron t, letmt be the center point of t. Our interpolation
scheme is as follows: For a function g 2 C2(˝), we can
find Sg 2 S1;2;35 (�A) satisfying

(1) For each vertex v of�,

D˛Sg(v) D D˛ g(v) ; 8j˛j � 2 ;

(2) For each edge e of�,

De?;i Sg(me ) D De?;i g(me ) ; i D 1; 2 ;

Here, De?;i denotes the derivative along direction
e?;i , i D 1; 2;

(3) For each face f of�,

Dn f Sg ( f j) D Dn f g( f j) ; j D 1; 2; 3 ;

Here, Dn f denotes the derivative along direction nf .
(4) For each tetrahedron t,

D˛Sg(mt) D D˛ g(mt) ; 8j˛j � 1 :

We use the interpolation conditions (1)–(3), C2 smooth-
ness conditions at the vertices of�, C1 smoothness condi-
tions around the edges and across the faces of � to deter-
mine the coefficients of Sg . Indeed, the interpolation con-
ditions (1) and C2 smoothness conditions at the vertices
of� determine the coefficients of Sg whose domain points
are in Dt

2(v) for each tetrahedron t 2 �A which shares
vertex v for all vertices of�. We use the interpolation con-
ditions (2) andC1 smoothness conditions to determine the
coefficients whose domain points in E t

1(e) for each tetra-
hedron t 2 �A which shares edge e for all edges of �. We
then use the interpolation conditions (3) and C1 smooth-
ness conditions to determine the coefficients whose do-
main points in F t

1( f ) for each tetrahedron t 2 �A which
shares face f for all faces of �. To determine the remain-
ing coefficients of Sg , we consider Sg restricted on tetra-
hedron t 2 �. There are four interior edges inside t con-
necting to the center mt of t. By the C1 smoothness con-
ditions around each of the four interior edges, we obtain
the coefficients whose associated domain points are in the
collection of
˚
�
t`
i; j;k;2; i C jC k D 3

�
n�

t`
1;1;1;2; ` D 1; 2; 3; 4

as well as
˚
�
t`
2;0;0;3; �

t`
0;2;0;3; �

t`
0;0;2;3; ` D 1; 2; 3; 4

�
;

where t`; ` D 1; 2; 3; 4 denote the four subtetrahedra of t.
Note that four of them in the first of the above two groups
have already been determined by the interpolation condi-
tions in (1). The coefficients just determined in the pre-
vious sentence can be converted to the function and first
order derivative values at four vertices of t. Together with
the interpolation conditions in (4), we can apply Lemma 5
to get a unique cubic polynomial pf satisfying the interpo-
lation conditions at the five vertices. We then find the co-
efficients of pf over four subtetrahedra t`’s and use these
coefficients for the remaining coefficients of Sg . It follows
that Sg is C3 atmt . Thus, we know Sg 2 S1;2;35 (�A). In par-
ticular, Sg D g for each polynomial g of degree� 5.

C1 Cubic Splines over Worsey–Farin Refinement of
Tetrahedral Partitions In [54], Worsey and Farin split
each tetrahedron of � even further than Alfeld did. That
is, they first split tetrahedron t at its center mt of the in-
scribed sphere of t into four subtetrahedra by triangular
planes each of which consists of one edge of t and mt .
Then for each interior face shared by two tetrahedra t and
t0, they connect mt and mt0 by a line which intersects the
common face f at nf and split the subtetrahedron of t con-
taining f into three subsubtetrahedra using the triangular
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planes each of which consists of nf ,mt and one vertex of f .
Similarly, they split the subtetrahedron of t0 containing f
into three subtetrahedra in the same way. Since mt and
mt0 are the centers of the inscribed spheres, it is always
true that nf is strictly inside the face f . For a boundary
face f , they split the subtetrahedra of t containing f into
three subsubtetrahedra at the center nf of f using trian-
gular planes each of which consists of n f ;mf , and one
vertex of f . This is another 3D generalization of the well-
known Clough–Tocher refinement of triangulation. Let us
use�WF to denote such a refinement.

In [54], locally supported spline functions in S13(�WF)
were constructed. In our notation, we specify the follow-
ing two domain point sets to be formed into a minimal
determining set:

(1) For each vertex v of�, choose a tetrahedron tv of�WF
containing v. Let

Sv :D Dtv
1 (v) :

(2) For each edge e of �, choose a tetrahedron te of �WF
containing e. Writing e D hu; vi, let

Se :D E te
1 (e)

�

Dte

1 (u) [D
te
1 (v)

�
:

Then letting � D [t2#Sv
[
[e2#Se , one can prove

that � is a minimal determining set for S13(�WF).
Then the dimension of S13(�WF) is

dim S13(�WF) D 4V C 2E :

There exists a locally supported basis for S13(�WF). Fur-
thermore, each spline function in S13(WF(�)) is in C2 at
mt for all t 2 �.

C1 Quadratic Splines on a Trivariate Powell–Sabin Re-
finement In [55], Worsey and Piper refined each tetra-
hedron in � even further than [54] to construct C1 spline
functions using piecewise quadratic polynomials. For each
tetrahedron t, let vt be a point inside t, say, the barycenter
of t. For each face f of t, let vf be a point inside f , say the
barycenter of f . For each edge e of t, let ve be a point in-
side e, say the middle point of e. Worsey and Piper split t
into 24 subtetrahedra by first splitting t into four subtetra-
hedra by triangular faces spanned by vt and two vertices
of t and then splitting each subtetrahedron into six sub-
subtetrahedra by triangular faces spanned by vt ; v f ; ve as
well as vt ; v f and one of the vertices of f .

The tetrahedral partition has to satisfy some strin-
gent conditions so that their scheme will yield a C1 spline

Multivariate Splines and Their Applications, Figure 16
An octahedron and its tetrahedral partition

function. The stringent conditions are (1) for two tetra-
hedra t; t0 which share a common face f , vt ; v f ; vt0 are
on the same line; and (2) for tetrahedra t1; : : : ; tm which
share a common edge e, vt1 ; : : : ; vtm and ve are on the
same plane. For convenience, let us call these conditions
Worsey–Piper conditions.

For a general tetrahedral partition, the conditions can
not be easily satisfied and hence, their construction will
not be in C1 globally. This leaves an open question how
to make such stringent conditions satisfy. Recently, Schu-
maker, Sorokina, and Worsey overcame this difficulty by
further refining the Worsey–Pipe refinement. They split
a tetrahedron into more than 500 subtetrahedra so that
they can construct C1 quadratic macro-elements without
using the stringent conditions (cf. [49]).

Construction of C1 Quintic Macro-Element on Octa-
hedral Refinement Let O D hv1; v2; : : : ; v6i be an oc-
tahedron such that the three diagonals of O intersect at
a common point mO inside O as shown in Fig. 16. In
this case, v1; v2; v3; v4 are coplanar. So are v2; v4; v5; v6 and
v1; v3; v5; v6. In this subsection we shall restrict our at-
tention to such tetrahedra which will be called centrical
octahedra. It is possible to partition some common 3D
solids into a collection of centrical octahedra. (See Exam-
ples in [33]). By adding the three planes hv1; v2; v3; v4i,
hv1; v3; v5; v6i, and hv2; v4; v5; v6i, we obtain eight tetrahe-
dra in O. Let˚ be the collection of these eight tetrahedra.
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We shall use piecewise trivariate polynomials of degree
5 over ˚ to construct C1 macro-elements that satisfy the
following smoothness properties: It is C1 over the union
of the eight tetrahedra of˚ and C2 at the six vertices of O.
Here, a function s is said to be C2 at a vertex v if s is twice
differentiable at v. We denote by S1;25 (˚) the space of all
spline functions in S�15 (˚) which are C1 across each inte-
rior triangular face of˚ andC2 at vertices ofO.We specify
the following subsets to be formed into a minimal deter-
mining set � for S1;25 (˚):

(1) For each vertex v 2 ˚ except for mO, let tv 2 ˚ be
a tetrahedron having v as one of its vertices. Let
Sv :D Dtv

2 (v). We note that in terms of traditional
nodal values, the determination of the B-coefficients
which are associated with domain points in Sv of any
spline function s is equivalent to the assignments of
@˛ s(v) for all j˛j � 2, where ˛ D (˛1; ˛2; ˛3) with
j˛j :D ˛1 C ˛2 C ˛3 and

@˛s(v) :D
�
@

@x

�˛1 � @

@y

�˛2 � @
@z

�˛3
s(v) :

(2) For each boundary edge e 2 ˚, let te 2 ˚ be a tetra-
hedron containing e. Writing e D hu; vi, let

Se :D E te
1 (e)

�

Dte

2 (u) [D
te
2 (v)

�
:

We note that the determination of the B-coefficients
associatedwith domain points in Se of any spline func-
tion s may be replaced by the assignment of two nor-
mal derivatives of e that are perpendicular to each
other at the midpoint of e if the traditional nodal val-
ues are used.

(3) For each boundary face f 2 ˚, let t f 2 ˚ be
a tetrahedron with f as one of its faces. Writing
f D hu1; u2; u3i and t f D hu1; u2; u3; u4i, let

S f :D
˚
�
t f
2;1;1;1; �

t f
1;2;1;1; �

t f
1;1;2;1

�
:

In terms of nodal values, the determination of the
B-coefficients associated with the domain points in
Sf of spline functions is the same as the assignment
of the normal derivative of f at the three locations
whose barycentric coordinates are (2/5; 2/5; 1/5; 0);
(1/5; 2/5; 2/5; 0); (2/5; 1/5; 2/5; 0) with respect to tf .
Here, for convenience, we have arranged that the last
index ` of B-coefficients cti; j;k;` is associated withmO.

(4) FormO, let tO;n; n D 1; : : : ; 8 be the 8 tetrahedra of˚.
For convenience, we arrange that the last index ` of
B-coefficients ctO;ni; j;k;` of any spline function is associ-

ated withmO. Let SO :D f� tO;n1;1;1;2; n D 1; : : : ; 8g.

Multivariate Splines and Their Applications, Figure 17
Domain points (on the first layer) on the top half of an octahe-
dron

Multivariate Splines and Their Applications, Figure 18
Domain points (on the second layer) on the top half of an octa-
hedron

Multivariate Splines and Their Applications, Figure 19
Domain points (on the third layer) on the top half of an octahe-
dron

We can show that the set

� :D
[

v2O

Sv [
[

e2O

Se [
[

f2O

S f [ SO

is a minimal determining set for S1;25 (˚) and

dim(S1;25 (˚)) D 10 � 6C 2 � 12C 3 � 8C 8 D 116 :

Next we let � be a collection of centrical octahedra
Oi ; i D 1; : : : ;N . Suppose that � is regular in the sense
that the intersection of any two octahedra Oi and Oj is ei-
ther an empty set, or their common face, or their common
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Multivariate Splines and Their Applications, Figure 20
Coefficients of spline function s1 2 S1;25 (˚)

edge, or their common vertex. Let˚i be the eight tetrahe-
dra obtained from Oi as described above, and let

�LL D [
N
iD1˚i

be the corresponding special tetrahedral partition. The
above construction of C1 quintic macro-element can be
applied to such special tetrahedral partitions. We get

dim S1;25 (L(�)) D 10V C 2E C 3F C 8N ;

where V ; E; F denote the numbers of all vertices, edges,
and faces of� D fOi ; i D 1; : : : ;Ng.

Multivariate Splines for ScatteredData Fitting

Given a set of scattered data, e. g., f(xi ; yi ; zi ); i D
1; : : : ;Ng, we want to find a smooth function or surface S
such that

S(xi ; yi ) D zi ; i D 1; : : : ;N ;

if zi are very accurate measurements or

S(xi ; yi ) � zi ; i D 1; : : : ;N ;

if zi are subject to some random noises. Note that nowa-
days, N is usually very large. Three key requirements are
(1) S must be a smooth surface; (2) S resembles the shape
of the data; and (3) S can be efficiently computed. In this
article we explain how to use multivariate splines for solv-
ing scattered data fitting problems.We restrict ourselves to
the bivariate setting. For spherical setting, we refer to [6].

The following methods for fitting a given set of data
are available in the literature.

� Minimal Energy Method;
� Discrete Least Squares Method;
� Penalized Least Squares Spline Method;
� L1 Spline Method;
� Least Absolute Deviation Method;
� L1 Smoothing Spline Method.

Let us review these methods by explaining several fun-
damental questions concerning each method: if a method
has a solution or not (i. e., the existence and uniqueness),
how to compute that solution (i. e., numerical algorithms),
whether the solution surface resembles the given data
(i. e., approximation properties), and what to do when the
amount of data is very large.

Minimal Energy Method

Let E(f ) be the thin-plate energy functional

E( f ) D
Z

˝

 �
@2

@x2
f
�2
C 2

�
@2

@x@y
f
�2

C

�
@2

@y2
f
�2
!

dxdy :

Let �( f ) D fs 2 Srd (�); s(xi ; yi ) D fi ; i D 1; : : : ;Ng.
Find S f 2 �( f ) such that

E(S f ) D minfE(s); s 2 �( f )g :

The following result was proved in [53] and in [5] by dif-
ferent methods.

Theorem 14 If �( f ) is not empty, there exists a unique
interpolatory spline in Srd (�).

Once we have an interpolatory surface, we would like
to know how the surface resembles the given data. Let
W2
1(˝) be the Sobolev space of all functions whose sec-

ond derivatives are essentially bounded over ˝ . j f j2;1;˝
is the maximal norm of all second-order derivatives of f
over˝ . The following results can be found in [53]

Theorem 15 Suppose zi D f (xi ; yi ), i D 1; : : : ;N, for
f 2 W2

1(˝). Let d � 3rC 2, and let� be a triangulation
of the data sites f(xi ; yi ); i D 1; : : : ;Ng. Then

ks f � f kL1(˝) � Cj�j2j f j2;1;˝ :

Our next concern is how to compute interpolatory min-
imal energy splines using a spline space of arbitrary de-
gree d and arbitrary smoothness r with d � 3r C 2. The
following computational scheme was described in [5].
See [48] for another computational scheme.
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(1) Express each s 2 S�1d (�) in B-form, i. e.,

s(x; y)jt D
X

iC jCkDd

cti jk B
d;t
i jk(x; y) ;

where Bd;t
i jk are Bernstein–Bézier basis functions de-

fined only on t. Let c D (cti jk ; i C jC k D d; t 2 �)
be a coefficient vector for s.

(2) When s 2 Srd (�), there are smoothness conditions
over interior edges of � (cf. [21]). The smoothness
conditions are linear. Put all smoothness conditions
together to write

H c D 0 ;

for a matrixH . I. e., s 2 Srd (�) ifH c D 0.
(3) Compute the energy functional E(s) D cTEc for an

energy matrix E which is a diagonal block matrix.
(4) The interpolatory conditions can be written Ic D f for

a matrix I and a vector f containing all data values zi.
(5) The minimal energy method for interpolatory splines

is equivalent to finding c such that

min
˚
cTEc; subject toH c D 0; Ic D f

�
:

(6) By the Lagrange multipliers method, we solve
2

4
E H T IT
H 0 0
I 0 0

3

5

2

4
c
˛

ˇ

3

5 D

2

4
0
0
f

3

5 :

(7) To solve this system, we use the following iteration
method introduced in [5]
�
E C 1

�

�
H T IT

� �H
I

��
c(1) D

1
�
ITf ;

�
E C 1

�

�
H T IT

� �H
I

��
c(kC1) D Ec(k)C 1

�
ITf ;

for k D 1; 2; : : : and � > 0, e. g., � D 10�6.

We need to show that the iterative method above is con-
vergent. To this end, recall that a matrix A is positive
definite with respect to B if cTAc � 0 and if Ac D 0 and
Bc D 0 for some c, then c D 0. In [3] we proved the fol-
lowing (cf. [5] for a similar result).

Theorem 16 Suppose that E is positive definite with re-
spect to [H ; I]T. Then the above iteration converges and

kc(kC1) � ck � C�k ; 8k � 1 :

In Figs. 21 and 22 we show a given set of scattered data and
the surface of a C1 quintic spline interpolant.

In Fig. 23 we show a given set of scattered data and in
Fig. 24 we show the surface of a C1 quintic spline inter-
polant.

When the number of data sites is large, e. g., N > 1000,
a computer may not be powerful enough to solve the lin-
ear system. A domain decomposition technique for com-
puting an approximation of the minimal energy spline in-
terpolation was proposed in [35]. The ideas of domain de-
composition for scattered data fitting can be explained as
follows.

Let D1(t) be the union of all triangles in� which share
a vertex or edge with t, and DkC1(t) the union of all tri-
angles sharing a vertex or edge with triangles in Dk(t). For
k � 1, we compute a minimal energy interpolatory spline
S f ;t;k 2 �( f ) such that

EDk (t)(S f ;t;k) D minfEDk (t)(s); s 2 �( f jt)g ;

EDk (t)(s) D
Z

Dk (t)

 �
@2

@x2
f
�2
C 2

�
@2

@x@y
f
�2

C

�
@2

@y2
f
�2
!

:

The following result was established in [35].

Theorem 17 Suppose that f 2 C2(˝). For d � 3r C 2,
there is a 0 < � < 1 such that

kS f � S f ;t;kkL1(t) � C�k j�jj f j2;1;˝

for k � 1, where C is a constant dependent on d; ˇ and the
area of˝ .

This result shows that a (global) minimal energy spline in-
terpolation Sf can be approximated by local minimal en-
ergy spline interpolations S f ;t;k for all t 2 �. That is, for
each triangle t, one can use a local minimal energy spline
interpolation S f ;t;k to replace the global one S f jt within
some tolerance.

Discrete Least Squares Fitting

The discrete least squares method is one of the classical
methods for data fitting. Instead of polynomial fitting, we
use multivariate splines.

Let `( f ) D
PN

iD1 j f (xi ; yi )j
2. We look for S f 2 Srd (�)

such that

`(S f � f ) D min
˚
`(s � f ) ; s 2 Srd (�)

�
:

Sf is called the discrete least squares fit of the given data
f(xi ; yi ; fi ); i D 1; : : : ;Ng with fi D f (xi ; yi ).
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Multivariate Splines and Their Applications, Figure 21
Data points (courtesy Gerald Farin)

Multivariate Splines and Their Applications, Figure 22
A C1 quintic spline fit of the data in Fig. 21

To show the existence and uniqueness of the solution
Sf , we need to assume

A1kskL1(T) �

s X

(xi ;yi )2T

js(xi ; yi )j2

for all s 2 Srd (�) and all triangle T 2 � (cf. [51]).

Theorem 18 Suppose that the above constant A1 is strictly
positive. Then there exists a unique spline fit S f 2 Srd (�).

Let
s X

(xi ;yi )2T

js(xi ; yi )j2 � A2kskL1(T)
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Multivariate Splines and Their Applications, Figure 23
Data points (courtesy Tom Grandine)

Multivariate Splines and Their Applications, Figure 24
A C1 quintic spline fit of the data in Fig. 23

for all T 2 � and s 2 Srd (�). It is easy to see that A2 must
be less than or equal to the maximal number of points per
triangle. The following result was established in [51].

Theorem 19 Assume that f 2 WmC1
1 (˝). Then

kS f � f kL1(˝) � C
A2

A1
j�jmC1j f jmC1;1;˝

for a constant C dependent on ˇ; d.

Furthermore, we can show the following

Corollary of Theorem 6 Under the same assumptions
above, for j˛j � mC 1,

kD˛(S f � f )kL1(˝) � C
A2

A1
j�jmC1�j˛jj f jmC1;1;˝

for a constant C dependent only on ˇ and d.

This can be proved by using a polynomial approxima-
tion property andMarkov’s inequality. Details are omitted
here.

Our next question is how to compute discrete least
squares fits. Recall that we write each s 2 S�1d (�) in the
B-form

s(x; y)jt D
X

iC jCkDd

cti jkB
d;t
i jk (x; y)

with coefficient vector c D (cti jk ; i C jC k D d; t 2 �).
We put all smoothness conditions of Srd (�) together as

H c D 0 :

Let L be an observation matrix. It is easy to see

`(s � f ) D cTLLTc� 2cTLfC fTf :

The discrete least squares spline is the solution of

minfcTLLTc � 2cTLf; subject toH c D 0g :

By the Lagrange multipliers method, we solve
�LLT H T

H 0

� �
c
˛

�
D

�Lf
0

�
:

The ALW iteration introduced in the previous subsec-
tion can be applied to solve the above linear system. As
before the iterative solutions converge the exact solution.
Numerical examples are omitted here to save some space.
See [48] for another approach of the computation.

When the number of data sites is large, especially when
the number of triangles is large, a computer may not be
powerful enough to solve the associated linear system.
We again propose a domain decomposition technique for
computing an approximation of the discrete least squares
spline (cf. [35]). That is, for k � 1, we compute S f ;t;k such
that

`Dk (t)(S f ;t;k � f ) D min
˚
`Dk (t)(s � f ); s 2 Srd (�)

�
;

`Dk (t)(s � f ) D
X

(xi ;yi )2Dk (t)

js(xi ; yi ) � f (xi ; yi )j2 :

We have the following (cf. [35])

Theorem 20 Let Srd (�) be a spline space with d � 3r C 2
over a ˇ quasi-uniform triangulation�. Suppose that data
values are obtained from a continuously differentiable func-
tion f 2 CmC1(˝) with m � 0. Suppose that A1 > 0 and
A2 <1 are constants such that A2/A1 is independent of�.
Then there is a positive � < 1 such that

ks f � S f ;kkL1(t) � C�k j�jmj f jmC1;1;˝

for k � 1, where C is a constant dependent only on d, ˇ,
A2/A1, and the area of˝ .
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Penalized Least Squares Spline Method

Recall that E(f ) denotes a thin-plate energy functional of f
and `(s) D

PN
iD1(s(xi ; yi ))

2 as before. Fix  > 0. Define
P�(s) D `(s � f )C E(s). The PLS spline is the mini-
mization solution S f ;� 2 Srd (�) such that

P�(S f ;�) D min
˚
P�(s); s 2 Srd (�)

�
:

We refer to [5] for a proof of the following

Theorem 21 Suppose that N � 3 and there exist three
data sites, say, (xi ; yi ); i D 1; 2; 3 which are not colinear.
Then there exists a unique S f ;� in Srd (�) solving the above
minimization problem.

We certainly want to know if the penalized least squares
fitting surface resembles the given data or not. Since
f � S f ;� D f � S f ;0 C S f ;0 � S f ;� and f � S f ;0 was esti-
mated in the previous subsection, we need to estimate
S f ;0 � S f ;�. To do so, we introduce the following two
quantities: (cf. [52])

K1 D sup
�
E(s)1/2

`(s)1/2
; s 2 Srd (�); s 6D 0

�

and

K2 D sup
�
kskL1(˝)

`(s)1/2
; s 2 Srd (�); s 6D 0

�
:

Then in [52], von Golitschek and Schumaker proved the
following

Theorem 22 Let S f ;� be the PLS spline in Srd (�) with
d � 3r C 2. Assume that K1 and K2 are finite. Then

kS f ;� � S f ;0kL1(˝) � K2

q
E(S f ;0) min

n
1;K1
p

o
:

When  is small enough, e. g., K1
p
 < 1, we see that the

convergence is linear in . Let us present some numerical
evidence. Consider a type-I triangulation � with 289 ver-
tices and 512 triangles of [0; 1] � [0; 1]. Let f (x; y) be the
well-known Franke function. We use domain points of de-
gree 5 of � as given sample locations and f (x; y) at these
locations as functional values. We compute S f ;� 2 S15(�)
for i D 1/220Ci and S f ;0 2 S15(�) and use the maxi-
mum difference of S f ;� � S f ;0 at 100 � 100 equally spaced
points of [0; 1] � [0; 1] to approximate kS f ;� � S f ;0k1.
For i D 1/210Ci , the maximum errors of S f ;�i � S f ;0 are
given below:

�2 �3 �4 �5 �6

S15(#) 1.325(–4) 6.981(–5) 3.653(–5) 1.876(–5) 9.517(–6)
Rates 0.5267 0.5232 0.5134 0.5072

From the numerical values above, we can see that the er-
rors decay roughly by half each time and thus, the conver-
gence order of  is 1. We repeat the experiment for test
functions f (x; y) D 2x4 C 5y4 and f (x; y) D sin(�(x2 C
2y2)). The convergence rates for both test functions are
similar to the above.

We now work on estimating K1 and K2. It is easy to
get

E(s) �
X

T2#

ATksk22;1;T �
X

T2#

AT

�4T
ksk2L1(T)

�
ˇ2

(�#)2
`(s)
A2
1
:

It follows that

K1 �
ˇ

A1�#
: (8)

Since kskL1(˝) D kskL1(T) for a triangle T,

kskL1(˝) �
1
A1

s X

(xi ;yi )2T

js(xi ; yi )j2 �
1
A1
`(s)1/2 :

It follows that

K2 �
1
A1

: (9)

With the above preparation we can prove

Theorem 23 Suppose that f 2WmC1
1 (˝) with 1 � m �

d. Let S f ;� be the PLS spline of f in Srd (�) with d � 3rC 2.
Then

kS f ;� � f kL1(˝) � C1j�j
mC1j f jmC1;1;˝

C
C2
p


A1
min

(

1;
ˇ
p


A1�#

)

j f j2;1;˝ ;

where C1 > 0;C2 > 0 are constants dependent on A2/A1,
ˇ, and the area of˝ .

As we can see the condition for the existence of penal-
ized least squares spline fits is much weaker than that for
the existence of the discrete least squares spline fits. How-
ever, the approximation result on penalized least squares
spline fits is dependent on a very strong condition on the
data sites, i. e., A1 > 0. It is interesting to see if one can re-
move this condition while proving that the penalized least
squares fits resemble the shape of the data.

Next we briefly explain how to compute PLS splines.
Recall c is the coefficient vector of a spline s 2 S�1d (�),H
is the smoothness matrix such thatH c D 0 if and only if
s 2 Srd (�),E is the energymatrix, andL is the observation
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matrix. Then the PLS spline is the minimization solution

minfcTLLTc � 2cTLfC cTEc; subject toH c D 0g :

By the Lagrange multipliers method, we solve
�LLT C E H T

H 0

� �
c
˛

�
D

�Lf
0

�
:

We apply the ALW iteration introduced before.
When the number of triangles is large, a computermay

not be powerful enough to find the PLS splines. We use
a domain decomposition technique for computing an ap-
proximation of the PLS spline (cf. [35]). For k � 1, we
compute a PLS spline S f ;t;k such that

PDk (t)(S f ;t;k) D min
˚
PDk (t)(s) ; s 2 Srd (�)

�
;

where

PDk (t)(s) D
X

(xi ;yi )2Dk (t)

js(xi ; yi )� f (xi ; yi )j2CE(sjDk (t)):

Here Dk(t) D stark(t) for each triangle t 2 �. We have
the following result (cf. [35])

Theorem 24 Suppose that Srd (�) with d � 3rC 2 over
a ˇ quasi-uniform triangulation �. Suppose that data val-
ues are obtained from a continuously differentiable function
f 2 CmC1(˝). Suppose that A1 > 0 and A2 <1 are con-
stants such that A2/A1 is independent of �. Then there is
a positive � < 1 such that

ks f � S f ;kkL1(t) � C�k ((kC 2)3/2j�jmC1j f jmC1;1;˝

C j f j2;1;˝)

for k � 1, where C is a constant dependent only on d, ˇ and
A2/A1.

L1 Spline Methods

L1 spline methods for data fitting were proposed by Lav-
ery. He used C1 cubic spline curves and bivariate C1 cubic
Sibson’s elements for scattered data in 1D and grid data in
2D, respectively. Lai andWenston in 2004 generalized the
study to the scattered data in the bivariate setting (cf. [40]).
Recall that

�( f ) D fs 2 Srd (�); s(xi ; yi ) D f (xi ; yi ); i D 1; : : : ;Ng:

Let E1(s) be the L1 energy functional, i. e.,

E1( f ) D
Z

˝

�ˇ̌
ˇ̌ @

2

@x2
f
ˇ̌
ˇ̌C 2

ˇ̌
ˇ̌ @

2

@x@y
f
ˇ̌
ˇ̌C

ˇ̌
ˇ̌ @

2

@y2
f
ˇ̌
ˇ̌
�
dxdy :

Find S f 2 �( f ) such that

E1(S f ) D minfE1(s); s 2 �( f )g :

Sf is called the L1 interpolatory spline of the given data
f(xi ; yi ; f (xi ; yi )); i D 1; : : : ;Ng. A proof of the following
theorem can be found in [40]. This can be seen from the
fact that the minimization functional is convex. However,
the functional is not strictly convex and hence, the solution
may not be unique.

Theorem 25 Suppose that �( f ) is not empty. Then there
exists at least one Sf solving the above minimization prob-
lem.

The interpolatory surfaces which minimize the L1 en-
ergy functional are indeed quite different from the usual
L2 minimal energy splines. See Figures in [40] for detail.
Mainly, the L1 spline method reduces greatly the oscilla-
tions in the interpolatory surfaces.

It is necessary to show that L1 interpolatory splines re-
semble the shape of the given data. Lai in [32] proved the
following

Theorem 26 Suppose that f 2 C2(˝). Let Sf be the L1
interpolatory spline of the given data locations and values
f(xi ; yi ; f (xi ; yi )); i D 1; : : : ;Ng. Then

kS f � f kL1(˝) � Cj�j2j f j2;1;˝ ;

for a constant C dependent only on ˇ and d.

For a given data set f(xi ; yi ; f (xi ; yi )); i D 1; : : : ;Ng, let

`1(s) D
NX

iD1

js(xi ; yi )j :

We find S f 2 Srd (�) such that

`1(S f � f ) D minf`1(s � f ); s 2 Srd (�)g :

Sf is the least absolute deviation (LAD) from the given
data.

Since the minimization functional is convex, there al-
ways exist a minimizer Sf (cf. [40]). Next we would like to
know how well the LAD surface resembles the given data.
Let F1 and F2 be positive numbers such that

F1kskL1(T) �
X

(xi ;yi )2T

js(xi ; yi)j � F2kskL1(T)

for all s 2 Srd (�) and for all T 2 �. We have the following
(� Popular Wavelet Families and Filters and Their Use).

Theorem 27 Suppose that two constants F1 > 0 and
F2 <1 such that F2/F1 independent of �. Suppose that
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f 2 WmC1
1 (˝) for 0 � m � d. Then

kS f � f kL1(˝) � Cj�jmC1j f jmC1;1;˝

for a positive constant C dependent on F2/F1, ˇ and d.

L1 smoothing splines are S f 2 Srd (�) which minimizes

`1(S f� f )CE1(S f ) D minf`1(s� f )CE1(s); s 2 Srd (�)g:

Since the minimization functional is convex, there ex-
ists at least one Sf solving the above minimization. We
next need to show that Sf approximates f as the size of the
triangulations goes to zero (� Popular Wavelet Families
and Filters and Their Use).

Theorem 28 Under the same assumptions as Theorem 27,

kS f � f kL1(˝) � Cj�jmC1j f jmC1;1;˝ C 
C f

F1
j�j2

for a positive constant C dependent on F2/F1, ˇ and d.

Algorithms computing these three L1 spline methods were
discussed in [40]. The main ideas are

(1) Use discontinuous piecewise polynomial functions
and set the smoothness conditions as side constraints;

(2) Convert L1 norm minimization to a linear program-
ming problem;

(3) Use Karmarkar’s algorithm to solve the linear pro-
gramming problem.

Multivariate Splines for Numerical Solution
of Partial Differential Equations

In this section, we will show how to solve the Poisson
equation and other second-order elliptic equations by us-
ing multivariate splines of variable degree and variable
smoothness. These spline functions will provide a ver-
satile tool for numerical solution of PDE’s because of
the flexibility in choosing the degrees and smoothness
when constructing numerical solutions. For example, it is
known that the weak solution of the Poisson equation over
a polygonal domain ˝ is at least H2(V ) for any open set
V � ˝ (cf. [20]). We should choose spline functions that
are C1 inside˝ and C0 near the boundary of˝ to find an
approximate weak solution.

Numerical Solution of Poisson Equations

Let us begin with the Poisson equation:

��u D f ; in˝
u D g ; on @˝ ;

where˝ is a polygonal domain inRn , f 2 L2(˝), and g is
continuous over the boundary @˝ of˝ . The weak formu-
lation of the Poisson equation is to find u 2 H1(˝) which
satisfy u D g on @˝ and

a(u; v) D h f ; vi ; 8v 2 H1
0(˝) ;

where a(u; v) is the bilinear form defined by

a(u; v) D
Z

˝

ru � rv dxdy

and h f ; vi D
R
˝ f vdxdy stands for the standard L2 inner

product of f and v. Here H1(˝) and H1
0(˝) are standard

Sobolev spaces. By the standard calculus of variations, the
Poisson equation is the Euler–Lagrange equation of the
energy functional

E(w) D
Z

˝

� 1
2rw � rw � w f


dx :

It is known that the weak solution of the Poisson equation
is the minimizer of the energy functional E(w) among the
class of admissible functions

A D fw 2 H1(˝);w D g on @˝g :

(See §8.2.3. in [20]). That is, the weak solution u satisfies

E(u) D min
w2A

E(w) : (10)

Also any minimizer satisfying (10) is the weak solution.
Next we discuss how to compute approximate weak

solutions that are multivariate spline functions. For con-
venience, let us consider the Poisson equation in the bi-
variate setting first. Let� be a triangulation of the domain
˝ 2 R2 and let

S :D Sr;�d (�)

be a spline space with fixed (global) smoothness r, local
smoothness vector � and degree vector d associated with
vertices, interior edges, and triangles of �. Let d be the
largest integer in d. Instead of piecewise linear boundary
of ˝ 0 D [t2#t, we may use piecewise quadratic polyno-
mials to approximate the boundary of˝ . That is, for each
boundary triangle t 2 �, if the boundary edge et of t is not
a part of boundary @˝ of˝ , we use a circular arc ẽt which
passes through two vertices of et and another point on @˝
between the two vertices to replace et . Let t̃ be the convex
hull of the vertices of t and the circular arc. All the interior
triangles and new boundary triangles (with curved side)
form a new domain e̋ which is a better approximation



5824 M Multivariate Splines and Their Applications

of ˝ than ˝ 0. Since each spline function s 2 S can be ex-
tended naturally to e̋ , we may consider that S are defined
on e̋ .

We remark that when solving the Poisson equation
with the Dirichlet boundary condition, we require spline
functions to have less smoothness near the boundary while
having more smoothness inside the domain according to
the regularity theory of the weak solution of the Poisson
and general elliptic PDE’s (cf. [20]). In general, there is no
spline function in S satisfying the boundary condition ex-
actly. Let Ã be the subset of S satisfying the boundary con-
dition approximately in the sense that su 2 S interpolates g
at 2d C 1 distinct points at each curve edge and d C 1 dis-
tinct points over each straight boundary edge. Here, we
have assumed that the degrees of the spline functions in S
are d over each boundary triangle. Otherwise, we modify
the interpolation conditions appropriately. We compute
the approximation su 2 S satisfying

E(su) D min
w2Ã

E(w) :

Following the same arguments in [20], the minimizer su is
the approximate weak solution in S.

We next give an algorithm to compute such an su with
the assumption that su exists and is unique. The proof of
the existence and uniqueness is well-known and will be
mentioned briefly later.

Let us write any spline function s 2 S using the B-
form. That is, s 2 Smay be expressed by

s(x; y)jt D
X

iC jCkDd

cti jk B
t
i jk(x; y) ; (x; y) 2 t 2 � :

Let c D (cti jk ; i C jC k D d; t 2 �) be the coefficient vec-
tor associated with s. The length of the vector c is d̂T
with T being the number of triangles in � and d̂ D (d C
1)(d C 2)/2. The smoothness and super smoothness con-
ditions that s satisfies can be expressed by Hc D 0. Also, s
satisfies the degree reduction conditions, i. e., Jc D 0.

Then the bilinear form a(s; ŝ) can be expressed in
terms of c and ĉ by

a(s; ŝ) D cTKĉ

where K D diag(Kt ; t 2 �) with

Kt D

�Z

t
rBt

i jk � rB
t
p;q;rdxdy

�

iC jCkDd
pCqCrDd

:

Note that the inner product h f ; ŝi can be approximated by
hs f ; ŝi where s f 2 S�1d (�), the space of piecewise polyno-
mials of degree d on each triangle, interpolates f over the

domain points of each triangle t. Thus,

h f ; ŝi � ĉTMc f ;

where M D diag(Mt; t 2 �) is a block diagonal matrix
with square blocks

Mt D

�Z

t
Bt
i jk(x; y)B

t
p;q;r(x; y)dxdy

�

iC jCkDd
pCqCrDd

and c f encodes the coefficients of sf . We need to solve the
following minimization problem:

min 1
2 c

TKc � cTMc f
subject to
Hc D 0 ; Jc D 0 ; Bc D g ;

where Bc D g denotes a linear system associated with the
boundary conditions. Indeed, based on the de Casteljau
algorithm, the evaluation of su at any point on a curved
edge is a linear equation in terms of the unknown coef-
ficients of su. As we can show that there exists a unique
approximate weak solution su 2 S, we know that the min-
imization problem has a unique solution. Since the energy
functional is convex, any local minimum is the global min-
imum. Let us compute a local minimum by using the La-
grange multiplier method. Letting

L(c; �; �; �) D 1
2c

TKc�cTMcfC�THcC�TJcC�T(Bc�g);

we compute

@

@c
L(c; �; �; �) D 0 ;

@

@�
L(c; �; �; �) D 0 ;

@

@�
L(c; �; �; �) D 0 ;

@

@�
L(c; �; �; �) D 0 :

It follows that

KcC HT� C JT�C BT� D Mc f
Hc D 0; Jc D 0 ; Bc D g :

In other words, we have
2

66
4

BT JT HT K
0 0 0 H
0 0 0 J
0 0 0 B

3

77
5

2

66
4

�

�

�

c

3

77
5 D

2

66
4

Mc f
0
0
g

3

77
5 : (11)

We shall apply the matrix iterative method for solving the
above linear systemwhen it is of large size. The uniqueness
of the weak solution implies thatK is positive definite with
respect to [B;H; J]. Therefore, the matrix iterative method
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is well-defined.We remark that assembling the matricesM
and K is particularly easy and can be done without know-
ing the relations among the triangles in any given triangu-
lation partition. This is also true in themultivariate setting.

This leads to a numerical method to compute approxi-
mate weak solutions for Poisson equations inR2. It is clear
that the above arguments can be generalized to the multi-
variate setting.

We have implemented this method using bi- and tri-
variate spline spaces of any degree and any smoothness
over any triangulation of any polygonal domain to solve
the 2D and 3D Poisson equation. We will provide several
numerical experiments near the end of this section.

Next let us briefly discuss the existence and unique-
ness of the approximate weak solution su. The discus-
sion is parallel to the one using finite elements. Mainly
we use the well-known Lax–Milgram Theorem. Since S is
a finite dimensional space, we may find a basis f�i ; i D
1; : : : ; dim(S)g which may not be locally supported. For
any spline function s 2 S, we write s D P

i si�i for some
coefficients si’s. Thus, for s 2 S\H1

0(˝), the bilinear form
can be given by

a(s; ŝ) D sK0 ŝ

with a new stiffness matrix K0. Because a(�; �) is coercive,
it can be easily shown that K0 is positive definite over
S \ H1

0(˝). Thus, the existence and uniqueness of the ap-
proximation weak solution su follows.

We remark that the Poisson equation with Neumann
boundary condition

8
<̂

:̂

��u D f ; in˝
@u
@n D h ; on @˝
R
˝ udx D 0

(12)

can be numerically solved in the same fashion. We leave
the details to the interested reader. We have implemented
the algorithm for solving (12) numerically in the bivariate
and trivariate setting.

General Second-Order Elliptic Equations

Wenow turn our attention to general second-order elliptic
equations. Consider

�

nX

i; jD1

@

@xi

�
ai j(x)

@

@x j
u
�
D f ; x 2 ˝

u(x) D g(x) ; x 2 @˝ ;

(13)

where ai j(x) D a ji(x) 2 L1(˝) for i; j D 1; : : : ; n and
satisfy

nX

i; jD1

ai ji j � m
nX

iD1

2i ; 8 i ; i D 1; : : : ; n

for a positive constant m > 0. Using the results in (§8.2.3
in [20]), we can show that the weak solution of (13) is the
minimizer of

E(w) D
Z

˝

0

@1
2

nX

i; jD1

ai j
@

@xi
w
@

@x j
w � w f

1

Adx

over the set A of admissible functions. Thus, to find an
approximate weak solution in S, we need to solve the fol-
lowing minimization problem:

min 1
2 c

TKc � cTMf
subject to
Hc D 0 ; Jc D 0 ; Bc D g ;

where K D diag(K̃t ; t 2 �) is a block diagonal matrix
with

K̃t D

2

4
Z

t

nX

i; jD1

ai j
@

@xi
Bt
˛

@

@x j
Bt
ˆ̨ dx

3

5
˛2znC1;j˛jDd
ˆ̨2znC1;j ˆ̨ jDd

:

The Lagrange multiplier method implies that we need to
solve the following linear system:
2

66
4

BT JT HT K
0 0 0 H
0 0 0 J
0 0 0 B

3

77
5

2

66
4

�

�

�

c

3

77
5 D

2

66
4

Mc f
0
0
g

3

77
5 :

Again the uniqueness of the weak solution implies that the
matrix iterative method is well defined. Furthermore, we
use the maximum norm

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌

2

4
Hc
Jc

Bc� g

3

5

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌ (14)

to check if the iterative solution does satisfy the smooth-
ness conditions, degree reduction conditions, and bound-
ary conditions. The solution will be said to be exact if it is
zero in such a norm.

Let us report on some numerical experiments for the
2D and 3D Poisson equations.

Example 1 Consider the Poisson equation with exact so-
lution

u(x; y) D 10 exp(�(x2 C y2))
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Multivariate Splines and Their Applications, Table 1
Approximation errors from bivariate spline spaces

Maximum errors CPU times
S13(#) 0.732222 0.40 s
S14(#) 0.063235 0.48 s
S15(#) 0.010793 0.78 s
S16(#) 0.001382 1.06 s
S17(#) 0.000502 1.65 s
S18(#) 0.000173 2.56 s
S19(#) 0.000013 4.03 s

over a square domain:
8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

��u D 40 exp(�(x2 C y2))(1 � x2 � y2)
(x; y) 2 [�2; 2] � [�2; 2]

u(x; y) D 10 exp(�(x2 C y2))
(x; y) 2 @[�2; 2] � [�2; 2] :

The solution is relatively large inside the domain as com-
pared to its values on the boundary. Our spline solutions
can approximate it very well. We use a triangulation simi-
lar to Fig. 2 with 25 vertices and 32 triangles.We test many
spline spaces and list the maximum errors of approximate
weak spline solutions against the exact solution in Table 1.
The maximum errors are computed based on 101 � 101
equally spaced points over [�2; 2] � [�2; 2].

Example 2 Consider the 3D Poisson equation with exact
solution

u(x; y; z) D 10 exp(�(x2 C y2 C z2))

over an octahedron ˝ :D h(1; 0; 0); (0; 1; 0); (�1; 0; 0);
(0;�1; 0); (0; 0; 1); (0; 0;�1)i. We split˝ into eight tetra-
hedra by three coordinate planes. Let � denote the col-
lection of all eight tetrahedra. We find approximate weak
solutions in the 3D spline spaces S1d (�) for d D 3; : : : ; 7.
Themaximum errors are computed based on 20 � 20 � 20
equally spaced points over˝ and listed in Table 2.

Next we compare the errors by using refinements of un-
derlying triangulations and by increasing the degrees of
spline functions.

Example 3 We solve the Poisson equation with Dirichlet
boundary condition over a star domain as shown in Fig. 6
with exact solution u D exp(x C y) using C1 cubic splines
over successively refined triangulations. We can only re-
fine 3 times within the capacity of our PC and the results
are listed in Table 3. In Table 4, the degrees of the spline
spaces are varied.

Multivariate Splines and Their Applications, Table 2
Approximation errors from trivariate spline spaces

Matrix size Maximum errors CPU times
S13(#) 160 � 160 0.17127 0.07 s
S14(#) 280 � 280 0.02737 0.17 s
S15(#) 448 � 448 0.00749 0.625 s
S16(#) 672 � 672 0.000842 1.67 s
S17(#) 960 � 960 0.0004601 5.18 s

Multivariate Splines and Their Applications, Table 3
Approximation from uniform refinements (Dirichlet Problem)

Refinement levels Matrix size Maximum errors
1 80 � 80 0.254346956
2 320 � 320 0.029554301
3 1280 � 1280 0.004515225
4 5120 � 5120 0.000535312

Multivariate Splines and Their Applications, Table 4
Approximation from degree increase (Dirichlet Problem)

Polynomial degrees Matrix size Maximum errors
3 80 � 80 0.25434695641
4 120 � 120 0.04251752024
5 168 � 168 0.00608204535
6 224 � 224 0.00080855135
7 288 � 288 0.00009770118
8 360 � 360 0.00001031184
9 440 � 440 0.00000096358
10 528 � 528 0.00000008441
11 624 � 624 0.00000000697

Multivariate Splines and Their Applications, Figure 25
An initial triangulation of a star-shaped domain

Example 4 Next we solve the Poisson equation with Neu-
mann boundary condition over a star domain as shown in
Fig. 6 with exact solution

u D 10 exp(�(x2 C y2))
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Multivariate Splines and Their Applications, Table 5
Approximation from uniform refinements (Neumann Problem)

Refinement levels Matrix size Maximum errors
1 120 � 120 2:38 � 10�2

2 480 � 480 6:81 � 10�4

3 1920 � 1920 3:15 � 10�5

4 7680 � 7680 1:29 � 10�6

Multivariate Splines and Their Applications, Table 6
Approximation from degree increase (Neumann Problem)

Polynomial degrees Matrix size Maximum errors
4 120 � 120 2:38 � 10�2

5 168 � 168 5:53 � 10�3

6 224 � 224 1:67 � 10�4

7 288 � 288 1:24 � 10�5

8 360 � 360 7:87 � 10�6

9 440 � 440 2:52 � 10�6

10 528 � 528 3:00 � 10�7

11 624 � 634 4:08 � 10�8

using C1 quartic splines over successively refined triangu-
lation. The numerical results are given in Tables 5 and 6
with refinements and degree increases.

Example 5 In this example, we show the spline approxi-
mation of a highly oscillatory solution of the Poisson equa-
tion:
8
<̂

:̂

��u D f (x; y) ; (x; y) 2 [0; 1] � [0; 1]
u(x; y) D 10 sin(x2 C y2)C sin(25(x2 C y2)) ;

(x; y) 2 @[0; 1] � [0; 1]

where f (x; y) D 40(cos(x2Cy2)�(x2Cy2) sin(x2Cy2))C
50 cos(25(x2C y2))� 2500 sin(25(x2C y2)). The exact so-
lution contains a high frequency part which is very hard
to approximate with linear finite elements. Our spline ap-
proximation yields a good approximation of such a solu-
tion. In Table 7, we give the maximum errors of the spline
approximation using degrees 5, 6, and 7 over uniformly
refined triangulations.

It is possible to use spline space of variable degrees to
approximate the solution of Poisson equations. We refer
to [28] for an adaptive method to adjust degrees and lo-
cal refinement of triangulation for numerical solution of
Poisson equations.

Numerical Solution of Biharmonic Equations

In this section, we show how to solve biharmonic equa-
tions using multivariate splines of variable degree and

Multivariate Splines and Their Applications, Table 7
Spline approximation of oscillatory solution

Levels No. of triangles Degree 5 Degree 6 Degree 7
1 32 6.738 10.08 4.194
2 128 1.616 0.845 0.212
3 512 0.0391 0.0086 0.0011

variable smoothness. The biharmonic equation is given as
follows:

�2u D f ; in˝
u D g ; on @˝

@

@n
u D h ; on @˝ ;

(15)

where˝ is a polygonal domain inRn , f 2 L2(˝), g and h
are in C(@˝), and n stands for the normal direction of the
boundary @˝ . A typical biharmonic equation is the 2D
Stokes equations in the stream function formulation (cf.,
e. g. [38]). The weak formulation for biharmonic equation
is to find u 2 H2(˝) such that u satisfies the boundary
conditions in (15) and

a(u; v) D h f ; vi ; 8 v 2 H2
0(˝) ;

where a(u; v) is a bilinear form defined by

a(u; v) D
Z

˝

�u�vdx

and h f ; vi D
R
˝ f v dx stands for the standard L2 in-

ner product of f and v. Here H2(˝) and H2
0(˝) are

standard Sobolev spaces. With the assumption that the
boundary conditions are compatible, that is, there exists
a ub 2 H2(˝) satisfying both boundary conditions in (15),
we can show that the weak solution exists and is unique by
the well-known Lax–Milgram Theorem (cf. [41]). Let

E2(w) D
Z

˝

�
1
2
(�w)2 � w f

�
dx

be an energy functional and

A2 D

�
w 2 H2(˝); w D g;

@

@n
w D h; on @˝

�

be the class of admissible functions. By the compatibility of
the boundary conditions, we know thatA2 is not empty.
As before, we shall consider the following minimization
problem: Find u 2A2 such that

E2(u) D minfE2(w) : w 2A2g :
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On the basis of the standard calculus of variations, it is easy
to prove that any minimizer u is a weak solution. Since the
weak solution is unique, so is the minimizer.

To find an approximation of the weak solution u,
we use multivariate splines of variable degree and vari-
able smoothness. Let � be a triangulation of the domain
˝ � Rn and let

S :D Sr;�d (�)

be the spline space of fixed smoothness �; r and degree d
associated with k-simplices, 0 � k < n � 1; (n � 1)-sim-
plices, and n-simplices of �. We assume that the global
smoothness minfr; �g of S is bigger or equal to 1 so that
S � H2(˝). Let d be the large integer in d. The same as in
the previous section, we will extend S to be defined over
e̋ . We should point out that in general, the weak solu-
tion u is smoother inside the domain ˝ (cf. [23]). Thus,
we should choose S such that each spline function in S
is more smooth than near the boundary. Let Ã2 be the
class of spline functions s 2 S satisfying the boundary con-
ditions approximately, i. e., s 2 S interpolates g at 2d C 1
distinct points over each curved edge and d C 1 distinct
points over each straight edge and @/(@n)s interpolates h
at 2d � 1 distinct points over each curved edge and d dis-
tinct points over each straight edge. Our algorithm is to
find su 2 Ã2 such that

E2(su) D minfE2(s) : s 2 Ã2g :

More precisely, let us write any spline function s 2 S as

s(x)jt D
X

˛2znC1

j˛jDd

ct˛B
t
˛(x) ; x 2 t 2 � ;

where d D maxfdt ; t 2 �g. Let c D (ct˛; ˛ 2 ZnC1; j˛j D

d; t 2 �) be the coefficient vector associated with s. The
smoothness and super smoothness conditions that s satis-
fies can be expressed by Hc D 0. Also, s satisfies the degree
reduction conditions Jc D 0.

Then the bilinear form a(s; ŝ) can be expressed in
terms of c and ĉ by

a(s; ŝ) D cTKĉ

where K D diag (Kt ; t 2 �) with

Kt D

�Z

t
�Bt

˛(x)�Bt
� (x)dx

�

˛2znC1;j˛jDd
�2znC1;j� jDd

:

Note that the inner product h f ; ŝi can be approximated by
hs f ; ŝi for a spline sf which interpolates f over the domain
points of each n-simplex t. Thus

h f ; ŝi � ĉTMc f

where M D diag(Mt; t 2 �) is a block diagonal matrix
with square blocks

Mt D

�Z

t
Bt
˛(x)B

t
� (x)dx

�

j˛jDd
j� jDd

and c f is the coefficient vector for sf . We need to solve the
following minimization problem:

min 1
2 c

TKc � cTMc f
subject to
Hc D 0 ; Jc D 0 ; Bc D g ;

where Bc D g denotes the linear system associated with
the approximate boundary conditions. Note that the min-
imization problem has a unique solution. Since the energy
functional is convex, any local minimum is the global min-
imum. Let us compute a local minimum by using the La-
grange multiplier method. Letting

L(c; �; �; �) D 1
2 c

TKc�cTMfC�THcC�T JcC�T(Bc�g);

we compute

@

@c
L(c; �; �; �) D 0 ;

@

@˛
L(c; �; �; �) D 0 ;

@

@�
L(c; �; �; �) D 0 ;

@

@�
L(c; �; �; �) D 0 :

It follows that

KcC HT� C JT�C BT� D Mc f
Hc D 0; Jc D 0; Bc D g :

In other words, we need to solve the following linear sys-
tem
2

66
4

HT JT BT K
0 0 0 H
0 0 0 J
0 0 0 B

3

77
5

2

66
4

�

�

�

c

3

77
5 D

2

66
4

Mc f
0
0
g

3

77
5 :

As discussed in the previous sections, the uniqueness of
the weak solution implies that the matrix K is positive def-
inite with respect to [H;D; B]. Thus, the matrix iterative
method is well-defined.

To make sure that the iterative solution is the weak so-
lution of the biharmonic equation, we use the maximum
norm

ˇ
ˇ̌
ˇ
ˇ̌

ˇ
ˇ̌
ˇ
ˇ̌

2

4
Hc
Jc

Bc � g

3

5

ˇ
ˇ̌
ˇ
ˇ̌

ˇ
ˇ̌
ˇ
ˇ̌
1

(16)
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Multivariate Splines and Their Applications, Table 8
Numerical approximation of a biharmonic equation over a stan-
dard square domain

Maximum errors CPU times
S15(#) 5:7959 � 10�7 2.8 s
S16(#) 1:1001 � 10�8 4.5 s
S17(#) 1:3208 � 10�10 6.2 s
S18(#) 1:1465 � 10�11 9.8 s
S25(#) 1:1187 � 10�5 3.5 s
S26(#) 3:2605 � 10�8 5.2 s
S27(#) 2:7998 � 10�10 7.9 s
S28(#) 1:1982 � 10�11 13.2 s

to check if it does satisfy the boundary conditions, smooth-
ness conditions, and degree reduction conditions. The so-
lution will be said to be exact if it’s zero in the above norm.

We remark that the above algorithm also gives a nu-
merical method to determine if the boundary conditions
are compatible or not. That is, if the least squares solution
in the norm (16) is not close to zero as the underlying tri-
angulations are refined or degrees of the spline functions
increase, then the boundary conditions are not compatible
since S1d (�) becomes dense in H2(˝) if d increases to1
and/or j�j decreases to 0.

We have implemented this method for 2D and 3D bi-
harmonic equations using bivariate and trivariate spline
spaces of any degree and any smoothness. That is, we are
able to numerically solve biharmonic equations over any
polygonal domain in the bivariate or trivariate setting. Let
us present several numerical examples below.

Example 6 Consider a 2D biharmonic equation with ex-
act solution u(x; y) D exp(x C y) over a unit square do-
main:
8
ˆ̂̂
<̂

ˆ̂̂
:̂

�2u D 4 exp(x C y) ; (x; y) 2 [0; 1] � [0; 1]
u(x; y) D exp(x C y) ; (x; y) 2 @[0; 1] � [0; 1]
@
@x u(x; y) D exp(x C y) ; (x; y) 2 @[0; 1] � [0; 1]
@
@y u(x; y) D exp(x C y) ; (x; y) 2 @[0; 1] � [0; 1] :

We used the triangulation with 25 vertices and 32 tri-
angles and tested many spline spaces. The maximum er-
rors of approximate weak spline solutions against the ex-
act solution are given in Table 8. The maximum errors are
computed based on 101 � 101 equally spaced points over
[0; 1] � [0; 1].

Example 7 Consider a 2D biharmonic equation with ex-
act solution u(x; y) D 10 exp(�(x2 C y2)) over a unit cir-

Multivariate Splines and Their Applications, Table 9
Numerical approximation of a biharmonic equation over a circu-
lar domain

Spline spaces Matrix sizes Maximum errors
S13(#) 1990 � 1990 6:6819 � 10�2

S14(#) 2985 � 2985 2:0199 � 10�4

S15(#) 4179 � 4179 1:3653 � 10�6

S16(#) 5572 � 5572 7:6779 � 10�8

S17(#) 7164 � 7164 1:7841 � 10�9

S18(#) 8955 � 8955 4:4959 � 10�10

Multivariate Splines and Their Applications, Figure 26
A triangulation of the unit circular domain

cular domain:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�2u D 160 exp(�(x2 C y2))
�(x4 C y4 C 2x2y2 C 2 � 4x2 � 4y2) ;

(x; y) 2 f(x; y); x2 C y2 < 1g
u(x; y) D 10 exp(�(x2 C y2)) ;

(x; y) 2 f(x; y); x2 C y2 D 1g
@
@x u(x; y) D �20x exp(�(x

2 C y2)) ;
(x; y) 2 f(x; y); x2 C y2 D 1g

@
@y u(x; y) D �20y exp(�(x

2 C y2)) ;

(x; y) 2 f(x; y); x2 C y2 D 1g :

We use the following triangulation and test many spline
spaces. The maximum errors of approximate weak spline
solutions against the exact solution are given in Table 9.
The maximum errors are computed based on 101 � 101
equally spaced points over [�1; 1] � [�1; 1] within the cir-
cular domain.

Example 8 Consider a 3D biharmonic equation with ex-
act solution

u(x; y; z) D 10 exp(�(x2 C y2 C z2))
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Multivariate Splines and Their Applications, Table 10
Approximation errors from trivariate spline spaces

Spline spaces Matrix size Maximum errors
S13(#) 160 � 160 0.248542
S14(#) 280 � 280 0.048342
S15(#) 448 � 448 0.014806
S16(#) 672 � 672 0.001903
S17(#) 960 � 960 0.000756

over an octahedron ˝ as in Example 2. We use the same
tetrahedral partition as above. We find approximate weak
solutions from 3D spline spaces S1d (�) for d D 3; : : : ; 7
and Table 10 is a list of maximum errors against the ex-
act solution evaluated at 20 � 20 � 20 points over˝ .

It is possible to use spline space of variable degrees to ap-
proximate the solution of biharmonic equations. We refer
to [28] for an adaptive method to automatically adjust de-
grees and local refinement of triangulation for numerical
solution of biharmonic equations.

Bivariate Splines for Fluid Flow Simulations

In this section we use bivariate spline functions for numer-
ical solution of 2D Navier–Stokes equations which enable
us to do 2D fluid flow simulations. (See [4] for the trivari-
ate spline approximation of 3D Navier–Stokes equations.)
Our approach is like the finite element method using tri-
angles to approximate any given 2D polygonal domains
and using piecewise polynomials over triangulations to
approximate the solution of the Navier–Stokes equations.
The main different features are:

(1) no macro-element or locally supported spline func-
tions are constructed;

(2) polynomials of high degrees can be easily used to get
a better approximation power;

(3) smoothness can be imposed in a flexible way across
the domain at places where the solution is expected
to be smooth. For example, the solution of the steady
state Navier–Stokes equation is H2 inside the domain
andH1 near the boundary;

(4) themass and stiffnessmatrices can be assembled easily
and these processes can be done in parallel;

(5) the stream function formulation will be used and thus
the spline approximation of the solution of Navier–
Stokes equations satisfies the divergence-free condi-
tion exactly;

(6) the matrices that arise are singular which is an im-
portant difference from the classical finite element
method.

(7) our spline method leads to a linear system of special
structure. We introduce a special numerical method
to solve such particularly structured linear systems.

Let us first introduce the stream function formulation. Let
˝ � R2 be a simply connected domain and u D (u1; u2)T

be the planar velocity of a fluid flow over ˝ . Also, let p
be the pressure function, f D ( f1; f2)T be the external body
force of the fluid and g D (g1; g2)T be the velocity of the
fluid flow on the boundary @˝ . Then the steady state
Navier–Stokes equations are

8
ˆ̂<

ˆ̂
:

��
uC (u � r)uCrp D f ; (x; y) 2 ˝

div u D 0 ; (x; y) 2 ˝

u D g ; (x; y) 2 @˝ ;

(17)

where 
 denotes the usual Laplace operator and r the
gradient operator. After omitting the nonlinear terms, we
have the steady state Stokes’ equations:

8
ˆ̂<

ˆ̂
:

��
uCrp D f ; (x; y) 2 ˝

div u D 0 ; (x; y) 2 ˝

u D g ; (x; y) 2 @˝ :

(18)

Recall the fact that there exists a stream function ' such
that u D curl ', i. e., u1 D @'/@y; u2 D �@'/@x. Such '
is unique up to a constant (cf. [22]). Thus we may simplify
the above Stokes and Navier–Stokes equations by cancel-
ing the pressure term. Consider the Stokes equations first.
Replacing u by curl ' and then differentiating the first
equation with respect to y and the second with respect to x,
we subtract the first equation from the second one to ob-
tain the following fourth-order equation

�
2' D h

with h D @ f2
@x �

@ f1
@y . Thus, the Stokes equations become

a biharmonic equation:

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

�
2' D h ; in˝
@'
@x D �g2 ; on @˝
@'
@y D g1 ; on @˝

' D b2 ; on @˝

(19)

where b2 is an anti-derivative of the tangential derivative
of ' along @˝ and will be examined in detail later. By
a similar calculation, we easily see that the Navier–Stokes
equations become the following fourth-order nonlinear
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equation
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂:

�
2' � @
@y



@'
@y

@2'
@x@y �

@'
@x
@2'
@y2

�

� @
@x



@'
@y
@2'
@x2 �

@'
@x

@2'
@x@y

�
D h ; in˝

@'
@x D �g2 ; on @˝
@'
@y D g1 ; on @˝

' D b2 ; on @˝ :

(20)

Let H2(˝) be the usual Sobolev space and H2
0(˝) be

the subspace of H2(˝) of functions whose derivatives of
order less than or equal to one all vanish on the boundary
@˝ . Define the bilinear form a2('; ) and trilinear form
q(�; ';  ) by

a2('; ) D
Z

˝


'(x; y)
 (x; y) dxdy

q(�; ';  ) D
Z

˝


�(x; y)
�
@'(x; y)
@x

@ (x; y)
@y

�
@'(x; y)
@y

@ (x; y)
@x

�
dxdy

and denote the L2(˝) inner product by

hh;  i D
Z

˝

h(x; y) (x; y) dxdy :

We that say ' 2 H2(˝) is a weak solution of the Stokes
equations (19) if ' satisfies the following
8
ˆ̂̂
<̂

ˆ̂̂
:̂

�a2('; ) D hh;  i ; 8  2 H2
0(˝)

@'
@x D �g2 ; on @˝
@'
@y D g1 ; on @˝

' D b2 ; on @˝ :

Multivariate Splines and Their Applications, Figure 27
A triangular domain and the stream lines of the triangular driven cavity flow (Reynolds number = 100)

Similarly, a function ' 2 H2(˝) is a weak solution of the
Navier–Stokes equations (20) if ' satisfies

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

�a2('; )C q('; ';  ) D hh ;  i; 8  2 H2
0(˝)

@'
@x D �g2 ; on @˝
@'
@y D g1 ; on @˝

' D b2 ; on @˝ :

Such weak formulations are referred to as the stream func-
tion formulation of the Stokes and Navier–Stokes equa-
tions, respectively. It is known that the weak solution for
Stokes’ equations exists and is unique for any � > 0. For
the Navier–Stokes equations, such a weak solution exists
for any � > 0, and is unique when � is sufficiently large.
(See, e. g. [22]).

There are two major advantages to using the stream
function formulation over the traditional velocity-pres-
sure formulation and vorticity-stream function formula-
tion. Indeed, with the stream function formulation, we
need to approximate only one stream function. Otherwise,
we need to approximate two components of the velocity
and one pressure function if the velocity-pressure formu-
lation is used or one vorticity and one stream function if
the vorticity-stream function formulation is used. In addi-
tion, the stream function formulation eliminates the pres-
sure function which does not have an appropriate bound-
ary condition. In the vorticity-stream function formula-
tion, the vorticity function does not have an appropri-
ate boundary condition. With bivariate spline functions of
higher degrees, we are able to approximate stream func-
tions very well. Thus, in this paper, we will use bivariate
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Multivariate Splines and Their Applications, Figure 28
Contour of the vorticity and pressure of the driven cavity flow (Reynolds number =100)

splines to approximate the stream function of the Stokes
and Navier–Stokes equations.

Next we discuss the computation of the pressure
functions. By taking divergence, div, of the equations in
Eq. (17) and Eq. (18), we can easily see that the pres-
sure functions p of the Stokes and Navier–Stokes equa-
tions satisfy the following Poisson equations with nonho-
mogeneous Neumann boundary conditions involving the
stream functions.

(
�
p D �div (f) ; in˝
@p
@n D �
(n � curl ')C n � f on @˝

(21)

for the Stokes equation and

8
<̂

:̂

�
p D �div (f)C div [(curl ' � r)curl (')] ; in˝
@p
@n D �
(n � curl ')C n � f

Cn � [(curl ' � r)(curl ')] ; on @˝

(22)

for the Navier–Stokes equation. We will use these bound-
ary conditions to compute p after we find the spline ap-
proximations of the stream function '.

We finally present our numerical experiments.

Example 9 Let us consider the cavity flow over a triangu-
lar domain. We uniformly refine the triangle as shown in
Fig. 27 and use bivariate splines of degree 8 and smooth-
ness 2. The boundary conditions are u D (u1; u2) D (0; 0)
for all three line boundary pieces except for u1(x; 1) D 1
when 0 � x � 1. With Reynolds numbers of 100, 1000,

Multivariate Splines and Their Applications, Figure 29
The stream lines of the triangular driven cavity flow (Reynolds
number = 1000)

and 5000, the stream lines of the cavity flow and the con-
tours of vorticity and pressure are shown in Figs. 27–32.

More examples on benchmark flows: the driven cavity
flow, the backward facing step flow, and the flow around
a circular object can be found in [41].

Multivariate Box SplineWavelets

Multivariate box splines have been used to generate
a multiresolution approximation of L2(Rn) and vari-
ous wavelets, e. g., orthonormal wavelets, orthonormal
wavelets in Sobolev spaces, biorthogonal wavelets, pre-
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Multivariate Splines and Their Applications, Figure 30
Contour of the vorticity and pressure of the driven cavity flow (Reynolds number = 1000)

Multivariate Splines and Their Applications, Figure 31
The Stream lines of the triangular driven cavity flow (Reynolds
number = 50000)

wavelets, and tight wavelet frames. In this section we just
give a construction of orthonormal wavelets when n D 2
and n D 3 based on the work by Riemenschneider and
Shen in [44] and leave the construction of other wavelets
to the papers [24,25,26,31,37]. A short summary of these
wavelets can be found in � Popular Wavelet Families and
Filters and Their Use.

Multiresolution Approximation Built by Box Splines

We begin with the definition of multiresolution approxi-
mation of L2(Rn).

Definition 1 A nested sequence of subspaces

� � � � V�1 � V0 � V1 � � � �

of L2(Rd ) form a multiresolution approximation if they
satisfy

1) 8 f 2 VkC1; f (�/2) 2 Vk and 8 f 2 Vk , f (2�) 2 VkC1
for all k 2 Z ;

2) 8 f 2 Vk , f (� � 2�k i) 2 Vk for all i 2 Zn ;
3) There exists � 2 V0 and two positive constantsC andD

such that

Ckfcigk22 � k
X

i

ci�(� � i)k22 � Dkfcigk22 ;

and
4) [1kD�1Vk is dense in L2(Rn) and \1kD�1 Vk D f0g :

Let � be a refinable function, e. g. � is a box spline func-
tion. We say that � generates a multi-resolution approxi-
mation of L2(Rd ) if the nested sequence of subspaces de-
fined by

V0 :D span f�(� � i) : i 2 Zdg

and

Vk :D f f (2k �) : f 2 V0g ; 8 k 2 Z

forms a multi-resolution approximation of L2(Rn).
We now consider a multiresolution approximation

built by box splines. Recall that the box spline �D asso-
ciates with a direction set D which is the function whose
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Multivariate Splines and Their Applications, Figure 32
Contour of the vorticity and pressure of the driven cavity flow (Reynolds number =50000)

Fourier transform is defined by

�̂D(!) D
Y

�2D

1 � e�i��!

i� � !
:

It is easy to see that �D is a refinable function satisfying

�D(x) D
X

k

pk�D(2x � k)

for some finitely many nonzero coefficients pk. Under
some assumption on D, the box spline function �D can
generate a multiresolution approximation of L2(Rn).

Theorem 29 Suppose that the direction set D satisfies

jdet(Y)j D 1; 8 Y � D with jY j D n :

Then there exist two positive constants A and B such that

Akfckgk22 � k
X

k2Zn

ck�D(� � k)k22 � Bkfckgk22

and �D generates a multi-resolution approximation of
L2(Rn).

The values of A and B can be computed by using Poisson’s
summation formula. In fact we have B D 1.

The multiresolution approximation of L2(Rn) built
by a box spline function can be used to construct or-
thonormal wavelets, biorthogonal wavelets, prewavelets,
and tight wavelet frames. In the following, we explain how
to construct orthonormal wavelets in L2(Rn) with n D 2
and n D 3. The construction of orthonormal wavelets in

Sobolev space, biorthogonal wavelets, prewavelets, and
tight wavelet frames based on box splines can be found
in � Popular Wavelet Families and Filters and Their Use.

We begin with the definition of orthonormal wavelets.
Let  k ; k 2 �nnf0g be wavelet functions if their integer
translates and dilations form an orthonormal basis for
L2(Rn). That is,

2 jn/2 k(2 j x � i) ; i 2 Zn ; j 2 Z ; k 2 �nnf0g

form an orthonormal basis for L2(Rn) in the sense that
they are orthonormal each and all of them span L2(Rn).

To construct such functions, we first look for an or-
thonormal scaling function � based on V0 D spanf�D(� �
k); k 2 Zng. We begin with the following concept: � is
orthonormal if
Z 1

�1

�(x � k)�(x � j)dx D

(
1 ; if k D j
0 ; otherwise :

It is easy to see the following equivalent condition by using
the Fourier transform and Parseval’s inequality:

Lemma 6 A function � is orthonormal if and only if
X

k

jb�(! C 2k�)j2 D 1; 8 ! 2 [0; 2�]n ;

whereb� stands for the Fourier transform of �.

Define � in terms of its Fourier transform by

b�(!) D
b�D(!)qP

k j
b�D(! C 2k�)j2

:
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Then we claim that the � defined above is an orthonormal
scaling function generating the same multiresolution ap-
proximation built by box spline �D under the assumption
that D satisfies the condition in Theorem 29.

Note that
P

k j
c�D(! C 2k�)j2 � A > 0. Thus, its

square root is well defined and hence, so is � . In fact,

1
qP

k j
c�D(! C 2k�)j2

D
X

k

ak(D)e jk!

with j D
p
�1 and the coefficients ak(D) being of expo-

nential decay, i. e.,

jak(D)j � Ce��jkj ; 8 k 2 Zn ;

for some positive constants C and . Therefore,

�(x) D
X

k

ak(D)�D(x � k) 2 V0 :

Similarly, we have
sX

k

jc�D(! C 2k�)j2 D
X

k

bk(D)e jk!

with the coefficients bi (D) being of exponential decay, i. e.,

jbk(D)j � Ce��jkj ; 8 k 2 Zn

for some positive constants C and . Thus,

�D(x) D
X

k

bk (D)�(x � k) :

Hence, the multiresolution approximation generated by �
is the same one generated by �D.

It is easy to verify that � defined above satisfies the or-
thonormal condition in Lemma 6. Thus, � is an orthonor-
mal refinable function.

Next we define the symbol of the mask associated
with � by

b�(!) D H(!/2)b�(!/2) :

H(!) is the lower-pass filter associated with the refinable
function � . For a later application, we need the following

Theorem 30 For ! 2 [0; 2�]s , we have
X

i2�n

jH(ej(!Ci	))j2 D 1 ;

where �n D f0; 1gn :

Orthonormal Box SplineWavelets

We are now ready to discuss the construction of orthonor-
mal box spline wavelets. Mainly we give the construction
of orthonormal box spline wavelets in R2 and R3. These
two cases are more important and of more interest for ap-
plications. Suppose that D � Zn with n D 2 or n D 3 sat-
isfies the condition in Theorem 29, i. e.,

jdet (Y)j D 1;8 Y � Xn with #Y D n; span(Y) D Rn :

For example, when s D 2, D consists of certain repetitions
of e1 D (1; 0), e2 D (0; 1), and e3 D (1; 1). Then we know
�D generates a multiresolution approximation of L2(R2).
Let � be the scaling function defined in the previous sub-
section which generates the same multiresolution approx-
imation of L2(R2) as �D does.

Denote by W0 the orthogonal complement of V0
in V1. Let �n D f0; 1gn . Then we are looking for
 k(t);8k 2 �nnf0g such that the integer translates of
them form an orthonormal basis ofW0.

Since  k 2 W0 � V1, we have

 ̂k(!) D Hk(!/2)�̂(!/2)

for some functions Hk(!), k 2 �n . For convenience, we
denote  0(t) :D �(t) and write H0(!) :D H(e j! ) where
H(e j!) is defined by

b 0(!) D b�(!) D H0(!/2)�̂(!/2) :

Thus, for any function f (t) D
P

k ck�(2t � k) 2 V1, we
can write it as a linear combination of the integer trans-
lates of  i for i 2 �n . That is,
X

k

ck2n/2�(2x � k) D
X

i2�n

X

k

ck;i i(x � k) :

Because of the orthonormality of  i’s, we have
X

i

jci j2 D
X

k2�n

X

i

jck;i j2 :

In terms of its Fourier transform, we have

C(!/2)�̂(!/2) D
X

k2�n

Ck(!)Hk(!/2)�̂(!/2) ;

where

C(!) D
X

i

cie ji! and Ck(!) D
X

i

ck;ie ji! :

Thus, we have

C(!) D
X

k2�n

Ck(2!)Hk(!)
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and
X

i

jci j2 D
1

(2�)n

Z

[0;2	]n
jC(!)j2 d!

D
X

k2�n

X

j2�n

1
(2�)n

Z

[0;2	]n
Ck (2!)Cj(2!)

� Hk(!)Hj(!)d!

D
X

k2�n

X

j2�n

1
(2�)n

Z

[0;	]n
Ck (2!)Cj(2!)

�
X

i2�n

Hk(! C i�)Hj(! C i�)d!

which is equal to
X

k2�n

X

i

jck;i j2

for all fcigi2Zn if and only if
X

i2�n

jHk(! C i�)j2 D 1 ; 8 k 2 �n

X

i2�n

Hk(! C i�)Hj(! C i�) D 0 ; j 6D k :

We shall call this condition the perfect reconstruction con-
dition, which is, in fact, the condition for a perfect re-
construction of an image when using a subband coding
scheme in image processing. From the experience of con-
structing univariate orthonormal wavelets, we would like
to choose

Hk(!) D e j�(k)�!
(
H0(! C k�) ; if C(D) is an integer
H0(! C k�) ; otherwise ;

for a mapping � from � 2 to � 2 defined by

�((0; 0)) D (0; 0); �((1; 0)) D (1; 1)
�((0; 1)) D (0; 1); �((1; 1)) D (1; 0)

and � from � 3 to � 3 defined by

�((0; 0; 0)) D (0; 0; 0) ; �((1; 0; 0)) D (1; 1; 0) ;
�((0; 1; 0)) D (0; 1; 1) ; �((1; 1; 0)) D (1; 0; 0) ;
�((0; 0; 1)) D (1; 0; 1) ; �((1; 0; 1)) D (0; 0; 1) ;
�((0; 1; 1)) D (0; 1; 0) ; �((1; 1; 1)) D (1; 1; 1) :

Here C(D) D
�P

x2D x
 ı

2.

Theorem 31 Let � be a mapping defined above. Then

(�(k) � �( j)) � (k C j) is an odd integer8 k 6D j

for all k; j 2 �n with n D 2 and n D 3.

See [44] for a proof. Then we can verify that such
chosen Hk’s satisfy the perfect reconstruction condi-
tion above. With the above construction, we know that
 k ; k 2 �nnf0g whose Fourier transform is defined by

b k(!) D Hk(!/2)b�(!/2) ;

are wavelets, where

Hk(!) D e
p
�1�(k)�!

(
H0(! C k�); if C(D) is an integer
H0(! C k�); otherwise :

Clearly, their integer translates form an orthonormal basis
ofW0, i. e.,

W0 D spanL2f k(� � i) : i 2 Zn ; k 2 �nnf0gg :

Thus,

V1 D spanL2 k(� � i) : i 2 Zn; k 2 �ng :

Therefore, we know that
˚
2k/2 i(2k � � j) : j 2 Zn ; i 2 �nnf0g; k 2 Z

�

is an orthonormal basis of L2(Rn), where n D 2 or n D 3.

Example 10 Consider n D 2 and D D f(1; 0); (0; 1);
(1; 1)g. Then �D is a piecewise linear function which is 1
at (1; 1) and 0 at other integers. Let

B(!) D 1
12

[6C2 cos!1C2 cos!2C2 cos(!1C!2)] > 0:

Thus, the z-transform of the lowpass filter H(e j!) associ-
ated with box spline scaling function � is

H(e j!) D

s
B(!)
B(2!)

�
1C e j!1

2

��
1C e j!2

2

�

�

 
1C e j(!1C!2)

2

!

D

s
B(!)
B(2!)

1
8



1C e j!1 C e j!2 C 2e j(!1C!2)

C e2 j!1 e j!2 C e j!1 e2 j!2 C e2 j(!1C!2)
�
:

Then, the Fourier transform of orthonormal box spline
wavelets k is given by

 ̂k(2!) D e j�(k)�!H((�1)jkje j!)c�D(!)

for k 2 f(1; 0); (0; 1); (1; 1)g. Figures of these wavelets can
be found in [12].
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Box Spline Tight Wavelet Frames

We begin with the definition of tight wavelet frames
based on multiresolution approximation of L2(R2). Given
a function  2 L2(R2), we set

 j;k(y) D 2 j (2 j y � k) :

Let � be a finite subset of L2(R2) and

�(� ) :D f j;k ;  2 �; j 2 Z; k 2 Z2g :

Definition 2 We say that�(� ) is a wavelet frame if there
exist two positive numbers A and B such that

Ak f k2L2(R2) �
X

g2�(� )

jh f ; gij2 � Bk f k2L2(R2)

for all f 2 L2(R2). �(� ) is a tight wavelet frame if it is
a wavelet frame with AD B. In this case, after a renormal-
ization of the g’s in � , we have

X

g2�(� )

jh f ; gij2 D k f k2L2(R2)

for all f 2 L2(R2).

It is well known (cf. [18]) that when�(� ) is a tight wavelet
frame, any f 2 L2(R2) can be recovered from g 2 �(� ),
i. e.

f D
X

g2�(� )

h f ; gig ; 8 f 2 L2(R2) :

Furthermore, if f D
P

g2�(� ) cg g for some coefficients
cg , then

P
g2�(� ) jcg j

2 �
P

g2�(� ) jh f ; gij
2. That is, the

norm of the coefficients fh f ; gi; g 2 �(� )g is the smallest
among all the coefficient sequences to represent f .

Let �D 2 L2(R2) be a box spline based on the direction
set D � R2. Then it is easy to see that

�̂D(!) D P(!/2)�̂D(!/2)

where P(!) is a trigonometric polynomial in ei! . P is often
called themask of refinable function �D. To construct a set
of tight wavelet framelets  (i); i D 1; : : : ;N , we look for
Qi (trigonometric polynomial) such that

P(!)P(! C `)C
NX

iD0

Qi(!)Qi (! C `)

D

(
1 ; if ` D 0 ;
0 ; ` 2 f0; 1g2�nf0g :

(23)

The conditions (23) are called the Unitary Extension Prin-
ciple (UEP) in [19]. With these Qi’s we can define wavelet
framelets (i) defined in terms of the Fourier transform by

 ̂ (i)(!) D Qi(!/2)�̂D(!/2) ; i D 1; : : : ; r : (24)

Then, we know [37], � D f (i); i D 1; : : : ; rg generates
a tight frame, i. e.,�(� ) is a tight wavelet frame.

Furthermore, lettingQ be a rectangular matrix defined
by

Q D
2

6
6
4

Q1(�; �) Q1(� C 	; �) Q1(�; �C 	) Q1(� C 	; �C 	)
Q2(�; �) Q2(� C 	; �) Q2(�; �C 	) Q2(� C 	; �C 	)
Q3(�; �) Q3(� C 	; �) Q3(� C 	; �) Q3(� C 	; �C 	)
Q4(�; �) Q4(� C 	; �) Q4(� C 	; �) Q4(� C 	; �C 	)

3

7
7
5 ;

and P D (P(�; �); P(� C �; �); P(�; � C �); P(� C �; �C
�))T, (23) is simply

Q�Q D I4�4 � PPT : (25)

The construction of tight wavelet frames is to findQ satis-
fying Eq. (25). Note that the mask P of box spline function
�D satisfies the following sub-QMF condition

X

`2f0;1g2	

jP(! C `)j2 � 1 : (26)

There is a constructive method in [37] to findQi satisfying
Eq. (25). Let us use bivariate box splines to illustrate how
to construct  (m)’s. Let e1 D (1; 0); e2 D (0; 1); e3 D e1C
e2; e4 D e1�e2 and letD be a set of these vectors with some
repetitions. The box spline �D associated with direction
set Dmay be defined in terms of refinable equation by

�̂D(!) D PD

!
2

�
�̂D


!
2

�

where PD is the mask associated with �D defined by

PD(!) D
Y

�2D

1C e�i��!

2
:

Note that the mask PD satisfies (26). To be more precise,
we present an example of tight wavelet framelets based on
box spline �2211.

For box spline �2211 with D D fe1; e1; e2; e2; e3; e4g,
the graph of �2211 is shown in Fig. 33. We have

P2211(!) D
�
1C e1

2

�2�1C e2
2

�2�1C e3
2

��
1C e4

2

�
:

It is easy to check that

1 �
X

`2f0;1g2	

jP2211(! C `)j2 D
4X

iD1

jePi (!)j2 ;
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Multivariate Splines and Their Applications, Figure 33
Box spline�2211

whereeP1(!) D
p
1886
224 (1 � e4i!1 ),

eP2(!) D �
3
p
14

64
C

p
40531922
25472

C
3
p
14

32
e2i!2

�

 
3
p
14

64
C

p
40531922
25472

!

e4i!2

eP3(!) D
7
p
2

64
C

7
p
2

64
e4i!2 �

p
2

224
ei(4!1C2!2)

�
3
p
2

14
e2i(!1C!2) ;

and

eP4(!) D
p
398
112

C

p
398
112

e4i!1 �
3135
p
398

178304
e2i!1

�
7
p
398

25472
ei(2!1C4!2) :

Hence, we will have eight tight frame generators using the
constructive steps in [37]. These eight tight frames  m
which can be expressed in terms of Fourier transform by

b m(!) D Qm(!/2)b�2211(!/2) ;

where Qm ;m D 1; : : : ; 8 are given in terms of the coeffi-
cient matrix as follows: Q1 D

P8
jD0

P6
kD0 c jke

�i j!e�i k�

with

[c jk ]0� j�8
0�k�6

D
�1
2048

2

66
666
666
6
4

0 1 2 2 2 1 0
1 4 7 8 7 4 1
2 12 22 24 22 12 2
7 28 49 56 49 28 7
12 38 64 �948 64 38 12
7 28 49 56 49 28 7
2 12 22 24 22 12 2
1 4 7 8 7 4 1
0 1 2 2 2 1 0

3

77
777
777
7
5

;

Q2 D
P6

jD0
P6

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�6
0�k�6

D
�1
512

2

6
666
6666
4

0 1 2 2 2 1 0
1 4 7 8 7 4 1
2 7 12 14 12 7 2
2 8 14 �240 14 8 2
2 7 12 14 12 7 2
1 4 7 8 7 4 1
0 1 2 2 2 1 0

3

7
777
7777
5

;

Q3 D
P8

jD0
P8

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�8
0�k�8

D
�1
1024

2

66
666
666
666
66
4

0 0 0 1 2 1 0 0 0
0 0 1 4 6 4 1 0 0
0 1 4 11 16 11 4 1 0
1 4 11 24 32 24 11 4 1
2 6 16 32 �472 32 16 6 2
1 4 11 24 32 24 11 4 1
0 1 4 11 16 11 4 1 0
0 0 1 4 6 4 1 0 0
0 0 0 1 2 1 0 0 0

3

77
777
777
777
77
5

;

Q4 D
P6

jD0
P8

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�6
0�k�8

D
�1
2048

2

6
666
666
6
4

0 1 2 7 12 7 2 1 0
1 4 12 28 38 28 12 4 1
2 7 22 49 64 49 22 7 2
2 8 24 56 �948 56 24 8 2
2 7 22 49 64 49 22 7 2
1 4 12 28 38 28 12 4 1
0 1 2 7 12 7 2 1 0

3

7
777
777
7
5

;

Q5 D
P8

jD0
P8

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�8
0�k�8

D
�
p
2

28672

�

2

6
6
6
66
6
6
6
6
66
6
4

0 49 98 49 0 49 98 49 0
49 196 294 196 98 196 294 196 49
98 294 392 198 4 198 392 294 98
49 196 198 �188 �478 �188 198 196 49
0 49 �94 �529 �772 �529 �94 49 0
0 0 �98 �392 �588 �392 �98 0 0
0 0 �4 �108 �208 �108 �4 0 0
0 0 �2 �8 �12 �8 �2 0 0
0 0 0 �2 �4 �2 0 0 0

3

7
7
7
77
7
7
7
7
77
7
5

;
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and Q6 D
P8

jD0
P8

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�8
0�k�8

D
�
p
398

11411456

�

2

66
6
6
6
6
6
66
6
6
6
4

0 1592 3184 1592 0 0
1592 6368 9552 6368 1592 0
3184 6417 6466 6417 3184 �49
�1543 �6172 �9258 �6172 �1592 �196
�6270 �15626 �18712 �15626 �6368 �294
�1543 �6172 �9258 �6172 �1592 �196
3184 6417 6466 6417 3184 �49
1592 6368 9552 6368 1592 0
0 1592 3184 1592 0 0

0 0 0
0 0 0
�98 �49 0
�294 �196 �49
�392 �294 �98
�294 �196 �49
�98 �49 0
0 0 0
0 0 0

3

7
7
7
77
7
7
7
7
77
7
5

:

Q7 has a complicated expression which is omitted
here for simplicity. Finally, we have Q8 D

P8
jD0P5

kD0 c jke
�i j!e�i k� with

[c jk ]0� j�8
0�k�5

D
�
p
1886

14336

2

66
666
666
666
66
4

0 1 2 1 0
1 4 6 4 1
2 6 8 6 2
1 4 6 4 1
0 0 0 0 0
�1 �4 �6 �4 �1
�2 �6 �8 �6 �2
�1 �4 �6 �4 �1
0 �1 �2 �1 0

3

77
777
777
777
77
5

:

These coefficient matrices are high-pass filters associated
with low-pass filter P2211. They satisfy (25) which is an
exact reconstruction condition. They have been imple-
mented for image denoising and edge detection. They
work very well. Numerical experiment results are omitted
here.

Open Research Problems

Although there has been much progress in the develop-
ment of theory and applications of multivariate splines in
the last 20 years, there are still many research problems left
open. Some of the famous open problems are listed below:

1) Schumaker’s conjecture Let T D hv1; v2; v3i be a tri-
angle in R2. For a positive integer d > 0, let
�i jk ; i C jC k D d be the domain points of degree d
on T and Bi jk(x; y) be Bézier polynomials of degree d
with respect to T. That is,

�i jk D
1
d
(iv1C jv2Ckv3) and Bi jk D

d!
i! j!k!

bi1b
j
2b

k
3

for i C jC k D d with b1; b2; b3 being the barycentric
coordinates of (x; y). Then the following determinant
�
Bi jk(�i 0; j0;k0)

�
(i; j;k);(i 0; j0;k0)2I

is nonzero for any subset I of the triple index set
f(i; j; k); i C jC k D dg. For small values of d, e. g.,
d D 1 and d D 2, one can easily verify this conjecture.
Schumaker’s conjecture claims that the above determi-
nant is not zero for any subset I and for any d � 1. Sim-
ilarly, we can consider a tetrahedron T and its domain
points and Bézier polynomials. Then Schumaker also
claims that the similar determinant is not zero.

2) Dimension of spline spaces In the bivariate setting,
what is the dimension of spline space Srd (�) when
d < 3r C 2? We note that the dimension of S12(�MS)
can be different depending on whether the Morgan–
Scott refinement of a triangle is symmetric or not.
When d < 3r C 2, the dimension of spline space Srd (�)
can not be equal to one value dependent only on r; d
and the numbers of vertices, edges and triangles of�. It
should be also dependent on the geometry and connec-
tivity properties of �. So far we have good lower and
upper bounds. The question is how to formulate the
geometry and connectivity properties into a dimension
formula for Srd (�). It is known that when d < 3r C 2,
the approximation order of Srd (�) will not be full for
general triangulations�. However, it is not known that
if the dimension of Srd (�) can be determined when
d < 3r C 2.

3) Lai’s conjecture The Lai conjecture was formulated by
Carl de Boor in [9] based on results in [15]. The con-
jecture says that if a spline space Srd (�) has the full
approximation order for a fixed r and d over a fixed
triangulation �, then SrdCk (�) has a full approxima-
tion order when k � 1. This conjecture is true when
d D 3r C 2. It is very interesting to know that it is true
for d < 3r C 2.

4) Approximation order of trivariate spline spaces We
do not know the approximation order of trivariate
spline spaces for general tetrahedral partitions when
d < 8r C 1. In [29], Lai tried to establish a result
that the approximation order is full for Srd (�) when
d � 6r C 3. The result was not published. In addition,
there is no evidence that when d < 6r C 3, the approx-
imation order is not full. The approximation order of
trivariate splines needs to be studied.

5) Tetrahedral partition for Worsey–Piper’s construc-
tion of macro-element In Worsey–Piper’s construc-



5840 M Multivariate Splines and Their Applications

tion of a C1 quadratic macro-element, they need a spe-
cial tetrahedral partition which satisfies the two strin-
gent conditions (Sect. “Construction of Finite Elements
and Macro-Elements”). A standing question is how to
partition an arbitrary polygonal domain into a tetrahe-
dra such that each tetrahedron of the partition satisfies
the Worsey–Piper conditions.

6) Integration over spherical triangles Recall that there
is a nice formula for integration of bivariate polynomi-
als over a planar triangle (cf. Lemma 1). However, when
considering spherical splines, such a formula is still not
available.
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Glossary

Balanced multiwavelet A multiwavelet for which the ex-
pansion coefficients for polynomials up to a certain
degree are polynomial sequences. Balanced multi-
wavelets do not require pre- or postprocessing.

Discrete multiwavelet transform (DMWT) The algo-
rithmwhich decomposes a signal into a coarse approx-
imation and fine detail at several levels. A direct gen-
eralization of the Discrete Wavelet Transform (DWT)
for scalar wavelets.

Lifting Amethod for modifying an existing multiwavelet,
or building one from scratch. Lifting can be used to
impose approximation order, balancing, or symmetry.

Modulation matrix The modulation matrix

M(�) D
�
H(�) H(� C �)
G(�) G(� C �)

�
;

can be used to describe the action of the DMWT. It is
also used in the construction ofmultiwavelets by lifting
or TST.

Multiresolution, multiresolution approximation
(MRA) Multiresolution is the fundamental concept un-

derlying everything related to any kind of wavelet.
A signal is decomposed into a low resolution ap-
proximation, plus fine detail at one or more levels of
resolution. An MRA is a nested chain of subspaces
of L2 which describes this concept mathematically.

Multiscaling function, multiwavelet function, multi-
wavelet Amultiwavelet of multiplicity r consists of amul-

tiscaling function and a multiwavelet function. Both
are functions from R to Cr, that is, function vec-
tors. Multiwavelets are not the same as multivariate
wavelets, which are functions from Rn toC.
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Polyphase decomposition, polyphase matrix The poly-
phase decomposition separates a coefficient sequence
into two sequences, by even and odd subscripts. It can
be used to describe or implement the DMWT. The
polyphase matrix

P(z) D
�
H(0)(z) H(1)(z)
G(0)(z) G(1)(z)

�
;

is useful in the construction of multiwavelets, espe-
cially orthogonal multiwavelets.

Pre- and postprocessing Before a DMWT can be applied
to a signal, the signal needs to be written as a multi-
scaling function series. The DMWT works on the co-
efficients of the series expansion, not on the values
of the signal. For scalar wavelets the distinction can
usually be ignored, but not for multiwavelets. Hav-
ing a multiwavelet of approximation order p does not
mean that the coefficients of a polynomial up to order
p � 1 form a polynomial sequence. Preprocessing con-
verts point samples into expansion coefficients. Post-
processing does the opposite.

Refinable function vector, refinement equation A refin-
able function vector of multiplicity r is a function
from R to Cr which satisfies a refinement equation of
the form

�(x) D
p
2

k1X

kDk0

Hk �(2x � k)

with recursion coefficientsHk which are r�r matrices.
Symbol Given any sequence a D fakg, the symbol of a is

defined as

a(�) D
X

k

ake�i� or a(z) D
X

k

akzk ; z D e�i� ;

possibly with a normalizing factor. The sequence may
represent point samples of a signal, the recursion co-
efficients of a two-scale refinement equation, or other
quantities. Both the trigonometric and polynomial no-
tations are useful, depending on the setting; it is trivial
to switch back and forth between them.

Two-scale similarity transform (TST) The TST is
a way of moving approximation orders in a biorthog-
onal multiwavelet pair from one side to the other. For
scalar wavelets it corresponds to moving a factor of
(1C e�i�)/2 back and forth. The TST can be used to
modify an existing multiwavelet, or to build multi-
wavelets from scratch. It can also be used to impose
or characterize symmetry, approximation order and
balancing.

Definition of the Subject

Classical (scalar) wavelets have been around since the late
1980s and have become an indispensable tool in signal
processing, with further applications in numerical analy-
sis, operator theory, and other fields. Wavelets have been
generalized in many ways: wavelet packets, multivariate
wavelets, ridgelets, curvelets, vaguelettes, slantlets, second
generation wavelets, frames, and other constructions.

One such generalization are multiwavelets, which have
been around since the early 1990s. Multiwavelets use sev-
eral scaling and wavelet functions. Their construction is
more complicated than that of scalar wavelets, but the un-
derlying multiresolution concepts and the decomposition
and reconstruction algorithms are very similar.

Scalar wavelets are functions from R to C. Mul-
tiwavelets are functions from R to Cr . They include
scalar wavelets as the special case r D 1. Multiwavelets
are used to analyze one-dimensional signals, or higher-di-
mensional signals by using tensor products, just like scalar
wavelets. They should not be confused with multivariate
wavelets, which are functions from Rn to C, used to ana-
lyze higher-dimensional signals.

Multiwavelets have several advantages over scalar
wavelets: they can have short support coupled with high
smoothness and high approximation order, and they can
be both symmetric and orthogonal. They also have some
disadvantages: the algorithms require preprocessing and
postprocessing steps.

The applications are the same as for scalar wavelets:
signal compression, signal denoising, fast operator evalua-
tion in numerical analysis, Galerkin methods for differen-
tial and integral equations. Performance of multiwavelets
is similar to that of scalar wavelets, but implementation
requires a bit more effort, especially because of the need
for pre- and postprocessing. Multiwavelets are best used
in situations where their advantages (symmetry or short
support) outweigh the extra effort.

Introduction

The fundamental concept underlying everything related
to any kind of wavelet is multiresolution. A function (or
signal or image) is decomposed into a low resolution ap-
proximation plus fine detail at one or more levels of res-
olution (see Fig. 3). Scalar wavelets use a scaling function
for the coarse approximation, a wavelet function for the
fine detail. Multiwavelets use several scaling functions and
wavelet functions, combined into function vectors.

The first occurrence of multiwavelets is in the work of
Alpert [1], which uses piecewise polynomial multiwavelets
of high multiplicity. The Donovan–Geronimo–Hardin–
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Multiwavelets, Figure 1
DGHMmultiwavelet

Massopust (DGHM) multiwavelet [21] is commonly con-
sidered to be the first nontrivial example.

The DGHMmultiscaling function is a vector

�(x) D
�
�1(x)
�2(x)

�

which satisfies a recursion relation

�(x) D
1
20

��
12 16

p
2

�
p
2 �6

�
�(2x)

C

�
12 0
9
p
2 20

�
�(2x � 1)

C

�
0 0

9
p
2 �6

�
�(2x � 2)

C

�
0 0
�
p
2 0

�
�(2x � 3)

�
:

The first scaling function �1 is supported on [0; 1] and is
symmetric about x D 1/2. The second scaling function �2
is supported on [0; 2], symmetric about x D 1. These func-
tions and their integer translates are orthonormal, that is,
Z
�i (x)� j(x � k)dx D ıi jı0k :

They have approximation order 2, which means that
f (x) D 1 and f (x) D x can be written as linear combina-
tions of integer shifts of �1, �2. The scaling functions as
well as the corresponding wavelet functions are shown in
Fig. 1. The wavelet functions have support on [0; 2] and
are symmetric/antisymmetric about x D 1. They are also
orthogonal to each other and to the � j .

Many other examples have been constructed since
then. Much of the theory is due to Strela and Plonka, in
their individual and joint papers in the late 1990s.

The most comprehensive treatment of multiwavelets
in the literature is the book [34]. Useful survey articles
include [48,55].

The theory of multiwavelets parallels the theory of
scalar wavelets. It is highly recommended that any-
one studying multiwavelets become familiar with scalar
wavelets first. Good introductions to scalar wavelets can
be found in [15,34], or [54].

This article assumes that the reader is familiar with
scalar wavelets. It is brief on the aspects of multiwavelets
which are essentially the same as for scalar wavelets, and
gives more details on the areas where they differ. Similari-
ties and differences are pointed out in many places.

The main body of this article is divided into three log-
ical parts. The first part (Sects. “Refinable Function Vec-
tors” through “Moments and Approximation Order”) de-
scribes the basic theory and properties of the multiscaling
and multiwavelet functions. The second part (Sects. “The
Discrete Multiwavelet Transform (DMWT) Algorithm”
through “Applications”) describes the practical implemen-
tation of the Discrete Multiwavelet Transform (DMWT).
The third part (Sects. “Polyphase Factorization” through
“Two-Scale Similarity Transform (TST)”) describes tech-
niques for building multiwavelets, or modifying existing
multiwavelets.

For conciseness, we make some simplifying as-
sumptions:

� The dilation factor is 2, not a general m � 2.
� All functions satisfy recursion relations with finitely

many coefficients and have compact support.
� All multiscaling functions satisfy the basic regularity

conditions described in Sect. “Refinable Function Vec-
tors”, and lie in L1 and L2.

Refinable Function Vectors

A refinable function vector is a vector-valued function

�(x) D

0

B
@

�1(x)
:::

�r(x)

1

C
A ; � j : R! C ;
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which satisfies a two-scale matrix refinement equation of
the form

�(x) D
p
2

k1X

kDk0

Hk �(2x � k) : (1)

r is called the multiplicity of �. The recursion coeffi-
cients Hk are r � r matrices. Scalar wavelets are a special
case, for r D 1.

A pair �, �̃ of refinable function vectors is called
biorthogonal if

h�(x); �̃(x � k)i D
Z
�(x)�̃(x � k)�dx D ı0k I :

Here �̃� is the complex conjugate transpose of �̃, so this
inner product produces an r � r matrix. If � is biorthogo-
nal to itself, it is called orthogonal.

Note that the refinement Eq. (1) is similar to an eigen-
value problem: if � is a solution, so is any multiple of �.

There has to be a factor of 2 or
p
2 in all formulas based

on Eq. (1), just as there has to be a factor of 2� somewhere
in every definition of the Fourier transform, but differ-
ent authors put it in different places. Formulas from other
sources may differ slightly from those in this article.

The support of � is contained in the interval [k0; k1].
It may be strictly shorter if the first or last recursion coeffi-
cient Hk0 , Hk1 is nilpotent. This happens in the case of the
DGHMmultiwavelet.

The symbol of a refinable function vector is the
trigonometric matrix polynomial

H(�) D
1
p
2

k1X

kDk0

Hke�i k� : (2)

Equivalently we could use the matrix polynomial

H(z) D
1
p
2

k1X

kDk0

Hkzk ; z D e�i�

The refinement Eq. (1) can only have an L2-solution which
leads to stable algorithms if it satisfies the Basic Regularity
Conditions:

� H(0) satisfies Condition E. That is, H(0) has a simple
eigenvalue of 1, and all other eigenvalues are less than 1
in magnitude.

� The coefficientsHk satisfy the sum rules of order 1. That
is, y�0H(�) D 0, where y�0 is the left eigenvector ofH(0)
to eigenvalue 1. (See Eq. (6) for general sum rules).

The three main ways to prove existence and uniqueness
of � and obtain smoothness estimates carry over from
scalar wavelets: infinite product, Cascade Algorithm, and
eigenvalue problem. The second and third methods are
also practical ways of obtaining point values and graphs
of �.

We define the Fourier transform as

f̂ (�) D
1
p
2�

Z 1

�1

f (x)e�i x�dx :

The Fourier transform of refinement Eq. (1) is

�̂(�) D H
�
�

2

�
�̂

�
�

2

�
:

This leads to the formal infinite product

�̂(�) D

"
1Y

kD1

H(2�k�)

#

�̂(0) :

The infinite product can only rarely be evaluated in closed
form, but its convergence can be studied. Since everything
is done on the Fourier transform side, this approach can
be used to investigate distribution solutions.

The Cascade Algorithm is fixed point iteration applied
to the recursion relation. Select a suitable starting function
�(0)(x), and iterate:

�(nC1)(x) D
p
2

k1X

kDk0

Hk�
(n)(2x � k) :

The transition operator or transfer operator for the symbol
H(�) is defined by

TF(�) D H(�)F(�)H(�)�CH(�C�)F(�C�)H(�C�)� :
(3)

If the transition operator satisfies condition E, the cascade
algorithm converges for any starting function �(0) which
satisfies

y�0
k1X

kDk0

�(0)(k) D c ¤ 0 :

This condition essentially states that�(0) must have a com-
ponent in the direction of �. Compare Eq. (5).

A third approach is the eigenvalue method. Write
out the refinement equation at all integer points in the
support:

�( j) D
p
2

k1X

kDk0

Hk �(2 j � k)

D
p
2

k1X

kDk0

H2 j�k �(k) ; j D k0; : : : ; k1 :
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This is an eigenvalue problem

� D T� ;

where

� D

0

BBB
@

�(k0)
�(k0 C 1)

:::

�(k1)

1

CCC
A
; Tjk D

p
2H2 j�k ; k0 � j; k � k1 :

The basic regularity conditions guarantee that (y�0 ; y
�
0 ;

: : : ; y�0 ) is a left eigenvector to eigenvalue 1, so a right
eigenvector also exists. The right eigenvector is often
unique, but not always, so this method can fail.

UnlessHk0 orHk1 have an eigenvalue of 1/
p
2, the val-

ues of � at k0 and k1 are zero, and we can reduce the size
of � and T.

Once the values of � at the integers have been deter-
mined, we can use the refinement equation to obtain val-
ues at points of the form k/2, k 2 Z, then k/22, and so on
to any desired resolution.

A necessary condition for biorthogonality is
X

k

Hk H̃�k�2 j D ı0 j I ;

or equivalently

H(�)H̃(�)� C H(� C �)H̃(� C �)� D I :

These conditions are sufficient if the cascade algorithm for
�, �̃ converges.

MultiresolutionApproximation
and DiscreteMultiwavelet Transform

The contents of this section parallel corresponding results
for scalar wavelets.

Definition 1 A Multiresolution Approximation (MRA)
of L2 is a doubly infinite nested sequence of subspaces of L2

� � � � V�1 � V0 � V1 � V2 � : : :

with properties

(i)
S

n Vn is dense in L2

(ii)
T

n Vn D f0g
(iii) f (x) 2 Vn () f (2x) 2 VnC1 for all n 2 Z
(iv) f (x) 2 Vn () f (x � 2�nk) 2 Vn for all n; k 2 Z
(v) There exists a function vector � 2 L2 so that

f� j(x � k) : j D 1; : : : ; r; k 2 Zg

forms a stable basis of V0.

The vector of basis functions � is called the multi-
scaling function. The MRA is called orthogonal if � is
orthogonal.

Condition (v) means that any f 2 V0 can be written
uniquely as

f (x) D
X

k2Z

f�k �(x � k)

with convergence in the L2-sense; and there exist constants
0 < A � B, independent of f , so that

A
X

k

kfkk22 � k f k
2
2 � B

X

k

kfkk22 :

Condition (iii) expresses the main property of an MRA:
each Vn consists of the functions in V0 compressed by
a factor of 2n. Thus, a stable basis of Vn is given by
f�n;k : k 2 Zg, where

�n;k(x) D 2n/2�(2nx � k) :

The factor 2n/2 preserves the L2-norm.
Since V0 � V1, � can be written in terms of the basis

of V1 as

�(x) D
X

k

Hk�1k(x) D
p
2
X

k

Hk�(2x � k)

for some coefficient matrices Hk. In other words, � is
refinable.

If the MRA is not orthogonal, further development re-
quires the existence of a secondMRA based on a dual mul-
tiscaling function �̃ biorthogonal to �.

The projection of an arbitrary function f 2 L2 ontoVn
is given by

Pn f D
X

k

h f ; �̃n;ki�n;k :

The basis functions �n;k are shifted in steps of 2�n as
k varies, so Pn f cannot represent any detail on a scale
smaller than that. We say that the functions in Vn have
resolution 2�n or scale 2�n . Pn f is called an approxima-
tion to f at resolution 2�n . An MRA provides a sequence
of approximations Pn f of increasing accuracy to a given
function f . For f 2 L2, Pn f ! f in L2 as n!1.

The true power of the multiresolution approach arises
from considering the differences between approximations
at different levels. The difference between the approxima-
tions at resolution 2�n and 2�n�1 is called the fine detail
at resolution 2�n :

Qn f (x) D PnC1 f (x)� Pn f (x) :
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Multiwavelets, Figure 2
The spaces Vn andWn

Qn is also a projection (orthogonal if the MRA is orthogo-
nal). Its rangeWn satisfies

Vn ˚Wn D VnC1 :

The two sequences of spaces fVng and fWng and their
relationships can be graphically represented as in Fig. 2

The sequence of spaces fWng satisfies conditions sim-
ilar to conditions (i) through (v) of an MRA, except that
the Wn are linearly independent (mutually orthogonal if
the MRA is orthogonal) instead of nested.

A basis for W0 is given by the integer translates of
a function vector  called the multiwavelet function. The
multiscaling function � and multiwavelet function  to-
gether form amultiwavelet.

For multiwavelets there is no simple formula for find-
ing  , like in the scalar case. A construction for finding  
is given in Sect. “Polyphase Factorization”.

In terms of the multiwavelet functions, the projection
Qn is given by

Qn f D
X

k

h f ;  ̃n;ki n;k :

We now come to the main concept: the Discrete Multi-
wavelet Transform (DMWT).

Given a function f 2 L2, we can represent it as

f D
1X

kD�1

Qk f

(complete decomposition in terms of detail at all levels),
or we can start at any level N and represent f by its the
approximation at resolution 2�N plus all the detail at finer
resolution:

f D PN f C
1X

kDN

Qk f :

For practical applications, we need to reduce this to a finite
sum. We replace f by Pn f for some n. Then

Pn f D PN f C
n�1X

kDN

Qk f :

This equation describes the DMWT: a high-resolution ap-
proximation Pn f to the original function or signal f gets
decomposed into a coarse approximation PN f , and fine
detail at several resolutions. See Fig. 3 for illustration. The
decomposition as well as the reconstruction can be per-
formed very efficiently on a computer. Implementation
details are presented in Sect. “The Discrete Multiwavelet
Transform (DMWT) Algorithm”.

Moments and ApproximationOrder

One of themain properties of interest is the approximation
order of amultiscaling function. A high approximation or-
der is the basis for good performance in data compression
and other applications. The results in this section are sim-
ilar to corresponding results for scalar wavelets.

Definition 2 The kth discrete moment of �,  is defined
by

Mk D
1
p
2

X

j

jkH j ; Nk D
1
p
2

X

j

jkG j :

Discrete moments are r � r matrices. They are uniquely
defined and easy to calculate. In particular, M0 D H(0).

Definition 3 The kth continuous moment of �,  is

�k D

Z
xk�(x)dx ; �k D

Z
xk (x)dx :

Continuous moments are r-vectors.
Continuous and discrete moments are related by

�k D m�k
kX

tD0

 
k
t

!

Mk�t�t ;

�k D m�k
kX

tD0

 
k
t

!

Nk�t�t :

(4)

In particular,

�0 D M0�0 D H(0)�0 :

�0 is only defined up to a constant multiple. Its scaling
depends on the scaling of �. For a biorthogonal pair �, �̃,
the correct scaling is given by

�̃�0

 
X

k

�(k)

!

D �̃�0

�Z
�(x)dx

�
D �̃�0�0 D 1 : (5)
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Multiwavelets, Figure 3
P0f (a), Q0f (b),Q1f (c), and P2f D P0f C Q0f C Q1f (d) for f (x) D sin x

Unlike the scalar case, the sum of point values at the inte-
gers and the integral do not have to be the same. They just
have to have the same inner product with �̃0 (which is the
same as y0 defined below).

For orthogonal �,

k�k2 D

rX

kD1

k�kk
2 D r ; k�0k D 1 :

For biorthogonal multiwavelets we cannot in general
achieve both k�0k D 1 and k�̃0k D 1.

Once �0 has been chosen, all other continuous mo-
ments are uniquely defined and can be computed from
Eqs. (4).

Definition 4 The multiscaling function � provides ap-
proximation order p if

k f (x)� Pn f (x)k D O(2�np) ; kQn f k D O(2�np) :

whenever f has p continuous derivatives.

Definition 5 � has accuracy p if all polynomials up to
order p � 1 can be represented as

xn D
X

k

c�n;k�(x � k); n D 0; : : : ; p � 1

for some coefficient vectors cn;k .

Definition 6 The recursion coefficients fHkg satisfy the
sum rules of order p if there exist vectors y0; : : : ; yp�1 with
y0 ¤ 0, which satisfy

nX

tD0

 
n
t

!

2t(�i)n�ty�t D
n�tH(0) D y�n ;

nX

tD0

 
n
t

!

2t(�i)n�ty�t D
n�tH(�) D 0� ;

(6)

for n D 0; : : : ; p � 1. D stands for the derivative operator.
The vectors yn are called the approximation vectors. Note
that y0 D �̃0.

For scalar wavelets, the sum rules of order p reduce to
“H(�) has a zero of order p at � D � .”

As in the scalar case, approximation order p, accuracy
p, and the sum rules of order p are equivalent for suffi-
ciently regular �. They are also equivalent to the fact that
the dual multiwavelet function has p vanishing moments,
except that we need to specify vanishing continuous mo-
ments. In the scalar case, vanishing continuous moments
are equivalent to vanishing discrete moments, but in the
multiwavelet case the discrete moments arematrices. They
have to annihilate certain vectors, but they do not have to
be zero matrices.
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For multiwavelets, accuracy p does not mean that
the DMWT preserves polynomial sequences up to order
p � 1. See Sect. “Pre- and Postprocessing and Balanced
Multiwavelets” for details.

Approximation order p is also equivalent to a certain
factorization of the symbol, but not as simple as in the
scalar case. This TST factorization requires a lot of ma-
chinery, and will be presented in Sect. “Two-Scale Similar-
ity Transform (TST)”.

The DiscreteMultiwavelet
Transform (DMWT) Algorithm

In this section we describe the implementation of the
DMWT. The idea behind it was already explained in
Sect. “Multiresolution Approximation andDiscrete Multi-
wavelet Transform”. We describe it in four different ways.
All of them, except for the modulation formulation, can be
used as the basis of a computer implementation.

We assume that the original signal is s(x). The algo-
rithm starts at some resolution level n with the coefficient
sequence sn D fsn;kg from

Pns(x) D
X

k

hs; �̃n;ki�n;k(x) D
X

k

s�n;k�n;k(x) :

The decomposed signal consists of sn�1, dn�1. Note that
these are sequences of vectors, and the recursion coef-
ficients are matrices. We can interpret the algorithm in
terms of convolutions and down- and upsampling as in
the scalar case, but they are block convolutions and block
down- and upsampling.

The operation count for the complete algorithm
is O(N), as in the scalar case. All formulations of the al-
gorithm are straightforward generalizations of the scalar
Discrete Wavelet Transform.

Direct Formulation

Decomposition:

sn�1; j D
X

k

H̃k�2 jsn;k ;

dn�1; j D
X

k

G̃k�2 jsn;k :

Reconstruction:

sn;k D
X

j

H�k�2 jsn�1; j C
X

j

G�k�2 jdn�1; j :

Matrix Formulation

The decomposition and reconstruction steps can be inter-
preted as infinite matrix-vector products. The formulation

becomes nicer if we interleave the s- and d-coefficients:

(sd)n�1; j D
�
sn�1; j
dn�1; j

�
; L̃k D

�
H̃2k H̃2kC1
G̃2k G̃2kC1

�
:

Then
0

BB
BBB
B
@

:::

(sd)n�1;�1
(sd)n�1;0
(sd)n�1;1

:::

1

CC
CCC
C
A

D

0

BB
BB
@

: : : : : : : : :

: : : L̃�1 L̃0 L̃1 : : :

: : : L̃�1 L̃0 L̃1 : : :

: : : L̃�1 L̃0 L̃1 : : :

: : : : : : : : :

1

CC
CC
A

0

BBB
BBB
@

:::

sn;�1
sn;0
sn;1
:::

1

CCC
CCC
A

;

(7)

or simply

(sd)n�1 D L̃ sn :

L is an infinite banded block Toeplitz matrix with blocks
of size 2r � 2r.

The reconstruction step can be similarly written as

sn D L�(sd)n�1 :

The perfect reconstruction condition is expressed as

L�L̃ D I :

Modulation Formulation

This is a way of thinking about the algorithm and verify-
ing the perfect reconstruction conditions. It is not a way to
actually implement it.

We associate with the signal sequence sn D fsn;kg its
symbol

sn(�) D
X

k

sn;ke�i k� :

We can write the algorithm in matrix form as
�
sn�1(2�)
dn�1(2�)

�
D M̃(�) �

1
p
2

�
sn(�)

sn(� C �)

�
;

1
p
2

�
sn(�)

sn(� C �)

�
D M(�)�

�
sn�1(2�)
dn�1(2�)

�
:

The matrix

M(�) D
�
H(�) H(� C �)
G(�) G(� C �)

�

is called the modulation matrix. The perfect reconstruc-
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tion condition becomes

M(�)�M̃(�) D I :

The modulation matrix of an orthogonal multiwavelet is
paraunitary, that is,

M(�)�M(�) D I :

Polyphase Formulation

Definition 7 The phases of the signal sn D fsn;kg are de-
fined by

s(0)n;k D sn;2k ; s(1)n;k D sn;2kC1 :

The corresponding polyphase symbols are given by

s(0)n (z) D
X

k

sn;2kzk ; s(1)n (z) D
X

k

sn;2kC1zk :

The phases and polyphase symbols of the coefficient se-
quences Hk, Gk are defined similarly. Note that the sym-
bols, defined in Eq. (2), have a factor of 1/

p
2 in front, the

polyphase symbols do not.
In matrix notation, the polyphase DMWT algorithm

can be written as
�
sn�1(z)
dn�1(z)

�
D P̃(z)

 
s(0)n (z)
s(1)n (z)

!

;

 
s(0)n (z)
s(1)n (z)

!

D P(z)�
�
sn�1(z)
dn�1(z)

�
;

where

P(z) D
�
H(0)(z) H(1)(z)
G(0)(z) G(1)(z)

�

is the polyphase matrix. The polyphase matrix has many
uses in building and modifying multiwavelets.

The perfect reconstruction condition is

P(z)� P̃(z) D I :

The polyphase matrix of an orthogonal multiwavelet is
paraunitary.

Pre- and Postprocessing
and BalancedMultiwavelets

The DMWT algorithm requires the initial expansion coef-
ficients sn;k . Frequently the available data consists of 	 n;k ,
which are equally spaced samples of the signal s. Convert-
ing 	 n;k to sn;k is called preprocessing or prefiltering. After

an inverse DMWT, converting sn;k back to function val-
ues is called postprocessing or postfiltering. Postprocessing
has to be the inverse of preprocessing to achieve perfect
reconstruction.

For real-valued scalar wavelets,

2�n/2�n;k D 2�n/2s(2�nk) � sn;k D hs; �̃n;ki ;

and we can usually ignore the distinction. This is not true
in general for multiwavelets, with some exceptions dis-
cussed below. Preprocessing and postprocessing steps are
necessary.

For simplicity we assume in the remainder of this sec-
tion that everything takes place at level n D 0, and drop
the subscript 0.

For a given signal s(x),

s�k D hs(x); �̃(x � k)i D
Z

s(x)�̃(x � k)�dx ;

	�k D
1
p
r

�
s(k); s

�
k C

1
r

�
; : : : ; s

�
k C

r � 1
r

��
:

The factor 1/
p
r in 	 k insures that for s(x) D 1 in the or-

thogonal case, kskk D k	 kk D 1.

Example For the DGHMmultiwavelet,

�0 D
1
p
3

�p
2
1

�
:

This means that the function s(x) D 1 is represented
by coefficients of the form s�k D 3�1/2(

p
2; 1), while

	�k D 2�1/2(1; 1).
If we use 	 k as the input for the DMWT, it will not

be preserved during decomposition, nor will the d coef-
ficients be zero. A preprocessing step needs to map (1; 1)
into a multiple of (

p
2; 1).

A quasi-interpolating prefilter of order p produces correct
	 k for all polynomials up to degree p � 1. An approxima-
tion order preserving prefilter of order p produces 	 k which
correspond to a polynomial of the correct degree with cor-
rect leading term, but possibly different lower-order terms.
This is sufficient to achieve good results in practice.

Some common ways of constructing prefilters are
listed below.

Interpolating Prefilters

Try to determine sk so that themultiscaling function series
matches the function values at the points xk; j D k C j/r:

X

n
s�j �(2xk j � n) D s(xk j) :
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This may or may not be possible for a given multiwavelet.
This approach preserves the approximation order but not
orthogonality. See [64].

Quadrature-Based Prefilters

Approximate the integral defining sk by a quadrature rule.
See [31].

Quadrature-based prefilters can always be found. They
preserve approximation order as long as the accuracy of
the quadrature rule is at least as high as the approximation
order. They do not usually preserve orthogonality.

Hardin–Roach Prefilters

These prefilters are designed to preserve orthogonality and
approximation order. Preprocessing is assumed to be lin-
ear filtering

sk D
X

j

Qk� j	 j , s(�) D Q(�)	 (�) :

This is an orthogonal transform if Q(�) is paraunitary.
It is proved in [28] that such prefilters exist for arbi-

trarily high approximation orders. Approximation order
preserving prefilters can be shorter than quasi-interpolat-
ing prefilters.

Details are described in [6,28]. Only approximation
order 2 has been worked out so far.

Other Prefilters

Other approaches to prefiltering can be found in [45,56,
62,65].

Balanced Multiwavelets

Balanced multiwavelets are specifically constructed to not
require preprocessing. A multiwavelet is balanced of or-
der p if the coefficient sequence sk of any polynomial up to
order p � 1 is a polynomial sequence of the same order.

The following two characterizations of balanced mul-
tiwavelets are given in [37].

Theorem 1 A multiwavelet is balanced of order p if and
only if one of the following equivalent conditions is satisfied:

(a) There exist constants r0 D 1, r1; : : : ; rp�1 so that the
symbol satisfies the sum rules of order p with approximation
vectors of the form

y�k D
�
�k

�
0
r

�
; �k

�
1
r

�
; : : : ; �k

�
r � 1
r

��
;

where

�k(x) D
kX

jD0

 
k
j

!

rk� j x j :

(b) The symbol factors as

H(�) D
1
2p

C(2�)pH0(�)C(�)�p (8)

with

C(�) D I � e0e�0 ; e�0 D
1
p
r
(1; 1; : : : ; 1) :

Part (a) are the standard sum rules (Eq. (6)) with approx-
imation vectors of a special form. Part (b) is the TST fac-
torization of Theorem 3 with all factors Ck equal, and of
a special form.

Other conditions are derived in [50].
Any multiwavelet with approximation order 1 can be

balanced of order 1, by replacing � with Q�(x) for a con-
stantmatrixQwhich satisfies y�0Q D e�0 . In the orthogonal
case, this is the Hardin–Roach prefilter for approximation
order 1.

Balancing of higher order is harder to enforce. In [10]
it is shown how balancing conditions can be imposed via
lifting steps. (Lifting is explained in Sect. “Lifting”.)

Other examples of balanced multiwavelets are given
in [10,35,37,38,50,51,52,66,67,69].

Other Multiwavelets
Which Do Not Require Preprocessing

Examples are totally interpolating (biorthogonal) multi-
wavelets (see [68]), and full rank multiwavelets from [11].

Boundary Handling

The DMWT operates on infinite sequences of coefficients.
In real life we can only work on finite sequences. We need
some procedures for handling the boundary.

The finite length DMWT should be linear, so it should
be of the form

(sd)n�1 D L̃nsn

for some matrix L̃n , in analogy with Eq. (7). In order to
preserve the usual definition of the DMWT as much as
possible, we postulate the form

L̃n D

0

@
L̃b

L̃i;n
L̃e

1

A ;

where

� The interior part L̃i;n is a segment of the infinite block
Toeplitz matrix L̃, and each row contains a complete
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set of coefficients. This part will make up most of the
matrix. L̃i;n approximately doubles in size when n is in-
creased by 1.

� The matrices L̃b at the beginning and L̃e at the end are
fairly small and remain unchanged at all levels. These
matrices will handle the boundaries.

� The entire matrix L̃n has the same block structure
as L̃ (each block row shifted by one compared to its
neighbors).

� L̃n is invertible, and its inverse matrix L�n has an analo-
gous structure.

In the orthogonal case, we also would like to preserve
L�1n D L�n .

There are a number of ways to find suitable bound-
ary coefficients. An excellent overview of the scalar case
can be found in Sect. 8.5 in [54]. For multiwavelets, all the
standard approaches that work for scalar wavelets appear
to carry over in practice, but very little has actually been
proved.

Data Extension Approach

This is easy to implement. We artificially extend the signal
across the boundaries so that each extended coefficient is
a linear combination of known coefficients.

For example, suppose the left border is at 0. We are
given s0;k for k � 0, but not for k < 0, and we want to
compute

s�1;0 D H̃�1s0;�1 C H̃0s0;0 C H̃1s0;1 C � � � :

If our extension method is

s0;�1 D As0;0 C Bs0;1 ;

then

s�1;0 D (H̃0 C AH�1)s0;0 C (H̃1 C BH�1)s0;1 C � � � :

The H- and G-coefficients that “stick out over the side”
when L̃ is truncated to L̃n are wrapped back inside.

This gives us L̃n , and its inverse will be L�n . There is no
guarantee that L̃n will not be singular, or that Ln D L̃��n
will have the correct form, but it often works in practice.

Special cases include the following:

� Periodic Extension: This is easy to do, and always
works. It preserves orthogonality and approximation
order 1. Periodic extension is not usually a good idea
unless the data are truly periodic. The jump at the
boundary leads to spurious large d-coefficients.

� Symmetric Extension: In the scalar case there are four
possibilities at each end: even or odd extension, and
whole-sample or half-sample, depending on whether
the boundary coefficient is repeated or not. This is an-
alyzed in detail in [13], where it is shown that if you
match the type of data extension correctly to the type
of symmetry of the scaling function, the DWTwill pre-
serve the symmetry across levels.
For multiwavelets there are many more possibilities of
symmetry and symmetric extension. Some cases are
treated in [63]. An ad hoc symmetric extension for the
DGHMmultiwavelet is used in [56].

� Zero, Constant or Linear Extension: These methods
appear to work for multiwavelets. They preserve the
corresponding approximation order (0, 1, or 2), but not
symmetry.

Matrix Completion Approach

This is a linear algebra approach based on finding suit-
able end blocks which guarantee L̃nL�n D I. It is described
for scalar wavelets in [40,54]. The extension of these re-
sults to multiwavelets is a subject of ongoing research by
the author of this article. Preliminary results indicate that
this approach works in practice, but there are some new
phenomena.

For example, for a multiscaling function of multiplic-
ity 2 and support length 3 one would expect to need one
boundary multiscaling function at each end, each com-
posed of two individual scaling functions. It turns out that
sometimes one has to use three individual scaling func-
tions at one end, and one at the other.

Boundary Function Approach

This approach is the most time-consuming, but it can pre-
serve both orthogonality and approximation order. The
idea is to introduce special boundary functions at each end
of the interval, and work out the resulting decomposition
and reconstruction algorithms.

For scalar wavelets, this approach was pioneered
in [5,17]. For multiwavelets, this has only been worked
out in detail for the case of the cubic Hermite multiscal-
ing function with one particular dual. The details are given
in [18], and they are quite lengthy.

Other Approaches

There is one variation on the boundary function ap-
proach that is easy to do and has no counterpart for scalar
wavelets. If we havemultiwaveletswith support on [�1; 1],
there is exactly one boundary-crossing multiscaling func-
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tion at each end, and it is already orthogonal to every-
thing inside. We can simply restrict the boundary func-
tion vector to the inside of the interval, and orthonormal-
ize the components among themselves. Examples for this
approach are given in [26,27].

This would also work for scalar wavelets, of course,
except there are no wavelet pairs with support in [�1; 1]
except the Haar wavelet. For multiwavelets, it is possible
to achieve arbitrarily high approximation order, plus sym-
metry, on [�1; 1] by taking the multiplicity high enough.

Applications

Scalar wavelets and multiwavelets both deal with one-di-
mensional signals. They have the same applications: signal
compression, signal denoising, fast operator evaluation in
numerical analysis, Galerkin methods for differential and
integral equations.

By far the largest part of wavelet applications in the lit-
erature deal with scalar wavelets. There are relatively few
articles that report on implementations and performance
for multiwavelets.

Some studies have compared the performance of scalar
wavelets and multiwavelets in image denoising and com-
pression, including [14,22,23,30,53,56,58,63]. The use of
multiwavelets for video compression is reported in the
thesis of Tham [59].

It appears that multiwavelets can do as well or better
than scalar wavelets, but careful attention must be paid
to preconditioning and handling of boundaries. The au-
thors of [56] report that multiwavelet filters with short
support produce fewer artifacts in the reconstruction of
compressed images.

The main advantage of multiwavelets over scalar
wavelets in numerical analysis lies in their short support,
which makes boundaries much easier to handle.

For integral equations, multiwavelets with support
[0; 1] can be used. At least some of the basis functions nec-
essarily must be discontinuous, but for integral equations
that is not a problem.

Indeed, the first appearance of such multiwavelets was
in the thesis and papers of Alpert (see [1,2,3,4]), before
the concept of multiwavelets was invented. Multiwavelet
methods for integral equations are also discussed in [16,
41,43,44,57,61].

For differential equations, multiwavelets with support
[�1; 1] can be used. Regularity and approximation order
can be raised to arbitrary levels by taking the multiplicity
high enough.

There is only one multiscaling function that crosses
each boundary. It is already orthogonal to all the inte-

rior functions, so constructing the boundary multiscaling
function is an easy matter: orthonormalize the truncated
boundary-crossing multiscaling function. This automati-
cally preserves approximation order. Finding the bound-
ary multiwavelet function still takes a little effort.

If symmetric/antisymmetric multiwavelets are used, it
is even possible to use only the antisymmetric components
of the boundary function vector for problems with zero
boundary conditions. Examples of suitable multiwavelets
can be found in [18,27].

Other papers about adapting multiwavelets to the so-
lution of differential equation include [3,8,9,39,42].

For an overview of the use of wavelets (including mul-
tiwavelets) in numerical analysis, see the collection [12].

Polyphase Factorization

Definition 8 An orthogonal projection factor of rank k,
1 � k � r � 1, is a linear paraunitary matrix of the form

F(z) D (I � UU�)C UU�z ;

where U has k orthonormal columns.

Theorem 2 Assume that P(z) is the polyphase matrix of an
orthogonal multiwavelet P(z) D P0 C P1z C � � � C Pnzn ,
with P0 ¤ 0, Pn ¤ 0. Then P(z) can be factored in the form

P(z) D QF1(z) : : : Fn(z) ;

where Q is a constant unitary matrix, and each Fj(z) is
a projection factor. The number of factors equals the poly-
nomial degree of P(z).

The proof is constructive and produces the factors one by
one. The factors are not necessarily unique.

The unitary matrix Q could also be put on the right,
but placing it on the left has one distinct advantage: the
factorization can be computed even if only the top rows
of P are know. The completion problem (finding the multi-
wavelet function if themultiscaling function is known) can
then be reduced to the problem of completing a constant
orthogonal matrix, which is easy.

Other completion methods can be found in [24,36,55].
The factorization theorem for biorthogonal multi-

wavelets is considerably more complex. In addition to pro-
jection factors it also requires so-called atoms. Details can
be found in [32,34]. In [49], atoms are called pseudo-iden-
tity matrix pairs.

The polyphase factorization can be used to construct
orthogonal or biorthogonal multiwavelets from scratch.
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Lifting

The lifting process is for constructing or modifying scalar
wavelets or multiwavelets. It does not preserve orthogo-
nality.

Assume we have a pair of matrix polynomials sat-
isfying P(z)� P̃(z) D I. We can interpret these as the
polyphase matrices of a biorthogonal multiwavelet pair.
The DMWT algorithm works for purely algebraic reasons,
whether or not the coefficients are actually associated with
multiscaling and multiwavelet functions.

Given any other pair satisfying L(z)� L̃(z) D I, we ob-
tain a new pair
�
L(z)P(z)

�� �L̃(z)P̃(z)
�
D I :

The idea behind lifting is to use L(z), L̃(z) of a special form.
A lifting step is based on

L(z) D
�
I A(z)
0 I

�
; L̃(z) D

�
I 0

�A(z)� I

�

for arbitrary A(z). The effect on the symbols is

Hnew(z) D H(z)C A(z2)G(z)
Gnew(z) D G(z) ;
H̃new(z) D H̃(z) ;

G̃new(z) D G̃(z) � A(z2)�H̃(z) :

This means that the multiscaling function � changes, but
its dual �̃ does not.

A dual lifting step is based on

L(z) D
�

I 0
B(z) I

�
; L̃(z) D

�
I �B(z)�

0 I

�
:

It has a similar effect, with the roles of �, �̃ reversed. Note
that some authors use a reverse definition of lifting and
dual lifting steps.

For scalar wavelets, it is shown in [19] that every
polyphase matrix can be factored entirely into lifting steps.
An implementation of the DWT based on this factoriza-
tion is faster than a direct implementation.

There is a corresponding theorem for multiwavelets
(see [20]), but it requires some extra factors (unit trian-
gular and diagonal matrices). It is not clear that this fac-
torization is as useful as in the scalar case.

In a lifting step, conditions can be put on A(z) that
will create a new�with higher approximation order, while
keeping �̃ and its approximation order the same. Likewise,
a dual lifting step can increase the approximation order of
�̃. For details see [33].

A lifting procedure which imposes symmetry condi-
tions is described in [60]. A lifting procedure which im-
poses balancing conditions is described in [10]. Other pa-
pers on multiwavelet lifting include [7,8,25].

Two-Scale Similarity Transform (TST)

The two-scale similarity transform (TST) is a new, non-
obvious construction for multiwavelets that has no coun-
terpart for scalar wavelets (or rather, the concept is so triv-
ial there that it did not need a name). Like lifting, it does
not preserve orthogonality.

One application is a characterization of approxima-
tion order which is useful for both theoretical and prac-
tical purposes. It leads to the counterpart of the statement
“the symbol H(�) satisfies the sum rules of order p if and
only if it contains a factor of (1C e�i�)p .” The TST fac-
torization can also be used to characterize balanced multi-
wavelets and symmetric multiwavelets.

Assume that � is a refinable function vector, and let

�new(x) D
X

k

Ck�(x � k)

for some coefficient matrices Ck. Then

�̂new(�) D C(�)�̂(�) ; C(�) D
X

k

Cke�i k� :

If C(�) is nonsingular for all � , then

�̂new(2�) D C(2�)�̂(2�) D C(2�)H(�)�̂(�)

D C(2�)H(�)C(�)�1�̂new(�) :

This means that �new is again refinable with sym-
bol Hnew(�) D C(2�)H(�)C(�)�1. This is a basis change
which leaves all the spaces Vn in the MRA invariant.

We can also allow singular C(�) of a special type, and
this is actually the more interesting application of this idea.

Definition 9 A TST matrix is a 2�-periodic, contin-
uously differentiable matrix-valued function C(�) which
satisfies

� C(�) is invertible for � ¤ 2�k, k 2 Z.
� C(0) has a simple eigenvalue 0 with left and right eigen-

vectors l and r.
� This eigenvalue satisfies 0(0) ¤ 0.

The last statement requires a brief explanation: as � varies,
the eigenvalues of C(�) vary continuously with � . Simple
eigenvalues vary in a differentiable manner. (�) is the
eigenvalue for which (0) D 0. In some neighborhood of
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the origin, (�) is uniquely defined and differentiable. This
derivative must be nonzero at 0.

If C(�) is a TST matrix, then

C0(�) D (1 � e�i�)C(�)�1

is well-defined for all � .
The standard example is

C(�) D I � rl�e�i� D (I � rl�)C rl�(1 � e�i�) ;

C(�)�1 D (I � rl�)C
rl�

1 � e�i�
; � ¤ 2�k ;

C0(�) D rl� C (I � rl�)(1 � e�i�) ;

where l and r are normalized to l�r D 1. Here r(�) D r,
(�) D 1 � e�i� , so 0(0) D i ¤ 0.

Main Definition
Hnew is a TST of H if

Hnew(�) D
1
2
C(2�)H(�)C(�)�1

for a TST matrix C(�) for which C(0) and H(0) share
a common right eigenvector r.

Hnew is an inverse TST of H if

Hnew(�) D 2C(2�)�1H(�)C(�)

for a TST matrix C(�) for which C(0), H(0), H(�) share
a common left eigenvector l.

IfC is a TSTmatrix forH, it automatically satisfies the con-
ditions to be an inverse TST matrix for H̃new. The eigen-
vector conditions ensure that H̃new has an approximation
order one higher than before, and H̃new has an approxima-
tion order one lower. This is a way of moving approxima-
tion orders from one side to the other. For scalar wavelets,
it corresponds tomoving a factor of (1C e�i�)/2. The TST
can be extended to cover the multiwavelet functions as
well (see [34]).

Repeated application of TSTs leads to the following
result.

Theorem 3 If H(�) has approximation order p � 1, it can
be factored as

H(�) D Hp(�)

D
1
2
Cp(2�)Hp�1(�)Cp(�)�1 D : : :

D 2�pCp(2�) : : :C1(2�)H0(�)C1(�)�1 : : :Cp(�)�1 ;

where each Ck(�) is a TST matrix.

As mentioned in Sect. “Pre- and Postprocessing and Bal-
anced Multiwavelets”, additional conditions on the TST
matrices Cj characterize balanced multiwavelets.

TSTs were defined in [55]. A special case which re-
quired H(0) to have eigenvectors of a particular structure
was developed independently in [46]. The two approaches
were reconciled in the joint paper [47].

Examples and Software

For the reader who wants to experiment with multi-
wavelets, this section lists some of the more commonly
used coefficients. There is also a brief list of relevant soft-
ware at the end.

In all listings, p = approximation order, s = Sobolev ex-
ponent, and ˛ =Hölder exponent. If ˛ is not listed, s � 1/2
is a lower bound for ˛. A common factor for all coefficients
in its column is listed separately, for easier readability. All
examples have multiplicity r D 2.
DGHM (Donovan–Geronimo–Hardin–Massopust [21])
(orthogonal)

Support [0; 2], p D 2, ˛ D 1, s D 1:5. �1 is symmetric
about x D 1/2, �2 is symmetric about x D 1. See Fig. 1 in
the introduction for graphs.

Hk Gk

k D 0

 
12 16

p
2

�
p
2 �6

!  
�
p
2 �6

2 6
p
2

!

1

 
12 0
9
p
2 20

!  
9
p
2 �20

�18 0

!

2

 
0 0

9
p
2 �6

!  
9
p
2 �6

18 �6
p
2

!

3

 
0 0
�
p
2 0

!  
�
p
2 0

�2 0

!

Factor 1/(20
p
2) 1/(20

p
2)

Hk Gk

k D 0

 
0 2C

p
7

0 2�
p
7

!  
0 �2
0 1

!

1

 
3 1
1 3

!  
2 2
�
p
7
p
7

!

2

 
2�
p
7 0

2C
p
7 0

!  
�2 0
�1 0

!

Factor 1/(4
p
2) 1/4

BAT O1 (Lebrun–Vetterli [37]) (orthogonal, balanced)
Support [0; 2]. �2 is reflection of �1 about x D 1 and

vice versa; wavelet functions are symmetric/antisymmetric
about x D 1. p D 2, balanced of order 1, s D 0:6406.

The shape of 1 is most likely responsible for the name
BAT wavelet. There are also BAT O2 and BAT O3, which
are balanced of order 2 and 3. See Fig. 4 for graphs.
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Multiwavelets, Table 1
Recursion coefficients for Hermite cubic multiwavelet

Hk Gk H̃k G̃k

k D �2

 
�2190 �1540
13914 9687

!

�1

 
4 6
�1 �1

!  
5427 567
�1900 �120

!  
9720 3560
�60588 �21840

!

0

 
8 0
0 4

!  
�19440 �60588
7120 21840

!  
23820 0

0 36546

!  
�2 �1
3 1

!

1

 
4 �6
1 �1

!  
28026 0

0 56160

!  
9720 �3560
60588 �21840

!  
4 0
0 4

!

2

 
�19440 60588
�7120 21840

!  
�2190 1540
�13914 9687

!  
�2 1
�3 1

!

3

 
5427 �567
1900 �120

!

Factor 1/(8
p
2) 1/(19440

p
2) 1/(19440

p
2) 1/(8

p
2)

Multiwavelets, Figure 4
BAT O1multiwavelet

HC (Hermite Cubics) (biorthogonal)
Hermite cubics are C1 piecewise cubic polynomials on

[�1; 1] which satisfy �1(0) D 1, � 01(0) D 0 and �2(0) D 0,
� 02(0) D 1. They are not orthogonal, so there are many
biorthogonal completions. Many authors also use a differ-
ent scaling for �2, so not even the Hk will match what is
listed here.

The completion listed here is the smoothest symmetric
completion with support length 4 (see [29]).

Support of � is [�1; 1], support of �̃ is [�2; 2];  
and  ̃ have support [�1; 2]; all functions are symmet-
ric/antisymmetric about the center of their support. p D 4,
p̃ D 2, ˛ D 2, s D 2:5, s̃ D 0:8279. See Fig. 5 for graphs.
See Table1 for recursion coefficients.

There are many toolboxes available for scalar wavelets.
Most of them are for Matlab or are stand-alone pro-
grams, but there are tools for Mathematica, MathCAD
and other systems as well. An extensive list can be found
at http://www.amara.com/current/wavesoft.html. Math-

Works (http://www.mathworks.com) is the maker of Mat-
lab, so theirs is the “official” Matlab wavelet toolbox. These
programs cannot usually handle multiwavelets.

There are only two software packages for multi-
wavelets available, both of them for Matlab.

MWMP (the Multiwavelet Matlab Package) was writ-
ten by Vasily Strela; it can be found at http://www.
mcs.drexel.edu/~vstrela/MWMP. A set of multiwavelet
Matlab routines from the author of this entry is avail-
able through http://www.math.iastate.edu/keinert or the
CRC Press download page at http://www.crcpress.com/e_
products/downloads/default.asp.

Future Directions

The basic properties of multiwavelets are quite well under-
stood by now.Many types of multiwavelets have been con-
structed, and new construction methods continue to be
found. Nevertheless, multiwavelets have not been applied

http://www.amara.com/current/wavesoft.html
http://www.mathworks.com
http://www.mcs.drexel.edu/~vstrela/MWMP
http://www.mcs.drexel.edu/~vstrela/MWMP
http://www.math.iastate.edu/keinert
http://www.crcpress.com/e_products/downloads/default.asp
http://www.crcpress.com/e_products/downloads/default.asp
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Multiwavelets, Figure 5
Hermite Cubic multiwavelet

as much as initially expected. The theory is more compli-
cated than for scalar wavelets, and the need for pre- and
postprocessing is a deterrent in applications.

For future theoretical development, the biggest need
is for improved methods of preprocessing, or even better,
for multiwavelets that do not require preprocessing. The
study of balanced multiwavelets is a very active field at the
moment.

To a lesser degree, a comprehensive theory of bound-
ary handling is also needed. Most multiwavelet users
sidestep the issue by padding the data.

In applications, the experience has been that multi-
wavelets can can do as well as scalar wavelets in the usual
applications, and possibly better. However, they are not
spectacularly better, and the extra effort is not usually war-
ranted. The exception to this are applications that utilize
one of the particular strengths of multiwavelets.

One of these strengths is that multiwavelets can be
both orthogonal and symmetric. This is useful in applica-
tions where symmetry is important.

The other, more important strength is high approx-
imation order/high smoothness coupled with short sup-
port. This is important in using multiwavelets as basis
functions in the solution of differential and integral equa-

tions. Short support reduces the overlap between seg-
ments, resulting in sparser matrices, and also resolves
much of the boundary problem.

For integral equations, multiwavelets with support
[0; 1] can be used (which are necessarily discontinuous).
Differential equations require multiwavelets with support
[�1; 1].
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