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Game theory is the study of decision problems which in-
volves several individuals (the decision-makers or play-
ers) interacting rationally. The models of game theory
are abstract representations of a number of real-life situ-
ations and have applications to economics, political sci-
ences, computer sciences, evolutionary biology, social psy-
chology, law, among others. These applications are also
important for the development of the theory, since the
questions that emerge may lead to new theoretic results.

This session is an attempt to provide the main features
of Game Theory, covering most of the fundamental theo-
retical aspects under the cooperative, non-cooperative and
“general” or “mixed” approaches.

The cooperative approach focuses on the possible out-
comes of the decision-maker’s interaction by abstracting
from the actions or decisions that may lead to these out-
comes. Specifically, Cooperative game theory studies the
interactions among coalitions of players. Its main ques-
tion is: Given the sets of feasible payoffs for each coalition,
what payoff will be awarded to each player? One can take
a positive or normative approach to answering this ques-
tion, and different solution concepts in the theory lead to-
wards one or the other.

The first cooperative solution concept is the von Neu-
mann–Morgenstern stable sets, treated in � Cooperative
Games (Von Neumann–Morgenstern Stable Sets) (Jun
Wako and Shigeo Muto). However, the two best known
solution concepts in cooperative game theory are perhaps
the core and the Shapley value which are presented and
discussed in� Cooperative Games (Roberto Serrano).

The non-cooperative approach focuses on the actions

that the decision-makers can take. Historically, the first
contribution to the non-cooperative Game Theory is due
to Zermelo (1913), but the idea of a general theory of
games was introduced by John von Neumann and Oskar
Morgenstern in their famous book of 1944 entitled The-
ory of Games and Economic Behavior. These authors ar-
gued that most economic questions should be analyzed as
games. They introduced the extensive-form and the strate-
gic-form representations of a game, also known as Dy-
namic and Static games, respectively.

Dynamic games stress the sequentiality of the various
decisions that agents canmake. An essential component of
a dynamic game is the description of who moves first, who
moves second, etc. Static games, on the other hand, ab-
stract from sequentiality of the possible moves and model
interactions as simultaneous decisions. All extensive form
games can be modeled as static games, and all strategic
form games can be modeled as dynamic games. However
some situations may be more conveniently modeled as
one or the other kind of game. Dynamic games are exam-
ined in�Dynamic Games with an Application to Climate
Change Models (Prajit K. Dutta). The structure, as well
as its principal results, is discussed in detail. The Chap-
ter ends with an important application, the economics of
climate change.

The main ideas and results related to Static games, as
well as some interesting relationships that connect equi-
librium concepts with the idea of rationality are reviewed
in � Static Games (Oscar Volij). In this chapter it is pre-
sented the general Theorem of existence of strategic equi-
libria, due to Nash (1950). This result extends to more
general games the minimax Theorem, which was proved
in von Neuman (1928) for two-player zero-sum games.
In the literature there are two proofs published by Nash.
One of them uses Brower’s fixed point theorem. The other
one is a simpler proof, attributed to Gale by Nash that uses
Kakutani’s fixed point theorem. Some version of the proof
that uses Brower’s fixed point theorem, by Geanakoplos
(2003), is presented in this chapter as well as some discus-
sion on Correlated equilibrium and Bayesian games.
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The Correlated equilibrium is a Game theoretic solu-
tion concept proposed by Aumann (1974, 1987) in order
to capture the strategic correlation opportunities that the
players face when they take into account the extraneous
environment in which they interact. The Chap. � Corre-
lated Equilibria and Communication in Games (Françoise
Forges) focuses on two possible extensions of the corre-
lated equilibrium to Bayesian games: the strategic form
correlated equilibrium and the communication equilib-
rium. The general framework of games with incomplete
information is treated in � Bayesian Games: Games with
Incomplete Information (Shmuel Zamir) with special ref-
erence to “Bayesian games”.

Repeated games deals with situations in which a group
of agents engage in a strategic interaction over and over.
The Chap.� RepeatedGames with Complete Information
(Olivier Gossner and Tristan Tomala) is devoted to Re-
peated games with complete information. In such games
the data of the strategic interaction is fixed over time and
is known by all the players. The Chap. � Repeated Games
with Incomplete Information (Jérôme Renault) discusses
Repeated games with incomplete information, a situation
where several players repeat the same stage game, the play-
ers having different knowledge of the stage game which is
repeated.

Repeated games have many equilibria, including the
repetition of stage game Nash equilibria. At the same time,
particularly when monitoring is imperfect, certain plausi-
ble outcomes are not consistent with equilibrium. Repu-
tation effects is the term used for the impact upon the set
of equilibria (typically of a repeated game) of perturbing
the game by introducing incomplete information of a par-
ticular kind. This issue is treated in � Reputation Effects
(George Mailath).

Games with two players are of particular significance.
The first two-person game studied in the literature was
the Zero sum two-person game, first analyzed by von
Neumann and Morgenstern (1944). In such a game one
player’s gain is the other player’s loss. Chess, Checkers,
Rummy, Two fingerMorra, and Tic-Tac-Toe are all exam-
ples of zero-sum two-person games. The theory for such
games is surveyed in � Zero-Sum Two Person Games
(T.E.S. Raghavan). Recent results on stochastic zero-sum
games are presented in� Stochastic Games (Eilon Solan).
Stochastic games are used to model dynamic interactions
in which the environment changes in response to the be-
havior of the players. These games are discussed in Solan’s
chapter.

Signaling games and Inspection games are also two-
player games. Signaling games is the subject of � Signal-
ing Games (Joel Sobel). They are games of incomplete in-

formation in which one player is informed and the other is
not. Players can use the actions of their opponents to make
inferences about hidden information. The earliest work on
this subject is Spence’s seminal 1972 work, in which edu-
cation serves as a signal of ability. Inspection games is cov-
ered in � Inspection Games (Rudolf Avenhaus and Mor-
ton J. Canty). These games deal with the problem faced
by an inspector who is required to control the compliance
of an inspectee to some legal or otherwise formal under-
taking. They started with the analysis of arms control and
disarmament problems in the early 1960s and have been
applied to auditing, environmental control, material ac-
countancy, etc.

Inspections cause conflict in many real world situ-
ations. In economics, there are services of many kinds
the fulfillment or payment of which has to be veri-
fied. One example is the problem of principal-agent rela-
tionships discussed in detail in � Principal-Agent Mod-
els (David Perez-Castrillo and Inez Macho-Stadler). The
Principal-agent models provide the theory of contracts un-
der asymmetric information, concerning relationships be-
tween owner and manager, insurer and insured, etc. The
principal, e. g., an employer, delegates work or responsi-
bility to the agent, the employee, and chooses a payment
schedule that best exploits the agent’s self-interests. The
agent, of course, behaves so as to maximize her own util-
ity given the fee schedule proposed by the principal. The
problem faced by the principal is to devise incentives to
motivate the agent to act in the principal’s interest. This
generates some type of transaction cost for the principal,
which includes the task of investigating and selecting ap-
propriate agents, gaining information to set performances
standards, monitoring agents, bonding payments by the
agents, and residual losses.

The Chap.�Differential Games (Marc Quincampoix)
is devoted to Differential games with focus on two-player
zero sum and antagonist differential games. These are
games in which the state of the players depends on time
in a continuous way. The positions of the players are solu-
tions to differential equations.Motivated bymilitary appli-
cations in the “Cold War” these games have a wide range
of applications from Economics to engineer sciences, and
recently to biology and behavioral ecology.

Mechanism designed is the subject of � Mechanism
Design (Ron Lavi). It studies the construction of mech-
anisms that aim to reach a socially desirable outcome in
the presence of rational but selfish players, who care only
about their own private utility. More specifically, the ques-
tion is how to design a mechanism such that the equilib-
rium behavior of the players in the game induced by the
mechanism leads to the socially desired goal.
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The theory of mechanism design has been contributed
to the development of other research areas as for exam-
ple auction theory, contract theory and two-sided match-
ing theory. “For having laid the foundations of mecha-
nism design theory” the 2007 Nobel prize in Economics
was awarded to Leonid Hurwicz, Eric Maskin and Roger
Myerson.

A related theory is the theory of Implementation, the
subject of� ImplementationTheory (Luis Corchon). It re-
verses the usual procedure, namely, fix a mechanism and
see what the outcomes are. More precisely, it investigates
the correspondence between normative goals and mecha-
nisms designed to achieve those goals.

A class of “mixed” games is that of two-sided match-
ing games, that has been analyzed since Gale and Shapley,
1962, under both cooperative and non-cooperative game
theoretic approaches. The two-sided matching theory is
surveyed in � Two-Sided Matching Models (Marilda So-
tomayor and Ömer Özak) by focusing on the differences
and similarities between some matching models. In their
paper, Gale and Shapley formulated and solved the Stable
Matching problem for the Marriage and the College Ad-
missions markets. The solution of the College Admissions
problem was given by a simple deferred-acceptance algo-
rithm which has been adapted and applied in the reorga-
nization of admission processes of many two-sidedmatch-
ing markets.

Another class of problems that have been discussed
from the perspective of cooperative and non-coopera-
tive game theory is the Cost sharing problems, treated in
� Cost Sharing (Maurice Koster). Applications are nu-
merous ranging from environmental issues like pollution,
fishing grounds, to sharing multipurpose reservoirs, road
systems, communication networks, and the internet. The
worth of a “coalition” of such activities is defined as the
hypothetical cost of carrying out the activities in that coali-
tion only.

Market games and clubs are treated in � Market
Games and Clubs (Myrna Wooders) with focus on the
equivalence between markets – defined as private goods
economies where all participants in the economy have util-
ity functions that are linear in the variable money - and
games in characteristic function form.

Learning in Games is surveyed in � Learning in
Games (John Nachbar). It covers models in which players
are “rational” but not necessarily in equilibrium: players
forecast, possibly inaccurately, the future behavior of their
opponents and optimize or " optimize with respect to their
forecasts.

Fair Division is reviewed in � Fair Division (Steven
Brams). It provides a rigorous analysis of procedures for

allocating goods, or deciding who wins on what issues, in
a dispute.

The following two chapters deal with applications to
political sciences. The first one, the Chap. � Voting (Al-
varo Sandroni, Antonio Penta, Jonathan Pogach, Deniz
Selman and Michela Tincani), presents a game theoretic
analysis of voting systems, which are procedures to choose
a winner among a set of candidates from the individ-
ual preferences of the voters or more ambitiously, allow-
ing to rank all the candidates or a part of them. Such
a situation occurs in the field of social choice and wel-
fare, in the field of elections, and in many other fields
as games, sports, artificial intelligence, spam detection,
web search engines and more generally Internet appli-
cations, statistics, and soon. From a practical point of
view, it is crucial to be able to announce who is the
winner in a “reasonable” time. This raises the question
of the complexity of the voting procedures. The sec-
ond Chap. � Voting Procedures, Complexity of (Olivier
Hudry) details the complexity results about several voting
procedures.

The Chap. � Evolutionary Game Theory (William
Sandholm) deals with applications to biology. This field,
known as Evolutionary game theory, started in 1972 with
the publication of a series of papers by the mathematical
biologist John Maynard Smith. Maynard Smith adapted
the methods of traditional game theory, which were cre-
ated to model the behavior of rational economic agents, to
the context of biological natural selection.

Network models have a long history in sociology, nat-
ural sciences and engineering. However, only recently
economists have begun to think of political and economic
interactions as network phenomena and to model every-
thing as games of network formation. The Chap. � Net-
works and Stability (Frank Page and Myrna Wooders) is
devoted to stable Networks and the game theoretic under-
pinnings of stable networks.

The Chap. � Game Theory and Strategic Complex-
ity (Kalyan Chatterjee and Hamid Sabourian) deals with
some aspect of bounded rationality that has generated im-
portant work, namely the presence of constraints on the
capacities of players. Various constraints could be consid-
ered, for example, limits on the ability to plan ahead in in-
tertemporal decision making or on the ability to compute
best responses.

This chapter discusses cognitive costs to players of us-
ing strategies that depend on long histories of past play.
This is done mainly in the context of bargaining and mar-
kets. It is shown that such complexity considerations often
enable us to make sharp predictions. It is also considered
the issue in the context of repeated games.
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Glossary

Game theory A formal model of interaction, usually in
human behavior.

Repeated games A series of identical interactions of this
kind.

Strategy A complete specification of how a player will
play the game.

Strategic complexity A measure of how complex a strat-
egy is to implement.

Equilibrium A solution concept for games in which each
player optimizes given his correct prediction of others’
behavior.

Equilibrium path The outcome in terms of the play of the
game if every player uses his equilibrium strategy.

Continuation game A description of how the play will
proceed in a dynamic game once some part of the game
has already occurred.

Automata A formal definition of a strategy that captures
its complexity.

Definition of the Subject

The subject of this chapter is at the intersection of eco-
nomics and computer science and deals with the use of
measures of complexity obtained from the study of fi-
nite automata to help select amongmultiple equilibria and
other outcomes appearing in game-theoretic models of
bargaining, markets and repeated interactions. The impor-

tance of the topic lies in the ability of concepts that em-
ploy bounds on available resources to generate more re-
fined predictions of individual behavior in markets.

Introduction

This chapter is concerned with the concept of strategic
complexity and its use in game theory. There aremany dif-
ferent meanings associated with the word “complexity”, as
the variety of topics discussed in this volume makes clear.
In this paper, we shall adopt a somewhat narrow view,
confining ourselves to notions that measure, in some way,
constraints on the ability of economic agents to behave
with full rationality in their interactions with other agents
in dynamic environments. This will be made more precise
a little later. (A more general discussion is available in Ru-
binstein [45].)

Why is it important to study the effect of such con-
straints on economic decision-making? The first reason
could be to increase the realism of the assumptions of eco-
nomic models; it is evident from introspection and from
observing others that we do not have infinite memory and
cannot condition our future actions on the entire corpus
of what we once knew; or, for that matter, unlimited com-
putational power. However, only considering the assump-
tions of a model would not be considered enough if the
increased realism were not to expand our ability to explain
or to predict. The second reason therefore is that study-
ing the effects of complexity on human decision-making
might help us either to make our predictions more pre-
cise (by selecting among equilibria) or to generate expla-
nations for behavior that is frequently observed, but in-
compatible with equilibrium in models that have stronger
assumptions about the abilities of agents.

A strategy in a game is an entire plan of how to play the
game at every possible history/contingency/eventuality at
which the player has tomake amove. The particular aspect
of complexity that we shall focus on is on the complexity
of strategy as a function of the history. One representa-
tion of the players’ strategies in games is often in terms
of (finite) automata. The finiteness need not always be as-
sumed; it can be derived. The ideas of complexity, though
often most conveniently represented this way, can also be
discussed without referring to finite automata at all but
purely in how a strategy depends on the past history of the
game.

The number of states in the automaton can be used
as a measure of complexity. This may be a natural mea-
sure of complexity in a stationary repetitive environment
such as repeated games. We shall discuss this measure of
complexity as well as other aspects of the complexity of
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a strategy that are particularly relevant in non-stationary
frameworks.

Note the players are not themselves considered au-
tomata in this paper and in the literature it surveys. Also,
we do not place restrictions on the ability of players to
compute strategies (see [39]), only on the strategies that
they can implement. The paper is also not intended as
a comprehensive survey of the literature on complexity of
implementation in games. The main focus of the paper is
inevitably on the works that we have been personally asso-
ciated with.

The remaining part of this paper is organized as fol-
lows: In the next section, we discuss strategies in a game,
their representation as finite automata and the basic equi-
librium concepts to be used in the paper. Section “Com-
plexity Considerations in Repeated Games” will consider
the use of complexity notions in repeated games. Sec-
tion “Complexity and Bargaining” will focus on exten-
sive form bargaining and the effect of complexity con-
siderations in selecting equilibria. Section “Complexity,
Market Games and the Competitive Equilibrium” will ex-
tend the analysis of bargaining to markets in which sev-
eral agents bargain and considers the recent literature
that justifies competitive outcomes in market environ-
ments by appealing to the aversion of agents to complex-
ity. Section “Discussion and Future Directions” concludes
with some thoughts on future research. This paper draws
on an earlier survey paper [14] for some of the mate-
rial in Sects. “Games, Automata and Equilibrium Con-
cepts”, ”Complexity Considerations in Repeated Games”
and “Complexity and Bargaining”.

Games, Automata and Equilibrium Concepts

As mentioned in the introduction, this paper will be con-
cerned with dynamic games. Though the theory of games
has diffused from economics and mathematics to several
other fields in the last few decades, we include an intro-
duction to the basic concepts to keep this paper as self-
contained as possible. A game is a formal model of inter-
action between individual agents. The basic components
of a game are: (i) Players or agents, whose choices will, in
general, have consequences for each other.We assume a fi-
nite set of players, denoted byN.We shall also useN some-
times to represent the cardinality of this set. (ii) A specifi-
cation of the “rules of the game” or the structure of inter-
action, described by the sequence of possible events in the
game, the order in which the players move, what they can
choose at each move and what they know about previous
moves. This is usually modeled as a tree and is called the
“extensive form” of the game (and will not be formalized

here, though the formalization is standard and found in all
the texts on the subject). (iii) Payoffs for each player asso-
ciated with every path through the tree from the root. It
is easier to describe this as a finite tree and ascribe payoffs
to the end nodes z. Let ui (z) be the real-valued payoff to
Player i associated with end node z. The payoffs are usually
assumed to satisfy conditions that are sufficient to guaran-
tee that the utility of a probability distribution on a subset
of the set of end nodes is the expectation of the utility of the
individual end nodes. However, different strands of work
on bounded rationality dispense with this assumption. The
description above presupposes a tree of finite depth, whilst
many of the applications deal with infinite horizon games.
However, the definitions are easilymodified by associating
payoffs with a play of the game and defining a node as a set
of plays. We shall not pursue this further here.

In the standard model of a game, players are assumed
to have all orders of knowledge about the preceding de-
scription. Work on bounded rationality also has consid-
ered relaxing this assumption.

A strategy is a complete plan of action for playing
a game, describing the course of action to be adopted in
every possible contingency (or every information set of the
player concerned). The plan has to be detailed enough so
that it can be played by an agent, even if the principal is
not himself or herself in town, and the agent could well
be a computer, which is programmed to follow the strat-
egy. Without any loss of generality, a strategy can be rep-
resented by an automaton (see below for illustration and
Osborne and Rubinstein [38] for a formal treatment in the
context of repeated games). Often such a machine descrip-
tion is more convenient in terms of accounting for a com-
plexity of a machine. For example the works that are based
on the use of finite automata or Turing machines to repre-
sent strategies for playing a game impose a natural bound
on the set of allowable strategies.

For the types of problem that we shall consider here,
it is best to think of a multistage game with observable
actions, to use the terminology of Fudenberg and Ti-
role [20]. The game has some temporal structure; let us call
each unit of time a period or a stage. In each period, the
players choose actions simultaneously and independently.
(The actions could include the dummy action.) All the ac-
tions taken in a stage are observed and the players then
choose actions again. An example is a repeated normal
form game, such as the famous Prisoners’ Dilemma be-
ing repeated infinitely or finitely often. In each stage, play-
ers choose whether to cooperate or defect. The choices are
revealed, payoffs received and the choices repeated again
and so on. (The reader will recall that in the Prisoners’
Dilemma played once, Defect is better than Cooperate for
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each player, nomatter what the other player does, but both
players choosing Defect is strictly worse for each than both
choosing Cooperate.) What a strategy for a given player
would do would be to specify the choice in a given stage
as a function of the history of the game up to that stage
(for every stage). A finite automaton represents a particu-
lar strategy in the following way: It partitions all possible
histories in the game (at which the player concerned has to
move) using a finite number of elements. Each of these el-
ements is a state of themachine. Given a state, the automa-
ton prescribes an action (for example, Cooperate after all
histories in which the other party has cooperated). It also
specifies how the state of the machine will change as a re-
sult of the action taken by the other player. The state-to-
action mapping is called the output mapping and the rule
that prescribes the state in the next period as a function of
today’s state and the action of one’s opponent in this pe-
riod is called the transition mapping. The automaton also
needs to prescribe what to do in the first stage, when there
is no history of past actions to rely on. Thus for example,
the famous ‘tit-for-tat’ strategy in the repeated Prisoners’
Dilemma can be represented by the following automaton.

1. Play Cooperate in the first stage. The initial state is de-
noted as q1 and in this state the action prescribed is co-
operate.

2. As long as the other player cooperates, stay in state q1.
3. If the other player defects in a state, go to state q2. The

action specified in q2 is Defect.
4. Stay in q2 as long as the other player defects. If the other

player cooperates in a stage, go to q1.

Denoting the output mapping by (�), we get (q1) D
C and (q2) D D. The transition mapping, �(�; �) is
as follows: �(q1;C) D q1, �(q1;D) D q2, �(q2;C) D q1,
�(q2;D) D q2. Here, of course, C and D denote cooper-
ate and defect respectively. The machine described above
has two states and is an instance of a Moore machine in
computer science terminology.

The use of a Moore machine to represent a strategy
rules out strategies in which histories are arbitrarily finitely
partitioned or arbitrarily complex. In fact, the number of
states in the machine is a popular measure of the complex-
ity of the machine and the strategy it represents.

Another kind of finite automaton used in the litera-
ture is a Mealy machine. The main difference between this
and the Moore machine is that now the output is a func-
tion both of the state and of an input, unlike the Moore
machine where it is only a function of the state. One can
always transform aMealy machine to aMoore machine by
making transitions depend on the input and having state
transitions after every input. The Mealy machine repre-

sentation is more convenient for the extensive form game
we shall consider in Section “Complexity and Bargaining”.
We shall briefly address why in that section.

The aim of using the machine framework to describe
strategies is to take into account explicitly the cost of com-
plexity of strategies. There is the belief for instance that
short-term memory (see [33]) is capable of keeping seven
things in mind at any given time and if five of them are oc-
cupied by how to play the Prisoners’ Dilemma there might
be less left over for other important activities.

The standard equilibrium concept in game theory is
the concept of Nash equilibrium. This requires each player
to choose a best strategy (in terms of payoff) given his
or her conjectures about other players’ strategies and, of
course, in equilibrium the conjectures must be correct.
Thus, a Nash equilibrium is a profile of strategies, one for
each player, such that every player is choosing a best re-
sponse strategy given the Nash equilibrium strategies of
the other players. In dynamic games Nash equilibrium
strategies may not be credible (sequentially rational). In
multi-stage games, to ensure credibility, the concept of
Nash equilibrium is refined by requiring the strategy of
each player to be a best response to the strategies of the
others at every well-defined history (subgame) within the
game. This notion of equilibrium was introduced by Sel-
ten [48] and is called subgame perfect equilibrium. The
difference between this concept and that of Nash, which it
refines, is that players must specify strategies that are best
responses to each other even at nodes in the game tree that
would never be reached if the prescribed equilibrium were
being played. The Nash concept does not require this. The
notion of histories off the equilibrium path therefore refers
to those that do not occur if every player follows his or her
equilibrium strategy. Another useful concept to mention
here is that of payoff in the continuation game. This refers
to the expected payoff from the prescribed strategies in the
part of the game remaining to be played after some moves
have already taken place. The restriction of the prescribed
strategies to the continuation game are referred to here as
continuation strategies.

Rubinstein [44], Abreu and Rubinstein [1] and oth-
ers have modified the standard equilibrium concepts to
account for complexity costs. This approach is somewhat
different from that adopted, for example, by Neyman [35],
who restricted strategies to those of bounded complex-
ity. We shall next present the Abreu–Rubinstein definition
of Nash equilibrium with complexity (often referred to as
NEC in the rest of the paper).

The basic idea is a very simple extension of Nash
equilibrium. Complexity enters the utility function lexi-
cographically. A player first calculates his or her best re-
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sponse to the conjectured strategies of the other players.
If there are alternative best responses, the player chooses
the less complex one. Thus a Nash equilibrium with com-
plexity has two aspects. First, the strategies chosen by any
player must be a best response given his or her conjectures
about other players’ strategies and, of course, in equilib-
rium the conjectures must be correct. Second, there must
not exist an alternative strategy for a player such that his
or her payoff is the same as in the candidate equilibrium
strategy, given what other players do, but the alternative
strategy is less complex.

In Abreu and Rubinstein [1], the measure of complex-
ity is the number of states in the Moore machine that rep-
resents the strategy. The second part of their equilibrium
definition restricts the extent to which punishments can be
used off the equilibrium path. For example, there is a fa-
mous strategy that, if used by all players, gives cooperation
in the infinitely repeated Prisoners’ Dilemma (for suffi-
ciently high discount factors), namely the “grim” strategy.
This strategy can be described by the following machine:
Start with Cooperate. Play Cooperate as long as the other
players all cooperate. If in the last period any player has
usedDefect, then switch to playingDefect for ever. (That is,
never play Cooperate again, no matter what the other play-
ers do in succeeding periods.) This strategy profile (each
player uses the grim strategy) gives an outcome path con-
sisting solely of players cooperating. No one defects be-
cause from then until the end of time all the players will be
punishing one another.

However, this strategy profile is not a Nash equilib-
rium with complexity; the grim strategy is a two-state ma-
chine in which one state (the one in which a player chooses
Defect) is never used given that everyone else cooperates
on the equilibrium path. Some player can do better, even
if lexicographically, by switching to a one-state machine in
which he or she cooperates no matter what. Thus even the
weak lexicographic requirement has some bite.

Note that the complexity restriction we are consider-
ing is on the complexity of implementation, not the com-
plexity of computation. We know that even a Turing ma-
chine, which has potentially infinite memory,might be un-
able to calculate best responses to all possible strategy pro-
files of other players in the game (see [2,8]).

To return to the question of defining equilibrium
in the machine game, the Abreu–Rubinstein approach
is described by them as “buying” states in the machine
at the beginning of the game. The complexity cost is
therefore a fixed cost per state used. Some recent pa-
pers have taken the fixed cost approach further by requir-
ing NEC strategies to be credible. The idea is that play-
ers pay an initial fixed cost for the complexity (the no-

tion of complexity in some of these papers differ from
counting the states approach) of his/her strategy and then
the game is played with strategies being optimal at ev-
ery contingency as in standard game theory. Chatterjee
and Sabourian [15,16] model this by considering Nash
equilibrium with complexity costs in (bargaining) games
in which machines/strategies can make errors/trembles
in output/action. The introduction of errors ensures that
the equilibrium strategies are optimal after every history.
As the error goes to zero, we are left with subgame per-
fect equilibria of the underlying game. Chatterjee and
Sabourian [15], Sabourian [47], Gale and Sabourian [22]
and Lee and Sabourian [31] take a more direct method of
introducing credibility into the equilibrium concept with
complexity costs by restricting NEC strategies to be sub-
game perfect equilibrium in the underlying game with no
complexity costs. We refer to such an equilibria by perfect
equilibrium with complexity costs (PEC).

In contrast to the fixed cost interpretation of complex-
ity cost, Rubinstein in his 1986 paper considers a differ-
ent approach, namely the choice of “renting” states in the
machine for every period the game is played. Formally,
the Rubinstein notion of semi-perfect equilibrium requires
the strategy chosen to have the minimal number of states
necessary to play the game at every node on the (candi-
date) equilibrium outcome path. A state could therefore be
dropped if it is not going to be used on the candidate equi-
librium path after some period. Thus, to be in the equilib-
riummachine, it is not sufficient that a state be used on the
path, it has to be used in every possible future. Rubinstein
called this notion of equilibrium semi-perfect, because the
complexity of a strategy could be changed in one direction
(it could be decreased) after every period. If states could
be added as well as deleted every period, we would have
yet another definition of equilibriumwith complexity,ma-
chine subgame perfect equilibrium. (See [34].) In contrast,
both the NEC and PEC concepts we use here entail a single
choice of automaton or strategy by players at the beginning
of the game.

In all these models, complexity analysis has been fa-
cilitated by considering the “machine games”. Each player
chooses amongmachines and the complexity of amachine
is taken to be the number of states of the machine. In fact,
the counting-the-number-of-states measure of complexity
has an equivalent measure stated in terms of the under-
lying strategies that the machine could implement. Kalai
and Stanford [29] define complexity of a strategy by the
number of continuation strategies that the strategy induces
at different periods/histories of the game, and establishes
that such a measure is equal to the number of the states of
the smallest machine that implements the strategy. Thus,
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one could equivalently describe any result either in terms
of underlying strategies and the cardinality of the set of
continuation strategies that they induce or in terms of ma-
chines and the number of states in them. The same applies
to other measures of complexity discussed in this paper;
they can be defined either in terms of the machine specifi-
cation or in terms of the underlying strategy. In the rest of
this paper, to simplify the exposition we shall at times go
from one exposition to the other without further explana-
tion.

With this preamble on the concepts of equilibrium
used in this literature, we turn to a discussion of a spe-
cific game in the next section, the infinitely repeated Pris-
oners’ Dilemma. We will discuss mainly the approach of
Abreu and Rubinstein in this section but contrast it with
the literature following from Neyman. We also note that
the suggestion for using finite automata in games of this
kind came originally from Aumann [4].

Complexity Considerations in RepeatedGames

Endogeneous Complexity

In this subsection we shall first concentrate on the Prison-
ers’ Dilemma and discuss the work of Abreu and Rubin-
stein, which was introduced briefly in the last section. For
concreteness, consider the following Prisoners’ Dilemma
payoffs:

C2 D2
C1 3; 3 �1; 4
D1 4;�1 0; 0

This is the “stage game”; each of the two players
chooses an action in each stage, their actions are revealed
at the end of the stage and then the next stage begins. The
game is repeated infinitely often and future payoffs are dis-
counted with a common discount factor ı.

The solution concept to be used was introduced in
the last section; NEC or Nash equilibrium with complex-
ity. Note that here complexity is endogenous. A player has
a preference for less complex strategies. This preference
comes into play lexicographically, that is for any strategies
or machines that give the same payoff against the oppo-
nent’s equilibrium strategy, a player will choose the one
with lowest complexity. Thus the cost of complexity is
infinitesimal. One could also consider positive but small
costs of more complex strategies, but results will then de-
pend on how large the cost of additional complexity is
compared to the additional payoff obtained with a more
complex strategy.

We saw in the last section that the “grim trigger” strat-
egy, which is a two-state automaton, is not a NEC. The

reason is that if Player 2 uses such a strategy, Player 1 can
be better off by deviating to a one-state strategy in which
she always cooperates.(This will give the same payoff with
a less complex strategy.) One-state strategies where both
players cooperate clearly do not constitute NEC (deviating
and choosing a one-state machine that always plays D is
strictly better for a player). However, if both players use
a one-state machine that always generates an action of D,
this is a NEC.

The question obviously arises if the cooperative out-
come in each stage can be sustained as a NEC and the
preceding discussion makes clear that the answer is no.
Punishments have to be used on the equilibrium path, but
we can get arbitrarily close to the cooperative outcome for
a high enough discount factor. For example consider the
following two-state machine:

Q D fq1; q2g;(q1) D D ; (q2) D C ;

�(q1;C) D q1 ; �(q1;D) D q2 ; �(q2;D) D q1 ;

�(q2;C) D q2 :

Here both players play the same strategy, which starts
out playing D. If both players do as they are supposed
to, each plays C in the next period and thereafter, so the
sequence of actions is (D;D), (C;C), (C;C) : : : If either
player plays C in the first period, the other player keeps
playingD in the next period. The transition rule prescribes
that if one plays C and one’s opponent plays D, one goes
back to playing D, so the sequence with the deviation will
be (D;C), (D;D), (C;C), (C;C) : : :

Suppose both players use this machine. First, we check
it is a Nash equilibrium in payoffs. We only need to check
what happens when a player plays C. If Player 2 deviates
and plays D, she will get an immediate payoff of 4 fol-
lowed by payoffs of 0; 3; 3 : : : if she thereafter sticks to her
strategy for a total payoff of 4C ı2(3

ı
(1 � ı)) as opposed

to 3
ı
(1 � ı) if she had not deviated. The net gain from

deviation is 1 � 3ı, which is negative for ı > 1
3 . One can

check that more complicated deviations are also worse.
The second part of the definition needs to be checked as
well, so we need to ensure that a player cannot do as well
in terms of payoff by moving to a less complex strategy,
namely a one-state machine. A one-state machine that al-
ways plays C will get the worst possible payoff, since the
other machine will keep playing D against it. A one-state
machine that playsDwill get a payoff of 4 in periods 2,4 . . .
or a total payoff of 4ı

ı
(1 � ı2) as against 3ı

ı
(1 � ı). The

second is strictly greater for ı > 1
3 .

This machine gives a payoff close to 3 per stage for ı
close to 1. As ı ! 1, the payoff of each player goes to 3,
the cooperative outcome.
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The paper by Abreu and Rubinstein obtains a basic re-
sult on the characterization of payoffs obtained as NEC in
the infinitely repeated Prisoners’ Dilemma. We recall that
the “Folk Theorem” for repeated games tells us that all out-
come paths that give a payoff per stage strictly greater for
each player than the minmax payoff for that player in the
stage game can be sustained by Nash equilibrium strate-
gies. Using endogenous complexity, one can obtain a re-
finement; now only payoffs on a so-called “cross” are sus-
tainable as NEC. This result is obtained from two observa-
tions. First, in any NEC of a two-player game, the number
of states in the players’ machines must be equal. This fol-
lows from the following intuitive reasoning (we refer read-
ers to the original paper for the proofs). Suppose we fix
the machine used by one of the players (say Player 1), so
that to the other player it becomes part of the “environ-
ment”. For Player 2 to calculate a best response or an op-
timal strategy to Player 1’s given machine, it is clearly not
necessary to partition past histories more finely than the
other player has done in obtaining her strategy; therefore
the number of states in Player 2’s machine need not (and
therefore will not, if there are complexity costs) exceed the
number in Player 1’s machine in equilibrium. The same
holds true in the other direction, so the number of states
must be equal. (This does not hold for more than two play-
ers.) Another way of interpreting this result is that it re-
states the result from Markov decision processes on the
existence of an optimal “stationary” policy (that is depend-
ing only on the states of the environment, which are here
the same as the states of the other player’s machine). See
also Piccione [40].

Thus there is a one-to-one correspondence between
the states of the two machines. (Since the number of states
is finite and the game is infinitely repeated, the machine
must visit at least one of the states infinitely often for each
player.) One can strengthen this further to establish a one-
to-one correspondence between actions. Suppose Player
1’s machine has a1t D a1s , where these denote the actions
taken at two distinct periods and states by Player 1, with
a2t ¤ a2s for Player 2. Since the states in t and s are distinct
for Player 1 and the actions taken are the same, the tran-
sitions must be different following the two distinct states.
But then Player 1 does not need two distinct states, he can
drop one and condition the transition after, say, s on the
different action used by Player 2. (Recall the transition is
a function of the state and the opponent’s action.) But then
Player 1 would be able to obtain the same payoff with a less
complex machine; so the original one could not have been
a NEC machine.

Therefore the actions played must be some combina-
tion of (C;C) and (D;D) (the correspondence is between

the two Cs and the twoDs) or some combination of (C;D)
and (D;C). (By combination, we mean combination over
time. For example, fC;C) is played, say, 10 times for every
3 plays of (D;D)). In the payoff space, sustainable payoffs
are either on the line joining (3,3) and (0,0) or on the line
joining the payoffs on the other diagonal; hence the evoca-
tive name chosen to describe the result-the cross of the two
diagonals.

While this is certainly a selection of equilibrium out-
comes, it does not go as far as we would wish. We would
hope that some equilibrium selection argument might de-
liver us the co-operative outcome (3,3) uniquely (even in
the limit as ı ! 1), instead of the actual result obtained.
There is work that does this, but it uses evolutionary argu-
ments for equilibrium selection (see Binmore and Samuel-
son [9]). An alternative learning argument for equilibrium
selection is used by Maenner [32]. In his model, a player
tries to infer what machine is being used by his oppo-
nent and chooses the simplest automaton that is consis-
tent with the observed pattern of play as his model of his
opponent. A player then chooses a best response to this
inference. It turns out complexity is not sufficient to pin
down an inference and one must use optimistic or pes-
simistic rules to select among the simplest inferences. One
of these gives only (D;D) repeated, whilst the other re-
produces the Abreu–Rubinstein NEC results. Piccione and
Rubinstein [41] show that the NEC profile of 2-player re-
peated extensive form games is unique if the stage game
is one of perfect information. This unique equilibrium in-
volves all players playing their one-shot myopic non-co-
operative actions at every stage. This is a strong selection
result and involves stage game strategies not being observ-
able (only the path of play is) as well as the result on the
equilibrium numbers of states being equal in the two play-
ers’ machines.

In repeated games with more than two players or with
more than two actions at each stage the multiplicity prob-
lem may be more acute than just not being able to select
uniquely a “cooperative outcome”. In some such games
complexity by itself may not have any bite and the Folk
Theorem may survive even when the players care for the
complexity of their strategies. (See Bloise [12] who shows
robust examples of two-player repeated games with three
actions at each stage such that every individually rational
payoff can be sustained as a NEC if players are sufficiently
patient.)

Exogenous Complexity

We now consider the different approach taken by Ney-
man [35,36], Ben Porath [6,7], Zemel [50] and others.
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We shall confine ourselves to the papers by Neyman and
Zemel on the Prisoners’ Dilemma, without discussing the
more general results these authors and others have ob-
tained.

Neyman’s approach treats complexity as exogenous
complexity. Let Player i be restricted to use strate-
gies/automata with the number of states not to exceedmi.
He also considers finitely repeated games, unlike the in-
finitely repeated games we have discussed up to this point.
With the stage game being the Prisoners’ Dilemma and
the number of repetitions being T (for convenience, this
includes the first time the game is played). We can write
the game being considered asGT (m1;m2). Note that with-
out the complexity restrictions, the finitely repeated Pris-
oners’ Dilemma has a unique Nash equilibrium outcome
path (and a unique subgame perfect equilibrium)–(D;D)
in all stages. Thus sustaining cooperation in this setting
is obtaining non-equilibrium behavior, though one that is
frequently observed in real life. This approach therefore is
an example of bounded rationality being used to explain
observed behavior that is not predicted in equilibrium.

If the complexity restrictions are severe, it turns
out that (C;C) in each period is an equilibrium. For
this, we need 2 � m1;m2 � T � 1. To see this con-
sider the grim trigger strategy mentioned earlier-repre-
sentable as a two-state automaton- and let T D 3. Here
(q1) D C; (q2) D D; �(q1;C) D q1; �(q1;D) D q2;
�(q2;C or D) D q2. If each player uses this strategy,
(C;C) will be observed. Such a pair of strategies is clearly
not a Nash equilibrium-given Player 1’s strategy, Player 2
can do better by playing D in stage 3. But if Player 2 de-
fects in the second stage, by choosing a two-state machine
where�(q1;C) D D, he will gain 1 in the second stage and
lose 3 in the third stage as compared to the machine listed
above, so he is worse off. But defecting in stage 3 requires
an automaton with three states-two states in which C is
played and one in which D is played. The transitions in
state q1 will be similar but, if q2 is the second cooperative
state, the transition from q2 to the defect state will take
place no matter whether the other player plays C or D.
However, automata with three states violate the constraint
that the number of states be no more than 2, so the prof-
itable deviation is out of reach.

Whilst this is easy to see, it is not clear what happens
when the complexity is high. Neyman shows the follow-
ing result: For any integer k, there exists a T0, such that for
T � T0 and T

1
k � m1;m2 � Tk , there is a mixed strategy

equilibrium of GT (m1;m2) in which the expected average
payoff to each player is at least 3 � 1

k .
The basic idea is that rather than playing (C;C) at each

stage, players are required to play a complex sequence of C

and D and keeping track of this sequence uses up a suffi-
cient number of states in the automaton so that profitable
deviations again hit the constraint on the number of states.
But since D cannot be avoided on the equilibrium path,
only something close to (C;C) each period can be obtained
rather than (C;C) all the time.

Zemel’s paper adds a clever little twist to this argument
by introducing communication. In his game, there are two
actions each player chooses at each stage, either C or D
as before and a message to be communicated. The mes-
sage does not directly affect payoffs as the choice of C orD
does. The communication requirements are now made
sufficiently stringent, and deviation from them is consid-
ered a deviation, so that once again the states “left over” to
count up to N are inadequate in number and (C;C) can
once again be played in each stage/period. This is an in-
teresting explanation of the rigid “scripts” that many have
observed to be followed, for example, in negotiations.

Neyman [36] surveys his own work and that of Ben
Porath [6,7]. He also generalizes his earlier work on the
finitely-repeated Prisoners’ Dilemma to show how small
the complexity bounds would have to be in order to obtain
outcomes outside the set of (unconstrained) equilibrium
payoffs in the finitely-repeated, normal-form game (just
as (C;C) is not part of an unconstrained equilibrium out-
come path in the Prisoners’ Dilemma). Essentially, if the
complexity permitted grows exponentially or faster with
the number of repetitions, the equilibrium payoff sets of
the constrained and the unconstrained games will coin-
cide. For sub-exponential growth, a version of the Folk-
theorem is proved for two-person games. The first result
says:

For every game G in strategic form and with mi
being the bound on the complexity of i0s strategy
and T the number of times the game G is played,
there exists a constant c such that if mi � exp(cT),
then E(GT ) D E(GT (m1;m2) where E(:) is the set
of equilibrium payoffs in the game concerned.

The second result, which generalizes the Prisoners’
Dilemma result already stated, considers a sequence of
triples (m1(n);m2(n); T(n)) for a two-player strategic
form game, with m2 � m1 and shows that the lim inf
of the set of equilibrium payoffs of the automata game
as n!1 includes essentially the strictly individually
rational payoffs of the stage game if m1(n)!1 and
(logm1(n))

ı
T(n)! 0 as n!1. Thus a version of the

Folk theorem holds provided the complexity of the play-
ers’ machines does not grow too fast with the number of
repetitions.
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Complexity and Bargaining

Complexity and the Unanimity Game

The well-known alternating offers bargaining model of
Rubinstein has two players alternating in making propos-
als and responding to proposals. Each period or unit of
time consists of one proposal and one response. If the re-
sponse is “reject”, the player who rejects makes the next
proposal but in the following period. Since there is dis-
counting with discount factor ı per period, a rejection has
a cost. The unanimity game we consider is a multiperson
generalization of this bargaining game, with n players ar-
ranged in a fixed order, say 1; 2; 3 : : : n. Player 1 makes
a proposal on how to divide a pie of size unity among the n
people; players 2; 3; : : : n respond sequentially, either ac-
cepting or rejecting. If everyone accepts, the game ends. If
someone rejects, Player 2 now gets to make a proposal but
in the next period. The responses to Player 2’s proposal are
made sequentially by Players 3; 4; 5 : : : n; 1. If Player i gets
a share xi in an eventual agreement at time t, his payoff is
ı t�1xi .

Avner Shaked had shown in 1986 that the unanimity
game had the disturbing feature that all individually ratio-
nal (that is non-negative payoffs for each player) outcomes
could be supported as subgame perfect equilibria. Thus the
sharp result of Rubinstein [43], who found a unique sub-
game perfect equilibrium in the two-play stood in com-
plete contrast with the multiplicity of subgame perfect
equilibria in the multiplayer game.

Shaked’s proof had involved complex changes in ex-
pectations of the players if a deviation from the candi-
date equilibrium were to be observed. For example, in
the three-player game with common discount factor ı,
the three extreme points (1; 0; 0), (0; 1; 0), (0; 0; 1) sus-
tain one another in the following way. Suppose Player 1
is to propose (0; 1; 0), which is not a very sensible offer
for him or her to propose, since it gives everything to
the second player. If Player 1 deviates and proposes, say,
((1 � ı)

ı
2; ı; (1 � ı)

ı
2), then it might be reasoned that

Player 2 would have no incentive to reject because in any
case he or she can’t get more than 1 in the following pe-
riod and Player 3 would surely prefer a positive payoff
to 0. However, there is a counter-argument. In the sub-
game following Player 1’s deviation, Player 3’s expecta-
tions have been raised so that he (and everyone else, in-
cluding Player 1) now expect the outcome to be (0; 0; 1),
instead of the earlier expected outcome. For sufficiently
high discount factor, Player 3 would reject Player 1’s in-
sufficiently generous offer. Thus Player 1 would have no
incentive to deviate. Player 1 is thus in a bind; if he offers
Player 2 less than ı and offers Player 3 more in the devi-

ation, the expectation that the outcome next period will
be (0; 1; 0) remains unchanged, so now Player 2 rejects his
offer. So no deviation is profitable, because each deviation
generates an expectation of future outcomes, an expecta-
tion that is confirmed in equilibrium. (This is what equi-
librium means.) Summarizing, (0; 1; 0) is sustained as fol-
lows: Player 1 offers (0; 1; 0), Player 2 accepts any offer of at
least 1 and Player 3 any offer of at least 0. If one of them re-
jects Player 1’s offer, the next player in order offers (0; 1; 0)
and the others accept. If any proposer, say Player 1, devi-
ates from the offer (0; 1; 0) to (x1; x2; x3) the player with
the lower of fx2; x3g rejects. Suppose it is Player i who
rejects. In the following period, the offer made gives 1 to
Player i and 0 to the others, and this is accepted.

Various attempts were made to get around the con-
tinuum of equilibria problem in bargaining games with
more than two players; most of them involved changing
the game. (See [15,16] for a discussion of this literature.)
An alternative to changing the game might be to intro-
duce a cost for this additional complexity, in the belief that
players who value simplicity will end up choosing sim-
ple, that is history independent, strategies. This seems to
be a promising approach because it is clear from Shaked’s
construction that the large number of equilibria results
from the players choosing strategies that are history-de-
pendent. In fact, if the strategies are restricted to those that
are history-independent (also referred to as stationary or
Markov) then it can be shown (see Herrero [27]) that the
subgame perfect equilibrium is unique and induces equal
division of the pie as ı ! 1.

The two papers ([15,16]) in fact seek to address the is-
sue of complex strategies with players having a preference
for simplicity, just as in Abreu and Rubinstein. However,
now we have a game of more than two players, and a sin-
gle extensive form game rather than a repeated game as in
Abreu–Rubinstein. It was natural that the framework had
to be broadened somewhat to take this into account.

For each of n players playing the unanimity game, we
define a machine or an implementation of the strategy as
follows.

A stage of the game is defined to be n periods, such
that if a stage were to be completed, each player would
play each role at most once. A role could be as pro-
poser or n � 1th responder or n � 2th responder . . .
up to first responder (the last role would occur in the
period before the player concerned had to make an-
other proposal). An outcome of a stage is defined as
a sequence of offers and responses, for example e D
(x;A;A; R; y; R; z;A; R; b;A;A;A) in a four-player game
where the (x; y; z; b) are proposals made in the four peri-
ods and (A; R) refer to accept and reject respectively. From
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the point of view of the first player to propose (for conve-
nience, let’s call him Player 1), he makes an offer x, which
is accepted by Players 2 and 3 but rejected by Player 4. Now
it is Player 2’s turn to offer, but this offer, y, is rejected by
the first responder Player 3. Player 1 gets to play as sec-
ond responder in the next period, where he rejects Player
3’s proposal. In the last period of this stage, a proposal b is
made by Player 4 and everyone accepts (including Player
1 as first responder). Any partial history within a stage is
denoted by s. For example, when Player 2 makes an offer,
he does so after a partial history s D (x;A;A; R). Let the
set of possible outcomes of a stage be denoted by E and the
set of possible partial histories by S. Let Qi denote the set
of states used in the ith player’s machine Mi. The output
mapping is given by i : S � Qi ! �, where� is the set of
possible actions (that is the set of possible proposals, plus
accept or reject). The transition between states now takes
place at the end of each stage, so the transition mapping
is given as �i : E � Qi ! Qi . As before, in the Abreu–
Rubinstein setup, there is an initial state qinitial;i specified
for each player. There is also a termination state F, which is
supposed to indicate agreement. Once in the termination
state, players will play the null action andmake transitions
to this state.

Note that our formulation of a strategy naturally uses
a Mealy machine. The output mapping i (:; :) has two ar-
guments, the state of the machine and the input s, which
lists the outcomes of previous moves within the stage. The
transitions take place at the end of the stage. The bene-
fit of using this formulation is that the continuation game
is the same at the beginning of each stage. In Chatterjee
and Sabourian [16], we investigate the effects of modifying
this formulation, including studying the effects of having
a sub-machine to play each role. The different formula-
tions can all implement the same strategies, but the com-
plexities in terms of various measures could differ. We re-
fer the reader to that paper for details, but emphasize that
in the general unanimity game, the results from other for-
mulations are similar to the one developed here, though
they could differ for special cases, like three-player games.

We now consider a machine game, where players first
choose machines and then the machines play the unanim-
ity game in analogy with Abreu–Rubinstein. Using the
same lexicographic utility, with complexity coming after
bargaining payoffs, what do we find for Nash equilibria of
the machine game?

As it turns out, the addition of complexity costs in this
setting has some bite but not much. In particular, any di-
vision of the pie can be sustained in some Nash equilib-
rium of the machine game. Perpetual disagreement can,
in fact, be sustained by a stationary machine, that is one

that makes the same offers and responses each time, ir-
respective of past history. Nor can we prove, for general
n-player games that the equilibrium machines will be one-
state. (A three-player counter-example exists in [16]; it
does not appear to be possible to generate in games that
lasted less than thirty periods.) For two-player games, the
result that machines must be one-state in equilibrium can
be shown neatly ([16]); another illustration that in this
particular area, there is a substantial increase of analytical
difficulty in going from two to three players.

One reason why complexity does not appear impor-
tant here is that the definition of complexity used is too
restrictive. Counting the number of states is fine, so long
as we don’t consider how complex a response might be for
partial histories within a stage. The next attempt at a solu-
tion is based on this observation.

We devise the following definition of complexity:
Given the machine and the states, if a machine made the
same response to different partial stage histories in differ-
ent states and another machine made different responses,
then the second one wasmore complex (given that thema-
chines were identical in all other respects). We refer to this
notion as response complexity. (In [15] the concept of re-
sponse complexity is in fact stated in terms of the underly-
ing strategy rather than in terms of machines.) It captures
the intuition that counting states is not enough; two ma-
chines could have the same number of states, for example
because each generated the same number of distinct of-
fers, but the complexity of responses in one machine could
be much lower than that in the other. Note that this no-
tion would only arise in extensive-form games. In normal
form games, counting states could be an adequatemeasure
of complexity. Nor is this notion of complexity derivable
from notions of transition complexity, due to Banks and
Sundaram, for example, which also apply in normal-form
games.

The main result of Chatterjee and Sabourian [15] is
that this new aspect of complexity enables us to limit the
amount of delay that can occur in equilibrium and hence
to infer that only one-state machines are equilibrium ma-
chines.

The formal proofs using two different approaches are
available in Chatterjee and Sabourian [15,16]. We men-
tion the basic intuition behind these results. Suppose, in
the three player game, there is an agreement in period 4
(this is in the second stage). Why doesn’t this agreement
take place in period 1 instead? It must be because if the
same offer and responses are seen in period 1 some player
will reject the offer. But of course, he or she does not have
to do so because the required offer never happens. But
a strategy that accepts the offer in period 4 and rejects it
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off the equilibrium path in period 1 must be more complex,
by our definition, than one that always accepts it whenever
it might happen, on or off the expected path. Repeated ap-
plication of this argument by backwards induction gives
the result. (The details are more complicated but are in the
papers cited above.) Note that this uses the definition that
two machines might have the same number of states and
yet one could be simpler than the other. It is interesting,
as mentioned earlier, that for two players one can obtain
an analogous result without invoking the response sim-
plicity criterion, but from three players on this criterion
is essential.

The above result (equilibrium machines have one state
each and there are no delays beyond the first stage) is still
not enough to refine the set of equilibria to a single allo-
cation. In order to do this, we consider machines that can
make errors/trembles in output. As the error goes to zero,
we are left with perfect equilibria of our game. With one-
state machines, the only subgame perfect equilibria are the
ones that give equal division of the pie as ı ! 1. Thus
a combination of two techniques, one essentially recogniz-
ing that players canmakemistakes and the other that play-
ers prefer simpler strategies if the payoffs are the same as
those given by a more complex strategy, resolves the prob-
lem of multiplicity of equilibria in the multiperson bar-
gaining game.

As wementioned before, the introduction of errors en-
sures that the equilibrium strategies are credible at every
history. We could also take the more direct (and easier)
way of obtaining the uniqueness result with complexity
costs by considering NEC strategies that are subgame per-
fect in the underlying game (PEC) (as done in [15]). Then
since an history-independent subgame perfect equilibrium
of the game is unique and any NEC automaton profile has
one state and hence is history-independent, it follows im-
mediately that any PEC is unique and induces equal divi-
sion as ı ! 1.

Complexity and Repeated Negotiations

In addition to standard repeated games or standard bar-
gaining games, multiplicity of equilibria often appear in
dynamic repeated interactions, where a repeated game is
superimposed on an alternating offers bargaining game.
For instance, consider two firms, in an ongoing vertical
relationship, negotiating the terms of a merger. Such sit-
uations have been analyzed in several “negotiation mod-
els” by Busch and Wen [13], Fernandez and Glazer [18]
and Haller and Holden [25]. These models can be inter-
preted as combining the features of both repeated and al-
ternating-offers bargaining games. In each period, one of

the two players first makes an offer on how to divide the to-
tal available periodic (flow) surplus; if the offer is accepted,
the game ends with the players obtaining the correspond-
ing payoffs in the current and every period thereafter. If
the offer is rejected, they play some normal form game to
determine their flow payoffs for that period and then the
game moves on to the next period in which the same play
continues with the players’ bargaining roles reversed. One
can think of the normal form game played in the event of
a rejection as a “threat game” in which a player takes ac-
tions that could punish the other player by reducing his
total payoffs.

If the bargaining had not existed, the game would be
a standard repeated normal form game. Introducing bar-
gaining and the prospect of permanent exit, the negotia-
tion model still admits a large number of equilibria, like
standard repeated games. Some of these equilibria involve
delay in agreement (even perpetual disagreement) and in-
efficiency, while some are efficient.

Lee and Sabourian [31] apply complexity considera-
tions to this model. As in Abreu and Rubinstein [1] and
others, the players choose among automata and the equi-
librium notion is that of NEC and PEC. One important
difference however is that in this paper the authors do not
assume the automata to be finite. Also, the paper intro-
duces a new machine specification that formally distin-
guishes between the two roles – proposer and responder –
played by each player in a given period.

Complexity considerations select only efficient equilib-
ria in the negotiationmodel players are sufficiently patient.
First, it is shown that if an agreement occurs in some finite
period as a NEC outcome then it must occur within the
first two periods of the game. This is because if a NEC in-
duces an agreement beyond the first two periods then one
of the players must be able to drop the last period’s state
of his machine without affecting the outcome of the game.
Second, given sufficiently patient players, every PEC in the
negotiation model that induces perpetual disagreement is
at least long-run almost efficient; that is, the game must
reach a finite date at which the continuation game then on
is almost efficient.

Thus, these results take the study of complexity in re-
peated games a step further from the previous literature in
which complexity or bargaining alone has produced only
limited selection results. While, as we discussed above,
many inefficient equilibria survive complexity refinement,
Lee and Sabourian [31] demonstrate that complexity and
bargaining in tandem ensure efficiency in repeated in-
teractions. Complexity considerations also allow Lee and
Sabourian to highlight the role of transaction costs in the
negotiation game. Transaction costs take the form of pay-
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ing a cost to enter the bargaining stage of the negotiation
game. In contrast to the efficiency result in the negotia-
tion game with complexity costs, Lee and Sabourian also
show that introducing transaction costs into the negotia-
tion game dramatically alters the selection result from effi-
ciency to inefficiency. In particular, they show that, for any
discount factor and any transaction cost, every PEC in the
costly negotiation game induces perpetual disagreement if
the stage game normal form (after any disagreement) has
a unique Nash equilibrium.

Complexity, Market Games
and the Competitive Equilibrium

There has been a long tradition in economics of trying to
provide a theory of how a competitive market with many
buyers and sellers operates. The concept of competitive
(Walrasian) equilibrium (see Debreu [17]) is a simple de-
scription of such markets. In such an equilibrium each
trader chooses rationally the amount he wants to trade tak-
ing the prices as given, and the prices are set (or adjust) to
ensure that total demanded is equal to the total supplied.
The important feature of the set-up is that agents assume
that they cannot influence (set) the prices and this is often
justified by appealing to the idea that each individual agent
is small relative to the market.

There are conceptual as well as technical problems as-
sociated with such a justification. First, if no agent can in-
fluence the prices then who sets them? Second, even in
a large but finite market a change in the behavior of a single
individual agent may affect the decisions of some others,
which in turn might influence the behavior of some other
agents and so on and so forth; thus the market as a whole
may end up being affected by the decision of a single indi-
vidual.

Game theoretic analysis of markets have tried to ad-
dress these issues (e. g. see [21,47]). This has turned out to
be a difficult task because the strategic analysis of markets,
in contrast to the simple and elegant model of competitive
equilibrium, tends to be complex and intractable. In par-
ticular, dynamic market games have many equilibria, in
which a variety of different kinds of behavior are sustained
by threats and counter-threats.

More than 60 years ago Hayek [26] noted the compet-
itive markets are simple mechanisms in which economic
agents only need to know their own endowments, prefer-
ences and technologies and the vector of prices at which
trade takes place. In such environments, economic agents
maximizing utility subject to constraints make efficient
choices in equilibrium. Below we report some recent work,
which suggests that the converse might also be true:

If rational agents have, at least at the margin, an
aversion to complex behavior, then their maximiz-
ing behavior will result in simple behavioral rules
and thereby in a perfectly competitive equilibrium

(Gale and Sabourian [22]).

Homogeneous Markets

In a seminal paper, Rubinstein and Wolinsky [46], hence-
forth RW, considered amarket for a single indivisible good
in which a finite number of homogeneous buyers and ho-
mogeneous sellers are matched in pairs and bargain over
the terms of trade. In their set-up, each seller has one unit
of an indivisible good and each buyer wants to buy at most
one unit of the good. Each seller’s valuation of the good
is 0 and each buyer’s valuation is 1. Time is divided into
discrete periods and at each date, buyers and sellers are
matched randomly in pairs and one member of the pair
is randomly chosen to be the proposer and the other the
responder. In any such match the proposer offers a price
p 2 [0; 1] and the responder accepts or rejects the offer.
If the offer is accepted the two agents trade at the agreed
price p and the game ends with the seller receiving a pay-
off p and the buyer in the trade obtaining a payoff 1� p. If
the offer is rejected the pair return to the market and the
process continues. RW further assume that there is no dis-
counting to capture the idea that there is no friction (cost
to waiting) in the market.

Assuming that the number of buyers and sellers is not
the same, RW showed that this dynamic matching and
bargaining game has, in addition to a perfectly competitive
outcome, a large set of other subgame perfect equilibrium
outcomes, a result reminiscent of the Folk Theorem for
repeated games. To see the intuition for this, consider the
case in which there is one seller s and many buyers. Since
there are more buyers than sellers the price of 1, at which
the seller receives all the surplus, is the unique competi-
tive equilibrium; furthermore, since there are no frictions
p D 1 seems to be the most plausible price. RW’s precise
result, however, establishes that for any price p� 2 [0; 1]
and any buyer b� there is a subgame perfect equilibrium
that results in s and b� trading at p�. The idea behind the
result is to construct an equilibrium strategy profile such
that buyer b� is identified as the intended recipient of the
good at a price p�. This means that the strategies are such
that (i) when s meets b�, whichever is chosen as the pro-
poser offers price p� and the responder accepts, (ii) when s
is the proposer in a match with some buyer b ¤ b�, s of-
fers the good at a price of p D 1 and b rejects and (iii)
when a buyer b ¤ b� is the proposer he offers to buy the
good at a price of p D 0 and s rejects. These strategies pro-
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duce the required outcome. Furthermore, the equilibrium
strategies make use of of the following punishment strate-
gies to deter deviations. If the seller s deviates by proposing
to a buyer b a price p ¤ p�, b rejects this offer and the play
continues with b becoming the intended recipient of the
item at a price of zero. Thus, after rejection by b strategies
are the same as those given earlier with the price zero in
place of p� and buyer b in place of buyer b�. Similarly, if
a buyer b deviates by offering a price p ¤ p� then the seller
rejects, another buyer b0 ¤ b is chosen to be the intended
recipient and the price at which the unit is traded changes
to 1. Further deviations from these punishment strategies
can be treated in an exactly similar way.

The strong impression left by RW is that indetermi-
nacy of equilibrium is a robust feature of dynamic market
games and, in particular, there is no reason to expect the
outcome to be perfectly competitive. However, the strate-
gies required to support the family of equilibria in RW are
quite complex. In particular, when a proposer deviates,
the strategies are tailor-made so that the responder is re-
warded for rejecting the deviating proposal. This requires
coordinating on a large amount of information so that at
every information set the players know (and agree) what
constitutes a deviation.

In fact, RW show that if the amount of information
available to the agents is strictly limited so that the agents
do not recall the history of past play then the only equi-
librium outcome is the competitive one. This suggests that
the competitive outcome may result if agents use simple
strategies. Furthermore, the equilibrium strategies used
described in RW to support non-competitive outcomes
are particularly unattractive because they require all play-
ers, including those buyers who do not end up trading,
to follow complex non-stationary strategies in order to
support a non-competitive outcome. But buyers who do
not trade and receive zero payoff on the equilibrium path
could always obtain at least zero by following a less com-
plex strategy than the ones specified in RW’s construction.
Thus, RW’s construction of non-competitive equilibria is
not robust if players prefer, at least at the margin, a simpler
strategy to a more complex one.

Following the above observation, Sabourian [47],
henceforth S, addresses the role of complexity (simplicity)
in sustaining a multiplicity of non-competitive equilibria
in RW’s model. The concept of complexity in S is similar
to that in Chatterjee and Sabourian [15]. It is defined by
a partial ordering on the set of individual strategies (or au-
tomata) that very informally satisfies the following: If two
strategies are otherwise identical except that in some role
the second strategy uses more information than that avail-
able in the current period of bargaining and the first uses

only the information available in the current period, then
the second strategy is said to be more complex than the
first. S also introduces complexity costs lexicographically
into the RW game and shows that any PEC is history-inde-
pendent and induces the competitive outcome in the sense
that all trades take place at the unique competitive price
of 1.

Informally, S’s conclusions in the case of a single seller
s and many buyers follows from the following three steps.
First, since trading at the competitive price of 1 is the worst
outcome for a buyer and the best outcome for the seller,
by appealing to complexity type reasoning it can be shown
that in any NEC a trader’s response to a price offer of 1 is
always history-independent and thus he either always re-
jects 1 or always accepts 1. For example, if in the case of
a buyer this were not the case, then since accepting 1 is
a worst possible outcome, he could economize on com-
plexity and obtain at least the same payoff by adopting an-
other strategy that is otherwise the same as the equilibrium
strategy except that it always rejects 1.

Second, in any non-competitive NEC in which s re-
ceives a payoff of less than 1, there cannot be an agreement
at a price of 1 between s and a buyer at any history. For
example, if at some history, a buyer is offered p D 1 and
he accepts then by the first step the buyer should accept
p D 1 whenever it is offered; but this is a contradiction
because it means that the seller can guarantee himself an
equilibrium payoff of one by waiting until he has a chance
to make a proposal to this buyer.

Third, in any non-competitive PEC the continuation
payoffs of all buyers are positive at every history. This fol-
lows immediately from the previous step because if there is
no trade at p D 1 at any history it follows that each buyer
can always obtain a positive payoff by offering the seller
more than he can obtain in any subgame.

Finally, because of competition between the buyers
(there is one seller and many buyers), in any subgame per-
fect equilibrium theremust be a buyer with a zero continu-
ation payoff after some history. To illustrate the basic intu-
ition for this claim, letm be the worst continuation payoff
for s at any history and suppose that there exists a sub-
game at which s is the proposer in a match with a buyer
b and the continuation payoff of s at this subgame is m.
Then if at this subgame s proposes m C � (� > 0), b must
reject (otherwise s can get more than m). Since the total
surplus is 1, bmust obtain at least 1 � m � � in the contin-
uation game in order to reject s0s offer and s gets at leastm,
this implies that the continuation payoff of all b ¤ b af-
ter b

0
s rejection is less than ". The result follows by mak-

ing " arbitrarily small (and by appealing to the finiteness
of f ).
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But the last two claims contradict each other unless the
equilibrium is competitive. This establishes the result for
the case in which there is one seller and many buyers. The
case of a market with more than one seller is established
by induction on the number of sellers.

The matching technology in the above model is ran-
dom. RW also consider another market game with the
matching is endogenous:At each date each seller (the short
side of the market) chooses his trading partner. Here, they
show that non-competitive outcomes and multiplicity of
equilibria survive even when the players discount the fu-
ture. By strengthening the notion of complexity S also
shows that in the endogenous matching model of RW the
competitive outcome is the only equilibrium if complexity
considerations are present.

These results suggest perfectly competitive behavior
may result if agents have, at least at the margin, prefer-
ences for simple strategies. Unfortunately, both RW and S
have too simple amarket set-up; for example, it is assumed
that the buyers are all identical, similarly for the sellers and
each agent trades at most one unit of the good. Do the con-
clusions extend to richer models of trade?

Heterogeneous Markets

There are good reasons to think that it may be too diffi-
cult (or even impossible) to establish a similar set of con-
clusions as in S in a richer framework. For example, con-
sider a heterogeneous market for a single indivisible good,
where buyers (and sellers) have a range of valuations of the
good and each buyer wants at most one unit of the good
and each seller has one unit of the good for sale. In this case
the analysis of S will not suffice. First, in the homogeneous
market of RW, except for the special case where the num-
ber of buyers is equal to the number of sellers, the compet-
itive equilibrium price is either 0 or 1 and all of the surplus
goes to one side of the market. S’s selection result crucially
uses this property of the competitive equilibrium. By con-
trast, in a heterogeneous market, in general there will be
agents receiving positive payoffs on both sides of the mar-
ket in a competitive equilibrium. Therefore, one cannot
justify the competitive outcome simply by focusing on ex-
treme outcomes in which there is no surplus for one party
from trade. Second, in a homogeneous market individu-
ally rational trade is by definition efficient. This may not
be the case in a heterogeneous market (an inefficient trade
between inframarginal and an extramarginal agent can be
individually rational). Third, in a homogeneous market,
the set of competitive prices remains constant, indepen-
dently of the set of agents remaining in the market. In the
heterogeneous market, this need not be so and in some

cases, the new competitive interval may not even inter-
sect the old one. The change in the competitive interval of
prices as the result of trade exacerbates the problems asso-
ciated with using an induction hypothesis because here fu-
ture pricesmay be conditioned on past trades even if prices
are restricted to be competitive ones.

Despite these difficulties associated with a market
with a heterogeneous set of buyers and sellers, Gale and
Sabourian [22], henceforth GS, show that the conclusions
of S can be extended to the case of a heterogeneous market
in which each agent trades at most one unit of the good.
GS, however, focus on deterministic sequential matching
models in which one pair of agents are matched at each
date and they leave the market if they reach an agreement.
In particular, they start by considering exogenous match-
ing processes in which the identities of the proposer and
responder at each date are an exogenous and determinis-
tic function of the set of agents remaining in the market
and the date. The main result of the paper is that a PEC
is always competitive in in such a heterogeneous mar-
ket, thus supporting the view that competitive equilibrium
may arise in a finite market where complex behavior is
costly.

The notion of complexity in GS is similar to that in
S [15]. However, in the GS set-up with heterogeneous buy-
ers and sellers the set of remaining agents changes depend-
ing who has traded and left the market and who is remain-
ing, and this affects the market conditions. (In the homo-
geneous case, only the number of remaining agents mat-
ters.) Therefore, the definition of complexity in GS is with
reference to a given set of remaining agents. GS also dis-
cuss an alternative notion of complexity that is indepen-
dent of the set of remaining agents; such a definition may
be too strong and may result in an equilibrium set being
empty.

To show their result, GS first establish two very use-
ful restrictions on the strategies that form a NEC (similar
to the no delay result in Chatterjee and Sabourian [15]).
First, they show that if along the equilibrium path a pair
of agents k and ` trade at a price p with k as the proposer
and ` as the responder then k and ` always trade at p, irre-
spective of the previous history, whenever the two agents
are matched in the same way with the same remaining set
of agents. To show this consider first the case of the re-
sponder `. Then it must be that at every history with the
same remaining set of agents ` always accepts p by k. Oth-
erwise, ` could economize on complexity by choosing an-
other strategy that is otherwise identical to his equilibrium
strategy except that it always accepts p from k without sac-
rificing any payoff: Such a change of behavior is clearly
more simple than sometimes accepting and sometimes re-
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jecting the offer and moreover, it results in either agent k
proposing p and ` accepting, so the payoff to agent ` is
the same as from the equilibrium strategy, or agent k not
offering p, in which case the change in the strategy is not
observed and the play of the game is unaffected by the de-
viation. Furthermore, it must also be that at every history
with the same remaining set of agents agent k proposes p
in any match with `. Otherwise, k could economize on
complexity by choosing another strategy that is otherwise
identical to his equilibrium strategy except that it always
proposes p to ` without sacrificing any payoff on the equi-
librium path: Such a change of behavior is clearly more
simple and moreover k’s payoff is not affected because ei-
ther agent k and ` are matched and k proposes p and ` by
the previous argument accepts, so the payoff to agent k is
the same as from the equilibrium strategy, or agent k and `
are not matched with k as the proposer, in which case the
change in the strategy is not observed and the play of the
game is unaffected by the deviation.

GS’s shows a second restriction, again with the same
remaining set of agents, namely that in any NEC for any
pair of agents k and `, player `’s response to k’s (on or
off-the-equilibrium path) offer is always the same. Other-
wise, it follows that ` sometimes accepts an offer p by k and
sometimes rejects (with the same remaining set of agents).
Then by the first restriction it must be that if such an of-
fer is made by k to ` on the equilibrium path it is rejected.
But then ` can could economize on complexity by always
rejecting p by k without sacrificing any payoff on the equi-
librium path: Such a change of behavior is clearly more
simple and furthermore `’s payoff is not affected because
such a behavior is the same as what the equilibrium strat-
egy prescribes on the equilibrium path.

By appealing to the above two properties of NEC and
to the competitive nature of the market GS establish, us-
ing a complicated induction argument, that every PEC in-
duces a competitive outcome in which each trade occurs
at the same competitive price.

The matching model we have described so far is deter-
ministic and exogenous. The selection result of GS how-
ever extends to richer deterministic matching models. In
particular, GS also consider a semi-endogenous sequen-
tial matching model in which the choice of partners is en-
dogenous but the identity of the proposer at any date is
exogenous. Their results extends to this variation, with an
endogenous choice of responders. A more radical depar-
ture change would be to consider the case where at any
date any agent can choose his partner and make a pro-
posal. Such a totally endogenous model of trade generates
new conceptual problems. In a recent working paper Gale
and Sabourian [24] consider a continuous time version of

such a matching model and show that complexity consid-
erations allows one to select a competitive outcome in the
case of totally endogenous matching. Since the selection
result holds for all the different matching models we can
conclude that complexity considerations inducing a com-
petitive outcome seem to be a robust result in determinis-
tic matching and bargaining market games with heteroge-
neous agents.

Random matching is commonly used in economic
models because of its tractability. The basic framework of
GS, however, does not extend to such a framework if either
the buyers or the sellers are not identical. This is for two
different reasons. First, in general in any random frame-
work there is more than one outcome path that can occur
in equilibrium with a positive probability; as a result intro-
ducing complexity lexicographically may not be enough to
induce agents to behave in a simple way (they will have
to be complex enough to play optimally along all paths
that occur with a positive probability). Second, in Gale and
Sabourian [23] it is shown that subgame perfect equilibria
in Markov strategies are not necessarily perfectly competi-
tive for the random matching model with heterogeneous
agents. Since the definition of complexity in GS is such
that Markov strategies are the least complex ones, it fol-
lows that with randommatching the complexity definition
used inGS is not sufficient to select a competitive outcome.

Complexity and Off-The-Equilibrium Path Play

The concept of the PEC (or NEC) used in S, GS and else-
where was defined to be such that for each player the
strategy/automaton has minimal complexity amongst all
strategies/automata that are best responses to the equilib-
rium strategies/automata of others. Although, these con-
cepts are very mild in the treatment of complexity, it
should be noted that there are other ways of introducing
complexity into the equilibrium concept. One extension
of the above set-up is to treat complexity as a (small) pos-
itive fixed cost of choosing a more complex strategy and
define a Nash (subgame perfect) equilibrium with a fixed
positive complexity costs accordingly. All the selection re-
sults based on lexicographic complexity in the papers we
discuss in this survey also hold for positive small complex-
ity costs. This is not surprising because with positive costs
complexity has at least as much bite as in the lexicographic
case; there is at least asmuch refinement of the equilibrium
concept with the former as with the latter. In particular, in
the case of a NEC (or a PEC), in considering complexity,
players ignore any consideration of payoffs off the equi-
librium path and the trade-off is between the equilibrium
payoffs of two strategies and the complexity of the two.
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As a result these concepts put more weight on complex-
ity costs than on being “prepared” for off-the-equilibrium-
path moves. Therefore, although complexity costs are in-
significant, they take priority over optimal behavior after
deviations. (See [16] for a discussion.)

A different approach would be to assume that com-
plexity is a less significant criterion than the off-the-equi-
librium payoffs. In the extreme case, one would require
agents to choose minimally complex strategies among the
set of strategies that are best responses on and off the equi-
librium path (see Kalai and Neme [28]).

An alternative way of illustrating the differences be-
tween the different approaches is by introducing two kinds
of vanishingly small perturbations into the underlying
game. One perturbation is to impose a small but positive
cost of choosing a more complex strategy. Another per-
turbation is to introduce a small but positive probability
of making an error (off-the-equilibrium-pathmove). Since
a PEC requires each agents to choose a minimally com-
plex strategy within the set of best responses, it follows
that the limit points of Nash equilibria of the above per-
turbed game correspond to the concept of PEC if we first
let the probability of making an off-the-equilibrium-path
move go to zero and then let the cost of choosing a more
complex strategy go to zero (this is what Chatterjee and
Sabourian [15] do). On the other hand, in terms of the
above limiting arguments, if we let the cost of choosing
a more complex strategy go to zero and then let the prob-
ability of making an off-the-equilibrium-path move go to
zero then any limit corresponds to the equilibrium defi-
nition in Kalai and Neme [28] where agents choose min-
imally complex strategies among the set of strategies that
are best responses on and off the equilibrium path.

Most of the results reported in this paper on refine-
ment and endogenous complexity (for example Abreu–
Rubinstein [1]), Chatterjee and Sabourian [15], Gale and
Sabourian [22] and Lee and Sabourian [31] hold only for
the concept of NEC and its variations and thus depend
crucially on assuming that complexity costs are more im-
portant than off-the-equilibrium payoffs. This is because
these results always appeal to an argument that involves
economizing on complexity if the complexity is not used
off the equilibrium path. Therefore, they may be a good
predictor of what may happen only if complexity costs are
more significant than the perturbations that induce off-
the-equilibrium-path behavior. The one exception is the
selection result in S [47]. Here, although the result we have
reported is stated for NEC and its variations, it turns out
that the selection of competitive equilibrium does not in
fact depend on the relative importance of complexity costs
and off-the-equilibrium path payoffs. It remains true even

for the case where the strategies are required to be least
complex amongst those that are best responses at every in-
formation set. This is because in S’s analysis complexity is
only used to show that every agent’s response to the price
offer of 1 is always the same irrespective of the past history
of play. This conclusion holds irrespective of the relative
importance of complexity costs and off-the-equilibrium
payoff because trading at the price of 1 is the best outcome
that any seller can achieve at any information set (includ-
ing those off-the-equilibrium) and a worst outcome for
any buyer. Therefore, irrespective of the order, the strat-
egy of sometimes accepting a price of 1 and sometimes re-
jecting cannot be an equilibrium for a buyer (similar ar-
guments applies for a seller) because the buyer can econ-
omize on complexity by always rejecting the offer without
sacrificing any payoff off or on-the-equilibrium path (ac-
cepting p D 1 is a worse possible outcome).

Discussion and Future Directions

The use of finite automata as a model of players in a game
has been criticized as being inadequate, especially because
as the number of states becomes lower it becomes more
and more difficult for the small automaton to do routine
calculations, let alone the best response calculations nec-
essary for game-theoretic equilibria. Some of the papers
we have explored address other aspects of complexity that
arise from the concrete nature of the games under con-
sideration. Alternative models of complexity are also sug-
gested, such as computational complexity and communi-
cation complexity.

While our work and the earlier work on which it
builds focuses on equilibrium, an alternative approach
might seek to see whether simplicity evolves in some rea-
sonable learning model. Maenner [32] has undertaken
such an investigation with the infinitely repeated Pris-
oners’ Dilemma (studied in the equilibrium context by
Abreu and Rubinstein). Maenner provides an argument
for “learning to be simple”. On the other hand, there are
arguments for increasing complexity in competitive games
([42]). It is an open question, therefore, whether simplic-
ity could arise endogenously through learning, though it
seems to be a feature of most human preferences and aes-
thetics (see [11]).

The broader research program of explicitly consider-
ing complexity in economic settings might be a very fruit-
ful one. Auction mechanisms are designed with an eye to-
wards how complex they are – simplicity is a desideratum.
The complexity of contracting has given rise to a whole lit-
erature on incomplete contracts, where some models pos-
tulate a fixed cost per contingency described in the con-
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tract. All this is apart from the popular literature on com-
plexity, which seeks to understand complex, adaptive sys-
tems from biology. The use of formal complexity measures
such as those considered in this survey and the research
we describe might throw some light on whether incom-
pleteness of contracts, or simplicity of mechanisms, is an
assumption or a result (of explicitly considering choice of
level of complexity).
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Glossary

ACF Autocorrelation Function
ARMA Autoregressive Moving Average
BEKK A multivariate GARCH model named after an

early unpublished paper by Baba, Engle, Kraft and
Kroner.

CCC Constant Conditional Correlation
DCC Dynamic Conditional Correlation
CAPM Capital Asset Pricing Model

GARCH Generalized Autoregressive Conditional Het-
eroskedasticity

Heteroskedasticity A non-constant variance that de-
pends on the observation or on time.

i.i.d. independent, identically distributed
Kurtosis A standardized fourth moment of a random

variable that tells something about the shape of the
distribution. A Gaussian distribution has a kurtosis of
three. If the kurtosis is larger than three, then typically
the distribution will have tails that are thicker than
those of the Gaussian distribution.

Lag An operation that shifts the time index of a time se-
ries. For example, the first lag of yt is yt�1.

Long memory Property of covariance stationary pro-
cesses without absolutely summable ACF, meaning
that the ACF decays slowly.

Realized volatility Sum of intra-day squared returns as
a measure for daily volatility.

Skewness A standardized third moment of a random
variable that tells something about the asymmetry of
the distribution. Symmetric distributions have skew-
ness equal to zero.

Volatility Degree of fluctuation of a time series around its
mean.

Definition of the Subject

GARCH (Generalized Autoregressive Conditional Het-
eroskedasticity) is a time series model developed by [44]
and [21] to describe the way volatility changes over time.
In a GARCH model, the volatility at a given time t, �2t say,
is a function of lagged values of the observed time series
yt . The GARCH model can be written as yt D �t�t , with
� t being an independent, identically distributed (i.i.d.) er-
ror term with mean zero and variance one, and where

�2t D ! C

qX

iD1

˛i y2t�i C
pX

jD1

ˇ j�
2
t� j (1)

with constant parameters !, ˛1; : : : ; ˛q and ˇ1; : : : ; ˇp .
Model (1) is also called GARCH(p; q), analogous to
ARMA(p; q), as it includes p lagged volatilities and q
lagged squared values of yt . In this model, �2t is the
variance of yt conditional on the observations until time
t � 1. It is specified as a linear function of lagged squared
yt and lagged conditional variances. Many extensions
or modifications of the basic model in (1) have been
proposed, the most prominent being the exponential
GARCH model of [99] and the threshold GARCH models
of [123] and [59]. [71] and [42] provided classes of mod-
els that contain a large number of suggested models of the
GARCH type.
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Introduction

In the late seventies of the last century it became obvious
that volatilities of financial assets are indeed not constant,
nor deterministic or seasonal, but rather stochastic in na-
ture. There is an unsystematic change between periods of
high volatility and periods of low volatility. This ‘volatility
clustering’ had already been remarked in the early works
of [93] and [54]. It was one of several stylized facts of fi-
nancial asset returns, another of which was the observation
that the distribution of returns is not Gaussian. Of course,
these features were not necessarily treated in an indepen-
dent way, and in fact it was soon discovered that very likely
one of the effects was causing another, such as volatility
clustering causing leptokurtosis, or fat tailed distributions.
For example, consider the simple model for asset returns
yt ,

yt D �t�t

where �t � N(0; 1) and � t is stochastic with E[�2t ] D �2,
say, and independent of present and future � t. Then it is
straightforward to show that the kurtosis of yt is given by

� D
E[y4t ]
E[y2t ]2

D 3C 3
Var(�2t )
�4

: (2)

Thus, returns in this model are Gaussian distributed if
and only if Var(�2t ) D 0, i. e., volatility is non-stochastic.
Moreover, as the second term on the right hand side of
(2) is always positive, the kurtosis will be larger than three
under stochastic volatility, which often means that its tails
are fatter than those of the Gaussian distribution. In other
words, extreme events are more likely under stochastic
volatility compared with constant volatility.

To illustrate the effects of volatility clustering and fat
tails, consider the daily returns on the Dow Jones Indus-
trial Index over the period October 1928 to April 2007.
A graph of the (log) index Xt and returns, defined as
yt D Xt � Xt�1, is given in Fig. 1. Clearly visible is the
volatility clustering in the beginning of the sample period
and around the year 2000, while the years at the end of the
sample showed less volatility. Also visible is the crash of
October 1987 where the index dropped by 22 percent.

Figure 2 shows a nonparametric estimator of the log-
arithmic density of returns, compared with the analogue
of a Gaussian distribution. Clearly, the Dow Jones returns
distributions has fat tails, i. e., there are more extreme
events than one would expect under normality. There are
alsomore returns close to zero than under normality. Con-
cerning volatility clustering, Fig. 3 shows the autocorrela-
tion function of returns and squared returns. While there
is very little structure in the ACF of returns, the ACF of

GARCHModeling, Figure 1
Daily returns of the Dow Jones Index, 1928 to 2007, defined as
first difference of the log index

GARCHModeling, Figure 2
Dow Jones log density versus the Gaussian log density

squared returns are all positive and highly significant. This
positive autocorrelation is explained by the fact that large
returns tend to be followed by large returns and small re-
turns tend to be followed by small returns.

Yet, realizing that volatility is stochastic does not tell
us which model we should use for it. In practice, people
are sometimes debating whether they should take histor-
ical volatilities over 20 or 100 days, say. They notice that
calculating the standard deviation over a shorter period
is more accurate when recent upturns or downturns want
to be captured, while it is far less efficient than a longer
time window when volatility has not changedmuch. Thus,
there is some kind of bias-variance trade-off. The prob-
lem is that the optimal window length typically changes
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GARCHModeling, Figure 3
Dow Jones autocorrelation function of returns (upper panel) and
squared returns (lower panel)

over time, and it is virtually impossible to adjust histor-
ical volatility windows automatically to market develop-
ments. A related problem is that historical volatilities im-
ply a weighting scheme that is highly questionable: Why
should k days be incorporated in the calculation with equal
weight, but no weights are put to days up to k C 1 days
ago? A smoother weighting scheme seems more natural,
and in particular, an exponential scheme seems attractive.
Thus, for example, we may specify for �2t

�2t D (1 � )
1X

iD0

i y2t�1�i (3)

with parameter 2 (0; 1). Equation (3) can be rewritten as

�2t D (1 � )y2t�1 C �
2
t�1 ; (4)

which looks more familiar. It is actually the model used by
RiskMetrics of JP Morgan, when the smoothing parame-
ter is fixed to 0.94. RiskMetrics is often used in practice as
a means to calculate the Value-at-Risk (VaR) of a portfo-
lio and to assess the market risk of a bank, required by the
Basel Committee for Banking Supervision, see e. g., [78]
and [95]. The VaR is essentially an extreme quantile of
the distribution of portfolio returns. Under Gaussianity,
for example, the VaR is a direct function of volatility.
The RiskMetrics model is a special case of the integrated
GARCH model of [47].

The generalized autoregressive conditional het-
eroskedasticity – GARCH – model is based on the semi-
nal work of [44] and [21]. The idea is to do exponential

smoothing in a more flexible way than RiskMetrics but
keeping the model parsimonious. The particular specifi-
cation reveals many similarities to autoregressive moving
average (ARMA) time seriesmodels. In its most often used
form, the standard GARCH model of order (1,1) reads

�2t D ! C ˛y
2
t�1 C ˇ�

2
t�1 (5)

where !, ˛ and ˇ are parameters to be estimated from the
data. Thus, the conditional variance is a linear function
of lagged squared observations yt and lagged conditional
variances. Comparing (5) with the RiskMetrics model (4),
it becomes clear that in the GARCH(1,1) model a con-
stant is added, the parameter ˛ takes the role of 1� 
and ˇ that of . But since ˛ and ˇ can be chosen indepen-
dently, the GARCH model is more flexible than RiskMet-
rics. In (5), substituting successively for �2t�i , one obtains
the analogue representation of (3),

�2t D
!

1 � ˇ
C ˛

1X

iD0

ˇ i y2t�1�i ; (6)

which clearly shows the exponential smoothing feature of
the GARCH(1,1) model. The basic model can now be ex-
tended to allow for more lags. The GARCH(p; q) model is
given by

�2t D ! C

qX

iD1

˛i y2t�i C
pX

jD1

ˇ j�
2
t� j (7)

extending the number of parameters to pC qC 1.
GARCH models of order higher than (1,1) allow for more
complex autocorrelation structures of the squared process.
However, in most empirical studies coefficients corre-
sponding to higher lags turned out to be insignificant and
thus simple GARCH(1,1) have clearly dominated models
of higher order.

Although extremely successful due to its simplicity and
yet accurate description of volatility changes, a thorough
understanding of its stochastic properties such as station-
arity or positivity constraints took many years. For ex-
ample, [98] shows that, paradoxically at first sight, con-
ditions for strict stationarity are less rigid than those for
covariance stationarity if error terms are Gaussian, the rea-
son being that covariance stationarity requires finite vari-
ances whereas strict stationarity does not. Moreover, the
often given parameter restrictions ! > 0, ˛i ; ˇ j � 0 are
only sufficient but not necessary for �t > 0 almost surely
as demonstrated by [100]. These are just two examples
for the subtleties of the theory of univariate GARCH pro-
cesses.

Nevertheless, the immense success of the simple
GARCH(1,1) model to explain many sorts of financial and
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macroeconomic time series was irreversible, partly also be-
cause it became available in standard statistical program-
ming packages. The theory of estimation and inference de-
veloped rapidly, although perhaps still being underway,
and estimation time of a GARCH(1,1) model for a thou-
sand or so observations decreased from minutes in the
eighties over seconds in the nineties to just fractions of
a second nowadays. With these developments it became
available to a broad public, andmore andmore practition-
ers started using the model, be it for option pricing, port-
folio optimization, risk management, or other purposes.
Monographs and reviews appeared such as [14,20,60]
and [13]. Anniversary issues of renowned journals such
as Journal of Applied Econometrics, 2002, were dedicated
entirely to new ideas in GARCH modeling. The Nobel
price for economics in 2003was awarded to two time series
econometricians, Clive Granger and Robert Engle. The lat-
ter has mainly driven the development of a new financial
econometrics discipline, based on volatility modeling but
spreading also to other areas such as modeling of extreme
events and risk management.

The pricing of options and other derivatives is perhaps
the most typical example for where models for the volatil-
ity of an asset matter. For example, the celebrated option
pricing formula of [18] does not depend on the drift of the
underlying stock but well on its volatility. In fact, among
the ingredients of the Black and Scholes formula, volatility
is the most crucial one, the other ones being either fixed
such as time of maturity or strike price, or relatively easy to
determine such as a riskfree interest rate. Volatility, how-
ever, has always been subject to debates about how exactly
to find accurate measures for it. The Black and Scholes as-
sumption of constant volatility is actually less crucial to
their formula than one often thinks. Actually, if volatility
is time-varying but in a deterministic way, then the Black
and Scholes formula remains valid. One just has to replace
the volatility parameter by the mean of the volatility func-
tion from today until the time of maturity of the option
contract, see e. g., [90]. If, however, volatility is stochas-
tic, i. e., it has an additional source of randomness, then
markets are no longer complete and the Black and Scholes
formula breaks down. In that case, assumptions about the
volatility risk premium have to be made. In continuous
time stochastic volatility models a classical paper is [74],
while in a discrete time GARCH framework, [41] derives
results for option pricing.

Properties of the GARCH(1,1) Model

For the sake of simplicity let us consider the univariate
GARCH(1,1) model given in (5), where we additionally

assume that the conditional distribution of yt is Gaussian.
The model can be written as

yt D �t�t ; �t � i.i.d. N(0; 1) (8)

�2t D ! C ˛y
2
t�1 C ˇ�

2
t�1 : (9)

In the following we discuss a few properties of
model (8). First, the GARCH model specifies the condi-
tional variance, where the condition is the information
set generated by the process yt . Formally, it is given by
the sigma-algebra Ft D �(yt ; yt�1; : : :). With this nota-
tion we can write �2t D Var(yt jFt�1), since �2t is Ft�1-
measurable. As the information set changes over time,
the conditional variance also changes. On the other hand,
this does not imply that the unconditional variance is also
time-varying. In fact, for model (8) it is quite straightfor-
ward to show that the unconditional variance, if it exists,
is constant and given by

Var(yt) D
!

1 � ˛ � ˇ
:

A necessary and sufficient condition for the existence of
the unconditional variance is

˛ C ˇ < 1 ; (10)

see [21]. He also shows that condition (10) is necessary
and sufficient for the process fytg to be covariance sta-
tionary. In that case, the autocorrelation function of fytg
is given by �� (yt) D 0;8� � 1. Moreover, both the con-
ditional and unconditional mean of yt are zero, so that the
process fytg has the properties of a white noise without
being an i.i.d. process. The dependence occurs in higher
moments of the process. For example, the autocorrelation
function of the squared process, provided that fourth mo-
ments exist, is given by

�1(y2t ) D ˛
1 � ˛ˇ � ˇ2

1 � 2˛ˇ � ˇ2 (11)

�� (y2t ) D (˛ C ˇ)���1(y2t ); � � 2 : (12)

From (11) and (12) it is obvious that in the GARCH(1,1)
model all autocorrelations of squared returns are positive
with an exponential decay. This decay is slow if ˛ C ˇ
is close to one, as often found for empirical data. One
also characterizes this coefficient as the “persistence” pa-
rameter of the GARCH(1,1) model. The closer the persis-
tence parameter is to one, the longer will be the periods of
volatility clustering. On the other hand, the larger ˛ rela-
tive to ˇ, the higher will be the immediate impact of lagged
squared returns on volatility.
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The necessary and sufficient condition for finite fourth
moments is given by ˇ2 C 2˛ˇ C 3˛2 < 1, see [21]. In
that case, the kurtosis of yt is given by

� D 3C
6˛2

1 � ˇ2 � 2˛ˇ � 3˛2
;

which is larger than three since the second term on the
right hand side is positive. Hence, the GARCH(1,1) ex-
hibits fat tails compared with a normal distribution.

A link between the GARCH model and an ARMA
model is given by considering the squared process, fytg.
By simply adding y2t and subtracting �2t on both sides of
Eq. (9), one obtains

y2t D ! C (˛ C ˇ)y2t�1 � ˇut�1 C ut (13)

where ut D y2t � �2t . Equation (13) is an ARMA(1,1)
in y2t , since ut is a white noise error term: We have
E[ut jFt�1] D 0, which implies that all autocorrelations of
ut are zero.

It is possible that the process fytg is strictly stationary
without being covariance stationary, simply because a fi-
nite variance is not necessary for strict stationarity. If the
process starts in the infinite past, a necessary and sufficient
condition for strict stationarity of the GARCH(1,1) pro-
cess as shown by [98] is given by

E[log(˛�2t C ˇ)] < 0 ; (14)

which is indeed weaker than condition (10). This fol-
lows directly by noting that (10) is equivalent to
log(˛ C ˇ) D log(E[˛�2t C ˇ]) < 0. Thus, by Jensen’s in-
equality, E[log(˛�2t C ˇ)] < log(E[˛�2t C ˇ]) < 0. For ex-
ample, for an ARCH(1) model (i. e., a GARCH(1,1) model
withˇ D 0), ˛ can be as large as 3.56 and still the process is
strictly stationary. Figure 4 shows the different stationarity
regions as a function of the two parameters. [25] general-
ized condition (14) to the GARCH(p; q) case.

Under the sufficient condition (10), the GARCH(1,1)
process with Gaussian innovations is also geometrically
ergodic and ˇ-mixing with exponential decay as shown
by [28].

If condition (14) holds, then the process fytg has a sta-
tionary distribution whose tails are of the Pareto type. That
is, for large x and some a; k > 0,

p(x) D Pr(yt > x) D kx�a : (15)

The coefficient a is known as the tail index. The smaller a,
the fatter the tail of the distribution. For all c; 0 � c < ˛,
E[jyt jc] <1. [43] showed that a stationary ARCH model

GARCHModeling, Figure 4
Stationarity regions for a GARCH(1,1) process with Gaussian in-
novations. To the left of the dashed line is the region of covari-
ance stationarity, to the left of the thick line is the region of strict
stationarity, and to the right of the thick line is the region of non-
stationarity

has Pareto-like tails. Knowledge of the tail index is impor-
tant for risk management in order to assess the risk of ex-
treme events. The theoretical tail index of a fitted ARCH
or GARCH model can be compared with an estimate of
the empirical tail index in order to diagnose the goodness-
of-fit with respect to the tails. For example, taking log-
arithms of (15), one obtains log p(x) D log(k) � a log(x)
for large x. Replacing x by the largest m order statistics of
yt , and introducing an error term, one obtains the regres-
sion

log
i
n
D log k � a log X(i) C "i ; i D 1; : : : ;m (16)

where X(i) are the largest m order statistics of yt and "i is
an error term. One can estimate the coefficients of the lin-
ear regression (16) simply by ordinary least squares. More
problematic is the choice ofm, which involves a bias-vari-
ance trade-off. For the Dow Jones returns, Fig. 5 shows
the tail index regression using m D 30. The OLS estima-
tor of a is 3.12, indicating that fourth moments of returns
may not exist. Another simple estimator is the Hill estima-
tor proposed by [72], which is based on a likelihood prin-
ciple. For the Dow Jones returns, the Hill estimator of a us-
ing m D 30 is 2.978, which is close to the OLS estimator,
suggesting that even third moments may not exist. More
elaborate estimators have been proposed and we refer to
the detailed discussion in [43].

The presence of autoregressive conditional het-
eroskedasticity has an effect on the forecast intervals for
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GARCHModeling, Figure 5
Tail index regression for the Dow Jones returns

predicted ytCk given information at time t. If volatility at
time t as measured by the GARCH model is high (low),
these will be larger (smaller) than if GARCH effects are ig-
nored. Furthermore, forecasting the volatility itself is eas-
ily possible with the standard GARCH model, since ana-
lytical expressions can be found for the conditional mean
of future volatility as a function of today’s information.
The conditional mean is the optimal predictor in a mean
square prediction error sense. For example, to forecast
�2tCk , one derives for a forecast horizon of k � 2,

E[�2tCkjFt] D !(1C (˛ C ˇ)C � � � C (˛ C ˇ)k�2)

C (˛ C ˇ)k�1�2tC1 :

If the process is covariance stationary, i. e., ˛ C ˇ < 1,
then volatility forecasts converge to the unconditional
variance:

lim
k!1

E[�2tCk jFt] D
!

1 � ˛ � ˇ
D Var(yt) :

In the early literature on GARCH models, these were crit-
icized for not providing good forecasts in terms of con-
ventional forecast criteria. For example, when regressing
the ex post squared daily returns on the forecasted con-
ditional variance, the obtained R2 is typically small, of the
order of about ten percent. [4] found that the daily squared
return is not really the targeted value, but that daily volatil-
ity should rather be measured by the sum of intra-day
squared returns, e. g., on intervals of five minute returns,
which they called realized volatility. In terms of realized
volatility, the forecasting performance of GARCH mod-
els improved substantially to levels of about fifty percent

R2. Later, a new branch of volatility modeling opened by
noticing that if intra-day data are available, then it is in-
deed more efficient to measure daily volatility directly by
realized volatility and then do forecasting of daily volatility
using models fitted to realized volatility, see e. g., [5].

Estimation and Inference

The principal estimation method for GARCH models is
maximum likelihood (ML). In most cases one assumes
a conditional Gaussian distribution. If the true distribu-
tion is Gaussian, thenML estimators are consistent and ef-
ficient under quite general conditions. On the other hand,
if the true distribution is not Gaussian, then one loses ef-
ficiency but again under quite general conditions, con-
sistency is retained if at least the first two conditional
moments are correctly specified, see [23]. In the case of
misspecification of the conditional distribution one also
speaks of quasi maximum likelihood (QML), distinguish-
ing it from ML where the true distribution is used, which
however in general is unknown.

The log likelihood function, up to an additive constant
and conditional on some starting value for the volatility
process, reads L(�) D

Pn
tD1 lt(�), where

lt(�) D �
1
2
log �2t (�) �

1
2

nX

tD1

y2t
�2t (�)

and where � D (!; ˛; ˇ)0 is the parameter vector. The
maximum likelihood estimator is then defined as the max-
imizer of L(�) over some compact set	,

�̂ D argmax
�2�

L(�) : (17)

Unfortunately, there is no closed form solution to (17) but
many numerical optimization procedures exist. For exam-
ple, a popular algorithm is that of [15].

Figure 6 shows the likelihood function of
a GARCH(1,1) process generated using the parameter
estimates of the Dow Jones index returns (see Sect. “Asym-
metry, Long Memory, GARCH-in-Mean”), Gaussian in-
novations, and the same sample size of n D 19727. The
parameter ! has been determined by the variance tar-
geting technique of [50], i. e., ! D �2(1 � ˛ � ˇ), where
�2 is the sample variance of observed returns. In regions
where ˛ C ˇ � 1, ! is set to zero. Note the steep decline
of the likelihood for values of ˛ and ˇ that lie beyond
the covariance stationarity region (˛ C ˇ � 1). Figure 7
shows the same function for the observed Dow Jones in-
dex returns. No major difference can be detected between
both graphs, indicating an appropriate specification of the
Gaussian likelihood function.
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GARCHModeling, Figure 6
Contour plot of the likelihood function of a generated
GARCH(1,1) process using Gaussian innovations and a sample
size of n D 19727. The abscissa is the parameter ˛, the ordinate
isˇ. True values,marked by a cross in the figure, are˛ D 0:0766
andˇ D 0:9173

GARCHModeling, Figure 7
Contour plot of the likelihood function of the GARCH(1,1)model
fitted to observed Dow Jones index returns, 1928 to 2007, with
sample size n D 19727. The abscissa is the parameter ˛, the or-
dinate is ˇ. The maximum, marked by a cross in the figure, is ob-
tained for ˛ D 0:0766 and ˇ D 0:9173

If the first two moments of yt are correctly specified
and under further regularity conditions given by [118]
and [23], the QML estimator is consistent with asymptotic
distribution given by

p
n(�̂ � �)

L
�! N(0; J�1IJ�1) (18)

where

I D E
�
@lt
@�

@lt
@� 0

�
; J D �E

�
@2 lt
@�@� 0

�
;

and where the derivatives are evaluated at the true param-
eter values. In case the conditional distribution is indeed
Gaussian, one has the identity I D J and the asymptotic
covariance matrix reduces to the inverse of the informa-
tion matrix, I�1. Note that consistency is retained if the
conditional distribution is not Gaussian, but efficiency is
lost in that case.

It is straightforward to obtain analytical formula for
the score vector, the outer product of the score and the
Hessian matrix, with which inference on parameter esti-
mates can be done using the result in (18). More primi-
tive conditions than those of [23] have been derived, e. g.,
by [57,85,91] and [66].

Maximum likelihood estimation using other than
Gaussian distributions has been considered, e. g., by [101].
He shows that if the distribution is misspecified, then con-
sistency is no longer guaranteed. In particular, if a sym-
metric distribution is assumed but the true distribution
is asymmetric, then maximum likelihood estimators are
inconsistent. In practice, a common distribution used for
maximum likelihood estimation is the Student t distribu-
tion. Given the results of [101], one should be careful in
interpreting parameter estimates if there is evidence for
skewness in standardized residuals.

Another estimation strategy based on maximum like-
lihood is a nonparametric estimation of the error density,
which has been advocated by [48]. They suggest to use
a first stage estimator of the model parameters, which is
consistent but not efficient such as the Gaussian MLE, to
construct residuals and then to use nonparametric meth-
ods to estimate the error density. Given the estimated error
density, one canmaximize the likelihood corresponding to
this nonparametric density function. These estimators will
under regulatory conditions be consistent and more effi-
cient than the Gaussian ML estimator, provided that the
true density is different from Gaussian.

A potential practical problem of maximum likelihood
estimators is its dependence on numerical optimization
routines. Recently, a closed form estimator based on the
autocorrelation structure of squared returns has been sug-
gested by [82]. Their estimator is inefficient compared to
ML but has the advantage of being uniquely determined by
the data. Further Monte Carlo evidence is necessary to see
whether it is a serious practical competitor for ML-type es-
timators. Least squares type estimators of ARCH(q) have
been considered by [118] and [103]. Again, these are in-
efficient compared with maximum likelihood estimators
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but simpler to compute. [104] suggest a least absolute de-
viation estimator for GARCH models that is robust with
respect to outliers but does not allow for a closed form.
Finally, Bayesian estimation of GARCH-type models has
been investigated, e. g., by [12,115] and [32].

Testing for ARCH

In a regression such as

yt D �t C "t (19)

where �t is measurable w.r.t. Ft�1 D �(yt�1; yt�2; : : :)
and "t is a white noise sequence, inference on �t typically
depends on the properties of the error term "t . For exam-
ple, if "t is i.i.d. Gaussian and �t is linear such as an AR(p)
model, then estimation by least squares of the autoregres-
sive coefficients in �t is efficient. If, however, "t is not i.i.d.
and for example conditionally heteroskedastic, then esti-
mation by ordinary least square (OLS) is no longer effi-
cient and some kind of generalized least squares may be
employed. Moreover, inference on the parameters in �t
will be erroneous if homoskedasticity of "t is assumed but,
in reality, "t is conditionally heteroskedastic. In particular,
standard errors in that case are typically underestimated.
To avoid this, it is essential to test for ARCH type effects
in "t . The following testing procedure, based on the La-
grange multiplier principle, has been proposed in the orig-
inal ARCH paper by [44]. The null hypothesis is that "t is
i.i.d. white noise, the alternative is the presence of ARCH.
One first estimated themodel (19) by least squares, obtains
residuals "̂t , and then runs the regression

"̂2t D ˛0 C ˛1"̂
2
t�1 C ˛2"̂

2
t�2 C � � � C ˛q "̂

2
t�q C �t (20)

where �t is an error term. Under the null hypothesis H0,
˛1 D : : : D ˛q D 0. The test statistic is  D nR2, where n
is the sample size and R2 the coefficient of determination
of the regression (20). Under H0, the test statistic follows
asymptotically a �2 distribution with q degrees of freedom.
Hence, it is an elementary exercise to test for ARCH ef-
fects in the error term of regression models. Historically, it
is remarkable that prior to the introduction of the ARCH
model, the above LM test was used by Prof. Clive Granger
as an LM test for a bilinear error term, for which it has
some power. Then, Prof. Robert Engle discovered that it
has more power for another model, which he then intro-
duced as the ARCH model.

An alternative to the LM test of [44] would be a Wald-
type test of the hypothesis H0 : ˛ D 0 in the GARCH(1,1)
model (5) using, e. g., the t-ratio as test statistic. However,
this test is non-standard since under the null hypothesis

the parameter ˛ is on the boundary of the parameter space
and the parameter ˇ is not identified. [6] treats this test in
a general framework.

Asymmetry, LongMemory, GARCH-in-Mean

In the standard GARCH model in (7), positive and neg-
ative values of lagged returns yt�i have the same impact
on volatility, since they appear in squares in the equation
for �2t . Empirically, it has been frequently noted since [17]
that for stock markets, negative returns increase volatility
more than positive returns do. Essentially, this so-called
leverage effect means that negative news have a stronger
impact on volatility than positive ones. To account for this
empirical observation, several extensions of the standard
GARCH model have been proposed in the literature. The
most commonly used are the exponential GARCH model
of [99] and the threshold GARCHmodel of [59] and [123].
The threshold model in its first order variant is given by
the process

�2t D ! C ˛y
2
t�1 C ˛

�y2t�1I(yt�1 < 0)C ˇ�2t�1

where ˛� is an additional parameter and I(�) is the indica-
tor function. If ˛� D 0, then the threshold model reduces
to the standard GARCH model. If ˛� > 0, then negative
returns have a stronger impact on volatility than positive
ones, which corresponds to the empirical observation for
stock markets.

Secondly, the exponential GARCH (EGARCH) model
of [99] specifies log-volatility as

log �2t D ! C ��t�1C ˛(j�t�1j � Ej�t�1j)C ˇ log �2t�1

where �t D yt/�t is i.i.d. with a generalized error dis-
tribution (GED) which nests the Gaussian and allows
for slightly fatter tails. Due to the specification of log-
volatility, no parameter restrictions are necessary to keep
volatility positive. Moreover, the conditions for weak and
strong stationarity coincide. Note that if � ¤ 0, then
Cov(y2t ; yt� j) ¤ 0 such that a leverage effect can be cap-
tured. A drawback of the EGARCH model is that asymp-
totic theory for maximum likelihood estimation and in-
ference under primitive conditions are not available yet,
but [110] are making much progress in this respect.

Another model allowing for asymmetry is the asym-
metric power ARCH (APARCH) model [36]. In its (1,1)
order form it specifies volatility as

�ıt D ! C ˛(jyt�1j � � yt�1)
ı C ˇ�ıt�1

where ı is a positive parameter. If ı D 2 and � D 0, the
standard GARCH model is retained. For � ¤ 0, there is
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an asymmetric impact of positive and negative lagged re-
turns on volatility. The additional flexibility due to the pa-
rameter ı allows to better reproduce the so-called ‘Taylor
property,’ originally noted by [111], which says that the
autocorrelations of jytjd are positive even at long lags, and
when viewed as a function of d take a maximum for d � 1
for many financial returns yt . [70] provide a formal discus-
sion of this issue.

The standard GARCH(p; q) model (7) implies that the
decay of the autocorrelation function (ACF) of squared re-
turns is geometrically fast. However, one often finds evi-
dence for a slow hyperbolical decay in financial time series,
see for example Fig. 3. The decay pattern of the ACF is re-
lated to the structure of coefficients cj in the ARCH(1)
representation of GARCH models,

�2t D c0 C
1X

jD1

c j y2t� j : (21)

For example, in theGARCH(1,1) model, these are given by
c j D ˛ˇ j�1. Covariance stationary GARCH models have
the property that the autocovariance function of squared
returns, � (�) D Cov(y2t ; y2t�� ), is absolutely summable,
i. e.,

P
� j� (�)j <1. Such a property is commonly called

short memory as opposed to long memory processes for
which the ACF is not absolutely summable. Long mem-
ory GARCH models have been proposed by [8] and [19],
see also the review of long memory processes in econo-
metrics by [7]. An example of a long memory GARCH
process would be given by (21) with c j D C j�� for some
constant C and parameter � > 0. A particular example
for such a process is the fractionally integrated GARCH
(FIGARCH) model of [8], which can be written as

(1 � L)d�2t D ! C ˛y
2
t�1

where L is the lag operator and d a positive param-
eter. When d D 1 one obtains the integrated GARCH
(IGARCH) model of [47]. For d ¤ 1 one can use a bino-
mial extension to obtain after inverting

(1 � L)�d D
1X

jD0

� ( jC d)
� ( jC 1)� (d)

Lj D

1X

jD0

c jL j (22)

where � (�) is the Gamma function. The coefficient cj in
(22) can be shown to be of the long memory type. A sim-
ilar long memory EGARCH model has been introduced
by [19]. The drawback of these particular specifications is
that they share the property with the IGARCH model to
have infinite variance. [105] has proposed a long memory
GARCH type model that allows for finite variance.

Finally, in the finance literature a link is often made
between the expected return and the risk of an asset, since
investors are willing to hold risky assets only if their ex-
pected returns compensate for the risk. A model that in-
corporates this link is the GARCH-in-mean or GARCH-
M model of [52], given by

yt D ıg(�2t )C "t

where "t is an ARCH or GARCH error process, ı a pa-
rameter, and g a known function such as square root or
logarithm. If ı > 0 and g is monotone increasing, then the
term ıg(�2t ) can be interpreted as a risk premium that in-
creases expected returns E[yt] if volatility �2t is high. It
can be shown that such a model, when applied to the mar-
ket index, is consistent with the capital asset pricing model
(CAPM) of [108] and [87], see [24].

As an empirical illustration we estimate alternative
models for the Dow Jones index discussed in the intro-
duction. To recall, we have daily returns from October
1928 to April 2007. First order autocorrelation of returns
is 0.03, which due to the large number of observations
is significant at the level 1%. However, we refrain here
from fitting an autoregressive or moving average model to
the returns as the results concerning volatility estimation
do not change substantially. We only consider a constant
conditional mean in the model yt D �C "t , where "t is
one of the discussed GARCH-type models and � takes
into account a non-zero trend in returns. Six alternative
GARCH models are considered, all of them being of order
(1,1): standard GARCH, TGARCH, EGARCH, GARCH-
M, TGARCH-M and EGARCH-M. For the “in-mean” ver-
sions, we have chosen the square root specification for the
function g(�), which seems to work better than the loga-
rithm or the identity function. Moreover, for all “in-mean”
models the constant � turned out to be insignificant and
hence was suppressed from the model. Table 1 summa-
rizes the estimation results.

Note first that all estimated risk premia are positive
� > 0 and ı > 0, as theory would predict. Second, for all
models allowing for asymmetry, the leverage effect of neg-
ative returns is confirmed, i. e., ˛� > 0 for the TGARCH
models and � < 0 for the EGARCH models. Third, in all
cases persistence of shocks to volatility is very high, mea-
sured by ˛ C ˇ in the GARCH model, ˛ C ˛�/2C ˇ in
the TGARCH model (assuming a symmetric innovation
distribution), and by ˇ in the EGARCH model. Thus, all
models are short memory with exponential decay of the
ACF of squared returns, but the models try to adapt to the
empirically observed slow decay of the ACF by pushing the
persistence parameter close to one. This near-IGARCH
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GARCHModeling, Table 1
Estimation results for the following models: GARCH, EGARCH, TGARCH, GARCH-in-mean, TGARCH-in-mean and EGARCH-in-mean,
applied to daily Dow Jones returns from 1928 to 2007. All parameters are significant at the one percent level

G TG EG GM TGM EGM
� 4.25E-04 2.64E-04 2.36E-04
ı 0.0591 0.0354 0.0286
! 8.74E-07 1.03E-06 -0.2184 8.75E-07 1.06E-06 -0.2227
˛ 0.0766 0.0308 0.1391 0.0766 0.0306 0.1378
˛� 0.0769 0.0761
� -0.0599 -0.0595
ˇ 0.9173 0.9208 0.9879 0.9172 0.9205 0.9874
L 65456.47 65600.53 65589.32 65462.45 65603.79 65590.69

GARCHModeling, Figure 8
Estimated conditional standard deviation of daily Dow Jones in-
dex returns, 1928 to 2007, using the TGARCH-in-mean model

behavior is typical for daily returns. Finally, the goodness-
of-fit seems to be best for the TGARCH-in-mean model,
taking the log-likelihood as criterion. The estimation re-
sults strongly confirm the presence of the leverage effect,
high persistence, and positive risk premium in the data.
Figure 8 shows the estimated conditional standard devia-
tion of the TGARCH-M model. For the other models, the
graph would look quite similar and is therefore not shown
here. Notice the very volatile periods at the beginning of
the sample in the 1930s, around the year 2000 correspond-
ing to the “new economy” boom and following crash, as
well as the spike in 1987 due to the crash of October 17,
1987.

Non- and Semi-parametricModels

Nonparametric methods refrain from associating particu-
lar parametric forms to functions or distributions. Instead,

only the class of functions is determined, for example
the class of squared integrable functions or the degree of
smoothness. The price for the flexibility is typically slower
convergence rates than parametric models. A combination
of the two approaches is often called semiparametric. One
such approach has already been mentioned in Sect. “Es-
timation and Inference” in the context of estimation by
maximum likelihood using nonparametric estimates of the
error density, as proposed by [48] for GARCH models.
[88] shows that this procedure leads to adaptive estimation
of the identifiable parameters (˛ and ˇ in a GARCH(1,1)
model) in the sense of [16]. That is, it is possible to achieve
the Cramer–Rao lower bound and do as good as if one
knew the true error distribution. The scale parameter !,
however, is not adaptively estimable. See also [40] and [37]
for related results for univariate GARCHmodels, and [65]
for an extension to semiparametric estimation of multi-
variate GARCH models.

A different approach is to directly model the volatility
process in a nonparametric way. Early models were pro-
posed by [61] and [51]. The qualitative threshold ARCH
model of [61] specifies models of the type

yt D
JX

jD1

� j I(yt�1 2 Aj)�t ; (23)

where (Aj) is a partition of the real line and � j; j D 1; : : : ;
J, are positive parameters. Thus, volatility is modeled as
a piecewise constant function of lagged returns. Note that
the threshold ARCH model of [59] and [123] is not a spe-
cial case of (23) as there the volatility function is piecewise
quadratic in lagged returns. Extensions to the ARCH(q)
and GARCH(p; q) are straightforward. [51] replaced the
piecewise constant functions by piecewise linear functions.
In both cases, one may consider their models as nonpara-
metric if the partition becomes finer as the sample size in-
creases.
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Consider the model

yt D �(yt�1)�t

where �(�) is an unknown smooth function, and
�t � i.i.d. N(0; 1). For �2(x) D ˛x2 one obtains the para-
metric ARCH(1) model of [44]. An example of a nonpara-
metric estimator of �(�) is the Nadaraya–Watson estima-
tor given by

�̂2(x) D
Pn

tD2 Kf(yt�1 � x)/hgy2tPn
tD2 Kf(yt�1 � x)/hg

where K is a kernel function satisfying
R
K(x)dx D 1 andR

xK(x)dx D 0, and where h > 0 is a bandwidth that
determines the degree of smoothing. As the Nadaraya–
Watson estimator can be interpreted as fitting a constant
locally, a generalization consists of fitting a local polyno-
mial instead. This has been derived by [68] for the volatil-
ity case.

A general problem of nonparametric methods is the
so-called curse of dimensionality when smoothing has to
operate in high dimensions. Considering a nonparametric
ARCH(q) model,

yt D �(yt�1; : : : ; yt�q)�t

this problem is apparent and in practice very large data
sets are required to estimate the function g with appropri-
ate precision. One may be inclined to impose more struc-
ture on the g function such as additive or multiplicative
separability. Nonparametric multiplicative ARCH models
have been proposed by [63] and [120]. Semi-parametric
additive ARCH models of the type �2(yt�1; : : : ; yt�q) DPp

jD1 ˇ
j�1g(yt� j) with some unknown function g and

parameter ˇ 2 (0; 1) have been considered by [29].
Extension of nonparametric ARCH(q) models to non-

parametric GARCH(1,1) models have also been pro-
posed. However, in its general form yt D �t�t with �t D
g(yt�1; �t�1), the model is difficult to estimate due to lack
of structure. One might consider iterative estimation al-
gorithms, based on some initial estimate of volatility as
in [26].

Imposing a similar semi-parametric structure as for
the semi-parametric ARCH(q) model of [29], one can
write �2t D g(yt�1) C ˇ�2t�1, where again g(�) is an un-
known smooth function. Note that this model nests many
of the proposed parametric models. It has been considered
by [119] and [89].

In practice, nonparametric methods may be used
whenever it is not a priori clear what functional form fits
best the data, either by using them directly, or as a tool to
specify a parametric model in a second stage.

Multivariate GARCHModels

In economics and finance, one typically deals with mul-
tiple time series that are fluctuating in a non-systematic
manner and are considered as realizations of stochas-
tic processes. The interest for applied econometricians is
therefore to model their risk, that is, their volatility, but
also their inter-dependencies. For example, if one has rea-
sons to assume that the underlying stochastic processes
are Gaussian, then the inter-dependencies may be com-
pletely described by the correlation structure. In fact, when
we say ‘multivariate volatility models’ we usually mean the
modeling of volatilities but also that of correlations. This is
also the reason why the extension of univariate volatility to
multivariate volatility models is much more complex than
that of univariate models for the conditional mean, such
as ARMA models, to the multivariate case.

It will be immediately clear that the multivariate case
is the one that is by far more relevant in practice when fi-
nancial markets are under study. The reason is, first, the
large number of different assets, or even different types
of contracts, assets, exchange rates, interest rates, options,
futures, etc. Second, there is usually a strong link be-
tween these variables, at least within one group. For ex-
ample, asset returns in one stock market tend to be quite
strongly correlated. One would make big approximation
errors when treating the variables as independent by, e. g.,
using univariate volatility models for the conditional vari-
ances and set conditional covariances to zero. Note that,
setting conditional covariance to zero is much stronger an
assumption than setting the unconditional covariance to
zero. Ways must be found to treat the dependence of the
series in a flexible yet parsimonious way.

A first step would again be to do exponential smooth-
ing à la RiskMetrics, which can be used not only to obtain
the individual variances according to (4), but also to ob-
tain the correlations. To see this, we define just as in (4) an
exponential smoother for the covariances as

�12;t D (1 � )"1;t�1"2;t�1 C �12;t�1

and then obtain as usual the conditional correlation as

�t D
�12;t

�1;t�2;t
;

which is guaranteed to be between minus one and one if
the same parameter  is used, typically  D 0:94. Figure 9
depicts the RiskMetrics conditional correlation series for
the DOW and NASDAQ return series.

Obviously, conditional correlations are not constant,
although it is difficult from the graph to verify such a state-
ment statistically. However, one thing to observe is that
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GARCHModeling, Figure 9
Conditional correlations of the Dow Jones IA and NASDAQ index
returns, daily, using the RiskMetrics model

during the New Economy boom in 1999 and 2000, esti-
mated correlations have been substantially lower, some-
times even negative, than at other times. The reason is
probably a decoupling due to the higher vulnerability of
the NASDAQ with respect to the bubble in high tech and
internet stocks. A more thorough analysis of this data set
which also compares this model with other, more flexi-
ble models is provided by [45]. We see that the RiskMet-
rics tool, even though very simple, can give some guide-
lines. One of the objectives of the econometrician is to en-
hance the model in terms of flexibility (e. g., why should 
be fixed to 0.94?), and to establish a statistical framework
in which hypotheses such as constant conditional correla-
tions can be tested.

From an econometrical viewpoint, modeling the
volatility of multiple time series is, for several reasons,
challenging both theoretically and practically. For the sake
of illustration, consider a bivariate GARCH model of the
Vec type that was introduced by [24]. Denote by Ht the
conditional variance matrix of the asset return vector yt .
Then a bivariate ARCH(1) model reads

Ht D

�
h1;t h12;t
h12;t h2;t

�

and where

h1t D !1 C ˛11"
2
1;t�1 C ˛12"1;t�1"2;t�1 C ˛13"

2
2;t�1

h12;t D !2 C ˛21"
2
1;t�1 C ˛22"1;t�1"2;t�1 C ˛23"

2
2;t�1

h2t D !3 C ˛31"
2
1;t�1 C ˛32"1;t�1"2;t�1 C ˛33"

2
2;t�1 :

Each conditional variance, h1t and h2t , and conditional
covariance, h12;t , depends on all lagged squared returns

(two in the bivariate case) and all lagged cross-products
(one in the bivariate case). The main reason for the rapidly
increasing complexity of the model when the dimension
is increased lies in the fact that not only all conditional
variances with their cross-dependencies have to be mod-
eled, but also all conditional correlations. It is in fact the
latter that poses the main problem, as there are a total of
N(N � 1)/2 such correlations when the dimension is N,
but only N variances. Thus, modeling variances and cor-
relations simultaneously, a total of N(N C 1)/2 entries of
the conditional covariance matrix need to be modeled.
For example, if N D 10 (a moderate dimension for many
economic or financial problems) this number is 55, if
N D 100 (such as modeling all stocks of a common stock
index), then 5050 series, conditional variances and covari-
ances, are at stake.

It is clear that this is too much to allow for a flexible
cross-dependence of the individual series.Without impos-
ing any structure except linearity, the multivariate gener-
alization of the standard GARCHmodel, the so-called Vec
model introduced by [24], is feasible only for low dimen-
sions, two or three say, as otherwise the number of param-
eters becomes too high relative to the number of observa-
tions typically encountered in economic practice. Another
problem is that the Vec model does not guarantee a pos-
itive definite covariance matrix. Necessary conditions for
the latter desirable property are as yet unknown in the gen-
eral Vec specification.

These are some reasons to look for other models, and
in fact, over recent years a broad variety of different ap-
proaches to the problem have been suggested in the lit-
erature. Roughly speaking, one can divide them into two
groups. The first one tries to simplify the problem by im-
posing more structure on the Vec model. Examples are
the BEKK model of [49] and the factor GARCH model
by [53]. More recently, the second group tries to sepa-
rate the problem of modeling the conditional variances
and conditional correlations. An early and simple version
of this group is to say that conditional variances are just
univariate GARCH and conditional correlations are con-
stant over time, as suggested by [22]. In its simplicity, this
constant conditional correlation (CCC) model basically
does not add any complexity beyond univariate GARCH
to the multivariate estimation problem, which renders the
model extremely useful in empirical practice. It also intro-
duced the idea of two-step estimation, where in the first
step conditional variances are modeled, and in the sec-
ond step the conditional correlations using the standard-
ized residuals of the first step. However, starting with [45]
there have been plenty of arguments in favor of time-vary-
ing conditional correlations in financial markets. In par-
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ticular, a common finding is that correlations are higher
when the market moves up than when it moves down.
A test for this correlation asymmetry has been suggested
by [73]. Using a dynamic conditional correlation model
(DCC), [45] shows that time varying correlations are not
uncommon even in normal market situations. In the fol-
lowing we sketch these two branches of the multivariate
GARCH literature. It should however be mentioned that
there are models that do not fall into these two categories
such as a multivariate version of the exponential GARCH
model proposed by [79].

Factor GARCHModels

In the following factor GARCHmodels are discussed as an
example of multivariate GARCHmodels. Themain idea of
factor models is to reduce the dimension of the system to
a tractable two or three factors, which can then be mod-
eled in a standard way. It should be noted that also ‘full-
factor’ models with number of factors equal to the num-
ber of variables have been proposed in the literature. For
example, [116] propose the model

yt DW ft

where W is a N � N parameter matrix and f t is a N-vec-
tor with conditional mean zero and diagonal conditional
variance matrix, ˙ t say. The individual conditional vari-
ances of f t can be modeled by univariate GARCH(1,1),
for example. One can restrict W to be lower triangu-
lar, as it is well known that the Choleski decomposition
of a positive definite matrix always exists and is unique.
Thus, the conditional variance matrix of yt is given by
Ht DW˙tW D LtL0t , where Lt D W˙1/2

t is lower trian-
gular. In this model, the parameters inW and those in˙ t
need to be estimated jointly, which may be cumbersome in
high dimensions. The empirical performance of such full
factor models still remains to be investigated.

It is more common to specify only a few factors and al-
low for idiosyncratic noise. We will look at such models in
the following. Suppose that there are K (observed or un-
observed) factors, collected in a K-vector f t , with K < N.
Then a simple factor model can be written as

yt DW ft C vt (24)

where vt is a white noise vector with Var(vt) D ˝ that
represents the idiosyncratic noise. Typically, one assumes
that˝ is diagonal so that components of the idiosyncratic
noise are uncorrelated. In that case, correlation between
components of yt is induced only through the common
factors f t. If yt represents the error of a time series system,

one may constrain f t to have conditional mean zero. The
matrixW is of dimension N � K, of full column rank, and
contains the so-called factor loadings, the weights of a fac-
tor associated with the individual components of yt .

In finance, model (24) is well known from the arbitrage
pricing theory (APT) of [106], where yt are excess returns
of financial assets, f t are systematic risk factors and vt is
unsystematic risk. It can also be viewed as a generaliza-
tion of the capital asset pricing model (CAPM) developed
by [108] and [87]. For simplicity we assume here that fac-
tors are observed. If they are unobserved, identification is-
sues arise that are discussed, e. g., by [107].

For the factors, a low-dimensional GARCHmodel can
be assumed: Var( ft j Ft�1) D ˙t , where ˙ t is a (K � K)
covariance matrix. The conditional covariancematrix of yt
is given by

Ht D Var(yt j Ft�1) D W˙tW 0 C˝ : (25)

In the case of just one factor, the matrix W reduces to
a vector w and the factor volatility, �2t say, can be modeled
by univariate GARCH and the conditional variance of yt
simplifies to

Ht D ww0�2t C˝ :

If the factors are conditionally uncorrelated, i. e.,˙ t is di-
agonal with˙t D diag(�21t ; : : : ; �

2
Kt), then one can write

Ht D

KX

kD1

wkw0k�
2
kt C˝

wherewk is the kth column ofW. [83] propose methods to
test for the number of factors K and derive results for max-
imum likelihood estimation. For the more general BEKK
model class, [31] derived asymptotic theory but assuming
moments of order eight of the process, which may exclude
many of the typically fat-tailed financial time series.

A popular factor GARCH model is the orthogonal
GARCH (OGARCH) model of [3]. In the OGARCH
model, factors f t are the K largest principal components
obtained from the (unconditional) sample covariance ma-
trix, and the loading matrix W is the matrix of associated
eigenvectors. The loadings represent the sensitivity of an
individual series on a specific factor. By construction, the
unconditional correlation between the factors is zero, due
to the orthogonality of the principal components. How-
ever, the conditional correlation may be different from
zero. Denote the (empirical) covariance matrix of yt by˙ .
The decomposition ˙ D ��� 0 gives � D (�1; : : : ; �N )
with the eigenvectors � i and � D diag(1; : : : ; N ) with
corresponding eigenvalues i. We order the columns of �
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according to themagnitude of the corresponding eigenval-
ues such that 1 > 2 > � � � > N . Let us assume here that
all eigenvalues are distinct, otherwise � may not be identi-
fied. For the case of non-distinct eigenvalues, one may use
the more general singular value decomposition and go for
the GO-GARCH (generalized orthogonal GARCH) model
of [114].

The vector of principal components, given by
�

ft
"t

�
D � 0yt

is partitioned into the firstK components f t, whose volatil-
ity will assumed to be stochastic, and the last N � K com-
ponents "t , whose volatility will assumed to be constant.
One could speak of K dynamic and N � K static factors.

Now decompose the matrices as follows:

�(N�N) D (�1(N�K) ; �2(N�(N�K)) ) ;

and�1 D diag(1; : : : ; K),�2 D diag(KC1; : : : ; N ).
The model can then be written as

yt D �1 ft C �2"t (26)

where Var( ft j Ft�1) D ˙t andVar("t j Ft�1) D �2. For
example, ˙ t may be diagonal or some K-variate GARCH
model. Note that this representation is equivalent to
that of (24) with W D �1 and vt D �2"t , except that
˝ D �2�2�

0
2 will not be diagonal in general. The condi-

tional variance of yt is given by

Ht D Var(yt j Ft�1) D �1˙t�
0
1 C �2�2�

0
2

D �

�
˙t 0
0 �2

�
� 0 :

If ˙ t follows a K-variate BEKK process, then it can be
shown thatHt will follow anN-variate BEKK process with
restrictions on the parameter matrices. However, the clas-
sical OGARCH assumes that factors are conditionally or-
thogonal, hence ˙ t is diagonal, additional to the fact that
they are unconditionally orthogonal by construction. This
assumption is crucial and may not always be justified in
practice. It should be emphasized that in the OGARCH
model, the factor loadings contained in the matrix � and
the factor variances contained in� are considered as fixed
for a given sample covariance matrix. This contrasts the
general factor model (24) where factor loadingsW are es-
timated jointly with the parameters describing the factor
dynamics.

Instead of using unconditionally orthogonal fac-
tors, [55] proposed to use conditionally orthogonal factors

by searching numerically for linear combinations of the
data such that the conditional correlation between these
combinations is minimized under norm constraints. The
existence of such linear combinations is tested using boot-
strap methods.

Constant and Dynamic
Conditional Correlation Models

[22] suggests a multivariate GARCH model with constant
conditional correlations. Let Ht be the conditional covari-
ance matrix of a series yt , andVt be a diagonal matrix with
the conditional standard deviations of yt on its diagonal.
Then the model is simply

Ht D VtRVt (27)

where R is the constant correlation matrix. Ht is positive
definite as long as the conditional variances are positive
and R is positive definite. For instance, one could spec-
ify univariate GARCH models for the individual condi-
tional variances. One the other hand, it is possible to al-
low for spill-over of volatilities from one series to other
series. Note that the CCC model is not nested in the Vec
specification. Theory of maximum likelihood estimation
for CCC-type models has been established by [77] for con-
sistency and [86] for asymptotic normality.

The assumption of constant correlations simplifies
strongly the estimation problem. However, it might some-
times be too restrictive. For example, it is often observed
that correlations between financial time series increase in
turbulent periods, and are very high in crash situations.
A Lagrange Multiplier test against the CCC model has
been suggested by [112]. An extension of the CCC model
to allow for time-varying correlations is the dynamic con-
ditional correlations (DCC) model introduced by [45].
The DCC model renders the conditional correlation ma-
trix R dependent on time, Rt say. The conditional correla-
tion between the ith and jth component of yt is modeled
as

Ri j;t D
Qi j;t

p
Qii;tQ j j;t

where Qi j;t is the ijth element of the matrix Qt given by

Qt D S(1 � ˛ � ˇ)C ˛vt�1v0t�1 C ˇQt�1 (28)

where ˛ and ˇ are parameters and vt D V�1t yt are the
standardized but correlated residuals. That is, the condi-
tional variances of the components of vt are one, but the
conditional correlations are given by Rt . The matrix S is
the sample correlation matrix of vt , so a consistent esti-
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GARCHModeling, Figure 10
Conditional correlations of the Dow Jones IA and NASDAQ index
returns, daily, using the DCCmodel.Dashed line: constant condi-
tional correlation

mate of the unconditional correlation matrix. If ˛ and ˇ
are zero, we get the above CCC model. If they are differ-
ent from zero one gets a kind of ARMA structure for all
correlations. Note however that all correlations would fol-
low the same kind of dynamics, since the ARMA param-
eters are the same for all correlations. The specification of
the first term ofQt ensures that the unconditional mean of
Qt is equal to the sample covariance matrix of vt , similar
to the variance targeting technique of [50]. Also it facili-
tates the estimation, since that can be done in two steps:
First, the conditional variances in Vt are estimated us-
ing univariate GARCH models, for example, then vt , the
standardized (but correlated) residuals and their covari-
ance matrix S are computed, before in the second step only
two remaining parameters, ˛ and ˇ, need to be estimated.
A model similar to DCC has been proposed by [113].

Figure 10 depicts the estimated conditional correla-
tions for the DOW Jones and NASDAQ time series, us-
ing the DCC and CCC models. Comparing the former
with the RiskMetrics estimates of Fig. 9, no substantial
difference can be detected visually. However, the param-
eter estimates of ˛ and ˇ are 0.0322 and 0.9541 with stan-
dard errors 0.0064 and 0.0109, respectively, so that the
null hypothesis H0 : ˛ D 0:06 is clearly rejected. Whether
or not the difference in estimated conditional correlations
matters in empirical applications has been addresses, e. g.,
by [30], who consider the problem of portfolio selection.
[96] compare the performance of CCC, DCC, OGARCH
and a model of [84] in forecasting and portfolio selection
in high dimensions. They find that the difference is not
substantial, but that the CCC model is too restrictive.

To summarize, the whole challenge of multivariate
volatility modeling is to balance model complexity and
simplicity in such a way that the model is flexible enough
to capture all stylized facts in the second moments (and
perhaps beyond that) of the series while keeping it simple
for estimation and inference.

In the following we sketch some applications of mul-
tivariate GARCH models in finance. As an early exam-
ple, [24] estimate a capital asset pricing model (CAPM)
with time-varying betas. The beta is defined as the ratio of
the asset return’s covariance with the market return, di-
vided by the variance of the market return. Denote by ri t
the excess return of asset i, and by rmt the excess return
of the market. Then the beta-form of the CAPM can be
written as

ri t D ˇi t rmt C "i D
Cov(ri t ; rmt)
Var(rmt)

C "i

where "i is idiosyncratic noise whose risk cannot be diver-
sified away and is therefore called unsystematic risk. As we
observe time varying second moments, it is clear that be-
tas will also be time varying, not only due to the variance
of the market but also due to the covariances of the as-
sets with the market. However, if both returns are covari-
ance stationary, then by definition the unconditional sec-
ondmoments will be constant, and only after conditioning
on suitable information sets such as historical returns will
second moments become time varying.

Secondly, correlations between exchange rates have
been substantially time-varying, as for example in Europe
the European exchange rate mechanism enforced increas-
ing correlations. The correlation of the DEM/USD and
FRF/USD rates, for instance, increased steadily in the late
1990s until it was virtually one just before the launch of the
Euro. See, e. g., [45], whomodels these data, among others,
with alternative correlation models. Thirdly, portfolio se-
lection is another type of application. If, for example, one
is interested in the minimum variance portfolio of n assets
with covariance matrix ˙ , then the well known formula
for the optimal weight vector ˛ is given by

˛ D
˙�1�

�0˙�1�

where � is an n-vector of ones, see, e. g., [30]. Obviously,
if ˙ is allowed to be time-varying, then the optimal port-
folio weights will in general also depend on time. This has
many important practical implications, e. g., for portfolio
managers. One of the problems is to determine an opti-
mal reallocation frequency. If variances and covariances
change daily and the objective is to minimize the portfo-
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lio variance over the next ten days, then one could follow
at least two strategies: either calculate the optimal portfo-
lio weights daily and reallocate accordingly. Or, calculate
the return distribution over ten days, obtain thus a covari-
ance matrix for ten-day returns, find the optimal weights
using this covariance matrix and leave the corresponding
portfolio unchanged throughout the ten days. If the ob-
jective is to minimize the variance over the ten days, then
the first method will usually outperform the second. The
intuitive reason is that the second method aggregates data,
thus losing valuable information. However, in practice one
may still prefer the secondmethod for various reasons, one
of which could be the higher transaction costs of the first
method.

Stochastic Volatility

GARCH models discussed so far explain the conditional
variance at time t as a function of the information set at
time t � 1. In other words, it is measurable with respect
to this information set. This is not the case for models of
the stochastic volatility (SV) type, which introduce an ex-
tra error term in the volatility equation. For example, in
the univariate case such a model could take the form

yt D �t�t

log �2t D ! C ˇ log �2t�1 C �t
(29)

where � t and �t are i.i.d. mean zero random variables
with variance equal to one and �2� , respectively. Here, log
volatility follows an AR(1) process. Since volatility is un-
observed, model (29) is a particular case of a latent vari-
able model. Note that, if the information set at time t � 1
consists of all lagged values of yt up to yt�1, then volatility
at time t is not measurable with respect to this informa-
tion set. [27] compare moment properties such as kurtosis
and persistence of SV and GARCH models. [58] propose
a model that encompasses both GARCH and stochastic
volatility and thus allows for testing against each of them.

Estimation is more complicated than for GARCH
models because the likelihood is an integral of dimension
equal to the sample size, given by

L(Y ; �) D
Z

p(Y j H; �)p(H j �)dH (30)

where Y D (y1; : : : ; yn), H D (�21 ; : : : ; �
2
n), and � D (!;

ˇ; �2�). Maximization of (30) has no closed form and nu-
merical optimization is difficult due to the high dimen-
sional integral. Therefore, other estimation methods have
been considered in the literature, for example general-
ized method of moments (GMM), simulated maximum

likelihood with Markov Chain Monte Carlo (MCMC) or
Bayesian methods, see e. g., [75,76] and [80]. An applica-
tion to currency options by [92] compares three alternative
estimation algorithms and finds that the estimation error
of the volatility series is large for all methods.

In the multivariate case, without imposing structure,
estimating a highly dimensional stochastic volatilitymodel
seems difficult. One way of imposing structure in multi-
variate SV models is to assume a factor model as, e. g.,
in [34,69,81] and [56], or constant correlations. To con-
sider a bivariate extension of stochastic volatility models,
one suggestion of [69] is to say that the stochastic variances
�1;t and �2;t of the two assets follow univariate stochastic
variance processes as in (29), and the stochastic covariance
is given by

�12;t D ��1;t�2;t ;

where � is a constant parameter between �1 and 1. This
model, very much in the spirit of the constant conditional
correlation GARCH model of [22], is quite parsimonious
and can be efficiently estimated using simulatedmaximum
likelihood as demonstrated in [33]. It is straightforward to
generalize this specification to higher dimensions. How-
ever, estimation may then become trickier. Also the re-
striction of constant correlation parameters may not be
innocuous. More empirical tests are required about good-
ness of fits, comparing the non-nested GARCH and SV
type models of about the same model complexity.

SV models lend themselves naturally to continuous
time stochastic volatility models and realized volatility.
Indeed, as shown by [9], realized volatility can be used
to estimate the volatility of SV models. The monograph
of [109] collects influential papers of the stochastic volatil-
ity literature.

Aggregation

The frequency at which financial time series are sampled
is often not unique. For example, one researcher may be
interested in the behavior of returns to the Dow Jones in-
dex at a daily frequency, but another one at a weekly or
monthly frequency. Considering log-returns, weekly re-
turns can be directly obtained from daily returns by sim-
ply summing up intra-week returns. If a model is fitted
to daily returns, an important question is what this im-
plies for the weekly returns. In particular, one may ask if
the model remains in the same class, which would then
be called closed under temporal aggregation. For the uni-
variate GARCH model, [38] have shown that only a weak
version of it is closed under temporal aggregation. Instead
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of modeling the conditional variance, weak GARCHmod-
els the best linear predictor of squared returns in terms
of a constant, lagged returns and lagged squared returns.
In the weak GARCH(1,1) case, they show how to obtain
the parameters of the aggregated process as a function of
the parameters of the high frequency process. In particu-
lar, denoting the parameters of the aggregated process by
˛(m) and ˇ(m), where m is the aggregation level, then the
persistence parameter of the aggregated level is given by
˛(m) C ˇ(m) D (˛ C ˇ)m . Thus, the persistence of the ag-
gregated process declines geometrically fast with the ag-
gregation level. Asymptotically, the process will reduce to
white noise. One would therefore expect to see much less
conditional heteroskedasticity in monthly returns than in
weekly or daily returns. The link between parameters at
different frequencies also provides a means for model di-
agnostics. The results of [38] have been extended to the
multivariate case by [64].

Instead of aggregating, one could go the other way and
look at “disggregating” the process temporally, i. e., sam-
pling the underlying process at finer intervals. [97] showed
that GARCH models can be viewed as approximations of
continuous time stochastic volatility models, see also [39].
However, [117] has shown that the GARCH model and
its diffusion limit are not equivalent in a statistical experi-
ment sense.

Rather than aggregating temporally, one may alter-
natively be interested in aggregating contemporaneously
in a multivariate context. For example, stock indices are
constructed as linear combinations of individual stocks.
[102] show that again the aggregated process is only weak
GARCH. Rather than aggregating multivariate GARCH
models, one can alternatively consider aggregation of
univariate heterogenous GARCH processes with random
coefficients. In linear ARMA models, this aggregation
scheme is known to produce long memory type behav-
ior of the aggregate, see [62]. [35] conjectured that this
holds in a similar way for GARCHmodels. However, [122]
shows that although the ACF of the squared aggregate de-
cays hyperbolically, it may be absolutely summable and
hence there is no long memory. For the general model
class of [94] which includes GARCH, weak GARCH and
stochastic volatility as special cases, [121] shows that con-
temporaneous aggregation leads to long memory proper-
ties of the aggregate.

Future Directions

The theory of univariate GARCH models is now well de-
veloped and understood. For example, theory of maxi-
mum likelihood estimation is available under weak con-

ditions that allow for integrated and even mildly explo-
sive processes. However, theory of multivariate GARCH
is still in its infancy and far from closed, due to arising
technical difficulties. For general specification such as the
BEKK model, no results on asymptotic normality of esti-
mates are available yet that would allow for integrated pro-
cesses. Most available results on general specifications are
high level and only for some special cases, primitive con-
ditions are established. This is certainly one of the main
directions for future research.

On the modeling side, there is no clear general answer
how to deal with the problem of high dimensions, and in
particular how to balancemodel flexibility with economet-
ric feasibility. More practical experience is necessary to see
what type of model performs best for what kind of data.
On the application side, a still open issue is how to evaluate
the volatility risk for option pricing, and how to efficiently
use multivariate GARCH models in portfolio selection or
risk management. Other frontiers for GARCH models are
discussed by [46].

An interesting new field is the combination of GARCH
models with nonparametric distributions to obtain more
accurate estimates of the Value-at-Risk, mentioned in
Sect. “Introduction”. In the univariate case this is quite ob-
vious, but in the multivariate case one has to deal with the
“curse of dimensionality”, common in the nonparamet-
rics literature. Furthermore, issues such as tail dependence
need to be modeled accurately in that case. A joint frame-
work that captures volatilities, correlations, other distribu-
tional shape features and tail dependence would be an in-
teresting target for applied research.

Finally, realized volatilities (RV) have been mentioned
at the end of Sect. “Properties of the GARCH(1,1) Model”
as a means to use intra-day data to generate accurate ex
post measures of daily volatilities. Using these RV mea-
sures, one can build time series models that predict daily
volatilities one or more steps ahead, see e. g., [5] for a de-
tailed analysis. It seems that RV provides better forecasts
than GARCH, which is not surprising as it uses more in-
formation, namely the intra-day returns. The RV literature
has evolved as an important second branch of volatility
modeling next to the discrete time GARCH or SV models.
One direction of research is the treatment of microstruc-
ture noise, present in most high frequency data, as e. g.,
in [1,2] and [67]. Another one is the modeling of jumps
using the so-called bi-power variation and the generaliza-
tion to themultivariate case using realized covariances and
bipower co-variation, see e. g., [10] and [11]. Other direc-
tions are possible and it seems likely that RV will become
the dominant econometric tool to model volatilities pro-
vided that high frequency data are available.
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Glossary

Evolutionary algorithms/evolutionary computation
A family of algorithms inspired by the workings of
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evolution by natural selection whose basic structure is
to:

1. produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

2. evaluate the fitness of each individual in accordance
with the problem whose solution is sought

3. while termination condition not met do
(a) select fitter individuals for reproduction
(b) recombine (crossover) individuals
(c) mutate individuals
(d) evaluate fitness of modified individuals
end while

Genome/chromosome An individual’s makeup in the
population of an evolutionary algorithm is known as
a genome, or chromosome. It can take on many forms,
including bit strings, real-valued vectors, character-
based encodings, and computer programs. The rep-
resentation issue – namely, defining an individual’s
genome (well) – is critical to the success of an evolu-
tionary algorithm.

Fitness Ameasure of the quality of a candidate solution in
the population. Also known as fitness function. Defin-
ing this function well is critical to the success of an evo-
lutionary algorithm.

Selection The operator by which an evolutionary algo-
rithm selects (usually probabilistically) higher-fitness
individuals to contribute genetic material to the next
generation.

Crossover One of the two main genetic operators applied
by an evolutionary algorithm, wherein two (or more)
candidate solutions (parents) are combined in some
pre-defined manner to form offspring.

Mutation One of the two main genetic operators applied
by an evolutionary algorithm, wherein one candidate
solution is randomly altered.

Definition of the Subject

Evolutionary algorithms are a family of search algorithms
inspired by the process of (Darwinian) evolution in na-
ture. Common to all the different family members is the
notion of solving problems by evolving an initially ran-
dom population of candidate solutions, through the appli-
cation of operators inspired by natural genetics and nat-
ural selection, such that in time fitter (i. e., better) solu-
tions emerge. The field, whose origins can be traced back
to the 1950s and 1960s, has come into its own over the past
two decades, proving successful in solving multitudinous

problems from highly diverse domains including (to men-
tion but a few): optimization, automatic programming,
electronic-circuit design, telecommunications, networks,
finance, economics, image analysis, signal processing, mu-
sic, and art.

Introduction

The first approach to artificial intelligence, the field which
encompasses evolutionary computation, is arguably due
to Turing [31]. Turing asked the famous question: “Can
machines think?” Evolutionary computation, as a subfield
of AI, may be the most straightforward answer to such
a question. In principle, it might be possible to evolve an
algorithm possessing the functionality of the human brain
(this has already happened at least once: in nature).

In a sense, nature is greatly inventive. One often won-
ders how so many magnificent solutions to the problem
of existence came to be. From the intricate mechanisms of
cellular biology, to the sandy camouflage of flatfish; from
the social behavior of ants to the diving speed of the pere-
grine falcon – nature created versatile solutions, at varying
levels, to the problem of survival. Many ingenious solu-
tions were invented (and still are), without any obvious in-
telligence directly creating them. This is perhaps the main
motivation behind evolutionary algorithms: creating the
settings for a dynamic environment, in which solutions
can be created and improved in the course of time, ad-
vancing in new directions, with minimal direct interven-
tion. The gain to problem solving is obvious.

Evolutionary Algorithms

In the 1950s and the 1960s several researchers indepen-
dently studied evolutionary systems with the idea that evo-
lution could be used as an optimization tool for engineer-
ing problems. Central to all the different methodologies is
the notion of solving problems by evolving an initially ran-
dom population of candidate solutions, through the appli-
cation of operators inspired by natural genetics and natu-
ral selection, such that in time fitter (i. e., better) solutions
emerge [9,16,19,28]. This thriving field goes by the name
of evolutionary algorithms or evolutionary computation,
and today it encompasses two main branches – genetic
algorithms [9] and genetic programming [19] – in addi-
tion to less prominent (though important) offshoots, such
as evolutionary programming [10] and evolution strate-
gies [26].

A genetic algorithm (GA) is an iterative procedure that
consists of a population of individuals, each one repre-
sented by a finite string of symbols, known as the genome,
encoding a possible solution in a given problem space.
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This space, referred to as the search space, comprises
all possible solutions to the problem at hand. Generally
speaking, the genetic algorithm is applied to spaces which
are too large to be exhaustively searched. The symbol al-
phabet used is often binary, but may also be character-
based, real-valued, or any other representation most suit-
able to the problem at hand.

The standard genetic algorithm proceeds as follows: an
initial population of individuals is generated at random
or heuristically. Every evolutionary step, known as a gen-
eration, the individuals in the current population are de-
coded and evaluated according to some predefined qual-
ity criterion, referred to as the fitness, or fitness function.
To form a new population (the next generation), individ-
uals are selected according to their fitness. Many selection
procedures are available, one of the simplest being fitness-
proportionate selection, where individuals are selectedwith
a probability proportional to their relative fitness. This en-
sures that the expected number of times an individual is
chosen is approximately proportional to its relative per-
formance in the population. Thus, high-fitness (good) in-
dividuals stand a better chance of reproducing, while low-
fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals
into the population, i. e., it cannot find new points in the
search space; these are generated by genetically-inspired
operators, of which the most well known are crossover and
mutation. Crossover is performed with probability pcross
(the crossover probability or crossover rate) between two
selected individuals, called parents, by exchanging parts
of their genomes (i. e., encodings) to form one or two
new individuals, called offspring. In its simplest form, sub-
strings are exchanged after a randomly-selected crossover
point. This operator tends to enable the evolutionary pro-
cess to move toward promising regions of the search space.
The mutation operator is introduced to prevent prema-
ture convergence to local optima by randomly sampling
new points in the search space. It is carried out by flip-
ping bits at random, with some (small) probability pmut.
Genetic algorithms are stochastic iterative processes that
are not guaranteed to converge. The termination condi-
tion may be specified as some fixed, maximal number of
generations or as the attainment of an acceptable fitness
level. Figure 1 presents the standard genetic algorithm in
pseudo-code format.

Let us consider the following simple example, demon-
strating the GA’s workings. The population consists
of four individuals, which are binary-encoded strings
(genomes) of length 10. The fitness value equals the num-
ber of ones in the bit string, with pcross D 0:7 and pmut D

0:05. More typical values of the population size and the

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Figure 1
Pseudo-code of the standard genetic algorithm

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 1
The initial population

Label Genome Fitness
p1 0000011011 4
p2 1110111101 8
p3 0010000010 2
p4 0011010000 3

genome length are in the range 50–1000. Note that fit-
ness computation in this case is extremely simple, since
no complex decoding or evaluation is necessary. The ini-
tial (randomly generated) population might look as shown
in Table 1.

Using fitness-proportionate selection we must choose
four individuals (two sets of parents), with probabilities
proportional to their relative fitness values. In our exam-
ple, suppose that the two parent pairs are fp2; p4g and
fp1; p2g (note that individual p3 did not get selected as our
procedure is probabilistic). Once a pair of parents is se-
lected, crossover is effected between them with probabil-
ity pcross, resulting in two offspring. If no crossover is ef-
fected (with probability 1 � pcross), then the offspring are
exact copies of each parent. Suppose, in our example, that
crossover takes place between parents p2 and p4 at the
(randomly chosen) third bit position:

111j0111101
001j1010000

This results in offspring p01 D 1111010000 and
p02 D 0010111101. Suppose no crossover is performed
between parents p1 and p2, forming offspring that are
exact copies of p1 and p2. Our interim population (after
crossover) is thus as depicted in Table 2:
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Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 2
The interim population

Label Genome Fitness
p01 1111010000 5
p02 0010111101 6
p03 0000011011 4
p04 1110111101 8

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 3
The resulting population

Label Genome Fitness
p001 1111010000 5
p002 0010101101 5
p003 0000011011 4
p004 1110111111 9

Next, each of these four individuals is subject to mu-
tation with probability pmut per bit. For example, suppose
offspring p02 is mutated at the sixth position and offspring
p04 is mutated at the ninth bit position. Table 3 describes
the resulting population.

The resulting population is that of the next generation
(i. e., p00i equals pi of the next generation). As can be seen,
the transition from one generation to the next is through
application of selection, crossover, and mutation. More-
over, note that the best individual’s fitness has gone up
from eight to nine, and that the average fitness (computed
over all individuals in the population) has gone up from
4.25 to 5.75. Iterating this procedure, the GA will eventu-
ally find a perfect string, i. e., with maximal fitness value
of ten.

Another prominent branch of the evolutionary com-
putation tree is that of genetic programming, introduced by
Cramer [7], and transformed into a field in its own right in
large part due to the efforts of Koza [19]. Basically, genetic
programming (GP) is a GA (genetic algorithm) with in-
dividuals in the population being programs instead of bit
strings.

In GP we evolve a population of individual LISP ex-
pressions1, each comprising functions and terminals. The
functions are usually arithmetic and logic operators that
receive a number of arguments as input and compute a re-
sult as output; the terminals are zero-argument functions
that serve both as constants and as sensors, the latter be-

1Languages other than LISP have been used, although LISP is still
by far the most popular within the genetic programming domain.

ing a special type of function that queries the domain
environment.

The main mechanism behind GP is precisely that of
a GA, namely, the repeated cycling through four oper-
ations applied to the entire population: evaluate-select-
crossover-mutate. However, the evaluation of a single in-
dividual in GP is usually more complex than with a GA
since it involves running a program. Moreover, crossover
and mutation need to be made to work on trees (rather
than simple bit strings), as shown in Fig. 2.

A Touch of Theory

Evolutionary computation is mostly an experimental field.
However, over the years there have been some notable the-
oretical treatments of the field, gaining valuable insights
into the properties of evolving populations.

Holland [17] introduced the notion of schemata,
which are abstract properties of binary-encoded individ-
uals, and analyzed the growth of different schemas when
fitness-proportionate selection, point mutation and one-
point crossover are employed. Holland’s approach has
since been enhanced and more rigorous analysis per-
formed; however, there were not many practical conse-
quences on the existing evolutionary techniques, since
most of the successful methods are usually much more
complex in many aspects. Moreover, the schematic anal-
ysis suffers from an important approximation of infinite
population size, while in reality schemata can vanish.

Note that theNo Free Lunch theorem states that “. . . for
any [optimization] algorithm, any elevated performance
over one class of problems is exactly paid for in perfor-
mance over another class” [32].

Extensions of the Basic Methodology

We have reviewed the basic evolutionary computation
methods. More advanced techniques are used to tackle
complex problems, where an approach of a single popula-
tion with homogeneous individuals does not suffice. One
such advanced approach is coevolution [24].

Coevolution refers to the simultaneous evolution of
two or more species with coupled fitness. Such coupled
evolution favors the discovery of complex solutions when-
ever complex solutions are required. Simplistically speak-
ing, one can say that coevolving species can either compete
(e. g., to obtain exclusivity on a limited resource) or coop-
erate (e. g., to gain access to some hard-to-attain resource).
In a competitive coevolutionary algorithm the fitness of an
individual is based on direct competition with individuals
of other species, which in turn evolve separately in their
own populations. Increased fitness of one of the species
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Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Figure 2
Genetic operators in genetic programming. LISP programs are depicted as trees. Crossover (top): Two sub-trees (marked in bold) are
selected from the parents and swapped. Mutation (bottom): A sub-tree (marked in bold) is selected from the parent individual and
removed. A new sub-tree is grown instead

implies a diminution in the fitness of the other species.
This evolutionary pressure tends to produce new strategies
in the populations involved so as tomaintain their chances
of survival. This arms race ideally increases the capabilities
of each species until they reach an optimum.

Cooperative (also called symbiotic) coevolutionary al-
gorithms involve a number of independently evolving
species which together form complex structures, well
suited to solve a problem. The fitness of an individual de-
pends on its ability to collaborate with individuals from
other species. In this way, the evolutionary pressure stem-
ming from the difficulty of the problem favors the devel-
opment of cooperative strategies and individuals.

Single-population evolutionary algorithms often per-
form poorly – manifesting stagnation, convergence to lo-
cal optima, and computational costliness – when con-
fronted with problems presenting one or more of the fol-
lowing features: 1) the sought-after solution is complex,
2) the problem or its solution is clearly decomposable,
3) the genome encodes different types of values, 4) strong
interdependencies among the components of the solu-
tion, and 5) components-ordering drastically affects fit-
ness [24]. Cooperative coevolution addresses effectively
these issues, consequently widening the range of applica-
tions of evolutionary computation.

Consider, for instance, the evolution of neural net-
works [33]. A neural network consists of simple units
called neurons, each having several inputs and a single
output. The inputs are assigned weights, and a weighted
sum of the inputs exceeding a certain threshold causes the
neuron to fire an output signal. Neurons are usually con-
nected using a layered topology.

When we approach the task of evolving a neural net-
work possessing some desired property naively, we will
probably think of some linearized representation of a neu-
ral network, encoding both the neuron locations in the
network, and their weights. However, evolving such a net-
work with a simple evolutionary algorithm might prove
quite a frustrating task, sincemuch information is encoded
in each individual, and it is not homogeneous, which
presents us with the difficult target of evolving the indi-
viduals as single entities.

On the other hand, this task can be dealt with more
sagely via evolving two independently encoded popula-
tions of neurons and network topologies. Stanley and Mi-
ikkulainen [30] evaluate the fitness of an individual in
one of the populations using the individuals of the other.
In addition to the simplification of individuals in each
population, the fitness is now dynamic, and an improve-
ment in the evolution of topologies triggers a correspond-
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ing improvement in the population of neurons, and vice
versa.

Lethal Applications

In this section we review a number of applications that –
though possibly not killer (death being in the eye of the
beholder. . . ) – are most certainly lethal. These come from
a sub-domain of evolutionary algorithms, which has been
gaining momentum over the past few years: human-com-
petitive machine intelligence. Koza et al. [20] recently af-
firmed that the field of evolutionary algorithms “now rou-
tinely delivers high-return human-competitive machine
intelligence”, meaning, according to [20]:

� Human-competitive: Getting machines to produce
human-like results, e. g., a patentable invention, a re-
sult publishable in the scientific literature, or a game
strategy that can hold its own against humans.

� High-return: Defined by Koza et al. as a high artificial-
to-intelligence ratio (A/I), namely, the ratio of that
which is delivered by the automated operation of the
artificial method to the amount of intelligence that is
supplied by the human applying the method to a par-
ticular system.

� Routine: The successful handling of new problems once
the method has been jump-started.

� Machine intelligence: To quote Arthur Samuel, getting
“machines to exhibit behavior, which if done by hu-
mans, would be assumed to involve the use of intelli-
gence.”

Indeed, as of 2004 the major annual event in the
field of evolutionary algorithms – GECCO (Genetic and
Evolutionary Computation Conference; see www.sigevo.
org) – boasts a prestigious competition that awards
prizes to human-competitive results. As noted at www.
human-competitive.org: “Techniques of genetic and evo-
lutionary computation are being increasingly applied to
difficult real-world problems – often yielding results that
are not merely interesting, but competitive with the work
of creative and inventive humans.”

We now describe some winners from the HU-
MIES competition at www.human-competitive.org. Lohn
et al. [22] won a Gold Medal in the 2004 competition
for an evolved X-band antenna design and flight proto-
type to be deployed on NASA’s Space Technology 5 (ST5)
spacecraft:

The ST5 antenna was evolved to meet a challenging
set of mission requirements, most notably the com-
bination of wide beamwidth for a circularly-polar-
ized wave and wide bandwidth. Two evolutionary

algorithms were used: one used a genetic algorithm
style representation that did not allow branching in
the antenna arms; the second used a genetic pro-
gramming style tree-structured representation that
allowed branching in the antenna arms. The highest
performance antennas from both algorithms were
fabricated and tested, and both yielded very simi-
lar performance. Both antennas were comparable in
performance to a hand-designed antenna produced
by the antenna contractor for the mission, and so
we consider them examples of human-competitive
performance by evolutionary algorithms [22].

Preble et al. [25] won a gold medal in the 2005 compe-
tition for designing photonic crystal structures with large
band gaps. Their result is “an improvement of 12.5% over
the best human design using the same index contrast plat-
form.”

Recently, Kilinç et al. [18] was awarded the Gold
Medal in the 2006 competition for designing oscillators us-
ing evolutionary algorithms, where the oscillators possess
characteristics surpassing the existing human-designed
analogs.

Evolutionary Games

Evolutionary games is the application of evolutionary
algorithms to the evolution of game-playing strategies
for various games, including chess, backgammon, and
Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in the 1950s,
games have been part and parcel of this lively field. In
1957, a year after the Dartmouth Conference that marked
the official birth of AI, Alex Bernstein designed a program
for the IBM 704 that played two amateur games of chess.
In 1958, Allen Newell, J. C. Shaw, and Herbert Simon
introduced a more sophisticated chess program (beaten
in thirty-five moves by a ten-year-old beginner in its last
official game played in 1960). Arthur L. Samuel of IBM
spent much of the fifties working on game-playing AI pro-
grams, and by 1961 he had a checkers program that could
play rather decently. In 1961 and 1963 Donald Michie de-
scribed a simple trial-and-error learning system for learn-
ing how to play Tic-Tac-Toe (or Noughts and Crosses)
called MENACE (for Matchbox Educable Noughts and
Crosses Engine). These are but examples of highly pop-
ular games that have been treated by AI researchers since
the field’s inception.

http://www.sigevo.org
http://www.sigevo.org
http://www.human-competitive.org
http://www.human-competitive.org
http://www.human-competitive.org
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Why study games? This question was answered by Su-
san L. Epstein, who wrote:

There are two principal reasons to continue to do
research on games. . . . First, human fascination with
game playing is long-standing and pervasive. An-
thropologists have catalogued popular games in al-
most every culture. . . . Games intrigue us because
they address important cognitive functions. . . . The
second reason to continue game-playing research
is that some difficult games remain to be won,
games that people play very well but computers do
not. These games clarify what our current approach
lacks. They set challenges for us to meet, and they
promise ample rewards [8].

Studying games may thus advance our knowledge in
both cognition and artificial intelligence, and, last but not
least, games possess a competitive angle which coincides
with our human nature, thus motivating both researcher
and student alike.

Even more strongly, Laird and van Lent [21] pro-
claimed that,

. . . interactive computer games are the killer appli-
cation for human-level AI. They are the application
that will soon need human-level AI, and they can
provide the environments for research on the right
kinds of problems that lead to the type of the incre-
mental and integrative research needed to achieve
human-level AI [21].

Evolving Game-Playing Strategies

Recently, evolutionary algorithms have proven a powerful
tool that can automatically design successful game-playing
strategies for complex games [2,3,13,14,15,27,29].

1. Chess (endgames) Evolve a player able to play
endgames [13,14,15,29].While endgames typically con-
tain but a few pieces, the problem of evaluation is still
hard, as the pieces are usually free to move all over the
board, resulting in complex game trees – both deep and
with high branching factors. Indeed, in the chess lore
much has been said and written about endgames.

2. Backgammon Evolve a full-fledged player for the non-
doubling-cube version of the game [2,3,29].

3. Robocode A simulation-based game in which robotic
tanks fight to destruction in a closed arena (robocode.
alphaworks.ibm.com). The programmers implement
their robots in the Java programming language, and
can test their creations either by using a graphical en-
vironment in which battles are held, or by submitting

them to a central web site where online tournaments
regularly take place. Our goal here has been to evolve
Robocode players able to rank high in the international
league [27,29].

A strategy for a given player in a game is a way of spec-
ifying which choice the player is to make at every point in
the game from the set of allowable choices at that point,
given all the information that is available to the player at
that point [19]. The problem of discovering a strategy for
playing a game can be viewed as one of seeking a computer
program. Depending on the game, the programmight take
as input the entire history of past moves or just the current
state of the game. The desired program then produces the
next move as output. For some games one might evolve
a complete strategy that addresses every situation tackled.
This proved to work well with Robocode, which is a dy-
namic game, with relatively few parameters, and little need
for past history.

Another approach is to couple a current-state evalu-
ator (e. g., board evaluator) with a next-move generator.
One can go on to create a minimax tree, which consists
of all possible moves, counter moves, counter counter-
moves, and so on; for real-life games, such a tree’s size
quickly becomes prohibitive. The approach we used with
backgammon and chess is to derive a very shallow, single-
level tree, and evolve smart evaluation functions. Our ar-
tificial player is thus had by combining an evolved board
evaluator with a simple program that generates all next-
move boards (such programs can easily be written for
backgammon and chess).

In what follows we describe the definition of six items
necessary in order to employ genetic programming: pro-
gram architecture, set of terminals, set of functions, fitness
measure, control parameters, and manner of designating
result and terminating run.

Example: Chess

As our purpose is to create a schema-based program that
analyzes single nodes thoroughly, in a way reminiscent of
human thinking, we did not perform deep lookahead.

We evolved individuals represented as LISP programs.
Each such program receives a chess endgame position as
input, and, according to its sensors (terminals) and func-
tions, returns an evaluation of the board, in the form of
a real number.

Our chess endgame players consist of an evolved LISP
program, together with a piece of software that generates
all possible (legal) next-moves and feeds them to the pro-
gram. The next-move with the highest score is selected

http://robocode.alphaworks.ibm.com
http://robocode.alphaworks.ibm.com
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(ties are broken stochastically). The player also identifies
when the game is over (either by a draw or a win).

Program Architecture As most chess players would
agree, playing a winning position (e. g., with material ad-
vantage) is very different than playing a losing position,
or an even one. For this reason, each individual contains
not one but three separate trees: an advantage tree, an even
tree, and a disadvantage tree. These trees are used accord-
ing to the current status of the board. The disadvantage
tree is smaller, since achieving a stalemate and avoiding
exchanges requires less complicated reasoning. Most ter-
minals and functions were used for all trees.

The structure of three trees per individual was pre-
served mainly for simplicity reasons. It is actually possi-
ble to coevolve three separate populations of trees, without
binding them to form a single individual before the end of
the experiment. This would require a different experimen-
tal setting, and is one of our future-work ideas.

Terminals and Functions While evaluating a position,
an expert chess player considers various aspects of the
board. Some are simple, while others require a deep un-
derstanding of the game. Chase and Simon found that
experts recalled meaningful chess formations better than
novices [6]. This led them to hypothesize that chess skill
depends on a large knowledge base, indexed through thou-
sands of familiar chess patterns.

We assumed that complex aspects of the game board
are comprised of simpler units, which require less game
knowledge, and are to be combined in some way. Our
chess programs use terminals, which represent those rela-
tively simple aspects, and functions, which incorporate no
game knowledge, but supply methods of combining those
aspects. As we used strongly typed GP [23], all functions
and terminals were assigned one ormore of two data types:
Float and Boolean. We also included a third data type,
named Query, which could be used as any of the former
two. We also used ephemeral random constants (ERCs).

The Terminal Set We developed most of our terminals
by consulting several high-ranking chess players.2 The ter-
minal set examined various aspects of the chessboard, and
may be divided into three groups:

Float values, created using the ERC mechanism. ERCs
were chosen at random to be one of the following six
values:˙1 � f 12 ;

1
3 ;

1
4g �MAX (MAX was empirically set to

1000), and the inverses of these numbers. This guaranteed

2The highest-ranking player we consulted was Boris Gutkin, ELO
2400, International Master, and fully qualified chess teacher.

that when a value was returned after some group of fea-
tures has been identified, it was distinct enough to engen-
der the outcome.

Simple terminals, which analyzed relatively simple as-
pects of the board, such as the number of possible moves
for each king, and the number of attacked pieces for each
player. These terminals were derived by breaking relatively
complex aspects of the board into simpler notions. More
complex terminals belonged to the next group (see below).
For example, a player should capture his opponent’s piece
if it is not sufficiently protected, meaning that the number
of attacking pieces the player controls is greater than the
number of pieces protecting the opponent’s piece, and the
material value of the defending pieces is equal to or greater
than the player’s. Adjudicating these considerations is not
simple, and therefore a terminal that performs this entire
computational feat by itself belongs to the next group of
complex terminals.

The simple terminals comprising this second group
were derived by refining the logical resolution of the pre-
vious paragraphs’ reasoning: Is an opponent’s piece at-
tacked? How many of the player’s pieces are attacking
that piece? How many pieces are protecting a given op-
ponent’s piece? What is the material value of pieces at-
tacking and defending a given opponent’s piece? All these
questions were embodied as terminals within the second
group. The ability to easily embody such reasoning within
the GP setup, as functions and terminals, is a major asset
of GP.

Other terminals were also derived in a similar manner.
See Table 4 for a complete list of simple terminals. Note
that some of the terminals are inverted – we would like
terminals to always return positive (or true) values, since
these values represent a favorable position. This is why we
used, for example, a terminal evaluating the player’s king’s
distance from the edges of the board (generally a favorable
feature for endgames), while using a terminal evaluating
the proximity of the opponent’s king to the edges (again,
a positive feature).

Complex terminals: these are terminals that check the
same aspects of the board a human player would. Some
prominent examples include: the terminal OppPieceCan-
BeCaptured considering the capture of a piece; checking if
the current position is a draw, a mate, or a stalemate (espe-
cially important for non-even boards); checking if there is
a mate in one or two moves (this is the most complex ter-
minal); the material value of the position; comparing the
material value of the position to the original board – this
is important since it is easier to consider change than to
evaluate the board in an absolute manner. See Table 5 for
a full list of complex terminals.
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Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 4
Simple terminals for evolving chess endgame players.Opp: opponent,My: player

Terminal Description
B=NotMyKingInCheck() Is the player’s king not being checked?
B=IsOppKingInCheck() Is the opponent’s king being checked?
F=MyKingDistEdges() The player’s king’s distance form the edges of the board
F=OppKingProximityToEdges() The opponent’s king’s proximity to the edges of the board
F=NumMyPiecesNotAttacked() The number of the player’s pieces that are not attacked
F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces
F=ValueMyPiecesAttacking() The material value of the player’s pieces which are attacking
F=ValueOppPiecesAttacking() The material value of the opponent’s pieces which are attacking
B=IsMyQueenNotAttacked() Is the player’s queen not attacked?
B=IsOppQueenAttacked() Is the opponent’s queen attacked?
B=IsMyFork() Is the player creating a fork?
B=IsOppNotFork() Is the opponent not creating a fork?
F=NumMovesMyKing() The number of legal moves for the player’s king
F=NumNotMovesOppKing() The number of illegal moves for the opponent’s king
F=MyKingProxRook() Proximity of my king and rook(s)
F=OppKingDistRook() Distance between opponent’s king and rook(s)
B=MyPiecesSameLine() Are two or more of the player’s pieces protecting each other?
B=OppPiecesNotSameLine() Are two or more of the opponent’s pieces protecting each other?
B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of his pieces?
B=IsMyKingProtectingPiece() Is the player’s king protecting one of his pieces?

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 5
Complex terminals for evolving chess endgame players. Opp: opponent, My: player. Some of these terminals perform lookahead,
while others compare with the original board

Terminal Description
F=EvaluateMaterial() The material value of the board
B=IsMaterialIncrease() Did the player capture a piece?
B=IsMate() Is this a mate position?
B=IsMateInOne() Can the opponent mate the player after this move?
B=OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s pieces without retaliation?
B=MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s pieces without retaliation?
B=IsOppKingStuck() Do all legal moves for the opponent’s king advance it closer to the edges?
B=IsMyKingNotStuck() Is there a legal move for the player’s king that advances it away from the edges?
B=IsOppKingBehindPiece() Is the opponent’s king two or more squares behind one of his pieces?
B=IsMyKingNotBehindPiece() Is the player’s king not two or more squares behind one of my pieces?
B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?
B=IsMyPieceNotPinned() Are all the player’s pieces not pinned?

Since some of these terminals are hard to compute, and
most appear more than once in the individual’s trees, we
used a memoization scheme to save time [1]: After the first
calculation of each terminal, the result is stored, so that
further calls to the same terminal (on the same board) do
not repeat the calculation. Memoization greatly reduced
the evolutionary run-time.

The Function Set The function set used included the
If function, and simple Boolean functions. Although our
tree returns a real number, we omitted arithmetic func-
tions, for several reasons. First, a large part of contempo-
rary research in the field of machine learning and game
theory (in particular for perfect-information games) re-
volves around inducing logical rules for learning games
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Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 6
Function set of GP chess player individual. B: Boolean, F: Float

Function Description
F=If3(B1, F1, F2) If B1 is non-zero, return F1, else return F2
B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise
B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise
B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise
B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise
B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise
B=Not(B1) Return 0 if B1 is non-zero, 1 otherwise

(for example, see [4,5,11]). Second, according to the play-
ers we consulted, while evaluating positions involves con-
sidering various aspects of the board, some more impor-
tant than others, performing logical operations on these
aspects seems natural, while mathematical operations does
not. Third, we observed that numeric functions some-
times returned extremely large values, which interfered
with subtle calculations. Therefore the scheme we used
was a (carefully ordered) series of Boolean queries, each
returning a fixed value (either an ERC or a numeric termi-
nal, see below). See Table 6 for the complete list of func-
tions.

Fitness Evaluation As we used a competitive evaluation
scheme, the fitness of an individual was determined by its
success against its peers. We used the random-two-ways
method, in which each individual plays against a fixed
number of randomly selected peers. Each of these encoun-
ters entailed a fixed number of games, each starting from
a randomly generated position in which no piece was at-
tacked.

The score for each gamewas derived from the outcome
of the game. Players thatmanaged tomate their opponents
received more points than those that achieved only a ma-
terial advantage. Draws were rewarded by a score of low
value and losses entailed no points at all.

The final fitness for each player was the sum of all
points earned in the entire tournament for that generation.

Control Parameters and Run Termination We used
the standard reproduction, crossover, and mutation oper-
ators. The major parameters were: population size – 80,
generation count – between 150 and 250, reproduction
probability – 0.35, crossover probability – 0.5, and muta-
tion probability – 0.15 (including ERC).

Results We pitted our top evolved chess-endgame play-
ers against two very strong external opponents: 1) A pro-

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 7
Percent of wins, advantages, and draws for best GP-EndChess
player in tournament against two top competitors

%Wins %Advs %Draws
Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

gram we wrote (‘Master’) based upon consultation with
several high-ranking chess players (the highest being Boris
Gutkin, ELO 2400, International Master); 2) CRAFTY –
a world-class chess program, which finished second in the
2004World Computer Speed Chess Championship (www.
cs.biu.ac.il/games/). Speed chess (blitz) involves a time-
limit per move, which we imposed both on CRAFTY and
on our players. Not only did we thus seek to evolve good
players, but ones that play well and fast. Results are shown
in Table 7. As can be seen, GP-EndChess manages to hold
its own, and even win, against these top players. For more
details on GP-EndChess see [13,29].

Deeper analysis of the strategies developed [12] re-
vealed several important shortcomings, most of which
stemmed from the fact that they used deep knowledge and
little search (typically, they developed only one level of the
search tree). Simply increasing the search depth would not
solve the problem, since the evolved programs examine
each board very thoroughly, and scanning many boards
would increase time requirements prohibitively. And so
we turned to evolution to find an optimal way to over-
come this problem: How to add more search at the ex-
pense of less knowledgeable (and thus less time-consum-
ing) node evaluators, while attaining better performance.
In [15] we evolved the search algorithm itself , focusing on
the Mate-In-N problem: find a key move such that even
with the best possible counter-plays, the opponent can-
not avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve sev-

http://www.cs.biu.ac.il/games/
http://www.cs.biu.ac.il/games/
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eral instances of the Mate-In-N problem, for the hardest
ones developing 47% less game-tree nodes than CRAFTY.
Improvement is thus not over the basic alpha-beta algo-
rithm, but over a world-class program using all standard
enhancements [15].

Finally, in [14], we examined a strong evolved chess-
endgame player, focusing on the player’s emergent capa-
bilities and tactics in the context of a chess match. Us-
ing a number of methods we analyzed the evolved player’s
building blocks and their effect on play level. We con-
cluded that evolution has found combinations of build-
ing blocks that are far from trivial and cannot be explained
through simple combination – thereby indicating the pos-
sible emergence of complex strategies.

Example: Robocode

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls the
tank activities, which can be interrupted on various occa-
sions, called events. The program is limited to four lines
of code, as we were aiming for the HaikuBot category, one
of the divisions of the international league with a four-line
code limit. Themain loop contains one line of code that di-
rects the robot to start turning the gun (and the mounted
radar) to the right. This insures that within the first gun
cycle, an enemy tank will be spotted by the radar, trigger-
ing a ScannedRobotEvent. Within the code for this event,
three additional lines of code were added, each controlling
a single actuator, and using a single numerical input that
was supplied by a genetic programming-evolved sub-pro-
gram. The first line instructs the tank to move to a distance
specified by the first evolved argument. The second line
instructs the tank to turn to an azimuth specified by the
second evolved argument. The third line instructs the gun
(and radar) to turn to an azimuth specified by the third
evolved argument (Fig. 3).

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Figure 3
Robocode player’s code layout (HaikuBot division)

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 8
Robocode representation. a Terminal set. b Function set
(F: Float)

Terminal Description
Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the

player
Y() Returns the current vertical position of the

player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative

to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative

to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the

range [�1; 1]
Random() Returns a random real number in the range

[�1; 1]
Zero() Returns the constant 0

Function Description
Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denomi-

nator non-zero, otherwise return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return

value of third argument, else return value of
fourth argument

IfPositive(F, F, F) If first argument is positive, return value of
second argument, else return value of third
argument

Fire(F) If argument is positive, execute fire
command with argument as firepower and
return 1; otherwise, do nothing and return 0

Terminal and Function Sets We divided the terminals
into three groups according to their functionality [27], as
shown in Table 8:

1. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such as
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last enemy azimuth, current tank position, and energy
levels.

2. Numerical constants: Two terminals, one providing the
constant 0, the other being an ERC (ephemeral random
constant). This latter terminal is initialized to a random
real numerical value in the range [�1; 1], and does not
change during evolution.

3. Fire command: This special function is used to curtail
one line of code by not implementing the fire actuator
in a dedicated line.

Fitness Measure We explored two different modes of
learning: using a fixed external opponent as teacher, and
coevolution – letting the individuals play against each
other; the former proved better. However, not one exter-
nal opponent was used to measure performance but three,
these adversaries downloaded from the HaikuBot league
(robocode.yajags.com). The fitness value of an individual
equals its average fractional score (over three battles).

Control Parameters and Run Termination The ma-
jor evolutionary parameters [19] were: population size –
256, generation count – between 100 and 200, selec-
tion method – tournament, reproduction probability – 0,
crossover probability – 0.95, and mutation probability –
0.05. An evolutionary run terminates when fitness is ob-
served to level off. Since the game is highly nondetermin-
istic a lucky individual might attain a higher fitness value
than better overall individuals. In order to obtain a more
accurate measure for the evolved players we let each of
them do battle for 100 rounds against 12 different adver-
saries (one at a time). The results were used to extract the
top player – to be submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very first tour-
nament it came in third, later climbing to first place of
28 (robocode.yajags.com/20050625/haiku-1v1.html). All
other 27 programs, defeated by our evolved strategy, were
written by humans. For more details on GP-Robocode
see [27,29].

Backgammon: Major Results

We pitted our top evolved backgammon players against
Pubeval, a free, public-domain board evaluation function
written by Tesauro. The program – which plays well –
has become the de facto yardstick used by the growing
community of backgammon-playing program developers.
Our top evolved player was able to attain a win percent-
age of 62.4% in a tournament against Pubeval, about 10%

higher (!) than the previous topmethod.Moreover, several
evolved strategies were able to surpass the 60% mark, and
most of them outdid all previous works. For more details
on GP-Gammon see [2,3,29].

Future Directions

Evolutionary computation is a fast growing field. As
shown above, difficult, real-world problems are being tack-
led on a daily basis, both in academia and in industry. In
the future we expect major developments in the under-
lying theory. Partly spurred by this we also expect major
new application areas to succumb to evolutionary algo-
rithms, and many more human-competitive results. Ex-
pecting such pivotal breakthroughs may seem perhaps
a bit of overreaching, but one must always keep in mind
Evolutionary Computation’s success in Nature.
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Glossary

Data mining Data mining is the process of extracting de-
sirable knowledge or interesting patterns from exist-
ing databases for specific purposes. The common tech-
niques include mining association rules, mining se-
quential patterns, clustering, and classification, among
others.
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Fuzzy set theory The fuzzy set theory was first proposed
by Zadeh in 1965. It is primarily concerned with quan-
tifying and reasoning using natural language in which
words can have ambiguous meanings. It is widely used
in a variety of fields because of its simplicity and simi-
larity to human reasoning.

Fuzzy data mining The concept of fuzzy sets can be used
in data mining to handle quantitative or linguistic
data. Basically, fuzzy data mining first uses member-
ship functions to transform each quantitative value
into a fuzzy set in linguistic terms and then uses a fuzzy
mining process to find fuzzy association rules.

Genetic algorithms Genetic Algorithms (GAs) were first
proposed by Holland in 1975. They have become in-
creasingly important for researchers in solving difficult
problems since they could provide feasible solutions in
a limited amount of time. Each possible solution is en-
coded as a chromosome (individual) in a population.
According to the principle of survival of the fittest,
GAs generate the next population by several genetic
operations such as crossover, mutation, and reproduc-
tions.

Genetic-fuzzy data mining Genetic algorithms have
been widely used for solving optimization problems.
If the fuzzy mining problem can be converted into an
optimization problem, then the GA techniques can
easily be adopted to solve it. They are thus called ge-
netic-fuzzy data-mining techniques. They are usually
used to automatically mine both appropriate member-
ship functions and fuzzy association rules from a set of
transaction data.

Definition of the Subject

Data mining is the process of extracting desirable knowl-
edge or interesting patterns from existing databases for
specific purposes. Most conventional data-mining algo-
rithms identify the relationships among transactions us-
ing binary values. However, transactions with quantita-
tive values are commonly seen in real-world applications.
Fuzzy data-mining algorithms are thus proposed for ex-
tracting interesting linguistic knowledge from transactions
stored as quantitative values. They usually integrate fuzzy-
set concepts and mining algorithms to find interesting
fuzzy knowledge from a given transaction data set. Most
of them mine fuzzy knowledge under the assumption that
a set of membership functions [8,23,24,35,36,50] is known
in advance for the problem to be solved. The given mem-
bership functions may, however, have a critical influence
on the final mining results. Different membership func-
tions may infer different knowledge. Automatically deriv-

ing an appropriate set of membership functions for a fuzzy
mining problem is thus very important. There are at least
two reasons for it. The first one is that a set of appro-
priate membership functions may not be defined by ex-
perts because lots of money and time are needed and ex-
perts are not always available. The second one is that data
and concepts are always changing along with time. Some
mechanisms are thus needed to automatically adapt the
membership functions to the changes if needed. The fuzzy
mining problem can thus be extended to finding both
appropriate membership functions and fuzzy association
rules from a set of transaction data.

Recently, genetic algorithms have been widely used
for solving optimization problems. If the fuzzy mining
problem can be converted into an optimization problem,
then the GA techniques can easily be adopted to solve
it. They are thus called genetic-fuzzy data-mining tech-
niques. They are usually used to automatically mine both
appropriate membership functions and fuzzy association
rules from a set of transaction data. Some existing ap-
proaches are introduced here. These techniques can dy-
namically adapt membership functions by genetic algo-
rithms according to some criteria, use them to fuzzify the
quantitative transactions, and find fuzzy association rules
by fuzzy mining approaches.

Introduction

Most enterprises have databases that contain a wealth of
potentially accessible information. The unlimited growth
of data, however, inevitably leads to a situation in which
accessing desired information from a database becomes
difficult. Knowledge discovery in databases (KDD) has
thus become a process of considerable interest in recent
years, as the amounts of data in many databases have
grown tremendously large. KDD means the application
of nontrivial procedures for identifying effective, coher-
ent, potentially useful, and previously unknown patterns
in large databases [16]. The KDD process [16] is shown in
Fig. 1.

In Fig. 1, data are first collected from a single or mul-
tiple sources. These data are then preprocessed, includ-
ing methods such as sampling, feature selection or reduc-
tion, data transformation, among others. After that, data-
mining techniques are then used to find useful patterns,
which are then interpreted and evaluated to form human
knowledge.

Especially, data mining plays a critical role to the KDD
process. It involves applying specific algorithms for ex-
tracting patterns or rules from data sets in a particular rep-
resentation. Because of its importance, many researchers
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Genetic-Fuzzy Data Mining Techniques, Figure 1
A KDD Process

in the database and machine learning fields are primarily
interested in this topic because it offers opportunities to
discover useful information and important relevant pat-
terns in large databases, thus helping decision-makers eas-
ily analyze the data andmake good decisions regarding the
domains concerned. For example, there may exist some
implicitly useful knowledge in a large database containing
millions of records of customers’ purchase orders over the
recent years. This knowledge can be found by appropriate
data-mining approaches. Questions such as “what are the
most important trends in customers’ purchase behavior?”
can thus be easily answered.

Most of the mining approaches were proposed for bi-
nary transaction data. However, in real applications, quan-
titative data exists and should also be considered. Fuzzy
set theory is being used more and more frequently in in-
telligent systems because of its simplicity and similarity
to human reasoning [51]. The theory has been applied in
fields such as manufacturing, engineering, diagnosis, eco-
nomics, among others [45,52]. Several fuzzy learning al-
gorithms for inducing rules from given sets of data have
been designed and used to good effect within specific do-
mains [7,22]. As to fuzzy data mining, many algorithms
are also proposed [8,23,24,35,36,50].

Most of these fuzzy data-mining algorithms assume
the membership functions are already known. In fuzzy
mining problems, the given membership functions may,
however, have a critical influence on the final mining re-
sults. Developing effective and efficient approaches to de-
rive both the appropriate membership functions and fuzzy
association rules automatically are thus worth being stud-
ied. Genetic algorithms are widely used for finding mem-
bership functions in different fuzzy applications. In this ar-
ticle, we discuss the genetic-fuzzy data-mining approaches
which can mine both appropriate membership functions
and fuzzy association rules [9,10,11,12,25,26,27,31,32,33].
The genetic-fuzzy mining problems can be divided into
four kinds according to the types of fuzzy mining prob-
lems and the ways of processing items. The types of fuzzy
mining problems include Single-minimum-Support Fuzzy

Mining (SSFM) and Multiple-minimum-Support Fuzzy
Mining (MSFM). The ways of processing items include
processing all the items together (integrated approach)
and processing them individually (divide-and-conquer
approach). Each of them will be described in details in
the following sections. But first of all, the basic concepts
of data mining will be described below.

DataMining

Data mining techniques have been used in different fields
to discover interesting information from databases in re-
cent years. Depending on the type of databases processed,
mining approaches may be classified as working on trans-
action databases, temporal databases, relational databases,
multimedia databases, and data streams, among others.
On the other hand, depending on the classes of knowledge
derived, mining approaches may be classified as finding
association rules, classification rules, clustering rules, and
sequential patterns, among others.

Finding association rules in transaction databases is
most commonly seen in data mining. It is initially applied
to market basket analysis for getting relationships of pur-
chased items. An association rule can be expressed as the
form A! B, where A and B are sets of items, such that
the presence of A in a transaction will imply the presence
of B. Twomeasures, support and confidence, are evaluated
to determine whether a rule should be kept. The support
of a rule is the fraction of the transactions that contain all
the items in A and B. The confidence of a rule is the con-
ditional probability of the occurrences of items in A and B
over the occurrences of items in A. The support and the
confidence of an interesting rule must be larger than or
equal to a user-specified minimum support and a mini-
mum confidence, respectively.

To achieve this purpose, Agrawal and his coworkers
proposed several mining algorithms based on the concept
of large item sets to find association rules in transaction
data [1,2,3,4]. They divided the mining process into two
phases. In the first phase, candidate item sets were gener-
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ated and counted by scanning the transaction data. If the
number of an itemset appearing in the transactions was
larger than a predefined threshold value (called minimum
support), the itemset was considered a large itemset. Item-
sets containing only one item were processed first. Large
itemsets containing only single items were then combined
to form candidate itemsets containing two items. This
process was repeated until all large itemsets had been
found. In the second phase, association rules were induced
from the large itemsets found in the first phase. All possi-
ble association combinations for each large itemset were
formed, and those with calculated confidence values larger
than a predefined threshold (called minimum confidence)
were output as association rules. In addition to the above
approach, there are many other ones proposed for finding
association rules.

Most mining approaches focus on binary valued trans-
action data. Transaction data in real-world applications,
however, usually consist of quantitative values. Many so-
phisticated data-mining approaches have thus been pro-
posed to deal with various types of data [6,46,53]. This also
presents a challenge to workers in this research field.

In addition to proposing methods for mining asso-
ciation rules from transactions of binary values, Srikant
et al. also proposed a method [46] for mining associa-
tion rules from those with quantitative attributes. Their
method first determines the number of partitions for each
quantitative attribute, and then maps all possible values
of each attribute into a set of consecutive integers. It then
finds large itemsets whose support values are greater than
the user-specified minimum-support levels. For example,
the following is a quantitative association rule “If Age is
[20; : : : ; 29], then Number of Car is [0; 1]” with a support
value (60%) and a confidence value (66.6%). This means
that if the age of a person is between 20 to 29-years old,
then he/she has zero or one car with 66.6%. Of course, dif-
ferent partition approaches for discretizing the quantita-
tive values may influence the final quantitative association
rules. Some researches have thus been proposed for dis-
cussing and solving this problem [6,53]. Recently, fuzzy
sets have also been used in datamining to handle quantita-
tive data due to its ability to deal with the interval bound-
ary problem. The theory of fuzzy sets will be introduced
below.

Fuzzy Sets

Fuzzy set theory was first proposed by Zadeh in 1965 [51].
It is primarily concerned with quantifying and reasoning
using natural language in which words can have ambigu-
ous meanings. It is widely used in a variety of fields be-

cause of its simplicity and similarity to human reason-
ing [13,45,52]. For example, the theory has been applied in
fields such as manufacturing, engineering, diagnosis, eco-
nomics, among others [19,29,37].

Fuzzy set theory can be thought of as an extension of
traditional crisp sets, in which each elementmust either be
in or not in a set. Formally, the process by which individu-
als from a universal setX are determined to be eithermem-
bers or nonmembers of a crisp set can be defined by a char-
acteristic or discrimination function [51]. For a given crisp
set A, this function assigns a value �A(x) to every x 2 X
such that

�A(x) D

(
1 if and only if x 2 A
0 if and only if x … A :

The function thus maps elements of the universal set
to the set containing 0 and 1. This kind of function can be
generalized such that the values assigned to the elements
of the universal set fall within specified ranges, referred
to as the membership grades of these elements in the set.
Larger values denote higher degrees of set membership.
Such a function is called a membership function, �A(x),
by which a fuzzy set A is usually defined. This function is
represented by

�A : X ! [0; 1] ;

where [0; 1] denotes the interval of real numbers from 0
to 1, inclusive. The function can also be generalized to any
real interval instead of [0; 1].

A special notation is often used in the literature to rep-
resent fuzzy sets. Assume that x1 to xn are the elements in
fuzzy set A, and �1 to �n are, respectively, their grades of
membership in A. A is then represented as follows:

AD �1/x1 C �2/x2 C � � � C �n /xn :

An ˛-cut of a fuzzy set A is a crisp set A˛ that contains
all the elements in the universal set X with their member-
ship grades in A greater than or equal to a specified value
of ˛. This definition can be written as

A˛ D fx 2 X j�A(x) � ˛g :

The scalar cardinality of a fuzzy set A defined on a fi-
nite universal set X is the summation of the membership
grades of all the elements of X in A. Thus,

jAj D
X

x2X

�A(x) :

Three basic and commonly used operations on fuzzy
sets are complementation, union and intersection, as pro-
posed by Zadeh. They are described as follows.
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1. The complementation of a fuzzy set A is denoted
by :A, and the membership function of :A is given
by

�:A(x) D 1 � �A(x) 8x 2 X :

2. The intersection of two fuzzy sets A and B is denoted
by A\ B, and the membership function of A\ B is
given by

�A\B(x) D minf�A(x); �B(x)g 8x 2 X :

3. The union of two fuzzy sets A and B is denoted
by A[ B, and the membership function of A[ B is
given by

�A[B(x) D maxf�A(x); �B (x)g 8x 2 X :

Note that there are other calculation formula for the com-
plementation, union and intersection, but the above are
the most popular.

Fuzzy DataMining

As mentioned above, the fuzzy set theory is a natural way
to process quantitative data. Several fuzzy learning algo-
rithms for inducing rules from given sets of data have thus
been designed and used to good effect with specific do-
mains [7,22,41]. Fuzzy data mining approaches have also
been developed to find knowledge with linguistic terms
from quantitative transaction data. The knowledge ob-
tained is expected to be easy to understand. A fuzzy as-
sociation rule is shown in Fig. 2.

In Fig. 2, instead of quantitative intervals used in quan-
titative association rules, linguistic terms are used to rep-
resent the knowledge. As we can observe from the rule “If
middle amount of bread is bought, then high amount of
milk is bought”, bread andmilk are items, andmiddle and
high are linguistic terms. The rule means that if the quan-

Genetic-Fuzzy Data Mining Techniques, Figure 2
A fuzzy association rule

tity of the purchased item bread is middle, then there is
a high possibility that the associated purchased item ismilk
with high quantity.

Many approaches have been proposed for mining
fuzzy association rules [8,23,24,35,36,50]. Most of the ap-
proaches set a single minimum support threshold for all
the items or itemsets and identify the association rela-
tionships among transactions. In real applications, differ-
ent items may have different criteria to judge their im-
portance. Multiple minimum support thresholds are thus
proposed for this purpose. We can thus divide the fuzzy
data mining approaches into two types, namely Single-
minimum-Support Fuzzy Mining (SSFM) [8,23,24,35,50]
and Multiple-minimum-Support Fuzzy Mining (MSFM)
problems [36].

In the SSFM problem, Chan and Au proposed an F-
APACS algorithm to mine fuzzy association rules [8].
They first transformed quantitative attribute values into
linguistic terms and then used the adjusted difference
analysis to find interesting associations among attributes.
Kuok et al. proposed a mining approach for fuzzy as-
sociation rules. Instead of minimum supports and mini-
mum confidences used in most mining approaches, sig-
nificance factors and certainty factors were used to derive
large itemsets and fuzzy association rules [35]. At nearly
the same time, Hong et al. proposed a fuzzy mining al-
gorithm to mine fuzzy rules from quantitative transaction
data [23]. Basically, these fuzzy mining algorithms first
used membership functions to transform each quantita-
tive value into a fuzzy set in linguistic terms and then used
a fuzzy mining process to find fuzzy association rules. Yue
et al. then extended the above concept to find fuzzy associ-
ation rules with weighted items from transaction data [50].
They adopted Kohonen self-organized mapping to derive
fuzzy sets for numerical attributes. In general, the basic
concept of fuzzy data mining for the SSFM problem is
shown in Fig. 3.

In Fig. 3, the process for fuzzy data mining first trans-
forms quantity transactions into a fuzzy representation
according to the predefined membership functions. The
transformed data are then calculated to generate large
itemsets. Finally, the generated large itemsets are used to
derive fuzzy association rules.

As to the MSFM problem, Lee et al. proposed a min-
ing algorithm which used multiple minimum supports to
mine fuzzy association rules [36]. They assumed that items
had different minimum supports and the maximum con-
straint was used. That is, the minimum support for an
itemset was set as the maximum of the minimum sup-
ports of the items contained in the itemset. Under the con-
straint, the characteristic of level-by-level processing was
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Genetic-Fuzzy Data Mining Techniques, Figure 3
The concept of fuzzy data mining for the SSFM problem

kept, such that the original a priori algorithm could eas-
ily be extended to finding large itemsets. In addition to the
maximum constraint, other constraints such as the mini-
mum constraint can also be used with different rationale.

In addition to the above fuzzy mining approaches,
fuzzy data mining with taxonomy or fuzzy taxonomy has
been developed. Fuzzy web mining is another application
of it. Besides, fuzzy data mining is strongly related to fuzzy
control, fuzzy clustering, and fuzzy learning.

In most fuzzy mining approaches, the membership
functions are usually predefined in advance. Membership
functions are, however, very crucial to the final mined re-
sults. Below, we will describe how the genetic algorithm
can be combined with fuzzy data mining to make the en-
tire process more complete. The concept of the genetic al-
gorithm will first be briefly introduced in the next section.

Genetic Algorithms

Genetic Algorithms (GAs) [17,20] have become increas-
ingly important for researchers in solving difficult prob-
lems since they could provide feasible solutions in a lim-
ited amount of time [21]. They were first proposed by
Holland in 1975 [20] and have been successfully ap-
plied to the fields of optimization [17,39,40,43], machine
learning [17,39], neural networks [40], fuzzy logic con-

trollers [43], and so on. GAs are developed mainly based
on the ideas and techniques from genetic and evolutionary
theory [20]. According to the principle of survival of the
fittest, they generate the next population by several opera-
tions, with each individual in the population representing
a possible solution. There are three principal operations in
a genetic algorithm.

1. The crossover operation: it generates offspring from two
chosen individuals in the population by exchanging
some bits in the two individuals. The offspring thus in-
herit some characteristics from each parent.

2. The mutation operation: it generates offspring by ran-
domly changing one or several bits in an individual.
The offspring may thus possess different characteristics
from their parents. Mutation prevents local searches of
the search space and increases the probability of finding
global optima.

3. The selection operation: it chooses some offspring for
survival according to predefined rules. This keeps the
population size within a fixed constant and puts good
offspring into the next generation with a high probabil-
ity.

On applying genetic algorithms to solving a problem, the
first step is to define a representation that describes the
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Genetic-Fuzzy Data Mining Techniques, Figure 4
The entire GA process

problem states. The most common way used is the bit
string representation. An initial population of individuals,
called chromosomes, is then defined and the three genetic
operations (crossover, mutation, and selection) are per-
formed to generate the next generation. Each chromosome
in the population is evaluated by a fitness function to deter-
mine its goodness. This procedure is repeated until a user-
specified termination criterion is satisfied. The entire GA
process is shown in Fig. 4.

Genetic-FuzzyData Mining Techniques

In the previous section for fuzzy data mining, several ap-
proaches were introduced, in which the membership func-
tions were assumed to be known in advance. The given
membership functions may, however, have a critical in-
fluence on the final mining results. Although many ap-
proaches for learning membership functions were pro-
posed [14,42,44,47,48], most of them were usually used
for classification or control problems. There were several
strategies proposed for learning membership functions in
classification or control problems by genetic algorithms.
Below are some of them:

1. Learning membership functions first, then rules;
2. Learning rules first, then membership functions;
3. Simultaneously learning rules and membership func-

tions;
4. Iteratively learning rules and membership functions.

For fuzzy mining problems, many researches have also
been done by combining the genetic algorithm and the
fuzzy concepts to discover both suitablemembership func-
tions and useful fuzzy association rules from quantitative
values. However, most of them adopt the first strategy.
That is, the membership functions are first learned and
then the fuzzy association rules are derived based on the
obtained membership functions. It is done in this way be-
cause the number of association rules is often large inmin-
ing problems and can not easily be coded in a chromo-
some.

In this article, we introduce several genetic-fuzzy data
mining algorithms that can mine both appropriate mem-
bership functions and fuzzy association rules [9,10,11,
12,25,26,27,31,32,33]. The genetic-fuzzy mining problems
can be divided into four kinds according to the types
of fuzzy mining problems and the ways of processing
items. The types of fuzzy mining problems include Single-
minimum-Support Fuzzy-Mining (SSFM) and Multiple-
Minimum-Support Fuzzy-Mining (MSFM) as mentioned
above. The ways of processing items include processing all
the items together (integrated approach) and processing
them individually (divide-and-conquer approach). The in-
tegrated genetic-fuzzy approaches encode all membership
functions of all items (or attributes) into a chromosome
(also called an individual). The genetic algorithms are then
used to derive a set of appropriate membership functions
according to the designed fitness function. Finally, the best
set of membership functions are then used to mine fuzzy
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Genetic-Fuzzy Data Mining Techniques, Table 1
The four different genetic-fuzzy data mining problems

Integrated
approach

Divide-and-conquer
approach

Single minimum
support

IGFSMS Problem DGFSMS Problem

Multiple minimum
supports

IGFMMS Problem DGFMMS Problem

association rules. On the other hand, the divide-and-con-
quer genetic-fuzzy approaches encode membership func-
tions of each item into a chromosome. In other words,
chromosomes in a population were maintained just for
only one item. The membership functions can thus be
found for one item after another or at the same time via
parallel processing. In general, the chromosomes in the
divide-and-conquer genetic-fuzzy approaches are much
shorter than those in the integrated approaches since the
former only focus on individual items. But there are more
application limitations on the former than on the latter.
This will be explained later.

The four kinds of problems are thus the Integrated
Genetic-Fuzzy problem for items with a Single Minimum
Support (IGFSMS) [9,11,26,31,32,33], the Integrated Ge-
netic-Fuzzy problem for items with Multiple Minimum
Supports (IGFMMS) [12], the Divide-and-Conquer Ge-
netic-Fuzzy problem for items with a Single Minimum
Support (DGFSMS) [10,25,27] and the Divide-and-Con-
quer Genetic-Fuzzy problem for items with Multiple Min-
imum Supports (DGFMMS). The classification is shown
in Table 1.

Each of the four kinds of genetic-fuzzy data mining
problems will be introduced in the following sections.

The Integrated Genetic-Fuzzy Problem for Items
with a Single Minimum Support (IGFSMS)

Many approaches have been published for solving the
IGFSMS problem [9,11,26,31,32,33]. For example, Hong
et al. proposed a genetic-fuzzy data-mining algorithm for
extracting both association rules and membership func-
tions from quantitative transactions [26]. They proposed
a GA-based framework for searching membership func-
tions suitable for given mining problems and then use the
final best set of membership functions to mine fuzzy asso-
ciation rules. The proposed framework is shown in Fig. 5.

The proposed framework consists of two phases,
namely mining membership functions and mining fuzzy
association rules. In the first phase, the proposed frame-
work maintains a population of sets of membership func-

tions, and uses the genetic algorithm to automatically de-
rive the resulting one. It first transforms each set of mem-
bership functions into a fixed-length string. The chromo-
some is then evaluated by the number of large 1-itemsets
and the suitability of membership functions. The fitness
value of a chromosome Cq is then defined as

f (Cq) D
jL1j

suitability(Cq)
;

where jL1j is the number of large 1-itemsets obtained by
using the set of membership functions in Cq. Using the
number of large 1-itemsets can achieve a trade-off between
execution time and rule interestingness. Usually, a larger
number of 1-itemsets will result in a larger number of all
itemsets with a higher probability, which will thus usually
imply more interesting association rules. The evaluation
by 1-itemsets is, however, faster than that by all itemsets
or interesting association rules. Of course, the number of
all itemsets or interesting association rules can also be used
in the fitness function. A discussion for different choices of
fitness functions can be found in [9].

The suitability measure is used to reduce the occur-
rence of bad types of membership functions. The two bad
types of membership functions are shown in Fig. 6, where
the first one is too redundant, and the second one is too
separate.

Two factors, called the overlap factor and the cover-
age factor, are used to avoid the bad shapes. The overlap
factor is designed for avoiding the first bad case (too re-
dundant), and the coverage factor is for the second one
(too separate). Each factor has its formula for evaluating
a value from a chromosome. After fitness evaluation, the
approach then chooses appropriate chromosomes for mat-
ing, gradually creating good offspring membership func-
tion sets. The offspring membership function sets then un-
dergo recursive evolution until a good set of membership
functions has been obtained. In the second phase, the fi-
nal best membership functions are gathered to mine fuzzy
association rules. The fuzzy mining algorithm proposed
in [24] is adopted to achieve this purpose.

The calculation for large 1-itemsets, however, will still
take a lot of time, especially when the database can not
totally be fed into the main memory. An enhanced ap-
proach, called the cluster-based fuzzy-genetic mining al-
gorithm was thus proposed [11] to speed up the evalua-
tion process and keep nearly the same quality of solutions
as that in [26]. That approach also maintains a population
of sets of membership functions and uses the genetic algo-
rithm to derive the best one. Before fitness evaluation, the
clustering technique is first used to cluster chromosomes.
It uses the k-means clustering approach to gather similar
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Genetic-Fuzzy Data Mining Techniques, Figure 5
A genetic-fuzzy framework for the IGFSMS problem

Genetic-Fuzzy Data Mining Techniques, Figure 6
The two bad types of membership functions

chromosomes into groups. The two factors, overlap fac-
tor and coverage factor, are used as two attributes for clus-
tering. For example, coverage and overlap factors for ten
chromosomes are shown in Table 2, where the column
“Suitability” represents the pair (coverage factor, overlap
factor).

The k-means clustering approach is then executed to
divide the ten chromosomes into k clusters. In this exam-
ple, assume the parameter k is set at 3. The three clusters
found are shown in Table 3. The representative chromo-
somes in the three clusters are C5 (4:37; 0:33), C4 (4:66; 0)
and C9 (4:09; 8:33).
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Genetic-Fuzzy Data Mining Techniques, Table 2
The coverage and the overlap factors of ten chromosomes

Chromosome Suitability Chromosome Suitability
C1 (4; 0) C6 (4:5; 0)
C2 (4:24; 0:5) C7 (4:45; 0)
C3 (4:37; 0) C8 (4:37; 0:53)
C4 (4:66; 0) C9 (4:09; 8:33)
C5 (4:37; 0:33) C10 (4:87; 0)

Genetic-Fuzzy Data Mining Techniques, Table 3
The three clusters found in the example

Clusteri Chromosomes Representative chromosome
Cluster1 C1; C2; C5; C8 C5

Cluster2 C3; C4; C6; C7; C10 C4

Cluster3 C9 C9

All the chromosomes in a cluster use the number of
large 1-itemsets derived from the representative chromo-
some in the cluster and their own suitability of member-
ship functions to calculate their fitness values. Since the
number for scanning a database decreases, the evaluation
cost can thus be reduced. In this example, the representa-
tive chromosomes are chromosomes C4,C5,C9 and it only
needs to calculate the number of large 1-itemsets three
times. The evaluation results are utilized to choose ap-
propriate chromosomes for mating in the next generation.
The offspring membership function sets then undergo re-
cursive evolution until a good set ofmembership functions
has been obtained. Finally, the derived membership func-
tions are used to mine fuzzy association rules.

Kaya and Alhaji also proposed several genetic-fuzzy
data mining approaches to derive membership functions
and fuzzy association rules [31,32,33]. In [31], the pro-
posed approach tries to derive membership functions,
which can get a maximum profit within an interval of
user-specified minimum support values. It then uses the
derived membership functions to mine fuzzy association
rules. The concept of their approaches is shown in Fig. 7.

As shown in Fig. 7a, the approach first derives mem-
bership functions from the given quantitative transac-
tion database by genetic algorithms. The final membership
functions are then used to mine fuzzy association rules.
Figure 7b shows the concept of maximizing the large item-
sets of the given minimum support interval. It is used as
the fitness function. Kaya and Alhaji also extended the ap-
proach to mine fuzzy weighted association rules [32]. Fur-
thermore, fitness functions are not easily defined for GA
applications, such that multiobjective genetic algorithms
have also been developed [28,30]. In other words, more

than one criterion is used in the evaluation. A set of so-
lutions, namely nondominated points (also called Pareto-
Optimal Surface), is derived and given to users, instead of
only the one best solution obtained by genetic algorithms.
Kaya and Alhaji thus proposed an approach based on mul-
tiobjective genetic algorithms to learn membership func-
tions, which were then used to generate interesting fuzzy
association rules [33]. Three objective functions, namely
strongness, interestingness and comprehensibility, were
used in their approach to find the Pareto-Optimal Surface.
In addition to the above approaches for the IGFSMS prob-
lem, some others are still in progress.

The Integrated Genetic-Fuzzy Problem for Items
with Multiple Minimum Supports (IGFMMS)

In the above subsection, it can be seen that lots of re-
searches focus on integrated genetic-fuzzy approaches for
items with a single minimum support. However, differ-
ent items may have different criteria to judge their impor-
tance. For example, assume among a set of items there are
some which are expensive. They are thus seldom bought
because of their high cost. Besides, the support values of
these items are low. A manager may, however, still be in-
terested in these products due to their high profits. In such
cases, the above approaches may not be suitable for this
problem. Chen et al. thus proposed another genetic-fuzzy
data mining approach [12], which was an extension of
the approach proposed in [26], to solve it. The approach
combines the clustering, fuzzy and genetic concepts to de-
rive minimum support values and membership functions
for items. The final minimum support values and mem-
bership functions are then used to mine fuzzy associa-
tion rules. The genetic-fuzzy mining framework for the
IGFMMS problem is shown in Fig. 8.

As shown in Fig. 8, the framework can be divided into
two phases. The first phase searches for suitable minimum
support values andmembership functions of items and the
second phase uses the final best set of minimum support
values and membership functions to mine fuzzy associa-
tion rules. The proposed framework maintains a popula-
tion of sets of minimum support values and membership
functions, and uses the genetic algorithm to automatically
derive the resulting one.

A genetic algorithm requires a population of feasible
solutions to be initialized and updated during the evolu-
tion process. As mentioned above, each individual within
the population is a set of minimum support values and
isosceles-triangular membership functions. Each mem-
bership function corresponds to a linguistic term of a cer-
tain item. In this approach, the initial set of chromosomes
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Genetic-Fuzzy Data Mining Techniques, Figure 7
The concept of Kaya and Alhaji’s approaches

is generated based on the initialization information de-
rived by the k-means clustering approach on the transac-
tions. The frequencies and quantitative values of items in
the transactions are the two main factors to gather similar
items into groups. The initialization information includes
an appropriate number of linguistic terms, the range of
possible minimum support values and membership func-
tions of each item. All the items in the same cluster are
considered to have similar characteristics and are assigned
similar initialization values when a population is initial-
ized. The approach then generates and encodes each set of
minimum support values and membership functions into
a fixed-length string according to the initialization infor-
mation.

In this approach, theminimum support values of items
may be different. It is hard to assign the values. As an al-
ternative, the values can be determined according to the
required number of rules. It is, however, very time-con-
suming to obtain the rules for each chromosome. As men-
tioned above, a larger number of 1-itemsets will usually
result in a larger number of all itemsets with a higher prob-
ability, which will thus usually imply more interesting as-
sociation rules. The evaluation by 1-itemsets is faster than
that by all itemsets or interesting association rules. Using
the number of large 1-itemsets can thus achieve a trade-off
between execution time and rule interestingness [26].

A criterion should thus be specified to reflect the user
preference on the derived knowledge. In the approach,
the required number of large 1-itemsets RNL is used for
this purpose. It is the number of linguistic large 1-item-
sets that a user wants to get from an item. It can be de-
fined as the number of linguistic terms of an item mul-
tiplied by the predefined percentage which reflects users’
preference on the number of large 1-itemsets. It is used to
reflect the closeness degree between the number of derived
large 1-itemsets and the required number of large 1-item-
sets. For example, assume there are three linguistic terms
for an item and the predefined percentage p is set at 80%.
The RNL value is then set as b3 � 0:8c, which is 2. The fit-
ness function is then composed of the suitability of mem-
bership functions and the closeness to the RNL value. The
minimum support values and membership functions can
thus be derived by GA and are then used to mine fuzzy
association rules by a fuzzy mining approach for multiple
minimum supports such as the one in [36].

The Divide-and-Conquer Genetic-Fuzzy Problem
for Items with a Single Minimum Support (DGFSMS)

The advantages of the integrated genetic-fuzzy approaches
lie in that they are simple, easy to use, and with few con-
straints in the fitness functions. In addition to the num-
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Genetic-Fuzzy Data Mining Techniques, Figure 8
A genetic-fuzzy framework for the IGFMMS problem

ber of large 1-itemsets, the other criteria can also be used.
However, if the number of items is large, the integrated
genetic-fuzzy approaches may need lots of time to find
a near-optimal solution because the length of a chromo-
some is very long. Recently, the divide-and-conquer strat-
egy has been used in the evolutionary computation com-
munity to very good effect. Many algorithms based on it
have also been proposed in different applications [5,15,
34,49]. When the number of large 1-itemsets is used in fit-
ness evaluation, the divide-and-conquer strategy becomes

a good choice to deal with it since each item can be indi-
vidually processed in this situation. Hong et al. thus used
a GA-based framework with the divide-and-conquer strat-
egy to search for membership functions suitable for the
mining problem [27]. The framework is shown in Fig. 9.

The proposed framework in Fig. 9 is divided into two
phases: mining membership functions and mining fuzzy
association rules. Assume the number of items is m. In
the phase of miningmembership functions, it maintainsm
populations of membership functions, with each popula-
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Genetic-Fuzzy Data Mining Techniques, Figure 9
A genetic-fuzzy framework for the DGFSMS problem

tion for an item. Each chromosome in a population repre-
sents a possible set of membership functions for that item.
The chromosomes in the same population are of the same
length. The fitness of each set of membership functions is
evaluated by the fuzzy-supports of the linguistic terms in
large 1-itemsets and by the suitability of the derived mem-
bership functions. The offspring sets of membership func-
tions undergo recursive evolution until a good set of mem-
bership functions has been obtained. Next, in the phase
of mining fuzzy association rules, the sets of member-
ship function for all the items are gathered together and
used to mine the fuzzy association rules from the given
quantitative database. An enhanced approach [10], which
combines the clustering and the divide-and-conquer tech-
niques, was also proposed to speed up the evaluation pro-
cess. The clustering idea is similar to that in IGFSMS [11]
except that the center value of each membership function

is also used as an attribute to cluster chromosomes. The
clustering process is thus executed according to the cov-
erage factors, the overlap factors and the center values of
chromosomes. For example, assume each item has three
membership functions. In total five attributes including
one coverage factor, one overlap factor and three center
values, are used to form appropriate clusters. Note that the
number of linguistic terms for each item is predefined in
the mentioned approaches. It may also be automatically
and dynamically adjusted [25].

The Divide-and-Conquer Genetic-Fuzzy Problem for
Items with Multiple Minimum Supports (DGFMMS)

The problem may be thought of as the combination of the
IGFMMS and the DGFSMS problems. The framework for
the DGFMMS problem can thus be easily designed from
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Genetic-Fuzzy Data Mining Techniques, Figure 10
A genetic-fuzzy framework for the DGFMMS problem

the previous frameworks for IGFMMS and DGFSMS. It is
shown in Fig. 10.

The proposed framework in Fig. 10 is divided into two
phases: miningminimum supports andmembership func-
tions, andmining fuzzy association rules. In the first phase,
the clustering approach is first used for deriving initial-
ization information which is then used for obtaining bet-
ter initial populations as used for IGFMMS. It then main-
tains m populations of minimum supports and member-
ship functions, with each population for an item. Next,
in the phase of mining fuzzy association rules, the mini-
mum support values and membership functions for all the
items are gathered together and are used to mine fuzzy
interesting association rules from the given quantitative
database.

Future Directions

In this article, we have introduced some genetic-fuzzy
data mining techniques and their classification. The con-
cept of fuzzy sets is used to handle quantitative transac-
tions and the process of genetic calculation is executed
to find appropriate membership functions. The genetic-
fuzzy mining problems are divided into four kinds accord-
ing to the types of fuzzy mining problems and the ways
of processing items. The types of fuzzy mining problems
include Single-minimum-Support Fuzzy-Mining (SSFM)
and Multiple-minimum-Support Fuzzy-Mining (MSFM).
Themethods of processing items include processing all the
items together (integrated approach) and processing them
individually (divide-and-conquer approach). Each of the
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four kinds of problems has been described with some ap-
proaches given.

Data mining is very important especially because the
data amounts in the information era are extremely large.
The topic will continuously grow but with a variety of
forms. Some possible research directions in the future
about genetic-fuzzy data mining are listed as follows.

� Applying multiobjective genetic algorithms to the
genetic-fuzzy mining problems: In the article, mined
knowledge (number of large itemsets or number of
rules) and suitability of membership functions are two
important factors used in genetic-fuzzy data mining.
Analyzing the relationship between the two factors is
thus an interesting and important task. Besides, mul-
tiobjective genetic algorithms can also be used to con-
sider the factors at the same time.

� Analyzing effects of different shapes of membership
functions and different genetic operators: Different
shapes of membership functions may have different re-
sults on genetic-fuzzy data mining. They may be eval-
uated in the future. Different genetic operations may
also be tried to obtain better results than the ones used
in the above approaches.

� Enhancing performance of the fuzzy-rule mining
phase: The final goal of genetic-fuzzy mining tech-
niques introduced in this article is to mine appropriate
fuzzy association rules. However, the phase of mining
fuzzy association rules is very time-consuming. How to
improve the process of mining interesting fuzzy rules is
thus worth studying. Some possible approaches include
modifying existing approaches, combining the existing
ones with other techniques, or defining new evaluation
criteria.

� Developing visual tools for these genetic-fuzzy min-
ing approaches: Another interesting aspect of future
work is to develop visual tools for demonstrating the
genetic-fuzzy mining results. It can help a decision
maker easily understand or get useful information
quickly. The visual tools may include, for example, how
to show the derivedmembership functions and to illus-
trate the interesting fuzzy association rules.
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Glossary

Genome The entire genetic complement of a species.
Transcript An RNA molecule derived by copying from

a DNA template.
Splicing The process of removing introns from a tran-

script and thereby joining the exons into a mature
RNAmolecule.

Alternative splicing The ability to process a transcript by
splicing in more than one way, leading to the produc-
tion of alternative RNA products.

Gene In the simplest cases, a segment of DNA that spec-
ifies the structure of a protein or an RNA molecule.
The definition becomes less straightforward in com-
plex genomic loci able to produce several overlapping
transcripts with potentially disparate functions.

Recombination A process by which two chromosomes
exchange segments, typically during the formation of
sperm and eggs.

Gene conversion A process by which a segment of one
chromosome is copied to another chromosome, re-
placing the original sequence.

Definition

With rare exceptions, all known living organisms en-
code their genetic material in the form of double-stranded
DNA, in one or more chromosomes, collectively referred
to as the “genome”. A cell lacking its genome cannot sur-
vive for long, since it cannot produce new transcripts in
response to environmental challenges. For example, red
blood cells lose their DNA and can only function as oxy-
gen shuttles until they break down. The genome includes
most of the information needed by the cells to stay alive,
to differentiate into new cell types, and to perform their
functions in the context of the organism. As such, it is the
ultimate resource for identifying the full set of components
in the living system. Eukaryotic genomes are much larger
than strictly needed to encode the relatively modest set of
genes in them, but several mechanisms give rise to a very
complex transcriptome.

Introduction

In 1920, the German botanist HansWinkler wrote: “I pro-
pose the expression Genom for the haploid chromosome
set, which, together with the pertinent protoplasm, spec-
ifies the material foundations of the species . . . ” (Ver-
breitung und Ursache der Parthenogenesis im Pflanzen-
und Tierreiche, Verlag Fischer, Jena). Since then, the word
“genome” has evolved in meaning somewhat and gave rise

to words like “genomics”, defining whole new fields of re-
search.

The word “genome” currently has twomainmeanings,
depending on the context:

1. The genome of a species: The corpus of genetic mate-
rial that characterizes a species, including its most fre-
quent genetic variants. Thismeaning of “the genetic en-
dowment of a species” is essentially that intended by
Winkler’s original definition. For species for which the
genome has been sequenced, the “reference genome”
denotes the specific sequence that was obtained. Even
though the reference genome is frequently a patchwork
of sequences derived from several sources, it is taken to
be the representative sequence for the species.

2. The genome of an organism or an individual, also
known as the “personal genome”. This refers to the spe-
cific instance of the genetic material present in most
cells of a given organism, stressing the individual’s vari-
ations or polymorphisms, and including both parental
copies.

A genome is sometimes taken to represent “the set of genes
of an organism”. Indeed, some proposed approaches to
sequencing personal genomes involve re-sequencing only
the exons of known genes. It is known though, that the vast
expanses of “junk” DNA within and between genes har-
bor scattered signals that are important for the regulation
of gene expression: A clean-cut subdivision between func-
tional and non-functional DNA is not quite possible. The
simplest andmost convenient definition of the genome in-
cludes in it all the genetic material, regardless of our cur-
rent state of knowledge about its potential function.

Finally, the word “genome” has also been borrowed to
other contexts. For example in Computer Science, when
discussing genetic algorithms as a tool for discovering so-
lutions hidden in a complex space that cannot be searched
exhaustively, a genome is the set of parameters that define
a possible solution to a problem.

The genome has been likened, among other things, to
“a blueprint” and “a parts list”. Neither of these is entirely
appropriate: A blueprint specifies a detailed construction
plan, without reference to the origin of the components,
while the parts list simply enumerates the components
without reference to their interaction. The genome incor-
porates both aspects.

The genome is an instruction book, providing all the
information needed tomaintain a cell’s structural integrity
and to perform its functions, to usher it through the com-
plicated ritual of cell division, and to direct its develop-
ment into more specialized structures. The genome in
a cell includes the instructions for building cellular com-
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ponents, many of which are in turn used as tools and
as raw materials to make other cellular components, in
a complex cascade that requires extensive regulation and
control. The information required for that control is also
encoded in the genome in many different ways. The con-
struction plan (the “blueprint”) is for the most part not ex-
plicitly specified in the genome, but rather it emerges from
the complex interactions between the cellular components
and their spatiotemporal patterns of expression.

Molecular Structure of the Genome

Molecular Topology

Nucleic acids are linear polymers with clearly defined po-
larity, conventionally denoted as running from 50 to 30

end of the molecule. The linearity and polarity severely
limit the range of possible molecular topologies: A sin-
gle-stranded molecule of DNA or RNA can remain lin-
ear or form a circle. The specific sequence of nucleotide
bases confers variability: Depending on the sequence, lo-
cal structures can form by base complementarity between
different parts of the molecule. A central property of nu-
cleic acids, crucial to the transmission of hereditary in-
formation, is the ability to form double-stranded struc-
tures, in which two molecules are intertwined and held
together by extensive base complementarity. A double-
stranded nucleic acid molecule can, again, remain linear
or be closed into a circle. Depending on the sequence and
the torsional forces induced by various processes, a vari-
ety of local structures can emerge and some are used for
regulation [69].

Even though a linear molecule would appear to have
a simpler topology than a circular structure, the linearity
introduces some mechanistic complications. DNA repli-
cation requires priming and proceeds linearly along the
DNA molecule from 50 to 30. While one strand of DNA
can be replicated continuously, the complementary strand
needs to be synthesized in pieces (called Okazaki frag-
ments), which are then ligated. A consequence of this is
that the replication of linear DNAmolecules requires spe-
cial structures (called telomeres) andmechanisms to avoid
becoming shorter each generation due to the inability to
prime the 30 ends. Changes in telomere length have been
implicated in disease and in senescence [13].

Evolution of Genome Structure

When discussing genome organization, it is important to
keep in mind that there are three main lineages of living
systems: Eukaryotes, bacteria and archaea, the last two col-
lectively called prokaryotes. There are essentially twomain

Genome Organization, Figure 1
Evolution of gross genome structure. Twomain lineages, leading
to modern archaea and modern eubacteria, merged to produce
the ancestral eukaryotic genome. This third lineage adopted
a large number of innovations including linear chromosomes,
homologous chromosome pairs (diploid genome), sequestra-
tion in the nucleus (double dashed lines), multicellularity, etc. Eu-
karyotic cells include double-membraned mitochondria, which
are the remnants of the endosymbiotic bacteria from the ances-
tral genomic merger. Gray circles indicate plasmids (non-essen-
tial genetic material) while black represents chromosomes (es-
sential genetic material)

types of chromosomal organization, emphasizing circu-
lar and linear chromosomes; these are characteristic of
prokaryotes and eukaryotes, respectively (Fig. 1). The an-
cestral eukaryotic genome arose from repeated fusion of
archaeal and bacterial genomes, followed by a large num-
ber of structural and functional innovations [52,93,120].

The typical prokaryotic genome is organized into
a small number of circular DNAmolecules. Some of these
(and usually the largest) harbor genes that are essential
for the survival of the organism, and are considered to
be proper chromosomes: These need to be segregated
accurately to ensure proper cell division [33]. Prokary-
otic genomes typically include also “plasmids”, which are
much smaller and include only non-essential genes. The
prokaryotic genome is located in a region of the cell called
the nucleoid, which is not separated from the rest of the
cytoplasm by a membrane.

In contrast, the typical eukaryotic genome includes
several linear chromosomes, and sometimes a large num-
ber of them. The eukaryotic chromosomes are sequestered
in the cell’s nucleus, a complex structure including a dou-
ble membrane perforated by pores, which mediate the
transport of materials between the nucleus and the cyto-
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plasm. During cellular division, the chromosomes adopt
a highly condensed “rod” chromatin structure (as depicted
in Fig. 1), but during the interphase (between cell divi-
sions) chromosomes expand to fill the entire volume of
the nucleus, largely separated into chromosomal territo-
ries [15]. The precise organization of the chromosomes
within the nucleus has not yet been fully characterized,
but there is clear indication of the existence of self-orga-
nizing microenvironments within the nucleus [98], which
may support the integration of regulatory signals control-
ling gene expression [132].

In addition to the linear chromosomes in the nucleus,
eukaryotic cells contain several copies of very small, cir-
cular DNA molecules located in the mitochondria; plants
have additional such chromosomes in the chloroplasts.
These organellar chromosomes include genes that are es-
sential for the maintenance and function of their respec-
tive organelle, and therefore they are essential to the or-
ganism. The mitochondrial and chloroplast chromosomes
are therefore considered an integral part of the eukaryotic
genome, despite their prokaryotic characteristics.

A further, profound difference in genome organization
between prokaryotes and eukaryotes relates to the num-
ber of copies of the entire set of chromosomes found in
the cell. Prokaryotes normally have one copy of the main
chromosome per cell, though in fast growing conditions
the chromosome may be continually in an intermediate
state of replication, yielding a fractional chromosome copy
number. In eukaryotes, the entire set of chromosomes
(called the haploid set) is frequently doubled (the diploid
state) with each chromosome being represented by two
homologous copies. Cells in diploid state can divide into
two cells retaining the diploid state through the carefully
orchestrated process of mitosis, or they can produce hap-
loid cells (which have a single copy of each chromosome)
viameiosis. Haploid cells can fuse to generate diploid cells.
There is significant variation among species in the life cy-
cle: For example, vertebrate cells spend most of the time
in diploid state and generate haploid gametes only for re-
production, while most fungi are normally haploid organ-
isms, and plants switch between both states. Changes in
ploidy have profound implications on gene redundancy
and on the regulation of gene dosage, and often leads to
sterility in animals, while offspring are likely to be isolated
from the rest of the population. Polyploidy through whole-
genome duplication is therefore a significant disruption
requiring many further adaptations, and often leads to
speciation with an increase in chromosome number [105].
Polyploidy can arise from mistakes during meiosis, either
within one species (autoploidy) or through hybridization
of two closely related species (allopolyploidy); the latter

may be a rare event, but has the advantage of basically
resulting in a diploid with twice the number of chromo-
somes without the chromosomal segregation issues asso-
ciated with autoploidy. Relatively recent events are abun-
dant in plants and are easily recognized. Quite a few clear
examples exist in animals as well, like the polyploidiza-
tions in the ancestors of the salmon family (Salmonidae)
and of the Xenopus genus of frogs. The only case in mam-
mals is found among the South American octodont ro-
dents, where two of the thirteen species have double the
number of chromosomes and double the amount of DNA
relative to their sister species.

Genome Size vs. Organismal Complexity

The first fully sequenced genomes were those of viruses,
starting with the 3569 nucleotide long bacteriophage MS2,
an RNA virus [35] and the 5386 nucleotide long Phage ˚-
X174, a DNA virus [102].While viral genomes are not rep-
resentative of the genomes of free-living organisms, their
organization gave first insights into how compact and “op-
timized” a genome can be.

The first bacterial genome to be completed was that
of Haemophilus influenzae [38]. To date, several hundred
bacterial genomes have been sequenced, and their full se-
quences are available through online databases (Table 1).
Hundreds of eukaryotic genomes have been sequenced or
are currently in draft form, providing an astounding re-
source for the research community (Table 1). Landmark
papers include preliminary analyzes [1,2,19,54,126].

One of the most obvious characteristics of bacterial
genomes is the high density of genes, with compact open
reading frames that are not interrupted by introns, and
that are separated by very little intergenic sequence. The
use of DNA by prokaryotes gives the impression of being
highly optimized, with 80%–95%of the genome coding for
proteins. In extreme cases, the sameDNA sequence can be
part of more than one ORF, in different frames or strands.
Bacterial genes are typically organized into operons, which
are sets of consecutive genes on the same strand that are
transcribed as a unit.

By extrapolating from the observed characteristics of
prokaryotic genomes, it would only be natural to expect
the much larger eukaryotic genomes to include many
more genes. For a sense of proportion, a prokaryotic
genome expanded to the size of a vertebrate genome could
encode a few million genes. Such expanded gene numbers
would appear to be a simple explanation for the higher or-
ganismal complexity observed in eukaryotes. As it turns
out, though, vertebrate genomes are much less gene dense
than prokaryotic genomes: The coding fraction in eukary-



4164 G Genome Organization

Genome Organization, Table 1
Selected internet resources

Resource description URL
Integrated Microbial Genomes system at JGI http://img.jgi.doe.gov/
TIGR Comprehensive Microbial Resource http://cmr.tigr.org/tigr-scripts/CMR/shared/Genomes.cgi
NCBI Entrez Genome Database http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome
UCSC Genome Bioinformatics (the Genome Browser) http://genome.ucsc.edu/
miRBase, a database of miRNA sequences and targets http://microrna.sanger.ac.uk
NHGRI Encyclopedia of DNA Elements (ENCODE) http://www.genome.gov/10005107
Personal Genome Project http://arep.med.harvard.edu/PGP/

otes decreases with genome size, down to�1% in humans.
In other words, while the human genome is three orders of
magnitude larger than that of E. coli, it has only one order
of magnitude more genes.

There is no simple correlation between genome size
and the observed complexity of the organism, and plenty
of outliers exist, e. g. the huge genomes of amoebas. Nev-
ertheless, there is a clear ranking from viruses all the way
to multicellular eukaryotes, in terms of genome size, gene
number, mobile element number, intron number and size,
size of intergenic spacer DNA and complexity of regula-
tory regions [84].

The reduction in coding fraction results from the pres-
ence of introns (discussed below) and huge intergenic dis-
tances. Two main hypotheses have been raised to explain
the growth in genome sizes: The selfish DNA hypothe-
sis, and the bulk DNA hypothesis [48,122]. The selfish
DNA hypothesis postulates that the genome size reflects
the ecology of the selfish elements multiplying within it.
There is a very large number of elements that can multiply
within the genome by various mechanisms, giving rise to
extensive families of “interspersed repeats” discussed be-
low, and leading to an accumulation of DNA throughout
the genome. In contrast, the bulk DNA hypothesis pro-
poses that genome size is actively selected for, since it dic-
tates many cellular features like cell size [23,24], which in
turn affects higher level features of the organism [48].

Selection for fast replication [31] and the metabolic
cost of DNA [99] have been invoked as possible alterna-
tive explanations for the streamlining of microbial genome
sizes. Neither appears to be well supported [82], while
a deletional bias [86] may be the major force behind vari-
ations in bacterial genome size.

The Genome as Habitat for Transposable Elements

The changes that can befall a genomic sequence are of
two kinds. The first can be considered accidental, like
mistakes during replication, incomplete repair of envi-

ronmental damage, or sloppy recombination. The second
type is due to the selection-driven propagation of trans-
posable elements (TEs). These mutations generally do not
take place in a completely random fashion. Many apparent
patterns and correlations between genomic features, “ge-
nomic complexity” that appears to hint at an underlying
organization, are likely due to mutational skews and not
to differential adaptive pressures in different regions of the
genome. One examplemay be the so-called isochore struc-
ture in land vertebrate (amniote) genomes: The nucleotide
composition of large (100 kb-range) genomic regions can
range from 30% to 60% G+C nucleotides. This variation
correlates with a number of other characteristics, like gene
density and intron size, leading initially to suggestions that
this nucleotide heterogeneity is functionally maintained.
However, it now seemsmore likely that the variation arises
from regional differences in recombination rates; the asso-
ciated process of gene conversion, in which a short region
of one allele is converted to the other, appears to favor res-
olution of mismatches to G/C nucleotides [32].

Under relatively stable environmental conditions,
a genome’s replication, repair and recombination machin-
ery can evolve to reach a balance between stability and
flexibility. Given the selective forces on TEs to keep prop-
agating, it is unclear how much control a genome has
on the accumulation of mutations of the second type.
In fact, the bulk of many eukaryotic genomes is formed
by copies of TEs. Being generally without function, these
copies have accumulated mutations in a neutral fashion
and decayed to various degrees, and are recognized as in-
terspersed repetitive DNA, or “repeats”. The most com-
mon repeats are derived from retrotransposons, which re-
produce via reverse transcription (RNA to DNA) of their
transcripts. These include familiar elements like (endoge-
nous) retroviruses, LINE1 and Alu in the human genome.
The other common elements are DNA transposons, which
move by a cut-and-paste mechanism in which the trans-
posase specifically recognizes the element’s termini. Ama-
jor conceptual difference between these two groups is that

http://img.jgi.doe.gov/
http://cmr.tigr.org/tigr-scripts/CMR/shared/Genomes.cgi
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome
http://genome.ucsc.edu/
http://microrna.sanger.ac.uk
http://www.genome.gov/10005107
http://arep.med.harvard.edu/PGP/
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the proteins in the first mechanism (reverse transcriptase,
integrase, etc.) operate in cis and those of the second in
trans: The cytosol-born transposase does not operate on
the transcript close at hand but on any DNA copy in the
nucleus. Because of this, retrotransposons are able to sur-
vive over long periods of evolutionary time in a genome
while DNA transposons generally become extinct through
the accumulation of defective copies, and depend on fre-
quent horizontal transfer for evolutionary survival [109].

The isolation of the germline in land vertebrates ap-
pears to have had a profound effect on the activity of trans-
posable elements in those organisms, by severely limit-
ing the introduction of new elements through horizontal
transfer. This is reflected in the nature of interspersed re-
peats in amniotes (mammals, birds and reptiles) as com-
pared to those in amphibia, fish, and most other organ-
isms:While DNA transposon copies, which are dependent
on horizontal transfer for long-term survival, are common
in most organisms, they represent only a very small frac-
tion of interspersed repeats in most amniotic genomes.
The exceptional mutagenic potential of DNA transposons
through the formation of double-strand breaks after exci-
sion, may explain the far less dynamic evolution of am-
niote genomes [18] compared to that of, for example, in-
sects [29] and plants [9].

This is not to say that retrotransposons necessarily are
less deleterious for the host genome. Insertions of both
DNA transposons and retrotransposons can incapacitate
genes, but retrotransposons tend to carry stronger tran-
scriptional regulatory sites. It is likely that the most com-
mon form of gene disruption by TEs is through the in-
troduction of transcriptional termination site within in-
trons [46].

From an information science point-of-view, inter-
spersed repetitive DNA decreases the complexity of the
genome, as a large fraction can be expressed as deriva-
tives of a limited number of sequences. From a biolog-
ical point of view, however, interspersed repeats lead to
many complications. For one, they provide homologous
seeds for “ectopic” recombination between different sites
of the genome, resulting in generally deleterious deletions,
insertions, and chromosomal crossovers. A less appreci-
ated effect is the concomitant distribution of binding sites
for transcription factors, as most TEs carry highly active
promoter sites and other transcriptional regulatory sites.
Interspersed repeats that have not decayed too far from
their original form may account for much spurious tran-
scription in the genome, and even if local transcription is
not disturbed, the distribution of thousands of new bind-
ing sites for a cellular transcription factor could influence
the balance of the regulatory network.

Genomes may not be able to direct the level of activity
of transposable elements, but multiple mechanisms have
evolved to suppress it. An often exploited, telltale feature
of TE activity of any kind is the presence of transcripts in
both orientations, as eventually some copies will be co-
transcribed with genes in reverse direction. Some fungal
genomes inactivate thus detected TEs by directly altering
the genomic copies [42]. In placental mammals a cytosine-
amidase has evolved into a family of (APOBEC3) proteins
that act as an innate immune system inhibiting the replica-
tion of retrotransposons and retroviruses by deaminating
cytosines (to uracils) in its nascent DNA strands during
reverse transcription; the resulting uracil-containing cD-
NAs are fodder for degradation by cellular uracyl-DNA-
glycolysases [34,53]. Much more widespread mechanisms
to suppress TE activity involve transcriptional inactiva-
tion by methylation or heterochromatization [16], and the
post-transcriptional silencing by RNA interference. The
Piwi defense systemmay explain a characteristic pattern in
retrotransposon evolution: A retrotransposon seems to be
active in bursts, after which the element either goes extinct,
or a modified descendant, perhaps unrecognized by RNA
interference, takes over. Considering that TEs must have
been an overarching problem since the first genome arose,
it is not unlikely that methylation, heterochromatization,
and RNA interference in general originated as defense
mechanisms against parasitic DNA, and only later were
adopted for others purposes like cellular gene regulation.

It is clear that, on top of theirmutagenic properties and
creation of repetitive DNA, TEs have had an enormous
impact on genomic organization. Some of the most ob-
vious features of eukaryotic genomes seem to have found
their origin in TEs:

� Most ancient introns probably originated in early eu-
karyotic evolution from mobile elements, possibly re-
sembling present-day prokaryotic group II introns.

� Telomeres are maintained by the enzyme telomerase,
which appears to be a reverse transcriptase derived
from a retrotransposon [45].

� The major centromere binding protein CENP-B was
derived from related transposases, in a process that
happened independently in mammals and in fission
yeast, while their genomic binding sites (the cen-
tromeres) may be derived from their transposon se-
quences [22,110].

� The genomic rearrangements that underlie the ver-
tebrate adaptive immune response are performed by
a domesticated transposase [60].

The cellular adoption of transposable elements proteins,
as in the last three examples, is a form of “exaptation” (the
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utilization of a structure for a function other than that for
which it developed). There are probably over a hundred
exapted TE genes, often recombined with cellular genes, in
the human genome alone [54]. Non-coding TE sequences
have also been exapted, often with many copies at the
time [81,89]. An exciting aspect of the adoption of a group
of interspersed sequences is that a regulatory network
could arise seemingly from scratch. For example, retrovi-
ral long terminal repeats carry a battery of transcription-
ally regulatory sites, which at opportune locations may be-
come established and can regulate a set of cellular genes
in a coordinated fashion [92,124]. Most of the exapted TE
peptides in the human genome are DNA binding domains
of transposases, which very specifically recognize binding
sites at the termini of the dispersed transposon copies. One
reason for the frequency of their adoption could be that,
after recombination with a cellular transcription factor, of
which multiple examples are known [54,109], such pro-
teins and fortunately located transposon copies could cre-
ate an entirely new regulatory network.

To summarize, the genome is, in a very real sense, the
evolutionary environment of a host of selfish mobile ge-
netic elements. The impact of their propagation within the
genome is hard to overstate.

Genomes in Constant Flux

Gene Duplication

The total number of genes is commonly taken as a mea-
sure of genomic complexity, though, as we describe be-
low, the number of different gene products and levels
of regulation may be a more relevant measure. Whereas
prokaryotic gene number can shift drastically by horizon-
tal transfer, almost all increase in eukaryotic gene number
is due to gene duplication: Exceptions are genes acquired
from organelle genomes, retroviruses and transposable el-
ements.

The gene content of most eukaryotic genomes is highly
dynamic. From a variety of approaches it is estimated that
1 out of 50 genes duplicate every million years in verte-
brate genomes.However, since the rate at which new genes
are inactivated is far higher (10- to 100-fold) than the rate
at which they arise, most duplicated genes are short lived.
The total gene number may remain stable for long periods
of time, but there is likely to be a continuous turnover with
respect to which genes have redundant copies. In the hu-
man genome, about 6% of the genes have undergone du-
plication since our separation from most other mammals,
while about 12% of the nucleotides have been substituted.
The majority of the resulting gene duplicates have been in-
activated.

These numbers exclude the increase in gene num-
ber through whole genome duplication (polyploidization);
such events in the distant past are referred to as pale-
opolyploidy. The “2R hypothesis” postulates that two such
events happened in early vertebrate evolution, initially al-
most quadrupling the number of genes evolution could
tinker with [63]. Paleopolyploidy has probably been a cen-
tral mechanism for large-scale genome evolution but is
typically hard to prove, mostly due to the inevitable fast
decay of many of the redundant genes.

Genes can also duplicate individually or as part of a ge-
nomic segment (segmental duplication), rather than along
with the whole genome. One type of duplication necessar-
ily restricted to a single gene is retroposition (reverse tran-
scription of the gene’s transcript and reintegration), which
results in an intronless, “processed” gene. This mecha-
nism is common in mammals and over time has given
rise to tens of thousands of recognizable copies in the
human genome, the great majority of which are inactive
processed pseudogenes. This process relies on the LINE1
transposable element, which can retropose any transcript
with a poly-A tail. Most other LINE-like transposable ele-
ments only interact with transcripts that share the LINE’s
terminal sequence and are very unlikely to copy cellular
genes, as witnessed by the absence of processed pseudo-
genes in many organisms. For example, the chicken has
none, despite the abundant presence of the LINE-like ele-
ment CR1.

The low “success rate” of producing functional genes
through retroposition is due to the frequent 50 truncation
of the transcript during integration and the inherent in-
ability to copy the transcriptionally regulatory sequences
along with the gene. Even when a working copy results,
there is only a small chance that it will be functionally
conserved, as it is initially redundant. Nevertheless, over
a thousand retroposed genes appear to be transcription-
ally active in humans, and at least 120 of these retrocopies
appear to have evolved into bona fide human genes [121].

Transposable elements are central to several other
mechanisms of gene duplication. There are three common
ways in which a gene or a gene fragment can be co-trans-
posed with a transposable element.

1. Transcription of a retrotransposon can proceed
through the poly-A signal into neighboring DNA.
Such “transduced” regions are often short, but hu-
man functional genes duplicated in this fashion have
been reported [129]. Given the usual 50 truncation of
retroposed sequences, the transposable element itself
may not be visible at the new site, and the frequency of
these events may be underestimated.
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2. Rolling circle transposons can similarly transduce 30

flanking sequences, probably by extending the replica-
tion process past the original (weakly defined) 30 sig-
nal. Elements up to about 20 kb in length have been ob-
served as very common haplotype differences between
strains of maize [71]. The longer elements usually con-
tain fragments of multiple cellular genes, indicating fre-
quent but short read-through with each transposition
event. In mammals, rolling circle elements were active
in a common ancestor over 150million years ago, while
more recent activity has only been reported in several
species of bats [95].

3. Genes sandwiched between two copies of the highly
specific recognition site of the transposase of a DNA
transposon may be duplicated as a unit. This process
can be common in genomeswith high DNA transposon
activity. For example, there are thousands of “Pack–
MULES” in the rice genome that contain fragments
of cellular genes [56] although, like retroposed genes,
a very small fraction of these seem to have resulted in
or contributed to functional genes [59].

Most segmental duplications, especially the larger ones
that might contain one or more complete genes, do not
arise by transposition. Instead, they are the result of re-
combination events. Even here transposable elements play
an indirect but very significant role. The excision of a DNA
transposon, and the integration of a retrotransposon, both
create temporary double-strand DNA breaks; such breaks
frequently trigger recombination. The great increase in
both homologous and non-homologous recombination
due to DNA transposon activity has been well docu-
mented [9]. Furthermore, the interspersed copies of trans-
posable elements are a common cause of misalignment
during meiosis, resulting in a deletion in one daughter
chromosome, and a (generally tandem) duplication in the
other one. One of the first well-characterized gene du-
plications, that of the �-globin gene in the ancestor of
hominids and old-world monkeys, was mediated by two
LINE1 copies flanking the original gene [37]. Compari-
son of the human and chimp genome revealed that in the
short time (6 million years) of separation of these species,
around a thousand homologous recombination events be-
tween interspersed repeats has deleted about 2Mb of DNA
in each lineage [28,51]. Indeed, it has been postulated that
the unusually high number of interspersed segmental du-
plications in the primate genomes, as compared to that of
other sequenced organisms, was due to the extraordinarily
high activity of the Alu retrotransposon about 30–40 mil-
lion years ago, which left half a million copies of almost
identical 300 bp sequences [5].

How Do Duplicated Genes Survive?

The previous section described the many physical mech-
anisms by which genes may duplicate in a genome, but
what forces are there to keep an initially redundant copy
of a gene in the genome of a species? We address here two
processes by which gene function evolves: Neofunctional-
ization, and subfunctionalization.

The concept of neofunctionalization is intuitive: Once
a new gene copy arises, it is “free” to accumulatemutations
and evolve a new, useful function. Given the high rate of
accumulation of deleterious mutations, though, it is un-
likely that one of the copies will evolve a new function
quickly enough. This is especially so in organisms with
small population sizes, as the relative strength of adap-
tive selection over genetic drift is directly related to the
population size. Moreover, the presence of a second copy
of a gene may even be disadvantageous, as the associ-
ated higher level of expression may interfere with proper
function. This idea seems corroborated by observations
in yeast where genes participating in a protein complex
are underrepresented among segmental duplications and
members of interacting pairs tend to be co-duplicated [91].
In the case of polyploidy (whole genome duplication),
most genes are expressed at an increased level; the loss of
individual genes could then lead to imbalances. Indeed,
duplicates arising from whole genome duplication have
a much longer half-life than those arising from segmental
duplications. In vertebrates this difference is about 20 to
25-fold (2 million vs. 45 million years). The longer half-life
also reflects another advantage of whole genome duplica-
tion, i. e. the preservation of all regulatory sequences, even
long distance ones. Considering the ease and frequency
with which plants become polyploid, the primary mech-
anism of chromosomal repatterning in plants may be du-
plication followed by random loss of component genes.

When a polymorphic gene gives a selective advantage
to heterozygotes as compared to the homozygotes of either
allele, the gene is said to evolve under balancing selection.
Such genes would conceivably be more adept at duplicat-
ing, as a genome with both alleles at different loci would
have the inherent benefit of “heterozygosity”. This mecha-
nism may be at the core of the expansion of gene families
greatly benefiting from diversity, like those involved in re-
production, immunity, host defense and chemoreception.

The most feasible route through which duplicated
genes may be permanently retained is through the alterna-
tive process of subfunctionalization (Fig. 2). When a du-
plicated gene contains coding or regulating regions that
are only important for a subset of its activities (be it in
time, space, or function), loss of different functionalities
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Genome Organization, Figure 2
TheDuplication-Degeneration-Complementation (DDC)model for gene duplications. The ancestral gene has two (ormore) subfunc-
tions, for each of which independently mutable elements exist. In this particular example, both promoter elements and alternative
internal exons exist that are only required for one of two subfunctions. The loss of any one of these regions in one copy of the dupli-
cated gene (which can happen in one or two steps) can be followed by the loss of an independent element in the other copy, after
which the copies will be complementary and may both survive. Alternatively though more rarely, the intact copy acquires a new
function for the subfunction retained in the damaged copy, after which both copies alsomay survive. Third, as the damaged copy is
still redundant itmay simply further decay into a pseudogene. Population genetics predict that theDDCmodel is both likely, as it de-
pends on common degenerativemutations, and is more apt to occur in small-population species, which tend to havemore complex
genomes. Figure adapted from Force et al. [39]

in the duplicates can cause the two copies to comple-
ment each other, and hence favor the conservation of both
in the genome. This Duplication-Degeneration-Comple-
mentation (DDC) model [39] is plausible as it invokes
common degenerative mutations rather than the exceed-
ingly rare advantageous mutations necessary for neofunc-
tionalization. Subfunctionalization leads to elimination of
pleiotropic constraints (i. e. changes cannot interfere with
any of the functionalities), so that each duplicate can be-
come optimized to its particular subfunction. This pro-
cess intuitively adds to increased complexity and flexibil-
ity, creating two experts from a single jack-of-all-trades.

An interesting and important prediction is that,
through DDC, gene duplications are more likely to be-
come fixated in organisms with small populations sizes
(which we observe to have more complex genomes), be-
cause each step in the process needs to become fixated in
the population before the next step occurs, and the time
it takes for neutral mutations to reach fixation is propor-

tional to the population size. In addition, the likelihood
of this model does not suffer and may even benefit from
incomplete gene duplications, which in segmental dupli-
cations may be the rule rather than the exception; absence
of, for example, a set of upstream regulatory regions com-
bines the duplication and first degeneration step, creating
one copy that already misses a subfunction. For genes that
arise via transposition, an alternative way in which the
transposed copy may lose some of its functionality upon
arrival is through differential epigenetic regulation of the
locus it inserts into.

The mechanism by which duplications are fixated will
depend on the nature of the gene. While the likelihood of
duplication through subfunctionalization increases with
greater regulatory and functional complexity of a gene,
balancing selection-driven neofunctionalization may be
prevalent in the expansion of fast evolving genes like those
involved in immune response, reproduction, and xeno-
biotic recognition (e. g. drug detoxification and odorant
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recognition). The olfactory receptor gene family offers
a striking example of fast expansions and contractions in
vertebrates [44].

Other examples of rapidly expanding gene sets can be
found in the nearly 6% of the human euchromatin that
is derived from recent (< 40 million years old) segmen-
tal duplications. While such duplications are overrepre-
sented in pericentromeric and subtelomeric regions, in
hominoid genomesmost are actually interspersed through
the genome. These interstitial duplicated units (duplicons)
are significantly enriched in genes and gene fragments.
Moreover, the gene parts of these duplicons are evolving
rapidly (most nucleotide substitutions have affected the
amino acid sequences) and are more commonly retained
in duplicon copies than other regions, suggesting that pos-
itive selection has acted not only to diversify sequences
but also to fixate gene duplicates in the population [4].
Since the location of interstitial segmental duplications is
strongly correlated with unstable sites, Jiang et al. specu-
lated that the association of a gene with such a site was
a “predisposing event”, opening the way for amplification
of this gene in different genomic environments [57].

Transcriptome Complexity

Given the small variability in the number of genes in eu-
karyotic genomes (and that this number is not that much
larger than the respective number in prokaryotes), how
does the complex phenotypic diversity of eukaryotes arise?
The answer appears to be two-fold: Eukaryotes have the
ability of producing many different products from each
gene, and have many control mechanisms for regulating
and fine-tuning gene expression [83].

The basic mechanism of gene expression involves the
recognition, by a set of proteins called the transcriptional
complex, of a special DNA sequence called the promoter.
The promoter of a gene includes several sequence elements
that specify under which conditions the gene should be ex-
pressed. The transcriptional complex initiates the copying
of the DNA template into an RNAmolecule by an enzyme
called the RNA polymerase. This process continues until
the RNA polymerase encounters a termination signal. The
resulting RNA molecule is then further processed, typi-
cally leading to the production of a protein molecule.

Prokaryotic genes are easily identified by the presence
of an open reading frame (ORF): A contiguous segment of
the transcript without any termination codons in (at least)
one of the three reading frames in the forward strand. This
ORF can be readily translated into a protein sequence,
a task carried out in vivo by the translation machinery
called the ribosome. Sequences outside the ORF are called

untranslated regions (UTRs). A transcript corresponding
to a single gene therefore has three well-defined regions:
The 50 UTR, the ORF and the 30 UTR, delimited by the
initiation codon and the termination codon.

In contrast, three decades ago the surprising discov-
ery was made that eukaryotic genes have discontinuous
ORFs [11]. For the vast majority of eukaryotic genes, one
or more introns may split the ORF and the 50 UTR into
exons (Fig. 3). The boundaries between exons and introns
are demarcated by splicing signals: Each intron starts at
a “splicing acceptor” and ends at a “splicing donor”.

Most of the information required for splicing resides
in the introns, though splicing enhancers have been de-
scribed, that serve for exon definition. Specialized ma-
chinery (called the spliceosome) processes the initial (pre-
mRNA, or heterogeneous nuclear RNA, hnRNA) tran-
scripts, removing the introns and splicing the exons to-
gether into the mature mRNA. Spliceosomes are complex
molecular machines involving five small nuclear RNAs
(snRNAs) and hundreds of proteins [119]. A large num-
ber of genes encode proteins involved in splicing, amount-
ing to approximately 1% of all human genes. Surprisingly,
two different kinds of spliceosomes exist: The major and
the minor spliceosomes [107,127], which employ different
snRNAs (called U2 and U12, respectively) and have differ-
ent intron specificities. Based on their wide phylogenetic
distribution, it is a safe assumption that both types of in-
trons were present in the “stem eukaryote”, the ancestor
of all extant eukaryotic species (Fig. 1). It is not clear how
introns originally arose in the genome, though an origin
from mobile elements is probable (see above). As with any
other elaboration on the gene structure, their presence in-
creases the risk that the host gene will be rendered defec-
tive by subsequent mutations [82]. Nevertheless, once es-
tablished, the splicing machinery conferred significant ad-
vantages to the eukaryotic cell, discussed next.

A crucial aspect of pre-mRNA splicing is that it is not
deterministic, and it does not always lead to the same final
mRNA form. By a variety of pathways, alternative spliced
forms may arise. Alternative transcripts can produce pro-
tein products with altered cellular localizations, varying
substrate affinities, or different activities [133], in many
gene families, e. g. transcription factors [118], kinases and
phosphatases [40], kallikreins [70], etc.

Alternative splicing appears to be the norm, particu-
larly among vertebrates [65]: A genome-wide survey using
microarrays showed that over 74% of human multi-exon
genes are alternatively spliced [58]. In the plant kingdom,
alternative splicing is prevalent in flowering plants [97].

There are several differentmechanisms that give rise to
alternative splice forms from one promoter (Fig. 4), with
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Genome Organization, Figure 3
Schematic of gene structure. Top: The basic structure of an intronless gene, with the open reading frame coding region (CDS) flanked
by 50 and 30 untranslated regions (UTRs). The star and the stop sign denote the promoter and the poly-adenylation signal, respec-
tively; M and S represent the initiation (methionine) and termination (stop) codons. Bottom: The structure of a eukaryotic gene split
into exons and introns. D, A and E represent splicing donor, acceptor and enhancer signals, respectively

Genome Organization, Figure 4
The different transcripts arising from a genomic locus. The boxed area represents the genomic sequence. From top to bottom: The
main transcript, splicing the main exons and giving rise to the main product (black star); a secondary transcript in which one exon
was swappedwith an alternative exon, giving rise to an alternative product (gray star); a secondary transcript employing alternative
splice sites, be it by extending into an intron or by losingpart of an exon; a secondary transcript skipping an exon; a transcript splicing
in a cryptic “cassette” exon; a transcript in which an intron is retained instead of being spliced out; an antisense transcript from
a downstream promoter, not coding for a protein but functioning in regulation of themain transcripts (gauge symbol). Cryptic exons
and intron retention typically (but not always) change the reading frame and give rise to an unusable product (recycling symbol).
Other graphic elements are as in Fig. 3

very different degrees of prevalence [65]. In exon swap-
ping, an exon is replaced by an alternative exon: Such
alternative exons typically arise by local duplication. An
exon may have alternative splice sites, delimiting a se-
quence that is sometimes part of the exon, sometimes
spliced out with the neighboring intron. Exon skipping
refers to the situation in which an exon is spliced out of
the transcript with its flanking introns. Conversely, a “cas-
sette” exon may be included in the transcript: These cryp-

tic exons are typically composed of interspersed repeats
and other non-coding intergenic sequence, flanked by se-
quences similar enough to splice sites to be recognized by
the spliceosome [114]. Finally, an intron may be retained,
bridging its two flanking exons in the final transcript form
(Fig. 4).

In multi-exon genes, more than one exon may be al-
ternatively spliced. This can lead to a combinatorial ex-
plosion, potentially giving rise to a very large number of



Genome Organization G 4171

different transcripts from a single locus. Given its poten-
tial to produce very different proteins, or even unusable
products [116], it is not surprising that alternative splicing
is a highly regulated process, involving many proteins and
RNAmolecules [111]. Central to this process is the family
of the serine- and arginine-rich proteins (SR proteins). SR
proteins interact with RNA regulatory sequences, and par-
ticipate in the spliceosome assembly process [17,96]. Tak-
ing advantage of the large amounts of sequence informa-
tion being produced, as well as in vivo splicing reporter
systems [125], global analysis approaches are helping elu-
cidate the “cellular code” of splicing [85]. The regulatory
sequences include splicing enhancer and silencer elements
present in the pre-mRNA, particularly in exons [21,134],
but also conserved sequences in introns [113]. There are
two main modes of pre-mRNA splicing, involving ei-
ther the identification of short exons, typically separated
by long introns [10,72], or the recognition of short in-
trons [80]. Both modes use the same consensus splice sig-
nals [117].

An additional way to achieve a larger variety of alter-
native transcripts for a gene is by the use of alternative
promoters. Many genes are known to have more than one
promoter region, each giving rise to its own, unique first
exon. These alternative first exons can then be joined with
a shared set of exons downstream, adding to the combi-
natorial capability of transcript production from a single
gene locus [79]. Alternatively, the first exon of one gene
structure can be an internal exon of another one [26]. In-
terestingly, transcript elongation and splicing are interre-
lated in mechanism and regulation, with promoter choice
affecting splicing [68]. In turn, the strength of splice sites
can affect the choice of transcript termination point, which
can lead to the generation of fusion transcripts combining
exons from adjacent genes [41].

Several of the mechanisms for alternative splicing
produce mature transcripts that include sections of in-
trons, a process called exonization [112]. Such intronic se-
quences, which were not selected to code for protein se-
quences, clearly have the potential to interrupt the open
reading frame by introducing a premature stop codon. In
some cases [77] a proper open reading frame can be re-
stored via a process called RNA editing. The family of
adenosine deaminases acting on RNA (ADARs) are able to
deaminate adenosines in any long double-stranded RNA,
converting them to inosines [64]. Site-specific adenosine
deamination can not only correct frame disruptions, but
also increase the diversity of transcripts and the resulting
proteins [47].

The final quality control of transcripts is effected
via a pathway called nonsense-mediated decay (NMD),

a surveillance system that targets transcripts with prema-
ture termination codons [8,103], as well as transcripts with
overly extended 30 UTRs [87]. This pathway prevents the
production of truncated proteins, which may be detrimen-
tal to the cell. Interestingly, NMD is also part of regula-
tory mechanisms of gene expression [30] particularly of
splicing regulators like SR proteins, in which alternatively
spliced “poison exons” located in ultraconserved elements
introduce unavoidable stop codons [73,88].

Are the products of alternative splicing functional, or
are they mostly “noise”? Computational analyses indi-
cate that alternative splicing is regulated in a very tissue-
specific manner [130] and suggest that this regulation is
strongly modified in cancers [108]. As described above, al-
ternative splicing has profound effects on the structure of
the resulting proteome [116]. Taken together, these and
other lines of evidence suggest that splicing variants are
as a rule functional and actively selected for. In contrast,
a statistical comparison of conserved vs. lineage-specific
alternatively spliced exons indicates that these are two dis-
tinct classes, suggesting that many splice forms observed
and cataloged in sequence databases may be aberrant and
non-functional [115]. Further evidence from analyses of
amino acid frequencies suggest relaxed selection on alter-
native splice forms [25].

Transcript Networks

In the previous section we discussed how a variety of dif-
ferent transcripts can arise from a single “gene” and some
aspects of how this process is regulated. The classical view
of gene function involves the transmission of information
from the genome to the protein via a transcript. During
the last few years the perception of RNA as a mere infor-
mation conduit has changed dramatically, and it is now
known that this is not the only way an RNA transcript can
be functional. RNA molecules can be structural (e. g. ri-
bosomal RNA, transfer RNA) and catalytic, but most im-
portantly, they provide a complex intermediary network of
regulation, between DNA-level transcript production and
protein-level interaction networks.

The next level of genomic complexity therefore arises
from the interaction between transcripts. In fact, we can
conceptually subdivide transcripts into three types (Fig. 5),
two of which are heavily invested in regulation at the
RNA level. Type I describes the classical gene structure
in which the mRNA (after splicing out the introns if any
were present) serves as the intermediary form leading
to the production of the functional product – the pro-
tein. In Type II, the (potentially spliced) mRNA tran-
script itself represents the functional product, without
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Genome Organization, Figure 5
Schematic representation of the three types of eukaryotic transcripts, as classified by product type: Type I “protein-coding” genes
(left), Type II “RNA” genes (center), and Type III “stencil” genes (right). The boxed area represents the genomic sequence, gray boxes
indicate coding exons, thick horizontal lines denote UTRs. In protein-coding genes, the introns are spliced out in lariat form and
degraded (recycling symbol),while the processed transcript gives rise to the functional protein product (black star). In RNAgenes, the
processed transcript is the same as the functional product, without translation to protein. In stencil genes, the processed transcript is
meaningless and degraded, while the intron lariats are further processed to produce the functional products – small RNAmolecules
likemiRNAs and snoRNAs. The “sequence conservation” graph reveals the location of the functional elements, extending throughout
the exons of protein-coding and RNA genes, but localized in the introns of stencil genes

coding for a protein [50]. Such RNA genes are involved in
a large number of cellular processes, including gene regu-
lation [106], andmore are being discovered. Type III tran-
scripts differ from the first two types in that, after splic-
ing out of the introns, the resulting spliced mRNA is not
the source of the functional product. Instead, specific path-
ways excise out of the intron lariats short RNA segments
including miRNAs (see below) and snoRNAs. We propose
to call this third type “stencil genes” because, in similar-
ity to stencils, they are just structural frameworks, while
the sections removed from them are those that carry the
relevant information. Stencil genes range in size from the
very small, e. g. the 5 kb long C6orf48 transcript in the hu-
man MHC Class III region [128], to the very large, e. g.
the 530 kb long LOC401237 transcript [46]. Interestingly,
the three types of transcripts are not mutually exclusive.
For example, most snoRNA genes are produced from in-
tron lariats spliced out of transcripts coding for ribopro-
teins [50] andmost humanmiRNA genes are derived from
intronic regions [67,101].

The ability of nucleic acids to recognize each other
by strand complementarity has afforded several oppor-
tunities for the evolution of specific regulatory mecha-
nisms. A large number of genes are now known to be regu-
lated by naturally occurring antisense transcripts [75,131],
which can function in cis or in trans [76]. First identi-
fied as specific transcriptional repression by injection of
double-stranded RNA in C. elegans [36], or RNA inter-
ference (RNAi), a more exquisite mechanism for general
gene regulation involves the production of short (� 22 nt
long) RNAmolecules called micro RNAs, or miRNAs [90]
by cleavage from RNA hairpins. miRNAs form complexes
with several proteins including Argonaute gene family
members, and the resulting miRNP complexes control
gene expression by binding to mRNA, frequently in the
30 UTR, recognizing sequence motifs by imperfect se-
quence complementarity [6]. An mRNA thus recognized
by a miRNP complex will be either cleaved and degraded,
or its translation to protein will be repressed. The iden-
tification of miRNAs and their targets is a very active
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area of research, with knowledge being warehoused in
the miRBase database (Table 1). Related to miRNAs are
small interfering RNAs, or siRNAs, which are produced by
cleavage of long double-stranded RNAs. Finally, a novel
type of small RNAs was recently described, which inter-
act with Piwi proteins, a subfamily of Argonaute proteins.
These Piwi-interacting RNAs, or piRNAs, are expressed
mainly in the germline and, as described above, are part
of an adaptive defense system against transposable ele-
ments [3,66].

Computational analyses suggested that a large fraction
of the genome is transcribed [46,104], including many re-
gions previously thought to be devoid of genes (and there-
fore called “gene deserts”). Experimental analyses demon-
strated vast networks of overlapping transcripts on both
DNA strands, called “gene forests” [12,20,27,61]. Not sur-
prisingly, some transcripts are only observed in specific
cell types and/or conditions [100], suggesting that many
additional functional transcript forms are yet to be discov-
ered. The observed complexity of transcription and regu-
lation poses a significant challenge to the classical concept
of the gene as the discrete element in the genome, and re-
quires updated definitions [43].

If most of both genomic DNA strands are transcribed
in complex loci, with many sequences being multifunc-
tional [12,62], what fraction of the genome is actively se-
lected for functional needs? It has been claimed that ev-
erything in the genome is functional [123] to different de-
grees and in various circumstances, or even in aggregate
for “genomic bulk” [135]. On the other hand, it has been
proposed that a large fraction of the current genomic fea-
tures has arisen in a “mostly neutral” fashion [84]. In this
context, it is important to keep in mind that the typically
small population size of eukaryotic species precludes effec-
tive selection over most functional sites, particularly those
conferring weak advantageous effects.

Future Directions

Genomes have evolved over many hundred million years,
by a haphazard accumulation of random mutations rang-
ing from the single nucleotide change to the duplication
of the entire genome. In prokaryotes, the large population
sizes and fast division times afford for very effective se-
lection against deleterious or wasteful mutations, leading
to compact and streamlined genomes. In sharp contrast,
given the small population sizes of eukaryotic species, the
selective advantage of some variants over others has been
tempered by the vagaries of random sampling. This on-
going process has led to the accretion of the highly dis-
organized genomes observed in eukaryotes. One of the

most fundamental and understated results from the anal-
ysis of completed genomic sequences is the overwhelming
and outstanding lack of evidence for any kind of intelli-
gent design in genome organization (Fig. 6). Even though
exceptions exist, in the form of locally coordinated, small
clusters of functionally related genes [7], the vast major-
ity of the vertebrate genome is a disordered array of genes
in essentially random order and orientation. As genomes
evolve, gene order changes following a simple null model
of random mutation, with present intergenic distance be-
ing the best predictor for future gene linkage [94].

In this context, one major difficulty lies in distinguish-
ing between real biological signals and the background
of random variation. We need to understand how the
genome is organized and how it evolved, to be able to
build suitable null hypotheses for testing whether predic-
tions are likely to be real, and whether specific observa-
tions are likely to be biologically meaningful. To surmount
this difficulty, the integration of many data types is im-
perative, as demonstrated by the ENCODE project (Ta-
ble 1) [12]. Comparative genomics is a powerful tool for
distinguishing between evolutionary and functional sig-
nal and noise, by identifying what is shared and what is
different among related species. In the field of gene pre-
diction, the best results are obtained by integrating sev-
eral sources of information, reflecting many steps of the
process of gene expression, from the genome to the func-
tional product (Fig. 7). Computational and experimental
work has shown thatmany regions of the genome are tran-
scribed in which no classical protein-coding genes can be
identified. This suggests that many RNA and stencil genes
might remain to be discovered [46].

A deep understanding of genome organization and
principles of function will enable the new field of genome
engineering. Preliminary work has demonstrated the fea-
sibility of combining two bacterial genomes into one [55]
and full genome transplantation [74]. Interestingly, the
resulting phenotypes observed either reflected the host
genome when combined, or the donor genome when re-
placed. This suggests that researchers will benefit from
a wide range of possible phenotypic effects, to be attained
by judicious combinations of genomic sources, both natu-
ral and synthetic. At amoremodest scale, it will be possible
to engineer the minimal genetic modifications required to
correct the imbalances and deregulations leading to many
diseases, including cancer.

The ongoing development of novel sequencing tech-
nologies has reduced the cost of sequencing genomes by
orders of magnitude. It is expected that within a few years,
obtaining an individual’s version of the genome will be
extremely affordable, which is one of the essential re-
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Genome Organization, Figure 6
A conceptual comparison between non-systems (random assemblages of objects, e. g. a pile of rocks), living systems (evolved) and
technological systems (designed). While designed systems are presumably purposeful and hopefully efficient and parsimonious,
non-systems have no purpose – they just are – and as such have no efficiency. The survival behavior of evolved systems gives a func-
tional purpose to their parts, which are typically redundant andmultifunctional, or even not used anymore. As such, evolved systems
are highly “wasteful”. Designed systems typically have specification ranges within which they function normally, and changes out-
side those predefined ranges are typically catastrophic. Non-systems accept all change and return to passive equilibrium. Evolved
systems typically have many methods of error correction that accumulated over many millions of years of selection in changing
environments. Overall, non-systems are chaotic and designed systems are well organized, while evolved systems are very messy
and disorganized, typically displaying ancient battle scars, relics or defunct parts, and theminimal level of organization required for
survival

Genome Organization, Figure 7
Sources of information used for predicting and recognizing genes in the genome. Red arrows: Ab initio gene prediction methods.
Green arrows: Similarity-based gene predictionmethods. Blue arrow: Footprint-based transcript prediction. Observed transcripts are
used dually to identify genes (white arrow) and to predict similar genes (green arrow). Other graphical elements as in Figs. 3 and 4
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quirements for personalized medicine [14]. Already, the
elucidation of an individual’s genome [78] provided in-
sight into the level of polymorphism arising from different
types of mutations, and indicated that alterations involv-
ing more than a single base pair represent a sizable frac-
tion of the variability among alleles in the human popula-
tion. As more personal genome sequences become avail-
able through the Personal Genome Project (Table 1) and
other efforts, it will be possible to obtain a detailed char-
acterization of mutation frequencies, on which to base
proper models of neutral evolution. Based on the cumu-
lative results of population sequencing, it will be possible
to derive robust “reference” genomes for human popula-
tions, leading to a highly detailed characterization of the
history of human evolution. The genetic analysis of com-
plex diseases will be strongly impacted by the cumulative
genomic knowledge, leading to a comprehensive identifi-
cation of the genes associated with most major diseases,
and a detailed characterization of their interactions.
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Glossary

Chaos Apparently random or unpredictable behavior in
systems governed by deterministic laws. The common
element in these systems is a very high sensitivity to
initial conditions and to the way in which a system is
set in motion (Encyclopedia Britannica).

Complexity An attribute of nonlinear (chaotic) systems.
It comprises instability and complex but not random
behavior patterns – “order in chaos”.

Earthquake An episode of rupture and discontinuous
displacement within the solid Earth. Part of the energy
accumulated around the rupture is released by inelas-
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tic deformation and seismic waves. Both may cause de-
structive shaking of the ground, if the energy release is
sufficiently large.

Earthquake forecasting Probabilistic extrapolation of
seismic activity comprising many earthquakes.

Earthquake prediction Prediction of time interval, geo-
graphic area, and magnitude range where an individ-
ual future strong earthquake will occur. The prediction
is meaningful if it includes an estimated rate of false
alarms.

Earthquake preparedness A set of actions reducing the
damage from the future earthquakes. There are differ-
ent levels of preparedness.

Extreme events Rare events of low probability but high
impact on a system where they occur. In different con-
notations they are also known as critical transitions,
disasters, catastrophes, and crises. Over time they per-
sistently recur in both natural and constructed com-
plex systems. In this article the extreme events are the
strong earthquakes. An earthquake might be an ex-
treme event in a certain volume of the lithosphere and
part of the background seismicity in a larger volume.

Lithosphere The earthquake-prone outer shell of the
solid Earth. In prediction research it is regarded as a hi-
erarchical complex system.

Premonitory seismicity patterns Space-time-magnitude
patterns of earthquake occurrences that signal the
approach of a strong earthquake.

Definition of the Subject

Definition

The problem of earthquake prediction is to find when and
where a strong earthquake will occur. A prediction is for-
mulated as a discrete sequence of alarms (Fig. 1). The accu-
racy of a prediction method is captured by probabilities of
errors (false alarms and failures to predict) and by the total
space-time occupied by alarms. (Sect. “Error Diagram”).

In terms of prediction studies this is algorithmic pre-
diction of individual extreme events having low proba-
bility but large impact. This problem is necessarily inter-
twined with problems of disaster preparedness, dynamics
of solid Earth, and modeling of extreme events in hierar-
chical complex systems.

Predictability (“order in chaos”). Complex systems,
lithosphere included, are not predictable with unlim-
ited precision. However, after a coarse-graining (i. e., in
a not-too-detailed scale) certain regular behavior patterns
emerge and a system becomes predictable, up to cer-
tain limits ([13,20,24,26,36,46,52,83]). Accordingly, earth-
quake prediction requires a holistic analysis, “from the

Geo-complexity and Earthquake Prediction, Figure 1
Possible outcomes of prediction

whole to details”. Such analysis makes it possible to over-
come the geo-complexity itself and the chronic imperfec-
tion of observations as well.

Premonitory patterns. Certain behavior patterns
emerge more frequently as a strong earthquake draws
near. Called premonitory patterns, they signal destabi-
lization of the earthquake-prone lithosphere and thus
an increase in the probability of a strong earthquake.
Premonitory patterns do not necessarily contribute to
causing a subsequent strong earthquake; both might be
parallel manifestations of the same underlying process –
the tectonic development of the Earth in multiple time-,
space-, and energy- scales. For that reason premonitory
patterns might emerge in a broad variety of observable
fields reflecting lithosphere dynamics, and in different
scales.

The algorithms considered here, based on premoni-
tory seismicity patterns, provide alarms lasting years to
months. There is ample evidence thatmajor findingsmade
in developing these algorithms are applicable to premoni-
tory patterns in other fields, to predicting other geological
and geotechnical disasters, and probably to determining
shorter and longer alarms (Sect. “Further Goals”).

Importance

Algorithmic earthquake prediction provides pivotal con-
straints for fundamental understanding of the dynamics
of the lithosphere and other complex systems. It is also
critically important for protecting the global population,
economy, and environment. Vulnerability of our world to
the earthquakes is rapidly growing, due to proliferation of
high-risk construction (nuclear power plants, high dams,
radioactive waste disposals, lifelines, etc.), deterioration of
ground and infrastructure in megacities, destabilization
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of environment, population growth, and escalating socio-
economic volatility of the global village. Today a single
earthquake with its ripple effects may take up to a mil-
lion lives; destroy a megacity; trigger a global economic
depression (e. g. if it occurs in Tokyo); trigger an ecolog-
ical catastrophe, rendering a large territory uninhabitable;
or destabilize military balance in a region. Regions of low
seismicity have become highly vulnerable, e. g. European
and Indian platforms, and Central and Eastern parts of the
U.S. As a result the earthquakes joined the ranks of the
major disasters that, in the words of J. Wisner, have be-
come “a threat to civilization survival, as great as was ever
posed by Hitler, Stalin or the atom bomb”. Earthquake
prediction is necessary to reduce the damage by escalat-
ing disaster preparedness. Predictions useful for prepared-
ness should have known, but not necessarily high, accu-
racy. Such is the standard practice in preparedness for all
disasters, wars included.

Introduction

Earthquakes occur in some parts of the outer shell of the
solid Earth, called the lithosphere; its thickness ranges
from a few kilometers near the mid-ocean ridges to a few
hundred kilometers in certain continental regions. At
many continental margins the lithosphere bends down-
ward penetrating underlying mantle as seismically active
subduction zones. In seismically active regions a signifi-
cant part of tectonic development is realized through the
earthquakes.

About a million earthquakes withmagnitude 2 (energy
about 1015 erg) or more are detected each year worldwide
by seismological networks. About a hundred of these cause
considerable damage and few times in a decade a catas-
trophic earthquake occurs.

Catalogs of earthquakes provide the data for detect-
ing premonitory seismicity patterns. Typically for com-
plexity studies we do not have a complete set of funda-
mental equations that govern dynamics of seismicity and
unambiguously define earthquake prediction algorithms.
This is due to the multitude of mechanisms controlling
seismicity – see Sect. “Generalization: Complexity and Ex-
treme Events”. In lieu of such equations “. . .we have to
rely upon the hypotheses obtained by processing of the ex-
perimental data” (A. Kolmogorov on transition to turbu-
lence). Formulating and testing such hypotheses involves
exploratory data analysis, numerical and laboratory mod-
eling, and theoretical studies (Sect. “General Scheme of
Prediction”).

Diversity of methods and urgency of the problem
makes learning by doing a major if not the major form of

Geo-complexity and Earthquake Prediction, Figure 2
Prediction of the Sumatra earthquake, June 4th, 2000, M D 8:0
by algorithms M8 and MSc. The orange oval curve bounds the
area of alarm determined by algorithm M8, the red rectangle is
its reducing made by algorithm MSc. Circles show epicenters of
the Sumatra earthquake and its aftershocks. After [43]

knowledge transfer in prediction of extreme events (http://
cdsagenda5.ictp.it/full_display.php?da=a06219).

Reliability of the existing algorithms has been tested
by continuous prediction of future strong earthquakes
in numerous regions worldwide. Each algorithm is
self-adapting, i. e. applicable without any changes in
the regions with different seismic regimes. Predic-
tions are filed in advance at the websites (http://
www.mitp.ru/predictions.html; http://www.phys.ualberta.
ca/mirrors/mitp/predictions.html; and http://www.igpp.
ucla.edu/prediction/rtp/).

Following is the scoring for four different algorithms.

� Algorithms M8 [32] and MSc [44] (MSc stands for the
Mendocino Scenario). AlgorithmM8 gives alarms with
characteristic duration years. MSc gives a second ap-
proximation to M8, reducing the area of alarm. An ex-
ample of their application is shown in Fig. 2.

Continually applied since 1992, algorithm M8 has pre-
dicted 10 out of 14 large earthquakes (magnitude 8 or
more) which have occurred in the major seismic belts.
Alarms occupied altogether about 30% of the time-space
considered. Both algorithms applied together reduced the
time-space alarms to 15%, but three more target earth-
quakes were missed by prediction.

http://cdsagenda5.ictp.it/full_display.php?da=a06219
http://cdsagenda5.ictp.it/full_display.php?da=a06219
http://www.mitp.ru/predictions.html
http://www.mitp.ru/predictions.html
http://www.phys.ualberta.ca/mirrors/mitp/predictions.html
http://www.phys.ualberta.ca/mirrors/mitp/predictions.html
http://www.igpp.ucla.edu/prediction/rtp/
http://www.igpp.ucla.edu/prediction/rtp/


Geo-complexity and Earthquake Prediction G 4181

Geo-complexity and Earthquake Prediction, Figure 3
Prediction of the Northridge, California earthquake, January 28th, 1994, MD 6:8 by algorithm SSE. The prediction was made by
analysis of aftershocks of the Landers earthquake, June 28th, 1992, M D 7:6. An earthquake with M D 6:6 or larger was expected
during the 18months after the Landers earthquakewithin the 169-kmdistance from its epicenter (shown by a circle). The Northridge
earthquake occurred on January 28th, 1994, 20 days after the alarm expired. After [43]

� Algorithm SSE or Second Strong Earthquake [43,91]. Its
aim is to predict whether or not a second strong earth-
quake will follow the one that had just occurred. An
alarm lasts 18 months after the first strong earthquake.
An example of prediction is shown in Fig. 3. Test-
ing by prediction in advance is set up for California,
Pamir and Tien Shan, Caucasus, Iberia and Maghreb,
the Dead Sea rift, and Italy. Since 1989 this algorithm
made 29 predictions; 24 of which were correct and 5
were wrong.

These scores demonstrate predictability of individual
earthquakes. A predictions’ accuracy is indeed limited, but
sufficient to prevent a considerable part of the damage.

� Algorithm RTP or Reverse Tracing of Precursors [37,81].
This algorithm gives alarms with a characteristic dura-
tion of months. An example of this prediction is shown
in Fig. 4. Testing by prediction in advance started only

few years ago for California, Japan, the Northern Pa-
cific, Eastern Mediterranean, and Italy with adjacent
areas.

Perspective. It is encouraging that only a small part of read-
ily available relevant data, models and theories have been
used for prediction so far. This suggests a potential for
a substantial increase of prediction accuracy.

Lithosphere as a Hierarchical Complex System

Two major factors turn the lithosphere into a hierarchi-
cal dissipative complex system [29,36,87]. The first one
is a hierarchical structure extending from tectonic plates
to grains of rocks. The second factor is instability caused
by a multitude of nonlinear mechanisms destabilizing the
strength and stress fields.

Among extreme events in that system are the strong
earthquakes. An earthquake may be an extreme event in
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Geo-complexity and Earthquake Prediction, Figure 4
Prediction of Simushir, Kuril Islands earthquakes, November
15th, 2006,Mw D 8:3 and January 13th, 2007,Mw D 8:2 by Al-
gorithm RTP. An earthquake with magnitude Mw > 7:2 is pre-
dicted to occur within the time interval from September 30th,
2006, to June 30th, 2007 in the area bordered by thered curve.
The red dots show epicenters of an earthquake-forming pre-
monitory chain. The blue stars show epicenters of the predicted
earthquakes

a certain volume of the lithosphere and a part of the back-
ground seismicity in a larger volume.

Structure

Blocks The structure of the lithosphere presents a hier-
archy of volumes, or blocks, which move relative to each
other. The largest blocks are the major tectonic plates, of
continental size. They are divided into smaller blocks, such
as shields or mountain belts. After 15–20 consecutive divi-
sions we come to about 1025 grains of rocks of millimeter
size.

Boundary zones Blocks are separated by relatively thin
and less rigid boundary zones. They are called fault zones
high in the hierarchy, then faults, sliding surfaces, and, fi-
nally, interfaces between grains of rock. Except at the bot-
tom of the hierarchy, a boundary zone presents a similar
hierarchical structure withmore dense division. Some seg-

ments of the boundary zones, particularly in tectonically
young regions, might be less explicitly expressed, present-
ing a bundle of small ruptures not yet merged into a fault,
of a flexure not yet ruptured, etc.

Nodes These are even more densely fractured mosaic
structures formed around the intersections and junctions
of boundary zones. Their origin is due, roughly saying, to
collision of the corners of blocks [16,39,40,55]. The nodes
play a singular role in the dynamics of the lithosphere.
A special type of instability is concentrated within the
nodes and strong earthquakes nucleate in nodes. The epi-
centers of strong earthquakes worldwide are located only
within some specific nodes that can be identified by pat-
tern recognition [19,22].

Nodes are well known in the structural geology and ge-
omorphology and play a prominent textbook role in geo-
logical prospecting. However their connection with earth-
quakes is less widely recognized.

The formalized procedure for dividing a territory into
blocks) faults) nodes is given in [2].

Fault Network – A Stockpile of Instability

For brevity, the systems of boundary zones and nodes
are called here fault networks. They range from the Cir-
cum Pacific seismic belt, with the giant triple junctions for
the nodes, to interfaces between the grains of rocks, with
the corners of grains for the nodes. Their great diversity
notwithstanding, fault networks play a similar role in the
lithosphere dynamics. Specifically, while tectonic energy is
stored in the whole volume of the lithosphere and well be-
neath, the energy release is to a large extent controlled by
the processes in relatively thin fault networks. This con-
trast is due to the following.

First, the strength of a fault network is smaller than the
strength of blocks it separates: fault networks are weak-
ened by denser fragmentation and higher permeability to
fluids. For that reason, tectonic deformations are concen-
trated in fault networks, whereas blocks move essentially
as a whole, with a relatively smaller rate of internal defor-
mations. In other words, in the time scale directly relevant
to earthquake prediction (hundreds of years or less) the
major part of the lithosphere dynamics is realized through
deformation of fault networks and relative movement of
blocks.

Second, the strength of a fault network is not only
smaller, but also highly unstable, sensitive to many pro-
cesses there. There are two different kinds of such insta-
bility. The “physical” one is originated at the micro level
by a multitude of physical and chemical mechanisms re-
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viewed in the next section. “Geometric” instability is orig-
inated at a macro level controlled by the geometry of the
fault network (Sect. “Geometric Instability”). These insta-
bilities largely control dynamics of seismicity, the occur-
rence of strong earthquakes included.

“Physical” Instability [23,29]

As in any solid body, deformations and fracturing in the
lithosphere are controlled by the relation of the strength
field and stress field. The strength is in turn controlled
by a great multitude of interdependent mechanisms con-
centrated in the fault network. We describe, for illustra-
tion, several such mechanisms starting with the impact of
fluids.

Rehbinder Effect, or Stress Corrosion [14,85]

Mechanism Many solid substances lose their strength
when they come in contact with certain surface-active liq-
uids. The liquid diminishes the surface tension � and con-
sequently the strength, which is proportional to p� by
the Griffiths criterion. When the strength drops, cracks
may emerge under small stress. Then liquid penetrates the
cracks and they grow, with drops of liquid propelling for-

Geo-complexity and Earthquake Prediction, Figure 5
Instability caused by stress corrosion. The geometry of weakened areas depends on the type of singularity and the place where the
chemically active fluid comes in. After [14]

ward, until they dissipate. This greatly reduces the stress
required to generate the fracturing. Stress corrosion was
first discovered for metals and ceramics. Then such combi-
nations of solid substances and surface-active liquids were
recognized among the common ingredients of the litho-
sphere, e. g. basalt and sulphur solutions. When theymeet,
the basalt is permeated by a grid of cracks and the efficient
strength may instantly drop by a factor of 10 or more due
to this mechanism alone.

Geometry of Weakened Areas Orientation of such cracks
at each point is normal to themain tensile stress. The stress
field in the lithosphere may be very diverse. However, the
shape of weakened areas where the cracks concentrate may
be of only a few types, determined by the theory of sin-
gularities. Some examples are shown in Fig. 5, where thin
lines show the trajectories of cracks; each heavy line is
a separatrix, dividing the areas with different patterns of
trajectories.

If a liquid infiltrates from a place shown in Fig. 5 by
arrows, the cracks concentrate in the shaded area, and its
strength plummets. A slight displacement of the source
across the separatrix may strongly change the geometry of
such fatigue; it may be diverted to quite a different place
and take quite a different shape, although not an arbitrary
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one. Furthermore evolution of the stress field may change
the type of a singularity, make it disappear or create a new
one, and the geometry of fatigue will follow suit.

Stress Corrosion is Highly Sensitive to Geochemistry of Flu-
ids For example, gabbro and dolerite are affected only in
the presence of iron oxides; Kamchatka ultrabasic rocks
are affected by the andesite lava liquids only in the pres-
ence of copper oxide, etc. Migration of fluids would cause
observable variations of electromagnetic and geochemical
fields.

Summing Up Stress corrosion brings into lithosphere
a strong and specific instability, which may explain many
observed premonitory seismicity patterns. However the
basic configurations of fatigue, as shown in Fig. 5 might
be realizable only in not-too-large areas. This limitation
stems from the dissipation of fluids and/or from the inho-
mogeneity of stress field.

Other Mechanisms Boundary zones feature several
other mechanisms, potentially as important and certainly
as complicated. A few more examples follow.

Mechanical Lubrication by fluids migrating through
a boundary zone [7]. The ensuing instability will be en-
hanced by fingers of fluids springing out at the front of mi-
gration [6].

Dissolution of Rocks Its impact is magnified by the Rikke
effect – an increase of solubility of rocks with pressure.
This effect leads to a mass transfer. Solid material is dis-
solved under high stress and carried out in solution along
the stress gradient to areas of lower stress, where it precip-
itates. The Rikke effect might be easily triggered in a crys-
talline massif at the corners of rock grains, where stress is
likely to concentrate.

Petrochemical Transitions Some of them tie up or release
fluids, as in the formation or decomposition of serpen-
tines. Other transitions cause a rapid drop of density, such
as in the transformation of calcite into aragonite. (This
would create a vacuum and unlock the fault; the vacuum
will be closed at once by hydrostatic pressure, but a rup-
ture may be triggered.).

Instability is created also by sensitivity of dynamic fric-
tion to local physical environment [50], mechanical pro-
cesses, such as multiple fracturing, buckling, viscous flow,
and numerous other mechanisms [49,70].

Most of the above mechanisms are sensitive to varia-
tions of pressure and temperature.

Geometric Instability [16]

The geometry of fault networks might be, and often is,
incompatible with kinematics of tectonic movements, in-
cluding earthquakes. This leads to stress accumulation, de-
formation, fracturing, and the change of fault geometry,
jointly destabilizing the fault network. Two integral mea-
sures of this instability, both concentrated in the nodes, are
geometric and kinematic incompatibility [16].

Each measure estimates the integrated effect of tec-
tonic movements in a wide range of time scales, from seis-
micity to geodetic movements to neotectonics.

Geometric Incompatibility The intersection of two
strike-slip faults separating moving blocks. Figure 6 is
a simple example of geometric incompatibility. If the
movements indicated by arrows in Fig. 6a could occur, the
corners A and C would penetrate each other and an in-
tersection point would split into a parallelogram (Fig. 6c).
In the general case of a finite number of intersecting faults
their intersection point would split into a polygon. Such
splitting is not possible in reality; the collision at the cor-
ners leads to the accumulation of stress and deformations
near the intersection followed by fracturing and changes
of fault geometry. The divergence of the corners will be re-
alized by normal faulting.

The expansion of that unrealizable polygon with time,
S(t) D Gt2/2, measures the intensity of this process. Here,
S is the area of the polygon, determined by the slip rates on
intersecting faults; t is the elapsed time from the collision,
and G is the measure of geometric incompatibility.

Geo-complexity and Earthquake Prediction, Figure 6
Geometric incompatibility near a single intersection of faults. a,
b initial position of the blocks; c, d extrapolation of the blocks’
movement; a, c the locked node: movement is physically unreal-
izable without fracturing or a change in the fault geometry; b, d
the unlocked node. After [16]
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Such incompatibility of structure and kinematics was
first described in [55] for a triple junction. The study es-
tablished a condition under which a single junction can
retain its geometry as the plates move, so that the stress
will not accumulate. It was suggested in [39,40] that the
general case, when that condition is not satisfied, the en-
suing fracturing would not dissolve the stress accumula-
tion, but only redistribute it among newly formed corners.
This triggers further similar fracturing with the result that
a hierarchy of progressively smaller and smaller faults is
formed about an initial intersection. This is a node, recog-
nizable by the dense mosaic structure, with probably self-
similar fractal geometry [39].

A real fault network contains many interacting nodes.
Incompatibility G is additive, and can be estimated for
a network as a whole. An analogue of the Stokes theorem
connects the total value of G within a territory with obser-
vations on its boundary. This removes the nearly impos-
sible task – to take into account complex internal struc-
ture of the nodes. One can instead surround the system
of nodes by a contour crossing the less complicated ar-
eas. Then the geometric incompatibility can be realisti-
cally evaluated from themovements of the fewer faults that
cross the contour.

Geometric incompatibility in different nodes is inter-
dependent, because they are connected through the move-
ments of blocks-and-faults system. A strong earthquake in
a node would redistribute values G in other nodes thus af-
fecting the occurrence of earthquakes there. Observations
indicating the interaction of nodes have been described
by [73,74]. These studies demonstrate phenomenon of
long-range aftershocks: a rise of seismic activity in the
area, where the next strong earthquake is going to occur
within about 10 years.

So far, the theory of geometric incompatibility has
been developed for the two-dimensional case, with rigid
blocks and horizontal movements.

Kinematic Incompatibility Relative movements on the
faults would be in equilibrium with the absolute move-
ments of blocks separated by these faults (one could be
realized through the other) under the well known Saint-
Venant condition of kinematic compatibility [8,56,57].
In the simplest case, shown in Fig. 6, this condition is
K D

P
vi D 0, where vi are slip rates on the faults meet-

ing at the intersection (thin arrows in Fig. 6). The value of
K is the measure of the kinematic incompatibility, caus-
ing accumulation of stress and deformation in the blocks.
A simple illustration of that phenomenon is themovement
of a rectangular block between two pairs of parallel faults.
The movement of the block as a whole has to be com-

pensated for by relative movements on all the faults sur-
rounding it: if, for example, the movement takes place on
only one fault, the stress will accumulate at other faults and
within the block itself thus creating kinematic incompati-
bility.

Like geometric incompatibility the values of K are also
additive: one may sum up values at different parts of the
network. And an analogue of the Stokes theorem links the
value of K for a region with observations on its boundary.

Generalization: Complexity and Extreme Events

Summing up, dynamics of the lithosphere is controlled by
a wide variety ofmutually dependentmechanisms concen-
trated predominantly within fault networks and interact-
ing across and along the hierarchy. Each mechanism cre-
ates strong instability of the strength-stress field, particu-
larly of the strength. Except for very special circumstances,
none of these mechanisms alone prevails in the sense that
the others can be neglected.

Even the primary element of the lithosphere, a grain
of rock, may act simultaneously as a material point, a vis-
coelastic body, an aggregate of crystals, a source or ab-
sorber of energy, fluids, volume, with its body and surface
involved in different processes.

Assembling the set of governing equations is unrealis-
tic and may be misleading as well: A well-known maxim
in nonlinear dynamics tells that one cannot understand
chaotic system by breaking it apart [12]. One may rather
hope for a generalized theory (or at least a model), which
directly represents the gross integrated behavior of the
lithosphere. That brings us to the concept that the mecha-
nisms destabilizing the strength of fault networks altogether
turn the lithosphere into a nonlinear hierarchical dissipa-
tive system, with strong earthquakes among the extreme
events. At the emergence of that concept the lithosphere
was called a chaotic system [29,66,87]; the more general
term is complex system [20,24,31,53,78,83].

General Scheme of Prediction

Typically for a complex system, the solid Earth exhibits
a permanent background activity, a mixture of interacting
processes providing the raw data for earthquake predic-
tion. Predictions considered here are based on detecting
premonitory patterns of that activity (Sect. “Definition”).

Pattern Recognition Approach

Algorithms described here consider prediction as the pat-
tern recognition problem: Given the dynamics of relevant
fields in a certain area prior to some time t, to predict
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whether a strong earthquake will or will not occur within
that area during the subsequent time interval (t, t C�).
Some algorithms also reduce the area where it will occur.

In terms of pattern recognition, the object of recogni-
tion is the time t. The problem is to recognize whether it
belongs or not to the time interval � preceding a strong
earthquake. That interval is often called the TIP (an
acronym for the time of increased probability of a strong
earthquake). Such prediction is aimed not at the whole
dynamics of seismicity but only at the rare extraordinary
phenomena, strong earthquakes.

Pattern recognition of rare events proves to be very effi-
cient in that approach to prediction. Thismethodology has
been developed by the school of I. Gelfand for the study of
rare phenomena of complex origin [9,19,34,71].

Data Analysis

Prediction algorithms are designed by analysis of the
learning material – a sample of past critical events and
the time series hypothetically containing premonitory pat-
terns. Analysis comprises four following steps:

1. Detecting premonitory patterns. Each time series con-
sidered is robustly described by the functionals Fk(t),
k D 1, 2, . . . , capturing hypothetical patterns (Fig. 7).
Hypotheses on what these patterns may be are pro-
vided by universal modeling of complex systems
(Sect. “Fourth Paradigm: Dual Nature of Premoni-
tory Phenomena”), modeling of Earth-specific pro-
cesses, exploratory data analysis, and practical expe-
rience, even if it is intuitive. Pattern recognition of
rare events is an efficient common framework for for-
mulating and testing such hypotheses, their diversity
notwithstanding.
With a few exceptions the functionals are defined in
sliding time windows; the value of a functional is at-
tributed to the end of the window. In the algorithms de-
scribed here the time series were earthquake sequences.

2. Discretization. Emergence of a premonitory pattern is
defined by the condition Fk(t) > Ck . The threshold Ck
is chosen is such a way that a premonitory pattern
emerges on one side of the threshold more frequently
then on another side. That threshold is usually defined
as a certain percentile of the functional Fk. In such ro-
bust representation of the data pattern recognition is
akin to exploratory data analysis developed in [86].

3. Formulating an algorithm. A prediction algorithm will
trigger an alarm when a certain combination of pre-
monitory patterns emerges. This combination is de-
termined by further application of pattern recognition
procedures [36,71].

Geo-complexity and Earthquake Prediction, Figure 7
General scheme of prediction. After [29]

4. Estimating reliability of an algorithm. This is necessary,
since an algorithm inevitably includes many adjustable
elements, from selecting the data used for prediction
and definition of prediction targets, to the values of nu-
merical parameters. In lieu of the closed theory a priori
determining all these elements they have to be adjusted
retrospectively, by predicting the past extreme events.
That creates the danger of self-deceptive data-fitting: If
you torture the data long enough, it will confess to any-
thing. Validation of the algorithms requires three con-
secutive tests.
� Sensitivity analysis: varying adjustable elements of

an algorithm.
� Out of sample analysis: applying an algorithm to past

data that has not been used in the algorithm’s devel-
opment.

� Predicting in advance – the only decisive test of
a prediction algorithm.

Such tests take a lion’s share of data analysis [17,19,36,93].
A prediction algorithm makes sense only if its perfor-
mance is (i) sufficiently better than a random guess, and
(ii) not too sensitive to variation of adjustable elements.
Error diagrams described in the next section showwhether
these conditions are satisfied.

Error Diagram

Definition An error diagram shows three major charac-
teristics of a prediction’s accuracy. Consider an algorithm
applied to a certain territory during the time period T.
During the test N strong earthquakes have occurred there
and Nm of them have been missed by alarms. Altogether,
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Geo-complexity and Earthquake Prediction, Figure 8
Scheme of an error diagram. Each point shows the performance of a prediction method: the rate of failures to predict, n, the relative
duration of alarms,�, and the rate of false alarms, f . Different points correspond to different algorithms. The diagonal in the left plot
corresponds to the random guess. Point A corresponds to the trivial optimistic strategy, when an alarm is never declared; point B
marks the trivial pessimistic strategy, when an alarm takes place all the time; other points correspond to non-trivial predictions. Best
combinations (n, �) lie on the envelope of these points � . After [63]

A alarms have been declared and Af of them happened to
be false. The total duration of alarms is D.

Performance of an algorithm is characterized by three di-
mensionless parameters: the relative duration of alarms,
� D D/T; the rate of failures to predict, n D Nm/N ; and
the rate of false alarms, f D A f /A. These three parameters
are necessary in any test of a prediction algorithm regard-
less of a particular methodology. They are juxtaposed on
the error diagrams schematically illustrated in Fig. 8. Also
called Molchan diagrams, they are used for validation and
optimization of prediction algorithms and for joint opti-
mization of prediction and preparedness [59,60,61,62,63].
In many applications parameter f is not yet considered. In
early applications they are called ROC diagrams for rela-
tive operating characteristics (e. g., [54]).

Four Paradigms

Central for determining premonitory patterns is what we
know about them a priori. In other words – what are a pri-
ori constraints on the functionals Fk(t) that would capture
these patterns (Sect. “Data Analysis”). These constraints
are given by the four paradigms described in this section.
They have been first found in the quest for premonitory
seismicity patterns in the observed and modeled seismic-
ity. There are compelling reasons to apply them also in
a wide variety of prediction problems.

Prehistory. New fundamental understanding of the
earthquake prediction problem was formed during the last
50 or so years, triggering entirely new lines of research. In

hindsight this understanding stems from the following un-
related developments in the early sixties.

� F. Press initiated the installation of the state-of-the-
art World-Wide Standardized Seismographic Network
(WWSSN) later on succeeded by the Global Seismo-
graphic Network (GSN). Thus a uniform data base be-
gan to accumulate, augmented by expanding satellite
observations.

� E. Lorenz discovered deterministic chaos in an ordi-
nary natural process, thermal convection in the at-
mosphere [51]. This triggered recognition of deter-
ministic chaos in a multitude of natural and socio-
economic processes; however, the turn of seismicity
and geodynamics in general came about 30 years later
[4,29,66,87]. The phenomenon of deterministic chaos
was eventually generalized by less rigorously defined
and more widely applicable concept of complexity [20,
24,25].

� I. Gelfand and J. Tukey, working independently,
created a new culture of exploratory data analysis
that allows coping with the complexity of a process
(e. g., [19,86]).

� R. Burridge and L. Knopoff [11] demonstrated that
a simple system of interacting elements may repro-
duce a realistically complex seismicity, fitting many ba-
sic heuristic constraints. The models of interacting ele-
ments developed in statistical physics extended to seis-
mology.

� L. Malinovskaya found a premonitory seismicity pat-
tern reflecting the rise of seismic activity [33]. This is
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the first reported earthquake precursor formally de-
fined and featuring long-range correlations and world-
wide similarity.

With broader authorship:

� Plate tectonics established the connection between seis-
micity and large-scale dynamics of the lithosphere [41].

� Research in experimental mineralogy and rocks me-
chanics revealed a multitude of mechanisms that may
destabilize the strength in the fault zones [70].

First Paradigm: Basic Types of Premonitory Patterns

The approach of a strong earthquake is indicated by the fol-
lowing premonitory changes in the basic characteristics of
seismicity:

� Rising: Seismic activity, earthquakes clustering in
space-time, earthquake correlation range, and irregu-
larity of earthquake sequences. Rise of activity some-
times alternates with seismic quiescence.

� Transforming: Magnitude distribution (the Guten-
berg–Richter relation). Its right end (at larger magni-
tudes) bends upward, and left end bends downward.

� Reversing: territorial distribution of seismicity.
� Patterns of two more kinds yet less explored: Rising re-

sponse to excitation and decreasing dimensionality of
the process considered (i. e. rising correlation between
its components).

These patterns resemble asymptotic behavior of a thermo-
dynamical system near the critical point in phase tran-
sition. Some patterns have been found first in obser-
vations and then in models; other patterns have been
found in the opposite order. More specifics are given
in [15,17,30,31,35,36,67,79,80,83,84,93].

Patterns capturing rise of intensity and clustering, have
been validated by statistically significant predictions of
real earthquakes [43,65]; other patterns undergo different
stages of testing.

Second Paradigm: Long-Range Correlations

The generation of an earthquake is not localized about its
future source. A flow of earthquakes is generated by a fault
network, rather than each earthquake – by a segment of
a single fault. Accordingly, the signals of an approaching
earthquake come not from a narrow vicinity of the source
but from a much wider area.

What is the size of such areas? Let M and L(M) be the
earthquake magnitude and the characteristic length of its
source, respectively. In the intermediate-term prediction

(on a time scale of years) that size may reach 10L(M); it
might be reduced down to 3L or even to L in a second ap-
proximation [43]. On a time scale of about 10 years that
size reaches about 100L. For example, according to [71],
the Parkfield (California) earthquake with M about 6 and
L � 10 km “. . . is not likely to occur until activity picks up
in the Great Basin or the Gulf of California”, about 800 km
away.

Historical perspective. An early estimate of the area
where premonitory patterns are formed was obtained
in [33] for a premonitory rise of seismic activity. C. Rich-
ter, who was sceptical about the feasibility of earthquake
prediction, made an exception to that pattern, specifically
because it was defined in large areas. He wrote [75]: “. . .
It is important that (the authors) confirm the necessity of
considering a very extensive region including the center of
the approaching event. It is very rarely true that the ma-
jor event is preceded by increasing activity in its immediate
vicinity.”

However, such spreading of premonitory patterns has
been often regarded as counterintuitive in earthquake pre-
diction research on the grounds that earthquakes can’t
trigger each other at such distances. The answer is that
earthquakes forming such patterns do not trigger each
other but reflect an underlying large-scale dynamics of
the lithosphere. Among the indisputable manifestations
of that correlation are the following phenomena: migra-
tion of earthquakes along fault zones [47,52,58,90]; al-
ternate rise of seismicity in distant areas [71] and even
in distant tectonic plates [76]. Global correlations have
been found also between major earthquakes and other
geophysical phenomena, such as Chandler wobble, vari-
ations of magnetic field, and the velocity of Earth’s ro-
tation [34,72]. These correlations may be explained by
several mechanisms not mutually exclusive. Such mech-
anisms range from micro-fluctuations of large scale tec-
tonic movements to impact of migrating fluids (e. g., [1,5,
7,10,69,71,82,84,89]).

Third Paradigm: Similarity

Premonitory phenomena are similar (identical after nor-
malization) in the extremely diverse environments and in
a broad energy range (e. g., [1,33,36]). The similarity is not
unlimited however and regional variations of premonitory
phenomena do emerge.

Normalized prediction algorithms retain their predic-
tion power in active regions and platforms, with the mag-
nitude of target earthquakes ranging from 8.5 to 4.5. Fur-
thermore, similarity extends to induced seismicity, and to
multiple fracturing in engineering constructions and lab-
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Geo-complexity and Earthquake Prediction, Figure 9
Synthetic earthquake sequence consecutively zoomed. Shaded areas mark zoomed intervals. The model shows the rich variety of
behavior on different timescales. Note that the ratio of timescales for the top and bottom panels is 102. After [17]

oratory samples (e. g., [3,35,43]). Ultimately, a single but
explicit demonstration of similarity was obtained for star-
quakes – ruptures of the crust of neutron star [45], where
the conditions are extremely different than in the Earth.
Altogether the corresponding elastic energy release ranges
from ergs to 1025 ergs (even to 1046 ergs if the starquake is
counted in).

However, the performance of prediction algorithms
does vary from region to region (see [21,35,63]). It is not
yet clear whether this is due to imperfect normalization, or
to limitations on similarity itself.

Fourth Paradigm:
Dual Nature of Premonitory Phenomena

Some premonitory patterns are “universal”, common for hi-
erarchical complex systems of different origin; other are spe-
cific to geometry of fault networks or to a certain physical
mechanism controlling the strength and stress fields in the
lithosphere.

Universal patterns. These are most of the patterns so
far known. They can be reproduced on models not spe-
cific to the Earth only, e. g. models of a statistical physics
type (direct or inverse cascade, colliding cascades, percola-
tion, dynamical clustering), models of critical phenomena
in fluid dynamics, as well as Earth-specific models them-
selves.

Complete analytical definition of premonitory pat-
terns was obtained recently on the branching diffusion
model [18]. Definition includes only three control param-
eters, thus strongly reducing uncertainty in data analysis
(Sect. “Data Analysis”).

Reviews of such models can be found in [15,17,36,66,
83,89,93]. Discussion of particular patterns is given also
in [25,42,67,68,88,92].

An example of an earthquake sequence generated by
a universal model is shown in Fig. 9 [17]. The modeled
seismicity exhibits major features of real seismicity: seis-
mic cycle, switching of seismic regime, the Gutenberg–
Richter relation, foreshocks and aftershocks, long-range
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correlation, and, finally, the premonitory seismicity pat-
terns.

Earth-specific patterns are not yet incorporated in pre-
diction algorithms. We discuss here the patterns reflect-
ing the state of the nodes – structures where the strong
earthquakes are nucleated (see Sect. “Structure”). Quanti-
tative characteristics of that state are geometric incompat-
ibility G (Sect. “Geometric Instability”). It shows whether
the nodes are locked up or unlocked and quantifies their
tendency to fracture and change of the faults geometry.
Change ofGmight create or dissolve such feature as asper-
ities, relaxation barriers, weak links, and replacement of
seismicity by creep or “silent” earthquakes [16]. These fea-
tures would migrate from node to node with velocity typi-
cal of seismicity migration: tens to hundreds km/year [90].
All this makes monitoring of G highly relevant to detect-
ing premonitory patterns. A simple pattern of that kind
is seismic quiescence around the soon-to-break nodes
(e. g., [44,58,77]). A simple highly promising possibility
is considering separately premonitory phenomena inside
and outside of nodes (e. g., [77]).

Earthquake Prediction
and Earthquake Preparedness

Given the limited accuracy of predictions, how do we use
them for damage reduction? The key to this is to esca-
late or de-escalate preparedness depending on the follow-
ing: content of the current alarm (what and where is pre-
dicted), probability of a false alarm, and cost/benefit ra-
tio of disaster preparedness measures. Prediction might be
useful if its accuracy is known, even if it is not high. Such is
the standard practice in preparedness for all disasters, war
included.

Diversity of Damage

Earthquakes hurt population, economy, and environ-
ment in very different ways: destruction of buildings, life-
lines, etc; triggering fires; releasing of toxic, radioactive
and genetically active materials; triggering other natural
disasters, such as floods, avalanches, landslides, tsuna-
mis, etc.

Equally dangerous are the socio-economic and polit-
ical consequences of earthquakes: disruption of vital ser-
vices (supply, medical, financial, law enforcement, etc.),
epidemics, drop of production, slowdown of economy,
unemployment, disruptive anxiety of population, profi-
teering and crime. The socio-economic consequences may
be inflicted also by the undue release of predictions.

Different kinds of damage are developing at different
time and space scales, ranging from immediate damage to

chain reaction, lasting tens of years and spreading region-
ally if not worldwide.

Diversity of Disaster Preparedness Measures Such di-
versity of damage requires a hierarchy of disaster pre-
paredness measures, from building code and insurance
to mobilization of post disaster services to red alert. It
takes different times, from decades to seconds to under-
take different measures; having different cost they can be
maintained for different time periods; and they have to be
spread over different territories, from selected sites to large
regions. No single stage can replace another one for dam-
age reduction and no single measure is sufficient alone.

On the other handmany important measures are inex-
pensive and do not require high accuracy of prediction. An
example is the Northridge, California, earthquake, 1994,
which caused economic damage exceeding $30 billion. Its
prediction, published well in advance [48], was not pre-
cise – the alarm covered a time period of 18 months and
an area 340 km in diameter with dramatically uneven vul-
nerability. However, low-cost actions, undertaken in re-
sponse to this prediction (e. g. an out of turn safety inspec-
tion) would be well justified if even just a few percent of
the damage were prevented.

Joint Optimization of Prediction and Preparedness

The choice of preparedness measures is by no means
unique. Different measuresmay supersede or mutually ex-
clude one another, leaving the decision-maker a certain
freedom of choice [38]. The definition of the prediction al-
gorithm is not unique either. The designer of the algorithm
has certain freedom to choose the tradeoff between differ-
ent characteristics of its accuracy (rate of failures to pre-
dict, duration of alarms, and rate of failures to predict) by
varying adjustable elements of the algorithm (Sect. “Gen-
eral Scheme of Prediction”). That leads to the problem,
typical for decision-making with incomplete information:
to optimize jointly prediction and preparedness. Figure 10
shows the scheme of such optimization. This figure shows
also advantages of a new formulation of prediction: paral-
lel applications of several versions of an algorithm.

Further discussion can be found in [27,28,63,64].

Further Goals

Particularly encouraging for further earthquake prediction
research is the wealth of relevant data, models, and theo-
ries that are available and yet untapped (the want amidst
plenty pattern, Conference and School on Predictability
of Natural Disasters for our Planet in Danger. A System
View: Theory, Models, Data Analysis, 25 June – 6 July
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Geo-complexity and Earthquake Prediction, Figure 10
Joint optimization of prediction and preparedness based on the
theory of optimal control. Dots show points on the error dia-
gram. � is their envelope. Thin contours (�) show loss curves
with constant value of a prevented loss. Optimal strategy is the
tangent point of contours� and � . After [63]

2007, Trieste, ICTP, http://cdsagenda5.ictp.it/full_display.
php?ida=a06204). Likely within reach is a new generation
of prediction algorithms, about five- to ten-fold more ac-
curate than existing ones.

In the general scheme of things, this is a part of wider
developments: Emergence of the newly integrated dynam-
ics of the solid Earth, extending from a fundamental con-
cept succeeding plate tectonics to predictive understand-
ing and (with luck) control of geological and geotechnical
disasters. And predictive understanding of extreme events
(critical phenomena) in the complex systems formed, sep-
arately and jointly, by nature and society.
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Glossary

Target system The system under investigation. Usually
the target system is a part of degrees of freedom in
a nanostructure whose state is described quantum me-
chanically.

Environment The system which interacts with the target
system and influences its state. The environment may
be the parts of degrees of freedom in the nanostructure
other than the target, the systems which surround the
nanostructure and interact with the target system, or
an external electric or magnetic field which is exerted
on the target system.

Hamiltonian The quantum operator that describes the
energy of the system and acts on the Hilbert space for
the quantum states. It is usually denoted by Ĥ with
subscript indicating the described system.

Eigen energy and eigen wave function For time-inde-
pendent (stationary) Hamiltonian the system can only
take specific values of energy, called the eigen energies.
Corresponding every eigen energy there is a state of the
system described by the eigen wave function. All eigen
wave functions are normalized and orthogonal to each
other, forming a complete linear space.

Hilbert space A complete linear space spanned by all
eigen wave functions of the time-independent Hamil-
tonian. Any states of the related system can be ex-
pressed as a vector in this linear space.

Parameter space The space spanned by parameters
which specify the interactions of the environment
on the target system. In a dynamical process in which
the geometric phase is investigated, the parameters are
assumed to be periodically varying in time. The period
is denoted as T.

Evolution of wave functions During a period of varia-
tion of parameters, the Hamiltonian transverses a cir-
cle and returns to its initial situation at the end of the
period. In this process the wave function of the target
system also undergoes an evolution with the time.

Dynamical phase Even though the Hamiltonian is time
independent, the wave function of the target system
still has a time dependent phase factor denoted as
ei�d(t). In a period T of a periodic dynamical pro-
cess the phase �d acquired by the target wave func-
tion, which is calculated under the assumption that the
Hamiltonian is the averaged one and stationary in this
period, is called the dynamical phase.

Geometric phase If the Hamiltonian is periodically time-
dependent, the phase � acquired by the target wave
function in a period of the evolution is different from
the dynamical phase �d. The difference �g D � � �d is
called the geometric phase.

Adiabatic approximation If the evolution of the Hamil-
tonian is slow enough so that there is no transition be-
tween different eigen wave functions of the target sys-
tem during the evolution, this evolution is regarded as
adiabatic. The approximation based on the adiabatic
assumption of the process is called adiabatic approxi-
mation.

Berry phase The geometric phase calculated in the adia-
batic approximation is called the Berry phase.

Quantum interference In the case where the states of
a nanostructure are quantum mechanically described
by wave functions, the amplitude of a resultant wave
function can be constructively enhanced when its
components have the same phase, or can be destruc-
tively weakened when its components have opposite
phases. Generically the resultant wave function de-
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pends not only on the amplitudes of its components,
but also depends on the phases of the components.
This phenomenon is called quantum interference.

Dephasing The processes or mechanisms which cause
spatial or temporal uncertainty of phase of the target
wave functions.

Definition of the Subject

Owing to the rapid growing of the nanotechnology, now
it is possible to design and fabricate different types of
nanostructures which have nanometer length scales in
one, two, or three dimensions. Examples of nanostruc-
tures are: quantum wells [12], quantum wires [33], and
quantum dots [15] in which the motion of charge car-
riers is restricted within nanometer length scale in one,
two, and three dimensions, respectively. Usually quantum
wells, wires, and dots aremade of semiconductor materials
and based on the related designing and fabricating tech-
nology. Other examples are those of carbon-based nano-
materials, such as graphene [26], carbon nanotubes [17],
and fullerenes C60 or C70 [10], in which the motion of
electrons is also restricted within nanometer scale in one,
two, and three dimensions, respectively. The electric, op-
tical, and magnetic properties of these nanostructures are
mainly depending on the states of electrons. So here we
define the electron system in nanostructures as the tar-
get system under our investigation. Other degrees of free-
dom in the nanostructure, such as vibrations of nuclei and
other collective excitations, and other materials attaching
or near the nanostructure, can be regarded as the envi-
ronment. In the nanometer scale of some dimensions of
the nanostructure the quantum coherence is usually main-
tained and the effect of quantum interference becomes im-
portant. In a dynamical process of the environment, the
quantum interference of the target system depends not
only on the dynamical phase, but also on the geometric
phase. Thus, the investigation of the geometric phase and
its effect on nanostructures is of particular interest. Such
investigation can reveal the physical origins of peculiar
properties of nanostructures observed in experiments and
suggest possible methods in designing devices with specific
properties.

Introduction

Nanostructures

Recently there has been extensive interest in designing,
fabricating, and investigating various types of nanostruc-
tures [29]. Owing to the advances of technology, people
are now able to arrange atoms into structures that are

only a few nanometers in size. A nanometer is about four
atoms in diameter. The goal in doing this is in specific
self-assembly of nanostructures, which can produce large
amounts of artificial materials with new properties. In or-
der to connect nanostructures to the more familiar world
of microstructures and microelectronics, one must build
up larger assemblies by guided self-assembly.

A common and striking feature of nanostructures is
in the length scale of nanometers in one or more dimen-
sions. If an electron is confined within this length scale
in one direction, its momentum in this direction will be
well quantized due to the boundary condition and, cor-
respondingly, the energy levels characterizing the kinetic
motion in this direction are separated so that at low tem-
peratures only one level plays the central role in determin-
ing the transport or other properties of the system. This is
so-called quantum size effect in nanostructures. An exam-
ple is the nanowire or carbon nanotube where the motions
of electrons in the transverse directions are quantized but
the motion in the longitudinal direction is confined and
quantized. As a consequence there is only one or few ef-
fective energy levels in the transverse directions which cor-
respond one or few traveling channels in the longitudinal
direction. If there is only one channel, the system can be
viewed as a true one-dimensional one in the longitudinal
direction. The quantum size effect is an important mani-
festation of the quantum effects in nanostructures, imply-
ing the central role of the quantum principles.

Besides the quantum size effect, abundant and charm-
ing properties of various nanostructures arise from their
specific crystal structures, adjusted shapes, and designed
arrangement of self-assembly. Such particular structures
can provide complicated networks of interfering paths and
produce specific band structures which may be useful for
applications. A simplest example is the Aharonov–Bohm
(AB) rings made of quantum wires which can directly ex-
hibit the quantum interference effect from the AB oscil-
lations of the conductance through the rings as a func-
tion of the magnetic flux through the ring [34]. This de-
vice makes use of the magnetic flux as a method for con-
trolling the quantum phase of the electron wave functions.
Another example is the graphene, a single atomic layer of
the graphite where carbon atoms are arranged on a hon-
eycomb lattice. Owing to the specific lattice structure of
the graphene, the electrons show massless Dirac relativis-
tic dispersion relation [26]. As we will see below, such
a specific band structure gives rise to the Berry or geomet-
ric phase and causes exotic transport properties.

The various shapes and structures provide possible
methods of adjusting geometric phase j and, in turn, con-
trolling the transport properties in nanostructures. The



4196 G Geometric Phase and Related Phenomena in Quantum Nanosystems

physical ingredients taking part in these processes in-
clude: (i) the magnetic field or flux through some part
of nanostructures [34]; (ii) the spin-orbit coupling which
governs the spin precessions during the transport of elec-
trons [28]; (iii) the Jahn–Teller electron-lattice interac-
tion [16]; (iv) the exchange interaction between electrons
and magnetic impurities; and (v) the superconducting
pairing. Any of these ingredients can take action only in
association with special shapes of the nanostructures. For
instance, the AB oscillations can occur by varying themag-
netic flux only in a ring-shaped device.

Geometric or Berry Phase

We consider that a point (representing a car or a ship) car-
rying two vectors is traversing along a loop on the surface
of a sphere. Both vectors stay tangential to the surface at
all times and they remain as parallel as possible to the di-
rection they were pointing before each infinitesimal dis-
placement. In this special example the long vector points
“South” and the short one points “East” all the time. Af-
ter completing the loop, the vectors go back to the original
point, but they find themselves rotated with respect to the
directions they were pointing at the beginning. Note that
the vectors “rotate” despite the fact that we have been care-
ful to keep them parallel during the transport. If the loop
is smaller, the rotation angle would have been smaller. For
a loop encircling a 1/8, the rotation angle is �/2. A larger
path surrounding for example one quarter of the sphere,
would rotate the parallel-transported vectors by � . An
even larger loop, a diameter, surrounding (on both sides)
half the sphere gives a rotation angle of 2� , i. e. no rotation
at all. This rotation originates from the intrinsic curvature
of the sphere surface. This phenomenon can not appear
for the transport along a flat manifold, such as a plane or
a cylinder. So the rotation angle is related to the integral of
the curvature over the surface bounded by the loop.

In the quantum version such rotation angles corre-
spond to the Berry phases. In quantummechanics the state
of the target system, i. e., an electron in a nanostructure, is
characterized by the wave function  which has not only
the magnitude j j but also a phase factor ei� . Phase � is
equivalent to the angle in the complex plane. Several spe-
cific cases had been recognized for many years, in partic-
ular the well-studied Aharonov–Bohm effect in the ring
of quantum wire threaded with a magnetic flux. In 1984,
Berry published an influential formal systematization of
the closed-path geometric phase in quantum mechanical
problems [8]. In the following we summarize some major
points about the Berry phase or geometric phase in nanos-
tructures.

Wave functions of the target system are parameterized
vector fields in the Hilbert space. Each wave function has
a phase connected to its time evolution. The dynamical
phase is not geometrical: it depends on the energy at which
the parameterized path is followed, and on the arbitrary
choice of a “zero phase” (technically called a gauge choice)
at each point along the path. A recipe is needed to get rid
of any dynamical phases, and single out the intrinsic, geo-
metrical invariant phases. Let us consider the set of eigen
wave functions of a Hamiltonian Ĥ, depending on several
classical “external” parameters collectively denoted by q.
Changing q from one point to another in themulti-dimen-
sional parameter space, the set of eigen wave functions and
corresponding eigen energies of Ĥ change to totally new
and unrelated eigen system. In the adiabatic approxima-
tion smooth evolution of Ĥ is assumed so that one expects
that for infinitesimal change
q in the parameters, the in-
ner product between a given eigen wave function at some
point q, and the evolved eigen wave function at a follow-
ing neighboring point qC
q, should be as close to 1 as
possible with infinitesimal error of the order
q2.

We note that every stationary wave function “rotates”
as e�iEt/„, where E is the energy of the state, t is time and ¯
is Planck’s constant, because of the Schrödinger time evo-
lution. On top of this, since at each point the eigen system
is unrelated to that at a different point, nothing forbids to
multiply each eigen wave function by an additional arbi-
trary phase factor e�i�(q) (a “gauge choice”). The correct
rule for the “parallel transport”, as sketched above, per-
mits to calculate the geometrical phase, such that it ignores
completely any dynamical and gauge phase. The result de-
pends only on the geometry of the loop. In this sense, Berry
phase is said to be “gauge-invariant”.

In 1987, Aharonov and Anandan [1] extended this
calculation to the non-adiabatic case. By exactly solving
the time-dependent Hamiltonian one can obtain the to-
tal phase � acquired by the wave function in the evolution
from t D 0 to t D T . At the same time the acquired dy-
namical phase in this period can be calculated as

�d D �
1
„

Z T

0
h (t)jĤ(t)j (t)idt ; (1)

where Ĥ(t) is the time dependent Hamiltonian and j (t)i
is the investigated wave function. Then the geometric
phase acquired in this period is

�g D � � �d : (2)

In the following sections we will describe several impor-
tant phenomena related to the geometric phase in nanos-
tructures.
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Geometric Phase Induced in Different Types
of Nanostructures

In this section, we outline different groups of phenomena
related to the geometric phase in nanostructures. In fol-
lowing sections, detailed mathematical and physical illus-
trations will be given for particular examples.

As mentioned above, there are three ingredients for
the occurrence of the geometric phase in nanostructures:
(i) the target system representing the central degrees of
freedom under investigation; (ii) the environment which
makes the Hamiltonian of the target system evolve period-
ically in a parameter space; (iii) the coupling or interaction
between the target system and the environment. Accord-
ing to these, there are three major groups of the related
phenomena: (i) the target is a spin system; (ii) the target
is the orbital motion of electrons interacting with a field;
(iii) the target is the orbital motion of electrons interacting
with nuclei vibrations. We will discuss these phenomena
in the following subsections.

Spins as the Target System

A nanostructure consists of electrons and atomic nuclei.
For both of them there are two types of degrees of free-
dom: the orbital (spatial) motions and the spins. Usually
the spatial motion of electrons in outer levels of atoms is
important in determining the properties of the system. In
some cases, however, this spatial motion of electrons is re-
stricted by some factors, such as the potential barriers in
quantum dots, so that the spin degrees of freedom become
more important. In such cases the spins of the whole or
a part of the nanostructure may be regarded as the target
system. Under special environment the spin system can
exhibit phenomena related to the geometric phase.

Spinning Quantum System in an External Magnetic
Field If a spin, say, s D 1/2 is aligned to a magnetic
field, and the field is made to rotate adiabatically, so that
the spinor remains aligned to it, at the end of the loop
the spinor acquires a complex phase factor ei�g . For the
general component of spin-1/2 spinor along the magnetic
field, the Berry phase factor is precisely e�i/2�s , where �s is
the solid angle enclosed in the circuit followed by the mag-
netic field. Thus, the field rotating within a plane (thus en-
closing one half of the complete solid angle 4�), the value
of �g is � . This amounts to a “180 degrees” rotation in
the Hilbert space of wave function. Note, however, that in
the real three-dimensional space, the spin has actually ro-
tated by 360 degrees. Technically, the factor of two distin-
guishing integer and half integer s-spinors is related to the
1:1 and 2:1 representations of the three-dimensional rota-

tion group, and equivalently to the 2:1 relation of SU(2) to
SO(3) [31].

SpinningQuantumSystem in the Presence of SpinOrbit
Coupling Besides the external magnetic field, the spin
degree of freedom as a target system can also be controlled
by the spin-orbit coupling of electrons moving in a quan-
tum wire ring. In the presence of spin-orbit interaction
there is a momentum-dependent effective magnetic field
coupled to the electron spin. If the momentum traverses
a circuit in the momentum space which can be viewed
as the parameter space for the spin Hamiltonian, and if
the spin orientation keeps in the direction of the effec-
tive magnetic field, the spin state acquires a Berry phase
in its cyclic evolution. This Berry phase is just the spin-
orbit Berry phase. During a cyclic motion of the electron
along the ring, the spin of electron is precessing due to the
spin-orbit coupling. It has been shown that in this case the
Berry phase is�1/2 of the solid angle subtended by the cir-
cuit traced on a sphere by the spin orientation precessing
along the ring [4,28]. This investigation has been recently
extended to the case including both the external magnetic
field and the spin-orbit coupling in a ring [11].

Electron Motion in Magnetic Field

In this subsection we discuss the situation where the target
is the spatial motion of electrons and the environment is
an external magnetic field. In this case the orbital motion
should be important in determining the properties of the
system. So there should be some extended dimensions in
the nanostructure. The typical nanostructures possessing
extended dimensions are the quantum wells having two
extended dimensions and quantum wires having one ex-
tended dimension. In the following we separately discuss
the geometric phase in these two types of nanostructures.

Aharonov–Bohm Effect The Aharonov–Bohm effect
occurs in a ring made of quantumwire threaded by a mag-
netic flux. In this case a geometric phase is acquired by
electrons during its cyclic motion around the ring due to
differences in local values of the magnetic vector poten-
tial. As one must have guessed, however, in most cases the
Berry phase vanishes. As one might expect, usually com-
ing back after a loop to the starting point, makes noth-
ing important, and the vector quantities go back to exactly
what they used to be before the loop, indicating that the
space where those vectors are moved around is flat. So,
nonzero phases are clues pointing to nontrivial topolog-
ical properties underlying the relation between the vector
quantities and the adiabatic parameters. In the Aharonov–
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Bohm effect the flatness of the space is violated at the
point where the flux penetrates. This leads to the geometric
phase which depends on the flux. So the topological phase
of Aharonov and Bohm can be viewed as a special case of
the Berry geometric phase [8].

Quantum Hall Effect If the Aharonov–Bohm ring is
widened, the system is changed to a plane. The quan-
tum Hall effect, a striking quantum phenomenon, occurs
in two-dimensional electrons in strong magnetic field. Of
course the quantum Hall effect is a very complicated phe-
nomenon under extensive investigations. However, ow-
ing to the breaking of the flatness of space similar to the
Aharonov–Bohm effect, some methods or concept devel-
oped in the investigation of the geometric phase can be
adopted in the investigation of the quantum Hall effect.
Especially, the quantization of the Hall conductance ob-
served in experiments may be explained as a topological
invariant represented by the Chern number which is re-
lated to the Berry curvature of the space.

Orbital Motion of Electrons Interacting
with Nuclei Vibrations

With the Born–Oppenheimer separation of electronic and
vibrational motion, the Berry phase is zero on a physical
path when the electronic ground state is well separated
from the first electronic excitation. An exception is the so-
called Jahn–Teller (JT) effect where the ground state is de-
generate at some specially symmetric q-point in the pa-
rameter space. The distortion of the crystal reduces the
symmetry and corresponds to a displacement in the pa-
rameter q-space from the symmetric point. To illustrate
this idea we consider here the instructive example of the
triangular cluster (E � e JT model). The equilibrium ge-
ometry of a triangular cluster is not the equilateral trian-
gle, but a distorted isosceles geometry. In the equilateral
configuration, the electronic ground state is twofold de-
generate (E). These two electronic wave functions split for
any displacement that destroys the equilateral geometry.
Due to the symmetry, it can be seen that equivalent isosce-
les distortions where any two atoms get closer are ener-
getically equivalent. Actually, it may be verified that for
linear electron-distortion coupling the equilibrium config-
urations constitute a flat circular valley when the Born–
Oppenheimer potential energy is calculated against the
q coordinates. The two Born–Oppenheimer potential sur-
faces are degenerate at the central q D 0 high-symmetry
point. So, this “JT valley” encircles a degeneracy point
for the electronic Hamiltonian. As a consequence a Berry
phase should be present and physically relevant, as this

loop is frequently accessed by the low-energy dynamics
of the q-distortions. The electronic wave functions un-
dergoes a Berry phase change of � when the distortions
loop around the circular valley. In the adiabatic approxi-
mation we choose carefully the phase at each point in or-
der to simulate the “parallel transport”, i. e., to have pos-
itive overlap to the immediately preceding configuration.
When a loop along the JT valley is completed, the elec-
tronic state changes sign. Another loop is needed to restore
the original sign of the electron wave function.

Berry Phase: Adiabatic Approximation

In this section, we present the detailed calculation of the
Berry phase of electronic wave functions due to the elec-
tron-lattice interaction in graphene as a concrete illustra-
tion of the adiabatic approximation.

Due to the advances of material science, the graphene,
as a real two-dimensional (2D) system with only one
layer of carbon atoms, has been fabricated recently. In
spite of the simplest lattice structure, the graphene ex-
hibits striking properties which attracted much attention
of both experimentalists and theorists [2,3,6,7,19,21,22,23,
24,25,26,27,35,36]. Particularly, the Dirac dispersion rela-
tion of electrons in graphene and the Fermi level near the
Dirac point lead to specific features different from those
in usual metals and semiconductors. Its transport proper-
ties are very special. There exists a universal maximal re-
sistivity for all samples with the Fermi level near the Dirac
point, independent of their shapes and mobility. This be-
havior is difficult to be explained from quantum trans-
port theory, as such a minimal conductivity can not be
supported in 2D with limited number of tunneling chan-
nels. Moreover, it is found that the weak localization is
strongly suppressed [22]. This suppression could be at-
tributed to a dephasing effect similar to that of a random
magnetic field causing phase uncertainty. Thus, the trans-
port in graphene is more likely to be diffusive or classi-
cal-like rather than quantum. There are several theoreti-
cal studies using different methods addressing the unusual
transport properties in graphene [2,3,19,21,23,24,27,36].

In [37] we discuss one of the possible mechanisms
whichmay cause the phase uncertainty in fermion states of
graphene: the geometric phase produced by periodic rel-
ative vibrations between two sublattices. By deriving the
time-dependent fermion Hamiltonian and exactly solving
it with the Floquet scheme, one shows that in an evolu-
tion period of the vibration the geometric phases acquired
by the fermions can be expressed by the adiabatic theory
only in the momentum region where the level splitting of
fermions in the evolution path is much larger than „! with
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! being the vibration frequency. Outside this region the
adiabatic condition is not satisfied. We show that the geo-
metric phase, the fermion average energy, and the energy
uncertainty in the non-adiabatic region are essentially dif-
ferent from those in the adiabatic region. Since geometric
phases can be easily produced by the fermion-lattice inter-
action during lattice vibrations and they exhibit randomor
chaotic behavior in the non-adiabatic region, the resultant
phase uncertaintymay be a possible dephasingmechanism
in such a 2D material.

The band structure in graphene can be described by
a tight-binding Hamiltonian with one � orbital per site on
the 2D honeycomb lattice [32]:

H D
X

hnn0i

tnn0 (a�nan0 C a�n0an) ; (3)

where a�n(an) creates (annihilates) an electron at site n,
h: : : i denotes the nearest-neighbor (NN) sites, and tnn0
is the NN hopping. Here the spin indices are not explic-
itly included. On a honeycomb lattice there are two sub-
lattices, labeled as A and B, and the cells, each of which
consists of two atoms, compose a triangle lattice. On a per-
fect lattice, all the NN hopping integrals are the same,
tnn0 D t0. When there is a displacement d between two
sublattices, the lengths of three NN bonds connected to
a site of sublattice A become

l ( j) D
q
[d sin(� � ˛( j))]2 C [l0 � d cos(� � ˛( j))]2 ; (4)

where j D 1; 2; 3 labels the three NN bonds, � is the an-
gle of d related to the x-axis, l0 is the original bond length,
and ˛( j) D 0; 2�/3;�2�/3 for j D 1; 2; 3, respectively, is
the original azimuth angle of the jth bond. For a small dis-
placement, we can keep only the first-order terms of d and
obtain l ( j) � l0 � d cos(� � ˛( j)). Then the hopping inte-
grals as functions of d can be written as

t( j)(d) D t0 C d cos(� � ˛( j)) ; (5)

where  is a coefficient describing the linear dependence
of t( j)(d) on l ( j).

If one uses the following Bloch transformation for elec-
tron operator:

an D
1
p
N

X

k

e�ik�rn a(b)k ; for n 2 sublattice A(B) ;

(6)

where a(b)k is annihilation operator of electron on sub-
lattice A(B) with Bloch wavevector k, rn is the position

of site n, and N is the total number of cells, the original
Hamiltonian becomes

H0 D
X

k

t0

"

eikx l0 C 2e�ikx l0/2 cos

 p
3
2

ky l0

!#

a�kbk

C H.c. (7)

Expanding it to the first order of k around two irreducible
K points

�
0;�4�/(3

p
3l0)


in the Brillouin zone, one has

H0 D
3
2

X

k

�
t0 l0ky �̂z ˝ �̂x � t0 l0kx 1̂˝ �̂y

�
; (8)

where 1̂ and �̂z are unit and Pauli matrices acting on two
valleys, and �̂x;y are Pauli matrices on two sublattices.

At the same time, the interaction between electrons
and lattice displacement d can be described by

H1 D
X

hnn0i

(tnn0(d)� t0)(a�nan0 C a�n0an) ; (9)

where tnn0(d) is the hopping integral between sites n and
n0 under displacement d. From Eqs. (5) and (6) and keep-
ing only the terms of the first order of d, the interaction
Hamiltonian becomes

H1 D
3
2

X

k

(dx 1̂˝ �̂x C dy �̂z ˝ �̂y) : (10)

In this paper we only consider vibrations at the long wave-
length limit, i. e., the relative displacement d between two
sublattices is uniform over the whole system. In this case
the vibrations only mix fermion states of particle and hole
branches with the samemomentum k and in the same val-
ley. As we will see below, the evolutions of fermion states
with different k during the vibrations are drastically dif-
ferent if the processes are not adiabatic, although the in-
teraction terms in H1 are independent of k. The vibration
modes with finite wavelengths can mix fermion states of
two branches with different momenta. This may produce
amore complicated level structure of interacting fermions,
but, as we will see below, the main features in the non-adi-
abatic region are chaotic and may not be very sensitive to
the details of levels.

We consider the in-plane vibrations of the rela-
tive coordinates as dx D (�x /) cos(! t C ˛x ) and dy D
(�y/) cos(! t C ˛y), where �x(y)/ and ˛x(y) are ampli-
tude and initial phase of the vibration in the x(y) direction,
respectively. To be specified in this paper, we do not con-
sider other modes of vibrations which may produce simi-
lar effects.
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Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 1
E(C)
1;2 as functions of d for different values of k. Green circle shows
the evolution path in the vibrations

The Hamiltonian for electrons becomes time-depen-
dent:

H(t) D
3
2

X

k

�
(t0 l0ky �̂z C �x cos(! t C ˛x )1̂)

˝�̂x � (t0 l0kx 1̂ � �y cos(! t C ˛y)�̂z )˝ �̂y
�
: (11)

There is no mixing between two valleys. For a given valley
labeled byC or �, the Hamiltonian is

H˙(t) D
3
2

X

k

˚
t0 l0(˙ky �̂x � kx �̂y)

C�x cos(! t C ˛x )�̂x ˙ �y cos(! t C ˛y)�̂y
�
: (12)

At the adiabatic limit, the instantaneous eigen energies at
time t can be obtained by diagonalizing H˙(t):

E(˙)
m (t) D (�1)m 3

2

ˇ̌
t0 l0(˙ky C ikx )

C�x cos(! t C ˛x )C�i�y cos(! t C ˛y)
ˇ̌
; (13)

where m D 1 and m D 2 correspond to hole and parti-
cle branches, respectively. For given (kx ; ky ), these two
instantaneous eigen energies also exhibit conic depen-
dence on parameters dx and dy, as shown in Fig. 1. It
is interesting to note that the diabolical point, where
the poles of two tapers coincide, is determined by
(dx D �t0ky l0/; dy D ˙t0kx l0/), where plus and mi-
nus signs refer to two valleys. The vibrations of dx and
dy result in circular motion with an elliptic track in the

dx � dy plane. From the Berry theorem, a cyclic motion
along a close track in a 2D parameter space can cause
a Berry phase of ˙� in a wavefunction whose instan-
taneous eigen energy has a diabolical point enclosed in
this circle [8]. Since the position of the diabolic point in
the dx � dy plane is determined by (kx ; ky ), the Berry
phase acquired by the fermions with different momenta
are different: It is ˙� for the fermions whose diabolic
point (dx D �t0ky l0/; dy D ˙t0kx l0/) is enclosed in
the track, while it is zero for the states with the diabolic
point in the dx � dy parameter space outside the track.

Theoretical Treatment
Beyond Adiabatic Approximation

The above conclusion about the Berry phase, however, is
valid only in the adiabatic condition, i. e., the energy dif-
ference between two blanches in the track is always much
larger than „!. Owing to the existence of energy degen-
eracy, for any track and any finite frequency there always
exist fermion states for which the adiabatic condition can
not be satisfied. So we have to investigate the geomet-
ric phase from solutions of time-dependent Hamiltonian.
Under this Hamiltonian, the wavefunctions of electrons
can be expressed in the Floquet form [30]

 ˙(l ; k; t) D e�i
�˙(l;k)
„

tu˙(l ; k; t) ; (14)

where l is an index of electron states for given k,
and u˙(l ; k; t) is a periodic function of t with pe-
riod T D 2�/!. Performing Fourier transformation for
u˙(l ; k; t) with respect to t, one has

u˙(l ; k; t) D
X

n

 
A˙n (l ; k)
B˙n (l ; k)

!

e�in! t ; (15)

where A˙n and B˙n are components on two sublat-
tices. Substituting the Floquet wave function into the
time-dependent Schrödinger equation [H˙(t) � i„@t]
 ˙(l ; k; t) D 0, we obtain a set of linear homogeneous
equations for the components [37]

3t0 l0
2

(˙ky C ikx )B˙n C
3
4
(ei˛x�x � iei˛y�y)B˙n�1

C
3
4
(e�i˛x�x � ie�i˛y�y)B˙nC1 D (�˙ C n„!)A˙n ;

(16)

3t0 l0
2

(˙ky � ikx )A˙n C
3
4
(ei˛x �x ˙ iei˛y�y)A˙n�1

C
3
4
(e�i˛x �x ˙ ie�i˛y�y)A˙nC1 D (�˙ C n„!)B˙n :

(17)
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From the requirement of the existence of nonzero
solutions, for a given k, one can solve the discrete
quasienergies �˙(l ; k) and the corresponding Floquet
states  ˙(l ; k; t). It is noteworthy that two Floquet states
whose quasienergies differ by n„! with n being an integer
are physically equivalent states [30]. So the quasienergies
of physically different Floquet states can be reduced into
region �„!/2 � �˙ � „!/2.

In a period of evolution of Hamiltonian H˙(t), the
wavefunction  ˙(l ; k; t D T) D ei�˙(l ;k) ˙(l ; k; t D 0)
acquires a phase �˙(l ; k). It consists of two parts:

�˙(l ; k) D ˛˙(l ; k)C ˇ˙(l ; k) ; (18)

where

˛˙(l ; k) D �
Ē˙(l ; k)T
„

(19)

is the dynamical phase with

Ē˙(l ; k) D
1
T

Z T

0
dth ˙(l ; k; t)jH˙(t)j ˙(l ; k; t)i ;

(20)

and

ˇ˙(l ; k) D �˙(l ; k) � ˛˙(l ; k) (21)

is the geometrical phase [1]. Under the periodic vibra-
tions the Floquet state  ˙(l ; k; t) is stationary one which
returns to the initial state other than phase �˙(l ; k) D
��˙(l ; k) after a period of evolution. At the same time, the
energy is no longer a good quantum number and the aver-
age energy of stationary state  ˙(l ; k; t) can be calculated
as

Ē˙(l ; k) D �˙(l ; k)

C „
X

n
n!



jA˙n (l ; k)j

2 C jB˙n (l ; k)j
2
�
: (22)

From this one obtains the geometric phase

ˇ˙(l ; k) D 2�
X

n
n


jA˙n (l ; k)j

2 C jB˙n (l ; k)j
2
�
: (23)

The energy uncertainty can be specified by the standard
variance caused by the vibration


˙(l ; k) � hE2i � hEi2

D „2!2

8
<

:

X

n
n2


jA˙n (l ; k)j

2 C jB˙n (l ; k)j
2
�

�

"
X

n
n


jA˙n (l ; k)j

2 C jB˙n (l ; k)j
2
�#2

9
=

;
: (24)

From the superposition principle any time-dependent
state can be expressed as a linear combination of the Flo-
quet states. But this linear combination is usually not a sta-
tionary state, i. e., the state could not return to its initial
one with only a phase difference after a period of evolu-
tion. For such states the geometric phase cannot be de-
fined. So in this paper we only consider the geometric
phase for the Floquet states. Since for given valley and
givenmomentum there are only two unknowns having the
same phonon number n in Eqs. (1) and (17), the number
of quasienergies within range of

�
�„!/2;„!/2

�
is 2, cor-

responding to the particle and hole branches of the Dirac
fermions with labels l D 1 and l D 2, respectively.

Now we begin to investigate the properties of station-
ary states in the periodic vibrations. We are interested in:
(i) the geometric phases acquired by fermion states with
various momenta in a period of vibrations; (ii) the devi-
ation of the average energy from the Dirac dispersion re-
lation and the energy uncertainty caused by the vibration.
From (i) we can shed some light on the phase variation of
the Dirac fermions and the possible dephasingmechanism
in graphene. From (ii) we can see the essential effect of vi-
brations on the basic dispersion relation.

In Fig. 2 we plot the geometric phase acquired by
fermion states in a period of vibrations versus the fermion
momentum. There is a �/2 phase difference between the
vibrations in the x and y directions and their amplitudes
are the same, i. e., �x D �y D �0. So this is a circular vi-
bration of the relative coordinates of two sublattices as
shown in Fig. 1. According to the Berry theorem, the adi-
abatic Berry phase is ˙� if jkj < (�0)/(t0 l0) and is zero if
jkj > (�0)/(t0 l0). We note that from the calculations be-
yond the adiabatic approximation the obtained geomet-
ric phase is still roughly equal to the Berry phase: for
jkj 
 (�0)/(t0 l0) it is nearly˙� and for jkj 	 (�0)/(t0 l0)
it is almost zero. However, now there appears a “chaotic”
region around the border jkj D (�0)/(t0 l0) where the geo-
metric phase randomly oscillates in changing the momen-
tum. This is a direct consequence of the non-adiabaticity,
as in this region the adiabatic condition, that the energy
difference between two branches is much larger than „!
in the evolution path, is not satisfied. As can be seen from
the inset of Fig. 2c, the width of this chaotic region is in-
creased by increasing the frequency. The chaotic nature of
the geometric phase reflects the phase uncertainty of the
single-fermion states in this momentum region during vi-
brations. Such vibrations may exist in the graphene due to
thermal excitations at a finite temperature, or due to the
zero-point fluctuations even at very low temperatures. So
such a fermion-lattice interaction can play roles of a de-
phasing mechanism for the single-fermion states. We also
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Geometric Phase and Related Phenomena in Quantum Nanosystems, Figure 2
Geometric phase acquired in a period of vibrations by Dirac fermions in particle and hole branches of valley “C” as a function of the
fermion momentum. The parameters for vibrations are: �x D �y D �0,˛x D 0, and ˛y D ��/2. kx D 0 and units of ky are set to be
(�0)/(t0 l0) so that the border between the˙� Berry phase and the zero Berry phase is at ky D 1. The inset of c shows the width of
the chaotic region ıky as a function of the frequency

note that in the whole region, even including the chaotic
region, the geometric phases acquired by fermions of the
same momentum in two branches are opposite to each
other. This phase compensation effect of two branches im-
plies that this dephasing mechanism has no effect if the
fermions in two branches are paired.

The above result indicates that the exchange of two
branches leads to the sign reverse of the geometric phase.
From the symmetry shown in Fig. 1 we can see that an
equivalent operator which can also cause the sign reverse
of the geometric phase is the reverse of the direction of the
circular vibration from clockwise to counterclockwise or
vice versa.

Another significant effect of vibrations is the uncer-
tainty of fermion energies. As the single-particle energy
is not a good quantum number, in Fig. 3 we plot the av-
erage energy of single-fermion states as a function of the
momentum. From the comparison with the Dirac disper-
sion relation and with Fig. 2, the energy difference be-
tween two branches is enlarged near the Dirac point and
for jkj 	 (�0)/(t0 l0), where the geometric phase is near its
adiabatic value, ˙� or zero, while this energy difference
shrinks in the chaotic region where the adiabatic approxi-

mation can not be used. Such opposite behaviors in these
two regions imply that the failure of the adiabatic theory
in the chaotic region has much more profound meaning
than reflected from the values of geometric phase. Phys-
ically, in the chaotic region the oscillations of electrons
between two branches are not able to follow the vibra-
tions, this causes the loss of distinguishability of the two
branches and the resultant states trend to take average en-
ergies in between, leading to a smaller energy spacing. On
the contrary, in a quantum description the coupling of two
states always enlarges their energy spacing. So one may
expect that the chaotic region corresponds to a classical-
like behavior and has a maximum uncertainty of single-
fermion energies. To verify this we calculate the standard
variance of Eq. (24) and show the results in Fig. 4. As ex-
pected, the standard variance exhibits a peak in the chaotic
region, and the energy uncertainty increases by increas-
ing the amplitudes of vibrations. Except for the peak in
the chaotic region, the standard variance globally increases
by increasing the momentum. Especially, the energy un-
certainty becomes zero at the Dirac point for all the in-
vestigated vibration amplitudes. This originates from the
fact that the the energy uncertainty is due to the oscil-
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Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 3
Average energy of fermions in particle and hole branches of val-
ley “C” as a function of the fermion momentum. The parame-
ters for vibrations are �x D �y D �0, ˛x D 0, and ˛y D ��/2.
kx D 0. The blue dotted lines represent eigenenergies without vi-
brations

lation of the fermion states between two branches, but
at the Dirac point the two branches coincide, leading to
a zero amplitude of the oscillation. This structure, includ-
ing the peak and the globally increasing background with
themomentum,may catchmajor features of linewidth dis-
tribution obtained from the angle-resolved photoemission
spectroscopy in graphene [9].

The evolution path plays a crucial role on the distri-
bution of adiabatic and chaotic regions in the momen-
tum space. To show this in Fig. 5 we plot the geometric
phase as a function of kx and ky for an elliptic path. The
chaotic region forms an orbicular area with a nearly fixed
width along a loop defined by kx D (dy (t))/(t0 l0) and
ky D �(dx (t))/(t0 l0). The width depends on ! as shown
in the inset of Fig. 2c. As a result, the adiabatic region with

Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 4
Standard variance of single-fermion energy of valley “C” as
a function of the fermion momentum. The parameters for vibra-
tions are �x D �y D �0, ˛x D 0, and ˛y D ��/2. kx D 0. The
standard variance is the same for particle and hole branches

Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 5
Contour plot of geometric phase acquired by fermions in val-
ley “C” and in the particle branch as a function of kx and
ky . The parameters for vibrations are �x D �y D �0 D 0:078t0,
„! D 0:0037t0,˛x D 0, and˛y D 0:6

a˙� Berry phase is compressed by reducing the short axis
of the ellipse, but the chaotic region with random geomet-
ric phases can exist even for a linear vibration.

Effect of Phase Uncertainty

The main features of the band structure in the graphene
can be well described by a tight-binding Hamiltonian with
one � orbital per site on the honeycomb lattice [32]:

H D
X

n
�na�nan

X

hn;n0i

Ctnn0(a�nan0 C a�n0an) ; (25)
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where a�n(an) creates (annihilates) an electron at site n,
�n is the energy level at site n, h: : : i denotes the near-
est-neighbor (NN) sites, and tnn0 is hopping integral be-
tween NN sites n and n0. Here, the spin indices are not
explicitly included. In the absence of disorder, �n D 0 for
all n and tnn0 D t0 for all hnn0i, this Hamiltonian leads
to the four-component Dirac fermion dispersion relation
near the Dirac point E D 0. The diagonal and off-diagonal
disorder can be introduced by adopting random variables
�n and tnn0 satisfying distribution probabilities Pd(�n) and
Po(tnn0 ), respectively. These probability functions define
the strengths and the types of disorder in the system. The
diagonal disorder represents the potential fluctuations due
to impurities or due to the randomness on the substrate
surface. A most commonly used distribution probability
for the diagonal disorder is the square function

Pd(�n) D

(
1
W ; for �W

2 � �n �
W
2 ;

0 ; otherwise ;
(26)

whereW is the distribution width describing the strength
of the disorder. For the OD disorder, there are different
distribution functions describing different types of ran-
domness. If we consider slight fluctuations of bond lengths
around their average value due to lattice distortions, the
following distribution is suitable

Po1(tnn0) D

(
1
�
; for t0 � �

2 � tnn0 � t0 C �
2 ;

0 ; otherwise ;

(27)

where (< 2jt0j) is a measure of the bond-length fluctu-
ations which make the NN hopping integrals randomly
shift from t0. In Po1(tnn0 ) all the hopping integrals have the
same sign as t0, reflecting that only the changes of magni-
tudes of tnn0 are considered. In some cases, however, tnn0
not only fluctuate in magnitude, but also change in sign
due to specific physical mechanisms. One of these possi-
ble mechanisms is the geometric phase which can easily
produced for fermions in graphene since the Dirac point
could play the roles of a degenerate point of two branches.
We can assume that the opposite signs of tnn0 are also ran-
domly distributed in the space. Then the distribution of
tnn0 can be written as

Po(tnn0) D sPo1(tnn0 )C (1 � s)Po1(�tnn0 ) ; (28)

where s(0 � s � 1) is a parameter describing how fre-
quently the hopping integrals change sign in the space.
When s D 0 or s D 1, all the hopping integrals have the
same sign and Po(tnn0 ) reduces to Po1(tnn0 ). At s D 0:5 the
frequency of the sign changes is maximal. In Po(tnn0) we

Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 6
Structure of graphene lattice. Red and blue sites correspond to
sublattices l D 1 and l D �1, i and j are indices of columns (light-
cyan shaded) and rows (light-magenta shaded), respectively

include both the magnitude disorder and sign disorder of
the off-diagonal elements in the Hamiltonian. Below we
will set t0 as the energy units.

The wavefunction of a fermion can be written as

 D
X

n
cn jni ; (29)

where cn is the amplitude on site n. At a given en-
ergy E the amplitudes are given be the Schödinger equa-
tion H D E . The propagation properties of a wave-
function on a finite lattice can be given by a relation be-
tween amplitudes on both sides. This is usually formulated
by the transfer-matrix method or by the Green function.
We note that the graphene lattice can be divided into two
sub-lattices as distinguished by red and blue sites in Fig. 6.
From the tight-binding nature of the Hamiltonian and the
structure shown in Fig. 6, it can be seen that for given E all
the amplitudes can be iteratively calculated along the x(y)
direction if the amplitudes in the light-cyan shaded col-
umn (light-magenta shaded row) are given. From this we
can establish a transfer matrix along the x or y direction
for the graphene. For this purpose we identify a site n with
three integers, n � (i; j; l), where i and j index the column
and row, respectively, and l D ˙1 specifies the sublattice
which the site n belongs to. In this notation the iterative
relation for the amplitudes along the x direction can be
derived from the Schödinger equation as [38]

ciC1; j;�1 D

(E � �i; j;1)ci; j;1 � ti; j;1;i; j;�1ci; j;�1
�ti; j;1;i; jC(�1)i ;�1ci; jC(�1)i ;�1

ti; j;1;iC1; j;�1
;

(30)
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ciC1; j;1 D

(E � �iC1; j;�1)ciC1; j;�1
�tiC1; j;�1;i; j;1ci; j;1
�tiC1; j;�1;iC1; jC(�1)i ;1ciC1; jC(�1)i ;1

tiC1; j;�1;iC1; j;1
:

(31)

For a system with finite width in the y direction, one
can define vectors for the columns by ui;l � (ci;1;l ;
ci;2;l ; : : : ; ci;M;l )T, whereM is the number of cells in a col-
umn. Then Eqs. (30) and (31) can be written in a matrix
form:

uiC1;�1 D T̂1;iui;1 C T̂2;iui;�1 ; (32)

ui;1 D T̂3;iuiC1;1 C T̂4;iuiC1;�1 ; (33)

where the elements of the matrices are given by

fT̂1;ig j; j0 D
E � �i; j;1

ti; j;1;iC1; j;�1
ı j; j0 ; (34)

fT̂2;ig j; j0 D �
ti; j;1;i; j;�1

ti; j;1;iC1; j;�1
ı j; j0

�
ti; j;1;i; jC(�1)i ;�1

ti; j;1;iC1; j;�1
ı jC(�1)i ; j0 ; (35)

fT̂3;ig j; j0 D �
tiC1; j;�1;iC1; j;1

tiC1; j;�1;i; j;1
ı j; j0

�
tiC1; j;�1;iC1; jC(�1)i ;1

tiC1; j;�1;i; j;1
ı jC(�1)i ; j0 ; (36)

fT̂4;ig j; j0 D
E � �iC1; j;�1

tiC1; j;�1;i; j;1
ı j; j0 : (37)

Here, one may use the periodic or open boundary condi-
tion at the ends j D 1 and j D M. We have the iterative
relation for the whole column

�
uiC1;�1
uiC1;1

�
D T̂i

�
ui;�1
ui;1

�
; (38)

where the transfer matrix is

T̂i D

0

@
T̂2;i ; T̂1;i

�T̂�13;i T̂4;i T̂2;i ; T̂�13;i � T̂�13;i T̂4;i T̂1;i

1

A : (39)

If there are L columns in the x-direction, the total transfer
matrix which gives the relation between amplitudes at two
end columns is

T̂ D
LY

iD1

T̂L�iC1 : (40)

If we want to investigate the propagation properties in
the y-direction, we have to establish the transfer matrix for
the rows. The relation between two adjacent rows is writ-
ten as

�
v jC1;�1
v jC1;1

�
D V̂j

�
v j;�1
v j;1

�
; (41)

where v j;l ’s are vectors denoting rows with length M,
v j;l � (c1; j;l ; c2; j;l ; : : : ; cM; j;l )T, and the elements of the
transfer matrix are

fV̂jgi;l ;i 0;l 0 D ıl ;�(�1)i
n
C(1)
i; jı�l ;l 0ıi;i 0 � C(2)

i; jıl ;l 0ıi;i 0

� C(3)
i; j ıl ;l 0ıiC(�1)i ;i 0 C C(4)

i; j



C(1)
i; jıl ;l 0ıi;i 0 � C(2)

i; jıl ;�l 0ıi;i 0

� C(3)
i; j ıl ;�l 0ıiC(�1)i ;i 0

�
� C(5)ıl ;l 0ıl ;�(�1)i ıi;i 0

� C(6)


C(1)
i�(�1)i ; jıl ;�l 0ıi�(�1)i ;i 0

� C(2)
i�(�1)i ; jıl ;l 0ıi�(�1)i ;i 0

� C(3)
i�(�1)i ; jıl ;l 0ıi�(�1)i �2;i 0

�o
;

(42)

where

C(1)
i; j D

E � �i; j;(�1)i
ti; j;(�1)i ;i; jC1;�(�1)i

;

C(2)
i; j D

ti; j;(�1)i ;i; j;�(�1)i
ti; j;(�1)i ;i; jC1;�(�1)i

;

C(3)
i; j D

ti; j;(�1)i ;iC(�1)i ; j;�(�1)i

ti; j;(�1)i ;i; jC1;�(�1)i
;

C(4)
i; j D

E � �i; jC1;�(�1)i

ti; jC1;�(�1)i ;i; jC1;(�1)i
;

C(5)
i; j D

ti; jC1;�(�1)i ;i; j;(�1)i

ti; jC1;�(�1)i ;i; jC1;(�1)i
;

C(6)
i; j D

ti; jC1;�(�1)i ;i�(�1)i ; jC1;(�1)i

ti; jC1;�(�1)i ;i; jC1;(�1)i
:

The total transfer matrix for L rows is

V̂ D
LY

iD1

V̂L�iC1 : (43)

For a finite M � L system, there areM propagating chan-
nels along the length L. The Hermitian matrix, (T̂�T̂)1/2L

or (V̂�V̂ )1/2L , has 2M eigen values. These 2M eigen values
should be positive and come in inverse pairs due to the
unitarity of the matrix [5]. The M positive logarithms of
the eigen values, denoted as � i in an ascending order with
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index i, are Lyapunov exponents (LE) reflecting the expo-
nential decay of the corresponding channels. Obviously,
the logarithms of otherM eigen values are the negatives of
� i. The LEs will approach 0 when the disorder vanishes.
The localization length is defined as the reciprocal of the
smallest LE � � 1/�1. The localization length plays a cru-
cial role in the localization theory.

The zero-temperature conductance g of a rectangular
M � L system in units of 2e2/h, with two spins being taken
into account, can be evaluated using the M-channel Lan-
dauer formula [13,14]

g D Tr(t̂� t̂) ; (44)

where the M �M transmission matrix t̂ describes the
transmission of electrons from one lead to the other in the
longitudinal direction. Here we assume that the leads are
connected to all theM channels and they are perfect metal
with band width much larger than that of the graphene.
Formula (44) can be expressed with the LEs as [5]

g D
MX

iD1

1
cosh2(�i L)

: (45)

Numerically, LEs can be calculated by using the stan-
dard method of Gram–Schmidt re-orthonormalization af-
ter each a few, say, ten steps of multiplication of the trans-
fer matrices [20]. This is equivalent to the diagonalization
of T̂�T̂ or V̂�V̂ , but avoids terrible overflow and loss of
precision on the computer. On the other hand, although
the calculations of the transfer matrices along the x and y
directions are certainly different, there is no essential dif-
ference in the calculated results between these two direc-
tions. This is owing to the fact that the dispersion relation
is conic around the Dirac point which is isotropic in the
x and y directions. Below we will only present the results
obtained for the transmission along the y direction.

The quantum transport processes could be drastically
changed if the phases of wavefunctions become uncer-
tain. This may happen due to the Berry phase which can
be acquired by electrons during a cyclic evolution around
a conic point. In the graphene the Berry phase can be eas-
ily created owing to the Dirac fermion dispersion relation.
The attached Berry phase of � corresponds to sign changes
of the wavefunction during the motion of electrons. If the
sign changes randomly happen during the spatial motion,
they can be modeled by a random distribution of posi-
tive and negative signs of hopping integrals. In probability
Po(tnn0 ) of Eq. (28), we include both the sign randomness
and the magnitude randomness of the hopping integrals
which are specified by parameters s and , respectively.

Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 7
Scaling behavior of the rescaled localization length and the con-
ductance of an M�M system in the presence of sign random-
ness of hopping integrals obeying probability Po(tnn0 ) with dif-
ferent values of s

At first we set  D 0 and focus on the effect of sign
randomness. In Fig. 7 we plot the scaling behavior of the
rescaled localization length and the conductance of an
M �M system for different values of s. Similarly to the
case of off-diagonal disorder, the states at the Dirac point
in the presence of the sign randomness are also delocalized
in the sense of finite-size scaling analysis. Effects of the sign
randomness on the rescaled localization length and on the
conductance are opposite: �(M)/M in s D 0:5 is smaller
than that in s D 0:2, but g in s D 0:5 is larger than that
in s D 0:2. This is strange because �(M)/M corresponds
to the channel with the largest localization length which
usually provides the leading contribution to the conduc-
tance. The only explanation for this is that the other chan-
nels also give significant contributions in the case of sign
randomness. An expectable consequence of this is a new
shape dependence of the conductivity, since the number
of the tunneling channels is no longer restricted.

The shape dependence of the conductivity can be in-
vestigated by calculating the conductance of M � L rect-
angular samples. The obtained conductivity as a function
of the ratio M/L for various sizes is shown in Fig. 8. Ex-
cept for small values of M/L, the conductivity has val-
ues near (4e2)/h, independent of M/L and M, in con-
sistence with the experimental findings. Surprisingly, this
value is even larger than (4e2)/(�h) obtained in the bal-
listic graphene [18] in spite of the disorder introduced by
the sign randomness of hopping integrals. To get insight
into this anomalous feature, we denote the average spac-
ing between successive pairs of Lyapunov exponents as ı� ,
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Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 8
Calculated conductivity as a function of ratioM/L for rectangular
sheets with different widthsM. Inset in the lower panel: Distribu-
tion function P(Mı�) ofMı� . The greendashed line indicates the
ı-function distribution at 2� in the case of perfect sheet

i. e., �2iC1 � �2i�1 � �2iC2 � �2i � ı� . Notice that in this
case the Lyapunov exponents are grouped into pairs, cor-
responding to two equivalent valleys. By keeping only the
leading exponential term of cosh2(�i L), Eq. (45) can be ap-
proximately rewritten as

g �
M/2X

iD1

8e�2�2i�1L �
8e�2�1L(1 � e�(MC2)Lı� )

1 � e�2Lı�
; (46)

in units of (2e2)/h. In a perfect system of widthM and us-
ing the periodic boundary condition, the spacing ı� for
states at E D 0 is ı� D 2�/M due to the Dirac fermion
dispersion relation [18]. One may reasonably suppose that
ı� / 1/M is still held in the case of disorder. Then, for
M 	 L, the conductivity of an M � L rectangular sample
can be calculated as

� D
gL
M
�

4e�2�1L

ı�M
: (47)

Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 9
Scaling behavior of the rescaled localization length and the
conductance of an M�M system in the presence of both sign
randomness and magnitude randomness of hopping integrals
obeying probability Po(tnn0 )

So for the perfect lattice � D 2/� in units of (2e2)/h [18].
In the case of sign randomness, the values of Mı� are in
the range [0.9, 2.5] as shown in the inset of Fig. 8. Together
with the factor e�2�1L , the obtained conductivity may be
� times of that of the perfect lattice. Thus, the � factor
difference in the conductivity is not trivial and reflects an
essential change of the fermion properties due to the phase
uncertainty.

It is interesting to investigate how the localization be-
havior changes in the presence of the magnitude random-
ness of hopping integrals. The scaling behaviors of the
rescaled localization length and the conductance of an
M �M system with both nonzero s and  are shown in
Fig. 9. It can be seen that the states at E D 0 are still de-
localized and the opposite effects on the rescaled local-
ization length and on the conductance are more evident
than those shown in Fig. 7. In Fig. 10 we display the shape
dependence of the conductivity of the M � L rectangu-
lar samples for s D 0:5 and different nonzero values of
. Similarly to the case of  D 0, the conductivity is still
shape independent except for small values of M/L. This
means that the sign-randomness induced shape indepen-
dence of the conductivity is robust against the warping
or corrugation disorder which may cause the randomness
of magnitudes of hopping integrals. It can also be seen
that the value of the conductivity is slightly reduced from
(4e2)/h by increasing the warping or corrugation disorder.
For reasonable strength of the warping disorder ( < 1),
however, the conductivity is above (3e2)/h, in the range of
measured values in experiments.
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Geometric Phase and Related Phenomena in QuantumNanosys-
tems, Figure 10
Calculated conductivity as a function of ratioW/L for rectangu-
lar sheets with different widths M in the presence of both sign
randomness andmagnitude randomness of hopping integrals

Future Directions

In physical applications, one often encounters Hamilto-
nian operators depending on several external parameters,
thus potentially affected by Berry phases [38]. The Berry
phase is observed by following a nontrivial loop in the pa-
rameters space, and performing some kind of interference
between the state prior and after the loop. Standard ex-
amples are the parallel transport of a vector on a sphere,
the Aharonov–Bohm effect, and analogous neutron inter-
ference experiments; q indicates some internal degrees of
freedom of a system are approximately treated as “slow”,
classical variables, affecting adiabatically the “fast” quan-
tum dynamics of the other degrees of freedom. Of course,
eventually the true quantum nature of the slow variables
must be taken into account, as a further crucial step. The
standard example for this is the Born–Oppenheimer sepa-
ration of the “fast” quantum motion of electrons from the
“slow” motion of nuclei in molecules and nanocrystals: the
nuclear coordinates appear as external parameters defin-
ing the potential in which the electrons move. In turn, the
electronic ground state energy enters in the potential en-
ergy for the adiabatic motion of the nuclei. When the lat-
ter is quantized, it gives rise to the vibrational/phononic
states observed by spectroscopy. Here we shall be mostly
concerned with the latter case. Berry phase for real Hamil-
tonians A physically relevant and rather simple case is that
of the eigensystem of a real Hamiltonian operator H de-
pending on a set of external parameters q. The eigenstates
of a real operator may always be chosen to be real, at any
q-point. It is straightforward to check that continuous real
eigenstates realize parallel transport.

So there are following future directions of investiga-
tion on the geometric phase in nanostructures:

(i) The transition from quantum to classical. It is well
known that the phases of wave functions are essen-
tial for the manifestation of the quantum natures in
nanostructures. If the fast degrees of freedom ac-
quire geometric phases from random evolutions of
slow degrees of freedom, i. e., the thermally excited
vibrations of nuclei, the phase of the fast degrees of
freedom becomes uncertain, leading to the transition
from the quantum to classical.

(ii) Investigation on the dephasing mechanism in nanos-
tructures. Nanostructures are regarded as potential
candidates for the quantum computing and quantum
information processing. A prerequisite for such ap-
plications is the quantum coherence time as long as
possible. Various dephasing mechanisms may pre-
vent these applications as they destroy the quantum
coherence of the target system. As one of the dephas-
ing mechanisms the investigation of geometric phase
in nanostructures is of particular importance.

(iii) Designing of novel quantum interference devices em-
ploying the geometric phase in nanostructures. The
geometric phase crucially depends on the geometry
of the nanostructure. This provides a new way in de-
signing interference devices by adjusting the shapes
of nanostructures.

(iv) Investigation of geometric phase in quantum many-
body low-dimensional and nano systems. A many-
body system is a complicated mixture of various de-
grees of freedom. Among them there may be some
faster degrees of freedom which are crucially affected
by geometric phases created from the slower degrees
of freedom. Compared with the one-body nature of
the fast degrees of freedom previously investigated,
the geometric phases in a many-body fast system are
much more complicated and need future investiga-
tions.
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Glossary

In this preliminary section, a few concise definitions of the
most important concepts discussed in this article are given.
Glass transition For molecular liquids, the glass transi-

tion denotes a crossover from a viscous liquid to an
amorphous solid. Experimentally, the crossover takes
place at the glass temperature, Tg, conventionally de-
fined as the temperature where the liquid’s viscosity
reaches the arbitrary value of 1012 Pas. The glass tran-
sition more generally applies to many different con-
densed matter systems where a crossover or, less fre-
quently, a true phase transition, takes place between an
ergodic phase and a frozen, amorphous glassy phase.

Aging In the glass phase, disordered materials are char-
acterized by relaxation times that exceed common
observation timescales, so that a material quenched
in its glass phase never reaches equilibrium (neither
a metastable equilibrium). It exhibits instead an aging
behaviour during which its physical properties keep
evolving with time.

Dynamic heterogeneity Relaxation spectra of dynamical
observables, e. g. the dynamical structure factor, are
very broad in supercooled liquids. This is associated to
a spatial distribution of timescales: at any given time,
different regions in the liquid relax at different rates.
Since the supercooled liquid is ergodic, slow regions
eventually become fast, and vice versa. Dynamic het-
erogeneity refers to the existence of these non-trivial
spatio-temporal fluctuations in the local dynamical be-
haviour, a phenomenon observed in virtually all disor-
dered systems with slow dynamics.

Effective temperature An aging material relaxes very
slowly, trying (in vain) to reach its equilibrium state.
During this process, the system probes states that do
not correspond to thermodynamic equilibrium, so that
its thermodynamic properties can not be rigorously
defined. Any practical measurement of its temperature

becomes a frequency-dependent operation. A ‘slow’
thermometer tuned to the relaxation timescale of the
aging system measures an effective temperature cor-
responding to the ratio between spontaneous fluctu-
ations (correlation) and linear response (susceptibil-
ity). This corresponds to a generalized form of the
fluctuation-dissipation theorem for off-equilibrium
materials.

Frustration Impossibility of simultaneously minimizing
all the interaction terms in the energy function of the
system. Frustration might arise from quenched disor-
der (as in spin glass models), from competing interac-
tions (as in geometrically frustrated magnets), or from
competition between a ‘locally preferred order’, and
global, e. g. geometric, constraints (as in hard spheres
packing problems).

Definition of the Subject

Glasses belong to a well-known state of matter: we easily
design glasses with desired mechanical or optical proper-
ties on an industrial scale, they are widely present in our
daily life. Yet, a deep microscopic understanding of the
glassy state of matter remains a challenge for condensed
matter physicists [6,67]. Glasses share similarities with
crystalline solids (they are both mechanically rigid), but
also with liquids (they both have similar disordered struc-
tures at the molecular level). It is mainly this mixed char-
acter that makes them fascinating even to non-scientists.

A glass can be obtained by cooling the temperature
of a liquid below its glass temperature, Tg. The quench
must be fast enough that the more standard first order
phase transition towards the crystalline phase is avoided.
The glass ‘transition’ is not a thermodynamic transition
at all, since Tg is only empirically defined as the temper-
ature below which the material has become too viscous to
flow on a ‘reasonable’ timescale (and it is hard to define
the word ‘reasonable’ in any reasonable manner). There-
fore, Tg does not play a fundamental role, as a phase tran-
sition temperature would. It is simply the temperature be-
low which the material looks solid. When quenched in
the glass phase below Tg, liquids slowly evolve towards
an equilibrium state they cannot reach on experimental
timescales. Physical properties are then found to evolve
slowly with time in far from equilibriun states, a process
known as ‘aging’ [152].

Describing theoretically and quantifying experimen-
tally the physical mechanisms responsible for the viscos-
ity increase of liquids approaching the glass transition
and for aging phenomena below the glass transition cer-
tainly stand as central open challenges in condensed mat-
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ter physics. Since statistical mechanics aims at understand-
ing the collective behaviour of large assemblies of interact-
ing objects, it comes as no surprise that it is a central tool in
that field. We shall therefore summarize the understand-
ing gained from statistical mechanics perspectives into the
problem of glasses and aging.

The subject has quite broad implications. A material
is said to be ‘glassy’ when its typical relaxation timescale
becomes of the order of, and often much larger than,
the typical duration of an experiment or a numerical
simulation. With this generic definition, a large number
of systems can be considered as glassy materials [173].
One can be interested in the physics of liquids (window
glasses are then the archetype), in ‘hard’ condensed mat-
ter (for instance type II superconductors in the presence
of disorder such as high-Tc superconducting materials),
charge density waves or spin glasses, ‘soft’ condensedmat-
ter with numerous complex fluids such as colloidal as-
semblies, emulsions, foams, but also granular materials,
proteins, etc. All these materials exhibit, in some part of
their phase diagrams, some sort of glassy dynamics char-
acterized by a very rich phenomenology with effects such
as aging, hysteresis, creep, memory, effective tempera-
tures, rejuvenation, dynamic heterogeneity, non-linear re-
sponse, etc.

This long list explains why this area of research has re-
ceived increasing attention from physicists in the last two
decades. ‘Glassy’ topics now go much beyond the physics
of simple liquids (glass transition physics) and models
and concepts developed for one system often find appli-
cations elsewhere in physics, from algorithmics to bio-
physics [55]. Motivations to study glassy materials are nu-
merous. Glassy materials are everywhere around us and
therefore obviously attract interest beyond academic re-
search. At the same time, the glass conundrum provides
theoretical physicists with deep fundamental questions
since classical tools are sometimes not sufficient to prop-
erly account for the glass state.Moreover, simulating in the
computer the dynamics of microscopically realistic mate-
rial on timescales that are experimentally relevant is not an
easy task, even with modern computers.

Studies on glassy materials constitute an exciting re-
search area where experiments, simulations and theoret-
ical calculations can meet, where both applied and fun-
damental problems are considered. How can one ob-
serve, understand, and theoretically describe the rich phe-
nomenology of glassy materials? What are the fundamen-
tal quantities and concepts that emerge from these de-
scriptions?

The outline of the article is as follows. In Sect. “Phe-
nomenology” the phenomenology of glass-forming liquids

is discussed. In Sect. “Taxonomy of ‘Glasses’ in Science”
other type of glasses are described, in particular colloids
and granular materials. It is then described how computer
simulations have provided deep insights into the glass
problem in Sect. “Numerical Simulations”. The issue of
dynamic heterogeneity is tackled in Sect. “Dynamic Het-
erogeneity”. The main theoretical perspectives currently
available in the field are then summarized in Sect. “Some
Theory andModels”. Aging and off-equilibrium phenom-
ena occupy Sect. “Aging and Off-equilibrium”. Finally, is-
sues that seem important for future research are discussed
in Sect. “Future Directions”.

Phenomenology

Basic Facts

A vast majority of liquids (molecular liquids, polymeric
liquids, etc.) form a glass if cooled fast enough in order
to avoid the crystallisation transition [6]. Typical values of
cooling rate in laboratory experiments are 0.1–100K/min.
The metastable phase reached in this way is called ‘super-
cooled phase’. In this regime the typical timescales increase
in a dramatic way and they end up to be many orders of
magnitudes larger than microscopic timescales at Tg, the
glass transition temperature.

For example, around the melting temperature Tm, the
typical timescale �˛ on which density fluctuations relax,
is of the order of

p
ma2/KBT , which corresponds to few

picoseconds (m is the molecular mass, T the tempera-
ture, KB the Boltzmann constant and a a typical distance
between molecules). At Tg, which as a rule of thumb is
about 2/3Tm , the typical timescale has become of the or-
der of 100 s, i. e. 14 orders of magnitude larger! This phe-
nomenon is accompanied by a concomitant increase of
the shear viscosity �. This can be understood by a sim-
ple Maxwell model in which � and �˛ are related by
� D G1�˛ , where G1 is the instantaneous (elastic) shear
modulus which does not vary considerably in the super-
cooled regime. In fact, viscosities at the glass transition
temperature are of the order of 1012 Pas. In order to grasp
how viscous this is, recall that the typical viscosity of wa-
ter at ambient temperature is of the order of 10-2 Pas. How
long would one have to wait to drink a glass of water with
a viscosity 1014 times larger?

As a matter of fact, the temperature at which the liquid
does not flow anymore and becomes an amorphous solid,
called a ‘glass’, is protocol dependent. It depends on the
cooling rate and on the patience of the people carrying out
the experiment: solidity is a timescale dependent notion.
Pragmatically, Tg is defined as the temperature at which
the shear viscosity is equal to 1013 Poise (also 1012 Pas).
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The increase of the relaxation timescale of supercooled
liquids is remarkable not only because of the large num-
ber of decades involved but also because of its tempera-
ture dependence. This is vividly demonstrated by plotting
the logarithm of the viscosity (or the relaxation time) as
a function of Tg/T , as in Fig. 1. This is called the ‘Angell’
plot [6] and is very helpful in classifying supercooled liq-
uids. A liquid is called strong or fragile depending on its
position in the Angell plot. Straight lines correspond to
‘strong’ glass-formers and to an Arrhenius behaviour. In
this case, one can extract from the plot an effective activa-
tion energy, suggesting quite a simple mechanism for re-
laxation by ‘breaking’ locally a chemical bond. The typical
relaxation time is then dominated by the energy barrier
to activate this process and, hence, has an Arrhenius be-
haviour. Window glasses fall in this category1. If one tries
to define an effective activation energy for fragile glass-
formers using the slope of the curve in Fig. 1, then one
finds that this energy scale increases when the temperature
decreases, a ‘super-Arrhenius’ behaviour. This increase of
energy barriers immediately suggests that the glass forma-
tion is a collective phenomenon for fragile supercooled liq-
uids. Support for this interpretation is provided by the fact
that a good fit of the relaxation time or the viscosity is
given by the Vogel–Fulcher–Tamman law (VFT):

�˛ D �0 exp
�

DT0
(T � T0)

�
; (1)

which suggests a divergence of the relaxation time, and
therefore a phase transition of some kind, at a finite tem-
perature T0. A smaller D in the VFT law corresponds to
a more fragile glass. Note that there are other comparably
good fits of these curves, such as the Bässler law [10],

�˛ D �0 exp

 

K
�
T�
T

�2
!

;

that only lead to a divergence at zero temperature. Actu-
ally, although the relaxation time increases by 14 orders of
magnitude, the increase of its logarithm, and therefore of
the effective activation energy is very modest, and experi-
mental data do not allow one to unambiguously determine
the true underlying functional law without any reasonable
doubt. For this and other reasons, physical interpretations

1The terminology ‘strong’ and ‘fragile’ is not related to the me-
chanical properties of the glass but to the evolution of the short-range
order close to Tg. Strong liquids, such as SiO2, have a locally tetra-
hedric structure which persists both below and above the glass tran-
sition contrary to fragile liquids whose short-range amorphous struc-
ture disappears rapidly upon heating above Tg.

Glasses and Aging, A Statistical Mechanics Perspective on,
Figure 1
Arrhenius plot of the viscosity of several glass-forming liquids
approaching the glass temperature Tg [67]. For ‘strong’ glasses,
the viscosity increases in an Arrhenius manner as temperature is
decreased, log� � E/(KBT), where E is an activation energy and
the plot is a straight line, as for silica. For ‘fragile’ liquids, the plot
is bent and the effective activation energy increases when T is
decreased towards Tg, as for ortho-terphenyl

in terms of a finite temperature phase transition must al-
ways be taken with a grain of salt.

However, there are other experimental facts that shed
some light and reinforce this interpretation. Among them,
is an empirical connection found between kinetic and
thermodynamic behaviours. Consider the part of the en-
tropy of the liquids, Sexc, which is in excess compared to
the entropy of the corresponding crystal. Once this quan-
tity, normalized by its value at the melting temperature,
is plotted as a function of T, a remarkable connection
with the dynamics emerges. As for the relaxation time
one cannot follow this curve below Tg in thermal equilib-
rium. However, extrapolating the curve below Tg appar-
ently indicates that the excess entropy vanishes at some fi-
nite temperature, called TK, which is very close to zero for
strong glasses and, generically, very close to T0, the tem-
perature at which a VFT fit diverges. This coincidence is
quite remarkable: for materials with glass transition tem-
peratures that vary from 50K to 1000K the ratio TK/T0
remains close to 1, up to a few percents. Examples re-
ported in [145] are provided in Table 1. The chosen sub-
script for TK stands for Kauzmann [108] who recognized
TK as a very important temperature in the glass phase di-
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ble 1
Values of glass transition temperature, VFT singularity and Kauz-
mann temperatures for four supercooled liquids [145]

Substance o-ter-
phenyl

2-methyltetra-
hydrofuran

n-pro-
panol

3-bromo-
pentane

Tg 246 91 97 108
T0 202.4 69.6 70.2 82.9
TK 204.2 69.3 72.2 82.5
TK/T0 1.009 0.996 1.028 0.995

agram. Kauzmann further claimed that some change of
behaviour (phase transition, crystal nucleation, etc.) must
take place above TK, because below TK the entropy of the
liquid, a disordered state of matter, becomes less than the
entropy of the crystal, an ordered state of matter. This sit-
uation that seemed paradoxical at that time is not a seri-
ous problem. There is no general principle that would con-
straint the entropy of the liquid to be larger than that of the
crystal. As a matter of fact, the crystallisation transition for
hard spheres takes place precisely because the crystal be-
comes the state with the largest entropy at sufficiently high
density [97].

On the other hand, the importance of TK stands, par-
tially because it is experimentally very close to T0. Addi-
tionally, the quantity Sexc which vanishes at TK, is thought
to be a proxy for the so-called configurational entropy, Sc,
which quantifies the number of metastable states. A popu-
lar physical picture due to Goldstein [91] is that close to Tg
the system explores a part of the energy landscape (or con-
figuration space) which is full of minima separated by bar-
riers that increase when temperature decreases. The dy-
namic evolution in the energy landscape would then con-
sist in a rather short equilibration inside the minima fol-
lowed by ‘jumps’ between different minima. At Tg the bar-
riers have become so large that the system remains trapped
in one minimum, identified as one of the possible micro-
scopic amorphous configurations of a glass. Following this
interpretation, one can split the entropy into two parts.
A first contribution is due to the fast relaxation inside
one minimum, a second counts the number of metastable
states, Sc D logNmetastable, which is called the ‘configura-
tional’ entropy. Assuming that the contribution to the en-
tropy due to the ‘vibrations’ around an amorphous glass
configuration is not very different from the entropy of the
crystal, one finds that Sexc � Sc. In that case, TK would
correspond to a temperature at which the configurational
entropy vanishes. This in turn would lead to a discontinu-
ity (a downward jump) of the specific heat and would truly
correspond to a thermodynamic phase transition.

Static and Dynamic Correlation Functions

At this point the reader might have reached the conclu-
sion that the glass transition may not be such a diffi-
cult problem: there are experimental indications of a di-
verging timescale and a concomitantly singularity in the
thermodynamics. It simply remains to find static corre-
lation functions displaying a diverging correlation length
related to the emergence of ‘amorphous order’, which
would indeed classify the glass transition as a standard sec-
ond order phase transition. Remarkably, this remains an
open and debated question despite several decades of re-
search. Simple static correlation function are quite feature-
less in the supercooled regime, notwithstanding the dra-
matic changes in the dynamics. A simple static quantity is
the structure factor defined by

S(q) D
�
1
N
ı�qı�-q

	
;

where the Fourier component of the density reads

ı�q D

NX

iD1

eiq�ri �
N
V
ıq;0 ;

with N is the number of particles, V the volume, and ri
is the position of particle i. The structure factor measures
the spatial correlations of particle positions, but it does not
show any diverging peak in contrast to what happens, for
example, at the liquid-gas tri-critical point where there is
a divergence at small q. More complicated static correla-
tion functions have been studied [66], especially in nu-
merical work, but until now there are no strong indica-
tions of a diverging, or at least substantially growing, static
lengthscale [133]. A snapshot of a supercooled liquid con-
figuration in fact just looks like a glass configuration, de-
spite their widely different dynamic properties. What hap-
pens then at the glass transition? Is it a transition or sim-
ply a dynamic crossover? A more refined understanding
can be gained studying dynamic correlations or response
functions.

A dynamic observable studied in light and neutron
scattering experiments is the intermediate scattering func-
tion,

F(q; t) D
�
1
N
ı�q(t)ı�-q(0)

	
: (2)

Different F(q; t) measured by neutron scattering in su-
percooled glycerol [170] are shown for different tempera-
tures in Fig. 2. These curves show a first, rather fast, re-
laxation to a plateau followed by a second, much slower,
relaxation. The plateau is due to the fraction of density



4214 G Glasses and Aging, A Statistical Mechanics Perspective on

Glasses and Aging, A Statistical Mechanics Perspective on,
Figure 2
Temperature evolution of the intermediate scattering function
normalized by its value at time equal to zero for supercooled
glycerol [170]. Temperatures decrease from 413K to 270K from
left to right. The solid lines are fit with a stretched exponential
with exponent ˇ D 0:7. The dotted line represents another fit
with ˇ D 0:82

fluctuations that are frozen on intermediate timescales, but
eventually relax during the second relaxation. The latter
is called ‘alpha-relaxation’, and corresponds to the struc-
tural relaxation of the liquid. This plateau is akin to the
Edwards–Anderson order parameter, qEA, defined for spin
glasses which measures the fraction of frozen spin fluc-
tuations [33]. Note that qEA continuously increases from
zero below the spin glass transition. Instead, for structural
glasses, a finite plateau appears above any transition.

The intermediate scattering function can be probed
only on a relatively small regime of temperatures. In
order to track the dynamic slowing down from micro-
scopic to macroscopic timescales, other correlators have
been studied. A popular one is obtained from the di-
electric susceptibility, which is related by the fluctuation-
dissipation theorem to the time correlation of polar-
ization fluctuations. It is generally admitted that differ-
ent dynamic probes reveal similar temperature depen-
dences for the relaxation time. The temperature evo-
lution of the imaginary part of the dielectric suscepti-
bility, �00(!), is shown in Fig. 3 which covers a very
wide temperature window [142]. At high temperature,
a good representation of the data is given by a Debye law,
�(!) D �(1)C
�/(1C i!�˛), which corresponds to an
exponential relaxation in the time domain. When temper-
ature is decreased, however, the relaxation spectra become
very broad and strongly non-Debye. One particularly well-
known feature of the spectra is that they are well fitted,
in the time domain, for times corresponding to the alpha-
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Figure 3
Temperature evolution of the dielectric susceptibility of the
glass-former benzophenone measured over more than 10
decades of relaxation times [142]. Dynamics slows down dra-
matically as temperature is decreased and relaxation spectra be-
come very broad at low temperature

relaxation with a stretched exponential, exp(�(t/�˛)ˇ ). In
the Fourier domain, forms such as the Havriliak–Negami
law are used, �(!) D �(1)C
�/(1C (i!�˛)˛)� , which
generalizes the Debye law. The exponents ˇ, ˛ and � de-
pend in general on temperature and on the particular dy-
namic probe chosen, but they capture the fact that relax-
ation is increasingly non-exponential when T decreases
towards Tg. A connection was empirically established be-
tween fragility and degree of non-exponentiality, more
fragile liquids being characterized by broader relaxation
spectra [67].

To sum up, there are many remarkable phenomena
that take place when a supercooled liquid approaches the
glass transition. Striking ones have been presented, but
many others have been left out for lack of space [6,33,66,
67]. We have discussed physical behaviours, relationships
or empirical correlations observed in a broad class of ma-
terials. This is quite remarkable and suggests that there is
some physics (and not only chemistry) to the problem of
the glass transition, which we see as a collective (critical?)
phenomenon which is relatively independent of micro-
scopic details. This justifies our statistical mechanics per-
spective on this problem.

Taxonomy of ‘Glasses’ in Science

We now introduce some other systems whose phe-
nomenological behaviour is close or, at least, related, to
the one of glass-forming liquids, showing that glassiness
is truly ubiquitous. It does not only appear in many differ-
ent physical situations but also in more abstract contexts,
such as computer science.
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The Jamming Transition of Colloids and Grains

Colloidal suspensions consist of big particles suspended
in a solvent [121]. The typical radii of the particles are in
the range R= 1�500 nm. The solvent, which is at equilib-
rium at temperature T, renders the short-time dynamics
of the particles Brownian. The microscopic timescale for
this diffusion is given by � D R2/D where D is the short-
time self-diffusion coefficient. Typical values are of the or-
der of � � 1ms, and thus aremuch larger than the ones for
molecular liquids (in the picosecond regime). The interac-
tion potential between particles depends on the systems,
and this large tunability makes colloids very attractive
objects for technical applications. A particularly relevant
case, on which we will focus in the following, is a purely
hard sphere potential, which is zero when particles do not
overlap and infinite otherwise. In this case the tempera-
ture becomes irrelevant, apart from a trivial rescaling of
the microscopic timescale. Colloidal hard spheres systems
have been intensively studied [121] in experiments, sim-
ulations and theory varying their density �, or their vol-
ume fraction � D 4/3�R3�. Hard spheres display a fluid
phase from 0 to intermediate volume fractions, a freezing-
crystallisation transition at � ' 0:494, and a melting tran-
sition at � ' 0:545. Above this latter value the system
can be compressed until the close packing point � ' 0:74,
which corresponds to the FCC crystal. Interestingly for
our purposes, a small amount of polydispersity (particles
with slightly different sizes) suppresses crystallization. In
this case, the system can be more easily ‘supercompressed’
above the freezing transition without nucleating the crys-
tal, at least on experimental timescales. In this regime the
relaxation timescale increases very fast [144]. At a packing
fraction �g ' 0:58 it becomes so large compared to typi-
cal experimental timescales that the system does not relax
anymore: it is jammed. This ‘jamming transition’ is obvi-
ously reminiscent of the glass transition of molecular sys-
tems. In particular, the location �g of the colloidal glass
transition is as ill-defined as the glass temperature Tg.

Actually, the phenomenona that take place increas-
ing the volume fraction are analogous to the ones seen in
molecular supercooled liquid: the relaxation timescales in-
creases very fast and can be fitted [52] by a VFT law in
density as in Eq. (1), dynamical correlation functions dis-
play a broad spectrum of timescales and develop a plateau,
no static growing correlation length has been found, etc.
Also the phenomenon of dynamic heterogeneity that will
be addressed in Sect. “Dynamic Heterogeneity” is present
in both cases [109,165]. However, it is important to under-
line a major difference: because the microscopic timescale
for colloids is so large, experiments can only track the

first 5 decades of slowing down. A major consequence is
that the comparison between the glass and colloidal tran-
sitions must be performed by focusing in both cases on the
first 5 decades of the slowing down, which corresponds to
relatively high temperatures in molecular liquids. Under-
standing how much and to what extent the glassiness of
colloidal suspensions is related to the one of molecular liq-
uids remains an active domain of research.

Another class of systems that have recently been stud-
ied from the point of view of their glassiness is driven gran-
ular media. Grains are macroscopic objects and, as a con-
sequence, do not have any thermalmotion. A granularma-
terial is therefore frozen in a given configuration if no en-
ergy is injected into the system [104]. However, it can be
forced in a steady state by an external drive, such as shear-
ing or tapping. The dynamics in this steady state shows
remarkable similarities (and differences) with simple flu-
ids. The physics of granular materials is a very wide sub-
ject [104]. In the following we only address briefly what
happens to a polydisperse granular fluid at very high pack-
ing fractions, close to its random close packed state. As for
colloids, the timescales for relaxation or diffusion increase
very fast when density is increased, without any notice-
able change in structural properties. Again, it is now es-
tablished [62,110,127] that many phenomonelogical prop-
erties of the glass and jamming transitions also occur in
granular assemblies. As for colloids, going beyond the
mere analogy and understanding how much these differ-
ent physical systems are related is a very active domain of
research.

This very question has been asked in a visual manner
by Liu andNagel [124] who rephrased it in a single picture,
reproduced in Fig. 4. By building a common phase dia-
gram for glasses, colloids and grains, they ask whether the
glass and jamming transitions of molecular liquids, col-
loids and granular media are different facets of the same
phase. In this unifying ‘phase diagram’, the ‘phase’ close
to the origin is glassy and can be reached either by low-
ering the temperature as in molecular liquids, or increas-
ing the packing fraction or decreasing the external drive in
colloids and granular media. It remains to provide precise
answers to this elegantly formulated, but rather broad, set
of questions.

Other ‘Glasses’ in Physics and Beyond

There are many other physical contexts in which glassi-
ness plays an important role [173]. One of the most fa-
mous examples is the field of spin glasses. Real spin glasses
are magnetic impurities interacting by quenched ran-
dom couplings. At low temperatures, their dynamics be-
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Figure 4
The ‘great unification’ phase diagramof jamming and glass tran-
sitions [124]. Glassy phases occur at low temperature, low exter-
nal drive, or high density in different systems

come extremely slow and they freeze in amorphous spin
configuration dubbed a ‘spin glass’ by P.W. Anderson.
There are many other physical systems, often character-
ized by quenched disorder, that show glassy behaviour,
like Coulomb glasses, Bose glasses, etc. In many cases,
however, one does expect quite a different physics from
structural glasses: the similarity between these systems is
therefore only qualitative.

Finally, and quite remarkably, glassiness emerges even
in other branches of science [55]. In particular, it has been
discovered recently that concepts and techniques devel-
oped for glassy systems turn out to apply and be very
useful tools in the field of computer science. Problems
like combinatorial optimization display phenomena com-
pletely analogous to phase transitions, actually, to glassy
phase transitions. A posteriori, this is quite natural, be-
cause a typical optimization problem consists in finding
a solution in a presence of a large number of constraints.
This can be defined, for instance, as a set of N Boolean
variables that satisfies M constraints. For N and M very
large at fixed ˛ D M/N, this problem very much resem-
bles finding a ground state in a statistical mechanics prob-
lem with quenched disorder. Indeed one can define an en-
ergy function (a Hamiltonian) as the number of unsatis-
fied constraints, that has to be minimized, as in a T D 0

statmech problem. The connection with glassy systems
origins from the fact that in both cases the energy land-
scape is extremely complicated, full of minima and sad-
dles. The fraction of constraints per degree of freedom, ˛,
plays a role similar to the density in a hard sphere system.
A detailed presentation of the relationship between opti-
mization problems and glassy systems is clearly out of the
scope of the present review. We simply illustrate it point-
ing out that a central problem in optimization, random k-
satisfiability, has been shown to undergo a glass transition
when ˛ increases that is analogous to the one of structural
glasses [117].

Numerical Simulations

Studying the glass transition of molecular liquids at a mi-
croscopic level is in principle straightforward since one
must answer a very simple question: how do particles
move in a liquid close to Tg? It is of course a daunting task
to attempt answering this question experimentally because
one should then resolve the dynamics of single molecules
to be able to follow the trajectories of objects that are a few
Angstroms large on timescales of tens or hundreds of sec-
onds, which sounds like eternity when compared to typ-
ical molecular dynamics usually lying in the picosecond
regime. In recent years, such direct experimental investi-
gations have been started using time and space resolved
techniques such as atomic force microscopy [161] or single
molecule spectroscopy [3], but this remains a very difficult
task.

In numerical simulations, by contrast, the trajectory of
each particle in the system can, by construction, be fol-
lowed at all times. This allows one to quantify easily sin-
gle particle dynamics, as proved in Fig. 5 where the aver-
agedmean-squared displacement�(t) measured in a sim-
ple Lennard-Jones glass-former is shown. It is defined by

�(t) D

*
1
N

NX

iD1

jri (t) � ri (0)j2
+

;

where ri(t) represents the position of particle i at time t
in a system composed of N particles; the brackets indi-
cate an ensemble average. The particle displacements con-
siderably slow down when T is decreased and the self-
diffusion constant decreases by orders of magnitude, mir-
roring the behaviour of the viscosity shown in Fig. 1 for
real systems. Moreover, a rich dynamics is observed, with
a plateau regime at intermediate timescales, correspond-
ing to an extended time window during which particles
vibrate around their initial positions, exactly as in a crys-
talline solid. The difference with a crystal is of course that
this localization is only transient, and all particles eventu-
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Figure 5
Mean-squared displacements of individual particles in a simple
model of a glass-forming liquid composed of Lennard-Jones par-
ticles observed on a wide time window. When temperature de-
creases (from left to right), the particle displacements become
increasingly slowwith several distinct time regimes correspond-
ing, in this order, to ballistic, localized, and diffusive regimes

ally escape and diffuse at long times with a diffusion con-
stant Ds, so that�(t) � 6Dst when t !1.

In recent years, computer experiments have played an
increasingly important role in glass transition studies. It
could almost be said that particle trajectories in numeri-
cal work have been studied under so many different an-
gles that probably very little remains to be learnt from
such studies in the regime that is presently accessible using
present day computers. Unfortunately, this does not imply
complete knowledge of the physics of supercooled liquids.
As shown in Fig. 5, it is presently possible to follow the
dynamics of a simple glass-forming liquid over more than
eight decades of time, and over a temperature window in
which average relaxation timescales increase by more than
five decades. This might sound impressive, but a quick
look at Fig. 1 shows, however, that at the lowest temper-
atures studied in the computer, the relaxation timescales
are still orders of magnitude faster than in experiments
performed close to the glass transition temperature. They
can be directly compared to experiments performed in this
high temperature regime, but this also implies that sim-
ulations focus on a relaxation regime that is about eight
to ten decades of times faster than in experiments per-
formed close to Tg.Whether numerical works are useful to
understand the glass transition itself at all is therefore an
open, widely debated, question. We believe that it is now
possible to numerically access temperatures which are low
enough that many features associated to the glass transi-
tion physics can be observed: strong decoupling phenom-
ena, clear deviations from fits to the mode-coupling the-
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Figure 6
Intermediate scattering function at wavevector 1.7 Å�1 for the
Si particles at T = 2750K obtained frommolecular dynamics sim-
ulations of a model for silica [98]

ory (which are experimentally known to hold only at high
temperatures), and crossovers towards truly activated dy-
namics.

Classical computer simulations of supercooled liquids
usually proceed by solving a cleverly discretized version
of Newton’s equations for a given potential interaction
between particles [4]. If quantitative agreement with ex-
perimental data on an existing specific material is sought,
the interaction must be carefully chosen in order to re-
produce reality, for instance by combining classical to ab
initio simulations. From a more fundamental perspective
one rather seeks the simplest model that is still able to
reproduce qualitatively the phenomenology of real glass-
formers, while being considerably simpler to study. The
implicit, but quite strong, hypothesis is that molecular de-
tails are not needed to explain the behaviour of super-
cooled liquids, so that the glass transition is indeed a topic
for statistical mechanics, not for chemistry. A considerable
amount of work has therefore been dedicated to studying
models such as hard spheres, soft spheres, or Lennard-
Jones particles. More realistic materials are also studied
focusing for instance on the physics of network forming
materials, multi-component ones, anisotropic particles, or
molecules with internal degrees of freedom. Connections
to experimental work can be made by computing quanti-
ties that are experimentally accessible such as the interme-
diate scattering function, static structure factors, S(q), or
thermodynamic quantities such specific heat or configura-
tional entropy, which are directly obtained from particle
trajectories and can be measured in experiments as well.
As an example we show in Fig. 6 the intermediate scatter-
ing function F(q; t) obtained from a molecular dynamics
simulation of a classical model for SiO2 as a function of
time for different temperatures [98].

An important role is played by simulations also be-
cause a large variety of dynamic and static quantities can



4218 G Glasses and Aging, A Statistical Mechanics Perspective on

be simultanously measured in a single model system. As
we shall discuss below, there exist scores of different theo-
retical approaches to describe the physics of glass-formers,
and they sometimes have their own set of predictions that
can be readily tested by numerical work. Indeed, quite
a large amount of numerical papers have been dedicated to
testing in detail the predictions formulated by the mode-
coupling theory of the glass transition, as reviewed re-
cently in [94]. Here, computer simulations are particularly
well-suited as the theory specifically addresses the rela-
tively high temperature window that is studied in com-
puter simulations.

While Newtonian dynamics is mainly used in numeri-
cal work on supercooled liquids, amost appropriate choice
for these materials, it can be interesting to consider alter-
native dynamics that are not deterministic, or which do
not conserve the energy. In colloidal glasses and phys-
ical gels, for instance, particles undergo Brownian mo-
tion arising from collisions with molecules in the solvent,
and a stochastic dynamics is more appropriate. Theoret-
ical considerations might also suggest the study of dif-
ferent sorts of dynamics for a given interaction between
particles, for instance, to assess the role of conservation
laws and structural information. Of course, if a given dy-
namics satisfies detailed balance with respect to the Boltz-
mann distribution, all structural quantities remain un-
changed, but the resulting dynamical behaviour might be
very different. Several papers [27,88,153] have studied in
detail the influence of the chosen microscopic dynamics
on the dynamical behaviour in glass-formers using either
stochastic dynamics (where a friction term and a random
noise are added to Newton’s equations, the amplitude of
both terms being related by a fluctuation-dissipation the-
orem), Brownian dynamics (in which there are no mo-
menta, and positions evolve with Langevin dynamics), or
Monte-Carlo dynamics (where the potential energy be-
tween two configurations is used to accept or reject a trial
move). Quite surprisingly, the equivalence between these
three types of stochastic dynamics and the originally stud-
ied Newtonian dynamics was established at the level of
the averaged dynamical behaviour [27,88,153], except at
very short times where obvious differences are indeed ex-
pected. This strongly suggests that an explanation for the
appearance of slow dynamics in these materials originates
from their amorphous structure. However, important dif-
ferences were found when dynamic fluctuations were con-
sidered [21,22,27], even in the long-time regime compris-
ing the structural relaxation.

Another crucial advantage of molecular simulations is
illustrated in Fig. 7. This figure shows a spatial map of sin-
gle particle displacements recorded during the simulation
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Figure 7
Spatial map of single particle displacements in the simulation
of a binary mixture of soft spheres in two dimensions [99]. Ar-
rows show the displacement of each particle in a trajectory of
length about 10 times the structural relaxation time. The map
reveals the existence of particleswith differentmobilities during
relaxation, but also the existence of spatial correlations between
these dynamic fluctuations

of a binary soft sphere system in two dimensions [99]. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynam-
ics might be very different from one particle to another.
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of non-trivial spatio-temporal
fluctuations in supercooled liquids is now called ‘dynamic
heterogeneity’ [72]. This is the phenomenon we discuss in
more detail in the next section.

Dynamic Heterogeneity

Existence of Spatio-temporal Dynamic Fluctuations

A new facet of the relaxational behaviour of supercooled
liquids has emerged in the last decade thanks to a consid-
erable experimental and theoretical effort. It is called ‘dy-
namic heterogeneity’ (DH), and plays now a central role
in modern descriptions of glassy liquids [72]. As antici-
pated in the previous section, the phenomenon of dynamic
heterogeneity is related to the spatio-temporal fluctuations
of the dynamics. Initial motivations stemmed from the
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search for an explanation of the non-exponentiality of re-
laxation processes in supercooled liquids, related to the ex-
istence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.
(1) The relaxation is locally exponential, but the typical re-
laxation timescale varies spatially. Hence, global correla-
tion or response functions become non-exponential upon
spatial averaging over this spatial distribution of relaxation
times. (2) The relaxation is complicated and inherently
non-exponential, even locally. Experimental and theoreti-
cal works [72] suggest that both mechanisms are likely at
play, but definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and slower than
the average. Since supercooled liquids are ergodic mate-
rials, a slow region will eventually become fast, and vice
versa. A physical characterization of DH entails the deter-
mination of the typical lifetime of the heterogeneities, as
well as their typical lengthscale.

A clear and more direct confirmation of the heteroge-
nous character of the dynamics also stems from simu-
lation studies. For example, whereas the simulated aver-
age mean-squared displacements are smooth functions of
time, time signals for individual particles clearly exhibit
specific features that are not observed unless dynamics is
resolved both in space and time. These features are dis-
played in Fig. 8. What do we see? We mainly observe that
particle trajectories are not smooth but rather composed
of a succession of long periods of time where particles
simply vibrate around well-defined locations, separated by
rapid ‘jumps’. Vibrations were previously inferred from
the plateau observed at intermediate times in the mean-
squared displacements of Fig. 5, but the existence of jumps
that are clearly statistically widely distributed in time can-
not be guessed from averaged quantities only. The fluctu-
ations in Fig. 8 suggest, and direct measurements confirm,
the importance played by fluctuations around the averaged
dynamical behaviour.

A simple type of such fluctuations has been studied in
much detail. When looking at Fig. 8, it is indeed natural to
ask, for any given time, what is the distribution of parti-
cle displacements. This is quantified by the self-part of the
van-Hove function defined as

Gs(r; t) D

*
1
N

NX

iD1

ı(r � [ri (t) � ri (0)])

+

:

For an isotropic Gaussian diffusive process, one gets
Gs(r; t) D exp(�jrj2/(4Ds t))/(4�Dst)3/2. Simulations re-
veal instead strong deviations from Gaussian behaviour
on the timescales relevant for structural relaxation [116].
In particular they reveal ‘fat’ tails in the distributions that
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Figure 8
Time resolved squared displacements of individual particles in
a simple model of a glass-forming liquid composed of Lennard-
Jones particles. The average is shown as a smooth full line. Tra-
jectories are composed of long periods of time duringwhich par-
ticles vibrate around well-defined positions, separated by rapid
jumps that are widely distributed in time underlying the impor-
tance of dynamic fluctuations

are much wider than expected from the Gaussian approx-
imation. These tails are in fact well described by an ex-
ponential, rather than Gaussian, decay in a wide time
window comprising the structural relaxation, such that
Gs(r; t) � exp(�jrj/(t)) [51]. Thus, they reflect the exis-
tence of a population of particles that moves distinctively
further than the rest and appears therefore to be much
more mobile. This observation implies that relaxation in
a viscous liquid differs qualitatively from that of a normal
liquid where diffusion is close to Gaussian, and that a non-
trivial statistics of single particle displacements exists.

A long series of questions immediately follows this
seemingly simple observation. Answering them has been
the main occupation of many workers in this field over
the last decade. What are the particles in the tails effec-
tively doing? Why are they faster than the rest? Are they
located randomly in space or do they cluster? What is
the geometry, time and temperature evolution of the clus-
ters? Are these spatial fluctuations correlated to geomet-
ric or thermodynamic properties of the liquids? Do sim-
ilar correlations occur in all glassy materials? Can one
predict these fluctuations theoretically? Can one under-
stand glassy phenomenology using fluctuation-based ar-
guments? Can these fluctuations be detected experimen-
tally?

Another influential phenomenon that was related early
on to the existence of DH is the decoupling of self-
diffusion (Ds) and viscosity (�). In the high tempera-
ture liquid self-diffusion and viscosity are related by the
Stokes–Einstein relation [95], Ds�/T D const. For a large
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Figure 9
Decoupling between viscosity (full line) and self-diffusion co-
efficient (symbols) in supercooled ortho-terphenyl [126] The
dashed line shows a fit with a ‘fractional’ Stokes–Einstein rela-
tion, Ds � (T/�)� with � � 0:82

particle moving in a fluid the constant is equal to 1/(6�R)
where R is the particle radius. Physically, the Stokes–
Einstein relation means that two different measures of
the relaxation time R2/Ds and �R3/T lead to the same
timescale up to a constant factor. In supercooled liquids
this phenomenological law breaks down, as shown in Fig. 9
for ortho-terphenyl [126]. It is commonly found that D�1s
does not increase as fast as � so that, at Tg, the product
Ds� has increased by 2–3 orders of magnitude as com-
pared to its Stokes–Einstein value. This phenomenon, al-
though less spectacular than the overall change of viscos-
ity, is a significative indication that different ways to mea-
sure relaxation times lead to different answers and, thus, is
a strong hint of the existence of a distribution of relaxation
timescales.

Indeed, a natural explanation of this effect is that dif-
ferent observables probe differently way the underlying
distribution of relaxation times [72]. For example, the self-
diffusion coefficient of tracer particles is dominated by the
more mobile particles whereas the viscosity or other mea-
sures of structural relaxation probe the timescale needed
for every particle to move. An unrealistic but instructive
example is a model where there is a small, non-percolative
subset of particles that are blocked forever, coexisting with
a majority of mobile particles. In this case, the structure
never relaxes but the self-diffusion coefficient is non-zero
because of themobile particles. Of course, in reality all par-
ticles move, eventually, but this shows how different ob-
servables are likely to probe different moments of the dis-
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Figure 10
Time series of polarization in the AFM experiment performed by
Vidal Russell and Israeloff [161] on PVAc at T =300K. The sig-
nal intermittently switches between periodswith fast or slowdy-
namics, suggesting that extended regions of space indeed tran-
siently behave as fast and slow regions

tribution of timescales, as explicitely shown within several
theoretical frameworks [106,154].

The phenomena described above, although certainly
an indication of spatio-temporal fluctuations, do not al-
low one to study how these fluctuations are correlated in
space. This is, however, a fundamental issue both from
the experimental and theoretical points of view. How
large are the regions that are faster or slower than the
average? How does their size depend on temperature?
Are these regions compact or fractal? These important
questions were first addressed in pioneering works us-
ing four-dimensional NMR [160], or by directly prob-
ing fluctuations at the nanoscopic scale using microscopy
techniques. In particular, Vidal Russel and Israeloff us-
ing Atomic Force Microscopy techniques [161] measured
the polarization fluctuations in a volume of size of few
tens of nanometers in a supercooled polymeric liquid
(PVAc) close to Tg. In this spatially resolved measure-
ment, the hope is to probe a small enough number of
dynamically correlated regions, and detect their dynam-
ics. Indeed, the signal shown in Fig. 10 shows a dynamics
which is very intermittent in time, the dynamics switch-
ing between moments with intense activity, and moments
with no dynamics at all, suggesting that extended regions
of space indeed transiently behave as fast and slow re-
gions. A much smoother signal would have been mea-
sured if these such dynamically correlated ‘domains’ were
not present. Spatially resolved and NMR experiments are
quite difficult. They give undisputed information about
the typical lifetime of the DH, but their determination
of a dynamic correlation lengthscale is rather indirect
and/or performed on a small number of liquids in a small
temperature window. Nevertheless, the outcome is that
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a non-trivial dynamic correlation length emerges at the
glass transition, where it reaches a value of the order of
5–10 molecule diameters [72].

Multi-point Correlation Functions

More recently, substantial progress in characterizing
spatio-temporal dynamical fluctuations was obtained
from theoretical [21,22,79,159] and numerical results [14,
28,76,99,172]. In particular, it is now understood that dy-
namical fluctuations can be measured and characterized
through the use of four-point correlation functions. These
multi-point functions can be seen as a generalization of
the spin glass susceptibility measuring the extent of amor-
phous long-range order in spin glasses. In this subsection,
we introduce these correlation functions and summarize
the main results obtained using them.

Standard experimental probes of the averaged dynam-
ics of liquids give access to the time-dependent auto-cor-
relation function of the spontaneous fluctuations of some
observable O(t), F(t) D hıO(0)ıO(t)i, where ıO(t) D
O(t)� hOi represents the instantaneous value of the devi-
ation of O(t) from its ensemble average hOi at time t. One
can think of F(t) as being the average of a two-point quan-
tity, C(0; t) D ıO(0)ıO(t), characterizing the dynamics.
A standard example corresponds to O being equal to the
Fourier transform of the density field. In this case F(t) is
the dynamical structure factor as in Eq. (2). More gener-
ally, the correlation functions F(t) measure the global re-
laxation in the system. Intuitively, in a system with impor-
tant dynamic correlations, the fluctuations of C(0; t) will
be stronger. Quantitative information on the amplitude of
those fluctuations is provided by the variance

�4(t) D N
˝
ıC(0; t)2

˛
; (3)

where ıC(0; t) D C(0; t) � F(t), and N is the total num-
ber of particles in the system. The associated spatial cor-
relations show up more clearly when considering a ‘local’
probe of the dynamics, like for instance an orientational
correlation function measured by dielectric or light scat-
tering experiments, which can be expressed as

C(0; t) D
1
V

Z
d3rc(r; 0; t) ; (4)

where V is the volume of the sample and c(r; 0; t) char-
acterizes the dynamics between times 0 and t around
point r. For example, in the above mentioned case of
orientational correlations, c(r; 0; t) / V

N
PN

i; jD1 ı(r �
ri)Y(˝i (0))Y(˝ j (t)), where ˝i denotes the angles de-
scribing the orientation of molecule i, ri(0) is the posi-
tion of that molecule at time 0, and Y(˝) is some appro-
priate rotation matrix element. Here, the ‘locality’ of the
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Figure 11
Time dependence of�4(t) quantifying the spontaneous fluctua-
tions of the intermediate scattering function in a Lennard-Jones
supercooled liquid. For each temperature,�4(t) has amaximum,
which shifts to larger times and has a larger value when T is de-
creased, revealing the increasing lengthscale of dynamic hetero-
geneity in supercooled liquids approaching the glass transition

probe comes from the fact that it is dominated by the self-
term involving the same molecule at times 0 and t, or by
the contribution coming from neighboringmolecules. The
dynamic susceptibility �4(t) can thus be rewritten as

�4(t) D �
Z

d3rG4(r; 0; t) ; (5)

where

G4(r; 0; t) D hıc(0; 0; t)ıc(r; 0; t)i ; (6)

and translational invariance has been taken into account
(� D N/V denotes the mean density). The above equa-
tions show that �4(t) measures the extent of spatial cor-
relation between dynamical events between times 0 and t
at different points of the system, i. e., the spatial extent of
dynamically heterogeneous regions over a time span t.

The function �4(t) has been measured by molecular
dynamics, Brownian and Monte Carlo simulations in dif-
ferent liquids [14,28,29,76,163]. An example is shown in
Fig. 11 for a Lennard-Jones liquid. The qualitative be-
haviour is similar in all cases [21,79,159]: as a function
of time �4(t) first increases, it has a peak on a timescale
that tracks the structural relaxation timescale and then
it decreases2. The peak value measures thus the volume

2The decrease at long times constitutes a major difference with
spin glasses. In a spin glass, �4 would be a monotonically increasing
function of time whose long-time limit coincides with the static spin
glass susceptibility. Physically, the difference is that spin glasses de-
velop long-range static amorphous order while structual glasses do
not or, at least, in a different and more subtle way.
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on which the structural relaxation processes are corre-
lated. It is found to increase when the temperature de-
creases and the dynamics slows down. By measuring di-
rectly G4(r; 0; t) it has also been checked that the increase
of the peak of �4(t) corresponds, as expected, to a growing
dynamic lengthscale � [14,21,28], although thesemeasure-
ments are much harder in computer simulations, because
very large systems need to be simulated to determine � un-
ambiguously. Note that if the dynamically correlated re-
gions were compact, the peak of �4 would be proportional
to �3 in three dimensions, directly relating �4 measure-
ments to that of the relevant lengthscale of DH.

These results are also relevant because many theories
of the glass transition assume or predict, in a way or an-
other, that the dynamics slows down because there are in-
creasingly large regions on which particles have to relax in
a correlated or cooperative way. However, this lengthscale
remained elusive for a long time. Measures of the spatial
extent of dynamic heterogeneity, in particular �4(t) and
G4(r; 0; t), seem to provide the long-sought evidence of
this phenomenon. This in turn suggests that the glass tran-
sition is indeed a critical phenomenon characterized by
growing timescales and lengthscales. A clear and conclu-
sive understanding of the relationship between the length-
scale obtained from G4(r; 0; t) and the relaxation timescale
is still the focus of an intense research activity.

One major issue is that obtaining information on the
behaviour of �4(t) and G4(r; 0; t) from experiments is dif-
ficult. Such measurements are necessary because numeri-
cal simulations can only be performed rather far from Tg,
see Sect. “Numerical Simulations”. Up to now, direct ex-
perimental measurements of �4(t) have been restricted to
colloidal [166] and granular materials [65,110] close to the
jamming transition, because dynamics is more easily spa-
tially resolved in those cases. Unfortunately, similar mea-
surements are currently not available in molecular liquids.

Recently, an approach based on fluctuation-dissi-
pation relations and rigorous inequalities has been devel-
oped in order to overcome this difficulty [20,21,22]. The
main idea is to obtain a rigorous lower bound on �4(t)
using the Cauchy–Schwarz inequality hıH(0)ıC(0; t)i2 �˝
ıH(0)2

˛ ˝
ıC(0; t)2

˛
, where H(t) denotes the enthalpy at

time t. By using fluctuation-dissipation relations the pre-
vious inequality can be rewritten as [20]

�4(t) �
KBT2

cP

�
�T(t)

�2
; (7)

where the multi-point response function �T (t) is defined
by

�T (t) D
@F(t)
@T

ˇ̌
ˇ̌
N;P
D

N
KBT2 hıH(0)ıC(0; t)i :
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Figure 12
Universal dynamic scaling relation between number of dynam-
ically correlated particles, Ncorr;4, and relaxation timescale, �˛,
for a number of glass-formers [63], determined using Eq. (7)

In this way, the experimentally accessible response �T (t)
which quantifies the sensitivity of average correlation
functions F(t) to an infinitesimal temperature change, can
be used in Eq. (7) to yield a lower bound on �4(t). More-
over, detailed numerical simulations and theoretical argu-
ments [21,22] strongly suggest that the right hand side of
(7) actually provides a good estimation of �4(t), not just
a lower bound.

Using this method, Dalle-Ferrier et al. [63] have been
able to obtain the evolution of the peak value of �4 for
many different glass-formers in the entire supercooled
regime. In Fig. 12 we show some of these results as a func-
tion of the relaxation timescale. The value on the y-axis,
the peak of �4, is a proxy for the number of molecules,
Ncorr;4 that have to evolve in a correlated way in order to
relax the structure of the liquid. Note that �4 is expected to
be equal to Ncorr;4, up to a proportionality constant which
is not known from experiments, probably explaining why
the high temperature values of Ncorr;4 are smaller than one.
Figure 12 also indicates that Ncorr;4 grows faster when �˛
is not very large, close to the onset of slow dynamics, and
a power law relationship between Ncorr;4 and �˛ is good
in this regime (�˛/�0 < 104). The growth of Ncorr;4 be-
comes much slower closer to Tg. A change of 6 decades
in time corresponds to a mere increase of a factor about
4 of Ncorr;4, suggesting logarithmic rather than power law
growth of dynamic correlations. This is in agreement with
several theories of the glass transition which are based on
activated dynamic scaling [85,155,171].

Understanding quantitatively this relation between
timescales and lengthscales is one of the main recent
topics addressed in theories of the glass transition, see
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Sect. “Some Theory andModels”. Furthermore, numerical
works are also devoted to characterizing better the geom-
etry of the dynamically heterogeneous regions [7,69].

Some Theory andModels

We now present some theoretical approaches to the glass
transition. It is impossible to cover all of them in a brief
review, simply because there are way too many of them,
perhaps the clearest indication that the glass transition re-
mains an open problem.We choose to present approaches
that are keystones and have a solid statistical mechanics
basis. Loosely speaking, they have an Hamiltonian, can be
simulated numerically, or studied analytically with statis-
tical tools. Of course, the choice of Hamiltonians is cru-
cial and contains very important assumptions about the
nature of the glass transition. All these approaches have
given rise to unexpected results. One finds more in them
than what was supposed at the beginning, which leads to
new, testable predictions. Furthermore, with models that
are precise enough, one can test (and hopefully falsify!)
these approaches by working out all their predictions in
great detail, and comparing the outcome to experimental
data. This is not possible with ‘physical pictures’, or sim-
pler approaches of the problem which we have therefore
avoided.

Before going into themodels, we would like to state the
few important questions that face theoreticians.

� Why do the relaxation time and the viscosity increase
when Tg is approached? Why is this growth super-
Arrhenius?

� Can one understand and describe quantitatively the
average dynamical behaviour of supercooled liquids,
in particular broad relaxation spectra, non-exponential
behaviour, and their evolution with fragility?

� Is there a relation between kinetics and thermodynam-
ics (like T0 ' TK), and why?

� Can one understand and describe quantitatively the
spatio-temporal fluctuations of the dynamics? How
and why are these fluctuations related to the dynamic
slowing down?

� Is the glass transition a collective phenomenon? If yes,
of which kind? Is there a finite temperature or zero tem-
perature ideal glass transition? In this case, is the tran-
sition of static or purely dynamic origin?

� Is there a geometric, real space explanation for the dy-
namic slowing down that takes into account molecular
degrees of freedom?

The glass transition appears as a kind of ‘intermediate cou-
pling’ problem, since for instance typical growing length-

scales are found to be at most a few tens of particle large
close to Tg. It would therefore be difficult to recognize the
correct theory even if one bumped into it. To obtain quan-
titative, testable predictions, one must therefore be able to
work out also preasymptotic effects. This is particularly
difficult, especially in cases where the asymptotic theory
itself has not satisfactorily been worked out. As a conse-
quence, at this time, theories can only be judged by their
overall predictive power and their theoretical consistency.

Cooperativity, Chaotic Energy Landscapes
and Random First Order Theory

In the last two decades, three independent lines of research
approaches, Adam–Gibbs theory [2], mode-coupling the-
ory [94] and spin glass theory [137], have merged to pro-
duce a theoretical ensemble that now goes under the name
of Random First Order Theory (RFOT), a terminology in-
troduced by Kirkpatrick, Thirumalai and Wolynes [111]
who also played a major role in its development. Instead
of following the rambling development of history, we sum-
marize it in a more modern and unified way.

A key ingredient of RFOT is the existence of a chaotic
or complex free energy landscape and its evolution with
temperature and/or density. Analysing it in a controlled
way for three dimensional interacting particles system is of
course an impossible task. This can be achieved, however,
in simplified models or using mean-field approximation,
that have therefore played a crucial role in the develop-
ment of RFOT.

A first, concrete example is given by ‘lattice glass mod-
els’ [37]. These are models containing hard particles sit-
ting on the sites of a lattice. The Hamiltonian is infinite if
there is more than one particle on a site or if the number of
occupied neighbors of an occupied site is larger than a pa-
rameter, m, but the Hamiltonian is zero otherwise. Tun-
ing the parameter m, or changing the type of lattice, in
particular its connectivity, yields different models. Lattice
glasses are constructed as simple statmechmodels to study
the glassiness of hard sphere systems. The constraint on
the number of occupied neighbors mimicks the geometric
frustration [139] encountered when trying to pack hard
spheres in three dimensions. Other models, which have
a finite energy and, hence, are closer to molecular glass-
formers, can be also constructed [131]. These models can
be solved exactly on a Bethe lattice3, which reveals an as-
tonishing physical behaviour [147]. In particular their free
energy landscape can be analyzed in full details and turns

3In order to have a well-defined thermodynamics, Bethe lattices
are generated as random graphs with fixed connectivity, also called
random regular graphs.
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out to have the properties that are also found in several
‘generalized spin glasses’.

Probably themost studied example of such spin glasses
is the p-spin model, defined by the Hamiltonian [93]

H D �
X

i1;:::;i p

Ji1;:::;i p Si1 : : : Sip ; (8)

where the Sis are Ising or spherical spins, p > 2 and
Ji1;:::;i p quenched random couplings with zero mean vari-
ance p!/(2Np�1).

All thesemodels (lattice glasses, their finite energy gen-
eralizations and their quenched disorder counterparts) be-
long the class of one-step replica symmetry breaking sys-
tems [137]. This makes reference to the ansatz that is
needed [93] when replica techniques are used to compute
the thermodynamic behaviour of the model in Eq. (8).
This corresponds to the universality class of chaotic (or
random) free energy landscapes, as we now explain.

The free energy landscape of these systems is ‘rugged’,
characterized by many minima and saddle points. Ac-
tually, the number of stationary points is so large that
in order to count them one has to introduce an en-
tropy, called configurational entropy or complexity, sc D
1/N logN ( f ), where N ( f ) is the number of stationary
points with a given free energy density f . The density pro-
file corresponding to one given minimum is amorphous
and lacks any type of periodic long-range order, and differ-
ent mimima are very different. Defining a similarity mea-
sure between them, an ‘overlap’, one typically finds that
two minima with the same free energy f have zero overlap.
The typical shape of the configurational entropy as a func-
tion of f is plotted in Fig 13.

At high temperature, there is typically a single mini-
mum, the high temperature liquid state. There is a tem-
perature below which an exponentially large (in the sys-
tem size) number of minima appears. Within mean-field
models, corresponding to Bethe or completely connected
lattices, these minima correspond to macroscopic physi-
cal states analogous to the periodic minimum correspond-
ing to the crystal4. Once the system is in one of these
states it remains trapped in it forever, since barriers sep-
arating states diverge with the system size. However, when
transposed to finite dimensional systems, these states be-
come metastable and have a finite lifetime. As a conse-
quence, in order to compute thermodynamic properties,
one has to sum over all of them using the Boltzmann

4There is of course no crystal state in disordered systems such as
in Eq. (8). In the case of lattice glass models, there is a crystal phase
but it can disappear depending whether the Bethe lattice is a Cayley
tree or a random regular graph.
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Figure 13
Typical shape of the configurational entropy, sc, as a function
of free energy density, f in the range Tk < T < TMCT for random
first order landscapes. A graphic solution of Eq. (10) is obtained
by finding the value of f at which the slope of the curve is ˇ.
Note that sc is also a function of temperature, so this curve in
fact changes with T

weight exp(�ˇN f˛) for each state ˛ [135]:

Z D
X

˛

e�ˇN f˛ D

Z
d f exp[Nsc( f ; T)]e�ˇN f ; (9)

where ˇ D 1/(KBT). Evaluating this sum by saddle point
method yields three regimes. At high temperature, T >

TMCT, the liquid corresponding to a flat density profile
dominates the sum. The landscape is simple and has a sin-
gle minimum. This is followed by an intermediate tem-
perature regime, TK < T < TMCT, where the sum is dom-
inated by all terms with free energy density satisfying

@sc( f ; T)
@ f

ˇ̌
ˇ
ˇ
fD f �

D ˇ : (10)

There aremany of them, the logarithm of their number be-
ing given by Nsc( f �; T), see Fig. 13 for a graphical solution
of Eq. (10). Upon decreasing the temperature, sc( f �; T)
decreases until a temperature, TK, below which the sum
in Eq. (9) becomes dominated by only few terms corre-
sponding to states with free energy density f K given by
sc( fK; T) D 0, see Fig. 13. The entropy in the intermedi-
ate temperature range above TK has two contributions:
the one counting the number of minima, given by sc, and
the intra-state entropy, sin, counting the number config-
urations inside each state. At TK, the configurational en-
tropy vanishes, sc(TK) D 0, As a consequence the specific
heat undergoes a jump towards a smaller value across TK,
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an exact realization of the ‘entropy vanishing’ mechanism
conjectured by Kauzmann [108].

Let us discuss the dynamical behaviour which results
from the above analysis. We have already mentioned that
relaxation processes do not occur below TMCT because
states have an infinite lifetime. The stability of these states
can be analyzed by computing the free energy Hessian in
theminima [48]. One finds that states becomemore fragile
when T ! T�MCT, are marginally stable at T D TMCT, un-
stable for T > TMCT. The dynamics of thesemodels can be
analyzed exactly [58]. Coming from high temperature, the
dynamics slows down and the relaxation time diverges at
TMCT in a power law manner,

�˛ �
1

(T � TMCT)�
; (11)

where � is a critical exponent. The physical reason is the
incipient stable states that appear close toTMCT. The closer
the temperature is to TMCT, the longer it takes to find an
unstable direction to relax.

Amazingly, the dynamical transition that appears up-
on approaching TMCT in random first order landscapes
is completely analogous to the one predicted to occur in
supercooled liquids by the Mode-Coupling Theory of the
glass transition, and developed independently by Leut-
hesser, Bengtzelius, Götze, Sjölander and coworkers [94].
Actually, MCT can be considered as an approximation
which becomes controlled and exact for these mean-field
models. Originally, MCT was developed using projec-
tor operator formalism [13,122] and field-theory meth-
ods [64] to yield closed integro-differential equations for
the dynamical structure factor in supercooled liquids.
These approaches were recently generalized [34,36] to deal
with dynamic heterogeneity and make predictions for the
multi-point susceptibilities and correlation functions dis-
cussed in Sect. “Dynamic Heterogeneity”. Within MCT,
the relaxation timescale diverges in a power law fashion
at TMCT, as in Eq. (11). This divergence is accompanied by
critical behaviour that appears both in space (long range
spatial dynamic correlations), and in time (power laws in
time).

Comparing Eqs. (1) and (11) makes it clear that MCT
cannot be used to describe viscosity data close toTg since it
does not predict activated behaviour. It is now recognized
that an MCT transition at TMCT does not occur in real
materials, so that TMCT is, at best, a dynamical crossover.
A central advantage ofMCT, compared tomany other the-
ories (this includes the T � TK regime of RFOT itself) is
that it can yield quantitative predictions from microscopic
input obtained for a particular material. As such it has
been applied to yield predictions for scores of different sys-

tems that can be directly confronted to experimental or
numerical measurements. A major drawback is the free-
dom offered by the ‘crossover’ nature of the MCT tran-
sition, so that ‘negative’ results can often be attributed to
corrections to asymptotic predictions rather than deficien-
cies of the theory itself. Nevertheless, MCT has proven to
be useful and continues to be developed, applied and gen-
eralized to study many different physical situations [94],
including aging systems and non-linear rheology of glassy
materials [18,83,134], see Sect. “Aging and Off-equilib-
rium”.

What happens below TMCT in finite dimensional sys-
tem if the relaxation time does not diverge as predicted in
Eq. (11)?Why is the transition avoided? In fact, the pletora
of states that one finds in mean-field are expected to be-
come (at best) metastable in finite dimension, with a finite
lifetime, even below TMCT. What is their typical lifetime,
and how these metastable states are related to the struc-
tural relaxation are issues that still await for a complete
microscopic analysis.

There exist, however, phenomenological arguments
[38,112,171], backed by microscopic computations [71,
80] that yield a possible solution dubbed ‘mosaic state’
by Kirkpatrick, Thirumalai and Wolynes [112]. Schemat-
ically, the mosaic picture states that, in the regime TK <

T < TMCT, the liquid is composed of domains of lin-
ear size � . Inside each domain, the system is in one of
the mean-field states. The length of the domains is fixed
by a competition between energy and configurational en-
tropy. A state in a finite but large region of linear size l can
be selected by appropriate boundary conditions that de-
crease its free energy by an amount which scales as $ l�

with � � 2. On the other hand, the system can gain en-
tropy, which scales as sc l3, if it visits the other numerous
states. Entropy obviously gains on large lengthscales, the
crossover length � being obtained by balancing the two
terms,

� D

�
$

Tsc(T)

�1/(3��)
: (12)

In this scenario, the configurational entropy on scales
smaller than � is too small to stir the configurations effi-
ciently and win over the dynamically generated pinning
field due to the environment, while ergodicity is restored
at larger scale. Hence, the relaxation time of the system is
the relaxation time, �(�), of a finite size regions of the sys-
tem. Barriers are finite, unlike in the mean-field treatment.
Smaller length scales are faster but unable to decorrelate,
whereas larger scales are orders of magnitude slower. As-
suming thermal activation over energy barriers which are
supposed to grow with size as � , one predicts finally, us-
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ing Eq. (12), that [38]

log
�
�˛

�0

�
D c

$

KBT

�
$

Tsc(T)

� /(3��)
; (13)

where c is a constant.
The above argument is rather generic and there-

fore not very predictive. Recent microscopic computa-
tions [71,80] aimed at putting these phenomenological ar-
guments on a firmer basis and computing the exponents �
and . The results are unfortunately not yet conclusive be-
cause they involve replica calculations with uncontrolled
assumptions, but they do confirm the phenomenological
scenario presented above and suggest that � D 2. Some
other phenomenological arguments suggest the value of
� D 3/2 [112]. There are no computation available for  ,
only the suggestion that  D � [112].

Note that using the value � D 3/2 with � D  simpli-
fies Eq. (13) into a form that is well-known experimentally
and relates log �˛ directly to 1/Sc, which is the celebrated
Adam–Gibbs relation [2] between relaxation time and
configurational entropy that is in rather good quantitative
agreement with many experimental results [5,96,105]. The
Random First Order Theory can be considered, therefore,
as a microscopic theory that reformulates and generalizes
the Adam–Gibbs mechanism. Furthermore, using the fact
that the configurational entropy vanishes linearly at TK
one predicts also a VFT divergence of the relaxation time
as in Eq. (1), with the identification that

T0 D TK : (14)

The equality (14) between two temperatures that are
commonly used in the description of experimental data
certainly constitutes a central achievement of RFOT since
it accounts for the empirical relation found between the
kinetics and the thermodynamics of supercooled liquids.
Furthermore RFOT naturally contains MCT, which can be
used to describe the first decades of the dynamical slow-
ing down, while the spin glass side of RFOT qualitatively
explains the dynamics in terms of the peculiar features of
the free energy landscape that have been detailed above.
Dynamics first slows down because there appear incipi-
ent metastable states, and once this metastable states are
formed, the dynamics becomes dominated by the ther-
mally activated barrier crossing from one metastable state
to another, which is consistent with the relation between
dynamical correlation length and timescale discussed in
Sect. “DynamicHeterogeneity”. Quite importantly, micro-
scopic computations of TMCT and T0 for realistic mod-
els of liquids are possible [136]. Remarkably, the jamming
transition of hard spheres systems has been also studied

with these techniques and a clear connection with the glass
transition has emerged within RFOT [143]. This quantita-
tive “side” of RFOT is a most desirable feature, even if the
results are not always quantitatively accurate [54,138,156].

Probably the most serious weakness of the RFOT con-
struction is that the theory, although worked out in full
details within mean-field models, has remained elusive for
finite dimensional systems, for which it has a highly spec-
ulative flavour. Worrying is the fact that no simple three-
dimensional glassy model, let alone interacting particles in
the continuum, has been discovered, for which this the-
ory has been shown to apply, and the entropy driven nu-
cleation theory that leads to the VFT law is not under-
stood completely. Although the ultimate consequences of
the theory are sometimes in very good agreement with ex-
periments, as Eq. (14), one should not conclude that RFOT
is correct. In fact direct tests of the mosaic state picture are
rare, and rather inconclusive [49]. One can hope that in
the next few years, joint theoretical and experimental ef-
forts will drive RFOT into a corner, to a point where it can
be decided whether it is truly a valid theory for the glass
transition.

Free Volume, Defects, and Facilitated Models

In this subsection we motivate and briefly summarize
studies of a different family of statistical mechanics models
that turns out to yield a rich variety of physical behaviours.
Their starting point are physical assumptions that might
seem similar to the models described in Sect. “Coopera-
tivity, Chaotic Energy Landscapes and Random First Or-
der Theory”, but the outcome yields a different physical
explanation of the glass transition. Although the two theo-
retical approaches cannot be simultaneously correct, they
both have been influential and very instructive in order to
develop a theoretical understanding of glassy phenomena.
Furthermore, despite the ‘great unification’ phase diagram
in Fig. 4, it could be that glass and jamming transitions in
colloids, granularmedia and glass-formers have a different
nature, so that different theories could apply to different
phenomena.

As in Sect. “Cooperativity, Chaotic Energy Landscapes
and Random First Order Theory”, we start from the pack-
ing considerations that are more appropriate for hard
spheres systems. We follow first Kob and Andersen [115]
and again use a lattice gas description of the physics and
work on a three dimensional cubic lattice. As in a hard
sphere system, we assume no interaction between parti-
cles beyond the hard-core constraint that the occupation
number ni at site i is at most equal to 1,

H
�
fnig

�
D 0; ni D 0; 1 : (15)
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Contrary to the lattice glass model presented above, all
configurations respecting the hard-core constraint are al-
lowed and are equally probable. Geometric frustration is
instead introduced at the level of the kinetic rules, that are
defined as constrained local moves. Namely, a particle can
jump to a nearest neighbor site only if that site is empty (to
satisfy the hard-core constraint), but, additionnally, only if
the sites occupied before and after the move have less than
m neighbors,m being an adjustable parameter, which Kob
and Andersen choose as m D 4 for d D 3 (m D 6 corre-
sponds to the unconstrained lattice gas). The model cap-
tures the idea that if the liquid is locally very dense, no
movement is possible while regions with low density move
more easily.

Of course, such kinetically constrained lattice gases
have been studied in various spatial dimensions, for dif-
ferent values of m, for different constraints, or even dif-
ferent lattice geometries [146]. They can be thought of as
models capturing the idea of a ‘cage’ effect in a strict sense,
utilizing the notion that a particle with a dense neighbor
shell cannot diffuse. Although the cage seems a purely lo-
cal concept, it turns out that diffusion in constrained lat-
tice gases arises from cooperative rearrangments, so that
slow dynamics can be directly shown to be driven by
the growth of dynamic lengthscales for these cooperative
moves [77,141,157]. This strongly suggests that such co-
operative moves are most probably at work also in real liq-
uids.

In this lattice gas picture, the connection with liquid
is not obvious because density (‘free volume’), rather than
temperature controls the dynamics. Thermal models with
similar features can in fact be defined along the follow-
ing lines. In a liquid, low temperature implies a very small
probability to find a location with enough free volume to
move. The idea of a small concentration of ‘hot spots’ is
in fact reminiscent of another picture of the glass transi-
tion based on the idea of ‘defects’ which is captured by
the defect model proposed by Glarum [87] in the 60’s,
where relaxation proceeds via the diffusion of a low con-
centration of independent defects. In the mid-80’s, using
the conjugated ideas of kinetic constraints and rare defects,
Fredrickson and Andersen defined a family of kinetic Ising
models for the glass transition [81]. They study an assem-
bly of non-interacting spins,

H[fnig] D
NX

iD1

ni ; ni D 0; 1 ; (16)

where ni D 1 represent the defects, whose concentration
becomes exponentially small at low temperature, hni i �
exp(�1/T). As for the Kob–Andersen lattice gas, the non-

trivial ingredient lies in the chosen rates for the transition
between states. The kinetic rules stipulate that a transition
at site i can happen with a usual Glauber rate, but only if
site i is surrounded by at least k defects (k D 0 corresponds
to the unconstrained limit). Again, one can easily imagine
studying such models in different spatial dimensions, on
different lattices, and with slightly different kinetic rules,
yielding a large number of possible behaviours [125,146].
The similarity between those spin facilitated models and
the kinetically constrained lattice gases is striking. Alto-
gether, they form a large family of models generically
called kinetically constrained models (KCMs) [146].

The connection between KCMs and the much older
concept of free volume is obvious from our presenta-
tion. Free volume models are among the most widely
used models to analyze experimental data, especially in
polymeric systems. They have been thoroughly reviewed
before [53,66], and the main prediction is that dynamic
slowing down occurs because the free volume available
to each particle, vf, vanishes at some temperature T0
as v f � ˛(T � T0), a relation which connects volume to
temperature. Statistical arguments then relate relaxation
timescales to free volume assuming that movement is pos-
sible if locally there is ‘enough’ free volume available,more
than a typical value v0. This is clearly reminiscent of the
above idea of a kinetic constraint for local moves in lattice
gases. An appealing VFT divergence is then predicted:

�˛

�0
� exp

�
�
v0
v f

�
� exp

�
�v0/˛

[T � T0]�

�
; (17)

where � is a numerical factor and � D 1. Predictions
such as Eq. (17) justify the wide use of free volume ap-
proaches, despite the many (justified) criticisms that have
been raised.

Initially it was suggested that KCMs would similarly
display finite temperature or finite density dynamic tran-
sitions similar to the one predicted by the mode-coupling
theory of supercooled liquids [81], but it was soon real-
ized [46,82] that most KCMs do not display such singu-
larity, and timescales in fact only diverge in the limit of
zero temperature (T D 0) ormaximal density (� D 1). Re-
cently, models displaying a T0 > 0 or �0 < 1 transition
have been introduced and analyzed [158]. They provide
a microscopic realization, based on well-defined statistical
mechanics models, of the glass transition predicted by free
volume arguments. Their relaxation timescale diverges
with a VFT-like form but with an exponent� ' 0:64. Un-
derstanding their universality classes and how general is
the mechanism leading to the transition is still an open
problem.
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Extensive studies have shown that KCMs have a mac-
roscopic behaviour which resembles the phenomenology
of supercooled liquids, displaying in particular Arrhenius
or super-Arrhenius increase of relaxation timescales on
decreasing the temperature and non-exponential relax-
ation functions at equilibrium [146]. Early studies also
demonstrated that, when suddenly quenched to very low
temperatures, the subsequent non-equilibrium aging dy-
namics of themodels compares well with experimental ob-
servations on aging liquids [82]. Moreover, the many pos-
sibilities to define the models mean that theymight exhibit
a broad variety of possible behaviours. This is both a pos-
itive and a negative aspect: on the one hand one can ex-
plore various scenarii to describe glass transition phenom-
ena, but on the other hand, one would like to be able to
decide what particular model should be used if one wants
to get a predictive quantitative description for a particular
liquid. In fact, contrary to MCT, no microscopic calcula-
tions have been performed using the framework of KCMs.
Rather than predicting the quantitative behaviour of a ma-
terial in all its microscopic details, it is perhaps more ap-
propriate to use KCMs as theoretical tools to define con-
cepts and obtain new ideas.

It is precisely in this perspective that interest in KCMs
continues to increase, in large part since it it was realized
that their dynamics is spatially heterogeneous [46,77,84],
a central feature of supercooled liquids dynamics. It is only
fair to say that in-depth studies of KCMs have greatly con-
tributed to our theoretical understanding of the spatially
heterogeneous dynamics in glass and jamming problems.
Remarkably, virtually all the aspects related to dynamic
heterogeneity mentioned in Sect. “Dynamic Heterogene-
ity” can be investigated and rationalized, at least qualita-
tively, in terms of KCMs. The dynamics of these systems
can be understood in terms of defects motion [146]. De-
pending on the particular model, defects can diffuse or
have a more complicated motion. Furthermore, they can
simply be point-like, or ‘cooperative’ (formed by point-
like defects moving in a cooperative way). A site can relax
when it is visited by a defect. As a consequence, the het-
erogeneous character of the dynamics is entirely encoded
in the defect configuration and defect motion [84]. For in-
stance, a snapshot similar to Fig. 7 in a KCM shows clus-
ters which have relaxed within the time interval t [26,167].
These are formed by all sites visited by a defect between
0 and t. The other sites are instead frozen in their ini-
tial state. In these models the dynamics slows down be-
cause the defect concentration decreases. As a conse-
quence, in the regime of slow dynamics there are few de-
fects and strong dynamic heterogeneity. Detailed numeri-
cal and analytical studies have indeed shown that in these

systems, non-exponential relaxations patterns do stem
from a spatial, heterogeneous distribution of timescales,
directly connected to a distribution of dynamic length-
scales [84,103,141,157,158,167]. Decoupling phenomena
appear in KCMs and can be shown to be very direct, quan-
tifiable, consequences of the dynamic heterogeneity [106],
which also deeply affects the process of self-diffusion in
a system close to its glass transition [24]. More fundamen-
tally, multi-point susceptibilities, multi-point spatial cor-
relation functions such as the ones defined in Eqs. (3) and
(6) can be studied in much greater detail than in molec-
ular systems, to the point that scaling relations between
timescales, lengthscales, and dynamic susceptibilities can
be established [22,50,141,159,168]. This type of scaling be-
haviour has been observed close to T D 0 and � D 1 in
spin models and lattice gases without a transition5. These
particular points of the phase diagram have been shown,
by various theoretical means, to correspond to true criti-
cal points where timescales and dynamic lengthscales di-
verge with well-defined critical laws [103,168]. Such ‘dy-
namic criticality’ is a useful concept because it implies the
possibility that some universal behaviour emerges in the
physics of supercooled liquids, precisely of the type ob-
served in Fig. 12.

A central criticism about the free volume approach,
that is equally relevant for KCMs concerns the identi-
fication, at the molecular level, of the vacancies (in lat-
tice gases), mobility defects (in spin facilitated models), or
free volume itself. Attempts to provide reasonable coarse-
graining from molecular models with continuous degrees
of freedom to lattice models with kinetic rules are so far
very limited, and not really convincing [70,163]. On the
other hand the proof that kinetic rules can emerge effec-
tively and induce a slow dynamics has been obtained for
simple lattice spin models [86], whose dynamics directly
maps onto constrainedmodels. Several examples are avail-
able but here we only mention the simple case of the bidi-
mensional plaquette model defined by a Hamiltonian of
a p-spin type, but in two dimensions on a square lattice of
linear size L,

H D �J
L�1X

iD1

L�1X

jD1

Si; j SiC1; jSi; jC1SiC1; jC1 ; (18)

where Si; j D ˙1 is an Ising variable lying at node (i,
j) of the lattice. Contrary to KCMs, the Hamiltonian in
Eq. (18) contains genuine interactions, which are no less
(or no more) physical than p-spin models discussed in

5A critical (different) behaviour is expected and predicted for
models having a transition [158].
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Sect. “Cooperativity, Chaotic Energy Landscapes and Ran-
dom First Order Theory”. Interestingly the dynamics of
this system is (trivially) mapped onto that of a KCM by
analyzing its behaviour in terms of plaquette variables,
pi; j � Si; jSiC1; jSi; jC1SiC1; jC1, such that the Hamilto-
nian becomes a non-interacting one, H D �J

P
i; j pi; j , as

in Eq. (16). More interestingly, the analogy also applies
to the dynamics [86]. The fundamental moves are spin-
flips, but when a single spin is flipped the states of the
four plaquettes surrounding that spin change. Consider-
ing the different types of moves, one quickly realizes that
excited plaquettes, pi; j D C1, act as sources of mobility,
since the energetic barriers to spin flips are smaller in those
regions. This observation allows to identify the excited pla-
quettes as defects, by analogy with KCMs. Spatially het-
erogenous dynamics, diverging lengthscales accompany-
ing diverging timescales and scaling behaviour sufficiently
close to T D 0 can be established by further analysis [101],
providing a simple, but concrete example, of how an in-
teracting many body system might effectively behave as
a model with kinetic constraints6.

Another essential drawback of facilitated models is
that among the microscopic ‘details’ thrown away to arrive
at simple statmech models such as the ones in Eqs. (15)
and (16), information on the thermodynamic behaviour
of the liquids has totally disappeared. In particular, a pos-
sible coincidence between VFT and Kauzmann tempera-
tures, T0 and TK is not expected, nor can the dynamics be
deeply connected to thermodynamics, as in Adam–Gibbs
relations. The thermodynamic behaviour of KCMs ap-
pears different from the one of real glass-formers close to
Tg [35]. This is probably the point where KCMs andRFOT
approaches differ more evidently. Even though the dy-
namics of KCMs shares similarities with systems charac-
terized with a complex energy landscape [25,169], thermo-
dynamical behaviours are widely different in both cases, as
has been recently highlighted in [102] by focusing on the
concrete examples of plaquette models such as in Eq. (18).

Finally, when KCMs were first defined, they were ar-
gued to display a dynamic transition of a nature very
similar to the one predicted by MCT [81]. Although the
claim has been proven wrong7, it bears some truth: both
approaches basically focus on the kinetic aspects of the
glass transition and they both predict the existence of
some dynamic criticality with diverging lengthscales and

6This type of plaquette models, and other spinmodels, were intro-
duced originally [123,149] to show how ultra-slow glassy dynamics
can emerge because of growing free energy barriers.

7Most KCMs do not have a finite temperature dynamical transi-
tion and the ones displaying a transition have critical properties dif-
ferent fromMCT.

timescales. This similarity is even deeper, since a mode-
coupling singularity is truly present when (some) KCMs
are studied on the Bethe lattice [157], but is ‘avoided’ when
more realistic lattice geometries are considered. This un-
derlies the similarity of these two approaches while em-
phasizing further the mean-field character of the MCT ap-
proach.

Geometric Frustration, Avoided Criticality,
and Coulomb Frustrated Theories

In all of the above models, ‘real space’ was present in the
sense that special attention was paid to different length-
scales characterizing the physics of the models that were
discussed. However, apart from the ‘packing models’ with
hard-core interactions, no or very little attention was paid
to the geometric structure of local arrangments in molec-
ular liquids close to a glass transition. This slight ‘over-
sight’ is generally justified using concepts such as ‘uni-
versality’ or ‘simplicity’, meaning that one studies com-
plex phenomena using simple models, a typical statisti-
cal mechanics perspective. However, important questions
remain: what is the liquid structure within mosaic states?
How do different states differ? What is the geometric ori-
gin of the defects invoked in KCMs? Are they similar to
defects (disclinations, dislocations, vacancies, etc.) found
in crystalline materials?

There exists a line of research in this field which at-
tempts to provide answers to these questions. It makes
heavy use of the concept of geometric frustration. Broadly
speaking, frustration refers to the impossibility of simul-
taneously minimizing all the interaction terms in the en-
ergy function of the system. Frustration might arise from
quenched disorder (as in the spin glass models described
above), but liquids have no quenched randomness. In that
case, frustration has a purely geometric origin. It is at-
tributed to a competition between a short-range tendency
for the extension of a ‘locally preferred order’, and global
constraints that prevent the periodic tiling of space with
this local structure.

This can be illustrated by considering once more the
packing problem of spheres in three dimensions. In that
case, the locally preferred cluster of spheres is an icosahe-
dron. However, the 5-fold rotational symmetry character-
istic of icosahedral order is not compatible with transla-
tional symmetry, and formation of a periodic icosahedral
crystal is impossible [75]. The geometric frustration that
affects spheres in three dimensional Euclidean space can
be relieved in curved space [139]. In Euclidian space, the
system possesses topological defects (disclination lines), as
the result of forcing the ideal icosahedral ordering into
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a ‘flat’ space. Nelson and coworkers have developed a solid
theoretical framework based on this picture to suggest that
the slowing down of supercooled liquids is due to the
slowwandering of these topological defects [139], but their
treatment remains so complex that few quantitative, ex-
plicit results have been obtained.

This picture of sphere packing disrupted by frustra-
tion has been further developed in simple statistical mod-
els characterized by geometric frustration, in a pure sta-
tistical mechanics approach [155]. To build such a model,
one must be able to identify, then capture, the physics of
geometric frustration. Considering a locally ordered do-
main of linear size L, Kivelson et al. [114] suggest that the
corresponding free energy scales as

F(L; T) D �(T)L2 � �(T)L3 C s(T)L5 ; (19)

The first two terms expresses the tendency of growing local
preferred order and they represent respectively the energy
cost of having an interface between 2 phases and a bulk
free energy gain inside the domain. Geometric frustration
is encoded in the third term which represents the strain
free energy resulting from the frustration. The remarkable
feature of Eq. (19) is the super-extensive scaling of the en-
ergy cost due to frustration which opposes the growth of
local order. The elements in Eq. (19) can then be directly
incorporated into ferromagnetic models where ‘magneti-
zation’ represents the local order, ferromagnetic interac-
tions the tendency to local ordering, and Coulombic anti-
ferromagnetic interactions the opposite effect of the frus-
tration. The following Hamiltonian possesses these mini-
mal ingredients:

H D �J
X

hi; ji

Si � S j C K
X

i¤ j

Si � S j

jxi � x jj
; (20)

where the spin Si occupies the site i at position xi . Such
Coulomb frustrated models have been studied in great de-
tail, using various approximations to studymodels for var-
ious space and spin dimensions [155].

The general picture is that the ferromagnetic transition
occuring at T D T0

c in the pure model with no frustra-
tion, K D 0, is either severely depressed to lower tempera-
tures for K > 0, sometimeswith a genuine discontinuity at
K ! 0, yielding the concept of ‘avoided criticality’. For the
simple case of Ising spins in d D 3, the situation is differ-
ent since the second order transition becomes first order
between a paramagnetic phase and a spatially modulated
phase (stripes). For K > 0 and T < T0

c the system is de-
scribed as a ‘mosaic’ of domains corresponding to some
local order, whose size increases (but does not diverge!)
when T decreases. Tarjus, Kivelson and co-workers clearly

demonstrate that such a structuration into mesoscopic do-
mains allows one to understand most of the fundamental
phenomena occuring in supercooled liquids [155]. Their
picture as a whole is very appealing because it directly ad-
dresses the physics in terms of the ‘real space’, and the
presence of domains of course connects to ideas such as
cooperativity, dynamic heterogeneity and spatial fluctu-
ations, that directly explains, at least qualitatively, non-
exponential relaxation, decoupling phenomena or super-
Arrhenius increase of the viscosity. However, as for the
RFOT mosaic picture, direct confirmations of this sce-
nario are rare [56]. Icosahedral order has not been clearly
linked to the dynamics of hard spheres, while the very no-
tion of local order in more realistic glass-forming liquids
(such binary mixtures of spheres, or larger molecules with
internal degrees of freedom) is problematic and not easily
defined. This makes the basis of the scenario very fragile,
and its practical applicability for a particular material dif-
ficult.

Aging and Off-equilibrium

Why Aging?

We have dedicated most of the above discussion to prop-
erties of materials approaching the glass transition at ther-
mal equilibrium.We discussed a rich phenomenology and
serious challenges for both our numerical and analytical
capabilities to account for these phenomena. For most
people, however, glasses are interesting below the glass
transition, so deep in the glass phase that the material
seems to be frozen forever in a seemingly arrested amor-
phous state, endowed with enoughmechanical stability for
a glass to retain, say, the liquid it contains (preferentially
a nice red wine). Does this mean that there is no interest-
ing physics in the glass state?

The answer is clearly ‘no’. There is still life (and
physics) below the glass transition. We recall that for
molecular glasses, Tg is defined as the temperature below
which relaxation is too slow to occur within an experimen-
tal timescale. Much below Tg, therefore, the equilibrium
relaxation timescale is so astronomically large that thermal
equilibrium is out of reach. One enters therefore the realm
of off-equilibrium dynamics. A full physical understand-
ing of the non-equilibrium glassy state remains a central
challenge [9,173].

A first consequence of studying materials in a time
window smaller than equilibrium relaxation timescales is
that the system can, in principle, remember its complete
history, a most unwanted experimental situation since all
details of the experimental protocol may then matter. The
simplest protocol to study aging phenomena in the glass



Glasses and Aging, A Statistical Mechanics Perspective on G 4231

phase is quite brutal [152]: take a system equilibrated
above the glass transition and suddenly quench it at a low
temperature at a ‘waiting time’ tw D 0 which corresponds
to the beginning of the experiment. For tw > 0 the sys-
tem is left unperturbed at constant temperature where it
tries to slowly reach thermal equilibrium, even though it
has no hope to ever get there. Aging means that the sys-
tem never forgets the time tw spent in the glass phase, its
‘age’. The evolution of one time quantities, e. g. the energy,
as a function of time are not a good evidence of aging.
In order to show that the system never equilibrates two
time quantities, such as density-density or spin-spin cor-
relation functions, are much more useful. A typical exam-
ple is presented in Fig. 14 where the self-part of the inter-
mediate function in Eq. (2) is shown for a Lennard-Jones
molecular liquid at low temperature. Immediately after the
quench, the system exhibits a relatively fast relaxation: par-
ticles still move substantially. However, when the age of
the system increases, dynamics slows down and relaxation
becomesmuch slower.When tw becomes very large, relax-
ation becomes too slow to be followed in the considered
time window and the system seems frozen on that particu-
lar timescale: it has become a glass. A striking feature con-
veyed by these data is that an aging system not only re-
mains out-of-equilibrium for all practical purposes, but its
typical relaxation time is in fact set by its age tw. In sim-
ple cases, the effective relaxation time after waiting a time
tw scales at tw itself, which means that since equilibration
timescales have diverged, tw is the only remaining relevant
timescale in the problem.

A popular interpretation of this phenomenon is given
by considering trap models [40]. In this picture, reminis-
cent of the Goldstein view of the glass transition men-
tioned above [91], the system is described as a single parti-
cle evolving in a complex energy landscape with a broad
distribution of trap depths—a paradigmatic mean-field
approach. Aging in this perspective arises because the sys-
tem visits traps that are increasingly deep when tw in-
creases, corresponding to more and more stable states. It
takes therefore more and more time for the system to es-
cape, and the dynamics slows down with time, as observed
in Fig. 14. This implies that any physical property of the
glass becomes an age-dependent quantity in aging proto-
cols, and more generally dependent on how the glass was
prepared. One can easily imagine using this property to
tune mechanical or optical characteristics of a material by
simply changing the way it is prepared, like how fast it is
cooled to the glassy state.

A real space alternative picture was promoted in par-
ticular in the context of spin glass studies, based on the
ideas of scaling and renormalization [42,74]. The physi-
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Figure 14
Aging dynamics in a Lennard-Jones glass-forming liquid at
low temperature. The system is quenched at time tw D 0 at
low T, where the temperature is kept constant. Two-time self-
intermediate scattering functions are then measured for 20 log-
arithmically spaced waiting times tw from tw D 1 to tw D 105

(from left to right). The relaxation becomes slower when tw in-
creases: the system ages

cal picture is that of a coarsening process, where the sys-
tem develops long-range order by growing extended do-
mains of lengthscale `(tw). On lengthscales less than `(tw)
the system has ordered since the quench at tw D 0. The
domain walls evolve in a random environment. In order
to move they have to overcome free energy barriers. It is
then assumed an activated dynamic scaling which states
that the typical barrier to extend the domain from linear
size `(tw) to, say, 2`(tw) scales as ` , where  is some
‘barrier’ exponent. Using the Arrhenius law to relate dy-
namics to barriers, one gets that aging corresponds to the
logarithmic growth with time of spatially correlated do-
mains, ` � (T log tw)1/ . A domain growth picture of ag-
ing in spin glasses can be directly confirmed by numerical
simulations [113], only indirectly by experiments.

Memory and Rejuvenation Effects

Since the complete history of a sample in the glass phase
matters, there is no reason to restrain experimental pro-
tocols to the simple aging experiment mentioned above.
Indeed, experimentalists have investigated scores of more
elaborated protocols that have revealed an incredibly rich,
and sometimes quite unexpected, physics [173]. We re-
strain ourselves here to a short discussion of memory and
rejuvenation effects observed during temperature cycling
experiments [148] (one can imagine applying a magnetic
field or a mechanical constraint, be they constant in time
or sinusoidal, etc.). These two effects were first observed
in spin glasses, but the protocol was then repeated in
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Figure 15
Memory and rejuvenation effects obtained in the numerical sim-
ulation of a three-dimensional Heisenberg spin glass. There is
a first aging step, 0 < tw < t1, during which the system slowly
tries to reach thermal equilibrium at temperature T1. The sys-
tem ‘rejuvenates’ in the second step at T2, t1 < t < t1 C t2, and
it restart aging (rejuvenation). Finally in the third step, temper-
ature is back to T1, and memory of the first step is kept intact,
as shown in the insetwhere relaxation during the second step of
the experiment is taken away

many different materials, from polymers and organic liq-
uids to disordered ferroelectrics. After several unsuccess-
full attempts, similar effects are now observed in numerical
work as well. Results obtained from simulations of a three-
dimensional Heisenberg spin glass [32] are presented in
Fig. 15.

There are three steps in temperature cycling experi-
ments [148]. The first one is a standard aging experiment,
namely a sudden quench from high to low temperature at
time tw D 0. The system then ages for a duration t1 at con-
stant temperature T1. The system slowly relaxes towards
equilibrium and its dynamics slows down, as observed in
our spin glass example in Fig. 15 through the measure-
ment of the magnetic susceptibility �(!; tw). Tempera-
ture is then suddenly shifted to T2 < T1 at time t1. There,
the material restarts aging (almost) as if the first step had
not taken place. This is called ‘rejuvenation effect’, because
the system seems to forget it is already ‘old’. At total time
t1 C t2, temperature is then shifted back to its initial value
T1. Then, aging is found to proceed as a quasi-perfect con-
tinuation of the first step, as if the second step had not
taken place. The system has kept the ‘memory’ of the first
part of the experiment, despite the rejuvenation observed
in the intermediate part. Thememory effect becomesmore
spectacular when relaxation during the second step is re-
moved, as in the inset of Fig. 15. The third relaxation ap-
pears indeed as a perfect continuation of the first one.

On top of being elegant and quite intriguing, such pro-
tocols are relevant because they probe more deeply the dy-

namics of aging materials, allowing one to ask more pre-
cise questions beyond the simplistic observation that ‘this
material displays aging’. Moreover, the observation of sim-
ilar effects in many different glassy materials implies that
these effects are intrinsic to systems with slow dynamics.
Interesting also are the subtle differences observed from
one material to the other.

Several experimental, numerical and theoretical pa-
pers have been devoted to this type of experiments, and
these effects are not ‘mysterious’ anymore [31]. A clear
link between memory effects and typical lengthscales over
which the slow dynamics takes place has been established.
Because lengthscales depend so sensitively on timescales
and on the working temperature, experiments performed
at two different temperatures typically probe very differ-
ent lengthscales, allowing the system to store memory
of its state at different temperatures at different length-
scales [23,39]. In return, this link has been elegantly ex-
ploited to obtain a rather precise experimental estimate of
dynamic lengthscales involved in the aging dynamics of
spin glass materials [15], which seems to confirm the slow
logarithmic growth law mentioned before.

Discussion of the rejuvenation effect is slightly more
subtle. It is indeed not yet obvious that the effect as it
is observed in computer simulations and reported, e. g.,
in Fig. 15 is exactly similar to the one observed in ex-
periments. The difficulty comes from the fact that some
seemingly innocuous details of the experimental protocol,
such as the necessary use in experiments of finite cooling
rates, in fact play a crucial role and influence the physics
so that direct comparison between experiments and simu-
lations is difficult. In numerical work, rejuvenation can be
attributed to a gradual change with temperature of the na-
ture of spatial correlations between spins that developwith
time [23,32]. More drastic changes are predicted to occur
in disordered systems as a result of the chaotic evolution
with temperature of the metastable states in a spin glass
(so-called ‘chaos effect’ [43]), that could also be respon-
sible for the observed rejuvenation effect [107]. This sce-
nario can be directly discarded in simulations, where spa-
tial correlations can be easily measured and chaos sought
(in vain) in a very direct manner. Understanding the very
origin of the rejuvenation effect observed in experiments
remains, however, a challenge.

Mean-Field Aging and Effective Temperatures

Theoretical studies of mean-field glassy models have pro-
vided important insights into the aging dynamics of both
structural and spin glasses [60,61]. Although such models
are defined in terms of spin degrees of freedom interact-
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ing via infinite-ranged interactions, the deep connections
between them and the mode-coupling theory of the glass
transition make them serious candidates to investigate
glassy states in general, not only thermodynamic proper-
ties at thermal equilibrium but also non-equilibrium ag-
ing dynamics. Despite their often reported ‘simplicity’,
it took several years to derive a proper asymptotic so-
lution of the long-time dynamics for a series of mean-
field spin glasses [58]. These results have then triggered an
enormous activity [57] encompassing theoretical, numer-
ical and also experimental work trying to understand fur-
ther these results, and to check in more realistic systems
whether they have some reasonable range of applicabil-
ity beyond mean-field. This large activity, by itself, easily
demonstrates the broad interest of these results.

In these mean-field models, thermal equilibrium is
never reached, and aging proceeds by downhill motion in
an increasingly flat free energy landscape [119], with sub-
tle differences between spin glass and structural glassmod-
els. In both cases, however, time translational invariance is
broken, and two-time correlation and response functions
depend on both their time arguments. In fact, the exact
dynamic solution of the equations of motion for time cor-
relators displays behaviours in strikingly good agreement
with the numerical results reported in Fig. 14.

In these systems, the equations of motion in the aging
regime involve not only time correlations, but also time-
dependent response functions. At thermal equilibrium re-
sponse and correlations are not independent, since the
fluctuation-dissipation theorem (FDT) relates both quan-
tities. In aging systems, there is no reason to expect the
FDT to hold and both quantities carry, at least in princi-
ple, distinct physical information. Again, the asymptotic
solution obtained for mean-field models quantitatively es-
tablishes that the FDT does not apply in the aging regime.
Unexpectedly, the solution also shows that a generalized
form of the FDT holds at large waiting times [60]. This
is defined in terms of the two-time connected correlation
function for some generic observable A(t),

C(t; tw) D hA(t)A(tw)i � hA(t)ihA(tw)i ; (21)

with t � tw, and the corresponding two-time (impulse) re-
sponse function

R(t; tw) D T
ıhA(t)i
ıh(tw)

ˇ
ˇ̌
ˇ
ˇ
hD0

: (22)

Here h denotes the thermodynamically conjugate field to
the observable A so that the perturbation to the Hamilto-
nian (or energy function) is ıE D �hA, and angled brack-
ets indicate an average over initial conditions and any

stochasticity in the dynamics. Note that we have absorbed
the temperature T in the definition of the response, for
convenience. The associated generalized FDT reads then

R(t; tw) D X(t; tw)
@

@tw
C(t; tw) ; (23)

with X(t; tw) the so-called fluctuation-dissipation ratio
(FDR). At equilibrium, correlation and response func-
tions are time translation invariant, depending only
on � D t � tw, and equilibrium FDT imposes that
X(t; tw) D 1 at all times. A parametric fluctuation-
dissipation (FD) plot of the step response or susceptibility

�(t; tw) D
Z t

tw
dt0 R(t; t0) ;

against


C(t; tw) D C(t; t) � C(t; tw) ;

is then a straight line with unit slope. These simplifications
do not occur in non-equilibrium systems. But the defini-
tion of an FDR through Eq. (23) becomes significant for
aging systems [60,61]. In mean-field spin glass models the
dependence of the FDR on both time arguments is only
through the correlation function,

X(t; tw) � X(C(t; tw)) ; (24)

valid at large wait times, tw !1. For mean-field struc-
tural glassmodels, the simplication (24) is evenmore spec-
tacular since the FDR is shown to be characterized by
only two numbers instead of a function, namely X � 1 at
short times (large value of the correlator) corresponding
to a quasi-equilibrium regime, with a crossover to a non-
trivial number, X � X1 for large times (small value of the
correlator). This implies that parametric FD plots are sim-
ply made of two straight lines with slope 1 and X1, instead
of the single straight line of slope 1 obtained at equilib-
rium.

Since any kind of behaviour is in principle allowed in
non-equilibrium situations, getting such a simple,
equilibrium-like structure for the FD relations is a re-
markable result. This immediately led to the idea that
aging systems might be characterized by an effective ther-
modynamic behaviour and the idea of quasi-equilibration
at different timescales [59]. In particular, generalized FD
relations suggest to define an effective temperature, as

Teff D
T

X(t; tw)
; (25)

such that mean-field glasses are characterized by a unique
effective temperature, Teff D T/X1. It is thought of as the
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temperature at which slow modes are quasi-equilibrated.
One finds in general that 0 < X1 < 1, such that Teff > T ,
as if the system had kept some memory of its high temper-
ature initial state.

The name ‘temperature’ for the quantity defined in
Eq. (25) is not simply the result of a dimensional anal-
ysis but has a deeper, physically appealing meaning that
is revealed by asking the following questions. How does
one measure temperatures in a many-body system whose
relaxation involves well-separated timescales? What is
a thermometer (and a temperature) in a far from equilib-
rium aging material? Answers are provided in Refs. [59,
120] both for mean-field models and for addditional toy
models with multiple relaxation timescales. The idea is to
couple an additional degree of freedom, such as a har-
monic oscillator, x(t), which plays the role of the ther-
mometer operating at frequency !, to an observable of in-
terestA(t) via a linear coupling,�x(t)A(t). Simple calcu-
lations show then that the thermometer ‘reads’ the follow-
ing temperature,

1
2
KBT2

meas �
1
2
!2hx2i D

!C0(!; tw)
2�00(!; tw)

; (26)

where C0(!; tw) is the real part of the Fourier trans-
form of Eq. (21), and �(!; tw) the imaginary part of the
Fourier transform of Eq. (22), with h D x. The rela-
tion (26) indicates that the bath temperature is measured,
Tmeas D T , if frequency is high and FDT is satisfied, while
Tmeas D Teff > T if frequency is slow enough to be tuned
to that of the slow relaxation in the aging material. The
link between the FDR in Eq. (23) and the effective tem-
perature measured in Eq. (26) was numerically confirmed
in the computer simulation of a glassy molecular liquid in
Ref. [19].

More generally, relaxation in glassy systems occurs in
well-separated time sectors [61]; it is then easy to imagine
that each sector could be associated with an effective tem-
perature [120]. A thermodynamic interpretation of effec-
tive temperatures has also been put forward, relating them
to the concept of replica symmetry breaking [78]. Interest-
ingly, the full-step or one-step replica symmetry breaking
schemes needed to solve the static problem in thesemodels
have a counterpart as the FDR being a function or a num-
ber, respectively, in the aging regime. Moreover, we note
that these modern concepts are related to, but make much
more precise, older ideas of quasi-equilibrium and fictive
temperatures in aging glasses [152].

Taken together, these results make the mean-field de-
scription of aging very appealing, and they nicely comple-
ment the mode-coupling/RFOT description of the equi-
librium glass transition described above. Moreover, they
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Figure 16
Parametric correlation-response plots measured in the aging
regime of a numerical model for a silica glass, SiO2 [30]. The
plots for both species smoothly converge towards a two-straight
line plot of slope 1 at short times (large C values), and of slope
X1 � 0:51 at large times (small values of C), yielding an effec-
tive temperature of about Teff D T/X1 � 4900K. Note that the
glass transition temperature of SiO2 is 1446K

have set the agenda for a large body of numerical and ex-
perimental work, as reviewed in [57]. In Fig. 16 we present
recent numerical data obtained in an aging silica glass [30],
presented in the form of a parametric response-correlation
plot. The measured correlation functions are the self-part
of the intermediate scattering functions defined in Eq. (2),
while the conjugated response functions quantify the re-
sponse of particle displacements to a spatially modulated
field conjugated to the density. Plots for silicon and oxy-
gen atoms at different ages of the system are presented.
They seem to smoothly converge towards a two-straight
line plot, as obtained in mean-fieldmodels (note, however,
that this could be just a pre-asymptotic, finite “tw”, effect).
Moreover, the second, non-trivial part of the plot is char-
acterized by a slope that appears to be independent of the
species, and of the wavevector chosen to quantity the dy-
namics, in agreement with the idea of a unique asymptotic
value of the FDR, possibly related to a well-defined effec-
tive temperature.

Beyond Mean-Field

Despite successes such as shown in Fig. 16, the broader
applicability of the mean-field scenario of aging dy-
namics remains unclear, however. While some experi-
ments and simulations indeed seem to support the ex-
istence of well-behaved effective temperatures [1,92,164],
other studies also reveal the limits of the mean-field sce-
nario. Experiments have for instance reported anoma-
lously large FDT violations associated with intermittent
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dynamics [11,12,44,45], while theoretical studies of model
systems have also found non-monotonic or even nega-
tive response functions [68,118,140,162], and ill-defined
or observable-dependent FDRs [73]. In principle, these
discrepancies with mean-field predictions are to be ex-
pected, since there are many systems of physical interest
in which the dynamics are not of mean-field type, display-
ing both activated processes and spatial heterogeneity.

It is thus an important task to understand from the the-
oretical point of view when the mean-field concept of an
FDR-related effective temperature remains viable. How-
ever, studying theoretically the interplay between relevant
dynamic lengthscales and thermally activated dynamics
in the non-equilibrium regime of disordered materials is
clearly a challenging task. Nevertheless, this problem has
been approached in different ways, as we briefly summa-
rize in this subsection.

A first class of system that displays aging and spatial
heterogeneity is given by coarsening systems. The paradig-
matic situation is that of an Ising ferromagnetic model
(with a transition at Tc) suddenly quenched in the fer-
romagnetic phase at time tw D 0. For tw > 0 domains of
positive and negative magnetizations appear and slowly
coarsen with time. The appearance of domains that grow
with time proves the presence of both aging and hetero-
geneity in this situation.

The case where the quench is performed down to
T < Tc is well understood. The system becomes scale in-
variant [41], since the only relevant lengthscale is the
growing domain size, `(tw). Correlation functions dis-
play aging, and scale invariance implies that C(t; tw) �
f (`(t)/`(tw)). Response functions can be decomposed into
two contributions [8,17]: one part stems from the bulk of
the domains and behaves as the equilibrium response, and
a second one from the domain walls and becomes vanish-
ingly small in the long time limit where `(tw)!1 and
the density of domain walls vanishes. This implies that for
coarsening systems in d � 2, one has X1 D 0, or equiva-
lently an infinite effective temperature, Teff D 1. The case
d D 1 is special because Tc D 0 and the response function
remains dominated by the domain walls, which yields the
non-trivial value X1 D 1/2 [89].

Another special case has retained attention. When the
quench is performed at T D Tc, there is no more dis-
tinction between walls and domains and the above argu-
ment yielding X1 D 0 does not hold. Instead one stud-
ies the growth with time of critical fluctuations, with
�(tw) � t1/zw the correlation length at time tw, where z
is the dynamic exponent. Both correlation and response
functions become non-trivial at the critical point [90].
It proves useful in that case to consider the dynam-

ics of the Fourier components of the magnetization
fluctuations, Cq(t; tw) D hmq(t)m�q(tw)i, and the con-
jugated response Rq(t; tw) D (ıhmq(t)i)(ıh�q (tw)). From
Eq. (23) a wavevector dependent FDR follows, Xq(t; tw),
which has interesting properties [128] (see [47] for a re-
view).

In dimension d D 1, it is possible to compute Xq(t; tw)
exactly in the aging regime at T D Tc D 0. An interest-
ing scaling form is found, and numerical simulations per-
formed for d > 1 confirm its validity:

Xq(t; tw) D X(q2 tw) ; (27)

where the scaling function X(x) is X(x ! 1) ! 1 at
small lengthscale, q� 	 1, and X(x ! 0) ! 1/2 (in
d D 1) at large distance, q� 
 1; recall that for z D 2 in
that case.

Contrary to mean-field systems where geometry
played no role, here the presence of a growing correla-
tion lengthscale plays a crucial role in the off-equilibrium
regime since �(tw) allows one to discriminate between
fluctuations that satisfy the FDT at small lengthscale,
Xq � 1, and those at large lenghtscale which are still far
from equilibrium, 0 < Xq � X1 < 1. These studies sug-
gest therefore that generalized fluctuation-dissipation re-
lation in fact have a strong lengthscale dependence—a re-
sult which is not predicted by mean-field approaches.

Another interesting result is that the FDT violation
for global observables (i. e. those at q D 0) takes a par-
ticularly simple form, since the introduction of a sin-
gle number is sufficient, the FDR at zero wavevector,
XqD0(t; tw) � X1 D 1/2 (in d D 1). This universal quan-
tity takes non-trivial values in higher dimension, e. g.
X1 � 0:34 is measured in d D 2 [128]. This shows that
the study of global rather than local quantities makes the
measurement of X1 much easier. Finally, having a non-
trivial value of X1 for global observables suggests that
the possibility to define an effective temperature remains
valid, but it has become a more complicated object, related
to global fluctuations on large lengthscale.

Kinetically constrained spinmodels represent a second
class of non-mean-field systemswhose off-equilibrium has
been thoroughly studied recently [125]. This is quite a nat-
ural thing to do since these systems have local, finite
ranged interactions, and they combine the interesting fea-
tures of being defined in terms of (effective) microscopic
degrees of freedom, having local dynamical rules, and dis-
playing thermally activated and heterogeneous dynamics.

The case of the Fredrickson–Andersen model, de-
scribed in Sect. “Some Theory andModels”, has been stud-
ied in great detail [125], and we summarize the main re-
sults. Here, the relevant dynamic variables are the Fourier
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components of the mobility field, which also correspond
in that case to the fluctuations of the energy density.
Surprisingly, the structure of the generalized fluctuation-
dissipation relation remains once more very simple. In
particular, in dimension d > 2, one finds a scaling form
similar to (27), Xq(t; tw) D X(q2tw), with a well-defined
limit at large distance XqD0(t; tw) � X1. The deep anal-
ogy with critical Ising models stems from the fact that mo-
bility defects in KCMs diffuse in a way similar to domain
walls in coarsening Ising models. It is in fact by exploiting
this analogy that analytic results are obtained in the aging
regime of the Fredrickson-Andersen model [130].

There is however a major qualitative difference be-
tween the two families of model. The (big!) surprise lies
in the sign of the asymptotic FDR, since calculations show
that [129]

X1 D �3; d > 2 :

In dimension d D 1, one finds XqD0(t; tw) D f (t/tw)
with XqD0(t !1; tw) D (3�)(16 � 6�) � �3:307. Nu-
merical simulations confirm these calculations. In Fig. 17,
we show such a comparison between simulations (sym-
bols) and theory (lines) in the case of the d D 3 Fredrick-
son–Andersen model [129]. Fourier components of the
mobility field yield parametric FD plots that follow scal-
ing with the variable q2 tw, as a direct result of the pres-
ence of a growing lengthscale for dynamic heterogeneity,
�(tw) �

p
tw. Again, generalized fluctuation-dissipation

relations explicitely depend on the spatial lengthscale con-
sidered, unlike in mean-field studies. In Fig. 17, the limit
q D 0 corresponding to global observables is also very in-
teresting since the plot is a pure straight line, as in equilib-
rium. Unlike equilibrium, however, the slope is not 1 but
-3. A negative slope in this plot means a negative FDR, and
therefore suggests a negative effective temperature, a very
non-intuitive result at first sight.

Negative response functions in fact directly follow
from the thermally activated nature of the dynamics of
these models [129]. First, one should note that the global
observable shown in Fig. 17 corresponds to fluctuations
of the energy, e(tw), whose conjugated field is tempera-
ture. In the aging regime the system slowly drifts towards
equilibrium. Microscopic moves result from thermally ac-
tivated processes, corresponding to the local crossing of
energy barriers. An infinitesimal change in temperature,
T ! T C ıT with ıT > 0, accelerates these barrier cross-
ings andmakes the relaxation dynamics faster. The energy
response to a positive temperature pulse is therefore neg-
ative, ıe < 0, which directly yields ıe/ıT < 0, which ex-
plains the negative sign of the FDR. This result does not
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Figure 17
Parametric response-correlation plots for the Fourier compo-
nents of the mobility field in the d D 3 Fredrickson-Andersen
model. Symbols are fromsimulations, lines from analytic calcula-
tions, and wavevectors decrease from top to bottom. The FDT is
close to being satisfied at large q corresponding to local equilib-
rium. At larger distance deviations from the FDT are seen, with
an asymptotic FDR which becomes negative. Finally, for energy
fluctuations at q D 0 (bottom curve), the plot becomes a pure
straight line of (negative!) slope�3, as a result of thermally acti-
vated dynamics

hold in mean-field glasses, where thermal activation plays
no role.

Finally, another scenario holds for local observables in
some KCMs when kinetic constraints are stronger, such
as the East model [125] or a bidimensional triangular pla-
quette model [100]. Here, relaxation is governed by a hi-
erarchy of energy barriers that endow the systems with
specific dynamic properties. In the aging regime follow-
ing a quench, in particular, the hierarchy yields an energy
relaxation that arises in discrete steps which take place on
very different timescales, reminiscent of the ‘time sectors’
encountered in mean-field spin glasses. Surprisingly, it is
found that to each of these discrete relaxations one can as-
sociate a well-defined (positive) value of the fluctuation-
dissipation ratio, again reminiscent of the dynamics of
mean-field spin glass models. Therefore, even in mod-
els that are very far from the mean-field limit the physi-
cal picture of a slow relaxation taking place on multiple
timescales with each timescale characterized by an effec-
tive temperature seems to have some validity.

Driven Glassy Materials

We have introduced aging phenomena with the argument
that in a glass phase, the timescale to equilibrate becomes
so long that the system always remembers its complete his-
tory. This is true in general, but one can wonder whether it
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is possible to invent a protocol where the material history
could be erased, and the system ‘rejuvenated’ [132]. This
concept has been known for decades in the field of poly-
mer glasses, where complex thermo-mechanical histories
are often used.

Let us consider an aging protocol where the system
is quenched to low temperature at time tw D 0, but the
system is simultaneously forced by an external mechan-
ical constraint. Experimentally one finds that a station-
ary state can be reached, which explicitely depends on the
strength of the forcing: a system which is forced more
strongly relaxes faster than a less solicited material, a phe-
nomenon called ‘shear-thinning’. The material has there-
fore entered a driven steady state, where memory of its age
is no longer present and dynamics has become stationary:
aging is stopped.

Many studies of these driven glassy states have been
performed in recent years. In the language of the jam-
ming phase diagram in Fig. 4, these correspond to stud-
ies of the (Temperature, Load) plane for molecular liq-
uids, or the (1/Density, Load) plane for colloidal systems.
The former studies are relevant for the rheology of su-
percooled liquids and glasses, and the T 
 Tg limit cor-
responds to studies of the plasticity of amorphous solids,
a broad field in itself. In the colloidal world, such studies
are also relevant for the newly-defined field of the rheol-
ogy of ‘soft glassy materials’. These materials are (some-
what tautologically) defined as those for which the non-
linear rheological behaviour is believed to result precisely
from the competition between intrinsically slow relaxation
processses and an external forcing [150]. It is believed that
the rheology of dense colloidal suspensions, foams, emul-
sions, binary mixtures, or even biophysical systems are
ruled by such a competition, quite a broad field of appli-
cation indeed.

From the point of view of statmech modeling, soft
glassy rheology can be naturally studied from the very
same angles as the glass transition itself. As such trapmod-
els [150,151], mean-field spin glasses [18] and the related
mode-coupling theory approach [83,134] have been ex-
plicitely extended to include an external mechanical forc-
ing. In all these cases, one finds that a driven steady state
can be reached and aging is indeed expected to stop at
a level that depends on the strength of the forcing. Many
of the results obtained in aging systems about the proper-
ties of an effective temperature are also shown to apply in
the driven case, as shown both theoretically [18] and nu-
merically [16]. A most interesting aspect is that the broad
relaxation spectra predicted to occur in glassy materials
close to a glass transition directly translate into ‘anoma-
lous’ laws both for the linear rheological behaviour (seen

experimentally in the broad spectrum of elastic, G0(!),
and loss, G00(!), moduli), and the non-linear rheological
behaviour (a strong dependence of the viscosity � upon
the shear rate �̇ ).

Future Directions

The problem of the glass transition, already very exciting
in itself, has ramifications well beyond the physics of su-
percooled liquids. Glassy systems figures among the even
larger class of ‘complex systems’. These are formed by a set
of interacting degrees of freedom that show an emergent
behaviour: as a whole they exhibit properties not obvious
from the properties of the individual parts. As a conse-
quence the study of glass-formers as statistical mechanics
model characterized by frustrated interactions is a fertile
ground to develop new concepts and techniques that will
likely be applied to other physical, andmore generally, sci-
entific situations.

An example, already cited in this review, are the recent
progress obtained in computer science and information
theory [55] using techniques originally developed for spin
glasses and structural glasses. More progress is certainly
expected in the future along these interdisciplinary routes.
Concerning physics, glassiness is such an ubiquitous and,
yet as we showed, rather poorly understood problem that
many developments are very likely to take place in the next
decade.

Instead of guessing future developments of the field
(and then very likely be proven wrong) we prefer to list
a few problems we would like to see solved in the next
years.

� Are the jamming transitions of granular media and col-
loids related to the glass transition of supercooled liq-
uids? If yes, what is the common physical mechanism
behind the dramatic slowing down?

� Is the glass transition related to a true phase transition?
If yes, a static or a dynamic one? A finite or zero tem-
perature one?

� Do RFOT, defects models, or frustration-based theory
form the correct starting points of ‘the’ theory of the
glass transition?

� Is MCT really a useful theory for the first decades of
slowing down of the dynamics? Can one find direct ev-
idence that an avoided MCT transition exists and con-
trols the dynamics?

� What is the correct physical picture for the low temper-
ature phase of glass-forming liquids and spin glasses?

� Are there general principles governing off-equilibrium
equilibrium dynamics, and in particular aging and
sheared materials?
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� Do non-disordered, finite-dimensional, finite-range
statmech model exist that display a thermodynamically
stable amorphous phase at low temperature?

Finally, notice that we did not discuss possible inter-
plays between glassiness and quantum fluctuations. This
is a very fascinating topic. Quantum glassiness, and more
generally, slow quantum dynamics are research subjects
which are still in their infancies but that will likely undergo
exciting developments in the near future.
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Glossary

Game of life A particular cellular automaton (CA) dis-
covered by John Conway in 1968.

Neighbor A neighbor of cell x is typically a cell that is in
close proximity to (frequently touching) cell x.

Oscillator A periodic shape within a specific CA rule.

Glider A translating oscillator that moves across the grid
of a CA.

Generation The discrete time unit which depicts the evo-
lution of a CA.

Rule Determines how each individual cell within a CA
evolves.

Definition of the Subject

A cellular automaton is a structure comprising a grid with
individual cells that can have two ormore states; these cells
evolve in discrete time units and according to a rule, which
usually involves neighbors of each cell.

Introduction

Although cellular automata has origins dating from the
1950s, interest in that topic was given a boost during the
1980s by the research of Stephan Wolfram, which culmi-
nated in 2002 with his publication of the massive tome,
“A New Kind of Science” [11]. And widespread popular
interest was created when John Conway’s “game of life”
cellular automaton was initially revealed to the public in
a 1970 Scientific American article [8]. The single feature of
his game that probably caused this intensive interest was
undoubtedly the discovery of “gliders” (translating oscilla-
tors). Not surprisingly, gliders are present in many other
cellular automata rules; the purpose of this article is to ex-
amine some of these rules and their associated gliders.

Cellular automata (CA) can be constructed in one,
two, three or more dimensions and can best be explained
by giving a two dimensional example. Start with an infinite
grid of squares. Each individual square has eight touching
neighbors; typically these neighbors are treated the same
(a Moore neighborhood), whether they touch a candidate
square on a side or at a corner. (An exception is one di-
mensional CA, where position usually plays a role). We
now fill in some of the squares; we shall say that these
squares are alive. Discrete time units called generations
evolve; at each generation we apply a rule to the current
configuration in order to arrive at the configuration for
the next generation; in our example we shall use the rule
below.

(a) If a live cell is touching two or three live cells (called
neighbors), then it remains alive next generation, oth-
erwise it dies.

(b) If a non-living cell is touching exactly three live cells,
it comes to life next generation.

Figure 1 depicts the evolution of a simple configuration of
filled-in (live) cells for the above rule.
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Gliders in Cellular Automata, Figure 1
Top: Each cell in a grid has eight neighbors. The cells contain-
ing n are neighbors of the cell containing the X. Any cell in the
grid can be either dead or alive. Bottom: Here we have outlined
a specific area of what is presumably a much larger grid. At the
left we have installed an initial shape. Shaded cells are alive; all
others are dead. The number within each cell gives the quan-
tity of live neighbors for that cell. (Cells containing no numbers
have zero live neighbors). Depicted are three generations, start-
ing with the configuration at generation one. Generations two
then three show the result when we apply the following cellular
automata rule: Live cells with exactly two or three live neighbors
remain alive (otherwise they die); dead cells with exactly three live
neighbors come to life (otherwise they remain dead). Let us now
evaluate the transition from generation one to generation two.
In our diagram, cell a is dead. Since it does not have exactly three
live neighbors, it remains dead. Cellb is alive, but it needs exactly
two or three live neighbors to remain alive; since it only has one,
it dies. Cell c is dead; since it has exactly three live neighbors, it
comes to life. And cell d has two live neighbors; hence it will re-
main alive. And so on. Notice that the form repeats every two
generations. Such forms are called oscillators

There are many notations for describing CA rules;
these can differ depending upon the type of CA. For CA of
more than one dimension, and in our present discussion,
we shall utilize the following notation, which is standard
for describing CA in two dimensions with Moore neigh-
borhoods. Later we shall deal with one dimension.

We write a rule as

E1 ; E2 ; : : : /F1 ; F2 : : :

where the Ei (“environment”) specify the number of live
neighbors required to keep a living cell alive, and the Fi
(“fertility”) give the number required to bring a non-living
cell to life. The Ei and Fi will be listed in ascending order;
hence if i > j then Ei > E j etc.

Thus the rule for the CA given above is 2; 3/3. This
rule, discovered by John Horton Conway, was examined
in several articles in Scientific American and elsewhere, be-
ginning with the seminal article in 1970 [8]. It is popularly
known as Conway’s game of life. Of course it is not really
a game in the usual sense, as the outcome is determined as
soon as we pick a starting configuration.

Note that the shape in Fig. 1 repeats, with a period
of two. A repeating form such as this is called an oscil-
lator. Stationary forms can be considered oscillators with
a period of one. In Figs. 2 and 3 we show several oscilla-
tors that move across the grid as they change from gener-
ation to generation. Such forms are called translating os-
cillators, or more commonly, gliders. Conway’s rule pop-
ularized the term; in fact a flurry of activity began during
which a great many shapes were discovered and exploited.
These shapes were named whimsically – “blinker” (Fig. 1),
“boat”, “beehive” and an unbelievable myriad of others.
Most translating oscillators were given names other than
the simple moniker glider – there were “lightweight space-
ships”, “puffer trains”, etc. For this article, we shall call all
translating oscillators gliders.

Of course rule 2; 3/3 is not the only CA rule (even
though it is the most interesting). Configurations under
some rules always die out, and other rules lead to explosive
growth. (We say that rules with expansive growth are un-
stable). We can easily find gliders for many unstable rules;
for example Fig. 4 illustrates some simple constructs for
rule 2/2. Note that it is practically impossible NOT to cre-
ate gliders with this rule! Hence we shall only look at glid-
ers for rules that stabilize (i. e. exhibit bounded growth)
and eventually yield only zero or more oscillators. We call
such rules GL (game of life) rules. Stability can be a rather
murky concept, since there may be some carefully con-
structed forms within a GL rule that grow without bounds.
Typically, such forms would never appear in random con-
figurations. Hence, we shall informally define a GL rule as
follows:

� All neighbors must be touching the candidate cell and
all are treated the same (a Moore neighborhood).

� there must exist at least one translating oscillator
(a glider).

� Random configurations must eventually stabilize.

This definition is a bit simplistic; for a more formal def-
inition of a GL rule refer to [5]. Conway’s rule 2; 3/3 is
the original GL rule and is unquestionably the most fa-
mous CA rule known. A challenge put forth by Conway
was to create a configuration that would generate an ever
increasing quantity of live cells. This challenge was met by
William Gosper in 1970 – back when computing time was
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Gliders in Cellular Automata, Figure 2
Here we see a few of the small gliders that exist for 2,3/2. The form at the top – the original glider – was discovered by John Conway
in 1968. The remaining forms were found shortly thereafter. Soon after Conway discovered rule 2,3/2 he started to give his various
shapes rather whimsical names. That practice continues to this day. Hence, the name gliderwas given only to the simple shape at the
top; the other gliders illustrated were called (from top to bottom) lightweight spaceship, middleweight spaceship and heavyweight
spaceship. The numbers give the generation; each of the gliders shown has a period of four. The exactmovement of each is depicted
by its shifting position in the various small enclosing grids

Gliders in Cellular Automata, Figure 3
The rule 2,3/2 is rich with oscillators – both stationary and trans-
lating (i. e. gliders). Here are but two ofmany hundredsof gliders
that exist under this rule. The top form has a period of five and
the bottom conglomeration, a period of four

Gliders in Cellular Automata, Figure 4
Gliders exist under a large number of rules, but almost all such
rules are unstable. For example the rule 2/2 exhibits rapid un-
bounded growth, and almost any starting configuration will
yield gliders; e. g. just two live cells will produce two gliders go-
ing off in opposite directions. But almost any small form will
quickly grow without bounds. The form at the bottom left ex-
pands to the shape at the right after only 10 generations. The
generation is given with each form
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Gliders in Cellular Automata, Figure 5
A fascinating challenge was proposed by Conway in 1970 – he
offered $50 to the first person who could devise a form for
2,3/2 that would generate an infinite number of living cells. One
such form could be a glider gun – a construct that would cre-
ate an endless stream of gliders. The challenge was soon met
by William Gosper, then a student at MIT. His glider gun is illus-
trated here. At the top, testifying to the primitive computational
power of the time, is an early illustration of Gosper’s gun. At the
bottomwe see the gun in action, sending out a new glider every
thirty generations (here it has sent out two gliders). Since 1970
there have been numerous such guns that generate all kinds of
forms – some gliders and some stationary oscillators. Naturally
in the latter case the generator must translate across the grid,
leaving its intended stationary debris behind

expensive and computers were slow by today’s standards.
He devised a form that spit out a continuous stream of
gliders – a “glider gun”, so to speak. Interestingly, his gun
configuration was displayed not as nice little squares, but
as a rather primitive typewritten output (Fig. 5); this em-
phasizes the limited resources available in 1970 for seeking
out such complex structures. Soon a cottage industry de-
veloped – all kinds of intricate initial configurations were
discovered and exploited; such research continues to this
day.

Other GL Rules in the Square Grid

The rule 2; 4; 5/3 is also a GL rule and sports the glider
shown in Fig. 6. It has not been seriously investigated and

Gliders in Cellular Automata, Figure 6
There are a large number of interesting rules that can be written
for the square grid and Rule 2;3/2 is undoubtedly the most fas-
cinating – but it is not the only GL rule. Here we depict a glider
that has been found for the rule 2; 4;5/3. And since that rule sta-
bilizes, it is a valid GL rule. Unfortunately it is not as interesting
as 2;3/2 because its glider is not as likely to appear in random
(and other) configurations – hence limiting the ability of 2;4;5/3
to produce interesting moving configurations. Note that the pe-
riod is seven, indicated in parentheses

will probably not reveal the vast array of interesting forms
that exist under 2; 3/3. Interestingly, 2; 3/3; 8 appears to
be a GL rule which not unsurprisingly supports many of
the constructs of 2; 3/3. This ability to add terms of high
neighbor counts onto known GL rules, obtaining other
GL rules, seems to be easy to implement – particularly in
higher dimensions or in grids with large neighbor counts
such as the triangular grid, which has a neighbor count
of 12.

Why Treat All Neighbors the Same?

By allowing only Moore neighborhoods in two (and
higher) dimensions we greatly restrict the number of rules
that can be written. And certainly we could consider spe-
cialized neighborhoods – e. g. treat as neighbors only those
cells that touch on sides, or touch only the left two corners
and nowhere else, or touch anywhere, but state in our rule
that two or more live neighbors of a subject cell must not
touch each other, etc. But here we are only exploring glid-
ers. Consider the following rule for finding the next gener-
ation.

1) A living cell dies.
2) A dead cell comes to life if and only if its left side

touches a live cell.

If we start, say, with a single cell we will obtain a glider
of one cell that moves to the right one cell each genera-
tion! Such rules are easy to construct, as are more complex
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glider-producing positional rules. So we shall not investi-
gate them further. Yet as we shall see, the neighbor posi-
tion is an important consideration in one dimensional CA.

Gliders in One Dimension

One dimensional cellular automata differ from CA in
higher dimensions in that the restrictive grid (essentially
a single line of cells) limits the number of rules that can be
applied. Hence, many 1D CA involve neighborhoods that
extend beyond the immediate two touching neighbors of
a cell whose next generation status we wish to evaluate. Or
more than the two states (alive, dead) may be utilized. For
our discussion about gliders, we shall only look at the sim-
plest rules – those involving just the two adjacent neigh-
bors and two states. Unlike 2D (and higher) dimensions,
we usually consider the relative position of the neighbors
when giving a rule. Since three cells (center, left, right)
are involved in determining the state for the next gener-
ation of the central cell, we have 23 D 8 possible initial
states, with each state leading to a particular outcome. And
since each initial state causes a particular outcome (i. e. the
cell in the middle lives or dies next generation) we thus
we have 28 possible rules. The behavior of these 256 rules
has been extensively studied byWolfram [11] who also in-
troduced a very convenient shorthand that completely de-
scribes each rule (Fig. 7).

Gliders in Cellular Automata, Figure 7
The one dimensional rules six and 110 are depicted by the di-
agram shown. There are eight possible states involving a cen-
ter cell and its two immediate neighbors. The next generation
state for the center cell depends upon the current configuration;
each possible current state is given. The rule is specified by the
binary number depicted by the next generation state of the cen-
ter cell, This notation is standard for the simplest 1D CA and was
introduced by Wolfram (see [11]), who also converts the binary
representation to its decimal equivalent. There are 256 possible
rules, but most are not as interesting as rule 110. Rule six is one
of many that generate nothing but gliders (see Fig. 8)

As we add to the complexity of defining 1D CA we
greatly increase the number of possible rules. For example,
just by having three states instead of two, we note that now,
instead of 23 possible initial states, there are 33 (Fig. 12).
This leads to 27 possible initial states, and we now can
create 327 unique rules – more than six trillion! Wolfram
observed that even with more complex 1D rules, the fun-
damental behavior for all rules is typified by the simplest
rules [11].

Gliders in Cellular Automata, Figure 8
Rule six (along with many others) creates nothing but gliders. At
the upper left, we have several generations starting with a sin-
gle live cell (top). (For 1D CA each successive generation moves
vertically down one level on the page.) At the lower left is an en-
largement of the first few generations. By following the diagram
for rule six in Fig. 7, the reader can see exactly how this configu-
ration evolves. At the top right, we start with a random configu-
ration; at the lower rightwehave enlarged the small area directly
under the large dot. Very quickly, all initial random configura-
tions lead solely to gliders heading west

Gliders in Cellular Automata, Figure 9
Evolution of rule 110 for the first 500 generations, given a ran-
dom starting configuration. With 1D CA, we can depict a great
many generations on a 2D display screen



Gliders in Cellular Automata G 4245

Gliders in Cellular Automata, Figure 10
Rule 110 at generations 2000–2500. The structures that move
vertically are stationary oscillators; slanted structures can be
considered gliders. Unlike higher dimensions, where gliders
move in an unobstructed grid with no other live cells in the im-
mediate vicinity, many 1D gliders reside in an environment of
oscillating cells (the background pattern). The black square out-
lines an area depicted in the next figure

Gliders in Cellular Automata, Figure 11
An area from the previous figure enlarged. One can carefully
trace the evolution from one generation to the next. The back-
ground pattern repeats every seven generations

Gliders in 1D CA are very common (Figs. 8 and 9)
but true GL rules are not, because most gliders for stable
rules exist against a uniform patterned background (Figs. 9
through 11) instead of a grid of non-living cells.

TwoDimensional Gliders in Non-Square Grids

Although most 2D CA research involves a square grid,
the triangular tessellation has been investigated somewhat.

Gliders in Cellular Automata, Figure 12
There are 27 possible configurations when we have three states
instead of two. Each configuration would yield some specific
outcome as in Fig. 7; thus there would be three possible out-
comes for each state, and hence 327 distinct rules

Here we have 12 touching neighbors; as with the square
grid, they are all treated equally (Fig. 13). The increased
number of neighbors allows for the possibility of more
GL rules (and hence several gliders). Figure 14 shows
many of these gliders and their various GL rules. The GL
rule 2; 7; 8/3 supports two rather unusual gliders (Figs. 15
and 16) and to date is the only known GL rule other than
Conway’s original 2; 3/3 game of life that exhibits glider
guns. Figure 17 shows starting configurations for two of
these guns and Fig. 18 exhibits evolution of the two guns
after 800 generations. Due to the extremely unusual be-
havior of the period 80 2; 7; 8/3 glider (Fig. 16), it is highly
likely that other guns exist.

The hexagonal grid supports the GL rule 3/2, along
with GL rules 3; 5/2, 3; 5; 6/2 and 3; 6/2, which all behave
in a manner very similar to 3/2. The glider for these three
rules is shown in Fig. 19. It is possible that no other dis-
tinct hexagonal GL rules exist, because with only six touch-
ing neighbors, the set of interesting rules is quite lim-
ited. Moreover the fertility portion of the rule must start
with two and rules of the form �/2; 3 are unstable. Thus,
any other hexagonal GL rules must be of the form �/2; 4;
�/2; 4; 5; etc. (i. e. only seven other fertility combinations).

A valid GL rule has also been found for at least one
pentagonal grid (Fig. 19). Since there are several topolog-
ically unique pentagonal tessellations (see [10]), probably
other pentagonal gliders will be found, especially when all
the variants of the pentagonal grid are investigated.

Three and Four Dimensional Gliders

In 1987, the first GL rules in three dimensionswere discov-
ered [1,7]. The initially found gliders and their rules are
depicted in Fig. 20. It turns out that the 2D rule 2; 3/3 is
in many ways contained in the 3D GL rule 5; 6; 7/6. (Note
the similarity between the glider at the bottom of Fig. 20
and at the top of Fig. 2). During the ensuing years, sev-
eral other 3D gliders were found (Figs. 21 and 22). Most
of these gliders were unveiled by employing random but
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Gliders in Cellular Automata, Figure 13
Each cell in the triangular grid has 12 touching neighbors. The
subject central cells can have two orientations, E and O

Gliders in Cellular Automata, Figure 14
Most of the known GL rules and their gliders are illustrated. The
period for each is given in parentheses

Gliders in Cellular Automata, Figure 15
The small 2;7;8/3 glider is shown. This glider also exists for the
GL rule 2;7/3. The small horizontal dash is for positional refer-
ence

Gliders in Cellular Automata, Figure 16
Here we depict the large 2;7;8/3 glider. Perhaps flamboyant
would be a better description, for this glider spews outmuch de-
bris as it moves along. It has a period of 80 and its exact motion
can be traced by observing its position relative to the black dot.
Note that the debris tossed behind does not interfere with the
81st generation, where the entire process repeats 12 cells to the
right. By carefully positioning twoof these gliders, one can (with-
out too much effort) construct a situation where the debris from
both gliders interacts in a manner that produces another glider.
This was themethod used to discover the two guns illustrated in
Figs. 17 and 18
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Gliders in Cellular Automata, Figure 17
The GL rule 2;7;8/3 is of special interest in that it is the only
knownGL rule besides Conway’s rule that supports glider guns –
configurations that spewoutanendless streamofgliders. In fact,
there are probably several such configurations under that rule.
Here we illustrate two guns; the top one generates period 18
(small) gliders and the bottom one creates period 80 (large) glid-
ers. Unlike Gosper’s 2; 3/3 gun, these guns translate across the
grid in the direction indicated. In keeping with the fanciful jar-
gon for names, translating glider guns are also called “rakes”

Gliders in Cellular Automata, Figure 18
After 800 generations, the two guns from Fig. 17 will have pro-
duced the output shown. Motion is in the direction given by the
arrows. The gun at the left yields period 18 gliders, one every 80
generations, and the gun at the right produces a period 80 glider
every 160 generations

Gliders in Cellular Automata, Figure 19
GL rules are supported in pentagonal and hexagonal grids.
The pentagonal grid (left) is called the Cairo Tiling, supposedly
named after some paving tiles in that city. There are many dif-
ferent topologically distinct pentagonal grids; the Cairo Tiling is
but one. At the right are gliders for the hexagonal rules 3/2 and
3/2;4;5. The 3/2 glider also works for 3;5/2; 3;5;6/2 and 3; 6/2.
All four of these rules are GL rules. The rule 3/2;4;5 is unfortu-
nately disqualified (barely) as a GL rule because very large ran-
dom blobs will grow without bounds. The periods of each glider
are given in parentheses

Gliders in Cellular Automata, Figure 20
The first three dimensional GL rules were found in 1987; these
are the original gliders that were discovered. The rule 5;6;7/6
is analogous to the 2D rule 2;3/3 (see [1]). Note the similarity
between this glider and the one at the top of Fig. 2

Gliders in Cellular Automata, Figure 21
Several more 3D GL rules were discovered between 1990–1994.
They are illustrated here. The 8/5 gliders were originally investi-
gated under the rule 6;7;8/5
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Gliders in Cellular Automata, Figure 22
By 2004, computational speed had greatly increased, so another effort was made to find 3D gliders under GL rules; these latest
discoveries are illustrated here

Gliders in Cellular Automata, Figure 23
Some work has been done with the 3D grid of dense packed
spheres. Two gliders have been discovered for the rule 3/3,
which almost qualifies as a GL rule

symmetric small initial configurations. The large number
of live cells in these 3D gliders implies that they are un-
common random occurrences in their respective GL rules;
hence it is highly improbable that the plethora of interest-

ing forms (e. g. glider guns) such as those for 2D rule 2; 3/3
exist in three dimensions.

The 3D grid of dense packed spheres has also been
investigated somewhat; here each sphere touches exactly
12 neighbors. What is pleasing about this configuration
is that each neighbor is identical in the manner that it
touches the subject cell, unlike the square and cubic grids,
where some neighbors touch on their sides and others at
their corners. The gliders for spherical rule 3/3 are shown
in Fig. 23. This rule is a borderline GL rule, as random
finite configurations appear to stabilize, but infinite ones
apparently do not.

Future Directions

Gliders are an important by-product of many cellular au-
tomata rules. They have made possible the construction
of extremely complicated forms – most notably within the
universe of Conway’s rule, 2; 3/3. (Figs. 24 and 25 illustrate
a remarkable example of this complexity). Needless to say
many questions remain unanswered. Can a glider gun be



GPS: Applications in Crustal Deformation Monitoring G 4249

Gliders in Cellular Automata, Figure 24
The discovery of the glider in 2;3/3, alongwith the development
of several glider guns, has made possible the construction of
many extremely complex forms. Here we see a Turing machine,
developed in 2001 by Paul Rendell. Figure 25 enlarges a small
portion of this structure

Gliders in Cellular Automata, Figure 25
We have enlarged a tiny portion at the upper left of the Turing
machine shown in Fig. 24. One can see the complex interplay of
gliders, glider guns, and various other stabilizing forms

constructed for some three dimensional rule? This would
most likely be rule 5; 6; 7/6, which is the three dimensional
analog of 2; 3/3 [7], but so far no example has been found.

The area of cellular automata research is more-or-less
in its infancy – especially when we look beyond the square
grid. Even higher dimensions have been given a glance;
Fig. 26 shows just one of several gliders that are known to
exist in four dimensions. Since each cell has 80 touching
neighbors, it will come as no surprise that there are a large
number of 4D GL rules. But there remains much work do
be done in lower dimensions as well. Consider simple one
dimensional cellular automata with four possible states. It
will be a long time before all 1038 possible rules have been
investigated!

Gliders in Cellular Automata, Figure 26
Somework (notmuch) hasbeen done in four dimensions. Here is
an example of a glider for the GL rule 11;12/12;13. Many more
4D gliders exist
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Glossary

Confidence ellipse As applied to a vector representing
a displacement or velocity estimate, the confidence el-
lipse defines the region within which the value is es-
timated at or above a specified confidence level (e. g.,
95%). Confidence ellipses are computed by propaga-
tion of errors when computing the position. The el-
lipse is usually plotted at the tip of a GPS vector (e. g.,
Fig. 9).

GNSS Global Navigation Satellite System. Although this
acronym stands for the same phrase as GLONASS,
GNSS is a generic term referring to space-based nav-
igation systems like the Global Positioning System
(GPS) operated by the U. S., Russia’s GLONASS, and
the Galileo system under development by the Euro-
pean Union.

Kinematic GPS A method of collecting GPS data in
which the receiver is continuously or intermittently in
motion. This receiver, called the rover, can receive cor-
rections for ambiguity resolution and common errors
from a nearby stationary receiver.

Interferometric synthetic aperture radar (InSAR)
A satellite-based imaging technique in which the satel-
lite emits a radar signal and measures the phase of
the returning signal after it has been scattered off the
surface of the Earth. The difference in phase of the
scattered waves measured during two passes of the
same satellite can be used to produce a map of defor-
mation, called an interferogram, that occurred during
the time between the two satellite passes.

International GNSS service (IGS) An international con-
sortium of agencies worldwide that provide data from
permanent GPS and GLONASS sites in order to gen-
erate precise orbital and satellite clock parameters.

Ionosphere The electrically charged portion of the atmo-
sphere from �60 km to �400 km above sea level. The
ionosphere is dispersive, meaning that the degree to
which it delays signal propagation depends on the sig-
nal’s frequency and the electron content of the iono-
sphere.

Mega-thrust earthquake A type of earthquake which
causes rupture of a long portion of the interface be-
tween a subducting plate and the over-riding plate.
These earthquakes involve slip on a huge surface area,
making them among the largest on Earth.

Moment magnitude (Mw) A magnitude scale used to
compare the energy released in earthquakes. The mo-

ment magnitude is computed from the seismic mo-
ment. Therefore, becauseMw accounts for the full rup-
ture length of the earthquake, the moment magnitude
scale does not saturate for large events in the way that
other magnitude scales do.

Reference frame A terrestrial reference frame is defined
by a set of points on Earth whose coordinates are pre-
cisely determined in a coordinate system with a spec-
ified origin and orientation of the axes. In order to
compare GPS site positions, displacements, or veloc-
ities they must all be transformed into the same ref-
erence frame. For GPS, the most commonly used ref-
erence frame is the International Terrestrial Reference
Frame (ITRF) which is updated periodically.

Rupture The slip that occurs during an earthquake. This
term is often used in discussing the way in which the
slip progresses with time over the fault surface, as in
“the rupture front propagated southeast.”

Satellite laser ranging (SLR) A geodetic technique for
measuring the position of points on the surface of the
Earth. Observation stations emit pulses of light that
bounce off retroreflectors on satellites and return to the
stations. The stations record the travel time of the light
which is used to calculate a range measurement.

Slip The distance that material on one side of a fault
moves relative to that on the other side.

Stable North America The stable interior portion of the
North American continent that is not affected by plate
boundary deformation. Often this term is used in the
context of a “stable North American” reference frame,
meaning that GPS velocities are transformed so that
the velocities at stations considered to be in the sta-
ble interior of the continent are essentially zero. Be-
cause of factors such as Glacial Isostatic Adjustment
(GIA), even some GPS sites in the continental interior
have nonzero velocities. These sites are typically omit-
ted when defining a stable North American reference
frame.

Strainmeter An instrument that is capable of measuring
change in distance over short baselines. These instru-
ments typically come in two forms. The first is installed
at the Earth’s surface and uses a laser interferome-
ter to measure the changes in distance over baseline
lengths of 100s of meters. The second type is installed
in a borehole 100s of meters deep to measure subtle
changes in the diameter of the borehole. Some bore-
hole strainmeters measure volumetric strain (e. g. the
Sacks–Evertson strainmeter) and others measure three
independent components of horizontal strain (e. g. the
Gladwin tensor strainmeter).

Strong motion seismograph Seismic instrument de-
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signed to record high-amplitude shaking near an
earthquake rupture. These instruments typically re-
cord acceleration, and are sometimes called acceler-
ometers. Data recording is often triggered by the ar-
rival of the first seismic waves, and these instruments
can record acceleration several times that of gravity.

Teleseismic Refers to seismic waves recorded at distances
greater than 3000 km from the epicenter.

Troposphere The portion of the atmosphere from the
Earth’s surface to �15 km which delays GPS signal
propagation. The degree to which the GPS signal is de-
layed depends on the spatially and temporally varying
atmospheric pressure and water vapor content.

Very long baseline interferometry (VLBI) A geodetic
positioning technique in which radio signals from dis-
tant sources such as quasars received at an array of an-
tennas are used to calculate precise positions.

Definition of the Subject

The Global Positioning System (GPS) is a space-based
Global Navigation Satellite System (GNSS). Using signals
transmitted by GPS satellites, the positions of ground-
based receivers can be calculated to high precision, mak-
ing it possible to track the movement of points on the
Earth’s surface over time. Unlike older geodetic survey-
ing methods which involved periodically measuring an-
gles, distances, or elevations between points, GPS can pro-
vide three-component (latitude, longitude, and altitude)
position information at a range of sampling rates and on
a global scale. GPS equipment is easy to use and can be set
up to collect data continuously. Since its early geophysi-
cal applications in the mid-1980s, this versatile tool, which
can be used to track displacements over time periods of
seconds to decades, has become indispensable for crustal
deformation studies, leading to many important insights
and some surprising discoveries.

Introduction

This article focuses on applications of GPS data to
the study of tectonic, seismic, and volcanic processes.
GPS has become a valuable tool for investigating other
types of crustal deformation as well, including landslides
(e. g., [25,50,100,128,151]), global sea-level change [150],
and the ongoing rebound (termed Glacial Isostatic Ad-
justment or GIA) of the Earth’s crust since the re-
treat of the ice sheets which covered much of North
America and northern Europe during the last ice age
(e. g., [19,80,88,95,117,141]), but these topics are beyond
the scope of this article. The discussion presented here be-
gins with an overview of how GPS works and how it is

used to collect data for geophysical studies. The rest of the
paper describes a variety of ways in which GPS data have
been used to measure crustal deformation and investigate
the underlying processes, as illustrated by examples from
the literature. Since GPS is so widely used in geophysical
studies, examples of manymore applications exist, and the
reader is encouraged to explore the literature for more in-
formation.

Global Positioning SystemMeasurements

How GPS works

The US Department of Defense developed GPS to pro-
vide positioning and timing information, primarily for
military purposes, that would be available any time of
day, anywhere on Earth, regardless of weather conditions.
The first GPS satellites were launched in 1978. Soon af-
terward the Soviet Union developed a similar system,
called GLONASS (which, like the generic acronym GNSS,
also stands for Global Navigation Satellite System), and
more recently the European Space Agency has designed
a satellite navigation system called Galileo which, un-
like its predecessors, is dedicated to civilian and com-
mercial, rather than military, use. The rest of this arti-
cle will focus on GPS. The scope of this article permits
only a brief overview. Dzurisin [40] gives a broader dis-
cussion with a focus on applications in volcanic investi-
gations. Hofmann-Wellenhof et al. [56] give a thorough
treatment of the technical details.

The GPS satellite constellation nominally consists of
24 satellites, as well as several spares. The satellites orbit
20,200 km above the Earth with orbital periods of nearly
12 hours, and each passes over a given point on the Earth’s
surface once per sidereal day (which is about four min-
utes shorter than a solar day). From any point on the
Earth’s surface, at any given time, from four to ten satel-
lites are above the horizon (and thus potentially visible).
Each satellite remains visible for approximately five out of
every 12 hours [40].

The idea behind satellite positioning is that one can de-
termine the distance between a receiver on the ground and
an orbiting satellite from the time it takes a signal to travel
from the satellite to the receiver. This calculation, there-
fore, requires a means for precise time-keeping according
to a universally accepted standard. The US Naval Obser-
vatory defines “GPS time,” and GPS specifications require
GPS time to be within one microsecond of Coordinated
Universal Time (UTC). The difference between a satellite’s
or receiver’s internal clock and GPS time (due to clock
drift) is termed “clock bias” and is accounted for in pro-
cessing GPS data.
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GPS satellites broadcast signals on two carrier frequen-
cies termed L1 and L2 in the microwave band. The “coarse
acquisition” (C/A) code is modulated on the L1 carrier,
and the precise (P) code is modulated on both L1 and
L2. A navigation message, containing information about
the satellite orbits, clocks (the time given by the satel-
lite’s clock and information about the difference between
that satellite’s time and GPS time), and state of health, as
well as ionospheric conditions, is modulated on both car-
riers.

The receiver “locks on” to a satellite by generating
a replica of one or more of the codes modulated on the
satellite signal it receives and continually cross-correlat-
ing the internally generated code with that received from
the satellite until the two match. Once it has locked on to
the satellite it can obtain the navigation message, deter-
mine the signal travel time, and measure the carrier sig-
nal. The apparent distance, or “pseudorange,” between the
GPS antenna and the satellite antenna is then calculated
by multiplying the time it takes for the signal transmit-
ted by the satellite to travel to the receiver by the speed
of light. The term pseudorange emphasizes that the travel
time used in this calculation includes the effects of satellite
and receiver clock biases as well as a variety of other error
sources, some of which may be mitigated during process-
ing, and is therefore not equivalent to the true geometric
range between the satellite and receiver. It is possible for
the receiver to measure the code to a precision of about 1%
of its length (293 meters for C/A-code and 29.3 meters for
P-code), which results in 3 meter and 30 cm precision in
calculated pseudorange. However, the P-code is generally
encrypted by the military, called “anti-spoofing” or A-S,
and therefore a civilian receiver cannot use this code for
positioning.

The C/A code is modulated on L1, and thus this carrier
can be easily measured once the receiver has locked on to
the satellite using the C/A code. Because of A-S, in order
to obtain the L2 carrier on which the encrypted P-code
is modulated, civilian users must have receivers that ap-
ply more sophisticated signal processing techniques (see
pp. 81–85 in [56]). The L1 carrier has a wavelength of
19 cm and the L2, 24.4 cm. Since the receiver can measure
the carrier signal to 1% of a cycle length, much greater res-
olution can be achieved using the carrier phase measure-
ments, rather than the code information, to calculate the
pseudorange.

When the carrier signal is used, the satellite-receiver
distance is calculated by multiplying the number of car-
rier cycles (which is generally not an integer) between the
satellite and the receiver by the wavelength of the carrier
signal. However, when a receiver locks on to a satellite, it

only can measure the initial fraction of a carrier cycle that
it receives. Although it measures the number of full cycles
thereafter (which changes as the satellite moves overhead),
the receiver has no way of knowing how many full cycles
in addition to the initial fraction were between it and the
satellite to begin with. This unknown number of cycles is
often called the integer ambiguity and will be different for
each satellite–receiver pair. In order to take advantage of
themore precise positioning that can be achieved using the
carrier signal, processing techniques have been developed
to address the problem of integer ambiguities (see [40] for
an overview and [56] for more detail).

The positions of the satellites at any given time are
given by their orbital parameters. This information is
transmitted as part of the navigation message, however
more precise orbital information, available from the In-
ternational GNSS Service (IGS), is used in scientific ap-
plications. With the satellite positions assumed known,
once the distance from the receiver to at least four satel-
lites is measured, the position in three coordinate dimen-
sions (e. g., north, east, and vertical) of a GPS antenna on
the ground can be found. Four satellites are necessary in
order to solve for the three coordinate positions and the
satellite and receiver clock bias. However, positioning ac-
curacy is greatly improved with data from additional satel-
lites as it is then possible to estimate some unknown noise
sources.

Although GPS receivers are capable of determining
a position in real time using internal software, for scien-
tific applications the data are generally downloaded, and
one of several processing software packages is used to ob-
tain much more precise positions. This type of software
allows the user more control over the way in which the
data are processed, for instance by enabling the use of pre-
cise orbital parameters, the fixing of ambiguities, and the
application of sophisticated models for atmospheric delay
and variations in the antenna phase center (the part of the
antenna that actually receives the GPS signal).

It is possible to reduce or eliminate certain error
sources by differencing data. These errors include atmo-
spheric delays to signal propagation that affect neighbor-
ing GPS stations (e. g. within 10 s of km of each other) in
a similar way, satellite orbital and clock errors that will be
common to data from the same satellite recorded by more
than one station at the same time, and receiver clock er-
rors that are common to measurements to multiple satel-
lites made by that receiver at the same time.

Other means of addressing error sources exist as well.
For example, the ionosphere is dispersive, meaning the
delay in signal propagation that it causes depends on the
frequency of the signal. Because GPS uses two frequen-



GPS: Applications in Crustal Deformation Monitoring G 4253

cies, the effect of this delay can be eliminated from the
data. Tropospheric delay is addressed during data pro-
cessing through a combination of models for the “dry”
component (which is dependent on atmospheric pressure,
temperature, and elevation), and treatment of the “wet”
component (which shows large variability depending on
water vapor content) as a stochastic parameter to be esti-
mated. Multipath (when the GPS signal bounces off some-
thing before reaching the ground antenna) and set-up er-
ror (commonly, operator error in measuring the height of
the antenna) are mitigated by antenna design, choice of
station location, and surveying technique.

The military has used two means of limiting civilian
access to GPS positioning capabilities. The first, called se-
lective availability (SA), involved degrading the accuracy
of the satellite orbit information broadcast by the satel-
lites and introducing noise into the satellite clock infor-
mation. This caused an approximately ten-fold increase in
positioning error. Using information from a global net-
work of continuously operating GPS stations it is possible
to calculate more accurate satellite orbits for use in post-
processing of GPS data. During processing, clock errors
can be eliminated by differencing data from multiple sta-
tions or estimated along with station positions. Therefore,
SA did not pose an insurmountable obstacle to scientific
users of GPS. In May 2000 the US government discon-
tinued SA, although it reserves the right to reinstate it if
deemed necessary. The other means by which the military
can reduce civilian access to GPS data is through A-S. A-S
is implemented by encrypting the P-code such that only
military users can decipher it, thus preventing outside par-
ties from sending phony “GPS” signals that would prevent
accurate positioning. A-S began in 1994 and continues to
the present, but its effect on the accuracy of GPS position-
ing for scientific purposes is generally small.

Methods of GPS Data Collection
for Crustal Deformation Studies

For some geological and geophysical applications, typi-
cally those which require mapping or recording of sample
locations, kinematic GPS methods are used. In these cases,
a base station is used to generate corrections that are ap-
plied to measurements made by a “roving” antenna which
is moved to each site of interest [40]. However, for the
crustal deformation applications described in this article,
the GPS antenna remains at one location for an extended
period of time (usually at least eight hours). Measurements
of this type are often classified as “campaign” or “continu-
ous,” depending on the frequency of measurement and the
way in which the receiver and antenna are installed. Here

I give a brief description of each; Blewitt et al. [13] give
a detailed discussion as well.

Before the advent of GPS as a tool for monitoring
crustal deformation, other types of geodetic observations
were made by periodically measuring triangulation, trilat-
eration and leveling networks using traditional land sur-
veying techniques. The objective was to see how the move-
ment of the Earth’s surface changed over time, since this
reflects a variety of geophysical processes. However, these
techniques did not produce 3-component position data,
but rather measurements of angles, distances, or elevation
changes.

The surveying approach in the early years of GPSmon-
itoring (e. g. mid-1980s to mid-1990s) was similar to that
of its predecessors in that instruments were deployed tem-
porarily, for several hours at a time, once a year or so.
This approach is called “campaign” or “survey-mode”GPS
(SGPS). At that time receivers were prohibitively expen-
sive, limiting their wide-spread use. Also, there were fewer
satellites in orbit, and one had to schedule surveying to co-
incide with the time of day for which there would be satel-
lite coverage in the area of interest.

When collecting SGPS measurements one sets up a tri-
pod which will hold the antenna over a marker, typically
a benchmark set in the ground (Fig. 1a,b). The use of such
a marker enables one to find the correct spot for future
measurements months or years later. The antenna is cen-
tered using an optical plummet over a point imprinted
on the marker to indicate its center (Fig. 1b). One must
then measure the distance between the ground (where
the benchmark is) and the antenna (where the GPS sig-
nal is actually received), and this distance will be used
to convert the positions obtained from data processing
to the positions of the benchmarks. As you might guess,
there is considerable room for error when having to set
up the antenna anew every time observations are made.
Height measurement errors are particularly common. The
repeated measurement of the same benchmark over time
produces a time series like that in Fig. 2a.

As GPS receivers became less expensive, the possibil-
ity of permanently installing continuously recording GPS
(CGPS) receivers became a real option. Some of the earli-
est continuous GPS stations for geophysical studies were
installed in Japan [144]. The first continuous GPS sites in
southern California were installed in 1990 at Pasadena,
Pinyon Flat, and La Jolla [77]. Today several countries
have extensive CGPS networks for geophysical monitor-
ing purposes, most notably GEONET which consists of
over 1000 stations across Japan. Regional CGPS networks
have existed in the US for many years covering southern
California (Southern California Integrated GPS Network,
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GPS: Applications in Crustal Deformation Monitoring, Figure 1
a CampaignGPS station located inwestern Nevada. In the foreground the tripod holds the antenna. The receiverwill be stored in one
of the boxes in the backgroundwhile data are collected. Rocks are stacked on the feet of the tripod to prevent it frommoving during
data collection. (USGS photo) b Benchmark that is being observed in a. A benchmark often has a stamping telling which agency
installed it and when. The cross in the center is the point over which the tripod is centered every time that benchmark is observed.
(USGS photo) c Continuous GPS station located in Fremont, California. This station, P222, is part of the Plate Boundary Observatory.
The antenna, protected from the elements by a domed cover, is supported by a monument with legs driven several meters into
the ground. The antenna sends data to the receiver, located along with batteries in the box in the background, via a buried cable.
Also visible in the background is the solar panel which provides supplemental power to the site. (UNAVCO photo, reprinted with
permission)

or SCIGN [60]), the San Francisco Bay Area (Bay Area
Regional Deformation, or BARD [72]), the Pacific North-
west (Pacific Northwest Geodetic Array, or PANGA [92]),
and the Basin and Range (Basin and Range Geodetic Net-
work, or BARGEN [10]; and Eastern Basin-Range andYel-
lowstone hotspot, or EBRY, http://www.mines.utah.edu/
~rbsmith/RESEARCH/UUGPS.html). A much larger net-
work consisting of �850 sites is now underway. This new
network, called the Plate Boundary Observatory (PBO),
will provide CGPS coverage for seismically and volcani-
cally active areas throughout the western continental US
and Alaska [147].

In addition to providing daily positions, CGPS sites
have the advantage of permanent monumentation, thus
eliminating set-up error (Fig. 1c). Having daily positions
(e. g., Fig. 2b) enables much better estimates of site ve-
locities, but the more frequent data and added precision
means it has become necessary to address additional error
sources that were hidden in the noise of the less frequent
measurements. These include seasonal signals and time-
correlated noise likely due to monument instability, at-
mospheric effects, reference frame errors, or mismodeled
orbits or antenna phase centers [15,33,74,86,166,170]. De-
spite the proliferation of CGPS stations in recent years, de-

http://www.mines.utah.edu/~rbsmith/RESEARCH/UUGPS.html
http://www.mines.utah.edu/~rbsmith/RESEARCH/UUGPS.html
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GPS: Applications in Crustal Deformation Monitoring, Figure 2
Time series of changes in station positions. Both these sites are
located in central California, west of the San Andreas fault. The
position changes are plotted relative to the center of the North
American continent. Because of the relativemotion between the
North American and Pacific tectonic plates, these sites are mov-
ing to the northwest over time, relative to the stable interior of
the continent which is not affected by strain accumulation due
to the interaction of the two plates. a Campaign GPS site CARX
near Parkfield, California. b Continuous GPS station P171 of the
Plate Boundary Observatory network. This station is located just
south of Monterey Bay

pending on factors such as site access and site condition, fi-
nancial resources, and scientific goals, campaign-style GPS
measurements are still frequently collected.

Relative Precision

Daily repeatability (or scatter) in the time series for CGPS
sites is typically 0.5 to 1.5mm in the horizontal and �3.5

to 6.5mm in the vertical. If noise that is common to all
stations in the network (due, for example, to errors in
satellite orbits or atmospheric delay) has been eliminated,
short-term repeatabilities of �0.5mm in the horizontal
and �2mm in the vertical can be achieved. With 1.5 to
2.5 years of CGPS data, velocity estimates with �1mm/yr
uncertainties are possible [13]. In contrast, SGPS position
repeatability is�3 to 5mm in the horizontal and�10mm
in the vertical [40], and �10 years of SGPS data would be
required to reach velocity uncertainty of�1mm/yr [166].

One way to improve the accuracy of GPS measure-
ments is to extend the length of an observation session, for
example from six hours to 24 hours, when estimating daily
positions. The additional data mean that multipath noise
(which varies throughout the day) averages out better, and
it is easier to fix ambiguities and estimate tropospheric de-
lay parameters. The accuracy of GPS measurements has
also improved over time. A major reason for this has been
the expansion of the global network of tracking stations
that are used to calculate precise orbital information for
the satellites and to define reference frames for GPS po-
sitions. Models for various noise sources have also been
refined over time, and some noise sources have been mit-
igated, for instance by improving the stability of geodetic
monuments. It should be noted that the vertical signal is
generallymuch noisier than the horizontal because it is not
possible to track satellites below the horizon, and therefore
there is no position control from below.

Applications of GPS Data
to the Study of Seismic and Volcanic Hazards

GPS data provide important constraints on the underly-
ing processes that lead to observed deformation, especially
when used in combination with other data types. One of
the major strengths of GPS is its ability to track positions
over time spans of seconds to decades; another is that it en-
ables measurement of position changes over continental-
scale baselines. This section will discuss several broad areas
of study using GPS data and provide specific examples of
each. Background on modeling methods will be included
as necessary.

Plate Motions

Earthquakes occur in response to stresses in the Earth’s
crust, and these stresses are largely due to the motion of
the Earth’s tectonic plates. Knowing the velocity at which
the plates move gives us insight into the amount of de-
formation that must be accommodated on plate boundary
faults, and what type of earthquakes might be expected.
The Earth’s plates are generally thought to be rigid, at
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GPS: Applications in Crustal Deformation Monitoring, Figure 3
Velocities for a globally distributed selection of GPS sites. Figure courtesy NASA/JPL-Caltech

least in their interiors (away from plate boundaries where
plates interact with one another). One approach to mea-
suring global plate motions combines rate information ob-
tained from the age of magnetic reversals recorded in the
basalt of the oceanic crust formed at mid-ocean ridges
with information regarding the direction of plate motion
gleaned from the orientation of transform faults and di-
rection of slip in earthquakes. Because most such stud-
ies use a magnetic anomaly that is �3 million years old,
the rates of plate motion inferred in this manner rep-
resent an average over the time since the Pliocene. The
most commonly used plate motion model of this type is
called NUVEL-1A [29,30]. This model gives relative ve-
locities for pairs of plates. Under the assumption that the
lithosphere has no net rotation with respect to the man-
tle below, Argus and Gordon [2] developed the NNR-
NUVEL-1A model of absolute plate motions, where NNR
refers to “no net rotation.”

In contrast to approaches based on geologic data,
geodetic techniques enable the estimation of present-day
plate motions using essentially instantaneous measure-
ments. Two such geodetic methods, Satellite Laser Rang-
ing (SLR) and Very Long Baseline Interferometry (VLBI),
were used in the 1980s to measure the positions of points
on the Earth’s surface. Given a good spatial distribution of
sites world-wide, it is possible to use such data to estimate
plate velocities. However, expense and practical consider-
ations limited the number of sites that could be observed
with SLR and VLBI. The advent of GPS provided a cost-
effective alternative enabling precise three-component po-
sitioning with dense spatial coverage globally (e. g., Fig. 3).

Several studies have used GPS data, either alone or in
combination with other observations, to estimate global
plate motions (e. g., [4,79,124,140]), and numerous other
studies have used such data in analyses focused on sub-
groups of plates. The plates are modeled as rigid, rotating,
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spherical caps. Their motions are expressed as Euler vec-
tors, defined by a location of the Euler pole (point E in
Fig. 4a) and the angular velocity of the plate around that
pole. These parameters are related to the velocities of the
GPS sites by

v D ˝ � r (1)

where v is the GPS velocity vector, ˝ is the Euler vector
for the plate in question, and r is the position vector of the
GPS site in Cartesian geocentric coordinates (e. g., [79]).
The relationship given in (1) may be understood from
Fig. 4. The Euler vector and position vector may be ex-
pressed as unit vectors ( ű and ru) multiplied by their
magnitudes (! and R)

˝ D ! ű (2)

r D Rru (3)

where ! is the velocity of rotation (generally in degrees or
radians per million years), and R is the radius of the Earth
(Fig. 4a). As shown in Fig. 4b, the distance, d, that a GPS
station travels during a time period t due to rotation about
the Euler pole is given by

d D ! tR sin ı (4)

where ı is the angular distance between˝ and r (Fig. 4a).
The quantity sinı is simply the cross product of the unit
vectors for the Euler vector and the position vector,

sin ı D ű � ru : (5)

Therefore, plugging (2), (3), and (5) into (4), and dividing
by time gives (1). The system of equations given in (1) can
be solved to estimate the Euler vector that best fits the GPS
data for each plate.

The early studies (e. g., [4,79]) were able to estimate
velocities for only a handful of plates (e. g., six and eight,
respectively). In recent years, however, the global distri-
bution of CGPS sites has grown substantially such that
Prawirodirdjo and Bock [124] estimated the velocities of
17 “major and minor tectonic plates” and Sella et al. [140]
considered 19 “plates and continental blocks.” The in-
creasing precision of GPS measurements has made it pos-
sible to more rigorously test plate rigidity and the exis-
tence of purported plate boundaries, as well as address the
potential systematic velocity error introduced by GIA in
North America and Eurasia [124,140].

Velocities of GPS sites used in plate motion studies
have repeatedly been found to be consistent with the as-
sumption that plates behave rigidly, as evidenced by the

GPS: Applications in Crustal Deformation Monitoring, Figure 4
Relationship between the velocity of a GPS station and an Euler
pole of rotation. Point P is the location of aGPS station, and point
E is the location of the Euler pole of rotation,˝ , that describes
the motion of the plate on which point P sits. The Euler vector
points from the center of the Earth to point E, and its magnitude
is the rate of rotation,!. Point P is located at an angular distance
of ı from point E. The velocity recorded at point P due to rota-
tion about the Euler pole is given by v D˝ � r, where r is the
position vector of the GPS station, and its origin is the center of
the earth. Therefore, the length of r is the radius of the earth, R.
The gray circle that passes through the point P has radius R sinı.
b View of the gray circle in a looking along the direction of the
Euler vector. The distance traveled by point P during a time pe-
riod t due to the rotation given by˝ is given by d. See text for
details

fact that in general a single Euler pole fits the GPS veloc-
ities for a given plate well. Moreover, estimates of global
plate velocities inferred from these data have agreed with
plate motions inferred from geologic and other data (e. g.,
NUVEL-1A). However, the improvement in size and qual-
ity of GPS datasets has highlighted some discrepancies be-
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tween NUVEL-1A and the models arrived at geodetically
(e. g., [140]). These differences may be due in some cases
to systematic errors in the rates estimated from magnetic
anomaly data in tectonically complex areas where rela-
tive plate motion is not localized at the spreading center.
In other cases the difference may reflect an actual change
in the rate of relative plate motion over the past 3 mil-
lion years. Refining both the geologic and geodetic plate
motion models continues to be an area of active research
(e. g., [3,28]).

Earthquake and Volcano Source Modeling

Source Potency and Geometry Although the Earth’s
plates behave rigidly, as evidenced by the velocities of GPS
sites in the stable interiors of plates, at their edges neigh-
boring plates interact, colliding, diverging, or sliding past
each other. These processes, as well as others such as the
movement of magma underground, impart stress to the
Earth’s crust, distorting the shape of a volume of crustal
material. Some of this deformation is permanent, lead-
ing for example to mountain building. However, the brit-
tle upper portion of the Earth’s crust deforms elastically,
meaning that a large portion of crustal deformation is re-
coverable; once the stress is relieved, the crustal material
returns to its pre-stress shape. The discussion presented
here will focus primarily on modeling which assumes an
elastic crust, however several studies have considered the
effects of nonelastic material properties (e. g., [37,65,135]).

Mathematical expressions from continuummechanics
that describe the stress, strain, and displacement in an elas-
tic solid due, for example, to a point source or to move-
ment on a planar dislocation can be applied to the study
of crustal deformation sources using surface displacement
data like those provided by GPS. Okada [109,110] pre-
sented concise analytic expressions that are used in many
such studies today. Mogi [99] discussed the special case of
surface displacement due to three orthogonal, equal-am-
plitude point sources of inflation which could represent
an inflating or deflatingmagma body at depth. Dislocation
sources are described by their dimensions, orientation, lo-
cation in the Earth’s crust, amount of movement (e. g. slip)
which takes place across them, and the direction that the
material on one side of the dislocation moves relative to
that on the other (sometimes termed the “sense of slip”).
Volcanic sources such as dikes and sills can be modeled by
dislocations with opening rather than slip. Magma cham-
bers are often represented by inflation sources defined by
their locations, amount of inflation, and, in the case of
more complicated geometries such as ellipsoidal sources,
their shapes. Dzurisin [40] gives a good discussion of ap-

proaches for modeling a variety of volcanic deformation
sources.

The term “source geometry” refers to all source char-
acteristics except the amount of slip, opening, or inflation.
These latter three parameters, which describe the strength
of the source, are sometimes referred to as the “source po-
tency.” The surface displacement field produced in any de-
formation event reflects not only the source potency but
also the source geometry and characteristics of the crustal
material. Figure 5 presents the expected horizontal and
vertical displacement due to different modes of shear slip
and opening on a planar dislocation and to a point source
of inflation. As can be seen, each deformation source pro-
duces characteristic surface displacement patterns. As with
the estimation of plate motions described earlier, a sys-
tem of equations can be written that relates a deformation
source such as a dislocation in the crust to the displace-
ments measured with GPS at the Earth’s surface. In sim-
plified terms this system of equations can be written as

d D Gs (6)

where d is a vector of station displacements measured by
GPS, s is a vector of source potency (e. g., fault slip), andG
is a matrix which embodies the mathematical expressions
relating potency to displacements for an assumed fault ge-
ometry and elastic properties. This system of equations
can be solved (or “inverted”) to estimate the unknown po-
tency that best fits the known displacements. The displace-
ments at the Earth’s surface are nonlinearly related to the
source geometry, but are linearly related to the source po-
tency. Therefore, when the source geometry is known, in-
verting for the potency is a linear inverse problem. In the
simplest case the potency can be assumed to be uniform
for the deformation source. In the case of a fault, this im-
plies that the same amount of slip occurred everywhere on
the fault, and the vector s would have just one element.
However, in the presence of multiple sources, the total dis-
placement at the surface is simply the sum of the contri-
butions from all the sources (e. g., Fig. 6). This means that
spatially variable fault slip can be estimated by dividing the
model fault into a grid of subfaults, each of which con-
tribute to the observed displacements, and estimating the
slip on each subfault. In this case the length of the vec-
tor s would be the number of subfaults. The number of
subfaults used is generally dictated by how much data are
available.

Inversion of geodetic data for characteristics of defor-
mation sources is underdetermined, meaning that a large
number of source models can fit the data within errors.
Having vertical and horizontal displacement measure-
ments improves the ability to distinguish among different
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GPS: Applications in Crustal Deformation Monitoring, Figure 5
Predicted displacement due todislocation and inflation sources assuming a homogeneous elastic half space.Vectors showhorizontal
displacement and colored background shows vertical motion. Note change of vector and spatial scales from a – c to d, e. Heavy black
line in a – d is surface projection of upper edge of source dislocation. Black circle in e is surface projection of point source of inflation.
See Table 1 for source parameters
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GPS: Applications in Crustal Deformation Monitoring, Table 1
Source parameters for deformation sources depicted in Fig. 5

Panel in
Figure 5

Description Length
(km)

Width
(km)

Depth to
top (km)

Dip
(degrees)

Slip or
opening (m)

Sense of slip Inflation
(106 m3)

a Dislocation 50 14 0 90 1 Right lateral, strike slip
b Dislocation 50 10 6.34 60 1 Reverse
c Dislocation 50 10 6.34 60 1 Normal
d Dislocation 12 5 3 90 1 Opening
e Inflation point source 5 10

GPS: Applications in Crustal Deformation Monitoring, Figure 6
Predicted displacements due to two sources. a Source geometry consisting of two vertical strike-slip faults and location of a GPS
receiver. bMap view of displacement due to slip on the fault shown in red in a. cMap view of displacement due to slip on the fault
shown in blue in a. dMap view of displacement due to slip on both faults. Note how the displacement at the circled locations in b and
c due to the individual faults is very different from that which would be recorded by GPS in d due to slip on both faults

possible source geometries. For instance, several types of
volcanic sources will produce similar patterns of vertical
deformation, but with the inclusion of horizontal displace-
ment measurements it is possible to differentiate among
them. When using GPS data to estimate the spatial distri-
bution of slip on a fault (by dividing the model fault into
subfaults and estimating the slip on each), spatial smooth-
ing is often used to provide added constraints in the inver-
sion. The justification for this is that abrupt changes in the
amplitude of slip would result in high stresses on the fault
surface, which is physically unlikely. The relative weight
given to fitting the data and to spatial smoothness is often
determined empirically (e. g., [161]). Non-negativity may

also be applied, for instance to include prior knowledge
about the sense of slip on a fault as a constraint on fault
slip estimates.

Regardless of these means for regularizing inversions,
because geodetic measurements are collected at the sur-
face, their sensitivity to the details of a deformation source
decreases with depth. GPSmeasurementswill bemost sen-
sitive to source processes occurring in the upper few kilo-
meters of the Earth’s crust near the GPS receiver’s location.
Deeper sources will affect GPS sites over a broader region,
but the recorded deformation signal will lack detail about
the source. This can be best understood if one thinks of
an earthquake that causes rupture of the Earth’s surface.



GPS: Applications in Crustal Deformation Monitoring G 4261

A GPS receiver near the fault will record data which pri-
marily reflect the shallow slip and surface rupture close to
that receiver. A receiver 15 km away from the fault will not
be sensitive to the shallow, near-fault deformation, and the
recorded signal will be due to large-scale features of slip on
deeper parts of the fault. Likewise, a receiver at the summit
of a volcano can record the movement of magma that is
collecting near the crater, whereas receivers lower on the
flanks of the volcano will likely not record that signal but
could be expected to track deformation due to movement
of magma at greater depths.

The structure of major faults such as the San Andreas
has been studied extensively by mapping, imaging the spa-
tial distribution of background seismicity, and applying
geophysical techniques that use, for example, seismic re-
flection and refraction, gravity, or magnetic data to high-
light contrasts in rock properties. Therefore, if an earth-
quake hypocenter is found to be located on a major fault,
the source geometry may be well-known a priori. In the
absence of such information, or to refine the source ge-
ometry used in inversions, the spatial distribution of after-
shocks and the location and extent of any surface rupture
are also used.

Traditionally, spatially sparse geodetic measurements
were assumed to be insensitive to the details of the model
fault geometry used in inversions. With the recent growth
of spatially dense GPS networks, however, more physi-
cally realistic fault geometries have been required.Maerten
et al. [84] showed that using non-planar fault geometries
that better represented independent information, for ex-
ample from surface rupturemapping, led to significant im-
provement in fits to the GPS displacements for the 1999
Mw 7.1 Hector Mine earthquake. Methods for precisely re-
locating seismicity (e. g., [163]) have illuminated fine-scale
fault structures that were previously obscured in less-pre-
cise catalog locations. This has enabled the development of
more realistic model fault geometries.

For example, Murray and Langbein [101] used dis-
placements measured with GPS to estimate the slip dis-
tribution of the 2004 M6 Parkfield, California earthquake.
This event took place on the well-studied San Andreas
fault in central California. Earlier work (e. g., [41,149])
had suggested that the fault was essentially vertical, with
a strike of 149°. During the 2004 event, the coseismic
displacement recorded for one GPS station, CARH, lo-
cated within about 500 meters of the fault was in the op-
posite direction to what is predicted for a right lateral
strike-slip fault (e. g., Fig. 5a). In order to fit the data
for this station, an additional fault structure was needed.
A sub-parallel fault called the Southwest Fracture Zone
(SWFZ) which had exhibited movement in a previous

earthquake at this locale was a likely candidate. Using relo-
cated aftershocks of the 2004 event [159] as a guide, Mur-
ray and Langbein [101] developed a non-planar fault ge-
ometry that consisted of the primary San Andreas fault
and a subsidiary SWFZ. These two model fault surfaces
passed through the relocated seismicity and intersected the
mapped surface traces of the faults at the Earth’s surface.
Using this fault geometry, Murray and Langbein [101] in-
verted the GPS data to image the coseismic and postseis-
mic slip associated with this earthquake.

Unlike in the case of Parkfield described above, often
very little is known a priori about the geometry of a de-
formation source. This is especially true for sources that
lie completely underground such as magmatic intrusions
and earthquakes that do not cause any surface rupture
(e. g., “blind” thrust events). However, as discussed ear-
lier (Figs. 5 and 6), the surface displacement field produced
in any deformation event reflects not only the source po-
tency but also the source geometry. Therefore, by observ-
ing the spatial pattern of displacement using GPS, it is pos-
sible to infer what type of source lies underground by find-
ing the source model that best predicts the observed data,
for instance by using the expressions for deformation in
an elastic material. Since surface displacements are non-
linearly related to source geometry, parameters describing
the geometry cannot be estimated using linear inversion
techniques but rather must be found through nonlinear
optimization. Cervelli et al. [21] give a good overview of
several approaches to this type of problem. When estimat-
ing the geometry and potency of an earthquake or open-
ing source, often a two-step approach is employed: first the
source geometry is estimated assuming uniform fault slip
or dike opening, and then the inferred geometry is held
fixed and the spatial distribution of slip or opening is esti-
mated. As described in the following examples, the ability
to infer the source geometry can help answer important
questions about the underlying processes driving defor-
mation such as whether a fault terminates in a décollement
or how magma sources interact.

(a) Deep Structure of the Chelungpu Fault, Taiwan John-
son and Segall [65] used GPS-measured displacements
caused by the 1999 Mw 7.6 Chi-Chi Taiwan earthquake to
constrain the geometry of its rupture surface. They then
went on to answer fundamental questions about the seis-
motectonics of Taiwan, which has formed due to the col-
lision between the Philippine Sea plate and the Eurasian
plate.

The extensive surface rupture that accompanied the
Chi-Chi earthquake suggested that oblique reverse / left-
lateral slip occurred on the previously known Chelungpu
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GPS: Applications in Crustal Deformation Monitoring, Figure 7
Cross section of the Chelungpu fault in Taiwan. The solid, near-horizontal black lines and the upper dotted line represent the ramp
and décollement structure of the “thin-skinned” model, while the steeper dotted line below 10km is the deeper extension of the
Chelungpu fault envisioned by the “thick-skinned” model. CHF, Changhua fault; CPF, Chelungpu fault; STF, Shuangtung fault; star,
hypocenter of 1999 Chi-Chi earthquake. Reprinted from [65] with permission from Elsevier

thrust fault which strikes north-south and dips �30° east.
A nearly horizontal décollement structure has been inter-
preted to exist at depths of 6 to 10 km beneath much of
Taiwan based on geologic mapping, seismicity locations,
and seismic reflection profiles. In one proposed defor-
mation model, termed the “thin-skinned” model, thrust
faults like the Chelungpu fault intersect the décollement at
depths of<10 km (Fig. 7). The alternative “thick-skinned”
model interprets seismic and gravity data to suggest that,
although a décollementmay have controlled the long-term
tectonic evolution of the island, more recent deformation
has taken place on down-dip extensions of thrust faults
with the same dip as their shallower portions (Fig. 7). In
the case of the Chi-Chi earthquake, aftershocks occurred
both at depths which might coincide with a décollement
and considerably deeper, potentially on the down-dip ex-
tension of the Chelungpu thrust fault.

Johnson and Segall [65] optimized the source geome-
try of the Chi-Chi earthquake using a half-space with lat-
erally and vertically varying shear modulus. They showed
that the GPS data required slip on a thrust plane that tran-
sitions into an essentially horizontal décollement struc-
ture at�8 km depth.Moreover, they showed that displace-
ments at the north end of the fault, where the surface rup-
ture changed to a more east-west orientation, could only
be fit by an additional thrust fault, which they term a “lat-
eral ramp,” extending to the depth of the décollement. The
estimated slip distribution of the earthquake using this ge-
ometry is shown in Fig. 8. These authors use the results
for the Chi-Chi event as the basis for a conceptual model
in which deformation follows the thin-skinned model, and
lateral ramps form north of the Chelungpu fault due to this

GPS: Applications in Crustal Deformation Monitoring, Figure 8
Slip distribution of the 1999 Mw 7.6 Chi-Chi Taiwan earthquake
and optimized fault geometry inferred from GPS data. Colors
indicate magnitude of slip and vectors show the direction that
the hanging wall moved relative to the foot wall. The blue curve
shows the trace of the earthquake rupture at the Earth’s surface.
Reprinted from [65] with permission from Elsevier

fault’s orientation oblique to the direction of plate conver-
gence.

(b) Magma Plumbing System at Kilauea Volcano, Hawaii
Kilauea volcano, on the Big Island of Hawaii, consists
of a summit crater as well as two rift zones, themselves
consisting of several craters, extending from the summit
down the flanks of the volcano (Fig. 9). Since 1983 Pu’u
O’o, a collection of volcanic vents in the East Rift Zone,
has been the center of eruptive activity, apparently fed by
magma flowing through lava tubes from Kilauea summit.

In January 1997 a fissure eruption occurred on the East
Rift Zone at Napau crater, �3 km closer to the summit



GPS: Applications in Crustal Deformation Monitoring G 4263

GPS: Applications in Crustal Deformation Monitoring, Figure 9
Displacements measured using GPS during the 1997 fissure eruption at Kilauea volcano. On the basis of the observations (black
vectorswith 95% confidence ellipses) Owen et al. [112] inferred the source of the deformation to be a combination of deflation at the
summit of Kilauea (inward pointing arrows; see inset) and the intrusion of a dike along the east rift zone culminating in the eruption.
The displacements predicted by this source geometry are shown by the gray arrows. CGPS sites are indicated by stars with four-
character station codes. The deflation sources are shown as gray circles and the dike location by the hachured rectangle. Thin black
lines are faults, fractures, and fissures. Adapted with permission from [112] (copyright 2000, American Geophysical Union)

than Pu’u O’o. In addition to uplift, the GPS instruments
recorded horizontal displacements around the eruptive
fissure at Napau Crater that were directed outward from
the rift zone except at the ends of the fissure where they
pointed inwards, parallel to the rift (Fig. 9). The magni-
tude of the displacements died off quickly with distance
from the fissure. This displacement pattern is characteris-
tic of a shallow dike intrusion within the rift zone. Prior to
the eruption, sites at Kilauea summit showed subsidence
and a radially inward pattern due to horizontal shorten-
ing across the summit, and this accelerated drastically dur-
ing the eruption. This pattern suggests deflation, and ulti-

mately emptying, of a magmatic source beneath the sum-
mit.

Using nonlinear optimization, Owen et al. [112] found
that a source geometry consisting of a steeply dipping dike
aligned with the rift and the fissures, combined with defla-
tion both at the summit and at Makaopuhi crater, best fit
the GPS observations (Fig. 9). The volume change at the
two deflation sources was an order of magnitude less than
the volume of the inferred dike intrusion. However, this
discrepancy can be remedied if magma previously stored
in a lava lake at Pu’u O’o which was seen to drain during
this event, along with magma in a conduit thought to con-
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nect the summit magma chamber to Pu’u O’o, also con-
tributed to the intrusion. That the period of time leading
up to the eruption had been characterized by steady defla-
tion of the summit indicates that dike formation was not
in response to magma overpressurization at the summit,
but rather some other process. Owen et al. [112] suggest
that ongoing southeastward movement of the south flank
of the volcano (e. g., [111]) created tensile stresses that en-
couraged the dike intrusion and fissure eruption at the rift.
Following the eruption, inflation resumed at the summit
and the lava lake refilled, further evidence of the connec-
tion between the two magma reservoirs.

Combined Use of Multiple Data Types Wherever pos-
sible, multiple data types are used together to infer crustal
deformation source characteristics. For example, GPS data
are frequently used in combination with other geodetic
measurements such as Interferometric Synthetic Aperture
Radar (InSAR) [18] and leveling [38] data. GPS measure-
ments are also often used in combination with seismic
records to estimate fault slip.

(a) GPS and InSAR GPS data are commonly used in
combination with InSAR data because of the complemen-
tary nature of these two data types. GPS observations
provide three-component displacements, good horizontal
precision, and (in the case of CGPS) good temporal cov-
erage. InSAR, on the other hand, has exceptional spatial
coverage, is more sensitive to vertical deformation than
GPS, and does not require the deployment of instruments
on the ground (thus enabling data collection from other-
wise hazardous areas such as volcanoes). InSAR, jointly
with GPS where possible, has been widely used to study
volcanic deformation (see for example [39,40,119]). Like-
wise, GPS and InSAR observations, in some cases in
combination with seismic data, have been used to in-
fer the slip distribution and rupture history of numerous
earthquakes including the 1992 Landers earthquake [54],
the 1995 Kobe earthquake [113], the 1999 Hector Mine
earthquake (e. g., [70,132,148]), and the 1999 Izmit earth-
quake [16,27]. Studies have explored the relative con-
straints on source parameters provided by each data-type,
as well as approaches for optimally weighting different
data types in inversions, especially when one method, like
InSAR, produces many more data points than another,
such as GPS (e. g., [71,126,148]). Wright et al. [168] used
a combination of InSAR and GPS data to infer the slip dis-
tribution of the 2002 Denali earthquake. Because of the re-
mote location of this event, GPS sites were clustered along
roads [57,58], thus resulting in poor spatial coverage along
some portions of the fault. In this situation InSAR ob-

servations helped reduce uncertainty in the slip estimates
compared to estimates obtained from GPS data alone.

(b) GPS and Seismic Data It has long been recognized
that GPS data are a useful complement to seismic records
for estimating fault slip [162]. While seismic data are sen-
sitive to the rupture process of an earthquake (the amount
and temporal progression of slip), when using these data
to characterize the rupture process, trade-offs exist be-
tween the time-history of slip and its spatial distribution.
GPS offsets due to an earthquake reflect only the final
(or “static”) slip distribution, and thus the slip history in-
ferred from the seismic data can be constrained to pro-
duce a static slip distribution that fits the geodetic displace-
ments. The combined use of these two data types tends to
have the added advantage of improved instrumental cov-
erage over the study area.

Wald and Heaton [162] conducted a comparison of
slip distributions for the 1992 Mw 7.2 Landers earthquake
inferred from strong motion, teleseismic, and geode-
tic data (GPS displacements and displacements calcu-
lated from trilaterationmeasurements) individually and in
a combined inversion. For all inversions they used a con-
sistent fault geometry parametrization comprised of three
fault segments based on the aftershock locations and the
extensive ground surface rupture that was mapped follow-
ing the event. They corrected the geodetic data for the ef-
fects of the Mw 6.2 Big Bear event and assumed that post-
Landers measurements were made soon enough to avoid
contamination by postseismic signals.

On inspection of the final slip distributions (Fig. 10)
obtained from inversions of each of the three datasets in-
dependently, the authors identified several features that
were common to all three and thus appeared to be robust
regardless of dataset. For example, slip at the hypocenter
was moderate and limited to a small depth range. Peak slip
at depth occurred along the central portion of the fault,
while slip became shallower at the ends (to the northwest
and southeast). The greatest near-surface slip was on the
Camp Rock / Emerson faults at the northwest end of the
rupture. The slip distribution obtained through combined
inversion of the three datasets was most similar to that
from the geodetic data alone because the timing of slip is
an additional degree of freedom in the inversion of tele-
seismic and strongmotion waveform data that is not avail-
able in the inversion of static offsets. In addition to the
final slip distribution, these authors imaged the temporal
progression of slip on the fault surface. The rupture ap-
pears to slow as it nears the surface, as well as when it
approaches the two step-over regions between fault seg-
ments. Furthermore, the authors infer that although the
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GPS: Applications in Crustal Deformation Monitoring, Figure 10
Slip distributions estimated byWald and Heaton [162] for the 1992Mw 7.2 Landers earthquake using different data sets. Contour in-
terval is 1meter. Starmarks hypocenter of earthquake.Dashed lines indicate along-strike boundaries of faults named at top. aGeode-
tic data only. b Teleseismic data only. c Strong motion data only. d Combined inversion of all three data sets. Adapted from [162]

rupture generally propagated unilaterally northwest, each
time the rupture jumped northwest to a subsequent seg-
ment it also propagated backwards down the abandoned
portion of this segment southeast of the fault intersection.
Thus, the combined use of geodetic and seismic data pro-
vided a more complete and robust understanding of the
rupture dynamics of this earthquake, which could then be
used to investigate, for example, the spatial patterns in the
strength of ground shaking due to this event.

Another example of the combined use of geodetic
and seismic data comes from the Dec. 26, 2004 Su-
matra–Andaman earthquake, a subduction zone mega-
thrust event which ruptured a �1200 km length of the
plate boundary between the Indo-Australian and Eurasian
plates [11,81]. This earthquake, which produced peak-
to-peak surface wave motions greater than 1 cm world-
wide [115] and measurable static offsets at GPS sites at

least 4500 km away [6] and probably farther [73], resulted
in more than 283,000 deaths, largely due to its trigger-
ing of a major tsunami. This is the largest earthquake to
have been recorded since the establishment of digital seis-
mic networks andGPS, and both seismic and geodetic data
have been critical in describing the rupture process of this
earthquake.

The moment magnitude of an earthquake, Mw, is
a measure of its size and may be derived from the seismic
moment (Mo), which is defined as

Mo D �sA (7)

where � is the shear modulus of the faulted rock (in units
of Pascals), s is the amount of fault slip during the earth-
quake (meters), A is the area of the surface that slipped
in the earthquake (meters2), and Mo has units of New-
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tons × meters. “Tsunami earthquakes” [120] are a sub-
class of subduction zone earthquakes defined as produc-
ing tsunamis larger than would have been predicted from
their momentmagnitude. Tsunami earthquakes have been
observed to have slow rupture velocity with relatively little
seismic energy release at high frequencies. Although the
moment magnitude should represent the net amount of
static slip that occurred in the earthquake, it is typically
estimated from seismic data at periods of 100 to 300 sec-
onds [81]. If significant seismic energy is released at longer
periods, this method will underestimate moment magni-
tude. The Harvard CMT (Centroid Moment Tensor) so-
lution for the Sumatra–Andaman event, computed using
surface wave data with periods of 300 to 500 seconds, had
Mo D 4:0 � 1022 Nm which corresponds to Mw 9.0 [81].
However, researchers quickly began to see evidence that
this earthquake was in fact larger.

Ammon et al. [1] analyzed seismic data from a broad
frequency range (including data with periods up to 54
minutes) and concluded that these observations could be
fit by a model in which the majority of the rupture oc-
curred over a 10 minute time span and slip was concen-
trated south of 8°N (on the southernmost�800 km of the
fault surface, Fig. 11). However, they note that the large
GPS displacements reported in the Nicobar and Andaman
islands would require 2- to 3-timesmore slip north of 8°N.
Studies of the Earth’s seismic free oscillations [116,152]
used these very low-frequency data (at periods up to one
hour) to estimate themoment of the earthquake and found
that moment increased with the period of the oscillations.
These data suggest that the rupture required�10 minutes
to travel from south to north, had more slip in the Nico-
bar and Andaman islands region than originally thought,
and led toMw estimates of 9.13 to 9.3. Park et al. [116] also
point out that even slower slip (e. g. over a time span of�1
hour) could have occurred and would be difficult to detect
in the free oscillation data.

Banerjee et al. [7] compiled GPS data from several
studies and used these observations to infer the static slip
distribution on the rupture surface. The total moment re-
lease associated with their slip estimate is 7:62 � 1022 Nm
(corresponding to an Mw 9.22), smaller than that es-
timated by Stein and Okal [152], but greater than the
6:11 � 1022 Nm (Mw 9.13) inferred from GPS data by
Kreemer et al. [73]. Banerjee et al. [7] conclude that from
�2 to �16 meters of slip on portions of the fault north
of 8°N is needed to fit the GPS data from the Andaman
and Nicobar islands. However, they argue that this slip
did not occur slowly over a time span of an hour or
more because the continuous GPS site at Phuket, Thai-
land showed little movement after�10 minutes following

the earthquake [160], and other sites in Thailand which
should be particularly sensitive to slip on the Andaman
segment given their location also do not show move-
ment more than 10 to 20 minutes following the earth-
quake [53]. Although some slip estimates based on geode-
tic data alone have higher moment than those from seis-
mic data alone, suggesting the occurrence of aseismic slip,
Chlieh et al. [24] and Rhie et al. [129] conducted joint in-
versions of GPS and seismic data and were able to fit both
datasets satisfactorily with a single rupture model.

Thus, although seismic data provide information on
the details of fault rupture that cannot be obtained from
GPS, in the case of the Sumatra–Andaman event the GPS
observations provided needed constraints on the extent
and duration of fault rupture, both of which had impor-
tant implications for tsunami generation.

(c) GPS and Gravity Data GPS data have become widely
used to study volcanic deformation processes, including
the long-term uplift observed at calderas such as Yellow-
stone (Wyoming), Campi Flegrei (Italy), and Long Val-
ley (California). Geodetic observations can constrain the
source geometry and volume change [8]. They cannot,
however, discriminate if the deformation is due to an in-
flux of hydrothermal fluids or the intrusion of magma.
Battaglia et al. [8,9] address this problem through the com-
bined use of geodetic and gravity data recorded during
a period of uplift in Long Valley caldera. Modeling the
observed uplift using a point source will produce biased
results if the true source does not possess spherical sym-
metry. Furthermore, the uplift signal of a range of source
geometries can be similar, but the horizontal deformation
signal can help in distinguishing among different models
(e. g., [32]). Battaglia et al. [8] use a combination of verti-
cal and horizontal geodetic measurements (GPS, leveling,
and line-length data) to find the best-fitting source geom-
etry, in their case a vertical prolate ellipsoid. Then, with
that source geometry uniquely determined, they perform
a joint inversion of the uplift and gravity data to infer the
volume and mass of the source, from which they obtain
a density range of 1180 to 2330 kg/m3 [9]. Since this den-
sity range is too high for hydrothermal fluids to be the sole
source of uplift at Long Valley, these authors conclude that
a silicic magma body or combination of magma and hy-
drothermal fluids is required to produce the observed de-
formation.

Deformation over Time Scales of Decades to Seconds

We have seen that GPS data are useful for constrain-
ing models of deformation that happens rapidly, such
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GPS: Applications in Crustal Deformation Monitoring, Figure 11
Summary of geodetic data recorded in the vicinity of the 2004 Sumatra–Andaman earthquake. The campaign GPS (yellow and black)
vectors are compiled from [49,153] and contain approximately one month of postseismic deformation. The continuous GPS data
come from Vigny et al. [160]. Note that the near-field vectors (those in the western part of the mapped region) and the far-field
vectors use a different scale. Dots represent measurements of vertical deformation from satellite imagery [91]. The gray arrows
indicate uplift and subsidence from GPS data, measurements of the vertical movement of coral heads, and mapping of shoreline
changes [12,49,153]. Figure adapted from [24]

as slip in an earthquake. However, perhaps the greatest
strength of GPS is its ability to record deformation that
occurs over a wide range of time periods. GPS can mea-
sure fault slip that happens too slowly to generate seismic
waves (termed aseismic slip), volcanic deformation that
occurs over several days or several years, and long-term
interseismic strain accumulation. GPS can provide much
more temporally densemeasurements than InSAR and, al-

though less sensitive, is stable to longer time periods than
strainmeter data as shown in Fig. 12 [68].

Interseismic Deformation Interseismic deformation
refers to the gradual straining of the Earth’s crust that
occurs during the time between moderate to large earth-
quakes. This strain can be caused by the build up of stress
that will eventually be released during earthquakes, as well
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GPS: Applications in Crustal Deformation Monitoring, Figure 12
Comparison of rate sensitivity for GPS, borehole strainmeters at
200 meters depth, and borehole tiltmeters (which measure the
gradient in vertical deformation) at 2 meters depth. The x-axis
indicates the time period that may be spanned by the different
data types. For example, daily GPSmeasurements may span one
day or longer. The y-axis indicates the strain rate that can be re-
solved as a function of the period. Strain is the change in length
(area or volume) per a unit length (area or volume), and thus is
unitless and can be expressed as parts per million (ppm). As can
be seen from the plot, the borehole tiltmeters and strainmeters
are more sensitive than GPS at shorter periods, but at periods
longer than a few days and a fewmonths, respectively, GPSmea-
surements provide better resolution of strain rates. Figure cour-
tesy of John Langbein

as reflect the broader-scale patterns of deformation in re-
sponse to tectonic plate motion.

(a) Block Versus Continuum Models for Deformation As
one moves from the global scale of tectonic plates to the
continental scale, a major question is whether continents
deform through the movement of many small rigid blocks
(like plates on a smaller scale) or throughmore continuous
deformation [157]. GPS data have been used in numerous
studies to try to elucidate this hotly debated issue, and one
region that has been a focus of study is the Tibetan plateau
which accommodates strain due to the collision of India
with Eurasia. GPS velocities for a profile of stations span-
ning central Tibet roughly parallel to the direction of max-
imum convergence between India and Eurasia show a lin-
ear gradient in the component of velocity parallel to the
convergence direction. This observation has been cited as

evidence for continuously distributed deformation across
the region (e. g. [171]) or distributed strain combined with
the movement of a small number of crustal blocks [23].
In contrast, Thatcher [158] showed that the velocities pre-
dicted by amodel in which the Tibetan plateauwas divided
into a set of rigid, rotating crustal blocks defined by faults
and other geologic features could also fit the data since the
difference between the observed GPS velocities and those
predicted by the block model were relatively small and
did not exhibit widespread systematic spatial patterns. Al-
though the rigid block model does not predict a linear ve-
locity gradient across central Tibet, Thatcher [158] notes
that both the block and distributed models fit the veloc-
ity profile within errors. The spatial sampling provided by
GPS remains sparse across large portions of the Tibetan
plateau, and it is likely that additional data will be neces-
sary to resolve the outstanding question as to whether con-
tinental deformation in this region is primarily block-like
or continuous.

(b) Estimating Interseismic Fault Slip Rates Following
the 1906 San Francisco earthquake, H. F. Reid [127] used
his observations of deformation in that event to formu-
late a description of the earthquake cycle which he termed
“elastic rebound.” Reid recognized that strain builds up
in the Earth’s crust around faults during the interseis-
mic period, and that strain is eventually released in earth-
quakes. Reid’s hypothesis predated the theory of plate tec-
tonics, but we now understand that the source of the on-
going stress affecting the faults is the motion of the Earth’s
plates. The strain build-up and release causes measurable
deformation of the Earth’s surface. Areas where the crustal
strain measured using GPS is large are likely to have earth-
quakes to relieve that strain. These events may take place
on faults that are not visible on the earth’s surface, and in
this case the geodetic data can provide an important clue
to the existence of seismic hazard. GPS enables measure-
ment of deformation during all phases of the earthquake
cycle.

One of the most important pieces of information
needed to characterize a region’s seismic hazard is an esti-
mate of the slip rates on the major active faults that could
affect that region. Most seismically active regions are at
plate boundaries. The Earth’s rigid plates are always mov-
ing at rates that are essentially constant over time peri-
ods comparable to earthquake recurrence intervals (e. g.,
hundreds to thousands of years). At plate boundaries the
relative motion between two neighboring plates is accom-
modated on faults. The portion of the rate of relative mo-
tion that is accommodated across a given fault is that
fault’s slip rate. Slip rates are often estimated from geo-
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GPS: Applications in Crustal Deformation Monitoring, Figure 13
a Expected velocity field due to interseismic slip below 15 kilometers on a vertical strike slip fault. The red curve highlights the differ-
ence in velocity near and far from the fault. b Expected velocity profiles for a locked fault and one that exhibits shallow creep. The
locked fault is as in a. The creeping fault slips below 15km depth and creeps in the uppermost 4 km but is locked from 4 to 15 km
depth. Note that in the case of a creeping fault, there is an offset in the velocity profile close to the fault. The near-fault inflection in
the green curve shows the combined effect of the strain due to slip below the locked zone and creep that reaches the Earth’s surface

logic data, for example by dating samples collected from
a location in which a measurable offset of a stream chan-
nel has occurred due to movement on a fault that crosses
the stream [146]. However, slip rates can be inferred from
geodetic data as well.

Below a certain depth in the Earth’s crust (e. g.,
�15 km for many strike-slip faults in the San Andreas sys-
tem) the temperature and pressure are sufficiently high for
the crustal rock to behave plastically in response to stress,
rather than experiencing brittle failure. Earthquakes occur
above this depth, which is termed the “brittle-ductile tran-
sition,” the “locking depth,” or the “transition depth,” but
not below. In the time between moderate to large earth-
quakes most faults are largely locked above the transition
depth, meaning no movement occurs across them. (It is
true that very small earthquakes occur frequently on most
faults, but these events affect a relatively small portion of
the fault’s surface area and release a tiny fraction of the en-
ergy, or moment, released in moderate and large events.)
The material below the transition depth deforms gradu-
ally and continuously in response to plate motion, and
a fault that is locked above the transition depth may ex-
ist as a zone of distributed shear below that depth. In the
vicinity of a locked fault, the constant movement of the
material below the transition depth strains the elastic crust
above. This is manifest by a characteristic pattern of inter-
seismic velocities for points on the Earth’s surface near the
fault. For example, the interseismic velocity profile per-

pendicular to a strike slip fault like the San Andreas will
have a characteristic sigmoidal shape as shown in Fig. 13,
the details of which reflect the locking depth and slip rate
of the fault.

In regions dominated by a small number of major
faults of known geometry (e. g., the San Andreas fault sys-
tem in northern California, or subduction zones of Cas-
cadia and Japan), interseismic slip rates can be inferred
in much the same way as was done for earthquake slip
(Eq. (6)) using relatively simple dislocation models in
which the fault is prescribed to be locked above the tran-
sition depth and freely slipping below that (simulating
the motion of the tectonic plates). A number of studies
(e. g. [47,125]) have taken this approach to model the GPS
velocities of sites in northern California as the superpo-
sition of interseismic velocity signals due to slip on the
multiple sub-parallel faults that make up the San Andreas
system. When the slip rate on a fault is estimated from
interseismic GPS velocities, the resulting value is gener-
ally called the interseismic slip rate to emphasize that it
has been estimated from data collected over a time period
entirely within the interval between two earthquakes on
the fault in question. When slip rates are estimated from
geologic data they are often called “long-term average”
rates to emphasize that they represent the rate over many
earthquake cycles. In the absence of post-seismic effects or
other transient deformation (described in more detail in
a later section) these two slip rate estimates for a given
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fault should be the same. In subduction zones, interseis-
mic velocities are often used to estimate the degree of plate
“coupling,” which reflects the size of the locked zone that
may rupture in a large earthquake [17,44,93,108,154,164].

As discussed earlier in the context of the Tibetan
plateau, one interpretation of continental deformation
patterns is that they arise from the rotation of fault-
bounded blocks, and the GPS data can be used to esti-
mate the Euler poles of rotation for each block. Data from
sites near known faults may be discarded from the analy-
sis because these observations will likely reflect the inter-
seismic elastic strain accumulation due to the faults rather
than the long-term rigid behavior of the blocks. Slip rates
on the faults that bound the blocks can be calculated from
the relative rates of block rotation (e. g. [158]). An alter-
native block modeling approach retains all the data, and
the estimated block rotation rates must result in slip rates
on block-bounding faults that are compatible with the pat-
terns of strain accumulation recorded in the GPS velocity
field. As with the dislocation models, a transition depth is
assumed for each fault. The portion of each fault above the
transition depth is treated as locked, and slip on the por-
tion below the transition depth drives the observed strain
accumulation.

Block modeling of this type lends itself to the many
seismically active regions, such as southern California, that
are characterized by numerous faults with complex ge-
ometries. Unlike models which represent individual faults
by separate dislocations, block models are required to be
self-consistent in that the rotation rates must be compati-
ble for all blocks, slip rates have to be consistent at fault in-
tersections, and the total slip rate across the region is made
to match the relative plate rate. A drawback of this ap-
proach, however, is that it is difficult to accommodate dip-
ping faults and to constrain fault-perpendicular motion in
a realistic way.

Both block models and dislocation models suffer from
trade-offs between slip rate estimates on different faults
and sensitivity to poor data coverage. Furthermore, it is
difficult to resolve the contribution to the observed GPS
velocity from strain accumulation on closely spaced faults
(e. g. within two locking depths of each other), and thus
slip rate estimates on neighboring faults tend to trade-off
with each other and with the assumed locking depth. It
will always be difficult to resolve slip rates on faults that
are close together given that displacement measurements
are confined to the Earth’s surface.

Several studies have applied the technique of block
modeling with inclusion of elastic strain accumulation to
the western United States [26,89,90]. For many faults the
slip rates estimated by these studies agree to within er-

rors with those estimated from geologic studies. However,
there are some discrepancies. For example, the �5mm/yr
slip rate Meade and Hager [90] estimated for the San
Bernadino segment of the San Andreas fault is consider-
ably lower than the geologic estimate of �25mm/yr. Dis-
crepancies between geodetic and geologic slip rates have
been found in several locations world wide, but it is not
the case that one data type tends to produce consistently
higher rate estimates than the other. The differences likely
result from a combination of factors, including assump-
tions made in interpreting the data, the localized nature of
geologic estimates, and the different time periods spanned
by the two data types. Consistency between geodetic and
geologic slip rates is an area of ongoing study.

Time varying deformation is often observed follow-
ing large earthquakes. One source of this signal in many
cases is the viscoelastic response of the material below the
transition depth. When a large earthquake occurs it im-
parts stress to this material, which then deforms slowly,
restressing the elastic crust above. The rate of the resulting
strain would be expected to be high directly after the earth-
quake and die off with time. Likewise, the strain accumu-
lation rate on the affected fault would vary throughout the
earthquake cycle. These processes have been incorporated
into another category of interseismic deformation mod-
els called “viscoelastic cycle” models [66,67,133,137,156],
which can be used to estimate fault slip rates and earth-
quake recurrence times. These models account for the
strain rate maxima on faults during the interseismic pe-
riod as well as temporal variations in the months to years
following a large earthquake.

(c) Fault Creep An interesting interseismic phe-
nomenon, termed “fault creep,” is observed on several
faults of the San Andreas system in central California
and the San Francisco Bay Area, as well as faults in Tai-
wan, the Philippines, and Turkey. Faults exhibiting creep
slip steadily or episodically at low average rates (e. g.
10mm/yr). Some creep events are confined to the up-
permost �500 meters of faults, but in other cases creep
occurs deeper at what are generally considered to be seis-
mogenic depths (e. g. to a depth of�15 km on faults of the
San Andreas system). However, this fault slip is too slow
to generate seismic waves. The ongoing slip of creeping
faults is a nuisance, offsetting cultural features like curbs
and buildings. However, ongoing creep constantly relieves
stress which would otherwise be released in an earthquake
and thus reduces the seismic hazard due to that fault. For
example, a 2003 study of earthquake probabilities for the
San Francisco Bay area found that accounting for creep on
the Calaveras fault reduced the predicted rate of M � 6:7
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earthquakes on this fault by a factor of three [167]. There-
fore, knowing the extent of creep is valuable in hazard
assessments.

Fault creep will have a different interseismic signature
than that for a fault that is locked in the seismogenic zone
(Fig. 13b). Instead of the smooth transition seen across
a locked fault, there will be a step because there is fault
offset near the surface. Therefore, GPS data can be used to
infer the depth-extent of fault creep. Several studies have
used GPS data, in some cases in combination with In-
SAR, creepmeter, and microseismicity observations, to es-
timate the spatial distribution of fault creep (e. g. [64,85,
103,136]).

Temporally Varying Deformation Continuous GPS
measurements are particularly useful for observing tran-
sient, or time-varying, deformation. Sources of transient
deformation include slow slip events, postseismic re-
sponse, and volcanic processes.

(a) Slow Slip Events Slow slip events, sometimes also re-
ferred to as “slow earthquakes” or “silent earthquakes”
(the latter emphasizing the lack of a seismic signature to
the event), are a phenomenon in which fault slip occurs
at too slow a rate to generate seismic waves. The dura-
tion of slow slip events that have been observed geode-
tically world-wide ranges from days (e. g. [22,106]) to
years (e. g. [98,102]). Precursory transient slip with dura-
tion of minutes has been observed prior to earthquakes
on mid-oceanic ridge transform faults using seismic data
(e. g. [62]).

Shallow creep events and a multi-year transient in-
crease in slip rate have been observed along the San
Andreas fault where continuous or frequent monitor-
ing using creepmeters, strainmeters, and two-color elec-
tronic distance measuring instruments provided tempo-
rally dense measurements [51,52,75,82]. In 1996, a couple
of years after the establishment of the Japanese CGPS net-
work, evidence for slow slip in the Boso Peninsula region
near Tokyo became apparent in the data [131]. As the spa-
tial coverage of CGPS networks worldwide improved it be-
came clear that slow slip events were much more frequent
than previously thought, occurring over a variety of spatial
and temporal timescales and tectonic settings.

The majority of large slow slip events observed to date
have occurred in subduction zones, including those of
Japan, the Pacific Northwest of the United States, Mex-
ico, New Zealand, and Alaska. In 2001 a surprising pat-
tern was recognized in time series for several CGPS sites in
the Cascadia region in the Pacific Northwest of the United
States (Fig. 14a). The subduction interface is thought to

GPS: Applications in Crustal Deformation Monitoring, Figure 14
a Time series for station ALBH located in Victoria British
Columbia, Canada relative to stableNorthAmerica. The blue dots
are station positions. Although the overall interseismic move-
ment of this site is eastward due to the ongoing strain caused
by subduction (green line), every �14 months this site moves
westward (steps in time series). The red line represents the av-
erage velocity in the time between slow slip events, which is
a higher rate than the long-term interseismic movement (green
line). The blue curve represents the time series of nonvolcanic
seismic tremor. Periods of increased tremor activity coincide
with the times at which the GPS site shows anomalous westward
movement [130]. b Portion of the Cascadia subduction zone.
Black vectors are interseismic velocities of continuous GPS sites
relative to stable North America, and red vectors are anomalous
displacements during the 1999 slow slip event. The inset shows
relative timing of transient displacements among different sites.
From [35]. Copyright, Her Majesty the Queen in right of Canada
(2001)

be locked near the Earth’s surface and freely slipping at
greater depths. The ongoing deep slip results in inter-
seismic motion of GPS sites toward the over-riding plate
(Fig. 14b). In the case of the Cascadia sites, this means that
the long-term average interseismic movement is eastward.
However, it was observed that occasionally the sites briefly
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moved in the opposite direction, causing a step-like pat-
tern in the position time series. An intriguing feature of the
observed reversals in station velocities is that the pattern
was found to repeat approximately every 14 months [94].

That several CGPS sites in the region showed a coher-
ent reversal in the direction of motion at the same time
(Fig. 14b) suggested that the source of this signal could
be slip on the interface between the down-going slab and
over-riding plate of the subduction zone. Modeling of the
GPS data [35] indicated that the source region was a por-
tion of the subduction interface between 30 km and 40 km
depth that is a transitional zone linking the shallow fully
locked and deeper fully slipping parts of the interface.

In 2002 Obara [105] reported a very low frequency
seismic signal called tremor, typically observed at active
volcanoes, emanating from �30 km depth in the subduc-
tion zone of southwest Japan. A similar signal was soon
discovered in Cascadia, and researchers quickly realized
that the tremor occurred simultaneously with slow slip
events in those locales (Fig. 14a). Furthermore, they iden-
tified the source regions of the tremor and found that it
coincides spatially with the inferred source region of the
slow slip [106,130]. In volcanic settings tremor is thought
to be caused by the movement of fluids through conduits
underground. Recent studies have found that slow slip
events in subduction zones are accompanied by very low
frequency earthquakes and that the tremor in these lo-
cales is actually made up of many low amplitude low fre-
quency events [142,143]. One interpretation is that shear
slip on the subduction interface, rather than fluid flow,
causes nonvolcanic tremor, implying that tremor and slow
slip both arise from the same underlying process of shear
slip. Although the tremor may not be directly caused by
fluid flow, the low frequency earthquakes and slow slip ap-
pear to coincide spatially with areas of high fluid pressure
in the pore spaces of subduction zone rocks. The high pore
pressure, perhaps resulting from metamorphic reactions
that release fluid, may encourage shear slip [143].

Like Cascadia, other subduction zones, for example the
Guerrero region of Mexico [83] and the Shikoku [106] and
Tokai [55] regions of Japan, have also experienced, to vary-
ing degrees, quasi-periodic slow slip events. Slow slip, in
some cases multiple events, has been observed in other
subduction zones such as Alaska [107], New Zealand [34],
and the Tokai [98] and Bungo channel [114] regions of
Japan, but it remains to be seen if the transient slip is pe-
riodic. Even in Cascadia, which shows clear periodicity,
there is variation in the periodicity along the strike of the
subduction zone. For example, slow slip events have been
observed in both northern and southern Vancouver Island
with a �14 month periodicity, but the events in these two

locations are 6 months out of phase with each other. Slow
slip events in northern California, also part of the Cascadia
subduction zone, have been found to have an �11 month
recurrence interval [155]. In southwest Japan, the Shikoku
region experiences short duration (on the order of a week),
small amplitude slow slip events (in fact only detectable in
the tiltmeter data) at six-month intervals coincident with
tremor [106]. In contrast, the subduction zone beneath the
Bungo channel region, which abuts the Shikoku region di-
rectly to the southwest, experiences infrequent large slow
slip events lasting�1.5 years [114]. Similarly, in the Tokai
region, short-term and long-term slow slip events seem
to occur on nearly overlapping parts of the subduction
zone [55,98].

Similar to fault creep, the cumulative effect of several
slow slip events may be to relieve stress on the transi-
tion zone along the whole length of the subduction in-
terface without a large earthquake. However, slow earth-
quakes in the subduction zones of Cascadia, Japan, and
elsewhere may impart stress to the locked subduction in-
terface up dip and thus increase the likelihood of a large
earthquake [35,123]. Understanding both the mechanism
of these events and what it means for seismic hazard con-
tinues to be a focus of intense study.

Transient slip has also been observed in non-subduc-
tion zone settings. GPS data have shown that the south
flank of Kilauea volcano in Hawaii moves seaward at a rate
of several cm/yr [111], perhaps a manifestation of the in-
stability of the volcanic edifice. However, in 2001 it was
observed that this motion sped up for a few days. Cervelli
et al. [22] modeled the GPS observables during the period
of increased station velocity and concluded that the source
was a �M 6 slow earthquake lasting 36 hours and gener-
ating an average of almost 9 cm of slip on a nearly hor-
izontal thrust fault about 4.5 km underground. This ob-
served transient signal occurred nine days after a storm
caused 1 meter of rainfall on this part of the Big Island.
Cervelli et al. [22] calculated that given reasonable val-
ues for the porosity and permeability of the rocks in the
study area, the slow slip could have been triggered by an
increase in pore fluid pressure as the rain water penetrated
into faults on the volcanic edifice. Subsequently several
more very similar transient events have been observed in
this locale by GPS [139], not accompanied by anomalously
high rainfall. Moreover, it has been recognized that these
events are accompanied by increased seismicity in an ad-
jacent area following the onset of the deformation signal.
This lends credence to the interpretation that the displace-
ment signal is due to fault slip and suggests that the tran-
sient slip triggers the seismicity. In order for slow slip to
trigger the observed seismicity, the slip must occur deeper
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than originally thought. A model in which slip occurs at
the depth of the interface between the volcano and the un-
derlying ocean floor,�8 km, fits the GPS displacements as
well as one in which slip occurs at more shallow depths
(�4.5 km) [139].

(b) Postseismic Deformation Often following a moder-
ate or large earthquake, continued aseismic deformation
is observed. This may be due to several sources, includ-
ing continued slip on the fault surface, diffusion of pore
fluid, and the viscoelastic response of the lower crust (be-
low the transition depth) and upper mantle. All of these
processes are triggered by the stress changes imparted to
the surrounding crust andmantle by the earthquake.More
than one source can be active simultaneously, and the ef-
fects change and decay with time. The spatial and tempo-
ral evolution of postseismic signals can provide important
insights into the frictional, hydrological, and rheological
characteristics of the crust and upper mantle, and enable
a better understanding of the way stress is redistributed in
the crust, which is an important consideration in assessing
seismic hazard.

Afterslip is continued slip on the fault plane after the
rapid slip which generates seismic waves has ceased. The
effects can start immediately after the event (e. g. [76]) and
can last for months or years, typically showing a logarith-
mic decay with time (e. g. [134]). Afterslip is thought to
arise from the stress changes imparted by the earthquake
to parts of the fault which have frictional properties that
allow slow slip. Typically the total afterslip following an
event is a fraction of the amount of slip that occurred co-
seismically. However, some events such as the Sanriku-
haruka-oki [169] and Tokachi-Oki [97] earthquakes in
Japan have had afterslip with moment release approaching
or, in the case of the 2004 Mw 6 Parkfield earthquake [76],
exceeding the coseismic moment. Although the factors
controlling the amount of afterslip are not fully under-
stood, the fact that the San Andreas fault near Parkfield,
as well as many subduction zone faults, are known to ex-
hibit fault creep may be a factor.

The spatial and temporal evolution of afterslip follow-
ing the 2003Mw 8.0 Tokachi-Oki earthquake in Japan was
estimated from GPS data using a Kalman-filtering tech-
nique [97] (Fig. 15a). The rate of afterslip started quite
high and died off gradually. These authors noted that the
highest afterslip rates tended to localize around the area
which slipped in the earthquake. This is not unexpected as
the coseismic slip area would have just experienced a re-
duction in shear stress which would discourage further slip
here. Interestingly, the afterslip seems to avoid areas in-
ferred to have slipped in other earthquakes that occurred

in the decades prior to the Tokachi-Oki event as evidenced
in the plot of cumulative afterslip in Fig. 15b. This inter-
pretation provides support for the idea that rapid coseis-
mic and gradual aseismic slip may occur on different parts
of the fault because of variations in frictional properties.
Similar results were found from an analysis of afterslip fol-
lowing the 2005 Nias–Simeulue thrust event [59].

As described earlier in regards to viscoelastic cycle
models of interseismic deformation, the stress changes im-
parted by a moderate or large earthquake to the material
below the elastic crust causes time-varying deformation.
The geodetically recorded postseismic deformation fol-
lowing several large events has been interpreted to reflect
viscoelastic processes (e. g. [156]). The rate at which vis-
coelastic postseismic deformation decays depends in part
on the viscosity of the lower crust and upper mantle. The
temporal decay of displacements measured with GPS have
been used to infer viscosity values and thus the relative
strength of these two layers (e. g. [5,31,45,46,121,122]). Es-
timates for the viscosity of the lower crust range from 1019

to 1021 Pa s, and for the upper mantle range from 1017 to
1019 Pa s.

Stress changes in the crust due to fault slip in an earth-
quake compress the pore space of rocks in some areas and
cause dilation of the pore space elsewhere, depending on
the orientation of the fault and sense and distribution of
slip. The resulting pore pressure gradients cause fluid to
flow from areas of high pressure to those of low pressure.
This fluid flow causes further time-dependent strain. Such
effects have been observed following several earthquakes
including a pair of moderate earthquakes that occurred
in 2000 in Iceland [5,69] and the Mw 7.3 Landers event
in California [43,118]. If poroelastic effects are confined
to the upper few kilometers of the fault zone, the spatial
extent of the resulting surface deformation will be local-
ized near the fault. Also, vertical surface displacement is
a large component of the poroelastic signal. Because GPS
measurements of vertical displacement are noisier than the
horizontal data, and because the distribution of GPS sta-
tions may be limited near the causative fault, much of the
insight into poroelastic deformation following events like
the Landers earthquake and the earthquakes in Iceland has
come from InSAR data.

It is unlikely that postseismic deformation associated
with a given earthquake can be explained by a single pro-
cess. Given the often limited spatial and temporal data
coverage and, in the case of GPS data, the sometimes poor
vertical displacement control, it can be difficult to differen-
tiate among different potential sources, e. g., afterslip, vis-
coelastic, and poroelastic deformation. However, the sur-
face displacements due to each process can exhibit diag-
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GPS: Applications in Crustal Deformation Monitoring, Figure 15
a Temporal evolution of the rate of afterslip (indicated by colored shading) on the subduction interface following the 2003 Mw 8
Tokachi-Oki earthquake. Dates given in upper left of each frame. Blue contours are the areas that slipped in previous earthquakes in
this region. The blue contours in the center of the mapped area are those of the Tokachi-Oki earthquake. The green dots are after-
shocks. b Cumulative afterslip in the first 30 days following the earthquake estimated from GPS data. Slip magnitude is given by the
colored shading; the estimated amount and direction that the upper plate (the area northwest of the Kurile trench) moved relative
to the lower plate is shown by the arrows. Afterslip tends to surround the areas inferred to have slipped in the Tokachi-Oki earth-
quake (epicenter given by the black star) and other events, shown by the blue contours. The black dots are aftershocks. Adapted with
permission from [97] (copyright 2006, American Geophysical Union)

nostic patterns in time and space, which, if observed, make
it possible to discern distinct causative processes. For ex-
ample, due to its deeper source viscoelastic deformation
should affect a broader geographic region than poroelas-
tic deformation or shallow afterslip. Because viscoelastic
deformation involves the response of material with vis-

cosities on the order of 1018 to 1019 Pa s, while poroelas-
tic processes involve the flow of aqueous fluid through
the ground, the signal due to the former is expected to
last considerably longer (e. g., several years) than that of
the latter (e. g. several months). Several studies have ana-
lyzed postseismic deformation, in some cases observed us-
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ing multiple data types, and attributed the observed defor-
mation to a combination of two or more effects [5,43,46].

(c) Volcano Deformation Volcanic deformation is often
characterized by transient signals. Magma or hydrother-
mal fluids migrate beneath the volcanic edifice, causing
inflation or deflation and sometimes culminating in an in-
trusion or eruption. The steep flanks of volcanoes are often
unstable, leading to landslides and in some cases collapse
of large sections of the edifice. GPS is very well-suited to
monitoring these types of deformation signals, and many
of the world’s volcanoes have CGPS receivers installed for
this purpose. Some of the earliest GPS observations of vol-
canic deformation come from a submarine volcano near
the Izu peninsula in Japan. Here GPS data from two re-
ceivers recorded deformation several days before volcanic
tremor or visible signs of eruption were apparent [48,145].

Loss of instruments in a volcanic eruption is a real and
costly risk. InSAR, which does not require any equipment
on the ground, is a widely used method for monitoring
volcano deformation. However, InSAR does not provide
three-component deformation measurements and does
not have the temporal resolution that CGPS does. InSAR
also suffers from decorrelation when vegetation, snowfall,
or lava flows change the land surface during the time be-
tween two image acquisitions, however it still generally
provides better spatial coverage than GPS. Dzurisin [40]
presents a good overview of InSAR as applied to volcano
deformation.

During a recent eruption of Augustine, a stratovolcano
in Alaska, GPS data proved to be a valuable complement
to other monitoring systems [20]. In the summer of 2005
CGPS stations on the volcano began to record an infla-
tion signal, following an increase in microseismicity be-
low the volcano that had begun in May 2005 or perhaps
earlier. Beginning in November 2005 the rate of inflation
increased rapidly, but then died off somewhat in early Jan-
uary 2006. The inflation signal has been interpreted as ev-
idence for a dike intrusion into the volcanic edifice which
nearly reached the surface [20]. On January 11, 2006 a se-
ries of explosive eruptions began at Augustine, destroying
two of the six CGPS receivers. By January 17th, though,
the eruptions had died down, as had seismicity and gas
emissions. Only the GPS data from two of the remain-
ing stations showed continued inflation. The quiescence
lasted 10 days before another explosive eruption and ef-
fusive lava flows took place. This is an example in which
GPS data provided early corroboration in the summer of
2005 that increased seismicity was due to magma move-
ment into the volcanic edifice. Moreover, during the ten
days of quiescence when other indicators such as seismic-

ity and gas measurements showed little activity, the GPS
data showed that further eruptive activity was likely [20].

High-Rate GPS Continuous GPS networks typically
record data at 15- or 30-second sampling rates, which is
more than adequate for obtaining daily positions. One
such CGPS network, the Southern California Integrated
GPS Network (SCIGN), recorded data at 30-second inter-
vals for the 1999 Mw 7.1 Hector Mine earthquake. Niko-
laidis et al. [104] used these data to obtain positions at
every observation epoch for the time spanning the earth-
quake and demonstrated that these observations, although
aliased, agreed with those from nearby strong ground mo-
tion instruments. However, GPS receivers are capable of
recording data at much higher rates, e. g. 1Hz or greater.
In recent years, for scientific as well as surveying and navi-
gation purposes, an increasing number of CGPS sites have
been set to record high-rate data and in some cases trans-
mit them in real-time.

Unlike seismic data, GPS receivers provide a direct
measure of displacement, and the instrument stays on
scale even during the strong shaking of an earthquake.
This makes it possible to obtain high-rate displacement
time histories without the error introduced by integrating
velocity or acceleration records from seismic instruments
and without the data loss that occurs when the shaking ex-
ceeds the dynamic range of a seismic instrument (Fig. 16).
Although the results of Nikolaidis et al. [104] hinted at
a potential application of high-rate data, this kind of ob-
servation was not yet available for an earthquake. Such an
event occurred in 2002 with the Mw 7.9 Denali earthquake
in Alaska. Larson et al. [78], obtained displacement-time
histories of seismic waves from 1Hz GPS data recorded
during this event and showed they were in good agreement
with those obtained by doubly integrating accelerometer
data.

Wang et al. [165] demonstrated that GPS receivers op-
erating at 1Hz provide a faithful recording of signals with
periods of 2 seconds or greater. However, GPS receivers
will not replace seismometers for recording earthquakes
since they cannot capture the higher-frequency compo-
nents of the seismic waves. Rather, they provide a valu-
able complement to seismic data. For example, Emore
et al. [42] show that high-rate GPS data can be used
as a constraint when integrating accelerograms. More-
over, the combined use of seismic and high-rate GPS data
extends the observable frequency and amplitude range
of seismic waves considerably [78]. Miyazaki et al. [96]
demonstrated that GPS seismograms measured by 1Hz
GPS could be used in a similar way to seismic data to in-
fer the spatial and temporal progression of fault slip dur-
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GPS: Applications in Crustal Deformation Monitoring, Figure 16
Comparison of displacement time series from a GPS station and
doubly integrated accelerometer data from two nearby stations
of the KIKnet and Knet networks in Japan for the 2003 Mw 8
Tokachi-Oki earthquake. The GPS data and that from the KIKnet
site (blue and green curves) agree well for the first �50 sec-
onds following the arrival of the seismic signal (at�30 seconds).
The deviation of the accelerometer data after several seconds is
likely due to low frequency noise that is amplified by the dou-
ble integration required to producedisplacements. Additionally,
the Knet site (red curve)maybe affected by tilting during shaking
or other problemswith sensor orientation, leading to thegreater
deviation between the red curve and those of the other two in-
struments. Reprintedwith permission from [96] (copyright 2006,
American Geophysical Union)

ing the earthquake. High-rate GPS observations can be es-
pecially useful in this capacity when used in combination
with seismic data (e. g. [63]).

High-rate GPS also vastly improves our ability to track
early postseismic deformation. Seismic data do not record
any processes, like afterslip, that do not generate seismic
waves, so postseismic deformation measurements must
be made using other instruments including GPS, strain-
meters, and InSAR. Until CGPS networks became com-
mon, it was generally not possible to deploy instruments
for post-earthquake geodetic measurements until field
crews could reach the affected area, days or weeks after the
event. As a result, any change in measured position from
the last pre-earthquake survey until the first post-earth-
quake survey contained the full coseismic signal and some
portion of postseismic displacement. Even the “coseismic”
displacements obtained from differencing daily positions
from CGPS data collected the day before and the day after
the earthquake can be contaminated by postseismic sig-
nals that began immediately after the event. High-rate GPS
data, on the other hand, provide a means to record the de-
formation signal continuously, starting in the seconds af-

ter an earthquake. An example of this was the 2004 Mw
6 Parkfield earthquake. Langbein et al. [76] showed that
rapid postseismic displacement began immediately after
the event, and these authors were able to use the high-rate
time series to separate the coseismic and postseismic dis-
placements. For other events, including the 1966 Mw �6
Parkfield earthquake, the moment release estimated from
seismic data has often been substantially lower than that
estimated using geodetic data (e. g. [138]). However in the
case of the 2004 Parkfield event the slip estimated from the
coseismic portion of the GPS displacement signal hadmo-
ment release in good agreement with that estimated from
seismic data [76].

The availability and use of high-rate GPS data in real-
time for geophysical applications is not yet widespread,
but it is growing as more CGPS sites are installed, teleme-
try of high bandwidth data becomes more feasible, and
approaches to processing the data are refined. These
data have great potential for aiding real-time deforma-
tion monitoring on volcanoes, for early warning of major
earthquakes, and for tsunami warning as well.

For example, Mattia et al. [87] highlight the value of
high-rate real-time GPS data in a time-critical situation to
quickly differentiate localized volcanic processes (in their
case a new volcanic vent opening) from more far-reaching
dangers (e. g., a feared flank failure that could have caused
a local tsunami).

Real-time high-rate GPS data may soon also con-
tribute to rapid earthquake warning and response. Hud-
nut et al. [61] envision a system consisting of a pair of
GPS receivers straddling a fault such as the San Andreas
which record data at high rate and transmit these mea-
surements in real time. In the case of a major earthquake
which, within seconds, caused surface offset on the fault of
more than a few centimeters, the “GPS slip-sensor” would
indicate that the event was large significantly sooner than
could be expected from seismic data alone. This rapid in-
formation could be used to trigger preventivemeasures for
critical infrastructure such as transportation systems (e. g.,
slowing trains to help prevent derailment) and factories
(e. g. halting processes involving hazardous chemicals).

Blewitt et al. [14], using data from the 2004 Sumatra
earthquake, demonstrated that GPS data available in real
time, even if recorded at the traditional 30-second sam-
pling rate, can be used to reliably estimate displacements
larger than about 10mm for great earthquakes. Such in-
formation would significantly improve the robustness of
tsunami warning systems, at least for oceanwide tsunamis,
by giving a better indication of the true moment magni-
tude of the earthquake more quickly (e. g. within 15 min-
utes) than can be achieved with seismic data.
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The patterns of strong shaking that occur during an
earthquake provide a good indication as to where dam-
age will be the most severe. The U. S. Geological Survey
has implemented a system called ShakeMap which rapidly
generates a map of shaking intensity based on instrumen-
tal recordings. This is a valuable tool for emergency re-
sponders and scientists in the aftermath of an earthquake,
and is available to the public as well (http://earthquake.
usgs.gov/eqcenter/shakemap/). However, in many areas
seismic instrument coverage is sparse, hindering the gen-
eration of accurate and detailed maps. Dreger et al. [36]
demonstrate that seismic data can be used to rapidly gen-
erate a model of fault slip during an earthquake and
that such a model can significantly improve the quality
of ShakeMap produced for that event. This is especially
true when the direction of earthquake rupture away from
the hypocenter shows a preferred orientation along strike,
since shaking will be stronger at locations that coincide
with this directivity. Current work is focused on incor-
poration of real-time high-rate GPS data into the fault
slip analysis with the ultimate goal of further refining
ShakeMaps.

Future Directions

As evidenced by the applications described in this arti-
cle, GPS has become an indispensable tool for monitoring
crustal deformation hazards and investigating the under-
lying processes. It provides an affordable means of obtain-
ing surface displacement measurements with millimeter-
level precision at any time of day anywhere on earth in all
weather conditions with no line of sight requirement. GPS
data complement other observations such as seismic and
InSAR data by providing a direct measure of displacement
in three dimensions that stays on scale. GPS can record de-
formation over temporal scales of seconds to decades, thus
making it possible to track surface waves generated by an
earthquake, postseismic deformation, slow slip events, vol-
canic unrest, fault creep, interseismic strain accumulation,
and plate motions.

For the first decade or so, applications of GPS in crustal
deformation tended toward periodic measurements in
the style of earlier geodetic surveys. However, the size,
power consumption, and cost of receivers have decreased
steadily, while the data storage capacity has increased. This
has fostered the growth of large CGPS networks, accom-
panied by more centralized and uniform processing and
availability of results. This trend is likely to continue, and
many future applications of GPS will focus on further ex-
ploiting the ability of this tool to provide temporally dense
measurements for tracking deformation.

High-rate data show promise for hazard monitoring
and response as well as for providing insight into the phys-
ical processes underlying time-varying deformation, es-
pecially as more sophisticated methods become available
for processing these data in real-time and mitigating error
sources such as multipath which are particularly problem-
atic for high rate measurements.

In areas with few CGPS sites or where spatially dense
coverage is needed to address specific scientific ques-
tions, an alternative to traditional campaign GPSmeasure-
ments has recently been developed [13]. Termed “semi-
permanent” or “semi-continuous” GPS, it involves rotat-
ing a pool of GPS receivers through several subsets of GPS
sites such that each subset is observed for periods of mul-
tiple weeks several times a year. Each site to be observed
is outfitted with a specially designed antenna mount set in
a rock outcrop so that the antenna is attached in the same
location and orientation every time the site is occupied,
thus eliminating the set-up error inherent in many SGPS
surveys. Blewitt et al. [13] have demonstrated that the scat-
ter in the position time series as well as the uncertainties
on velocities estimated using data from a semi-permanent
network in Nevada are nearly as low as for CGPS net-
works over a comparable length of time (e. g., 1.5 years).
Although this method requires sites that have rock out-
crops and that are secure enough for equipment to be left
unattended for extended periods of time, its use is likely to
grow as it is arguablymore cost-effective than either CGPS
or SGPS for many applications.

Finally, a series of changes are being made to modern-
ize the GPS signal. For instance, beginning with a gener-
ation of satellites called Block IIR-M, first launched in the
fall of 2005, a civilian code is nowmodulated on the L2 car-
rier in addition to the C/A code that has always been avail-
able on the L1 carrier. This makes it easier to obtain the L2
carrier signal and enables elimination of ionospheric de-
lay when positioning with the code measurements alone.
A new series of GPS satellites, the Block IIF, set to launch
in 2007 will transmit a third carrier frequency called L5
which will aid in ambiguity resolution. The L5 observable,
modulated with a civilian-accessible code, will be broad-
cast at a higher power than the L1 or L2, making it easier
to acquire. Future satellites will transmit a second civilian
code on the L1 frequency that will be more robust than the
C/A code and will be interoperable with a civilian accessi-
ble code to be transmitted by the planned Galileo satellites.
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Glossary

Case-based reasoning Case-based reasoning is a para-
digm in machine learning whose idea is that a new
problem can be solved by noticing its similarity to a set
of problems previously solved. Case-based reasoning
regards the inference of some proper conclusions re-
lated to a new situation by the analysis of similar cases
from a memory of previous cases. Very often similar-
ity between two objects is expressed on a graded scale
and this justifies application of fuzzy sets in this con-
text. Fuzzy case-based reasoning is a popular approach
in this domain.

Decision rule Decision rule is a logical statement of the
type “if. . . , then. . . ”, where the premise (condition
part) specifies values assumed by one or more condi-
tion attributes and the conclusion (decision part) spec-
ifies an overall judgment.

Dominance-based rough set approach (DRSA)
DRSA permits approximation of a set in universe U
based on available ordinal information about objects
of U. Also the decision rules induced within DRSA
are based on ordinal properties of the elementary con-
ditions in the premise and in the conclusion, such as
“if property fi1 is present in degree at least ˛i1 and . . .
property f ip is present in degree at least ˛ip, then prop-
erty f iq is present in degree at least ˛iq”.

Fuzzy sets Differently from ordinary sets in which an ob-
ject belongs or does not belong to a given set, in
a fuzzy set an object belongs to a set in some de-
gree. Formally, in universe U a fuzzy set X is charac-
terized by its membership function �X : U ! [0; 1],
such that for any y 2 U , y certainly does not belong
to set X if �X (y) D 0, y certainly belongs to X if
�X (y) D 1, and y belongs to X with a given degree of
certainty represented by the value of �X(y) in all other
cases.

Granular computing Granular computing is a general
computation theory for using granules such as subsets,
classes, objects, clusters, and elements of a universe
to build an efficient computational model for complex
applications with huge amounts of data, information,
and knowledge. Granulation of an object a leads to
a collection of granules, with a granule being a clump
of points (objects) drawn together by indiscernibility,
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similarity, proximity, or functionality. In human rea-
soning and concept formulation, the granules and the
values of their attributes are fuzzy rather than crisp. In
this perspective, fuzzy information granulation may be
viewed as a mode of generalization, which can be ap-
plied to any concept, method, or theory.

Ordinal properties and monotonicity Ordinal proper-
ties in description of objects are related to graduality
of the presence or absence of a property. In this con-
text, it is meaningful to say that a property is more
present in one object than in another object. It is im-
portant that the ordinal descriptions are handled prop-
erly, which means, without introducing any operation,
such as sum, averages, or fuzzy operators, like t-norm
or t-conorm of Łukasiewicz, taking into account car-
dinal properties of data not present in the considered
descriptions, which would, therefore, give not mean-
ingful results. Monotonicity is strongly related to ordi-
nal properties. It regards relationships between degrees
of presence or absence of properties in the objects, like
“the more present is property f i, the more present is
property f j”, or “the more present is property f i, the
more absent is property f j”. The graded presence or
absence of a property can be meaningfully represented
using fuzzy sets. More precisely, the degree of presence
of property f i in object y 2 U is the value given to y by
the membership function of the set of objects having
property f i.

Rough set A rough set in universe U is an approxima-
tion of a set based on available information about ob-
jects of U. The rough approximation is composed of
two ordinary sets called lower and upper approxima-
tion. Lower approximation is a maximal subset of ob-
jects which, according to the available information,
certainly belong to the approximated set, and upper
approximation is a minimal subset of objects which,
according to the available information, possibly belong
to the approximated set. The difference between upper
and lower approximation is called boundary.

Definition of the Subject

This article describes the dominance-based rough set ap-
proach (DRSA) to granular computing and data mining.
DRSA was first introduced as a generalization of the rough
set approach for dealing with multicriteria decision anal-
ysis, where preference order is important. The ordering is
also important, however, in many other problems of data
analysis. Even when the ordering seems absent, the pres-
ence or the absence of a property can be represented in or-
dinal terms, because if two properties are related, the pres-

ence, rather than the absence, of one property shouldmake
more (or less) probable the presence of the other property.
This is even more apparent when the presence or the ab-
sence of a property is graded or fuzzy, because in this case,
the more credible the presence of a property, the more (or
less) probable the presence of the other property. Since the
presence of properties, possibly fuzzy, is the basis of any
granulation, DRSA can be seen as a general basis for gran-
ular computing.

After presenting the main ideas of DRSA for granu-
lar computing and its philosophical basis, the article intro-
duces the basic concepts of DRSA, followed by its exten-
sions in a fuzzy context and in probabilistic terms. This
prepares the ground for treating the rough approximation
of a fuzzy set, which is the core of the subject. It is also ex-
plained why the classical rough set approach is a specific
case of DRSA. The article continues with presentation of
DRSA for case-based reasoning, where the main ideas of
DRSA for granular computing are fruitfully applied. Fi-
nally, some basic formal properties of the whole approach
are presented in terms of an algebra modeling the logic
of DRSA.

Introduction:
Granular Computing and Ordered Data

Granular computing originated in the research of Lin [37,
38,39,40,41,42] and Zadeh [57,58,59,60] and gained con-
siderable interest in the last decade. The basic compo-
nents of granular computing are granules, such as subsets,
classes, objects, clusters, and elements of a universe. Gran-
ulation of an object a leads to a collection of granules, with
a granule being a clump of points (objects) drawn together
by indiscernibility, similarity, proximity, or functionality.
In human reasoning and concept formulation, the gran-
ules and the values of their attributes are fuzzy rather than
crisp. In this perspective, fuzzy information granulation
may be viewed as a mode of generalization, which can be
applied to any concept, method, or theory. Moreover, the
theory of fuzzy granulation provides a basis for comput-
ing with words, due to the observation that in a natural
language, words play the role of labels of fuzzy granules.

Since fuzzy granulation plays a central role in fuzzy
logic and in its applications, and rough set theory can be
considered as a crisp granulation of set theory, it is in-
teresting to study the relationship between fuzzy sets and
rough sets from this point of view.Moreover, noticing that
fuzzy granulation that leads to fuzzy logic underlies all ap-
plications of granulation, hybridization of fuzzy sets and
rough sets can lead to amore general theory of granulation
with a potential of application to any domain of human in-
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vestigation. This explains the interest in putting together
rough sets and fuzzy sets.

Recently, it has been shown that a proper way of
handling graduality in rough set theory is to use the
DRSA [29]. This implies that DRSA is also a proper way
of handling granulation within rough set theory. Let us ex-
plain this point in detail.

The rough set approach has been proposed to approx-
imate some relationships existing between concepts. For
example, in medical diagnosis the concept of “disease Y”
can be represented in terms of such concepts as “low blood
pressure” and “high temperature”, or “muscle pain” and
“headache”. The classical rough approximation is based on
a very coarse representation, that is, for each aspect char-
acterizing a concept (“low blood pressure”, “high temper-
ature”, “muscle pain”, etc.), only its presence or its absence
is considered relevant. In this case, the rough approxima-
tion involves a very primitive idea of monotonicity related
to a scale with only two values: “presence” and “absence”.

Monotonicity gains importance when a finer represen-
tation of the concepts is considered. A representation is
finer when, for each aspect characterizing a concept, not
only its presence or its absence is taken into account, but
also the degree of its presence or absence is considered rel-
evant. Graduality is typical for fuzzy set philosophy [56]
and, therefore, a joint consideration of rough sets and
fuzzy sets is worthwhile. In fact, rough sets and fuzzy sets
capture the two basic complementary aspects of mono-
tonicity: rough sets deal with relationships between differ-
ent concepts and fuzzy sets deal with expression of differ-
ent dimensions in which the concepts are considered. For
this reason, many approaches have been proposed to com-
bine fuzzy sets with rough sets (see e. g. [3,5,45,49,51]).
Our combination of rough sets and fuzzy sets presents
some important advantages with respect to the other ap-
proaches, which are discussed below.

The main preoccupation in almost all the studies com-
bining rough sets with fuzzy sets was related to a fuzzy ex-
tension of Pawlak’s definition of lower and upper approxi-
mations using fuzzy connectives [10,34]. In fact, there is
no rule for the choice of the “right” connective, so this
choice is always arbitrary to some extent. Another draw-
back of fuzzy extensions of rough sets involving fuzzy
connectives is that they are based on cardinal proper-
ties of membership degrees. In consequence, the result of
these extensions is sensitive to order preserving transfor-
mation of membership degrees. For example, consider the
t-conorm of Łukasiewicz as a fuzzy connective; it may be
used in the definition of both fuzzy lower approximation
(to build fuzzy implication) and fuzzy upper approxima-
tion (as a fuzzy counterpart of a union). The t-conorm of

Łukasiewicz is defined as

T�(˛; ˇ) D min(˛ C ˇ; 1) ; ˛; ˇ 2 [0; 1] :

T�(˛; ˇ) can be interpreted as follows. Given two fuzzy
propositions p and q, putting v(p) D ˛ and v(q) D ˇ,
T�(˛; ˇ) can be interpreted as v(p _ q), the truth value of
the proposition p _ q. Let us consider the following values
of arguments:

˛ D 0:5 ; ˇ D 0:3 ; � D 0:2 ; ı D 0:1 ;

and their order preserving transformation:

˛0 D 0:4 ; ˇ0 D 0:3 ; � 0 D 0:2 ; ı0 D 0:05 :

The values of the t-conorm are in the two cases as follows:

T�(˛; ı) D 0:6 ; T�(ˇ; � ) D 0:5 ;
T�(˛0; ı0) D 0:45 ; T�(ˇ0; � 0) D 0:5 :

One can see that the order of the results has changed af-
ter the order preserving transformation of the arguments.
This means that the Łukasiewicz t-conorm takes into ac-
count not only the ordinal properties of the truth val-
ues, but also their cardinal properties. A natural question
arises: is it reasonable to expect from truth values a cardi-
nal content instead of ordinal only? Or, in other words, is
it realistic to claim that a human is able to say in a mean-
ingful way not only that

(a) “proposition p is more credible than proposition q”
but even something like

(b) “proposition p is two times more credible than propo-
sition q”?

It is much safer to consider information of type (a), be-
cause information of type (b) is rather meaningless for
a human.

Since fuzzy generalization of rough set theory using
DRSA takes into account only ordinal properties of fuzzy
membership degrees, it is the proper way of fuzzy general-
ization of rough set theory.

Moreover, the classical rough set approach [46,47] can
be seen as a specific case of our general model. This is im-
portant for several reasons. In particular, this interpreta-
tion of DRSA gives an insight into fundamental properties
of the classical rough set approach and permits its further
generalization.

Rough set theory [46,47] relies on the idea that some
knowledge (data, information) is available about objects
of a universe of discourse U. Thus, a subset of U is defined
using the available knowledge about the objects and not on
the base of information about membership or non-mem-
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bership of the objects to the subset. For example, knowl-
edge about patients suffering from a certain disease may
contain information about body temperature, blood pres-
sure, etc. All patients described by the same information
are indiscernible in view of the available knowledge, and
form groups of similar objects. These groups are called
elementary sets, and can be considered as basic granules
of the available knowledge about patients. Elementary sets
can be combined into compound concepts. For example,
elementary sets of patients can be used to represent a set
of patients suffering from a certain disease. Any union of
elementary sets is called a crisp set, while other sets are re-
ferred to as rough sets. Each rough set has boundary line
objects, i. e. objects which, in view of the available knowl-
edge, cannot be classified with certainty as members of
the set or of its complement. Therefore, in the rough set
approach, any set is associated with a pair of crisp sets,
called the lower and the upper approximation. Intuitively,
in view of the available information, the lower approxima-
tion consists of all objects which certainly belong to the
set and the upper approximation contains all objects which
possibly belong to the set. The difference between the up-
per and the lower approximation constitutes the bound-
ary region of the rough set. Analogously, for a partition of
universe U into classes, one may consider rough approxi-
mation of the partition. It appeared to be particularly use-
ful for analysis of classification problems, being the most
common decision problems.

The rough set approach operates on an information ta-
ble composed of a set U of objects described by a set Q of
attributes. If in the set Q disjoint sets (C and D) of con-
dition and decision attributes are distinguished, then the
information table is called a decision table. It is often as-
sumed, without loss of generality, that set D is a single-
ton fdg, and thus decision attribute d makes a partition
of set U into decision classes corresponding to its val-
ues. Data collected in such a decision table correspond to
a multiple attribute classification problem. The classical
Indiscernibility-Based Rough Set Approach (IRSA) is nat-
urally adapted to analysis of this type of decision problems,
because the set of objects can be identified with examples
of classification and it is possible to extract all the essen-
tial knowledge contained in the decision table using indis-
cernibility or similarity relations. However, as pointed out
by the authors (see e. g. [17,20,26,54]), IRSA cannot extract
all the essential knowledge contained in the decision table
if a background knowledge about monotonic relationships
between evaluation of objects on condition attributes and
their assignment to decision classes has to be taken into ac-
count. Such a background knowledge is typical for data de-
scribing various phenomena, as well as for data describing

multiple criteria decision problems (see e. g. [9]), e. g., “the
larger the mass and the smaller the distance, the larger the
gravity”, “the more a tomato is red, the more it is ripe” or
“the better the school marks of a pupil, the better his over-
all classification”. The monotonic relationships, typical for
multiple criteria decision problems, follow from preferen-
tial ordering of value sets of attributes (scales of criteria),
as well as preferential ordering of decision classes.

In order to take into account the ordinal properties
of the considered attributes and the monotonic relation-
ships between condition and decision attributes, a number
of methodological changes to the original rough set the-
ory were necessary. The main change was the replacement
of the indiscernibility relation with a dominance relation,
which permits approximation of ordered sets. The domi-
nance relation is a very natural and rational concept within
multiple criteria decision analysis. The dominance-based
rough set approach (DRSA) has been proposed and char-
acterized by the authors (see e. g. [17,20,24,25,26,54]).

Let us mention that ordered value sets of attributes
and a kind of order dependency among attributes has also
been considered by specialists of relational databases (see,
e. g., [13]). There is, however, a striking difference between
consideration of orders in database queries and consider-
ation of orders in knowledge discovery. More precisely,
assuming ordered domains of attributes, knowledge dis-
covery tends to discover monotonic relationships between
ordered attributes, e. g., if a student is at least medium in
networks, and at least good in databases, then his over-
all evaluation is at least medium. On the other hand, as-
suming an order of attribute value sets and order depen-
dency in databases, one can exploit this given information
for a more efficient answer to a query, e. g., when the dates
of bank checks and their numbers are ordered, there is an
order dependency between these two attributes, because in
day x a check cannot hold a number smaller than checks
from day x � 1, which permits us to prune the search tree
and make the search more efficient.

Looking at DRSA from a granular computing perspec-
tive, one can observe that DRSA permits us to deal with
ordered data by considering a specific type of information
granules defined bymeans of dominance-based constraints
having a syntax of the type: “x is at least R” or “x is at
most R”, where R is a qualifier from a properly ordered
scale. In evaluation space, such granules are dominance
cones. In this sense, the contribution of DRSA consists of:

� Extending the paradigm of granular computing to
problems involving ordered data,

� Specifying a proper syntax and modality of informa-
tion granules (the dominance-based constraints which
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should be adjoined to other modalities of information
constraints, such as possibilistic, veristic, and proba-
bilistic [60]),

� Defining a methodology dealing properly with this type
of information granules, and resulting in a theory of
computing with words and reasoning about data in the
case of ordered data.

Let us observe that other modalities of information con-
straints, such as veristic, possibilistic, and probabilistic,
have also to deal with ordered values (with qualifiers rela-
tive to grades of truth, possibility, and probability). There-
fore, granular computing with ordered data and DRSA as
a proper way of reasoning about ordered data, are very im-
portant in the future development of the whole domain of
granular computing.

Indeed the DRSA approach proposed in [15,16] avoids
arbitrary choice of fuzzy connectives and not meaning-
ful operations on membership degrees. It exploits only
ordinal character of the membership degrees and pro-
poses a methodology of fuzzy rough approximation that
infers the most cautious conclusion from available im-
precise information. In particular, any approximation of
knowledge about concept Y using knowledge about con-
cept X is based on positive or negative relationships be-
tween premises and conclusions, i. e.:

(i) “The more x is X, the more it is Y” (positive relation-
ship),

(ii) “The more x is X, the less it is Y” (negative relation-
ship).

The following simple relationships illustrate i) and ii):

� “The larger the market share of a company, the greater
its profit” (positive relationship), and

� “The greater the debt of a company, the smaller its
profit” (negative relationship).

These relationships have the form of gradual decision
rules [4]. Examples of these decision rules are: “if a car
is speedy with credibility at least 0.8 and it has high fuel
consumption with credibility at most 0.7, then it is a good
car with a credibility at least 0.9”, and “if a car is speedy
with credibility at most 0.5 and it has high fuel consump-
tion with credibility at least 0.8, then it is a good car with
a credibility at most 0.6”. It is worth noting that the syntax
of gradual decision rules is based on monotonic relation-
ships between degrees of credibility, that can also be found
in dominance-based decision rules induced from prefer-
ence-ordered data. This explains why one can build a fuzzy
rough approximation using DRSA.

Finally, the fuzzy rough approximation taking into ac-
count monotonic relationships can be applied to case-
based reasoning [28]. In this perspective, it is interesting
to consider monotonicity of the type “the more similar is y
to x, the more credible is that y belongs to the same class
as x”. Application of DRSA in this context leads to decision
rules similar to the gradual decision rules:

“the more object z is similar to a referent object x
w.r.t. condition attribute s, the more z is similar to
a referent object x w.r.t. decision attribute t”,

or, equivalently, but more technically,

s(z; x) � ˛ ) t(z; x) � ˛ ;

where functions s and t measure the credibility of simi-
larity with respect to condition attribute and decision at-
tribute, respectively. When there are multiple condition
and decision attributes, functions s and t aggregate simi-
larity with respect to these attributes.

The decision rules induced on the basis of DRSA do
not need the aggregation of the similarity with respect
to different attributes into one comprehensive similarity.
This is important because it permits us to avoid using ag-
gregation operators (weighted average, min, etc.) which
are always arbitrary to some extent. Moreover, the DRSA
decision rules permit us to consider different thresholds
for degrees of credibility in the premise and in the conclu-
sion.

The article is organized as follows. Next Section
presents the philosophical basis of DRSA granular com-
puting. Section “Dominance-Based Rough Set Approach”
recalls the main steps of DRSA for multiple criteria clas-
sification, or, in general, for ordinal classification. Section
“Fuzzy Set Extensions of the Dominance-Based Rough Set
Approach” presents, a review of fuzzy set extensions of
DRSA based on fuzzy connectives. In Sect. “Variable-Con-
sistency Dominance-Based Rough Set Approach (VC–
DRSA)”, a “probabilistic” version of DRSA, the variable-
consistency dominance-based rough set approach is pre-
sented. Dominance-based rough approximation of a fuzzy
set is presented in Sect “Dominance-Based Rough Ap-
proximation of a Fuzzy Set”. The explanation that IRSA
is a particular case of DRSA is presented in Sect. “Mono-
tonic Rough Approximation of a Fuzzy Set versus Classi-
cal Rough Set”. Section “Dominance-Based Rough Set Ap-
proach to Case-Based Reasoning” is devoted to DRSA for
case-based reasoning. In Sect. “An Algebraic Structure for
Dominance-Based Rough Set Approach” an algebra mod-
eling logic of DRSA is presented. Section “Conclusions”
contains conclusions. In Sect. “FutureDirections” some is-
sues for further developments are presented.
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Philosophical Basis of DRSA Granular Computing

It is interesting to analyze the relationships between
DRSA and granular computing from the point of view of
the philosophical basis of rough set theory proposed by
Pawlak. Since according to Pawlak [48], rough set theory
refers to some ideas of Gottlob Frege (vague concepts),
Gottfried Leibniz (indiscernibility), George Boole (reason-
ing methods), Jan Łukasiewicz (multi-valued logic), and
Thomas Bayes (inductive reasoning), it is meaningful to
give an account for DRSA generalization of rough sets, jus-
tifying it in reference to some of these main ideas recalled
by Pawlak.

The identity of indiscernibles is a principle of analytic
ontology first explicitly formulated by Gottfried Leibniz in
his Discourse on Metaphysics, Sect. 9 [43]. Two objects x
and y are defined indiscernible, if x and y have the same
properties. The principle of identity of indiscernibles states
that

if x and y are indiscernible, then x D y : (II1)

This can be expressed also as if x ¤ y, then x and y are dis-
cernible, i. e. there is at least one property that x has and y
does not, or vice versa. The converse of the principle of
identity of indiscernibles is called indiscernibility of identi-
cals and states that if x D y, then x and y are indiscernible,
i. e. they have the same properties. This is equivalent to
saying that if there is at least one property that x has and y
does not, or vice versa, then x ¤ y. The conjunction of
both principles is often referred to as “Leibniz’s law”.

Rough set theory is based on a weaker interpretation of
Leibniz’s law, having as objective the ability to classify ob-
jects falling under the same concept. This reinterpretation
of Leibniz’s law is based on a reformulation of the princi-
ple of identity of indiscernibles as follows:

if x and y are indiscernible,
then x and y belong to the same class : (II2)

Let us observe that the word “class” in the previous
sentence can be considered as synonymous with “granule”.
Thus, from the point of view of granular computing, (II2)
can be rewritten as

if x and y are indiscernible,
then x and y belong to the same granule of classification :

(II2’)

Notice also that the principle of indiscernibility of
identicals cannot be reformulated in analogous terms. In
fact, such an analogous reformulation would amount to
stating that if x and y belong to the same class, then x

and y are indiscernible. This principle is too strict, how-
ever, because there can be two discernible objects x and y
belonging to the same class. Thus, within rough set the-
ory, the principle of indiscernibility of identicals should
continue to hold in its original formulation (i. e. if x D y,
then x and y are indiscernible). It is worthwhile to observe
that the relaxation in the consequence of the implication
from (II1) to (II2), implies an implicit relaxation also in
the antecedent. In fact, one could say that two objects are
identicals if they have the same properties, if one would
be able to take into account all conceivable properties. For
human limitations this is not the case, therefore, one can
imagine that (II2) can be properly reformulated as

if x and y are indiscernible taking into account
a given set of properties;

then x and y belong to the same class :
(II2’’)

This weakening in the antecedent of the implication
means also that the objects indiscernible with respect to
a given set of properties can be seen as a granule, such that,
finally, the (II2) could be rewritten in terms of granulation
as

if x and y belong to the same granule with respect
to a given set of properties;

then x and y belong to the same classification granule :
(II2’’’)

For this reason, rough set theory needs a still weaker
form of the principle of identity of indiscernibles. Such
a principle can be formulated using the idea of vague-
ness due to Gottlob Frege. According to Frege “the con-
cept must have a sharp boundary – to the concept without
a sharp boundary there would correspond an area that had
not a sharp boundary-line all around”. Therefore, follow-
ing this intuition, the principle of identity of indiscernibles
can be further reformulated as

if x and y are indiscernible,
then x and y should belong to the same class : (II3)

In terms of granular computing, (II3) can be rewritten
as

if x and y belong to the same granule with respect
to a given set of properties;

then x and y should belong to the same classification
granule :

(II3’)

This reformulation of the principle of identity of in-
discernibles implies that there is an inconsistency in the
statement that x and y are indiscernible, and x and y be-
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long to different classes. Thus, Leibniz’s principle of iden-
tity of indiscernibles and Frege’s intuition about vagueness
found the basic idea of the rough set concept proposed by
Pawlak.

The above reconstruction of the basic idea of Pawlak’s
rough set should be completed, however, by referring to
another basic idea. This is the idea of Georg Boole that
concerns a property which is satisfied or not satisfied. It
is quite natural to weaken this principle admitting that
a property can be satisfied to some degree. This idea of
graduality can be attributed to Jan Łukasiewicz and his
proposal of many-valued logic where, in addition to well-
known truth values “true” and “false”, other truth val-
ues representing partial degrees of truth were present.
Łukasiewicz’s idea of graduality has been reconsidered,
generalized and fully exploited by Zadeh [56] within fuzzy
set theory, where graduality concerns membership to a set.

In this sense, any proposal of putting rough sets and
fuzzy sets together can be seen as a reconstruction of the
rough set concept, where Boole’s idea of binary logic is
abandoned in favor of Łukasiewicz’s idea of many-valued
logic, such that Leibniz’s principle of identity of indis-
cernibles and Frege’s intuition about vagueness are com-
bined with the idea that a property is satisfied to some de-
gree.

Putting aside, for the moment, Frege’s intuition about
vagueness, but taking into account the concept of gradual-
ity, the principle of identity of indiscernibles can reformu-
lated as follows:

if the grade of each property for x is greater than
or equal to the grade for y;

then x belongs to the considered class in a grade
at least as high as y :

(II4)

Taking into account the paradigm of granular comput-
ing, (II4) can be rewritten as

if x belongs to the granules defined by considered
properties more than y, because the grade of each
property for x is greater than or equal to the
grade for y,

then x belongs to the considered classification granule
in a grade at least as high as y :

(II4’)

Considering the concept of graduality together with
Frege’s intuition about vagueness, one can reformulate the
principle of identity of indiscernibles as follows:

if the grade of each property for x is greater than
or equal to the grade for y;

then x should belong to the considered class
in a grade at least as high as y :

(II5)

In terms of granular computing, (II5) can be rewritten
as

if x belongs to the granules defined by considered
properties more than y, because the grade of each
property for x is greater than or
equal to the grade for y;

then x should belong to the considered classification
granule in a grade at least as high as y :

(II5’)

The formulation (II5’) of the principle of identity of
indiscernibles is perfectly concordant with the rough set
concept definedwithin the dominance-based rough set ap-
proach [20].

DRSA has been proposed by the authors to deal with
ordinal properties of data related to preferences in deci-
sion problems [26,54]. The fundamental feature of DRSA
is that it handles monotonicity of comprehensive evalua-
tion of objects with respect to preferences relative to eval-
uation of these objects on particular attributes. For ex-
ample, the more preferred is a car with respect to such
attributes as maximum speed, acceleration, fuel consump-
tion, and price, the better is its comprehensive evaluation.
The type of monotonicity considered within DRSA is also
meaningful for problems where relationships between dif-
ferent aspects of a phenomenon described by data are to
be taken into account, even if preferences are not consid-
ered. Indeed, monotonicity concerns, in general, mutual
trends existing between different variables, like distance
and gravity in physics, or inflation rate and interest rate
in economics. Whenever a relationship between different
aspects of a phenomenon is discovered, this relationship
can be represented by amonotonicity with respect to some
specific measures of the considered aspects. Formulation
(II5) of the principle of identity of indiscernibles refers to
this type of monotonic relationships. So, in general, the
monotonicity permits us to translate into a formal lan-
guage a primitive intuition of relationships between differ-
ent concepts of our knowledge corresponding to the prin-
ciple of identity of indiscernibles formulated as (II5’).

Dominance-Based Rough Set Approach

This section presents themain concepts of the dominance-
based rough set approach (for a more complete presenta-
tion see, for example, [17,20,26,54]).

Information about objects is represented in the form
of an information table. The rows of the table are labeled
by objects, whereas columns are labeled by attributes and
entries of the table are attribute-values. Formally, an in-
formation system (table) is the 4-tuple S D hU;Q;V ; �i,
where U is a finite set of objects, Q is a finite set of at-
tributes, V D

S
q2Q Vq and Vq is the set of values of the
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attribute q, and � : U � Q ! Vq is a total function such
that �(x; q) 2 Vq for every q 2 Q, x 2 U , called an in-
formation function [47]. The set Q is, in general, divided
into set C of condition attributes and set D of decision at-
tributes.

Condition attributes with value sets ordered accord-
ing to decreasing or increasing preference are called cri-
teria. For criterion q 2 Q, �q is a weak preference rela-
tion on U such that x �q y means “x is at least as good
as y with respect to criterion q”. It is supposed that �q is
a complete preorder, i. e. a strongly complete and transi-
tive binary relation, defined on U on the basis of evalua-
tions �(�; q). Without loss of generality, the preference is
supposed to increase with the value of �(�; q) for every cri-
terion q 2 C, such that for all x; y 2 U , x �q y if and only
if �(x; q) � �(y; q).

Furthermore, it is supposed that the set of decision at-
tributes D is a singleton d. Values of decision attribute d
makes a partition of U into a finite number of decision
classes, Cl D fClt ; t D 1; : : : ; ng, such that each x 2 U
belongs to one and only one class Clt 2 Cl. It is sup-
posed that the classes are preference-ordered, i. e. for all
r; s 2 f1; : : : ; ng, such that r > s, the objects from Clr are
preferred to the objects from Cls . More formally, if � is
a comprehensive weak preference relation onU, i. e. if for all
x; y 2 U , x � y means “x is at least as good as y”, it is sup-
posed: [x 2 Clr ; y 2 Cls ; r>s]) [x � y and not y � x].
The above assumptions are typical for consideration of or-
dinal classification problems (also called multiple criteria
sorting problems).

The sets to be approximated are called upward union
and downward union of classes, respectively:

Cl�t D
[

s�t
Cls ; Cl�t D

[

s�t
Cls ; t D 1; : : : ; n :

The statement x 2 Cl�t means “x belongs to at least class
Clt”, while x 2 Cl�t means “x belongs to at most class
Clt”. Let us remark that Cl�1 D Cl�n D U , Cl�n D Cln
and Cl�1 D Cl1. Furthermore, for t D 2; : : : ; n,

Cl�t�1 D U � Cl�t and Cl�t D U � Cl�t�1 :

The key idea of the rough set approach is representa-
tion (approximation) of knowledge generated by decision
attributes, by “granules of knowledge” generated by condi-
tion attributes.

In DRSA, where condition attributes are criteria and
decision classes are preference ordered, the represented
knowledge is a collection of upward and downward unions
of classes and the “granules of knowledge” are sets of ob-
jects defined using a dominance relation.

x dominates ywith respect to P � C (shortly, x P-dom-
inates y), denoted by xDP y, if for every criterion q 2 P,
�(x; q) � �(y; q). The relation of P-dominance is reflex-
ive and transitive, that is it is a partial preorder.

Given a set of criteria P � C and x 2 U , the “granules
of knowledge” used for approximation in DRSA are:

� A set of objects dominating x, called P-dominating set,
DCP (x) D fy 2 U : yDPxg,

� A set of objects dominated by x, called P-dominated set,
D�P (x) D fy 2 U : xDP yg.

Note that the “granules of knowledge” defined above have
the form of upward (positive) and downward (negative)
dominance cones in the evaluation space.

Let us recall that the dominance principle (or Pareto
principle) requires that an object x dominating object y on
all considered criteria (i. e. x having evaluations at least as
good as y on all considered criteria) should also dominate y
on the decision (i. e. x should be assigned to at least as good
a decision class as y). This principle is the only objective
principle that is widely agreed upon in the multiple criteria
comparisons of objects.

Given P � C, the inclusion of an object x 2 U to the
upward union of classes Cl�t , t D 2; : : : ; n, is inconsistent
with the dominance principle if one of the following condi-
tions holds:

� x belongs to class Clt or better but it is P-dominated
by an object y belonging to a class worse than Clt , i. e.
x 2 Cl�t but DCP (x) \ Cl�t�1 ¤ ;,

� x belongs to a worse class than Clt but it P-dominates
an object y belonging to class Clt or better, i. e. x … Cl�t
but D�P (x) \ Cl�t ¤ ;.

If, given a set of criteria P � C, the inclusion of x 2 U
to Cl�t , where t D 2; : : : ; n, is inconsistent with the dom-
inance principle, then x belongs to Cl�t with some ambi-
guity. Thus, x belongs to Cl�t without any ambiguity with
respect to P � C, if x 2 Cl�t and there is no inconsis-
tency with the dominance principle. This means that all
objects P-dominating x belong to Cl�t , i. e. D

C
P (x) � Cl�t .

Furthermore, x possibly belongs to Cl�t with respect to
P � C if one of the following conditions holds:

� According to decision attribute d, x belongs to Cl�t ,
� According to decision attribute d, x does not belong to

Cl�t , but it is inconsistent in the sense of the dominance
principle with an object y belonging to Cl�t .

In terms of ambiguity, x possibly belongs to Cl�t with re-
spect to P � C, if x belongs to Cl�t with or without any
ambiguity. Because of the reflexivity of the dominance re-
lation DP, the above conditions can be summarized as
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follows: x possibly belongs to class Clt or better, with re-
spect to P � C, if among the objects P-dominated by x
there is an object y belonging to class Clt or better, i. e.
D�P (x) \ Cl�t ¤ ;.

The P-lower approximation of Cl�t , denoted by PCl
�
t ,

and the P-upper approximation of Cl�t , denoted by
P
�
Cl�t


, are defined as follows (t D 1; : : : ; n):

P
�
Cl�t


D
˚
x 2 U : DCP (x) � Cl�t

�
;

P
�
Cl�t


D
˚
x 2 U : D�P (x) \ Cl�t ¤ ;

�
:

Analogously, one can define the P-lower approxima-
tion and the P-upper approximation of Cl�t as follows
(t D 1; : : : ; n):

P
�
Cl�t


D
˚
x 2 U : D�P (x) � Cl�t

�
;

P
�
Cl�t


D
˚
x 2 U : DCP (x) \ Cl�t ¤ ;

�
:

The P-lower and P-upper approximations so de-
fined satisfy the following inclusion properties for each
t 2 f1; : : : ; ng and for all P � C:

P
�
Cl�t


� Cl�t � P

�
Cl�t


;

P
�
Cl�t


� Cl�t � P

�
Cl�t


:

The P-lower and P-upper approximations of Cl�t and
Cl�t have an important complementarity property, accord-
ing to which,

P
�
Cl�t


D U � P

�
Cl�t�1


and

P
�
Cl�t


D U � P

�
Cl�t�1


; t D 2; : : : ; n ;

P
�
Cl�t


D U � P

�
Cl�tC1


and

P
�
Cl�t


D U � P

�
Cl�tC1


; t D 1; : : : ; n � 1 :

The P-boundary of Cl�t and Cl�t , denoted by
BnP

�
Cl�t


and BnP

�
Cl�t


respectively, are defined as fol-

lows (t D 1; : : : ; n):

BnP
�
Cl�t


D P

�
Cl�t


� P

�
Cl�t


;

BnP
�
Cl�t


D P

�
Cl�t


� P

�
Cl�t


:

Because of the complementarity property, BnP(Cl�t )
D BnP(Cl�t�1), for t D 2; : : : ; n.

The dominance-based rough approximations of up-
ward and downward unions of classes can serve to induce
“if. . . , then. . . ” decision rules. It is meaningful to consider
the following five types of decision rules:

1) Certain D�-decision rules: if xq1 �q1 rq1 and
xq2 �q2 rq2 and : : : xqp �qp rqp , then certainly x be-
longs to Cl�t , where, for each wq; zq 2 Xq , “wq �q zq”
means “wq is at least as good as zq”.

2) Possible D�-decision rules: if xq1 �q1 rq1 and
xq2 �q2 rq2 and : : : xqp �qp rqp , then x possibly be-
longs to Cl�t .

3) Certain D�-decision rules: if xq1 �q1 rq1 and
xq2 �q2 rq2 and : : : xqp �qp rqp , then certainly x be-
longs to Cl�t , where, for each wq ; zq 2 Xq , “wq �q zq”
means “wq is at most as good as zq”.

4) Possible D�-decision rules: if xq1 �q1 rq1 and
xq2 �q2 rq2 and : : : xqp �qp rqp , then x possibly be-
longs to Cl�t .

5) Approximate D��-decision rules: if xq1 �q1 rq1 and
: : : xqk �qk rqk and xq(kC1) �q(kC1) rq(kC1) and
: : : xqp �qp rqp , then x 2 Cl�s \ Cl�t , where s < t.

The rules of type 1) and 3) represent certain knowledge ex-
tracted from the decision table, while the rules of type 2)
and 4) represent possible knowledge. Rules of type 5) rep-
resent doubtful knowledge.

Fuzzy Set Extensions
of the Dominance-Based Rough Set Approach

The concept of dominance can be refined by introducing
gradedness through the use of fuzzy sets. Here are basic
definitions of fuzzy connectives [10,34]. For each proposi-
tion p, one can consider its truth value v(p) ranging from
v(p) D 0 (p is definitely false) to v(p) D 1 (p is definitely
true); and for all intermediate values, the greater v(p), the
more credible is the truth of p. A negation is a non-increas-
ing function N : [0; 1]! [0; 1] such that N(0) D 1 and
N(1) D 0. Given proposition p, N(v(p)) states the cred-
ibility of the negation of p. A t-norm T and a t-conorm
T� are two functions T : [0; 1] � [0; 1]! [0; 1] and
T� : [0; 1] � [0; 1]! [0; 1], such that given two proposi-
tions, p and q, T(v(p); v(q)) represents the credibility of
the conjunction of p and q, and T�(v(p); v(q)) represents
the credibility of the disjunction of p and q. t-norm T and
t-conorm T� must satisfy the following properties:

T(˛; ˇ) D T(ˇ; ˛) and T�(˛; ˇ) D T�(ˇ; ˛) ;
for all ˛; ˇ 2 [0; 1] ;

T(˛; ˇ) � T(�; ı) and T�(˛; ˇ) � T�(�; ı) ;
for all ˛; ˇ; �; ı 2 [0; 1]
such that ˛ � � and ˇ � ı ;

T(˛; T(ˇ; � )) D T(T(˛; ˇ); � ) and
T�(˛; T�(ˇ; � )) D T�(T�(˛; ˇ); � ) ;
for all ˛; ˇ; � 2 [0; 1] ;
T(1; ˛) D ˛ and T�(0; ˛) D ˛ ;
for all ˛ 2 [0; 1] :
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A negation is strict iff it is strictly decreasing and con-
tinuous. A negation N is involutive iff, for all ˛ 2 [0; 1],
N(N(˛)) D ˛. A strong negation is an involutive strict
negation. If N is a strong negation, then (T; T�;N) is
a de Morgan triplet iff N(T�(˛; ˇ)) D T(N(˛);N(ˇ)).
A fuzzy implication is a function I : [0; 1] � [0; 1]! [0; 1]
such that, given two propositions p and q, I(v(p); v(q))
represents the credibility of the implication of q by p.
A fuzzy implication must satisfy the following properties
(see [10]):

I(˛; ˇ) � I(�; ˇ) for all ˛; ˇ; � 2 [0; 1] ;
such that ˛ � � ;
I(˛; ˇ) � I(˛; � ) for all ˛; ˇ; � 2 [0; 1] ;
such that ˇ � � ;
I(0; ˛) D 1; I(˛; 1) D 1 for all ˛ 2 [0; 1] ;
I(1; 0) D 0 :

An implication I!N;T� is a T�-implication if there
is a t-conorm T� and a strong negation N such that
I!N;T�(˛; ˇ) D T�(N(˛); ˇ). A fuzzy similarity relation on
the universe U is a fuzzy binary relation (i. e. function
R : U � U ! [0; 1]) reflexive (R(x; x) D 1 for all x 2 U),
symmetric (R(x; y) D R(y; x) for all x; y 2 U) and transi-
tive (given t-norm T, T(R(x; y); R(y; z)) � R(x; z) for all
x; y; z 2 U).

Let �q be a fuzzy weak preference relation on U with
respect to criterion q 2 C, i. e. �q : U � U ! [0; 1], such
that, for all x; y 2 U , �q (x; y) represents the credibility
of the proposition “x is at least as good as y with respect to
criterion q”. Suppose that�q is a fuzzy partial T-preorder,
i. e. that it is reflexive (�q (x; x) D 1 for each x 2 U) and
T-transitive (T(�q (x; y);�q (y; z)) ��q (x; z), for each
x; y; z 2 U) (see [10]). Using the fuzzy weak preference re-
lations�q , q 2 C, a fuzzy dominance relation onU (deno-
tation DP(x; y)) can be defined, for all P � C, as follows:

DP(x; y) D Tq2P(�q (x; y)) :

Given (x; y) 2 U � U , DP(x; y) represents the cred-
ibility of the proposition “x is at least as good as y
with respect to each criterion q from P”. Since the
fuzzy weak preference relations �q are supposed to
be partial T-preorders, then also the fuzzy dominance
relation DP is a partial T-preorder. Furthermore, let
Cl D fClt ; t D 1; : : : ; ng be a set of fuzzy classes in U
such that, for each x 2 U , Clt(x) represents the member-
ship function of x to Clt . It is supposed, as before, that
the classes of Cl are increasingly ordered, i. e. that for all
r; s 2 f1; : : : ; ng such that r > s, the objects from Clr have
a better comprehensive evaluation than the objects from

Cls . On the basis of the membership functions of the fuzzy
class Clt , fuzzy membership functions of two other sets
can be defined as follows:

1) The upward union fuzzy set Cl�t , whose member-
ship function Cl�t (x) represents the credibility of the
proposition “x is at least as good as the objects in Clt”:

Cl�t (x) D

8
<

:

1 if 9s 2 f1; : : : ; ng : Cls (x) > 0
and s > t

Clt(x) otherwise

9
=

;
;

2) the downward union fuzzy set Cl�t , whose member-
ship function Cl�t (x) represents the credibility of the
proposition “x is at most as good as the objects in Clt”:

Cl�t (x) D

8
<

:

1 if 9s 2 f1; : : : ; ng : Cls (x) > 0
and s < t

Clt(x) otherwise

9
=

;
:

The P-lower and the P-upper approximations of Cl�t
with respect to P � C are fuzzy sets in U, whose mem-
bership functions, denoted by P[Cl�t (x)] and P[Cl�t (x)]
respectively, are defined as:

P
�
Cl�t (x)

�
D Ty2U

�
T�
�
N(DP(y; x));Cl�t (y)


;

P
�
Cl�t (x)

�
D T�y2U

�
T
�
DP(x; y);Cl�t (y)


:

P[Cl�t (x)] represents the credibility of the proposition
“for all y 2 U , y does not dominate x with respect to cri-
teria from P or y belongs to Cl�t ”, while P[Cl�t (x)] rep-
resents the credibility of the proposition “there is at least
one y 2 U dominated by x with respect to criteria from P
which belongs to Cl�t ”.

The P-lower and P-upper approximations of Cl�t with
respect to P � C, denoted by P[Cl�t (x)] and P[Cl�t (x)]
respectively, can be defined, analogously, as:

P
�
Cl�t (x)

�
D Ty2U

�
T�
�
N(DP(x; y));Cl�t (y)


;

P
�
Cl�t (x)

�
D T�y2U

�
T
�
DP(y; x);Cl�t (y)


:

P
�
Cl�t (x)

�
represents the credibility of the proposition

“for all y 2 U , x does not dominate y with respect to cri-
teria from P or y belongs to Cl�t ”, while P[Cl

�
t (x)] repre-

sents the credibility of the proposition “there is at least one
y 2 U dominating x with respect to criteria from P which
belongs to Cl�t ”.

Let us remark that, using the definition of the T�-im-
plication, it is possible to rewrite the definitions of
P[Cl�t (x)], P[Cl

�
t (x)], P[Cl

�
t (x)] and P[Cl�t (x)], in the
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following way:

P
�
Cl�t (x)

�
D Ty2U



I!T�;N

�
DP(y; x);Cl�t (y)

�
;

P
�
Cl�t (x)

�
D

T�y2U


N


I!T�;N

�
DP(x; y);N

�
Cl�t (y)

��
;

P
�
Cl�t (x)

�
D Ty2U



I!T�;N

�
DP(x; y);Cl�t (y)

�
;

P
�
Cl�t (x)

�
D

T�y2U


N


I!T�;N

�
DP(y; x);N

�
Cl�t (y)

��
:

The following results can be proved:

1) for each x 2 U and for each t 2 f1; : : : ; ng,

P
�
Cl�t (x)

�
� Cl�t (x) � P

�
Cl�t (x)

�
;

P
�
Cl�t (x)

�
� Cl�t (x) � P

�
Cl�t (x)

�
;

2) if (T; T�;N) constitute a de Morgan triplet and
if N[Cl�t (x)] D Cl�t�1(x) for each x 2 U and
t D 2; : : : ; n, then

P
�
Cl�t (x)

�
D N

�
P
�
Cl�t�1(x)

�
;

P
�
Cl�t (x)

�
D N

�
P
�
Cl�t�1(x)

�
; t D 2; : : : ; n ;

P
�
Cl�t (x)

�
D N

�
P
�
Cl�tC1(x)

�
;

P
�
Cl�t (x)

�
D N

�
P
�
Cl�tC1(x)

�
; t D 1; : : : ; n � 1 ;

3) for all P � R � C, for all x 2 U and for each
t 2 f1; : : : ; ng,

P
�
Cl�t (x)

�
� R

�
Cl�t (x)

�
; P

�
Cl�t (x)

�
� R

�
Cl�t (x)

�
;

P
�
Cl�t (x)

�
� R

�
Cl�t (x)

�
; P

�
Cl�t (x)

�
� R

�
Cl�t (x)

�
:

Results 1) to 3) can be read as fuzzy counterparts of the
following results well-known within the classical rough set
approach:

1) (inclusion property) says that Cl�t and Cl�t include
their P-lower approximations and are included in
their P-upper approximations;

2) (complementarity property) says that the P-lower
(P-upper) approximation of Cl�t is the complement
of the P-upper (P-lower) approximation of its comple-
mentary set Cl�t�1, (analogous property holds for Cl

�
t

and Cl�tC1);
3) (monotonicity with respect to sets of attributes) says that

enlarging the set of criteria, the membership to the
lower approximation does not decrease and the mem-
bership to the upper approximation does not increase.

Greco, Inuiguchi, and Słowiński [14] proposed, more-
over, the following fuzzy rough approximations based on
dominance, which go in line with the fuzzy rough approx-
imation by Dubois and Prade [3,5], concerning classical
rough sets:

P
�
Cl�t (x)

�
D infy2U

�
I
�
DP(y; x);Cl�t (y)


;

P
�
Cl�t (x)

�
D supy2U

�
T
�
DP(x; y);Cl�t (y)


;

P
�
Cl�t (x)

�
D infy2U

�
I
�
DP(x; y);Cl�t (y)


;

P
�
Cl�t (x)

�
D supy2U

�
T
�
DP(y; x);Cl�t (y)


:

Using fuzzy rough approximations based on DRSA,
one can induce decision rules having the same syntax as
the decision rules obtained from crisp DRSA. In this case,
however, each decision rule has a fuzzy credibility.

Variable-ConsistencyDominance-Based
Rough Set Approach (VC-DRSA)

The definitions of rough approximations introduced in
Sect. “Dominance-Based Rough Set Approach” are based
on a strict application of the dominance principle. How-
ever, when defining non-ambiguous objects, it is reason-
able to accept a limited proportion of negative examples,
particularly for large data tables. Such an extended version
of DRSA is called the variable-consistency DRSA model
(VC-DRSA) [31].

For any P � C, x 2 U belongs to Cl�t without any am-
biguity at consistency level l 2 (0; 1], if x 2 Cl�t and at
least l  100% of all objects y 2 U dominating x with re-
spect to P also belong to Cl�t , i. e., for t D 2; : : : ; n,

ˇ̌
DCP (x) \ Cl�t

ˇ̌

ˇ̌
DCP (x)

ˇ̌ � l :

The level l is called consistency level because it con-
trols the degree of consistency with respect to objects qual-
ified as belonging to Cl�t without any ambiguity. In other
words, if l < 1, then at most (1 � l)  100% of all objects
y 2 U dominating x with respect to P do not belong to
Cl�t and thus contradict the inclusion of x in Cl�t .

Analogously, for any P � C, x 2 U belongs to
Cl�t without any ambiguity at consistency level l 2 (0; 1],
if x 2 Cl�t and at least l  100% of all the objects y 2 U
dominated by x with respect to P also belong to Cl�t , i. e.,
for t D 1; : : : ; n � 1,

ˇ̌
D�P (x) \ Cl�t

ˇ̌

ˇ̌
D�P (x)

ˇ̌ � l :

The concept of non-ambiguous objects at some con-
sistency level l leads naturally to the corresponding defi-
nition of P-lower approximations of the unions of classes
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Cl�t and Cl�t , respectively:

Pl �Cl�t

D

(

x 2 Cl�t :

ˇ̌
DCP (x) \ Cl�t

ˇ̌

ˇ
ˇDCP (x)

ˇ
ˇ � l

)

;

t D 2; : : : ; n ;

Pl �Cl�t

D

(

x 2 Cl�t :

ˇ̌
D�P (x)\ Cl�t

ˇ̌

ˇ̌
D�P (x)

ˇ̌ � l

)

;

t D 1; : : : ; n � 1 :

Given P � C and consistency level l, the correspond-
ing P-upper approximations of Cl�t and Cl�t , denoted
by Pl (Cl�t ) and Pl (Cl�t ), respectively, can be defined as
a complement of Pl (Cl�t�1) and Pl (Cl�tC1) with respect
to U:

Pl �Cl�t

D U � Pl �Cl�t�1


; t D 2; : : : ; n ;

Pl �Cl�t

D U � Pl �Cl�tC1


; t D 1; : : : ; n � 1 :

Pl (Cl�t ) can be interpreted as a set of all the objects be-
longing to Cl�t , possibly ambiguous at consistency level l.
Analogously, Pl (Cl�t ) can be interpreted as a set of all
the objects belonging to Cl�t , possibly ambiguous at con-
sistency level l. The P-boundaries (P-doubtful regions) of
Cl�t and Cl�t at consistency level l are defined as:

BnlP
�
Cl�t


D Pl �Cl�t


� Pl �Cl�t


; t D 2; : : : ; n

BnlP
�
Cl�t


D Pl �Cl�t


� Pl �Cl�t


; t D 1; : : : ; n � 1 :

The variable consistency model of the dominance-
based rough set approach provides some degree of flexibil-
ity in assigning objects to lower and upper approximations
of the unions of decision classes. The following properties
can be easily proved: for 0 < l 0 < l � 1,

Pl �Cl�t

� Pl 0 �Cl�t


and Pl �Cl�t


� Pl 0 �Cl�t


;

t D 2; : : : ; n ;

Pl �Cl�t

� Pl 0 �Cl�t


and Pl �Cl�t


� Pl 0 �Cl�t


;

t D 1; : : : ; n � 1 :

The following two basic types of variable-consistency
decision rules can be considered:

1. D�-decision rules with the following syntax: “if
�(x; q1) � rq1 and �(x; q2) � rq2 and . . . �(x; qp) �
rqp , then x 2 Cl�t ” with confidence ˛ (i. e. in fraction ˛
of considered cases), where P D fq1; : : : ; qpg � C,
(rq1; : : : ; rqp) 2 Vq1�Vq2� : : :�Vqp and t D 2; : : : ; n;

2. D�-decision rules with the following syntax: “if
�(x; q1) � rq1 and �(x; q2) � rq2 and . . . �(x; qp) �
rqp , then x 2 Cl�t ” with confidence ˛, where P D
fq1; : : : ; qpg � C, (rq1; : : : ; rqp) 2 Vq1�Vq2�: : :�Vqp
and t D 1; : : : ; n � 1.

The variable consistency model is inspired by the vari-
able precisionmodel proposed by Ziarko [61,62] within the
classical indiscernibility-based rough set approach.

Dominance-Based Rough Approximation
of a Fuzzy Set

This section shows how the dominance-based rough set
approach can be used for rough approximation of fuzzy
sets.

A fuzzy information base is the 3-tuple B D hU; F; 'i,
where U is a finite set of objects (universe), F D f f1;
f2; : : : ; fmg is a finite set of properties, and ' : U � F !
[0; 1] is a function such that '(x; fh) 2 [0; 1] expresses
the credibility that object x has property f h. Each object x
from U is described by a vector

DesF (x) D ['(x; f1); : : : ; '(x; fm)] ;

called description of x in terms of the degrees to which it
has properties from F; it represents the available informa-
tion about x. Obviously, x 2 U can be described in terms
of any non-empty subset E � F and in this case

DesE (x) D ['(x; fh); fh 2 E] :

For any E � F, the dominance relation DE can be de-
fined as follows: for all x, y 2 U , x dominates ywith respect
to E (denotation xDE y) if, for any fh 2 E,

'(x; fh) � '(y; fh) :

Given E � F and x 2 U , let

DCE (x) D fy 2 U : yDExg; D�E (x) D fy 2 U : xDE yg:

Let us consider a fuzzy setX inU, with its membership
function �X : U ! [0; 1]. For each cutting level ˛ 2 [0; 1]
and for  2 f�; >g, the E-lower and the E-upper ap-
proximation of X�˛ D fy 2 U : �X(y)  ˛g with respect
to E � F (denotation E(X�˛) and E(X�˛), respectively),
can be defined as:

E(X�˛) D
˚
x 2 U : DCE (x) � X�˛

�
;

E(X�˛) D
˚
x 2 U : D�E (x) \ X�˛ ¤ ;

�
:
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Rough approximations E(X�˛) and E(X�˛) can be ex-
pressed in terms of unions of granules DCE (x) as follows:

E(X�˛) D
[

x2U

˚
DCE (x) : D

C
E (x) � X�˛

�
;

E(X�˛) D
[

x2U

˚
DCE (x) : D

�
E (x) \ X�˛ ¤ ;

�
:

Analogously, for each cutting level ˛ 2 [0; 1] and for
˘ 2 f�; <g, the E-lower and the E-upper approximation
of X˘˛ D fy 2 U : �X(y) ˘ ˛g, with respect to E � F (de-
notation E(X˘˛) and E(X˘˛), respectively), can be de-
fined as:

E(X˘˛) D
˚
x 2 U : D�E (x) � X˘˛

�
;

E(X˘˛) D
˚
x 2 U : DCE (x) \ X˘˛ ¤ ;

�
:

The rough approximations E(X˘˛) and E(X˘˛) can be
expressed in terms of unions of granules D�E (x) as follows:

E(X˘˛) D
[

x2U

˚
D�E (x) : D

�
E (x) � X˘˛

�
;

E(X˘˛) D
[

x2U

˚
D�E (x) : D

C
E (x) \ X˘˛ ¤ ;

�
:

Let us remark that the rough approximations E(X�˛),
E(X�˛), E(X�˛) and E(X�˛) can be rewritten as follows:

E(X�˛) D
˚
x 2 U : 8w 2 U;wDEx ) w 2 X�˛

�
;

E(X�˛) D
˚
x 2 U : 9w 2 U such that xDEw

and w 2 X�˛
�
;

E(X�˛) D
˚
x 2 U : 8w 2 U; xDEw) w 2 X�˛

�
;

E(X�˛) D
˚
x 2 U : 9w 2 U such that wDEx

and w 2 X�˛
�
:

Rough approximations E(X>˛), E(X>˛), E(X<˛) and
E(X<˛) can be rewritten analogously by a simple replace-
ment of “�” with “>”, and “�” with “<”.

This reformulation of the rough approximations is
concordant with the syntax of decision rules obtained in
DRSA. For example, E(X�˛) is concordant with decision
rules of the type

“if object y has property fi1 to degree at least hi1, and
has property fi2 to degree at least hi2, . . . , and has
property f ip to degree at least hip, then object y be-
longs to set X to degree at least ˛”,

where fi1; : : : ; ipg D E and hi1 D '(x; fi1); : : : ; hi p D
'(x; fi p).

Let us remark that in the above approximations, even if
X�˛= Y�˛ , their approximations are, in general, different

due to the different directions of cutting the membership
functions of X and Y . Of course, a similar remark holds
also for X>˛ and Y<˛ . Considerations of the directions in
the cuts X�˛ , X>˛ and X�˛ , X<˛ are important in the
definition of the rough approximations of unions and in-
tersections of cuts.

The rough approximations E(X�˛), E(X�˛), E(X�˛),
E(X�˛) and E(X>˛), E(X>˛), E(X<˛), E(X<˛) satisfy
the following inclusion properties: for any 0 � ˛ � 1,

E(X�˛) � X�˛ � E(X�˛) ;

E(X�˛) � X�˛ � E(X�˛) ;

E(X>˛) � X>˛ � E(X>˛) ;

E(X<˛) � X<˛ � E(X<˛) :

Furthermore, the following complementary properties
hold: for any 0 � ˛ � 1,

E(X�˛) D U � E(X<˛) ; E(X�˛) D U � E(X>˛) ;

E(X>˛) D U � E(X�˛) ; E(X<˛) D U � E(X�˛) :

The following properties of monotonicity with respect to
sets of properties also hold: for any E1 � E2 � F and for
any 0 � ˛ � 1,

E1(X
�˛) � E2(X

�˛) ; E1(X
>˛) � E2(X

>˛) ;
E1(X

�˛) � E2(X
�˛) ; E1(X

<˛) � E2(X
<˛) ;

E1(X�˛) � E2(X�˛) ; E1(X>˛) � E2(X>˛) ;

E1(X�˛) � E2(X�˛) ; E1(X<˛) � E2(X<˛) :

One can consider also fuzzy rough approximations
X"E ; X

#
E ; X

"

E , X
#

E , which are fuzzy sets with membership
functions defined, respectively, as follows: for any y 2 U ,

�X"E
(y) D max

˚
˛ 2 [0; 1] : y 2 E(X�˛)

�
;

�X#E
(y) D min

˚
˛ 2 [0; 1] : y 2 E(X�˛)

�
;

�
X"E

(y) D max
˚
˛ 2 [0; 1] : y 2 E(X�˛)

�
;

�
X#E

(y) D min
˚
˛ 2 [0; 1] : y 2 E(X�˛)

�
:

The membership function �X"E
(y) is defined as the

upward lower fuzzy rough approximation of X with re-
spect to E and can be interpreted in the following way.
For any ˛; ˇ 2 [0; 1], ˛ < ˇ implies X�˛ � X�ˇ . There-
fore, the greater the cutting level ˛, the smaller X�˛

and, consequently, the smaller also its lower approxima-
tion E(X�˛). Thus, for each y 2 U and for each fuzzy
set X, there is a threshold k(y), 0 � k(y) � �X (y), such
that y 2 E(X�˛) if ˛ � k(y), and y … E(X�˛) if ˛ > k(y).
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Since k(y) D �X"E
(y), this explains the interest of �X"E

(y).
Analogous interpretation holds for �

X"E
(y), defined as the

membership function of the upward upper fuzzy rough
approximation of X with respect to E.

The membership function �X#E
(y) is defined as the

downward lower fuzzy rough approximation of X with
respect to E and can be interpreted as follows. For any
˛; ˇ 2 [0; 1], ˛ < ˇ implies X�˛ � X�ˇ . Therefore, the
greater the cutting level ˛, the greater X�˛ and, conse-
quently, its lower approximation E(X�˛). Thus, for each
y 2 U and for each fuzzy set X, there is a threshold h(y),
�X(y) � h(y) � 1, such that y 2 E(X�˛) if ˛ � h(y), and
y … E(X�˛) if ˛ < h(y). Observe that h(y) D �X#E

(y).
Analogous interpretation holds for �

X#E
(y), defined as the

membership function of the downward upper fuzzy rough
approximation of X with respect to E.

The membership functions of the upward and down-
ward lower and upper fuzzy rough approximations can
also be rewritten in the following equivalent formula-
tions, which has been proposed and investigated by Greco,
Inuiguchi, and Słowiński [16]:

�X"E
(y) D min

˚
�X(z) : z 2 DCE (y)

�
;

�
X"E

(y) D max f�X(z) : z 2 D�E (y)g ;

�X#E
(y) D max f�X(z) : z 2 D�E (y)g ;

�
X#E

(y) D min
˚
�X(z) : z 2 DCE (y)

�
:

The membership functions of the fuzzy rough approx-
imations �X"E

(y), �
X"E

(y), �X#E
(y) and�

X#E
(y), satisfy the

following inclusion properties: for any y 2 U ,

�X"E
(y) � �X(y) � �X"E

(y) ;

�X#E
(y) � �X(y) � �X#E

(y) :

Furthermore, the following complementary property
holds: for any y 2 U ,

�X"E
(y) D �

X#E
(y) ; �X#E

(y) D �
X"E

(y) :

The following properties of monotonicity with respect to
sets of properties also hold: for any E1 � E2 � F,

�X"E1
(y) � �X"E2

(y) ; �X#E1
(y) � �X#E2

(y) ;

�
X"E1

(y) � �
X"E2

(y) ; �
X#E1

(y) � �
X#E2

(y) :

Monotonic Rough Approximation
of a Fuzzy Set Versus Classical Rough Set

What is the relationship between the classical rough set
and the DRSA approximation of a fuzzy set? Greco,

Matarazzo, and Słowiński [27,29] proved that the former
is a particular case of the latter, as shown below.

Let us remember that in the classical rough set ap-
proach [46,47], the original information is expressed
by means of an information system, that is the 4-tuple
S D hU;Q;V ; �i, where U is a finite set of objects (uni-
verse), Q D fq1; q2; : : : ; qmg is a finite set of attributes,
Vq is the set of values of the attribute q, V D

S
q2Q Vq and

� : U � Q ! V is a total function such that �(x; q) 2 Vq
for each q 2 Q, x 2 U , called information function.

Therefore, each object x from U is described by a vec-
tor

DesQ (x) D [�(x; q1); �(x; q2); : : : ; �(x; qm)] ;

called description of x in terms of the evaluations of the
attributes from Q; it represents the available information
about x. Obviously, x 2 U can be described in terms of
any non-empty subset P � Q.

With every (non-empty) subset of attributes P there is
associated an indiscernibility relation on U, denoted by IP:

IP D f(x; y) 2 U � U : �(x; q) D �(y; q);8q 2 Pg :

If (x; y) 2 IP , it is said that the objects x and y are P-in-
discernible. Clearly, the indiscernibility relation thus de-
fined is an equivalence relation (reflexive, symmetric, and
transitive). The family of all the equivalence classes of the
relation IP is denoted by UjIP , and the equivalence class
containing an element x 2 U by IP(x), i. e.

IP(x) D fy 2 U : �(y; q) D �(x; q);8q 2 Pg :

The equivalence classes of the relation IP are called
P-elementary sets.

Let S be an information system, X a non-empty subset
of U and ; ¤ P � Q. The P-lower approximation and the
P-upper approximation of X in S are defined, respectively,
as:

P(X) D fx 2 U : IP(x) � Xg ;

P(X) D fx 2 U : IP(x) \ X ¤ ;g :

The elements of P(X) are all and only those objects
x 2 U which belong to the equivalence classes generated
by the indiscernibility relation IP, contained in X; the ele-
ments of P(X) are all and only those objects x 2 U which
belong to the equivalence classes generated by the indis-
cernibility relation IP , containing at least one object x be-
longing to X. In other words, P(X) is the largest union
of the P-elementary sets included in X, while P(X) is the
smallest union of the P-elementary sets containing X.
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Granular Computing and Data Mining for Ordered Data: The
Dominance-Based Rough Set Approach, Table 1
Information base B

f1 f2
x1 0 1
x2 1 0
x3 1 1

Any information system can be expressed in terms
of a specific type of an information base. An informa-
tion base is called Boolean if ' : U � F ! f0; 1g. A par-
tition F D fF1; : : : ; Frg of the set of properties F, with
card (Fk) � 2 for all k D 1; : : : ; r, is called canonical if, for
each x 2 U and for each Fk 2 F; k D 1; : : : ; r, there ex-
ists only one f j 2 Fk for which '(x; f j) D 1 (and, there-
fore, for each fi 2 Fk � f f jg, '(x; fi) D 0). The condition
card (Fk) � 2 for all k D 1; : : : ; r, is necessary because,
otherwise, there would be at least one class Fk D f f 0g of
the partition such that '(x; f 0) D 1 for all x 2 U , and this
would mean that property f 0 gives no information and
can be removed. Observe now that any information sys-
tem S D hU;Q;V ; �i can be transformed to a Boolean in-
formation base B D hU; F; 'i assigning to each v 2 Vq ,
q 2 Q, one property fqv 2 F such that '(x; fqv) D 1 if
�(x; q) D v, and '(x; fqv) D 0 otherwise. Let us remark
that F D fF1; : : : ; Frg, with Fq D f fqv ; v 2 Vqg, q 2 Q, is
a canonical partition of F. The opposite transformation,
from a Boolean information base to an information sys-
tem, is not always possible, i. e. there may exist Boolean
information bases which cannot be transformed into in-
formation systems, because their sets of properties do not
admit any canonical partition, as shown by the following
example.

Example 1 Let us consider a Boolean information base B,
such that U D fx1; x2; x3g, F D f f1; f2g and function ' is
defined by Table 1. One can see that F D ff f1; f2gg is not
a canonical partition because '(x3; f1) D '(x3; f2) D 1,
while the definition of canonical partition F does not
allow that for an object x 2 U , '(x; f1) D '(x; f2) D 1.
Therefore, this Boolean information base has no equiv-
alent information system. Let us remark that also the
Boolean information base B0 presented in Table 2, where
U D fx1; x2; x4g and F D f f1; f2g, cannot be transformed
to an information system, because partition F D ff f1; f2gg
is not canonical. Indeed, '(x4; f1) D '(x4; f2) D 0, while
definition of canonical partition F does not allow that for
an object x 2 U , '(x; f1) D '(x; f2) D 0.

The above says that consideration of rough approxi-
mation in the context of a Boolean information base is

Granular Computing and Data Mining for Ordered Data: The
Dominance-Based Rough Set Approach, Table 2
Information base B0

f1 f2
x1 0 1
x2 1 0
x4 0 0

Granular Computing and Data Mining for Ordered Data: The
Dominance-Based Rough Set Approach, Table 3
Information system S

q1 q2
x1 0 1
x2 1 0
x3 1 1

more general than the same consideration in the context
of an information system. This means, of course, that the
rough approximation considered in the context of a fuzzy
information base is yet more general.

It is worth stressing that the Boolean information
bases B and B0 are not Boolean information systems.
In fact, on one hand, a Boolean information base pro-
vides information about absence ('(x; f ) D 0) or pres-
ence ('(x; f ) D 1) of properties f 2 F in objects x 2 U .
On the other hand, a Boolean information system provides
information about values assigned by attributes q 2 Q,
whose sets of values areVq D f0; 1g, to objects x 2 U , such
that �(x; q) D 1 or �(x; q) D 0 for all x 2 U and q 2 Q.
Observe, therefore, that to transform a Boolean informa-
tion system S into a Boolean information base B, each at-
tribute q of S corresponds to two properties fq0 and fq1
of B, such that for all x 2 U

� '(x; fq0) D 1 and '(x; fq1) D 0 if �(x; q) D 0,
� '(x; fq0) D 0 and '(x; fq1) D 1 if �(x; q) D 1.

Thus, the Boolean information base B in Table 1 and the
Boolean information system S in Table 3 are different,
though they could seem identical. In fact, the Boolean in-
formation system S in Table 3 can be transformed into the
Boolean information base B00 in Table 4, which is clearly
different from B.

The equivalence between rough approximations in the
context of a fuzzy information base and the classical def-
inition of rough approximations in the context of an in-
formation system can be stated as follows [27,29]. Let us
consider an information system and the corresponding
Boolean information base; for each P � Q, let EP be the
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Granular Computing and Data Mining for Ordered Data: The
Dominance-Based Rough Set Approach, Table 4
Information base B00

fq10 fq11 fq20 fq21
x1 1 0 0 1
x2 0 1 1 0
x3 0 1 0 1

set of all the properties corresponding to values v of at-
tributes in P. Let X be a non-fuzzy (classical) set in U (i. e.
�X : U ! f0; 1g and, therefore, for any y 2 U ,�X(y) D 1
or �X(y) D 0); then it is:

EP(X�1) D P(X�1) ; EP (X�1) D P(X�1) ;

EP(X�0) D P(U � X�1) ; EP (X�0) D P(U � X�1) :

This result proves that the rough approximation of
a non-fuzzy setX in a Boolean information base admitting
a canonical partition is equivalent to the classical rough
approximation of set X in the corresponding information
system. Therefore, the classical rough approximation is
a particular case of the dominance-based rough approxi-
mation in a fuzzy information base.

Dominance-Based Rough Set Approach
to Case-Based Reasoning

This section presents rough approximation of a fuzzy set
using a similarity relation in the context of case-based rea-
soning [28].

Case-based reasoning (for a general introduction to
case-based reasoning see e. g. [35]; for a fuzzy set approach
to case-based reasoning see [6]) is a paradigm in ma-
chine learning whose idea is that a new problem can be
solved by noticing its similarity to a set of problems previ-
ously solved. Case-based reasoning regards the inference
of some proper conclusions related to a new situation by
the analysis of similar cases from a memory of previous
cases. It is based on two principles [36]:

a) Similar problems have similar solutions;
b) Types of encountered problems tend to recur.

Gilboa and Schmeidler [12] observed that the basic idea
of case-based reasoning can be found in the following sen-
tence of Hume [33]: “From causes which appear similarwe
expect similar effects. This is the sum of all our experimen-
tal conclusions.” Rephrasing Hume, one can say that “the
more similar are the causes, the more similar one expects
the effects.” Therefore,measuring similarity is the essential
point of all case-based reasoning and, particularly, of the

fuzzy set approach to case-based reasoning [6]. This ex-
plains the many problems that measuring similarity gen-
erates within case-based reasoning. Problems of modeling
similarity are relative to two levels:

� At the level of similarity with respect to single features:
how to define a meaningful similarity measure with re-
spect to a single feature?

� At the level of similarity with respect to all features: how
to properly aggregate the similarity measures with re-
spect to single features in order to obtain a comprehen-
sive similarity measure?

For the above reasons, [28] proposes a DRSA approach
to case-based reasoning, which tries to be possibly “neu-
tral” and “objective” with respect to similarity relation.
At the level of similarity concerning single features, the
DRSA approach to case-based reasoning considers only
ordinal properties of similarity, and at the level of aggre-
gation, it does not impose any particular functional aggre-
gation based on some very specific axioms (see, for exam-
ple, [12]), but it considers a set of decision rules based on
the general monotonicity property of comprehensive sim-
ilarity with respect to similarity of single features. There-
fore, the DRSA approach to case-based reasoning is only
very little “invasive”, compared to the many other existing
approaches.

Let us consider a pairwise fuzzy information base being
the 3-tuple

B D hU; F; �i ;

where U is a finite set of objects (universe), F D f f1;
f2; : : : ; fmg is a finite set of features, and � : U �U � F !
[0; 1] is a function such that �(x; y; fh) 2 [0; 1] expresses
the credibility that object x is similar to object y w.r.t. fea-
ture f h. The minimal requirement function � must satisfy
is that, for all x 2 U and for all fh 2 F, �(x; x; fh) D 1.
Therefore, each pair of objects (x; y) 2 U � U is described
by a vector

DesF (x; y) D [�(x; y; f1); : : : ; �(x; y; fm)] ;

called description of (x; y) in terms of the credibilities of
similarity with respect to features from F; it represents the
available information about similarity between x and y.
Obviously, similarity between x and y, x; y 2 U , can be
described in terms of any non-empty subset E � F as fol-
lows:

DesE (x; y) D [�(x; y; fh); fh 2 E] :

With respect to any E � F , the dominance relationDE
can be defined onU � U as follows: for any x; y;w; z 2 U ,
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(x; y) dominates (w; z) with respect to E (denotation
(x; y)DE (w; z)) if, for any fh 2 E,

�(x; y; fh) � �(w; z; fh ) :

Given E � F and x, y 2 U , let

DCE (y; x) D fw 2 U : (w; x)DE (y; x)g ;
D�E (y; x) D fw 2 U : (y; x)DE (w; x)g :

In the pair (y; x), x is considered to be a reference ob-
ject, while y can be called a limit object, because it is condi-
tioning the membership ofw in DCE (y; x) and in D�E (y; x).

For each x 2 U and ˛ 2 [0; 1] and  2 f�; >g, the
lower approximation of X�˛ , E
 (X�˛), and the upper ap-
proximation of X�˛ , E
 (X�˛), based on similarity � with
respect to E � F and x, respectively, can be defined as:

E(x)
 (X�˛) D
˚
y 2 U : DCE (y; x) � X�˛

�
;

E(x)
 (X�˛) D
˚
y 2 U : D�E (y; x) \ X�˛ ¤ ;

�
:

For the sake of simplicity, in the following only
E(x)
 (X�˛) and E(x)
 (X�˛) with x 2 X�˛ are con-
sidered. Of course, analogous considerations hold for
E(x)
 (X>˛) and E(x)
 (X>˛). Observe that the lower ap-
proximation of X�˛ with respect to x contains all the ob-
jects y 2 U such that any object w, being similar to x at
least as much as y is similar to x w.r.t. all the considered
features E � F , also belongs to X�˛ . Thus, the data from
the fuzzy pairwise information base B confirm that if w
is similar to x not less than y 2 E(x)
 (X�˛) is similar
to x w.r.t. all the considered features E � F, then w be-
longs to X�˛ . In other words, x is a reference object and
y 2 E(x)
 (X�˛) is a limit object which belongs “certainly”
to set X with credibility at least ˛; the limit is understood
such that all objectsw that are similar to xw.r.t. considered
features at least asmuch as y is similar to x, also belong toX
with credibility at least ˛.

Analogously, the upper approximation of X�˛ with
respect to x contains all objects y 2 U such that there is
at least one object w, being similar to x at most as much
as y is similar to x w.r.t. all the considered features E � F ,
which belongs to X�˛. Thus, the data from the fuzzy pair-
wise information base B confirm that if w is similar to x
not less than y 2 E(x)
 (X�˛) is similar to x w.r.t. all the
considered features E � F , then it is possible that w be-
longs to X�˛ . In other words, x is a reference object and
y 2 E(x)
 (X�˛) is a limit object which belongs “possibly”
to set X with credibility at least ˛; the limit is understood
such that all objects z 2 U similar to x not less than yw.r.t.
considered features, possibly belong to X�˛ .

For each x 2 U and ˛ 2 [0; 1] and ˘ 2 f�; <g, the
lower approximation of X˘˛ , E(x)
 (X˘˛), and the upper
approximation of X˘˛ , E(x)
 (X˘˛), based on similarity �
with respect to E � F and x, respectively, can be defined
as:

E(x)
 (X˘˛) D
˚
y 2 U : D�E (y; x) � X˘˛

�
;

E(x)
 (X˘˛) D
˚
y 2 U : DCE (y; x) \ X˘˛ ¤ ;

�
:

For the sake of simplicity, in the following only
E(x)
 (X�˛) and E(x)
 (X�˛) with x 2 X�˛ are con-
sidered. Of course, analogous considerations hold for
E(x)
 (X<˛) and E(x)
 (X<˛). Observe that the lower ap-
proximation of X�˛ with respect to x contains all the ob-
jects y 2 U such that any object w, being similar to x at
most as much as y is similar to x w.r.t. all the considered
features E � F , also belongs to X�˛ . Thus, the data from
the fuzzy pairwise information base B confirm that if w
is similar to x not more than y 2 E(x)
 (X�˛) is similar
to x w.r.t. all the considered features E � F , then w be-
longs to X�˛ . In other words, x is a reference object and
y 2 E(x)
 (X�˛) is a limit object which belongs “certainly”
to set X with credibility at most ˛; the limit is understood
such that all objectsw that are similar to xw.r.t. considered
features at most as much as y is similar to x, also belong
to X with credibility at most ˛.

Analogously, the upper approximation of X�˛ with
respect to x contains all the objects y 2 U such that there
is at least one object w, being similar to x at least as much
as y is similar to x with respect to all the considered fea-
tures E � F , which belongs to X�˛ . Thus, the data from
the fuzzy pairwise information base B confirm that if w is
similar to x not more than y 2 E(x)
 (X�˛) is similar to x
w.r.t. all the considered features E � F, then it is possible
that w belongs to X�˛ . In other words, x is a reference ob-
ject and y 2 E
 (X�˛) is a limit object which belongs “pos-
sibly” to set X with credibility at most ˛; the limit is un-
derstood such that all objects z 2 U similar to x not more
than y w.r.t. considered features, possibly belong to X�˛ .

Observe that the rough approximations E(x)
 (X�˛),
E(x)
 (X�˛), E(x)
 (X�˛) and E(x)
 (X�˛) can be rewrit-
ten as

E(x)
 (X�˛) D
˚
y 2 U : 8w 2 U; (w; x)DE (y; x)
) w 2 X�˛

�
;

E(x)
 (X�˛) D
˚
y 2 U : 9w 2 U such that

(y; x)DE (w; x) and w 2 X�˛
�
;

E(x)
 (X�˛) D
˚
y 2 U : 8w 2 U; (y; x)DE (w; x)
) w 2 X�˛

�
;

E(x)
 (X�˛) D
˚
y 2 U : 9w 2 U such that

(w; x)DE (y; x) and w 2 X�˛
�
:
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This formulation of the rough approximation is con-
cordant with the syntax of the decision rules induced by
means of DRSA from a fuzzy pairwise information base.
More precisely,

� E(x)
 (X�˛) is concordant with decision rules of the
type: “if object w is similar to object x w.r.t. feature
fi1 to degree at least hi1 and w.r.t. feature fi2 to de-
gree at least hi2 and . . . and w.r.t. feature f ip to degree
at least hip, then object w belongs to set X to degree at
least ˛”,

� E(x)
 (X�˛) is concordant with decision rules of the
type: “if object w is similar to object x w.r.t. feature fi1
to degree at least hi1 and w.r.t. feature fi2 to degree at
least hi2 and . . . and w.r.t. feature f ip to degree at least
hip, then object w could belong to set X to degree at
least ˛”,

� E(x)
 (X�˛) is concordant with decision rules of the
type: “if object w is similar to object x w.r.t. feature fi1
to degree at most hi1 and w.r.t. feature fi2 to degree
at most hi2 and . . . and w.r.t. feature f ip to degree at
most hip, then object w belongs to set X to degree at
most ˛”,

� E(x)
 (X�˛) is concordant with decision rules of the
type: “if object w is similar to object x w.r.t. fea-
ture fi1 to degree at most hi1 and w.r.t. feature fi2
to degree at most hi2 and . . . and w.r.t. feature f ip
to degree at most hip, then object w could belong to
set X to degree at most ˛”, where fi1; : : : ; ipg D E and
hi1; : : : ; hi p 2 [0; 1].

The above definitions of rough approximations and the
syntax of decision rules are based on ordinal properties
of similarity relations only. In fact, no algebraic operation,
such as sum or product, involving cardinal properties of
function � measuring credibility of similarity relations is
considered. This is an important characteristic of our ap-
proach in comparison with alternative approaches to case-
based reasoning.

Let us remark that, similarly to DRSA approximation
in an information base, in the case of DRSA approxima-
tion in a fuzzy pairwise information base, even if for two
fuzzy sets X and Y it is X�˛ D Y�˛ , their approximations
may be different due to the different directions of cutting
the membership functions of sets X and Y .

Rough approximations in a fuzzy pairwise information
base satisfy the following interesting properties.

Theorem 1 Given a fuzzy pairwise information base
B D hU; F; �i and a fuzzy set X in U with membership
function�X(�), the following properties hold for any E � F:

1. For any 0 � ˛ � 1,

E(x)
 (X�˛) � X�˛ � E(x)
 (X�˛) ;

E(x)
 (X�˛) � X�˛ � E(x)
 (X�˛) ;

E(x)
 (X<˛) � X<˛ � E(x)
 (X<˛) ;

E(x)
 (X>˛) � X>˛ � E(x)
 (X>˛) :

2. For any 0 � ˛ � 1,

E(x)
 (X�˛) D U � E(x)
 (X>˛) ;

E(x)
 (X�˛) D U � E(x)
 (X<˛) :

3. For any 0 � ˛ � ˇ � 1,

E(x)
 (X�˛) � E(x)
 (X�ˇ ) ;

E(x)
 (X<˛) � E(x)
 (X<ˇ ) ;

E(x)
 (X�˛) � E(x)
 (X�ˇ ) ;

E(x)
 (X>˛) � E(x)
 (X>ˇ ) ;

E(x)
 (X�˛) � E(x)
 (X�ˇ ) ;

E(x)
 (X<˛) � E(x)
 (X<ˇ ) ;

E(x)
 (X�˛) � E(x)
 (X�ˇ ) ;

E(x)
 (X>˛) � E(x)
 (X>ˇ ) :

4. For any x; y;w; z 2 U and for any 0 � ˛ � 1,

�
(y; x)DE (w; x) and w 2 E(x)
 (X�˛)

�

) y 2 E(x)
 (X�˛) ;
�
(y; x)DE (w; x) and w 2 E(x)
 (X>˛)

�

) y 2 E(x)
 (X>˛) ;
�
(y; x)DE (w; x) and w 2 E(x)
 (X�˛)

�

) y 2 E(x)
 (X�˛) ;
�
(y; x)DE (w; x) and w 2 E(x)
 (X>˛)

�

) y 2 E(x)
 (X>˛) ;
�
(w; x)DE (y; x) and w 2 E(x)
 (X�˛)

�

) y 2 E(x)
 (X�˛) ;
�
(w; x)DE (y; x) and w 2 E(x)
 (X<˛)

�

) y 2 E(x)
 (X<˛) ;
�
(w; x)DE (y; x) and w 2 E(x)
 (X�˛)

�

) y 2 E(x)
 (X�˛) ;
�
(w; x)DE (y; x) and w 2 E(x)
 (X<˛)

�

) y 2 E(x)
 (X<˛) :
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5. For any E1 � E2 � F and for any 0 � ˛ � 1,

E1(x)
 (X
�˛) � E2(x)
 (X

�˛) ;

E1(x)
X
<˛) � E2(x)
 (X

<˛) ;

E1(x)
 (X
�˛) � E2(x)
 (X

�˛) ;

E1(x)
 (X
>˛) � E2(x)
 (X

>˛) ;

E1(x)
 (X�˛) � E2(x)
 (X�˛) ;

E1(x)
 (X<˛) � E2(x)
 (X<˛) ;

E1(x)
 (X�˛) � E2(x)
 (X�˛) ;

E1(x)
 (X>˛) � E2(x)
 (X>˛) :

An Algebraic Structure
for Dominance-Based Rough Set Approach

This section presents an algebraic characterization of
DRSA in terms of the bipolar complemented de Morgan
Brouwer–Zadeh distributive lattice [30], being a gener-
alization of the de Morgan Brouwer–Zadeh distributive
lattice [2], already proposed to characterize the classical
rough set approach [1].

A system h˙;˙C; ˙�;^;_; 0C; 0�;�C ;�� ; 0; 1i is
a bipolar complemented quasi-Brouwer–Zadeh distributive
lattice if the following properties (1b)–(4b) hold:

(1b) ˙ is a distributive lattice with respect to the join and
the meet operations _ and ^

(1b’) ˙C; ˙� � ˙ are distributive lattices with respect
to the join and the meet operations _ and ^. ˙ is
bounded by the least element 0 and the greatest el-
ement 1, which implies that also ˙C and ˙� are
bounded.

(2b) The unary operations 0C : ˙C ! ˙� and 0� :
˙� ! ˙C are Kleene (also Zadeh or fuzzy) bipolar
complementations, that is for arbitrary a; b 2 ˙C

and c; d 2 ˙�

(K1b) a0C0� D a ; c0�0C D c ;
(K2b) (a _ b)0C D a0C ^ b0C;

(c _ d)0� D c0� ^ d0�;
(K3b) a ^ a0C � b _ b0C ; c ^ c0� � d _ d0� :

(3b) The unary operations �C : ˙C ! ˙� and �� :
˙� ! ˙C are Brouwer (or intuitionistic) bipolar
complementations, that is for arbitrary a; b 2 ˙C

and c; d 2 ˙�

(B1b) a ^ a�C�� D a ; c ^ c���C D c
(B2b) (a _ b)�C D a�C ^ b�C ;

(c _ d)�� D c�� ^ d�� ;
(B3b) a ^ a�C D 0 ; c ^ c�� D 0 :

(4b) Complementation 0C and complementation �C in
one hand and complementation 0� and complemen-
tation �� in the other hand are linked by the inter-
connection rule, that is, for arbitrary a 2 ˙C and
arbitrary b 2 ˙� : (in-b) a�C � a0C, b�� � b0�.

A structure
˝
˙;˙C; ˙�;^;_;0C ;0� ;�C ;�� ; 0; 1

˛
is

a bipolar complemented Brouwer–Zadeh distributive lattice
if it is a quasi-Brouwer–Zadeh distributive lattice satisfy-
ing the stronger interconnection rule, that is, for arbitrary
a 2 ˙C and arbitrary b 2 ˙�: (s-in-b) a�C��D a�C0� ,
b���CD b��0C .

A bipolar complemented Brouwer–Zadeh distributive
lattice is a bipolar complemented de Morgan Brouwer–
Zadeh distributive lattice, if it satisfies also the _ de
Morgan property that is, for arbitrary a; b 2 ˙C and
c; d 2 ˙�:

(B2a-b) (a ^ b)�C D a�C _ b�C

(c ^ d)�� D c�� _ d�� :

The bipolar complemented de Morgan Brouwer–
Zadeh distributive lattice is an algebraic structure which
can be given to the collection of all rough approxima-
tions within the dominance-based rough set approach
as follows. Let us consider a fuzzy information base
B D hU; F; 'i. Given G � F , for each X � U , its upward
lower approximation G(>)(X) and its upward upper ap-
proximation G(>)(X) can be defined as:

G(>)(X) D
˚
x 2 U : DCG (x) � X

�
;

G(>)(X) D
˚
x 2 U : D�G (x) \ X ¤ ;

�
:

Analogously, given G � F , for each X � U , its down-
ward lower approximation G(<)(X) and its downward up-
per approximation G(<)(X) can be defined as:

G(<)(X) D
˚
x 2 U : D�G (x) � X

�
;

G(<)(X) D
˚
x 2 U : DCG (x) \ X ¤ ;

�
:

Fixed G � F, for any X � U let us consider the pairs
hG(<)(X);U � G(<)(X)i and hG(>)(X);U � G(>)(X)i
and the sets

B D f(I; E) : I; E � U such that I \ E D ;g ;

B� D
˚
(I; E) : 9X � U for which I D G(<)(X)

and E D U � G(<)(X)
�
;
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BC D
˚
(I; E) : 9X � U for which I D G(>)(X)

and E D U � G(>)(X)
�
:

The following result [30] holds.

Theorem 2 The structure hB; BC; B�;u;t;�� ;�C ;	� ;
	C; h;;Ui; hU;;ii where, for any hI1; E1i; hI2; E2i 2 B,
hI3; E3i 2 B�, hI4; E4i 2 BC,

hI1; E1i u hI2; E2i D hI1 \ I2; E1 [ E2i

hI1; E1i t hI2; E2i D hI1 [ I2; E1 \ E2i

hI3; E3i�� D hE3; I3i; hI4; E4i�C D hE4; I4i

hI3; E3i	� D hE3;U � E3i; hI4; E4i	C D hE4;U � E4i

is a bipolar complemented de Morgan Brouwer–Zadeh dis-
tributive lattice.

Let us observe that within the bipolar complemented de
Morgan Brouwer–Zadeh distributive lattice,˙C has to be
interpreted as the set of “positive” concepts, while ˙� as
the set of “negative” concepts. For example, in a problem
of evaluation of students, the concept of “good students”
is “positive”, while the concept of “bad students” is “neg-
ative”. Within DRSA, each concept is represented by the
pair (I; E), where I (the interior) is the lower approxima-
tion of a set X � U and E (the exterior) is the comple-
ment in U of the upper approximation of X. Intuitively,
each concept is represented by I, being the set of objects
that surely belong to the concept, and E being the set of
objects that surely does not belong to the concept. There-
fore, the positive concept “good students” is represented
by the pair (IG ; EG ), where IG represents the set of stu-
dents “surely good” and EG represents the set of students
“surely not good”. Analogously, the negative concept “bad
students” is represented by the pair (IB; EB), where IB rep-
resents the set of students “surely bad” and EB represents
the set of students “surely not bad”. To illustrate the con-
cept of join t and the meetu, let us consider the concepts
of “good students inMathematics”, represented by the pair
(IGM ; EGM), and “good students in Literature”, represented
by the pair (IGL ; EGL ). In this context, the concept of “good
students in Mathematics or Literature” is represented by

(IGM ; EGM) t (IGL ; EGL ) D (IGM [ IGL ; EGM \ EGL ) :

This means that to the concept of “good students in Math-
ematics or Literature” surely belongs the set of students
“surely good in Mathematics” or “surely good in Litera-
ture”, i. e. IGM [ IGL , while surely does not belong the set
of students “surely not good in Mathematics” and “surely

not good in Literature”, i. e. EGM \ EGL . Analogously, the
concept of “good students in Mathematics and Literature”
is represented by

(IGM ; EGM) u (IGL ; EGL ) D (IGM \ IGL ; EGM [ EGL ) :

This means that to the concept of “good students in Math-
ematics and Literature” surely belongs the set of students
“surely good in Mathematics” and “surely good in Litera-
ture”, i. e. IGM \ IGL , while surely does not belong the set
of students “surely not good in Mathematics” or “surely
not good in Literature”, i. e. EGM [ EGL .

To the concept of “good students” (IG ; EG ), the Kleene
bipolar complementation �C associates the set (EG ; IG ),
that is to the negation of the concept of “good students”
surely belongs the set of student “surely not good” EG, and
surely does not belong the set of all the students “surely
good” IG. Considering the Brouwer bipolar complemen-
tation 	C, the negation of the concept of “good students”
(IG ; EG ) is given by (EG ;U � EG ), that is to the negation
of the concept of “good students” surely belongs the set
of students “surely not good” EG , as in the case of the
Kleene bipolar complementation, and surely does not be-
long the set of all the other students U � EG , differently
from the case of the Kleene bipolar complementation.
Similar considerations hold for the Kleene bipolar comple-
mentation �� and the Brouwer bipolar complementation
	� of negative concepts.

Conclusions

This article provides arguments for the claim that the
dominance-based rough set approach is a proper way of
handling monotonically ordered data in granular com-
puting. Referring to some ideas of Leibniz, Frege, Boole,
and Łukasiewicz, DRSA represents fundamental concepts
of rough set theory in terms of a generalization that
takes into account ordinal properties of data, permit-
ting us to deal with the graduality of fuzzy sets. DRSA
in the context of ordinal classification, its fuzzy exten-
sion, and a rough probabilistic model of DRSA (variable
consistency-dominance-based rough set approach) have
been presented. Moreover, dominance-based rough ap-
proximation of a fuzzy set has been discussed, which in-
fers the most cautious conclusions from available impre-
cise information; different to almost all known fuzzy rough
set approaches, the dominance-based rough approxima-
tion of a fuzzy set does not require any fuzzy connective
which is always arbitrary to some extent.

Knowledge induced from dominance-based rough ap-
proximations of fuzzy sets, or more generally, from ordi-
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nal data, is represented in terms of gradual decision rules.
The dominance-based rough approximations of fuzzy sets
generalize the classical rough approximations of crisp sets,
as proved by showing that the classical rough set approach
is one of its particular cases. Because of considering only
ordinal character of the graduality of fuzzy sets, and due
to eliminating all fuzzy connectives, the dominance-based
rough approximations of fuzzy sets give a new insight into
both rough sets and fuzzy sets, and enable further general-
izations of both of them. The recently proposed DRSA for
fuzzy case-based reasoning is an example of this capacity.
This article also exhibits some important merits of DRSA
within granular computing, which can be summarized as
follows:

� DRSA extends the paradigm of granular computing to
problems involving ordered data,

� It specifies a syntax and modality of information
granules, defined by means of dominance-based con-
straints, which are appropriate for dealingwith ordered
data,

� It provides a methodology for dealing with this type of
information granules, which results in a theory of com-
puting with words and reasoning about ordered data,

� It is supported by a robust and meaningful alge-
braic model, the bipolar complemented de Morgan
Brouwer–Zadeh distributive lattice, and this ensures
the solidity of the obtained results.

Future Directions

Granular computing with ordered data is a very general
problem, because also other modalities of information
constraints, such as veristic, possibilistic, and probabilis-
tic modalities, have to deal with ordered value sets (with
qualifiers relative to grades of truth, possibility, and prob-
ability). For this reason, granular computing with ordered
data based on DRSA is a very promising research field.
There is a great potential in both theoretical investigations,
such as extension of DRSA to other algebraic models than
the Brouwer–Zadeh lattice (for a general survey of alge-
braic structures for rough set theory see Chap. 12 in [50]),
and practical applications, such as customization of DRSA
to case-based reasoning for specific domains, like medical
diagnosis or computer security.
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26. Greco S, Matarazzo B, Słowiński R (2005) Decision rule ap-
proach. In: Figueira J, Greco S, Ehrgott M (eds) Multiple crite-
ria decision analysis: State of the art surveys. Springer, Berlin,
pp 507–563

27. Greco S, Matarazzo B, Słowiński R (2005) Generalizing rough
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Glossary

Attributed-based data model (ABDM) ABDM is a data
(information) model that organizes data (information)
in attribute-value pairs, providing a means for both
definition and access.

Data (information) model A data (information) model
is used in database design to capture the structure or
schema of the data. All data (information) that is en-
tered into a database must conform to the definitions
of the data (information) model.

Data (information) table A set of similar granules used
in granular computing are collected into a data (infor-
mation) table in order to allow them to be conceptual-
ized and reasoned on in a formal manner.

Extensible markup language (XML) XML is a data (in-
formation) model that is a standard for exchanging

and sharing data (information) across the internet,
among databases, and so on.

Functional data model (FDM) FDM is a semantic data
(information) model to represent data (information)
as it appears in the “real-world” with a functional/logic
basis.

Granular computing A discipline of information the-
ory/computer science that uses a formal theory to rea-
son about and analyze data (information) in granules.

Granule A piece of data (information) of varied size and
complexity that is used to represent data (information)
as it occurs in some “real-world” context.

Relational data model (RDM) RDM is a dominant data
(information) model in commercial and open source
database management systems with a basis in set
theory.

Definition of the Subject

Granular computing (GrC) is an emerging discipline of
information theory that strives to allow reasoning and
analysis based on varying levels of information granular-
ity (from fine to coarse). In GrC, the entire information
universe can be organized based on many different crite-
ria, allowing the information to be abstracted, aggregated,
classified, generalized, and so on, based on various charac-
teristics (e. g., data similarity, operational usage, etc.). As
a result, GrC relies on information models to describe the
universe, the elements of the universe, and the composi-
tion of each element. In this chapter, alternative candi-
date information models for GrC are explored, including:
the attribute-based data model, the Relational data model,
the functional data model, and the extensible markup-lan-
guage (XML). This includes both a description of these
models and an analysis of the suitability in support of GrC.

Introduction

In information theory, one approach to support the rea-
soning and analysis of information based on varied levels
of conceptualization is the emerging disciple of Granular
computing (GrC) [10,13,14,26], a term jointly coined by
Lin and Zadeh and having a basis in research conducted by
Lin on neighborhoods (e. g., granules) in databases [7] and
computer security [8]. Information granulation is an ap-
proach that partitions the entire information universe into
granules [11,12,24,25]. This partitioning can be based on
many different criteria: aggregating objects that demon-
strate similarity of features or usage by classification (e. g.,
defining a relation such as a Course table in a university
application); abstracting away details via generalization
(e. g., creating an object-oriented class Person that would
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be the root of a hierarchy); distinguishing among different
characteristics of objects by specialization (e. g., Students
or Faculty sub-classes of Person); summarizing the char-
acteristics of similar objects into a coarser conceptualiza-
tion (e. g., collecting multiple Computer Science Faculty
instances into a single object); and so on. In all of these
situations, the information universe is described in its en-
tirety, and from that initial characterization, it is possible
to define elements and components of elements.

In support of GrC, one of the key initial considerations
is to define the information universe via an appropriate
data representation. For GrC, this data representation has
most frequently been based on data tables as formally de-
fined for rough sets [15], where a data table has many dif-
ferent equivalent nomenclatures, including: a knowledge
representation system, an attribute-value system, and an
information table. For a data table, columns are labeled as
attributes (of the objects) and rows are labeled as instances
(of the objects). Formally, the data table is characterized
as a pair that contains a finite non-empty universe U and
a finite non-empty set of primitive attributed A. Addition-
ally, for each a in A, there is a non-empty set of values, and
a function that maps the universe U to these values. Col-
lectively, these data tables based on rough sets have been
used as the basis to define foundational models for granu-
lar computing [13,14,18] and to achieve privacy protection
for medical data by partitioning attributes into identifying,
easily known, and sensitive categories [20].

The main objective of this chapter is to explore al-
ternative candidate information models for GrC to sup-
port the data table (and dependencies that may exist both
within a table and across multiple data tables). Specifi-
cally, a variety of models that are old and new are ex-
plored, including: the attribute-based data model [6], the
relational data model [1], the functional data model [17],
and the extensible markup-language [22]. The attribute-
based data model (ABDM), proposed in the early 1970,
was touted for its ability to formally define “real-world”
records of information, to support their retrieval, and has
been shown capable of capturing data from relational,
hierarchical, network, and functional data models [3,4].
The relational data model (RDM) proposed in mid-1970
along with the current SQL 1992 (SQL2) has evolved into
the dominant database model for commercial and open
source data base systems, with extensions to support ob-
ject-oriented and other features underway (SQL3). The
functional data model (FDM) and its associated Daplex
programming language, proposed in 1981, offers unique
programming-like features and its functional formal un-
derpinnings can provide a means to reason about data
and constraints, and moreover, to capture semantics. Fi-

nally, the extensible markup-language (XML) has emerged
as an information-representation standard format, allow-
ing information to be modeled and more easily exchanged
among programs, web-sites, databases, etc. All of these
models offer different capabilities in support of data tables
and GrC.

The remainder of this chapter contains two sections
and a conclusion. In Sect. “Candidate Information Mod-
els”, the four information models, ADBM, RDM, FDM,
and XML, are examined. Using this as a basis, in Sect.
“Suitability of Information Models for Granular Com-
puting”, the suitability of the four information models in
support of GrC is investigated by considering them against
three different criteria. Finally, Sect. “Future Directions”
offers concluding remarks.

Candidate InformationModels

In this section, background on the four information
models to be considered for their suitability for GrC
are reviewed, namely: the attribute-based data model
(ABDM) [6], the relational data model (RDM) [1], the
functional data model (FDM) [17], and the extensible
markup-language (XML) [22]. To serve as a common con-
text for the discussion, a university database is utilized as
a example. In the university database, faculty are tracked
by name, identifier, office phone, and department (e. g.,
computer science, mathematics, English, etc.), and stu-
dents are tracked by name, identifier, grade point average,
and campus address (e. g., dormitory). For each course
in the catalog, there is a unique course number (e. g.,
a combination of department and number such as CS123,
MATH233, etc.), the course title and description, and the
list of prerequisites for the course. The courses offered
are also tracked, by course number/section number pairs
(e. g., courses may be offered in multiple sections), and
the FacultyID teaching each offering (by faculty identifier),
and the term (e. g., semester, quarter, etc.) of the offering
(e. g., Fall2007, Spring2008, Summer2008, etc.). Likewise,
the students enrolled by the course number/section num-
ber pair for each term are tracked.

The Relational Data Model (RDM)

Relational data is organized into tuples of relations.
A database is a collection of relations. The attributes of
a relation are distinct. The tuples of a relation have the
property that no two tuples are identical. In addition, one
or more attributes of the relation may be defined as the
primary key of the relation; a relation can have multiple
candidate keys, one of which is chosen as the primary key.
The primary key of the relation is used to uniquely identify
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the tuples of the relation. To establish dependencies across
two or more relations, a foreign key can be defined consist-
ing of one or more attributes of one relation that reference
the primary key of another relation. Foreign keys are em-
ployed to establish referential integrity constraints across
two relations where the foreign key of one relation refer-
ences the primary key of another relation (with self- refer-
ence allowed). Non-primary key attributes are allowed to
have null values; this includes a foreign key. A definition
of the University database in tabular (or relational) form is
as below:

Student(Name, StudentID*, GPA, CampusAddress)
Faculty(Name, FacultyID*, Ophone, Department)
Courses(Course#*, Title, Description,

PCourse#*)
OfferedCourses(Course#*, Section#*,

FacultyID*, Term*)
EnrolledStudents(Course#*, Section#*,

StudentID*, Term*)

Briefly, let us describe the data relationships of this data-
base. First, each student of the Student relation is uniquely
identified by a StudentID (primary key), has a Name,
a grade point average (GPA), and a CampusAddress.
Next, each faculty member of the Faculty relation also has
a unique FacultyID (primary key), a Name, an office phone
number, and a Department affiliation. Third, each course
of the Courses relation (catalog) is uniquely identified by
a Course# (primary key), has a Title, a Description and
may have zero or more prerequisite courses (PCourse#-
foreign key). Fourth, the OfferedCourses relation tracks
the courses offered by sections taught by faculty each term,
with these four attributes forming a compound primary
key. Fifth, the EnrolledStudents relation tracks the stu-
dents enrolled in sections of courses for each term, again
by a compound primary key. In terms of referential in-
tegrity, the foreign key PCourse# self references the rela-
tion Course; note that a course without a prerequisite will
have a null foreign key.

The Attribute-Based Data Model (ABDM)

In ABDM, the initial step in defining a database is the
specification of a collection of the attributes that are in
the database. The database records in ADBM consist of
sets of attribute-value pairs. An attribute-value pair is
a member of the Cartesian product of the attribute name
and the value domain of the attribute. As an example,
<Department, Computer Science> is an attribute-value
pair having Computer Science as the value for the Depart-

ment attribute. Database records have the property that for
a given set of attribute-value pairs, no two pairs in the set
have the same attribute name. In ADBM, data is consid-
ered in the following constructs: database, file, record, at-
tribute-value pair (keyword) attribute-value range, record
body, directory, directory keyword and non-directory key-
word. Informally, a database consists of a collection of
files. Each file contains a group of records which are char-
acterized by a unique set of keywords. A record is com-
posed of two parts. The first part is a collection of attribute-
value pairs (keywords). The second part of the record,
which is optional, is for unformatted textual information,
and is referred to as the record body. A record contains
at most one attribute-value pair for each attribute defined
in the database. An example of a record equivalent to the
Faculty relation is:

(<File, Faculty>, <Record Number, 123>,
<Name, John Smith>, <FacultyID, 12121212>,
<Ophone, 5551111>, <Department, Computer

Science>,
{This is an assistant professor up for
tenure in 2012})

The angle brackets, <, >, enclose an attribute-value pair,
i. e., keyword. The curly brackets, {, }, include the record
body. The record is enclosed in parentheses. The first at-
tribute-value pair of all records of a file, by convention, is
the same. In particular, the attribute is File and the value
is the file name (akin to a relation name in RDM). Sim-
ilar records for Student, Courses, CourseOfferings, and
EnrolledStudents can also be defined; referential integrity
is achieved by using the unique record numbers that are
given to every instance.

Finally, in ABDM, the indexing criteria for a given
database is also a critical part of the definition of the
database. In particular, for indexing purposes, there are
two different types of attribute-value pairs in a record (or
a file), with all of the indexing data maintained in the
directory of the database. Certain attribute-value pairs of
a record (or a file) are called the directory keywords of
the record (file), because either the attribute-value pairs
or their attribute-value ranges are kept in a directory for
identifying the records (files). Those attribute-value pairs
which are not kept in the directory are called non-di-
rectory keywords. In the example record above, the File,
Record Number, and FacultyID attributes would be direc-
tory keywords, while the other attributes would be non-
directory keywords. The identification of database records
are by either directory or non-directory keywords. When
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directory keywords are used, the search space is clearly
defined using the indexing criteria. When non-directory
keywords are used, the entire file of records must be
searched. Note that null values are not allowed for direc-
tory attributes.

The Functional Data Model (FDM)

An entity in a functional database is always associated with
a collection of distinct functions that can be applied to
the entity to return either individual data values or one
or more objects. The term object is used to refer to the
actual data values (values for the functions) for an entity.
Thus, an object can be considered as an instantiation (oc-
currence, in the earlier terminology) of the entity. An ob-
ject is analogous to a tuple in the RDM or a record in
ABDM. The functions of an entity are applied to the en-
tity to return a particular value that is associated with that
entity, i. e., to return a portion of the object. There are two
types of functions, scalar-valued functions and entity-val-
ued functions. Each type of function may be either sin-
gle-valued (returning one value) or set-valued (returning
zero or more values). Scalar-valued functions return one
or more typical database values (i. e., string, integer, and
float). Entity-valued functions return one or more entity
objects as their values.

Additionally, in the FDM, relationships between the
entities may be defined that lead to one or more general-
ization hierarchies for the database. Generalization [19], is
an abstraction technique that is used to organize common-
alities from multiple entities into a single entity (e. g., the
name and identifier for students and faculty can be orga-
nized in a person entity). Because of the presence of gen-
eralization hierarchies, there are two different categories
of entities, entity subtypes and entity supertypes. An entity
subtype exists at the inner and leaf nodes of a generaliza-
tion hierarchy, and inherits all of the characteristics of its
ancestors, i. e., inherits all of the functions of its ancestors.
An entity supertype, or, more simply, an entity type, is at
the root of a generalization hierarchy and has the property
that no two instantiations (occurrences) of the entity type
return the same values for all of the entity’s functions. Ad-
ditionally, one or more single-valued, scalar-valued func-
tions in an entity type may be defined to be the key of the
entity. Functional data is organized into generalization hi-
erarchies of entities. A database is a collection of entities or-
ganized into generalization hierarchies. References among
entities are accomplished when a function is entity valued,
with self-referencing possible. In the following, the defini-
tion of the FDM version of the University database using
the Daplex data definition language is presented.

DATABASE University IS

TYPE Person;
SUBTYPE Student;
SUBTYPE Faculty;
TYPE Courses;
TYPE CoursesOffered;

TYPE Person IS
Name : STRING(1..30);
Identifier : STRING(1..9);

END ENTITY;

TYPE Courses IS
Course# : STRING(1..8);
Title : STRING(1..20);
Descrip : STRING(1..100);
PCourse# : SET OF Courses;

END ENTITY;

TYPE CoursesOffered IS
Course# : STRING(1..8);
Section# : INTEGER;
TERM : STRING(1..10);

END ENTITY;

SUBTYPE Student IS Person
StTakes : SET OF CoursesOffered;
GPA : FLOAT;
CampusAddress : STRING(1..100);

END ENTITY;

SUBTYPE Faculty IS Person
Teaches : SET OF CoursesOffered;
Ophone : STRING(1..7);
Department : STRING(1..30);

END ENTITY;

UNIQUE Course# WITHIN Courses;
UNIQUE Section# WITHIN Formats;
UNIQUE Identifier WITHIN Person;
UNIQUE Course#, Section#, Term WITHIN

CoursesOffered;

END UNIVERSITY;

The FDMversion of the University database has subtle dif-
ferences from its RDM counterpart. Note that Student and
Faculty in the RDM version have been reorganized into
a generalization hierarchy with Person (root entity type
with commonalities) and Student and Faculty (children
or entity subtypes). Courses is similar, but the foreign key
PCourse# has been replaced by an entity-valued function.
The other two differences are: CoursesOffered no longer
includes the faculty identifier and has been replaced by
a Teaches entity-valued function in Faculty; and, Enrolled-
Students has been replaced by a Takes entity-valued func-
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tion in Student. The end of the definition of the database
includes the various uniqueness constraints (akin to pri-
mary keys).

The Extensible Markup Language (XML)

The eXtensible Markup Language (XML) [22] has
emerged as a standard for information modeling and ex-
change for web-based applications, database interopera-
bility, common software tool formats, patient record data,
etc. XML allows information content to be hierarchically
organized and tagged to highlight important/relevant con-
tent. The tags capture not only the content, but can be
leveraged to represent the meaning of the information (se-
mantics). In a web-based setting, XML is the successor to
HTML to allow information content to be hierarchically
organized and tagged to highlight important and relevant
content. The tags can be exploited to capture both infor-
mation content and the meaning of the information (se-
mantics). In addition, XML allows the definition of tem-
plates to capture the known structure information for an
application by the creating of XML schema files called
Document Type Definitions (DTDs). The resulting XML
document instances that are created contain both infor-
mation content (data) as well as semantic notations (tags)
that indicate the meaning of the information.

The Extensible Markup Language, XML [22] provides
a flexible means to store and transmit data between differ-
ent information systems and platforms, and has emerged
as a dominant means for interoperability on the World
Wide Web (as a successor to HTML) and as a standard
for information format and exchange (e. g., the OpenDoc-
ument project for office applications). Both HTML and
XML use tags to identify data/elements. However, while
the HTML tags are predefined and specify the way the data
within the tags is to be displayed, the XML tags are user-
defined and can be employed to identify the data structure
in a hierarchical fashion. For instance in HTML, < b > or
< / b > are all predefined tags to display the data/characters
between them in a bold font. In XML, you will not have
those kinds of predefined tags. All of the tags are defined
by the users to indicate the structure of the data elements.
An XML document for faculty data would be as simple as:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<Faculty>
<Name> John Smith </Name>
<FacultyID> 12121212 </FacultyID>
<Ophone> 5551111 </Ophone>
<Department> Computer Science </Department>

</Faculty>

In the XML fragment, the tags <Faculty>, <Name>, <Fac-
ultyID>, etc., are defined, based on the application and/or
modeling requirements. These tags capture data content
(with attribute names) as well as data dependencies; they
do not provide any clues on formatting or displaying the
data elements between them. In addition to these struc-
tural capabilities of an XML file, each of the elements can
be further quantified with tags to track semantic aspects
of the data. For example, the Name could be augmented
with a tag that indicates whether it is a married or maiden
name, and the Department could be tagged with a title
(e. g., Professor, Associate Professor, Head, etc.). If the
XML structure contained numerical data (e. g., GPA), then
the additional tags may denote the scale of the data (e. g.,
out of 4.0, 100, etc.).

The overall appearance and structure of an XML file
can also be defined and validated by an XML schema file.
An XML schema file defines the tags or attributes that can
be used and where they appear in an XML file. There are
two types of XML schema files: the Document Type Defi-
nition (DTD) and the XML Schema (a more sophisticated
construct). A sample XML Schema for the previous XML
fragment can be defined as:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="Faculty">
<xs:complexType>

<xs:sequence>
<xs:element name="Name"

type="xs:string"/>
<xs:element unique name="FacultyID"

type="xs:string"/>
<xs:element name="Ophone"

type="xs:string"/>
<xs:element name="Department"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

This sample XML Schema file defines that in the cor-
responding XML file, the Faculty element is a complex
type (akin to a relation in RDM, file in ABDM, and en-
tity type in FDM) must have one Name, one FacultyID,
one Ophone, and one Department element. Uniqueness is
achieved via the “unique” keyword attached to the Facul-
tyID element.With a XML Schema, an XML parser can be
used to validate whether the elements within a XML file
are valid or not with respect to the XML Schema. Concep-
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tually, a XML Schema is analogous to type declaration for
a RDM relation, a ABDM file, or a FDM entity type (sub-
type).

Suitability of InformationModelsbreak for Granular
Computing

This section, compares the four information models as
given in Sect. “Candidate Information Models” (ABDM,
RDM, FDM, and XML) for their suitability in support of
granular computing. To facilitate the comparison, crite-
ria are utilized that are relevant for comparing data mod-
els [3,4], in conjunction with various concepts proposed
in [25]. The criteria chosen are:

� Formalism and Theory: This criterion is used to assess
the degree to which a formal model exists for the data
model that is capable of supporting GrC.

� Expressive Power: This criterion is used to evaluate the
ability of each data model to support the definition, us-
age, and analysis of granules,

� Extensibility and Utility: This criterion is used to deter-
mine the usability of the data model, from many differ-
ent perspectives.

In the remainder of this section, these criteria are explored
against the four models, as a means to assess their suitabil-
ity for GrC.

Formalism and Theory

All of the data models given in Sect. “Candidate Informa-
tion Models”, have a certain degree of formalism/theory
upon which they are based. GrC relies on an informa-
tion model that has a formal basis, in order to capture
the required information within a data table [15] and to
employ a theory of rough sets and fuzzy logic for granu-
lar analysis. As a result, it is vital that an underlying data
model is rich enough to support the formalisms necessary
for GrC. To begin, the attributed-based data model [6]
was proposed by David K. Hsiao (founder of ACM Trans-
actions on Database Systems) and Frank Harary (noted
graph theorist) and has a formal basis that has been ex-
plored by other researchers in the 1970s [16], 1980s [4],
and 1990s [9], with applicability in many different con-
texts including paging environments for OS, data-model
transformations for federated databases, and polyinstan-
tiation for security, respectively. Likewise, the relational
data model [1] has a rich history and formal basis using set
theoretic concepts, and is the dominant approach to date
for GrC researchers [2,13,20].

The functional data model [17] was proposed in an
era in the early-to-mid 1980s when semantic data mod-

els (successors to the entity-relationship data model) were
advocated to break away from relatively flat approaches
(e. g., relational, hierarchical, and network data models
and databases systems) to an approach that was seman-
tically rich and able to model the data as it occurs in the
“real world”. In fact, in a workshop in 1993 later published
as special journal issue [5], the overriding theme empha-
sized the functional model and its potential for a unify-
ing paradigm, providing formalisms based on functional
and logic programming that could be used to capture both
relational data and object-oriented data in a formal way.
Lastly, XML [22] has emerged as a de facto standard across
many different disciplines, being used in a wide variety of
contexts (web semantics, patient health records/standards,
database interoperability, information exchange format,
etc.). XML is based on detailed specifications [23] and has
a grammar in Extended Backus–Naur Form. As a result,
there are XML parsers that have been built for many pur-
poses to parse XML files and XML Schemas (see Sect. “The
Extensible Markup Language (XML)” again) in different
ways. Such a formal-grammar basis means that XML can
be utilized in a very rigorous manner to reason using
context-free grammar concepts from automata theory. In
summary, it is clear that from a formal basis, each of
these four data models can realize the information/data
table needs of GrC, offering different strengths in their
support.

Expressive Power

The expressive power needed to support information
granules can be impacted bymany factors; we choose three
for our comparison:

� Grouping capability which involves the reason that ob-
jects are grouped into granules (equivalence classes)
and can be based on object relationships, similarity,
proximity, semantics, etc. [25].

� Linguistic representation of granuleswhich assigns a lin-
guistic value to each granule that can be accomplished
using a naming convention or by providing sample rep-
resentative objects [25].

� Constraint and type checking which involves the abil-
ity to enforce intra-granular and inter-granular depen-
dencies (constraint checking) while simultaneously in-
suring that the granule always adheres to the defined
structure (type checking).

From an information model perspective, these three gran-
ulation factors are directly related to the features and char-
acteristics of the data models as presented in Sect. “Can-
didate Information Models”, and includes: aggregation
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(records in ABDM, relations in RDM, types and subtypes
in FDM, and XML Schemas in XML), generalization (in-
heritance in FDM), identity and uniqueness (directory at-
tributes in ABDM, primary keys in RDM, uniqueness in
FDM, and unique in XML), and relationships (record ref-
erences in ABDM, foreign keys in RDM, entity-valued
functions in FDM, and hierarchical structure in XML).

Specifically, for the grouping capability factor, the as-
sembly of objects into granules (equivalence classes) is ag-
gregation, which is provided by all four data models. Ag-
gregation is simply a result of the creation of the equiv-
alence class, and the aggregation can be based on sim-
ilarity, proximity, etc. The process of grouping objects
into granules is part of GrC, but once the granulation
has been completed, then any of these four models have
sufficient aggregation to represent a granule. If granules
are related to one another hierarchically (or the group-
ing occurs based on a hierarchical relationship), then ei-
ther FDM or XML is appropriate for this resultant aggre-
gation. For the linguistic representation of granules fac-
tor, again, the same aggregation capability applies; all four
models provide a naming convention, and the examples as
given in Sect. “Candidate Information Models” for ABDM
and XML illustrated data instances (sample representative
objects).

Finally, for the constraints and type checking fac-
tor, each model offers different capabilities. For ABDM,
uniqueness of records, record references across objects
(instances), support for attribute–value pairs (used by
many granulation researchers), and directory attributes
(akin to keys), all provide the basis for constraint check-
ing; the definition of the attributes (name and type) in
each record provides type checking. For RDM, no du-
plicate tuples per relation, primary keys, foreign keys,
and referential integrity are relevant for constraint check-
ing; a relational table definition with its attributes and
data types provides type checking. For FDM, the types
and subtypes provide explicit support for type checking
(i. e., these types and subtypes are akin to programming
languages types and subtypes in Ada), while uniqueness
constraints preserve properties (constraint checking). For
XML, the XML Schema is a template that an XML instance
must follow (type checking), and in its definition, pro-
vides the ability for dependencies (constraint checking);
as such, for different granules, there would be different
XML Schemas, and XML provides the ability to parse and
map from one XML Schema to another via XSL Transfor-
mations (http://www.w3.org/TR/xslt) and XQuery (http://
www.w3.org/TR/xquery). Thus, XML is much more pow-
erful than the other models, particularly in type checking;
the use of XML can facilitate the ability to transform one

granule to another while still preserving content and se-
mantics.

Extensibility and Utility

The final criterion considered is extensibility and utility,
which is focused on the usability of the various models,
both today and in the future. This can be examined from
many different perspectives:

� Database Platform Support: While Sect. “Formalism
and Theory” considered the theoretical basis for GrC,
when one moves from theory to practice in GrC,
a seamless transition to the corresponding database
management system for a chosen data model would be
very useful. In that regard, RDMhas the definite advan-
tage, with a wide variety of commercial (Oracle, SQL
Server, Informix, etc.) andOpen Source (MySQL, Post-
greSQL, Ingres, etc.) products available. XML is also
a strong player in this regard, since it is a dominant
technique for information exchange (data interoper-
ability) among databases, particularly across networked
and distributed database solutions.

� Future Potential: XML has the greatest potential for fu-
ture usage in GrC as an information model, due to its
widespread and growing usage. In fact, there are many
open source XML databases that are starting to be re-
leased, including: Apache XIndice, Senda XML DBMS,
X-Hive/DB, etc. Many of these are in their earliest re-
lease stages. For RDM, SQL3, which will include ob-
ject-oriented extensions, is still being considered from
a standards perspective. These object-oriented capabil-
ities are critical to allow granules to be formed in a rep-
resentation similar to the way that they occur in the
“real world”, rather than having the granule be flat-
tened into a relational table. Once approved, the rela-
tional database vendors will have to implement SQL3
and release new versions. One can easily hypothesize
that XML database systems may make SQL3 obsolete
before it even is released.

� Data Model Translations: The ABDM as given in
Sect. “The Attribute-Based Data Model (ABDM)”, has
been shown to be capable of subsuming the features of
RDM and FDM [4] at both a model and system level.
This means that a single model can be used in place of
other models without a loss of information.

Overall, the clear leader from a model perspective is
ABDM and its ability to subsume RDM and FDM model
capabilities. From a practical perspective, while RDMmay
have the edge in commercial and open source database
platforms, the future seems pointed towards XML for
sharing and database usage.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery
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Future Directions

In this chapter, candidate information models and their
suitability for granular computing (GrC) have been ex-
plored. This chapter considered four differentmodels, pre-
sented in Sect. “Candidate Information Models”: the at-
tribute-based data model (ABDM) [6], the relational data
model (RDM) [1], the functional data model (FDM) [17],
and the extensible markup-language (XML) [22]. Two
of these models (RDM and XML) are dominant from
a database system perspective today, but all four models
have different capabilities to offer when modeling, rea-
soning, and analyzing for GrC. To place the four mod-
els in their proper perspective, in Sect. “Suitability of In-
formation Models for Granular Computing”, the mod-
els were explored using three different criteria: Formal-
ism and Theory, Expressive Power, and Extensibility and
Utility: For the first criterion (Sect. “Formalism and The-
ory”), each of the four models have a strong formal ba-
sis and long history of usage; to varying degrees all are
suitable for a formal basis for GrC. For the second crite-
rion (Sect. “Expressive Power”), we compared based on
three factors: grouping capability, linguistic representa-
tion of granules, and constraint and type checking. In the
analysis, ABDM, RDM, and FDM are very comparable in
what they offer, but XML has the potential to transcend
all three, with both its current capabilities and its emerg-
ing characteristics and features. Finally, for the third cri-
terion (Sect. “Extensibility and Utility”), there were differ-
ent strengths for different models: for ADBM, its strength
was its ability to subsume RDM and FDM at the data
model level [4]; for RDM, its strength was in the deployed
database platforms (commercial and open source) and the
future potential of SQL3 with object-oriented capabili-
ties (which will improve granule representation); and, for
XML, the usage in relational databases for information ex-
change, coupled with the arrival of XML database systems,
may have the greatest potential for the future. This leaves
us with two recommendations: from a theory perspective,
while all four data models are appropriate to some degree
for GrC, ABDM and RDM have to be strongly considered
due to their long history of usage and formal basis, with
FDM an alternative when there is a desire to have a func-
tional/logic based basis to GrC; and, from a practical per-
spective, if one is to transition from GrC theory to actual
usage, RDM is the choice today, but XML has an excellent
chance to be the choice of the future.
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What is granular computing (GrC)? It is a shifting
paradigm. Let us start with a few words about how the
term was coined. In the academic year 1996–97, when
Lin (this section editor) took his sabbatical leave at UC-
Berkeley, Zadeh suggested granular mathematics (GrM)
as his research area. To limit the scope, Lin proposed the
term granular computing [14].What was GrC at that time?
Zadeh had outlined it in his 1997 seminal paper [15]. Lin
took an incremental approach: he mapped his neighbor-
hood system [5] to Zadeh’s intuitive definition [12] and
used it as his First GrC model [8,9,10]. It may be impor-
tant to point out that the concept of neighborhood sys-
tems, which was motivated from approximate retrieval in
databases [7], is a generalization of the topological neigh-
borhood system that formalizes the ancient intuition of in-
finitesimal granules.

Much progress has been achieved since then. This sec-
tion has been organized to represent this progress and to
reflect the current state of GrC. We believe in the incre-
mental approach, namely, that each new step is based on
solid results and moves forward. So many special theories

and applications are gathered here. Jointly, they reflect the
current state of GrC and may also implicitly hint at the ul-
timate goals of GrC.

To grasp the main idea from such a diverse collection
of papers, a roadmapwill be helpful: We suggest the reader
start with the first four sections of T.Y. Lin’s paper�Gran-
ular Computing: Practices, Theories, and Future Direc-
tions. There, the reader may want to pay special attention
to the first three examples:

E1) Human body is granulated into head, neck, etc.
So far, there is no flawless formal model. Obvious

models do not work satisfactorily; we need a much more
subtle theory.
E2) Space-time is granulated intuitively into infinitesimal

granules.
E3) The Heisenberg uncertainty principle.

The last two examples have been fully digested by math-
ematicians and scientists. There are two solutions to the
first example, namely, topology and non-standard analy-
sis, so the readers may want to skim through Lin’s Sec-
tion “Second GrC Models and Modern Examples” (about
neighborhood system/pre-topology) in � Granular Com-
puting: Practices, Theories, and Future Directions and the
two articles,�Non-standard Analysis, An Invitation to by
Wei-Zhe Yang, and�Granular Computing andModeling
of the Uncertainty in Quantum Mechanics by Kow-Lung
Chang. These are classical subjects; the authors are amath-
ematician and a physicist, respectively.

Having digested these readings, the reader may pro-
ceed to Zadeh’s� Fuzzy Logic to gain some feeling about
the modern view, and may use it to examine the very first
example, E1. The article is full of revolutionary ideas; it is,
we believe, one of his best papers in presenting an overview
of his idea.

Here we paraphrase or quote some of his assertions
from his article: “There are many misconceptions about
fuzzy logic. A commonmisconception is that fuzzy logic is
fuzzy. In reality, fuzzy logic is not fuzzy. Fuzzy logic deals
precisely with imprecision and uncertainty. In fuzzy logic,
the objects of deduction are, or are allowed to be, fuzzy,
but the rules governing deduction are precise.”

Fuzzy logic is much more than a logical system. More
specifically, fuzzy logic has many facets. “The principal
facets are: the logical facet, FLl; the fuzzy-set-theoretic
facet, FLs, the epistemic facet, Fle; and the relational facet,
FLr.”

To gain a glimpse into the nature of fuzzy logic, we ex-
amine some examples taken from his article. The left-hand
column is “the familiar example of deduction in Aris-
totelian, bivalent logic. In this example, there is no impre-

http://www.w3c.org/XML/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
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cision and no uncertainty.” On the other hand, the right-
hand column is an example of fuzzy logic which is “in an
environment of imprecision and uncertainty.”

all men are mortal most Swedes are tall
Socrates is a man Magnus is a Swede

Socrates is mortal it is likely that Magnus is tall

To deduce the answer from the premises (for the right-
hand example), “it is necessary to precisiate the meaning
of “most” and “tall,” with “likely” interpreted as a fuzzy
probability which, as a fuzzy number, is equal to “most.”
This simple example points to a basic characteristic of
fuzzy logic, namely, in fuzzy logic precisiation of mean-
ing is a prerequisite to deduction.” In this example, “de-
duction is contingent on precisiation of “most,” “tall,” and
“likely.” The issue of precisiation has a position of central-
ity in fuzzy logic.” “In fuzzy logic, the deduction is viewed
as an instance of question-answering”.
[Digression] To this point, we may want to observe that
there is some similarity to Lin’s context based reasoning
method, which is a derivative of (�; ı)-definition; see Lin’s
article “Second GrC Models and Modern Examples” in
� Granular Computing: Practices, Theories, and Future
Directions on the Meaning of “Near”.

To avoid mis-representation, we will not offer a sum-
mary here, but urge the reader to read Zadeh’s article.

There are five areas that have great interactions with
GrC, namely, (in alphabetical order) databases (espe-
cially data mining), fuzzy theory (especially fuzzy con-
trol), grid/cloud computing, rough set theory (implicitly
extended to topology) and Social Networks. We will group
these articles (plus general issues) accordingly. We shall
start from rough set theory.

Granular Computing from Rough Set Theory

Briefly, rough set theory (RST) is a theory of equivalence
relations (which are equivalent to partitions), so the RST
community views GrC as a generalized partition theory.
Recall that an equivalence relation is a reflexive, symmetric
and transitive binary relation. Thus, the “next” generaliza-
tions are the tolerance relation (dropping transitive), the
partial ordering relation (dropping symmetric), and the
fuzzified equivalence relation.

We have collected the corresponding articles:�Gran-
ulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems by Lech Polkowski,�Gran-
ular Computing and Data Mining for Ordered Data:
The Dominance-Based Rough Set Approach by Salva-
tore Greco, Benedetto Matarazzo1, and Roman Slowin-

ski, � Rough and Rough-Fuzzy Sets in Design of Infor-
mation Systems by Theresa Beaubouef and Frederick Petry
and�Multi-Granular Computing andQuotient Structure
by Ling Zhang and Bo Zhang.

Thanks to Professor Polkowski’s diligent search, we
are aware that the term “tolerance relation” first occurred
much earlier than one might expect. However, in the
rough set community, Nieminen (1988) and Lin [7] were
probably the first to use the terms “tolerance equality” and
“neighborhood of tolerance,” respectively. In fact, progress
on the tolerance relation is quite far reaching; it is a com-
plete Pawlak Theory (CPT); it is implicitly in [11].

Recall that a RST is called a CPT, if it includes anal-
ogous theories covered in Pawlak’s book (except logic),
namely, a theory of approximations and a complete
knowledge representation system; the latter notion is de-
fined below (Definition 1).

There are more results in this directions: Let (U; ˇ) be
a Global GrCModel with ˇ being a full covering. Then the
model (U; ˇ) is a CPT, if ˇ is a semi-group under intersec-
tion. However, there are counter examples, namely, some
GrC on partial ordering cannot be a CPT.

The quotient structures, addressed by Zhang–Zhang,
have been neglected by the rough set community, except
some brief results by Lin. Quotient structures are essential
for information hiding and knowledge representations.

The quotient structure of a partition is simply a clas-
sical set. Zhang–Zhang actually has considered topolog-
ical cases, and Lin has considered pre-topological cases
(neighborhood systems). In general, it can be much more
complicated. We shall conclude this paragraph with an ex-
ample from algebraic geometry: Let the universe U be the
polynomial ring over the complex numbers, and ˇ be the
collection of all prime ideals. Then the quotient structure
is the complex line plus a generic point; see “Granular and
Related Structures” of Lin’s article � Granular Comput-
ing: Practices, Theories, and Future Directions for more
details.

Granular Computing in Database Theory

Relational databases can be related to GrC in two views,
Fifth or Fourth GrC models (Relational or Multi-Binary
GrC Models).

A Fourth GrC Model GDM1 D (U; ˇ) is called
a Granular Data Model (GDM), if the granular struc-
ture ˇ D fR1; R2; : : :g is a collection of equivalence rela-
tions. By giving each equivalence relation and its equiv-
alence classes meaningful names, GDM becomes a rela-
tion instance, called an information table (IT) in RST. This
naming process is called a knowledge representation. Let
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IT1 D (U;A1;A2; : : :) be a knowledge representation of
GDM1, whereAi, called an attribute, denotes the meaning-
ful names of Ri. Pawlak observed a beautiful phenomena:

Theorem 1 (U; R1; R2; : : :)() (U;A1;A2; : : :), up to
isomorphism.

From this theorem, we define:

Definition 1 A knowledge representation of the Fourth
GrC model is said to be a complete knowledge representa-
tion if the representation (the process) induces an equiv-
alence. In other words, the knowledge representation can
re-capture the model.

Base on this theorem, RST can transform data mining on
IT to granule-processing, namely, granular computing, on
GDM. This view clarifies the nature of automated data
mining and simplifies its computations. For example, the
association rule mining is reduced to counting the car-
dinality of set theoretical expressions of granules. How-
ever, we should also observe that in such computations
the semantic part of attribute values are ignored. In gen-
eral, the semantics of attribute values are not utilized in the
RST/GrC approach. So some datamining techniques, such
as clustering, cannot be approached by RST, since cluster-
ing uses the metric of the ambient space of attribute val-
ues. In this respect, GrC may use techniques in comput-
ing with words to deal with semantic issues. However, we
should also note that computing with words is still in its
inception stage.

In this group, we have collected the following arti-
cles, � Granular Computing, Information Models for by
StevenA. Demurjian,� Rule Induction, Missing Attribute
Values and Discretization by Grzymala-Busse, � Co-
operative Multi-hierarchical Query Answering Systems
by Zbigniew W. Ras, Agnieszka Dardzinska, � Depen-
dency and Granularity in Data-Mining by Tsumoto–
Hirano, � Rough Set Data Analysis by Shusaku Tsumoto,
� Granular Model for Data Mining by Anita Wasilewska,
Ernestina Menasalvas, Here, we would like to note
that Steven A. Demurjian’s article views GrC from the
database, not the RST, perspective.

Granular Computing in Social Networks

By interpreting a granule as an “ordered set” or a tuple
(in some relations), Lin formalizes Social Networks into
a Fifth GrC model, called the Relational GrC Model. Ar-
ticles � Granular Computing System Vulnerabilities: Ex-
ploring the Dark Side of Social Networking Communities
by Steve Webb, James Caverlee, Calton Pu, and � Social

Networks and Granular Computing by Churn-Jung Liau
investigate two issues in social networks: security and po-
sitional equivalence.

This area actually started much earlier. In the mid-
1970s, Atkin started to investigate mathematical structure
in human affairs [1]. In fact, he reached a simplicial com-
plex in [2], which is symmetric Fifth GrC model or equiv-
alently a Second GrC model(Global GrC model).

Granular Computing and Fuzzy Set Theory

Basically, any assertion about classical sets can be fuzzified,
so the intention here is to address GrC applications that
extend beyond set theory.

A fuzzy set is defined by amembership function, which
is a bounded non-negative real-valued function. So it is
rather natural to investigate the generalization of fuzzy set
theory to general function theory; even to more general
cases, such as random variables (measurable functions)
and to generalized functions (such as Dirac Functions). So,
we have proposed a Sixth GrC model, which is a function-
based GrC model.

In most known applications, we often need some extra
properties on the granular structure, such as the universal
approximation property. Using Banach space’s language,
it implies that the granular structure is a Schauder base.
The collection ofmembership functions used in fuzzy con-
trol, and the activation functions in neural networks (e. g.,
Radial–Basis–Functions), all have such a property.

For this group, we have selected four papers: � Ge-
netic-Fuzzy Data Mining Techniques by Tzung-Pei Hong,
Chun-Hao Chen and Vincent S. Tseng, � Fuzzy System
Models Evolution from Fuzzy Rulebases to Fuzzy Func-
tions by I.B. Turksen,�Granular Neural Network by Yan-
Qing Zhang, and � Fuzzy Probability Theory by Michael
Beer.

We should note that many soft computing papers can
be classified in this category; however, it has its own sec-
tion, so we recommend that the readers visit that sec-
tion. We specifically recommend reading some papers on
Type II fuzzy sets, whose membership functions can be
viewed as granule-valued (fuzzy-number-valued) mem-
bership functions.

We also recommend that readers compare Michael
Beer’s � Fuzzy Probability Theory and non-standard
probability theory (in Wei-Zhe Yang’s article). From
them, the reader might draw his own conclusions as to
what a granular probability (granule-valued probability)
theory might be. One could ask even further questions,
such as, what is a granular function (granule valued func-
tion)?
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Grid/Cloud Computing – A New Addition to GrC

In the end, we would like to note that a new technology,
called cloud computing (a subset of grid computing) is
intrinsically a technology of granular computing. This is
a most natural example of a Seveth GrC models (a Turing
machine-based GrC Model), even though the name GrC
is foreign to the experts in this field. We are expecting, in
the near future, that this area will be the top group that
influences GrC development.

General Issues in Granular Computing

Two articles, � Granular Computing, Principles and
Perspectives of by Jianchao Han and Nick Cercone,
and�Granular Computing, Philosophical Foundation for
by Zhengxin Chen, are about general views on GrC. How-
ever, they are basically addressing First, Second and Third
models. Professor Chen’s three-dimensional views, philo-
sophical, technical, and social/application dimensions. are
quite intriguing and may trigger more general investiga-
tions into all of GrC. In this group, we will add Kow-Lung
Chang, Tsau Young Lin, Wei-Zhe Yang, Lotfi A. Zadeh
Zadeh’s articles.

Conclusions

As GrC is an emerging field, many directions are possible
(Zadeh [13,14,15]; Lin [6] pre-CrC, [7,8,9]; Bargiela and
Pedrycz [3]; Jankoswki and Skowron [4]). Some important
works, due to lack of time and some other factors (includ-
ing ignorance of this section editor), may not be included
here. We apologize for the omissions, with the hope that
many of them are referenced by some of the collected arti-
cles.

In editing this section, we have adopted an incremental
approach: all papers are scientific papers, the only vision-
ary paper is Lotfi Zadeh’s “Fuzzy Logic”; and even in that
paper, many of the visions are already accomplished.

Looking at the collection, we believe GrC is a promis-
ing field; here are some indications:

1. The recent emergence of cloud computing to GrC (our
view) may give GrC a momentum to the real world ap-
plications.

2. From the abstract point of view (category theory based
models) GrC and databases have the same abstract
structures. This implies that GrC as an abstract concept
can be technologically realized.

3. GrC has many links to various branch of mathemat-
ics, namely, algebraic topology (simplical complex) ho-
mological algebra (extension functor), algebraic geom-
etry (Spec(R)). Topological spaces, probability and be-

lief functions. These facts indicate, that mathematically,
GrC contains some important common structures that
are touched by many distinct mathematical fields.

Finally, we would like to extend our thanks to all of the au-
thors for their support of this project, to Professor Zadeh
for his generous guidance and advice, to Dr. Robert Mey-
ers for the opportunity to edit this section.
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Glossary

Newtonian mechanics The classical mechanics based on
Newton’s law of motion.

Uncertainty Also commonly referred to as error; devia-
tion from the average value.

Extrinsic uncertainty The uncertainty due to the system-
atic error and random error.

Intrinsic uncertainty The uncertainty due to the nature
of particle-wave duality in the quantum system.

 (r) q-representation of the quantum state, called state
function or wave function in coordinate space.

'(p) p-representation of the quantum state, called the
state function or the wave function in momentum
space.

�(r) Probability density in coordinate space, defined as
�(r) D  �(r) (r) D j (r)j2.

�̃(p) Probability density in momentum space, defined as
�̃(p) D '�(p)'(p) D j'(p)j2.

j (r)j Probability amplitude of state  (r).
Particle-wave duality A quantum object exhibits both

the nature of a particle and a wave.
Wave vector k D p/„.
Wave number One-dimensional wave vector, k D p/„.
Quantum state The physical state in a subatomic quan-

tum system.
0th Postulate of quantummechanics Regarding quan-

tum states as elements of Hilbert spaceH .

1st Postulate of quantummechanics Assigning each dy-
namical variable in a quantum system a unique linear
Hermitean operator in Hilbert spaceH .

2nd Postulate of quantummechanics The set of eigen-
vectors of a given observable forms the bases of
a Hilbert space.

3rd Postulate of quantummechanics Poisson brackets
in classical mechanics are replaced by commutators
of the corresponding observables according to the
relations in Eq. (5)

[R; S] Commutator of operator R and operator S defined
as RS � SR.

fR; Sg Anti-commutator of operator R and operator S de-
fined as RS C SR.

Eigenvalue and eigenvector For operator A acting upon
a particular state  a , such that A a D a a , then the
scalar number a and the state a are called respectively
the eigenvalue and eigenvector of operator A.

Inner product A numerically valued function of the or-
dered pair of vectors  and ', denoted by ( ; ') such
that ( ; ') D ('; )�. In Dirac’s notation, it takes the
forms h j'i D h'j i�.

Hilbert space A complete vector space with norm defined
as the inner product.

Dual space The space formed by the set of all functionals
satisfying the linearity conditions.

Hermitean operator An operator which is self-adjoint;
that is, an operator A equals its Adjoint conjugate,
A D AC.

Adjoint conjugate operator For an operator A and a pair
of vectors  and ', the Adjoint operator to A, denoted
by AC if it satisfies the relation

( ;A') D (';AC )� D (AC ; ') :

j i A ket vector in Hilbert space.
h j A bra vector in dual space.
Compatible observables Physical observables that com-

mute to each other.
Projection operator jaiihai j a Hermitean operator that

projects any vector inH onto a subspace.
Closure relation Direct sum of all project operators

equals identity operator.
ı-function A distribution function denoted by ı(x � a)

such that
Z

D
f (x)ı(x � a)dx D f (a) and

Z

D
f (x)ı0(x � a)dx D � f 0(a) if a 2 D ;

Z

D
f (x)ı(x � a)dx D 0 if a … D :
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Cauchy–Schwarz inequality Given vectors j˛i and jˇi
such that

h˛j˛ihˇjˇi � h˛jˇihˇj˛i :

Gd Deviation operator with respect to observable G de-
fined as Gd D G � hGiI

Definition of the Subject

For data collection or data acquisition in granular com-
puting or modeling, particular attention should be paid
to data that is involved with the position measurement
and/or the momentum measurement of a particle in
a physical system. For a system that is governed by New-
ton’s law of motion, measurements of the positions and
the momenta of a classical mass point can be made as pre-
cise as one wishes if the best measurement conditions are
available.Whenwe perform physical measurements inmi-
croscopic systems at subatomic level, the laws of Newto-
nian mechanics cease to apply and instead a new theory,
quantum theory, is introduced to account for the quantum
phenomena of the subatomic system.

Uncertainty in the measurement of a quantum system
comes from two origins. The first is called the extrinsic un-
certainty. Quantummeasurements, just as in any scientific
measurement, are never exact. There exists a systematic er-
ror or uncertainty as well as random ones during the pro-
cesses of measurement for various reasons such as inaccu-
rate calibration of instruments, limitation in resolution of
apparatus or meters, variations in temperature or humid-
ity or even the position adopted by the individual observer
in reading data etc. The second is called the intrinsic un-
certainty which arises only in the case of a quantum me-
chanical system.

This particular quantum uncertainty is inherent in the
very nature of particle-wave duality [1] for a subatomic
quantum system. The intrinsic uncertainty exists always
even if the extrinsic uncertainty is eliminated or mini-
mized to the level of negligibility.

In order to describe the particle-wave duality for a sub-
atomic quantum system, one introduces the wave func-
tion, or state function,  (r) to represent the quantum
state.  (r), which provides all the dynamic quantities of
the system, and is related to the probability density by
�(r) D  �(r) (r) D j (r)j2. Therefore, the average po-
sition of the quantum object hri can be obtained through
the following integration

hri D
Z
�(r)rd3r D

Z
 �(r)r (r)d3r : (1)

The uncertainty in position, dented by
r, can then be ex-
pressed by

(
r)2 D
Z
�(r)(r � hri)2d3r

D

Z
 �(r)(r � hri)2 (r)d3r : (2)

Similarly, the uncertainty in momentum,
p can be writ-
ten as

(
p)2 D
Z
�̃(p)(p � hpi)2d3p

D

Z
'�(p)(p � hpi)2'(p)d3p ;

(3)

where '(p) is the state function of the quantum system in
momentum space.

The quantum uncertainties of the system obey the
following relation [2]:


x
px � „
ı
2


y
py � „
ı
2


z
pz � „
ı
2 ;

(4)

where „ D h
ı
2� , and h is called the Planck’s constant.

Introduction

Some basic mathematical tools are necessary in order to
understand the uncertainty relations of quantummechan-
ics in a more rigorous sense. As discussed in the last sec-
tion, it is only a vague answer to the statement that a quan-
tum object possesses both the nature of a point particle and
the nature of a wave at the same time, so that one visual-
izes the quantum object as a matter wave with some sort
of distribution in coordinate space as well as in wave vec-
tor space. Therefore, neither can one find a localized point
quantum object, nor a strictly monochromatic wave mo-
tion in the quantum system.

Next we shall discuss the relations of the quantum state
and the element in Hilbert space as well as the physical ob-
servables and the linear Hermitean operator. The connec-
tion between the eigenvalue problems and the preparation
of a quantum state for a particular measurement of phys-
ical observables are also explored in depth. Dirac’s nota-
tions of the bra and ket vector in Hilbert space are also
reviewed and their connection with the q-representation
and p-representation of wave functions are derived. The
uncertainty relations can therefore formally be proved as
the consequence of non-compatibility of two physical ob-
servables of position and momentum.
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Quantum Postulates and Associated Propositions

0th Postulate of QuantumMechanics

For every quantum system, there exists an abstract en-
tity, called the state (or state function or wave function
in q-representation) which provides the information of all
the dynamical quantities of the system; such as positions,
momenta, energy, angular momentum, spin, charge, . . .
etc. All the possible states , ', �; : : : etc. of a given quan-
tum system are elements of Hilbert spaceH .

1st Postulate of QuantumMechanics

For the measurement of each dynamical variable in the
quantum system, such as the total energy of the system,
or 3rd component of the orbital angular momentum . . .
etc., there associates a unique linear Hermitean operator
in Hilbert spaceH corresponding to each dynamical vari-
able. The set of linear Hermitean operators inH are called
physical observables, or simply observables.

Dynamical variable Physical observable
E (energy) ! H (Hamiltonian

operator)
`3 (3rd component of `) ! L3 (3rd component

of angular momentum
operator L)

The physical quantity a corresponding to the observ-
able of the quantum state  is obtained from the inner
product of the order pair  and A , where A is the cor-
responding linear Hermitean operator associated with dy-
namical variable a. The inner product ( ;A ) is called the
expectation value, or the average value associated with the
dynamical operator A for state  of the quantum system.

a D ( ;A ) :

In general, the operator A acting on  will change  into
another element ' in Hilbert spaceH , which implies that
the action of the measurement usually would disturb the
quantum system and brings the original quantum state  
into a new state ' by the external perturbation during the
process of measurement, i. e.

A D ' :

In a particular case, if an operator A, acts on  a such that

A a D a a ;

i. e. when A acts upon a particular quantum state  a , the
resultant state is the same as the one before except multi-
plying by a scalar number a, then it is said that the quan-
tum system is prepared for the measurement of the dy-
namical variable associated with the physical observableA.

This particularly prepared quantum state  a is called the
eigenstate of the operator A. The scalar numerical value a,
called the eigenvalue of operatorA, is the result of themea-
surement for the dynamical observable.

Since the value of the physical measurement is always
a real quantity, we therefore conclude the first Proposition:

Proposition 1 The eigenvalues for a Hermitean operator
are real.

For AD AC, and letting a be the eigenstate of A, then

a( a;  a) D ( a;A a) D (AC a;  a)
D (A a;  a) D ( a ;A a)� D a�( a;  a)

Since ( a;  a) ¤ 0, we have a D a�.

It is also ready to show Proposition 2.

Proposition 2 Two eigenvectors of the same Hermitean
operator are orthogonal if the corresponding eigenvalues are
unequal.

Let

A 1 D a1 1 ; A 2 D a2 2 :

And if a1 ¤ a2, then

( 1;A 2) D a2( 1;  2) D (AC 1;  2)
D (A 1;  2) D a1( 1;  2) :

Therefore, (a1 � a2)( 1;  2) D 0, that concludes that 1 is
orthogonal to  2 if a1 ¤ a2. Namely ( 1;  2) D 0.

With these propositions, we can formulate the 2nd postu-
late of quantum mechanics.

2nd Postulate of QuantumMechanics

The set of eigenvectors a for all possible value a of a given
Hermitean operator corresponding to a physical observ-
able form the bases of a Hilbert spaceH .

If there exists a complete set of linearly independent
vectors  a which are eigenvectors of both operators R
and S, then the two corresponding physical observables,
R and S are said to be compatible, we then have:

Proposition 3 If two observables are compatible, their cor-
responding operators commute, i. e. if

R a D ra a

S a D sa a

Then (RS � SR) a D [R; S] a D 0.
Any vector  inH can be expressed in terms of linear

combination of  a, i. e.

 D
X

a
˛a a ;
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one can easily verify that it also satisfies [R; S] D 0 for
any state  inH .

Therefore, the observable R and the observable S com-
mute.

From the point of view of physical measurement, the
compatibility of two observables implies that one is able to
prepare a single quantum system for the precise measure-
ments of two different dynamical quantities correspond-
ing to R and S respectively at the same time.

Unfortunately, not all physical observables are com-
patible. The position and themomentum are just an exam-
ple, and the non-compatibility of position operator X and
momentum operator P is in fact the foundation of quan-
tum theory that forms the 3rd Postulate of Quantum Me-
chanics.

3rd Postulate of QuantumMechanics

Every Poisson bracket in classical mechanics for canoni-
cal variables (pi ; qi ) is replaced by the commutator of the
corresponding operators in the quantum system with the
following relations

Poisson bracket Quantum commutator operator
[qi ; qj] D 0 ! [Xi ; Xj] D 0
[pi ; p j] D 0 ! [Pi ; Pj] D 0
[pi ; xi] D ıi j ! [Pi ; Xj] D „

ı
iıi j :

(5)

The non-commuting of the dynamical observables Pi
and Xi will in fact not only lead to the fundamental quan-
tization of the microscopic physical system, it also leads
to the deviations in the position measurement and the
momentum measurement. The non-commutativity of P
and X in the 3rd Quantum Postulate signifies that one is
not able to prepare a quantum state for the simultaneous
measurement of momentum and position with absolute
precision. Therefore, one shall regard the uncertainty rela-
tions of Eq. (4) as the direct consequence of this Quantum
Postulate.

Dirac’s Bra and Ket Notations and the Realization
of Wave Function

To understand that quantum uncertainty is the direct con-
sequence of two non-commuting physical observables, it
is convenient to introduce Dirac’s notations of bra vec-
tors and ket vectors. A ket vector, written as jai, represents
the abstract quantum state  a , with a inside the notation
jai stands for the eigenvalue of the observable A, and the

eigenvalue equation becomes

Ajai D ajai :

Similarly we denote the states  ; '; �; : : : etc. respectively
by the ket vector notations by j i, j'i, j�i: : : etc.

The bra vectors are the elements in another vector
space that are dual to ket vector space.

The bra vector takes the form h j. The inner product
in Dirac’s notation is expressed by taking a pair of dual
vectors, i. e. a bra vector h j and a ket vector j'i, and
putting them side by side as h j � j'i of which one al-
ways simplifies the notation as h j'i. The inner product is
a liner functional that defined a complex number for every
ket vector in Hilbert spaceH , such that

h j � (˛j'i C ˇj�i) D ˛h j'i C ˇh j�i :

The set of bra vectors that define all linear functionals asso-
ciated with the ket vector inH forms a dual Hilbert space
fH . The inner product is a complex number, i. e.

h j'i D h'j i� ;

because bra vectors and ket vectors are elements of two dif-
ferent Hilbert spaces, and they are dual to each other. The
inner product of  and ' denoted previously by ( ; ') is
then replaced by h j'i. The expectation value of the phys-
ical observable A becomes

h jAj i D ( ;A ) :

The advantage of using Dirac’s notations is in the con-
struction of the Projection Operator, of which a vector in
the vector space is projected onto a subspace. Let us de-
note the projector operator }a by putting the bra vector
followed by a ket vector immediately as

}a D jaihaj ;

therefore the vector j ai is automatically constructed
when the Projection operator }a applies upon any vector
j i, that is

j ai D }aj i D jaihaj i :

Let jii be the set of the eigenkets of observable A, with the
discrete eigenvalue ai, then

Ajii D ai jii :

It is often normalized to the eigenvector such that

hij ji D ıi j :
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Any vector j i inH can be expressed in terms of the base
vectors with the coefficients hij i in the following linear
combination,

j i D
X

i

(hij i)jii D
X

i

jiihij i :

The summation
P

i jiihij in fact is just the direct sum of
projection operator}i D jiihij, which obeys the following
closure relation

I D
X

i

}i D
X

i

jiihij :

Inmany cases, the eigenvalue of observables becomes con-
tinuous. Taking observableX, the position operator for in-
stance in the quantum system of interest, and for the sake
of simplicity, we shall consider only a one-dimensional
case, the eigenvalue equation of this quantum system reads

Xjxi D xjxi ;

where jxi is the eigenket of observable X with eigenvalue x
that is a continuous parameter representing the position
of the quantum object.

The normalization of an eigenvector with continuous
eigenvalue is taken as a ı-function

hxjx0i D ı(x � x0) ;

and the corresponding closure relation becomes

I D
Z
jxidxhxj :

Realizationof q-Representation
in QuantumMechanics

Let us introduce a unitary operator

U(P; �) D e�
i
„
�P

where � is a real continuous parameter and P is the mo-
mentum operator. It is unitary because

UC(P; �) D e
i
„
�P

and

U(P; �)UC(P; �) D UC(P; �)U(P; �) D I :

If one expands U(P; �) in terms of a power series in P, i. e.

U(P; �) D IC
�
�
i
„
�P
�
C

1
2!

�
�

i
„
P�
�2
C : : : ;

and calculates the commutator [X; Pn] team by team, and
makes use of

[X; Pn] D i„nPn�1 ;

which is based on the 3rd postulate of Quantum Mechan-
ics, then one obtains

[X;U(P; �)] D �U(P; �)

or

XU(P; �) D U(P; �)(X C �I) :

It can be easily verified that U(P; �)jxi is also an eigenket
of X with eigenvalue (x C �), i. e.

XU(P; �)jxi D U(P; �)(X C � I)jxi
D (x C �)U(P; �)jxi and

U(P; �)jxi D jx C �i ;

where we have chosen the phase factor of the new eigenket
jx C �i to be 1.

Consider the matrix element of the operator, defined
as hxjU(P; �)jx0i for infinitesimal value of � , then by keep-
ing up to first order in � , one has

hXjU(P; �)jx0i D hxjx0C �i :D
�
x
ˇ̌
ˇ̌
�
I�

i
„
�P
�ˇ̌
ˇ̌ x0
	
:

With the properties of the ı-function, one concludes

hxjPjx0i D
„

i
lim
�!0

1
�

˚
ı(x � x0)� ı(x � x0 � �)

�

D
„

i
d
dx
ı(x � x0) D �

„

i
d
dx0

ı(x � x0) :

Therefore one is ready to establish the connection between
the axiomatic quantum postulates and the q-representa-
tion in quantum mechanics by defining the wave function
 (x) to be the inner product of j i and jxi, i. e.

 (x) D hxj i ;

and q-representation of observable P, denoted by } leads
to

} (x) D hxjPj i D
Z
hxjPjx0idx0hx0j i

D �
„

i

Z
d
dx0

ı(x � x0)dx0 (x0) D
„

i
d
dx
 (x) ;

namely, the q-representation of the momentum operator
becomes the differential operator with respect to coordi-
nate x. The quantum theory formulated in the previous
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sections can be translated into the q-representation as fol-
lows

Abstract formulation q-representation
State  Wave function  (x)
Observable X Coordinate x
Observable P Differential operator

} D „i
d
dx

Any observable F(X; P) F(x; }) D F


x; „i

d
dx

�

Fourier Transformation and p-Representation

As we havementioned a quantum system can be described
either in the coordinate space of x, or in the momentum
space (or wave number space) of p. The p-representation
of the quantum state '(p) is similarly defined as the inner
product of the order pair vectors jpi and j i, i. e.

'(p) D hpj i :

It is of interest to relate '(p) with  (x) by inserting an
Identity Projection operator before the state j i, i. e.

'(p) D
Z
hpjx0idx0hx0j i D

Z
hpjx0idx0 (x0) : (6)

Since

phpjxi D hpjPjxi D
Z
hpjx0idx0hx0jPjxi

D
„

i

Z
hpjx0i

d
dx0

ı(x � x0) D �
„

i
d
dx
hpjxi ;

one finds, with proper normalization, that

hpjxi D
1

p
2�„

e�
i
„
px ;

and Eq. (6) can be expressed as

'(p) D
1

p
2�„

Z
e�

i
„
px (x)dx :

Conversely, (x) is the inverse Fourier Transform of '(x),
i. e.

 (x) D
1

p
2�„

Z
e

i
„
px'(p)dp :

QuantumUncertainty and Non-Compatibility
of Observables P and X

According to the 3rd Quantum Postulate that [P; X] D
„
i I, where I is an Identity operator, one can show that

the deviation operators, or the uncertainty operators of P
and X, defined by

Pd D P � hPiI ;
Xd D X � hXiI ;

where hPi D h jPj i � p̄ ;
and hXi D h jXj i � x̄

are the average value of position and momentum respec-
tively and the commutator of these deviation operators Pd
and Xd will also follow the same quantization rule, i. e.

[Pd; Xd] D
„

i
I :

Let us introduce the anti-commutator operator, de-
fined by

PdXd C XdPd D fPd; Xdg ; and denote it by ˙ ;

which is a Hermitean operator. Therefore, one can express
the product operator of Xd and Pd as

PdXd D
1
2
[Pd; Xd]C

1
2

X
;

XdPd D �
1
2
[Pd; Xd]C

1
2

X
:

If we define the ket vectors j˛i and jˇi as

Xdj i D j˛i ;

Pdj i D jˇi ;

then the square of position uncertainty (
x)2 as well as
the square of the momentum uncertainty (
p)2 can be ex-
pressed respectively as

(
x)2 D h˛j˛i D
˝
 
ˇ̌
X2
d
ˇ̌
 
˛
;

(
p) D hˇjˇi D
˝
 
ˇ̌
P2d
ˇ̌
 
˛
:

The quantum uncertainty relation takes the expression

(
x)2(
p)2 D h˛j˛ihˇjˇi

� h˛jˇihˇj˛i D

�
 

ˇ̌
ˇ̌
�
�
„

2i
I C

1
2

X�
 

	

�

�
 

ˇ̌
ˇ
ˇ

�
„

2i
C

1
2

X�ˇ̌
ˇ
ˇ 
	
;

(
x)2(
p)2 �
„2

4
C

1
4

ˇ
ˇ̌DXEˇˇ̌2

;

where Cauchy–Schwarz inequality was applied to obtain
the right hand side of the first inequality sign. Since jh

P
ij2
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is also positive definite because of the Hermiticity property
of the operator˙ , we conclude that


x
p � „
ı
2 ;

which is the quantum uncertainty in a one-dimensional
case. The equality sign in the last equation holds if the con-
ditions jˇi D jai and h j

P
j i D 0 are met. By mak-

ing use of

h minj[P; X]j mini D
„

i
and

D
 minj

X
j min

E
D 0;

one obtains  D i„
2(�x)2 , and the condition for the state

function of the minimal uncertainty in a one-dimensional
quantum system satisfies the following equations
�
„

i
d
dx
� p̄

�
 min(x) D

i„
2(
x)2

(x � x̄) min(x) ;

which can be solved with the solution behaving as a trav-
eling Gaussian wave packet as follows,

 min(x) D
1

4
p
2�(
x)2

e�
(x�x̄)2

2(	x)2C
i
„
p̄x
:

Conclusion

The uncertainties in quantum mechanics exist not only in
the simultaneous measurement of the positions and the
momenta as we have treated previously, uncertainties also
exist in the simultaneous measurement of any pair of the
dynamical variables that are not compatible, or their cor-
responding physical observables do not commute. For ex-
ample, one is not able to obtain the data with absolute
precision in the simultaneous measurements of any two
components of the angular momentum Li and Lj, because
of the non-vanishing commutator [Li ; Lj] D i„ 2i jk Lk .
If we denote the deviation operator for the observable cor-
responding to angular momentum by

Ld D L � hLiI ;

one can easily show that

[Ldi ; Ld j] D i„ 2i jk Lk ;

and the square of uncertainty in the ith and jth com-
ponents of angular momentum, denoted by (
`i )2 and
(
` j)2 respectively can be expressed as

(
`i )2(
` j)2 D
˝
 
ˇ
ˇL2di

ˇ
ˇ 
˛˝
 
ˇ
ˇL2d j

ˇ
ˇ 
˛
:

Because of the Hermiticity of L, and making use of the

Cauchy–Schwarz inequality, one can derive that

(
`i )2(
` j)2 �
„2

4
2i jk L̄

2

k C
1
4
K̄

2

i j ;

where L̄k D h jLkj i and K̄i j D h jfLi ; Ljgj i.
The uncertainty in simultaneous measurement of Li

and Lj depends upon the average value of the physical ob-
servable of the third component of angular momentum, as
well as a positive definite number K̄2

i j . Therefore, the min-
imum of the uncertainty

(
`i )(
` j) becomes (
`i )(
` j) j
min
D
„

2
j 2i jk L̄k j ;

Therefore,


`i
` j �
„

2
j 2i jk L̄k j ;

which indicates that the uncertainty relation for the prod-
uct of two components of a given angular momentum in
a quantum system can not be independent of the aver-
age value of the third component. Many peculiar quan-
tum phenomena that would not be happening in classical
physics do exist in the subatomic quantum system. Quan-
tum uncertainties corresponding to a pair of non-compat-
ible observables can only be obtained through detailed in-
vestigation based on quantum dynamical theory.

Future Directions

The limitations in pursuit of accurate scientific measure-
ment of some data in quantummechanical systems are the
direct consequence of the quantum dynamics in the com-
mutation relations among various physical observables.
One is able to minimize but not to eliminate the uncer-
tainty in the simultaneous measurement in any pair of
dynamical variables of which the commutator of the cor-
responding quantum operators does not vanish. For in-
stance, a plane wave of one-dimension can be prepared in
a quantum system to achieve the utmost monochromatic
frequency only at the expense of the total accuracy in local-
ity. As we have treated in the previous sectionHeisenberg’s
Uncertainty Relations in position measurement and mo-
mentum measurement can only be minimized by prepar-
ing the quantum state of a traveling Gaussian wave packet.
In fact we can easily show that the state function in mo-
mentum space is also of a Gaussian traveling wave packet
due to the property that the Fourier Transformation of
a Gaussian distribution is again a Gaussian distribution.
Therefore, it is imperative that one should execute uncer-
tainty control or error management before performing the
measurements for physical observables of non-compati-
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bility in the quantum mechanical system. As we have al-
ready demonstrated in the simultaneous measurement of
any two components of an angular momentum, the un-
certainty can be minimized by preparing a quantum state
with the least mean value of its third component.
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Glossary

Fuzzy set and fuzzy logic Unlike a conventional set, in
a fuzzy set, a fuzzy membership function is used to
define the degree of an element belonging to the set.
Fuzzy logic is a superset of conventional (Boolean)
logic that has been extended to handle the concept
of partial truth as defined by membership functions.

Fuzzy logic contributes to the machinery of granular
computing.

Granular computing (GrC) In a broad sense, granular
computing is the general term referring to any com-
puting theory/technology that involves elements and
granules, with granule, granulated view, granularity,
and hierarchy as its key concepts.

Granular structure Granular structure is a collection of
granules in which the internal structure of each gran-
ule is visible.

Granularity The granularity of a level refers to the col-
lective properties of granules in a level with respect to
their sizes.

Granulation Granulation refers to the process of forming
granules.

Granule As the fundamental concept in granular com-
puting, a granule is a clump of elements drawn to-
gether by various criteria such as indistinguishability,
equivalence, similarity, proximity or functionality.

Hierarchy In granular computing, hierarchy captures the
ordering of levels.

Neighborhood system A neighborhood system of
a point (an element) in the universe is the nonempty
family of subsets (referred to as the neighborhood of
that point) associated to it.

Rough set Rough set is a formal approximation of a con-
ventional set, using a pair of sets as the lower and the
upper approximations of the original set. Rough sets
provide a single-layered granulation structure of the
universe.

Definition of the Subject

In a little more than a decade, granular computing (GrC)
has emerged as a major research field for further abstrac-
tion, generalization and unification of granule-based key
concepts traditionally scattered throughout a wide range
of scientific disciplines, offering new opportunities for sys-
tematic studies of challenging computational issues cross
multiple disciplines. An examination of foundations of
granular computing, particularly on its philosophical di-
mension, is extremely important because it should re-
veal the hidden nature of granular computing, shed use-
ful light for future directions and provide guidelines for
researchers working in this area. In order to make this ar-
ticle useful to the research community in granular com-
puting, instead of using philosophical/epistemological jar-
gon, we will stay with basic terminology used in granular
computing.

An important advantage of studying the philosophi-
cal foundation of granular computing is to identify what
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is still missing. In particular, we point out that the future
of granular computing is inevitably tied to important fea-
tures of complex adaptive systems such as self-organiza-
tion, learning, evolution and adaptation, as well as key is-
sues in contemporary artificial intelligence (AI) such as
embodiment, emergence and emotion.

The objective of this article is to provide a fair review
of certain important aspects related to philosophical foun-
dation of granular computing. We summarize and ana-
lyze existing literature to find out what has led to GrC,
which ideas have been explicitly stated, which are im-
plied, and which are still lacking (or overlooked). Due
to the huge amount of literature in this area and diverse
viewpoints of researchers, comprehensive coverage of all
perspectives and approaches is impossible. Only selected
materials of influential work are included. Materials pre-
sented in this article (including the author’s own opinions,
some of which have never been published before) is not
necessarily an indication that they have been accepted by
the GrC community in general or approved by any specific
individual.

Introduction

In order to answer the question of what is meant by “foun-
dations of granular computing”, we need to answer the
question: What constitutes the foundations of granular
computing? Just like in the examination of foundations of
data mining (where granular computing can play an im-
portant role in discovery of hidden knowledge buried in
huge amounts of data) [8], foundations of granular com-
puting can be examined from philosophical, technical, and
social/application dimensions.

In general, philosophy of science refers to the study of
philosophical assumptions, foundations, and implications
of science. Topics to be studied include the character and
development of concepts and terms, propositions and hy-
potheses, arguments and conclusions as they function in
science; the manner and types of reasoning, the formu-
lation, scope and limits of scientific methods, the impli-
cation of scientific methods and models, etc. Philosophy
of science is closely related to epistemology, as a field fo-
cusing on the theory of knowledge it studies the nature,
methods, limitations, and validity of knowledge and be-
lief [6].

In order to study the philosophy of science, either as
a whole or as it applies to particular fields, we have to
analyze the contents of theories as well as practices of
scientists working in these fields, to identify the impor-
tant philosophical thoughts are implied. Therefore, study
of philosophy of science is not confined to “professional”

philosophers; researchers in various science fields can (and
should) take the philosophical aspects of their research
discipline in their own hands. This is our attitude to-
ward the study of philosophical foundation of granular
computing.

All the issues related to the philosophical foundation
of granular computing boil down to one question: What
is granular computing? (Or: What is the nature of granu-
lar computing?) A simple question, with complex, possi-
bly conflicting, yet incomplete answers! The philosophical
foundation of granular computing requires a holistic ex-
amination on the foundations of granular computing as
a whole.

Before we attempt to answer the magic question of
what granular computing is, we have to address the issue
of how to study it. Note that this is a multi-faceted ques-
tion. First, the general methodology: Just like the study of
philosophy of science in general, we have to take a ret-
rospective/reflective approach to study what researchers
have done in published literature related to granular com-
puting: What is explicitly stated (i. e., what researchers in
granular computing states what it is), what is implied (i. e.,
what researchers assume or think what granular comput-
ing might be), as well as what is yet to be addressed.

The next aspect of dealing with the “how to” question
is to identify specific issues that need to be investigated.
The answers to the question of “what granular computing
is” can be studied from several aspects, in light of interests
from the perspective of philosophy of science but stated in
terms of granular computing:

� Character and development of concepts and terms,
propositions and hypotheses:
– Where is granular computing from? How does this

new paradigm emerge (or converge from multiple
predecessors)? In order to understand what granu-
lar computing is, we need a historical examination
of the roots of granular computing.

– Now that granular computing has established itself
as a research discipline, we need to study its basic
terms such as granule, granularity, granulation, etc.
What does each of them mean? Without an under-
standing of these terms and what lies behind them,
we will not be able to understand the nature of gran-
ular computing.

� Manner and types of reasoning, the formulation, scope
and limits of scientific methods:
– What are themajor research issues of concern to the

granular computing community? These issues form
a set of descriptive features which collectively char-
acterize what granular computing is.
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– What kinds of problems can granular computing
solve, and where are concepts such as granularity
and granulation are useful? The universality and di-
versity of these problems not only demonstrates the
power of granular computing, but also reveal the na-
ture of granular computing from yet another per-
spective.

� Implication of scientific methods and models:
– In order to understand the nature of granular com-

puting, it is equally important to examine how it dis-
tinguishes itself from other related disciplines. This
leads us to examine its relationship with research
fields such as soft computing and cognitive infor-
matics.

– Finally, it is time to examine a more fundamental is-
sue: How is granular computing related to basic is-
sues of computational modeling and complex prob-
lem solving? These more advanced issues help iden-
tify where granular computing stands in the larger
picture and helps our understanding of granular
computing.

Answers to the questions listed above form the bulk of the
rest of this article.

Note that the study of the philosophical foundation of
granular computing is inevitably intertwined with other
dimensions of the foundations of granular computing. For
example, one topic of study in the philosophy of science
involves the implications of scientific methods and mod-
els, along with the technology that arises from scientific
knowledge, for society at large [5]. This justifies the con-
nection of the philosophical foundation with the other two
dimensions of foundations. In the case of granular com-
puting, the study of philosophical foundations requires
a close examination of the models and algorithms devel-
oped (the task of the technical dimension) as well as the
implication of various applications (the task of the so-
cial/application dimension).

The Road to Granular Computing

Granule, granularity and granulation are basic concepts
involved in all aspects of human intelligence. First, it is in
the language of our daily life, such as “extra fine granu-
lated sugar”. More profoundly, these concepts also form
the foundation of science and technology, including biol-
ogy, mathematics, etc. For example, mathematics, as the
study of the measurement, properties, and relationships
of quantities using numbers and symbols, has been deal-
ing with computation problems on such granules for thou-
sands of years.

For more recent history, we may consider computer-
ized information systems, such as database management
systems (DBMS) or information retrieval systems (IR). For
example, in a relational database, tuples form the basic
granularity level for information storage and retrieval, yet
from the transaction processing perspective, it is the entire
relation, rather than its constituent tuples, which serves
as the basic granule for a commit. In fact, the theory and
practice of transaction processing is largely built around
concepts of granularity and granulation: In traditional
DBMSs, transactions are the granules to commit and
abort, and in order to assure this, ACID (atomicity, con-
sistence, isolation and duration) properties are required.
In more advanced DBMS systems such as object-oriented
DBMSs, due to the significantly increased complexity of
transactions, sub-transactions may be used as granules for
commit, and accordingly, some of the rigid ACID prop-
erties may be relaxed somewhat. As a main issue of trans-
action processing, concurrency control is another show-
case of granularity-driven activities: Although many con-
currency control protocols use individual data items as the
granules to perform synchronization, multiple granularity
has also been used, where different locking modes are im-
posed on data at different granularity levels of hierarchy,
such as the entire database, a partition of the database,
a file, a record, and so on. As for the physical storage
implementation, B-tree (and its variations) is a popular
indexing structure for storing individual key values for
records (here the individual data points serve as gran-
ules), while R-tree (and its variations) is B-tree’s counter-
part dealing with spatial data with two-dimensional min-
imum bounding boxes (mbbs) as granules for operation,
the concept shared by many other proposed data struc-
tures for handling spatial data. Similarly, in information
retrieval (IR), granules include document, chapters, sec-
tions, paragraphs, sentences, phrases, words, etc. (For ba-
sics of DBMS and a very brief overview on IR, see [36]).

Even today, an examination of relational databases
from an information theoretic perspective [24] has been
considered as an important piece of work related to the
pre-history of granular computing. Yet, what is really in-
teresting in today’s granular computing community is
what is now usually referred to as the information gran-
ule [38], a concept emphasizing its role in intelligent in-
formation problem solving. Another important aspect dis-
tinguishing granular computing from other areas in infor-
mation technology is that it goes beyond concepts related
to granularity and directly addresses computational aspects
related to granulations.

As noted in [1,2], human-centered information pro-
cessing has been pioneered by Zadeh through his intro-
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duction of the concept of fuzzy sets in the mid-60s. GrC
arose as a synthesis of insights into human-centered in-
formation processing by Zadeh in the later 1990s and
the term was coined by T. Y. Lin in 1997. Below we take
a closer look at contributions of several research fields
which led to granular computing.

According to Zadeh [43], granulation refers to parti-
tioning (crisp or fuzzy) of an object into a collection of
granules, with a granule being a clump of elements drawn
together by various criteria such as indistinguishability,
equivalence, similarity, proximity or functionality. For ex-
ample, in rough set theory partitioning is based on the cri-
terion of equivalence, while in granular computing par-
titioning is based on similarity, proximity or functional-
ity (note that a rough set is a formal approximation of
a conventional set, using a pair of sets as the lower and
the upper approximations of the original set).

A granular variable is a variable which takes granu-
lar values. Granulation of a variable (or granular variable),
such as age, goes from continuous, to quantized, and fi-
nally, becomes granulated. Several principal types of gran-
ules can be distinguished. It has been noted that in fuzzy
logic, granulation is achieved through graduation – “In
fuzzy logic everything is or is allowed to be graduated,
that is, be a matter of degree or, equivalently, fuzzy” [44].
In addition, granulation of a function is done by summa-
rization, as shown in rules such as “If X is large then Y is
small” [45]. On the other hand, developments in rough set
theory provide another example of the universality of the
basic concepts of granule and granulation.

As pointed out in historic remarks [30], while fuzzy
set theory and Dempster–Shafer theory are considered as
examples of non-partition theories (where the universe is
not partitioned), rough set theory and algebraic theory of
relational databases in the 1980s are examples of partition
theory (where the universe is partitioned into subspaces).
Rough set theory is about equivalence relations which is
a subset of binary relations studied earlier. Rough set the-
ory is about partition which is a subset of covering. Later,
the concept of neighborhood system (NS) was proposed,
which is the generalization of the rough set concept in
that it incorporates various concepts of topological space,
covering, binary relation, as well as ˛-cuts from fuzzy
sets. Furthermore, each neighborhood can be regarded
as a granule, and because of this, early granular comput-
ing research has the neighborhood system as its math-
ematical model. Therefore, the key in a road map from
rough set to granular computing lies in the mathematic
concepts of coverings, binary relations, and neighborhood
systems, where a covering is a collection of granules (sub-
sets) whose union is the whole space. Neighborhood sys-

tems have been used for the study of relational databases,
and the granulation structures induced by neighborhood
systems have been studied. A binary relation is equivalent
to a special type of neighborhood system.

The Nature of Granule and Granule Computing

The Nature of Granule

The concept of granule has been studied in the AI com-
munity for decades [20]. According to [44,45], a granule
is a clump of elements drawn together by various criteria
such as indistinguishability, equivalence, similarity, prox-
imity or functionality. In addition, attributes of a gran-
ule include probability measure, possibility measure, ver-
ity measure, length, volume, etc. There are numerous as-
sumptions implied by various researchers regarding basic
notions in granular computing, and the concept of gran-
ule in particular. In order to have a better understanding
about the nature of granules, below we examine some of
the hidden assumptions and provide a brief comparison.

� Granule vs. words: Traditionally, artificial intelli-
gence (AI) has been considered as a research field of
reasoning with individual symbols (a symbol is a to-
ken of meaning). These days, many researchers in com-
putational intelligence have put much emphasis on
computing with words (CW). As Zadeh noted, gran-
ular computing serves as a basis for the methodol-
ogy of computing with words (CW) [44]. Although ef-
forts have been made in this aspect, few researchers
in granular computing have focused on issues related
to linguistics. In current study of granular computing,
semantics is demonstrated not through individual
granules, but rather on the grouping of granules. Ref-
erence [1] proposed an information processing “pyra-
mid” consisting of three layers organized by the size of
information granules, with the lowest one concerned
with numeric processing, the intermediate one con-
cerning large information granules, and highest one de-
voted to symbol-based processing. But this is just one
perspective.

� Granule vs. attribute or entity (in database modeling):
In the entity-relationship approach, although we talk
about attributes of information granules, such as size,
capacity and dimension, in general, granules are not
distinguished from each othermainly based on descrip-
tive features (or attributes). Granules have low individ-
uality: A granule is a primitive concept while entity is
a first order citizen in data modeling. Although enti-
ties of the same type can form an entity set, entity sets
are not mainly used to form hierarchical levels (rather,
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they are the “end” products of conceptual modeling),
but granulation is.

� Positive granule vs. object in object-oriented (OO)
paradigms: In OO, objects are related through super-
class/class/subclass relationships and properties can be
inherited or overridden. The OO paradigm has an an-
thropomorphic nature. On the other hand, granule is
a general concept directly tied to computational as-
pects; although granules can also be related together
through hierarchies, the relationship between various
levels in the hierarchy is much more complex (see
later discussion). In addition, although hierarchies play
a key role in granular computing, other forms of rela-
tionships exist between granules (such as the volume of
a cylinder and the surface of that cylinder).

� Positive granule vs. cluster (in data analysis/data min-
ing): Similarity in cluster analysis is usually determined
by topology which is largely absent in granular comput-
ing; i. e., distance is usually not used as the basic factor
to relate individual granules.

� Granule vs. system vs. graph: Granularity is a measure
of the size of the components, or descriptions of com-
ponents, that make up a system. A system, either natu-
ral or man-made, is a set of interacting or interdepen-
dent components forming an integrated whole. A sys-
tem can also consist of a number of subsystems. Ideas
from systems theory have grown with diversified areas,
exemplified by the work of B. Banathy, as well as others.
Systems described in terms of large components (i. e.,
larger granularity) are referred to as coarse-grained,
otherwise they are termed as fine-grained. Since graph
data structure is a useful tool to describe systems, it
can also be a useful modeling tool for the study of
granules (see � Granular Computing: Practices, Theo-
ries, and Future Directions for themodeling examples).
However, since system theory is devoted to the study of
inter-relationship of its components to optimize system
performance, it does not address the majority of issues
of concern in granular computing.

The Nature of Granular Computing

According to [44,45], the rationale of granulation can
be either imperative (forced) or intentional (deliberate),
when precision is costly and there is a tolerance for im-
precision. We can distinguish different forms of gran-
ulation, such as spatial (including interval), temporal
granulation, etc. Granular Computing is an emerging
conceptual and computing paradigm of information pro-
cessing. It has beenmotivated by the urgent need for intel-
ligent processing of empirical data, that is now commonly

available in vast quantities, into humanly manageable ab-
stract knowledge. In this sense, granular computing offers
a landmark change from the current machine-centric ap-
proach to information and knowledge to a human-centric
approach [1,2,3]. According to [31] by T.Y. Lin who first
coined the term granular computing, any computing the-
ory/technology that involves elements and granules (sub-
sets or generalized subsets) may be called granular com-
puting. Intuitively, elements are the data, and granules are
the basic knowledge. This simple definition has the advan-
tage of unifying research activities of researchers from di-
verse backgrounds. In addition, this simple definition al-
lows us to exploit the interesting idea of granulate and
conquer, a softer version of classical divide and conquer;
fuzzy granulate and conquer is the cornerstone of the suc-
cess of fuzzy controls. A very common technique used in
the classical “non-partitioning” recursive call is dynamic
programming [17].

According to [1], the fundamental features of GrC
consist of the following: allow for multiple abstraction
levels (granularity levels), allow for several methods of
traversing various levels of hierarchy (referred to as en-
coding-decoding mechanisms), and allow for non-homo-
geneousmethods. In addition, Zadeh [45] noted that gran-
ulation is a core concept surrounded by natural language
computation, rough set theory, computational theory of
perceptions, as well as granular computing. Therefore,
there is a simple formula of “granular computing = ball-
park computing”.

As an example of recent development in regard to ba-
sic concepts in GrC, the study in [15] considered two gran-
ular worlds which are defined on the same universe of dis-
course but employ different granulations of this universe.
In order to translate information from one granular world
to the other, there is a need to regranulate the information
so that it matches the information granularity of the target
world.

GranuleMeasurement

As indicated earlier, according to [44,45], a granule is
a clump of elements drawn together by various criteria
such as indistinguishability, equivalence, similarity, prox-
imity or functionality. In addition, attributes of a gran-
ule include probability measure, possibility measure, ver-
ity measure, length, volume, etc. Therefore, granules can
be considered as knowledge, compared with constituting
elements which represent data [27]. In addition, granules
may be interpreted from three semantic views: a granule is
a unit of basic knowledge; a granule is a unit lacking pre-
cise knowledge; and a granule is a sub-problem of com-
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puting (see � Granular Computing: Practices, Theories,
and Future Directions). We will get back to the last per-
spective in a later section. Here we examine the first two
perspectives: Granules are knowledge units, yet consist of
uncertainty. Together, these two perspectives imply an in-
trinsic property associated with granules: Measurement,
which refers to the estimation of the magnitude of some
attribute of an object, such as its length or weight, rela-
tive to a unit of measurement. Consequently, granularity
is a measure of the size of the components. In the simplest
form, measures can be made through the size of a granule,
which indicates the degree of abstraction, concreteness, or
detail, of the granule. In the set-theoretic setting, the size
of a granule can be the cardinality of the granule. Various
uncertainty theories related to granular computing, such
as fuzzy set theory or rough set theory, all have specific
ways to deal with measurement.

The need for measurement in studying granules im-
plies the importance of dealing with topology, a key con-
cept underlying many subfields in mathematics, such as
mathematical analysis. Take a look, for example, at the
well-known Heine–Borel theorem: Each open covering of
a closed and bounded set of real numbers has a finite sub-
covering. The granules involved here include the closed
and bounded set, the elements in the original open cover-
ing, the elements in the resulting subcovering, etc. There-
fore, from a granular computing perspective, we may say
that the Heine–Borel theorem is concerned with reduction
from infinite to finite, ormapping from an infinite number
of granules to a finite number of granules.

There are various kinds of granules, and they can be re-
lated through hierarchy or other relationships or through
aspects such as measurement. For example, a granule
could be 3-dimensional (3D) object, or could be the sur-
face of this object. Yet the calculation of the volume of a 3D
object can be converted to the calculation of the area of the
surface through various theorems developed inmathemat-
ical analysis. Here the computation problem (i. e., the vol-
ume) on one granule (i. e., the 3D object) is converted to
another computation problem (i. e., the area) on another
granule (i. e., the surface of the 3D object). This is exempli-
fied in Green’s theorem, a special case of the more general
Stokes’ theorem.

As a more recent example concerning the importance
of measures for granules, let us consider the case of re-
lational database design theory as well as its contempo-
rary extension to XML file design. Relations (or flat tables)
are the most visible granules in relational database design.
But what should comprise a relation? This issue has been
addressed by normalization theory, where important nor-
mal forms such as Third Normal Form (3NF) or Boyce–

Codd Normal Form has been developed, based on the no-
tion of functional dependency and related concepts. But
how could this kind of result be generalized to the case of
semistructured XML files? A recent study by Libkin and
his research group [25] addressed this issue by proposing
to use entropy-based measures to determine the quality of
the granulation for relational database design, and to fur-
ther apply this principle to XML file design. First the con-
cept of relative information content (RIC) was proposed,
subsequently other related measures were proposed, such
as the Price. Furthermore, Price (3NF) = 1/2. Therefore,
the conformation of a “good” granule (such as a relational
table) is justified by a quantified approach. Although these
studies are conducted by researchers outside of GrC com-
munity, these results can shed new insight for research
in GrC.

Granular Structure

Quotient View – Information Hiding

As noted in � Granular Computing: Practices, Theories,
and Future Directions, granular structure is the collection
of granules in which the internal structure of each granule
is visible. In this sense, granular structure is a collection
of white box granules. In contrast, a quotient structure, as
derived from the mathematical concept of quotient space,
refers to the collection of granules in which each granule
is regarded as an element (or point) of a set, and the “in-
tersections” among granules are abstract to interactions
among points (or elements). Therefore, a quotient struc-
ture is a collection of black box granules. This perspective
provides a quotient view on a hierarchical structure con-
sisting of granules at different levels of detail. With details
encapsulated at lower levels while only abstract informa-
tion is shown on higher levels, quotient view-based gran-
ular structure supports information hiding.

Earlier, in the Introduction section, we mentioned that
DBMS is a major source behind GrC. In fact, database
design is a perfect example of information hiding: details
of the instances are hidden at the more abstract levels of
a schema. The success of the well-known entity-relation-
ship approach lies on the information hiding by focus-
ing on schemas (while not completely throwing away the
instances, such as the notion of mapping cardinality in-
volved in relationship sets). More recent developments in
management of semistructured data necessitates the need
for XML schema discovery (see, e. g., [12,19]), which in
essence is to identify the quotient structure and support
information hiding.

The theory of hierarchy provides a multi-layered
framework based on levels. Mathematically, a hierarchy
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may be viewed as a partially ordered set. Two types of
partial ordering can be distinguished, i. e., strong vs. weak
dependencies: A neighborhood system X is weakly de-
pendent on Y if every neighborhood of X is a subset of
Y; or strongly dependent if every neighborhood of Y is
a union of the neighborhood of X [26,27,33]. Note that
strong =weak in the case of partitions. (More discussion
on hierarchy will be given later in the section on emer-
gence.)

A granule in a lower level schema may be a more de-
tailed description of a granule in a higher level with added
information. In the other direction, a granule in a higher
level is a coarse-grained description of a granule in a lower
level omitting irrelevant details. Note that although we are
talking about granules of various granularities connected
together in a hierarchical manner, granules are related to
each other in a complex network. In this sense, what we
call hierarchy in GrC is actually a kind of “information
hiding” with detailed network information filtered out.

A taxonomy of types of granularity has been dis-
cussed [23]. First, one can identify the main differences in
types of granularity based on:

(1) Whether scale matters: Arbitrary scale vs. non-scale-
dependent granularity;

(2) How levels (and their contents) in a perspective relate
to each other;

(3) How perception and (mathematical) representation
are related, such as based on set theory or mereology.

The philosophical implication of this taxonomy has also
been examined; for example, it is noted that the difference
between scale and non-scale dependency and their for-
mal representations roughly fits with Sowa’s epistemic and
intentional granularity [39] based on Peirce’s three cate-
gories.

Granular Computing and Ontologies

The concept of hierarchy plays a key role in many other
contexts studied in last decades, including frame systems
in artificial intelligence and object-oriented approaches,
just name a few. Here we take a look at the recent surge of
research related to ontologies, an issue originated in phi-
losophy [6] that has received ever-increasing attention in
recent years from a much wider community.

Even though hierarchies play a significant role in both
granular computing and ontologies, the relationship be-
tween these two research fields is not well-studied, and this
is likely due to the fact that although granular computing
sets place emphasis on both computation and semantics,
the study of ontologies is largely “semantics without com-

putation”. Nevertheless, ontological aspects have been oc-
casionally studied by granular computer researchers, in-
cluding the work on taxonomy of types of granularity
summarized in an earlier section [23]. In addition, gran-
ular computing can be used to aid the study of ontologies.
One example is depicted in [35] where the concepts of do-
main granule and domain granule lattice were introduced,
and an algorithm for generating the lattice was proposed to
capture the ontology. The relationship between granular
computing and ontology can take the opposite direction
as well; for example, [48] described a granular computing
model based on ontology.

In addition, [22] presented a rough-granular approach
which incorporates domain knowledge. This additional
knowledge, represented by ontology of concepts, is used
to make it feasible to search for features (condition at-
tributes) relevant for the approximation of concepts on
different levels of the concept hierarchy defined by a given
ontology. Yet, the question of how ontologies of concepts
can be discovered from sensory data remains as one of the
greatest challenges for many interdisciplinary projects on
learning of concepts.

Information Hiding and Emergence

A basic task of granular computing, granularity conver-
sion, is to change views with respect to different levels of
granularity (with changing details). However, it would be
naive to believe that relationships between different levels
of granulations can be described by mappings.

Information hiding as demonstrated in a granulation
hierarchy may shed important light on revealing the na-
ture of emergence [21], where complex phenomena are
produced by interaction of simple, tiny things. Think
about the operations of zoom in and zoom out: Just like us-
ing zoom lenses on a camera, we can show a smaller area of
an image at a higher resolution ormagnification or a larger
area at a lower resolution or magnification. Note that there
are apparently two kinds of “zoom in”: For example, when
we are examining an online interactive map, we may click
a particular country on the initial world map, then click
a particular region or state, then click a particular city, and
so on, to take a close look at particular streets or buildings
in which we are interested. On the other hand, sometimes
the so-called “zoom in” only gives us larger prints of he
original map without any additional information added:
Although this latter type of “zoom in” is useful to senior
citizens with vision problems, it is useless for most peo-
ple. Similarly, we may have two types of zoom out: We can
get the entire picture as a whole rather than focusing on
a particular part of the picture (with all the details kept),
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or we summarize or abstract information not available at
the more detailed level.

Apparently, zoom in and zoom out are directly con-
cerned with getting information at different granulation
levels. When we “zoom out” from the lower level, we may
not necessarily just lose the details at the lower level, but
we may also gain insight not demonstrated at the lower
level. As a typical example, think about the painting “Gala
Contemplating the Mediterranean Sea which at Twenty
Meters becomes a Portrait of Abraham Lincoln” by Span-
ish surrealist Salvador Dali. As the title suggests, at the de-
tailed level is Gala’s picture and the surroundings, while
at a coarse granulation level, Lincoln’s portrait emerges.
This is where the excitement of emergence comes from,
and granular computing can play a critical role in finding
hidden rules which produce the emergent phenomena.

Due to the complexity of the networks in which gran-
ules are interrelated to each other, it would be question-
able to assume that an algorithmic study of procedures for
constructing granules and related computation is a univer-
sal and realistic approach in GrC. Just like the more gen-
eral study of complex adaptive systems, the tasks faced in
the GrC community are closely related to the task of un-
derstanding the nature of emergence. As the movement
from low-level simple rules among granules to higher level
sophistication, emergence is a ubiquitous feature of the
world around us. The hallmark of emergence is the sense
of much coming from little. Complex systems present be-
haviors by drawing upon populations of relatively “unin-
telligent” individual agents, rather than a single, “intelli-
gent” agent. Yet, as John Holland noted, regardless of how
mysterious it might appear, emergence can be studied as
a scientific discipline because low-level rules and laws can
be discovered, and the movement from low-level rules to
higher level sophistication is what we call emergence. This
view suggests a hierarchy of levels from which emergence
takes place, and the phenomena of emergence are typically
bottom-up in nature. Holland underlines a number of fea-
tures of emergent (or complex) systems and suggests that
emergence is a product of coupled, context-dependent in-
teractions. These interactions, along with the resulting sys-
tem, are nonlinear, where the overall behavior of the sys-
tem cannot be obtained by summing up the behavior of its
constituent parts. Persistent patterns at one level of obser-
vation can become building blocks for persistent patterns
at still more complex levels. At each level of observation
the persistent combinations of the previous level constrain
what emerges at the next level. As Holland put it, “This
kind of interlocking hierarchy is one of the central fea-
tures of the scientific endeavor. It will lead us into, and out
of, the thorny thicket known as reduction – roughly, the

idea that we can reduce explanations to the interactions of
simple parts”. Yet, there are no systematic ways described
there on how to discovermuch needed laws or rules so that
emergence can take place.

Think about one of the most mysterious things we can
ever have, namely, life. Regardless whether we are talk-
ing about how the first life appeared on the Earth mil-
lions or billions of years ago, or how a particular biological
species (such as rhino or elephant) first evolved from other
species, or how a particular baby named John J. Johnson
was conceived by his parents in the last year, a life always
emerges from a hierarchy of extremely complex interac-
tions, starting from the lowest level (where the granules are
the chemical elements) all the way up along the hierarchy.

An important lesson learned from making a life is:
Emergence is a bottom-up process, and top-down is not
symmetrical to bottom-up. A top-down analysis of a new
born baby (using a partitioning approach) is the task of
anatomy, but this will not reveal how he or she is made. In
other words, although top-down lets us examine the prod-
uct, bottom-up reveals the process. This justifies the need
for both top-down and bottom-up directions of research
in GrC.

Just like the study of emergence, the study of granular
computing is intended to provide a unified approach of
studying complex phenomena across various domains. In
addition, just like the case of emergence, granular comput-
ing models are made concrete in specific application do-
mains. Although emergence is a complex issue and has not
caught much attention by researchers in the GrC commu-
nity, certain aspects have been addressed under the notion
of information integration� Granular Computing, Intro-
duction to. More systematic research along this direction
is needed. Below we discuss several notable points.

� Interaction among granules: The interactions of gran-
ules were the beginning of GrC. The issues in knowl-
edge representations, additive measures, belief func-
tions (non-additive measures) and approximations
were discussed in [26,27]. In addition, although the
Choquet integral [37] usually is not considered within
GrC realm, it is also based on belief functions. A Cho-
quet integral is a way of measuring the expected utility
of an event where the event is uncertain, and is applied
specifically to capacities. The Choquet integral focuses
on interactions among attributes, resulting in non-ad-
ditive measures. Therefore, the contribution of two at-
tributes to a classification variable is more than the sum
of the contributions made by these two attributes alone.

� Relationships of levels within a hierarchy: In granular
computing, granules in a higher level may have greater
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integrity and higher bond strength than those in a lower
level. The structures need to be fully explored to es-
tablish a basis of granular computing. However, in the
study of emergence, levels in the hierarchy interact in
a much more complex way; for example, a completely
new form may take place, dramatically different from
what can be found at a lower level (such as life com-
ing from non-living chemicalmaterials). In this respect,
the relationship should be examined between granular
computing and mereology, which is a collection of ax-
iomatic formal systems dealing with parts and their re-
spective wholes and the parts of the parts in a whole.

� Other important features: Other important features
demonstrated in complex systems, such as self-or-
ganization, evolution, adaptation, etc., are not well-
supported by current studies in granular computing.
However, this situation seems to be changing. For ex-
ample, [16] described a self-learning algorithm for un-
certain information processing.

� Building blocks: Both granular computing and the
study of emergence have emphasized the importance
of building blocks for model construction but for dif-
ferent purposes.

Granulation Provides a Unified View
for Intelligent ProblemSolving

Granular computing and related concepts play an impor-
tant role in a wide range of intelligent problem solving
tasks, including data mining, which is intended to dis-
cover implicit, interesting knowledge patterns from mas-
sive data [18]. We now take a look at this issue, which is
addressed through three tiers, from the most basic form
to the most advanced form, and accordingly this section
is divided into three subsections. We first present how to
interpret problem domains in terms of concepts in granu-
lar computing, and then discuss how to cast issues of in-
telligent problem solving in terms of granular computing.
Neither of these two tiers involves any specific algorithms
or methods developed in granular computing. Finally, we
take on the issue of granular computing algorithms using
granular computing for data mining as an example, which
is further illustrated by an implemented case study. Our
discussion through these tiers demonstrates that granular
computing and its related concepts serve as a unified view
for intelligent problem solving in various degrees.

Re-Examination of Existing Studies
from a GrC Perspective

Although granular computing should not be simple re-
statement of existing results, re-examining or re-interpret-

ing existing results from the standpoint of granularity can
help reshape the problem definition and establish a new
start of granular computing-oriented solutions – so long
as our investigation does not stop at the re-interpretation.

Here we use the case of bioinformatics as an exam-
ple (note this is not intended as a general discussion on the
relationship between granular computing and bioinfor-
matics). Various subjects studied in bioinformatics, such
as sequence, block, pattern, motif, and protein, can all be
viewed as granules at different levels. Below we describe
some sample scenarios to illustrate the applicability of GrC
in bioinformatics. The key idea behind our discussion is
that the relationship between GrC is twofold: GrC can be
applied to shed light on bioinformatics problem solving,
and bioinformatics also poses interesting challenges for
GrC. Materials presented here are mainly taken from re-
sources cited in [11].

� Granulation construction under constraints: The com-
plexity involved in structural bioinformatics problem
solving can take advantage of techniques developed in
granular computing, and demand new solutions yet to
be developed in granular computing. As discussed be-
fore, one of the basic concepts in granular computing
is granulation. An essential question related to gran-
ulation is how to construct higher-level granulation
from lower-level granules. As an example, here we ex-
amine the fragment assembly problem, which arises
when a DNA sequence is broken into small fragments.
These fragments must then be assembled to reconsti-
tute the original molecule. (In a sense, the fragments
form a covering in the context of GrC). The impor-
tance of this problem lies in the fact that with current
technology it is impossible to sequence directly con-
tiguous stretches of more than a few hundred bases.
On the other hand, there is a technology to cut ran-
dom pieces of a long DNA molecule and to produce
enough copies of the pieces to sequence. Therefore,
a typical approach to sequencing long DNA molecules
is to sample and then sequence fragments from them.
Solving this complex problem consists of assembling
a collection of fragments coming from a long, un-
known DNA sequence into a correct order and orien-
tation. This can be cast as a problem in GrC, which
is concerned with construction of larger granulation
from smaller granules under certain constraints (such
as imposing or preserving a certain order and orienta-
tion).

� Characterization of granulation: Once granulations
have been constructed, the next question is to uncover
the basic features of these granulations (namely, find
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an interpretation of the constructed granulations). As
an example, consider the following. Reference [37] de-
scribed a data-mining algorithm for discovering re-
gions of locus control, i. e., these regions that are in-
strumental for activating genes. One type of such el-
ements of locus control is the matrix attachment re-
gions (MARs). The discovery of MARs is based on
the observation that a group of patterns are bonded
together by the virtue of their similar function. After
such a grouping, a search for the patterns in a given
group can be performed to identify three regions in
the query DNA sequence. If a large subset of members
of a functionally related group of patterns is found in
a given region of the DNA sequence, one can justifi-
ably classify it as an MAR. The detection problem is
to identify observation within a given region. There-
fore, discovery of MARs is actually done by grouping
for granulation (here in the form of patterns) and then
finding the statistical characteristics of those granula-
tions – somewhat similar to solving a mathematical
equation. A more general indication of this approach
is the task of studying characterizing the granulations,
namely, identifying the significant features of the con-
structed granulations. Although characterization rule
mining has been studied by many researchers in the
data mining community [16], the task described in the
above example goes beyond the reach of many existing
approaches in characterization of rule mining, because
the granulations considered here may be constructed
in a dynamic manner. Therefore, a study in character-
ization of granulation will enrich both GrC and basic
theory for characterization rule mining.

Forming Intelligent Problem Solving Tasks
in Terms of Concepts in Granular Computing

We now examine several issues of intelligent problem
solving.

Intelligent Query Answering Intelligent query process-
ing has very rich contents. GrC (integrated with appropri-
ate AI and data mining techniques) can contribute to in-
telligent query answering involving aggregate data, mainly
due to its power of grouping data in a dynamic and flexible
manner. The concepts of constructing equivalent classes,
partitioning and covering, as widely used in GrC litera-
ture, can be incorporated into the discovery of query-rele-
vant rules from the database. In addition, GrC can bemore
directly absorbed into presentation techniques applied on
original extensional answers to produce final answers with
an intensional flavor. Here we take a look at the issue of

answering queries at the right granulation levels as origi-
nally presented in [10].

Although discovery of query-relevant rules is an inter-
esting direction of study, in many other scenarios we may
want to generate aggregate answers from existing exten-
sional answers. Comparing with the previous topic, this
direction can be considered as a “low key” solution; nev-
ertheless, it deserves equal attention due to its practical-
ity. As the online availability of data is exploding, business
firms have begun to use such data to help to make better
decisions for their business. For example, an auto manu-
facturer may want to know which type of vehicles made
the highest profit in the previous year, or which gener-
ation of people could be the ideal target population for
auto purchase and what their “tastes” may be. For such
inquiries, conventional answers, usually extensional an-
swers consisting of all the involved individual tuples, are
not the most appropriate answers. Frequently, people feel
the need for better decision support based on data analy-
sis and knowledge discovery from the primitive data. As
a more concrete example, suppose the Board of Directors
of a retail firm wants to know something about the salary
levels of its employees. A question could be: “In our com-
pany, what kind of people are making more than $ 100 000
a year?” We may expect to receive several types of answer
to this query. An answer could be “All directors and most
managers”. It gives some qualitative description about the
common characteristics of those qualified individuals. An
alternative way is using an aggregate expression. An aggre-
gate expression is a sequence of terms that are in the for-
mat of “r/t C”, where C represents a concept with a total
number of t individuals, while r is the number of these in-
dividuals who belong to the answer. As to the above query,
an aggregate answer could be “8/8 directors + 27/32 man-
agers”. From this example it can be seen that an aggregate
answer is superior to the qualitative answer “all directors
andmost managers”, in that the aggregate answer not only
covers all the information released in the latter, but also
provides more quantitative information towards the over-
all picture of the database. In general, there exists more
than one answer to a query. The question is how to obtain
the best (optimal) one from those candidate answers.

An approach of using query entropy (or Q-entropy for
short) for intelligent query answering concerning aggre-
gate answers (with a prototype experiment developed) has
been developed for answering aggregate queries at the ap-
propriate data granulation levels [10]. The particular as-
pect we are looking for is that, given a conceptual hier-
archy C and a query Q against a database D, when mul-
tiple answers exist at different granulation levels, how do
we evaluate them and select the best answer? This ap-
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A bi-level taxonomy To of concepts

proach can be examined from a granular computing per-
spective.

An expression is a collection of terms. A term is rep-
resented by the ratio of qualified individuals and total
individuals in that concept. The length of an expression
measures conciseness, while the entropy of the expression
measures preciseness. An expression is said to be the op-
timal answer to a given query if it has the lowest entropy
value. For a real world problem, to obtain the optimal an-
swer to a query, a hierarchy has to be built first from the
primitive information stored in a given database.

Shannon entropy and associated conditional entropy
are widely used today in information theory. Although the
intuition to apply the entropy concept in information the-
ory to intelligent database query answering is well-known,
practical application of entropy theory is hindered by the
inherent computing burden of Shannon and conditional
entropy. One has to be very clear with taxonomy in order
to obtain the probability of the event that an individual in
a concept belongs to the extensional answer and the prob-
ability of the event that a randomly chosen individual be-
longs to a concept.

To take advantage of the approximation of Shannon
entropy and the simplification of conditional entropy, the
concept of Q-entropy was introduced. Let R be a finite
space consisting of mutually disjointed subsets R1; R2;

: : : ; Rk with cardinalities jC1j; jC2j; : : : ; jCk j respectively.
The probability of the event that an individual in set Ri is
a qualified individual is denoted as ri. Then the Q-entropy
is defined as:
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In addition to concepts Ci, we also use di to de-
note extensional answers (which are actual tuples). As an
example, consider a taxonomy T of four concepts with
C0 D fd1; d2; d3; d4; d5g as the root concept, and let C1 D

fC3; d3g, C2 D fd4; d5g and C3 D fd1; d2g, as shown in
Fig. 1. (As a more concrete example, C0 would be em-
ployee, C1 could be worker, C2 could be manager, etc.).

There are three candidate expressions:

I) “1/2C3 C 2/2C2”;

II) “1/3C1 C 2/2C2”;
III) “3/5C0”.

Calculating Q-entropy using the formula introduced
above, we have QI < QII < QIII. Therefore the best an-
swer, (I), is selected.

The Q-entropy approach for query answering was de-
veloped prior to our study of GrC. Nevertheless, we can re-
examine this approach from a granular computing (GrC)
perspective.

We first note that partition can be viewed as a spe-
cial kind of granulation. However, in classification rule
mining, partition is conducted on training samples. In
contrast, in Q-entropy approach partition is conducted
on extensional answers for queries. We also note that in
the Q-entropy approach for any two aggregate answers of
the same query, one answer may not necessarily be a re-
finement or coarsening of the other. For example, suppose
in Fig. 1 C2 also has a child concept C4. Then the answer
“1/2 of C3 and 1/2 of C4” is not a refinement or coarsening
of the answer “1/4 of C2 and 1/4 of C2”.

The approach of using Q-entropy for selecting appro-
priate levels of query answering also differs from classifi-
cation rule mining in several other aspects, including size
of granules, the construction of the tree, the way in which
entropy is used, and so on. Because of these features, a GrC
perspective can be incorporated into presentation tech-
niques applied on original extensional answers and can
produce final answers in an intensional flavor.

Granular Computing and Data Mining/OLAP

Relationship Between These Two Fields The interest-
ing relationship between granular computing and data
mining can be further examined in many different as-
pects; here we take a look at just one example of gran-
ular operators for property preservation. Granulation al-
lows different representations of the same problem in dif-
ferent levels of detail. It is naturally expected that the
same problem must be consistently represented. Granu-
lation and its related computing methods are meaningful
only if they preserve certain desired properties. For ex-
ample, [46] studied the “false-preserving” property, which
states that if a coarse-grained space has no solution for
a problem then the original fine-grained space has no so-
lution. Such a property can be explored to improve the
efficiency of problem solving by eliminating a more de-
tailed study in a coarse-grained space. In the context of
hierarchical planning, one may impose similar properties,
such as the upward solution property, the downward so-
lution property, monotonicity, etc. This property resem-
bles a priori principle as discussed in the context of asso-
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ciation rule mining [18], but significantly differs from the
view of new properties appearing at higher levels of hier-
archies which are not found in lower levels in the study of
emergence [20].

Granular Computing as a Basis for Data Mining and
OLAP Data mining from databases [18], a key step in
the knowledge discovery from databases (KDD), is in-
tended to discover hidden knowledge buried under the
ocean of data. As indicated in [33], “In essence datamining
may be viewed as a form of summarization of very large
datasets, while granular computingmay be viewed as oper-
ations on summaries of small datasets. The common rule
of summarization in data mining and granular comput-
ing is the principle reason why granular computing is of
high relevance to data mining”. For example, in [29], Lin
showed that generalized association rules can be expressed
as union of basic granules. More recently, [32] further ex-
plored the issue on deductive data mining using granular
Computing.

In a sense, data mining is finding hidden equivalence
relations. For example, cluster analysis aims to find clus-
ters, which are a sort of equivalence relation, so at the clus-
ter level only clusters (rather than original data points) are
seen – a typical case of information hiding. Similarly, char-
acterization or discrimination analysis [18] aim to identify
dominant features to characterize target class or to dis-
criminate target class versus comparison class (with details
of attribute values removed) – again a typical example of
information hiding. An example of the impact of granula-
tion size to datamining is multi-level association rule min-
ing [18], which results in revised algorithms and reduced
support/confidence level at coarser granulation levels.

Related to data mining is On-Line Analytical Pro-
cess (OLAP) technology. Unlike data mining, however,
OLAP does not resort to a reasoning process; rather, it
is more closed tied to database and data warehouse tech-
nology for analyzing summary and historical data. Since
information granules are formed from data granules, per-
spectives from GrC also contribute directly to OLAP. In
fact, OLAP operations such as rollup and drill down are
directly concerned with granulation sizes. In addition,
OLAP techniques have been coupled with data mining,
giving GrC more room to maneuver. For example, as dis-
cussed in [18], complex aggregations using multi-featured
data cubes can facilitate data mining type queries to allow
computation of aggregates at different granularity levels.
In addition, a unified On-Line Analytical Mining (OLAM)
has been proposed [18]. Additional discussion about this
integrated data mining/OLAP and the role of GrC can be
found in [7,9,47].

Relationshipwith Soft Computing
and Natural Computing

Relationship with soft computing: Probably, the most an-
cient granule is the intuitive infinitesimals (which refers to
the idea of objects so small that there is no way to see them
or to measure them). It was the inspiring source of cal-
culus and Zeno’s stationary and moving paradox. A gran-
ule is an atom of uncertainty (see � Granular Comput-
ing: Practices, Theories, and Future Directions and [31]).
Yet research related to uncertainty in computational re-
search has focused on the technical side rather than on the
philosophical side; therefore, the bulk of research on un-
certainty has been conducted in the realm of soft comput-
ing rather than granular computing. Soft computing has
been defined as an association of computing methodolo-
gies which includes its unique, complementary and sym-
biotic constituent members fuzzy logic, neurocomputing,
evolutionary computing and probabilistic computing. Soft
computing differs from conventional (hard) computing in
that, unlike hard computing, it is tolerant of imprecision,
uncertainty, partial truth, and approximation. In particu-
lar, the primary contribution of fuzzy logic is the machin-
ery of granular computing, which serves as a basis for the
methodology of computing with words [43]. Suffice it to
say that even granular computing and soft computing have
significant overlap in contents and in research individuals,
and are both driven by human-centered intelligent prob-
lem solving. They also differ in the perspectives used in
problem solving: Unlike granular computing which places
emphasis on granulation-based reasoning aspects of hu-
man information processing, soft computing sets empha-
sis on the “soft” side of human information processing
which tolerates imprecision and uncertainty.

Relationship with natural computing: Since granular
computing is closely related to soft computing and since
soft computing is also closely related to natural comput-
ing, the relationship between granular computing and nat-
ural computing should not be overlooked. Natural com-
puting is the term used to encompass all AI approaches
based on some inspiration from nature, soft computing,
man-made complex systems, biologically inspired com-
puting, and novel computing paradigms rooted in na-
ture in a higher or lesser degree. However, as noted by
Zadeh [43], in effect, the role model for soft computing
is the human mind. There is a significant overlap between
natural computing and soft computing in content; yet they
differ in perspectives and emphases: Natural computing is
more concerned with how tomodel naturewhile soft com-
puting focuses more on how to achieve “softness”. A brief
examination of the contents of natural computing can re-



4336 G Granular Computing, Philosophical Foundation for

veal the relationship between granular computing and nat-
ural computing more directly: Recall that natural comput-
ing refers to three types of approaches [14]: Computing in-
spired by nature (such as generic algorithms) which makes
use of nature as inspiration for the development of prob-
lem solving techniques; simulation and emulation of natu-
ral phenomena in computers, which is basically a synthetic
process aimed at creating patterns, forms, behaviors, and
organisms that (do not necessarily) resemble “life-as-we-
know-it”; and computing with natural material, such as
quantum computing. From a GrC perspective, a quantum
can be viewed as a granule, and granule is organized in
such a way that it could grow exponentially, so granula-
tion may provide a new framework of attacking classical
theory of computing [17]. In addition, genetic algorithms
can be interpreted as producing new granules from exist-
ing granules through specific operations (such as crossover
or mutation).

Taking a step further, we note that natural computing
is an important field to demonstrate the pervasive con-
cepts of emergence [20], embodiment [34], as well as other
key concepts such as interactivity, adaptation, learning,
evolution, and self organization. Granular computing can
play an important role in the study of natural computing
as in the case of learning theory. As noted in [17], learn-
ing is interpolation of data based on background knowl-
edge (granules). Neural network, support vector machine,
and Smale’s mathematical foundation of learning [13] can
all be so formulated.

Relationshipwith Fundamental Issues of Computing
and Complex Systems Problem Solving

Wenow examine a number of more advanced perspectives
relating granular computing to basics of computing and
complex systems of problem solving.

Granular Computing as Infrastructure
for AI-Engineering

As endorsed by Zadeh [42] at the very beginning, granu-
lar computing should serve as foundation of human prob-
lem solving. As such, GrC serves as the infrastructure
for AI-engineering: uncertainty management, data min-
ing, knowledge engineering, and learning [30]. Structures,
representations, and applications of granular computing
have been discussed in this context [28]. Note that unlike
the human problem solving perspective, this loose defini-
tion is computation-driven – even the key notions of gran-
ular computing were originally motivated by human-cen-
tered information processing.

It has been noted that a simpler and more effectively
computable view of knowledge is needed. Rough set theory
takes a courageous step and assumes that partitions (clas-
sifications) are the essence of human knowledge. Granular
computing takes a softer view: generalized subsets are ba-
sic knowledge [17].

This perspective seems to serve as the de facto stan-
dard of “what granular computing is” for the majority of
researchers who are active in this area. For example, [40]
apparently echoes this perspective, where several learning
paradigms for granular computing are discussed, although
from a fuzzy set perspective.

Note also according to this definition, there is no ur-
gency calling for a new computer model or AI architec-
ture; we will stay with the von Neumann architecture, as
traditional AI has done. Nevertheless, proponents of this
perspective do relate granular computing to new compu-
tational models, such as quantum computing (as already
mentioned earlier).

Granular Computing and New Computational Models

References [1,2] proposed to interpret granulation in the
context of axiomatic set theory. They define information
granulation as a semanticallymeaningful grouping of ele-
ments based on their indistinguishability, similarity, prox-
imity or functionality. The semantics of granules are de-
rived from the domain that has, in general, higher cardi-
nality than the cardinality of the granulated sets. The next
question is then how the meaning (semantics) are instilled
into real-life information granules. It has been argued that
Turing’s computer on its own is unable to respond to ex-
ternal, physical stimuli. To overcome the problem, we may
have to advocate the idea of embodiment in AI [34], and
embrace Bain’s approach [4] of using inherent computa-
tional ability of physical phenomena in conjunction with
the numerical information processing ability of a Univer-
sal Turing Machine (UTM). It has been argued that in
a broad context a UTM implementing the virtual compu-
tational intelligence function can be referred to as comput-
ing with perceptions or computing with words.

Summary

As a new research discipline, granular computing (GrC)
is a subject of study for further abstraction, generalization
and unification of granule-based key concepts. However,
as the discussion of this articles shows, due to the complex-
ity of this subject researchers differ in the scope, methodol-
ogy, and perspective on the study of GrC. Although there
has been a widespread enthusiasm for GrC, a unified the-
ory of GrC is still missing. Nevertheless, there are a num-
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ber of basic elements serving as the backbone of GrC such
as granular structure, quotient structure and information
hiding. We have also addressed certain issues not being
emphasized by some researchers in GrC, such as granule
measurement, as well as the relationship between hierar-
chy and emergence.

In the main text, while recognizing differences among
different researchers, we have tried to present the philo-
sophical foundation of granular computing as a coherent
whole. As we are closing this article, we want to point out
a few major differences in regard to philosophical founda-
tions observed from various researchers.

As it currently stands, granular computing seems to
be a loosely structured, somewhat interdisciplinary field:
A big umbrella which accommodates researchers in rough
set theory, fuzzy set theory, as well as soft computing
and data mining – so long as we all respect granulation
as the core of human-centered information processing. As
for the theoretical core, much of today’s study in granu-
lar computing is still largely an extension of rough set the-
ory. Should this situation continue? Some may argue that
this multidisciplinary nature is not all bad – after all, re-
searchers with different backgrounds and different inter-
ests can now gather together, exchange their thoughts and
foster new ideas – for example, the increasing publication
of hybridization of fuzzy/rough set approaches seems to
be a solid proof. Ironically, such successes may also have
hampered the development of a unified theory of granular
computing because there seems to be no urgency of both-
ering with it at all.

For those who have a long-term vision of granular
computing, viewpoints vary significantly. Although seem-
ingly everybody agrees granular computing is about hu-
man-centered information processing, what is its ultimate
objective? As shown in the previous sections, answers
could be:

� Assisting human problem solving in newways of think-
ing,

� Providing infrastructure to AI-engineering, and
� Serving as the starting point toward new computational

models.

Our examination has also addressed important issues re-
lated to embodiment and emergence. In addition, to cite
Zadeh: “In coming years, granular computing is likely
to play an increasingly important role in scientific the-
ories-especially in human-centric theories in which hu-
man judgment, perception and emotions are of pivotal im-
portance” (from [3], our italics). Therefore, as with the
study of human-centered information processing, granu-

lar computing should also incorporate the role of emotions
into its research agenda.

Future Directions

Born in 1997, granular computing is now a happy
teenager, enjoying a wide range of research fruits and pub-
licity. But will its multiple personality survive adolescence
to its adulthood? The answer is stated (or implied) in other
articles on granular computing in this encyclopedia, and is
thus not in the scope of this current article.

As for the research on philosophical foundations of
granular computing, what we want to emphasize is that
the future of granular computing lies in the development
of algorithms. Yet a continued examination of philosoph-
ical foundations will benefit this direction of research. In
addition, as noted in [41], in the past 10 years, granular
computing publications have experienced a linear growth
rate; however, the granular computing community has less
interaction with other research communities other than
fuzzy sets and rough sets. Thr granular computing com-
munity should be aware of this and take steps to promote
interdisciplinary research activities.

The research agenda of GrC includes a series of
methodological and algorithmic issues [1], including con-
struction of information granules, characterization of di-
mension (granularity) of information granules (to provide
better insight as to the essence of the granulation pro-
cess and its implications), development of the encoding
and decoding mechanisms between levels of hierarchy; re-
search on interoperability which is crucial to the design of
systems operating within the realm of various formalisms
of information granularity, as well as others.

There is a need for focusing on key ideas behind gran-
ular computing that have been overlooked (or at least not
emphasized enough), such as computing with words. In
addition, as indicated earlier, important features needed to
support complex systems such as self-organization, adap-
tation, evolution, etc. are currently not well-supported by
granular computing research, and this situation should be
changed.
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Glossary

All terms are explained in classical sets, but implicitly, we
are assuming all terms and assertions do include fuzzified
versions (if fuzzifiable).

Granulation Granulation is an operation or a process of
forming granules, with a granule being a collection
of objects (points) that are drawn together by some
constraints, such as indistinguishability, similarity or
functionality.

Granular structure Granular structure is the collection of
granules, in which the internal structure of each gran-
ule is visible as a sub-structure. Informally speaking,
granular structure is a collection of white box granules.

Quotient structure A quotient structure is the mathe-
matical structure of the collection of granules, in which
each granule is regarded as an element (point) of a set,
but the interactions among granules are preserved. In-
formally speaking, a quotient structure is a collection
of black box granules.
The collection of f: : : ;�2; 0; 2; : : :g and f: : : ;�3;
1; 3; : : :g is a granular structure. Let E be the first subset
(even integers) andO be the second subset (the odd in-
tegers). We write the two subsets by [E] and [O], when
we think of them as points. Then the collection of [E]
and [O] (as points) is the quotient structure.

Neighborhood system (local granular model abb. local
GrC model) A domain of interests ( a classical set) U is

called the universe. To each point p in the universe,
a family of subsets is assigned. Such a family (could be
empty) and each such subset is called a neighborhood
system NS(p) at p and a neighborhood at p, respec-
tively. The collection ˇ of such a family at every point
of the universe is called a neighborhood system NS(U)
of the universe. Neighborhood and neighborhood sys-
tem are pre-GrC language; in granular computing,
they are called granule and the granular structure,
respectively. The pair (U; ˇ) is called a local granu-
lar model, since each granule is associated with some
points.

Topological neighborhood system A neighborhood sys-
tem is called a topological neighborhood system, if it
satisfies the axioms of topology.

Binary neighborhood system (binary granular model;
binary GrC model) A binary neighborhood system is

a neighborhood system defined by a binary rela-
tion R. A (right) neighborhood is defined as follows:
B(p) D fx j (p; x) 2 Rg. The collection B of B(p) at
each p is the (right) binary neighborhood system. Sim-
ilarly, we can define a left version: A left neighborhood
system L is defined by the L(p) D fx j (x; p) 2 Rg
at every point p. Note that the right and left neighbor-
hood systems determine each other. The pair (U; ˇ) is
called a binary granular model, where ˇ is right (left)
neighborhood system or R.

pre-Topology Pre-topology is a general term referring to

http://web.media.mit.edu/~minsky/
http://web.media.mit.edu/~minsky/
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the neighborhood system, which includes the topolog-
ical neighborhood system and binary neighborhood
system as special cases. Technically, it is equivalent to
the neighborhood system.

Bag A bag is similar to a set, but allows an element to
appear more than once. For example f1; 2; 1; 2; 1g is
a bag, but not a set. If a bag contains n elements, we
may say it is an n-bag. For example, the previous bag is
a 5-bag.

Relational structure (relational granular model; rela-
tional GrC model) A family of classical sets is called

a universe and denoted by U. A Cartesian product
of an n-bag of U is called an n-product set. A n-ary
relation is a subset of an n-product set. A collection ˇ
of n-ary relations (n could vary) is called a relational
structure. The pair (U; ˇ) is called a Relational GrC
Model. Note that this relational structure, except the
size, is similar to the relational structure (without
functions) of the First Order Logic; the Relational GrC
Model permits n to be any cardinal number.

Partial covering (global granular model; global GrC
model) Let U be a classical set, called the universe. Let

ˇ D fF1; F2; : : :g be a family of subsets. Such a ˇ is
a partial covering, and (full)covering, if the union of ˇ
is the whole universe. The pair (U; ˇ) is called a Global
Granular Model (Global GrC Model).

Equivalence Relation A binary relation R is called an
equivalence relation, if it has the following properties:
Let u, v, and w be elements of U.
reflexive: uRu
symmetric: uRv implies vRu
transitive: uRv and uRw implies uRw

Partition A partition P of a classical set U is a collection
of subsets that are mutually disjoint and their union
is U. Each subset is called an equivalence class. This
name is derived from the fact that partition is equiv-
alent to the following equivalence relation: We define
uRv, if and only if u and v belong to the same equiv-
alence class. Such R is the equivalence relation corre-
sponding to the partition P. Note that a partition is
a special type of a granular structure, so an equivalence
class is a special granule.

Definition of the Subject

Granular Computing (GrC) is still in its inception stage,
we use motivation as its statements of importance.

How Important is Granular Computing?

Granulation seems to be a natural methodology deeply
rooted in human thinking. Many daily “things” are rou-

tinely granulated into sub“things”; for example, the hu-
man body has been granulated into the head, neck,
and so forth. The notion is intrinsically fuzzy, vague,
and imprecise. Formalization is difficult, mathemati-
cians idealized/simplified it into the notion of partitions
(= equivalence relations), and have developed it into a fun-
damental part of mathematics, for example, congruence
in Euclidean geometry, quotient structures (groups, rings,
etc) in algebra, the concept of “a. e.” (almost every where)
in analysis. Nevertheless, the notion of partitions (see glos-
sary), which absolutely does not permit any overlapping
among its granules, seems to be too restrictive for real
world problems. Even in natural science, classification
does permit a small degree of overlapping; there are beings
that are both appropriate subjects of zoology and botany.
So a more general theory, namely, Granular Computing is
needed.

What is Granular Computing?

It has been a changing paradigm. We believe in incremen-
tal developments. Its development may be similar, though
not as glorious, to that of classical geometry. Specific ge-
ometries, such as, Euclidean, hyperbolic, elliptic geome-
tries, had appeared before the the unified theory was pro-
posed in Klein’s Erlangen program. Except some details,
we are on the final line; in GrC2008 keynote, we (this sec-
tion editor) verbally had proposed to regard the category
theory-based model (Eighth GrC Model) as the final GrC
model; see Sect. “Formal Models of Granulation.”

Granular Computing is a recent label coined by Lin
and Zadeh (see Sect. “Introduction”) to denote a set of
common, even ancient, concepts and practices. The sub-
ject will be presented from various angles: What are the
target concept (defined by examples), key constituents,
and the current interpretations or semantic views? How
far has it been formalized? What are the important appli-
cations?

1) The “Definition” of Target Concept: The key concept
in Granular Computing is the concept of granulation,
which has been “defined” implicitly by a set of intu-
itive examples (see Sect. “Classical Examples of Gran-
ulation” for more), including Zadeh’s intuitive view.
Here is a list of representative examples. In the follow-
ing, we will call the domain of interests the universe and
denote it by U.
1. Many daily things have been routinely granulated

into “sub”things; for example, the human body is
granulated into head, neck, etc. The notion is intrin-
sically fuzzy, vague and imprecise. A formal model
just had been proposed by this writer in the keynote
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of GrC2008. Its final form should appear soon in
the International Journal of Granular Computing,
Rough Sets, and Intelligent Systems.

2. Space and time has been granulated intuitively
into infinitesimal granules; a circle was viewed as
a polygon with infinitesimal sides. The idea was
known to Zeno (490 BC, implicitly in his paradox),
Archimedes (287–212 BC) etc. It led to the invention
of calculus, topology, and nonstandard analysis; we
have modeled it in the First GrC Model.

3. The simplest kind of granulation is partition (see
glossary). Its algebraic correspondence, equivalence
relation, has played an important role in Euclidean
Geometry. (300 BC)

4. The Heisenberg uncertainty principle states that, in
general, neither the momentum nor the position of
a particle can be determined simultaneously with
arbitrary great precision. In other words, a precise
measurement of the momentum can only deter-
mine a “neighborhood”(granule) of positions and
vice versa. The idea is abstract into the Third GrC
Model.

5. A collection of fuzzy sets (in fuzzy control) or func-
tions (e. g. Radial-Basis-Functions) which has the
universal approximation property is useful granular
structure in a function space or a set of fuzzy sets.
The idea is modeled in the Sixth GrC Model.

6. A committee in a human society is a granule in a so-
cial network. Observe that each member may play
different roles. By viewing the collection of roles as
a relational schema, a committee is a tuple, not nec-
essary a subset. The idea is modeled in the Fifth GrC
Model and the Second GrC Model.

7. A mathematical proof or computer program often
contains some lemmas or subprograms. These lem-
mas or subprograms are granules. These are concep-
tual examples. They are modeled in the Seventh GrC
Model for computable domain, and in the Ninth
GrC Model for general cases.

8. Computers or clusters of computers in Grid/Cloud
computing are granules. These are hardware exam-
ples. This also belongs to the Seventh GrC Model.

9. Zadeh’s informal definition [38]: “information gran-
ulation involves partitioning a class of objects
(points) into granules, with a granule being a clump
of objects (points) which are drawn together by in-
distinguishability, similarity or functionality.”

2) A Category Theory based Formal model (Eighth GrC
Models) is proposed to be the Formal Model for
GrC. It realizes all classical examples given above; see
Sect. “Formal Models of Granulation.” By specifying

the abstract category to various ones, eight common
models have been explained in this article. Two mod-
els are illustrated at the end of this section;

3) The Key Constituents: two operators, three semantic
views, and four structures.
3.1) Two Operators: information granulation and in-

tegration. In granulating a problem, a dual action,
namely, integrating the solutions of sub-problems is
triggered. Here, we highlight some unusual points;
see Sect. “Integration – A Dual of Granulation.”
1. Recursively granulating a problem may take Np

hard time to terminate. Dynamic programming
technique has been used in the classical cases.

2. Two distinct problems may have the same gran-
ulation. Divide/granulate and conquer may have
deeper meanings. The EXTENSION Functor of
Homological Algebra of Commutative group is
illustrated. This is an unexplored area.

3.2) Three Semantic Views: Granules may be inter-
preted from:
1. Uncertainty Theory: A granule is a unit of lacking

precise knowledge.
2. Knowledge Engineering: A granule is a unit of

Basic Knowledge (Information).
3. How-to-Solve/Compute-it: A granule is a sub-

problem or software unit. It is a special type of
basic knowledge.

Each view may have its own GrC theory; for ex-
ample, Concept Approximations are useful in the
Second View, while Information Hiding is in Third
View; see Section Semantic Views.

3.3) Four Structures: Granular, Quotient, Knowledge
and Linguistic Structures:
1. Granular Structure (GrS): It is the collection of

all granules. In the case of partition, GrS is the
collection of the equivalence classes.

2. Quotient Structure (QS): If each granule is ab-
stracted into a point and the intersections of
granules are abstract to the interactions of points,
then such a collection of points is called a quo-
tient structure. In the case of partition, the quo-
tient structure is a classical set, called quotient set.
Informally, GrS is a collection of white boxes
(the content of granules are visible), while the
quotient set is a collection of black boxes (the
contents of granules are hided). The process of
abstracting a granular structure into a quotient
structure is called information hiding; see Exam-
ples in Sect. “Granular and Related Structures.”

3. Knowledge structure: By giving each granule
(point) in the quotient structure a meaning-
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ful symbol then the named quotient structure
is called a knowledge structure. The knowl-
edge structure provides an intuitive view of
the quotient structure; the symbols and interac-
tion among symbols are in sync with the gran-
ules (points) and interactions among granules
(points).
In the case of n partitions (equivalence relations),
the knowledge structure can be arranged into an
n-column relational table. In the case of n bi-
nary relations, the table has been called binary in-
formation table, granular table or topological ta-
ble [15,22].

4. Linguistic structure: By giving each granule in
the granular structure a word that reflects its
meaning. The interactions among these words
are reflected implicitly in precisiated natural lan-
guage (in a knowledge structure, the interactions
among symbols are explicitly reflected from the
quotient structure). The linguistic structure is the
domain of computing with words

4) Applications to Computer Security, Web Technology,
and Complex Data.
1. Discretionary Access Control Model (DAC) [8,17].

This structure has been captured in the Third GrC
Model. On the basis of this, information flows on
DAC can be analyzed; this has been considered
a very “difficult” area. As a consequence the Aggres-
sive Chinese Wall Security Policy can be enforced,
namely, the system can guarantee that a company’s
data will never flow into “enemy” hands, where
“enemy” is a granule of companies that are in
conflict.

2. Documents can be clustered into a simplicial com-
plex (a common structure in Combinatorial Topol-
ogy [34]) of keywords and co-occurring keyword
sets. The set of keywords can be regarded as a set
of vertices, and the collection of co-occurring key-
words (within a small neighborhood) is a set of
simplexes. Together, they form a simplicial com-
plex [21,24]. Simplexes are granules; a simplicial
complex is a Second GrC model.

3. Granular computing has been used to solve the
modeling problem of complex architectures [25]. It
uses the Fifth GrC model.

Illustration of Working Formal Models

The most general model is expressed in the category the-
ory. However, for easiness, we explain the Second GrC
model first.

Granular Computing: Practices, Theories, and Future Directions,
Table 1
Generalize 2nd to 5th GrCModels

2nd GrC Generalized to 5th GrC
U ! U D fUh

j ;h; j;D 1; 2; : : :g

F1 � U ! R1 � U1
1 � U1

2 � � � �

. . . . . . . . .
Fj � U ! Rj � Uj

1 � Uj
2 � � � �

. . . . . . . . .

1) Second GrC Model Let U be a classical set, called the
universe. Letˇ D fF1; F2; : : :g be a family of subsets. Then
the pair (U; ˇ), called the Global GrCModel or the Second
GrC Model. The ˇ, some time, is called Partial Covering
(PCov).

A granule can be intuitively defined as a clump of ob-
jects that are drawn together by the constraints X, where X
can be indistinguishability, similarity or functionality and
etc [14,38]. In the Second GrC model, a granule is a set,
namely, we have implicitly assumed that the constraints
are uniform. In general, each object may receive distinct
constraints, so in the Fifth GrC model, a granule is a tu-
ple, not necessarily a set: One can regard the constraints as
a schema (of a relational database), and a granule is a tuple
under such a schema. In this case the collection of granules
are tuples from various relations.

To understand the next model, Table 1, that explains
the generalization process, may be helpful.

2) Fifth GrC Model
1. LetU D fUh

j ; h; j;D 1; 2; : : :g be a given family of clas-
sical sets, called the universe. Note that distinct indices
do not imply that the sets are distinct.

2. LetU j
1 � U j

2 � � � � ; j D 1; 2; : : : be a family of Cartesian
products of various lengths.

3. Recall that an n-ary relation is a subset Rj � U j
1 �U

j
2 �

� � �U j
n .

4. Let ˇ D fR1; R2; : : :g be a given family of n-ary rela-
tions for various n.

Then the pair (U; ˇ), called the Relational GrC Model, is
the formal definition of the Fifth GrC Model.

Introduction

What is Granular Computing (GrC)? The best approach
is to trace how the intuitions have been evolved. For this
purpose, let us recall the event. In the academic year 1996–
97, when Lin had his sabbatical leave at Berkeley, Zadeh
suggested granular mathematics (GrM) to be his research
area. To limit the scope, Lin proposed the term granular
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computing [40]. So, at the beginning, roughly GrC is the
computable part of granular mathematics.

What is Granular Mathematics (GrM)? Zadeh in his
1979 paper [37] had implicitly explained his view. Here,
we take a simpler view: It is a new mathematics, in which
“points” are replaced by or associated with “granules.” We
call this process granulation, and the collection of granules
the granular structure.

What is a Granule? This is the main topic. There is an
obvious candidate, namely, an equivalence class of a parti-
tion that is an ancient notion in mathematics. In general,
a granule can be a crisp/fuzzy subset, a function, an algo-
rithm, a random variable (measurable function), a gener-
alized functions etc.

Traditionally, “how to solve it” [31] cannot be any part
of formal mathematics, however, “how to compute it” is
an integral part of computing. So GrC has included the
mathematical/computational problem solving practices.

Classical Examples of Granulation

Ancient Examples

E1 Granulation of the Human Body: The Granules Are
Head, Neck, Body, Hand etc. Many daily things are
routinely granulated into “sub”things, probably since an-
cient time. Human body is granulated into head, neck,
etc. Currently, there are no flawless formal models to cap-
ture such intuitive concept yet. The obvious one does not
work well: One can easily write down a fuzzy membership
function to represent a head, a neck or a body. However,
the likelihood of any two persons to write down the same
membership function for the same granule (e. g., head) is
extremely low. Hence we need a much more subtle theory.
A new proposal on qualitative fuzzy set theory is in prepa-
ration by this author, this example can be realized.

E2 Granulation of Space and Time The space and time
has been granulated intuitively into infinitesimal gran-
ules by early scientists; this notion was known to Zeno,
Archimedes, etc. This intuitive notion led to the inven-
tion of calculus by Newton and Leibniz. However, its for-
malizations, theory of limit (18th century), topology (early
20th century [28]) and nonstandard analysis (mid 20th
century [32]) are relatively recent. This ancient example,
inspired two models, Local GrC model (First GrC Model)
and Global GrC Model (Second GrC Model).

E3 Partition The simplest kind of granulation is par-
tition (see glossary). Its algebraic correspondence, equiv-
alence relation, has played an important role in the Eu-
clidean Geometry (300 BC).

Modern Examples

E4 Local Granules of Uncertainty – from QuantumMe-
chanics Heisenberg’s uncertainty principle states that,
in general, neither the momentum nor the position of
a particle can be determined simultaneously with arbitrary
great precision. In other words, a point of the momentum
(a precise measurement) can determine only a “neighbor-
hood” of positions and vice versa. The idea is simplified
into the Third GrC Model (Binary GrC Model).

E5 Local Granules of Basic Knowledge – Discretionary
Access Control Models in Computer Security This ex-
ample is a common data structure in many computer sys-
tems. For each user, there is a set of users (friends) who can
access his files, or a set of users (foe), who cannot access his
files; this set is called explicitly denied access list.

Examples E4 and E5 are “serious” examples. The idea
is modeled in the third GrC Model. Mathematically, it is
equivalent to a binary relation. Geometrically, a binary re-
lation is a graph, or network.

E6 Global Granules of Knowledge – Simplicial Com-
plexes A simplicial complex consists of two objects: One
is a finite set of vertices, another one is a family of sub-
sets, called simplexes, of vertices that satisfy the closed
condition, namely a subset of a simplex is a simplex.
It is a common mathematical structure in combinatorial
topology. Currently, it is finding its way to web technol-
ogy [21].

Further Examples

Next, we give examples of non-commutative granules,
which is a generalization of a binary relation (Binary GrC
Model; Third GrC Model).

E7 A committee in a Human Society Is a Granule in
a Social Network A committee in a human society (a set
of human beings) is a granule. Observe that each mem-
ber may play different roles, so the committee may not
consist of homogenous members; so the members can-
not exchange their roles. By viewing the collection of roles
as a relational schema, a committee is a tuple. This idea
is modeled in the Fifth GrC Model. Observe that differ-
ent types of committees have different schema. The set
of committees under the same schema forms a relation.
A collection of n-nary relations for various n in a society
can be viewed as a granulation of the society.

In these examples, granules can be fuzzy sets. Since
a fuzzy set is characterized by a membership function, so
we have generalized the idea further.



4344 G Granular Computing: Practices, Theories, and Future Directions

E8 A Granule Can Be a Function, a Random Variable
(A Measurable Function) or Even a Generalized Func-
tion (Such as the Dirac Delta Function)
This class of examples led to the Sixth GrC model.

Traditionally, “how to solve it” [31] has not been any
part of formal mathematics, however, “how to compute it”
is an integral part of computing. So GrC includes some
mathematical/computational practices.

E9 A granule can be a lemma in a mathematical proof,
a subprogram in a program, or a machine/cluster of
machines in a grid/clouding computing environment.
Formally, within the computable domains, a granule is
a sub-Turingmachine. This is modeled in the SeventhGrC
Model. For general cases, they are included in the Ninth
GrC Model

E10 Computers or clusters of computers in Grid/Cloud
computing are granules. These are hardware examples.
This also belongs to the Seventh GrC Model

FormalModels of Granulation

On the basis of these examples, nine models are discussed.
The category theory-based model (Eighth GrCModel) has
been proposed by this writer in the keynote of GrC2008 as
the formal model of GrC. The rest of the eight models are
basically “convenient models” in the sense that they can be
derived from the most generalmodel, but for convenience,
they are modeled independently.

First GrC Models and Ancient Examples

Thismodel is derived from the Ancient Example E2, which
probably is the most lively example in the early notion of
granules. It led to the invention of calculus by Newton and
Leibniz. Actually the idea was much more ancient; it was
in the mind of Archimedes, Zeno, etc. Yet the solutions
were in modern time. Two formalizations had emerged.
One was the concept of limit (19th century) that led to the
notion of topology (early 20th century). The other one was
the nonstandard analysis (mid 20th century), which for-
mally realized the original intuition.

These developments conclude that the following con-
cepts are “equivalent” (not in the formal mathematical
sense, as the first one is merely an intuitive notion):

1. The ancient intuitive notion of infinitesimal granule.
2. The formal infinitesimal granule in the non standard

analysis.
3. Topological Neighborhood System (TNS) in the stan-

dard world.

In other words, the ancient intuition of infinitesimal gran-
ules (with the required properties) is realized, not by a set,
but by a family of subsets, that satisfies the axioms of topol-
ogy. Nevertheless, in this paper a (modern) granule will re-
fer to a neighborhood, but, not to the whole neighborhood
system.

The notion of topology can be defined in two ways:

1. A topology � is a family of subsets, called open sets, that
satisfies the (global version) axioms of topology.

2. A topology, called topological neighborhood system
(TNS), is an assignment that associates to each point p
a family of subsets, TNS(p), that satisfies the (local ver-
sion) axioms of topology.

These two definitions lead us to First and Second GrC
Models (Local andGlobal GrCModels). In this subsection,
we will focus on the First GrC Model: Let U and V be two
classical sets. Let NS be a mapping, called neighborhood
system (NS),

NS: V ! 2(P(U)) ;

where P(X) is the family of all crisp/fuzzy subsets of X. 2Y

is the family of all crisp subsets of Y , where Y D P(U).
In other words, NS associates each point p in V , a family
NS(p) of crisp/fuzzy subsets of U. Such a subset is called
a neighborhood (granule) at p, and NS(p) is called a neigh-
borhood system at p.

Definition 1 (First GrC Model) The 3-tuple (V ;U; ˇ) is
called the Local GrC Model, where ˇ is a neighborhood
system (NS). If V D U , the 3-tuple is reduced to a pair
(U; ˇ). In addition, if we require NS to satisfy the topo-
logical axioms, then it becomes a TNS.

Some Intuition Behind the NS The following argu-
ments are adopted from my pre-GrC paper [13]

(1) The Meaning of “Near”

The notion of near is rather difficult to formalize. Let us
examine the following two examples.

1. Is Santa Monica “near” Los Angeles? Answers could
vary. For local residents, who have cars, answers are of-
ten “yes.” For visitors, who have no cars, answers may
be “no.”

2. Is 1.73 “near”
p
3? Again answers vary; it depends on

what should be the appropriate tolerance radius.

Intrinsically “near” is a subjective judgment. One might
wonder whether there is a scientific theory for such sub-
jective judgments? Mathematicians have offered a nice so-
lution. They simply include all contexts into its formalism.
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Here is the formalism of the second question: Given the
radius of an acceptable error, say, radius of errors 1/100
(a given context)

Is 1.73 “near”
p
3?

With the agreement 1/100 is acceptable, then 1.73 is nearp
3! In this case, all possible contexts are " that represents

all positive real numbers. Similarly, if a neighborhood sys-
temhas been assigned to each city in the Los-Angeles-area.
For example, based on car driving, public transportation,
walking etc., we assign a neighborhood to each city for
each context. Under such a concept of a neighborhood sys-
tem, we could have a definite answer for Example 1. So
a proper formulation for such a question is:

Assuming that we are taking public transportation
(a given context), Is p near q?

Therefore, a neighborhood system is a good infrastructure
for addressing the concept of “near”! These analysis leads
to the following conclusions.

1. In Modeling, a neighborhood system is a good infras-
tructure for providing all possible contexts.

2. Under this model, in an application, selecting a context
means selecting a fixed neighborhood as a unit of toler-
ance (uncertainty).

Now, under this concept, we will re-examine previous ex-
amples.

Example 1 If we have chosen “driving half an hour” as ac-
ceptable distance, then Santa Monica is “near” Los Angels.

Example 2 Let the collection of "-neighborhoods be the
neighborhood system for the real numbers R; then (R; �-
neighborhoods) is a First GrC Model, where " could take
any real value. Now, we re-state the previous example us-
ing this First GrC Model

1. Assuming we have agreed � D 1/100 is acceptable, then
1.73 is “near”

p
3.

2. But, if we have only agreed � D 1/1000 then 1.73 is not
“near”

p
3.

3. Next let us consider a deeper question:

Is the sequence 1; 1/2; 1/3; : : : ; 1/n; : : : “near”
zero?

Then, it is possible, we can have a “yes” answer for all
contexts: For any given context, namely, � > 0, there is
a number N D [1/�]C 1, such that, for all n > N , 1/n
is “near” zero, where [1/�] denotes the biggest integer
� 1/�.

Readers who are familiar with the standard (�; ı)-
definition of limit can spot the origin of neighborhood sys-
tems. Such a context-free (all possible contexts) answer is
precisely the classical notion of limits, limn!1 1/n D 0.
Using our language, we may say that limit is the context
free answers of “near”.

Perhaps we should also point out here that there are no
context free answers for the question whether two points
are “near.”

Brief pre-GrC Historical Notes

1. In 1988–1989, Lin generalized TNS to the Neighbor-
hood Systems (NS) by simply dropping the (local ver-
sion) axioms of topology [7,9] and apply it to ap-
proximate retrievals. Each neighborhood was treated as
a unit of uncertainty.

2. In the same year (1989), Lin also examined a non-re-
flexive and symmetric binary relation (conflict of inter-
ests) for computer security from the view of NS [8].

3. Abstractly, Lin imposed the NS structure on the at-
tribute domains for approximate retrieval. Taking this
view, we should mention that earlier D. Hsiao imposed
equivalence relations on the domain for access pre-
cision in early 1970 [6,36]. In 1980, S. Ginsburg and
R. Hull had imposed partial ordering on attribute do-
mains [4,5].

4. In much earlier, NS was studied in [33] as a generaliza-
tion of topology. Note that however, there are funda-
mental differences, for example, the concept of closures
are different. The term pre-topology also has been used
for referring NS and TNS.

5. In the early GrC period, Lin, by mapping the NS onto
Zadeh’s intuitive definition, used NS as his first mathe-
matical GrC model [14,15,16].

Second GrC Models and Modern Examples

As in the previous case, by dropping the global axioms of
topology, we have the Second GrC model.

Definition 2 (Second GrC Model) The Pair (U; ˇ),
where ˇ is a family of subsets of U, is called Global GrC
Model. The ˇ, some time, is referred to as a partial cover-
ing (PCov).

Note that the Second GrC model is a special case of the
First GrC model: If we regard the sub-collection of all
members of the partial covering ˇ, that contains p, as
a neighborhood system at p, then this Second GrC model
is an example of the First GrC model.

The modern example, simplicial complexes, is an im-
portant example of such a model: A simplicial complex
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consists of a set of vertices and a family of subsets, called
simplexes, that satisfies the closed condition [34].
[Digression] Perhaps, it is worthwhile to note that

� The closed condition of the simplicial complex is the
a priori principle in association (rules) mining.

This observation plays an important role in document
clustering [24].

Third and Fourth GrC Models and Modern Examples

In this section, we will build a new model that realizes
modern example E4 and E5. Recall that E4 concludes that
a precise measure of the momentum can only determine
a (probabilistic) “neighborhood” of positions; and E5 con-
cludes that in computer security, the Discretionary Ac-
cess Control Model (DAC) assigns to each user p a family
of users, Yi, i D 1; : : :, who can access p’s data. In other
words, each p is assigned a granule of friends.

To formalize these examples, let U and V be two clas-
sical sets. Each p 2 V is assigned a subset, B(p), of “basic
knowledge” (a set of friends or a “neighborhood” of posi-
tions).

p! B(p) D fYi ; i D 1; : : :g � U :

Such a set B(p) is called a (right) binary neighborhood and
the collection fB(p) j 8p 2 Vg is called the binary neigh-
borhood system (BNS).

Definition 3 (Third GrC Model) The 3-tuple (U;V ; ˇ),
where ˇ is a BNS, is called aBinary GrCModel. IfU D V ,
then the 3-tuple is reduced to a pair (U; ˇ).

Observe that BNS is equivalent to a binary relation (BR):

BR D f(p;Y) j Y 2 B(p) and p 2 Vg :

Conversely, a binary relation defines a (right) BNS as fol-
lows:

p! B(p) D fY j (p;Y) 2 BRg :

So, both modern examples give rise to BNS which was
called a binary granular structure in [14]. We would like
to note that based on this (right) BNS, the (left) BNS can
also be defined:

D(p) D fY j p 2 B(Y)g for all p 2 Vg :

Note that BNS is a special case of NS, namely, it is the case
when the collection NS(p) is a singleton B(p). So the Third
GrC Model is a special case of the First GrC Model.

The algebraic notion, binary relations, in computer
science, is often represented geometrically as graphs, net-
works, forests etc. So the Third GrC Model has captured
most of the mathematical structure in computer science.

Next, instead of a single binary relation, we consider
the case where ˇ is a set of binary relations. It was called
a [binary] knowledge base [14]. Such a collection naturally
defines an NS.

Definition 4 (Fourth GrC Model) The Pair (U; ˇ),
where ˇ is a set of binary relations, is called Multi-Binary
GrC Model. This model is most useful in data bases; hence
it has been called Binary Granular Data Model (BGDM),
in the case of equivalence relations, it is called Granular
Data Model (GDM)

Observe that a Fourth GrC Model can be converted, say
by a mapping G, to a First Model. Conversely, a First GrC
Model induces, say by F , to a Fourth Model. So First and
Fourth models are equivalent, but not naturally, namely,
G andF are not inverse to each other.

Models for Further Examples

We have observed in Sect “Definition of the Subject” that
the collection of n objects that are “drawn together” is, not
necessary a subset, but is a tuple in an n-ary relation. For
example, if the universe is a human society then a group of
people may be drawn into a committee with distinct roles,
such as the chair, vice chair, secretary, treasurer, etc. As
everymember has a different role, they can not be swapped
around. So the committee is not a set; it is a tuple under the
schema that consists of distinct roles.

Definition 5 (Fifth GrC Model)

1. LetU D fUh
j ; h; j;D 1; 2; : : :g be a given family of clas-

sical sets, called the universe. Note that distinct indices
do not imply that the sets are distinct.

2. Let U j
1 � U j

2 � � � � be a family of Cartesian products of
various length.

3. Recall that an n-ary relation is a subset Rj � U j
1 �U

j
2 �

� � �U j
n .

4. Let ˇ D fR1; R2; : : :g be a given family of n-ary rela-
tions for various n.

The pair (U; ˇ), called the Relational GrC Model, is a for-
mal definition of the Fifth GrC Model.

Note that this granular structure is the relational struc-
ture (without functions) in the First Order Logic, if n only
varies through finite cardinal number.
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For the next two models, we will use the language of
category theory in next sub-section. We may note that we
have not committed ourselves to every specific details yet.

Definition 6 The Sixth GrC Model is in the categories of
functions, random variables, and even generalized func-
tions.

Fuzzy sets are described by membership functions, so
granules can be regarded as membership functions; note
that the First to Fifth GrC Models include fuzzy sets.
Hence, we consider further generalizations: granules are
functions, random variables (measurable functions), gen-
eralized functions (e. g. Dirac delta functions).

In the case, a granule is a function, we may require
that the granular structure (the collection of granules) has
the universal approximation property, namely, any func-
tion in the universe can be approximated by the functions
in the collections. The membership functions selected in
fuzzy controls do have such properties. In neural net-
works, the functions generated by the activation functions
also have such a property [29].

In the case of probability/measure theory, quantum
mechanics may be a good guiding example.

Definition 7 The Seventh GrC Model is in the category
of Turing machines.

For example, a collection of lemmas in a mathematical
proof (mechanizable), a set of subprograms in a com-
puter program, or a computer or cluster of computers in
grid/cloud computing are granules in the model.

Definition 8 The Ninth GrC Model is in the category of
qualitative fuzzy sets.

This model was proposed after the Eighth GrC model. It
has not been published in printing form yet. The idea is
similar to the model that we have called it sofset (this is
not a typo) [12]. It associates to each “real world” fuzzy
set, a collection of membership functions; please watch for
new development.

Category Theory Based Models

Now we generalize the category of sets to general cate-
gories. It is somewhat a surprise that this is basically the
same as the category of relational databases [10]. In other
words, the abstract structures of data and knowledge are
similar. After analysis, it seems reasonable; because in GrC
approach, the basic unit of knowledge is a granule of data.

Let us set up some language for the Category Theory.
A category consists of

1. A class of objects, and

2. A set Mor(X;Y) of morphisms for every ordered pair
of objects X and Y , which satisfies certain properties.
For this paper, the formal details are not important; we
only need the language loosely.

Here are some examples.

1. The Category of Sets: The objects are classical sets. The
morphisms are the maps.

2. The Category of Sets with binary relations as mor-
phisms: The objects are classical sets. The morphisms
are binary relations. This is the Category of Entity Re-
lationship Models.

3. The Category of Power Sets: The objectUX is the power
set P(X) of a classical set X. Let UY be another object,
where Y is another classical set. The morphisms are
the maps, P( f ) : UX ! UY that are induced by maps
f : X ! Y .

Let CAT be a given category.

Definition 9 (Category Theory Based GrC Model)

1. C D fCh
j ; h; j;D 1; 2; : : :g is a family of objects in the

category CAT.
2. There are families (which are bags; see the glos-

sary) of Cartesian products, C j
1 � C j

2 � � � � of objects,
j D 1; 2; : : : of various lengths. They are called product
objects.

3. An n-ary relation object Rj is a sub-object of the prod-
uct object C j

1 � C j
2 � � � �C

j
n .

4. ˇ D fR1; R2; : : :g be a family of n-ary relations (n could
vary).

The pair(C; ˇ), called the Categorical GrC Model (Eighth
GrC model), is the formal model of granulation.

By specifying the general category to various special cases,
we have all models: By specifying the category to be the
category of sets, we have the Fifth GrC model. Further
by limiting n to 2, we have the First GrC Model and
the Fourth GrC Model. By assuming the symmetry for
all n-ary relations, we have the Second GrC Model. By re-
stricting the number of relations to be one and n D 2, we
have the Third GrC Model. For the Sixth and the Seventh,
further researches are needed.

Overview of Early GrCModels

Schematically we summarize the relationships based on
the Granular Structures of early GrC Models as follows:
(the diagramwill be different, if it is based on their approx-
imation spaces). “)(” is a two-way generalization but
they are not inverse to each other. “);*, and +” are one



4348 G Granular Computing: Practices, Theories, and Future Directions

way generalizations. “GM” means GrC Models and RST
means Rough Set Model.

RST H)

2

6
666
666
4

Global GM ) Local GM

+

(Multi Binary GM (BGDM) Local GM
)

*

Binary GM ) Relation GM

3

7
777
777
5

) Category GM :

Granular and Related Structures

Four structures are related to each other, they are all briefly
explained in Sect. “Definition of the Subject.” We will fo-
cus on a quotient structure here.

A granule can be examined from three states: We will
use the following example to illustrate the idea. Let U be
the set (Z;C) of the integers as an additive group, let E
and O be the set of even and odd integers respectively.

1. Isolated State (Internal State): Let us consider the case E
is in the isolated state, that is, independent from the
universe U. In this case, only the internal structure of E
is available to us: we can only know that the number 2
is playing the role of the identity in an additive group,
but is not aware of the existence of 1 in the outside of E.
So in isolated state, E is the additive group (Z;C). Some
time, this state may also be called internal state as only
the internal structure is involved.

2. Embedded State (Conceptual State): In this state, E is
a subgroup of U. We not only know that the number
2 is playing the role of the identity in E and we also do
know that 2 is an even integer in U.
[Digress] In category theory, a subobject (in this case
a subgroup) is often represented by a pair (a group, the
mapping of the group into the subgroup),

(Z;C)!homomorphism E � (Z;C) :

The pair (the first (Z;C);!homomorphism) is the subob-
ject (subgroup). The first component (Z;C) represents
the internal structure of (or isolated state of) even in-
tegers, the middle E is the embedded state of even in-
tegers. Since this state involves with every aspect of the
concept of a granule, one may call it conceptual state.

3. Quotient State (External State): Note that the quotient
structure Q consists of two elements, namely, the two
subset of even and odd integers (E andO, respectively).
But the two subsets appear as two elements, [E], and
[O] in Q. Note the bracketed symbols emphatically de-
note their roles as points (elements) of a set; no con-
tents of subsets are visible. The interactions between the

two subsets induce interactions between these two ele-
ments. So Q is the integer mod 2 (as additive group). In
notations,

Q D (Z2;C) � f[0]2; [1]2g

as an additive group. So the quotient state of E is the
element [0]2 inQ. Since the quotient state only involves
the external relationships with other granules, this state
may also be called external state.

With these preparations, we can define the concepts
of granular structure (GrS), quotient structure (QS) and
knowledge structures (KS): GrS is the collection of gran-
ules in embedded states. The quotient structure is the
structure of granules in quotient states, namely, each gran-
ule is abstracted to an element (point) and the interactions
among granules are abstracted to the interactions among
elements (points).

Among these four structures only the quotient struc-
ture is a difficult concept. Here, we will illustrate only the
quotient structure. We will start from the simplest case,
namely, the GrS is a partition. By definition, a partition is
a collection of equivalence classes that are mutually dis-
joint and their union is the whole universe. Hence, by ab-
stracting each equivalence class to a point, we have a set of
points that have no interactions. This implies:

Proposition 1 The quotient structure of a partition is
a classical set.

Next, we need a lemma.

Lemma 1 The collection of complete inverse image of
a given mapping f : U ! V defines a partition. Namely,
the collection f f�1( f (p)) j p 2 Ug forms a partition.

So NS and BNS induce partitions on U. These partitions
have been called the derived partition (or derived equiva-
lence relation); see [14].

Let B : U ! P(U) and NS: U ! 2P(U) be a binary
neighborhood system (BNS) and neighborhood system
(NS), respectively. Then (U;NS) and (U; B) are First and
Third GrC Models, respectively. By the previous Lemma,
the complete inverse images of the two mappings, B and
NS, are partitions (equivalence relations). The two parti-
tions, denoted by EB and ENS, induce two quotient sets
U/EB ;U/ENS, respectively. Moreover, the pre-topologies,
BNS and NS, of U naturally induce the respective pre-
topologies on the quotient sets U/EB and U/ENS, respec-
tively [9,11].

Proposition 2 Such pre-topological spaces U/EB (BNS-
space) and U/ENS (NS-space) are the quotient structures of
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Binary and Local GrC Models (Third and First GrC Mod-
els) respectively.

This example indicates that there are additional pre-topo-
logical structures on the information tables [2,22].

Let (U; ˇ) be a Global GrC Model, where ˇ D fF1;

F2; : : :g be a partial covering, We will use [F j1 ]; [F j2 ]; : : :
to denote a set of points (when we think of F1; F2; : : : as
points).

Proposition 3 The granular structure, ˇ, generates
a semi-group S(ˇ) under set theoretical intersection. Then
the quotient structure of (U; S(ˇ)) is a semi-group gener-
ated by [F j1 ]; [F j2 ]; : : : under “intersection” [F j1 ]ı[F j2 ] D
[F j1 \ F j2 ].

This example indicates that there are additional algebraic
structures on the information tables [20].

We observe that each quotient structure is not easy to
determine. It depends on what are the mathematical struc-
tures under consideration. Let us recall some works from
pure mathematics. Let the universe U be the ring Z of in-
tegers. In ring theory, the collection ˇ of all prime ideals is
the center of attentions. Let p be a prime number, then the
prime ideal consists of following set

f: : : ;�2p;�p; 0; p; 2p; : : :g ;

together with some algebraic structure.
By regarding each prime ideal as a point, the collec-

tion of prime ideals is a set, often denoted by Spec(Z) in
algebraic geometry. The structure of prime ideals turns
Spec(Z) into a topological space under Zariski topology.

Example 3 (Two granular and quotient structures)

1. The quotient structure of (U; ˇ), where ˇ is the col-
lection of the prime ideals, is a topological space
Spec(Z) [27].

2. The quotient structure of (U; S(ˇ)), where S(ˇ) is the
semi-group generated by the intersection, is isomor-
phic to the semigroup of positive integers.

In RST, the approximation spaces of the first and second
examples are different. However in GrC, the approxima-
tions (under the knowledge engineering view) of the two
examples are the same. In GrC, granules represent known
basic units of knowledge (known concepts), hence the in-
tersections of known concepts are known concepts. So in
GrC we take all possible intersections of granules to ap-
proximate unknown concepts. This example clearly indi-
cates the effectiveness of this view.

Integration – A Dual of Granulation

Classical Divide (partitioning) and Conquer is extended to
Granulate and Conquer. In other words, we are consider-
ing the cases, in which the sub-problems may not be logi-
cally independent from each other. So the standard think-
ing may not work, for example

� It may take Np-hard time to granulate a problem, from
top to bottom.

This issue is not new. Some cases have been addressed
in the topic of “dynamic programming” in data structure
courses. We have used “topological divide” to solve the
cases in the Third GrC model [18].

In this section, we will explore the following problem:
For convenience, we will use the term, sub-structure, to
denote (1) the collection of the internal structures of each
granule and (2) the quotient structure. Now, we raise the
following questions:

� Can we find more than one universes (granular mod-
els) that have the same sub-structure?

� Equivalently: Could two distinct problems, after gran-
ulation, have the same sub-structure?

In homological algebra, this is called the extension
problem; in computer science, we feel that integration is
a better name.

We will illustrate the concept in the following two
cases

1) Simple Integration: no information structure
2) Integration with information structure.

Simple Examples of Integration

This is a truly unexplored area; we will explain the case
when granulations are partitions.

A Simple Partition We will illustrate the key concepts
by simple examples. Let the universe U be the set of all
integers, Z D f: : : ; 1; 0; 1; : : :gwith the following granular
structure, namely, a given collection of two granules

ff: : : ;�2; 0; 2; : : :g ; f: : : ;�3; 1; 3; : : :gg :

We name the granules E and O (the even and odd inte-
gers). Using the languages of Sect. “Granular and Related
Structures,” we say E andO are in the embedded state. We
will use [E] and [O] to denote the quotient state. So the set
Q D f[E]; [O]g is the quotient set. Intuitively, Q is a set of
black boxes; the internals of black boxes are invisible.

Now we will summarize the important structures of U
so that integration can be formulated: Let Int(X) denote
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the internal structure of a granule X, that is, the structure
of X in isolation (and not a subset of U).

1. A D Int(f: : : ;�2; 0; 2; : : :g) is the set of integers Z.
2. B D Int(f: : : ;�3; 1; 3; : : :g) is the set of integers Z.
3. Two copies of integers, A and B, are mapped to even

integers and odd integers respectively.
4. Q is the quotient set that consists of [E] and [O] as two

elements (points).

Schematically, we give the following situation:

Z D
�
AD Int(E)! E
B D Int(O)! O

�
(�)U ! Q D f[E]; [O]g :

Integrations on Partitions From the point of view of
problem solving,

� The quotient structure represents the recipe (a set of
higher level instructions) of integrating the sub-solu-
tions. It is the “Main Program” that integrates the re-
turns of sub-program calls.

Here a sub-solution means the solution of a sub-prob-
lem that has been solved in isolation. Now the integration
problem can be formulated as follows:

1. We only know that two copies of integers, A and B, are
mapped to the two subsets of unknown universe.

2. The images of the mappings form a partition in the un-
known universe U

3. But we do know its quotient structure Q D f[E]; [O]g,
namely a set of two elements, where [E] represents the
point that is abstracted from the image E ofA inU; sim-
ilarly [O] is that of B.

Schematically, we can summarize it as follows: The un-
known U has two unknown subsets, image A and image
B, that form a partition on unknown U, but with a known
quotient set which is equivalent to the integers mod 2.

Z D
�
A~! Image A
B! Image B

�
(�) Unknown U ! Q D Z2

Can we construct the unknown universe? And is it unique?
The answer is “yes” and it is unique. It is the Cartesian
product Q � Z. Observe that from a set-theoretical point
of view, Q � Z is equivalent to Z, so the constructed one is
the old friend.

Integration on Partition with Information Structure

Let us consider a second view on the set of integers.
But this time, the universe carries additional information,

namely, the additive structure of integers, (Z;C). This
universe is denoted by (U;C). Then

1. Int(E) is the additive group (Z;C) of integers, and
Int(O) is a set Z of integers.

2. The quotient structure (Q;C) D f[E]; [O];Cg is an ad-
ditive group: [E]C[E] D [E]; [E]C[O] D [O]C[E] D
[O]; [O] C [O] D [E]. This (Q;C) is often called the
integer mod 2, and denoted by (Z2;C).

Again, we give a similar situation
�

(Z;C) D Int(E) !(homomorphism) E
Z D Int(O) !(map) O

�

� (U;C)! (Q;C) :

The upper arrow

(Z;C) D Int(E)!(homomorphism) (U;C)! (Q;C)

is very similar to a short exact sequence (SES) in homolog-
ical algebra.

Now, we will extend the SES to granules:

Int(GrS)!map U ! QS ;

where (1) Int(GrS) is the collection of the internal struc-
tures of all granules, (2) its image in U (under the map
!map) is GrS, the granular structure in U, and (3) QS
denote the quotient structure of GrS. The map,!map, is
on-to-one within each granule, but two granules may have
overlapping images in U. We will call this a granular exact
sequence.

Can (U;C) be reconstructed back?

The answer is more than yes; there are two solutions! The
two solutions are: (Z2 � Z;C) and (Z;C). They are not
equivalent as additive groups. This fact can be expressed
by the extension functor, namely, EXT(Z; Z2) ¤ 0.

The important question is

Could such a functor be extended to formal granular
models?

The answer may be “yes.” The granular exact sequences
shall play a similar role as short exact sequences. There are
some preliminary results in [19]; for example, the fact that
the knowledge representation of a symmetric binary rela-
tion is complete, implies that the integration is unique.

Integrations on Non-Partition Case

We will consider a simple example using the concept of
granular exact sequence. Let U D fa; b; cg, let ˇ be the set
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of all subsets of U. So the internal structure of the gran-
ules are: (we will use n-granule to denote a granule of n
elements) One copy of 3-granule; three copies of 2-gran-
ule, and three copies of 1-granule. This is a Global GrC
Model. The quotient structure is a collection of 7 elements
(to find the quotient structure is not easy, but easy to ver-
ify). These elements are related by partial ordering, called
“a face of.” We will use the geometry to represent this
quotient structure; it is a triangle spanned by i(1; 0; 0),
j D (0; 1; 0), k D (0; 0; 1). The triangle can be viewed geo-
metrically (a simplicial complex of closed triangle) as ONE
open triangle, THREE open segments, and THREE ver-
tices. Its a partial ordered set of 7 elements.

Now the granular exact sequence (three steps) can be
described as follows:

1. 3-granule
˚
g31 ; g

3
2 ; g

3
3
�
! a subset of unknown uni-

verse! open triangle�(ijk)
2. first 2-granule

˚
g21 ; g

2
2
�
! a subset of unknown uni-

verse! first open segment�(ij)
3. second 2-granule

˚
g23 ; g

2
4
�
! a subset of unknown uni-

verse! second open segment�(ik)
4. third 2-granule

˚
g25 ; g

2
6
�
! a subset of unknown uni-

verse! third open segment�(jk)
5. first 1-granule

˚
g11
�
! a subset of unknown uni-

verse! first vertex�(i)
6. second 1-granule

˚
g12
�
! a subset of unknown uni-

verse! second vertex�(j)
7. third 1-granule

˚
g13
�
! a subset of unknown uni-

verse! third vertex�(k)

Wewill use I
�
g ij

to denote the image in the unknown uni-

verse. We do know many distinct g ij mapped to the same
point in the quotient structure. Here are the mappings

1. 3-granule
˚
I
�
g31

; I
�
g32

; I
�
g33
�
! �(ijk)

2. first 2-granule
˚
I
�
g21

; I
�
g22
�
! �(ij)

3. second 2-granule
˚
I
�
g23

; I
�
g24
�
! �(ik)

4. third 2-granule
˚
I
�
g25

; I
�
g26
�
! �(jk)

5. first 1-granule
˚
I
�
g11
�
! �(i)

6. second 1-granule
˚
I
�
g12
�
! �(j)

7. third 1-granule
˚
I
�
g13
�
! �(k)

From the maps above, we may make some identifications:
Observe that from the maps, 1st, 2nd, 5th, we can identify,
without losing generality, that I

�
g31

D I

�
g21

D I

�
g11

. By

similar arguments, we have

1. I
�
g31

D I

�
g21

D I

�
g23

D I

�
g11

! �(i)

2. I
�
g32

D I

�
g22

D I

�
g25

D I

�
g12

! �(j)

3. I
�
g33

D I

�
g24

D I

�
g26

D I

�
g13

! �(k)

So the 12 points are actually three points; they will be de-
noted by

˚
I
�
g31

; I
�
g32

; I
�
g33
�
. Thus, the granular struc-

ture of the unknown universe is: one 3-granule
˚
I
�
g31

;

I
�
g32

; I
�
g33
�
, three of its 2-subgranules

˚
I
�
g31

; I
�
g32
�
;˚

I
�
g31

; I
�
g33
�
;
˚
I
�
g32

; I
�
g33
�

and three of 1-subgranules˚
I
�
g31
�
;
˚
I
�
g32
�
;
˚
I
�
g33
�
. So we have re-captured the un-

known U and ˇ. – This is the integration. The key ques-
tion is: Is this U unique? The answer is “no”; we will skip
it here.

Semantic Views

Granules may be interpreted from three views.

1. Uncertainty Theory: A granule is a unit of lacking pre-
cise knowledge. Both L. A. Zadeh and T. Y. Lin, who
coined the label, started from the uncertainty theory.
Lin took his neighborhood system as a system of un-
certainty. Zadeh has a grand project [40].

2. Knowledge Engineering: A granule is a unit of basic
knowledge (Information). In their book, D. Stanat and
D. McAllister state “Knowledge varies in sophistication
from simple classification to . . . ” [35]. A classification
is a partition, so an equivalence class is a (unit of) basic
knowledge; this view is also promoted by Pawlak [30].
So we believe: a granule is a (unit of) basic knowledge.

3. How-to-Solve/Compute-it: A granule is a sub-problem
or a software unit. It is a special type of basic knowledge.

Each viewmay have its own GrC theory: Some fundamen-
tal operators are:

1) Information Hiding: It is a transformation of granular
structures into quotient structures (see glossary).

A quotient structure is the mathematical structure of the
collection of granules, in which each granule is regarded
as an element (point), and the interactions among granules
are transformed into the interactions among elements. For
example, in group theory a quotient group is a collec-
tion of cosets, in which each coset is regarded as an el-
ement and the multiplication of cosets is abstracted into
the multiplication of elements in the quotient group. Us-
ing the software engineering language, a granule in a quo-
tient structure is a black box, while in a granular structure,
it is a white box. These are easy cases, for granulations that
have nonempty overlappings, the quotient structure may
not be easy to determine; see Section Granular and Related
Structures.

2) Information Integration: see Sect. “Integration –ADual
of Granulation.”
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3) Knowledge Representation: This amounts to give each
point in the quotient structure (Sect. “Granular and Re-
lated Structures”) a meaningful name; we will call it
naming map. So knowledge representation is a com-
position of information hiding (a map from a granular
structure to a quotient structure) and the naming map.

Knowledge representation is another way to discover new
knowledge by organizing the knowledge structure in an
appropriate fashion, such as, an information table (= a re-
lation in database theory). In GrC, the table often has ad-
ditional algebraic and/or topological structures [18,22].

4) Concept Approximation: Among three semantic views,
the knowledge engineering view is the most suitable
view for this operation. Under this view, concept ap-
proximation is to express approximately the unknown
concepts (arbitrary subsets of the universe) in terms of
known basic knowledges (granules).

It is reasonable to regard that “and” (\) or “or” ([) op-
erations of two basic units of known knowledge are also
a known knowledge. So, we take finite intersection and any
number of union as acceptable knowledge operations; the
last one is derived from the topological spaces. However,
we believe a negation of a known knowledge is not nec-
essary a piece of known knowledge; so negation is not an
acceptable operation.

Note that this approximation is different from Rough
Set Approximations, which, including its generalizations,
are based on the sole operation “or” ([). In other words,
RST does not regard the “and” of two known concepts as
also a known concept. So strictly speaking, rough set ap-
proximation is not a concept approximation.

GrC has many models; each model has a slightly dif-
ferent approximation theory. First, we will explain
The Second GrC Model (Global GrC Model): Let C1 be
a given collection. Let G1 be the collection of all possi-
ble finite intersections of C1. Then, by definition, the pair
(U; ˇ) is a Second GrC Model (Global GrC Model), where
ˇ D C1. Let G be a variable that varies through the collec-
tion G1, then we define

Definition 10 Three approximations

1. Upper approximation:
C[X] D ˇ[X] D fp : 8G, such that, p 2 G & G\X 6D
;g.

2. Lower approximation:
I[X] D ˇ[X] D fp : 9 a G, such that, p 2 G & G �
Xg.

3. Closed set-based upper approximation: [33] used closed
closure operator. It applies closure operator repeatedly

(transfinitely many steps) until the results stop grow-
ing. The space is called Frechet(V)-space or (V)-space.
Cl[X] D X [ C[X] [ C[C[X]] [ C[C[C[X]]] : : :
(transfinite). For such a closure, it is a closed set.

Theorem 1 The concept approximation space of the
Global GrC Model (Second GrC Model) is a topological
space.

We should also note that under the rough set approxima-
tion, this model is not a topological space.

Next, let us consider the approximation theory of
The First GrC Model (Local GrC Model): Before, we pro-
ceed, let us examine the classical case, the topological space
(U; �). A subset N(p) � U is a neighborhood of p, if N(p)
contains an open set that contains p. The union of all such
open sets is the interior points ofN(p), which is the largest
open set in N(p); let us denote it by O(p). Observe that
O(p) consists of every point that regardsN(p) as its neigh-
borhood.

Now, we will generalize this idea to the First GrC
Model. Let NS(p) be the neighborhood system at p. Let
G(p) be the collection of all finite intersections of all neigh-
borhoods in NS(p). Let G be a variable that varies through
G(p).

Definition 11 With such a G, the previous equations
given above define the appropriate notions of C[X]; I[X];
Cl[X] for the First, Third and Fourth GrC Models.

We should caution here that in the Third GrC Model,
there is at most one neighborhood at each point, so there
is no “true” intersection.

Let N(p) represent an arbitrary neighborhood of
NS(p). Let CN (p), called the center set of N(p), consist of
all those points that have N(p) as its neighborhood. (Note
that CN (p) is the generalization of O(p) in TNS).

Now we will observe some harder question: Do the in-
tersections of neighborhoods at distinct points belong to
some G(p)?

Proposition 4 (Theorem of Intersections in NS)

1. N(p) \ N(q) is in G(p) D G(q),
iff CN (p) \ CN (q) ¤ ;.

2. N(p) \ N(q) is not in any G(p)8p,
iff CN (p) \ CN (q) D ;.

If we regard N(p) as a known basic knowledge, then we
should define the knowledge operations: Let ° be the “and”
operation of the basic knowledge (a neighborhood). For
technical reasons, the ; is regarded as a piece of the given
basic knowledge.
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Definition 12 (New operations in NS)

1. N(p) ı N(q) D N(p) \ N(q), iff CN (p) \ CN (q) ¤ ;.
2. N(p) ı N(q) D ;, iff CN (p) \ CN (q) D ;.

Observe that BNS is a special cases of NS. So we have:

Definition 13 Let B be a BNS, then

1. B(p) ı B(q) D B(p) D B(q), iff CB(p) D CB(q).
2. B(p) ı B(q) D ;, iff CB(p) \ CB(q) D ;. Note that

B(p) \ B(q) may not be empty, but it is not a neigh-
borhood of any point.

Observe that in Binary GrC Model, two basic knowledges
are either the same or the set theoretical intersection does
not represent any basic known knowledge.

5) Higher Order Concept Approximations

In the Fifth GrC model, we consider the relations (sub-
sets of product space) as basic knowledge. Any subset in
a product space is a new unknown concept. We will il-
lustrate the idea in the following case: Uj is either a copy
of V or U. Moreover, in each product space, there is at
most one copy of V , but no restrictions on the number of
copies of U. If a Cartesian product has no V component,
it is called a U-product space. If there is one and only one
copy of V , it is called a product space with unique V .

1. u and u1 are said to be directly related, if u and u1 are
in the same tuple (of a relation in ˇ), where u 2 U and
u1 could be an element of U or V .

2. u and u2 is said to be indirectly related, if there is a fi-
nite sequence ui ; i D 1; 2; : : : ; t such that (1) ui and
uiC1 are directly related for every i, and (2) u D u1 and
u2 D ut .

3. An element u 2 U is said to be v-related (v 2 V), if u
and v are directly or indirectly related.

4. v-neighborhood, Uv, consists of all the u 2 U that are
v-related.

In such a relational GrCmodel (Uj with uniqueV) induces
a map:

B : V ! 2U ; v ! Uv :

Such a map defines a binary neighborhood system (BNS),
where Uv is a v-neighborhood in U, and hence induces
a binary GrC model (U;V ; B). Next, we will consider
the case U D V and define

Definition 14 The high order approximations of the Fifth
GrC model are the approximations based on the v-neigh-
borhood system.

6) Concept Approximations in other Categories

In a category of functions, we will be interested in those
granular structures that have the universal approximation
property. For a category of Turing machines (algorithms),
it is still unclear how to define the concept approxima-
tions.

Future Directions

Granular Computing is still in its inception stage; possible
directions are wide open. Here we will focus only on those
issues that are touched in this article.

1) Developments of Categories
In this paper, a category based model is proposed as
the Formal Model for GrC. It can be specialized into
various models to realize all the classical examples, in-
cluding the first example, the granulation of the human
body. We should note that the claim on the realization
of the first example is not in printing form yet. How-
ever, the author feels that it is important to inform the
readers that is occurring.
The key to realize the first example is based on the
category of qualitative fuzzy sets or sofsets (this is
not a typo); please watch for new development. The
categories of functions, random variables (measurable
functions) and Turing machines must be developed,
too.

2) Developments of Granular Structures
Given a granular structure, we associate it with four
structures (including itself). Among them, quotient
and knowledge structures are mathematical conse-
quences of a granular structure (if it is givenmathemat-
ically). However, the linguistic structure is not a math-
ematical formalism but is a natural language formula-
tion. In this paper, there is no report on this direction.
We urge the readers to read Zadeh’s article.

3) Imported Concepts
For information integration (this may correspond to
Zadeh’s term, “organization”), we have illustrated the
idea imported from homological algebra. It is unclear
if we have imported the correct thinking; but it does
point out essential problems in granulate and conquer.

4) GrC and RST
RST has been served as the “model” of GrC develop-
ments. So, even there are a lot of similarities here, we
would like to caution the readers that there are fun-
damental differences. For example, the fundamental
views of uncertainty are quite different; Pawlak used
“unable to specify” as the base of uncertainty, while
GrC regards a granule as a unit of uncertainty (such as
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uncertainty in quantum mechanics) Also the approxi-
mation theories are different. Of course, there are other
differences; we skip.

5) GrC, Databases and Data Mining
As we have pointed out that the categorical structures
of databases and GrC are similar; at the same time, we
need to point out the differences in semantics. Nev-
ertheless, we are looking forward to the transfer of
database technology to GrC. For data mining, please
see the database section on the articles by this author
on deductive data mining using GrC, and mining deci-
sion rules using RST.

6) GrC and Fuzzy Logic
Most of the expositions have been based on classi-
cal sets (and fuzzifiable concepts). For more intrinsic
fuzzy view, we strongly recommend the readers to read
Zadeh’s article.

7) GrC and Clouding Computing
Theoretically, cloud computing can be related to the
GrC on the category of Turing machines. We expect
some strong interactions in near future.

As we have observed that GrC is deeply rooted in hu-
man thinking, we expect GrC will have many interactions
with wide variety of areas.
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Glossary

Granular computing Granular computing is a strategy of
problem solving. The basic idea of granular comput-
ing comes from the strategy of divide-and-conquer. It
is a twofold process: First it granulates a complex pro-
gram into granules and then it computes these gran-
ules and integrates results to form a solution to the
complex problem. Granulation of problems into gran-
ules is of different forms such as chucking, clustering,
partitioning, division, or decomposition, while gran-
ules are clumps of objects or points. Computations
with granules are either within granules or granule
with environment.

Neighborhood system Neighborhood system is a math-
ematical structure of granular computing to model
granules, and can be used to compute structure of
granules and/or between granules and ambient spaces.
A neighborhood system at a point is a framework to
capture the concept of “near” objects, and any subset
of objects can be approximated by a set of neighbor-
hoods. A neighborhood system defines a set of binary
relations, and a set of binary relationships can be used
to define a neighborhood system.

Fuzzy set theory Unlike the classic set theory where a set
is represented as an indicator function to specify if an
object belongs or not to it, a fuzzy set is an extension
of a classic set where a subset is represented as a mem-
bership function to characterize the degree that an ob-
ject belongs to it. The indicator function of a classic set
takes value of 1 or 0, whereas themembership function
of a fuzzy set takes value between 1 and 0.

Rough set theory The rough set theory deals with inexact
information systems. In an information system, a deci-
sion table consists of a set of objects which are charac-
terized by a set of condition attributes and decision at-
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tributes. Objects in the decision table can be classified
into equivalence classes using an indiscernibility rela-
tion, and equivalence classes are explored to approxi-
mate crisp sets of objects.

Data mining Data mining is a very important step of
knowledge discovery in databases to extract nontrivial,
previously unknown, and potentially useful patterns
that are hidden from large data sets. Data mining tasks
include classification and clustering analysis of objects
into categories, discovery of associations and correla-
tions among data items, characterization and summa-
rization of subsets of objects, finding sequential pat-
terns and similarities in ordered data, etc.

Software engineering Software engineering is an engi-
neering discipline that applies a systematic approach
to produce reliable and efficient software. Software de-
velopment process consists of different phases, includ-
ing requirements, analysis, design, specification, im-
plementation, testing, deployment, and maintenance.
Object-oriented methodology to software engineering
is based on several techniques and principles such as
inheritance, modularity, polymorphism and encapsu-
lation.

Definition of the Subject

Granular computing (abbreviated, GrC) is a general com-
puting paradigm that effectively deals with elements and
granules that are generated from elements. Granules are
vaguely viewed as generalized subsets of the universe of
discourse and may be in different forms such as classes,
clusters, groups, and intervals. The essence of GrC is to
build an efficient computational model for complex ap-
plications with huge amounts of data, information and
knowledge. Though the term has been proposed recently,
the basic ideas and principles of granular computing have
been explored in a variety of fields under the different
names such as divide-and-conquer, and have been exten-
sively applied in many problem solving disciplines such as
politics, sociology, economics, computational intelligence
with different forms either consciously or unconsciously
by human beings.

Research on GrC will not only reveal the computa-
tional structures of complex problems and systems, build
the mathematical foundations of complex problem solv-
ing, and formalize the common problem solving strategy,
but also help practitioners explore novel specific problem
solving strategies in special application domains. Addi-
tionally, by consciously using GrC strategies and heuris-
tics, human being has a better chance to find a good solu-
tion to a complex problem.

Introduction

The terminology of granular computing (GrC) was first
proposed by Professor T. Y. Lin in 1996 as a label of fam-
ily of theories, methodologies, and techniques in computa-
tional intelligence that make use of granules, although this
strategy can be dated back to the ancient time. Its basic
ideas and principles have been studied in various applica-
tion domains. Especially in the form of partitions, the the-
ory has been accumulated for hundred of years in mathe-
matics.

Before the term, granular computing, was invented,
some results and thoughts on granular computing had
been achieved. The explicit study of granular computing
is originated from Zadeh. In 1979, Zadeh [25] introduced
the notion of information granulation and suggested that
fuzzy set theory might find potential applications in this
regard.

Though the granular computing is focusing on the
non-partition theories, nevertheless, the partition case was
the main source of inspiration, especially the partition the-
ory in computer sciences. In 1982, Pawlak [21] proposed
Rough Set Theory (RST) to deal with inexact informa-
tion. It is an uncertainty theory using a very special form
of granules, called equivalence classes. It is primarily due
to the rough set theory (partition theory) that causes re-
searchers to realize the importance of generalized granular
computing notion.

In 1985, Hobbes [7] presented a theory of granular-
ity as the base of knowledge representation, abstraction,
heuristic search, and reasoning. In his theory the problem
world is represented as various grains and only interesting
ones are abstracted to learn concepts. The conceptualiza-
tion of the world can be performed at different granular-
ities and switched between granularities. Even though his
discussions mainly concentrated on the partition cases, his
model is more general than rough sets, and includes reflex-
ive and symmetric binary relations.

In 1988, from the approximation retrieval, Lin intro-
duced the notion of the neighborhood systems (NS) as
a model of uncertainty in database systems [10,11], where
a neighborhood is a unit of uncertainty. Lin studied the
mathematics foundation of the neighborhood system that
originates from the perspective of topology. A topological
neighborhood system attaches to every point a collection
of subsets that satisfy a set of axioms, called the axioms of
topology. Lin removed the axioms and extended the the-
ory to a quite general notion [12,13,14], where a neighbor-
hood system corresponds to a set of binary relationships.

In 1992, Giunchigalia and Walsh [4] presented a the-
ory of abstraction to improve the conceptualization of
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granularities, where granules are abstracted in hierarchical
levels so that relevant elements/attributes can be extracted
but irrelevant details are ignored.

In 1997, Zadeh [26,27] refined his information gran-
ulation, presented granular mathematics, and applied to
word computation. About the same time, Lin used the
term “granular computing” to label this growing research
field (1996). Since then, granular computing has received
more and more attentions and much research has been
conducted in various aspects of this area, and has begun
to play important roles in various fields, including ma-
chine learning and data mining, bioinformatics, e-Busi-
ness, network security, high-performance computing and
wireless mobile computing, information hiding, and so-
cial works [3,17,18,22,23,27]. International conferences
on Granular Computing sponsored by IEEE Computa-
tional Intelligent Society have been annually held since
2005 [8,28]. The essence of these models and applica-
tions has been addressed by researchers to build efficient
computational algorithms for handling huge amounts
of data, information and knowledge. The objectives of
these computation models are computer-centered and
mainly concern the efficiency, effectiveness, and robust-
ness of using granules such as classes, clusters, subsets,
groups and intervals in problem solving. In recent years,
some researchers have investigated the granular comput-
ing paradigm from perspectives of philosophy, cognitive
science, and human thinking as well as the general strate-
gies of interactions between granules and operations on
granule coverings.

Generally speaking, granular computing is a twofold
process: Granulation and computation, where the for-
mer transforms the problem domain to one with gran-
ules, whereas the latter computes these granules to solve
the problem. Granulation is a very natural concept and
appears almost everywhere in different names, such as
chucking, clustering, partitioning, division, decomposi-
tion, just to name a few. According to Zadeh [25] and
Lin [13],

“information granulation is a collection of granules,
with a granule being a clump of objects (points)
which are drawn towards an object. In other words,
each object is associated a family of clumps.”

Up to now, modeling and applying general GrC is not as
successful as desired, although some special models have
been innovated with great success. So it is immature at
this point to speculate what the general definition, prin-
ciple and methodology of granular computing should be.
Therefore, we will look at some concrete theories that may
be informally called granular computing. The discussion

will start from the neighborhood system and extend to the
fuzzy set system, the rough set theory, and the quotient
space. Then, the perspectives of granular computing in
data mining and software engineering will be introduced,
including granularity and granulation, granular relation-
ships, and computation with granules.

Neighborhood System:
AMathematical Structure of Granular Computing

According to Lin [12], granular computing can be math-
ematically structured as a neighborhood system, which is
abstracted from the geometric notion of “near” or “neg-
ligible distance”. Roughly, a neighborhood system assigns
each object in the universe a (possibly empty, finite, or in-
finite) family of non-empty subsets, called neighborhoods,
to represent the semantics of “near”. Neighborhoods play
the most fundamental role in granular computing and can
be considered as “granules”. A neighborhood is precisely
a topological term of “granules”, and a neighborhood sys-
tem is vaguely a topological space.

Neighborhood System

Fundamental notions on neighborhood systems were pre-
sented by Lin [12,13,14]. Assume U is the universe of dis-
course and p is an object in U.

1. An object x is a neighbor of p if x is “near” to p. The
notion “near” is a subjective judgment and can be se-
mantically interpreted in different ways, for example, if
they satisfy some relationship or condition. For a spe-
cific case, let’s consider a binary relationship R in U. x
is “near” to p, if xRp.

2. A neighborhood of p, denoted by N(p), in U is a non-
empty subset of U, which may or may not contain p.
A neighborhood system of p, denoted as NS(p), in U is
a family of neighborhoods of p. If p has no neighbor-
hoods, then NS(p) is an empty family.

3. A neighborhood system of U, denoted by NS(U), is the
collection of NS(p) for 8p 2 U . Formally, NS(U) D
fNS(p)j8p 2 Ug.

4. Consider two neighborhood systems of U, say NS1(U)
and NS2(U). NS1(U) is said a refinement of NS2(U),
if for any neighborhood N1 in NS1(U), there exists
a neighborhoodN2 in NS2(U) such that N1 � N2. Sim-
ilarly, NS2(U) is said a weak coarsening of NS1(U).
(see [13] for strong refinement and coarsening).

From above, one can see, a neighborhood system is in-
duced from the fundamental neighbors of objects, which
are imprecisely defined as “near” to. If the “near” is explic-
itly defined according to a single binary relation, the result
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neighborhood system is called a binary neighborhood sys-
tem.

A binary neighborhood system BNS is defined as
BNS D hU;B;Vi, whereU andV are two universes, and B
is a mapping function from U to V .

B : U ! V :

For 8v 2 V , let Bv denote the subset of U, that are source
of v under the map B, that is,

Bv D fuju 2 U and B(u) D vg :

Each Bv is called a basic neighborhood or a binary neigh-
borhood.

One can infer that each neighborhood system BNS D
hU;B;Vi defines a binary relation R � U � V : 8v 2 V
and u 2 U , uRv iff u 2 Bv � U . Thus the binary rela-
tion R is fully determined by B. Conversely B is fully deter-
mined by a binary relation R.

If B is a binary relation R � U � V , then for each ob-
ject v 2 V , the binary neighborhood in terms of v will be

Nv D fuju 2 U and uRvg :

This is a subset of U, whose all elements are related to v
by R.

A binary relation, in the usual sense, is a very special
form of a neighborhood system, where each object has ei-
ther zero or one neighborhood.

IfU D V and the mapping function B is considered as
a binary relation, then we have a simple binary neighbor-
hood system, denoted as BNS D hU; Ri.

For simplicity, we call this binary neighborhood sys-
temwith a binary relation as binary relation neighborhood
system (BRNS).

Let’s consider two binary relation neighborhood sys-
tems BRNS1 and BRNS2 built on the same universes,
where BRNS1 D hU; R1;V i and BRNS2 D hU; R2;Vi.
BRNS1 is said a weak refinement of BRNS2, if R2 � R1,
and a strong refinement if every neighborhood of BNS1 is
a union of neighborhoods of BNS2. On the other hand,
BRNS1 is said a weak/strong coarsening of BRNS2, if
R1 � R2.

Approximation

Assume BNS D hU;B;Vi is a binary neighborhood sys-
tem and X � U . X can be approximated by neighbor-
hoods of BNS.

Following topological spaces, the interior approxima-
tion, interior for short, of X is defined as either

Interior(X) D [x2XfN(x)jN(x) � Xg ;

or

Interior(X) D fxjx 2 U and 9N(x) � Xg :

Similarly, the exterior approximation, exterior for short,
of X can be defined as either

Exterior(X) D [x2XfN(x)jN(x)\ X ¤ ;g ;

or

Exterior(X) D fxjx 2 U and 8N(x)\ X ¤ ;g :

The interior of a subset X of the universe can be approx-
imated by the union of all neighborhoods of the universe
that are completely contained in the subset, or by a subset
of the universe that consists of all objects that have at least
one neighborhood contained in X; while the exterior of
a subset X can be approximated by the union of all neigh-
borhoods that have non-empty intersection with X, or by
a subset of the universe that consists of all objects whose
all neighborhoods have non-empty intersection with X.

A subset X of U is open if 8p 2 X, there is a neigh-
borhood N(p) � X. X is closed, if its complement is
open. A neighborhood system of p, NS(p), is open, if all
neighborhoods of p are open. A neighborhood system of
U;NS(U), is open, if 8p 2 U;NS(p) is open.

If the universe U is a topological space and a neigh-
borhood system of U;NS(U), is open, thenNS(U) also de-
fines the same topological space on U. In such a case, both
NS(U) and the collection of open sets are called topology.

An object p is a limit point of a set E, if every neigh-
borhood of p contains a point of E other than p. The set of
all limit points of E is called derived set. E together with its
derived set is a closed set.

One can easily verify that, NS(U) is discrete if every
NS(p) is singleton andNS(U) is indiscrete ifNS(U) is a sin-
gleton fUg.

A covering of U is an open neighborhood system
NS(U).

A partition of U is a covering of U, where 8p; q 2 U ,
and p ¤ q, eitherNS(p) D NS(q), or NS(p)\NS(q) D ;.

Rough Set System:
An Equivalence Neighborhood System

Let’s consider a special case of the binary neighborhood
system BNS D hU; Ri, where R is an equivalence binary
relation on U � U . For an element u 2 U , by definition,
the binary neighborhood of u is defined as

Nu D fxjx 2 U; and xRug :

Since R is an equivalence relation, Nu is the equivalence
class [u] induced by u with respect to R. Thus, the neigh-
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borhood system (the collection of all neighborhoods) will
be the family of equivalence classes induced by R.

Partition

Rough set theory was proposed by Pawlak in 1982 to deal
with inexact information by using rough sets to approx-
imate a crisp set [21]. By investigating the granularity of
knowledge from the point of view of the rough set theory,
one can view the rough set theory as a granular comput-
ing model based on partitions [22]. Basically, suppose U
is a finite and nonempty universe. Let R � U � U be an
equivalence relation on U. The pair hU; Ri is called an ap-
proximation space. The relation R is a special BNS; it can
be conveniently represented by a mapping BR from U to
the power set of U, and defined as

BR : U ! 2U ;

BR(x) D [x]R D fy 2 UjxRyg ; 8x 2 U :

The subset [x]R is the equivalence class containing x, and
is called an elementary subset. The family of all equivalent
classes, denoted byU/R D f[x]R j x 2 Ug, defines a parti-
tion of the universeU, namely, a family of pairwise disjoint
subsets whose union covers the whole universe.

From the perspective of the rough set theory, each
equivalence class is considered as a whole granule instead
of many individuals. With these elementary subsets, any
subset of U can be approximated.

Approximation

Let X be a subset of U and R be an equivalence relation
on U. The lower approximation of X based on R, denoted
by LowR(X), is defined as

LowR(X) D [fY 2 U/RjY � Xg ;

which contains all elementary subsets of U that are com-
pletely included in X.

The upper approximation of X based on R, denoted by
UppR(X), is defined as

UppR(X) D [fY 2 U/RjY \ X ¤ ;g ;

which contains all elementary subsets of U that have non-
empty intersection with X.

In the partition model, these forms of approximations
are equivalent to the interior and exterior defined in the
BNS, respectively. However, they are not appropriate to
be generalized to the NS. For example, in the topological
space, UppR(X) is always the whole space, no matter what
you choose.

Information Systems

The rough set theory has found its applications in data
mining, especially in classification and decision-making
problem domains, called information systems.

An information system IS is defined as: IS D hU;C;
D; fVaga2C[Dg; f i, where U D fu1; u2; : : : ; ung is a non-
empty set of objects (tuples), called data set or decision ta-
ble, C is a non-empty set of condition attributes, and D is
a non-empty set of decision attributes and C \ D D ;. Va
is the domain of attribute a with at least two elements. f is
a function: U � (C [ D)! V D [a2C[DVa , which maps
each pair of object and attribute to an attribute value.

Let A � C [ D, and t, s 2 U . A binary relation RA,
called an indiscernibility relation, is defined as follows:
RA D fht; si 2 U � Uj 8a 2 A; t[a] D s[a]g, where t[a]
indicates the value of attribute a 2 A of object t. The in-
discernibility relation, denoted by IND(A), is an equiva-
lence relation on U. With this equivalence relation RA,
one can construct a binary relation neighborhood system
hU; IND(A)i.

Let X be a subset of U in an information system
and represent a concept. X can be lower-approximated
and upper-approximated by finding its lower approxima-
tion and upper approximation using elementary subsets
of U/IND(A). The lower approximation of X contains all
objects in U which are definitely included in X, while the
upper approximation of X contains all objects in U which
are potentially included in X. On the other hand, one can
see that the complement of the upper approximation of X
contains all objects in U which are definitely excluded
by X. As a concept, X has its lower approximation as the
positive region, whereas the complement of its upper ap-
proximation as its negative region. From the perspective of
machine learning or classification, the positive region con-
tains the positive examples of X, while the negative region
contains the negative examples of X. Between the positive
region and the negative region is called the boundary re-
gion of X.

One main application of concept approximation using
granules in the rough set theory is to reduce the size of
a large decision table by finding an attribute reduct. A con-
dition attribute a 2 C is a core attribute of C in U with
respect to D if

8X 2 U/IND(D) ; LowIND(C)(X) ¤ LowIND(C�fag)(X) :

A reduct of the condition attribute set is a minimum sub-
set of it that has the same classification capability as itself.
Thus a reduct of the condition attribute set can be used to
represent the entire condition attribute set.
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Formally, a subsetA of C, A � C, is defined as a reduct
of C in U with respect to D if

8X 2 U/IND(D) ; LowIND(A)(X) D LowIND(C)(X) ;
and 8B � R ; LowIND(B)(X) ¤ LowIND(C)(X) :

A condition attribute a 2 C is said to be a reduct attribute
if 9B � C; B is a reduct of C and a 2 B. A reduct R of C is
called aminimum reduct ofC if8Q � R;Q is not a reduct
of C.

Assume P � C [ D and Q � C [ D, the positive re-
gion of Q with respect to P, denoted POSP(Q), is defined
as

POSP(Q) D [X2U /IND(Q) LowIND(P)(X) ;

which contains all objects in U that can be classified us-
ing the information contained in P. With this definition,
the degree of dependency of Q from P, denoted �P(Q), is
defined as �P(Q) D POSP(Q)/jUj, where jXj denotes the
cardinality of the set X.

The degree of attribute dependency provides a mea-
sure how an attribute subset is dependent on another
attribute subset. �P(Q) D 1 means that Q totally de-
pends on P; �P (Q) D 0 indicates thatQ is totally indepen-
dent from P, while 0 < �P(Q) < 1 denotes a partial de-
pendency of Q from P. Particularly, assume P � C and
Q D D, then �P(D) can be used to measure the depen-
dency of the decision attributes on a subset of conditional
attributes. The task of the rough set attribute reduction
is to find a subset of the conditional attributes that func-
tions as the original conditional attribute set without loss
of classification capability. This subset of the conditional
attribute set is called reduct. One can prove that R � C
is a reduct of C, if and only if POSR(D) D POSC (D), or
equivalently, �R(D) D �C(D).

Thus, an attribute reduct is such a subset of condition
attributes that the decision attribute has the same depen-
dency degree on it as that on the entire set of condition at-
tributes, and no attribute can be eliminated from it with-
out affecting the dependency degree. Given an informa-
tion system, however, for a given decision table, there may
exist more than one reduct. Each reduct can be used as
an alternative group of attributes to represent the original
information system. It has been proved that every reduct
must contain all the core attributes. However, finding all
reducts of the condition attribute set is unfortunately NP-
hard.

Quotient Space

There multiple reducts of condition attributes in an infor-
mation systemmay exist. Each reduct can be used to define

an equivalence relation. Thus it can be applied to construct
a quotient space. From the perspectives of mathematics
and topology, a quotient space is a space where equivalent
points are glued together, and therefore a new space can
be constructed.

Assume the universe of discourse U is a topological
space, R is an equivalence relation on U. U/R, the set of all
equivalence classes of R, is called a quotient space, where
the topology on U/R is defined as below:

A subset X � U/R is open if and only if their union
is open :

Topological properties of a quotient space as well as re-
lationships between quotient spaces have been studied to
identify and select attributes to form high-quality reducts.
The quotient space theory has also been explored to solve
information hiding, network security, and other prob-
lems [29].

Fuzzy Set System: A Fuzzy Neighborhood System

In this section, another special case of binary neighbor-
hood system is considered. Assume a binary neighbor-
hood system BNS D hU;B;Vi, where U is a universe of
discourse (the data space), V is a concept space, and B is
a mapping function from U � V to the unit interval. For-
mally,

B : U � V ! [0; 1] :

Since each point in the concept space is actually a con-
cept, and can be assigned a name, Lin [14] suggested that
this neighborhood system be defined as a 4-tuple system
hU;B;V ;Ci, where U, B, and V are the same as before,
while C is the concept name space. This system is called
a fuzzy granular structure, and each concept in the con-
cept space is a fundamental fuzzy clump or fuzzy neigh-
borhood. In the simple case, B is a fuzzy binary relation
and thus the 4-tuple system above is a single level granula-
tion, called a fuzzy binary granular structure.

Information Granularity

Information granularity with Fuzzy set was proposed by
L. A. Zadeh in 1979 [25] to provide a basis for the con-
struction of more general theories in which the evidence
is allowed to be fuzzy in nature. In the information granu-
larity, the data granules are viewed as a proposition in the
general form of

g : “X is G” is  ;
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where X is a variable taking values in a universe of dis-
course U;G is a fuzzy set of the universe and is charac-
terized by its membership function �G, and  is a fuzzy
probability characterized by a possibility distribution over
an unit interval.

A typical example of such a proposition is given in the
universe U of real numbers, as below:

g : “X is small” is likely ;

where the fuzzy subsetG is “small” and the fuzzy probabil-
ity  is a fuzzy subset of the unit interval.

Each fuzzy subset G of the universe can be gener-
ally understood as a concept, for example, “small”, “very
large”, “old”, “young”, etc. All concepts are put together to
form a concept space, denoted by C,

C D fG1;G2; : : :;GNg :

Each proposition g as above is considered as an evidence,
and all evidences compromise a collection of propositions,

V D fg1; g2; : : :; gNg ; where gi : “X is Gi” is i ;
i D 1; 2; : : :;N :

The proceeding information granularity can be character-
ized as a neighborhood system. Consider a mapping func-
tion B from U � V to [0,1], defined as:

B : U � V ! [0; 1] ;
B(x; g) D ��(�G(g)(x)) ; 8x 2 U and 8v 2 V :

where �G(g) is the membership function of the concept G
in the proposition g. Thus the 4-tuple hU;B;V ;Ci forms
a neighborhood system in the form of fuzzy binary granu-
lar structure.

A special case of fuzzy granules is called non-proba-
bility-qualified granule and in the form of “X is G”. In
this case, the corresponding fuzzy neighborhood system
can be re-written as a 4-tuple system FNS D hU;B;V ;Ci,
where U is the universe of discourse (data space), V is
a family of fuzzy subsets of U;C is the name space whose
names correspond to the fuzzy subsets in V , and B is
a mapping function:

B : U � V ! [0; 1] ;
B(x; v) D �v (x) ; 8x 2 U and 8v 2 V :

Consider the following example: U D f0; 1; 2; 3; 4; 5; 6; 7;
8; 9g, V D fV1;V2;V3;V4g, where (using discrete fuzzy

subset notation)

V1 D 1:0/0C 0:67/1C 0:33/2C 0/3C 0/4C 0/5C 0/6
C 0/7C 0/8C 0/9 ;

V2 D 0/0C 0:33/1C 0:67/2C 1:0/3C 0:67/4C 0:33/5
C 0/6C 0/7C 0/8C 0/9 ;

V3 D 0/0C 0/1C 0/2C 0/3C 0:33/4C 0:67/5C 1:0/6
C 0:67/7C 0:33/8C 0/9 ;

V4 D 0/0C 0/1C 0/2C 0/3C 0/4C 0/5C 0/6C 0:33/7
C 0:67/8C 1:0/9 ;

and the collection of words C D fLow;Median-Low;
Median-High;Highg to name fuzzy subsets V1, V2, V3,
and V4.

Conditional granules can be represented as fuzzy rules
such as “If X = u Then Y isG”. These kinds of granules can
also be represented as fuzzy set membership functions or
expressions of these functions [14].

Approximation

In a fuzzy neighborhood system FBS D hU;B;V ;Ci, the
concept space V (a family of fuzzy subsets of U) is also
called a fuzzy covering of U, and each v in V is called
a cover of U. For each u 2 U , v 2 V is called a funda-
mental fuzzy neighborhood of u, if B(u; v) D �v (u) > 0.
Since each object u in the data space U may have mul-
tiple fundamental fuzzy neighborhoods, u can be repre-
sented by a vector of these fundamental fuzzy neighbor-
hoods, called multi-valued representation for multi-level
granulation. All fundamental fuzzy neighborhoods of u,
put together, is denoted by FNS(u).

Given a fuzzy neighborhood system FBS D hU;B;
V ;Ci, a subset X of U can be approximated by a member-
ship function. The minimum approximation min(X) of X
in FBS can be defined as the following membership func-
tion:

�X(x) D minf�v (x)jv 2 FNS(x)g if x 2 X ;
and 0 otherwise :

Similarly, the maximum approximation max(X) of X
in FBS can be defined by the following membership func-
tion:

�X(x) D maxf�v (x)jv 2 FNS(x)g if x 2 X ;
and 0 otherwise :

One can see from above that the minimum (maximum)
approximation of a subset of U is a fuzzy subset of U that
minimizes (maximizes) the membership degrees of its ele-
ments to their fuzzy fundamental neighborhoods.
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Computing with words is to make inferences from
words to words and is a very important topic of infor-
mation granularity [27]. Fundamental neighborhoods can
also be linearly combined to approximate formal words
(concept names) [14]. Basically, let C D fC1;C2; : : :;Cmg

be the concept space of a fuzzy neighborhood system, and
V D fV1;V2; : : :;Vmg be the corresponding fuzzy subsets
of the universe U. Assume r1; r2; : : :; rm are real numbers.
Consider the following linear expression:

r1C1 C r2C2 C : : :C rmCm D
X

iD1;:::;m

riCi :

Mathematically, the collection of all such expressions
forms an abstract vector space, and each vector in the
space is called a formal word, corresponding to a new con-
cept. This new concept can be approximated by a fuzzy
subset of U, of which the membership function is de-
fined in terms of the membership functions �Vi ; i D 1;
2; : : : ;m, for example, the minimum approximation or
the maximum approximation discussed previously. The
membership function of the new concept can also be de-
fined as a linear combination of membership functions of
its all fundamental fuzzy neighborhoods, i. e.

�New Concept(x) D
X

iD1;:::;m

ri�Vi (x) :

In above example, a concept Median can be defined in the
middle between the concepts Median-Low and Median-
High, that is,

Median D 0  LowC 1/2 Median-Low
C 1/2 Median-HighC 0 High :

This concept (word) can be approximated by the fuzzy
subset defined below:

�Median D 1/2  �V2 C 1/2  �V3 ;

and the fuzzy subset is:

0/0C 0:16/1C 0:33/2C 0:5/3C 0:5/4C 0:5/5
C 0:5/6C 0:33/7C 0:16/8C 0/9:

Granular Computing in DataMining

Granular computing, as a strategy of problem solving and
human thinking, has been extensively applied in knowl-
edge discovery and data mining. For example, machine
learning is to interpolate data and integrate concepts based
on background knowledge that is viewed as granules. In

neural network computing, activation functions can also
be regarded as granules, and thus the propagation and pro-
cessing of activation functions can be viewed as a form of
computations with granules. A gene is a granule, genetic
algorithms process and transform genes which are actually
granules, and therefore genetic algorithms can also be con-
sidered as one form of granular computing. In this section
classification and clustering analysis and especially associ-
ationmining are reviewed from the perspective of granular
computing.

Granular Computing in Classification and Clustering

Classification problem is, given a training set of examples
with class labels, to construct a classifier that is able to as-
sign a class label to a new example without class label that
is not in the training set [6]. All examples are described
with a given set of attributes. On the other hand, cluster-
ing is partitioning a data set by the similarity into clusters.
Classes in classification and clusters in clustering are gran-
ules, subsets of examples, and the granulation is to parti-
tion the set of examples into granules. Computation with
classes is to induce classification rules to characterize each
class and predict the classes of future examples [9]. Simi-
larly, computation with clusters is to summarize or char-
acterize each cluster and discriminate between clusters.

The classification can be based on the refinement and
coarsening relationships between granules [24]. A gran-
ule g1 is defined as a refinement of another granule g2, or
equivalently, g2 is a coarsening of g1, if every sub-granule
or object of g1 is contained in some sub-granules of g2.
Partitions and coverings are two simple and commonly
used granulations of a universe. A partitioning of a uni-
verse is a collection of its non-empty and pair-wise dis-
joint subsets, whose union is the universe. On the other
hand, a covering of a universe is a collection of its non-
empty subsets that cover the whole universe. A partition-
ing is a special case of covering.

On the other hand, the clustering can be built upon
the similarity relationship [24]. Similarity between gran-
ules is a basic and fundamental granular relationship and
a key to forming an intrarelationship of a granule. Fur-
thermore, it can be used to measure closeness or nearness
amongst granules. Various measures can be exploited to
calculate the similarity between two granules, which can be
defined as the average distance between individuals in the
two granules, and the distance between individuals can be
measured as, for example, the Euclidean distance between
points, the Levenshtein edit distance between strings or
texts, the amino acid distance in biology, and the Maha-
lanobis squared distance between statistics data items.
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Granular Computing in Association Mining

Discovering association rules are another important area
of data mining. The basic task of mining association rules
is to find frequent itemsets which are granules, and then
extract associations or correlations between items in the
frequent itemsets, which is the computation with granules.

An association rule is an implication of the form
A! B, where A and B are subsets of regarded attributes,
and A\ B D �. For different types of attribute values the
implication of the association form may have different
meanings. The problem of mining association rules can be
interpreted from the perspective of granular computing.

Mining association rules in large databases was first
presented by Agrawal, Imielinski, and Swami in 1993 [2]
to solve the basket data problem, in which, given a large
database of customer transactions (basket data) that con-
sist of items purchased by customers, significant associa-
tions between items are pursued. For example, “most often
transactions that purchase bread and butter also purchase
milk”, and “a customer purchasing tea is likely to also pur-
chase coffee”. These significant associations are described
as a set of association rules and quantitatively measured
with support and confidence.

Formally, let I D fI1; I2; : : :; Img be a set of items, each
Ik being an item, where m is the number of items. Let D
be a database of transactions, where each transaction cor-
responds to a tuple in D, denoted by T. A transaction T is
a set of items represented as a binary vector, with T[k] D 1
if T contains the item Ik, and T[k] D 0 otherwise, for 1 �
k � m. Assume X � I is a subset of items in I. A transac-
tion T satisfies X if for all items Ik 2 X; T[k] D 1.

In the basket data problem, an association rule is of the
form X ! Y , where X;Y � I, and X \ Y D �. The rule
X ! Y holds in D with confidence c if at least c% transac-
tions in D that contain X also contain Y , and support s if
at least s% transactions in D contain X [ Y .

The task of mining association rules in D is to generate
above implications with support and confidence greater
than or equal to the user-specified support threshold ı and
confidence threshold � respectively. Confidence is a mea-
sure of the rule strength, while support corresponds to
statistic significance.

The problem of mining association rules can be de-
composed into two subproblems:

1. Discovering all frequent itemsets: A subset X of I is
a frequent itemset if its support is at least ı;

2. Generating association rules: For each frequent item-
set X, construct implications of the form X � Y ! Y ,
for all Y � X. If the confidence of such a form is at least
� , it is considered as an association rule.

Currently many approaches to solving the basket data
problem have been developed and efficient algorithms
have been implemented. The classical solution exploits
level-wise search to generate all candidate frequent item-
sets and then prunes them [1]. The level-wise methods are
based on the observation that if an itemset is frequent then
all of its subsets are frequent. Thus, the basic idea is to eval-
uate 1-itemsets first, find frequent singleton itemsets, and
then evaluate their supersets 2-itemsets, and so forth. Such
evaluations are repeated until no frequent itemset is found
or the size of the itemsets approaches some threshold.

Louie and Lin reformulate the association relations
into bit datamodel [19] and Lin also reformulates these re-
lations into granular model [15] which has been extended
to a theory of attributes (features) [16].

From the perspective of granular computing, associa-
tion rule mining can be formalized as a binary neighbor-
hood system BNS D hI; B;Di, where the universe of dis-
course is the set I of all items, transaction database D (the
collection D of tuples) is a subset of the power set of I, that
is, D � 2I , and the binary relation B can be understood as:
For all items i and j, iBj, if and only if there exists an tuple
inD that contains both i and j.D forms a covering of I, but
not a partition of I.

An itemset X � I can be approximated by a subset
C(X) of D, where C is defined as

C(X) D fY jY 2 D ; X � Yg ; for all X � I :

X is a frequent itemset, if the cardinality of C(X), denoted
by jC(X)j, is greater than or equal to the support thresh-
old ı. A frequent itemset is called granule. The level-wise
search process can be applied to find all granules.

The computation with granules in generating associa-
tion rules is mainly within granules. For each subset Y of
such a granule (a frequent itemset) X, one can find the ap-
proximation C(X) and C(Y) of X and Y respectively. The
confidence of implication X � Y ! Y can be calculated as
jC(X)j/jC(Y)j.

Granular Computing in Software Engineering

In software engineering, the strategies of granular com-
puting have been broadly used in all phases. The Gran-
ulate-and-conquer is a softer version of classical divide-
and-conquer strategy that employs recursive algorithms
to solve problems. A very common technique used in the
classical “non-partitioning” recursive call is dynamic pro-
gramming. Functional decomposition is to partition user
requirement into granules (functions). Structured pro-
gramming is to organize the computer programs as a col-
lection of modules (procedures, functions, routines). The
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intrarelationships among these granules are based on their
ingredients such as input parameters, output results, exe-
cutable statements, whereas the interrelationships involve
the module interfaces and procedure calls. In object-ori-
ented programming, granules are classes, intrarelation-
ships are the interactions between components of classes
such as instance fields, methods and constructors in the
Java language; and the interrelationships are class inher-
itance, aggregation, association, delegation, dependency,
etc.

In this section, the different phases of modern software
engineering process are investigated from the granular
computing perspective, based on object-oriented method-
ology [20], including requirement analysis, system analy-
sis, design, and implementation.

User Requirements

In the object-oriented methodology, user requirements
analysis involves two main aspects: Identifying business
actors and use cases. Both aspects can be conducted with
granular computing paradigm. However, only identifying
use cases will be investigated in this subsection.

Basically, each use case is a snippet of the business and
may involve two-way communication between actors and
the system. If the business requirement is considered as
the problem domain, then the use cases will be the gran-
ules. Although there’s no a set of rule for deciding how
to granulate the business into use cases and most analysts
partition the business process into use cases based on com-
mon sense, business logic, and their experience. The ba-
sic ingredients of the business requirement analysis from
the granular computing perspective can be summarized as
follows.
Granules: Use cases.
Granulation method: Top–down decomposition for

complete covering and bottom–up combination to
form a hierarchy of use cases.

Granular relationships: Some relationships between use
cases can be recognized. For example, inheritance
is a specialization and generalization relationship in
which a large case is decomposed into small cases or
a set of small cases are combined to constitute a large
case. Inheritance is often referred as an is-a relation-
ship: A granule g1 is a special case of another granule
g2. The is-a relationship plays a very important role in
the object-oriented methodology and concept analy-
sis, since “g1 is-a g2” reveals that g1 inherits all features
and functions of g2 [24]. Other relationships between
use cases include: Inclusion where the source case has
some of its steps provided by the target case, and ex-

tension where the source case adds steps to the target
case [20].

Granular computation: Identifying the process of use
cases, including input data, output data and business
logic, as well as the communication with actors.

System Analysis

The basic goal of system analysis is to find candidate
classes that describe the objects that might be relevant to
the system, relationships between the classes, as well as at-
tributes for the classes. With granular computing termi-
nology, classes are granules that all together should cover
the system requirement and satisfy the needs of use cases
that have been identified before. The ingredients of sys-
tem analysis from the granular computing perspective are
summarized as follows:
Granules: Classes.
Granulation method is to identify classes. Candidate

classes are often indicated by nouns in the use cases
except those that represent the system, actors, bound-
aries, and trivial types. Two basic rules should be fol-
lowed to identify classes: High cohesion inside classes
and low coupling between classes. Class identification
might be top–down and/or bottom–up, but the general
complete coverage is necessary.

Granular relationships correspond to class relationships,
which can include the following types [20]: Inheritance
(is-a relationship) where a subclass inherits all of the
attributes and behavior of its superclass(es); associa-
tion, where objects of one class are associated with
objects of another class; aggregation (strong associa-
tion), where an instance of one class is made up of
instances of another class; composition (strong aggre-
gation) where the composed object can’t be shared by
other objects and dies with its composer; and others as
well.

Computation with granules is two-fold. First, deter-
mine the internal structure and behaviors of ob-
jects of classes, including the instance fields and
method/constructor prototypes; and second, interface
the connections between classes. Associating classes
often affects the design of internal structures of classes.

System Design

Basically the software system design is to decompose a sys-
tem into physical and logical components, and determine
the technologies to be used to implement the system.
Traditional system design focuses on the system func-
tional partitioning, while modern software system design
is based on object-oriented technology. In this subsection,
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object-oriented system architecture design and technology
are discussed from the perspective of granular computing.

System design involves multiple steps, including sys-
tem topology, software partitioning, concurrency and se-
curity policies as well as communications between com-
ponents. The following discussion will concentrate in the
topology design and system partitioning.

The first task of current object-oriented system de-
sign is normally to determine the topology of a networked
system. One popular system topology is the three-tier or
multi-tier architecture to separate user interfaces, program
logic and data in the system. In the three-tier architec-
ture, the client tier presents the user interface to the user
so that he/she can enter data and view results; the mid-
dle tier – also known as the business logic tier or server
tier – runs multi-thread program code using large proces-
sors and lots of memory; and the data tier stores the data
and provides safe concurrent access to it, typically with the
help of a database management system. Thus, the system
is granulated into three components. Besides the design of
these three tiers, the protocols between tiers are also im-
portant.

To granulate the software, thus, object-oriented system
design partitions the system components into layers: User
Interface, Control, Network, Server, Business, Persistence,
and Database.

System Implementation

Software system implementation can also be viewed from
the perspective of granular computing. The typical pro-
gram structure in object-oriented software system is ac-
tually a granular structure. Consider a Java-based software
system, which can be characterized as follows:

Software system
Packages
Classes

Instance fields
Constructors
Methods

Interfaces
Method prototypes

In this structure, a software system is designed as a set
of packages, which may be installed in different physical
devices. Each package contains a set of interfaces whose
subgranules are method prototypes and a set of classes
which is partitioned into three types of components: in-
stance fields, constructors, and methods.

During the design of classes, algorithms are one of
designer’s main concerns. Granular computing is also an

important strategy for this purpose. Let’s consider the di-
vide-and-conquer technique that is frequently used in al-
gorithm design. The general paradigm of divide-and-con-
quer [5] is
Divide: Divide the problem S in two or more disjoint sub-

sets S1; S2; : : :
Recur: Solve the subproblems recursively.
Conquer: Combine the solutions to S1; S2; : : :, into a so-

lution to S.
The base cases for the recursion are subproblems of constant
size.

In the above paradigm, each subproblem is a granule,
which can be granulated further into smaller subproblems.
Granulation process usually follows the top-down method
and the obtained granules should completely cover the
parent problem. The granularity constitutes a hierarchy,
where the top is the problem originally given, while at the
bottom are all base cases. The computing with granules
consists of not only dividing a non-base problem or solv-
ing a base problem but also combining solutions to sub-
problems to form a solution to the parent problem.

Another important general algorithmdesign paradigm
is dynamic programming, which is actually a special case
of divide-and-conquer, and thus a granular computing
strategy. Themain difference between them is: divide-and-
conquer solves each subproblems individually, while dy-
namic programming stores solutions to all subproblems
so that when a subproblem is reencountered, the solution
can be obtained directly without resolving it.

Future Directions

In this paper, basic principles andmodels of granular com-
puting were briefly summarized. The ingredients of gran-
ular computing were investigated in terms of granulation
methods and criteria, granular relationships, and compu-
tations with granules as well. Data mining technologies,
especially association and correlation mining, and object-
oriented technologies were reviewed from the perspective
of granular computing. Granular computing methodology
has attracted researchers and practitioners from various
fields, but the unified architecture and generally accepted
framework of granular computing have not been estab-
lished. It is still an open question what granular comput-
ing is and how granular computing is performed. To an-
swer such kind of questions, the future research on granu-
lar computing will be focusing on the following directions.
Foundations of granular computing: The mathematical

foundation of granular computing will be one of im-
portant research topics, which will develop the gran-
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ular structures of granules, granular relationships be-
tween granules, and computation with granules from
the point of view of mathematics. Neighborhood sys-
tems, fuzzy set theory, rough set theory, and quo-
tient space theory have initialized this research direc-
tion, but from different concerns and computing tasks.
Granulation is based on partitioning and covering in
terms of the nature of applications. Although it is dif-
ficult to propose a general process for granulation and
in most applications granulation is performed by hu-
man experts, the basic principles and rules will be built
for practitioners to follow. For example, granulation
should meet the universal approximation properties.
The infinite input space is granulated into finite gran-
ules, but finite granules should be able to approximate
the universe of discourse in some ways.

Framework of granular computing: The hierarchical
structure of granular computing will be established to
represent the granules, relationships between granules,
and computation with granules from the point of view
of machine-centered computations. This research is
originated from human thinking and problem solving
and will be developed from philosophy, psychology,
and behavior sciences. The general framework of gran-
ular computing will concentrate in the granulation and
granules transformation.

Information integration: Basically, granular computing
granulates complex problems into subproblems, con-
quer subproblems, and integrate solutions to subprob-
lems to obtain the solution to the original complex
problem. Granulate-and-conquer is the natural exten-
sion of the divide-and-conquer strategy, and addresses
the integration of the subsolutions on granules into
the total solutions on the original problem. For gen-
eral granular computing, it is possible that two dis-
tinct problems be granulated into the same collection
of granules. Different integrations of the same subso-
lutions may lead to the different results.

Applications of granular computing: Granular comput-
ing is strongly domain dependent. For example, in
fuzzy logic control, the unknown control functions can
be expressed by the membership functions of fuzzy
granules; in structural programming, the program-
mers partition the functions according to their ex-
perience and background knowledge; while in rough
set theory, the indiscernibility equivalence relation is
provided in priori by experts and unknown concepts
are approximated by equivalence classes. These ex-
amples demonstrate that granulation is not algorith-
mic and strongly domain dependent. Similarly, com-
putation with granules is dependent on the domain

knowledge and the computation task. Extracting the
common properties and features of granular comput-
ing in various application domains will be emphasized
to enhance the general framework of granular com-
puting and contribute to the foundation of granular
computing.
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Glossary

Social networking community A community of individ-
uals (users) that are connected based on mutually
shared activities, beliefs, goals, or relationships.

Profile A user-controlled web page that contains a picture
of a community user along with various pieces of per-
sonal information for that user. This is often the online
representation of an individual in a social networking
community.

Friend request A communication mechanism that allows
community users to initiate connections between their
profiles and the profiles of their friends.

Definition of the Subject

Online social networking communities are connecting
hundreds of millions of individuals across the globe and
facilitating new modes of interaction. Due to their im-
mense popularity, an important question is whether these
communities are safe for their users. In this paper, we ad-
dress this safety question and show that social networking
communities are susceptible to numerous attacks. Specifi-
cally, we identify two attack classes: traditional attacks that
have been adapted to these communities (e. g., malware
propagation, spam, and phishing) and new attacks that
have emerged through malicious social networking pro-
files (e. g., rogue advertising profiles and impersonating
profiles). Concretely, we describe examples of these attack
types that are observable in MySpace, which is currently
the most popular social networking community.

Introduction

Over the past few years, social networking communities
have experienced unprecedented growth. Communities
such as MySpace and Facebook are connecting people in
a variety of new and exciting ways, and as a result, individ-
uals are attaching an increasing amount of value to their
online personas. Unfortunately, the rising importance and
prominence of these communities have also made them
prime targets for attack by malicious entities.

We observe two distinct attack classes that threaten
social networking communities and the privacy of their
users. First, traditional attacks that have plagued Internet
users for many years (e. g., malware propagation, spam,
and phishing) have been adapted to take advantage of
the unique properties of online communities. These tradi-
tional attacks are thriving in their new environment, and
the severity of these attacks promises to grow as attack-
ers become more sophisticated. The second attack class
consists of new attacks that have emerged from the very
fabric of these communities. One prominent example is
the use of deceptive profiles (e. g., rogue advertising pro-
files and impersonating profiles) that are becoming more
widespread, difficult to detect, and extremely costly to le-
gitimate community members.
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In this paper, we provide detailed descriptions for each
of these attack classes, andwe show that the continued suc-
cess of social networking communities is contingent upon
their ability to mitigate the risks associated with these at-
tacks. For concreteness, we describe attacks that are ob-
servable in MySpace, which is the most popular social
networking community in terms of unique visitors (more
than 65 million in February 2008) [3], total traffic (4.29%
of all US Internet visits in February 2008) [6], and user
base (more than 110 million active accounts as of Febru-
ary 2008) [14]. Our observations show the practical impor-
tance of these attacks and their impact onmillions of users.
Additionally, since other social networking communities
are both functionally and structurally similar to MySpace,
the attacks we describe can be easily adapted to most (if
not all) social networking communities.

The rest of the paper is organized as follows. Sect.
“Background on Social Networking Communities” pro-
vides background information about social networking
communities. In Sect. “Traditional Attacks Targeting So-
cial Networking Communities”, we describe traditional at-
tacks that have adapted to target social networking en-
vironments, including malware propagation, spam, and
phishing. In Sect. “New Attacks Against Social Network-
ing Communities”, we present new attacks that specifically

Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities, Figure 1
Example MySpace profiles. In a, the profile is publicly accessible. In b, the profile is private

target social networking communities by utilizing decep-
tive profiles such as rogue advertising profiles and imper-
sonating profiles. Sect. “Future Directions” concludes the
paper.

Background on Social Networking Communities

Social networking communities provide an online plat-
form for people to manage existing relationships, form
new ones, and engage in a variety of social interactions.
Typically, a user’s online presence in these communities
is represented by profile, which is a user-controlled web
page that contains a picture of the user along with var-
ious pieces of personal information. Profiles connect to
other profiles through explicitly declared friend relation-
ships and numerous messaging mechanisms.

An example of a MySpace profile is shown in Fig. 1a.
Some of a profile’s personal information is mandatory
(e. g., the user’s name, age, gender, location, etc.), and
some of it is optional (e. g., the user’s interests, relationship
status, occupation, etc.). To facilitate self-expression, each
profile also has free text “About me” and “Who I’d like
to meet” sections, and users are allowed to embed various
objects in their profiles such as pictures, audio clips, and
videos. In addition to personal information and embedded
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content, a user’s profile also contains a list of links to the
profiles of that user’s friends. These friend links are bidi-
rectional because a link is established only after both par-
ties acknowledge the friendship. To initiate a friendship,
a user sends a friend request to another user. If the other
user accepts this request, the friendship is established, and
a friend link is added to both users’ profiles.

Aside from friend requests, MySpace provides a num-
ber of other communication facilities that enable users
to communicate with each other within the community.
These facilities include messaging, bulletin, commenting,
blogging, and instant messaging (IM) systems. The mes-
saging system allows users to exchange intra-community
email messages with any other user (i. e., both friends and
strangers). The bulletin system is essentially an exclusive
bulletin board that only a user’s friends can view, enabling
users to communicate with all of their friends at once.
Users can post comments on their friends’ profiles using
the commenting system, and the blogging system allows
users to maintain blogs on their profiles, which other users
can read and comment on. Finally, the IM system provides
users with a mechanism to send intra-community instant
messages to any other user.

Due to the wealth of private information that is ac-
cessible on user profiles and the various means of com-
munication that are available, MySpace provides mecha-
nisms to protect the privacy of its users. First and fore-
most, users have the ability to choose between making
their profiles publicly viewable (the default option) or pri-
vate. If a user’s profile is designated as private, only the
user’s friends are allowed to view the profile’s detailed per-
sonal information (e. g., the user’s interests, blog entries,
comments, etc.). However, as Fig. 1b shows, a private pro-
file still reveals the user’s name, picture, headline, gender,
age, location, and last login date. MySpace also provides
a few finer-grained privacymechanisms. Users can control
who is allowed to IM them (everyone, only friends, or no
one) and who is allowed to leave blog comments (every-
one or only friends). Users can also maintain a block list
to prevent specific users from contacting them at all. Un-
fortunately, as we will see in the following sections, these
privacy mechanisms have been unable to prevent a num-
ber of attacks.

Traditional Attacks Targeting
Social Networking Communities

Since social networking communities include communi-
cation facilities that are fundamentally similar to tradi-
tional means (i. e., email, blogs, instant messaging, etc.),
many of the attacks that are effective against those tradi-

tional communication media have been adapted to exploit
social network communications. Due to the massive size
of many social networking communities, their tightly con-
nected nature, and their relatively naïve user bases, these
communities are target rich environments for attackers.
In this section, we describe three of the adapted attacks
that have been observed in MySpace: malware propaga-
tion, spam, and phishing.

Malware Propagation

Malware creators aim to spread their malicious content to
as many victims as possible. Since MySpace is the most
popular community on the web, it has become a prime tar-
get for malware propagation. In fact, over the past couple
of years, MySpace was attacked by at least one instance of
each of the following malware categories: worms, spyware,
and adware. For the remainder of this section, we will de-
tail the most interesting occurrences of these attacks, and
we will explain the threats they pose to social networking
communities.

Worms The most successful example of rapid worm
propagation in a social networking community occurred
in MySpace on October 4, 2005. The worm was called the
“Samy worm,” and it generated more than a million friend
requests for its creator (Samy) over the course of a sin-
gle day. The basic operation of this worm was quite sim-
ple but extremely clever [11]. First, Samy wrote the worm
using Javascript, and then, he embedded it in his My-
Space profile. MySpace disallows users from adding scripts
to their profiles by filtering scripting tags and remov-
ing specific strings (e. g., “javascript”). To evade these fil-
ters, Samy exploited the behavior of popular web browsers
such as Internet Explorer. Specifically, he hid the code in-
side a Cascading Style Sheet (CSS) tag and obfuscated the
strings that MySpace would filter (e. g., “javascript” be-
came “java\nscript”). Thus, even though MySpace had se-
curity mechanisms in place, the lax security of certain web
browsers allowed the obfuscated code to execute success-
fully.

When a MySpace user accessed Samy’s profile, the
embedded Javascript code sent Samy a friend request on
that user’s behalf. The code also embedded itself in the
user’s profile (in the samemanner that it was embedded in
Samy’s profile). Consequently, when other MySpace users
visited the newly infected profile, the code would send
Samy friend requests from those users and propagate itself
to their profiles. As Samy described it, “If 5 people viewed
my profile, that’s 5 new friends. If 5 people viewed each of
their profiles, that’s 25 more new friends.”
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Fortunately, this worm was relatively harmless for its
infected users because it only affected their MySpace pro-
files and not their actual machines. However, the same
cannot be said for MySpace. Due to the worm’s viral
growth pattern, the MySpace administrators were forced
to temporarily shut down the site to stop the worm’s
propagation and remove the worm’s code from the in-
fected users’ profiles. The service outage was relatively
brief, but this incident clearly illustrates the potential dam-
age that social networking worms are capable of inflicting.
Specifically, this worm teaches two very important lessons.
First, the success of the worm’s obfuscated code clearly
highlights the importance of web site security as well as
web browser security. A delicate balance exists between
functionality and security, and this balance must be re-
spected when designing and developing online commu-
nities. Second, the worm’s propagation speed showcases
how quickly the entire community could become infected.
In this case, more than a million users were affected in less
than 24 hours.

A much more dangerous social networking worm ap-
peared on MySpace in the middle of July 2006. Similar to
the Samy worm, this worm propagated itself through the
profiles of unsuspecting MySpace users. However, unlike
the Samyworm, this worm’s code was hidden inside amal-
formed Shockwave Flash (.swf) file that directly exploited
a vulnerability on users’ machines. Additionally, instead
of generating innocuous friend requests, this worm actu-
ally redirected users’ web browsers to a politically charged
blog posting.

The manner in which this worm spread is as follows.
First, the worm’s creator generated a malformed .swf file
and embedded it in a MySpace profile. This .swf file ex-
ploited a critical vulnerability in Macromedia Flash Player
v8.0.24.0 and earlier versions, which allows an attacker to
execute code on an affected machine. When a MySpace
user with a vulnerable Macromedia Flash Player accessed
the profile, the code in the .swf file automatically redirected
the user’s browser to a blog posting that contained political
propaganda. Finally, the code propagated itself by embed-
ding a copy of the .swf file in the infected user’s profile.

This worm was also relatively harmless; however, it
was far more troubling than the Samy worm because it ac-
tually exploited a vulnerability on users’ computers, which
allowed it to execute code. Fortunately, the worm’s cre-
ator was only interested in spreading political ideals be-
cause nothing prevented the worm from installing any
number of malicious utilities on its victims’ machines. For
example, the worm could have installed spyware or ad-
ware, and it could have even zombified the infected ma-
chine (i. e., compromise the computer and enlist it in a bot-

net [4]). Combine these frightening, yet completely realis-
tic, scenarios with the viral propagation patterns of these
worms, and it becomes immediately obvious how devas-
tating worms could be in a social networking environment
and why they must be prevented.

Spyware Although spyware has yet to be distributed
within the payload of a social networking worm, it has al-
ready made a few appearances in social networking com-
munities. The most prominent example of spyware ap-
pearing in MySpace occurred towards the beginning of
July 2006. At that time, an advertisement for deckouty-
ourdeck.com, which contained a malformed Windows
Metafile (.wmf) image, was inserted into one of the ad net-
works that MySpace uses. This malformed .wmf image ex-
ploited a critical vulnerability in the Graphics Rendering
Engine of Windows, which allows remote code execution.

MySpace displays an ad banner, which is randomly se-
lected fromMySpace’s supplying ad networks, at the top of
every profile. When a user accessed a profile that displayed
the deckoutyourdeck.com ad, the user was prompted to
download the embedded .wmf image. Figure 2 shows
a screenshot of this prompted download. If the user was
running an unpatched version of Windows, the .wmf file
installed an assortment of programs, including known
spyware utilities such as PurityScan [9]. These spyware
utilities pose a serious threat to the user because they track
the user’s web browsing behaviors, and they install various
other third-party applications without the user’s consent.

Unfortunately, despite the fact that Microsoft released
a patch for this vulnerability more than six months before
the ad appeared on MySpace, over a million users were
affected. Thus, this incident reveals two very important
points. First, many users have a false sense of security in
these communities. One of the most basic secure brows-
ing principles is never to download questionable content,
yet more than a million users gladly accepted this suspi-
cious (and completely unsolicited) download request. Sec-
ond, an alarming number of users are not vigilant about
protecting themselves against security threats. This inci-
dent proves that at least a million users neglected to install
security patches for more than six months. Therefore, so-
cial networking communities must assume that their users
are completely vulnerable and take every precaution nec-
essary to protect them from malicious content.

Adware An interesting instance of adware appearing in
MySpace occurred around the same time as the previ-
ous spyware example. A security researcher was brows-
ing MySpace profiles and found two that were named af-
ter a known adware company called “Zango” (formerly



Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities G 4371

Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities, Figure 2
Embedded .wmf image within a deckoutyourdeck.com advertisement

known as “180solutions”). Both profiles were created to
deceive users into downloading and installing the Zango
Search Assistant and Toolbar (two known adware pro-
grams) [2]. The first profile claimed that the programs
could “protect kids from predators,” and the second pro-
file was even more deceptive.

When a user accessed the second Zango profile,
a popup with a license agreement immediately launched,
asking the user to accept the license in order to play a video
file. This license popup is shown in Fig. 3. If the user
accepted the license by clicking the “Play Now” button,
a video file began to play, but secretly, the Zango Search
Assistant and Toolbar were also installed on the user’s sys-
tem.As Fig. 3 illustrates, this popup contained a number of
deceptive elements. First, the popup did not explicitly in-
dicate that an installation was taking place. The text in the
top-left corner of the popup mentions the Zango Search
Assistant and Toolbar, but it does not tell the user that they
will be installed. Additionally, none of the popup’s buttons
mention an installation. Instead, they are entitled “Play
Now” and “Play,” which implies that the only action will
be the play-back of a video file. Finally, the most promi-
nent features of the popup are the video’s preview window
in the top-right corner and the “Play Now” button. The
actual license agreement and its preselected checkbox are
positioned at the bottom, where they are likely to be over-
looked. Consequently, many users played the video before
they noticed the license agreement, and the adware was
successfully installed on their machines.

According to Zango, both profiles were created by
a Zango developer that was acting against the company’s

policy of not targeting MySpace. As a result, the decep-
tive video clip was removed, and the company released
a public apology. However, this occurrence clearly illus-
trates the potential for abuse by adware companies in so-
cial networking communities. Additionally, the success of
this deception further illustrates the naïvety of users and
the need for these communities to provide effective secu-
rity mechanisms that protect against malicious content.

Spam

In addition tomalware propagation, another type of attack
on traditional communication media (e. g., email, blogs,
instant messaging, etc.) is spam. Since MySpace provides
similar communication facilities, they are also susceptible
to spamming abuse. In fact, almost all spamming activities
that occur outside the community can be recreated inside
the community. To aggravate the problem, spammers can
also use the profile information posted by users to target
them outside the social networking community. Although
MySpace’s Terms of Use Agreement prohibits users from
providing contact information such as email addresses and
URLs on their profiles, many users still do so at their own
peril. Consequently, spammers can use that information
to spam those users using traditional techniques.

Spamming relies on the open nature of communica-
tions; thus, the vulnerabilities of MySpace’s communica-
tion facilities are proportionate to the openness of their
access. On the conservative side, the commenting and bul-
letin systems are the most spam resistant because they can
only be used by a user’s friends. The blogging, IM, and
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Deceptive Zango popup license agreement

friend request systems also provide the option of disallow-
ing non-friends from using them to contact a user, but this
protection is not enabled by default. Thus, these three sys-
tems are more susceptible to spamming because any user
can use them to contact other users that have not enabled
this protection. The messaging system is the most vulner-
able to abuse because it does not provide an effective spam
prevention mechanism. It allows users to report a message
as being spam, but those users have no assurances that im-
mediate action will be taken. Therefore, users may receive
a number of spam messages before MySpace administra-
tors eliminate the offending spammer from the system.
MySpace also provides a general block listing mechanism
that allows users to completely prevent all communication
from specific users. However, this feature is ineffective due
to the ease with which users can create new MySpace pro-
files (i. e., if spammers have been blocked, they can create
new profiles and continue their spamming activities unde-
terred).

Spammers abuse these communication systems for the
same reason they abuse traditional communication facil-
ities: promotion. Spammers want to expose their prod-
ucts, web sites, and viewpoints to as many individuals as

possible, and spamming provides them with a technique
to accomplish that goal. For social networking communi-
ties, this spamming activity represents a huge problem for
a couple of reasons. First, spam content wastes a signifi-
cant amount of resources, including storage space, band-
width, and users’ time. This last wasted resource leads us
to the second major consequence of social network spam.
When users waste time dealing with spam, it has a nega-
tive effect on their overall experience with these commu-
nities because it prevents them from participating in their
desired activities. For example, when users are forced to
sift through an inbox full of annoying spammessages, they
are unable to send and receive messages. Similarly, when
users are burdened with removing an endless stream of
spam comments on their blogs, they are unable to post
new content. Consequently, if users become overwhelmed
with spam, they will have no incentive to continue inter-
acting with these communities, and the communities will
be forced to shut down.

In addition to spamming the social networking com-
munity, spammers are also able to use the information
on user profiles to more effectively spam users outside the
community. By mining email addresses, IM screen names,



Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities G 4373

and other contact information from these profiles, spam-
mers can spam users using traditional techniques (e. g.,
email spam, spim, blog comment spam, etc.). Additionally,
spammers can use the personal information on these pro-
files to construct user-specific spam content that is more
relevant to the user, making it more likely to be read. For
example, if a user’s profile contains a great deal of sports-
related information, a spammer can leverage this informa-
tion to create a sports-oriented spammessage for that user.
Since the message’s content matches the user’s interests,
the user is much more likely to read it, and as a result,
the spam’s sales pitch is more likely to be successful. To
make their messages even more deceptive, spammers can
also masquerade as users’ friends. A user’s profile contains
a list of that user’s friends; thus, spammers can use this in-
formation to make their messages appear as if they were
sent by those friends. Since a user is much more likely to
read and trust a message from a friend, the spammer has
a higher probability of success with these disguised mes-
sages [7].

Phishing

In a traditional phishing attack, a phisher seeks to obtain
a targeted user’s sensitive information through means of
deception. Historically, phishers have been interested in
credit card information, banking information, and login
information for various web sites (e. g., eBay, PayPal, etc.).
As social networking communities have become more
popular, complex networks of friends have been estab-
lished within them. Consequently, social networking com-
munities have become a prime target for phishers because
they are portals to a large number of potential victims.

A MySpace phishing attack utilizes the same deceptive
techniques that are employed in traditional phishing at-
tacks. First, a user is presented with a seemingly legitimate
URL (called a phishing URL) that appears to be affiliated
with MySpace. This phishing URL is typically propagated
in two distinct manners: the communication systems pro-
vided by MySpace and traditional communication chan-
nels (e. g., email, blogs, instant messaging, etc.). For exam-
ple, in May 2006, a phisher used the MySpace spamming
techniques described above to send a phishing message to
various MySpace users. This message had “CHECK OUT
these old school pictures . . . ” as its subject and a phishing
URL in its body [15]. Upon accessing one of these phish-
ing URLs, the user is directed to a fraudulent web page
that appears identical to the authenticMySpace login page.
When the user enters the necessary MySpace login infor-
mation, the fraudulent page stores that information and
uses it to redirect the user to the authentic MySpace com-

munity. Thus, the user is completely unaware of the attack,
while the phisher successfully obtains the user’s sensitive
login information.

Phishing attacks represent a serious threat to MySpace
users for three reasons. First, victimized users often lose
control of their profiles. In many cases, phishers will im-
mediately change the login information of profiles they
have compromised, locking victims out of their own pro-
files. Since users spend a great deal of time and energy
building new friendships, writing blogs, and customizing
their profiles, it is somewhat traumatic when they lose
control of their creations. Even in cases where a compro-
mised profile’s login information remains the same, the
phisher’s activities severely damage that profile’s credibil-
ity. For example, if a phisher compromises a user’s pro-
file and begins spamming that user’s friends, those friends
will eventually distrust the compromised profile and re-
move it from their lists of friends. The second reason these
attacks are dangerous is due to the viral propagation pat-
terns that are possible in social networking communities.
As shown with the malware examples above, one compro-
mised user can quickly escalate into a network full of com-
promised users. Specifically, once a single user’s login in-
formation is compromised, the phisher can use that user’s
profile to propagate the attack to the user’s friends. In our
spam discussion, we mentioned a few MySpace commu-
nication systems that are somewhat spam resistant. How-
ever, the spam resistance of those systems assumes that
a user’s friends can be trusted (i. e., they are not spammers,
phishers, etc.). Thus, if a user’s profile becomes compro-
mised, that user’s friends are immediately at risk because
the phisher can contact them under the guise of a profile
they trust. As a result, a compromised user’s friends are
highly likely to become phishing victims (i. e., access the
phishing URL), and by the time they realize they should
distrust the compromised profile, it will be too late. The fi-
nal threat posed by MySpace phishing attacks relies on the
knowledge that many computer users reuse the same login
information at many different sites [10]. Thus, if a user’s
MySpace login information is compromised, that user’s lo-
gin information at those other sites is automatically com-
promised as well.

In addition to launching phishing attacks that specif-
ically target social networking communities, phishers can
also use the private information found in these commu-
nities to make their traditional phishing attacks more ef-
fective. As previously mentioned, manyMySpace users in-
clude various pieces of personal information on their pro-
files (e. g., location, interests, occupation, etc.). Phishers
can easily use this personal information to construct user-
specific messages that a potential victim would be much
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more likely to read and trust. For example, a phisher could
send the potential victim a fraudulent eBay email that con-
tains auction information for products the victim would
be interested in buying. Each of these products could be
selected using the user’s interests and associated with one
or more phishing URLs. Since this email message con-
tains user-specific content, the victim is more likely to read
it and access one of its phishing URLs. As a result, this
user-specific attack has a higher probability of success than
a generic phishing attack.

New Attacks Against Social
Networking Communities

Initially, social networking communities were composed
of ordinary people – typically kids and young adults that
created profiles to interact with their friends. However, as
these communities began to expand, new parties became
interested because the communities evolved into portals
for connecting and interacting with these ordinary people.
The first wave of new participants were entertainers (e. g.,
musicians, comedians, and actors) that created profiles to
communicate with their current fans and reach out to po-
tential new ones. Not long after that, companies began
partnering with communities to create advertising pro-
files (i. e., profiles that advertise the company and its prod-
ucts). Eventually, other public figures such as politicians
became involved, creating profiles to promote their cam-
paigns, solicit volunteers, and request donations. Unfortu-
nately, the explosive growth of these communities and the
conflicting interests of their various participants have gen-
erated a range of new attacks. In this section, we describe
attacks that utilize two types of malicious social network-
ing profiles: rogue advertising profiles and impersonating
profiles.

Rogue Advertising Profiles

According to analysts at eMarketer, companies currently
spend around $280 million on social network advertising
in the US, and by 2010, that figure is expected to grow to
$1.9 billion [8]. Thus, it is not surprising that MySpace
has partnerships with numerous companies, which allow
those companies to advertise legitimately in the social net-
working community. For example, both Burger King and
Wendy’s have embraced the potential of social network
advertising by creating advertising profiles on MySpace.
Burger King uses the King, a marketing character that
appears in the company’s commercials, to promote its
MySpace profile at http://www.myspace.com/burgerking.
Similarly, Wendy’s uses a small hamburger patty named
Smart to promote its MySpace profile at http://www.

myspace.com/wendysquare. However, this new advertis-
ing craze is not exclusive to fast food restaurants. My-
Space profiles also exist for television shows (e. g., “It’s Al-
ways Sunny in Philadelphia”), commercial products (e. g.,
Herbal Essences shampoo), and movies (e. g., “Talladega
Nights”).

Although MySpace’s Terms of Use Agreement strictly
prohibits commercial use of the community without prior
approval, a number of companies violate this policy by cre-
ating advertising profiles without MySpace’s consent. We
refer to these profiles as rogue advertising profiles, and they
appear in many forms with varying degrees of deception.
The most innocuous group of rogue advertising profiles
is created by small web site operators that are merely try-
ing to generate web traffic for their sites. These profiles are
relatively harmless because they simply include URLs for
these small sites, and they are openly affiliated with a com-
pany (i. e., they do not attempt to deceive users into believ-
ing the profiles belong to an ordinary individual). How-
ever, these profiles are still unacceptable because they pol-
lute the community with unwanted and unauthorized ad-
vertising.

A much more deceptive group of rogue advertising
profiles is generated by nefarious companies such as gam-
bling and pornographic web sites. Unlike legitimate ad-
vertising profiles, which are clearly identifiable as a mar-
keting device, these deceptive rogue advertising profiles
appear as though they are maintained by an individual
(and not a company). As a result, naïve users can eas-
ily mistake these rogue advertising profiles as ordinary
MySpace profiles that were created by ordinary MySpace
users. The deceptive profile construction process proceeds
as follows. First, a fraudulent MySpace profile is created
using a picture of an attractive female. This profile also
contains a provocative description in its “About me” sec-
tion that visitors assume was written by the pictured fe-
male. Conveniently, this description usually includes at
least one reference to the URL of a nefarious web site.
If the profile is particularly deceptive, the description in-
cludes an instant messenger screen name instead of a URL.
The inclusion of a screen name is especially manipulative
because most users assume that a conversation over IM
can only be accomplished by a real person. However, the
screen names found on these rogue advertising profiles are
almost always attached to an IM bot (i. e., a computer pro-
gram that emulates a real conversation) that attempts to
direct its victims to the URL of a nefarious web site. Once
the profile is completed, its creator sends friend requests to
males near a specific geographic location, which the profile
is also associated with (i. e., the pictured female claims to
live there). When the males receive these requests, a num-

http://www.myspace.com/burgerking
http://www.myspace.com/wendysquare
http://www.myspace.com/wendysquare
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Pornographic rogue advertising profiles

ber of them accept and visit the profile, making the decep-
tion a success.

Figure 4 shows four examples of deceptive rogue ad-
vertising profiles, which we slightly modified to hide ob-
jectionable content. By analyzing these examples, a num-
ber of interesting observations emerge. First, the profiles
are extremely similar. Figures 4a and 4b share the exact
same “About me” text, and Figs. 4c and 4d share the same
“About me” text and profile picture. Thus, these two pairs
of profiles were probably created by the same individuals.
The next observation addresses the content of each pro-
file’s “About me” text. All four of these profiles are par-
ticularly deceptive because they all provide instant mes-
senger screen names to induce users to contact IM bots.
Finally, all of the profiles claim to be located in different
cities. Despite their uncanny similarities, the profiles in
Figs. 4a and 4b are supposedly located in different parts of
California, and the profiles in Figs. 4c and 4d are in com-
pletely different parts of the country. These location differ-
ences exist because each profile is meant to target males in

a different geographic area. This also explains why the pro-
files are allowed to be so similar. As long as the profiles in
a given location are unique, users are less likely to become
suspicious that the profiles are fraudulent.

Deceptive rogue advertising profiles represent a seri-
ous security threat because they directly manipulate the
behavior of users. Since the profiles appear to be main-
tained by ordinary (albeit very attractive) people, other
users mistakenly trust their content. Additionally, users
often believe they have made a connection with the peo-
ple pictured on these profiles because the users received
friend requests from these profiles. Consequently, users
access the URLs that are on the profiles (or in IM conver-
sations) and become victims to the content found on the
corresponding web pages. In most cases, these pages con-
tain pornographic or gambling-relatedmaterial, but noth-
ing prevents malicious individuals from embedding mal-
ware on the pages. Thus, to protect its users, social net-
working communities must develop techniques to identify
and eliminate these profiles.
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Impersonating Profiles

Due to the enormous popularity of social networking
communities, they have emerged as forums for individu-
als to voice their opinions about various topics as well as
other people. In MySpace, some users are more tactful and
express their views in blog postings on their profiles or in
comments on their friends’ profiles. However, other users
have taken their crusade to an entirely new level, creating
new MySpace profiles that directly target specific ideals,
companies, and even people. We refer to these profiles as
impersonating profiles because they impersonate their tar-
gets to convey their message.

MySpace contains profiles that impersonate actors
(e. g., Tom Hanks), athletes (e. g., Michael Jordan), tech-
nologists (e. g., Bill Gates), and politicians (e. g., George
W. Bush). Even ancient philosophers, such as Socrates and
Aristotle, have profiles dedicated to them. In fact, most
of these individuals are impersonated by multiple distinct
profiles. In some cases, these profiles are meant to be an
homage to the individuals in question. However, more of-

ten than not, the impersonating profiles are meant to be
slanderous to the targets of the impersonation. For exam-
ple, after News Corporation purchased MySpace in July
2005, impersonating profiles for Rupert Murdoch (News
Corporation’s CEO) began to appear, making claims such
as, “I just bought MySpace.com, soon I will own the rest
of the internet” and “Dictatorships are fun . . . as long as
I’m in charge.” Two examples of these profiles are shown
in Figs. 5a and 5b. To make matters worse, impersonators
are able to useMySpace’s communication facilities to con-
tact other users under the guise of these profiles. Thus,
these counterfeit Rupert Murdoch profiles can express any
number of scandalous opinions, and the negative backlash
will be directed at the real Rupert Murdoch.

From the impersonators’ standpoint, these profiles ap-
pear to be amusing satire. However, from the victims’
standpoint, these profiles represent a form of identity theft
as well as a public relations nightmare. The general public
is unable to verify the authenticity of these profiles; thus,
any slanderous comments found on the profiles (or re-
ceived under the guise of the profiles) will be incorrectly
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associated with the victims of the impersonation. Using
the example above, nothing prevents users from believing
that Rupert Murdoch actually created one of those pro-
files or that he actually shares the viewpoints it contains.
Admittedly, these viewpoints are somewhat absurd, but
it is easy to envision subtler comments that can severely
damage an individual’s reputation. Since the success of
most public figures is completely contingent upon the
strength of their fan bases, an impersonating profile rep-
resents a direct threat to its victim’s credibility and liveli-
hood.

Sadly, this growing epidemic is not limited to high
profile individuals. Private citizens such as teachers, prin-
cipals, and police officers have also been victimized by
these impersonating profiles. In fact, over the past cou-
ple of years, the news has been filled with stories about
these types of attacks. For example, in December 2005,
a 16-year-old boy posted an impersonating profile of
a local police officer, which contained various deroga-
tory statements about the police officer’s appearance, in-
telligence, and sexual orientation [13]. Then, in April
2006, an eighth grader created impersonating profiles of
his English teacher that contained racist remarks and
falsely represented the teacher as a pornographer and child
molester [12]. In September 2006, a high school assistant
principal sued two students for creating an impersonat-
ing profile that falsely identified her as a lesbian [1]. These
examples clearly illustrate the magnitude of this prob-
lem, and unfortunately, they represent a small sample of
a growing list of incidents.

In addition to the risks already mentioned, imper-
sonating profiles can also be used to amplify the sever-
ity of the other attacks we have already discussed. Specif-
ically, a spammer could create an impersonating profile
for a MySpace user and use the profile to spam that user’s
friends. Malware creators and phishers could also use this
approach to spread their malicious content to the user’s
friends. Since these friends would be under the impres-
sion that they were communicating with the authentic
profile, they would be much more likely to trust the com-
munication, and as a result, the attacks would be far more
successful.

Future Directions

In only a few years, social networking communities have
made staggering strides in popularity (MySpace welcomed
more than 65 million unique visitors in February 2008 [3])
and importance (YouTube was acquired by Google for
$1.65 billion in October 2006 [5]). Aside from their social
and economic impact, one of the most important ques-

tions is whether social networking environments are safe
for their users. In this paper, we have analyzed this safety
question and described several security and privacy threats
that have translated into real attacks in MySpace. Some of
these attacks have been adapted from other Internet en-
vironments, including variants of malware propagation,
spam, and phishing. Other attacks are new and unique
to social networking environments, including the creation
of rogue advertising profiles and impersonating profiles.
From our real world observations, it is clear that addi-
tional efforts should be made to protect social networking
users. We hope that researchers will identify and counter-
act emerging variations of these known attacks and pro-
videmeasures for safeguarding the future of these valuable
communities.
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Glossary

Granular matter a system comprised of a large number
of grains, or particles, of macroscopic size. Examples
include powders, sand, seeds, and the surface of Mars.

Granular fluid an activated (driven) state of granular
matter such that the grainsmove (flow) and collide fre-
quently.

Statistical mechanics a field of physics that addresses sys-
tems with many degrees of freedom based on the fun-
damental microscopic laws to describe derived macro-
scopic properties.

Macrostate a statistical description of a systemwithmany
degrees of freedom in terms of limited information
about that system.

Hydrodynamic fields the local densities of mass, energy,
and momentum defined at each point in the system of
interest.

Normal state a macrostate whose time evolution is de-
scribed entirely through that of the average hydrody-
namic fields.

Balance equations exact equations for the time deriva-
tives of the hydrodynamic fields in terms of associated
fluxes and sources.

Constitutive equations expressions for the fluxes and
sources of the balance equations as functionals of the
hydrodynamic fields.

Hydrodynamics a macroscopic description of the system
in terms of a closed, deterministic set of equations for
the average hydrodynamic fields, resulting from the
exact balance equations with approximate constitutive
equations.

Navier–Stokes hydrodynamics local, first order in time,
partial differential equations for states with small spa-
tial gradients in the hydrodynamic fields (constitutive
equations calculated to first order in the spatial gradi-
ents).

Definition of the Subject

The terminology granular matter refers to systems with
a large number of hard objects (grains) of mesoscopic size
ranging from millimeters to meters. Geological examples
include desert sand and the rocks of a landslide. But the
scope of such systems is much broader, including pow-
ders and snow, edible products such a seeds and salt, med-
ical products like pills, and extraterrestrial systems such as
the surface regolith of Mars and the rings of Saturn. The
importance of a fundamental understanding for granular
matter properties can hardly be overestimated. Practical
issues of current concern range from disastermitigation of
avalanches and explosions of grain silos to immense eco-
nomic consequences within the pharmaceutical industry.
In addition, they are of academic and conceptual impor-
tance as well as examples of systems far from equilibrium.

Under many conditions of interest, granular matter
flows like a normal fluid [1]. In the latter case such
flows are accurately described by the equations of hy-
drodynamics. Attention is focused here on the possibility
for a corresponding hydrodynamic description of gran-
ular flows. The tools of nonequilibrium statistical me-
chanics [3], developed over the past fifty years for flu-
ids composed of atoms and molecules [4,5], are applied
here to a system of grains for a fundamental approach to
both qualitative questions and practical quantitative pre-
dictions. Applications of basic atomic physics principles
to granular fluids have accelerated during the past decade,
starting with an emphasis on molecular dynamics (MD)
simulations [6] and kinetic theory [7,8], and more re-
cently with the theoretical methods of the type described
here [9,10,11,12,13,14].

Introduction

To start with the familiar, consider a jar of vitamin pills,
mustard seeds, or peanuts. Remove the lid and pour them
into a bowl, observing that the “flow”, or their collective
motion, has some similarity to that of a normal fluid such
as water. The collective motion in both cases is the con-
sequence of collisions among their constituents, grains or
atoms, and their large number. It is tempting to make
the correspondence of grains to atoms in considering the
similarities of flows in these two types of fluids. The ob-
jective here is to explore in formal detail the extent to
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which that correspondence is conceptually and quantita-
tively justified. An important prerequisite is the integrity
of the grains during their motion. Each grain is com-
prised of a large number of atoms or molecules. Integrity
refers to their retention of mass and shape following in-
teractions with other grains or with their environment. As
such, the grains behave as “particles” whose detailed in-
ternal structure is not essential to their description, which
is captured instead by a few parameters describing their
shape, mass, and collisional properties with other grains.
However, an important consequence of this underlying
molecular structure is a redistribution of translational ki-
netic energy of the grains and internal energy of the con-
stituent molecules. At the mesoscopic level this appears as
an energy loss on collisions between pairs of grains. This
is a central feature of granular fluids differentiating them
from atomic fluids: the inelasticity of granular pair colli-
sions.

Granular matter occurs in two classes of states, com-
pact and activated [15]. In the first case, the grains form
a static packed configuration within the container due to
the effects of gravity on their relatively largemass and their
inelastic collisions. Any initial motion is quickly dissipated
and their kinetic energy becomes negligible relative to the
gravitational potential energy. Important questions arise
about the possible and probable packing configurations
that determine the stresses within the system and the dis-
tribution of forces on the container. For example, chains of
particles in contact can occur as arches to support matter
above them while reducing their force on the matter be-
low. There is an intense interest in the study of such states,
generically referred to as contact mechanics.

Activated states refer to continuously driven systems,
or gravity free conditions. For example, a container of
grains in a compact configuration can be shaken to im-
pose kinetic energy and motion among the grains. Simi-
larly, unrestrained systems in a gravitational field will flow
towards lower potential energy (e. g., hopper flow or flow
down an incline). Initial activation in space laboratory ex-
periments provides another example (self-sustained flu-
idization). For the flows considered here as candidates for
a hydrodynamic description continual collisions are essen-
tial. This means that within each small cell, still containing
many particles, the particles are moving randomly relative
to the collective motion of that cell. Thus, ballistic motion
or beams with all particles moving independently in the
same direction are excluded.

Both compact and activated grains may occur im-
mersed in a continuum such as water or air that may have
a strong or weak effect on their collective properties. For
compact systems water may provide a lubrication effect

that affects the dominant class of configurations. For acti-
vated systems it can provide an additional dissipative drag
between collisions among the grains. When the medium
plays an important role the systems is said to be wet. In the
opposite limit it is said to be dry. Finally, it is possible for
compact and activated components of a system to coexist
as heterogeneous states. Here, only the simplest case of dry
systems in fully activated flows are considered. These are
referred to in the following as granular fluids.

Advances in the study of granular fluids have arisen
from many communities, including chemical engineering,
materials sciences, and physics. The additional academic
and conceptual importance of granular matter as practi-
cal systems for exploring the relevance of many-body fluid
methods is primarily for the physics community. Granu-
lar matter, viewed as a system of particles with inelastic
interactions, provides new opportunities to test the quali-
tative and quantitative limits of many-body methods de-
veloped over the past century for atomic and molecu-
lar systems. This is the field of non-equilibrium statistical
mechanics [3,4,5]. Granular matter provides a new test-
ing ground for a reconsideration of the most fundamental
concepts and tools [1], with the potential for enhanced un-
derstanding of their place in atomic andmolecular systems
as well.

Statistical mechanics addresses the difficult many-
body problem of extracting macroscopic properties of ex-
perimental interest from the very large number of con-
stituent particles. The results express these properties in
terms of the fundamental “microscopic” features of these
particles, such as mass, shape, degree of inelasticity, and
collisional properties. In this way the properties of the vi-
tamin pills, mustard seeds, and peanuts are distinguished
at a fundamental level. Also, conceptual issues such as
the limitations of a macroscopic description are exposed
through the insistence on their logical evolution from
the fundamental microdynamics. In the next section, the
granular fluid is described as a system of particles in-
teracting via pairwise additive, nonconservative forces.
The microscopic dynamics of these particles leads to bal-
ance equations for the mass density, energy density, and
momentum density. Their averages define the “hydrody-
namic fields” which are candidates for a macroscopic, con-
tinuum mechanics description. These exact equations are
described in Sect. “Macroscopic Balance Equations” and
the need for “constitutive equations” to provide a closure
is described. The origin of constitutive equations, and con-
sequently the origin of hydrodynamics, is associated with
the concept of “normal states” [16] in Sect. “Normal States
and Hydrodynamics”. The normal state for the case of
small spatial deviations from homogeneity is constructed
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formally in Sect. “Navier–Stokes Approximation”, result-
ing in the constitutive equations for Navier–Stokes hy-
drodynamics [17]. This derivation also provides insight
into the context in which such a description should hold,
and differences from the corresponding results for a nor-
mal fluid are noted. Empirical evidence [18,19], simula-
tions [20,21,22], and corresponding results from kinetic
theory [23,24,25,26] support the applicability of this hy-
drodynamic description under appropriate conditions. Fi-
nally, the results are summarized in Sect. “Future Direc-
tions” and some comments on the outlook for future de-
velopments are offered.

The presentation here is focused on recent work of the
author and his collaborators for application of statistical
mechanics to explore hydrodynamics for a granular gas.
Consequently, the references quoted are heavily weighted
toward those developmental studies. Apologies are offered
for the exclusion of the vast and important complementary
literature on simulations, kinetic theory, and experiments
also bearing on this topic. Many of these can be found in
the list of Books and Reviews given here.

Granular Fluid and Its StatisticalMechanics

Nonequilibrium Statistical Mechanics

Consider a system of N 	 1 identical grains (hereafter
referred to as particles) in a volume V , whose initial po-
sitions fqig and velocities fvig; 1 � i � N; are specified.
The positions and velocities define a point in a 6N dimen-
sional space denoted by � � fqi ; vig, defining the mi-
crostate of the system. A macrostate is defined by a prob-
ability density � (� ) in this space, representing statistical
rather than precise knowledge of the system. The field of
statistical mechanics addresses properties of macrostates,
based on the recognition that for very largeN the details of
microstates are neither experimentally accessible nor prac-
tically calculable. Properties of interest are represented by
functions A(� ), and their values for amacrostate � (� ) are
determined from the expectations

hA; �i �
Z

d�� (� )A (� ) : (1)

In this section, a brief overview of the essential ingredients
of nonequilibrium statistical mechanics is given, broad-
ened from its usual form [3] to include granular matter.

The dynamics of macrostates is determined from
the underlying dynamics of the microstates. The initial
point � changes in time since the particles have velocities
and move to new positions. They move in straight lines
until one or more come within the force field of other par-
ticles, at which point their velocities change as well as their

positions. The forces are taken to be pairwise additive,
such that the total force on particle i is Fi D

P
j Fi j , where

Fi j is the force on particle i due to particle j. This does not
mean that the interactions are pairwise sequential; three or
more particles can interact simultaneously. The pair forces
are restricted by Newton’s third law,Fi j D �F ji , with con-
servation of momentum. Otherwise quite general forces
can be considered to represent the shape of the particles
and their degree of inelasticity. It is assumed here that the
force range vanishes outside a distance � /2 from the center
of each particle so that � characterizes the size of the par-
ticles. Furthermore, the particles are taken to be strongly
repulsive so that their mean maximum overlap d on col-
lision is small compared to their size, d/� < 1. However,
their size can be large or small compared to the mean dis-
tance between particles (V/N)1/3, depending on whether
the density of the system is small or large, respectively.
Most importantly for the purposes here, these forces do
not conserve energy. This property captures the feature of
real grains that center of mass kinetic energy is lost as they
distort during pair collisions. Further details of the force
law are not required at this point.

The dynamics consists of straight line motion along
the direction of the velocity at time t (free streaming), un-
til the force range of any pair of particles, say i, j, overlaps.
The relative velocity gi j D vi � v j of that pair changes ac-
cording to Newton’s second law for the chosen force law
Fi j : Subsequently, all particles continue to stream freely
until another pair has a force range of overlap, and the col-
lisional change is repeated for that pair. In this way a tra-
jectory �t � fq1(t); : : : ; qN (t); v1(t); : : : ; vN (t)g is gener-
ated for t > 0. This trajectory is unique and invertible.
The statistical mechanics for a fluid of inelastic parti-
cles [9,10,11,12] is comprised of the dynamics just de-
scribed, a macrostate specified in terms of a probability
density �(� ), and a set of observables generically denoted
by A(� ). The expectation value for an observable at time
t > 0 for a state �(� ) given at t D 0 is defined by

hA(t); 0i �
Z

d��(� )A(�t) �
Z

d� �(� )etLA(� ) (2)

where A(t) D A(�t), and �t � fq1(t); : : : ; qN (t); v1(t);
: : : ; vN (t)g is the phase point evolved to time t from
� D �tD0. The dynamics can be represented in terms of
a generator L defined by the second equality of (2). There
are two components to the generator, corresponding to the
two steps of free streaming and velocity changes due to in-
teractions

L D
NX

iD1

vi � r i C
1
2m

NX

iD1

NX

j¤i

Fi j �
�
r vi � r v j


: (3)
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An alternative equivalent representation of the dy-
namics is obtained by transferring the dynamics from the
observable A(� ) to the state �(� ) by the definition

Z
d� �(� )etLA(� ) �

Z
d�



e�tL�(� )

�
A(� )

�

Z
d� �(�; t)A(� ) : (4)

The representation in terms of a dynamical state �(�; t)
is referred to as Liouville dynamics. Its generator L is the
formal adjoint of L which is found to be

L D LC
1
2m

NX

iD1

NX

j¤i

�
r vi � r v j


� Fi j : (5)

The difference between L and L arises because the forces
are non-conservative and therefore depend on the relative
velocities of each pair as well as their positions. Time cor-
relation functions for two observables A and B are defined
in a similar way

hA(t)B; 0i �
Z

d�
�
etLA(� )


�(� )B(� )

D

Z
d� A(� )



e�tL�(� )

� �
e�tLB(� )


: (6)

or

hA(t)B; 0i � hAB(�t); ti : (7)

In summary, averages like hA(t); 0i and correlation
functions hA(t)B; 0i are the central properties of interest
for a macroscopic description of physical systems. The mi-
croscopic dynamics can be represented in terms of the ob-
servablesA(�; t) or the states �(�; t) which are determined
from specified initial values and the equations

(@t � L)A(�; t) D 0 ;
�
@t C L


�(�; t) D 0 : (8)

In the following most of the analysis is done in terms of
the states, and the associated equation of motion is known
as the Liouville equation.

Liouville Equation and Cooling

For an isolated system, the total energy decreases mono-
tonically due to the loss of energy on each pair collision.
This is reflected in a decrease of the average kinetic energy
of the particles between collisions and hence is referred to
as collisional “cooling”. The energy per particle at time t
and its loss are

� (t) � N�1hE; ti; !(t) � �@t� (t) D N�1hLE; ti: (9)

This cooling effect is common to all solutions to the Liou-
ville equation and it is useful to separate the dynamics into
that due to this cooling and the residual time dependence

�(�; t) � �(�; �(t); t) : (10)

The Liouville equation then can be written

@t�(�; �; t) j� C
�
�! (�; t) @� C L


�(�; �; t) D 0 : (11)

The time derivative is now taken at constant �. The no-
tation ! (�; t) reflects the fact that it is a linear functional
of �(�; �; t), from its definition (9). This is a useful form
that isolates a primary effect of the nonconservative forces
(cooling) from the residual dynamics that will be associ-
ated with relaxation of the spatial inhomogeneities of in-
terest below. For notational simplicity (11) is written
�
@t C L


�(�; �; t) D 0 ; L � �! (�; t) @� C L : (12)

The corresponding equation for observables is

(@t � L)A(�; �; t) D 0 ; L � �@�! (�; t)C L : (13)

where it is understood that @� operates on everything to its
right.

Stationary Homogeneous State

An isolated normal fluid supports an equilibrium state.
This is a stationary solution to the Liouville equation with
translational invariance, the Gibbs states. From the dis-
cussion above it is clear that isolated granular fluids have
no truly stationary state due to cooling. However, there is
a “universal” homogeneous state similar to the Gibbs state
in the sense that a wide class of homogeneous initial states
rapidly approach this state, on the time scale of a few col-
lisions per particle. It is simple in the sense that all of its
time dependence is that associated with cooling

�0(�; t) D �0(fqi j; vig; �(t)) : (14)

Here, qi j D qi � q j so the solution also has translational
invariance. In the representation (12) it is seen to be a sta-
tionary solution to the Liouville equation

L�0 D 0 : (15)

There is no longer any explicit time dependence since
! (�; t) D ! (�) andL D �! (�) @� C L for this state. This
solution is referred to as the homogeneous cooling state
(HCS). Clearly, it is the close analogue of the Gibbs state
for a normal fluid. It is an example of a “normal” state in
the sense that all of its time dependence occurs through
one of the hydrodynamic fields (the energy). This concept
is sharpened below.
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Macroscopic Balance Equations

The origins of a macroscopic description for a fluid are the
balance equations for the average mass density hm (r) ; ti,
energy density he (r) ; ti, andmomentumdensity hg (r) ; ti,
where r denotes an arbitrary field point within the sys-
tem [16]. These will be referred to as the hydrodynamic
fields since they are the ones that are expected to obey the
hydrodynamic equations under appropriate conditions.
The phase functionsm (�; r) ; e (�; r) ; and g (�; r) are well
known and their explicit forms will not be needed here.
They will be denoted collectively by a˛ (r)

a˛(r; t)$ fm (r) ; e(r); g(r)g : (16)

It follows from (8) that they obey the microscopic balance
equations [14]

@t a˛(r; t) D La˛(r; t) D �r �b˛(r; t)�ı˛2w(r; t) : (17)

To obtain this result, it has been recognized that the quan-
tity �La˛(r; t) can be written as the sum of a divergence
r � b˛(r; t) plus a remainderw(r; t) that cannot be so rep-
resented. For a normal fluid w(r; t) vanishes and (17) be-
come the local conservation laws for mass, energy, and
momentum. The b˛(r; t) are the corresponding fluxes.
This clarifies why a˛(r; t) are selected for a macroscopic
description. Their time dependence is determined by the
scale of the spatial gradients of the fluxes, and averages of
the latter become small as the system approaches homo-
geneity. Consequently, on long time scales the ha˛ (r) ; ti
are the only surviving dynamical variables, and it is un-
der these conditions that these fields obey hydrodynamic
equations. The mass and momentum are conserved for
a granular fluid as well, but there is a loss of energy w(r; t)
due to the non-conservative forces. It is no longer obvi-
ous that the energy is still one of the slow variables since
its time scale is coupled to w(r; t) which does not be-
come small for nearly homogeneous states. Thus, an ad-
ditional requirement for the existence of a macroscopic
description in terms of ha˛ (r) ; ti is that the time scale
of he (r) ; ti / hw (r) ; ti must be larger than that for non-
hydrodynamic properties. This issue is discussed further
below.

The macroscopic balance equations follow from the
averages of (17)

@t ha˛ (r) ; ti C r � hb˛ (r) ; ti D �ı˛2 hw (r) ; ti : (18)

These equations are formally exact, but of little practi-
cal use as they do not form a closed (self-deterministic)
set of equations for ha˛ (r) ; ti. Closure requires express-
ing the average flux hb˛ (r) ; ti and energy loss hw (r) ; ti

as functionals of the fields ha˛ (r) ; ti. Such relationships
are called “constitutive equations”. The combination of the
exact balance equations with some form of constitutive
equations provides the most general definition of hydro-
dynamics.

Construction of the constitutive equations is simplified
by extracting the effects of convection. The velocityU(r; t)
of a cell at point r is defined in terms of the average mo-
mentum

hg (r) ; ti � hm (r) ; tiU(r; t) : (19)

The fluxes are functions of the positions and ve-
locities b˛ (r) D b˛ (r;fqi ; vig) D b˛ (r;fqi ;Vi CU(r)g),
where the velocity in the local rest frame has been intro-
duced, Vi D vi � U(r; t). Then defining the microscopic
flux in the rest frame by b0˛ (r) D b˛ (r;fqi ;Vig) it follows
that the average flux has the form [3]

hb˛ (r) ; ti D
˝
b0˛ (r) ; t

˛
C c˛�U(r; t) �

˝
b0� (r) ; t

˛

CU(r; t)d˛ (fha� (r) ; tig) : (20)

The first term is the flux of mass, energy, and momentum
in a fluid element at rest, and represents the dissipative
processes. The second and third terms are proportional to
the flow velocity U(r; t) and are associated with convec-
tion. The coefficients of these terms are explicit functions
of the fields ha˛ (r) ; ti (as is U(r; t)). For a normal fluid,
neglect of the rest frame fluxes leads to the perfect fluid
Euler hydrodynamic equations. Hence, determination of
the constitutive equations is reduced to expressing the rest
frame fluxes and energy loss as functionals of the fields.

“Normal” States and Hydrodynamics

A hydrodynamic description is a closed set of equations
for the hydrodynamic fields, ha˛ (r) ; ti. This follows from
the exact macroscopic balance equations if the energy loss
and fluxes can be represented as functionals of these fields

hw (r) ; ti ! !(r j ha˛ ; ti) ;
hb˛ (r) ; ti ! ˇ˛(r j ha˛ ; ti) :

(21)

The arrow is used to indicate that such a functional rep-
resentation need not be valid on all length and time
scales, and any such restrictions constitute the domain
of validity for hydrodynamics. The notation here and be-
low is such that f (r; t; fha˛ (r) ; tig) denotes a function
of r; t and of the fields ha˛ (r) ; ti at the point r, while
f (r; t j ha˛ ; ti) denotes a function of r; t and a functional
of the ha˛ ; ti at all space points. With such constitutive re-
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lations the macroscopic balance Eqs. (18) become hydro-
dynamic equations

@t ha˛ (r) ; ti Cr � ˇ(r j ha˛ ; ti) D �ı˛2!(r j ha˛ ; ti) :
(22)

The average energy loss and fluxes are averages of spe-
cific functions of the particle positions and velocities, and
hence are linear functionals of the solution to the Liouville
equation. The existence of constitutive equations is there-
fore related to a special property of the solution which will
be called “normal” (this terminology originates in a related
context for derivation of hydrodynamics from the Boltz-
mann kinetic equation [3]). The class of “normal” distri-
butions is defined by the functional forms

�n (�; t) D �n
�
fqi j; vig j ha˛; ti


: (23)

All time dependence and all the breaking of translational
invariance for normal states occurs only through the hy-
drodynamic fields. A familiar example of a normal distri-
bution for real fluids is the local Gibbs distribution

�e` (� j ha˛ ; ti) D exp
n
q�

Z
dry˛ (r; t) a˛ (r)

o
: (24)

Here q is a normalization constant, and y˛ (r; t) are con-
jugate fields determined by the requirement that the aver-
ages of a˛ (r) give the specified values ha˛ (r) ; ti. In this
way y˛ (r; t) are functionals of the hydrodynamic fields
and �e` (� j ha˛; ti) is normal. The importance of normal
solutions is that they yield directly the desired functionals
of (21)

!(r j ha˛ ; ti) D
Z

d��n (� j ha˛ ; ti)w(r) (25)

ˇ˛(r j ha˛ ; ti) D
Z

d��n (� j ha˛ ; ti) b˛ (r) : (26)

The normal state in (25) and (26) must be a solution
to the Liouville equation. In general, the time derivative
in the Liouville equation can be separated into that which
occurs through ha˛ ; ti plus the residual time dependence,
generalizing (10)

� (�; t) D � (�; t j ha˛ ; ti) : (27)

The Liouville equation then becomes

@t� jha˛ ;ti �

Z
dr

ı�

ı ha˛ (r) ; ti
� fr � hb˛ (r) ; ti C ı˛2 hw (r) ; tig C L� D 0 : (28)

A normal solution results when @t�n jha˛ ;ti! 0. For spec-
ified fields, (28) becomes an equation for the � depen-
dence of the normal phase space density as a functional of
the fields. This dependence then allows determination of
the normal forms in (25) and (26). Finally, with the form
of the hydrodynamic equation determined at that point,
their solution with suitable initial and boundary condi-
tions provides the explicit forms for the fields, and com-
pletes the normal solution. The existence and determina-
tion of this solution is the central problem for establishing
a hydrodynamic description for both normal and granular
fluids.

The concept of a normal solution and its use in the
macroscopic balance equations makes no special reference
to whether the fluid is atomic or granular, and is not re-
stricted to states near homogeneity. In this general context,
hydrodynamics is not a simple set of local partial differ-
ential equations such as the familiar Navier–Stokes equa-
tions. The latter are a special case of this more general idea,
and their inadequacy for some conditions should not be
interpreted as the absence of a more complex hydrody-
namic description.

In closing this Section a qualitative explanation of why
a normal solution can be expected is given, by analogy with
the similar expectation for atomic fluids. For a wide class
of initial states there is a first stage of rapid velocity relax-
ation in each small region toward the universal homoge-
neous state (HCS or Gibbs, respectively). However, the hy-
drodynamic parameters of that universal state are specific
to each region so it is only locally homogenous, as in (24)
for the atomic fluid. Subsequently, these differences in the
parameters of neighboring cells are decreased by the fluxes
of mass, energy, and momentum across their boundaries.
It is this second stage where a normal description in terms
of the hydrodynamic fields can be expected, indicating also
that the space and time scales for a hydrodynamic descrip-
tion should be large compared to those of the first stage.
This basic conceptual picture is essentially the same for
both atomic and granular fluids, and the rapid approach
of the first stage is indeed observed in molecular dynamics
simulation studies of both equilibrium and the HCS.

Navier–Stokes Approximation

Equation (28) presents a formidable problem and further
progress requires specialization to specific cases of inter-
est. Perhaps the simplest of these are weakly inhomoge-
neous states. These are states for which all spatial gradi-
ents of first order are small and all higher order deriva-
tives are negligible. Small gradients means that the relative
change in the hydrodynamic fields over the largest micro-
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scopic length scale `0 is small: `0@r ln ha˛ ; ti 
 1: There
are two characteristic length scales, the mean free path and
the grain diameter. For a dilute gas the mean free path is
largest, while for a dense fluid the grain size is largest. Un-
der these conditions a solution to the Liouville equation
can be sought as an expansion to leading order in these
small gradients. This will be referred to as the Navier–
Stokes approximation.

According to the discussion at the end of the last sec-
tion, a normal solution is expected after the system has
relaxed to its local HCS form, denoted by �0` (� j ha˛ ; ti),
representing the fluid as having each cell in its own HCS.
Define the deviations of the hydrodynamic fields from
some common reference value by

ı ha˛ ; ti D ha˛; ti � a0˛ ; (29)

where a0˛ is the same for all cells. Then, the local HCS
must satisfy the conditions

�0` (� j a0˛ C ı ha˛ ; ti) jıha˛ ;tiD0

D �0 (� ; a0˛) ; (30)

@�0

@a0˛

D

Z
dr
ı�0` (� j a0˛ C ı ha˛ ; ti)

ı ha˛ (r) ; ti
jıha˛ ;tiD0; � � �

(31)

i. e., the local HCS and all of its functional derivatives
must agree with those of the HCS in the homogenous
limit. Also, as a normal distribution its time dependence
is through the exact hydrodynamic fields for the fluid state
considered. This means the averages of the corresponding
microscopic fields a˛ (r) for the local HCS and for the so-
lution to the Liouville equation must be the same

Z
d� (� � �0`) a˛ (r) D 0 : (32)

A more complete discussion of the construction of �0`
from knowledge of �0 is given elsewhere [14]. For the pur-
poses here properties (30), (31), and (32) are sufficient.

The local HCS distribution, �0`; is not a solution to the
Liouville equation except in limit that all hydrodynamic
fields become the same for each cell. Instead, it is a refer-
ence state approximating the actual solution after its first
stage of velocity relaxation. To construct a solution � de-
fine its deviation from �0` by

� (�; t j ha˛ ; ti) D �0` (�; t j ha˛ ; ti)C� (�; t j ha˛ ; ti) :
(33)

The Liouville Equation (28) gives

@t� �

Z
dr0

ı�

ı ha˛ (r0) ; ti
� fr � hb˛ (r) ; ti C ı˛2 hw (r) ; tig C L�

D

Z
dr0

ı�0`

ı ha˛ (r0) ; ti
� fr � hb˛ (r) ; ti C ı˛2 hw (r) ; tig � L�0` : (34)

This equation is still exact, but if only small gradient states
are considered it simplifies by retaining terms only of first
order in the gradients. To be precise, the ultimate use of
this solution is to calculate local properties of the form

A(r; t j fy˛ (t)g)

D

Z
d� a(�; r)� (�; t j ha˛(r); tiCı ha˛ ; ti) : (35)

Therefore, in the following analysis the gradient ex-
pansions are referred to the field point r of interest,
ha˛ ; ti D ha˛(r); tiCı ha˛ ; ti, i. e. the common reference
values in (29) are the exact field values at the chosen point,
a0˛ D ha˛(r); ti. The gradient expansion is carried out
relative to these values. Of course the results will be general
and applicable to any choice for r.

The details of the gradient expansion are given in the
Appendix. The solution to the Liouville equation to first
order in the gradients is

� (�; t j ha˛ ; ti) D �0 (�; ha˛(r); ti)C (1 � P)

�

�
Mˇ (�; ha˛(r); ti)C

Z t

0
dt0


e�(ILCKT)t0

�

ˇ�

� (1 � P)� � (�; ha˛(r); ti)
�
� r

˝
aˇ (r) ; t

˛
:

(36)

with the definitions

Mˇ D

Z
dr0
�

ı�0`

ı ha˛ (r0) ; ti

�

ıha˛ ;tiD0
r0 ; (37)

� ˛ D �
�
ILC KT

˛ˇ
Mˇ : (38)

The generator for the dynamics ILC KT has a contribu-
tion from L which is the same as in (12), with ! evaluated
for the HCS as a function of the exact hydrodynamic fields
at the point r and time t

L D �!0(ha˛ (r) ; ti)@he(r);ti C L : (39)
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The second contribution to the generator of the dynamics
is the transpose of the matrix K˛ˇ

K˛ˇ D ı˛2
@!0(ha˛ (r) ; ti)
@
˝
aˇ (r) ; t

˛ : (40)

Finally, P is a projection operator

PX D �ˇ
Z

d� AˇX ;

Aˇ D V�1
Z

dra˛ (r) ;

�ˇ �
@�0

@
˝
aˇ (r) ; t

˛

: (41)

The phase functions Aˇ and �ˇ form a biorthogonal set
in the sense

Z
d� A˛�ˇ D ı˛ˇ : (42)

The A˛ are the usual global invariants of the Liouville op-
erator L for a normal fluid; it is shown in the Appendix
that the �ˇ are the invariants of the new generator for dy-
namics in a granular fluid

�
ILT C KT

�ˇ
�ˇ D 0 : (43)

Equation (36) is not quite the normal solution desired.
All terms depend on time through

˝
aˇ (r) ; t

˛
as required,

except for the last term which has an additional explicit
time dependence through the upper limit of the time inte-
gral. This time dependence becomes negligible if the inte-
grand is effectively non-zero after some short time scale � .
Then for t	 � the time integral becomes independent of
t and can be taken formally to infinity. Thus, a normal so-
lution is attained for this time scale

�n (�; ha˛ (r) ; ti) D �0 (�; ha˛(r); ti)

C (1 � P)
�
Mˇ (�; ha˛(r); ti)

C lim
t0!1

Z t0

0
dt0


e�(ILCKT)t0

�

ˇ�

� (1 � P)� � (�; ha˛(r); ti)
�

� r
˝
aˇ (r) ; t

˛
:

(44)

It is expected that the integrand should have this prop-
erty of a short time scale since the domain of operation
for the generator of time dependence is functions with

translational invariance (as a consequence of the gradi-
ent expansion). Hence there are no explicit slow hydrody-
namic modes of finite wavelength. Also, there is no con-
tribution from the homogeneous hydrodynamics (that for
the invariants) due to the orthogonal projection (1 � P).
The appearance of this projection is an essential self-
consistency of the analysis, and occurs as well for normal
fluids. The expression (44) is only formal and the actual
limit should be taken in the weak sense only after (36) has
been used to define average properties. A technical com-
plication is the occurrence of periodic time dependence,
the Poincare recurrence time. This can be removed by con-
sidering the thermodynamic limit of V !1;N !1 at
constant N/V . Therefore, averages using the normal so-
lution to the Liouville equation are understood as having
the thermodynamic limit followed by the long time limit
at constant ha˛(r); ti.

An alternative equivalent form results from perform-
ing the integral in (44) using the explicit form (38) and the
property (99) of the Appendix

�n (�; ha˛ (r) ; ti) D �0 (�; ha˛(r); ti)

C lim
t0!1

(1 � P)


e�(ILCKT)t0

�

ˇ�

�M� (�; ha˛(r); ti) � r
˝
aˇ (r) ; t

˛
:

(45)

The decay time for the integrand of (44) now becomes the
time after which (45) reaches its normal form.

Constitutive Equations

The exact macroscopic balance equations are given
by (22), and the necessary constitutive equations are given
by (26) and (27) as averages over the normal solution.
These can be made more explicit now using the small gra-
dient result (44). Since the latter is a local function of the
fields, the constitutive equations also will be local. Further-
more, since all components of the gradients in (45) de-
pend on the common value hg (r) ; ti, this can be elimi-
nated through a Galilean transformation so that all prop-
erties refer to a fluid element at rest. Of course, the gradi-
ents of hg (r) ; ti in that fluid element are nonzero.

Consider first the energy loss function !

!(ha˛ (r) ; ti) D
Z

d��n (�; ha˛ (r) ; ti)w(r)

D

Z
d��n (�; ha˛ (r) ; ti)w : (46)

The coefficients of the gradient in the normal solution
have translational invariance and the average is indepen-
dent of r, except through its parametrization by ha˛ (r) ; ti.
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The second equality takes this into account by replacing
w(r) by its average w

w D V�1
Z

drw(r) : (47)

Since !(ha˛ (r) ; ti) is a scalar, fluid symmetry restricts the
contributions to first order in the gradients to

!(ha˛ (r) ; ti)
D !0(ha˛ (r) ; ti)C !1(ha˛ (r) ; ti)r � U (r; t) : (48)

Here, the flow velocity U (r; t) of (19) has been used in
place of the momentum density. The first term is the con-
tribution from the HCS distribution

!0(ha˛ (r) ; ti) D
Z

d��0 (�; ha˛ (r) ; ti)w : (49)

The coefficient of r � U (r; t) is

!1(ha˛ (r) ; ti) D lim
t0!1

C!(t0; ha˛ (r) ; ti)

D C!(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C!(t0; ha˛ (r) ; ti)dt0

(50)

with the correlation function defined by

C!(t) D
Z

d� w (1 � P) e�LtMU ; (51)

MU �
1
3

Z
dr0r0 �

�
ı�0`

ıU (r0; t)

�

ıha˛ ;tiD0
: (52)

The coefficient!0 defines an “equation of state” for the
granular hydrodynamics, and gives the first non-trivial re-
sult of this analysis. It is similar to the pressure (given be-
low) and is an inherent property of the local state of each
cell, independent of the gradients between cells. In con-
trast, !1 is a true transport coefficient characterizing com-
munication between cells. The first equality of (50) pro-
vides the Helfand form for this coefficient, while the sec-
ond equality gives the equivalent Green–Kubo form. Each
has its practical utility, depending on the method used for
its approximate evaluation. Both forms have proven use-
ful for normal fluids, and further discussion is provided
below. Both !0 and the transport coefficient !1 vanish
for normal fluids since they characterize collisional energy
loss.

The fluxes ˇ˛ of (26) can be determined in a similar
way. As indicated in (20), only the rest frame flux ˇ0˛ is
required. Furthermore, since all components of the gradi-
ents in (45) depend on the common value hg (r) ; ti, this

can be eliminated through a Galilean transformation so
that all properties refer to a fluid element at rest. Of course,
the gradients of hg (r) ; ti in that fluid element are nonzero.
The component ˇ01 is the rest frame mass flux which is ex-
pected to vanish in order to give the continuity equation.
This follows from the fact that b01 (r) is the microscopic
momentum density

ˇ01 D

Z
d� g (r) �0 (�; ha˛(r); ti)

C lim
t0!1

Z
d� g (r) (1 � P) (� � �) D 0 (53)

The first term vanishes since hg (r) ; ti D 0 in the rest
frame, and the second term vanishes since (1 � P) projects
orthogonal to themass, energy, andmomentum. Thus, the
expected continuity equation is verified.

The fluxes ˇ02 and ˇ
0
˛ for ˛ D 3; 4; 5 are the rest frame

energy and momentum fluxes. The energy flux transforms
like a vector and therefore fluid symmetry (translational
and rotational invariance) requires that it can depend only
on gradients of scalars

ˇ02 D � (ha˛(r); ti)rT(r; t)
� � (ha˛(r); ti)r hm (r) ; ti : (54)

To make the connection with Fourier’s law for an atomic
fluid, a temperature T(r; t) has been introduced through
the definition

he (r) ; ti � e0(hm (r) ; ti ;T(r; t)): (55)

For an atomic fluid the function e0(hm (r) ; ti ;T(r; t)) is
chosen to be the thermodynamic internal energy density.
As there is no thermodynamics for a granular fluid this
function is arbitrary and simply constitutes a change of
variables from he (r) ; ti ; hm (r) ; ti to T(r; t)); hm (r) ; ti :
In this form (54) is a generalization of Fourier’s law where
 is the thermal conductivity [27]. The contribution from
the gradient of the mass density is new to granular fluids
(� D 0 for atomic fluids). These coefficients are given by

 (ha˛(r); ti) D lim
t0!1

C�(t0; ha˛ (r) ; ti)

D C�(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0 (56)

� (ha˛(r); ti) D lim
t0!1

C�(t0; ha˛ (r) ; ti)

D C�(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0 (57)
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with the correlation functions

C�(t) D
1
3

Z
d� ˇ02 � (1 � P) e�(LCK22)tMT ; (58)

C�(t) D
1
3

Z
d� ˇ02 � (1 � P)

�
e�Lt

�
Mm C

K21

K22
MT

�

C e�(LCK22)t

�

�
@e0

@ hm (r) ; ti
�

K21

K22

�
@T
@e0
jhm(r);ti MT

�
;

(59)

MT �

Z
dr0r0

�
ı�0`

ıT (r0; t)

�

ıha˛ ;tiD0
: (60)

Mm �

Z
dr0r0

�
ı�0`

ı hm (r0) ; ti

�

ıha˛ ;tiD0
: (61)

Finally, the set of vectors ˇ0˛ for ˛ D 3; 4; 5 define the
pressure tensor ˇ0˛ , Pi j : Fluid symmetry then deter-
mines that it can couple only to the momentum gradients,
or equivalently the flow velocity gradients, in the form

Pi j D p (ha˛(r); ti) ıi j � � (ha˛(r); ti)

�

�
@iU j (r; t)C @ jUi (r; t) �

2
3
ıi jr � U (r; t)

�

� � (ha˛(r); ti) ıi jr � U (r; t) :
(62)

The scalar function p (ha˛(r); ti) is the pressure, now iden-
tified as

p (ha˛(r); ti) D
Z

d��0 (�; ha˛ (r) ; ti)ˇ03x : (63)

The transport coefficients in (62) are the shear viscosity
� (ha˛(r); ti) and the bulk viscosity � (ha˛(r); ti) given by

� (ha˛(r); ti) D lim
t0!1

C�(t0; ha˛ (r) ; ti)

D C�(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0

(64)

� (ha˛(r); ti) D lim
t0!1

C�(t0; ha˛ (r) ; ti)

D C�(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0

(65)

with the correlation functions

C�(t) D
Z

d�ˇ03y � (1 � P) e�LtM� ; (66)

C�(t) D
Z

d�ˇ03x � (1 � P) e�LtM� ; (67)

M� �

Z
dr0x0

�
ı�0`

ıUy (r0; t)

�

ıha˛ ;tiD0
: (68)

M� �

Z
dr0y0

�
ı�0`

ıUy (r0; t)

�

ıha˛ ;tiD0
: (69)

This completes the formal derivation of the consti-
tutive equations leading to the nonlinear Navier–Stokes
equations, including expressions for the cooling rate, en-
ergy flux, and pressure tensor including contributions up
through first order in the gradients of the hydrodynamic
fields. These expressions are functions of the hydrody-
namic fields to be determined by their detailedmany-body
analysis of the correlation functions.

Green–Kubo Expressions

To contrast the results here with those for an atomic fluid,
it is instructive to focus on the Green–Kubo forms for the
transport coefficients [3]. These are given by the second
equalities of (50), (56), (57), (64), and (65); the first equali-
ties are the corresponding Helfand forms [28]. For atomic
fluids there is no counter part to !1 and�. However, there
are Green–Kubo expressions for the thermal conductivity
and the two viscosities. For the discussion here only the
thermal conductivity is considered, whose Green–Kubo
expression is

 (ha˛(r); ti) D C�(0; ha˛ (r) ; ti)

C lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0

(70)

@tC�(t) D
1
3

Z
d� ˇ02 � (1 � P) e�(LCK22)t� �; (71)

� e D �
�
LC K22


Me : (72)

In contrast the thermal conductivity for an atomic fluid is

 (ha˛(r); ti)! lim
t0!1

Z t0

0
@t0C�(t0; ha˛ (r) ; ti)dt0 (73)

@tC�(t)!
1

3T2

Z
d�ˇ02 � (1 � P) e�Ltˇ02�e ; (74)
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In this last expression �e is the equilibrium Gibbs ensem-
ble, and it is understood that ˇ02 is the microscopic expres-
sion for the energy flux for a dynamics with conservative
forces, and L is the Liouville generator for the correspond-
ing dynamics.

There are several similarities and differences between
the granular and atomic fluid expressions [14]. The latter is
the time integral of a energy flux – energy flux equilibrium
time correlation function. The granular fluid is similar,
with one of the fluxes the same but the other flux is gener-
ated from the local HCS state. Also, the generator for the
dynamics in the granular case has two additional effects,
L replaced by LC K22, to represents homogeneous cool-
ing of the reference state and its homogeneous response to
perturbations. The projection orthogonal to the invariants
of each dynamics (1 � P) occurs in both cases as a neces-
sary condition for the long time limit of the time integral,
and the corresponding existence of the normal state. Fi-
nally, the contribution from C�(0; ha˛ (r) ; ti) vanishes for
a normal fluid (except for singular forces) but is non-zero
for the granular fluid due to the non-conservative forces.

Navier–Stokes Hydrodynamic Equations

In closing this section it is appropriate to record the results
of substituting the Navier–Stokes constitutive equations,
valid to first order in the gradients, into the exact macro-
scopic balance equations. This defines the Navier–Stokes
hydrodynamic equations for a granular fluid

Dtm C mrr � U D 0 (75)

Dte0 C !0 C

�
pC !1 C

�
2
3
� � �

�
r � U

�
r � U

��
�
@˛Uˇ C @ˇU˛


@˛Uˇ � r � (rT C �rm) D 0 ;

(76)

DtU˛ C m�1@˛
�
p �

�
2
3
�C �

�
r � U

�

� m�1@ˇ�
�
@˛Uˇ C @ˇU˛


D 0 : (77)

For simplicity of notation, m � hm (r) ; ti in these equa-
tions. They are a set of five nonlinear partial differential
equations for the variables m; e0; and U. They are a closed
set of equations since !0, p, and the transport coefficients
!1, , �, �, and � are defined as functions of these vari-
ables. These definitions for the constitutive equations are
the primary accomplishment of the statistical mechanical
basis for the hydrodynamic equations. The form of (64)–
(65) could have been guessed from the outset based on

the macroscopic balance equations and fluid symmetry.
The underlying basis in the microdynamics of the parti-
cles provides the necessary details for how the parameters
of these equationsmust depend on the fields. Here only the
formal definitions have been identified. It is only the first
half of the problem of completing these equations, as the
evaluation of these definitions poses a difficult many body
problem. Still, without this first half, the starting point for
that detailed analysis would not be possible. This the case
for atomic fluids as well.

Future Directions

The objective here has been to formulate the basis for
a macroscopic description of granular fluids using the fun-
damental principles of nonequilibrium statistical mechan-
ics. The analysis presented follows that for an atomic fluid.
First, the exact macroscopic balance equations are identi-
fied. Next, their closure is linked to the concept of a nor-
mal state and corresponding normal solution to the Liou-
ville equation. This defines the domain of hydrodynamics
in its most general sense, both for atomic and granular flu-
ids. The construction of a normal solution is quite difficult
in general, but can be accomplished for states with small
gradients relative to locally homogeneous conditions. This
gives the Navier–Stokes approximation described here.

Navier–Stokes hydrodynamics is applicable for most
common states of atomic fluids, while deviations occur
primarily for more complex polymeric molecular flu-
ids. The latter have rheological properties correspond-
ing to larger gradients relative to additional microscopic
length and time scales. The construction of normal states
in these cases is more difficult and is still at the semi-
phenomenological stage [29]. Granular fluids provide
a new motivation for renewed efforts to describe these
more complex normal states. The reason is that even
structurally simple granular fluids composed of spheri-
cally symmetric particles can exhibit rheology and other
phenomena beyond the Navier–Stokes domain of valid-
ity [30,31] . This is due to the cooling rate in the energy
balance equation which provides a new internal time scale,
that can set the size of hydrodynamic gradients beyond
any control through boundary conditions. For example,
new steady states are possible for granular fluids due to
the balance of this internal cooling with external forcing.
In many cases this implies that the hydrodynamic descrip-
tion required is beyond the Navier–Stokes domain. The
understanding of constitutive equations in these cases is
poor at this point. It is hoped that the formal structure de-
scribed here will provide the appropriate basis for studies
of these problems.
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The context of hydrodynamics depends on the for-
mation of a normal state from more complex conditions.
Above this has been described qualitatively as a two stage
process of rapid velocity relaxation in each cell to a state
near the local HCS, followed by hydrodynamic relaxation
through exchange of mass, energy, and momentum be-
tween the cells on a longer time scale. This separation
of microscopic and hydrodynamic time scales is essen-
tial to the dominance of the hydrodynamic excitations
over all others at large space and time scales. It is justi-
fied for atomic fluids since the hydrodynamic times are
determined by the wavelength of the phenomena studied.
As the system approaches homogeneity, these time scales
become much larger than the microscopic excitations and
hydrodynamics prevails at large times. However, there is
an additional hydrodynamic time scale for granular flu-
ids, the cooling rate, which is not set by the wavelength
alone. It would seem that this additional time scale must
be large as well, implying a weak cooling rate. This con-
dition is too strong. What matters is the rate of the ap-
proach to the homogeneous state, not any dynamics of
that final state. In the above derivation of hydrodynamics
the final form for the solution to the Liouville equation,
Eq. (44) or (45), has a dynamics generated by ILC KT

rather than simply that for the trajectories L. This is sig-
nificant since the former has the additional compensation
for the cooling and for the homogeneous perturbations
of that cooling. Hence the approach to the time depen-
dent normal state is determined only by the remaining
non-hydrodynamic relaxation. The time scale for relax-
ation to the normal state is independent of the hydrody-
namic time scales of that normal state. Quantitative verifi-
cation of these concepts is another important future direc-
tion for research on a hydrodynamic description for gran-
ular fluids.
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Appendix

Gradient expansion In this Appendix the Liouville equa-
tion in the form (34) is written to first order in the gradi-
ents and solved. Also the invariants of the associated dy-
namics are identified.

Consider first the right side of (34) which can be writ-
ten equivalently as

Z
dr0

ı�0`

ı ha˛ (r0) ; ti
fr � hb˛ (r) ; tiCı˛2 hw (r) ; tig�L�0`

D �

Z
dr0

ı�0`

ı ha˛ (r0) ; ti
˝
La˛

�
r0

; t
˛
� L�0`

D

Z
dr0

ı�0`

ı ha˛ (r0) ; ti

Z
d� a˛ (r) L (�0` C�) � L�0` :

(78)

The first equality follows from (17) and (21). The first two
terms are determined by the local HCS which can be ex-
panded to first order in the gradients

�0` D �0 (ha˛ (r) ; ti)

C

Z
dr0
�

ı�0`

ı ha˛ (r0) ; ti

�

ıha˛ ;tiD0

�
�˝
a˛
�
r0

; t
˛
� ha˛ (r) ; ti


C : : :

D �0 (ha˛ (r) ; ti)
Cmˇ (r; ha˛ (r) ; ti) � r

˝
aˇ (r) ; t

˛
C : : : (79)

The functional derivatives are
�

ı�0`

ı ha˛ (r0) ; ti

�

ıha˛ ;tiD0
D ı

�
r0�r

 �@�0 (ha˛ (r) ; ti)
@ ha˛ (r) ; ti

C
@mˇ (r; ha˛ (r) ; ti)

@ ha˛ (r) ; ti
� r

˝
aˇ (r) ; t

˛�

Cm˛ (r; ha˛ (r) ; ti) � rı
�
r0�r


C : : :

(80)

Here,

mˇ (r; ha˛ (r) ; ti)

�

Z
dr0
 

ı�0`

ı
˝
aˇ (r0) ; t

˛

!

ıha˛ ;tiD0

�
r0�r


; (81)

and �0 (ha˛ (r) ; ti) is the actual HCS with its global den-
sity, energy, andmomentum evaluated at the common val-
ues ha˛ (r) ; ti. It follows from (32) that the averages of
a˛ (r) for �; �0`; and �0 are all the same. This in turn gives

Z
d� a˛ (r)mˇ D 0 D

Z
d� a˛ (r)� : (82)

With these results and the fact that� is of first order in
the gradients, (78) to first order in the gradients becomes

Z
dr0

ı�0`

ı ha˛ (r0) ; ti
fr � hb˛ (r) ; tiCı˛2 hw (r) ; tig�L�0`

! L�0 � (1 � P)
�
ILC KT

˛ˇ
mˇ � r ha˛ ; ti C PL� :

(83)
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The matrix KT is the transpose of K

K˛ˇ D ı˛2
@!(ha˛ (r) ; ti)
@
˝
aˇ (r) ; t

˛ ; (84)

and I is the unit matrix. The generatorL is the same as that
of (12) with ! ! !0(ha˛ (r) ; ti) for the HCS evaluated at
the common values ha˛ (r) ; ti

L D �!0(ha˛ (r) ; ti)@he(r);ti C L : (85)

Finally, P is the projection operator

PX D @�0

@ ha˛ (r) ; ti

Z
d� a˛ (r) X : (86)

The first term of (83) vanishes by definition of the HCS,
�0, confirming that the right side of the Liouville Eq. (34)
is of first order in the gradients.

At this point, the Liouville Eq. (34) becomes

@t� �

Z
dr0

ı�

ı ha2 (r0) ; ti
!0(

˝
a˛
�
r0

; t
˛
)C PL�

D (1 � P)� 0˛ � r ha˛ ; ti ; (87)

� 0˛ � �
�
ILC KT

˛ˇ
mˇ : (88)

This equation is still exact up through contributions of first
order in the gradients. It has solutions of the form

� (�; t j ha˛ (r) ; ti) D G� (�; t; ha˛ (r) ; ti)�r ha� (r) ; ti ;
(89)

Substitution into (87) gives the corresponding equation
for G�

@tG� C (1 � P)
�
ILC KT

�ˇ
Gˇ D (1 � P)� 0� ; (90)

with the solution

G� (�; t; ha˛ (r) ; ti)

D

Z t

0
dt0


e�(1�P)(ILCKT)t0

�

�ˇ
(1 � P)� 0ˇ : (91)

It is possible to add to (87) an arbitrary solution to the ho-
mogeneous equation corresponding to (90). As described
in the text, this represents the dynamics of the first stage
of rapid velocity relaxation to the local HCS. The inter-
est here is in the second stage where possible formation of
a normal solution occurs. Hence, it is simpler to choose
that stage for initial conditions (initial local HCS).

Define the derivatives of the HCS by

�ˇ (�; ha˛ (r) ; ti) �
@�0

@
˝
aˇ (r) ; t

˛ : (92)

Then differentiate the equation for �0
@

@
˝
aˇ (r) ; t

˛L�0 D 0 ; (93)

to get
�
ILT C KT

�ˇ
�ˇ D 0 : (94)

Since
�
ILT C KT is the generator for the dynamics in (91)

this shows that �ˇ are the invariants of that dynamics.
The projection operator P in (95) acts only on phase

functions with translational invariance. In that case (86)
simplifies to

PX D �ˇ
Z

d� AˇX ; Aˇ D V�1
Z

dra˛ (r) : (95)

The first equality of (82) becomes Pmˇ D 0 : This in turn
gives

mˇ D (1 � P)mˇ D (1 � P)Mˇ ;

Mˇ �

Z
dr0
�

ı�0`

ı ha˛ (r0) ; ti

�

ıha˛ ;tiD0
r0 :

(96)

Then (1 � P)� 0˛ simplifies to

(1 � P)� 0˛ D � (1 � P)
�
ILC KT

˛ˇ
(1 � P)Mˇ

� (1 � P)� ˛ (97)

with

� ˛ D �
�
ILC KT

˛ˇ
Mˇ : (98)

Use has been made of the identity

(1 � P)
�
ILC KTP D 0 : (99)

This same identity leads to a simplification of the dynamics
in (91)

e�(1�P)(ILCKT)t0 (1 � P) D (1 � P) e�(ILCKT)t0 (1 � P) :
(100)

In summary, the solution to the Liouville equation to
first order in the gradients is

� (�; t j ha˛ ; ti) D �0 (�; ha˛(r); ti)

C (1 � P)


Mˇ (�; ha˛(r); ti)

C

Z t

0
dt0


e�(ILCKT)t0

�

�ˇ

� (1 � P)� ˇ (�; ha˛(r); ti)
�

� r ha� (r) ; ti : (101)



Granular Flows G 4391

Bibliography

Primary Literature

1. Kadanoff LP (1999) Built upon sand: Theoretical ideas inspired
by granular flows. Rev Mod Phys 71:435–444

2. Haff PK (1983) Grain flow as a fluid mechanical phenomenon.
J Fluid Mech 134:401–430

3. McLennan JA (1989) Introduction to NonequilibriumStatistical
Mechanics. Prentice-Hall, New Jersey

4. Hansen J-P, McDonald I (1986) Theory of Simple Liquids. Else-
vier Press, London

5. Resibois P, De Leener M (1977) Classical Kinetic Theory of Flu-
ids. Wiley, New York

6. See, for instance, Goldhirsch I, Tan ML, Zanetti G (1993)
A molecular dynamical study of granular fluids: the unforced
granular gas. J Sci Comput 8:1–40; McNamara S, Young WR
(1996) Dynamics of a freely evolving, two-dimensional gran-
ular medium. Phys Rev E 53:5089–5100; Deltour P, Barrat JL
(1997) Quantitative study of a freely cooling granular medium.
J Phys I 7:137–151

7. BrilliantovN, Pöschel T (2004) Kinetic Theory of Granular Gases.
Oxford, New York

8. Dufty JW (2001) Kinetic theory and hydrodynamics for
a low density gas. Adv Complex Syst 4:397–407. cond-mat/
0109215.201

9. Brey JJ, Dufty JW, Santos A (1997) Dissipative dynamics for
hard spheres. J Stat Phys 87:1051–1066

10. Van Noije TPC, Ernst MH (2001) Kinetic theory of granular
gases. In: Pöschel T, Luding S (eds) Granular Gases. Springer,
New York

11. Dufty JW, Brey JJ, Lutsko J (2002) Diffusion in a granular fluid.
I. Theory Phys Rev E 65:051303; Lutsko J, Dufty JW, Brey JJ
(2002) Diffusion in a granular fluid. II. Simulation. Phys Rev E
65:051305; Dufty JW, Garzó V (2001) Mobility and diffusion in
granular fluids. J Stat Phys 105:723–744

12. Dufty JW (2000) Statistical mechanics, kinetic theory, and hy-
drodynamics for rapid granular flow. J Phys: Condens Matter
12:A47–A56

13. Dufty JW, Baskaran A, Brey JJ (2006) Linear response for a gran-
ular fluid. JSTAT L08002:1–8

14. Dufty JW, Baskaran A, Brey JJ (2007) Linear response and
hydrodynamics for granular fluids. Phys Rev E77, 031310;
Baskaran A, Dufty JW, Brey JJ (2007) Transport coefficients for
the hard sphere granular fluid. Phys Rev E77, 031311

15. See for example articles (2002) In: Halsey T, Metha A (eds) Chal-
lenges in Granular Physics. World Scientific, Singapore

16. Dufty J, Brey JJ (2005) Origins of hydrodynamics for a granular
gas. In: Pareschi L, Russo G, Toscani G, (eds) Modelling and Nu-
merics of Kinetic Dissipative Systems Nova Science, New York,
pp 17–30, cond-mat/0410133

17. Here the Navier–Stokes approximation is defined by calculat-
ing the cooling rate, energy flux, and momentum flux to first
order in the gradients. However, the fluxes occur under a gra-
dient in the macroscopic balance equations while the cooling
rate does not. Hence the equations themselves do not have
all terms to second order in the gradients (i. e., the additional
terms of second order contributing to the cooling rate).

18. Huan C, Yang X, Candela D, Mair RW, and Walsworth RL (2004)
NMR experiments on a three-dimensional vibrofluidized gran-
ular medium. Phys Rev E 69:041302

19. Bizon C, Shattuck MD, Swift JB, Swinney HL (1999) Transport
coefficients for granular media from molecular dynamics sim-
ulations. Phys Rev E 60:4340–4351; Rericha EC, Bizon C, Shat-
tuck MD, Swinney HL (2001) Shocks in supersonic sand. Phys
Rev Lett 88:014302

20. See, for instance, Brey JJ, Ruiz-Montero MJ, Cubero D (1999)
On the validity of linear hydrodynamics for low-density granu-
lar flows described by the Boltzmann equation. Europhys Lett
48:359–364; Brey JJ, Ruiz-Montero MJ, Cubero D, García-Rojo R
(2000) Self-diffusion in freely evolving granular gases. Phys Flu-
ids 12:876–883; Garzó V, Montanero JM (2002) Transport coef-
ficients of a heated granular gas. Physica A 313:336–356; Mon-
tanero JM, Santos A, Garzó V (2005) DSMC evaluation of the
Navier–Stokes shear viscosity of a granular fluid. In: Capitelli
M (ed) Rarefied Gas Dynamics 24 (AIP Conf Proc, vol 72),
pp 797–802

21. Brey JJ, Ruiz-Montero MJ, Moreno F, Garcia-Rojo R (2002)
Transversal inhomogeneities in dilute vibrofluidized granular
fluids. Phys Rev E 65:061302; Brey JJ, Ruiz-MonteroMJ, Moreno
F (2001) Hydrodynamics of an open vibrated granular system.
Phys Rev E 63:061305

22. Brey JJ, Ruiz-Montero MJ, Maynar P, Garzia de Soria MI
(2005) Hydrodynamic modes, Green–Kubo relations, and ve-
locity correlations in dilute granular gases. J Phys Cond Mat
17:S2489–S2502

23. Brey JJ, Dufty JW, Kim CS, Santos A (1998) Hydrodynamics for
granular flow at low density. Phys Rev E 58:4638–4653; Sela N,
Goldhirsch I (1998) Hydrodynamic equations for rapid flows
of smooth inelastic spheres, to Burnett order. J Fluid Mech
361:41–74

24. Dufty JW, Brey JJ (2002) Green–Kubo expressions for a low
density granular gas. J Stat Phys 109:433–448. cond-mat
0201361

25. Dufty JW (2005) Some aspects of the Boltzmann equation for
granular gase. In: Capitelli M (ed) Rarefied Gas Dynamics (AIP
Conf Proc 762, New York), pp 789–796

26. Dufty JW, Brey JJ (2005) Hydrodynamic modes for granular
gases. Phys Rev E 68:030302; Brey JJ, Dufty JW (2005) Hydrody-
namic modes for a granular gas from kinetic theory. Phys Rev
E 72:011303

27. Dufty JW (2007) Fourier’s law for a granular fluid. J Phys Chem
B 111:15605–15612

28. Helfand E (1960) Transport coefficients from dissipation in
a canonical ensemble. Phys Rev 119:1–9

29. Bird R, Armstrong R, Hassager O (1977) Dynamics of Polymeric
Liquids. Wiley, New York

30. Santos A, Garzo V, Dufty JW (2004) Inherent rheology of a gran-
ular fluid in uniform shear flow. Phys Rev E 69:061303. cond-
mat 0309320

31. Hrenya C (2007) (private communication, and to be published)

Books and Reviews
Campbell CS (1990) Rapid granular flows. Ann Rev Fluid

Mech 22:57–92
Mehta A (ed) (1993) Granular Matter, An Interdisciplinary Ap-

proach. Springer, New York
Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids,

and gases. Rev Mod Phys 68:1259–1273
Duran J (2000) Sands, powders, and grains: an introduction to the

physics of granular materials. Springer, New York



4392 G Granular Model for Data Mining

Pöschel T, Luding S (eds) (2001) Granular Gases. Springer, New York
Halsey T, Metha A (eds) (2002) Challenges in Granular Physics.

World Scientific, Singapore
Campbell CS (2002) Granular shear flows in the elastic limit. J Fluid

Mech 465:261–291
Pöschel T, Brilliantov N (eds) (2003) Granular Gases Dynamics.

Springer, New York
Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech

35:267–293
BrilliantovN, Pöschel T (2004) Kinetic Theory of Granular Gases. Ox-

ford, New York
Hinrichsen H, Wolf D (eds) (2004) The Physics of Granular Media.

Wiley-VCH, Berlin
Coniglio A, Fierro A, Herrmann H, NicodemiM (eds) (2004) Unifying

Concepts in Granular Media and Glasses. Elsevier, Amsterdam
Pöschel T, Schwager T (2005) Computational Granular Dynamics:

Models and Algorithms. Springer, New York
Dufty JW (2007) Nonequilibrium statistical mechanics and hy-

drodynamics for a granular fluid. Six lectures at the Sec-
ond Warsaw School on Statistical Physics. Kazimierz, Poland.
arXiv:0707.3714

Granular Model for Data Mining
ANITA WASILEWSKA1, ERNESTINA MENASALVAS2
1 Computer Science Department, Stony Brook
University, Stony Brook, USA

2 Departamento de Lenguajes y Sistemas Informaticos,
Facultad de Informatica, Madrid, Spain

Article Outline

Glossary
Definition of the Subject
Introduction
Granular Model: Syntax and Semantics for Data Mining
Semantic Model
Descriptive Model
Granular Model Revisited: Satisfaction and Truth
Future Directions
Bibliography

Glossary

Data mining Data mining is a process that includes the
following phases: creating the target data, data prepro-
cessing, data mining proper, pattern evaluation, and
knowledge presentation.

Syntax Syntax, or syntactical concepts, refer to simple
relations among symbols and expressions of formal,
symbolic languages. A symbolic language is a pair
L D (A;E), where A is an alphabet and E is the set
of expressions of L. The expressions are often the for-
mulae of the language, but can also represent sets of se-

quences of formulae, sets of clauses, or other sets built
out of symbols of the alphabet, or their subsets. The
expressions of formal languages, even if created with
a specific meaning in mind, do not carry themselves
any meaning, they are just finite sequences of certain
symbols. The meaning is being assigned to them by es-
tablishing a proper semantics.

Semantics Semantics for a given symbolic language L as-
signs a specific interpretation in some domain to all
symbols and expressions of the language. It also in-
volves related ideas such as truth and model. They are
called semantical concepts to distinguish them from
the syntactical ones.

Model The word model is used in many situations and
has many meanings but they all reflect some parts,
if not all, of its following formal meaning. A struc-
tureM, called also an interpretation, is amodel for a set
E0 � E of expressions of L if and only if every expres-
sion E 2 E0 it true inM.

Definition of the Subject

We present here three abstract models: descriptive, se-
mantic, and granular. All of them are abstract structures
that allow us to formalize some general properties of the
data mining process and address the semantics-syntax du-
ality inherent to any data mining process. A descriptive
model formalizes the syntactical concepts and properties
of the process. A semantic model formalizes its semantical
properties. Finally, they form components of the granu-
lar model in which we establish a relationship between the
descriptive and semantic models and provide a formal se-
mantics for syntactical expressions of the languageL of the
descriptive model, thus justifying a use of the word model.

Moreover, we provide, within the granular model,
a formal definition of data mining as the process of infor-
mation generalization. The notion of generalization is de-
fined in terms of granularity of steps of the process. In the
model the data is represented in a form of knowledge sys-
tems. Each knowledge system has a granularity associated
with it and the process changes, or not, its granularity. The
notion of granularity is crucial for defining some notions
and components of the model, hence the granular model
name.

Introduction

Data mining, as defined in 1996 by Piatetsky-Shapiro [13]
is a step (crucial, but a step nevertheless) in a KDD
(knowledge discovery in databases) process. The Piatet-
sky-Shapiro’s definition states that the KDD process con-
sists of the following steps: developing an understanding of
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the application domain; creating a target data set; choos-
ing the data mining task i. e. deciding whether the goal
of the KDD process is classification, regression, clustering,
etc . . . ; choosing data preprocessing algorithms; choosing
datamining algorithm(s); interpreting mined patterns; de-
ciding if a re-iteration is needed; consolidating the discov-
ered knowledge.

Since then the data mining (DM) term has evolved to
become a name for all of the KDD process, or some parts
of it, or even to be used as a name of an application of
a data mining or learning algorithm.

In 1997 the Cross–Industry Standard Process for
Data Mining (CRISP-DM) was proposed [15] to establish
a standard for what they called, and others adopted, a data
mining process. CRISP-DM standard was developed for
business purposes and it included all of KDD process steps
plus some extra steps such as a business understanding,
business goal understanding followed by the KDD stan-
dard steps. Hence the KDD process became often a data
mining process for industrial applications and was and is
more and more often called just by the name of data min-
ing.

To clarify these naming confusions we follow the stan-
dard terminology developed by data mining research in
which we understand by data mining a KDD process in
which its original data mining phase is now called data
mining proper phase. For short we say that

Data mining (DM) is a process that includes between
the others the following phases: creating the target data,
data preprocessing, data mining proper, pattern evaluation,
and knowledge presentation.

We formalize, within our granular model, the intuitive
notions of the data mining preprocessing and data mining
proper processes (Sect. “Data Mining Process”).

One of themain goals of datamining is to provide com-
prehensible descriptions of information extracted from the
data bases. The descriptions come in different forms. In
the case of classification problems it might be a set of char-
acteristic or discriminant rules, it might be a decision tree
or a neural network with fixed set of weights. In the case
of association analysis it is a set of associations (frequent
itemsets), or association rules with accuracy parameters.
In the case of cluster analysis it is a set of clusters, each of
which has its own description and a cluster name. In the
case of approximate classification by the rough set analy-
sis it is usually a set of discriminant or characteristic rules
(with or without accuracy parameters) or a set of decision
tables.

If the number of descriptions is relatively small and
all descriptions are of a reasonable length say that we
obtained a generalized knowledge from the initial target

database; that we mined more comprehensive, more gen-
eral information. If an algorithm would reduce, for exam-
ple, 100,000 records of the database of size 500 (number
of attributes of the initial database) to 20 descriptions of
size 10, we surely would say that we well generalized our
information. Once it is done, a natural question of a mea-
sure of quality of such syntactic generalization and hence
the validity of our method arises and this is being handled
by our semantic model (Sect. “Semantic Model”). The for-
mat of the descriptions is defined in our descriptive model
(Sect. “Descriptive Model”). The correctness and qual-
ity of syntactical descriptions is defined in our granular
model by a satisfaction relation. The satisfaction relation
(Sects. “K- Satisfaction and K- Truth”, “Granular Model
Revisited: Satisfaction and Truth”) establishes a connec-
tion between syntactical and semantical approaches, and
hence describe formally the syntax-semantic duality of the
data mining process.

GranularModel:
Syntax and Semantics for DataMining

We usually view data mining results and present them to
the user in their descriptive, i. e. syntactic form as it is the
most natural form of communication. But the data mining
process is deeply semantical in its nature. We hence build
our granular model on two levels: syntactic and semantic.
The syntactic level is represented by a descriptive model,
and semantic level is described by the semantic model.
The semantics-syntax duality of data mining process is ex-
pressed in our granular model by the satisfiability relation.

Moreover, we use a granular model to provide a for-
mal definition of datamining as the process of information
generalization (Sect. “Data Mining as Generalization”). In
the model the data preprocessing and data mining algo-
rithms are defined as certain operators that act on data
represented in a form of knowledge systems (Definition 9).
Each knowledge system has a granularity associated with it
(Definition 10) and the operators change, or not, its gran-
ularity. The notion of granularity is crucial for defining all
notions and components of the model, hence the granular
model name.

Granular Model Definition

For a given data mining application one defines in detail
all the components of the model (see Examples 7, 14). We
provide here, as a part of the granular model definition,
a general form of such definitions.

Definition 1 A granular model is a system GM D

(SM;DM;ˆ) where:



4394 G Granular Model for Data Mining

� SM is a semantic model;
� DM is a descriptive model;
� ˆ� P(U) � E is called a satisfaction relation,where U

is the universe of SM and E is the set of descriptions
defined by theDM.

The satisfaction relation ˆ (Definition 31) establishes the
relationship between expressions of the semantic and de-
scriptive models. It hence established formally the syntax-
semantics duality of the data mining process. The models
are SM andDM are defined in Definitions 13 and 21, re-
spectively.

Motivation and Examples

The semantic model is the most important component of
our granular model. The intuitions behind the definition
of the semantic model are as follows. When we perform
the data mining procedures the first step in any of them is
to drop the key attribute. This step allows us to introduce
similarities in the database as records do not have anymore
their unique identification. The input into the data mining
process is hence always a data table obtained from the tar-
get data by removal of the key attribute. We call it a target
data table.

As the next step we represent, following the rough set
model, our target data table as Pawlak’s information sys-
tem [11] with the universe U by adding a new, non at-
tribute column for the record names, i. e. objects of U. We
take this set U as the universe of our model of SM.

Data mining, as it is commonly said, is a process of
generalization. In order to model this process we have
first to define what does it mean from semantical point of
view that one stage of the process is more general then the
other. The idea behind is very simple. It is the same as say-
ing that (aC b)2 D a2 C 2abC b2 is a more general for-
mula then the formula (2C 3)2 D 22 C 2 � 2 � 3C 32. This
means that one description (formula) is more general then
the other if it describes more objects. From a semantical
point of view it means that data mining process consists
of putting objects (records) in sets of objects. From a syn-
tactical point of view the data mining process consists of
building descriptions (in terms of attribute, values of at-
tributes pairs) of these sets of objects, with some extra pa-
rameters, if needed.

To model a situation that allows us to talk about
descriptions of sets of records we extend the notion of
Pawlak’s model of an information system to our notion of
a knowledge system (Definition 9). The universe the knowl-
edge system consists of some subsets of U, i. e. elements of
P(U). For example a target data table (after preprocessing)

and the corresponding representation by Pawlak’s infor-
mation system, and a knowledge system with universe U
of granularity one are as follows.

Example 2
Target Data Table T0

a1 a2 a3
small small medium
medium small medium
small small medium
big small small
medium medium big
small small medium
big small small
medium medium big
small small medium
big small medium
medium medium small
small small medium
big small big
medium medium small

Target Information System I0

U a1 a2 a3
x1 small small medium
x2 medium small medium
x3 small small medium
x4 big small small
x5 medium medium big
x6 small small medium
x7 big small small
x8 medium medium big
x9 small small medium
x10 big small medium
x11 medium medium small
x12 small small medium
x13 big small big
x14 medium medium small

A knowledge system corresponding to target table T0 is
a system that all its objects are one element sets fxg for
corresponding x 2 U of T0. We call such knowledge sys-
tems (Definition 11) a target knowledge system based on
the target data table T0. The knowledge systems with the
property that all its objects are one element sets are called
systems of granularity one.

Example 3
Target Knowledge System K0
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P1(U) a1 a2 a3
fx1g small small medium
fx2g medium small medium
fx3g small small medium
fx4g big small small
fx5g medium medium big
fx6g small small medium
fx7g big small small
fx8g medium medium big
fx9g small small medium
fx10g big small medium
fx11g medium medium small
fx12g small small medium
fx13g big small big
fx14g medium medium small

Assume now that we have applied some algorithm ALG1
and it has returned a following setD D fD1;D2; : : : ;D7g

of descriptions (in the granular model, Di 2 E and E is
defined in the descriptive model. We write s for the at-
tribute value small,m for medium and b for big.

D1 : (a1 D s) \ (a2 D s)\ (a3 D m) ;
D2 : (a1 D m) \ (a2 D s)\ (a3 D m) ;
D3 : (a1 D m) \ (a2 D m) \ (a3 D b) ;
D4 : (a1 D m) \ (a2 D m) \ (a3 D s) ;
D5 : (a1 D b) \ (a2 D s)\ (a3 D s) ;
D6 : (a1 D b) \ (a2 D s)\ (a3 D m) ;
D7 : (a1 D b) \ (a2 D s)\ (a3 D b) :

Now, a natural question arises: how well this set of de-
scriptions describes our original data i. e. how accurate is
the algorithm ALG1 we have used to find them, how ac-
curate is the knowledge we have thus obtained out of our
data. To answer this, we use the target information sys-
tem with the universe U, and for any D 2 D we examine
a set S(D) D x 2 U : D called a truth set for D. We de-
fine it formally in the Definition 27. Intuitively, the sets
S(D) D fx 2 U : Dg contain all records (i. e. their identi-
fiers) with the same description given in terms of attribute,
values of attribute pairs. The descriptions do not need to
utilize all attributes of the target data, as it is often the case,
and one of ultimate goals of data mining is to find descrip-
tions with as few attributes as possible.

In association analysis the descriptions can represent
the frequent itemsets. For example, for a frequent three
itemset D D i1 i2 i3, the truth set S(D) represents all trans-
actions that contain items i1; i2; i3.

Descriptions come in different forms, depending on
the data mining goal and application. We define formally

a general form of descriptions as a part of the descriptive
model (Definition 21).

For the data presented in the Examples 2, 3 and their
descriptions Di 2 D the sets S(Di ) are as follows.

S1 D S(D1) D fx 2 U : D1g D fx1; x3; x6; x9; x12g ;
S2 D S(D2) D fx 2 U : D2g D fx2g ;
S3 D S(D3) D fx 2 U : D3g D fx5; x8g ;
S4 D S(D4) D fx 2 U : D4g D fx11; x14g ;
S5 D S(D5) D fx 2 U : D5g D fx4; x7g ;
S6 D S(D6) D fx 2 U : D6g D fx10g ;
S7 D S(D7) D fx 2 U : D7g D fx13g :

We represent our results in a form of a knowledge system
as follows. We write, as before, s for the attribute value
small, m for medium and b for big and we put the names
of proper subsets of U in the second representation of K1.

Example 4
Resulting Knowledge System K1

K1(U) a1 a2 a3
fx1; x3; x6; x9; x12g s s m
fx2g m s m
fx5; x8g m m b
fx11; x14g m m s
fx4; x7g b s s
fx10g b s s
fx13g b s b

Resulting Knowledge System K1

K1(U) a1 a2 a3a
S1 s s m
S2 m s m
S3 m m b
S4 m m s
S5 b s s
S6 b s s
S7 b s b

The representation of data mining results in a form of
a knowledge system allows us to define how good is the
knowledge obtained by a given algorithm. In our case the
knowledge obtained describes 100% of our target data as

S1 [ S2 [ S3 \ � � � [ S7 D fx1; x2; : : : ; x14g D U :

Observe that the sets S1; : : : ; S7 are also disjoint and
non-empty, i. e. they form a partition of the universe U).
In such a case the knowledge system (and the algorithm)
will be called exact (see Definition 12).
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Moreover, we can see that the resulting system K1 is
more general then the input data, as represented by the
target system K0 because its granularity (i. e. maximum of
cardinality of its granules, i. e. elements of its universe) is
higher the granularity of K0. This observation motivates
the formal Definition 15. The granularity of our K0 is one,
as is the granularity of all target knowledge systems.

The granularity of K1 is maxfjS1j; : : : ; jS7jg D maxf5;
1; 2; g D 5.

Let now assume that we have applied to out target
data T (represented by K0) another algorithm ALG2 and
it returned two descriptions D1;D2 under a condition that
we need only descriptions of length 2, such that the cor-
responding attribute- value pairs appear in the target data
with frequency � 30%.

Example 5 Consider the following two descriptions
D1, D2.

� D1 : (a1 D s) \ (a2 D s); D2 : (a2 D s)\ (a3 D m).
� Now we evaluate: S1 D S(D1) D fx1; x3; x6; x9; x12g,
� S2 D S(D2) D fx1; x2; x3; x6; x9; x10; x12g.

The descriptionD1 fulfills the algorithm condition because
it’s of length 2 and jS1j

jU j D
5
14 � 0:3508. The frequency% is

greater then 30%.
The description D2 fulfills the algorithm condition be-

cause it’s of length 2 and jS1j
jU j D

7
14 D 0:5. The frequency%

is hence greater then 30%.
Incorporating the parameters of # of attributes in the

description and their frequency imposed by the ALG2 into
our knowledge system we obtain the following table. The
table is incomplete, as there aremore descriptions fulfilling
the algorithm conditions.

Example 6
Knowledge System K2

K2(U) a1 a2 a3 #of attr frequency%
S1 s s – 2 35
S2 – s m 2 50

The sets S1, S2 do not form a partition of the universeU as
S1 \ S2 ¤ ; and moreover, S1 [ S2 ¤ U . The algorithm
ALG2 is hence not exact. It describes only 57% of the target
data and what is described is described following the fre-
quency conditions. Of course K2 is more general then K0
and the algorithm ALG2 generalized the target data, even
if in an incomplete way. Now we form a new set of de-
scriptions D3, D4 associated with the resulting knowledge
system K2.

Example 7

� D3 : (a1 D s) \ (a2 D s) \ (#of attr D 2) \ (frequen-
cy%= 36),

� D4 : (a2 D s)\ (a3 D m) \ (#of attr D 2)\ (frequen-
cy%= 50).

We re-write D3, D4 as follows. D3 : D1 \ (#of attr D
2) \ (frequency% = 36), D4 : D2 \ (#of attr D 2) \ (fre-
quency% =50), where D1, D2 are descriptions considered
in Example 5.

We say that the set S1 D S(D1) D fx 2 U : D1g is
a truth set for the descriptionD3 under restrictions defined
by the descriptions (#of attr D 2)\ (frequency% D 36).
The set S2 D S(D2) is the truth set for D4 under restric-
tions (#of attr D 2) \ (frequency% D 50).

SemanticModel

The definition of a semanticmodel presented here is a sim-
pler and more comprehensible version of [17,18,21,22].
The initial investigations of the subject appeared also
in [3,8,9,10]. The notion of a knowledge system is central
to the definition and development of the semantic model,
as we have seen in Sect. “Motivation and Examples”. We
define it formally in the next section. We next use the
knowledge system to formalize a notion of a granule and
granularity (Definition 10) that is central to our granular
model.

Knowledge Systems and Granularity

Observe that the table depicting the knowledge system
K2 (Example 6) is incomplete, i. e. not all attributes have
assigned values. This fact in the formal definition will
be represented by a partial function g. Also K2 contains
some new attributes describing properties of its granules. In
the formal definition we will call these new attributes the
knowledge attributes.

The formal definitions of information system, knowl-
edge and target knowledge systems, and their granularity
and exactness are as follows.

Definition 8 A Pawlak’s information system is a system
I D (U;A;VA; f ), where U ¤ ; is called a set of objects;
A ¤ ;;VA ¤ ; are called the set of attributes and values
of attributes, respectively; f : U � A �! VA is called an
information function.

Definition 9 A knowledge system based on I D (U;A;
VA; f ) is a system

K D (K(U);A; E;VA ;VE ; g)
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where:

� The universe K(U) of K is a subset of the set P(U) of all
subsets of the universe U of I, i. e. K(U) � P(U);

� E is a finite set of knowledge attributes (k-attributes)
such that A\ E D ;;

� VE is a finite set of values of k- attributes;
� g is a partial function called a knowledge function

(k-function);
� g : P � (A[ E) �! (VA [ VE ) is such that:

(i) g j (
S

x2U fxg � A) D f ;
(ii) 8S 2 P; 8a 2 A((S; a) 2 dom(g) ) g(S; a) 2

VA);
(iii) 8S 2 P; 8e 2 E((S; e) 2 dom(g) ) g(S; e) 2

VE );

We use the above notion of a knowledge system to define
the granules of the universe and the granularity of the sys-
tem, an hence later, the granularity of the datamining pro-
cess.

Definition 10 Any set S 2 P(U) i. e. S � U is called
a granule of U. The cardinality jSj of S is called a gran-
ularity of S. The set

GrK D fS 2 P : 9b 2 (E [ A)((S; b) 2 dom(g))g

is called a granule universe of K . A number grK D
maxfjSj : S 2 GrKg is called a granularity of K .

Observe that by conditions (ii), (iii) of Definition 9,
GrK D K(U) and it justifies its name. The condition (i)
of Definition 9 says that when E D ;, the k-function g is
total on the set ffxg : x 2 Ug � A and 8x 2 U 8a 2
A (g(fxg; a) D f (x; a)). We denote P1(U) D ffxg : x 2
Ug.

Definition 11 Let I D (U;A;VA; f ). Any system K1 D

K1 D (P1(U);A;;;VA;;; g) D (P1(U);A;VA; g) D
(P1(U);A;VA ; g) is called a target knowledge system based
on I.

Observe that any target knowledge system has granularity
one. Finally, we define the exactness of a knowledge system
as follows.

Definition 12 A knowledge system K D (K(U);A; E;VA ;

VE ; g) is called exact if all its granules GrK form a partition
of the universe U.

The system K2 from Example 4 is exact, the system K3
from Example 6 is not exact.

In our model we view data mining algorithms as cer-
tain operators. For example, ourALG1 is represented in the
semantic model by an operator p1 acting on some subset

of a setK of knowledge systems, such that p1(K0) D K1.
ALG2 is represented in the model by an operator p2 also
acting on some (may be different) subset of the set K
of knowledge systems, such that p2(K0) D K2. We put all
the above observations into a formal notion of a semantic
model.

Definition 13 A semantic model is a system SM D

(P(U);K;G), where:
� U ¤ ; is the universe;
� K ¤ ; is a set of knowledge systems, called also data

mining process states;
� G ¤ ; is the set of operators;
� Each operator p 2 G is a partial function on the set of

all data mining process states, i. e. p : K �!K.

The semantic model is always being built for a given ap-
plication. The target data is represented first in a form the
target information system with the universe U, as in Ex-
ample 2 and then in the form of target knowledge system
as in the Example 3.

The semantic model based on our Examples 2, 3, and 4
are as follows.

Example 14 SM1 D (P(U);K;G), where: U D fx1;
x2; : : : ; x14g; K D fK0;K1;K2g; G D fp1; p2g; Each
pi 2 G, (i D 1; 2) is a partial function pi : K1 �! K1,
such that p1(K0) D K1; p2(K0) D K2.

Data Mining as Generalization

In order to model within our semantic model data mining
as a process of generalization we first introduce the follow-
ing definition of generalization relation based on a notion
of granularity.

Definition 15 A relation ��K �K is called a gener-
alization relation if the following condition holds for any
K;K0 2K.

K � K0 if and only if grK � grK0 ;

where grK denotes the granularity of K (Definition 10).

Observe that for K0;K1;K2 from Example 14, grK0 D 1 �
5 D grK1 � 7 D grK2 , and the system K2 is the most gen-
eral. But at the same time K1 is exact and K2 is not exact,
so we have a trade off between exactness and generality.

As the next step we use the generalization relation to
define the notion of a generalization operator as follows.

Definition 16 An operator g 2 G is called a generaliza-
tion operator if for any K;K0 2K such that g(K) D K0,
we have that K � K0.
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Observe that both operators p1; p2 in Example 14 are gen-
eralization operators.

Data Mining Operators

In the data mining process the preprocessing and data
mining are disjoint, inclusive/exlusive categories. The pre-
processing is an integral and very important stage of the
data mining process and needs as careful analysis as the
data mining itself. Our framework allows us distinguish
two disjoint classes of operators: the preprocessing opera-
tors Gprep and data mining proper operators Gdm and we
put

G D Gprep [ Gdm :

The paper [20] contains detailed formal definitions, their
motivation, and discussion of these two classes. Themodel
presented in Example 14 didn’t include the preprocessing
stage; it used the data mining proper operators only.

The main idea behind the concept of the operator is to
capture not only the fact that data mining techniques gen-
eralize the data, but also to categorize existing methods.
Wewant to do it in as exclusive/inclusive sense as possible.
It means that we want tomake sure that our categorization
will be to distinguish as it should, for example clustering
from classification, making at the same time all classifica-
tion methods fall into one category, called the classifica-
tion operator while all clustering methods would fall into
the category called the clustering operator. The third cate-
gory is the association analysis described in our framework
by the association operator. We don’t include in our anal-
ysis purely statistical methods like regression, etc . . . This
gives us only three data mining classes of operators to con-
sider: classification Gclass, clustering Gclust, and association
Gassoc. Themotivation, discussion and formal definition of
these classes is included in the paper [22]

Theorem 17 Let Gclass;Gclust and Gassoc be the sets of all
classification, clustering, and association operators, respec-
tively. The following conditions hold.

(1) Gclass ¤ Gclust ¤ Gassoc
(2) Gassoc \ Gclass D ;,
(3) Gassoc \ Gclust D ;.

Data Mining Process

Wemodel here two stages of the data mining process: pre-
processing and data mining proper, as we were able to dis-
tinguish the data preprocessing and data mining proper
operators as disjoint categories. We adopt the following
definitions.

Definition 18 Any sequence K1;K2; : : : ;Kn (n � 1) of
data mining states is called a data preprocessing process,
if there is a preprocessing operator G 2 Gprep, such that
G(Ki ) D KiC1; i D 1; 2; : : : ; n � 1.

Definition 19 Any sequence K1;K2; : : : ;Kn (n � 1) of
data mining states is called a data mining proper process,
if there is a datamining proper operator G 2 Gdm, such that
G(Ki ) D KiC1; i D 1; 2; : : : ; n � 1.

The datamining process consists of the preprocessing pro-
cess (that might be empty) and the data mining proper
process. We know that the sets Gprep and Gdm are disjoint.
This justifies the following definition.

Definition 20 A data mining process is any sequence
K1;K2; : : : ;Kn (n � 1) of data mining states, such that
K1; : : : ;Ki(0 � i � n) is a preprocessing process and
KiC1; : : : ;Kn is a data mining proper process.

Observe that in the semantic model SM1 (Example 14) we
have only two processes: K0;K1 and K0;K2. Both of them
are data mining proper processes.

DescriptiveModel

Given a semantic model SM D (P(U);K;G) We asso-
ciate with it its descriptive counterpart defined below.

Definition 21 A descriptive model is a system
DM D (L;E;DK) where:

� L D (A;E) is called a descriptive language;
� A is a countably infinite set called the alphabet;
� E ¤ ; and E �A� is the set of descriptive expres-

sions of L;
� DK ¤ ; andDK � P(E) is a set of descriptions of

knowledge states.

As in the case of a semanticmodel, we build the descriptive
model for a given application. We define here only a gen-
eral form of the model. We assume however, that what-
ever the application is, the descriptions are always built
in terms of attributes and values of the attributes, some
logical connectives, some predicates and some extra pa-
rameters, if needed. For example, a neural network with
its nodes and weights can be seen as a formal description
(in an appropriate descriptive language), and the knowl-
edge states would represent changes in parameters during
the neural network training process, or a final, converged
network.

The model we build here is a model for what we call
a descriptive data mining, i. e. the data mining for which
the goal of the data mining process is to produce a set
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of descriptions in a language easily comprehensible to the
user. For that reason we identify, for example, a decision
tree constructed by the classification by the decision tree
algorithm with the set of discriminant rules obtained from
the tree.

In our Examples 2–14 we have used descriptions in the
form (a D v) to denote that the attribute a has a value v,
but one might also use, like it is often done a predicate
form a(v) or a(x; v) instead.

We define the components of DM in the following
stages.
Stage 1 For each K 2K, we define (Sect. “K-De-

scriptive Language”) its own descriptive language
LK D (AK ;EK).

Stage 2 For each K 2K, and descriptive expression
F 2 EK , we define what does it mean that D satisfied
in K ; i. e. we define (Definition 25) a satisfaction rela-
tionˆK .

Stage 3 For each K 2K, and descriptive expression
F 2 EK , we define what does it mean that D is true K ,
i. e.ˆKD (Definition 28).

Stage 4 For each K 2K, we define its set DK � P(EK)
of descriptions of its own knowledge (Definition 26).

Stage 5 We use the languagesLK to define the descriptive
language L (Definition 29).

Stage 6 We use the descriptive expressions EK of LK to
define the set E of descriptive expressions of L (Defi-
nition 30).

Later Stage We use the satisfaction relationsˆK to define
the satisfaction relation ˆ of our granular model GM
(Definitions 1 and 31, respectively).

K-Descriptive Language

As Stage 1 of our construction of the descriptive model, we
define for each K 2K, its own description language LK .
The language depends on the semantic model and the goal
of the data mining process. As we have said, the descrip-
tions produced by data mining algorithms come in differ-
ent forms. We build here a model for a descriptive data
mining, i. e. we assume that the descriptions are built from
attributes and values of attributes and two logical connec-
tives: conjunction (see descriptions associated with Exam-
ples 2–14) and implication. The implication connective is
needed to model the different kind of rules that are being
mined by data mining algorithms: discriminant and char-
acteristic rules in classification analysis; association rules
by association analysis; or other rules obtained by hybrid
systems.

Definition 22 For any K 2K, of SM;K D (P(U);
A; E;VA;VE ; g), we define the descriptive language of

K;LK as

LK D (AK ;EK ) ;

whereAK is called an alphabet, EK the set of descriptive
expressions such that

EK D DK [ FK ;

for DK the set of descriptive formulae and FK the set of
formulae of LK (Definition 23).

The alphabet AK D VARK [ f\;)g [ f(; )g, where
f\;)g is the set of logical connectives of LK . The set
VARK of variables of K is also called its set of atomic
descriptions. We put VARK D DA [ DE , where DA D

f(a D v) : a 2 A; v 2 VAg;DE D f(a D v) : a 2 E;
v 2 VEg.

Atomic descriptions, i. e. the elements of VARK D

DA[DE represent minimal blocks of semantical descrip-
tion. Elements of DA are atomic descriptions of minimal
blocks built with use of the attributes of the initial target
database. Elements ofDE are atomic descriptions of min-
imal blocks built with use of knowledge attributes used (if
any) during the process of data mining. We use them to
define the sets of descriptions and formulae as follows.

Definition 23 The set DK of all descriptive formulae of
LK is the set

DK D ADK [ EDK [FK ;

where ADK ; EDK ;FK are defined as below.

The set ADK �AK
� is called the set of data attribute de-

scriptions and is the smallest set such that the following
conditions hold.

(1) DA � ADK (data attribute atomic description);
(2) If D1;D2 2 ADK , then D1 \ D2 2 ADK .

The set EDK �AK
� is called the set of knowledge at-

tribute descriptions and is the smallest set such that the
following conditions hold.

(1) DE � EDK (knowledge attribute atomic descrip-
tion);

(2) If D1;D2 2 EDK , then D1 \ D2 2 EDK .

We distinguish two categories of formulae: one FA de-
scribes a certain knowledge, the other, FE , the uncertain,
or approximate, knowledge. The certain knowledge is ex-
pressed in our model in terms of attributes and values of
attributes of the initial, target data only. The description
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of the approximate knowledge includes the extra param-
eters, describing properties of granules as defined by the
knowledge attributes of K (Definition 9).

Definition 24 The set FK of formulae of LK is a union
of two sets of formulae; FA;FE , i. e.

FK D FA [ FE ;

where FA D ADK [ ARK and FE D AEDK [ ERK are
defined below.

The set AEDK D fD1 \ D2 : D1 2 ADK ;D2 2 EDKg is
the set of knowledge description formulae, with knowl-
edge attribute descriptions depicting uncertainty mea-
sures. The set ARK D f(D1 ) D2) : D1;D2 2 DAg is
the set of attribute rule-formulae depicting certain
rules obtained during the data mining process. The
set ERK D f(D1 ) D2) \ D3 : D1;D2 2 DA;D3 2 DEg

is the set of knowledge rule-formulae depicting rules with
uncertainty measures described obtained by descriptions
fromDE .

The formulae of the language LK are not yet the data
mining rules. They only describe a syntactical form of the
rules appropriate for a given application. Formulae from
FK become rules determined by K only when they do re-
late semantically to K , i. e. reflect the properties of our ini-
tial target database. In this case we say that they are true, or
true under the measures described by descriptions from
DE . We define, in the next section the notion of truthful-
ness, as we always do, via notion of satisfiability.

K- Satisfaction and K- Truth

In this section we define (Definition 25) a satisfaction re-
lation ˆK � P(U) � EK that establishes the relationship
between descriptive expressions of the LK and what they
semantically represent in K . For any (S; F) 2 ˆK we say
that S satisfies F in K and write it symbolically as

SˆKF :

We call our satisfaction relation a k-satisfaction, as it rep-
resents a satisfaction relation relative to the system K . As
the next step we define the notion of K-truth (Defini-
tion 28) i. e. we define what does it mean that a descriptive
expression F is true in K , symbolically expressed as

ˆKF :

Let K D (K(U);A; E;VA ;VE ; g) and let LK D (AK ;

EK ) be the description language defined by K (Defini-
tion 22), where EK D DK [ FK .

Definition 25 A k-satisfaction relation ˆK � P(U) �
EK is defined by induction over the level of complexity of
any descriptive expression F 2 EK as follows.

1. F 2 DK .
(i) Let (a D v) 2 DA be an atomic attribute descrip-

tion. We define, for any S 2 P(U), for any a 2
A; v 2 VA , SˆK(a D v) if and only if (S; a) 2
dom(g) and g(S; a) D v;

(ii) Let (e D v) 2 DE is an atomic knowledge at-
tribute description. We define, for any S 2 P(U),
for any e 2 E; v 2 VE , SˆK(a D v) if and only if
(S; e) 2 dom(g) and g(S; e) D v;

2. F 2 FK .
We extendˆK to the set FA D ADK [ ARK
(iii) Let D 2 ADK and D D D1 \ � � � \Dn . We define,

for any S 2 P(U), SˆKD if and only if 8(1 � i �
n)(SˆKDi);

(iv) Let (D1 ) D2) 2 ARK , i. e. D1;D2 2 ADK . We
define, for any S 2 P(U), SˆK(D1 ) D2) if and
only if SˆKD1 and SˆKD2;

(v) Let (D1 ) D2) \ D3 2 ERK , i. e. (D1 ) D2) 2
ARK and D3 2 DE . We define, for any S 2 P(U),
SˆK(D1 ) D2) \ D3 if and only if SˆK(D1 )

D2) and SˆKD3.

This ends Stage 2 of the definition of the descriptive model
and we are ready for Stage 3, i. e. to define the set of all
descriptions of knowledge states.

Definition 26 Let K 2K, the set DK � P(EK ) of de-
scriptions of knowledge states of K is defined as follows

DK D fF 2 EK : 9S 2 GrK (SˆKF)g :

Now we are ready to define a notion of F true in K , for
any formula F 2 FK , symbolically expressed byˆKF. This
notion relates the satisfaction relationˆK , i. e. satisfiability
of formulae in the system K with the initial target data as
out ultimate point of reference. This connection is being
established by the notion of the truth set defined below.

Definition 27 For any attribute data description D 2
ADK [ EDK the set S(D) D fx 2 U : Dg is called a truth
set for D.

We defineˆKF by induction over the level of complexity
of any descriptive expression F 2 FK as follows.

Definition 28

1. F 2 ADK .
(i) For any attribute data description D 2 ADK ,we de-

fine:ˆKD if and only if S(D)ˆKD.
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(ii) For any attribute description formula D 2 ADK ,we
put ˆKD if and only if S(D)ˆKD.

2. F 2 FA.
(iii) For an attribute rule-formula (D1 ) D2) 2 ARK ,

we define ˆK(D1 ) D2) if and only if S(D1)
ˆKD1; S(D1)ˆKD2, and S(D1) � S(D2) or (D1)
\ S(D2) ¤ ;.

3. F 2 AEDK .
(iv) For any knowledge attribute description D1\D2 2

AEDK ;D1 2 ADK ;D2 2 EDK we define: ˆKD1
\ D2 if and only if S(D1) \ S(D2)ˆKD1.

4. F 2 FE .
(v) For an attribute rule-formula (D1 ) D2) \ D3 2

AERK , we define ˆK(D1 ) D2)\ D3 if and only
if S(D1)\ S(D3)ˆKD1; S(D1)\ S(D3)ˆKD2, and
S(D1)\ S(D3) � S(D2)\ S(D3) or (D1)\ S(D2)\
S(D3) ¤ ;.

In the case when F 2 FE and ˆKF we say that F is true
in K under the measures D, for a certain D 2 AEDK .

If ˆK(D1 ) D2) and the condition S(D1) � S(D2)
holds, then we call the formula (D1 ) D2) C- true in K ,
or C- true under the measures D, ifˆK(D1 ) D2) \ D.

IfˆK(D1 ) D2) and the condition (D1) \ S(D2) ¤ ;
holds, then we call the formula (D1 ) D2) D- true in K ,
orD - true under the measures D, ifˆK(D1 ) D2)\ D.

The notion of D-truth reflects the semantics needed
to define the discriminant rules for the classification anal-
ysis, and C-truth is needed for the characteristic rules,
hence the names. As we have said before, the knowledge
attributes from the set E describe uncertainty measures for
the granules S 2 K(U). The formulae that incorporate the
knowledge attribute descriptions D 2 EDK can be only
true in K under some uncertainty measures (Example 5).

Descriptive Language and Descriptive Model

We have already constructed (Sects. “Descriptive Lan-
guage and Descriptive Model”) all sub-components of the
Definition 21 of the descriptive model DM and now we
proceed to complete it as follows.

Definition 29 We define the language of DM as
L D (A;E), where A D S

fAK : K 2 Kg, and E DS
fEK : K 2Kg.

The set DK of all descriptions of knowledge states of the
semantic model SM D (P(U);K;G) is the following.
Definition 30 LetDK be the set of descriptions of knowl-
edge states of K (Definition 26). The set DK D

S
fDK :

K 2 Kg is a set of descriptions of knowledge states of
SM.

This completes the definition of the descriptive model as
a system DM D (L;E;DK) where: L D (A;E) is a de-
scriptive language;A an alphabet and E is the set of de-
scriptive expressions (Definition 29); DK is a set of de-
scriptions of knowledge states (Definition 30).

GranularModel Revisited: Satisfaction and Truth

The granular model is defined (Sect. “Granular Model:
Syntax and Semantics for Data Mining”) as a system
GM D (SM;DM;ˆ) where: SM is a semantic model as
defined in the Definition 13; DM is a descriptive model
(Definition 21); and ˆ� P(U) � E is a satisfaction rela-
tion. All the components of GM except the satisfaction re-
lation have already been defined. As the last step we define
the satisfaction relation and the notion of truth in GM as
follows.

Definition 31 For any S 2 P(U) and for any F 2 E; S ˆ
F if and only if 9K 2K(SˆKF)

Definition 32 We say that F 2 E is true in GM (symbol-
icallyˆF) if and only if 9K 2K(ˆKF).

Future Directions

Themodels presented here set a general framework for fu-
ture foundational investigations. They can be carried on
three levels. One, the most general, would deal with fur-
ther developments within the granular model. The sec-
ond, a more specific one, would deal with applications
of the methods and language developed within the gran-
ular model to specific domains. On this level one would
build semantic, descriptive, and granular models for dif-
ferent data mining domains; i. e., build and examine spe-
cific models for classification, clustering, and for associa-
tion analysis. Finally, the most specific third level would
deal with building models for basic descriptive data min-
ing algorithms: decision trees and rough sets classification,
association and classification by association, and cluster-
ing. The general methodology of analysis of the data min-
ing process developed for the granular model can hence
serve as unifying language in which different data min-
ing domains and algorithms can be studied, discussed, and
compared.
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Glossary

Granular data Granular data include various data gran-
ules such as classes, clusters, subsets, groups, linguistic
values and intervals.

Granular neuron An artificial neuron maps granular
data inputs to granular data outputs.

Granular link A granular link connects two different
granular neurons.
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Granular weights A granular weight represents connec-
tion strength between two granular neurons by using
a granular value that is not limited to a traditional nu-
merical value.

Granular neural network An intelligent neural network
consists of granular neurons and granular links that
connect relevant granular neurons.

Definition of the Subject

Granular computing is a general computation theory for
effectively using granules such as classes, clusters, subsets,
groups and intervals to build an efficient computational
model for complex applications with huge amounts of
data, information and knowledge. Relevant existing tech-
niques are divide and conquer, cluster analysis, fuzzy sets,
rough sets, Yin–Yang computing, neutrosophic comput-
ing, interval computing, quotient space theory, belief func-
tions, machine learning, databases, and so on.

A biological neural network in the human brain con-
sists of a huge number of biological neurons that are net-
worked to process various data sets (numerical and non-
numerical). Different complex data sets such as images,
linguistic terms, numbers, patterns and sounds can be rec-
ognized by biological neural networks. In other words,
biological neural networks can process granules such as
data clusters, linguistic words, information classes, image
groups from human sensor networks (i. e, eyes, ears, nose,
etc.).

Based on granular computing and biological neural
networks, a granular neural network is designed to deal
with numerical-linguistic data fusion and granular knowl-
edge discovery in numerical-linguistic databases. From
a data granulation point of view, the granular neural net-
work can process granular data in a database. From a data
fusion point of view, the granular neural network makes
decisions based on different kinds of granular data. From
a knowledge discovery point of view, the granular neu-
ral network is able to learn internal granular relations be-
tween numerical-linguistic inputs and outputs, and pre-
dict new relations in a database. The granular neural net-
work is also capable of greatly compressing low-level gran-
ular data to high-level granular knowledge with some
compression error and a data compression rate.

Introduction

Similar to a biological neural network in the human brain,
a traditional artificial neural network consists of lots of ar-
tificial neurons that are connected by links. Each artificial
neuron is simply a nonlinear mathematical mapping func-
tion, and each link has a numerical weight value showing

connection strength between two neurons. The learning
algorithm uses training data sets to optimize these weights
of an artificial neural network, and the trained neural net-
work can be used in prediction and decision-making ap-
plications. Traditional artificial neural networks based on
the basic principle of biological neural networks in the hu-
man brain have been widely used in a lot of applications.
However, traditional artificial neural networks use numer-
ical values like 3.14 and �23.5. Internal weights are also
presented by numerical values that are not meaningful for
users (i. e., the black box problem). Generally, the tradi-
tional artificial neural network has two long-term prob-
lems: (1) the black box problem: Learned knowledge in
a neural network is represented by non-meaningful nu-
merical weights (i. e., people cannot understand these nu-
merical values because they are not linguistic values, there-
fore people cannot understand how the neural network
makes a decision), and (2) the curse of dimensionality:
When a number of inputs and outputs is increased, the
number of weights is increased dramatically (even expo-
nentially). So the traditional artificial neural network can-
not be used for large-scale applications with a large num-
ber of inputs and outputs.

Granular neural networks are used to process linguis-
tic data like fuzzy terms to do granular knowledge discov-
ery [20]. Granular neural networks with different struc-
tures can process information granules such as fuzzy sets
and rough sets by using training algorithms [10]. The
granular neural network uses linguistic weights and the
rules using linguistic arithmetic to speed up learning pro-
cess [1]. Granular neural networks are used to real applica-
tions such as land use classification [14]. In summary, the
granular neural learning algorithm can discover meaning-
ful granular rules that can be understood by ordinary peo-
ple. So the granular neural network is useful to tackle the
black box problem.

A set of training data is given to a computational
model, and then the problem is how the network gleans
useful knowledge from these training data sets in order to
use that discovered knowledge to make right decisions for
real applications. The two challenging problems for both
computer science and cognitive science are the black box
problem (i. e., the uninterpretability of a network of nu-
merical weights or connection strengths) and the curse of
dimensionality (i. e., the intractability complex cognitive
problems for linear neural networks). This proposal plans
to design a new architecture of a granular neural network
with a new learning algorithm, and then use data from
both cognitive science and computer science to test and
to improve the new learning algorithm in terms of the two
challenging problems.
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In recent years, hybrid neural networks such as fuzzy
neural network, granular neural networks and genetic
neural networks have been investigated to solve complex
application problems with high dimensionality. However,
a single-stage hybrid neural network suffers from curse of
dimensionality. A single-stage hybrid neural network suf-
fers from curse of dimensionality because the number of
parameters of the single-stage hybrid neural network is
increasing exponentially with the increasing of the num-
ber of inputs. The hierarchical network structures based
on multistage fuzzy reasoning have been used to solve the
dimensionality problem. The ANFIS (Adaptive-Network-
Based Inference System), based on TSK fuzzy reasoning,
is useful in many applications. Because it still cannot ex-
tract the commonly used fuzzy rules with both fuzzy IF
part and fuzzy THEN part, it makes some difficulties in ac-
quiring fuzzy knowledge from experts in a natural manner
and learning commonly used fuzzy rules from data.

Therefore, how to design a powerful granular neural
network with high learning speed, low training error and
low prediction error is still a challenging problem of artifi-
cial intelligence, computational intelligence and cognitive
science.

Basic Architecture

There are different types of granular neural networks. Now
two granular neural networks are introduced in the two
following sections, respectively.

First Architecture of Granular Neural Network

A database may contain numerical values, linguistic
words, images, sounds, music pieces, and texts. The low-
est data granulation technique deals with raw multime-
dia data collected directly from a real world environment,
whereas a higher data granulation technique classifies raw
multimedia data into higher-level granules (i. e., classes,
clusters, categories, groups, sets, etc.) to simplify data pro-
cessing and data mining. For high-level data granulation,
basic processing elements are these granules (not low-
level raw data) [20]. In this sense, data granulation is re-
lated to data mining, data fusion, information fusion and
knowledge discovery. Interestingly, the human brain has
a very strong ability to process multimedia granules, com-
pute with linguistic words, and discover useful informa-
tion from multimedia data. There should be links between
raw multimedia data in an outside real world and biologi-
cal neural networks inside a human brain. Similarly, links
should be established between multimedia granules in
databases and inputs-outputs of artificial neural networks.
Since an artificial neural network cannot directly process

these multimedia granules in most cases (because it is de-
signed for directly processing numerical data), a conver-
sion or interpretation of a granule, a link between a mul-
timedia database and a neural network, becomes crucial
to designing a granular neural network. In other words,
how to convert multimedia granules into corresponding
numerical features is very important for granular neural
networks. For example, the linguistic data feature extrac-
tion system can convert fuzzy linguistic data such as very
high, too small and almost 100 into typical numerical fea-
tures [20].

Generally speaking, a granular neural network is capa-
ble of processing various granular data (granules). Gran-
ules could be a class of numbers, a cluster of images, a set of
concepts, a group of objects, a category of data, etc. These
granules are inputs and outputs as multimedia data are
inputs and outputs of biological neural networks in the
human brain. Therefore, a granular-data-based granular
neural network is more useful and more effective to pro-
cess multimedia granules than a conventional numerical-
data-based neural network. Here, the granular neural net-
work is made by Fuzzy Neural Networks with Knowledge
Discovery [18].

Generally speaking, a granular neural network is ca-
pable of processing various granular data (granules) [20].
Granules could be a class of numbers, a cluster of images,
a set of concepts, a group of objects, a category of data, etc.
These granules are inputs and outputs of granular neural
networks as multimedia data are inputs and outputs of bi-
ological neural networks in the human brain.

Therefore, granular-data-based granular neural net-
works are more useful and more effective to process mul-
timedia granules than conventional numerical-data-based
neural networks. Here, the FNN is a powerful Fuzzy Neu-
ral Network with Knowledge Discovery (FNNKD). The
functions of different layers are described layer by layer as
follows [20,21]:

Layer 1: Linguistic Feature Extraction Layer In this
layer, numerical-linguistic X and Y are transformed to
corresponding fuzzy feature vectors (a1; b1; c1; d1) and
(a2; b2; c2; d2), respectively.

Layer 2: Multi-FNNKD Layer This layer consists of 4
dedicated FNNKDs (i. e., FNNKD1, FNNKD2, FNNKD3,
and FNNKD4). FNNKD1 is a 2 � k1 � 1 fuzzy neural
network which generates a crisp center a of an output
fuzzy set by using k1 fuzzy rules. FNNKD2 is a 2 � k2 � 1
fuzzy neural network which generates a crisp width b of
an output fuzzy set by using k2 fuzzy rules. FNNKD3 is
a 2 � k3 � 1 fuzzy neural network which generates c of
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an output fuzzy set by using k3 fuzzy rules. FNNKD4 is
a 2 � k4 � 1 fuzzy neural network which generates d of an
output fuzzy set by using k4 fuzzy rules.

An n-input-1-output normal fuzzy system hasm fuzzy
IF-THEN rules which are described by:

IF x1 is Ak
1 and . . . and xn is Ak

n THEN y is Bk, where
xi and y are input and output fuzzy linguistic variables, re-
spectively.

Layer 3: Output Layer
Case 1: A fuzzy linguistic output is Z represented by

a fuzzy feature vector (a; b; c; d).
Case 2: A crisp numerical output is a.
For simplicity, the detailed learning algorithm is given
in [19]. Once the learning procedure has been completed,
all parameters for a FNNKD have been adjusted and opti-
mized. As a result, all m fuzzy rules have been discovered
from training data. Finally, the trained FNNKD can gen-
erate new values for new given input data.

Second Architecture of Granular Neural Network

Here, we plan to use traditional artificial intelligence, new
computational intelligence including fuzzy logic, neural
networks, evolutionary computation, granular computing
and cognitive science to investigate the new evolution-
ary granular cognitive neural network that can discover
hidden decision-making knowledge from data (i. e., know
how the human brain learns new knowledge and makes
a decision). The traditional neural-learning algorithms can
generate a lot of numerical weights that are notmeaningful
(i. e., the black box problem). Now we plan to design basic
neuron granules that can contain meaningful knowledge
like rules, and make new granular learning methods based
on cognitive science and computational intelligence [5].

A new evolutionary granular cognitive neural network
is proposed based on the normal fuzzy reasoning. The hy-
brid evolutionary granular cognitive neural learning al-
gorithm using the divide-and-conquer strategy is devel-
oped to enhance learning quality in term of discovered
knowledge, training error and prediction error. Simula-
tions have shown that the evolutionary granular cogni-
tive neural network is an effective data mining and knowl-
edge discovery system which discovers meaningful fuzzy
rules, has low training error, and generates low prediction
error. There are two main problems of curse of dimen-
sionality for a soft computing system: (1) structural di-
mensionality (i. e., the total number of soft rules increases
exponentially with the number of input variables in sin-
gle-stage reasoning process, and (2) parametric dimen-
sionality (i. e., the total number of adjustable system pa-

Granular Neural Network, Figure 1
Architecture of a 3-stage granular neural network [17]

rameters increases exponentially with the number of input
variables). For example, if a fuzzy system has n linguis-
tic variables, each variable has m fuzzy linguistic sets, and
each fuzzy linguistic set has k parameters, then the fuzzy
system will have mn fuzzy rules and (km)n parameters.
In this case, the structural complexity and the parametric
complexity of the fuzzy system are O(mn) and O[(km)n ],
respectively. To solve the problems of curse of dimension-
ality, different hybrid soft computing architectures such as
the multistage fuzzy neural network and the hierarchical
system have been proposed to reduce system complexity
in terms of dimensionality, time and space. In general, the
key technology for solving the curse of dimensionality of
a hybrid soft computing system (particularly Fuzzy Neu-
ral Network (FNN)) is the divide-and-conquer method. In
other words, an original single-stage FNN with high sys-
tem complexity can be divided into small multi-stage soft
computing building blocks with low system complexity so
as to reduce both structural dimensionality and paramet-
ric dimensionality significantly.

In general, the kth-stage FNN uses outputs generated
from relevant k � 1th-stage FNNs as inputs, and then gen-
erates an output which will become an input of relevant
k C 1th-stage FNNs. A final stage FNN will generate a fi-
nal output. For example, Fig. 1 shows the 3-stage GCFNN.
The FNN(i; j) is the ith-stage-jthFNN. So FNN(1; j) uses
x1n jas inputs for j D 1; 2; : : : ;M, similarly FNN(2; l) for
l D 1; 2; : : : ;N uses outputs generated from relevant 1st-
stage FNNs as inputs, and finally FNN(3,1) generates the
final output y. Therefore, the final output y is a function of
all original inputs x j1; x j2; : : : ; x jn j for j D 1; 2; : : : ;M.

Recently, hybrid neural networks such as fuzzy neural
networks and granular neural networks have been inves-
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tigated to solve complex application problems with high
dimensionality. Such hybrid neural networks provide re-
markable abilities to derive knowledge from complicated
or imprecise datasets. Therefore, they have already been
applied to extract patterns and detect trends that are too
complex to be noticed by either human beings or other
computer techniques. In this case, the trained neural net-
works can be thought of as an “expert” in the category of
information it has been given to analyze.

In general, the key technology for solving the curse of
dimensionality (including structural dimensionality and
parametric dimensionality) of a hybrid soft computing
system, such as a Fuzzy Neural Network (FNN), is the di-
vide-and-conquermethod. In other words, an original sin-
gle-stage FNNwith high system complexity can be divided
into small multi-stage soft computing building blocks with
low system complexity so as to reduce both structural di-
mensionality and parametric dimensionality significantly.

In addition, GGCFNN provides parameters for decid-
ing the number of iterations and termination criteria in
order to control its learning performance. The hybrid ge-
netic forward-wave-backward-wave learning algorithm is
developed to enhance the system’s learning quality. Our
simulation results generated by genetic granular cognitive
fuzzy neural network are compared to human persons and
are analyzed in terms of computer science and cognitive
science.

Granular Learning Algorithms

The traditional neural learning algorithms can generate
a lot of numerical weights that are not meaningful (i. e.,
the black box problem). We plan to use traditional artifi-
cial intelligence, cognitive science and new computational
intelligence including fuzzy logic, neural networks, evolu-
tionary computation and granular computing to investi-
gate the new evolutionary neural cognitive learning algo-
rithms that can discover hidden decision-making knowl-
edge from data (i. e., know how the human brain extracts
rule-like relational knowledge from the inputs of experi-
ence and uses this knowledge in problem-solving and de-
cision-making).

We plan to use traditional artificial intelligence, cog-
nitive science and computational intelligence to investi-
gate the new granular cognitive neural network architec-
ture with cognitive neural granules with a small number
of meaningful linguistic parameters. Each cognitive neural
granule consists of a number of artificial cognitive neurons
with nonlinear numerical/linguistic mapping functions.
So cognitive neural granules are basic building blocks for
the new granular cognitive neural network to effectively

solve the problem of curse of dimensionality. The effective
topological structure of the granular cognitive neural net-
work will be investigated.

Suppose that the GCFNN has K inputs and one
output. Given input data vectors Xp (i. e., Xp D

(Xp
1 ; X

p
2 ; : : : ; X

p
k )) and an output data vector Yp for p D

1; 2; : : : ; L. The global energy function is defined by

GEp D
1
2

h
f
�
Xp
1 ; : : : ; X

p
K

� Y p

i2
: (1)

The basic learning algorithm for the GCFNN was
described in [19]. Here, for clarity and convenience,
the relevant algorithms are introduced below. The new
hybrid genetic-algorithms-based learning algorithm will
be proposed in Subsect. “Forward-Wave-Backward-Wave
Learning”.

Local Forward-Wave Learning

In general, suppose that a FNN has n inputs and one
output. Given input data vectors xp (i. e., xp D (xp

1 ; x
p
2 ;

: : : ; xp
n )) and one-dimensional output data vector yp for

p D 1; 2; : : : ;N. The energy function is defined by

Ep D
1
2

h
f (Xp

1 ; : : : X
p
n ) � yp

i2
(2)

For simplicity, let E and f p denote Ep and f (xp
1 ; x

p
2 ; : : : ;

xp
n ), respectively.
Based on the learning algorithm in [17,18], basic steps

of the local forward-wave learning algorithm for a FNN
are given below:

Procedure of Local-Forward-Wave-Learning
Step 1: Begin.
Step 2: Heuristic Initialization of Parameters.
Step 3: Gradient Descending Learning From Data.

Then we can get the following learning algorithms
for i D 1; 2; : : : ; n, k D 1; 2; : : : ;m, p D 1; 2; : : : ;N,
t D 0; 1; 2; : : : and a learning rate  > 0.

Step 3.1: Train bk

bk (t C 1) D bk(t) � 
@E
@bk
jt ; (3)

Step 3.2: Train �k

�k(t C 1) D �k(t) � 
@E
@�k
jt ; (4)

Step 3.3: Train aki

aki (t C 1) D aki (t) � 
@E
@aki
jt ; (5)
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Step 3.4: Train � k
i

� k
i (t C 1) D � k

i (t)� 
@E
@� k

i
jt ; (6)

Step 3.5: Train wleftki or wright
k
i

IF xki � aki

THEN wleftki (t C 1) D wleftki (t) � 
@E

@wleftki
jt ;

(7)

ELSE wrightki (tC 1) D wrightki (t)�
@E

@wrightki
jt :

(8)

Step 4: End.

Global Backward-Wave Learning

Based on the traditional back-propagation learning
method, the global backward-wave learning algorithm is
proposed to train all local FNNs in the back-propagation
manner. The following procedure is a general algorithm
for updating parameters of any FNN in GCFNN.

Procedure of Global-Backward-Wave-Learning
Step 1: Begin.
Step 2: Calculate a back-propagation error ı1 to the rel-

evant (l � 1)th stage FNNs based on an error ı(lC1)

from the (l C 1)th stage FNN.

ı l D
@E
@yl�1

D ı(lC1) @y
l

@yl�1
; (9)

where y1 and y(l�1) are outputs of the lth stage FNN
and the (l � 1)th stage FNN, respectively.

Step 3: Update parameters using the back-propagation
error ı1.

Step 3.5: Train wle f tki or wright
k
i

Step 4: Discovering Fuzzy Knowledge.
Step 5: End.

Forward-Wave-Backward-Wave Learning

The new hybrid learning algorithm for training is called
forward-wave-backward-wave learning algorithm, which
combines the techniques of genetic algorithms, local for-
ward-wave learning and global backward-wave learning.

Procedure Genetic-Forward-Wave-Backward-
Wave-Learning
Step 1: Begin.

Step 2: Partition the original training data sets input
data vectors Xp and an output data vector Yp

for p D 1; 2; : : : ; L into M local training data sets
where M is the number of 1st-stage granular neural
networks.

Step 3: Local Forward-Wave Learning: Local-forward-
wave-learning().

Step 4: Global Backward-Wave Learning: Global-back-
ward-wave-learning().

Step 5: End.

Applications in Bioinformatics

A new granular neural network is used to form the new
tertiary architecture [12]. The neurons in the new gran-
ular neural network are SVM machines that classify the
input data into two classes of protein structures. The two
classes are the binary classes that the SVM machines are
actually trained for. The tertiary classifier’s architecture is
explained in subsequent sections.

The new tertiary classifier makes use of both one-ver-
sus-one as well as one-versus-rest binary classifiers. The
novel architecture makes use of all the six binary classi-
fiers in neural net architecture. The architecture is shown
in the Fig. 2 [12].

There are two hidden layers; The output of the first one
is the same as the output of the individual SVM.

Outputs of first hidden layer

O1 D SVM(H/ � H)
O2 D SVM(E/ � E)
O3 D SVM(C/ � C) :

The output of the second hidden layer considers the
output of the first layer as well as the SVM machine stored

Granular Neural Network, Figure 2
Genetic Neural Support Vector Machines
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in that layer. For example the output of the neuron 4 has an
SVM binary classifier that positively classifiesH and nega-
tively classifies E, the result of this SVM is combined with
that of the first layer outputs. Thismethod uses the outputs
of the three one-versus-rest classifier in a single neuron.

In the formulations the output of the second hidden
layer is formed by adding the output of the SVM sitting
inside the neuron with the product of the weight and out-
put of the corresponding neuron (i. e. the neuron which
positively classifies the same class as the current neuron)
and by subtracting the products of the other two neurons
in the first layer.

The output of the second layer are calculated as

O4 D SVM(H/E)CW41O1 �W42O2 �W43O3 :

In the above formula we add the values of the SVM
that positively classify the same class (H) and subtract
those that positively classify other classes. HereW41 means
weight between neuron 1 and neuron 4. Similarly other
weight corresponds to output, input naming pattern.

Similarly outputs of other two neurons in the second
hidden layer are calculated as

O5 D SVM(E/C)CW52O2 �W51O1 �W53O3

O6 D SVM(H/E)CW63O3 �W62O2 �W61O1 :

The final output layer does not have any SVM embed-
ded in it. It calculates its results based on maximum of
the three outputs of second hidden layer. There is only
one neuron in this layer. The final output is one among
the three classes (H, E or C), which ever neuron produces
the maximum output after multiplying it with appropriate
weight with the second hidden layer output is considered
as final output.

So the output of the third layer is as follows

If (Max (W74O4 ; W75O5 ; W76O6) D W74O4)
Then
O7 D H
Else If (Max (W74O4 ; W75O5 ; W76O6 D W75O5))

Then
O7 D E
Else

O7 D C

For optimizing the weights, genetic algorithms are used.
The weight range for the Genetic Granular Neural Net-
work (GGNN) is selected to be between 0 and 1 so that the
architecture performs to its full potential.

The same tertiary classifiers were demonstrated with
binary classifiers using multiple windows scheme. This re-
sulted in increase in total accuracy level, which is expected

Granular Neural Network, Table 1
Accuracy Comparisons

Tertiary Classifier Accuracy (%)
SVM_VOTE 62.6
SVM_REPRESNT. 64.8
GGNN 68.0

Granular Neural Network, Table 2
Meaning of data parameters

dd/mm/yyyy Date Date of the day
Double Open Initial price
Double Low Lowest traded price
Double High Highest traded price
Double Close Price of the last trade
Double Volume Number of traded stocks

as the binary classifiers formed using multiple window
scheme are better when compared to single window en-
coding scheme. The binary classifier used is constructed
using three consecutive windows each of size 5 with gaps
between the first and second window as well as between
second window and third window. The results of these
simulations are shown in Table 1.

Applications in ComputationalWeb Intelligence

Concepts of Input Data

Database tables have been generated using stock-histori-
cal data from www.yahoo.com site. Each line of the data
set must contain 5 values date, open, high, low, close val-
ues of the stock. Each value is separated by space (see Ta-
ble 2) [21].

Overview of Implementation

A full run of the program implementation will be de-
scribed, going through all the main features of the pro-
gram [21]:

� Download historical data from the Internet.
� Copy the whole data into a text and run the program,

which inserts the data into the database.
� A program is written through which users can buy

and sell the stock shares, and the corresponding data
is stored in the database.

� A program is written through which each user can see
his/her own transactions.

� Algorithm, which trains the granular neural networks
using the mean square error as stop criterion for learn-
ing, while never exceeding the maximum number of

http://www.yahoo.com
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cycles which can take testing data from the initial date
to the user entered date, and predicts the future stock
closing values.

� A program is written, which compares the predicted
values with real values.

One of the most important factors here is to construct
a neural network deciding on what the network will learn.
A neural networkmust be trained on some input data. The
two major problems in implementing the training are

� Defining the set of input to be used (the learning envi-
ronment)

� Deciding on an algorithm.

Performance

The performance of the granular neural network algo-
rithm is compared with the performance of the BP algo-
rithm by training the same set of data and predicting the
future stock values. If the training error was set at 0.03
and the neural network was trained for dow stock data us-
ing both the algorithms. The granular neural network took
2min 58 s to train the neural network where as BP took 2 h
and 55min. The granular neural network’s average error
was 1.39 where as BP gave 3.38.

The average error for granular neural network is less
compared to the average error for BP algorithm. From the
average error and the graph it is conclusive that, granular
neural network produced closer future stock values with
the real stock values compared to the BP algorithm us-
ing less training error. If the training error was set at 0.07
and the neural network was trained for csco stock data us-
ing both the algorithms. The granular neural network took
2min to train the neural network where as BP took 1 h and
48min. The granular neural network’s average error was
6.09 where as BP gave 7.16.

The average error for the granular neural network is
less compared to the average error for BP algorithm. From
the average error and the graph it is conclusive that, the
granular neural network produced closer future stock val-
ues with the real stock values compared to the BP algo-
rithm using less training error. Based on the above two
simulations, the overall performance with the granular
neural network technique is better than BP technique.

Applications in Brain Informatics

Recent advances in granular computing, soft computing
and cognitive science have allowed an increase under-
standing of normal and abnormal brain functions, espe-
cially in the research of human’s pattern recognition by
means of computational intelligence.

Granular Neural Network, Figure 3
The genetic granular neural network structure for pattern recog-
nition [5]

The simulations of the genetic granular neural net-
work for pattern recognition have two ways: (1) testing
whether a pair of noised pattern images can still be iden-
tified by the genetic granular neural network as similar as
its original version after horizontal or vertical transforma-
tion, and (2) testing whether the genetic granular neural
network can recognize vertically or horizontally reversed
pattern pairs with noise disturbance [5].

During each test, specific pattern samples are used for
training and other groups of samples are served for test-
ing. Each pattern sample is depicted by 7 � 9 pixel matrix,
so totally 63 inputs are required in order to present one
pattern, as shown in Fig. 3. To accommodate the input re-
quirement, the genetic granular neural network’s granu-
lar layer has 9 local genetic granular neural networks with
7 inputs, so that 63 pixel inputs are satisfied. In its sec-
ond hidden layer, each the genetic granular neural net-
work has one output; the output layer has 9 inputs and
1 output. Therefore, the total number of inputs of the sys-
tem is 126 [5].

Finally, the system will make a final decision whether
or not two images in each testing sample are similar or
symmetric based on the maximum output of the three ge-
netic granular neural networks. Human beings are cho-
sen to make their subjective judgment on pattern samples,
by answering what degree the two patterns are similar or
symmetric to each other [5].

Group A contains 50 pairs of arrow pattern samples
within the following five noise levels, which are 0–10%,
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Granular Neural Network, Figure 4
a In Group A on the left, the second arrowpattern is transformed
from the first after horizontal reversal; b In Group B on the right,
the second cup-like pattern is transformed from the first after
vertical reversal [5]

Granular Neural Network, Table 3
Simulation results

Group name Different
answers

Total samples Agreement
percentage

Group A 5 50 90%
Group B 22 50 56%
Total 27 100 73%

10–20%, 20–30%, 30–40%, 40–50% respectively. In each
pair of arrow pattern sample, as the Fig. 4a, the second pat-
tern is transformed from the first pattern after horizontal
reversal at the first, and then added into the same level of
noises.

As shown in Fig. 4b, Group B includes 50 pairs of cup-
like pattern samples within the same five noise levels as
Group A. In each pair of cup-like-pattern sample, the sec-
ond pattern is transformed from the first pattern after ver-
tical reversal and then added into the same level of noises.

Table 3 shows the comparisons of decisions made by
human beings and the genetic granular neural network for
scenario1. As can be seen, the genetic granular neural net-
work and the human brain make 73% identical choices
with total 100 testing data. In Group A, Only 10% of 50
testing samples are different between the genetic granu-
lar neural network and human; while, in Group B, almost
half of the testing samples, which are more than four times
higher than Group A, introduce contradictive decisions.
Thus, human and computer system in Group B make
much more different answers than in Group A. It may in-
dicate that the horizontal reversal causes more confusions
than vertical reversal for human or the genetic granular
neural network [5].

According to Table 4 and Table 5, we discovered an
interesting phenomenon: As noise level increases, the dis-
agreement on pattern’s similarity between human and
GGCFNN tends to decrease. More specifically, as shown
in Table 4, disagreement percentage is exactly 0% in (40%,
50%) while it increases to 16.67% in (0%, 30%). In Table 5,

Granular Neural Network, Table 4
Different answers to vertical reversal within 5 noise levels

Noise level Different
answers

Total samples Disagreement
percentage

40–50% noise 0 10 0%
30–40% noise 0 10 10%
20–30% noise 1 10 10%
10–20% noise 1 10 10%
0–10% noise 3 10 30%

Granular Neural Network, Table 5
Different answers to horizontal reversal within 5 noise levels

Noise level Different
answers

Total samples Disagreement
percentage

40–50% noise 3 10 30%
30–40% noise 4 10 40%
20–30% noise 4 10 40%
10–20% noise 4 10 40%
0–10% noise 7 10 70%

disagreement percentage is increased from 36%within the
noise level (20%, 50%) to 55% in (0%, 20%). Addition-
ally, the disagreement percentages experience prominent
increases or decreases within low noise levels.

The genetic granular neural network has exhibited
good learning performance when stimulating human’s
pattern recognition in term of symmetry and similarity. It
achieved higher agreement ratios when recognizing sym-
metrical patterns than similar patterns, and vertical trans-
formation than horizontal transformation, even within
high noise levels. The preliminary experiments indicated
that the genetic granular neural network is able to simu-
late the human’s recognition ability and adapt its learning
experience to new patterns and then achieve quite similar
results as human beings.

Conclusions

The human brain has high intelligence to recognize dif-
ferent geometrical patterns in terms of the similarity and
symmetry, but a systematic framework of biological neu-
ral network has not been established. The granular neu-
ral network aims at simulating functionality of the human
brain in terms of processing granular data such as linguis-
tic terms, clusters, sets and classes.

Since the human brain consists of biological neural
networks that are the major components performing in-
telligent tasks, it is very important to develop advanced al-
gorithms andmathematicalmodels for the granular neural
networks.
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Future Directions

In the future, the challenging problem is how to de-
sign more powerful granular neural networks for more
complex applications effectively and efficiently. A lot
of advanced intelligent techniques such as type-1/type-2
fuzzy sets [4,15], rough sets [6,7,8], granular comput-
ing [8,9], granular systems [16], granular support vector
machines [13], granular kernel machines [3] and neuro-
fuzzy systems [2,17,19] can be merged to design a hybrid
granular neural networks with various functions and out-
standing performance.
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Glossary

Knowledge The notion of knowledge can be described by
positing the structure of the perceivable world as a sys-
tem of states of things. These states are related among
themselves by relations which in turn form a network
of interdependent combinations. States and relations,
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as well as dependencies among them, are reflected in
knowledge: things are reflected in objects or notions,
relations in notions or concepts, states of things in
sentences. Sentences form knowledge [6]; for instance,
in Artificial Intelligence, a judiciously chosen set of
sentences forms a knowledge base for a logical agent
(see [52]).

Knowledge representation A chosen symbolic system
(language) bymeans of which notions are encoded and
reasoning is formalized.

Description logic A language of concepts commonly
used for knowledge representation in Artificial Intel-
ligence logical systems (see [2]). The variant which is
interesting to us is constructed in the attribute-value
context in which objects are described in terms of cho-
sen attributes (features) and their values. Primitive for-
mulas of description logic are descriptors of the form
(a D v) where a is an attribute and v is one of its
values. Descriptors are interpreted in the universe U
of objects: the meaning [(a D v)] of the descrip-
tor (a D v) is defined as the set fu 2 U : a(u) D vg.
Descriptors are extended to formulas of description
logic with the help of connectives of sentential calcu-
lus: when ˛; ˇ are formulas then ˛ _ ˇ, ˛ ^ ˇ, :˛,
˛) ˇ are formulas as well. The meaning of for-
mulas is defined by recursion: [˛ _ ˇ] D [˛] [ [ˇ],
[˛ ^ ˇ] D [˛] \ [ˇ], [:˛] D U n [˛]. The meaning
of implication ˛) ˇ depends on the chosen inter-
pretation of implication; when it is interpreted as in
sentential calculus, that is, as :˛ _ ˇ, the meaning is
already defined by the given formulas for _;:.

Rough sets: knowledge as classification Rough set the-
ory proposed by Pawlak [30,32], understands knowl-
edge as classification: a set of equivalence relations,
each of which is understood as a certain classifica-
tion of objects into its equivalence classes. Together,
these relations constitute the knowledge base R. Ob-
jects that belong in one class [u]R of a relation R in
the knowledge base are R-indiscernible. Objects that
belong in the intersection

T
R2R[u]R are R-indis-

cernible: they cannot be discerned by means of the
knowledge available inR.
Indiscernibility relations are formally defined for sets
of relations: given T�R, the T -indiscernibility re-
lation ind(T ) is defined as the intersection

T
R2T R.

Concepts are divided into two classes: T -exact con-
cepts are sets of objects which can be expressed as
unions of T -indiscernibility classes; other concepts
areT -rough. For each concept X, there exist the great-
est exact concept T contained in X (the T -lower ap-
proximation to X) and the smallest exact concept T

which contains X (the T -upper approximation to X).
Rough concepts are perceived as uncertain sets sand-
wiched between a lower approximation and an upper
approximation.

Information system A system commonly used for rep-
resenting information about a given world fragment.
An information system can be represented as a collec-
tion of pairs of the form (U;A) where U is a set of ob-
jects – representing things – andA is a set of attributes;
each attribute a is modeled as a mapping a : U ! Va
from the set of objects into the value set Va. For an at-
tribute a, the equivalence relation Ra is the set f(u; v) 2
U�U : a(u) D a(v)g and the collectionR D fRa : a 2
Ag is the knowledge base. For each set B � A of at-
tributes, the B-indiscernibility relation ind(B) is the
set f(u; v) 2 U � U : a(u) D a(v) for each a 2
Bg. Each object u 2 U can be described in two ways:
first, by means of its indiscernibility class [u]A D
fv 2 U : (u; v) 2 ind(A)g; next, by means of its de-
scriptor logic formula �A(u) :

V
a2A(a D a(u)); as

[�A(u)] D [u]A , both descriptions are equivalent and
u is described up to its equivalence class.

Decision system A particular form of an information sys-
tem, a triple (U;A; d) in which d is the decision, the
attribute not in A, that expresses the evaluation of ob-
jects by an external oracle, an expert. Attributes in A
are called conditionalwhich expresses the fact that they
are set by us as conditions describing objects in our
language. The principal problem related to a decision
system is to find a description of dependence between
conditional knowledge given by (U;A) and the expert
knowledge (U; fdg).

Decision rule A decision rule is a formula in descriptor
language that expresses a particular relation among
conditional attributes in the attribute set A and the
decision d, of the form:

V
a2A(a D va)) (d D v)

with the semantics defined in (Glossary: Descrip-
tion logic). The formula is true, or certain in case
[
V

a2A(a D va)] D
T

a2A[(a D va)] � [(d D v)].
Otherwise, the formula is partially true, or possible. An
object o which satisfies the rule a(o) D va for a 2 A
can be assigned to the class [(d D v)]; often a partial
match based on a chosen similarity measure must be
performed.

Similarity Similarity relations are weaker forms of indis-
cernibility: indiscernible objects are similar but not
necessarily vice versa an example attributable to Henri
Poincaré [35] explains this best: assume that points
x; y in the real line are similar whenever their distance
is less than a fixed threshold ı: jx � yj < ı. Then cer-
tainly each x is similar to x, and if x is similar to y then
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y is similar to x, but from x similar to y and y simi-
lar to z it need not follow that x is similar to z: jx � zj
can be close to 2ı. Relations of this kind are reflex-
ive and symmetric: they were called tolerance relations
in Zeeman [67]. Tolerance relations in the framework
of rough set theory information systems were consid-
ered in Nieminen [26] and tolerance reducts and re-
lated notions in information systems were discussed
in Polkowski, Skowron and Zytkow [50]. Some au-
thors relax tolerance relations to similarity relations
that need not be symmetric: for instance, rough inclu-
sions need not be symmetric [37].
In many applications, metrics are taken as similarity
measures: a metric on a setU is a function d : U�U !
RC into non-negative reals such that 1. d(x; y) D 0 if
and only if x D y. 2. d(x; y) D d(y; x). 3. d(x; y) �
d(x; z) C d(z; y) for each x; y; z in X (the triangle in-
equality); similarity induced by a metric d is usually
of the form d(x; y) < ı for a certain ı > 0, Poincaré-
style.

Rough inclusion A ternary relation � on a set U � U �
[0; 1] which satisfies conditions: 1. �(x; x; 1). 2. �(x;
y; 1) is a binary partial order relation on the set X.
3. �(x; y; 1) implies that for each object z in U: if
�(z; x; r) then �(z; y; r). 4. �(x; y; r) and s < r imply
that �(x; y; s). The formula �(x; y; r) is read as “the
object x is a part in object y to a degree at least r”.
The partial containment idea encompasses the idea of
an exact part, that is, mereological theory of concepts
Leśniewski [15]. Similarity induced by a rough inclu-
sion can be introduced as an asymmetric relation:�(x;
y; r), or a symmetric one: �(x; y; r) ^ �(y; x; r).

Granulation of knowledge The concept of granulation
was proposed by Zadeh [67]. In fuzzy calculus, gran-
ules are naturally induced as the inverse images of
fuzzy membership functions and fuzzy computing is
a fortiori computing with granules. A similar case
happens with rough sets, as primitive objects in this
paradigm are indiscernibility classes that are elemen-
tary granules, whereas their unions are granules of
knowledge; reasoning in rough sets means, by defi-
nition, reasoning with granules. Each similarity rela-
tion induces granules understood as its classes; in com-
parison to indiscernibility relations, granules induced
by similarity relations are more intricate due to lack
of transitivity: relations among granules are more dif-
ficult to ascertain. In defining granules, attention is
focused on the property that singles out objects be-
longing in the granule; usually, this property is a re-
lation to an object chosen as the granule center: this
means that distinct objects in the granule need not

be in the relation. This feature distinguishes granules
from clusters: aggregates in which any two objects have
the defining property, for example, distance less than
the chosen threshold. Also, relations between pairs of
distinct granules are difficult to ascertain, contrary to
the case of (for example) clusters, in which case the
distance between distinct clusters is kept above a fixed
threshold.

Classification of objects Classification entails assigning
to each element in a set of objects (test sample) a class
(a decision) to which the given element should be-
long; it is accomplished on the basis of knowledge in-
duced from the given collection of examples (the train-
ing sample). To perform this task, objects are usually
mapped onto vectors in a multi-dimensional real vec-
tor space (feature space). Paradigms invented to per-
form classification are many, from heuristics based on
cognitive networks such as neural networks, through
probabilistic tools such as Bayesian networks to tools
based on distance such as k-nnmethods and prototype
methods (see [7,12]).

Fusion of knowledge A combination of knowledge com-
ing from few distinct sources. For example, in a mobile
robot, fusion of knowledge by means of a Kalman filter
(see [52]), consists in producing an output – a robot’s
predicted position at the current moment – on the ba-
sis of inputs: a robot’s position estimated as the last
moment preceding the current moment, the current
controls, and sensor readings in the current position.

Reasoning Processes of reasoning include an effort by
means of which sentences are created; various forms
of reasoning depend on the chosen system of notions,
symbolic representation of notions, forms of manipu-
lating symbols (see [6]).

Mereology Mereology, see Leśniewski [15], is a theory of
concepts based on the notion of a part instead – as
with naive set theory – on the notion of an element.
The relation of being a part is irreflexive and transi-
tive. A secondary notion of an ingredient means either
being a part or being the whole object and it sets a par-
tial order on objects. By means of the notion of an in-
gredient the notion of a class operator is introduced
in Leśniewski [15] which converts ontological notions,
that is, collections of objects into an individual object;
it is used by us in granule formation.

Definition of the Subject

The creator of Fuzzy Set Theory, Lotfi A. Zadeh, proposed
computing with granules in Zadeh [66]. The idea was nat-
ural, as fuzzy reasonings are carried out in terms of fuzzy



4414 G Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems

membership functions. A fuzzy membership function �X
maps a universe U of objects into the interval [0; 1] and it
represents the membership in a set X as a membership to
a degree. The value �X(x) D r is interpreted as the state-
ment that the object x is an element of the set X to the
degree of r. The mapping U ! U/�X which sends each
object x to its fibre ��1X (�X (x)) includes into the gran-
ule g�(r) all objects that belong in X to the degree r. All
fuzzy constructs are then expressed in terms of those gran-
ules. In this sense, fuzzy reasoning is, in a natural way, rea-
soning with granules. Granules in this reasoning are con-
structed in a uniform way, that is, all objects in a granule
share the same property of external character: they belong
to an “oracle” X to the same degree; changing X produces
a variety of granules to reason with. The relation forming
any granule is an equivalence RX : the universe is decom-
posed into fibres of a fuzzy membership function �X , and
a knowledge base is composed of all relations RX for sub-
sets X � U of the universe of objects.

The same conclusion concerns rough set reasoning: el-
ementary objects in reasoning are indiscernibility classes –
elementary granules which are elements of a partition
of the universe of objects by an indiscernibility relation
ind(B) (see Glossary: Information systems). These gran-
ules are the smallest objects which can be described in
terms of attributes and their values, that is, by description
logic, and they are used in forming description of objects,
in building decision rules and then classifiers as well as
control algorithms. Lin [16,17] was the first to recognize
the topological character of granules and to form the basic
notion of a neighborhood system as a collection of gran-
ules on the universe of objects (see also [18,19,20,21,22]).
Lin [17] recognized the import of tolerance relations by
discussing tolerance induced neighborhoods.

In all hybrid approaches involving fuzzy or rough sets
along with neural networks, genetic algorithms etc., one is
therefore bound to compute with granules, testimony to
the importance of granular structures.

In search of adequate similarity relations, various
forms of granules have been proposed and considered as
well as experimentally verified as to their effectiveness. In
information systems, templates were proposed as gran-
ules, that is, generalized descriptors of the form (a 2 Wa)
where Wa � Va with the meaning [(a 2 Wa)] D fu 2
U : a(u) 2 Wag [27]. Clearly, templates are aggregates
in the ontological sense of descriptors, that is, they form
“big” granules. Their usage is motivated by their greater
descriptive force vis-a-vis descriptors; a judicious choice
of sets Wa should allow construction of a similarity rela-
tion that accurately reflects the decision’s dependence on
conditional attributes.

Rough inclusions have been considered as a means for
granule construction; a rough inclusion is (see Glossary:
Rough inclusions) a generic term for a ternary predicate
that formalizes the phrase: “the object x is a part of the ob-
ject y to a degree r”, introduced in [47,48]. Granulation by
means of rough inclusions has been studied, for example,
in [37,38,39,40,41,42,43,44]. The idea of granule formation
comes form mereology and it rests on using the class op-
erator (see Glossary: Mereology).

Granules formed by rough inclusions are used in fu-
sion of knowledge models, in rough-neural computing
and in building many-valued logics reflecting the rough
set ideology in reasoning.

Introduction

Granulation of knowledge can be considered from a few
angles:

1. General purpose of granulation.
2. Granules from binary relations.
3. Granules in information systems from indiscernibility.
4. Granules from generalized descriptors.
5. Granules from rough inclusions – mereological ap-

proach.

General Purpose of Granulation

Granulation of knowledge comes into existence for a few
reasons: the principal one is founded on the underlying
assumption of basically all paradigms, viz., that reality ex-
hibits a fundamental continuity, that is, objects with iden-
tical descriptions in a given paradigm should exhibit the
same properties with respect to classification or decision
making. For instance, fuzzy set theory assumes that ob-
jects with identical membership descriptions should be-
have identically and rough set theory assumes that objects
indiscernible with respect to a group of attributes should
behave identically; in particular, they should fall into the
same decision class.

Thus, granulation is implied by assumptions of the
paradigm and is unavoidable once the paradigm is
accepted and applied. Granules induced in the given
paradigm by necessity form the first level of granulation.

In the search for the most appropriate similarities for
use in applications such as classification or decision mak-
ing, more complex granules are constructed, for example,
as unions of granules of the first level, or more complex
functions of them, resulting, for example, in fusion of var-
ious granules from distinct sources.

Among granules of the first two levels, some kinds can
be exhibited by means of various operators, for example,
the class operator associated with a rough inclusion.
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Granules from Binary Relations

Granulation on the basis of binary general relations as well
as, for example, tolerance relations, has been studied by
T. Y. Lin [16,17,18,19,20,21,22,23] in particular as an im-
portant notion of neighborhood systems; see also Yi Yu
Yao [64,65]. This extends the approach based on indis-
cernibility as a special case. A general form of this ap-
proach, according to Yao, exploits the classical notion of
Galois connection: two mappings f : X ! Y ; g : Y ! X
form a Galois connection between ordered sets (X; <) and
(Y ;�) if and only if the equivalence x < g(y), f (x) � y
holds. In an information system (U;A), for a binary rela-
tion R on U, one considers the sets xR D fy 2 U : xRyg
and Rx D fy 2 U : yRxg, called, respectively, the succes-
sor neighborhood and the predecessor neighborhood of x.
These sets are considered as granules formed by a spe-
cific relation of being affine to x in the sense of the re-
lation R. Other forms of granulation can be obtained by
comparing objects with identical neighborhoods, for ex-
ample, x � y, xR D yR etc. Saturation of sets of ob-
jects X;Y with respect to the relation R leads to sets X�,
Y� such that X  R D Y , RY� D X�, forming a Ga-
lois connection. This approach is closely related to the For-
mal Concept Analysis of Wille [61].

Granules in Information Systems
from Indiscernibility

Granules based on indiscernibility in information/deci-
sion systems are constructed as indiscernibility classes:
given an information system (U;A) (see Glossary: In-
formation systems; Decision systems), and the collection
IND D find(B) : B � Ag of indiscernibility relations,
each elementary granule is of the form [u]B D fv 2
U : (u; v) 2 ind(B)g for some B. Among those granules,
there are minimal ones: granules of the form [u]A in-
duced from the set A of all attributes. Granules [u]A form
the finest partition of the universe U; given the class [u]B
and the class [u]AnB , we have [u]A D [u]B \ [u]AnB hence
[u]B D

S
v2[u]B\DISAnB(u)[v]A , where v 2 DISAnB (u) if

and only if there exists an attribute a 2 A n B such that
a(u) ¤ a(v). It is manifest that granules [u]B can be ar-
ranged into a tree with the root [u]; D U and leaves of
the form [u]A .

Granules based on indiscernibility form a complete
Boolean algebra generated by atoms of the form [u]A :
unions of these atomic granules are closed on intersections
and complements and these operations induce into gran-
ules the structure of a field of sets.

Atomic granules are aggregated into some impor-
tant unions by approximation operators: given a concept

X � U , the lower approximation BX to X over the set B
of attributes is defined as the union

S
f[u]B : [u]B � Xg;

the operator LB : Concepts! Granules sending X to BX
is monotone increasing and idempotent: X � Y implies
LX � LY and L ı L D L. Similarly, the upper approxima-
tion BX D

S
f[u]B : [u]B \ X ¤ ;g to X over B, brings

some elementary granules into the union; the operator UB

sending concepts into upper approximations is alsomono-
tone increasing and idempotent.

Granules from Generalized Descriptors

Some authors have made use of generalized descriptors
called templates (see Nguyen SH [27]). A template is a for-
mula T : (a 2 Wa), where Wa � Va (see Glossary: Infor-
mation systems) with the meaning g(T) : fu 2 U : a(u) 2
Wag. The granule g(T) can be represented as the unionS

u2Wa
[u]a ; granules of the form [u]a are also called

blocks, see Grzymala-Busse [10,11].

Granules from Rough Inclusions –
Mereological Approach

Rough inclusions (see Glossary: Rough inclusions) are
ternary predicates of the form �(x; y; r) which read: “x is
a part of y to degree at least r”; intuitively, one can expect
of � the fulfillment of conditions:

a. �(x; x; 1);
b. �(x; y; 1) if and only if x ing	 y, where � is a part re-

lation (see Glossary: Mereology) and ing	 is the associ-
ated ingredient relation: x ing	 y if and only if x � y or
x D y;

c. If �(x; y; 1) then for each z: if �(z; x; r) then �(z; y; r)
which is a condition of monotonicity of �;

d. If r > s and �(x; y; r) then �(x; y; s).

Granule gr(u) of the radius r about the center u is de-
fined as the class of property ˚(v) : �(v; u; r). The class
operator

Cls : Ontological entities (collections of objects)
! Mereological entities (individual objects)

acts on collections, or properties of objects and yields in-
dividual objects; an example of such a class operator in set
theory with the relation � of part and the associated rela-
tion � of ingredient is the union of a family of sets oper-
ator

S
: it converts a family (a property) of sets F into its

union
SF which is a single set.

The class operator Cls applied to a non-vacuous prop-
erty ˚ of objects, yields the object Cls˚ which is defined
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as the unique object with the properties:

1. If ˚(u) then ing	 Cls˚ ;
2. If u ing	 Cls˚ then there exist objects v;w such that

v ing	 u, v ing	 w, ˚(w).

In other words, Cls˚ absorbs all objects whose each
part has a part in commonwith an object which satisfies˚ .

Hence: gr(u) is Clsfv : �(v; u; r)g. Properties of gran-
ules defined in this way depend on properties of rough in-
clusion �.

There are many rough inclusions to select from, and
most are defined from one of three sources (see Pol-
kowski [37,38,39,40,41,42,43,44])

A From archimedean t-norms: an archimedean t-norm t
see Polkowski [36], admits a representation t(x; y) D
gt( ft(x) C ft(y)) with a continuous decreasing
ft : [0; 1] ! [0; 1] and its pseudo-inverse gt , see
Ling [24] or Polkowski [36].
We define the rough inclusion �t as follows:

�t(u; v; r)

if and only if gt
�
jDISA(u; v)j
jAj

�
� r ;

where DISA(u; v) D fa 2 A : a(u) ¤ a(v)g.
The most important example of rough inclusions ob-
tained in this way is the rough inclusion �L induced
from the Łukasiewicz t-norm tL(x; y) D maxf0; x C
y � 1g for which f (x) D 1 � x and g(y) D 1 � y, see
Ling [24] or Polkowski [36]. Introducing the comple-
ment INDA(u; v) D U �U nDISA(u; v), one can write
the rough inclusion �L as,

�L(u; v; r) if and only if
j INDA(u; v)j
jAj

� r

Thus, objects u; v are similar at least to degree r if and
only if the probability of randomly choosing an at-
tribute which does not discern between u and v is at
least r. This rough inclusion is also induced by the rel-
ative Hamming distance on information sets of objects
in the set U of the information system (see [43]).

B From continuous t-norms (see [43]): a continuous t-
norm t induces the residual implication)t by the for-
mula,

x )t y � z if and only if t(x; z) � y ;

and it is well-known that x)t y D 1 if and only if
x � y. Thus, residual implications are proper candi-
dates for rough inclusions, once proper set functions

˚(u; v); � (u; v) are found such that �t(u; v; r) holds
if and only if˚(u; v))t � (u; v) � r holds. Examples
are given in Polkowski [43].

C It is evident that for a metric d on the universe U,
the predicate �d (u; v; r) is satisfied if and only if
d(u; v) � 1 � r is a rough inclusion. In particular, for
the Hamming metric relative to the set A of attributes,
h(u; v) D jfa2A : a(u)¤a(v)gj

jaj , the rough inclusion �h
coincides with �L.
A rough inclusion �t is transitive in cases where fol-
lowing the property holds:

If �t(u; v; r) and �(v;w; s) then �(u;w; t(r; s)) :

It has been proved that rough inclusions obtained by
methods 1 and 2 are transitive [43]. One can also ver-
ify that rough inclusions obtained from metrics by
method 3 are transitive with the Łukasiewicz rough
inclusion as the transitivity measure: for a metric d
and �d (u; v; r); �d (v;w; s), it follows that d(u; v) �
1 � r and d(v;w; s) � 1 � s and the triangle inequal-
ity implies that d(u;w) � (1 � r) C (1 � s) hence
�d (u;w; r C s � 1), that is, �d (u;w; tL(r; s)).
Reasoning about granules defined from rough inclu-
sions is carried out on lines of the mereological deduc-
tion rule (Leśniewski [15]):
(D(eduction) R(ule) in M(ereology)) For objects x; y:
if for each object z, from z ing	 x it follows that there
exists an object w such that w ing	 z and z ing	 y then
x ing	 y.

Similarity

Similarity relations came to the attention of eminent the-
orists in the beginning of the twentieth century due to
their interest in problems regarding mechanisms of think-
ing and perception. Henri Poincaré [35] considered re-
lations of discernibility, for example, two points in space
are indiscernible if and only if their distance is less than
a fixed threshold value ı. This relation is certainly reflex-
ive (a point cannot be discerned from itself) and symmet-
ric, but may lack the transitivity property; again, in con-
nection with perception mechanisms, these relations were
called tolerance relations in [67].

Formally, a tolerance relation � is a relation which is
reflexive: �(x; x) for each x, and symmetric: if �(x; y) then
�(y; x) for each pair x; y.

Tolerance relations are weaker than equivalence rela-
tions of, for example, indiscernibility (see Glossary: Infor-
mation systems); lack of transitivity makes themmore dif-
ficult to analyze. In analogy to equivalence relations, one
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introduces tolerance classes: a tolerance class c� is defined
as a maximal set with the property: for each pair x; y 2 c�
the relation �(x; y) holds.

Contrary to equivalence classes, distinct tolerance
classes can intersect: the collection of all pairwise distinct
tolerance classes is a covering of the universe U of objects.

From the maximality principle in set theory (Teich-
muller’s, Vaught’s or Zorn’s, see [14]) it follows that for
each pair x; y with �(x; y) there exists a tolerance class
c�(x;y) which contains both x; y.

We denote by the symbol C� (x) the collection of all
tolerance classes which contain x. Then the principal prop-
erty of tolerance relations holds: For each pair x; y of ob-
jects in the universe U and a tolerance relation � on this
universe: �(x; y) if and only if C� (x) \ C� (y) ¤ ;.

This fact shows that a canonical tolerance relation is
defined as the non-empty intersection of sets, and each tol-
erance relation can be reduced to it.

Tolerance relations in information systems should fac-
tor through indiscernibility: if �(u; v) and u ind(A) u0 ,
v ind(A) v0 then �(u0; v0). Thus, tolerance relations in in-
formation systems should be defined in terms of attributes
and their values.

Examples are: metrics-induced tolerance relations, for
example, �(u; v) if and only if maxa ja(u) � a(v)j < ı for
a fixed value of ı (tolerance based on the Manhattan met-
ric) or �(u; v) if and only if

P
a(ja(u) � a(v)j2)

1
2 < ı (tol-

erance based on the Euclidean metric).
Rough inclusions also supply examples of tolerance

relations: given a rough inclusion �, and a real number
r 2 [0; 1], the tolerance relation ��;r can be defined as fol-
lows: ��;r(u; v) if and only if �(u; v; r) and �(v; u; r).

Weaker yet is the class of similarity relations which are
merely reflexive: this kind of similarity relations encom-
passes relations of rough inclusions induced by asymmet-
ric part relations as well as relations discussed in Słowiński
et al. [8].

A reflexive similarity relation � can be described
in terms of classes C� (x) D fy 2 U : �(x; y)g for x 2 U .
Then: �(x; y) if and only if y 2 C� (x). Thus, reflexive sim-
ilarity relations can be canonically described as relations of
membership between objects and their collections.

Information and Decision Systems

The scope of our discussion is limited to knowledge rep-
resentation in the form of information systems (see Glos-
sary: Information systems, Decision systems, Description
logic, Decision rules).

Information systems are means for formal rendering
of data usually given in the form of data tables: rows in

the table correspond to objects being described, columns
correspond to features used in object descriptions.

Each data table involves the set U of objects, called
often the universe of objects and the set A of attributes
formally representing features used in object descriptions.
The pair (U;A) is called the information system.

For an object u 2 U and a set of attributes B, the infor-
mation set of u is the set infB(u) D f(a D a(u)) : a 2 Bg.

Thus, the universe U can be represented as the
set InfB D finfB(u) : u 2 Ug.

A principal assumption of the information system
(U;A) is that all information about objects is supplied, and
constructs derived from it should extend to the world of
possible objects.

Therefore: objects u; v which satisfy the condition
infB(u) D infB(v) are regarded as indiscernible over B and
perceived through the filter of attributes in B should be
treated as identical with regard to description over B.

Formal rendering of this postulate is effected by means
of B-indiscernibility relation ind(B) (see Glossary: Rough
sets: knowledge as classification): ind(B) D f(u; v) 2 U �
U : infB(u) D infB(v)g. This is an equivalence relation.

Attribute sets produce a variety of indiscernibility re-
lations with obvious properties such as: ind(C) � ind(D)
if and only if D � C; ind(C \ D) D ind(C) \ ind(D);
ind(A) � ind(C) � ind(;) D U � U for each C � A.

Classes [u]B D fv 2 U : (u; v) 2 ind(B)g are minimal
sets which can be described exactly over the set B: the
class [u]B is the meaning of the descriptor formulaV

a2B(a D a(u)).
Indiscernibility relations form the knowledge base

from which inferences are derived about relations among
objects, attributes and attribute sets.

An important example of a property of attribute sets is
the reduct property [31,54]: a set B of attributes is a reduct
if and only if B is a minimal (with respect to set inclu-
sion) set of attributes such that ind(B) D ind(A). Thus,
each reduct fully preserves both classification and knowl-
edge.

The meaning of a reduct is also shown by means of de-
pendencies among sets of attributes. The functional depen-
dency between sets C and D of attributes, see [28,29,31],
means that there exists a mapping fC;D : InfC ! InfD
with the property that f (infC (u)) D infD(u) for each
u 2 U . In this case, D depends functionally on C, in sym-
bols, C 7! D.

Functional dependence C 7! D means equivalently
that indC � indD ; in particular, as indB � indC for each
reduct B, the functional dependence B 7! C takes place
for each set C of attributes: each reduct functionally de-
termines all values of attributes.
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Finding reducts is computationally difficult, see [54].
In theory, reducts can be found as prime implicants of
the Boolean discernibility function. Decision systems are
(see Glossary: Decision systems) information systems of
the form (U;A[ fdg) where d … A is a decision.

The most important problem concerning decision sys-
tems consists in finding a set of decision rules (see Glossary:
Decision rules) which adequately describes the decision at-
tribute in terms of attributes in A (conditional attributes).

Classification methods can be divided, according to
the adopted methodology, into classifiers based on reducts
and decision rules, classifiers based on templates and sim-
ilarity, classifiers based on descriptor search, classifiers
based on granular descriptors, and hybrid classifiers.

For a decision system (U;A; d), classifiers are sets of
decision rules. Induction of rules has been a subject of
research in rough set theory since its beginning. In most
general terms, building a classifier consists of searching
the pool of descriptors for conjuncts that describe de-
cision classes sufficiently well. As distinguished in Ste-
fanowski [58], there are three main kinds of classifiers to
search for: minimal, that is, consisting of minimum possi-
ble number of rules describing decision classes in the uni-
verse, exhaustive, that is, consisting of all possible rules,
and satisfactory, that is, containing rules tailored to a spe-
cific use. Classifiers are evaluated globally with respect to
their ability to properly classify objects, usually by error
which is the ratio of the number of correctly classified ob-
jects to the number of test objects, total accuracy being
the ratio of the number of correctly classified cases to the
number of recognized cases, and total coverage, the ratio
of the number of recognized test cases to the number of
test cases.

Minimum size algorithms include the LEM2 algorithm
of Grzymala-Busse [10,11] and the covering algorithm in
the RSES package [51]; exhaustive algorithms include, for
example, the LERS system of Grzymala-Busse [9], systems
based on discernibility matrices and Boolean reasoning by
Skowron [53], Bazan [3], Bazan et al. [4], implemented in
the RSES package [51].

Minimal consistent sets of rules were introduced in
Skowron and Rauszer [54]; they were shown to coin-
cide with rules induced on the basis of local reducts in
Wróblewski [63]. Further developments include dynamic
rules, approximate rules, and relevant rules as described
in [3,4] as well as local rules [3,4], effective in implemen-
tations of algorithms based on minimal consistent sets of
rules. Rough set based classification algorithms, especially
those implemented in the RSES system [51], were dis-
cussed extensively in [3]; Skowron and Stepaniuk [55] and
Skowron and Swiniarski [56] discussed rough set classi-

fiers along with some attempt at analysis of granulation in
the process of knowledge discovery.

In [3], a number of techniques were verified in experi-
ments with real data, based on various strategies:

discretization of attributes (codes: N-no dis-
cretization, S-standard discretization, D-cut selection
by dynamic reducts, G-cut selection by generalized dy-
namic reducts);
dynamic selection of attributes (codes:
N-no selection, D-selection by dynamic reducts, G-se-
lection based on generalized dynamic reducts);
decision rule choice (codes: A-optimal deci-
sion rules, G-decision rules on basis of approximate
reducts computed by Johnson’s algorithm, simulated
annealing and Boltzmann machines etc., N-without
computing of decision rules);
approximation of decision rules (codes:
N-consistent decision rules, P-approximate rules ob-
tained by descriptor dropping);
negotiations among rules (codes:S-based on
strength, M-based on maximal strength,R-based on
global strength, D-based on stability).

Any choice of a strategy in particular areas yields a com-
pound strategy denoted with the alias being concatenation
of symbols of strategies chosen in consecutive areas, for
example, NNAND etc.

We record here in Table 1 an excerpt from the com-
parison (Table 8, 9, 10 in [3]) of the best of these strategies
with results based on other paradigms in classification for
two sets of data: Diabetes and Australian credit from the
UCI Repository [55].

An adaptivemethod of classifier construction was pro-
posed in Wróblewski [63]; reducts are determined by
means of a genetic algorithm and in turn reducts induce
sub-tables of data regarded as classifying agents; choice
of optimal ensembles of agents is done by a genetic algo-
rithm.

Classifiers constructed by means of similarity relations
are based on templates matching a given object, or closest
to it, with respect to a certain distance function, or on cov-
erings of the universe of objects by tolerance classes and
assigning the decision value on basis of some of them [27].
We include in Table 2 excerpts from classification results
in [27].

A combination of rough set methods with the k-near-
est neighbor idea is a further refinement of classification
based on similarity or analogy in Wojna [62]. In this ap-
proach, training set objects are endowedwith ametric, and
the test objects are classified by a vote of k nearest training
objects for some k that is subject to optimization.
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Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Table 1
A comparison of errors in classification by rough set and other paradigms

Paradigm System/method Diabetes Austr. credit
Stat. Methods Logdisc 0.223 0.141
Stat. Methods SMART 0.232 0.158
Neural Nets Backpropagation2 0.248 0.154
Neural Networks RBF 0.243 0.145
Decision Trees CART 0.255 0.145
Decision Trees C4.5 0.270 0.155
Decision Trees ITrule 0.245 0.137
Decision Rules CN2 0.289 0.204
Rough Sets NNANR 0.335 0.140
Rough Sets DNANR 0.280 0.165
Rough Sets best result 0.255(DNAPM) 0.130 (SNAPM)

Granulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems, Table 2
Accuracy of classification by template and similarity methods

Paradigm System/method Diabetes Austr. credit
Rough Sets Simple.templ./Hamming 0.6156 0.8217
Rough Sets Gen.templ./Hamming 0.742 0.855
Rough Sets Simple.templ./Euclidean 0.6312 0.8753
Rough Sets Gen.templ./Euclidean 0.7006 0.8753
Rough Sets Match.tolerance 0.757 0.8747
Rough Sets Clos.tolerance 0.743 0.8246

Granulation of Knowledge: General Ideas
and Technique of Rough Inclusions

Granulation of knowledge means that, given a represen-
tation of knowledge, for example, an information system,
a fortiori, the set of information vectors of objects in its
universe, these information vectors will undergo the pro-
cess of aggregation, that is, of granule formation (granules
being collections of information vectors). The process of
granulation should be driven by a similarity relation on in-
formation vectors, and as the result of this process, similar
to a satisfactory degree, information vectors/objects will
find themselves in one single granule. Parameters of this
process are an object u around which the granule is formed
(the granule center) and the degree r 2 [0; 1] to which ob-
jects in the granule are similar to u.

A General Form of Similarity

For our purposes of granulation of knowledge, we intro-
duce a general form of graded similarity in the form a re-
lation � � U � U � [0; 1] on triples of the form (u; v; r)
with u; v 2 U , the universe of an information system

(U;A), and r 2 [0; 1]. We require of the similarity � the
following:

1. �(u; u; 1);
2. r < s implies if �(u; v; s) then �(u; v; r);
3. �(u; v; 1) is a partial ordering of the universeU.

Granulation: Tools

Given a similarity � , we form a basic granule g� (u; r) of
the radius r about an object u, by collecting together all
objects v with the property that �(v; u; r). Then, by defini-
tion of � , one has the following properties of granules:

a. u 2 g� (u; r) for each r 2 [0; 1];
b. v 2 g� (u; r) implies v 2 g� (u; s) for each s < r;

Granulation thus requires:

� a similarity measure,
� an aggregation mechanism.

Granulation by Means of Rough Inclusions

In this section, we apply the general ideas derived in
Sect. “Similarity” and Sect. “Information and Decision
Systems” in a specific context of rough inclusions (see
Glossary: Rough Inclusions).

Mereological Theory of Concepts As a first step to
granulation by means of rough inclusions, we introduce
the reader to the mereological theory of concepts which is
the basis of our approach to granulation.

Mereology, as conceived by Stanisław Leśniewski [15],
is based on the primitive binary relation of part, � , on the
universe U of objects, which is subject to the following re-
quirements:
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(P1) u � v implies u ¤ v;
(P2) u � v and v � w imply u � w.

Thus, the part relation � is non-reflexive and transi-
tive.

Given a part relation, which by (P1) means a proper
part relation, one forms an improper part counterpart,
called the ingredient, ing, defined from the part relation
as follows:

(I) v ing u if and only if v � u or v D u.

Thus, the ingredient relation is a partial ordering on
the universe U:

(U1) u ing u for each u;
(U2) u ing v and v ing u imply v D u;
(U3) u ing v and v ingw imply u ingw.

Mereology provides an operator, the class operator,
whose purpose is to represent collections of objects as an
individual object; clearly, this will be also our principal
granulation tool when formal properties of granules are
involved. The class operator Cls is applied to any non-
empty collection (a property) ˚ of individual objects in
U, making this collection into an individual Cls˚ ; its def-
inition is as follows Leśniewski [15]:

(Cl1) If v 2 ˚ then v ing Cls˚ ;
(Cl2) If v ing Cls˚ then for some w; z 2 U one has that

w ing v, w ing z, z 2 ˚ .

The object Cls˚ is unique for a given˚ .
As an example, the readerwill verify that the relation�

of the proper set/concept containment is a part relation,
the relation � of the improper containment is the adjoint
relation of an ingredient, and given a non-empty family of
sets ˚ , the union

S
˚ is the class Cls˚ with respect to

the ingredient relation �. Thus, the mereological context
generalizes the standard set-theoretical context adopted
prevalently by computer science.

Rough Inclusions In the process of development of
rough set theory, it has turned out that indiscernibility
should be relaxed to similarity: in Polkowski, Skowron and
Zytkow [50], attention was focused on tolerance relations,
that is, relations which are reflexive and symmetric but
need not be transitive. An example of such a relation was
given in Poincaré [35]: given a metric � and a fixed small
positive ı, one declares points x; y in the relation sim(ı)
if and only if �(x; y) < ı. The relation sim(ı) is a toler-
ance relation but it is equivalence for non-archimedean �’s
only, that is, when �(x; y) � maxf�(x; z); �(z; y)g.

We continue this example by introducing a graded ver-
sion of sim(ı), viz., for a real number r 2 [0; 1], we define
the relation sim(ı; r) by letting,

sim(ı; r)(x; y) iff �(x; y) � 1 � r : (1)

The collection sim(ı; r) of relations have the following
properties evident by the properties of the metric �:

(SIM1) sim(ı; 1)(x; y) iff x D y;
(SIM2) sim(ı; 1)(x; y) and sim(ı; r)(z; x) imply sim(ı; r)

(z; y);
(SIM3) sim(ı; r)(x; y) and s < r imply sim(ı; s)(x; y).

Properties (SIM1)–(SIM3) induced by the metric � re-
fer to the ingredient relationD whose corresponding rela-
tion of part is empty; a generalization can thus be obtained
by replacing the identity with an ingredient relation ing in
a mereological universe (U; �).

Consequently, a relation �(u; v; r) is defined that sat-
isfies the following conditions:

(RM1) �(u; v; 1) iff u ing v;
(RM2) �(u; v; 1) and �(w; u; r) imply �(w; v; r);
(RM3) �(u; v; r) and s < r imply �(u; v; s).

Any relation � which satisfies the conditions (RM1)–
(RM3) is called a rough inclusion. This relation is a sim-
ilarity relation which is not necessarily symmetric, but is
reflexive. It is read as “the relation of a part to a degree”.

Rough Inclusions: Case of Information Systems The
problem of methods by which rough inclusions could
be introduced in information/decision systems has been
studied in Polkowski [37,38,39,40,41,42,43,44]. Here we
recapitulate the results and add new ones. We recall that
an information system is a method of representing knowl-
edge about a certain phenomenon in the form of a table
of data; formally, it is a pair (U;A) where U is a set of
objects and A is a set of conditional attributes; any ob-
ject u 2 U is described by means of its information set
Inf(u) D f(a; a(u)) : a 2 Ag. The indiscernibility relation
Ind, definable sets and non-definable sets are defined from
Inf as indicated in (Glossary: Information Systems).

Rough Inclusions from Metrics As observed in Sect.
“Introduction”, any metric � defines a rough inclusion ��
by means of the equivalence��(u; v; r), �(u; v) � 1�r.

A very important example of a rough inclusion ob-
tained on these lines is the rough inclusion �h with h(u; v)
being the reduced Hamming distance on information vec-
tors of u and v, that is, h(u; v) D jfa2A : (a;a(u))¤(a;a(v))gj

jAj ,
jXj denoting the cardinality of the set X.
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Thus, �h(u; v; r) if and only if h(u; v) � 1 � r; in-
troducing sets DIS(u; v) D fa 2 A : (a; a(u)) ¤ (a; a(v))g
and IND(u; v) D A n DIS(u; v) D fa 2 A : a(u) D a(v)g,
one can write down the formula for �h either as,

�h(u; v; r),
jDIS(u; v)j
jAj

� 1 � r ; (2)

or,

�h(u; v; r),
j IND(u; v)j
jAj

� r : (3)

The formula (3) witnesses that the rough inclusion
�h is an extension of the indiscernibility relation Ind to
a graded indiscernibility.

In a similar manner one should be able to compute
rough inclusions induced by other metrics standardly used
on information sets such as Euclidean, Manhattan etc.

Rough inclusions induced by metrics possess an im-
portant property of functional transitivity expressed in
general form by the rule,

��(u; v; r); �� (v;w; s)
��(u;w; L(r; s))

; (4)

where L(r; s) D maxf0; r C s � 1g is the Łukasiewicz t-
norm, see Polkowski [66]. We offer a short proof of this
fact: assuming that ��(u; v; r); �� (v;w; s) which means in
terms of themetric � that �(u; v) � 1 � r; �(v;w) � 1 � s;
by the triangle inequality, �(u;w) � (1 � r)C (1 � s),
that is, ��(u;w; r C s � 1).

Rough Inclusions from Functors of Many-Valued Log-
ics A functor (t-norm) t : [0; 1] � [0; 1]! [0; 1] is non-
archimedean only when the equality t(x; x) D x holds for
x D 0; 1; it is known (see e. g. [36]) that the only such
t-norms are the Łukasiewicz L and the product t-norm
P(x; y) D x � y.

Each of these t-norms admits a functional represen-
tation: t(x; y) D g( f (x)C f (y)) (see, for example, Pol-
kowski [36]).

One defines a rough inclusion �t by letting (see Pol-
kowski [35,37,38,39,40,41,42,43]),

�t(u; v; r), g
�
jDIS(u; v)j
jAj

�
� r : (5)

In particular, in case of the t-norm L, one has g(x) D
1�x (see, for example, [36]), and thus the rough inclusion
�L is expressed by means of the formula (3).

Another systematic method for defining rough inclu-
sions is by means of residual implications of continuous
t-norms(see Polkowski [38,39,40,41,42,43,44]).

For a continuous t-norm t, the residual implication
x )t y is a mapping from the square [0; 1]2 into [0; 1] de-
fined as follows(see, for example, Polkowski [36]),

x)t y � z iff t(x; z) � y ; (6)

thus, x )t y D maxfz : t(x; z) � yg.

Proposition 1 The residual implication x )t y does in-
duce a rough inclusion �)t by means of the formula:
�)t (x; y; r) if and only if x )t y � r for every continuous
t-norm t.

We include a short argument for the sake of complete-
ness; clearly, �)t (x; x; 1) holds as x )t y � 1 is equiv-
alent to x � y. Assuming �)t (x; y; 1), that is, x � y,
and �)t (z; x; r), that is, z) x � r hence t(z; r) � x we
have t(z; r) � y, that is, z) y � r so finally �)t (x; y; r).
Clearly, by definition, from �)t (x; y; r) and s < r it does
follow that �)t (x; y; s).

We recall here the basic cases of rough inclusions ob-
tained from the most frequently applied t-norms. In all
cases, �)t (x; y; 1) if x � y, so the associated ing relation
is � and the underlying part relation is <. For r < 1, that
is, x > y, one has

Case 1 t D L; in this case x )L y D minf1; 1 � x C yg,
hence �)L (x; y; r) if and only if 1 � x C y � r.

Case 2 t D P where P(x; y) D x � y; in this case,
x )P y D y

x when x ¤ 0 and 1 when x D 0 hence
�)P (x; y; r) if and only if y � x � r.

Case 3 t D min(x; y); in this case x)min y is y hence
�(x; y; r) if and only if y � r.

Transitivity of Rough Inclusions It has been
proved [37,38,39,40,41,42,43,44] that all rough inclusions
induced from either non-archimedean or continuous t-
norms t in the manner as above are transitive in the sense
of the formula:

�(u; v; r); �(v;w; s)
�(u;w; t(r; s))

:

Applications to Granulation of Knowledge Formal
theory of rough inclusions allows for a formal mechanism
of granulation of knowledge; we assume an information
system (U;A) is given. Granulation of knowledge, pro-
posed as a paradigm by L.A. Zadeh [66], means group-
ing objects into collections called granules, objects within
a granule being similar with respect to a chosen measure;
granular computing means computing with granules in
place of objects.



4422 G Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems

The mechanism of granule formation based on rough
inclusions has been presented by the author in a few works
(see [37,38,39,40,41,42,43,44]) and we recall it here. We
assume an information system (U;A) is given. The basic
tool in establishing properties of granules is the class op-
erator of mereology, along with the Leśniewski deduction
rule (DRM) of Sect. “Introduction”.

Given a rough inclusion � on the universe U, for each
object u and each r 2 [0; 1], the granule g�(u; r) of the ra-
dius r about u relative to � is defined as the class of the
property ˚(u; r; �) D fv : �(v; u; r)g:

g�(u; r) is Cls˚(u; r; �) : (7)

In case of t-norm-induced rough inclusions, by their
transitivity, the following important property holds (see
Polkowski [43]):

v ing g�(u; r) iff �(v; u; r) ; (8)

That is, the granule g�(u; r) is fv : ˚(u; r; �)(v)g with no
synergy effect.

Rough Inclusions on Granules because mereology op-
erates (due to the class operator) only on the level of in-
dividuals, one can extend rough inclusions from objects
to granules. The formula for extending a rough inclu-
sion � to a rough inclusion � on granules is a modifica-
tion of the mereological deduction rule of Sect. “Introduc-
tion”: (DRMG): �(g; h; r) if and only if for each object z
with z ing g there exists an object w with w ing h such that
�(z;w; r).

The fact that � is a rough inclusion can be established
by means of the rule (DRMG).

Modifications and Variants of Rough Inclusions In
applications to be presented in this special section, some
modified rough inclusions or weaker similarity measures
will be instrumental. We include a discussion of them
here.

Modification by Means of Metrics on Attribute Values
For the rough inclusion �L, the formula �L(v; u; r) means
that j IND(v;u)j

jAj � r, that is, at least r � 100 percent of at-
tributes agree on u and v; an extension of this rough in-
clusion depends on a chosen metric � bounded by 1 in the
attribute value space V (we assume a simple case that �
works for each attribute).

Then, given an " 2 [0; 1], we let �"(v; u; r) if and only
if jfa 2 A : �(a(v); a(u)) < "gj � r � jAj; it is manifest that
�" is a rough inclusion if � is a non-archimedean met-

ric, that is, �(u;w) � maxf�(u; v); �(v;w)g; otherwise the
monotonicity condition rm2 of Sect. “Calculus on Gran-
ules” need not be satisfied and this takes place with most
popular metrics (Euclidean, Manhattan etc.).

In this case, a remedy is to define a rough inclusion ��

as follows: ��(v; u; r) if and only if there exists an " such
that �"(v; u; r). It is easy, then, to verify that �� is a rough
inclusion.

Modification by transfer Assume that )t is chosen,
and for an information system (U;A), with an ingredient
relation ing on U, a mapping � : U ! [0; 1] is given such
that �(u) � �(v) if and only if u ing v. Then, the relation,

��(v; u; r) iff �(u))t �(v) � r ; (9)

is a rough inclusion on U. We include a short proof
of this fact: that ��(u; v; 1) is equivalent to �(u) � �(v)
hence to u ing v was observed in Subsect. “Granules from
rough inclusions – mereological approach” b. Assuming
that ��(u; v; 1) and�� (w; u; r), the proof that (RM2) (see
Sect. “Granulation of Knowledge: General Ideas and Tech-
nique of Rough Inclusions”) holds, that is, ��(w; v; r)
proceeds like the proof of (RM2) in Proposition 1 of
Sect. “Granulation of Knowledge: General Ideas and Tech-
nique of Rough Inclusions”. Finally, the property (RM3) is
evident.

As � depends on one argument, let us select an object
s 2 U , and consider:

1. �1 D dis(u) D jfa2A : a(s)¤a(u)gj
jAj ;

2. �2 D ind(u) D jfa2A : a(s)Da(u)gj
jAj ;

3. �3 D dis"(u) D jfa2A : �(a(s);a(u))�"gj
jAj ;

4. �4 D ind"(u) D jfa2A : �(a(s);a(u))�"gj
jAj , where � is a cho-

sen metric on the set of attribute values V , and " is
a chosen threshold in [0; 1].

Proposition 2 In all cases i D 1; 2; 3; 4, the relation
��i (v; u; r) defined with � i as �is a rough inclusion.

The reference object s can be chosen as an “ideal object,”
for example, whose conditional class is contained in its
decision class, etc. The formula (9) can be generalized by
considering a set S D fs1; : : : ; skg of reference objects.

Comparison of objects u; v on the lines of this section,
do not necessarily lead to rough inclusions due to a pos-
sible violation of property (RM2); yet, such variants are of
importance as they allow for a direct comparison among
objects, rules and granules. We introduce a generalization
of rough inclusions:
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For given objects u; v, and " 2 [0; 1], we introduce the
factors:

dis"(u; v) D

ˇ
ˇfa 2 A : �(a(u); a(v)) � "g

ˇ
ˇ

jAj
;

and

ind"(u; v) D

ˇ̌
fa 2 A : �(a(u); a(v)) < "g

ˇ̌

jAj
;

where � is a metric on attribute value sets.
Then, we modify the formula (9) to the form,

�(u; v; r) iff dis"(u; v)!t ind"(u; v) � r : (10)

Clearly, � has properties: 1. �(u; u; 1); 2. �(u; v; r) and
s < r imply �(u; v; s) but monotonicity property (RM2)
need not hold. Rough inclusions and their weak variants
will be essentially exploited in data mining tasks presented
in the sequel.

Calculus on Granules

We recall that we define a granule g�(u; r) about u 2 U of
the radius r, relative to the rough inclusion �, as follows:

g�(u; r) is Cls�˘�(u; r) ; (11)

where˘�(u; r) is the property defined by means of,

˘�(u; r)(v) iff �(v; u; r) : (12)

General properties of granules are collected below,

1: if y ing x then y ing gr x;
2: if y ing gr x and z ing y then z ing gr x;
3: if �(y; x; r) then y ing gr x;
4: if s < r then gr x ing gsx ;

(13)

which follow from properties (RM1)–(RM3) of rough in-
clusions (see sect. V) and the fact that ing is a partial order,
and, in particular, is transitive.

More generally,

if y ing gr x then gs y ing gT(r;s)x : (14)

The last statement follows directly from the transitivity
property of rough inclusions and from the deduction rule
(DRM) of Sect. “Introduction”.

It is natural to regard a granule system fg�t
r (x) : x 2

U ; r 2 (0; 1)g as a neighborhood system for a topology
on U that may be called the granular topology; we refer
here to the idea of a neighborhood system introduced by
Lin [16,17].

In order to make this idea explicit, we define classes of
the form NT(x; r) D Cls( �T

r;x ), where

 �T
r;x (y), 9s > r:�T (y; x; s) : (15)

We declare the system fNT(x; r) : x 2 U ; r 2 (0; 1)g to
be a neighborhood basis for a topology ��. This is justified
by the following

Theorem 1 Here are properties of the system fNT(x; r) :
x 2 U ; r 2 (0; 1)g:

1. y ingrNt(x; r) ) 9ı > 0:Nt(y; ı) ingr N(x; r);
2. s > r ) Nt(x; s) ingr Nt(x; r);
3. z ingrNt(x; r) ^ z ingrNt(y; s) ) 9ı > 0:

Nt(z; ı) ingr Nt(x; r) ^ Nt(z; ı) ingr Nt(y; s) :
(16)

An argument for (16) is as follows:
For Property 1. y ingrNt(x; r) implies that there ex-

ists an s > r such that �t(y; x; s). Let ı < 1 be such that
t(u; s) > r whenever u > ı; ı exists by continuity of t
and the identity t(1; s) D s. Thus, if z ingrNt(y; ı), then
�t(z; y; �) with � > ı and �t(z; x; t(�; s)) hence z ingr
Nt(x; r).

Property 2. follows by (RM3) and Property 3 is a corol-
lary to properties 1 and 2. This concludes the argument
for (16).

Granule systems as defined above form a basis for ap-
plications where approximate reasoning is a crucial ingre-
dient.

We begin with a basic application in which approxi-
mate reasoning itself is codified as a many-world (inten-
sional) logic where granules serve as possible worlds.

Some Principal Fields of Applications

Applications of the proposed mechanism of granulation
have been indicated in many areas of reasoning under un-
certainty, in particular in:

� Reasoning about uncertainty in information/decision
systems by means of rough mereological granular log-
ics;

� Reasoning in distributed systems (fusion of knowl-
edge);

� Reasoning in cognitive schemes (rough neural hybrid
systems);

� Granular classifiers.

We devote some space to these applications.
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Reasoning About Uncertainty

The idea of a granular rough mereological logic (see [38,
48]) consists of measuring the meaning of a unary predi-
cate in the model, which is a universe of an information
system, against a granule defined to a certain degree by
means of a rough inclusion. The result can be regarded as
the degree of truth (the logical value) of the predicate with
respect to the given granule. The logics thus obtained are
intensional as they can be regarded as mappings from the
set of granules (possible worlds) to the set of logical values
in the interval [0; 1], the value at a given granule regarded
as the extension at that granule of the generally defined in-
tension (see [60] for a general introduction to intensional
logics).

For our purpose it is essential to extend rough inclu-
sions to sets; we use the t-norm L along with the repre-
sentation L(r; s) D g( f (r)C f (s)) already mentioned. We
denote these kind of inclusions with the generic symbol �.

For finite sets X;Y , we let,

�L(X;Y ; r) iff g
�
jX n Y j
jXj

�
� r ; (17)

as g(x) D 1 � x, see Polkowski [7], we have that
�L(X;Y ; r) holds if and only if jX\Y j

jXj � r. Let us observe
that �L is regular, that is, �L(X;Y ; 1) if and only if X � Y
and �L(X;Y ; r) only with r D 0 if and only if X \ Y D ;.

Thus, the ingredient relation associated with a regular
rough inclusion is the improper containment �, whereas
the underlying part relation is the strict containment�.

Other rough inclusion on sets we we exploit is the
3-valued rough inclusion �3 defined via the formula, see
Polkowski [38],

�3(X;Y ; r) iff

8
<̂

:̂

X � Y and r D 1
X \ Y D ; and r D 0
r D 1

2 otherwise :
(18)

We assume that an information/decision system
(U;A; d) is given, along with a rough inclusion � on the
subsets of the universe U; for a collection of predicates
(unary) Pr, interpreted in the universe U (meaning that
for each predicate � 2 Pr the meaning [�] is a subset of
U), we define the intensional logic grm� on Pr by assign-
ing to each predicate � in Pr its intension I�(�) defined by
its extension I_� (g) at particular granules g, as,

I_� (g)(�) � r iff �(g; [�]; r) : (19)

With respect to the rough inclusion �L, the formula
(19) becomes,

I_�L (g)(�) � r iff
jg \ [�]j
jgj

� r : (20)

The counterpart for �3 is specified by definition (18).
We say that a formula � interpreted in the universe U

of an information system (U;A) is true at a granule g with
respect to a rough inclusion � if and only if I_� (g)(�) D 1.

Thus, for every regular rough inclusion �, a formula �
interpreted in the universe U, with meaning [�], is true
at a granule g with respect to � if and only if g � [�]. In
particular, for a decision rule r : p) q in the descriptor
logic, the rule r is true at a granule g with respect to a reg-
ular rough inclusion � if and only if g \ [p] � [q].

The formula �(g; [�]; r) D 1 stating the truth of � at
g; � with � regular can be regarded as a condition of or-
thogonality type, with the usual consequences.

1. If � is true at granules g; h then it is true at g [ h.
2. If � is true at granules g; h then it is true at g \ h.
3. If �; are true at a granule g then � _  is true at g.
4. If �; are true at a granule g then � ^  is true at g.
5. If  is true at a granule g then � )  is true at g for

every formula � .
6. If � is true at a granule g then � )  is true at g if and

only if  is true at g.

The graded relaxation of truth is given obviously by
the condition, a formula � is true to a degree at least r at
g, � if and only if I_� (g)(�) � r, that is, �(g; [�]; r) holds.
In particular, � is false at g; � if and only if I_� (g)(�) � r
implies r D 0, i. e. �(g; [�]; r) implies r D 0. Properties 1–
6 above suggest that the notion of truth in rough mere-
ological logics has similar properties with respect to con-
nectives of logical calculi to those of classical sentential cal-
culus. Therefore, we introduce the following semantics of
sentential connectives :;_;^;).

1. [:˛] D U n [˛].
2. [˛ _ ˇ] D [˛] [ [ˇ].
3. [˛ ^ ˇ] D [˛] \ [ˇ].
4. [˛) ˇ] D (U n [˛]) [ [ˇ].

With respect to these semantics, the following proper-
ties hold.

1. For each regular �, a formula ˛ is true at g; � if and only
if :˛ is false at g; �.

2. For � D �L; �3, I_� (g)(:˛) � r if and only if
I_� (g)(˛) � s implies s � 1 � r.

3. For � D �L ; �3, the implication ˛) ˇ is true at g if
and only if g \ [˛] � [ˇ] and ˛) ˇ is false at g if and
only if g � [˛] n [ˇ].

4. For � D �L , if I_� (g)(˛) ˇ) � r then )L (t; s) � r
where I_� (g)(˛) � t and I_� (g)(ˇ) � s.

The functor )L in 4. is the Łukasiewicz implication of
many-valued logic:)L (t; s) D minf1; 1 � t C sg.
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Further analysis should be split into the case of �L and
the case of �3 as the two differ essentially with respect to
the form of reasoning they imply.

Reasoning with �L The last property 4. shows in princi-
ple that the value of I_� (g)(˛) ˇ) is bounded from above
by the value of)L (I_� (g)(˛); I_� (g)(ˇ)).

This suggests that the idea of collapse due to S.
Lesniewski can be applied to formulas of rough mereo-
logical logic in the following form: for a formula q(x) we
denote by the symbol q� the formula q regarded as a sen-
tential formula (that is, with variable symbols removed)
subject to relations:q(x)� is:(q(x)�) and p(x)) q(x)�

is p(x)� ) q(x)�. As the value [q�]g of the formula q(x)�

we admit the value of jg\[q(x)]j
jgj . Thus, the item 4 can be

rewritten in the form.

I_� (g)(˛) ˇ) �)L ([˛�]g ; [ˇ�]g ) : (21)

The following statement is then obvious: if ˛) ˇ is
true at g then the collapsed formula has a truth value of
1 at the granule g. This gives a necessity condition for
verification of implications of rough mereological logic:
if )L ([˛�]g ; [ˇ�]g) < 1 then the implication ˛) ˇ is
not true at g. This concerns decision rules in particular: for
a decision rule p(v)) q(v), it follows that the decision is
true on a granule g if and only if [p�]g � [q�]g .

Possibility and Necessity Possibility and necessity are
introduced in rough set theory by means of upper and
the lower approximations, respectively. A logical render-
ing of thesemodalities in roughmereological logic exploits
the approximations. Denoting the lower approximation as
X D fu 2 U : [u]A � Xg and the upper approximation as
X D fu 2 U : [u]A \ X ¤ ;g, we define two modal oper-
ators: M (possibility) and L (necessity) by means of their
semantics.

To this end, we let

I_� (g)(M˛) � r iff �L(g; [˛]; r)
I_� (g)(L˛) � r iff �L(g; [˛]; r) :

(22)

Then we have the following criteria for necessarily or
possibly true formulas.

A formula ˛ is necessarily true at a granule g if and only
if g � [˛]; ˛ is possibly true at g if and only if g � [˛].

This semantics of modal operatorsM; L can be applied
to show that rough set structures carry the semantics of S5
modal logic, that is, the following relations hold at each
granule g.

Granulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems, Table 3
Truth values for implication in L3

) 0 1 1
2

0 1 1 1

1 0 1 1
2

1
2

1
2 1 1

Granulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems, Table 4
Truth values for implication˛) ˇ in logic based on 3

) I_� (g)(ˇ )
D 0

I_� (g)(ˇ )
D 1

I_� (g)(ˇ ) D
1
2

I_� (g)(˛)D 0 1 1 1
I_� (g)(˛)D 1 0 1 1

2
I_� (g)(˛)D

1
2

1
2 1 1 when g\ [˛] � [ˇ ];

1
2 otherwise

1. L(˛) ˇ)) [(L˛)) L(ˇ)].
2. L˛) ˛.
3. L˛) LL˛.
4. M˛) LM˛.

Proofs can be found in Polkowski [38].

Reasoning with �3 In case of � D �3, one can check on
the basis of definitions that I_� (g)(:˛) � r if and only if
I_� (g)(˛) � 1�r; thus the negation functor in roughmere-
ological logic based on �3 is the same as the negation func-
tor in the 3-valued Łukasiewicz logic. For implication, the
relations between rough mereological and 3-valued logics
L3 follow from tables of values of truth.

Table 3 shows truth values of implications for the
3-valued logic L3 and Table 4 shows truth values of im-
plications for rough mereological logic based on �3.

To express the relation between the two implications,
we introduce a new notion: we say that a formula � is ac-
ceptable in either logic (L3 or grm�3 ) at a granule g if and
only if [��]g � 1

2 , respectively, I
_
� (g)(�) �

1
2 .

From Tables 3, 4 one infers that I_� (g)(�) � [��]g .
This crucial relationship implies that: if �� is acceptable
at g then � is acceptable at g; if �� is true at g then � is
true at g. Also, if � at false at g then �� is false at g.

This fact allows for a sufficiency criterion: if �� is a the-
orem of the logic L3 than � is a true formula of the logic
grm�3 . This fact supplies a characterization of decision
rules as well.

Reasoning in Distributed Systems

We now begin with the first of the principal applications
of the apparatus developed so far (cf., [49]). Rough inclu-
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sions and granular intensional logics based on them can
be applied to describe workings of a collection of intelli-
gent agents, which we will call granular agents, as they are
endowed with granular logic.

A granular agent ag in its simplest form is a tuple

ag� D (Uag ;Aag ; �ag ;Predag;UncPropag ;GSyntag ;

LSyntag) ;

where,

1. (Uag ;Aag) D Iag is an information system of the agent
ag;

2. �ag is a rough inclusion induced from Iag ;
3. Predag is a set of first-order predicates interpreted in

Uag ;
4. UncPropag is the function that describes how uncer-

tainty measured by rough inclusions at agents con-
nected to ag propagates to ag;

5. The operator GSyntag , the granular synthesizer at ag,
takes granules sent to the agent from agents connected
to it, and makes those granules into a granule at ag;

6. LSyntag , the logic synthesizer at ag, takes formulas sent
to the agent ag by its connecting neighbors and makes
them into a formula describing objects at ag.

A network of granular agents is a directed acyclic
graph N D (Ag;C), where Ag is its set of vertices, that
is, granular agents, and C is the set of edges, that is,
connections among agents, along with disjoint subsets
In;Out � Ag of, respectively, input and output agents.

We assume for simplicity that N consists of three
agents connected into a tree, andwe show a simple analysis
of the direct fusion of knowledge; clearly, more complex
schemes will require a deeper and more complex analysis,
but will follow the lines indicated in the example that fol-
lows.

Fusion of Knowledge: An Example We consider an
agent ag 2 Ag and – for simplicity reasons – we as-
sume that ag has two incoming connections from agents
ag1; ag2; the number of outgoing connections is of no im-
portance as ag sends the same information along each of
them.

We assume that each agent i applies the rough in-
clusion �L induced by the Łukasiewicz t-norm L (see
Subsect. “Granulation: Tools” A). Each agent also applies
rough inclusion on sets of the form (17) in evaluations re-
lated to extensions of formulae intensions.

Clearly, there exists a fusion operator oag that assem-
bles from objects x 2 Uag1 ; y 2 Uag2 the object o(x; y) 2
Uag ; we assume that oag D idag1 � idag2 , that is, oag(x;
y) D (x; y).

Similarly, we assume that the set of attributes at ag,
equals: Aag D Aag1 � Aag2 , that is, attributes in Aag are
pairs (a1; a2) with ai 2 Aagi (i D 1; 2) and that the value
of this attribute is defined as:

(a1; a2)(x; y) D (a1(x); a2(y)) :

It follows that the condition holds:

oag(x; y) INDag oag(x0; y0)
iff x INDag1 x

0 and y INDag2 y
0 :

Concerning the function UncPropag , we consider objects
x; x0; y; y0; clearly,

DISag(oag (x; y); oag(x0; y0))
� DISag1(x; x0) � Aag2[

Aag1 � DISag2 (y; y0) ;
(23)

and hence,

jDISag(oag (x; y); oag(x0; y0))j
� jDISag1 (x; x0)j � jAag2 j

CjAag1 j � jDISag2(y; y0)j :
(24)

By (24),

�ag(oag(x; y); oag (x0; y0); t)

D 1 �
jDISag(oag(x; y); oag (x0; y0))j

jAag1 j � jAag2 j

� 1 �
jDISag1 (x; x0)j � jAag2 j C jAag1 j � jDISag2 (y; y0)j

jAag1 j � jAag2 j

D 1 �
jDISag1 (x; x0)j
jAag1 j

C 1 �
jDISag2 (y; y0)j
jAag2 j

� 1 :

(25)

It follows that,

if �ag1 (x; x
0; r); �ag2 (y; y

0; s)
then �ag(oag(x; y); oag (x0; y0); L(r; s)):

(26)

Hence, UncProp(r; s) D L(r; s), the value of the
Łukasiewicz t-norm L on the pair (r; s).

In consequence, the granule synthesizer GSyntag can
be defined in our example as,

GSyntag(gag1 (x; r); gag2 (y; s)) D (gag (oag(x; y); L(r; s)):
(27)

The definition of the logic synthesizer LSyntag follows
directly from our assumptions,

LSyntag(�1; �2) D �1 ^ �2 : (28)
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Finally, we consider extensions of the operators of our in-
tensional logic.

We have for the extension I(�ag)_GSyntag (g1;g2)
(LSyntag(�1; �2)):

I(�ag)_GSyntag (g1;g2)(LSyntag(�1; �2))

D I(�ag1 )
_
g1 (�1) � I(�ag2 )

_
g2 (�2) ; (29)

which follows directly from (27), (28).
Let us note that

I(�ag1 )
_
g1 (�1) � I(�ag2 )

_
g2 (�2)

D P(I(�ag1 )
_
g1 (�1); I(�ag2 )

_
g2 (�2)) ;

where P is the Product Archimedean t-norm.
Thus, in the case of parallel fusion, where each agent

works according to the Łukasiewicz t-norm, uncertainty
propagation and granule synthesis are described by the
Łukasiewicz t-norm L and extensions of logical intensions
propagate according to the Product t-norm P.

Reasoning in Cognitive Schemes:
Rough Neural Reasoning

In neural models of computation (see Bishop [5]), an es-
sential feature of neurons is differentiability of transfer
functions; hence, we introduce a special type of rough in-
clusions, called gaussian in Polkowski [40] because of their
form, by letting,

�G (x; y; r) iff e�
ˇ
ˇ
ˇ
P

a2DIS(x;y) wa

ˇ
ˇ
ˇ
2

� r ; (30)

where wa 2 (0;C1) is a weight associated with the at-
tribute a for each attribute a 2 A; clearly, we retain the no-
tation of previous sections. One may notice that the gaus-
sian rough inclusion is a modification of rough inclusion
�P obtained from the Product t-norm.

Let us observe in passing that �G can be factored
through the indiscernibility relation IND(A), and thus its
arguments can be objects as well as indiscernibility classes;
we will freely use this fact.

Properties of gaussian rough inclusions are the follow-
ing (cf., [41]):

� x ing y iff DIS(x; y) D ;;
� There exists a function �(r; s) such that �G (x;

y; r); �G (y; z; s) imply �G (x; z; �(r; s));
� If x ing g�G

r y; x ing g�G
s z; then g�G

t x ing g�G
r y,

g�G
t x ing g�G

s z for t � maxfr4; s4g.

Property 1 follows by definition, and Property 2
may be verified with �(r; s) D r � s � e2�(log r�log s)1/2 (op.cit.).
Property 3 can be verified by observing that t should satisfy
conditions �(r; t) � r; �(s; t) � s because of Property 2,
see Polkowski [41].

Rough Mereological Perceptron The rough mereologi-
cal perceptron is modeled on the perceptron (see, for ex-
ample, [5]). It consists of an intelligent agent ag, endowed
with a gaussian rough inclusion �ag on the information
system Iag D (Uag ;Aag) of the agent ag.

The input to ag is in the form of a finite tuple
x D (x1; : : : ; xk) of objects, and the input x is converted
at ag into an object x D Oag(x) 2 Uag by means of an op-
erator Oag .

The rough mereological perceptron is endowed with
a set of target concepts Tag � Uag/ IND(Aag), each target
concept a class of the indiscernibility INDag .

Formally, a roughmereological perceptron is thus a tu-
ple

RMP D (ag; Iag; �ag ;Oag ; Tag) :

The output resag(x) to RMP, at the input x, is a gran-
ule of knowledge gr(res)x with

r(res) D maxfr : there is y 2 Tag�ag(x; y; r)g : (31)

Formula (31) shows that the input x is classified at
ag as the collection of indiscernibility classes that are as
close to x as the closest target class (closeness with respect
to �ag ).

Applications in Data Mining: Granular Classifiers

Granulation of knowledge by means of �h consists of
forming, for each r 2 [0; 1] and each u 2 U , a granule
gh(u; r) D fv 2 U : �h(v; u; r)g. As, clearly, �h is sym-
metric, from v 2 gh(u; r) it follows that u 2 gh(v; r).

Granular data sets were proposed in Polkowski [40,
42,43] by means of the following constructions: Given
r 2 [0; 1], the set of all granules Gh

r D fgh(u; r) : u 2
Ug is defined. From this set, a covering Covhr (G) is cho-
sen according to a strategy G. Granules in Covhr (G) form
a new universe of objects. For each g 2 Covhr (G), and
each attribute a 2 A, a factored attribute ah is defined as
ah(g) D S(fa(u) : u 2 gg).

The new information system Ihr D (Covhr (G); fah :
a 2 Ag) is a granular reflection of the original informa-
tion system I. The same procedure is applied to a deci-
sion system D D (U;A; d) to form the reflection Dh

r D

(Covhr (G); fah : a 2 Ag; dh). The object o(g) defined for
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Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Table 5
Best results for Australian credit by some rough set based algorithms

Source Method Accuracy Coverage
Bazan [3] SNAPM(0.9) error D 0:130 �
Nguyen SH [22] simple.templates 0.929 0.623
Nguyen SH [22] general.templates 0.886 0.905
Nguyen SH [22] tolerance.gen.templ. 0.875 1.0
Wroblewski [57] adaptive.classifier 0.863 �

Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Table 6
Best results for Australian credit by granular approach

Source Method Accuracy Coverage
[45] granular radius 0.642857 0.867 1.0
[45] granular radius 0.714826 0.875 1.0
[45] granular.concept dependent radius 0.785 0.9970 0.9995

a granule g by means of inf(o(g)) D f(ah ; ah(g)) : a 2 Ag
according to a strategy S is called an S-reflection of the
granule g; clearly, o(g) need not be a real object in the train-
ing or test sets.

The idea of data classification by means of granular re-
flections consists in splitting a given data set into training
and test parts, forming a granular reflection of the train-
ing set, inducing classification rules from this new data set,
and applying the induced rules in classifying data in the
original test set.

We include some examples showing the high efficiency
of this approach (see [1,43,45]).

In tests with �h, the exhaustive classifier (for its public
version, see [51]) was applied (cf., [1,43]). The strategy G
was a random choice of an irreducible covering from the
set of all granules of a given radius and the strategy S was
selected as majority voting with random tie resolution.

We show results of tests with the Australian credit data
set (see UCI Repository [59]), well studied in rough set
literature. For comparison, we include some best results,
obtained by means of rough set – based methods, in Ta-
ble 5. Classification quality is expressed by means of two
factors: accuracy and coverage. Accuracy (also called total
accuracy) is the ratio of the number of correctly classified
objects to the number of recognized test objects, and total
coverage, rec

test , where rec is the number of recognized test
cases and test is the number of test cases.

Tests on these data with the granular approach de-
scribed above were carried out by splitting the Australian
credit data set into training and test sets in a 1:1 ratio. The
training sample was granulated and a granular reflection
was formed from which, by means of the RSES exhaustive
algorithm, a classifier was produced which was applied to
the test part of the data to find the quality of classification.

Granules were calculated in a twofold way: first as in-
dicated above and, second, by a modified procedure of
concept dependent granulation (see [1]). In the latter pro-
cedure, the granule gch(u; r) D gh(u; r) \ [u]d was com-
puted relative to the concept, that is, the decision class, to
which u belonged. The results of the tests are given in Ta-
ble 6 in which the best results obtained with various gran-
ulation radii are shown, taken from [45].

Results in Table 6 attest that the granular approach
gives results fully comparable with other results for sat-
isfactorily large radii of granulation, and that concept-de-
pendent granulation gives better results than any other ex-
isting approach.

In order to test the impact of the choice of granu-
lar covering on classification, we have carried out 10 ex-
periments with the RSES exhaustive algorithm, with ran-
dom coverings on the Heart dataset (Cleveland) (see UCI
Repository [59]). Results are given in Table 7. Total ac-
curacy was found to be 0.807, and total coverage 1.0 with
an exhaustive algorithm on the full data. These values are
achieved here with radius of at least 0.538462, and begin-
ning with the radius of 0.384615, the error in total accu-
racy is at most 0.07, and the error in total coverage is at
most 0.007.

This attests to a very high stability of the granular ap-
proach showing the essential independence of results of
a choice of a granular covering for inducing a granular re-
flection of data.

Granules from Parameterized Variants of Rough Inclu-
sions �h in Classification of Data Given an " 2 [0; 1],
we let �"h (v; u; r) if and only if jfa 2 A : �(a(v); a(u)) <
"gj � r � jAj. It is manifest that �" is a rough inclu-
sion if � is a non-archimedean metric, that is, �(u;w) �
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Granulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems, Table 7
Effect of a choice of a granular covering on classification

Radius Total accuracy Total coverage
0.0 0.0 0.0
0.0769231 0.0 0.0
0.153846 0.0 0.0
0.230769 0.0–0.789 0.0–1.0
0.307692 0.01.0 0.0–1.0
0.384615 0.737–0.799 0.993–1.00
0.461538 0.778–0.822 0.996–1.0
0.538462 0.881–0.911 1.0
0.615385 0.874–0.907 1.0
0.692308 0.963–0.974 1.0
0.769231 1.0 1.0
0.846154 1.0 1.0
0.923077 1.0 1.0
1.0 1.0 1.0

maxf�(u; v); �(v;w)g; otherwise the monotonicity condi-
tion (RM2)of Sect. “Introduction” need not be satisfied
and this takes place with most popular metrics (Euclidean,
Manhattan, etc.).

In this case, a rough inclusion �� is defined as fol-
lows: ��h (v; u; r) if and only if there exists an " such that
�"h(v; u; r). It is easy, then, to check that �� is a rough in-
clusion. The parameter r is called the catch radius.

Granules induced by the rough inclusion ��h with
r D 1 have a simple structure: a granule g"h(u; 1) consists
of all v 2 U such that �(a(u); a(v)) � ".

The idea poses itself to use granules defined in this way
to assign a decision class to an object u in the test set. First
on the training set, rules are induced by an exhaustive al-
gorithm. Then, given a set Rul of these rules, and an ob-
ject u in the test set, a granule g"h(u; 1) is formed in the
set Rul. In this manner, the duality between objects and
rules is exploited, as rules and objects can be written down
in the same format, that of information sets. This also al-
lows the use of training objects instead of rules in forming
granules and permits majority voting for a decision.

Thus, g"h(u; 1) D fr 2 Rul : �(a(u); a(r)) � " for each
attribute a 2 A(r)gwhere a(r) is the value of the attribute a
in the premise of the rule and A(r) is the set of attributes
in the premise of r.

Rules in the granule g"h(u; 1) take part in a voting pro-
cess: for each value c of a decision class, the following fac-
tor is computed,

param(c) D
sum of supports of rules pointing to c
cardinality of c in the training set

; (32)

cf., Bazan [3], Michalski et al. [25] for a discussion of vari-
ous strategies of voting for decision values.

The class cu assigned to u is decided by

param(cu) D max
c

param(c) ; (33)

with random resolution of ties.
In computing granules, the parameter " is normal-

ized to the interval [0; 1] as follows: first, for each at-
tribute a 2 A, the value train(a) D maxtraining set a �
mintraining set a is computed and the real line (�1;C1) is
contracted to the interval [mintraining set a;maxtraining set a]
by the mapping f a,

fa(x) D

8
<̂

:̂

mintraining set a in case x � mintraining set
x in case x 2 [mintraining set a;maxtraining set a]
maxtraining set a in case x � maxtraining set a :

(34)

When the value a(u) for a test object u is off the
range [mintraining set a;maxtraining set a], it is replaced with
the value fa(a(u)) in the range. For an object v, or a rule r
with the value a(v), respectively, a(r) of a denoted a(v; r),
the parameter " is computed as ja(v;r)� fa (a(u))j

train(a) . The met-
ric � was chosen as the metric jx � yj in the real line.
We show results of experiments with rough inclusions dis-
cussed in this work. Our data set was a subset of Australian
credit data in which the training set had 100 objects from
class 1 and 150 objects from class 0 (which approximately
yields the distribution of classes in the whole data set). The
test set had 100 objects, 50 from each class. The RSES ex-
haustive classifier (see Skowron et al. [51]) applied to this
data set gave accuracy of 0.79 and coverage of 1.0.

In Fig. 1 results of classification are given in function
of " for accuracy as well as for coverage.

We return to the rough inclusion ��h (v; u; r) with gen-
eral radius r. The procedure applied in case of �"h(v; u; 1)
can be repeated in the general setting. The resulting classi-
fier is a function of two parameters "; r. In Table 8 results
are included where against values of the catch radius r the
best value for "’s marked by the optimal value optimal eps
is given for accuracy and coverage.

As shown in Sect. “Granulation of Knowledge: Gen-
eral Ideas and Technique of Rough Inclusions”, residual
implications of continuous t-norms can supply rough in-
clusions according to a general formula, see (9),

��(v; u; r) iff �(u))t �(v) � r ; (35)

where � maps the set U of objects into [0; 1] and
�(u) � �(v) if and only if u ing v (ing is an ingredient re-
lation of the underlying mereology;)t is the residual im-
plication induced by the t-norm.
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Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Figure 1
Results for algorithm 1_v1, best result for " = 0.62: accuracy = 0.828283, coverage = 0.99

Granulation of Knowledge: Similarity Based Approach in Infor-
mation and Decision Systems, Table 8
(40%–60%)(1–0); Australian credit; Algorithm 1_v2. r_catch=
catch radius, optimal_eps=Best ", acc= accuracy, cov= coverage

r_catch optimal eps acc cov
nil nil 0.79 1.0
0.071428 0 0.06 1.0
0.142857 0 0.66 1.0
0.214286 0.01 0.74 1.0
0.285714 0.02 0.83 1.0
0.357143 0.07 0.82 1.0
0.428571 0.05 0.82 1.0
0.500000 0 0.82 1.0
0.571429 0.08 0.84 1.0
0.642857 0.09 0.84 1.0
0.714286 0.16 0.85 1.0
0.785714 0.22 0.86 1.0
0.857143 0.39 0.84 1.0
0.928571 0.41 0.828283 0.99
1.000000 0.62 0.828283 0.99

A weak interesting variant of this class of rough inclu-
sions is indicated. This variant uses sets

dis"(u; v) D

ˇ̌
fa 2 A : �(a(u); a(v)) � "g

ˇ̌

jAj
;

and

ind"(u; v) D

ˇ̌
fa 2 A : �(a(u); a(v)) < "g

ˇ̌

jAj
;

for u; v 2 U , " 2 [0; 1], where � is a metric jx � yj on at-
tribute value sets.

The resulting weak variant of the rough inclusion
�� is,

�t(u; v; r) iff dis"(u; v)!t ind"(u; v) � r : (36)

Basic variants for three principal t-norms: the
Łukasiewicz t-norm L D maxf0; x C y � 1g, the product
t-norm P(x; y) D x � y, and minfx; yg are: (the value in all
variants is 1 if and only if x � y so we give values only in
the contrary case)

�t(u; v; r) iff

8
<̂

:̂

1 � dis"(u; v)C ind"(u; v) � r for L
ind"(u;v)
dis"(u;v) � r for P
ind"(u; v) � r for min :

(37)

Objects in the class c in the training set vote for decision at
the test object u according to the formula:

p(c) D
P

v2c w(v; t)
jcj in the training set
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Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Figure 2
Results for algorithm 5_v1, best result for " = 0.04, accuracy = 0.82, coverage = 1

Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Figure 3
Results for algorithm 5_v2, best result for "D 0:01, accuracy = 0.84, coverage = 1

where weight w(v; t) is dis"(u; v) !t ind"(u; v); rules in-
duced from the training set pointing to the class c vote ac-
cording to the formula:

p(c) D
P

r w(r; t) � support(r)
jcj in the training set

:

In either case, the class c* with p(c) D max p(c) is cho-
sen. We include here results of tests with training objects
and t D min (Fig. 2) and rules and t D min (Fig. 3).

Similarly, we include in Figs. 4, 5 results of tests with
granules of training objects and rules for t D P, the prod-
uct t-norm.
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Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Figure 4
Results for algorithm 6_v1, best result for " D 0:01, accuracy = 0.81, coverage = 1

Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems, Figure 5
Results for algorithm 6_v2, Best result for varepsilon D 0:01, accuracy = 0.84, coverage = 1

The results of tests in best cases for optimal values of "
exceed results obtained with the standard exhaustive algo-
rithm (the RSES exhaustive algorithm in this data set gives
accuracy of 0.79 and coverage 1.0).

Complexity Issues

Concerning granulation in information systems, it can be
proved that finding a granule about an object u is at most
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O(jUj � jAj). Therefore, finding all granules of the given ra-
dius is O(jUj2 � jAj).

Selecting a coverage by granules of the given radius is
therefore O(jUj2 � jAj).

Future Directions

As results of the last section attest, granulation is a very
important ingredient in such diverse areas as reasoning
about uncertainty, reasoning in distributed and cognitive
schemes, and data mining. Especially in this last area, it is
possible to objectively judge the contribution of granula-
tion by comparing the quality of classifiers using granu-
lation with those which dispense with granulation. These
results show clearly that granulation produces results bet-
ter, as a rule, than the standard approach of rule induction
by exhaustive algorithm, and the best results are as good
as any obtained by methods based on rule building by de-
scriptors with optimization.

Further research should be aimed at better under-
standing the role of granulation, of the trade-off between
the size of granules and quality of reasoning/classification,
of the dynamics of granule formation and at finding better
similarity measures adapted to particular data sets.
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8. Greco S, Matarazzo B, Słowiński R (1999) On joint use of in-
discernibility, similarity and dominance in rough approxima-
tion of decision classes. In: Proceedings of the 5th International
Conference of the Decision Sciences Institute, Athens, Greece.
pp 1380–82

9. Grzymala-Busse JW (1992) LERS – a system for learning from
examples based on rough sets. In: Słowiński R (ed) Intelligent
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Glossary

Attenuation relation (ground-motion prediction equa-
tion) The term “attenuation relation” is a former short-

hand notation in earthquake engineering for “empir-
ical ground-motion attenuation relationship”, now
referred to as “ground-motion prediction equation”
(GMPE). Attenuation relations represent empirical
scaling equations that relate observed ground-motion
intensity measures to parameters of the earthquake
source, the wave propagation from the source to the
observer and the site response at the observer location.

Dynamic rupture model Dynamic rupture models build
a physical understanding of the earthquake rupture
based on the material properties around the source
volume, and the initial and boundary conditions for
the forces/stresses acting on the fault plane. The dis-
tribution of on-fault slip-rate vectors and the tempo-
ral rupture evolution is obtained by solving the elasto-
dynamic equations of motion under an assumed con-
stitutive law (friction model), considering the energy
balance at the crack tip (Chap. 11 in [6]). See also kine-
matic rupture model.

Ground motion intensity measures Earthquake shaking
due to seismic waves, observed at recording sites or ex-
perienced by people and structures, is commonly re-
ported in terms of various scalar intensity measures
that capture parts of the transient wave-field. Seis-
mogram-based ground-motion intensitymeasures are,
for instance, peak ground acceleration (PGA) and peak
ground velocity (PGV), while themodifiedMercalli in-
tensity (MMI) is a damage-related measure. In earth-
quake engineering, ground-motion intensities are of-
ten reported as response spectra: the response of an
idealized building (modeled as a single-degree-of-free-
dom oscillator) of given eigenperiod T and damping �
(usually 5%) to a given ground-motion time series.
Spectral acceleration (SA), spectral velocity (SV) and
spectral displacement (SD) are analyzed considering
the period of the structure.

Ground motion uncertainty In ground-motion predic-
tion for engineering purposes, random (aleatory) vari-
ability and scientific (epistemic) uncertainty are dis-
tinguished. The latter is due to incomplete knowledge
and/or limited data, and is captured by alternative em-
pirical attenuation relations or different ground-mo-
tion simulation strategies. Aleatory variability is quan-
tified in terms of a standard deviation of an attenua-
tion relation or by a large number of model realiza-
tions within a particular simulation method. The dis-
tinction between aleatory variability and epistemic un-
certainty is particularly useful in probabilistic seismic
hazard analysis (PSHA).

Kinematic rupture model A kinematic rupture model
characterizes the time-dependent displacement field
on the rupture plane without considering the forces or
stresses acting on the fault and causing its motion. The
rupture process is completely specified by the spatio-
temporal distribution of the slip vector, the local slip-
velocity function on the fault, and the rupture velocity
with which the rupture propagates over the fault plane.
See also dynamic rupture model.

Path effects Seismic waves propagating through the Earth
are sensitive to the detailed geologic structure along
the wave path, generating pronounced waveform com-
plexities. Considering crust and upper-mantle struc-
ture (relevant for near-field ground motions) three
major elements to path effects are distinguished in
practice: (a) waves in a flat-layered attenuating Earth;
(b) basins and other deterministic deviations from
a flat-layered model; (c) random heterogeneities in the
three-dimensional velocity-density structure. The dis-
tinction between path effects and site effects is often
ambiguous.
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Rise time The rise time (or slip duration) � r measures
how long each point on the faultmoves during the rup-
ture process, and must not be confused with the rup-
ture duration. The rise time is related to the slip-ve-
locity function, and is usually measured as the time it
takes to attain 5–95% of the final slip at each point. For
simple parametric slip-functions (e. g. boxcar, isosce-
les triangle or combinations thereof), the rise time is
generally given by the width of this function.

Rupture duration The rupture duration characterizes the
total time for the earthquake rupture process to com-
plete, starting at the nucleation point (hypocenter) and
lasting until the last point on the rupture plane stops
sliding. Rupture duration therefore depends on rup-
ture velocity and scales with the size (source dimen-
sion) of the earthquake.

Rupture velocity Earthquake ruptures, either modeled as
propagating cracks or slip-pulses, expand over the
fault plane at rupture speeds (vr) close to the lo-
cal shear-wave velocity (vS), typically in the range
0:5 � vs � vr � 0:9 � vS , or about 1.0–3:5 km/sec for
crustal earthquakes. However, the crack tip, the transi-
tion region from unbroken, intact rock to the currently
slipping zone, does not necessarily travel at constant
rupture speed. Rupture velocity may locally slow down
or accelerate, even to super-shear velocities (in which
case the crack front travels at speeds faster than the lo-
cal shear-wave velocity), depending on the initial and
boundary conditions that govern the dynamic rupture
process.

Site effects Site effects refer to wave-propagation effects
in the immediate proximity to the observation point;
they are distinguished from path effects which com-
prise the complete path from the source to the re-
ceiver (although the boundary between these two is of-
ten ill defined). The local sedimentary cover, topogra-
phy, strong geologic contrasts or water-table variations
may contribute to site effects that modify the incoming
“bedrock” seismic motions.

Slip distribution The slip distribution represents the cu-
mulative slip on each point on the fault acquired dur-
ing the co-seismic rupture process (i. e. small contri-
butions from post-seismic slip episodes are ignored).
A slip distribution for an earthquake is computed from
the space-time integration of slip-velocity functions on
the rupture plane.

Slip-velocity function (Slip-rate function) Each point
participating in the rupture process experiences
a time-dependent slip history during which the two
sides of the fault go through a stage of acceleration, sta-
ble sliding, deceleration, and final stopping. This local

displacement trajectory is often represented in terms
of a slip-velocity function (or slip function) whose de-
tails depend on the dynamic rupture process and the
constitutive behavior of the host rock. Slip-rate func-
tions are often modeled using simple parametric func-
tions.

Source effects Amplitudes and waveform character of
seismic waves are strongly affected by source effects,
i. e. by the details of the earthquake rupture pro-
cess. Far-field signals carry the signature of the overall
“point-source” earthquake source mechanism; near-
field recordings are very sensitive to the spatio-tem-
poral details of the rupture process, characterized in
a finite-fault source model either as kinematic or dy-
namic rupture model.

Static stress drop The static stress drop 
� represents
the difference between the initial and final stress across
the fault before and after an earthquake, and is re-
lated to slip on the fault. It is defined, based on a shear
crack with uniform stress drop, as
� D C � � � D/Lc ,
where� is the shear-modulus,D themean slip over the
fault, Lc a characteristic length scale (usually the small-
est dimension of the rupturing fault), and C a con-
stant of order unity which depends on the source
geometry. Using the fault width W as characteristic
length, static stress drop is related to the seismic mo-
ment, Mo D � � L �W � D D C �
� � A3/2, where A is
fault area, and L is fault length. Inferred values of
static stress drop are in the range of 0.1–10 MPa, in-
dependent of seismic moment, leading to the gen-
erally assumed self-similar constant stress-drop scal-
ing (see � Earthquake Scaling Laws). The static stress
drop must not be confused with the dynamic stress
drop [164] which captures the time-dependent stress
change on a point of the fault during the dynamic
faulting event, andmay be significantly higher or lower
than the static stress drop.

Definition of the Subject

The accurate prediction of the level and variability of
(potentially damaging) near-source strong-ground mo-
tions in future earthquakes is one of the key challenges
for seismologists and earthquake engineers. The increas-
ing number of near-source recordings collected by dense
strong-motion networks exemplifies the inherent com-
plexity of near-field ground shaking, governed by a num-
ber of (partially interacting) physical processes. Charac-
terizing, quantifying, and modeling (either by means of
empirical scaling relations or by numerical simulations)
ground-motion complexity requires the joint investigation
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of three dominant ingredients: (I) the physics of earth-
quake rupture; (II) the details of wave-propagation in het-
erogeneous media; (III) the effects of local site conditions.

This article discusses briefly the beginnings of strong-
motion seismology and the recognition of ground-motion
complexity. Using two well recorded recent earthquakes, I
introduce observational aspects of near-field ground shak-
ing and the basic mathematical description for computing
ground motion. The article proceeds by describing each of
the three “ground-motion ingredients” in some detail, but
does not attempt to provide an in-depth review of all the
scientific advancements in these fields. Rather, I explain
the key elements for characterizing and modeling ground-
motion complexity, supplementedwith a concise overview
of the underlying physical processes. Current research in-
creasingly incorporates advanced physical concepts into
standard practice, therefore leading to improved strong-
motion simulation approaches to accurately predict inten-
sity and variability of near-source shaking.

Introduction

As early as 1910 Reid [148] identified strong spatial vari-
ations of seismic shaking due to the 1906 San Francisco
earthquake, which he correctly attributed to the specific
geologic conditions at the locations from which shaking
intensities were reported. The space-time complexity of
the seismic wavefield in the vicinity of the causative fault
became more widely recognized since the beginnings of
strong-motion seismology in the 1930s and the establish-
ment of strong-motion networks in the 1960s [9]. Ob-
served peak accelerations frequently reach 1 g, occasion-
ally even exceed 2 g, where nearby stations often show
not only much lower peak amplitudes but also very dif-
ferent waveform character. Since the advent of modern
digital instruments in the 1990s and corresponding online
near-real-time databases, seismologists and earthquake
engineers have access to high-quality recordings which
irrefutably show the complexity of earthquake shaking.
Given a particular location, near-source ground motions
vary strongly for different earthquakes, and so do the mo-
tions for a single event when recorded at different sites.

While hundreds of earthquakes happen annually in the
magnitude range 6:0 � M � 6:9, only about 15 events oc-
cur in the range 7:0 � M � 7:9, most of which happen-
ing in remote areas and do not cause large damage. Those
events are typically recorded at rather large distances (so
called teleseismic events) and have weak (low amplitude)
motions. Their ground-motion variability is due to dif-
ferences in the large-scale wave paths through the Earth
and due to the properties of the point-source representa-

tion for far-distant earthquakes. Weak-motion recordings
are also obtained from small nearby earthquakes. In this
article, however, we will be concerned with strong-mo-
tion observation in the near-field of (large) earthquakes.
Such observations are much harder to obtain than tele-
seismic recordings because we cannot anticipate in detail
where future earthquakes may happen (in order to opti-
mize the instrumentation) and also because large crustal
earthquakes are rather infrequent.

Investigating the characteristics of near-source
ground-motions is of great importance for earthquake
engineers who are concerned with seismically safe de-
sign, and for seismologists who study the physical pro-
cesses leading to ground-motion complexity. To illustrate
the large ground-motion variability in a single earth-
quake, I plot horizontal peak ground accelerations and
peak ground velocities recorded at 47 sites in the Sept 28,
2004,M 6.0 Parkfield earthquake (Fig. 1), contrasted with
ground-motion intensities (PGA, PGV , PGD) for the Sept
20, 1999, M 7.6 Taiwan (Chi-Chi) earthquake, shown at
441 locations (Figs. 2–4) (waveforms from the COSMOS
database, http://db.cosmos-eq.org). First-order observa-
tions from these data are: (i) the maximum PGA is larger
for the smaller earthquake while the highest PGV val-
ues are roughly identical; (ii) ground-motions tend to be
larger close to the fault trace and decay in amplitude with
increasing distance from the fault. However, closer inspec-
tion reveals strong variability in the near-field motions for
each earthquake. The Parkfield data exhibit ground-mo-
tion differences between the two horizontal components
of motion (fault-parallel and fault-normal, both for PGA
and PGV) and large variability between neighboring sites.
This site dependence is even more pronounced for the
Chi-Chi event. PGA-values are highest for sites very close
to the fault, on the hanging-wall (east of the fault trace)
and at a few locations in the northward and southward ex-
tension of the fault-trace. This pattern changes, however,
for the recorded PGV and PGD-values which are largest
on the foot-wall (west side of the fault trace) and towards
the northern end of the rupture.

In addition to the scalar measures of shaking am-
plitude (intensity), Figs. 1–4 display recorded waveforms
for selected sites which further illustrate the complexity
and variability of near-field motions. Acceleration time se-
ries accentuate the high-frequency content of ground-mo-
tion and display an almost “shaped random noise” char-
acter, with amplitudes that increase rapidly in the be-
ginning and then taper off gradually in the seismic coda
(the incoherent wavefield after the arrival of prominent
seismic phases). In contrast, velocity waveforms usually
show very distinct arrivals and energetic pulses (directivity

http://db.cosmos-eq.org
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 1
Ground-motion intensities (colored circles) for the Sept 28, 2004 Parkfield (M 6.0) earthquake, recorded at near-field stations, and
selected waveforms (data from COSMOS database). The black star denotes the epicenter, (Lon D �120:374;LatD 35:815) red-lines
show themapped fault trace of the San Andreas Fault in the Parkfield area, the gray background displays a shaded relief map. a Peak
ground accelerations (PGA) of fault-normal component;b PGAof fault-parallel component; cPeak ground velocity (PGV) of fault-nor-
mal component; d PGV of fault-parallel component. Seismic traces are shown for 30s, the small number indicates the corresponding
PGA or PGV value of that record
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 2
Ground-motion intensities (colored circles) for the Sept 20, 1999 Taiwan (M 7.6) earthquake, recorded at 441 locations (data from
COSMOS database). The red star denotes the epicenter (Lon D 120:7995;LatD 23:860), red-lines show the mapped fault trace of
the Chelungpu fault, heavy black lines trace the coast line, the gray background displays a shaded relief map. a Large-scale view of
PGA, white dotes are sites with PGA < 0:1 g. b Zoomed view for PGV (white dotes mark PGV < 10 cm/s). c Zoomed view for PGD
(white dotes mark PGD< 10 cm)

pulses) whose frequency-dependent amplitude and wave-
form character change with source-site geometry and rup-
ture propagation direction. Their waveform character also
varies strongly between closely spaced stations for a given
event, illustrating the importance of localized source prop-
erties and site effects. Note also the large differences in
ground-motion amplitudes and waveform shapes between
the two events for stations at similar distance to the fault,
indicating the dependence on earthquake source proper-
ties of near-field ground motions. Section “Future Direc-
tions” compares the near-field recordings for these two
earthquakes against empirical predictions for several pub-
lished attenuation relations to further illustrate ground-
motion complexity.

The variability in shaking intensity and the complex-
ity in near-fault seismograms results from three physical
processes: (I) the complex dynamics of earthquake rup-
ture and the associated radiation of seismic waves; (II) the
propagation of these seismic waves through the hetero-
geneous Earth; (III) the interaction of the seismic wave-
field with local geology/morphology, referred to as the site
conditions at each observation points. Mathematically, the
time-dependent ground displacement uk (t) at a particular
location k is described as

uk(t) D s(t)  gk(t)  lk(t) (1)

where  denotes the convolution operator, s(t) represents
the source effects due to the earthquake rupture pro-
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Ground Motion: Complexity and Scaling in the Near Field of
Earthquake Ruptures, Figure 2
(continued)

cess, gk(t) describes the path effects due to wave propa-
gation from the source to site k, and comprises lk(t) the
local site effects due to the small-scale geological con-
ditions at the kth observation point. Equation (1) quan-
tifies ground-motion generation, omitting for simplicity
an additional instrument response ik(t) that modulates
the seismic recording. The earthquake-source contribu-
tion s(t) can be further subdivided into effects originat-
ing from the local time-dependent particle motion on the
fault, pi j(t), and from rupture finiteness, f (t). The term
gk(t) represents the Earth transfer function and contains
contributions from layered Earth structure and seismic-
wave attenuation, but may also comprise effects due to
random heterogeneities in the Earth and/or basin and to-
pographic structures. The factor lk(t) describes the effects

of soil structure and may also account for non-linear soil
behavior.

In the following, I will use Eq. (1) as a “roadmap“
for this article to illustrate the various factors of ground-
motion complexity. In Sect. “Characterizing Earthquake
Source Complexity”, I present methods and relevant pa-
rameters to quantify the earthquake rupture process.
Wave propagation in complex media, both determinis-
tic and stochastic, are described in Sect. “Wave Propaga-
tion in Complex Media: Path and Site Effects”. A large
body of literature exists for each of these topics, both from
an observational/experimental view and from theoretical
work; it is beyond the scope of this article to provide an
in-depth review of all relevant material. Instead, I will fo-
cus on some of the key aspects of earthquake ruptures and
waves in inhomogeneous media that are most relevant for
understanding the complexity of near-field ground mo-
tions. Note also that a number of specialized articles in
this encyclopedia provide more detailed information on
earthquake source physics (see � Earthquake Nucleation
Process, � Earthquake Scaling Laws) and wave-propaga-
tion phenomena in complex media (see � Seismic Wave
Propagation in Media with Complex Geometries, Simula-
tion of, � Seismic Waves in Heterogeneous Earth, Scat-
tering of). Section “Wave Propagation in Complex Media:
Path and Site Effects” also includes various aspects of local
site conditions that lead to pronounced site effects, in par-
ticular non-linear site phenomena. Section “Ground-Mo-
tion Scaling Relations” focuses on empirical ground-mo-
tion prediction equations (GMPE’s). Since many studies
have been published on non-linear site effects and ground-
motion prediction equations, both from the seismology
and the earthquake-engineering communities, an exten-
sive review of the developments in these fields is not at-
tempted. Instead, I concentrate on non-linear soil behav-
ior directly beneath a site of interest that substantially af-
fects the ground-shaking levels, and summarize some of
the latest findings related to ground-motion attenuation
relations. The article concludes with an outlook onto fu-
ture tasks and challenges for characterizing, quantifying
and predicting ground-motion complexity.

Characterizing Earthquake Source Complexity

Geologic faults are generally geometrically complex multi-
scale structures, characterized by one or more main fault
strands, with associated subsidiary branches (fault seg-
ments) that form three-dimensional (3D) fault networks.
However, in many cases and for almost all practical pur-
poses, faults are approximated as planar surfaces. Using
this plane-fault approximation, Fig. 5 illustrates the three
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 3
Near-field ground accelerations for the fault-normal (left) and fault-parallel (right)motion during the 1999Chi-Chi earthquake;wave-
forms are plotted for selected stations in the vicinity of the epicenter (red star). Sites located on the footwall, i. e. west of the fault-
trace, generally show lower ground-motions than sites located on the hanging-wall (east of the fault trace) despite similar epicentral
distance

main factors affecting near-source ground-motion com-
plexity – source, path and site effects. This Section fo-
cuses on the earthquake rupture process, i. e. the source,
and its properties important for ground-motion genera-
tion. A fault (shown as a planar surface with color-coded
slip distribution) is embedded in a rock volume, and has
a specific orientation in space described by the strike-an-
gle ˆ (representing the azimuth of the fault’s projection
onto the surface, measured clockwise from North) and the
dip-angle ı (measured downward from the surface to the
fault in the vertical plane perpendicular to the strike). The
strike direction is defined such that, using the right-hand
rule, the dip-angle is smaller than 90ı (for a vertically dip-
ping fault, ı D 90ı, the strike direction is arbitrarily either
direction).

Given the overall source geometry, the slip-vector on
the fault plane defines the relative motion between the two
blocks. The angle of slip, or rake angle , measured in the
fault plane from the strike direction, shows the movement
of the hanging wall relative to the foot wall (see inset in
Fig. 5). The following definitions apply:  D 0ı – left-lat-
eral strike-slip, i. e. the hanging wall (or near-side of a ver-

tical fault) moves horizontally to the right, so the opposite
side moves to the left;  D 180ı – right-lateral strike-slip,
i. e. the hanging wall (or near-side of a vertical fault) moves
horizontally to the left, so the opposite side moves to the
right. For  D 90ı, the hanging wall moves upward (thrust
faulting), for  D 270ı the hanging wall moves downward
(normal faulting). Figure 5 also displays the rupture model
for a right-lateral strike-slip earthquake with  D 180ı

(indicated by the black arrows) on a fault-plane that dips
80ı. The strike in this hypothetical case is undefined. The
amount of displacement (slip) on each point of the fault
is color-coded, white contours (at
t D 1 s spacing) show
the expanding rupture front. Examples of past earthquakes
show that the rake angle may also vary over the fault plane
(Fig. 6c, d). Geometrical complexity, manifested in several
fault segments, is often present (Fig. 9); in these cases the
faulting-style is characterized by the predominant fault di-
rection and slip angle.

The strength of seismic radiation is typically quanti-
fied by an earthquake magnitude, whereby a variety of
magnitude scales exist. The seismic moment, defined as
M0 D � � A � D, (�: shear modulus in the source region;
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 4
Near-field ground accelerations (top) for the fault-normal a and fault-parallel bmotions during the 1999 Chi-Chi earthquake;wave-
forms are plotted for selected stations along the fault trace (red line). c andd show the correspondingground-velocities. Sites located
at either end of the fault trace recordedwaveformswith shorter duration of the dominantwave-energy. Velocity records in theNorth
show strong rupture-directivity effects as high-amplitude short-duration velocity pulses
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 5
Sketch of the physical components of near-source groundmotions (top-right inset: illustrates the source-geometry definition). A sim-
ulated earthquake rupture occurs on an assumed planar fault, with color-coded slip amplitudes (0–2.5m) and white contours of the
propagating rupture front (emanating from the hypocenter shownby the red star). The rupture is embedded in a gray-scalemodel of
the Earth’ crust. Darker gray-tones denote higher vP; vS;� than lighter gray, reflecting the overall trend of higher velocities at greater
depth, locally disturbed by random heterogeneities. A basin-structure with less compliant layered sedimentary rocks exhibits com-
plex sub-surface topography. A near-field seismogram (for an arbitrary horizontal component) is shown at a representative site A.
Ground-motions are composed as the summation of the slip- functions sij at grid-points i; j on the fault, convolved with the corre-
sponding Green’s functions gij for this observer and grid points (the site term lk in Eq. (1) is neglected for simplicity)

AD L �W : fault area, given by fault-length L and fault-
width W; D: average displacement on the fault) is con-
sidered the best scalar quantity characterizing earthquake
size. Ben-Zion [20,23] proposes to use the more basic con-
cept of seismic potency, P0 D A�D, to avoid a source quan-
tification that includes ambiguously defined or poorly
known material properties; however, seismic potency is
rarely used in the earthquake engineering. The moment
magnitude follows fromMw D 2/3�logM0�6:07 (withM0
given inNm). The static stress drop
� is related to the ra-

tio of average slip to a characteristic fault length, therefore
seismicmoment is proportional to static stress drop:M0 /


� � A3/2. Observational evidences [106,186,187] confirm
this scaling for moderate to large earthquakes, suggesting –
constant (i. e. scale-invariant) static stress drop and self-
similar earthquake source scaling: large earthquakes are
only scaled-up versions of small earthquakes. Other scal-
ing relations between observable fault parameters (fault
area, length, and width; average slip) and magnitude (seis-
mic moment) [79,122,169,187] partially confirm the self-
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� Ground Motion: Complexity and Scaling in the Near Field of
Earthquake Ruptures, Figure 6
Selection of finite-source rupture models, obtained from inver-
sion of seismic recordings and geodetic data, for six earthquakes
in themagnitude range 4:5 � Mw � 7:5, illustrating the hetero-
geneous distribution of earthquake slip (color-coded using dif-
ferent color scale for each model). The black star denotes the
hypocenter, generally located in the vicinity of a high-slip patch
(also called “asperity”). a 1999 Izmit earthquake (M7:5) [51];
b 1992 Landers earthquake (M7:3) [184]; c 1995 Kobe event
(M7:0) [165]; d 1994 Northridge earthquake (M6:7) [185]; e 1984
Morgan Hill event (M6:1) [29]; f Hida Mountains event #5
(M4:5) [96]. The rupture length ofb is about half that of a; models
b, c and d are drawn to scale with respect to each other. Model e
has fault length L D 30km, a factor of two shorter than c, while f
has source dimensions 4� 4 km2

similarity of earthquake rupture, but also provide evidence
for the break-down of self-similarity for very small earth-
quakes [23] and very long strike-slip earthquakes [154].
The exact physics leading to these source-scaling proper-
ties is a current topic of active research [90,91].

The overall faulting-style, defined by the dip and rake
angle, affects the radiation pattern of P- and S-waves
(see Chap. 4 in [6] for more details), and thus the resulting
ground-motion characteristics. Together with the earth-
quake magnitude, the style-of-faulting is used as a predic-
tor variable in empirical ground-motion prediction equa-
tions (see Sect. “Future Directions”). However, ground-
motion complexity arises largely from the details of the
rupture process (Fig. 5). The earthquake nucleates at the
hypocenter (indicated by the red star), and propagates
over the fault plane (white contour lines) with a rupture
velocity that may exhibit local variations due to initial
stress conditions and frictional properties on the fault.
Stress state and friction also determine the slip-time his-
tory sij for all points ij on the fault (which start sliding
once reached by the propagating rupture front). To first
order, the shape of the local slip-velocity function depends
on the overall fault dimensions (i. e. fault aspect ratio), the
relative position of each point with respect to the rup-
ture nucleation point and its distance to the closest fault
edge [52,58,59,78] (variations in sij at four different lo-
cations on the fault plane of lower panel). The duration
of slip (rise time) is related to the length of these local
slip-functions. Once sliding has stopped at all points on
the fault, the rupture has attained its final slip distribution
(color-coded in Fig. 5) within a characteristic time (called
rupture duration) which depends on fault dimensions and
rupture velocity (andmarginally on rise time). As depicted
in Fig. 5, the slip distribution, the rupture velocity and the
rise times are highly heterogeneous over the fault plane, il-
lustrating earthquake source complexity in terms of kine-
matic source parameters.

The governing equation that relates ground displace-
ment to the motion on the fault is given by a representa-
tion theorem (Chap. 3 in [6]), which we use in the follow-
ing notation:

u(x; t) D
Z

d�
Z

S

u(�; �)ci jk l� jGnk;l (�; � ; x; t) dS : (2)

Equation (2) states that the time-dependent ground
displacement at observer location x and time t depends
on the space-time integral over the space-time-dependent
slip function
u(�; �) on the fault plane (� defines the po-
sition on the fault, � is time), the elasticity tensor cijkl , the
fault-normal vector �j, and the Green’s tensor Gnk;l (sub-
scripted comma indicate the derivative with respect to the
subsequent variable). Equation (2) is related to Eq. (1), but
contains the functional dependency on the source explic-
itly; in this context the Green’s function typically neglects
the site effects lk(t). The term

R
S 
u(�; �) dS contains the

time-dependent local particle motion on the fault, pi j(t),
and the effects of fault finiteness, f (t).

Equation (2) can be applied to retrieve the spatio-tem-
poral slip distribution on the fault plane from seismic
recordings (and other data) by either forward-modeling
or a formal inversion procedure. Earthquake-source inver-
sions have been carried out since the early 1980ies, man-
ifesting the complexity of the rupture process as depicted
in Figs. 6 and 9 (see also database of finite-source rupture
models [121]). These earthquake source images represent
kinematic rupture models that quantify
u(�; �) based on
observations, but do not explicitly derive 
u(�; �) from
physical principles as attempted in dynamic rupture mod-
els e. g. [14,15,28,78].

For examining earthquake source complexity in more
detail, it is mandantory we need to distinguish kinematic
from dynamic rupture models, and we need to quantify
slip heterogeneity (and its associated stress-change distri-
bution) on the fault plane. It is also important to note that
the position of the rupture nucleation point is not arbi-
trary on the fault plane for a given slip (stress) distribu-
tion but adheres to fundamental concepts of energy bal-
ance during the rupture process. This Section character-
izes source complexity in space and time before introduc-
ing to isochrone theory, a powerful tool to visualize how
the details of the rupture process determines near-fault
ground-motions.

Kinematic RuptureModels

Kinematic rupture models characterize the space-time
evolution of earthquake rupture in terms of a time-de-
pendent displacement field (distribution of slip vectors)
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on a predefined fault plane without considering the forces
and stresses that cause these motions on the fault. The lo-
cal slip-rate (or slip-velocity) function is specified along
with the rupture propagation properties. Ground motions
can then be computed using Eq. (2) with any kinematic
rupture model 
u(�; �). Current ground-motion simu-
lation approaches are largely based on kinematic source
models since they can be efficiently generated; recent ad-
vancements try to capture at least the basic principles
of source dynamics by proposing pseudo-dynamic source
models [77,78,120]. Earthquake source inversions param-
eterized in terms of Eq. (2) retrieve only a kinematic rup-
ture model which, in principle, does not need to obey any
physical laws. The database of finite-source rupture mod-
els [121] provides a compilation of kinematic source mod-
els for past earthquakes, obtained by applying Eq. (2) to
a variety of data and using different methods to solve the
inverse problem.

Dynamic Rupture Models

Dynamic rupture models build a physical understanding
of the earthquake rupture process based on the material
properties around the source volume, and the initial and
boundary conditions for the forces/stresses acting on the
fault plane [80]. The distribution of slip vectors 
u(�; �)
on the fault plane is obtained by solving the elasto-dy-
namic equations of motion under the assumption of a con-
stitutive law (i. e. a friction model), considering essentially
the energy balance at the crack tip during rupture growth
(for details see Chap. 11 in [6]). Dynamic rupture mod-
els have been developed for (i) canonical model to study
general feature of dynamic rupture e. g. [10,58,59] (ii) for
existing kinematic source models to infer their specific dy-
namic rupture process e. g. [14,15,126,181] (iii) for hetero-
geneous initial conditions in stress and/or friction andma-
terial distribution to investigate rupture details for classes
of events e. g. [11,13,63,68,78,83,133,151]. Due to the high
computational demands, dynamic rupture models are not
(yet) developed routinely for ground-motion simulations,
but rather to investigate source physics for general cases,
earthquakes of special interest, and to study rupture be-
havior for certain classes of initial conditions.

Quantifying Slip Heterogeneity

Recent approaches to characterize and quantify slip het-
erogeneity demonstrate that slip distributions exhibit sta-
tistical properties and empirical laws grounded in phys-
ical principles. First-order observations for these slip
distributions (obtained in finite-source inversions based
on Eq. (2)), can be made in Fig. 6, a compilation of

slip models for six earthquakes in the magnitude range
4:5 � Mw � 7:5. The source dimensions increase from
4 � 4 km2 to 25 � 160 km2 while the corresponding max-
imum fault displacements grow by two orders of magni-
tude (from �5 cm to over 500 cm). Mai and Beroza [122]
have shown that the overall source-scaling relations of
such rupture models is roughly consistent with global
earthquake scaling laws (i. e. Mo / A3/2), but that there is
evidence that the commonly assumed self-similar constant
stress-drop scaling may not hold, because slip on the fault
does not saturate but keeps increasing for growing fault
dimensions (albeit at a progressively lower rate). The topic
of general earthquake scaling laws is still hotly debated e. g.
(see � Earthquake Scaling Laws) [90,91], and directly af-
fects ground-motion prediction [188,189] (see Sect. “Fu-
ture Directions”).

More fundamentally, earthquake slip is heterogeneous
on the rupture plane (Fig. 6), i. e. regions of little displace-
ment are separated from areas of high slip (often called
“asperities”). The distribution and properties of these
high-slip patches strongly influences seismic radiation
and hence near-fault ground motions. Characterizing and
quantifying slip heterogeneity is thus important for accu-
rately predicting and simulating ground-motions for fu-
ture earthquakes, but also to better understand the physics
of earthquake rupture. Two basic avenues have been pur-
sued in the recent past to quantify slip complexity: (i) a de-
terministic approach that counts the number of high-slip
patches and extracts their properties in terms of size, dis-
placement and other quantities [127,169]; (ii) a stochastic
approach that characterizes slip heterogeneity in terms of
a random-fieldmodel [113,114,123]. Results of bothmeth-
ods can be used for simulating stochastic slip distributions
for ground-motion calculation to investigate how source
complexity affects near-field ground shaking.

Before interpreting and utilizing inferred source-rup-
ture models for future science or engineering applications,
the reliability and resolution of these source-inversion im-
ages needs to be addressed. Examining the intra-event
variability (source models for the same earthquake ob-
tained by different research groups) often reveals large dif-
ferences in slip distributions and temporal rupture param-
eters for the set of source models (online-database [121]
for examples and [25] for a critical review). The degree of
(dis-)similarity between these slip histories is controlled
by differences in the Green’s functions (due to computa-
tional methods and the choice of the Earth model), vari-
ations in the fault parameterization, different inversion
schemes and their control parameters (tuning parameters
in non-linear inversion; damping/smoothing constraints
in linearized multi-time-window inversion). Source-rup-
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 7
Asperity area, measured for �90 rupture models (http://www.seismo.ethz.ch/srcmod), plotted against seismic moment. A scaling
of log10(A) / 0:5 � log10(Mo) is shown for reference. Asperity size is measured based on slip values being a certain fraction of the
maximum slip on the fault [127]: 1/3 � Dmax � D < 2/3 � Dmax for “large-slip asperities”,D � 2/3 � Dmax for “very-large-slip” asperities

ture models are also affected by the type of data (seismic,
geodetic, or both; additional geologic data), their selection
and processing, and their weighting in the inversion.

Consequently, variations in inverted source models are
expected, but the actual uncertainties are rarely quanti-
fied. Only recently, more efforts are devoted to perform
rigorous uncertainty estimation by testing different inver-
sion algorithms, model parameterizations, and data selec-
tion criteria for the same earthquake [56,86,116,117]. The
work by Monelli and Mai [128] even estimates posteriori
probability density functions for the model parameters of
interest, using a non-linear inversion strategy coupled to
a Bayesian inference technique. Despite the variability in
imaged slip distributions for a given earthquake, several
source quantities are stably estimated: rupture dimension,
seismic moment and average displacement (both within
a factor of 2 generally), and also the slip near the hypocen-
ter. Estimates for the average rupture velocity may vary
strongly (up to� 30%) betweenmodels for the same event
because rupture speed estimates trade off with the slip-rate
function. The locations of high-slip patches on the fault
(“asperities”) are relatively well located if sufficient data

are used, but exceptions exist (i. e. the 1999 Izmit earth-
quake). The intra-event variability of maximum fault slip
is generally quite high, and depends on the particular in-
version strategy. However, estimates of correlation lengths
or dominant wave-lengths of heterogeneous slip maps are
robust for the differentmodels of a given earthquake [123],
indicating that the statistical properties of earthquake rup-
ture are well imaged. Also the hypocenter location with
respect to the regions of high-slip is estimated reliably in
finite-source inversions [127].

Measuring slip heterogeneity deterministically by
defining large-slip ( 13 � Dmax � D < 2

3 � Dmax) and very-
large-slip (D � 2

3 � Dmax) asperities (D D D(x; z) is the lo-
cal slip on the rupture plane,Dmax the correspondingmax-
imum slip), [127] examine the scaling of total asperity
area (Ata) with respect to seismic moment for 90 finite-
source rupture models (Fig. 7). Without a formal regres-
sion, the measurements suggest the scaling log10(Ata) /
0:5�log10(Mo), meaning that the area occupied by high-slip
patches grows slower with increasing magnitude than the
total fault size (which scales as log10(A) /

2
3 � log10(Mo)).

This scaling requires relatively larger maximum displace-

http://www.seismo.ethz.ch/srcmod
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 8
Correlation lengths, a; ax; az , versus moment magnitudeMw for 44 slip models (modified after [123]). Filled squares denote strike-
slip earthquakes, open diamonds represent dip-slip events, vertical lines and black dots mark the 1� -error-estimates. The slope of
b1 � 0:5 of the regression curves (solid lines) indicates that the correlation lengths scale self-similarly with moment magnitude

ments on the high-slip patches for large and very large
earthquakes, which in turn affects seismic radiation and
the scaling properties of near-fault ground motions. Large
fault slip, concentrated on relatively small portions of the
rupture plane, lead to large stress heterogeneity (with high
static stress drop locally), thus implying large ground-mo-
tion variability for moderate to large earthquakes.

Alternatively, slip distributions (Fig. 6) can be treated
as spatial randomfields [113,123] to estimate the fractal di-
mension or the correlation lengths for an auto-correlation
function (ACF). Suchmeasurements are typically based on
the two-dimensional power spectrum P(k) of the slip map.
Assuming a simple fractal model for a random field, its
power spectral density is given as

P(k) / k���1 (3)

with wavenumber vector k and scaling exponent �. [113]
estimate one-dimensional scaling exponents for a small
number of rupture models, using only horizontal slices of
slip distributions, and find 0:8 � � � 1:5, while [123] find
for the two-dimensional exponents (� C 1) values of about
1.7, implying a fractal dimension D D 2:3. The differences
in these estimated scaling exponents can be reconciled
when accounting for slightly different initial processing of
the slip distributions and fitting strategies [114]. Testing
a variety of auto-correlation functions to fit the spectral
properties of a large number of slip distributions, [123] ob-
serve that a von Karman auto-correlation function, with
its power-spectral density given by

P(k) D
4�H
KH(0)

�
ax � az

(1C k2)HC1 ; (4)

with magnitude-dependent correlation lengths ax, az, and
a scale-invariant Hurst number H � 0:7 best matches the
slip heterogeneity spectra (KH : modified Bessel function
orderH; kwavenumber). Figure 8 displays their estimated
correlation lengths for 44 slip models [123], along with
a least-squares regression that exhibits scaling relations of
the form

log10(ax ) /
1
2
Mw

log10(az) /
1
3
Mw :

(5)

Interestingly, the scaling law in Eq. (5) for correlation
lengths of heterogeneous slip maps is similar to the rela-
tionship inferred for the deterministic measure of asperity
size. This corroborates the previous argument that correla-
tion lengths (asperity size) increases with increasing mag-
nitude, though at a lower rate than the overall fault dimen-
sions. Thus, to accommodate the corresponding seismic
moment, the displacements (and associated stress drops)
on these high-slip patches need to grow faster than a self-
similar scaling would predict. This conclusion agrees with
the conjecture of Heaton [88] that large earthquakes re-
quire a “very strong kick” (due to an area of large stress
drop) in order to be able to grow into a very large rupture.

Treating earthquake slip as being distributed on a pla-
nar fault surface strongly simplifies geologic observations
of geometrical fault complexity, where the degree of com-
plexity depends on fault-zone maturity [20,90]. Earth-
quakes that break several fault segments can still be im-
aged with Eq. (2) using an appropriate parameterization,
but planar-fault ruptures exhibit very different rupture dy-
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 9
Three-dimensional views of heterogeneous slip on geometrically complex faults, imaged using seismic and/or geodetic data. The
black star shows the hypocenter, thick black lines are the top of the fault segments, thick red lines the bottom. a The 1999 Chi-Chi
earthquake (Mw7:6) [101];b the 1999HectorMine earthquake (Mw7:2) [102]; c the 2000Tottori earthquake (Mw6:6) [100];d the 1971
San Fernando event (Mw6:6) [87]; e the 2003Miyagi-hokubo event (Mw6:1) [89]; f the 1997 Kagoshima earthquake (Mw6:0) [94]

namics than earthquakes that have to overcome geomet-
rical obstacles [82,84,131,134]. Figure 9 shows a collec-
tion of such geometrically complex fault models, involv-
ing two or more segments that form either a system of
sub-parallel fault planes (Fig. 9d), or a branching fault
(Fig. 9b), or fault planes oriented at arbitrary angles to

each other (Fig. 9a, c, e, f). The seismic radiation from
earthquakes on geometrically complex faults is more com-
plicated than from a single-plane rupture, a topic that is
investigated in the earthquake source dynamics commu-
nity e. g. [14,15,43,81,82,84,131,134]. Unfortunately, little
attention has been devoted in the past to rigorously exam-
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ine and quantify the degree of ground-motion complexity
generated by such fault systems. Thus, future research, us-
ing advanced numerical techniques on high-performance
computing architecture, needs to properly represent fault
systems at sufficient spatial resolution to capture the intri-
cacies of rupture dynamics and associated seismic radia-
tion on geometrically complex faults.

Rupture Nucleation and Directivity

Besides the slip heterogeneity and the temporal rupture
evolution (discussed later), the location of the hypocen-
ter (point of rupture nucleation) is a critical factor af-
fecting near-source ground motions. Some metric of
hypocentral distance enters empirical attenuation rela-
tions (Sect. “Ground-Motion Scaling Relations”), while
the on-fault hypocenter location determines the directivity
effect [170,171]. This global directivity effect due to fault-
hypocenter-site geometry results in large velocity-pulses,
in particular at sites close to the fault, because of the con-
structive interference of S-wave energy which is continu-
ously radiated from the propagating crack front and ar-
rives within a short time window in the forward-direction
of rupture propagation (see velocity records in Fig. 1 at sta-
tion SlackC, FZ1, SC1E for the Parkfield event; Fig. 4 at sta-
tion TCU052, TCU068 for the Chi-Chi event). In contrast,
for sites in the backward direction of rupture propagation
the arriving seismic energy is spread over a longer time
interval, generating lower-frequency motions with smaller
amplitudes. The directivity effect is therefore not a purely
source-related phenomenon, but also depends on the ob-
server location.

Additionally, there is an “on-fault” directivity effect
which operates on smaller scales and is most prominent
for large earthquakes and very near-fault sites. The on-
fault directivity effect can be efficiently quantified us-
ing isochrone theory (see Sect. “Isochrone Theory”). For
an explanatory description, consider the slip distribution
and hypocenter location in Fig. 6a, for which the large-
scale “global” directivity effect was observed towards the
right (i. e. East in this case of the 1999 Izmit earthquake).
However, any site located at about 30 � X � 50 km in
along-strike distance (above the left-most high-slip re-
gion) experiences strong “local” directivity effects as the
rupture propagates from the hypocenter towards the site
and across the high-slip patch. In this case, the integrated
slip along this rupture trajectory generates a high-ampli-
tude short-duration pulse. Considering a more westerly
hypocenter (e. g. at X D 30 km instead of X D 65 km) the
large-scale directivity effect remains essentially unchanged
while the integrated slip along the rupture trajectory for

stations at 30 � X � 50 km is much smaller, thus dimin-
ishing on-fault directivity. The spatial relation between the
hypocenter and large-slip regions plays an important role
for ground-motion complexity, but is also fundamentally
related to the dynamics of the rupture process.

Examining the hypocenter positions in Fig. 6 and
Fig. 9, two observations are evident: (a) ruptures gener-
ally do not nucleate at the fault boundaries, but in the
interior of the fault plane, but rarely exactly in the cen-
ter; (b) the nucleation point is generally not located in re-
gions of low slip (light colors, D � 0:1 � Dmax) but in ar-
eas where 0:2 � Dmax � D � 0:4 � Dmax and the distance to
a nearby large-slip zone (asperity) is small compared to the
overall source dimensions [127]. This study investigated
these first-order observations statistically using a database
of �80 finite-source rupture models, and concluded that
hypocenters are not randomly located on a fault but are lo-
cated either within or close to regions of large slip (Fig. 10).
More specifically, ruptures nucleate within or very close to
large-slip asperities ( 13 � Dmax � D < 2

3 � Dmax), but rarely
start on very-large-slip asperities (D � 2

3 � Dmax; often lo-
cated far away from the hypocenter).

These observational constraints of slip heterogeneity
and rupture nucleation are rooted in the energy balance
of earthquake source physics, and have been confirmed
by dynamic rupture simulations [78,133,151]. The essence
of the physical mechanism is that a sustained large earth-
quake can only be generated if a sufficiently large amount
of energy is furnished to the propagating crack tip to facil-
itate rupture growth. In a simplistic view, an earthquake
can only grow in size if the energy absorbed to create
new crack surface (fracture energy) balances the avail-
able elasto-static energy and the energy radiated by seis-
mic waves (Chap. 11 in [6]). If the hypocenter is located
in regions of low slip (low stress drop) and far away from
any point of significant stress drop, the required fracture
energy will become too large to allow further crack propa-
gation, and the rupture will stop prematurely. The spatial
correlation between hypocenter and asperity is thus con-
sistent with this simplified energy budget of dynamic rup-
ture. Moreover this hypocenter-asperity relationmanifests
the “on-fault” directivity and strongly effects seismic radi-
ation and thus ground-motion complexity.

Temporal Rupture Evolution

The characteristics of the slip distribution and the
hypocenter position alone are insufficient to parameterize

u(�; �) in Eq. (2) because the temporal rupture evolution
is not yet specified. Rupture velocity and the local slip-ve-
locity function with its associated rise time (slip duration)
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 10
Hypocenter distance to “large-slip” and “very-large-slip” regions in finite-source rupture models. a Raw measurements of shortest
distances between hypocenter and point of maximum displacement (top), hypocenter and closest large-slip asperity (middle), and
hypocenter and closest very-large-slip asperity (bottom), separated into strike-slip and dip-slip earthquakes.bDistributions of short-
est distances between the hypocenter and the point of peak-slip, the closest large-slip, and the closest very-large-slip asperity, gen-
erated using Monte Carlo simulations that include hypocenter uncertainties. The distributions indicate that 16% of all hypocenters
occur on a very-large-slip asperity, 35%within a large-slip asperity, and 48% right outside an asperity (compiled from [127])

need to be given, either pre-defined by means of a kine-
matic rupture modeling approach or solved for from phys-
ical principles in a dynamic rupture model.

Rupture Velocity After earthquake nucleation the rup-
ture propagates over the fault plane with a rupture veloc-
ity vr which generally is close to the local shear-wave ve-
locity (typically in the range 0:6 � vs � vr � 0:9 � vS). Seis-
mic radiation and thus near-fieldmotions strongly depend
on rupture velocity: slow earthquakes radiate little seis-
mic energy while fast ruptures generate higher ground-
motion amplitudes. Earthquake source inversions mostly
assume a constant rupture velocity over the fault plane, al-
though dynamic rupturemodeling and evidence from par-

ticularly well recorded earthquakes indicates that rupture
speedmay vary significantly on the fault plane [16,44]. Dy-
namic modeling shows that the initial rupture speed (dur-
ing and right after the nucleation phase) may be small
(e. g. vinitr � 0:5 � vS ), but then rapidly increases during
the rupture’s dynamic breakout and propagation phase
(Chap. 11 in [6]). Depending on the stress conditions and
the frictional parameters on the fault, and the geomet-
rical properties of the rupturing fault, the rupture speed
may actually exhibit very strong small-scale variations (see
Fig. 5 for example). Variations in rupture velocity are
a source of high-frequency seismic radiation [119,173],
and thus strongly contribute to near-field ground motion
complexity.
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While the rupture speed for most earthquakes is lower
than the local S-wave velocity (i. e. sub-shear rupture
propagation), there is evidence from laboratory measure-
ments [155] and from seismic data and source modeling
e. g. [16,44,134] that the crack front may travell at super-
shear speeds at least over parts of the fault plane. Such
super-shear ruptures generate rather distinct ground-mo-
tion characteristics at the few sites where they were
recorded, but it is not yet clear what the “generic” ground-
motion signature of super-sonic rupture speed would
be. [1] address some aspects of this question by kinematic
rupture modeling with various rupture speeds and com-
puting the resulting near-field motions, indicating very
peculiar “mode-switching” of the seismic-energy distri-
bution on the two horizontal components as the rupture
speed becomes very large. Furthermore dynamic rupture
simulations [10,58,59,63,68,134] provide physical models
for the occurrence of super-shear propagation, which de-
pends on local stress and frictional conditions on the fault
plane. The potential occurrence of super-shear rupture
burst [62,63] and rupture speed variations in general are
critical for understanding ground-motion complexity. To
efficiently include such effects into ground-motion sim-
ulations, [78] developed an initial physics-based repre-
sentation of rupture-velocity heterogeneity for kinematic
source modeling.

Slip-Velocity Function and Rise Time As the propa-
gating rupture sweeps over the fault plane points on the
fault plane are “activated” and start slipping. Each point
traces an individual slip-time history (slip-velocity func-
tion) whose shape and duration depends on the stress con-
ditions and frictional properties on the fault, but also on
overall fault size and the position of each point with re-
spect to rupture nucleation [59]. Figure 5 illustrates the
variability of local slip-velocity functions sij on the fault.
The slip duration (rise time � r) is usually defined by inte-
grating the slip-velocity function and measuring the time
it takes to complete 5–95% of the total displacement at
each point.

Several approximations of these complicated slip-ve-
locity functions are in use: a boxcar or isosceles-triangle
function with a rise time equal to the width of the func-
tion, or symmetric and asymmetric cosine-functions. The
classical approximation uses the solution of a quasi-dy-
namic crack model [110], showing an 1/

p
t-decay after

a rapid onset. Recent modifications to this Kostrov-type
slip function [129,180] are compatible with earthquake dy-
namics, while ground-motion simulations and source in-
version often assume simple parameterization of overlap-
ping triangles [78,92].

As Fig. 5 indicates, rise time varies over the fault plane.
However many kinematic source inversions and sim-
ple source-model simulations assume constant rise time.
A self-similarly expanding crack model predicts longer
rise times in the center of the fault e. g. [58,110] where the
rupture nucleates, but short rise times at the crack periph-
ery due to the earlier arrival of the healing front from the
crack rim. Analysis of source-inversion results [88] and
dynamic rupture modeling [28] however suggest that rise
times are in general short, i. e. the rupture propagates as
a self-healing pulse over the fault plane with rise times de-
termined by local healing of the rupture front.

For fixed rupture velocity and slip distribution,
ground-motions are very sensitive to rise time variations.
Shorter rise times lead to larger ground-motions as the
seismic energy is released in a shorter time interval. The
detailed shape of the slip-velocity function is less impor-
tant for the seismic waveforms, because they are deter-
mined by the summation of slip-functions, convolved with
the appropriate Green’s function, over the entire fault
plane (effectively filtering out small-scale features of the
slip-velocity parameterizations). However, the peak slip-
velocity value that the slip-rate function may attain is cru-
cial for the final ground-motion amplitudes.

Isochrone Theory

The effects of various kinematic source parameters (slip
and slip-velocity distribution, rupture propagation) on
near-field ground-motions can be efficiently visualized in
the framework of the isochrone theory, a high-frequency
(ray-theory) approximation to calculate seismic radiation
from earthquake ruptures [27,173]. By approximating the
elastic wave Green’s functions with far-field body waves,
surface-waves and low-frequency near-field terms are not
considered in the isochrone method. It is correct, however,
at higher frequencies, where far-field terms dominate, and
in the distance range to the fault where surface waves have
not yet developed but near-field terms are unimportant.
The main aspect of this approach is that the space-time
integration in Eq. (2) can be replaced by a series of line
integrals over the fault for simple slip-function parame-
terizations. For each time ti in the observer seismogram
a line integral is computed for which the integration path
comprises only those points on the fault which radiate seis-
mic waves that arrive at the observer location at exactly
the time ti. Defining an arrival-time function, composed
of the rupture-front arrival time at each point on the fault
and the corresponding seismic-wave travel time to the ob-
server, the integration path represents an isochrone of this
arrival-time function. The corresponding isochrone veloc-
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ity, c (the spatial derivative of the arrival-time function) is
related to rupture velocity vr , and thus resembles the di-
rectivity function. Since ground velocity is proportional
to isochrone velocity, the characteristics of high-frequency
body-waves in near-field seismograms can easily be exam-
inedwith respect to arbitrarily heterogeneous slip and rup-
ture velocity distributions.

The omission of near-field terms and surface-waves re-
stricts the isochrone method to cases in which seismic ra-
diation from compact slip zones or sudden changes in rup-
ture velocity dominate the ground-motions. Such source
behavior has been reported for many earthquakes, consis-
tent with [119] who showed that the high-frequency far-
field radiation is emitted at the propagating crack tip, with
additional radiation coming from stopping phases as the
rupture heals. The isochrone theory has also been success-
fully applied to earthquake source inversions [29].

The detailed theoretical development of the isochrone
theory is beyond the scope of this article, but a brief de-
scription will help to illustrate the concept. Spudich and
Frazer [173] link the representation theorem, Eq. (2), to
geometrical ray theory (without Fraunhofer approxima-
tion) for the far-field displacements of P- and S-waves. Ac-
cording to [176] a simple, yet versatile, parameterization of
the slip function s(y; t), is given by

s(y; t) D sr(y) fr[t � tr(y)] ; (6)

with rupture time tr at positions y on the fault plane, po-
sition-independent shape-function f r for the slip-velocity
function, and position-dependent amplitude s. Any het-
erogeneous rupturemodel can be approximated by Eq. (6).
Inserting this expression into Eq. (2), shown here for S-
waves only, one obtains

uS(x; t) D fr(t) �
Z

S
sr � GS

aı


t � tSa

�
dS (7)

where tSa(y; x) D tr (y)C tS (y; x) is the arrival time func-
tion for an observer at location x due to an S-wave radiated
at point y on the fault GS

a is the corresponding Green’s
function. The surface integral in Eq. (7) is non-zero only
if the argument of the ı-function is zero. Curves y(tSa ; x)
define the contours of equal arrival time (isochrones) at
observer x; the surface-integral in Eq. (7) thus reduces to
a line integral

uS(x; t) D fr(t) �
Z

y(t;x)



sr � GS

a

�
� c(y; x) dl (8)

in which c(y; x) D jr tS(y; x)j�1 represents the “isochrone
velocity” of these curves along the fault surface (r denotes
the gradient operator). Note that the isochrone velocity is

related to the directivity function; isochrone theory there-
fore helps to visualize on-fault directivity effects [172].

As an application of the isochrone method, we com-
pute near-field seismograms for a hypothetical rupture
(Mw 6:7) with constant rupture velocity (radially spread-
ing rupture front) at three sites, each at fault-perpen-
dicular position y D 0:2 km, but various positions along-
strike (Fig. 11). A simple layered medium is assumed,
and anelastic attenuation is excluded. For each observer,
the S-wave travel time function (travel times from the
site to each point on the fault) is shown (top panels),
the color-coded integrand (Eq. (8)) with isochrone con-
tours (spacing dt D 0:5 sec) (2nd row of panels) and the
isochrone velocity with isochrone contours (3rd row of
panels). S-wave pulses in the fault-normal velocity seis-
mograms (bottom) can then be attributed to isochrone
properties. Consider for example observer D. The first
isochrone appears at �7 sec, consistent with the S-wave
arrival time in the seismogram. Isochrones up to 8 sec are
entirely in areas where the integrand is negative (yellow to
red colors), hence the down-ward initial motion. The peak
velocity (53.2 cm/sec) occurs at t � 9 sec when the corre-
sponding isochrones hit the large-amplitude regions of the
integrand (green areas). Observer D exhibits stronger di-
rectivity than observers A or B due to its position with re-
spect to the hypocenter and the dominant asperity, gener-
ating large amplitudes due to high isochrone velocity over
regions of large slip. At site D, the seismic energy radi-
ated from the high-slip patch at x � �15 km; y � 10 km
arrives within a short time window, whereas at site A,
the contributions from this slip patch are spread over
a longer time window. For site A, the isochrone velocity
is smaller than for D, hence directivity is less pronounced.
As a results, site A exhibits lower peak groundmotions but
a longer shaking duration.

The current implementation of the isochrone
method [176] could be extended to include near-field
terms [104] and to be applicable in three-dimensional
velocity structures by adding 3D ray-tracing capabilities.
Spatially variable slip-velocity functions and anelastic at-
tenuation are further possible extensions. Finally, effects of
wave-scattering in random media could be implemented
using scattering operators [125,192,193,194] convolved
with the local slip-rate function s(y; t).

Wave Propagation in ComplexMedia:
Path and Site Effects

Returning to Eq. (1), this Section discusses path effects,
gk(t), due to source-to-site wave propagation, and local
site effects, lk(t), due to the small-scale geological con-
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 11
Ground-motion simulation using isochrone theory for a hypothetical Mw 6:7 earthquake, buried at 2.5 km depth and embedded
in a layered medium. Top graph: Rupture spreads from the hypocenter (red star) at constant rupture speed (vr D 2:7 km/s, white
contours) over the fault with heterogeneous slip (color-coded). Bottom graphs: Isochrone quantities at three sites. Top-most pan-
els: S-wave arrival time function; 2nd row of panels: isochrones overlain over the real part of the integrand in Eq. (8) (in units of
sr � GS

a � c(y; x) ); 3rd row of panels: isochrones overlain over isochrone velocity (in km/s). Lower-most panels: Resulting fault-normal
velocity seismograms dominated by large S-wave pulses (in cm/s; peak velocity indicated at the end of each trace)

ditions at each observation point. The wave propagation
from the earthquake to the observation point depends
on the complexity of Earth structure, which can be sep-
arated into two parts: (i) deterministic wave-propagation
within a layered medium, three-dimensional basin effects,
topographic features and large-scale geological structures;
(ii) wave-propagation in a stochastic random medium
with small-scale heterogeneity leading to incoherently
scattered wave energy. Local site effects in the shallow
near-surface structure (usually the top-most 100m) be-
neath the observation site further complicate near-fault

ground-motions, leading to either increased or decreased
motions (compared to bed-rock level), increased shaking
duration, shifts in the dominant frequency of ground-mo-
tion, and perhaps nonlinearity effect. These wave-propa-
gation effects have to be incorporated into the character-
ization of ground-motion complexity, and should be ap-
plied in strong-motion simulations for predicting the in-
tensity and variability of seismic shaking. However, the
success in incorporating these effects hinges on the avail-
able knowledge of seismic properties of the Earth, which
in turn depends on the dominant wavelengths (frequen-
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cies) at which the Earth is sampled by observational data.
Similarly, inversion for Earth structure and forward simu-
lation of seismic waves require an appropriate spatial dis-
cretization of the modeling region for the numerical calcu-
lations, which essentially provides an upper limit on either
the maximum resolvable frequency or the size of the com-
putational domain for ground-motion simulations.

In this Section, I first I review some aspects of “deter-
ministic” wave propagation in a flat-layered attenuating
Earth, and then qualitatively describe effects of basin struc-
tures, Earth topography and local features (e. g. fault zones,
narrow belts of low shear-wave velocity). I then examine
aspects of wave propagation in random media and corre-
sponding simulation methods. Site effects and nonlinear-
ity conclude this section. Due to the large body of litera-
ture on these topics, a detailed quantitative review is not
attempted in this Section. Instead I merely select a few key
elements of particular interest for characterizing ground-
motion complexity.

Wave-Propagation
in a Flat-Layered, Attenuating Earth

The first-order approximation of Earth’ internal structure
is a radially layered medium, which for short source-site
distances (< 600 km) can be treated as a flat-layered struc-
ture. Many research branches in seismology successfully
apply this approximation of a one-dimensional depth-de-
pendent velocity-density model: earthquake location, ar-
rival-timemeasurements of various seismic wave types, fo-
cal-mechanism determination, moment-tensor inversion,
finite-source inversion. A number of well tested meth-
ods exist to compute Greens functions for a flat-lay-
ered Earth model, although the exact frequency range
in which this model is accurate is difficult to determine
and depends on the particular application and region. At
long periods (T > 20 sec and corresponding long wave-
lengths ( � 120 km for P-waves traveling at speed of
vP � 6 km/sec), used for instance in moment-tensor in-
versions), basin structures, mountain ranges and other ge-
ologic features with minor changes in physical proper-
ties (density, wave-speed) can be ignored at spatial scales
on the order of tens of kilometers, thus allowing accurate
modeling of the complete low-frequency seismogram. For
small areas with relatively simple Earth structure, body-
wave Greens functions can be accurately synthesized up
to frequencies of f � 1Hz, a property that is often used
in finite-source inversions. In these cases, ground-motion
complexity is assumed to be largely due to the heterogene-
ity in the rupture process, since the local, observer-spe-
cific Greens functions (containing the impulse response in

a layered medium due to point-source excitation) are sim-
ple (examples are shown in Fig. 5).

In many cases, however, sites of interest may be lo-
cated on top of basin structures, in zones that are geo-
logically different on a small-scale, or even in a narrow
fault-zone belt which may have distinctly different seis-
mic properties. By examining observed ground-motions
at many sites, site-specific one-dimensional Earth models
can be used to compute corresponding Greens functions,
a cumbersome and error prone approach since source and
receiver are located at points with different seismic proper-
ties. In such cases, 2D or 3D-models are preferable for the
Greens function calculation, as they allow to appropriately
include basin effects, local geology and potentially also to-
pography, usually at the expense of reduced frequency res-
olution and/or a smaller computational domain.

Effects of Sedimentary Basins,
Fault-Zones, Topography

Geological basins, containing layers of compliant sedi-
mentary rock units and covered by potentially poorly con-
solidated, low shear-wave-velocity sediments, have a vari-
ety of effects on incoming seismic waves. Characterizing
and quantifying the basin-related ground-motion com-
plexity is particularly important for seismic hazard stud-
ies since many major urban areas are built in geological
basins that are located within or close to a seismically ac-
tive region (e. g. Mexico City, Tokyo, Los Angeles).

For instance, the 1985 Mw 8:0 Michoacan earthquake
generated major damage in Mexico City, several hun-
dreds of kilometers away from the epicenter. While the
near-source strong-motion stations did not show un-
usual ground motions, the shaking level in Mexico City
was unexpectedly large in those parts of the town con-
structed on lake bed sediments [9]. Ground-motions
and associated damage exhibited high spatial variabil-
ity; long-period surface waves, generated at the edge of
the basin, had particularly severe consequences for tall
high-rise building with eigenperiods of several seconds.
Many of them suffered complete collapse. Strong basin ef-
fects have been simulated for earthquakes in the greater
Los Angeles area, indicating localized basin-response ef-
fects caused by surface waves generated at the edge of
the basin [74,75,135,136,138] and the focusing of seismic
energy due to basin geometry [76,108,138]. A particu-
lar interesting effect has been found for the 1994 Mw 6:7
Northridge earthquake, attributed to an isolated high-
damage area in Santa Monica to focusing effects caused
by a small-scale localized 3D lens-like high-velocity struc-
tures [57].
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Other prominent examples of strong basin response
are given for theWellington Basin (NewZealand) [24], for
the Tokyo plain (Japan) [109,159,160,162], and the Kobe
area (Japan), which was strongly damaged during the 1995
Kobe earthquake (Mw 6:9). In the latter case, the largest
damage did not occur in direct vicinity of the rupturing
fault, but was concentrated within an elongated band offset
to the southeast of the fault. Modeling studies showed that
this “damage belt” was caused by constructive interference
of seismic waves taking different paths: (i) directly through
the low-velocity basin structure and (ii) through high-
velocity rocks outside the basin and then reflected back
into the basin [107,143,144]. Additionally, topographic ef-
fects may have contributed to the complexity of near-
fault motions for the Kobe earthquake [145]. Another ex-
ample for strong topographic effects on near-source mo-
tion is the Tarzana (California) site, located atop a small
hill, which recorded a value of PGA D 1:78 g on the EW-
component of motion during the 1994Mw 6:7 Northridge
earthquake [174]. However, it is difficult to separate to-
pographic effects from subsurface-structure properties be-
neath the topographic features, and firm conclusions on
the contribution of topographic effects are not well de-
fined [108].

These basin-induced or topographic site effects
strongly depend on the direction fromwhich the incoming
wave field arrives, as shown by strong-motion simulations
for the Basel (Switzerland) area [139] or the greater Los
Angeles region [118,138]. Strong variations in the basin re-
sponse, and hence ground-motions at individual sites, de-
pend on whether the incoming waves are predominantly
polarized in the direction parallel or perpendicular to the
main geologic structures (i. e. the large-scale basin shape
and major faults inside and bounding the basin).

Low-frequency ground-motions, modulated by basin
effects, topography, or narrow fault-zone-related regions
of low shear-wave velocity, exhibit also longer shaking du-
ration (due to surface-waves arriving after the dominant
S-arrivals), and potentially larger amplitudes in case of
constructive interference of wave packets (often occurring
as trapped waves) [141]. Due to the dependency of the
basin response on the direction of the incoming wavefield
and the detailed small-scale structure of the basin, individ-
ual sites within a particular basin will experience very dif-
ferent ground-shaking. The ground-motion complexity is
thus greatly increased by these effects, and general scaling
relations for ground-motion (de-)amplification and pro-
longation due to basin and topographic structures are dif-
ficult to derive. Only numerical simulations for particular
earthquakes or specific scenario events can help to under-
stand the corresponding ground-motion variability which

can then be related to standard ground-motion attenua-
tion relationships (see Sect. “Ground-Motion Scaling Re-
lations”).

While there has been considerable progress in inter-
preting and modeling strong-motion waveforms for fre-
quencies f < 1Hz, one of the major challenges is to calcu-
late reliable broadband near-source seismograms for the
frequency range of engineering interest which extends to
f� 10Hz. The works described above examine and model
the low-frequency wavefield contribution, using 1D-, 2D-
or 3D-finite-element, finite-difference or spectral-element
techniques (see � Seismic Wave Propagation in Media
with Complex Geometries, Simulation of). Seismic source
properties, Earth structure, and site effects strongly affect
high-frequency motions, but computational limitations
still prohibit purely deterministic ground-motion simu-
lations for frequencies above f � 1Hz. Instead, at least
some part of the simulation procedure needs to involve
a stochastic component since Earth structure, and to some
extent the earthquake source, are essentially unknown at
short spatial scales required for accurate high-frequency
simulations. The difficulty is thus to capture and correctly
quantify the scattering properties of the Earth at the scale-
lengths and frequencies that are of interest for seismic haz-
ard purposes.

Scattering in Inhomogeneous Media

The seismic coda, the energy in the seismogram after the
prominent direct P- and S-wave arrivals, consist of P-, S-
and surface-wave energy scattered in the inhomogeneous
rock volume between the source and the recording site.
Figures 1, 3, 4, display near-field waveforms for which the
coda-characteristics show large variability. In some cases,
the coda waves decay fast, in other cases they persist for
a long time; the frequency content of coda waves also ap-
pears to be site dependent. These observations manifest
that, scattering and attenuation of seismic waves in inho-
mogeneous media strongly contribute to ground-motion
complexity.

The basic method of estimating attenuation properties
of seismic waves uses the Fourier amplitude spectrum of
observed ground motion u(r; f ), for a spherical S-wave of
frequency f given as

uS (r; f ) /
1
r
� exp

�
�
� � f � r
QS � ˇ

�
(9)

where r is distance, ˇ the S-wave velocity, and QS is the
attenuation coefficient for S-waves, containing both in-
trinsic anelastic attenuation and scattering attenuation.
For S-waves, Q-values in the lithosphere range from
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20 � QS � 10 000, for P-waves they are about a factor
of two larger [158]. However, the frequency dependence
of QS;P above about f � 1Hz indicates that attenua-
tion increases for higher frequencies as Q�1S;P / f�n (with
0:5 � n � 1:0) [161]. While the effects of seismic wave at-
tenuation due to geometrical spreading are well under-
stood and can be readily measured and incorporated into
ground-motion simulation methods. The scattering losses
of seismic waves are more difficult to estimate.

Based on seismic array measurements, recorded coda
envelopes or sonic logs from borehole measurements, sev-
eral studies estimated characteristic scale lengths of seis-
mic scattering in the Earth [71,93,152,190]. Alternatively,
numerical simulations for assumed random-media real-
izations have been used to assess scattering properties of
the Earth e. g. [65,66]. These works show that the hetero-
geneity spectrum of velocity fluctuations in the Earth (i. e.
the random variations of P- and S-wave velocities around
a depth-dependent velocity gradient) can be adequately
modeled as a fractal medium (e. g. Eq. (3)) or with a cor-
relation function that does not decay too rapidly in wave-
number domain. Smoothly varying Gaussian-type corre-
lation functions are thus inappropriate whereas an expo-
nential or a more general van Karman correlation func-
tion Eq. (4) well models seismic scattering in the Earth
crust [93,159].

Due the tectonic history of the Earth and the multi-
scale nature of geologic structures, scattering parame-
ters depend on region and depth. Correlation lengths of
a � 10 km are inferred for wave-scattering in the lower
crust e. g. [66], whereas [86] assumed a � 5 km for up-
per-crustal wave-field simulations. Upper-mantle hetero-
geneities may be modeled with correlation length a �
20 km. The actual velocity fluctuations are on the order
of 2–10%. A concise review of seismic scattering and es-
timated scattering parameters is given in (see � Seismic
Waves in Heterogeneous Earth, Scattering of) [161],
a thorough introduction is published by Sato and Fehler
[158].

Ground-motion simulations for seismic hazard assess-
ment or studies on the nature of ground-motion complex-
ity should incorporate seismic scattering, i. e. or at least to
some degree the stochastic nature of high-frequency seis-
mograms. In earthquake engineering random-vibration
theory has been used for this purpose e. g. [35,103], which
oversimplifies the earthquake rupture process but appro-
priately accounts for the apparent randomness of high-fre-
quency ground-motions. More advanced techniques com-
bine deterministic low-frequency motions with stochastic
high-frequency signals [99,146,147], in which the stochas-
tic part reflects the short-scale variability in source prop-

erties and seismic-wave scattering. The stochastic signal
used in these methods is generated as random white noise
and does not contain any physical scattering mechanism.

More physical approaches calculate the 3D-seismic
wavefield in a 3D-heterogeneous medium, a computation-
ally expensive task which cannot be carried out for large-
scale simulations or many scenario events for which high-
frequency ground-motions are needed. To devise a sim-
plified method, [86] have combined realistic small-scale
heterogeneity in the source properties with scattering op-
erators for a von-Karman random medium to compute
broadband time histories. Their study indicates that the ef-
fects of scattering are masked by the heterogeneity in the
kinematic source characterization. Note also that, near-
field seismic wave scattering in a heterogeneous medium
may also replicate apparent nonlinear site effects [130] (see
Section “Site Effects and Nonlinearity”).

A computationally less demanding approach to in-
clude seismic scattering into ground-motion simulation
uses radiative transfer theory to model the space-time dis-
tribution of the seismic-energy envelope due to scattered
waves [192,194]. In this formulation, a time-dependent
multiple S-to-S scattering process occurs due to a shear-
dislocation point source embedded in a 3D-medium
with background velocity v0 in which point-like isotropic
scatterers of cross section �0 are randomly distributed
with density N. The total scattering coefficient is thus
g0 D N � �0. The detailed theoretical developments are be-
yond the scope of this article, but it is worth noting that
the calculation of the energy-density envelopes is com-
putationally efficient and can be used for high-frequency
ground-motion simulations [193].

Themultiple S-to-S scattering theory has recently been
applied to compute hybrid broadband near-field seismo-
grams [125]. Their technique joins low-frequency 3D-fi-
nite-difference (FD) synthetics (which may contain the ef-
fects of a sedimentary basin) with site-dependent high-
frequency scattering operators to synthesize broadband
ground motions. The high-frequency scattering operators
are convolved with an appropriate source-time function,
and then these site-dependent “scatterograms” are com-
bined in the Fourier domain with the corresponding low-
frequency synthetics using a phase-matching optimization
technique [124] (conceptually depicted in Fig. 12). Com-
paring data and simulations for a site that recorded the
1994 Northridge earthquake indicates a good agreement
in terms of waveforms, amplitude spectra and spectral ac-
celeration (Fig. 13). The model bias (logarithm of the ratio
between the observed and simulated quantity) for spectral
acceleration at 30 sites that recorded the 1994 Northridge
event (Fig. 14a) shows only small deviations from zero, ex-
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 12
Conceptual diagram for computing hybrid broadband seismograms. a site-specific scattering Greens function for a point-source at
the hypocenter. b time series representing the local high-frequency scattering contribution (obtained for instance by convolving
the scattering Greens function in a with an appropriate slip-rate function). c Fourier amplitude spectra for the time series in a and
b; the velocity-scatterogram decays as 1/! (dotted line) beyond the corner frequency. d broadband seismogram (top) computed by
combining the LF-seismogram (center) with the site-specific HF-scatterogram (bottom). e amplitude spectra for the time series in d;
the spectra of the broad-band synthetics exactly represent the LF-motions at low-frequencies and the HF-scattering contribution at
high frequencies

hibiting also narrow 90%-confidence limits. Considering
also the general agreement between observed and simu-
lated PGV and PGA values (Fig. 14b) indicates that such
hybrid broadband wavefield simulations can reproduce
ground-motion complexity, where differences at individ-
ual site remain due to unmodeled site and path effects.

Adding seismic scattering into ground-motion char-
acterization and simulation helps to capture the large de-
gree of complexity in the near-source seismic wavefield,
and thus presents an important future research topic. Here
I have only briefly discussed a few key elements of seis-
mic scattering and its application to a specific case study.
However, to fully explore the range of realistic scattering
parameters, combined with the inherent complexity of the
source-rupture process, requires extensive numerical sim-
ulations that need to be calibrated and validated against
observational data.

Site Effects and Nonlinearity

Site effects play a major role in characterizing and quan-
tifying strong ground motion as they may amplify or
deamplify the incoming “bedrock” motions in the up-
permost velocity layers beneath the observer. Since site-
amplification factors may reach two orders of magni-
tude [108], these effects cannot be neglected in earthquake
engineering practice. A comprehensive review of various
approaches to estimate and model site effects is given by
Kawase [108], so I restrict the following discussion to a few
key aspects.

There is no strict boundary between site effects and
path effects, but site-effects usually refer to wave-field
modifications in the immediate vicinity of the observer lo-
cation (top 30m of the local sedimentary cover). Usually,
the time-averaged shear-wave velocity in the top 30–100m
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 13
Comparison of data (blue) and broadband simulations (red) at a site that recorded the 1994 Mw 6:7 Northridge earthquake (left:
fault-normal; right: fault parallel motions). Note the consistency between the Fourier amplitude spectra (vertical line denotes the
matching frequency) and between the response spectra (� D 5% damping). PGA- and PGV-values are also similar

(VS30) is used to define the station-specific soil classifica-
tion. Site effects may be affected by the water table, and
even soil-building interaction can be considered a site ef-
fect.

The classical method to estimate site effects from seis-
mic observations is based on Eq. (1), and attempts to sepa-
rate source and path from site effects. Expressing Eq. (1) in
the Fourier domain and considering the ground motions
due to earthquake j observed at site k, we obtain source-

site specific Fourier amplitude spectra as

Ajk ( f ) D S j( f ) � Gjk ( f ) � Lk( f ) : (10)

The Green’s function term, Gjk ( f ) can be expressed
in terms of geometrical spreading factors with respect to
the source-site distances, rjk; combining intrinsic and scat-
tering attenuation into a common Q(f ) one obtains (for
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Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 14a
Hybrid broadband ground-motion calculations using low-frequency finite-difference synthetics and high-frequency scattering op-
erators. The three panel show, for the geometric mean (top), the fault-normal (center), and fault-parallel (bottom) component, the
model bias, computed as log ( obssim ), for spectral acceleration at 30 sites that recorded the 1994 Northridge earthquake

S-waves)

Gjk ( f ) D
1
r jk
� exp

�
�
� � r jk
ˇ � Q( f )

�
(11)

where ˇ is the representative shear-wave velocity over the
entire path. Eq. (10) can then be solved by adding at least
one independent constraint on either source, site or path.
A common approach uses the average site factor as a ref-
erence, meaning that the logarithm of the sum of all site
factors is equal to zero. Other methods select the site with
the smallest site factor as reference, or make an a priori
reference-site selection based on geologic or other infor-
mation.

A recent method for site-effect estimation uses mi-
crotremor, ambient noise measurements, or aftershock
recordings. Taking the spectral ratio of the horizontal
component of motion with respect to the vertical compo-
nent (so calledH/V-ratios), thesemicrotremor ratios often
show similar site characteristic as inferred by independent
methods [108]. However, the exact physical meaning of
this H/V-ratio is not well understood, and since H/V-mea-
surements do not directly represent the true soil amplifi-
cation, those need to be supplemented and calibrated by
numerical modeling [69,178]. Nonetheless, H/V-measure-
ments are useful for microzonation studies which the de-
tailed properties of the uppermost soil layers for a small
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 14b
Comparison of observed (blue crosses) and simulated ((red squares) peak-ground acceleration (left) and peak-ground velocity(right)
for 30 strong-motion sites that recorded the 1994 Mw 6:7 Northridge earthquake. Note the overall agreement between simulated
and recordedmotions. Discrepancies at individual stations are due to unmodeled ground-motion complexity

area, thus characterizing the susceptibility of particular lo-
cations to strong site effects [70].

Site-correction factors have been derived also from the
seismic coda. Because coda waves essentially consist of
scattered S-waves, local site amplification of the coda it-
self should be an average of the S-wave amplification fac-
tor for S-waves that arrive from different azimuths under
different incidence angles. However, the assumption that
the seismic coda consists only of scattered S-waves is too
simplistic, because surface waves and strong P-coda waves
may contaminate the S-wave coda. Site-effect estimation
based only on S-coda measurements should be therefore
interpreted with care [108].

A common assumption in seismic wave propagation is
that strong and weak motions are affected in an identical
manner. Analysis of near-field ground-motions provides
evidence for nonlinear effects (i. e. a non-linear stress-
strain relationship) [26,64,156], due to lower shear-wave
velocity and increased damping within the sedimentary
cover [54]. Local (or temporal) modification of the seis-
mic properties of the rock material underneath a site or
along the wave path may shift resonant modes to lower
frequencies and generate reduced amplitudes. Nonlinear-
ity occurs once a certain ground-motion intensity thresh-
old is exceeded. Previous studies suggest PGA > 0:3 g, or
PGV > 20 cm/sec, or peak-strains in excess of 0.06% [9],
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roughly consistent with values inferred for strong-motion
recordings of the 1989 Mw 6:9 Loma Prieta earthquake
for which the threshold for large S-wave travel-time de-
lays in repeating earthquakes occurs at PGA > 0:4 g or
PGV > 40 cm/sec [156].

Effects of nonlinearity greatly increases the complex-
ity of ground-motions, but only on a very localized scale.
Recently, detailed spectrogram analyses of seismic record-
ings of the 2003 Mw 8 : 3 Tokachi-Oki (Japan) earthquake
demonstrate liquefaction, quantified by a dramatically re-
duced high-frequency contents of the waveforms [55].
However, it is very difficult to establish general scaling laws
that account for potential nonlinearity effects. In case of
water-saturated loose sands, strong shaking may result in
nonlinear soil liquefaction due to a rapid, temporary in-
crease of pore water pressure, resulting in a dramatic loss
of soil stiffness. Liquefaction effects are extremely impor-
tant for earthquake engineering, but have received little at-
tention from seismology in the past.

Ground-Motion Scaling Relations

Despite the fact that observed near-source ground-mo-
tions show complicated time histories and large variabil-
ity in intensity measures, there is the need in earthquake
engineering and seismic-hazard analysis to devise simple
approaches for estimating expected ground-motions in fu-
ture earthquakes. For this reason, ground-motion predic-
tion equations (GMPE’s) are developed, providing math-
ematical expressions that relate shaking intensities to seis-
mological quantities, source-site geometry, and potentially
site-specific parameters. Thus, the complexity of the earth-
quake rupture process, the wave-propagation effects from
the source to the site, and the detailed site conditions are
condensed into relative simple functional forms, compris-
ing a few parameters that constitute empirical ground-mo-
tion scaling relations.

Development of Empirical Scaling Relations
Based on Recordings of Past Events

Using strong-motion observations, ground-motion pre-
diction equations are developed using a number of dif-
ferent parameterizations. The most fundamental form is
given as [52]

Y D a1 � ea2M � Ra3 � ea4r � ea5F � ea6S � e
 (12)

where Y is the ground-motion intensity measure of inter-
est (PGA, PGV , SA,. . . ). M is the earthquake’s magnitude,
r the source-to-site distance; F is a parameter that char-

acterizes the type of faulting, and S captures the local site
conditions. R is an additional magnitude-dependent dis-
tance function which can take on alternative forms, for ex-
ample [52]

R D

8
<

:

r C c7 � ec8M
q
r2 C

�
c7 C ec8M

�2
:

(13)

This model contains some of the basic physics of earth-
quakes (terms with M and F), the attenuation due to geo-
metrical spreading of seismic waves (terms related to dis-
tance r and R) and the site conditions (S). Due to the
approximately log-normal distribution of ground-motion
intensities, attenuation relations are parameterized using
the natural logarithm of Y . Correspondingly, the standard
deviation of the zero-mean random error term � is esti-
mated as the standard error of lnY(�l nY ).

Over the years, different models have been proposed
to capture various aspects of the inherent complexity of
near-fault shaking. One class of models assumes a func-
tional form whose shape is magnitude-independent for all
distances. A simple parametric form is given by [38]

ln(Y)M;R;F
D a1C a2 �MC a3 �M2C a4 � ln(rC a5)C a6 � F :

(14)

However, many observations show that ground-motion
intensities saturate at close distances to the fault, i. e. mod-
erate-magnitude earthquakes (5:0 � M � 6:5) may gen-
erate about the same level of high-frequency shaking as
large magnitude events (M > 6:5). The second class of
ground-motion scaling relations captures these observa-
tions. For instance, starting from Eq. (14) Abrahamson
and Silva [5] propose the relation

ln(Y)M;R;F D a1 C a2 �M C a3 �M2

C (a4 C f1(M)) � ln(r C a5)C a6 � F (15)

with f1(M) D a7M, while Sadigh et al. [157] developed an
attenuation model given by

ln(Y)M;R;F
D a1Ca2 �MCa3 �M2Ca4 � ln(rC f2(M))Ca6 �F

(16)

where f2(M) D c7 � ec8M . The difference between these
two scaling relations becomes evident at larger distances
(r > 50 km), while for short distances they lead to about
the same ground-motion intensities (Fig. 15).
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 15
Observed peak ground accelerations for the Sept 28, 2004Mw 6:0 Parkfield earthquake, compared against five different empirical
attenuation relationships. Data are plotted using the geometrical mean of the two horizontal components (fault-normal and fault-
parallel) (PGA DpPGAFN � PGAFP), and for the maximum of the two components. The median of the observations is generally in
good agreement with the empirical predictions, but the data exhibit large variability with much higher (and lower) motions than
empirically predicted, independent of the closest distance to the fault. Note that the recording at station “Fault Zone 16” is not
shown as it was not available at the COSMOS database. The PGA-value for site “Fault Zone 16”, located at� 0:6 km distance from
the fault, is estimated to be in the range 2.0–2.5g [167]

Empirical ground-motion prediction like those pre-
sented in Eqs. (14), (15), (16) have been widely applied to
global and regional ground-motion data sets, but a num-
ber of observations call for modification to these “generic”
models. First of all, attenuation models for different tec-
tonic provinces have been published accounting for varia-
tions in the regional geology [7,8,17,18,31,67,175]. While
there is the need to distinguish between stable-cratonic
areas (like Eastern North America), extensional regimes
(like the Basin and Range province in the western US),
zones of complex active tectonics (like California), or
subduction zones (like in Mexico, Chile, Japan), recent
work [7] suggests that data from different tectonically ac-
tive areas with crustal seismicity can still be jointly ana-
lyzed. In certain regions the geologic conditions cause the
presence of several of such tectonic regimes over a rather
small area (e. g. Italy, Switzerland, Japan) which further
complicates the development of adequate ground-motion
prediction equations.

Besides the local geology, the source-site geome-
try greatly influences seismic shaking. In the near-fault
regime, ground-motions are strongly affected by geomet-
rical source-site effects, leading to large long-period pulses
of motion termed “directivity pulses” (see Sect. “Isochrone
Theory”). Recent work includes such directivity pulses in
the attenuation equation [170,171]. Large permanent off-
set of the ground due to the rupture process will also
generate long-period large motions; this so-called “fling-
step” is distinguished from the directivity pulse [32]. For
thrust-faulting earthquakes, the “hanging-wall” effect has
been shown to generate very different ground motions [3]
for sites located on the hanging-wall than on the footwall
(Fig. 3). This effect is explicitly included in several recent
attenuation models [3,53].

An intriguing observation has been made following
the large surface-breaking earthquakes in 1999 in Turkey
(the Aug. 17 Mw 7:5 Izmit and the Nov. 12 Mw 7:1 Duzce
events) and Taiwan (the Sept. 20 Mw 7:6 Chi-Chi event):
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near-field ground-motions were significantly lower than
empirically predicted [105]. This counter-intuitive result
can partly be explained by the general differences in stress-
release patterns between buried-faulting and surface-rup-
turing earthquakes. The primary cause for the ground-
motion variation between these two classes of earthquakes
lies in general differences in the dynamic rupture pro-
cess and the associated energy balance of the system
(see � Earthquake Scaling Laws). Ultimately, these effects
could be related to depth-dependent fault-zone proper-
ties which exhibits highly damaged rocks with intense mi-
crocracking and lower seismic velocity close to the sur-
face, but more compliant and less damaged material at
depths [22]. Fault-zone structure affect the dynamics of
the rupture process [13,21,22,83] and the resulting seis-
mic radiation [141], and therefore strongly influence the
resulting ground-motion intensities.

Besides the functional form and the given geological,
geometrical, and physical parameters a number of techni-
cal issues affect ground-motion scaling equations (a com-
prehensive review is given in [60]): (i) the choice of the
ground-motion intensity measure Y determines the val-
ues for the coefficients ai (Eqs. (12)–(16)) derived by re-
gression analysis; (ii) the specific approach for the re-
gression (data fitting) matters (common techniques are
weighted non-linear least-squares regression, two-step re-
gression, or random-effects regression); (iii) the data se-
lection criteria for assembling the individual strong-mo-
tion database; (iv) data corrections may be applied to
the recorded strong-motions (e. g. uniform instrument re-
sponse for all records, baseline correction, frequency filter-
ing) and also to the meta-data (magnitudes, distances, site
information etc.) which represent the independent param-
eters.

In developing ground-motion prediction equations,
a uniform and well-calibrated magnitude definition is
particularly important, but in practice often difficult to
achieve when merging datasets from various institutions
whosemagnitude valuesmay not be compatible. The style-
of-faulting factor F in Eqs. (14), (15), (16) is generally
well defined, but the site-effect factor S is often poorly
known. One of the most critical parameters in ground-
motion scaling is the distance r between the site and the
source. In particular for extended rupture planes, the ap-
plied distance metric for the source-to-site geometry be-
comes crucial; different source-to-site distance definitions
are in use [4] but the particular choice for r in turn will
affect the seismic-hazard calculations [163].

In an effort to harmonize and calibrate ground-mo-
tion data, related meta-data, and the development of em-
pirical ground-motion prediction equations, the Pacific

Earthquake Engineering Research Center (PEER) carried
out the New Generation Attenuation of Ground Motions
(NGA) Project (completed in Jan. 2008). In this con-
text, [37] for instance refine Eq. (14) to accommodate
the effects of anelastic attenuation when modeling far-
distance recordings (R > 80 km) and to include an “ef-
fective” magnitude-dependent geometrical spreading (al-
lowing to predict ground-motion amplitudes out to dis-
tances R D 400 km). Their data-driven equation includes
only terms that are truly needed to adequately fit the
data, involving (i) a complicated magnitude-scaling func-
tion, fM(M); (ii) a versatile distance function, fD(RJB ;M);
(iii) a site-effect function that includes potential nonlin-
earity effects, fS(VS30; RJB ;M):

ln(Y)M;R;F D fM(M)C fD(RJB ;M)
C fS(VS30; RJB ;M)C � � �T : (17)

All terms in Eq. (17) are period-dependent; M is mo-
ment magnitude, RJB is the Joyner–Boore distance (the
closest distance to the surface projection of the fault) � is
the fractional number of standard deviations of a sin-
gle predicted value of ln(Y), and �T D

q
�2intra C �

2
inter

describes the uncertainty by combining the intra-event
and inter-event aleatory uncertainty. In this context, the
exact definition for the ground-motion parameter Y ,
usually taken as the geometric mean of the two hori-
zontal components, has received increased attention. Be-
cause of misaligned recording instruments or complicated
(multi-)pathing of radiated waves, simple measures of
“mean ground-motion” appeared to be incorrect when
taking the sensor orientation as installed in the field.
Works by [30,39,150] discuss the usefulness of orienta-
tion-independent ground-motion measures based on data
and numerical simulations.

Relating Earthquake Source-Scaling
to Ground-Motion Prediction

When using empirical ground-motion attenuation rela-
tions for predicting the expected shaking level at a given
site the analyst needs quantitative information regarding
the type of faults and their properties, the fault locations
with respect to the site, and the site conditions. Probabilis-
tic seismic hazard analysis (PSHA) requires additional in-
formation about the recurrence rate of earthquakes on the
chosen faults [111]. Therefore, earthquake statistics (see
� Geo-complexity and Earthquake Prediction) [111] and
earthquake physics (see � Earthquake Scaling Laws) [6]
are major components for accurate seismic hazard cal-
culations. However, ground-motion prediction Eqs. (14),



Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures G 4465

(15), (16) only contain a faulting-style factor (F) and the
magnitude dependence as earthquake-source related pa-
rameters. A correct estimation of the potential magni-
tudes for earthquakes occurring on the selected faults is
the most crucial step in any seismic hazard study. Earth-
quake physics (see � Earthquake Scaling Laws) [6] pro-
vides the theoretical foundation for defining these magni-
tudes and to explain observational data and empirical re-
lations e. g. [106,122,187].

In modern seismic hazard analysis, the magnitude M
relates to moment magnitude,Mw, derived from the seis-
mic moment as Mw D 2/3 � logM0 � 6:07. Since M0 D

� � L � W � D, source-scaling relations between observ-
able fault dimensions (length L, widthW, area AD L �W ,
average displacement D) and magnitude are used in em-
pirical ground-motion prediction for obtaining self-con-
sistent input parameters.

Based on geologic observations it is often possible
to estimate the length of a fault, considering also cases
with multiple segments that may rupture in individual
events or jointly (these cases are then treated in PSHA
using logic trees) [188]. Estimating fault width is more
difficult; it may be inferred from the location of back-
ground seismicity in a crustal tectonic setting, or from
modeling interseismic deformation which constrains the
fault’s locking depth, but often a generic fault width of
W D [10 � 20] km is assumed. Several studies have pub-
lished earthquake scaling relations between various fault
parameters [79,120,122,169,186,187]; these source-scaling
relations are not only useful for seismic hazard analysis but
also provide important insight into earthquake mechanics
(see � Earthquake Scaling Laws) [164]. A generic relation
between magnitudeMw and fault area A (in km2) is given
by:

Mw D pC q � log10 A (18)

For q � 1, Eq. (18) is consistent with self-similar con-
stant average-stress-drop scaling (see � Earthquake Scal-
ing Laws). Rule-of-thumb values for the coefficients in
Eq. (18) are p D 4 and q D 1 (adapted from [187] who
find p D 3:98; q D 1:02 for strike-slip earthquakes,
and p D 4:07; q D 0:98 for all faulting styles), leading
to a magnitude Mw 7 earthquake for a fault area A D
1000 km2. However, a number of studies have found con-
siderable deviations from self-similar earthquake scaling
[79,122,169], and reported values in the range 3:97 � p �
4:39 and 0:97 � q � 1:33 [120]; these differences strongly
affect empirically predicted ground-motion intensities and
seismic hazard calculations [188,189]. For instance, [188]
proposes p D 4:2, q D 1, resulting in an Mw 7:2 earth-

quake for A D 1000 km2, with twice the seismic moment
and twice the displacement as an Mw 7:0 rupture with
identical source area. Correspondingly, Eqs. (14)–(17) lead
to higher ground-motion estimates for the larger event,
consequently also different seismic hazard, due to small
changes in the source-scaling relation.

Quantifying Uncertainty
in Ground-Motion Prediction Equations

Analyzing, quantifying and modeling strong-motion un-
certainties is a mandatory part of any reliable seismic-
hazard study [168]. The variability in source-scaling rela-
tions reflects in part the complexity of the earthquake rup-
ture process, treated as an epistemic uncertainty (i. e. as
more data become available and seismologists better un-
derstand earthquake dynamics, this variability will even-
tually decrease). The standard deviation of the residuals,
obtained when deriving ground-motion prediction equa-
tions by regression analysis measures the aleatory vari-
ability (randomness) of ground-motion parameters. This
standard deviation, �l nY , is then partitioned into two er-
ror terms for the intra-event and inter-event variability,

�l nY D

q
�2inter C �

2
intra :

If the regression uses the geometric mean of the two hor-
izontal components and the component-to-component
variability is needed, a third term �comp has to be included.
The intra-event variability can be further separated into
a site-to-site component �comp, and the remaining vari-
ability �0 (after accounting for source and site effects):

�intra D
q
�2s C �

2
0 [52].

The standard deviation �l nY has previously been
found to be a function of magnitude (e. g. [5,157]) with de-
creasing variability for increasing magnitudes. However,
this counter-intuitive result could be affected by a sam-
pling bias due to fewer near-source strong-motion record-
ings for moderate-to-large earthquakes. More recent work
suggests that �l nY is independent of magnitude [2]. The
exact value of �l nY varies between different studies and
ground-motion parameters, but is generally in the range
0:4 � �l nY � 0:8. Including this standard deviation in the
ground-motion estimation is indispensable to assess the
variability in shaking intensity – common practice is to
use at least one or two standard deviations. However, for
critical infrastructures (e. g. nuclear power plants, nuclear
waste repositories), it is not clear where to truncate the
ground-motion distribution (i. e. how many � 0s to in-
clude, [177]) since very long return periods need to be
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considered and conclusive physical arguments for upper
limits on near-field ground motions have not yet been
made. Bommer et al. [33] demonstrate that the choice of
the truncation level will significantly affect seismic hazard
estimates at very low probabilities (annual frequencies of
exceedance of 10�6 and lower), while the effect on haz-
ard at probabilities traditionally used in PSHA (annual fre-
quencies of exceedance of 10�4) is small. The reason is that
low-probability seismic hazard may contain contributions
from rare but extreme ground-motion values.

The preceding discussion raises the issue of defin-
ing upper bounds of near-source ground motion [33].
For instance, the maximum values for PGA in the NGA-
database is PGA D 1:56 g (for the Tarzana record of
the 1994 Mw 6:7 Northridge earthquake), but values of
over 2 g have been reported for the 2004 Parkfield earth-
quake [167,168] or the 2003 Miyagi (Japan) earthquake.
Note that sites and events showing the largest PGA-values
generally do not coincide with those showing the high-
est PGV-values. For instance, the largest PGV-value re-
ported in the NGA-database is 205 cm/s (observed at sta-
tion TCU068 for the Mw 7:6 Chi-Chi earthquake, Fig. 4),
but the PGA at this site was only 0:53 g. PGV-values in
the NGA-database frequently exceed 75 cm/s, and values
of 100 cm/s are not uncommon. Closer inspection of the
rapidly growing online databank of near-source record-
ings, obtained with modern dense observational networks
(e. g. the K-Net and KiK-net stations in Japan) may return
even higher maximum PGA- and PGV-values than listed
above.

Current research addresses the physical limits to max-
imum ground motions, imposed by the complexity of
the source-rupture process, the wave propagation, the site
conditions and the strength of the rock. Investigating the
combination of these complex physical processes with nu-
merical methods and large-scale simulations helps to bet-
ter understand the overall distribution of ground-motion
parameters and their complexity.

An innovative observational method to examine max-
imum ground-motion has been developed by Brune and
colleagues [19,46,47,48,49,50], based on precariously bal-
anced rocks. These are free-standing (large) boulders, cre-
ated by erosional processes, which appear as if small
ground-accelerations could overturn (topple) them; this
toppling-acceleration can be measured. By also dating
the age of these rocks it is possible to determine which
ground-motion levels have not been exceeded in the cor-
responding time interval in this region. These “natural
seismoscopes” therefore provide important constraints for
maximum shaking levels and probabilistic seismic hazard
analysis.

Comparing Observations
with Empirical Predictions

The introduction of this article presents near-field ground-
motion observations for two recent well recorded earth-
quakes, the Mw 6:0 strike-slip earthquake in Parkfield
(09/28/2004) and the Mw 7:6 thrust-faulting earthquake
in Taiwan (09/20/1999) (Figs. 1–4). I now compare these
records against empirical predictions for a number of
widely used ground-motion attenuation relations. Fig-
ures 15 and 16 display recorded PGA for the Parkfield
event and spectral acceleration (STD2 sec

A ) for the Chi-Chi
earthquake, respectively. In both cases, the empirical pre-
dictions are generally consistent with the median of the
observations, but the large scatter in the data also leads to
observations occur far outside the standard 1�-bounds of
the predictions.

For the Parkfield data, observed PGA-values are
both higher and lower than empirically predicted
(for r < 100 km), and no obvious pattern is visible that
may explain the large ground-motion variability (Fig. 15).
Peak ground acceleration close to and above 1 g were ob-
served at a number of stations. At one site (station “Fault
Zone 16”), the PGA-value is estimated to be on the order
of 2.0–2.5 g [167]. The plotted PGA-values are not cor-
rected or grouped according to the soil classification for
each site, i. e. parts of the observed variability can be at-
tributed to site effects. However, much of the variability
originates from the particular position of each station with
respect to the spatial complexity of the earthquake rupture
process, and, to a lesser extent, from localized wave-prop-
agation phenomena.

Examining recorded motions and empirical predic-
tions for the Chi-Chi earthquake reveals an overall con-
sistency between the observed median spectral accelera-
tion (STD2 sec

A ) and ground-motion attenuation relations,
despite significant scatter in the data(Fig. 16). At large dis-
tances (RJB � 50 km) many of the recorded motions are
significantly larger than any of the empirical prediction,
while at distances close to the fault (RJB � 10 km) most of
the SA-values are significantly lower than predicted. This
unexpected behavior of lower than-predicted ground-mo-
tions for large surface-breaking earthquakes has been re-
cently observed for a number of earthquakes [105], and is
attributed to effects of earthquake source dynamics occur-
ring in the uppermost shallow and more compliant crustal
layers [126].

These two examples illustrate the large variability of
near-source motions recorded at a number of stations for
the same earthquake, thus characterizing the intra-event
variability described above. Site, path, and source effects
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GroundMotion: Complexity and Scaling in the Near Field of Earthquake Ruptures, Figure 16
Spectral accelerations (SA) at T D 2 s for ground-motion recordings of the Sept 20, 2004Mw 7:6 Chi-Chi (Taiwan) earthquake, com-
pared against five different empirical attenuation relationships. Data are plotted using the geometrical mean of the two horizontal
components (fault-normal and fault-parallel) (SA DpSAFN � SAFP). The Campbell & Bozorgnia [53] and Abrahamson & Silva [5] re-
lations contain a hanging-wall factor, indicated by the solid blue and black lines, respectively; the corresponding regular relations
are plotted with dashed lines. The median of the observations is consistent the empirical predictions, but the data exhibit large
variability, with much higher (and lower) motions than empirically predicted. Note that at large distances (RJB � 50 km) many sites
reveal higher-than-predicted spectral accelerations while at very short distances (RJB � 10km)many sites exhibit significantly lower
ground-motions

are responsible for this large degree of ground-motion
complexity, but separating the contributions of each of
these effects is difficult. Deciphering the detailed physical
processes and corresponding parameters that lead to a spe-
cific near-field ground-motion is an active area of research.
Ultimately, this will allow us to better model ground-mo-
tions and their variability for future earthquakes, a key in-
gredient for improved seismic hazard analysis.

Future Directions

This article reviews the complexity of near-field ground
motions, generated by the space-time-dependent het-
erogeneous earthquake rupture process, transformed by
wave-propagation through complex geologic structure
and inhomogeneous media, and finally subjected to local-
ized site conditions. As a consequence, the waveform com-

plexity recorded at dense strong-motion arrays provides
both a challenge and an opportunity for future research.

A largely overlooked aspect of ground-motion com-
plexity pertains to the rotational motions (also called
vorticity) of the displacement field. Translational ground
displacements (velocity, acceleration) are recorded as
seismograms used for monitoring seismic activity and
ground motions; strain measurements capture the defor-
mation of the Earth, but the theoretically predicted [6]
ground rotation (a vectorial quantity) has rarely been
reliably measured in the past. Observations of rota-
tional motions are challenging, due to their small am-
plitudes [42] and inadequate instrument sensitivity, but
recent work provides evidence that rotational motions
are significant [95,97,98,179]. Moreover, they are particu-
larly important for engineering applications [182,183] (see
� Earthquake Source: Asymmetry and Rotation Effects for
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a comprehensive review on rotational motions). As im-
proved sensors are developed to measure rotational mo-
tions, they may become a new observable for (engineer-
ing) seismology, potentially adding complementary infor-
mation on earthquake source processes, Earth structure,
and ground shaking [98]. For deciphering ground-mo-
tion complexity, rotational seismology constitutes a new
emerging research field; consequently, the International
Working Group on Rotational Seismology (IWGoRS) was
formed in 2006 to foster the exchange of ideas, data, and
software on rotational seismology.

As strong-motion arrays become more abundant and
better equipped, the recorded near-source seismograms
provide a wealth of information on the rupture process,
the wave-propagation phenomena and the site structure.
Harvesting these data to learn more about these complex
physical processes will be a research focus for years to
come. For example, current earthquake source inversions
generally use low-pass filtered seismograms ( f � 1Hz)
because of incomplete knowledge of Earth structure at
shorter wavelengths and the increasing ill-conditioning of
the inverse problem as higher frequencies are included.
This limitation does not allow proper imaging of high-
frequency radiation on the fault, excited at small-scale
geometrical complexities or by sudden changes in the dy-
namic rupture process. Those higher frequencies, how-
ever, are particularly damaging to much of the built en-
vironment and critical for reliable seismic hazard studies.

Currently, seismologists either estimate earthquake
source properties and assume an Earth model, or simplify
the source to a known mechanism to understand Earth
structure. Future work will increasingly consider earth-
quake source modeling and imaging of Earth structure as
a coupled (joint) inverse problem, potentially including
shorter wavelength and/or deriving appropriate stochas-
tic media characterizations. With the advent of high-per-
formance computing facilities and innovative numerical
methods (see � Seismic Wave Propagation in Media with
Complex Geometries, Simulation of) [61,112,149], multi-
level optimization strategies will be developed to solve the
highly non-linear inverse problem of inferring earthquake
rupture dynamics from radiated seismic waves that prop-
agate through heterogeneous media.

Empirical ground-motion equations remain impor-
tant in engineering practice, but accurately quantifying
ground-shaking variability for GMPE’s continues to be
difficult, despite an increasing number of near-source
recordings. It is likely that each future large earth-
quake, recorded by a dense network, may generate un-
usual ground-motions outside the commonly assumed
standard-deviation of current empirical predictions. Pre-

cise and reliable ground-motion estimation is the key
challenge for seismologists and earthquake engineers for
proper seismic hazard assessment and earthquake loss
mitigation in future events. This task requires the ablil-
ity to model not only median values of ground-mo-
tion intensity, but also to accurately capture their vari-
ability. Moreover, it will become increasingly impor-
tant to not only model scalar ground-motion intensities,
but to compute large suites of realistic synthetic near-
field seismograms that reproduce the observed ground-
motion complexity. Thus, innovative source-modeling
approaches are required to capture the complexity of
the dynamic rupture process (e. g. [77,120]). Multi-scale
dynamic simulations with initial conditions based on
stochastic parameter distributions [133,151], need to be
coupled to large-scale broadband wave-propagation com-
putations (e. g. [138,139]) for many realizations of hetero-
geneous Earth models (perhaps with stochastic properties
at short wave-lengths). Such simulation-based ground-
motion prediction is needed to advance the current prac-
tice in seismic hazard assessment.
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Glossary

Facilitator Person who guides the group process in group
model building.

Gatekeeper Person who forms the linking pin between
modeling team and management team.

Knowledge elicitation Process of capturing the knowl-
edge contained in the mental models of teammembers
of the management team.

Modeler Person who constructs the quantified model
during group model building.

Recorder Person who takes notes during group model
building sessions and constructs workbooks.

Reference mode Graph(s) showing the behavior of the
problem over time.

Workbook Booklet which contains summary of previous
group model building sessions and prepares for subse-
quent sessions.

Client Person (or agency) who buys a model.

Definition of the Subject

Computer (simulation) models have been used to support
policy and decision making in the decades after World
War II. Over the years modelers learned that the appli-
cation of these models to policy problems was not as
straightforward as had been thought initially. As of the be-
ginning of the 1970s studies started to appear that ques-
tioned the use of large-scale computer models to support
policy and decision making (cf. [24,31]). Lee’s article bears
the significant title: ”Requiem for large scale models“,
a statement that leaves little room for ambiguity. Other au-
thors who have studied the impact records of computer
models also seem rather sceptical (e. g. [9,22,25,73]). It
is interesting to note that Greenberger et al., after inter-
viewing both modelers and policy makers (for whom the
models were constructed) found that modelers generally
pointed to the fact that they learned a lot from modeling
a particular policy issue. Policy makers on the other hand
indicated that they did not really understand the models
nor had much confidence in them. The results of these
studies pointed in the direction of learning from computer
models, i. e. conceptual or enlightenment use rather than
instrumental use, where policy recommendations could
straightforwardly be deduced from the model analysis and
outcomes. In other words it is in the process of model-
ing a policy problem where the learning takes place which
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is required to (re)solve a problem. And it is also in this
process that one needs to anticipate the implementation of
policy changes. By the end of the 1970s system dynamics
modelers pointed out that implementation of model out-
comes was a neglected area (e. g. [50,74]) and that model-
ers sometimes naively assumed that implementation was
straightforward, thereby neglecting organizational deci-
sion making as a political arena.

In other words client participation in the process of
model construction and analysis is required for successful
modeling and implementation of insights from the model
into policy making. Or as Meadows and Robinson put it:

Experienced consultants state that the most impor-
tant guarantee of modelling success is the interested
participation of the client in the modelling process
(p. 408 in [34]).

Over the years this has given rise to all kinds of experi-
ments to involve clients in the process of model construc-
tion. In the 1990s the term Group Model Building was in-
troduced to refer to more or less structured approaches for
client involvement in system dynamics model construc-
tion and analysis.

Introduction

From the early days of the field, the topic of client involve-
ment in the process of model construction has raised at-
tention in the system dynamics literature. Jay Forrester,
the founder of the field of system dynamics, has repeat-
edly indicated that most of the knowledge needed to con-
struct a system dynamics models can be found in the
mental database of the participants of the system to be
modeled [20,21]. Over the years several system dynamics
modelers have experimented with approaches to involve
client (groups) in model construction and analysis. This
development in the system dynamics community paral-
lels a movement in the operational research and systems
fields towards more attention for stakeholders’ opinions.
A number of authors (e. g. [1]) criticized traditional OR
and systems approaches as unsuitable for ill-structured
problems that arise from differences between stakeholders’
views on the problem. For ill-structured problems a range
of new methods was developed [35].

The developments in the system dynamics, operational
research and systems communities have given rise to a set
of distinct methods and approaches. However, practition-
ers work on problems that have clear similarities to those
encountered in other disciplines and frequently borrow
techniques from one another. The boundaries between
methods are therefore difficult to draw and there is a de-

gree of overlap between approaches in and between fields.
Below we first describe the distinguishing characteristics
of system dynamics, as this separates group model build-
ing most clearly from other approaches fostering client in-
volvement. We then describe a number of distinct group
model building approaches.

System Dynamics

System dynamics is most easily characterized by its em-
phasis on two ideas: (a) the importance of closed loops of
information and action for social systems, i. e. social sys-
tems as information feedback systems and (b) the need to
use formal models to study these loops. System dynami-
cists assume that the dynamic behavior of a social system is
the result of its underlying feedback structure. Actors use
the information about the structure as input to their de-
cisions, and by implementing their decision influence sys-
tem behavior. This creates an interlocked chain of action
and information which is also known as a feedback loop.
Richardson (see p. 1 in [44]) describes a feedback loop as
follows:

The essence of the concept . . . is a circle of interac-
tions, a closed loop of action and information. The
patterns of behavior of any two variables in such
a closed loop are linked, each influencing, and in
turn responding to the behavior of the other.

As an illustration of the use of information on the sys-
tem state in decisions, imagine a simple example on cus-
tomer behavior. Let us assume that if customers perceive
that a product’s functionality increases,more products will
be bought. This will increase profits and thereby the de-
sign budget. An increased design budget can be used to
improve the product’s design, which will lead more cus-
tomers to buy the product, and so on. Thus, decisions of
actors within the system have an important influence on
the system’s behavior. If we continue to add other factors
and relations to our example and capture these in a model,
the diagram in Fig. 1 may result.

As Fig. 1 shows, a causal loop diagram consists of vari-
ables, relationships, and feedback loops. Relations can be
of two types: positive and negative. A positive relation in-
dicates that both variables change in the same direction. In
the model above, an increase in retail price will lead to an
increase in profits, indicating a positive relationship. Vari-
ables in a negative relationship change in opposite direc-
tions. An increase in costs will decrease profits, indicat-
ing a negative relationship. The snowball rolling down the
slope in the right hand side of Fig. 1 indicates a positive
feedback loop. We assumed that an increase in profit re-
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Group Model Building, Figure 1
Example of a causal loop diagram

sults in a direct increase in the design budget. A higher
budget allows for increased product functionality, which
increases sales volume and finally profit. Starting from an
increase in profit, the result is a further increase in profit.
This is a so-called positive or self-reinforcing loop. How-
ever, if we assume that the design department uses its com-
plete budget each year, an increased budget will contribute
to design costs and lower profits. This is a negative or bal-
ancing loop, indicated by the balance symbol.

The second important idea in system dynamics is that
formal models are necessary to understand the conse-
quences of system structure. Since system dynamics mod-
els containmany (often non-linear) relations and feedback
loops, it becomes very difficult to predict their behavior
without mathematical simulation. Systems are assumed to
consist of interacting feedback loops, which may change
in dominance over time. Diagrams such as the one de-
picted above are frequently used in the interaction with
clients. Before the dynamic consequences of the structure
captured in Fig. 1 can be studied, it is necessary to further

Group Model Building, Figure 2
Example of a stock and flows diagram

specify both the variables and relations used in the model.
Two categories of variables are distinguished: stocks and
flows. Stocks are entities existing at a certain time period,
for example supplies, personnel, or water in a reservoir.
Flows are entities measured over a time period, such as
deliveries, recruitment, or inflow of water. Relationships
are separated into physical flows and information flows. If
we capture differences between stocks and flows and infor-
mation and physical flows in a diagram, a stock and flows
diagram results.

As can be seen in Fig. 2, information links are depicted
with a single arrow and physical flows with a double arrow.
The physical human resources flow is separated in three
stocks: number of rookies, number of junior researchers,
and number of senior researchers. Recruitment will lead
to an increase in the number of rookies. Two other flows
influence the number of people in the stocks: rookies may
be promoted to junior researchers and junior researchers
may be promoted to senior researchers. The human re-
sources flow is related to the project flow with informa-
tion links, for instance indicating that acquisition of re-
search projects is determined by the number of senior re-
searchers.

Group Model Building Approaches

As pointed out before, client involvement has been impor-
tant to system dynamics from the start of the field. Sys-
tem dynamics emphasizes feedback loops and the use of
formal models. In this section we describe how models
based on these ideas are built in interaction with actors and
stakeholders in the problem at hand. A number of differ-
ent participative model building formats can be identified,
i. e. the reference group approach [43,61]; the stepwise ap-
proach [76]; the Strategic Forum [49]; modeling as learn-
ing [29]; strategy dynamics [71,72] and Hines’ “standard
method” [39]. Below we describe each approach briefly.
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In the Reference Group approach [43,61] participation
takes the form of frequent interaction between the model-
ing team and a group of eight to ten clients. The approach
starts with the identification of interest groups, of which
representatives are invited to contribute to the modeling
effort. The representatives are referred to as referents. In
a series of interviews and meetings, the problem to be ad-
dressed is defined more specifically. On the basis of this
definition and the information gathered in the interviews
and meetings, the modeling team develops a preliminary
model. In the remainder of the project the modelers are
responsible for model improvements while the referents
function as critics. This model is elaborated in a series of
meetings and is at the same time used as a tool for struc-
turing the discussion. In later sessions, model output is
used for developing scenarios. In a scenario discussion the
model is run and results are described and analyzed by
the modelers. The reference group is then asked to de-
termine to what extent the model’s behavior corresponds
to their expectations about reality, and if it does not, to
suggest changes. These suggestions can trigger changes in
the model structure, initiating a new round in the discus-
sions.

The stepwise approach [76] is founded on the idea
that full quantification of models is not always possible
or desirable. The approach starts with a definition of the
problematic behavior. If possible, this definition is given
in the form of a behavior over time of the problem of in-
terest. Modeling starts by roughly sketching the feedback
loops responsible for this behavior. The key variables re-
lated to the cause for concern are identified, followed by
the system resources connected to these key variables and
their initial states. The resources are used to derive the
central stocks in the system. From the resources, the re-
source flows can then be sketched with the associated rates
of conversion. Delays are added to these flows if they are
significant. Next, organizational boundaries, flows of in-
formation and strategies through which the stocks influ-
ence the flows, are added. Again, if there are significant
delays, these are added to the information linkages. In the
final step, information flows and strategies linking differ-
ent resource flows are added. The steps are repeated until
the relevant feedback loops have all been included. Wol-
stenholme indicates that these steps often provide the in-
sights necessary to infer system behavior from the struc-
ture, which reduces the need for quantification. Models
can also be analyzed in a qualitative manner.

The steps that make up the Strategic Forum [49] pro-
vide a detailed insight of how clients are encouraged to
participate in modeling. The strategic forum consists of
eight steps, of which the first two are conducted before

the actual meeting (also called the forum) with the client
group. The process begins with interviews prepared by
a small questionnaire, in which three issues are addressed:
ideas on the current situation, a statement of the vision
for the future, and agreement on a preliminary map of the
problem. On the basis of the interviews, the modeler con-
structs an integrated map and accompanying computer
model. In the second step the project team designs a num-
ber of small group exercises that will be used during the
forum. The exercises are aimed at discovering important
structural and behavioral elements and are similar to the
scenario discussions in the reference group approach. The
most important difference is that before simulation results
are shown, participants have to ‘put a stake in the ground’,
i. e. they have to make a prediction of model behavior on
the basis of a change in a policy variable and values for
connected parameters. The model is then simulated and
results are compared with participants’ expectations. Dis-
crepancies between predictions and simulations are iden-
tified, and might point to inconsistencies in participants’
ideas or lead to model improvements. In the following
steps the participants meet in a series of workshops. Each
workshop opens with an introduction and a big picture
discussion. The heart of the session consists of exercises
aimed at internal consistency checks, addressing the con-
sistency between the group’s mental model and the com-
puter model. As in the other approaches, model structure
will be changed if inconsistencies with the participants’
ideas on the problem are revealed. In the final phase of
policy design, potential consequences of strategic policies
are addressed and the existing capability of realizing the
strategic objectives. A wrap-up discussion and identifica-
tion of follow-up activities concludes the Strategic Forum.

Richmond (see p. 146 in [49]) emphasizes that the
main purpose of the Strategic Forum is to check the con-
sistency of strategy. The insights gained by the client there-
fore frequently lead to changes in strategy or operating
policies, but less frequently to changes in objectives or the
mission statement. One important element of ensuring an
impact on participants’ ideas is the (dis)confirmation of
expectations on simulation outcomes.

Lane [29] describes a modeling approach developed
at Shell International Petroleum, known as ‘modeling as
learning’. Lane explicitly sets this approach apart from the
widely used expert consultancy methodology (e. g. [58]).
His approach also puts strong emphasis on involving deci-
sion makers in the modeling process. By showing decision
makers the benefits of participation early on in the process,
an attempt is made to persuade them to spend time in di-
rect interaction with the model. The approach centers on
capturing and expressing the client’s ideas, initiating a dis-
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cussion on the issue with ‘no a-priori certainty regarding
quantification, or even cause and effect’ (see p. 70 in [29]).
The modelers also strive to include both hard as well as
‘soft’ aspects of the problematic situation. In doing this, it
is hoped that the clients’ ideas are included in the model
and that ownership is created. This is encouraged by mak-
ing models and model output transparent to participants,
helping the client ‘to learn whichever techniques are used
in a project’ (see p. 71 in [29]). Lane states that the focus
throughout the approach is on a process of learning, using
such elements as experimentation with the model, testing
of assumptions and representing and structuring ideas in
a logical way.

Hines’ approach [39] starts off by diagnosing the prob-
lem. This step comes down to gathering and cluster-
ing problem variables. Problem behavior is visualized by
sketching the graph over time of the problematic behav-
ior. In the second step the structure underlying the prob-
lematic behavior is captured in a causal diagram. This so-
called dynamic hypothesis incorporates many of the prob-
lem variables identified earlier. The diagram helps to clar-
ify the boundary of the problem that will be addressed and
thus limits the project scope. The next step is to identify
accumulations in the system, which will form the stocks
in the system dynamics model. In the construction of the
computer model most work is done by the modelers, with
client participation limited to providing data such as nu-
merical values and details of the work processes relevant
to the problem at hand. Model structure and behavior is
then explained to the client. Discussions with the client
then lead to a series of model iterations, increasing confi-
dence of the client in model calibration and validity. Sim-
ilar to other participative approaches, policy runs are used
to test proposed interventions in the problem.

Warren [71,72] describes an approach to participative
modeling that strongly focuses on identifying accumula-
tions (stocks) in the system. In order to identify central
accumulations, clients are asked to identify the strategic
resources in the problem at hand. Increases and decreases
in resources then lead to the identification of flows. War-
ren’s approach differs from the ones described above in
the sense that stocks and flows are differentiated from
the outset. This means that causal loop diagrams are not
used. In addition, graphs over time are recorded next to
each variable in the model. By gradually adding elements
to the model while visually relating structure and behav-
ior, the clients’ understanding of the problem is gradually
increased.

As mentioned before, the boundaries around ap-
proaches are not easy to draw and one method may ‘bor-
row’ techniques of another. Insights and practices from the

operational research and system fields have been merged
with those in system dynamics to develop combinedmeth-
ods. For example, modeling as learning is one of the ap-
proaches incorporating elements of soft operational re-
search methodologies. Lane and Oliva [30] describe the
theoretical basis for integrating system dynamics and soft
systems methodology. The cognitive mapping approach
(e. g. [17]) also offers tools and techniques that are used
in system dynamics studies.

In addition to combining different methods, ap-
proaches are sometimes also tailored to use in specific con-
tent areas. An example is van den Belt’s [63] mediated
modeling, which combines insights from participative sys-
tem dynamics modeling and consensus building on envi-
ronmental issues.

GroupModel Building: Basic Ideas and Concepts

The separate approaches described in the last section
continue to be developed and used in practical prob-
lems. Although we are not sure that all proponents of
these approaches would characterize themselves as using
“group model building”, this term has been used more
and more in the last decades to refer to system dynam-
ics approaches with client involvement in a general sense.
The two approaches that coined the term group model
building evolved more or less simultaneously, with con-
siderable cross-fertilization of ideas, at SUNY at Albany
and Radboud University Nijmegen in the Netherlands
(see [36,69]). In an early application at Radboud Univer-
sity, participants were involved in a Delphi study consist-
ing of mailed questionnaires and workbooks, followed by
workshops [66]. In the dissertations by Verburgh [70] and
Akkermans [4] a similar approach is used under the name
of participative policy modeling and participative business
modeling, respectively. In its latest version group model
building is a very open approach, which allows for the use
of preliminarymodels or a start from scratch, uses individ-
ual interviews, documents and group sessions, qualitative
or quantitative modeling and small as well as largemodels.
Vennix [64,65] provides a set of guidelines for choosing
among these different approaches, building on and adding
to the studies mentioned above. Andersen and Richard-
son [5] provide a large number of “scripts” that can help
in setting up modeling projects. The procedures described
are a long way from the earlier descriptions of a set of
steps that seem to prescribe standard approaches applica-
ble to most modeling projects. Instead, the guidelines of-
fered have more the appearance of tool boxes, from which
the appropriate technique can be selected on the basis of
problem characteristics and the clients involved.
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Group model building is generally conducted with
a group of at least six and up to 15 people. The group is
guided by at least two persons: a facilitator and a mod-
eler/recorder. The group is seated in a semi circle in front
of a whiteboard and/or projection screen, which serves
as a so-called group memory. A projection screen is typ-
ically used when a model is constructed with the aid of
system dynamics modeling software with a graphic inter-
face (e. g. Vensim, Powersim, Ithink). This group memory
documents the model under construction and is used as
a parking lot for all kinds of unresolved issues which sur-
face during the deliberations of the group.

In Fig. 3, the small circles indicate the persons present
in the session. Apart from the participants, there is a fa-
cilitator and a recorder. The facilitator has the most im-
portant role in the session as he or she guides the group
process. His/her task, as a neutral outsider, is to (a) elicit
relevant knowledge from the groupmembers, (b) to (help)
translate elicited knowledge into system dynamics model-
ing terms, and (c) make sure that there is an open commu-
nication climate so that in the end consensus and commit-
ment will result. The recorder keeps track of the elements
of the model. In Fig. 3 (s)he is seated behind a computer
and the model is projected on the screen in front of the
group. A separate whiteboard (upper right hand corner) is
used to depict the reference mode of behavior and record
comments or preliminary model structure. As the model
is visible to all participants, it serves as a group memory
that at each moment reflects the content of the discussion
up to that point. A group model building session is gen-
erally conducted in the so-called chauffeured style, where
only the facilitator uses electronic support and projection
equipment, while participants do not have access to elec-
tronic communication media [38]. The central screen or
whiteboard will be used to depict the model, as shown in
Fig. 3.

The role of liaison between the organization and the
modeling team is performed by the gatekeeper, who is gen-
erally also a member of the participant group. The gate-
keeper is the contact between both parties, and has an im-
portant role in the decision which participants to involve
in the sessions. Apart from the gatekeeper, the facilita-
tor and the recorder, two other roles may be important
in a modeling session [46], i. e. a process and a model-
ing coach. The process coach functions as an observer and
primarily pays attention to the group process. The model
coach needs to be experienced in system dynamics mod-
eling but might also be an expert in the content area as
well. As Richardson and Andersen [46] point out, all roles
are important in group model building but not all of them
have to be taken up by a single person. One person might

Group Model Building, Figure 3
Typical room layout for group model building with participants
seated in a semi-circle, white board and facilitator in front, and
computer and overhead projector (adapted from [5])

for instance combine the roles of facilitator and process
coach. Taken together, these different roles constitute the
facilitation or modeling team.

In principle the group follows the normal steps in the
construction of a system dynamics model. This means that
the first step is the identification of the strategic issue to be
discussed, preferably in the form of a so-called reference
mode of behavior, i. e. a time series derived form the sys-
tem to be modeled which indicates a (historical) undesir-
able development over time. As an example let us take the
sales of a software product. An initial problem statement
might be falling profit. Typically the problematic behavior
will be depicted in a graph over time as in Fig. 4.

In the graph above, a projection of the expected behav-
ior is included for the years after 2008.

The next step is to elicit relevant variables with which
the model construction process can be started. Depend-
ing on the type of problem this will take the form of either
a causal loop diagram or a stocks and flow diagram and
is generally referred to as the conceptualization stage. The
following step is to write mathematical equations (model
formulation) and to quantify themodel parameters. As de-
scribed in the introductory section, most of the model for-
mulation work is done backstage as it is quite time con-
suming andmembers of a management team generally are
not very much interested in this stage of model construc-
tion. In this stage, the group is only consulted for crucial
model formulations and parameter estimations. Experi-
enced groupmodel builders will start to construct a simple
running model as soon as possible and complicate it from
there on if required. In the end the model should of course
be able to replicate the reference mode of behavior (as one
of the many validity tests) before it can be sensibly be used
as ameans to simulate the potential effects of strategies and
scenarios.
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Group Model Building, Figure 4
Problem description in graphical form: reference mode of behavior

Objectives of Group Model Building

As mentioned in the introduction, the founder of system
dynamics has repeatedly pointed out that much of the
knowledge and information which is needed to construct
a model can be found in the mental models of system par-
ticipants. At first sight it may seem that the most impor-
tant objective of building a system dynamics model is to
find a robust strategy to solve the problem of the orga-
nization. In the end that is why one builds these models.
From this perspective the most important issue in group
model building is how to elicit the relevant knowledge
from the group. However, as stated before, decision mak-
ing in organizations has its own logic, and in many cases
there is quite some disagreement about the problem and
how it should be tackled. No wonder that implementa-
tion of model outcomes is difficult if the model building
process is not well integrated with decision making pro-
cesses in organizations, when it comes to creating agree-
ment and commitment with a decision. From that per-
spective knowledge elicitation is only one element in the
process of model construction. It is not somuch the model
but to a greater extent the process of model construction
which becomes important. Somewhat simplified one could
say that in the “standard” approach when an organization
is confronted with a strategic problem it hires a modeler
(or group of modelers) to construct a model and come
up with recommendations to “solve” the problem. How-
ever, in most cases these recommendations become part
of the discussion in the management team and get misun-
derstood, or adapted or frequently just disappear as a po-
tential solution from the discussion. Hence Watt’s title of
his paper: “Why won’t anyone believe us?” becomes very
much understandable from the point of view of the mod-

eler. So rather than creating a situation where modelers
“take away” the problem from the organization and (af-
ter considerable time) return with their recommendations,
the model building process is now used to structure the
problem, guide communication about it and test the ro-
bustness of strategies taking into account other criteria
and information which is not included in the model, but
does play a role for the organization when making the de-
cision. Stated differently, the model building process now
becomes intertwined with the process of decision making
in an organization. And this in turn means that other ob-
jectives than knowledge elicitation become important.

Simultaneously with the attempts to involve clients in
the process of constructing system dynamics models the
objectives of group model building have been defined at
several levels, i. e. the individual, the group and the or-
ganizational level (cf. [7,65]). The main goal at the indi-
vidual level is change of mental models and learning. The
idea is that participants should better understand the re-
lationship between structure and dynamics and how their
interventions may create counterintuitive results. Unfor-
tunately research has revealed that this is hardly the case.
Even after extensive training people have difficulty to un-
derstand the relationship between structure and dynamics
(for a review see [8,53]). A second goal at the individual
level is behavioral change. Frequently the conclusions of
a modeling intervention point in the direction of behav-
ioral change, for example implementing a new job rota-
tion scheme, or a change in purchasing policy. The ques-
tion can then be asked how insights from the modeling in-
tervention are translated to changes in behavior. Rouwette
(e. g. [52,53,57]) uses a framework from social psychol-
ogy to understand the impact of modeling on behavior.
The theory of Ajzen [2,3] explains behavior on the basis of
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Group Model Building, Table 1
Objectives of groupmodel building (cf. [53])

Individual Positive reaction
Mental model refinement
Commitment
Behavioral change

Group Increased quality of communication
Creation of a shared language
Consensus and alignment

Organization System changes
System improvement or results

Method Further use
Efficiency

(a) attitude, (b) perceptions of norms and (c) perceptions
of control. It seems likely that each of these concepts is in-
fluenced in modeling sessions. When for example model
simulations reveal unexpected levers for improving sys-
tem behavior, we can expect that perceived control will in-
crease. Another example: let’s imagine that a manager is
participating in a modeling session, where another partic-
ipant reveals positive outcomes of a certain policy option.
If these positive outcomes were previously not known to
the manager, hearing them might make his/her attitude
towards that option more positive (cf. [42]).

At the group level objectives refer to mental model
alignment [28] and fostering consensus [51,67,75]). Cre-
ating consensus should not be confused with premature
consensus, i. e. not discussing conflicting viewpoint. Here
it concerns creation of consensus after critical debate and
discussion of opinions has taken place. This type of discus-
sion which needs to take place in a cooperative communi-
cation climate is helpful to also create commitment with
the resulting decision.

At the organizational level goals have been discussed
as system process change (are things done differently) and
system outcome change (are customers impacted differ-
ently) [11]. Although it has to be pointed out that in many
cases system changes are the result of changes in attitude
and behavior of participants in the system. An overview of
groupmodel building objectives is given in Table 1. In this
table finds a number of additional objectives such as pos-
itive reaction and creation of a shared language, that are
more fully reviewed by Huz et al. [28], Rouwette et al. [55]
and Rouwette and Vennix [53].

Designing GroupModel Building Projects

When designing group model building projects there are
a number of questions that need to be addressed. The first
concerns the suitability of system dynamics for the prob-

lem at hand. System dynamicists generally say that a prob-
lem needs to be dynamically complex in order to be suit-
able to model it through system dynamics. This means
that one should at least hypothesize that there are posi-
tive and negative feedback process underlying the prob-
lem. From a more practical point of view one could say
that one should be able to represent the problem in the
form of a reference mode of behavior. If the latter is not
possible one should seriously question the use of system
dynamics for the problem.

A second issue which needs to be given some thought
is the question whether to use qualitative or quantitative
modeling. Within the system dynamics community there
is still a debate about the question whether qualitative
modeling (or: mapping) can be considered system dynam-
ics (see [13,14,23]). In short those who disagree point out
that without quantification and simulation one cannot re-
liably develop a robust policy simply because the human
mind is not capable of predicting the dynamic effects of
(interventions in) a dynamically complex structure. Those
who do use mapping on the other hand point out that
mapping in itself can have the beneficial effect to struc-
ture the problem and at least will make managers aware
of potential underlying feedback loops and their poten-
tial counterintuitive effects when intervening in a dynami-
cally complex system. Basically the issue to quantify or not
depends on the goals of the group model building inter-
vention. If the ultimate goal is to find robust policies then
quantification is required. However, if the aim is to struc-
ture a problem and to create consensus on a strategic issue
then qualitative modeling may be all that is needed. This
links up with Zagonel’s [77] distinction between the use
of models as micro worlds or as boundary objects. When
used as a boundary object the emphasis is on support-
ing negotiation and exchange of viewpoints in a group.
This is clearly the case when problems are messy, i. e. con-
nected to other problems and when there is much diver-
gence of opinion on what the problem is and sometimes
even whether there is a problem at all.

A third issue is the question who to involve in the ses-
sions. There are a number of criteria which are generally
employed. First it is important to involve people who have
the power to make decisions and changes. A second crite-
rion is to involve people who are knowledgeable about the
problem at hand. A third criterion is to involve a wide va-
riety of viewpoints, in order to make sure that all relevant
knowledge about the problem is included. Of course these
guidelines may create dilemmas. For example, involving
more people in the process will make the group commu-
nication process more difficult. This may in turn endanger
the creation of consensus and commitment.
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Group Model Building, Table 2
Group model building scripts (cf. [5])

Phase in modeling Script
Defining a problem Presenting reference modes

Eliciting reference modes
Audience, purpose, and policy options

Conceptualizingmodel Sectors, a top down approach
structure Maintain sector overview while working within a sector

Stocks and flows, by sector
Name that variable or sector

Eliciting feedback Direct feedback loop elicitation
structure Capacity utilization script

System archetype templates
“Black box” means-ends script

Equation writing and Data estimation script
parametrization Model refinement script

“Parking lot” for unclear terms
Policy development Elicitingmental model-based policy stories

Create a matrix that links policy levers to key system flows
“Complete the graph” policy script
Modeler/reflector feedback about policy implications
Formal policy evaluation usingmultiattribute utility models
Scripts for “ending with a bang”

Another issue is whether to use a preliminarymodel or
to start from scratch (see [45]). Although using a prelimi-
nary model may speed up the process the inherent danger
is that it will be difficult to build group ownership over the
model. Group ownership is clearly required to create con-
sensus and commitment.

Finally, a range of methods and techniques is avail-
able to elicit relevant knowledge both from individuals
and from groups. When it comes to individuals, well
known methods are interviews, questionnaires and so-
called workbooks. The latter are a kind of modified ques-
tionnaires, which are used in between sessions to report
back to the group and ask new question in preparation
of the next session. Interviews are being used routinely as
a preparation for group model building sessions.

If a decision is made on the issues discussed above, the
next important question is how to plan and execute the
modeling sessions. This question is a central topic in the
group model building literature and its success heavily de-
pends on the correct choice of available techniques and the
quality of the facilitator.

Conducting GroupModel Building Sessions

Although careful preparation of groupmodel building ses-
sions is a necessity, the most important part of the whole

project is what happens in the group model building ses-
sions themselves. During the sessions not only the analysis
of the problem takes place (and the model is constructed),
but also the interaction process between members of the
management team unfolds. It is this interaction process
which needs to be guided in such a way that consensus and
commitment will emerge and implementation of results
will follow. As pointed out the process is guided by the
group facilitator, generally someone who is not only spe-
cialized in facilitation of group processes but also in system
dynamics model construction. The facilitator is supported
by a recorder or modeler who helps constructing the sys-
tem dynamicsmodel while the facilitator interacts with the
management team.

The facilitator may choose from a wide variety of tech-
niques in setting up and conducting a session. As a foun-
dation for choosing techniques, Andersen and Richard-
son [5] develop a set of guiding principles and so-called
scripts for group model building sessions. Guiding princi-
ples capture basic ideas in the interaction with clients, such
as break task/group structure several times each day, clar-
ify group products, maintain visual consistency and avoid
talking heads. Scripts are more concrete instances of these
principles and refer to small elements of the interaction
process [5,32]. The Table 2 shows scripts described in An-
dersen and Richardson’s [5] original paper.
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In choosing a script it is first important to be aware
of the phase that is relevant in the project at that time.
A common starting point, as we saw in the description of
group model building approaches, is to define the central
problem of interest. The reference mode of behavior can
function as a guideline for involving clients in this phase.
Once the central problem is clear, a logical next step is to
move towards model conceptualization. In this step again
a number of options are available. Andersen and Richard-
son [5] describe a script for identifying sectors that are im-
portant in the problem. An alternative is to start withmore
concrete variables in the problem, using a Nominal Group
Technique [15].

Whatever scripts and techniques a facilitator employs
it is important that (s)he displays the right attitude and
uses the correct skills. Several different aspects of attitude
are important. First of all the facilitator is not the person
who thinks (s)he knows the best solution, but needs to be
helpful in guiding the group to find a solution to the strate-
gic problem the organization is faced with. Second, a facil-
itator should be neutral with respect to the problem that
is being discussed. Being too knowledgeable about a par-
ticular problem area (e. g. strategic alliances) may thus be
dangerous, because it creates the tendency to participate
in the discussions. Rather than being an expert, having
an inquiry attitude (i. e. asking questions rather than pro-
viding answers) is more helpful to the group. Finally, in-
tegrity and being authentic is important. Relying on tricks
to guide the process will prove counterproductive, because
people will look through them.

When it comes to skills, a thorough knowledge and
experience in constructing system dynamics models is
of course indispensable. Second, a facilitator needs to be
knowledgeable about group process and have the skills to
structure both the strategic problem as well as the group
interaction process. For the latter, special group process
techniques (e. g. brainstorming, Nominal Group Tech-
nique, Delphi) may be used, and knowledge about and
skills in applying these techniques is of course a prereq-
uisite for a successful group model building intervention.
Finally, communication skills are important. Reflective lis-
tening is a skill which will help to prevent misunderstand-
ing in communication, both between participants and the
facilitator and between group members. For a more thor-
ough discussion of these attitudes and skill in the context
of group model building we refer to Vennix [64].

Researching GroupModel Building Effectiveness

In the previous sections we described goals of groupmodel
building projects and principles and scripts for guiding the

modeling process. In this section we consider the empir-
ical evidence for a relation between modeling interven-
tions and these intended outcomes. Empirical evidence
can be gathered using a variety of research strategies, such
as (field) experiments, surveys or (in-depth) case studies.
According to the review of modeling studies by Rouwette
et al. [55], the case study is the most frequently used de-
sign to study group model building interventions. We first
report on the results found by these authors and then turn
to other designs.

In the meta-analysis of Rouwette et al. [55], the major-
ity of group model building studies uses a case study de-
sign and assesses outcomes in a qualitative manner. Data
are collected using observation, and a minority of stud-
ies employs individual group interviews. Case reports may
be biased towards successful projects and are frequently
not complete. The outcomes of themodeling projects were
scored along the dimensions depicted in Table 1 in the sec-
tion on modeling goals. The findings show positive out-
comes in almost all dimensions of outcomes. Learning
about the problem seems to be a robust outcome of group
model building, for example:

� Of 101 studies that report on learning effects, 96 indi-
cate a positive effect;

� Of 84 studies focusing on implementation of results, 42
report a positive effect.

Another set of studies, using quantitative assessment of
results is described by Rouwette and Vennix [53]. Al-
though the research surveyed so far indicates positive ef-
fects of modeling on outcomes such as mental model re-
finement, consensus and implementation of results, im-
portant challenges remain. Research so far has paid lit-
tle attention to the complexity of the intervention as de-
scribed in the previous section. Pawson and Tilley [40]
urge us not to assume that interventions are similar and
lead to similar effects, since this would confuse meaning-
ful differences between studies. Rouwette and Vennix [53]
describe two ways to learnmore about the process through
which outcomes of modeling are created: base research
more on theory and/or to conduct research in more con-
trolled settings. At present only few studies address ele-
ments of group model building in a controlled setting.
Shields [59,60] investigates the effect of type of modeling
and facilitation on a group task. Most research on the use
of system dynamics models concerns so-called manage-
ment flight simulators. These studies aim to mimic the im-
portant characteristics of decision making in complex, dy-
namic problems, and test the effectiveness of various deci-
sion aids. Results are reviewed by Sterman [62], Hsiao and
Richardson [26] and Rouwette, Größler and Vennix [56].
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Increased attention to theories may shedmore light on
the way in which modeling effects group decisions. The-
ories can help in specifying relations which can then be
tested. Explanatory research is needed to connect the com-
ponents and outcomes of group model building interven-
tions (see p. 194 in [7]). In the field of system dynamics
modeling, two attempts at formulating theories on mod-
eling components and outcomes are the work of Richard-
son et al. [47] and Rouwette [52]. The framework formu-
lated by Rouwette [57] builds on the theories of Ajzen [2,3]
and Petty and Cacioppa [42] described earlier. Richard-
son et al. [47] separate mental models into means, ends
and means-ends models. The ends model contains goals,
while the means model consists of strategies, tactics, and
policy levers. The means-ends model contains the con-
nection between the two former types of models and may
contain either detailed “design” logic or more simple “op-
erator” logic. On the basis of research on participants in
a management flight simulator [6], the authors conclude
that operator logic, or high level heuristics, is a necessary
condition for improving system performance. Therefore,
providing managers with operator knowledge is the key to
implementation of system changes.

Future Directions

The success of group model building and problem struc-
turing methodologies in general depends on a structured
interaction between theory, methodology refinement and
application in practical project accompanied by systematic
empirical evaluation.

Rouwette and Vennix [53] indicate three areas for fur-
ther development of theories:

� Review related methodologies used in complex orga-
nizational problems, to determine which theories are
used to explain effects. Examples that come to mind are
theories used in the operational research and systems
fields [37].

� Forge a closer connection to research on electronic
meeting systems. In this field, studies are usually con-
ducted in controlled settings [16,18,41] and theory de-
velopment seems to be at a more advanced stage. Re-
search on electronicmeeting systems is interesting both
because of the empirical results and explanatory theo-
ries used and because of insights on the intervention
process. A recent development in the field is research
on ThinkLets [10]. A ThinkLet is defined as a named,
packaged facilitation intervention and thus seems very
similar to the concept of a group model building script.

� A third source of theories is formed by research in
psychology and group decision making. Theories from

these fields inform the definition of central concepts
in group model building (see Table 1) and theories on
modeling effectiveness. Rouwette and Vennix [54] re-
view literature on group information processing and
relate this to elements of group model building inter-
ventions.

From theories and evaluation research will come insights
to further develop the methodology along the lines of (a)
determining what kind of problem structuring methodol-
ogy is best suited in what kind of situation, (b) refinement
of procedures, (c) better understanding the nature of the
intervention, and (d) better guidelines for facilitators how
to work in different kinds of groups and situations.
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Glossary

Random network A random network is a statistical en-
semble: a given set of graphs and their statistical
weights – realization probabilities. Formulating a net-
work model, one defines the full set of members of
the ensemble and indicates corresponding statistical
weights or rules generating these weights.
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Nonequilibrium random network Nonequilibrium ran-
dom networks are nonequilibrium statistical ensem-
bles of graphs. A growing network is a very particular
case of a nonequilibrium one, with a growing number
of edges and vertices.

Recursive network A recursive network is a growing net-
work, where new edges connect only new vertices to
already existing ones. In recursive networks, no new
edges emerge between already existing vertices.

Tree A tree is a graph without loops (cycles). The absence
of loops crucially simplifies the description of these
networks.

Random recursive graph (tree) In graph theory, the ran-
dom recursive graph is a tree growing in the following
way: at each time step, a new vertex is attached to one
of the existing vertices chosen with equal probability.

Degree Degree – a total number of connections of a ver-
tex – is the simplest local property of a network. A ver-
tex degree distribution is the probability that a vertex
in a network has a given degree.

Heavy-tailed degree distributions These are degree dis-
tributions with divergent higher moments in the infi-
nite network limit. In particular, power-law distribu-
tions are heavy tailed.

Scale-free networks In many natural and artificial net-
works, a sufficiently wide region of a degree distribu-
tionmay be approximately fitted by a power law. These
networks are called scale-free.

Preferential attachment In the preferential attachment
process, vertices for connection/attachment are cho-
sen preferentially – usually, with probability propor-
tional to a given function of their degree. The prefer-
ential attachmentmechanism effectively generates net-
works with complex architectures including networks
with heavy-tailed degree distribution.

Definition of the Subject

For several decadesmathematicians, biologists, and physi-
cists have studied growing networks and their models. In
physics and physical chemistry, models of this kind were
first proposed in the theory of polymers [1,2]. In graph
theory and its applications, e. g., to biology and to com-
puter science, very simple growing networks – random
recursive trees – were an issue of wide interest for many
years, see for example early articles [3,4]. Growth models
for networks have become, maybe, the hottest topic in sta-
tistical mechanics, graph theory, and multidisciplinary re-
search after the work [5], where these models were used to
explain universal complex structures of the Internet, the
World WideWeb, and other real networks.

Introduction

Numerous natural and artificial networks have essen-
tially more complex architectures than classical random
graphs in graph theory. The classical random graphs have
a rapidly decreasing Poisson distribution of the number of
connections of a vertex – degree distributions. In contrast,
real-world networks have degree distributions decaying in
a much slower fashion. Usually, networks with a more
complex structure than the classical random graphs are
called complex networks. Complex networks include prac-
tically all important real-world nets: various cellular net-
works, the Internet, the World Wide Web, social net-
works, and many others.

Why do real-world networks have complex architec-
tures? This fundamental problem essentially determines
the evolution of a multidisciplinary research field, which is
often called the science of complex networks. A few con-
cepts explaining complex network structures were devel-
oped. Two of them – self-organization and optimization –
were extensively studied during the last years. Modeling
the creation of complex network structures is mostly based
on these concepts. A significant part of real networks are
evolving, usually growing networks, which strongly differ
from equilibrium nets. Furthermore, technically, it is eas-
ier to arrive at heavy-tailed distributions of connections in
evolving networks than in equilibrium ones. These are the
main reasons for the intense interest in growth models for
networks.

In this very brief survey we only discuss basic demon-
strative models highlighting the set of key ideas of this
field. A huge number of growth models, including more
realistic ones, remain out of the scope of this article.
For the sake of demonstration, we discuss only networks
which are undirected (networks with undirected connec-
tions) and one-partite (there is only one sort of vertices).
Many important real networks are directed, the World
Wide Web, for example. Chemical reaction networks and
many others are bipartite. Fortunately, generalizations to
directed and multi-partite networks are rather straightfor-
ward.

Equilibrium andNonequilibriumRandomNetworks

In statistical mechanics and graph theory, a random net-
work is not a single graph but a statistical ensemble.
A given set of graphs are members of this ensemble. Each
of these graphs has its probability of realization – statis-
tical weight. These weights may be stationary or may be
evolving, that is depending on time t. One of the possible
ways to define a statistical ensemble is by amaster equation
for statistical weights. In a wide range of situations, these
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equations are linear. Let P(g; t) be the statistical weight
of a graph g belonging to the set of graphs of a statistical
ensemble G, g 2 G, and W(g; g0) be transition rates from
graph g0 to graph g. Then the master equation is of the
form

@P(g; t)
@t

D
X

g02G

[W(g; g0)P(g0; t)�W(g0; g)P(g; t)]: (1)

In equilibrium random networks, the left-hand side of the
master equation is zero, and the right-hand side provides
one with a set of detailed balance conditions for station-
ary statistical weights P(g). In nonequilibrium networks,
@P(g; t)/@t ¤ 0, and a detailed balance is not reached.
Growing networks represent a particular case of nonequi-
librium ones, and in many network growth models, equa-
tions describing the evolution of statistical properties of
a network are simple consequences of Eq. (1). Some char-
acteristics of a growing network may become stationary as
t !1. This does not mean that the network approaches
an equilibrium state in this limit. For example, in nu-
merous network growth models, a degree distribution ap-
proaches a stationary limit, which is very convenient for
their analysis.

RandomRecursive Graphs (Trees)

In recursive networks new edges connect only new ver-
tices to already existing vertices, new connections between
already existing vertices are not possible. Most simple
growthmodels for networks are recursive. The simplest re-
cursive network is the random recursive graph from graph
theory [6]. In the random recursive graph, the growth
starts with a single vertex. At each time step,

(i) add a new vertex and
(ii) attach it to one of the already existing vertices chosen

with equal probability.

The random recursive graph has no loops – it is a tree by
definition. This model is one of two fundamental random
graphs in graph theory: the Erdős–Rényi graph [7] is a ba-
sic equilibrium network, and the random recursive graph
is a basic growing network.

The degree distribution P(q) of the random recursive
graph (the average fraction of vertices of degree q) decays
exponentially. In the infinite network limit,

P(q) D 2�q�1 ; (2)

which is valid for all degrees. This distribution decreases
much slower than the Poisson degree distribution of the
Erdős–Rényi model, which asymptotically decays as 1/q!.

On the other hand, all moments of this distribution are
finite.

The absence of loops allows one to easily describe the
global organization of the network. The first characteristic
of the global organization is a mean intervertex distance
` – the average length of the shortest path between two
vertices in the network. The dependence of ` on the to-
tal number of vertices in the network, N, characterizes the
network compactness. In finite-dimensional networks –
“large worlds” – ` � N1/d , where dmay be regarded as the
dimensionality of a network (more rigorously, its Haus-
dorff dimension). In networks with the small-world prop-
erty, which are infinite-dimensional dimensional objects –
“small-worlds” – ` increases with N slower than any posi-
tive power of N. In the random recursive tree,

`(N) D
2

N � 1
[(NC1)HN�2N]

N�1
Š 2 lnN�(4�2�e)

(3)

(see [8] and references therein) so that this network is
a small world. Here HN D

PN
iD1 1/i is the Nth harmonic

number and �e D 0:5772 : : : is Euler’s number. The av-
erage distance of vertices from the root, approaching
(1 � �e) lnN as N !1, and the diameter (the average
maximum distance between two vertices in a graph of this
statistical ensemble) behave similarly.

Remarkably, the relative width of the intervertex dis-
tance distribution, R(`;N), of the random recursive tree
approaches zero in the infinite network limit. The width
of this distribution grows as

p
` �

p
lnN 
 `,

and R(`;N) ! ı(` � `(N)) as N !1. Here ı(x) is
the ı-function. This property is rather typical for small
worlds.

Recursive Trees Versus Equilibrium Connected Trees

A difference between growing and equilibrium networks
may be striking. For the sake of demonstration, let us
compare two random networks – the random recursive
trees and the equilibrium (or homogeneous) connected
trees, [9]. The equilibrium statistical ensemble of con-
nected trees is defined in the following way. Each of its
members is a labeled connected tree. (The term “a labeled
network” means the following. All vertices in these net-
works have individual labels. Labeled networks which dif-
fer only by permutations of the labels are counted as dis-
tinct. We discuss only labeled networks as is usual in sta-
tistical mechanics and graph theory.) The ensemble in-
cludes all possible labeled connected trees of a given size
N. All the members have equal probabilities of realiza-
tion. It turns out that the mean intervertex distance of this
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random network scales with N as `(N) � N1/2, i. e., this
kind of network may be regarded as a two-dimensional
object. This is in a sharp contrast to the random recursive
trees, which are small worlds, as we explained above. In
the recursive tree ensemble, only those connected labeled
trees are present that are allowed by the causality of the
construction. So the great majority of the members – la-
beled trees – of the equilibrium tree ensemble are absent
in the random recursive tree. This results in a quite dif-
ferent global organization of this equilibrium network. As
for local properties, the degree distribution of equilibrium
connected trees is P(q) D e�1/(q � 1)!, which is a much
more rapidly decaying function than the exponential de-
gree distribution (2) of the random recursive trees.

The Barabási–AlbertModel

The preferential attachment process is a very straightfor-
ward way to generate networks with numerous hubs. In
this process, highly connected vertices receive new con-
nections with higher probability (“popularity is attrac-
tive”); as a result, they become even more attractive for
connection, get new edges, and so on – a network orga-
nizes itself. Actually, this very general idea is not new. In
a non-network aspect, Yule in 1925, [10], and later Si-
mon, [11], used this idea to explain skewed distributions in
nature. Price applied this self-organization mechanism to
scientific citations [12]. Nonetheless, it was the very timely
work of Barabási and Albert [5] (see also [13]) that trig-
gered an avalanche of studies using the preferential attach-
ment to explain complex networks.

The Barabási–Albert model is a recursive graph, grow-
ing according to the following rules. The growth starts
from some particular initial configuration of vertices and
edges, which is not very important. At each time step,

(i) add a new vertex and
(ii) attach it to m � 1 preferentially selected already ex-

isting vertices. Each of these vertices is chosen with
a probability proportional to its degree – proportional
preference.

That is, in the Barabási–Albert model, the probability of
attachment to vertex i of degree qi is ˘i D qi /

PN
jD1 qj .

In particular, if the initial configuration is a single ver-
tex, and m D 1, i. e. each new vertex has only one con-
nection, the Barabási–Albert network is a nonuniform re-
cursive tree [14]. However, it turns out that the result-
ing degree distribution does not depend on m (we ignore
a normalization factor), and in this respect loops gener-
ated for m > 1 are not important. The degree distribution

approaches a stationary form in the large network limit,

P(q) D
2m(m C 1)

q(qC 1)(qC 2)
q!1
� q�3 : (4)

This degree distribution is heavy-tailed, its second and
higher moments diverge.

One of the simple ways to obtain the proportional pref-
erence is as follows. Choose at random an edge and at-
tach a new vertex to one or to both ends of this edge [15].
One can see that the end vertices will indeed be selected
with probability proportional to their degrees. Further-
more, the attachment of a new vertex to all nearest neigh-
bors of a randomly chosen vertex leads to the same ef-
fect – proportional preference. In amore specific situation,
in uncorrelated networks, one can arrive at the propor-
tional preference also in the following way: choose a vertex
at random and then choose at random one of its nearest
neighbors for attachment. The last algorithm is sometimes
applicable, since the proportional preferential attachment
generates recursive networks with very weak correlations
(see below).

In respect of degree–degree correlations, the Barabási–
Albert model is very special. The simplest degree cor-
relations in a network are correlations between degrees
of the nearest neighbor vertices. These correlations are
present if the joint distribution of the degrees of the
nearest neighbors does not factor in the following way:
P(q; q0) ¤ qP(q)q0P(q0)/hqi2. If there is equality, the net-
work is uncorrelated. Empirically, it is convenient to use
a less informative object for these correlations. This is the
dependence of the mean degree of the nearest neighbors
of a vertex versus degree of this vertex, hqinn(q) [16,17]. In
uncorrelated networks, hqinn does not depend on q. These
correlations were observed in practically all real-world
networks. We stress that only equilibrium networks may
be uncorrelated. Growing (and, more general, nonequilib-
rium) networks, including the Barabási–Albert model and
random recursive graphs, have these correlations. How-
ever, in the Barabási–Albert model and other recursive
models based on the proportional preferential attachment,
the degree–degree correlations are anomalously weak, and
so the dependence hqinn(q) is nearly flat. This is a quite
unusual situation for growing networks.

When m > 1, this network has loops (or cycles in
terms of graph theory). A loop is a closed path visiting each
vertex only once. Loops of length 3 (triangles) are directly
related to clustering. The clustering coefficient Ci of ver-
tex i is the ratio of the number ni of triangles attached to
this vertex and qi (qi � 1)/2 which is the maximum pos-
sible number of these triangles. Here qi is the degree of
vertex i. The mean clustering is the average clustering co-
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efficient of a vertex:

hCi D
X

q
P(q)C(q) : (5)

The clustering coefficient of a network is

C D

P
qP(q)C(q)q(q�1)P

qP(q)q(q�1)

D
3 � (total number of triangles)

number of connected triples of vertices
:

(6)

In uncorrelated networks, C D hCi. In growing networks,
this is not the case. The mean number of triangles in the
Barabási–Albert model is (m � 1)m(m C 1)(lnN)3/48,
while the mean number of pairs of adjacent edges is
m(m C 1)(N lnN)/2 [18]. So the clustering coefficient of
the Barabási–Albert model equals

C D
m � 1
8

(ln N)2

N
: (7)

The mean clustering differs from expression (7) only by
a factor, hCi � (lnN)2/N [19]. Thus, a nonzero clustering
coefficient in these networks is only a finite size effect: C
and hCi approach 0 as N !1. More generally, the num-
ber of finite loops of length L in the Barabási–Albert model
is also relatively small,� (ln N)L as N !1 [20]. This in-
dicates that this network has a locally tree-like structure.

The Barabási–Albert model is a small world. However,
the size dependence of the mean intervertex distance (and
of diameter) noticeably differs for differentm. As N !1,

`(N;m D 1) � ln N; `(N;m > 1) �
ln N
ln lnN

(8)

[21], which demonstrates the importance of loops in the
network.

General Preferential Attachment

In general, the attachment probability may be some given
function f (q) of the degree of a vertex. For linear prefer-
ence, f (q) D qC A, where the constant A� am > �m is
an additional attractiveness, the resulting network is scale-
free. The asymptotics of the degree distribution is power-
law, P(q) � q�� in the infinite network limit, where expo-
nent � is

� D 3C
A
m
: (9)

So � can be in the range from 2 to1. For an arbitrary q
and N !1,

P(q) D (2C a)
� (m(1C a)C aC 2)

� (m(1C a))

�
� (k C ma)

� (k C maC 3C a)
D

q!1
� q��

(10)

[22], where � (x) is the gamma-function. At a D A/m D
0, we arrive at the degree distribution (4) of the Barabási–
Albert model.

A similar effect – changing exponent � – can be ob-
tained by combining random attachment and preferential
one, with proportional preference. Say, for each new con-
nection, with a probability p, choose a vertex at random
and, with the complementary probability 1 � p, choose
a vertex with probability proportional to its degree. In this
case, � D 1C 2/(1 � p), for details and more realistic ex-
amples see book [23].

A more detailed characteristic in these networks is
a degree distribution of a vertex born at time s, which we
denote by p(q; s; t). The age of the network asymptotically
approaches its size, t Š N , if the growth starts from a fi-
nite cluster. The following scaling form is valid for grow-
ing scale-free networks:

p(q; s; t) D (s/t)ˇ f (q(s/t)ˇ ) ; (11)

where f (x) a scaling function, and exponent ˇ is related to
the � exponent of the degree distribution [22]:

ˇ D
1

� � 1
: (12)

Usually, even in growing networks with wide degree dis-
tributions, the function f (x) has a narrow peak form. The
mean degree of a vertex born at time smeasured in a scale-
free network of large age t is asymptotically expressed as

hqi(s; t) /

 s
t

��ˇ
: (13)

We have mentioned that these networks have strong
correlations between degrees of the nearest neighbors [24].
In particular, in the scale-free recursive networks,

hqinn(q) / q��3 : (14)

This demonstrates that

(i) if � > 3, the correlations are assortative on terms
of [25], that is the nearest neighbors of a strongly con-
nected vertex, as a rule, also have many connections
and vice versa;

(ii) if � < 3, the correlations are disassortative, that is the
nearest neighbors of a strongly connected vertex, as
a rule, have small degrees and vice versa; and

(iii) in the unique case of � D 3, as in the Barabási–Albert
model, these correlations are very weak.

More general forms of the preference function were stud-
ied, but it turned out that only the linear preference pro-
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vides power-law degree distributions. In particular, net-
works with a power-law preference f (q) D qy were in-
vestigated, [26]. When 0 � y < 1, the resulting degree has
a stretched exponential form:

P(q) / q�y exp
�
�g(y)q1�y

�
; (15)

where g(y) depends only on exponent y. On the other
hand, if y > 1, a small number of the oldest vertices at-
tract all connections. In particular, if y > 2, there is even
a finite probability that the first vertex gets all links, and
the network is a star.

In networks, which we discussed, once added, vertices
never disappear. The network evolution, however, may
combine two parallel processes – both the addition and re-
moval of vertices. Remarkably, the deletion of vertices with
all their connections results in the preferential removal of
edges from vertices with many connections. Similarly to
Sect. “The Barabási–Albert Model”, the probability of this
removal is proportional to degree – proportional prefer-
ence. In a network model studied in work [27], (i) new
vertices are attached to preferentially chosen existing ver-
tices and, simultaneously, (ii) randomly selected vertices
with all their connections are removed from the network.
The form of the resulting degree distribution depends
on the relation between the rates of these processes and
also on the mean degree of the network. The exponent
of the degree distribution grows as the removal rate in-
creases. Moreover, at sufficiently high removal rates, the
degree distribution may become exponentially decaying.
Networks, in which connections of a removed vertex are
not deleted but are redistributed in the neighborhood of
this vertex, were described in [28]. The degree distribu-
tions of these networks also vary from a power law to an
exponential one.

Finite Size Effects

Even the largest artificial network, the World Wide Web,
is actually small – between 1010 and 1011 vertices (Web
pages). So finite size effects in networks are of primary im-
portance. Here we only touch upon the size dependence
of a degree distribution in scale-free recursive networks. It
readily follows from Eq. (11) that the degree distribution
is of the form:

P(q;N) D q�� F(q/N1/(��1)) ; (16)

where F(x) is an exponentially rapidly decreasing scaling
function whose precise form, in principle, depends on ini-
tial conditions. A typical scaling function F(x) for expo-
nent � D 3 is shown in Fig. 1 from [15]. The scaling func-
tions for arbitrary � were computed in Refs. [29,30].

Growth Models for Networks, Figure 1
Ratio P(q;N)/P(q;N!1) versus the scaling variable q/N1/2 for
a scale-free recursive network with degree distribution expo-
nent 3 [15]. The growth starts with a pair of vertices with a con-
necting edge. With other initial configurations, the form of the
hump will be different

Network finiteness leads to a cutoff of the degree dis-
tribution, qcut(N). In the scale-free recursive networks,
qcut(N) � N1/(��1) for arbitrary � , as Eq. (16) shows.
This dependence coincides with a so-called “natural cut-
off”, whose meaning is clear from the following estimate:
N
R1
qcut(N) dqP(q) � 1, where P(q) D P(q;N!1). That

is, in a single realization of a network, only one vertex of
degree above the natural cutoff valuemay be found, and so
such vertices are practically unobservable. Note, however,
that the cutoff is essentiallymodel dependent, and in some
models its position is far below the natural cutoff value.

Hidden Variables

Equation (13) shows that it is the oldest vertices that be-
come hubs in the Barabási–Albert model and other scale-
free recursive networks, where a preference function is
f (q) D BqC A with constant A and B. This is certainly
not the case in real-world networks. Google, for exam-
ple, has received a far greater number of hyperlinks than
a hugemajority of earlier createdWeb sites. There is a sim-
ple way to weaken “the older the richer effect” in grow-
ing networks, which was proposed in [31]. Suppose that B
andA be random variables with values varying from vertex
to vertex, A(s) and B(s), where s D 0; 1; : : : ; t is a label of
a vertex. TheseA(s) and B(s) are usually called hidden vari-
ables, the term fitness is also used. It turns out that under
some conditions, even with random A(s) and B(s), a de-
gree distribution remains heavy tailed, see [31] and, for
more detail, [32]. On the other hand, the randomness of
the hidden variables leads to strong fluctuations of degrees
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of vertices with a given birth time. Even a young vertex s
with large A(s) or/and B(s) may become rapidly a strongly
connected hub.

More generally, a random preference function for a re-
cursive graph may be a function of three variables: (i) the
degree q of a vertex, which is selected for attachment,
(ii) its birth time s, and (iii) the age t of the network. That
is, in general, one should consider f (q; s; t). In principle,
it is possible to arrive at heavy-tailed degree distributions
even when the preference function is independent of q.
For example, a power-law f (s; t) / (sC 1)�˛ results in
scale-free networks. Other forms of f (q; s; t) allow one,
in particular, to take into account aging of vertices, where
f (q; s; t) D g(q; t � s) [33].

Condensation of Edges

If the coefficient B(s) of the preference function strongly
fluctuates, a new phenomenon may occur [34]. The large
fluctuations of B(s) may lead to condensation of edges on
a few vertices in the growing network. Namely, a finite
fraction of connections in a large network turns out to be
attracted by a few vertices (or even by a single one).

This effect is observable even when only a single ver-
tex in a recursive network, say, vertex u, has a fitness es-
sentially greater than others: B(s) D 1C gısu . Here ısu
is a Kronecker symbol. If g is greater than some critical
value gc D �0 � 1, where � 0 is the degree distribution ex-
ponent in the “pure” network with g D 0, then a finite
fraction of edges will be attracted by vertex u. This frac-
tion is proportional to the difference g � gc. Other ver-
tices have a power-law degree distribution with exponent
� D 1C g > �0.

Weighted Growing Networks

The edges of weighted networks have their own weights –
positive real numbers. The introduction of the weights al-
lows one to take into account the diversity of edges in
many real networks [35]. For example, transport networks
are weighted. Let wij be the weight of the edge connect-
ing vertices i and j. Then the strength of vertex i is defined
as the sum of the weights of its edges: si D

P
j wi j . Em-

pirical data show that in many real-world weighted net-
works both the strength distribution and the degree distri-
bution are power-law [35,36]. In some of these networks,
the strength of a vertex, in average, is proportional to its
degree, si / ki , and in other ones, si / k�i with exponent
� > 1.

A simple growth model for scale-free weighted net-
works is defined as follows [35,36]. At each time step,

(i) add a new vertex and attach it to one or several pref-
erentially chosen existing vertices by edges with some
initial weight, say 1; the probability to select vertex i is
taken to be proportional to its degree si;

(ii) in addition, increase the weights of the edges of
each of these selected vertices: for vertex i, the edge
weights are increased as wi j ! wi j(1C ı/si ), where ı
is a given positive parameter.

Thus, the attachment to a vertex increases its degree by
1 and its strength by 1C ı. In the resulting network,
the strengths of vertices are proportional to their degrees,
si / ki , and the strength and degree distributions are
power laws with the same exponent

� D 2C
1

1C 2ı
: (17)

One can arrive at the same results in another way [37]:
choose an edge with a probability proportional to its
weight, increase this weight by ı, and simultaneously at-
tach a new vertex by a unit weight link to one of the ends
of this selected edge.

Bianconi showed how to construct a growing network
with a power-law relation between vertex strength and de-
gree [38]. Simply combine two kinds of the preferential
attachment. Namely, new vertices should be attached at
random either to vertices selected with a probability pro-
portional to a vertex strength or to vertices selected with
a probability proportional to a vertex degree.

Connected Components in Growing Networks

So far we have discussed networks consisting of a single
connected component, which is a rather special situation.
All vertices in these networks are mutually approachable.
In general, a network consists of a set of connected com-
ponents of various sizes. Typically, in a random network,
either (i) all connected components are relatively small
(much smaller than N) or (ii) one of the components is
“giant” and the rest are relatively small. The emergence of
the giant connected component (containing, by definition,
a finite fraction of all vertices in an infinite net) crucially
changes the architecture of a network. Furthermore, the
statistics of connected components essentially character-
izes the network organization. These statistics for growing
random networks may remarkably differ from those for
equilibrium networks.

A specific transition of the birth of the giant con-
nected component in a growing network was discovered
in work [39], where a very simple network was studied.
The growth starts from some initial configuration, which
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is not important over long periods. The network grows due
to two parallel processes:

(i) With the unit rate, bare vertices are added to the net-
work.

(ii) With a rate b, new edges interconnect randomly cho-
sen vertices.

The rate b plays the role of a control parameter. When b is
greater than some critical value bc, a giant connected com-
ponent is present. The degree distribution of this random
graph has an exponential decay. In contrast to equilibrium
networks, the birth of the giant component in this model
is an infinite order phase transition. At the critical point,
the size of the giant connected component has a specific
singularity

S / exp(�const/
p
b � bc) ; (18)

coinciding with that in the famous Berezinskii–Kosterlitz–
Thouless phase transition. It was found that the result (18)
is also valid for growing scale-free networks [40], where
the value of the constant in the exponential is determined
by exponent � . This singularity was later observed inmany
other growing networks [41,42,43,44].

The size distribution of finite components in the net-
works with this transition has an exponential decay in
the presence of the giant connected component. With-
out a giant component, the component size distribution
is a power-law in scale-free and non-scale-free growing
networks. For comparison, if an uncorrelated network has
a rapidly decreasing degree distribution, then the compo-
nent size distribution slowly decreases only at the birth
point of a giant component.

Significance of Loops

We have emphasized that trees are simple for analysis.
However, it is loops that make networks really interest-
ing. In numerous studied random networks, in the infi-
nite network limit, any finite environment of a vertex has
no loops, i. e., it is tree-like, and the so-called tree ansatz
is valid for many problems. It turns out, however, that it
is infinite loops that are important for the global organi-
zation of networks. In sparse random recursive networks,
there are usually few finite loops and many loops of length
greater than a network diameter. These large loops may
make a loopy network much more compact than a tree.

Let us compare a mean intervertex distance `(N)
in the two kinds of scale-free recursive networks: trees
(m D 1) and sparse networks with large loops (m > 1), see
Sects. “The Barabási–Albert Model” and “General Prefer-
ential Attachment”.

(i) Recursive trees. For any � > 2, asymptotically
`(N) � lnN [45,46].

(ii) Sparse recursive networks with loops.
(a) When � > 3, `(N) � lnN.
(b) When � D 3, `(N) � lnN/ ln lnN [21].
(c) When 2 < � < 3, we expect `(N) � ln lnN or,

maybe, another slow dependence of this sort (in
this range, we know only estimates for uncorre-
lated networks [47]).

Thus, the difference in `(N) in these networks is strong if
� � 3.

AcceleratedGrowth of Networks

In networks, which we discussed above, the number
of edges L grows with time proportionally to (or lin-
early in) the total number of vertices N. Asymptotically,
L/N Š const in large networks – the growth is linear.
A nonlinear growth, where the dependence L(N) is non-
linear at large N, is poorly studied. A growing network
with a power-law L / N1Ca , where a < 1, was consid-
ered in [48]. Since the number a in real networks is usu-
ally positive, this type of growth is called accelerated. The
diverse architectures of these networks are strongly model
dependent. Their degree distributions may be nonstation-
ary even in the limit N !1. Some of these networks are
scale-free, with exponent � in a wide range from 1 to1.
Cutoffs in these degree distributions strongly differ from
those for linearly growing networks.

The accelerated growth essentially changes the form
of the size dependence of the mean intervertex distance.
Since these networks become more dense with N, the de-
pendence `(N) may be stationary or even decreasing. Nu-
merous real-world examples of this effect are described
in [49].

Critique of the Preferential AttachmentMechanism

The preferential attachment mechanism and, more gen-
erally, self-organization models for networks have been
criticized in [50]. The authors of that work stressed that
these models are “only evocative” and “not explanatory”.
An evocativemodel only “can reproduce the phenomenon
of interest but does not necessarily capture and incorpo-
rate the true underlying cause”. In contrast, an explana-
tory model “also captures the causalmechanisms (why and
how, in addition to what)”.

This critique was based on two arguments. First, it was
demonstrated in [50] that the Barabási–Albert model fails
to reproduce many empirical data for real networks. We
believe that this part of the critique is not very strong.
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Indeed, the Barabási–Albert model is only the simplest
model in a wide class of models. There exist much more
realistic models with preferential attachment. The second
argument is essentially more serious. That is: the prefer-
ential attachment concept itself does not provide us with
a reason for the preferential attachment. In this respect,
the preferential attachment model falls short of explaining
the genuine nature of complex network architectures. The
authors of [50] suggested that optimization-based models
explain complex networks in a more natural and convinc-
ing way. Unfortunately, the optimization concept of com-
plex networks is much less developed than the preferential
attachment. The difficulty is that typically, numerical op-
timization of networks is a heavy computational task. On
the other hand, few optimization models for complex net-
works were studied analytically.

Optimization-BasedModels

In the optimization-based models, new connections opti-
mize (e. g., minimize) some functional of network char-
acteristics. Optimization may be global or local. In the
global optimization, each new connection is made in such
a way that it minimizes a function or functional of global
network characteristics. For example, this cost function
may be a linear function of the mean intervertex distance
and other global characteristics of a network [51]. In this
case, optimization leads to more compact architectures.
The global optimization of a network structure is a time
consuming computational problem. Only small networks
were generated using these algorithms. Their sizes did not
allow one to arrive at solid conclusions about their struc-
tures.

In the local optimization, for a new connection, we se-
lect “the best vertex” in a network. The variables of a cost
function in the local optimization are characteristics of
a vertex, e. g., a shortest path distance from some other ver-
tex or vertices. For each selected vertex, the cost function
is minimum among all vertices of the network.

A local optimization model proposed in [52] allows
a strict analytical treatment, since it is a tree. The model
is formulated in the following way. The growth starts from
a single vertex (root with label 0) at some point of a re-
stricted two-dimensional (which is not that important)
area. At each time step,

(i) place a new vertex t at a random point of this area and
(ii) attach it to that existing vertex i where the cost func-

tion `0;i C ˛(t)di;t has the minimum value.

Here `0;i is the shortest-path network distance between
vertex i and the root – “the depth” of vertex i; di;t is the

Euclidean distance between vertices t and i in this plane;
the coefficient ˛(t) is some given function of the network
size t D N C 1. One can see that this model is based on
“optimized trade-offs” between two conflicting objectives:
a network objective and a geographic one – connect to the
root (the center of a network) versus connect to the ge-
ographically closest vertex. It turns out that when ˛(t) is
a power law, the resulting degree distribution has a power-
law region. Unfortunately, depending on a form of the
function ˛(t), either this power-law region is quite nar-
row or the great majority of vertices are leaves [53]. So this
model does not produce a really scale-free network in the
limit N !1.

Another local optimization model was described
in [54]. This is also a tree. The growth starts from the root
0 at some point of a one-dimensional (which is important)
interval. At each time step,

(i) Place a new vertex t at a random point of this interval,
and

(ii) attach it to that existing vertex i where the cost func-
tion `0;i C ˛ni;t has the minimum value.

In this cost function, `0;i is the shortest-path network dis-
tance between vertex i and the root; ni;t is the number of
already existing vertices between vertices t and i in this in-
terval; and the coefficient ˛ is a constant. One can show
that this very special optimization process actually gener-
ates preferential attachment. The resulting degree distri-
bution has a power-law form with a cutoff depending only
on the value of ˛: qcut � 1/˛.

Deterministic Graphs

Deterministic growing graphs provide a wide range of
complex architectures. These networks are quite simple:
for each size, a deterministic network “ensemble” con-
sists of a single member – a single graph. Nonetheless,
one can build deterministic graphs with properties sur-
prisingly similar to those of random networks. One can
construct deterministic graphs with a small-world feature,
deterministic scale-free graphs, where a discrete spectrum
of degrees has a power-law envelope, and so on. Figure 2
shows two simple constructions proposed in Refs. [55,56]
which are scale-free deterministic small worlds. For other
deterministic graphs with a small-world property, see, e. g.,
Refs. [57,58].

Future Directions

In this brief survey, we discussed only a few basic growth
models. For example, we did not mention a mechanism
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Growth Models for Networks, Figure 2
Two examples of scale-free deterministic graphs. Graphs a and b
were introduced in [55] and [56], respectively

based on the merging of vertices [59]. This merging re-
sults in strongly connected hubs and power laws in net-
works. Moreover, we did not touch upon some impor-
tant network characteristics. Among these missed charac-
teristics, there are for example, the betweenness centrality
and its distribution [60,61]. We considered only exponen-
tial and power-law degree distributions and omitted more
general multifractal distributions. We did not discuss nu-
merous applications of these models and empirical data.
The reader should refer to books and reviews in the list of
references for more detail.

Here we mention a few works where the growth mod-
els for networks were used for analysis and interpreta-
tion of empirical data. A link copying model of the World
Wide Web was described in [62]. In this model links are
directed. Each new vertex connects to one of the near-
est neighbors of a randomly chosen vertex, i. e. “copies”
the corresponding directed link. This process effectively
generates preferential attachments and so leads to heavy-
tailed degree distributions. The authors of work [16] ap-
plied the preferential attachment concept to the Internet
both on the Autonomous System level and for the network
of routers. Duplication of proteins also leads to preferen-
tial attachment and explains specific architectures of pro-
tein interaction networks [42], see also [63]. Several net-
works of scientific collaborations were empirically studied
in the work [64]. With these data, the parameters of the
preferential attachment process were found. One should
note that collaboration networks may be treated as bipar-
tite graphs where the vertices of the first type are collab-
orators and the vertices of the second type are acts of col-
laboration (scientific papers for example). The preferential
attachment mechanism has been generalized to networks
of this kind in [65].

Finally, we present a short list of research directions
which, we believe, give a good perspective.

(i) More realistic models for specific real-world net-
works. Thesemodels should not only reproduce basic
network characteristics but also uncover the underly-
ing mechanism.

(ii) Optimization-based models. The goal is to find effi-
cient optimization algorithms generating large net-
works with heavy-tailed degree distributions.

(iii) Accounting for loops in growing networks. The aim
is to find a way to compute the contribution of loops
to the properties and characteristics of networks.

(iv) Cooperative models on growing networks, flows, and
processes taking place in networks. The problem is
how the architectures of growing networks influence
phenomena in interacting systems placed on these
networks.

(v) Co-evolving systems – networks and interacting
agents on them. Interacting agents placed on the top
of a network may also influence the structure of the
network itself. How do these complex systems evolve?
How are they organized?
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7. Erdős P, Rényi A (1959) On random graphs. Publ Math Debr
6:290–297

8. Dobrow RP (1996) On the distribution of distances in recursive
trees. J Appl Prob 33:749–757

9. Bialas P, Burda Z, Jurkiewicz J, Krzywicki A (2003) Tree networks
with causal structure. Phys Rev E 67:066106

10. Yule GU (1925) A mathematical theory of evolution based on
the conclusions of Dr. JC Willis. Phil Trans Royal Soc Lond B
213:21–87

11. Simon HA (1955) On a class of skew distribution functions. Bio-
metrica 42:425–440

12. Price DJ de S (1976) A general theory of bibliometric and
other cumulative advantage processes. J Amer Soc Inform Sci
27:292–306



4496 G Growth Models for Networks

13. Albert R, Barabási A-L, Jeong H (1999) Mean-field theory for
scale-free random networks. Phys A 272:173–187
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Glossary

Asymptotic density The proportion of sites in a lattice
occupied by a specified subset is called asymptotic den-
sity, or, in short, density.

Asymptotic shape The shape of a growing set, viewed
from a sufficient distance so that the boundary fluctu-
ations, holes, and other lower order details disappear,
is called the asymptotic shape.

Cellular automaton A cellular automaton is a sequence
of configurations on a lattice which proceeds by itera-
tive applications of a homogeneous local update rule.
A configuration attaches a state to every member (also
termed a site or a cell) of the lattice. Only configura-
tions with two states, coded 0 and 1, are considered
here. Any such configuration is identified with its set
of 1’s.

Final set A site whose state changes only finitely many
times is said to fixate, or attain a final state. If this hap-
pens for every site, then the sites whose final states are
1 comprise the final set.

Initial set A starting set for a cellular automaton evolu-
tion is called initial set, and may be deterministic or
random.

Metastability Metastability refers to a long, but finite,
time period in an evolution of a cellular automaton
rule, during which the behavior of the iterates has
identifiable characteristics.

Monotone cellular automaton A cellular automaton is
monotone if addition of 1’s to the initial configuration
always results in more 1’s in any subsequent configu-
ration.

Nucleation Nucleation refers to (usually small) pockets of
activity, often termed nuclei, with long range conse-
quences.

Solidification A cellular automaton solidifies if any site
which achieves state 1 remains forever in this state.

Definition of the Subject

In essence, analysis of growth models is an attempt to
study properties of physical systems far from equilib-
rium (e. g., [52] and its more than 1300 references). Cel-
lular automata (CA) growth models, by virtue of their
simplicity and amenability to computer experimenta-
tion [59,66], have become particularly popular in the last
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30 years in many fields, such as physics [15,59,60], biol-
ogy [18], chemistry [15,50], social sciences [12], and artifi-
cial life [51]. In contrast to voluminous empirical literature
on CA in general and their growth properties in particu-
lar, precise mathematical results are rather scarce. A gen-
eral CA theory is out of the question, since a Turing ma-
chine can be embedded in a CA, so that examples as “sim-
ple” as elementary one-dimensional CA [17] and Con-
way’s Game of Life [7] are capable of universal compu-
tation. Even the most basic parameterized families of CA
systems exhibit a bewildering variety of phenomena: self-
organization, metastability, turbulence, self-similarity, and
so forth [1,22,24,43]. From a mathematical point of view,
CA can be rightly viewed as discrete counterparts to par-
tial differential equations, and so they are able to emulate
many aspects of the physical world, while at the same time
they are easy to experiment using widely available plat-
forms (frommany available simulation programs wemen-
tion just [66]).

Despite their resistance to traditional methods of de-
ductive analysis, CA have been of interest to mathemati-
cians from their inception and we will focus on the rig-
orous mathematical results about their growth properties.
The scope will be limited to CA with deterministic up-
date rule – random rules are more widely used in appli-
cations [12,18,50], but fit more properly within probabil-
ity theory (however, see e. g. [37] for a connection between
deterministic and random aspects of CA growth). Adding
randomness to the rule in fact often makes them more
tractable, as ergodic properties of random systems are
much better understood than those of deterministic ones
([10] provides good examples).

Even though mathematical arguments are the ultimate
objective, computer simulations are an indispensable tool
for providing the all important initial clues for the subse-
quent analysis. However, as we explain in a few examples
in the sequel, caution needs to be exercised while making
predictions based on simulations. Despite the increased
memory and speed of commercial computers, for some
CA rules highly relevant events occur on spatial and tem-
poral scales far beyond the present-day hardware. Simply
put, mathematics and computers are both important, and
one ignores each ingredient at one’s own peril.

By nature, a subject in the middle of active research
contains many exciting unresolved conjectures, vague
ideas that need to be made precise, and intriguing ex-
amples in search of proper mathematical techniques. It is
clear from what has already been accomplished that, of-
ten in sharp contrast with the simplicity of the initially
posed problem, such techniques may be surprising, so-
phisticated, and drawn from such diverse areas as combi-

natorics, geometry, probability, number theory, and PDE.
This is a field to whichmathematicians of all stripes should
feel invited.

Introduction

Let us begin with the general set-up. We will consider ex-
clusively binary CA. Accordingly, a configuration will be
a member of f0; 1gZd , that is, an assignment of 0 or 1 to
every site in the d-dimensional lattice Zd. This divides the
lattice into two sets, those that are assigned state 1, called
the occupied sites, and those in state 0, which are the empty
sites. A configuration is thus represented by its occupied
set A. This set will change in discrete time, its evolution
given by A0;A1;A2; � � � � Zd .

The configuration changes subject to a CA rule, which
is, in general, specified by the following two ingredients.
The first is a finite neighborhoodN � Zd of the origin, its
translate x CN then being the neighborhood of point x.
By convention, we assume that N contains the origin.
Typically, N D B�(0; �) \ Zd , where B�(0; �) D fx 2
Rd : jjxjj� � �g is the ball in the `�-norm jj � jj� and � is
the range. When � D 1 the resulting N is called the Di-
amond neighborhood, while if � D 1 it is referred to as
the Box neighborhood. (In particular, when d D 2, range 1
Diamond and Box neighborhoods are also known as von
Neumann and Moore neighborhoods, respectively.) The
second ingredient is a map � : 2N ! f0; 1g, which flags
the sufficient configurations for occupancy. More pre-
cisely, for a set A � Zd , we let T (A) � Zd consist of ev-
ery x 2 Zd for which �((At � x) \N ) D 1. Then, for
a given initial subset A0 � Zd of occupied points, we de-
fine A1;A2; : : : recursively by AtC1 D T (At).

To explain this notation on arguably the most famous
CA of all time, the Game of Life [7,26] has d D 2, Moore
neighborhood N consisting of the origin and nearest
eight sites, so that the neighbor of x is

x CN D
� � �

� x �

� � �

;

and �(S) D 1 precisely when either 0 2 S and jSj 2 f3; 4g,
or 0 … S and jSj D 3. Here, jSj is the size (cardinality) of
S �N and note that the center x of the neighborhood
itself is counted in the occupation number.

Usually, our starting set A0 will consist of a possibly
large, but finite set of 1’s surrounded by 0’s. However,
other initial states are worthy of consideration, for exam-
ple, half-spaces, wedges, and sets with finite complements,
called holes. Finally, for understanding self-organizational
abilities and statistical tendencies of the CA rule, the most
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natural starting set is the random “soup” ˘ (p) to which
every site is adjoined independently with probability p.

As already mentioned, we need to consider special
classes if we hope to formulate a general theorem. Mathe-
matically, the most significant restriction is to the class of
monotone (or attractive) CA rules, for which S1 � S2 im-
plies �(S1) � �(S2). To avoid the trivial case we will also
assume that monotone CA have �(N ) D 1.

Another important notion is that of solidification: we
say that the CA solidifies if �(S) D 1 whenever 0 2 S.
In words, this means that once a site becomes occu-
pied, it cannot be removed. To every CA on Zd given
by the rule (N ; �) one can associate “space-time” solid-
ification CA on Zd � Z, with unique solidification rule
given by the neighborhoodN 0 D (N � f�1g) [ f0dC1g,
and � 0 such that � 0(S � f�1g) D �(S) for S �N . This
construction is useful particularly for one-dimensional
CA whose space-time version interprets their evolution as
a two-dimensional object [64], but we prefer to focus on
the growth phenomena in the rule’s “native” space.

A more restrictive, but still quite rich, class of rules is
the Threshold Growth (TG) CA, which is a general totalis-
tic monotone solidification CA rule. For such rules, �(S)
depends only on the cardinality jSj of S whenever 0 … S;
therefore, for such S there exists a threshold � � 0 such
that �(S) D 0 whenever jSj < � and �(S) D 1 whenever
jSj � � .

We will universally assume that a 1 cannot sponta-
neously appear in a sea of 0’s, that is, that 1’s only grow by
contact: �(;) D 0. We also find it convenient to assume
that � is symmetric: �N DN and �(�S) D �(S). This
is not a necessary assumption in many contexts, but its ab-
sence makes many statements unnecessarily awkward.

Next is a very brief historical lesson. The first paper
in CA modeling is surely [62], a precursor to the research
into nucleation and self-organization in CA. The follow-
up to this pioneering work had to wait until the 70’s, when
the influential work [42] appeared. The earliest work on
CA growth is that of S. Willson [63,64,65], which still
stands today as one of the notable achievements of math-
ematical theory. The importance of growth properties of
CA, from theoretical andmodeling perspectives, wasmore
widely recognized in the mid-80’s [53,54,59]. At about
the same time, statistical physicists recognized the value
of mathematical arguments in studying nucleation and
metastability and hence the need to build tractable mod-
els [60,61]. Bootstrap percolation ([2,4,67], and references
therein), one of the most studied CA, which we discuss in
some detail in Sect. “Nucleation”, originates from that pe-
riod. Since the beginning of the 90’s there has been a great
expansion in the popularity of CAmodeling [18,50], while

mathematical theory, which we review in the next three
sections, proceeds at a much more measured pace.

The rest of the article is organized as follows. In
Sect. “Final Set” we consider properties of the set which
the CA rule generates “at the end of time.” In particular, we
discuss when the CA eventually occupies the entire avail-
able space and, when it fails to do so, what proportion of
space it does fill. Section “Asymptotic Shapes” then focuses
on the occupation mechanism, in particular on shapes at-
tained from finite seeds. The main theme of Sect. “Nucle-
ation” are sparse randomly populated initializations. We
conclude with Sect. “Future Directions”, a summary of is-
sues in need of further research.

Final Set

Perhaps the most basic question that one may ask is: what
proportion of space does a CA rule ultimately fill? Clearly
we need to specify more precisely what is meant by this,
but it should be immediately suspected that the answer in
general depends on the initial state, even if we only restrict
to finite ones. Indeed, consider the TG CA with Moore
neighborhood and � D 3. It is easy to construct an initial
set which stops growing, say, one containing fewer than
3 sites. It is not much harder to convince oneself that there
exist finite sets (even some with only 3 sites) which eventu-
ally make every site occupied. It is a combinatorial exercise
to show that these two are the only possibilities in this ex-
ample. Is this dichotomy valid in any generality? This is
one of the questions we address in this section.

Assume a fixed CA rule and the associated transforma-
tion T , and fix an initial state A0. If every x 2 Zd fixates,
that is, changes state only finitely many times, then the fi-
nal set A1 D T1(A0) exists. Notice that this is automat-
ically true for every solidification rule, in which no site can
change state more than once.

We say that A0 fills space if T1(A0) D Zd . One can-
not imagine a greater ability of a CA rule to “conquer” the
environment than if a finite set is able to fill space. Thus
it is natural to ask whether there exist general conditions
that assure this property, and indeed they do for monotone
CA.

Induced by T is a growth transformation T̄ on closed
subsets of Rd, given by

T̄ (B) D fx 2 Rd : 0 2 T ((B � x)\ Zd )g :

In words, one translates the lattice so that x 2 Rd is at the
origin, and appliesT to the intersection of Euclidean set B
with the translated lattice. It is easy to verify that the two
transformations are conjugate,

T (B \Zd ) D T̄ (B)\ Zd :
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It will become immediately apparent why T̄ is convenient.
Let Sd�1 be the set of unit vectors Rd in and let

H�u D fx 2 Rd : hx; ui � 0g

be the closed half-space with unit outward normal
u 2 Sd�1. Then, provided that the CA rule is monotone,
there exists a w(u) 2 R so that

T̄ (H�u ) D H�u C w(u) � u

and consequently

T t(H�u \ Zd ) D (H�u C tw(u) � u) \ Zd :

Monotone CA with w(u) > 0 for every u are called su-
percritical. A supercritical CA hence enlarges every half-
space.

Theorem 1 Assume a monotone CA rule. A finite set A0
which fills space exists if and only if w(u) > 0 for every di-
rection u 2 Sd�1 .

See [30,63] for a proof. Before we proceed, a few remarks
are in order. First, we should note that one direction of
the above theorem has a one-line proof: if w(u) � 0 for
some u, then monotonicity prevents the CA from ever oc-
cupying a point outside a suitable translate of H�u . The
other direction is proved by constructing a sufficiently
“smooth” initial set. Moreover, supercriticality can be
checked on a finite number of directions, in particular one
can prove that a two-dimensional TG CA is supercritical if
and only if � � 1

2 (jN j �maxfjN \ `j : ` a line through
0g) [30]. Thus, among the TG CA with Moore neighbor-
hood, exactly those with � � 3 are supercritical, while this
is true for range 2 Box neighborhood when � � 10.

A finite set A0 for which [tAt is infinite is said to gen-
erate persistent growth. Further, a CA for which any set
that generates persistent growth has A1 D Zd is called
omnivorous [30]. For an omnivorous rule a finite seed has
either a bounded effect or it fills space.

Is every supercritical TG CA omnivorous? The an-
swer is no, and a counterexample in d D 2 is ob-
tained by taking the neighborhood to be the cross of
radius 2: N D f(0; 0); (0;˙1); (0;˙2), (˙1; 0); (˙2; 0)g,
and � D 2. It is easy to check that for A0 D f(0; 0); (1; 0)g
the final set A1 consists of the x-axis, while initialization
with a 2 � 2 box results in A1 D Z2. On the other hand,
the following theorem holds.

Theorem 2 The two-dimensional TG CA is omnivorous
provided either of the two conditions are satisfied:

(1) N is box neighborhood of arbitrary range.

(2) N D N̄ \ Z2, where N̄ is a convex set with the same
symmetries as Z2, and � � �2/2, where � is the range
of the largest box neighborhood contained inN .

The theorem is proved in [8] and [9] by rather delicate
combinatorial arguments involving analysis of invariant,
or nearly invariant, quantities. The lack of robust methods
makes conditions in the theorem far from necessary. In
particular, proving a general analogue of Theorem 2 with-
out solidification (while keeping monotonicity) is an in-
triguing open problem.

For non-monotone solidification rules, any general
theory appears impossible, but one can analyze specific ex-
amples, and we list some recent results below. All are two-
dimensional, therefore we assume d D 2 for the rest of this
section.

In many interesting cases, it is immediately clear from
computer simulations that A1 ¤ Zd , but at least A1 is
spread out fairly evenly. This motivates the following defi-
nition. Pick a set A � Z2. Let �� be �2 times the counting
measure on � � A. We say that A has asymptotic density �
if �� converges to � �  as �! 0. Here  is Lebesgue mea-
sure on R2 and the convergence holds in the usual sense:

Z
f d�� ! � �

Z
f d (1)

for any f 2 Cc(R2). Equivalently, for any square R � R2,
the quantity �2 � jR \ (� � A)j converges to the area of R as
� ! 0.

For totalistic solidification CA, the rule is determined
by the neighborhood and a solidification list of neigh-
borhood counts which result in occupation at the next
time. Three neighborhoods have been studied so far: Di-
amond rules with von Neumann neighborhood, Box rules
with Moore neighborhood and Hex rules with the neigh-
borhood N consisting of (0; 0) and the six sites (˙1; 0),
(0;˙1), and ˙(1; 1). (We note that this last neighbor-
hood is a convenient way to represent the triangular lat-
tice [59].) These rules are often referred to as Packard
snowflakes [11,36,53]. As an example, in Hex 135 rule, a 0
turns into a 1 exactly when it “sees” an odd number of al-
ready occupied neighbors in its hexagonal neighborhood.

We will assume that 1 is on the solidification list, for
otherwise the analysis quickly becomes too difficult (see
however [33] and [45] for some results on Box 2 and Box 3)
rules. Further, forHex andDiamond cases, we will assume
2 is not on this list (or else the dynamics is too similar to
a TG CA). We now summarize the main results of [36]
and [11].

Theorem 3 To each of the four Diamond and 16 Hex
Packard snowflakes there corresponds a number � 2 (0; 1],
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the asymptotic density of A1, which is independent of the
finite seed A0. The densities in Diamond cases are

�1 D 2/3; �13 D 2/3; �14 D 1; �134 D 29/36 :

The Hex densities are exactly computable in 8 cases:

�13 D �135 D 5/6; �134 D �1345 D 21/22; �136 D �1356
D �1346 D �13456 D 1 :

In six other Hex cases, one can estimate, within˙0:0008,

�1 � 0:6353; �14; �145 � 0:9689; �15 � 0:8026;
�16 � 0:7396; �156 � 0:9378 :

The final two Hex rules have densities very close to 1:

�146 2 (0:995; 1); �1456 2 (0:9999994; 1) :

The indices in the densities of course refer to the respective
rule.

Note that, in each of the two cases, �14 > �134, testi-
mony to the fundamentally nonmonotone nature of these
rules. It is also shown in [36] that observingHex 1456 from
A0 D f0g on even the world’s most extensive graphics ar-
ray, withmillions of sites on a side, one would still be led to
the conclusion that A1 D Z2. In fact, the site in Ac

1 clos-
est to the origin is still at distance of the order 109. Never-
theless, Ac

1 has a positive density and contains arbitrarily
large islands of 0’s. This is one illustration of limitations in
making empirical conclusions based on simulations.

The fundamental tool to prove the above theorem is
the fact that these dynamics have an additive component
which creates an impenetrable web of occupied sites [36].
This web consists of sites at the edge of the light cone, or, to
be more precise, the sites which are occupied at the same
time at which TG CA with the same neighborhood and
� D 1 would occupy them.

The web makes at least an approximate recursion pos-
sible, and the basic renewal theory applies. The delicacy
of such results is conveyed effectively by comparison to
Box solidification. There are 128 such rules with 1 on the
solidification list. Although snowflake-like recursive car-
pets emerge in a great many cases, and exact computa-
tions are sometimes feasible, there is no hope of a com-
plete analysis as in the Hex and Diamond settings, and
many fascinating problems remain. For instance, the den-
sity of Box 1, provided it exists at all, can depend on the
initial seed. Namely, it is shown in [33] that Box 1 solidi-
fication yields density 4/9 starting from a singleton. Later,
D. Hickerson (private communication) engineered finite
initial seeds with asymptotic densities 29/64 and 61/128.

Growth Phenomena in Cellular Automata, Table 1
Densities of A1 from A0 D f0g for some Box rules

Rule Density
12 2/3
13 28/45
15 43/72
16 385/576
17 35/72
18 4/9

The latter is achieved by an ingenious arrangement of 180
carefully placed occupied cells around the boundary of an
83 � 83 grid. The highest density with which Box 1 so-
lidification can fill the plane is not known, and neither is
whether any seed fills with density less than 4/9. Most ini-
tial seeds generate what seems to be a chaotic growth with
density about 0.51.

Many other Box rules have known asymptotic densi-
ties started from a singleton. Table 1 is a sample (D. Grif-
feath, private communication).

All exact density computations presented in this sec-
tion are based on explicit recursions, made possible by
an additive web. These recursions are in some cases far
from simple, for example, D. Griffeath has shown that in
the Box 12 case, the following formula holds for an D
jA1 \ B1(0; 2n � 1)j, n � 12:

an D
8
3
�4nCr1� n3 �

8
3
�3n�

16
15
�2nC

2
51
�(�2)nC4n�3

C
8
3
� (�1)n C r2� n1 C r3 � � n2 ;

where

�1 � �:675 ; �2 � :461 ; �3 � 3:214

are the three real roots of the equation � 3�3� 2��C1 D 0,
while

r1 � �6:614 ; r2 � �2:126 ; r3 � 2:434

solve 3145r3 C 19832r2 � 22688r � 107648 D 0.
Apparently very similar rules to those in the above ta-

ble seem unsolvable, such as Box 14, and the “odd” rule
Box 1357 which does have an additive component, but the
resulting web from A0 D f0g “leaks” and growth is appar-
ently chaotic. The same problem plagues almost all Box
rules started from general initial set. The sole exception
seems to be the 12 rule, the best candidate for a general
general theorem among the 128 rules, due to its quasiaddi-
tive web [49]. We should also mention that embedded ad-
ditive dynamics have beenused to study othermodels [23].
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Growth Phenomena in Cellular Automata, Figure 1
Some Packard snowflakes. Clockwise from top left: Hex 1; Box 1; Box 1357; and again Box 1. First three are started from f0g, and the
last from an 8� 8 box. The web is black, otherwise the updates are periodically shaded. Note that the chaotic growth can result from
a chaotic web (bottom left) or from a leaky web (bottom right)

In all considered cases, the web consist of several
copies of the final set generated by the space-time solid-
ification associated to a one-dimensional CA. When this
CA is linear, the web’s fractal dimension can be computed
using the method from [65]. For example, the properly
scaled webs in the top two frames on Fig. 2 approach a set
with Hausdorff dimension log 3/ log 2, while for the bot-
tom right web this dimension is log(1C

p
5)/ log 2.

Given that all exactly given densities so far are rational,
a natural question is whether there is an example of A1
with irrational density. Such example was given by Grif-
feath and Hickerson in [44], where an initial state for the
Game of Life is provided for which the set t�1At converges
to an asymptotic density (3�

p
5)/90 on an appropriate fi-

nite set L. This formulation masks the fact that every site x
eventually periodically changes its state, so A1 does not
exist. However, a closer look at the construction shows

that the final periods are uniformly bounded. Therefore,
if p is the lowest common multiple of all final periods, the
p’th iterate of the Game of Life rule will generate A1 from
the same A0 and with the same density.

This is the only known example of a computable irra-
tional density, and there is a good reason, which we now
explain, why such examples are difficult to come by.

By analogy with statistical physics, we would call a set
A � Z2 exactly solvable, if there exists a formula which de-
cides whether a given x is an element of A. More formally,
we require that there exists a finite automatonwhich, upon
encountering x as input, decideswhether x 2 A. Represen-
tation of x as input is given as (˙i11;˙i21; i

1
2; i

2
2; : : : ), where

i11; i
2
1 are the most significant binary digits of the first and

second coordinate of x; i12; i
2
2 the next most significant, etc.

(Some initial i1k’s or i
2
k’s may be 0, and the representation

is finite but of arbitrary length.) This means that A is auto-
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matic [5], or equivalently a uniform tag system [16]. With
a slight abuse of terminology we call a solidification CA
exactly solvable (from A0) if A1 is exactly solvable.

To our knowledge, the simplest nontrivial example
of an exactly solvable CA is Diamond 1 solidification,
for which it can be shown by induction that x … A1 iff
maxfk : i1k D 1g D maxfk : i2k D 1g. It is easy to construct
a (two-state) finite automaton that checks this condition,
and the density � of A1 evidently must satisfy the equa-
tion � D 1/2C �/4, so that � D 2/3 as stated in Theo-
rem 3. In fact, all of the CA in Theorem 3 with exactly
given densities are exactly solvable, and then, by [16], The-
orem 6, these densities must be rational. Therefore, the
Griffeath–Hickerson example given above is not exactly
solvable, and the mechanism that forms A1 must be more
complex in this precise sense. We note that none of the
other examples from Theorem 3 are exactly solvable ei-
ther, but for a different reason [36].

This section’s final example, like many other fascinat-
ing CA rules, is due to D. Hickerson (private communica-
tion). His Diamoeba is a rule with the Moore neighbor-
hood and �(S) D 1 whenever one of the following two
conditions is satisfied:

0 … S; and jSj 2 f3; 5; 6; 7; 8g; or
0 2 S; and jSj 2 f6; 7; 8; 9g :

This would be an easily analyzed monotone rule if the
3 were replaced by a 9, with A1 D ; for every finite A0.
At first, it seems that the Diamoeba shares this fate. In
fact, D. Hickerson has demonstrated that, starting from
A0 D B1(0; r) \Z2, At D ; at the smallest t given by

12r � 8 � 4r1 C r11 C (r mod 2) ;

where r1 and r11 are, respectively, the number of 1’s and
the number of 11’s in the binary representation of r. This
interesting formula only gives a small taste of things to
come (see [33] for a detailed discussion). One of the most
intriguing examples is when A0 is a 2 � 59 rectangle with

Growth Phenomena in Cellular Automata, Figure 2
TheBell–Eppstein initial set (left) that results inA1 D Z2 for theDiamoeba rule. The setAt, whose linear asymptotic shape is a rhom-
bus with vertices (˙1/7; 0) and (0;˙1/8), is shown at t D 500

a corner cell removed. This grows to a fairly large set in
about a million updates, then apparently stops for several
million more, after which another growth spurt is possi-
ble. The question whetherA1 D Z2 for thisA0 is tantaliz-
ingly left open. However, there does exist an A0 for which
A1 D Z2. This initialization was discovered by D. Bell,
and is an adaptation of a spaceship found by a search al-
gorithm designed by D. Eppstein [21]. This startling object
attests to the remarkable design expertise thatGame of Life
researchers have developed over the years.

Asymptotic Shapes

After addressing a rule’s ability to grow in the previous
section, we now turn to the geometry of growth: is it pos-
sible to predict the shape that the set of 1’s attains as it
spreads? It turns out that the complete answer is known in
the monotone case.

Naturally, we need a notion of convergence of sets, and
the most natural definition is due to Hausdorff (see [29,31]
for an introduction to such issues). We say that a se-
quence of compact sets Kn � Rd converges to a com-
pact set K � Rd (in short, Kn ! K) if, for every � > 0,
Kn � K C B2(0; �) and K � Kn C B2(0; �), for n large
enough. Then we say that a CA has a linear asymptotic
shape L from a finite initial seed A0 if

1
t
At ! L

as t!1.
Turning to monotone CA, we recall the definition of

half-space velocities w, and set

K1/w D [f[0; 1/w(u)] � u : u 2 Sd�1g

and let L be the polar transform of K1/w , that is,

L D K�1/w D fx 2 Rd : hx; ui � w(u);

for every u 2 Sd�1g :



4504 G Growth Phenomena in Cellular Automata

Growth Phenomena in Cellular Automata, Figure 3
The sets K1/w (left) and the asymptotic shapes for all 10 supercritical range 2 TG CA. Note that there are only 9 shapes, as those with
� D 7 and � D 8 coincide

In general, the polar of a set K � Rd is given by
K� D fy 2 Rd : hx; yi � 1 for every x 2 Kg. The set L is
known as aWulff shape, and is a very important notion in
crystallography and statistical physics [55]. The next theo-
rem was proved in the classic paper [64]. The core meth-
ods in its proof, as well as proofs of similar results [29], are
those of convex and discrete geometry.

Theorem 4 Assume a monotone CA rule with all w(u) �
0. Then there exists a large enough r so that for every fi-
nite initial set A0, which contains B2(0; r) \ Zd , the linear
asymptotic shape from A0 equals the Wulff shape L. Even
more, the difference between At and tL is bounded: there
exists a constant C, which depends on the rule and on A0, so
that At � tLC B2(0;C) and tL � At C B2(0;C) for every
t � 0.

Note that supercriticality is not assumed here. If w(u) D 0
for some u, then K1/w(u) is an infinite object and L has di-
mension less than d. (The one trivial case is when w � 0
and L D f0dg.) Finally, note that if there exists a u so that
w(u) < 0 (and hence w(�u) < 0, by symmetry), then At
is sandwiched between two hyperplanes which approach
each other and so eventually At D ;.

It is also important to point out that K1/w is always
a polytope, L is always a convex polytope and both are,
for small neighborhoods, readily computable by hand or
by computer [30,31,32]. For example, the Moore neigh-

borhood TG CA with � D 3 has K1/w with 16 vertices, of
which three successive ones are (0; 1), (1; 2), (1; 1), and
the remaining 13 are then continued by symmetry. It then
follows that the limiting shape L is the convex hull of
(˙1/2; 0); (0;˙1/2); (˙1/3;˙1/3).

Matters become much murkier when the monotonic-
ity assumption is dropped. We discuss a few interest-
ing two-dimensional solidification examples next. They
all hinge on recursive specification of iterates At for ev-
ery t (see [33] for a definition). This is far from a general
approach (and appears to fail even for simple monotone
cases), but is the primary technique available.

We begin with the Box 25 solidification, starting from
A0 D B2(0; r C 1/2) \Z2. As was observed in [33], and
can be quickly checked by computer, the linear asymptotic
shape exists for r D 2, r D 9 and r D 13, but is in each case
different, in fact it is convex in the first case, and noncon-
vex in the other two cases. This demonstrates that such
shapes may depend on the initial seed.

A very interesting example was discovered by D. Hick-
erson (private communication). Consider Box 37 solid-
ification, with A0 D B2(0; 7/2) \ Z2. Then t�1/2At con-
verges to B1(0; 2

p
2/3) as t !1. This demonstrates the

possibility of nontrivial sublinear asymptotic shapes.
We turn next to the Hex rules [36]. These exhibit sub-

sequential limiting shapes, which are not always polygons,
as we explain next.
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Theorem 5 Take any of the 16 Hex rules as in Theorem
3, and fix a finite A0. There exists a one-parameter fam-
ily of sets Sa , a 2 [0; 1], so that the following holds: for
tn D a � 2n,

2�nAtn ! Sa ;

as n!1.
Furthermore, when 3 and 4 are not both on the solidifi-

cation list, the family Sa is called simple and is independent
of the initial set. In the opposite, diverse case, initial sets are
divided into two classes, distinguished by two different fam-
ilies Sa .

For rational a, it can be shown that the Hausdorff dimen-
sion of @Sa always exists, and is in principle computable.
For example, for the simple Sa this dimension equals 5/4
for a D 14/15, evidently producing a non-polygonal sub-
sequential shape.

This discussion brings forth the following question,
which is probably the most interesting open problem on
CA growth. For a prescribed set L, can we find a CA
with linear asymptotic shape L, attained from a “generic”
collection of initial sets? In particular, can L be a circle,
thereby giving rise to asymptotic isotropy?

We note that the isotropic construction is possible
for probabilistic CA [39], so it seems likely that the an-
swer is yes for a properly constructed chaotic growth.
However, techniques for such an approach are completely
lacking at present. We should also remark that computa-
tional universality should allow for a construction of a CA
and a carefully engineered initial state with circular (or
any other) shape – although this has never been explic-
itly done. This would, however, violate the requirement of
generic initialization.

We conclude this section by a short review of reverse
shapes [34]. The question here is, if the initial set A0 is
a large hole, and evolves until shortly before the entire lat-
tice is occupied, what is the resulting shape? The initial
state has a large and persistent effect on the dynamics and
thus the reverse shape geometry will depend on it. The de-
tailed analysis depends on technical convexity arguments,
but the cleanest instance is given by the following result.

Theorem 6 Assume a monotone CA, with w � 0 but not
identically 0 on Sd�1 . Assume also that its rule T pre-
serves all symmetries of the lattice Zd. Pick a closed con-
vex set H � Rd , which has all symmetries of Zd, and let
A0 D (mH)c \ Zd for some large m. Moreover, let

T D infft : 0 2 Atg :

Growth Phenomena in Cellular Automata, Figure 4
Superimposed convergence to the linear asymptotic shape and
to the reverse shape, from, respectively, the interior and the ex-
terior, of a large lattice circle. The rule is TG CA with range 2 and
� D 6. Iterates are periodically shaded

There is a nonempty bounded convex subset R(H) � Rd

such that

lim
M!1

lim
m!1

1
M
� AT�M D R(H)c ;

in the Hausdorff sense. Moreover, if

h0 D maxfh > 0 : h � H� � K1/wg ;

then

R(H) D (h0 � H� \ @K1/w )� :

In words, one scales the polar H� so that it touches the
boundary of K1/w ; at this point, the intersection deter-
mines the reverse shape. (The shape does not change if
H is multiplied by a constant, so h0 determines its natural
scale.) The paper [34] has many more details and exam-
ples.

Nucleation

In this section we assume that the initial state A0 is the
product measure˘ (p), with density p > 0 that is typically
very small. Initially, then, there will be no significant ac-
tivity on most of the space. Certainly this is no surprise
as most of the space is empty, but isolated 1’s or small is-
lands of them are often not able to accomplish much ei-
ther. Most of the lattice is thus in ametastable state. How-
ever, at certain rare locations there may, by chance, occur
local configurations, which are able to spread their influ-
ence over large distances until they statistically dominate
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the lattice. These locations are called nuclei, and their fre-
quency and mechanism of growth are the main self-orga-
nizational aspects of the CA rule. The majority of results
are confined to two-dimensions, so we will assume d D 2
for the rest of this section and relegate higher dimensions
to remarks.

We start with a simple example, for which we give
a few details to introduce the basic ideas and demonstrate
that a CA can go through more than one metastable state.
For this example we do not specify the map � , but instead
give a more informal description. In a configuration A, we
call an insurance five sites in a cross formation in the state
1, or, more formally, a translate of von Neumann neigh-
borhood which is inside A. The mapT changes any 0 with
a 1 in its von Neumann neighborhood to 1. Moreover, it
automatically changes any 1 to 0, except that any 1 whose
von Neumann neighborhood intersects with an insurance
remains 1. Then, for every � > 0, as p! 0,

P(0 2 Ac
t for all t � p�1/2C�)! 1 ;

P(0 2 (At xor AtC1) for all p�1/2�� � t � p�5/2C�)! 1 ;

P(0 2 At for all p�5/2�� � t)! 1 :

(Here, xor is the exclusive union.) Roughly, most sites
are 0 up to time p�1/2, then periodic with period 2 up to
time p�5/2, and 1 afterwards. (In fact, stronger statements,
along the lines of Theorem 7 below, are possible.)

The proof has two phases: the first deterministic and
the second probabilistic. For the deterministic one, let
d1(x) be the `1 distance from x to A0, and assume that
A0 contains no insurance. Then one can prove by in-
duction that, first, none of the At contain an insurance,
and second, that for every x and t � d1(x), x 2 At pre-
cisely when (t � d1(x)) mod 2 D 0. On the other hand,
an insurance in A0 centered at the origin will result in
x 2 At for every t � d1(x)� 1. The probabilistic part con-
sists of noting that, with overwhelming probability when
p is small, B1(0; p�1/2C�) (resp. B1(0; p�5/2C�)) contains
no 1 (resp. insurance) in A0 D ˘ (p), while B1(0; p�1/2��)
(resp. B1(0; p�5/2��)) does.

The bulk of the mathematical theory of nucleation
and metastability addresses monotone CA, although some
work has been done on theGame of Life [28] and its gener-
alizations [1,22], excitable media dynamics [19,24,25,42],
and artificial life models [51].

Our first general class are supercritical monotone so-
lidification CA. (In fact, the solidification assumption is
not necessary, but reduces technical details so much that it
is assumed in most published works.) Such rules have two
nucleation parameters. Let � be the smallest i for which
there exists an A0 with jA0j D i that generates persis-

Growth Phenomena in Cellular Automata, Table 2
Nucleation parameter  for small Box neighborhood TG CA

� D 2 � D 3 � D 4 � D 5 � D 6 � D 7
� D 1 12 42
� D 2 40 578 4683 24938 94050 259308

tent growth. Moreover, let � be the number of sets A0 of
size � that generate persistent growth and have the left-
most among their lowest sites at the origin. (The last re-
quirement ensures that � counts the number of distinct
smallest “shapes” that grow.) We call the rule voracious if,
started from any of the � initial sets A0 described above,
A1 D Z2. Voracity is a weak condition, which assures
a minimal regularity of growth and can, for any fixed rule,
be checked on finitely many cases (which is not true for
the more restrictive omnivorous property).

For illustration, we briefly discuss these for range �
Box neighborhood TG CA. For relatively small � , � D � ;
for example, when � D 1, � D � for all three supercriti-
cal rules, while when � D 2, � exceeds � only for � D 10,
when it equals 11. For large �, and � � ˛�2, � is asymptot-
ically the smallest possible (that is, � � ˛�2) when ˛ < ˛c
for some ˛c 2 (1:61; 1:66) [32]. One can also compute
some �, before they become too large.

Returning to A0 D ˘ (p), the most natural statistics to
study is

T D infft : 0 2 Atg ;

the first time the CA occupies the origin.

Theorem 7 Assume a monotone, supercritical, and vora-
cious CA, with nucleation parameters � and �. Then, as
p! 0,
p
�p� � T

converges in distribution to a nontrivial random variable � ,
which is a functional of a Poisson point locationP with unit
intensity.

That T � p�� /2 can be easily guessed (and proved), but
the more precise asymptotics described above require
a considerable argument [30], as interaction between
growing droplets is nontrivial. In particular, the higher di-
mensional version has not been proved, and the descrip-
tion of the limiting “movie” from P probably cannot avoid
viscosity methods from PDE [58].

The most exciting nucleation results have been proved
about critical models, for which w(u) vanishes for some
direction u but is positive for others. Although a general
framework is presented in [35], we will instead focus on
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the most studied examples. Of these the most popular
has been the bootstrap percolation (BP), which is TG CA
with von Neumann neighborhood and � D 2 [2,3,4,67].
Its modified version (MBP) has the same neighborhood,
still solidifies, but when 0 … S, �(S) D 1 precisely when
f˙e1g \ S ¤ ; and f˙e2g \ S ¤ ;. (Here e1 and e2 are
the basis vectors.)

Now w(˙e1) D w(˙e2) D 0, so no finite set can gen-
erate persistent growth, and it is not immediately clear that
P(T <1) D 1. This is true [67], as very large sets are able
to use sparse but helpful smattering of 1’s around them
and so are unlikely to be stopped. To determine the size
of T, one needs more information about the necessary size
of these nuclei, and the likelihood of their formation. This
was started in [4] and culminated by the following theo-
rem by A. Holroyd [46], which is arguably the crowning
achievement of CA nucleation theory to date.

Theorem 8 For BP let  D �2/18, and for MBP let
 D �2/6. Then, for every � > 0,

P(p log T 2 [ � �; C �])! 1

as p! 0.

To summarize, T � exp(/p), which is for small p a long
time indeed and amply justifies the description of the al-
most empty lattice as metastable.

The most common formulation of the theorem above
involves finite L � L squares with periodic boundary in-
stead of infinite lattices. Then

I(L; p) D P(the entire square is eventually occupied)

and, as p! 0,

I(L; p)! 1 if p log L � C � ;
I(L; p)! 0 if p log L �  � � :

Here L is of course assumed to increase with p. Before the
value of  was known, this second formulation was used
to estimate it by simulation. For example, [3] used L close
to 30,000 and obtained  � 0:245 for BP, about a factor
of two smaller than the true value 0:548 : : :. Other simu-
lations of BP, MBP, and related models all exhibit a simi-
lar discrepancy. The reason apparently is that nuclei are,
for realistic values of p, quite a bit more frequent than
the asymptotics would suggest. Indeed, the following re-
sult from [38] confirms this.

Theorem 9 For BP and MBP,

I(L; p)! 1 if p log L �  � c(log L)�1/2 ;

for an appropriate constant c.

This alone indicates that to halve the error in approximat-
ing  on an L � L system it is necessary to replace L by L4.
In addition, [38] shows that for the more tractable MBP
one can do explicit calculations to conclude that to get an
estimate of  within 2%, one would need L at least 10500,
a non-achievable size.

For BP, the quantity p log L is the “order parame-
ter,” the quantity that, when varied, causes a phase tran-
sition (which, in addition, is sharp by Theorem 8). We will
list now some other models with known order parame-
ters – we also indicate the status of phase transition, when
known:

� CA with von Neumann neighborhood and �(S) D 1
when jS n f0gj � 2: p2 log L [57];

� TG CA with range � Box neighborhood, � 2 [2�2 C �
C 1; 2�2 C 2�] : p��2�2�� log L [30];

� TG CA with N D f(0; 0); (0;˙1); (˙1; 0); (˙2; 0)g,
� D 2: p3/2L, not sharp [30];

� TG CA with N D f(0; 0); (0;˙1); (˙1; 0); (˙2; 0)g,
� D 3: (� log p)�2p log L [30,68];

� TG CA with range � cross neighborhood N D

f(x; y) : jxj � �; jyj � �; xy D 0g and � D � C

1 : p log L, sharp at  D �2/(3(� C 1)(� C 2)) [48];
� TGCA onZd withN D B1(0; 1) \ Zd and � 2 [3; d],

p1/(d��C1) log��1 L (where logk is the k’th iterate of
log) [14], sharp at  D �2/6 for the modified version
when � D d [47].

Note that when � D d D 3 the last example gives the
metastable scale exp(exp(/p)) [13,56], making an even
modest experimental approximation of  impossible.

There are other interesting issues about critical growth
models, which do not have to do with nucleation. One is
decay rate for the first passage time T [6], which is con-
nected to the properties of the very last holes to be filled in.
Another is its ability to overtake random obstacles [40].

Apart from sending p! 0, one could vary other pa-
rameters to get the metastability phenomena, and one nat-
ural example is the range. We explain this scenario on
a non-monotone CA known as the Threshold Voter Au-
tomaton (TVA) [20,31]. For simplicity, assumeN is range
� Box neighborhood, and fix a threshold � . This rule
makes a site change its “opinion” by contact with at least �
of the opposite opinions:

�(S) D 1 iff (0 2 S and jSc j < �)
or (0 … S and jSj � �) :

As the two opinions are symmetric, the most natu-
ral initial state of TVA is ˘ (1/2). We also assume that
� is large and the scaling � D ajN j, for some a 2 (0; 1).
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Growth Phenomena in Cellular Automata, Figure 5
Four nucleation examples, each on an 800� 800 array with periodic boundary. Clockwise from top left: TGM CA with Moore neigh-
borhood, � D 3, and pD 0:006; bootstrap percolation with p D 0:041; TVA with � D 10 and � D 194; TVA with � D 10 and
� D 260. The iterates are periodically colored to indicate growth and, in the TVA frames, the lighter shades indicate 0’s

It is proved in [20] that when a > 3/4, any fixed x 2 Z2

changes its opinion only finitely many times with proba-
bility approaching 1 as �!1— and the rigorous results
end there. The most interesting rare nucleation questions
arise when a 2 (1/4; 3/4) n f1/2g. According to simula-
tions, under this assumption the nuclei are rare and even-
tually tessellate the lattice into regions of consensus with
either stable or periodic boundaries [31]. However, the

definition of a nucleus is unclear and consequently their
density cannot be estimated. Two torus simulations are
given in Fig. 5; it is important to point out that, for such
finite systems, Lyapunov methods of [27] imply that every
site eventually fixates or becomes periodic with period 2.

Themajority TVA, when a D 1/2, is perhaps the most
appealing of all [43]. The nucleation is now not rare; in-
stead, this CA quickly self-organizes into visually attrac-
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Growth Phenomena in Cellular Automata, Figure 6
Majority vote: TGM with � D 10, � D 221 on a 1000� 1000 ar-
ray with periodic boundary. Again, iterates are periodically col-
ored with the lighter shades reserved for 0’s

tive curvature driven dynamics. (Note that flat interfaces
between the two opinions are now stable, so one opinion
can advance only when it forms a concavity.) For any fixed
� this must eventually stop, as finite islands with uniformly
small enough curvature of either opinion are stable. How-
ever, when � is increased this effect is with large probabil-
ity not felt on any fixed finite portion of space. (A simi-
lar effect is achieved by the Vichniac “twist” [61].) Many
fascinating questions remain about this case, especially on
the initial nucleating phase, whose analysis depends on
delicate properties of random fields and remains an open
problem.

Future Directions

We will identify seven themes, which connect to open
problems discussed in previous sections. Progress on each
is bound to be a challenge, but also a significant advance
in understanding CA growth.

Regularity of Growth

It is often important, and of independent interest, to be
able to conclude that a cellular automaton rule generates
growth without arbitrarily large tentacles, holes, or other
undesirable features. An omnivorous CA, for example, has
this property. The natural goal would be to develop tech-
niques to establish such regularity for much more gen-

eral monotone and non-monotone CA, and for arbitrary
dimension. Many rules give the impression that regular
growth is a generic trait, i. e., holds for a majority of ini-
tial sets.

Oscillatory Growth

Does there exist a class of CA with growing sets that os-
cillate on different scales? Hickerson’s Diamoebamight be
able to accomplish this from some initial sets, but perhaps
there are other, more tractable, examples with identifiable
mechanisms.

Analysis of Chaotic Growth

One look at the growth of Box 1 solidification from a 8 � 8
initial box (bottom left frame in Fig. 1) would convince
most observers that it has a square asymptotic shape.
However, there are no tools to prove, or disprove, this
statement. A fully rigorous theory of chaotic CA, tailored
to address such asymptotic issues, is almost nonexistent
and constitutes perhaps the most important challenge for
mathematicians in this area.

Nucleation Theory for Non-monotone Models

Once nucleation centers are established, growth most of-
ten proceeds in a random environment, which consists of
debris left over from the nucleation phase. This may help
the analysis, as it adds a random perturbation to what may
otherwise be intractable dynamics, but on the other hand
random environment processes are notoriously tricky to
analyze [41].

Robust Exact Constants and Sharp Transitions

The nucleation phase transition has been proved sharp for
a few critical models, by rather delicate arguments. Amore
robust approach would extend them, and would perhaps
provide further insights into the error terms, for which
only one sided estimates are now known. The apparent
crossover [3] phenomenonwould also be interesting to un-
derstand rigorously.

Three-Dimensional Nucleation and Growth

With advances in computer power, extensive three-di-
mensional CA simulations have become viable on com-
mercial hardware. Therefore, it may be possible to inves-
tigate nucleation, droplet interaction, clustering mecha-
nisms, and other staples of two-dimensional CA research,
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at least experimentally. Proper visualization tools of com-
plex three-dimensional phenomena may well require
some novel ideas in computer graphics.

Generic Properties of CA with Large Range

A TGCA with range �, say, has on the order of �2 possible
thresholds � . When can it be established that some prop-
erty holds for the majority of relevant choices? One such
property (sensitivity of shapes to random perturbations in
the rule) was analyzed from this perspective in [37], but it
would be interesting to provide further examples for TG
or other classes of CA.
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