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Glossary

Efficiency An allocation is efficient if there is no other al-
location that is better for one player and at least as good
for all the other players.

Envy-freeness An allocation is envy-free if each player
thinks it receives at least a tied-for-largest portion and
so does not envy the portion of any other player.

Equitability An allocation is equitable if each player val-
ues the portion that it receives the same as every other
player values its portion.

Definition of the Subject

Cutting a cake, dividing up the property in an estate, de-
termining the borders in an international dispute – such
allocation problems are ubiquitous. Fair division treats all
these problems and many more through a rigorous anal-
ysis of procedures for allocating goods, or deciding who
wins on what issues, in a dispute.

�Adapted fromBarry R. Weingast and DonaldWittman (eds)Ox-
ford Handbook of Political Economy (Oxford University Press, 2006)
by permission of Oxford University Press.

Introduction

The literature on fair division has burgeoned in recent
years, with five academic books [1,13,23,28,32] and one
popular book [15] providing overviews. In this review, I
will give a brief survey of three different literatures: (i) the
division of a single heterogeneous good (e. g., a cake with
different flavors or toppings); (ii) the division, in whole or
part, of several divisible goods; and (iii) the allocation of
several indivisible goods. In each case, I assume the differ-
ent people, called players, may have different preferences
for the items being divided.

For (i) and (ii), I will describe and illustrate procedures
for dividing divisible goods fairly, based on different crite-
ria of fairness. For (iii), I will discuss problems that arise
in allocating indivisible goods, illustrating trade-offs that
must be made when different criteria of fairness cannot all
be satisfied simultaneously.

Single HeterogeneousGood

The metaphor I use for a single heterogeneous good is
a cake, with different flavors or toppings, that cannot be
cut into pieces that have exactly the same composition.
Unlike a sponge or layer cake, different players may like
different pieces – even if they have the same physical size –
because they are not homogeneous.

Some of the cake-cutting procedures that have been
proposed are discrete, whereby players make cuts with
a knife – usually in a sequence of steps – but the knife is
not allowed to move continuously over the cake. Moving-
knife procedures, on the other hand, permit such continu-
ous movement and allow players to call “stop” at any point
at which they want to make a cut or mark.

There are now about a dozen procedures for dividing
a cake among three players, and two procedures for di-
viding a cake among four players, such that each player
is assured of getting a most valued or tied-for-most-val-
ued piece, and there is an upper bound on the number of
cuts that must be made [16]. When a cake is so divided, no
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player will envy another player, resulting in an envy-free
division.

In the literature on cake-cutting, two assumptions are
commonly made:

1. The goal of each player is to maximize the minimum-
size piece (maximin piece) that he or she can guarantee
for himself or herself, regardless of what the other play-
ers do. To be sure, a player might do better by not fol-
lowing such amaximin strategy; this will depend on the
strategy choices of the other players. However, all play-
ers are assumed to be risk-averse: They never choose
strategies that might yield them more valued pieces if
they entail the possibility of giving them less than their
maximin pieces.

2. The preferences of the players over the cake are con-
tinuous. Consider a procedure in which a knife moves
across a cake from left to right and, at any moment, the
piece of the cake to the left of the knife is A and the
piece to the right is B. The continuity assumption en-
ables one to use the intermediate-value theorem to say
the following: If, for some position of the knife, a player
views piece A as being more valued than piece B, and
for some other position he or she views piece B as being
more valued than piece A, then there must be some in-
termediate position such that the player values the two
pieces exactly the same.

Only two 3-person procedures [2,30], and no 4-person
procedure, make an envy-free division with the minimal
number of cuts (n � 1 cuts if there are n players). A cake so
cut ensures that each player gets a single connected piece,
which is especially desirable in certain applications (e. g.,
land division).

For two players, the well-known procedure of “I cut
the cake, you choose a piece,” or “cut-and-choose,” leads
to an envy-free division if the players choose maximin
strategies. The cutter divides the cake 50-50 in terms of
his or her preferences. (Physically, the two pieces may be
of different size, but the cutter values them the same.) The
chooser takes the piece he or she values more and leaves
the other piece for the cutter (or chooses randomly if the
two pieces are tied in his or her view). Clearly, these strate-
gies ensure that each player gets at least half the cake, as he
or she values it, proving that the division is envy-free.

But this procedure does not satisfy certain other de-
sirable properties [7,22]. For example, if the cake is, say,
half vanilla, which the cutter values at 75 percent, and half
chocolate, which the chooser values at 75 percent, a “pure”
vanilla-chocolate division would be better for the cutter
than the divide-and-choose division, which gives him or
her exactly 50% percent of the value of the cake.

The moving-knife equivalent of “I cut, you choose” is
for a knife to move continuously across the cake, say from
left to right. Assume that the cake is cut when one player
calls “stop.” If each of the players calls “stop” when he or
she perceives the knife to be at a 50-50 point, then the first
player to call “stop” will produce an envy-free division if
he or she gets the left piece and the other player gets the
right piece. (If both players call “stop” at the same time,
the pieces can be randomly assigned to the two players.)

To be sure, if the player who would truthfully call
“stop” first knows the other player’s preference and de-
lays calling “stop” until just before the knife would reach
the other player’s 50-50 point, the first player can obtain
a greater-than-50-percent share on the left. However, the
possession of such information by the cutter is not gener-
ally assumed in justifying cut-and-choose, though it does
not undermine an envy-free division.

Surprisingly, to go from two players making one cut to
three players making two cuts cannot be done by a discrete
procedure if the division is to be envy-free.1 The 3-per-
son discrete procedure that uses the fewest cuts is one dis-
covered independently by John L. Selfridge and John H.
Conway about 1960; it is described in, among other places,
Brams and Taylor (1996) and Robertson andWebb (1998)
and requires up to five cuts.

Although there is no discrete 4-person envy-free pro-
cedure that uses a bounded number of cuts, Brams, Taylor,
and Zwicker (1997) and Barbanel and Brams (2004) give
moving-knife procedures that require up to 11 and 5 cuts,
respectively. The Brams-Taylor-Zwicker (1997) procedure
is arguably simpler because it requires fewer simultane-
ously moving knives. Peterson and Su (2002) give a 4-per-
son envy-free moving-knife procedure for chore division,
whereby each player thinks he or she receives the least un-
desirable chores, that requires up to 16 cuts.

To illustrate ideas, I describe next the Barbanel–
Brams [2] 3-person, 2-cut envy-free procedure, which is
based on the idea of squeezing a piece by moving two
knives simultaneously. The Barbanel–Brams [2] 4-person,
5-cut envy-free procedure also uses this idea, but it is con-
siderablymore complicated and will not be described here.

The latter procedure, however, is not as complex as
Brams and Taylor’s [12] general n-person discrete proce-
dure. Their procedure illustrates the price one must pay
for an envy-free procedure that works for all n, because it
places no upper bound on the number of cuts that are re-
quired to produce an envy-free division; this is also true
of other n-person envy-free procedures [25,27]. While the

1[28], pp. 28–29; additional information on the minimum num-
bers of cuts required to give envy-freeness is given in [19], and [29].
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number of cuts needed depends on the players’ prefer-
ences over the cake, it is worth noting that Su’s [31] ap-
proximate envy-free procedure uses the minimal number
of cuts at a cost of only small departures from envy-free-
ness.2

I next describe the Barbanel–Brams 3-person, 2-cut
envy-free procedure, called the squeezing procedure [2].
I refer to players by number – player 1, player 2, and so
on – calling even-numbered players “he” and odd-num-
bered players “she.” Although cuts are made by two knives
in the end, initially one player makes “marks,” or virtual
cuts, on the line segment defining the cake; these marks
may subsequently be changed by another player before the
real cuts are made.

Squeezing procedure. A referee moves a knife from left
to right across a cake. The players are instructed to call
“stop” when the knife reaches the 1/3 point for each. Let
the first player to call “stop” be player 1. (If two or three
players call “stop” at the same time, randomly choose one.)
Have player 1 place a mark at the point where she calls
“stop” (the right boundary of piece A in the diagram be-
low), and a second mark to the right that bisects the re-
mainder of the cake (the right boundary of piece B below).
Thereby player 1 indicates the two points that, for her, tri-
sect the cake into pieces A, B, and C, which will be assigned
after possible modifications.

A B C
/–––––j–––––j–––––/

1 1

Because neither player 2 nor player 3 called “stop” be-
fore player 1 did, each of players 2 and 3 thinks that piece
A is at most 1/3. They are then asked whether they prefer
piece B or piece C. There are three cases to consider:

1. If players 2 and 3 each prefer a different piece – one
player prefers piece B and the other piece C – we are
done: Players 1, 2, and 3 can each be assigned a piece
that they consider to be at least tied for largest.

2. Assume players 2 and 3 both prefer piece B. A referee
places a knife at the right boundary of B and moves it
to the left. At the same time, player 1 places a knife at
the left boundary of B and moves it to the right in such
a way that the value of the cake traversed on the left
(by B’s knife) and on the right (by the referee’s knife)
are equal for player 1. Thereby pieces A and C increase

2See [10,20,26] for other approaches, based on bidding, to the
housemates problem discussed in [31]. On approximate solutions to
envy-freeness, see [33]. For recent results on pie-cutting, in which ra-
dial cuts are made from the center of a pie to divide it into wedge-
shaped pieces, see [3,8].

equally in player 1’s eyes. At some point, piece B will be
diminished sufficiently to a new piece, labeled B0 – in ei-
ther player 2’s or player 3’s eyes – to tie with either piece
A0 or C0, the enlarged A and C pieces. Assume player
2 is the first, or tied for the first, to call “stop” when
this happens; then give player 3 piece B0, which she still
thinks is the most valued or the tied-for-most-valued
piece. Give player 2 the piece he thinks ties for the most
value with piece B0 (say, piece A0), and give player 1 the
remaining piece (piece C0), which she thinks ties for the
most value with the other enlarged piece (A0). Clearly,
each player will think that he or she received at least
a tied-for-most-valued piece.

3. Assume players 2 and 3 both prefer piece C. A referee
places a knife at the right boundary of B and moves it
to the right. Meanwhile, player 1 places a knife at the
left boundary of B and moves it to the right in such
a way as to maintain the equality, in her view, of pieces
A and B as they increase. At some point, piece C will
be diminished sufficiently to C0 – in either player 2’s or
player 3’s eyes – to tie with either piece A0 or B0, the en-
largedA and B pieces. Assume player 2 is the first, or the
tied for the first, to call “stop” when this happens; then
give player 3 piece C0, which she still thinks is the most
valued or the tied-for-most-valued piece. Give player 2
the piece he thinks ties for the most value with piece C0

(say, piece A0), and give player 1 the remaining piece
(piece B0), which she thinks ties for the most value with
the other enlarged piece (A0). Clearly, each player will
think that he or she received at least a tied-for-most-
valued piece.

Note that who moves a knife or knives varies, depending
on what stage is reached in the procedure. In the begin-
ning, I assume a referee moves a single knife, and the first
player to call “stop” (player 1) then trisects the cake. But,
at the next stage of the procedure, in cases (2) and (3), it
is a referee and player 1 that move two knives simultane-
ously, “squeezing” what players 2 and 3 consider to be the
most-valued piece until it eventually ties, for one of them,
with one of the two other pieces.

Several Divisible Goods

Most disputes – divorce, labor-management, merger-ac-
quisition, and international – involve only two parties, but
they frequently involve several homogeneous goods that
must be divided, or several issues that must be resolved.3

3Dividing several homogeneous goods is very different from cake-
cutting. Cake-cutting is most applicable to a problem like land divi-
sion, in which hills, dales, ponds, and trees form an incongruous mix,
making it impossible to give all or one thing (e. g., trees) to one play-
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As an example of the latter, consider an executive negoti-
ating an employment contract with a company. The issues
before them are (1) bonus on signing, (2) salary, (3) stock
options, (4) title and responsibilities, (5) performance in-
centives, and (6) severance pay [14].

The procedure I describe next, called adjusted winner
(AW), is a 2-player procedure that has been applied to dis-
putes ranging from interpersonal to international ([15]).4

It works as follows. Two parties in a dispute, after per-
haps long and arduous bargaining, reach agreement on
(i) what issues need to be settled and (ii) what winning
and losing means for each side on each issue. For exam-
ple, if the executive wins on the bonus, it will presumably
be some amount that the company considers too high but,
nonetheless, is willing to pay. On the other hand, if the ex-
ecutive loses on the bonus, the reverse will hold.

Thus, instead of trying to negotiate a specific compro-
mise on the bonus, the company and the executive nego-
tiate upper and lower bounds, the lower one favoring the
company and the upper one favoring the executive. The
same holds true on other issues being decided, including
non-monetary ones like title and responsibilities.

Under AW, each side will always win on some issues.
Moreover, the procedure guarantees that both the com-
pany and the executive will get at least 50% of what they
desire, and often considerably more.

To implement AW, each side secretly distributes 100
points across the issues in the dispute according to the im-
portance it attaches to winning on each. For example, sup-
pose that the company and the executive distribute their
points as follows, illustrating that the company cares more
about the bonus than the executive (it would be a bad
precedent for it to go too high), whereas the reverse is true
for severance pay (the executive wants to have a cushion
in the event of being fired):

Issues Company Executive
1. Bonus 10 5
2. Salary 35 40
3. Stock Options 15 20
4. Title and Responsibilities 15 10
5. Performance Incentives 15 5
6. Severance Pay 10 20

Total 100 100

er. By contrast, in property division it is possible to give all of one
good to one player. Under certain conditions, 2-player cake division,
and the procedure to be discussed next (adjusted winner), are equiv-
alent [22].

4A website for AW can be found at http://www.nyu.edu/projects/
adjustedwinner. Procedures applicable to more than two players are
discussed in [13,15,23,32].

The italicized figures show the side that wins initially
on each issue by placing more points on it. Notice that
whereas the company wins a total of 10C 15C 15 D 40 of
its points, the executive wins a whopping 40C20C20 D 80
of its points.

This outcome is obviously unfair to the company.
Hence, a so-called equitability adjustment is necessary to
equalize the points of the two sides. This adjustment trans-
fers points from the initial winner (the executive) to the
loser (the company).

The key to the success of AW – in terms of a mathe-
matical guarantee that no win-win potential is lost – is to
make the transfer in a certain order (for a proof, see [13],
pp. 85–94). That is, of the issues initially won by the ex-
ecutive, look for the one on which the two sides are in
closest agreement, as measured by the quotient of the win-
ner’s points to the loser’s points. Because the winner-to-
loser quotient on the issue of salary is 40/35 D 1:14, and
this is smaller than on any other issue on which the exec-
utive wins (the next-smallest quotient is 20/15 = 1.33 on
stock options), some of this issue must be transferred to
the company.

But how much? The point totals of the company and
the executive will be equal when the company’s winning
points on issues 1, 4, and 5, plus x percent of its points on
salary (left side of equation below), equal the executive’s
winning points on issues 2, 3, and 6, minus x percent of its
points on salary (right side of equation):

40C 35x D 80 � 40x
75x D 40 :

Solving for x gives x D 8/15 � 0:533. This means that the
executive will win about 53% on salary, and the company
will lose about 53% (i. e., win about 47%), which is almost
a 50-50 compromise between the low and high figures they
negotiated earlier, only slightly favoring the executive.

This compromise ensures that both the company and
the executive will end up with exactly the same total num-
ber of points after the equitability adjustment:

40C 35(:533) D 80 � 40(:533) � 58:7 :

On all other issues, either the company or the executive
gets its way completely (and its winning points), as it
should since it valued these issues more than the other
side.

Thus, AW is essentially a winner-take-all procedure,
except on the one issue on which the two sides are closest
and which, therefore, is the one subject to the equitability
adjustment. On this issue a split will be necessary, which

http://www.nyu.edu/projects/adjustedwinner
http://www.nyu.edu/projects/adjustedwinner
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will be easier if the issue is a quantitative one, like salary,
than a more qualitative one like title and responsibilities.5

Still, it should be possible to reach a compromise on
an issue like title and responsibilities that reflects the per-
centages the relative winner and relative loser receive (53%
and 47% on salary in the example). This is certainly easier
than trying to reach a compromise on each and every is-
sue, which is also less efficient than resolving them all at
once according to AW.6

In the example, each side ends up with, in toto, almost
59% of what it desires, which will surely foster greater sat-
isfaction thanwould a 50-50 split down themiddle on each
issue. In fact, assuming the two sides are truthful, there is
no better split for both, which makes the AW settlement
efficient.

In addition, it is equitable, because each side gets ex-
actly the same amount above 50%, with this figure increas-
ing the greater the differences in the two sides’ valuations
of the issues. In effect, AW makes optimal trade-offs by
awarding issues to the side that most values them, except
as modified by the equitability adjustment that ensures
that both sides do equally well (in their own subjective
terms, which may not be monetary). On the other hand,
if the two sides have unequal claims or entitlements – as
specified, for example, in a contract – AW can be modi-
fied to give each side shares of the total proportional to its
specified claims.

Can AW be manipulated to benefit one side? It turns
out that exploitation of the procedure by one side is prac-
tically impossible unless that side knows exactly how the
other side will allocate its points. In the absence of such
information, attempts at manipulation can backfire mis-
erably, with the manipulator ending up with less than the
minimum 50 points its honesty guarantees it [13,15].

While AW offers a compelling resolution to a multi-
issue dispute, it requires careful thought to delineate what
the issues being divided are, and tough bargaining to de-
termine what winning and losing means on each. More
specifically, because the procedure is an additive point
scheme, the issues need to be made as independent as pos-
sible, so that winning or losing on one does not substan-
tially affect how much one wins or loses on others. To the
degree that this is not the case, it becomes less meaning-
ful to use the point totals to indicate how well each side
does.

5AWmay require the transfer of more than one issue, but at most
one issue must be divided in the end.

6A procedure called proportional allocation (PA) awards issues to
the players in proportion to the points they allocate to them. While
inefficient, PA is less vulnerable to strategic manipulation than AW,
with which it can be combined ([13], pp. 75–80).

The half dozen issues identified in the executive-com-
pensation example overlap to an extent and hence may not
be viewed as independent (after all, might not the bonus be
considered part of salary?). On the other hand, they might
be reasonably thought of as different parts of a compen-
sation package, over which the disputants have different
preferences that they express with points. In such a situa-
tion, losing on the issues you care less about than the other
side will be tolerable if it is balanced by winning on the is-
sues you care more about.

Indivisible Goods

The challenge of dividing up indivisible goods, such as
a car, a boat, or a house in a divorce, is daunting, though
sometimes such goods can be shared (usually at different
times). The main criteria I invoke are efficiency (there is
no other division better for everybody, or better for some
players and not worse for the others) and envy-freeness
(each player likes its allocation at least as much as those
that the other players receive, so it does not envy anybody
else). But because efficiency, by itself, is not a criterion of
fairness (an efficient allocation could be one in which one
player gets everything and the others nothing), I also con-
sider other criteria of fairness besides envy-freeness, in-
cluding Rawlsian and utilitarian measures of welfare (to
be defined).

I present two paradoxes, from a longer list of eight
in [4],7 that highlight difficulties in creating “fair shares”
for everybody. But they by no means render the task im-
possible. Rather, they show how dependent fair division is
on the fairness criteria one deems important and the trade-
offs one considers acceptable. Put another way, achieving
fairness requires some consensus on the ground rules (i. e.,
criteria), and some delicacy in applying them (to facilitate
trade-offs when the criteria conflict).

I make five assumptions. First, players rank indivis-
ible items but do not attach cardinal utilities to them.
Second, players cannot compensate each other with side
payments (e. g., money) – the division is only of the indi-
visible items. Third, players cannot randomize among dif-
ferent allocations, which is a way that has been proposed
for “smoothing out” inequalities caused by the indivisibil-
ity of items. Fourth, all players have positive values for ev-
ery item. Fifth, a player prefers one set S of items to a dif-
ferent set T if (i) S has as many items as T and (ii) for every
item t in T and not in S, there is a distinct item s in S and
not T that the player prefers to t. For example, if a player

7For a more systematic treatment of conflicts in fairness criteria
and trade-offs that are possible, see [5,6,9,11,18,21].
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ranks four items in order of decreasing preference, 1 2 3 4,
I assume that it prefers

� the set {1,2} to {2,3}, because {1} is preferred to {3}; and
� the set {1,3} to {2,4}, because {1} is preferred to {2} and

{3} is preferred to {4},

whereas the comparison between sets {1,4} and {2,3} could
go either way.

Paradox 1. A unique envy-free division may be
inefficient.

Suppose there is a set of three players, {A, B, C}, who must
divide a set of six indivisible items, {1, 2, 3, 4, 5, 6}. Assume
the players rank the items from best to worst as follows:

A : 1 2 3 4 5 6
B : 4 3 2 1 5 6
C : 5 1 2 6 3 4

The unique envy-free allocation to (A, B, C) is ({1,3}, {2,4},
{5,6}), or for simplicity (13, 24, 56), whereby A and B get
their best and 3rd-best items, and C gets its best and 4th-
best items. Clearly, A prefers its allocation to that of B
(which are A’s 2nd-best and 4th-best items) and that of C
(which are A’s two worst items). Likewise, B and C prefer
their allocations to those of the other two players. Conse-
quently, the division (13, 24, 56) is envy-free: All players
prefer their allocations to those of the other two players,
so no player is envious of any other.

Compare this division with (12, 34, 56), whereby A and
B receive their two best items, and C receives, as before,
its best and 4th-best items. This division Pareto-dominates
(13, 24, 56), because two of the three players (A and B)
prefer the former allocation, whereas both allocations give
player C the same two items (56).

It is easy to see that (12, 34, 56) is Pareto-optimal or
efficient: No player can do better with some other division
without some other player or players doing worse, or at
least not better. This is apparent from the fact that the only
way A or B, which get their two best items, can do better
is to receive an additional item from one of the two other
players, but this will necessarily hurt the player who then
receives fewer than its present two items. Whereas C can
do better without receiving a third item if it receives item
1 or item 2 in place of item 6, this substitution would nec-
essarily hurt A, which will do worse if it receives item 6 for
item 1 or 2.

The problem with efficient allocation (12, 34, 56) is
that it is not assuredly envy-free. In particular, C will envy
A’s allocation of 12 (2nd-best and 3rd-best items for C)
if it prefers these two items to its present allocation of 56

(best and 4th-best items for C). In the absence of informa-
tion about C’s preferences for subsets of items, therefore,
we cannot say that efficient allocation (12, 34, 56) is envy-
free.8

But the real bite of this paradox stems from the fact
that not only is inefficient division (13, 24, 56) envy-free,
but it is uniquely so – there is no other division, including
an efficient one, that guarantees envy-freeness. To show
this in the example, note first that an envy-free division
must give each player its best item; if not, then a player
might prefer a division, like envy-free division (13, 24,
56) or efficient division (12, 34, 56), that does give each
player its best item, rendering the division that does not
do so envy-possible or envy-ensuring. Second, even if each
player receives its best item, this allocation cannot be the
only item it receives, because then the player might envy
any player that receives two or more items, whatever these
items are.

By this reasoning, then, the only possible envy-free di-
visions in the example are those in which each player re-
ceives two items, including its top choice. It is easy to check
that no efficient division is envy-free. Similarly, one can
check that no inefficient division, except (13, 24, 56), is
envy-free, making this division uniquely envy-free.

Paradox 2. Neither the Rawlsian maximin criterion nor
the utilitarian Borda-score criterion may choose
a unique efficient and envy-free division.

Unlike the example illustrating paradox 1, efficiency and
envy-freeness are compatible in the following example:

A: 1 2 3 4 5 6
B: 5 6 2 1 4 3
C: 3 6 5 4 1 2

There are three efficient divisions in which (A, B, C) each
get two items: (i) (12, 56, 34); (12, 45, 36); (iii) (14, 25, 36).
Only (iii) is envy-free: Whereas C might prefer B’s 56 al-
location in (i), and B might prefer A’s 12 allocation in (ii),
no player prefers another player’s allocation in (iii).

Now consider the following Rawlsian maximin crite-
rion to distinguish among the efficient divisions: Choose

8Recall that an envy-free division of indivisible items is one in
which, no matter how the players value subsets of items consistent
with their rankings, no player prefers any other player’s allocation to
its own. If a division is not envy-free, it is envy-possible if a player’s
allocation maymake it envious of another player, depending on how
it values subsets of items, as illustrated for player C by division (12,
34, 56). It is envy-ensuring if it causes envy, independent of how the
players value subsets of items. In effect, a division that is envy-possi-
ble has the potential to cause envy. By comparison, an envy-ensuring
division always causes envy, and an envy-free division never causes
envy.
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a division that maximizes the minimum rank of items that
players receive, making a worst-off player as well off as
possible.9 Because (ii) gives a 5th-best item to B, whereas
(i) and (iii) give players, at worst, a 4th-best item, the latter
two divisions satisfy the Rawlsian maximin criterion.

Between these two, (i), which is envy-possible, is ar-
guably better than (iii), which is envy-free: (i) gives the two
players that do not get a 4th-best item their two best items,
whereas (iii) does not give B its two best items.10

Now consider what a modified Borda count would
also give the players under each of the three efficient di-
visions. Awarding 6 points for obtaining a best item, 5
points for obtaining a 2nd-best item, . . . , 1 point for ob-
taining a worst item in the example, (ii) and (iii) give the
players a total of 30 points, whereas (i) gives the players
a total of 31 points.11 This criterion, which I call the util-
itarian Borda-score criterion, gives the nod to division (i);
the Borda scores provide a measure of the overall utility or
welfare of the players. Thus, neither the Rawlsianmaximin
criterion nor the utilitarian Borda-score criterion guaran-
tees the selection of the unique efficient and envy-free di-
vision of (iii).

Conclusions

The squeezing procedure I illustrated for dividing up
a cake among three players ensures efficiency and envy-
freeness, but it does not satisfy equitability. Whereas ad-
justed winner satisfies efficiency, envy-freeness, and equi-
tability for two players dividing up several divisible goods,
all these properties cannot be guaranteed if there are more
than two players. Finally, the two paradoxes relating to the
fair division of indivisible good, which are independent of
the procedure used, illustrate new difficulties – that no di-
vision may satisfy either maximin or utilitarian notions of
welfare and, at the same time, be efficient and envy-free.

9This is somewhat different from Rawls’s (1971) proposal to max-
imize the utility of the player with minimum utility, so it might be
considered a modified Rawlsian criterion. I introduce a rough mea-
sure of utility next with a modified Borda count.

10This might be considered a second-order application of the max-
imin criterion: If, for two divisions, players rank the worst item any
player receives the same, consider the player that receives a next-
worst item in each, and choose the division in which this item is
ranked higher. This is an example of a lexicographic decision rule,
whereby alternatives are ordered on the basis of a most important cri-
terion; if that is not determinative, a next-most important criterion is
invoked, and so on, to narrow down the set of feasible alternatives.

11The standard scoring rules for the Borda count in this 6-item
example would give 5 points to a best item, 4 points to a 2nd-best
item, . . . , 0 points to a worst item. I depart slightly from this standard
scoring rule to ensure that each player obtains some positive value for
all items, including its worst choice, as assumed earlier.

Future Directions

Patently, fair division is a hard problem, whatever the
things being divided are. While some conflicts are inerad-
icable, as the paradoxes demonstrate, the trade-offs that
best resolve these conflicts are by no means evident. Un-
derstanding these may help to ameliorate, if not solve,
practical problems of fair division, ranging from the split-
ting of the marital property in a divorce to determining
who gets what in an international dispute.
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Glossary

Axon Nerve fiber adapted to the efficient, reliable, active
transmission of neural impulses between locations in
the brain or body.

Dendrite Nerve fibers adapted to the (primarily passive)
sensing and integration of signals from other neurons,
which are transmitted to the neuron cell body.

Dirac delta function A distribution or generalized func-
tion that is defined to be infinite at the origin, zero ev-
erywhere else, and to have unit area (or volume). More
generally, such a function but with its infinite point
located elsewhere than the origin. Dirac delta func-
tions are idealized impulses and exist as limit objects
in Hilbert spaces.

Eigenfield An eigenfield of a linear operator has the prop-
erty of passing through the operator with its shape
unchanged and only its amplitude possibly modified.
Equivalent to an eigenfunction of the operator, but
stresses the function’s role as a field.

Field A continuous distribution of continuous quantity.
Mathematically, an element of an appropriate space,
such as a Hilbert space, of continuous-valued func-
tions over a continuum. See also phenomenological
field and structural field.

Field computation Computation in which data are rep-
resented by fields, or by other representations that can
be mathematically modeled by fields.

Field space A suitably constrained set of fields. Gener-
ally field spaces are taken to be subspaces of Hilbert
spaces.

Field transformation Functions between field spaces;
more generally, functions whose input and/or outputs
are fields. Synonymous with operator in this article.

Functional A scalar-valued function of functions, and in
particular a scalar-valued field transformation.

Idempotency An operation is idempotent when repeat-
ing it several times has the same effect as doing it once.

Impulse response The response of a system to an input
that is an idealized impulse (a Dirac delta function,
q.v.).

Microfeature Features of a stimulus or representation
that are much smaller and at a lower level than ordi-
nary (macro-)features, which are the sort of proper-
ties for which natural languages have words. Typically
microfeatures havemeaning (are interpretable) only in
the context of many other microfeatures. Pixels are ex-
amples of microfeatures of images.

Nullcline In a two-dimensional system of differential
equations (u̇k D fk(u; v), k D 1; 2), the lines along
which each of the derivatives is zero ( fk(u; v) D 0).

Operator A function of functions (i. e., a functions whose
inputs and/or outputs are functions), and in particu-
lar a function whose inputs and/or outputs are fields.
Operators may be linear or nonlinear. Synonymous, in
this article, with field transformation.
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Orthonormal (ON) A set of vectors, fields, or functions is
orthonormal if they are: (1) mutually orthogonal (i. e.,
inner products of distinct elements are 0), and (2) in-
dividually normalized (i. e., inner products of elements
with themselves are 1).

Phenomenological field A physical distribution of quan-
tity that for practical purposes may be treated math-
ematically as a continuous distribution of continuous
quantity, although it is not so in reality (cf. structural
field).

Physical realizability A field is physically realizable if it
can be represented in some physical medium.

Population coding Neural representation in which
a population of neurons jointly represent a stimu-
lus or other information. Each individual neuron is
broadly tuned to a range of stimuli, but collectively
they can represent a stimulus accurately.

Post–Moore’s law computing Refers to computing par-
adigms that will be important after the expiration of
Moore’s Law [48], which predicts a doubling of digital
logic density every two years.

Projection A systematic pattern of axonal connections
from one region of a brain to another.

Radial basis function (RBF) One of a set of real-valued
functions, each of whose value decreases with distance
from a central point (different for each function). The
set as a whole satisfies some appropriate criteria of
completeness (ability to approximate a class of func-
tions).

Receptive field The receptive field of a sensory neuron is
the set of stimuli to which it responds. By extension,
the receptive field of a non-sensory neuron is the set of
inputs (from other neurons) to which it responds. Each
neuron has a receptive field profile which describes the
extent to which particular patterns of input stimulate
or inhibit activity in the neuron (and so, in effect, its
receptive field is fuzzy-boundaried).

Structural field A physical field that is in reality a con-
tinuous distribution of continuous quantity (cf. phe-
nomenological field).

Synapse A connection between neurons, often from the
axon of one to the dendrite of another. Electrical im-
pulses in the pre-synaptic neuron cause neurotrans-
mitter molecules to be secreted into the synapses be-
tween the neurons. These chemicals bind to recep-
tors in the post-synaptic neuron membrane, and cause
fluctuations in the membrane potential.

Transfer function A function expressing the effect of
a linear system on its input, expressed in terms of its
effect on the amplitude and phase of each component
frequency.

Unit doublet A generalized function that is the derivative
of the Dirac delta function (q.v.). It is zero except in-
finitesimally to the left of the origin, where it is C1,
and infinitesimally to the right of the origin, where it
is �1.

Definition of the Subject

A field may be defined as a spatially continuous distribu-
tion of continuous quantity. The term is intended to in-
clude physical fields, such as electromagnetic fields and
potential fields, but also patterns of electrical activity over
macroscopic regions of neural cortex. Fields include two-
dimensional representations of information, such as opti-
cal images and their continuous Fourier transforms, and
one-dimensional images, such as audio signals and their
spectra, but, as will be explained below, fields are not lim-
ited to two or three dimensions. A field transformation is
a mathematical operation or function that operates on one
or more fields in parallel yielding one or more fields as re-
sults. Since, from a mathematical standpoint, fields are de-
fined over a continuous domain, field transformations op-
erate with continuous parallelism. Some examples of field
transformations are point-wise summation and multipli-
cation of fields, Fourier and wavelet transforms, and con-
volutions and correlations.

Field computation is a model of computation in which
information is represented primarily in fields and in which
information processing is primarily by means of field
transformations. Thus is may be described as continuously
analog computing (see � Analog Computation). Field
computation may be feed-forward, in which one or more
fields progress through a series of field transformations
from input to output, or it may be recurrent, in which there
is feedback from later stages of the field computation back
to earlier stages. Furthermore, field computations can pro-
ceed in discrete sequential steps (similar to digital program
execution, but with each step applying a field transforma-
tion), or in continuous time according to partial differen-
tial equations.

A distinction is often made in science between struc-
tural fields and phenomenological fields. Structural fields
are physically continuous distributions of continuous
quantity, such as gravitational fields and electromagnetic
fields. Phenomenological fields are distributions of quan-
tity that can be treated mathematically as though they are
continuous, even if they are not physically continuous. For
example, the velocity field of a macroscopic volume of
fluid is a phenomenological field, because it is not physi-
cally continuous (each discrete molecule has its own veloc-
ity), but can be treated as though it is. Similarly, a macro-
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scopic charge distribution is a phenomenological field be-
cause charge is quantized but can be treated as a continu-
ous quantity for many purposes. Although structural fields
are sometimes used, often field computation is concerned
with phenomenological fields, that is, with information
that can be treated as a continuous distribution of contin-
uous quantity, regardless of whether it is physically con-
tinuous. Practically, this means that quantization in both
the distribution and the quantity must be sufficiently fine
that they can be modeled mathematically by continua.

One of the goals of field computation is to provide
a mathematical language for describing information pro-
cessing in the brain and in future large artificial neural net-
works intended to exhibit brain-scale intelligence. Neural
computation is qualitatively different from ordinary dig-
ital computation. Computation on an ordinary computer
can be characterized as deep but narrow; that is, the pro-
cessor operates on relatively few data values at a time, but
the operations are very rapid, and so many millions of op-
erations can be executed each second. Even on a modern
parallel computer, the degree of parallelism is modest, on
the order of thousands, whereas even a square millimeter
of cortex has at least 146 000 neurons operating in parallel
(see p. 51 in [11]). On the other hand, since neurons are
quite slow (responding on the order of milliseconds), the
“100-Step Rule” says that there can be at most about 100
sequential processing stages between sensory input and re-
sponse [19]. Therefore, neural computation is shallow but
wide; that is, it uses relatively few sequential stages, but
each operates with a very high degree of parallelism (on the
order of many millions). In addition to its speed, modern
electronic digital arithmetic is relatively precise compared
to the analog computation of neurons (at most about one
digit of precision) (see p. 378 in [43]). Therefore we can
conclude that neuronal information processing operates
according to quite different principles to ordinary digital
computing.

It is not unreasonable to suppose that achieving an ar-
tificial intelligence that is comparable to the natural intelli-
gence of mammals will require a similar information pro-
cessing architecture; in any case that seems to be a promis-
ing research direction. Therefore we should be aiming to-
ward components with computational capabilities compa-
rable to neurons and densities of at least 15 million per
square centimeter. Fortunately, the brain demonstrates
that these components do not have to be high-speed, high-
precision devices, nor do they have to be precisely con-
nected, for the detailed connections can be established
through self-organization and learning. The theory of field
computation can contribute in two ways: first, by provid-
ing a mathematical framework for understanding infor-

mation in massively parallel analog computation systems,
such as the brain, and second, by suggesting how to exploit
relatively homogeneous masses of computational materi-
als (e. g., thin films, newnanostructuredmaterials). For the
same reasons, field computers may provide an attractive
alternative for “post-Moore’s law computing”.

Introduction

The term “field computation” dates from 1987 [32], but
examples of field computation are much older. For ex-
ample, G Kirchhoff (1824–87) and others developed the
field analogy method in which partial differential equa-
tion (PDE) problems are solved by setting up an analogous
physical system and measuring it [26]. Thus a two-dimen-
sional boundary value problem, for example determining
a steady-state temperature or magnetic field distribution,
could solved by setting up an analogous systemwith a con-
ductive sheet or a shallow tank containing an electrolytic
solution (see p. 34 in [63]). When the boundary condi-
tions were applied, the system computed the steady-state
solution field in parallel and at electronic speed. The re-
sulting potential field could not be displayed directly at
that time, and so it was necessary to probe the field at
discrete points and plot the equipotential lines; later de-
vices allowed the equipotentials to be traced more or less
automatically (see pp. 2-6 in [70]). In either case, setting
up the problem and reading out the results were much
slower than the field computation, which was compara-
tively instantaneous. Three-dimensional PDEs were sim-
ilarly solved with tanks containing electrolytic solutions
(see pp. 2-5–6 in [70]). (For more on conductive sheet and
electrolytic tanks methods, see Chap. 9 in [65].)

Non-electronic field computation methods were also
developed in the nineteenth century, but continued to be
used through the first half of the twentieth century to
solve the complex PDEs that arise in practical engineer-
ing (see pp. 2-8–9 in [70]). For example, so called “rub-
ber-sheet computers” were used to compute the complex
electric fields in vacuum tubes. A thin elastic membrane
represented the field, and rods or plates pushing the sheet
down from above or up from below represented constant
negative or positive potential sources. The sheet assumed
the shape of the electrical potential field, which could be
viewed directly. By altering the rods and plates and ob-
serving the effects on the sheet, the engineer could de-
velop an intuitive understanding of the field’s dependence
on the potential sources. These simple mechanical devices
used effectively instantaneous field computation to dis-
play the steady-state field’s dependence on the boundary
conditions.
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Electrolytic tanks and conductive and elastic sheets are
all examples of the use of structural fields in computation,
but other mechanical field computers used discrete ap-
proximations of spatially continuous fields, and therefore
made use of phenomenological fields. For example, “pin-
and-rod systems”, which were developed in the nineteenth
century, exploited the fact that equipotential lines and flux
(or stream) lines always cross at right angles (see pp. 2-9–
11 in [70]). A (two-dimensional) field was represented by
two arrays of flexible but stiff wires, representing the flux
and equipotential lines. At each crossing point was a pin
with two perpendicular holes drilled through it, through
which the crossing wires passed. The pins were loose
enough that they couldmove on the wires, while maintain-
ing, of course, their relative position and the perpendicular
crossings of the wires. To solve a PDE problem (for exam-
ple, determining the pressure potentials and streamlines
of a non-tubulent flow through a nozzle), the edges of the
pin-and-rod system were bent to conform to the bound-
ary conditions; the rest of the system adjusted itself to the
steady-state solution field. Like the rubber-sheet comput-
ers, pin-and-rod systems allowed the solution field to be
viewed directly and permitted exploration of the effects on
the solution of changes in the boundary conditions.

Through the first half of the twentieth century, net-
work analyzerswere popular electronic analog computers,
which were often used for field computation (see pp. 35–
40 in [63]) This was similar to the field analogy method,
but a discrete network of resistors or resistive elements
replaced such continuous conducting media as the elec-
trolytic tank and conductive sheet. Nevertheless, a suf-
ficiently fine mesh of resistive elements may be treated
as a phenomenological field, and network analyzers were
used to solve PDE problems (see pp. 2-6–8 in [70]).
Boundary conditions were defined by applying voltages to
the appropriate locations in the network, and the resulting
steady-state field values were determined bymeasuring the
corresponding nodes in the network. As usual, it was pos-
sible to monitor the effects of boundary condition changes
on particular locations in the field, and to plot them auto-
matically or display them on an oscilloscope.

The field computers discussed so far were suited
to determining the steady-state solution of a system of
PDEs given specified boundary conditions; as a conse-
quence they were sometimes called field plotters or po-
tential analyzers (see pp. 2-3 in [70]). These are essen-
tially static problems, although, as we have seen, it was
possible to simulate and monitor changes in the (rela-
tively) steady-state solution as a consequence of (relatively
slowly) changing boundary conditions. On the other hand,
truly dynamic problems, which simulated the evolution of

a field in time, could be addressed by reactive networks,
that is, networks incorporating capacitive and inductive
elements as well as resistors (see pp. 2-11–13 in [70]). For
example anRC network analyzer, which had capacitance at
each of the nodes of the resistor network, could solve the
diffusion equation, for the charge on the capacitors corre-
sponded to the concentration of the diffusing substance at
corresponding locations in the medium. An RLC network
analyzer had inductance, as well as resistance and capaci-
tance, at each node, and so it was able to address a wider
class of PDEs, including wave equations.

Although these twentieth-century field computers
were constructed from discrete resistors, capacitors, and
inductors, which limited the size of feasible networks, ana-
log VLSI and emerging fabrication technologies will per-
mit the implementation of much denser devices incorpo-
rating these and similar field computation techniques (see
Sect. “Field Computers”).

The following section will present the mathematical
foundations and notation for field computation; Hilbert
spaces provide the basic mathematical framework. Next
we discuss examples of field computation in the brain, es-
pecially in its computational maps. Fields appear in a num-
ber of contexts, including activity at the axon hillocks,
in patterns of axonal connection between areas, and in
patterns of synaptic connection to dendrites. The follow-
ing section presents examples of field computation in the
brain and in other natural and artificial systems, including
fields for sensorimotor processing, excitable media, and
diffusion processes. Next we consider special topics in field
computation in cognition, including the separation of in-
formation (semantics) from pragmatics, and the analysis
of discrete symbols as field excitations. We also consider
the relevance of universal mutivariate approximation the-
orems to general-purpose field computation. Then we dis-
cuss hardware specifically oriented toward field computa-
tion, including electronic, optical, and chemical technolo-
gies. Finally, we consider future directions for field com-
putation research.

Basic Principles

Mathematical Definitions

Mathematically, a field is (generally continuous) function
� : ˝ ! K defined over some bounded domain˝ (often
a compact subset of a Euclidean space) and taking values
in an algebraic fieldK . Typically K is the real numbers, but
in some applications it is the complex numbers or a vector
space (see Sects. “Neuronal Fields”, “Diffusion Processes”,
“Motion in Direction Fields”, and “Gabor Wavelets and
Coherent States” below).
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As usual, the value of a field � at a point u 2 ˝ of its
domain can be denoted by �(u), but we more often use the
notation �u with the samemeaning. The latter is especially
convenient for time-varying fields. For example, the value
of a field � at point u and time t can be denoted by �u(t)
rather than �(u; t). The entire field at a particular time t
is then written �(t). As is commonly done in mathemat-
ics, we may consider � to be a variable implicitly defined
over all u 2 ˝ . (In this article lower-case Greek letters
are usually used for fields. We occasionally use bold-face
numbers, such as 0 and 1, for constant-valued fields; thus
0u D 0 for all u 2 ˝ . When it is necessary to make the
field’s domain explicit, we write 0˝ , 1˝ , etc.)

For practical field computation (e. g., in natural and ar-
tificial intelligence) we are interested in fields that can be
realized in some physical medium, which places restric-
tions on the space of allowable fields. These restrictions
vary somewhat for different physical media (e. g., neural
cortex or optical fields), but we can specify a few gen-
eral conditions for physical realizability. Generally, fields
are defined over a bounded domain, although sometimes
we are interested in fields that are extended in time with
no prespecified bound (e. g., an auditory signal). Further-
more, since most media cannot represent unbounded field
amplitudes, it is reasonable to assume that a field’s range of
variation is also bounded (e. g., j�uj � B for all u 2 ˝). In
addition, most media will not support unbounded gradi-
ents, so the field’s derivatives are bounded. Indeed, physi-
cally realizable fields are band-limited in both the spatial
and temporal domains. Although different assumptions
apply in different applications, from a mathematical per-
spective it is generally convenient to assume that fields are
uniformly continuous square-integrable functions (defined
below), and therefore that they belong to a Hilbert func-
tion space. In any case we use the notation ˚K (˝) for
a physically realizable space of K00 valued fields over a do-
main ˝ , and write ˚(˝) when the fields’ values are clear
from context.

The foregoing considerations suggest that the inner
product of fields is an important concept, and indeed it
is fundamental to Hilbert spaces Therefore, if � and  
are two real-valued fields with the same domain, �; 2
˚(˝), we define their inner product in the usual way:

h� j  i D

Z

˝

�u udu :

If the fields are complex-valued, then we take the complex
conjugate of one of the fields:

h� j  i D

Z

˝

��u udu :

For vector-valued fields �; 2 ˚Rn (˝) we may define

h� j  i D

Z

˝

�u � udu ;

where �u � u is the ordinary scalar product on the vector
space Rn . Finally, the inner-product norm k�k is defined
in the usual way:

k�k2 D h� j �i :

As previously remarked, the elements of a Hilbert space
are required to be square-integrable (“finite energy”):
k�k <1.

Field Transformations

A field transformation or operator is any continuous func-
tion that maps one or more input fields into one or more
output fields. In the simplest case a field transformation
F : ˚(˝) ! ˚(˝ 0) maps a field in the input space ˚(˝)
into a field in the output space ˚(˝ 0).

We do not want to exclude degenerate field transfor-
mations, which operate on a field to produce a single real
number, for example, or operate on a scalar value to pro-
duce a field. (An example of the former is the norm oper-
ation, k�k, and an example of the latter is the operator that
produces a constant-valued field over a domain.) In these
cases we can consider the inputs or outputs to belong to
a space ˚(˝) in which ˝ is a singleton set. For example,
the real numbers can be treated as fields in

˚0 D ˚R(f0g) :

Since R and ˚0 are isomorphic, we will ignore the differ-
ence between them when no confusion can result.

Another class of simple field transformations are the
local transformations, in which each point of the output
field is a function of the corresponding point in the input
field. In the simplest case, the same function is applied at
each point. Suppose that for input field � 2 ˚J(˝), the
output field  2 ˚K(˝) is defined  u D f (�u), where
f : J ! K. Then we write f : ˚J(˝) ! ˚K(˝) for the
local transformation  D f (�). For example, log(�) ap-
plies the log function to every element of � and returns
field of the results. More generally, we may apply a differ-
ent function (from a parameterized family) at each point
of the input field. Suppose F : ˝ � J ! K, then we de-
fine F : ˚J(˝) ! ˚K(˝) so that if  D F(�), then
 u D F(u; �u).

Field transformations may be linear or nonlinear. The
most common linear transformations are integral opera-
tors of Hilbert–Schmidt type, which are the field analogs of
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matrix-vector products. Let � 2 ˚(˝) and L 2 ˚(˝ 0 �
˝) be square-integrable fields; then the product L� D
 2 ˚(˝ 0) is defined:

 u D

Z

˝

Luv�vdv :

L is called the kernel of the operator. It is easy to show
that physically realizable linear operators have a Hilbert–
Schmidt kernel, because physically realizable fields and the
operators on them are band-limited [33]. Therefore they
can be computed by field products of the form L� .

According to the Riesz Representation Theorem (e. g.,
Sect. 12.4 in [9]), a continuous linear functional (real-val-
ued operator) L : ˚(˝) ! R has a representer, which is
a field � 2 ˚(˝) such that L� D h� j �i. However,
since linear operators are continuous if and only if they
are bounded, and since practical field transformations are
bounded, all practical linear functionals have representers.

We define multilinear products in the same way. Sup-
pose �k 2 ˚(˝k), for k D 1; : : : ; n, and M 2 ˚(˝ 0 �
˝n � � � �˝2 � ˝1). Then M�1�2 � � ��n D  2 ˚(˝ 0) is
defined

 u D

Z

˝n

� � �

Z

˝2

Z

˝1

Muvn���v2v1�1(v1)�2(v2)

� � ��n(vn)dv1dv2 � � �dvn :

Again, physically realizable multilinear operators are band
limited, and so they can be computed by this kind of mul-
tilinear product [33].

Like the field analogs of inner products and matrix-
vector products, it is also convenient to define an analog
of the outer product. For � 2 ˚(˝) and  2 ˚(˝ 0) we
define the outer product � ^ 2 ˚(˝ �˝ 0) so that (� ^
 )(u;v) D �u v , for u 2 ˝ , v 2 ˝ 0. Inner, outer, and
field products are related as follows for �; � 2 ˚(˝) and
 2 ˚(˝ 0):

�(� ^  ) D h� j �i D ( ^ �)� :

In the simplest kind of field computation (correspond-
ing to a feed-forward neural network), an input field �
is processed through one or more field transformations
F1; : : : ; Fn to yield an output field  :

 D Fn(� � � F1(�) � � � ) :

This includes cases in which the output field is the contin-
uously-varying image of a time-varying input field,

 (t) D Fn(� � � F1(�(t)) � � � ) :

More complex feed-forward computations may involve
additional input, output, and intermediate fields, which
might be variable or not.

In an ordinary artificial neural network, the activity
yi of neuron i in one layer is defined by the activities
x1; : : : ; xn of the neurons in the preceding layer by an
equation such as

yi D s

0

@
NX

jD1

Wi jx j C bi

1

A ; (1)

whereWi j is the weight or strength of the connection from
neuron j to neuron i, bi is a bias term, and s : R ! R
is a sigmoid function, that is, a non-decreasing, bounded
continuous function. (The hyperbolic tangent is a typical
example.) The field computation analog is obtained by tak-
ing the number of neurons in each layer to the continuum
limit. That is, the activities u in one neural field (u 2 ˝ 0)
are defined by the values �v in the input field (v 2 ˝) by
this equation:

 u D

Z

˝

Luv�vdv C ˇu ;

where L 2 ˚(˝ 0 �˝) is an interconnection field and ˇ 2
˚(˝ 0) is a bias field. More compactly,

 D s(L� C ˇ) : (2)

Typically, the input is processed through a series of layers,
each with its own weights and biases. Analogously, in field
computation we may have an N-layer neural field com-
putation, �k D s(Lk�k�1 C ˇk); k D 1; : : : ;N , where
�0 2 ˚(˝0) is the input, �N 2 ˚(˝N ) is the output,
Lk 2 ˚(˝k � ˝k�1) are the interconnection fields, and
ˇk 2 ˚(˝k) are the bias fields. Other examples of neu-
ral-network style field computing are discussed later (Sect.
“Examples of Field Computation”).

Many important field computation algorithms are it-
erative, that is, they sequentially modify one or more fields
at discrete moments of time. They are analogous to ordi-
nary computer programs, except that the variables contain
fields rather than scalar quantities (integers, floating-point
numbers, characters, etc., and arrays of these). Since the
current value of a field variable may depend on its previ-
ous values, iterative field computations involve feedback.
Examples of iterative algorithms include field computa-
tion analogs of neural network algorithms that adapt in
discrete steps (e. g., ordinary back-propagation), and re-
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current neural networks, which have feedback from later
layers to earlier layers.

Analog field computers, like ordinary analog comput-
ers, can operate in continuous time, defining the contin-
uous evolution of field variable by differential equations.
For instance, �̇ D F(�) is a simple first-order field-valued
differential equation, which can be written d�u(t)/dt D
Fu[�(t)]. An example is the familiar diffusion equation
�̇ D k2r2� .

Continuously varying fields arise in a number of con-
texts in natural and artificial intelligence. For example,
sensorimotor control (in both animals and robots) de-
pends on the processing of continuously varying input
fields (e. g., visual images or auditory signals) and their
transformation into continuously varying output signals
(e. g., to control muscles or mechanical effectors). One of
the advantages of field computing for these applications
is that the fields are processed in parallel, as they are in
the brain. Often we find continuous field computation in
optimization problems, in adaptation and learning, and in
the solution of other continuous problems. For example,
a field representing the interpretation of perceptual data
(such as stereo disparity) may be continuously converging
to the optimal interpretation or representation of the data.

Optimization problems are sometimes solved by con-
tinuous gradient ascent or descent on a potential surface
defined by a functional F over a field space (F : ˚(˝) !
R), where F(�) defines the “goodness” of solution � . Gra-
dient ascent is implemented by �̇ D rrF(�), where r is
the rate of ascent. This and other examples are discussed
in Sect. “Gradient Processes”, but the use of the gradient
raises the issue of the derivatives of field transformations,
such as F, which we now address.

Derivatives of Field Transformations

Since fields are functions, field spaces are function spaces
(generally, Hilbert spaces), and therefore the derivatives
of field transformations are the derivatives of operators
over function spaces (see § 251G in [42]). There are two
common definitions of the differentiation of operators
on Hilbert spaces (more generally, on Banach spaces),
the Fréchet and the Gâteaux derivatives, which turn out
to be the same for field transformations [33]. Therefore
suppose that F : ˚(˝) ! ˚(˝ 0) is a field transforma-
tion and that U is an open subset of ˚(˝). Then D 2
L(˚(˝); ˚(˝ 0)), the space of bounded linear operators
from ˚(˝) to ˚(˝ 0), is called the Fréchet differential of F
at � 2 U if for all ˛ 2 ˚(˝) such that � C ˛ 2 U there is
an E : ˚(˝)! ˚(˝ 0) such that,

F(� C ˛) D F(�)C D(˛)C E(˛)

and

lim
k˛!0k

kE(˛)k
k˛k

D 0 :

The Fréchet derivative F 0 : ˚(˝) ! L(˚(˝); ˚(˝ 0)) is
defined by F 0(�) D D, which is the locally linear approxi-
mation to F at � .

Similarly dF : ˚(˝) � ˚(˝) ! ˚(˝ 0) is a Gâteaux
derivative of F if for all ˛ 2 U the following limit exists:

dF(�; ˛) D lim
s!0

F(� C s˛) � F(�)
s

D
dF(� C s˛)

ds

ˇ̌
ˇ̌
sD0

:

If the Fréchet derivative exists, then the two derivatives are
identical, dF(�; ˛) D F 0(�)(˛) for all ˛ 2 ˚(˝).

Based on the analogy with finite-dimensional spaces,
we define rF(�), the gradient of F at � , to be the field
K 2 ˚(˝ 0 � ˝) satisfying F 0(�)(˛) D K˛ for all ˛ in
˚(˝). That is, F 0(�) is an integral operator with kernel
K D rF(�); note that F 0(�) is an operator but rF(�) is
a field. The field analog of a directional derivative is then
defined:

r˛F(�) D [rF(�)]˛ D F 0(�)(˛) :

Because of their importance, it is worth highlighting the
gradients of functionals (real-valued operators on fields).
According to the preceding definition, the gradient of
a functional F : ˚(˝) ! ˚0 will be a two-dimensional
field rF(�) 2 ˚(f0g � ˝). (Recall ˚0 D ˚(f0g).) How-
ever, when confusion is unlikely, it is more convenient to
define rF(�) D � 2 ˚(˝), where � is the representer of
F 0(�). Then F 0(�)(˛) D h� j ˛i D hrF(�) j ˛i.

Higher order derivatives of field operators are de-
fined in the obvious way, but it is important to note
that each derivative is of “higher type” that the pre-
ceding. That is, we have seen that if F : ˚(˝) !
˚(˝ 0), then dF : ˚(˝)2 ! ˚(˝ 0), where ˚(˝)2 D
˚(˝) � ˚(˝). Similarly, dnF : ˚(˝)nC1 ! ˚(˝ 0).
Also, as F 0 : ˚(˝) ! L(˚(˝); ˚(˝ 0)), so F 00 : ˚(˝) !
L(˚(˝);L(˚(˝); ˚(˝ 0))) and, in general,

F(n) : ˚(˝)!

n
‚ …„ ƒ
L(˚(˝);L(˚(˝); � � � ;L(˚(˝);
˚(˝ 0)) � � � )) :

Corresponding to higher-order derivatives are higher-or-
der gradients:

dFn(�; ˛1; : : : ; ˛n) D r nF(�)˛1 � � �˛n
D r nF(�)(˛n ^ � � � ^ ˛1)
D r˛n � � �r˛1F(�) :
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For reference, we state the chain rules for Fréchet and
Gâteaux derivatives:

(F ı G)0(�)(˛) D F 0[G(�)][G0(�)(˛)] ; (3)

d(F ı G)(�; ˛) D dF[G(�); dG(�; ˛)] : (4)

Just as a real function can be expanded in a Taylor se-
ries around a point to obtain a polynomial approximation,
there is a corresponding theorem in functional analysis
that allows the expansion of an operator around a fixed
field. This suggests an approach to general-purpose com-
putation based on field polynomials [32], but there are
also other approaches suggested by neural networks (see
Sect. “Universal Approximation” below). We begin with
a formal statement of the theorem.

Theorem 1 (Taylor) Suppose that U is any open subset
of ˚(˝) and that F : ˚(˝) ! ˚(˝ 0) is a field transfor-
mation that is Cn in U (that is, its first n derivatives exist).
Let � 2 U and ˛ 2 ˚(˝) such that � C s˛ 2 U for all
s 2 [0; 1]. Then:

F(� C ˛) D
n�1X

kD0

dkF(�;
k

‚ …„ ƒ
˛; : : : ; ˛)
k!

C Rn(�; ˛) ;

where

Rn(�; ˛) D
Z 1

0

(1 � s)n�1dnF(� C s˛;
n

‚ …„ ƒ
˛; : : : ; ˛)

(n � 1)!
ds :

Here the “zeroth derivative” is defined in the obvious way:
d0F(�) D F(�).

If the first n gradients exist (as they will for physically
realizable fields and transformations), then the Taylor ap-
proximation can be written:

F(� C ˛) D F(�)C
nX

kD1

r k
˛F(�)
k!

C Rn(�; ˛) :

However, r k
˛F(�) D r

kF(�)˛(k), where ˛(k) is the k-fold
outer product:

˛(k) D

k
‚ …„ ƒ
˛ ^ ˛ ^ � � � ^ ˛ :

If we define the fields �k D r
kF(�), then we can see this

approximation as a “field polynomial”:

F(� C ˛) � F(�)C
nX

kD1

�k˛
(k)

k!
:

Such an approximation may be computed by a field ana-
log of “Horner’s rule”, which is especially appropriate for
computation in a series of layers similar to a neural net-
work. Thus F(� C ˛) � G0(˛), where

Gk(˛) D �k C
GkC1(˛)
k C 1

˛ ;

for k D 0; : : : ; n, �0 D F(�), and GnC1(˛) D 0.

Field Computation in the Brain

There are a number of contexts in mammalian brains in
which information representations are usefully treated as
fields, and information processing as field computation.
These include neuronal cell bodies, patterns of axonal pro-
jection, and synapses. Of course, all of these are discrete
structures, but in many cases the numbers are sufficiently
large (e. g., 146� 103 neurons/mm2: see p. 51 in [11]) that
the representations are usefully treated as fields; that is,
they are phenomenological fields). (We omit discussing the
intriguing possibility that the brain’s electromagnetic field
may affect conscious experience [44,50].)

Neuronal Fields

Computational maps, in which significant information is
mapped to cortical location, are found throughout the
brain [27]. For example, tonotopic maps in auditory cor-
tex have systematic arrangements of neurons that respond
to particular pitches, and retinotopic maps in visual cor-
tex respond systematically to patches of color, edges, and
other visual features projected onto the retina. Other to-
pographic maps in somatosensory cortex and motor cor-
tex systematically reflect sensations at particular locations
in the body, or control motor activity at those locations,
respectively. The number of identified maps is very large
and there are probably many that have not been identified.
And while some are quite large and can be investigated by
fMRI and other noninvasive imaging techniques, other are
less than a square millimeter in size [27]. However, even
a 0:1mm2 map may have tens of thousands of neurons,
and thus be analyzed reasonably as a field.

In mathematical terms, let X be a space of features
represented by a cortical map. These might be microfea-
tures of a sensory stimulus (e. g., oriented edges at partic-
ular retinal locations) or motor neurons (e. g., controlling
muscle fibers in particular locations). These examples are
peripheral features, but X might represent patterns of ac-
tivity in nonperipheral groups of neurons (e. g., in other
cortical maps). Let˝ be a two-dimensional manifold cor-
responding to a cortical map representing X. There will
a piecewise continuous function � : X ! ˝ so that �(x)
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is the cortical location corresponding to feature x 2 X.
The mapping � may be only piecewise continuous since
X may be of higher dimension that ˝ . (This is the rea-
son, for example, that we find stripes in striate cortex; it
is a consequence of mapping a higher dimensional space
into a lower one.)

Typically, the activity ��(x) at a cortical location �(x)
will reflect the degree of presence of the feature x in the
map’s input. Furthermore, the responses of neurons are
often broadly tuned, therefore the response at a location
�(x0) will generally be a decreasing function r[d(x; x0)] of
the distance d(x; x0), where d is some appropriate metric
onX. Therefore an input feature xwill generate a response
field � D �(x) given by

��(x0) D r[d(x; x0)] :

If a number of features x1; : : : ; xn are simultaneously
present in the input, then the activity in the map may be
a superposition of the activities due to the individual fea-
tures:

�(x1)C � � � C �(xn):

Furthermore, a sensory or other input, represented as
a subset X 0 � X of the feature space, generates a corre-
sponding field,

�(X 0) D
Z

X0
�(x)dx

(with an appropriate definition of integration for X,
which usually can be taken to be a measure space). (See
Sect. “Nonlinear Computation via Topographic Maps” for
more on computation on superpositions of inputs via to-
pographic maps.)

The preceding discussion of cortical maps refers some-
what vaguely to the “activity” of neurons, which requires
clarification. In cortical maps the represented microfea-
tures are correlated most closely with the location of the
neuronal cell body, which often interacts with nearby neu-
rons. Therefore, when a cortical map is treatedmathemati-
cally as a field, there are several physical quantities that can
be interpreted as the field’s value �u at a particular cor-
tical location u. Although the choice depends somewhat
on the purpose of the analysis, the most common inter-
pretation of �u(t) will be the instantaneous spiking fre-
quency at time t of the neuron at location u. We will refer
to �(t) 2 ˚(˝) as the neuronal field (at time t) associated
with the neurons u in the map˝ .

The relative phase of neural impulses is sometimes rel-
evant to neural information processing [25]. For exam-
ple, the relative phase with which action potentials arrive

a neuron’s dendrites can determine whether or not the in-
duced post-synaptic potentials add. In these cases it may
be convenient to treat neural activity as a complex-valued
field,  (t) 2 ˚C(˝), which can be written in polar form:

 (t) D �(t)ei�(t) :

Then the magnitude (or modulus) field �(t) may represent
the impulse rate and the phase (or argument) field �(t)
may represent the relative phase of the impulses. That is,
�u(t) is the rate of neuron u (at time t) and �u(t) is its
phase. For example, in a bursting neuron (which generates
impulses in clusters), �(t) can represent the impulse rate
within the clusters and �(t) the relative phase of the clus-
ters. More generally, in a complex-valued neuronal field,
the phase part may represent microfeatures of stimulus,
while the magnitude part represent pragmatic characteris-
tics of the microfeatures, such as their importance, confi-
dence, or urgency. (Such dual representations, comprising
semantics and pragmatics, are discussed in Sect. “Informa-
tion Fields”.)

Synaptic and Dendritic Fields

The surface of each neuron’s dendritic tree and soma (cell
body) is a complicated two-dimensional manifold ˝m,
and so the electrical field across the neuron’s membrane
is naturally treated as a two-dimensional potential field
� 2 ˚(˝m). Synaptic inputs create electrical disturbances
in this field, which, to a first approximation, propagate
passively according to the cable equations (see pp. 25–31
in [3]). However, there are also nonlinear effects due to
voltage-gated ion channels etc. (see p. 381 in [58]). There-
fore the membrane field obeys a nonlinear PDE (par-
tial differential equation) dependent on a synaptic input
field �:

M(�; �; �̇; �̈; : : : ) D 0 :

The electrical field � on the membrane includes the field
�a at the axon hillock a 2 ˝m. This voltage determines the
rate at which the neuron generates action potentials (APs,
nerve impulses), which constitute the neuron’s contribu-
tion to a neuronal field. The dependence of the impulse
rate r on the membrane field, r(t) D Ar[�(t)], which is
approximately linear (that is, the rate is proportional to the
depolarization, relative to the resting potential, at the axon
hillock). To a first approximation, the dendritic tree imple-
ments an approximately linear (adaptive) analog filter on
its input field [35,36]. Some purposes require a more de-
tailed analysis, which looks at the time-varying action po-
tential V(t), rather than at the instantaneous impulse rate,
as a function of the membrane field, V(t) D AV [�(t)].
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Many neurons have tens of thousands of synaptic in-
puts (see p. 304 in [3]), and so these quantitative properties
can be treated as a field over a domain˝ , which is a subset
of the dendritic membrane. The post-synaptic potential �s
at synapse s is a result of the synaptic efficacy �s and the
pre-synaptic axonal impulse rate �s . The synaptic efficacy
is the composite effect of the number of receptors for the
neurotransmitter released by the incoming axon, as well as
of other factors, such as the dependence of neurotransmit-
ter flux on the impulse rate. Some learning processes (e. g.,
long-term potentiation) alter the synaptic efficacy field � .

However, because synaptic transmission involves the
diffusion of neurotransmitter molecules across the synap-
tic cleft, the subsequent binding to and unbinding from re-
ceptors, and the opening and closing of ion channels, the
post-synaptic potential is not a simple product, �s D �s�s .
Rather, the synaptic system filters the input field. To a first
approximation we may analyze it as a linear system S:
�
�

 ̇

�
D S(�)

�
�

 

�
;

where  represents the internal state of the synaptic sys-
tem (concentrations of neurotransmitter in the clefts, re-
ceptor and ion channel states, etc.). The parameter �
shows the system’s dependence on the synaptic efficacies.
The preceding equation is an abbreviation for the follow-
ing system (in which we suppress the � parameter):

� D S11� C S12 ;
 ̇ D S21� C S22 ;

in which the products are Hilbert–Schmidt integral oper-
ators (that is, the Si j are fields operating on the input and
state fields).

Axonal Projection Fields

Bundles of axons form projections from one brain region
to another; through the pattern of their connections they
may effect certain field transformations (explained below).
The input is typically a neuronal field � 2 ˚(˝) defined
over the source region ˝ . At their distal ends the axons
branch and form synapses with the dendritic trees of the
neurons in the destination region. Since each axon may
form synapses with many destination neurons, and each
neuron may receive synapses from many axons, it is con-
venient to treat all the synapses of the destination neurons
as forming one large synaptic system S, where the synaptic
efficacies �u range over all the synapses u in the destina-
tion region, u 2 ˝ 0. Correspondingly we can consider
the field � 2 ˚(˝ 0) of pre-synaptic inputs �u to all of

these synapses. The axons and their synapses define an ax-
onal projection system P, which is, to a first approximation,
a linear system:
�
�

˙̨

�
D P

�
�

˛

�
;

where ˛ represents the internal state of the axonal projec-
tion system.

The function of axons is to transmit nerve impulses
over relatively long distances with no change of amplitude
or waveform. However, there is a transmission delay, and
different axons in a projection may introduce different de-
lays. Thus an axonal projection may change the phase re-
lationships of the input field, in addition to introducing an
overall delay. On the basis of our analysis the axonal pro-
jection as a linear system, we can express the Laplace trans-
form Z of the pre-synaptic field �(t) in terms of the trans-
fer function HS of the projection and the Laplace trans-
form ˚ of the input field �(t):

Z(s) D HS(s)˚(s)

(where s is the conjugate variable of time). Note that all the
variables refer to fields, and so this equation means

Zu(s) D
Z

˝

HS
uv(s)˚v (s)dv ;

where HS
uv(s) 2 ˚C(˝ 0 � ˝) is the (complex-valued)

transfer function to synapse u from input neuron v. Since
the effects of the axons are pure delays, the transfer func-
tion is imaginary:

HS
uv(s) D exp(�i�uv s) ;

where�uv is the delay imposed by the axon from neuron v
to synapse u. Thus the delay field� 2 ˚(˝ 0 �˝) defines
the effect of the axonal projection on the input field.

The system S comprising all the synapses of the desti-
nation neurons is also characterized by a transfer function
HS(s); that is, E(s) D HS(s)Z(s), where E(s) is the Laplace
transform of the post-synaptic field �(t). Therefore the
combined effect of the axonal projection and the synapses
is E(s) D HSP(s)˚(s), where the composite transfer func-
tion is HSP(s) D HS(s)HP(s). Note that this a field equa-
tion, which abbreviates

HSP
uv(s) D

Z

˝

pHS
uw(s)H

P
wvdw :

The transfer function HSP
uv(s) has a corresponding impulse

response �SPuv(t), which represents the post-synaptic re-
sponse at u to a mathematical impulse (Dirac delta func-
tion) injected at v. (For Dirac delta functions, see Glossary
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and Sect. “Approximation of Spatial Integral and Differ-
ential Operators”.) The impulse response characterizes the
effect of signal transmission to u from v as follows:

�u(t) D
Z

˝0
�SPuv(t)˝ �v(t)dv ;

where “˝” represents convolution in the time domain.
This may be abbreviated as a field equation, �(t) D
�SP(t)˝ �(t).

Since axonal projections largely determine the recep-
tive fields of the destination neurons, it will be worthwhile
to consider the relation of the projection field to the neu-
ronal field at the destination region. Therefore, let w rep-
resent the output signal of a destination neuron w in re-
sponse to an input field � . We may write

 w(t) D Fw[�SP(t)˝ �(t)];

where Fw represents the (possibly nonlinear) function
computed by neuron w on the subset of the post-synap-
tic signal �SP(t)˝ �(t) in its dendritic tree. Therefore, the
destination neuronal field is given by the field equation
 D F[�SP ˝ �]. Many neurons behave as “leaky inte-
grators” (see pp. 52–54 in [3]), which are approximately
linear, and in these cases the combined effect of the axonal
projection, synaptic field, and destination neurons is a lin-
ear operator applied to the input signal,  (t) D L�(t).

Examples of Field Computation

Neural-Network-like Computation

Many neural network approaches to artificial intelligence
can be adapted easily to field computation, effectively by
taking the number of neurons in a layer to the continuum
limit. For example, as discussed in Sect. “Field Transfor-
mations”,  D s(L�Cˇ) (Eq. 2) is the field analog of one
layer of a neural net, that is, a continuum neural net, with
interconnection field L and bias field ˇ.

Discrete Basis FunctionNetworks Radial basis function
(RBF) networks are a familiar and useful class of artifi-
cial neural networks, which have similarities to neural net-
works in the brain [29,52]. Indeed, RBF networks are in-
spired by the observation that many sensory neurons are
tuned to a point in sensory space and that their response
falls off continuously with distance from that central point
(recall Sect. “Neuronal Fields”). RBFs are usually defined
over finite-dimensional spaces, but the extension to fields
is straight-forward. Therefore we will consider a set of
functionals r1; r2; : : : , where r j : ˚(˝)! [0; 1]. Typically
we restrict our attention to finite sets of basis functionals,

but we include the infinite case for generality. The intent is
that each r j is tuned to a different field input � j , its “focal
field”, and that r j(�) represents the closeness of � to the
focal field � j .

If all the RBFs have the same receptive field profile,
that is, the same fall-off of response with increasing dis-
tance from the focal field, then we can write r j(�) D
r(k� � � jk), where the receptive field profile is defined by
a r : [0;1)! [0; 1] that is monotonically decreasing with
r(0) D 1 and r(x) �! 0 as x �!1.

As is well known, the inner product is frequently used
as a measure of similarity. Expanding the difference in
terms of the inner product yields:

k� � � jk
2 D k�k2 � 2h� j � ji C k� jk2 :

The inverse relation between the inner product and dis-
tance is especially obvious if, as is often the case (see
Sect. “Information Fields”), the input and focal fields are
normalized (k�k D 1 D k� jk); then:

k� � � jk
2 D 2 � 2h� j � ji :

Therefore, RBFs with an identical fall-off of response can
be defined in terms of a fixed function c : [�1; 1]! [0; 1]
applied to the inner product, r j(�) D c(h� j � ji), where
the monotonically increasing function c equals 1 when
� D � j and equals 0 when the fields are maximally dif-
ferent (� D �� j). That is, for normalized fields h� j � ji 2
[�1; 1], and so c(�1) D 0, c(1) D 1.

Such RBFs are closely related to familiar artificial neu-
rons (Eq. 1). Indeed, we may define r j(�) D c(h� j j �i C
bj), where c : R! [0; 1] is a sigmoidal activation function
and bj is the bias term. Here the input � to the neuron is
a field, as is its receptive field profile � j , which is the focal
field defined by the neuron’s interconnection field.

Generally, neurons are quite broadly tuned, and so in-
dividual RBFs do not characterize the input very precisely,
but with an appropriate distribution of focal fields the
collection of RBFs can characterize the input accurately,
a process known as coarse coding (e. g., pp. 91–96 in [58];
[59]). Therefore the discrete ensemble of RBFs compute
a representation p(�) of the input given by p j(�) D r j(�).

When information is represented in some way we
must consider the adequacy of the representation for our
information processing goals. In general, it is not neces-
sary that a representation function p preserve all charac-
teristics and distinctions of the input space; indeed often
the function of representation is to extract the relevant
features of the input for subsequent processing. Neverthe-
less it will be worthwhile to consider briefly RBF-like rep-



Field Computation in Natural and Artificial Intelligence F 3345

resentations that do not lose any information. A Hilbert
function space is isomorphic (indeed, isometric) to the
space `2 of square-summable sequences; that is, there is
a one-to-one correspondence between fields and the in-
finite sequences of their generalized Fourier coefficients.
Therefore letˇ1; ˇ2; : : : be any orthonormal (ON) basis of
˚(˝) and define p j(�) D hˇ j j �i. Define p : ˚(˝)! `2
so that p(�) is the infinite sequence of generalized Fourier
coefficients, (p1(�); p2(�); : : : ). Mathematically, we can
always find an m such that the first m coefficients approx-
imate the fields as closely as we like; practically, physically
realizable fields are band-limited, and so they have only
a finite number of nonzero Fourier coefficients. There-
fore, we may use pm : ˚(˝)! Rm to compute the m-di-
mensional representations (relative to an understood ON
basis):

pm(�) D (p1(�); p2(�); : : : ; pm(�))T :

Continua of Basis Functions In the preceding section
we looked at the field computation of a discrete, typically
finite, set of basis functionals. This is appropriate when the
basis elements are relatively few in number and there is no
significant topological relation among them. In the brain,
however, large masses of neurons typically have a signif-
icant topological relation (e. g., they may form a topo-
graphic map (Sect. “Neuronal Fields”), and so we are in-
terested in cases in which each point in an output field  
is a result of applying a different basis function to the input
field. Suppose � 2 ˚(˝) and  2 ˚(˝ 0). For all u 2 ˝ 0

we want  u D R(u; �), where R : ˝ 0 � ˚(˝) ! ˚(˝ 0).
That is, R defines a family of functionals in which, for each
u, R(u;—) has a different focal field, which varies contin-
uously with u.

For example, suppose we want  u to be an inner-
product comparison of � with the focal field �u :  u D

c(h�u j �i). Since h�u j �i D
R
˝ �

u
v�vdv, define the field

H 2 ˚(˝ 0 � ˝) by Huv D �uv . Then a point in the out-
put field is given by  u D c[(H�)u], and the entire field is
computed by:

 D c(H�) : (5)

This is, of course, the field analog of one layer of a neural
net (Eq. 2), but with no bias field. In a similar way we can
define a continuum of RBFs:  u D r(k� � �uk).

Spatial Correlation and Convolution A special case of
Eq. (5) rises when all the focal fields �u are the same shape
but centered on different points u 2 ˝ . That is, �uv D
%(v � u), where % 2 ˚(˝) is the common shape of the

focal fields (their receptive field profile). In this case,

h�u j �i D

Z

˝

%(v � u)�(v)dv :

This is simply the cross-correlation of % and � , which we
may write % ? � . In general,

( ? �)u D
Z

˝

 (v � u)�(v)dv ; (6)

which gives the correlation of  and � at a relative dis-
placement u. Therefore in this case the RBF field is given
by  D c(% ? �). If the receptive field % is symmetric,
%(�x) D %(x), then

h�u j �i D

Z

˝

%(u � v)�(v)dv ;

which is %˝ � , the convolution of % and � . In general,

( ˝ �)u D
Z

˝

 (u � v)�(v)dv : (7)

Hence D s(%˝�) when % is symmetric. Computation of
these fields by means of convolution or correlation rather
than by the integral operator (Eq. 5) may be more conve-
nient on field computers that implement convolution or
correlation directly.

Approximation of Spatial Integral and Differential Op-
erators Correlation and convolution (Eqs. 6, 7) can be
used to implement many useful linear operators, in partic-
ular spatial integral and differential operators. Of course
these linear operations can be implemented by a field
product with the appropriate Hilbert–Schmidt kernel, but
convolution and correlation make use of lower dimen-
sional fields than the kernel.

For example, suppose we want to compute the indefi-
nite spatial integral of a field � 2 ˚(R). That is, we want
to compute  D

R
� defined by  x D

R x
�1 �ydy. This

can be computed by the convolution  D ( ˝ � where (
is the Heaviside or unit step field onR:

(x D

(
1 if x � 0
0 if x < 0

:

The Heaviside field is discontinuous, and therefore it may
not be physically realizable, but obviously it may be ap-
proximated arbitrarily closely by a continuous field.

Spatial differentiation is important in image process-
ing in nervous systems and artificial intelligence systems.
In the one-dimesional case, for � 2 ˚(R) we want � 0 2
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˚(R), where � 0u D d�u/du. To express this as a convo-
lution we may begin by considering the Dirac delta func-
tion or unit impulse function ı, which is the derivative of
the unit step function, ı(x) D ( 0(x). This is a generalized
function or distribution with the following properties:

ı(0) D C1;
ı(x) D 0; x ¤ 0;

Z C1

�1

ı(x)dx D 1 :

Obviously such a function is not physically realizable
(more on that shortly), but such functions exist as limit
objects in Hilbert spaces. The Dirac delta satisfies the fol-
lowing “sifting property”:

�x D

Z C1

�1

ı(x � y)�(y)dy ;

that is, the Dirac delta is an identity for convolution, � D
ı ˝ � . Now observe:

� 0x D Dx

Z C1

�1

ı(x � y)�(y)dy

D

Z C1

�1

ı0(x � y)�(y)dy ;

where ı0 is the derivative of the Dirac delta. It is called the
unit doublet and has the property of being zero everywhere
except infinitesimally to the left of the origin, where it is
C1, and infinitesimally to the right of the origin, where
it is �1. Thus the spatial derivative of a field can be com-
puted by convolution with the unit doublet: � 0 D ı0 ˝ � .

Obviously, neither the unit impulse (Dirac delta) nor
the unit doublet is physically realizable, but both may be
approximated arbitrarily closely by physically realizable
fields. For example, the delta function can be approxi-
mated by a sufficiently sharp Gaussian field � (i. e., �x Dp
r/� exp(�rx2) for sufficiently large r). Corresponding to

the sifting property � D ı˝ � we have Gaussian smooth-
ing � � �˝� , which is a typical effect of the limited band-
width of physically realizable fields in cortex and other
physical media. Similarly, the unit doublet can be approx-
imated by a derivative of Gaussian (DoG) field � 0, where
� 0x D d�x /dx. Thus, the spatial derivative can be approx-
imated the convolution � 0 � � 0 ˝ � . Indeed, in the ner-
vous system we find neurons with approximately DoG re-
ceptive field profiles. (These derivative formulas are per-
haps more intuitively expressed in terms of correlation,
� 0 D (�ı0) ? � � (�� 0) ? � , since this is more easily
related to the difference, �xC� � �x�� .)

If  is a two-dimensional field,  2 ˚(R2), it is easy
to show that the partial derivative along the first dimension
can be computed by convolution with ı0^ı, and along the
second by convolution with ı ^ ı0. The partial derivatives
may be approximated by convolutions with � 0^� and � ^
� 0. The divergence of a field can be computed by a two-
dimensional convolution with the sum of these fields:

r � D (ı0 ^ ıC ı^ ı0)˝ � (� 0 ^� C � ^� 0)˝ :

Similarly the gradient is

r D [(ı0 ^ ı)˝  ]iC [(ı ^ ı0)˝  ]j ;

where i 2 ˚R2 (R2) is a constant vector field of unit vectors
in the x direction, i(x;y) D (1; 0), and j is a similar field in
the y direction. It is approximated by

r � [(� 0 ^ � )˝  ]iC [(� ^ � 0)˝  ]j : (8)

To compute the Laplacian we need the second partial
derivatives, but note that for a one-dimensional field � 00 D
ı0 ˝ (ı0 ˝ �) D (ı0 ˝ ı0)˝ � D ı00 ˝ � , where ı00 is the
second derivative of the Dirac function (a “unit triplet”).
Hence, for two-dimensional  

r2 D (ı00^ıCı^ı00)˝ � (� 00^�C�^� 00)˝ ; (9)

where � 00 is the second derivative of the Gaussian, a typ-
ical (inverted) “Mexican hat function” with the center-
surround receptive-field profile often found in the ner-
vous system. These formulas extend in the obvious way to
higher-dimensional fields.

Change of Field Domain

We have seen that physically realizable linear operators
are integral operators, and therefore can be computed by
field products of the form K� . However, the kernel K
might not be physically realizable if its dimension is too
high. For example, suppose L : ˚(˝) ! ˚(˝) is a lin-
ear operator on two-dimensional visual images; that is,˝
is a bounded subset of two-dimensional Euclidean space.
Its kernel K , satisfying K� D L(�), will be a four-dimen-
sional field K 2 ˚(˝ �˝), and therefore physically unre-
alizable. Therefore we need means for realizing or approx-
imating high-dimensional fields in three or fewer spatial
dimensions.

The simplest way to accomplish this is to repre-
sent fields of higher-dimensional spaces by corresponding
fields over lower dimensional spaces. For example, to rep-
resent � 2 ˚(˝) by  2 ˚(˝ 0), suppose ˇ1; ˇ2; : : : is
an ON basis for ˚(˝), as �1; �2; : : : is for ˚(˝ 0). Then,
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let the generalized Fourier coefficients of � be used as the
coefficients to compute a corresponding  . Observe:

 D
X

k

�khˇk j �i D
X

k

(�k ^ ˇk)� :

(Of course, a finite sum is sufficient for physically realiz-
able fields.) Therefore the change of basis can be imple-
mented by the kernel K D

P
k �k ^ ˇk . By this means,

any Hilbert–Schmidt operator on two-dimensional fields
can be implemented by a physically realizable field prod-
uct: represent the input by a one-dimensional field, gen-
erate the one-dimensional representation of the output
by a product with a two-dimensional kernel, and convert
this representation to the output field. Specifically, sup-
pose � 2 ˚(˝),  2 ˚(˝ 0), and L : ˚(˝) ! ˚(˝ 0) is
a Hilbert–Schmidt linear operator. The three-dimensional
kernel H D

P
k �k ^ ˇk 2 ˚([0; 1] � ˝) will be used

to generate a one-dimensional representation of the two-
dimensional input, H� 2 ˚([0; 1]). Similarly, the two-di-
mensional output will be generated by 	 D

P
j � j ^ � j 2

˚(˝ 0 � [0; 1]), where �1; �2; : : : is an ON basis for ˚(˝ 0).
It is easy to show that the required two-dimensional kernel
K 2 ˚([0; 1]2) such that L D 	KH is just

K D
X

jk

h� j j Lˇki(� j ^ �k) :

We have seen (see Sect. “Neural-Network-Like Computa-
tion”) that field computation can often be implemented by
neural-network-style computation on finite-dimensional
spaces. For example, a linear field transformation (of
Hilbert–Schmidt type) can be factored through the eigen-
field basis. Let �1; �2; : : : be the eigenfields of L with corre-
sponding eigenvalues e1; e2; : : : : L�k D ek�k . The eigen-
fields can be chosen to be orthonormal (ON), and, since
˚(˝) is a Hilbert space, only a finite number of the
eigenvalues are greater than any fixed bound, so � can
be approximated arbitrarily closely by a finite sum � �Pm

kD1 ck�k , where ck D h�k j �i; that is, � is represented
by the finite-dimensional vector c. The discrete set of coef-
ficients c1; : : : ; cm is not a field because there is no signif-
icant topological relationship among them; also, typically,
m is relatively small.

The output  is computed by a finite sum,  �Pm
kD1 �k ek ck . In terms of neural computation, we have

a finite set of neurons k D 1; : : : ;m whose receptive field
profiles are the eigenfields, so that they compute ekck D
ekh�k j �i. The outputs of these neurons amplitude-mod-
ulate the generation of the individual eigenfields �k , whose
superposition yields the output  .

It is not necessary to factor the operator through the
eigenfield basis. To see this, suppose L : ˚(˝) ! ˚(˝ 0)

and that the fields ˇk are an ON basis for ˚(˝) and that
the fields � j are an ON basis for ˚(˝ 0). Represent the in-
put by a finite-dimensional vector c, where ck D hˇk j �i.
Then the output can be represented by the finite-dimen-
sional vector d, where dj D h� j j  i. (Since the input and
output spaces are both Hilbert spaces, only a finite num-
ber of these coefficients are greater than any fixed bound.)
It is easy to show d D Mc, where Mjk D h� j j Lˇki

(the Hilbert–Schmidt theorem). In neural terms, a first
layer of neurons with receptive field profiles ˇk com-
pute the discrete representation ck D hˇk j �i. Next,
a layer of linear neurons computes the linear combina-
tions dj D

Pm
kD1 Mjkck in order to control the ampli-

tudes of the output basis fields in the output superposi-
tion  �

Pn
jD1 dj� j . In this way, an arbitrary linear field

transformation may be computed through a neural repre-
sentation of relatively low dimension.

If a kernel has too high dimension to be physically re-
alizable, it is not necessary to completely factor the prod-
uct through a discrete space; rather, one or more dimen-
sions can be replaced by a discrete set of basis functions
and the others performed by field computation. To see the
procedure, suppose we have a linear operator L : ˚(˝)!
˚(˝ 0) with kernel K 2 ˚(˝ 0 �˝), where˝ D ˝1 �˝2
is of too great dimension. Let  D K� and observe

 u D

Z

˝

Kuv�vdv D
Z

˝1

Z

˝2

Kux y�x (y)dydx ;

where we consider �v D �x y as a function of y, �x (y).
Expand �x in terms of an ON basis of ˚(˝2), ˇ1; ˇ2; : : : :

�x D
X

k

h�x j ˇkiˇk :

Note that

h�x j ˇki D

Z

˝2

�x yˇk(y)dy D (�ˇk)x ;

where �ˇk 2 ˚(˝1). Rearranging the order of summation
and integration,

 u D
X

k

Z

˝1

Z

˝2

Kux yˇk(y)(�ˇk)xdydx

D
X

k

[Kˇk(�ˇk)]u :

Hence,  D
P

k Kˇk(�ˇk). Let Jk D Kˇk to obtain
a lower-dimensional field computation:

L(�) D
X

k

Jk(�ˇk) :
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Note that Jk 2 ˚(˝ 0 � ˝1) and all the other fields are
of lower dimension than K 2 ˚(˝ 0 � ˝). As usual,
for physically realizable fields, a finite summation is suf-
ficient.

We can discretize ˚(˝1) by a similar process, which
also can be extended straightforwardly to cases where sev-
eral dimensions must be discretized. Normally we will dis-
cretize the dimension that will have the fewest general-
ized Fourier coefficients, given the bandwidth of the input
fields.

The foregoing example discretized one dimension of
the input space, but it is also possible to discretize dimen-
sions of the output space. Therefore suppose L : ˚(˝) !
˚(˝ 0) with kernel K 2 ˚(˝ 0�˝), where˝ 0 D ˝1�˝2
is of too great dimension. Suppose �1; �2; : : : are an ON
basis for ˚(˝1). Consider  u D  x y as a function of x,
expand, and rearrange:

 x y D
X

k

�k(x)
Z

˝1

�k(x0) x0 ydx0

D
X

k

�k(x)
Z

˝

Z

˝1

�k(x0)Kx0 yvdx0�vdv

D
X

k

�k(x)[(�kK)�]y :

Hence D
P

k �k^[(�kK)�]. Let Jk D �kK 2 ˚(˝2�˝)
and we can express the computation with lower dimen-
sional fields:

L(�) D
X

k

�k ^ Jk� :

Other approaches to reducing the dimension of fields are
described elsewhere [33].

The converse procedure, using field computation to
implement a matrix vector product, is also useful, since
a field computer may have better facilities for field com-
putation than for computing with vectors. Therefore sup-
pose M is an m � n matrix, c 2 Rn , and that we want to
compute d D Mc by a field product  D K� . The in-
put vector will be represented by � 2 ˚(˝), where we
choose a field space ˚(˝) for which the first n ON ba-
sis elements ˇ1; : : : ; ˇn are physically realizable. The field
representation is given by � D

Pn
kD1 ckˇk . Analogously,

the output is represented by a field  2 ˚(˝ 0) given by
 D

Pm
jD1 dk�k , for ON basis fields �1; : : : ; �m . The re-

quired kernel K 2 ˚(˝ 0 �˝) is given by

K D
mX

jD1

nX

kD1

Mi j(� j ^ ˇk) :

To see this, observe:

K� D
X

jk

Mjk(� j ^ ˇk)�

D
X

jk

Mjk� jhˇk j �i

D
X

j

� j
X

k

Mjk ck

D
X

j

� jd j :

Diffusion Processes

Diffusion processes are useful in both natural and artificial
intelligence. For example, it has been applied to path plan-
ning through a maze [66] and to optimization and con-
straint-satisfaction problems, such as occur in image pro-
cessing and motion estimation [45,67]. Natural systems,
such as developing embryos and colonies of organisms,
use diffusion as a means of massively parallel search and
communication.

A simple diffusion equation has the form �̇ D dr2�

with d > 0. On a continuous-time field computer that pro-
vides the Laplacian operator (r2) diffusion can be imple-
mented directly by this equation. With sequential compu-
tation, the field will be iteratively updated in discrete steps:

� :D � C dr2� :

If the Laplacian is not provided as a primitive operation,
then its effect can be approximated by a spatial convo-
lution with a suitable field % (see Sect. “Spatial Corre-
lation and Convolution”). In sequential computation we
may use � :D (1 � d)� C d% ˝ � , where % is an ap-
propriate two-dimensional Gaussian or similarly shaped
field. In continuous time, we may use �̇ D d%˝ � , where
% D � 00^�C�^� 00 (Eq. (9), Sect. “Approximation of Spa-
tial Integral andDifferential Operators”), where � is an ap-
propriate one-dimensional Gaussian and � 00 is its second
derivative (or similarly shaped fields).

Reaction-diffusion systems combine diffusion in two or
more fields with local nonlinear reactions among the fields
� Reaction-Diffusion Computing. A typical reaction-dif-
fusion system over fields �1; : : : ; �n 2 ˚(˝) has the form:

�̇1 D F1(�1; : : : ; �n)C d1r2�1;

�̇2 D F2(�1; : : : ; �n)C d2r2�2;

:::

�̇n D Fn(�1; : : : ; �n)C dnr2�n ;
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where the dk > 0, and the local reactions Fk apply at each
point u 2 ˝ of the fields: Fk(�1

u ; : : : ; �
n
u ). With obvious

extension of the notation, this can be written as a differen-
tial equation on a vector field:

�̇ D F(�)C Dr2� ;

where D D diag(d1; : : : ; dn) is a diagonal matrix of diffu-
sion rates.

Embryological development and many other biologi-
cal processes of self-organization are controlled by local
reaction to multiple diffusing chemicals (e. g., Chap. 7 in
Bar-Yam [5], Chap. 3 in Solé and Goodwin [64]); these
are examples of natural field computation, a subject pio-
neered by AM Turing [71]. For example, simple activa-
tor-inhibitor systems can generate Turing patterns, which
are reminiscent of animal skin and hair-coat pigmenta-
tion patterns (e. g., Chap. 7 in Bar-Yam [5]). In the sim-
plest case, these involve an activator (˛) and an inhibitor
(ˇ), which diffuse at different rates, and a nonlinear inter-
action which increases both when ˛ > ˇ, and decreases
them otherwise (for example p. 668 in [5]):

˙̨ D
k1˛2

ˇ(1C k5˛2)
� k2˛ C d˛r2˛;

˙̌ D k3˛2 � k4ˇ C dˇr2ˇ :

Reaction-diffusion systems have been applied experimen-
tally in several image-processing applications, where they
have been used to restore broken contours, detect edges,
and improve contrast (pp. 26–31 in [1]). In general, diffu-
sion accomplishes (high-frequency) noise filtering and the
reaction is used for contrast enhancement.

A Adamatzky and his colleagues have used chemi-
cal implementation of reaction-diffusion systems to con-
struct Voronoi diagrams around points and other two-di-
mensional objects (see Chap. 2 in [2]). Voronoi diagrams
have been applied to collision-free path planning, nearest-
neighbor pattern classification, and many other problems
(see pp. 32–33 in [2]). They also demonstrated a chemical
field computer on a mobile robot to implement a reaction-
diffusion path planning (see Chap. 4 in [2]).

Excitable media are an important class of reaction-dif-
fusion system, which are found, for example, in the brain,
cardiac tissue, slime mold aggregation, and many other
natural systems. In the simplest cases these comprise an
excitation field � and a recovery field � coupled by local
nonlinear reactions:

�̇ D F(�; �)C d�r2� ;

�̇ D G(�; �)C d�r2� :

Typically G(e; r) is positive for large e and negative for
large r, while along the nullcline F(e; r) D 0, r has
a roughly cubic dependence on e, with F(e; r) < 0 for
large values of r and > 0 for small ones. The intersection
of the nullclines defines the system’s stable state, and small
perturbations return to the stable state. However excita-
tion above a threshold will cause the excitation to increase
to a maximum, after which the system becomes first re-
fractory (unexcitable), then partially excitable with an el-
evated threshold, and finally back to its excitable, resting
state. Excitation spreads to adjacent regions, but the re-
fractory property assures that propagation takes the form
of a unidirectional wave of constant amplitude. Character-
istic circular and spiral waves appear in two-dimensional
media. Excitable media are useful for rapid, efficient com-
munication. For example, masses of slime mold amoebas
(Dictyostelium discoideum) act as an excitable medium in
which the propagating waves accelerate aggregation of the
amoebas into a mound (see pp. 12–24 in [64]).

Many self-organizing systems and structures in biolog-
ical systems involve reaction-diffusion processes, chemi-
cal gradients, excitable media, and other instances of field
computation.

For example, J-L Deneubourg [15] has described the
construction of equally-spaced pillars in termite nests in
terms of three interrelated two-dimensional fields: � , the
concentration of cement pheromone in the air, � , the
amount of deposited cement with active pheromone, and
� the density of termites carrying cement (see also pp. 188–
193 in [8], pp. 399–400 in [10], and pp. 151–157 in [64]).
The amount of deposited cement with pheromone in-
creases as it is deposited by the termites and decreases as
the pheromone evaporates into the air: �̇ D k1� � k2� .
The pheromone in the air is increased by this evapora-
tion, but also decays and diffuses at specified rates: �̇ D
k2� � k4� C d�r2� . Laden termites enter the system
at a uniform rate r, deposit their cement (k1), wander
a certain amount (modeled by diffusion at rate d� ), but
also exhibit chemotaxis, that is, motion up the gradient of
pheromone concentration:

�̇ D r � k1� C d�r2� � k5r � (��r�) ;

where � represents the point-wise (local) product,
(�� )u D �u u . See Fig. 1 for this model expressed as
a field computation.

In addition to reaction-diffusion systems, chemical
gradients, chemotaxis, and other field processes are essen-
tial to self-organization in morphogenesis, which can be
understood in terms of field computation [14].
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Field Computation in Natural and Artificial Intelligence, Figure 1
Field computation of Deneubourg’s model of pillar construction
by termites

Motion in Direction Fields

For an example of field computation in motor control, we
may consider Georgopoulos’ [21] explanation of the pop-
ulation coding of direction. In this case the feature space
D represents directions in three-dimensional space, which
we may identify with normalized three-dimensional vec-
tors d 2 D. Each neuron u 2 ˝ has a preferred direc-
tion �u 2 D to which it responds most strongly, and it is
natural to define u as the location in the map correspond-
ing to this direction, u D �(�u). However, Georgopoulos
has shown that the direction is represented (more accu-
rately and robustly) by a population code, in which the
direction is represented by a neuronal field. Specifically,
the activity �u of a neuron (above a base level) is propor-
tional to the cosine of the angle between its preferred di-
rection �u and the direction d to be encoded. In particular,
since the cosine of the angle between normalized vectors
is equal to their scalar product, �u / d � �u . A neurally
plausible way of generating such a field is with a layer of
radial basis functions (see Sect. “Continua of Basis Func-
tions”), �u D r(kd � �uk), where r(x) D 1 � x2/2; then
�u D d � �u [39].

Field computation is also used to update direction
fields in the brain. For example, a remembered two-di-
mensional location, relative to the retina, must be updated
when the eye moves [17,18]. In particular, if the direction
field � has a peak representing the remembered direction,
and the eye moves in the direction v, then this peak has to
move in the direction �v in compensation. More specifi-
cally, if v is a two-dimensional vector defining the direc-
tion of eye motion, then the change in the direction field
is given by the differential field equation, �̇ D v � r� ,
where the gradient is a two-dimensional vector field (reti-
nal coordinates). (That is, @�(d; t)/@t D v � rd�(d; t).)
To see this, note that behind the moving peak r� and �v
point in the same direction, and therefore (�v) �r� is pos-
itive; hence �̇ is negative. Conversely, �̇ is positive in front
of the peak. Each component of the gradient may be ap-
proximated by convolution with a derivative-of-Gaussian
(DoG) field, in accord with Eq. 8, which can be computed
by neurons with DoG receptive field profiles. (Additional
detail can be found elsewhere [39].)

RA Anderson [4] describes how transformations be-
tween retinal coordinates and head- or body-centered co-
ordinates can be understood as transformations between
field representations in area 7a of the posterior parietal
cortex. For example, a minimum in a field may represent
the destination of a motion (such as a saccade) in head-
centered space, and then the gradient represents paths
from other locations to that destination [39]. Further,
the effects of motor neurons often correspond to vector
fields [6,22].

Nonlinear Computation via Topographic Maps

As discussed in Sects. “Neuronal Fields” and “Motion in
Direction Fields”, the brain often represents scalar or vec-
tor quantities by topographic or computational maps, in
which fields are defined over the range of possible values
and a particular value is represented by a field with a peak
of activity at the corresponding location. That is, a value
x 2 ˝ is represented by a field �x 2 ˚(˝) that is dis-
tinctly peaked at x. For mathematical convenience we can
idealize �x as a Dirac delta function (unit impulse) cen-
tered at x: ıx , where ıx (u) D ı(u � x). That is, ıx is an
idealized topographic representation of x.

For every function f : ˝ ! ˝ 0, with y D f (x), there
is a corresponding linear transformation of a topographic
representation of its input, ıx 2 ˚(˝), into a topographic
representation of its output, ıy 2 ˚(˝ 0). It is easy to show
that the kernel K 2 ˚(˝ 0 �˝) of this operation is

K D
Z

˝

ı f (x) ^ ıxdx ;
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which is essentially a graph of the function f . That is,
we can compute an arbitrary, possibly nonlinear function
y D f (x) by a linear operation on the corresponding com-
putational maps, ıy D Kıx .

To avoid the use of Dirac delta functions, we can ex-
pand them into generalized Fourier series; for example,
ıx D

P
k ˇkhˇk j ıxi D

P
k ˇkˇk(x). This expansion

yields

K D
Z

˝

0

@
X

j

� j� j[ f (x)]

1

A ^

 
X

k

ˇkˇk(x)

!

dx

D
X

j;k

� j ^ ˇk

Z

˝

� j[ f (x)]ˇk(x)dx

D
X

j;k

� j ^ ˇkh� j ı f j ˇki;

where � j ı f is the composition of � j and f : (� j ı f )(x) D
� j[ f (x)]. A physically realizable approximation to K is ob-
tained by limiting the summations to finite sets of physi-
cally realizable basis functions. (This has the effect of blur-
ring the graph of f .)

Computation on topographic maps has a number at-
tractive advantages. These are simple mathematical conse-
quences of the linearity of topographic computation, but
it will be informative to look at their applications in neural
information processing. For example, transformation of
input superpositions compute superpositions of the corre-
sponding outputs in parallel: K(ıx C ıx0 ) D ı f (x) C ı f (x0)
(recall Sect. “Neuronal Fields”).

Since an input value is encoded by the position of the
peak of a field rather than by its amplitude, the ampli-
tude can be used for pragmatic characteristics of the in-
put, such as its importance or certainty (see Sect. “Infor-
mation Fields”). These pragmatic characteristics are pre-
served by topographic computation, K(pıx ) D pı f (x).
Therefore if we have two (or more) inputs x; x0 2 ˝

with corresponding pragmatic scale factors p; p0 2 R,
then the corresponding outputs carry the same factors,
K(pıx C p0ıx0 ) D pı f (x) C p0ı f (x0). For example, if the
inputs are weighted by confidence or importance, then the
corresponding outputs will be similarly weighted. Further,
if several inputs generate the same output, then their prag-
matic scale factors will sum; for example if f (x) D f (x0),
then K(pıx C p0ıx0) D (p C p0)ı f (x). Thus, a number
of inputs that are individually relatively unimportant (or
uncertain) could contribute to a single output that is rela-
tively important (or certain).

Finite superpositions of inputs are easily extended to
the continuum case. For example, suppose that �x is the
pragmatic scale factor associated with x, for all x 2 ˝

(for example, �x might be the probability of input x). We
can think of the field � as a continuum of weighted delta
functions, � D

R
˝ �xıxdx. Applying the kernel to this

field yields a corresponding continuum of weighted out-
puts, K� D

R
˝ �xı f (x)dx 2 ˚(˝ 0), where each point of

the output field gives the total of the pragmatic scale fac-
tors (e. g., probabilities) of the inputs leading to the corre-
sponding output value:

(K�)y D
Z

fxjyD f (x)g

�xdx :

Therefore, by topographic computation, a transformation
of an input probability distribution yields the correspond-
ing output probability distribution.

We have remarked that the brain often uses coarse
coding, in which a population of broadly-tuned neurons
collectively represent a value with high precision (see
Sect. “Discrete Basis Function Networks”). If � is the
coarse coding of input x, then its maximum will be at
x and its amplitude will decrease with distance from x,
�u D r(ku � xk). Similarly, K� will be a coarse coding
of the output f (x) induced by the coarse coding of the in-
put. As discussed in Sect. “Spatial Correlation and Con-
volution”, if all the neurons have the same receptive field
profile %, then the effect of coarse coding is a convolution
or correlation of % with the input map.

Gabor Wavelets and Coherent States

In 1946 D Gabor presented a theory of information based
on application to arbitrary signals of the Heisenberg–Weyl
derivation of the quantum mechanical Uncertainty Prin-
ciple [20]. Although he derived it for functions of time,
it is easily generalizable to fields (square-integrable func-
tions) over any finite-dimensional Euclidean space (re-
viewed elsewhere [34]). Therefore, for ˝ � Rn , let  2
˚(˝) be an arbitrary (possible complex-valued) field (as-
sumed, as usual, to have a finite norm, that is, to be square-
integrable; see Sect. “Mathematical Definitions”). To char-
acterize this field’s locality in space, we can measure its
spread (or uncertainty) along each of the n spatial dimen-
sions xk by the root mean square deviation of xk (assumed
to have 0 mean):


xk D kxk (x)k D

sZ

˝

 �x x2k xdx ;

where x D (x1; : : : ; xn)T 2 Rn . Consider also the
Fourier transform � (u) of (x), the spread or uncertainty
of which, in the frequency domain, can be quantified in
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a similar way:


uk D k(uk � ū)� (u)k D

sZ

˝

��u u2k�udu :

It is straight-forward to show that the joint localization in
any two conjugate variables (i. e., xk in the space domain
and uk in the spatial-frequency domain) is limited by the
Gabor Uncertainty Principle:
xk
uk � 1/4� .

This principle limits the information carrying capac-
ity of any physically-realizable signal, so it is natural to
ask if any function achieves the theoretical minimum,

xk
uk D 1/4� . Gabor showed that this minimum is
achieved by what we may call the Gabor elementary fields,
which have the form:

�pu(x) D exp
�
��kA(x � p)k2

�
exp[2� iu � (x � p)] :

The second, imaginary exponential defines a plane wave
originating at pwith a frequency and direction determined
by the wave vector u. The first exponential defines a Gaus-
sian envelope centered at p with a shape determined by
the diagonal aspect matrix A D diag(˛1; : : : ; ˛n), which
determines the spread of the function along each of the
space and frequency axes:


xk D
˛k

2
p
�
; 
uk D

˛�1k
2
p
�
:

Gaussian-modulated complex exponentials of this form
correspond to the coherent states of quantum mechanics.

Each Gabor elementary field defines a cell in 2n-di-
mensional “Gabor space” with volume (4�)�n . He ex-
plained that these correspond to elementary units of infor-
mation, which he called logons, since a field of finite spa-
tial extent and bandwidth occupies a finite region in Gabor
space, which determines its logon content. It may be com-
puted by

N D
nY

kD1

Xk


xk
Uk


uk
D (4�)n

nY

kD1

XkUk ;

where Xk is the width of the field along the kth axis, andUk
its bandwidth on that axis, that is, a field’s logon content is
(4�)n times its Gabor-space volume.

The set of Gabor elementary functions are complete,
and so any finite-energy function can be expanded into
a series (see pp. 656–657 in [24]):  D

PN
kD1 ck�k , where

�1; : : : ; �N are the Gabor fields corresponding to the cells
occupied by  , and the ck are complex coefficients. These
N complex coefficients are the information conveyed by
 , each corresponding to a logon or degree of freedom in
the signal.

The Gabor elementary functions are not orthogonal,
and so the coefficients cannot be computed by the inner
product, h�k j  i. (They do form a tight frame, a very
useful but weaker condition, under some conditions (see
p. 1275 in [12]); seeMacLennan [34] for additional discus-
sion of the non-orthogonality issue.) On the other hand, it
is easy to find the coefficients by minimization of the ap-
proximation error [13]. Let  ̂(c) D

PN
kD1 ck�k and de-

fine the error E D k ̂(c) �  k2. This is a standard least-
squares problem (cf. Sect. “Universal Approximation”),
which can be solved by matrix calculation or by gradi-
ent descent on the error surface. It is easy to show that
@E/@ck D 2h�k j  ̂(c) �  i, and therefore gradient de-
scent is given by ċk D rh�k j  �  ̂(c)i for some rate
r > 0.

There is considerable evidence (reviewed else-
where [34]) that approximate Gabor representations are
used in primary visual cortex, and there is also evidence
that Gabor representations are used for generating mo-
tor signals (see pp. 139–144 in Pribram [53], Pribram
et al. [54]).

Information Fields

J.J. Hopfield [25] observed that in some cases a neural
impulse train can be understood as transmitting two sig-
nals: (1) the information content, encoded in the phase of
the impulses relative to some global or local “clock”, and
(2) some other pragmatic characteristic of the information
(such as importance, urgency, or confidence), encoded in
the rate of the impulses. Such a combination of phase-
encoded semantics and rate-encoded pragmatics may be
common in the nervous system. Already in his Laws of
Thought (1854), George Boole recognized idempotency as
characteristic of information: repeating amessage does not
change its meaning, but it may affect its pragmatic import.
The distinction is implicit in our typographic conventions;
consider:

YES NO
YES NO

The horizontal distinction is semantic, but the vertical is
pragmatic. More generally, following a distinction that has
been made in quantum mechanics (see pp. 35–36 in [7]),
we may say that the form of the signal guides the resulting
action, but itsmagnitude determines the amount of action.

Similarly in field computation it may be useful to rep-
resent information by a field’s shape and pragmatics by
its magnitude; that is, pragmatics depends on the total
amount of “stuff”, semantics on it disposition (also a holis-
tic property). The magnitude of such an information field
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is given by its norm k k, where we normally mean the in-
ner-product norm of the Hilbert space, k k2 D h j  i
(which we can think of as “energy”), but other norms may
be appropriate, depending on the relevant sense of the
“amount” of action. The semantics of such fields is de-
termined by their form, which we may identify with the
normalization of the field, N( ) D  

ı
k k (for nonzero

fields). Idempotency is expressed by the identity N(z ) D
N( ) for all z ¤ 0.

Therefore, it is reasonable that the entropy of a field
depends on its shape, but not its magnitude:

S( ) D
Z

˝

 u

k k
log

 u

k k
du

D

Z

˝

N( )u log N( )udu D hN( ) j logN( )i :

It is perhaps unsurprising that similar issues arise in quan-
tum mechanics and field computation, for they are both
formulated in the language of Hilbert spaces. For example,
a quantummechanical state is taken to be undetermined
with respect to magnitude, so that z is the same state as
 for any nonzero complex number z (see p. 17 in [16]).
Therefore, the state is conventionally taken to the normal-
ized, k k D 1, so that its square is a probability density
function, �x D j x j

2.
Independence ofmagnitude is also characteristic of the

quantum potential, which led Bohm andHiley [7] to char-
acterize this field as active information. For example, if we
write the wave function in polar form,  x D Rxei Sx /h ,
then the motion of a single particle is given by (see pp. 28–
29 in [7]):

@Sx
@t
C

(rSx )2

2m
C Vx C Qx D 0 ;

where the quantum potential is defined:

Qx D �
„2

2m
r2Rx

Rx
:

Since the Laplacian r2Rx is scaled by Rx , the quantum
potential depends only on the local form of the wavefunc-
tion  , not on its magnitude. From this perspective, the
particle moves under its own energy, but the quantum po-
tential controls the energy.

Field Representations of Discrete Symbols

Quantum field theory treats discrete particles as quantized
excitations of a field. This observation suggests analogous
means by which field computation can represent and ma-
nipulate discrete symbols and structures, such as those em-
ployed in symbolic AI. It also provides potential models

for neural representation of words and categories, espe-
cially in computational maps, which may illuminate how
discrete symbol processing interacts with continuous im-
age processing. From this perspective, discrete symbol ma-
nipulation is an emergent property of continuous field
computation, which may help to explain the flexibility of
human symbolic processes, such as language use and rea-
soning [36,37,38].

Mathematically, discrete symbols have the discrete
topology, which is defined by the discrete metric, for
which the distance between any two distinct objects is 1:
d(x; x) D 0 and d(x; y) D 1 for x ¤ y. Therefore we
will consider various field representations of symbols that
have this property. For example, discrete symbols could
be represented by localized, non-overlapping patterns of
activity in a computational map. In particular, symbols
could be represented by Dirac delta functions, for which
hıx j ıx i D 1 and hıx j ıyi D 0 for x ¤ y. Here we may
let d(x; y) D 1 � hıx j ıyi. More realistically, symbols
could be represented by physically realizable normalized
fields �x with little or no overlap between the represen-
tations of different symbols: h�x j �yi � 0 for x ¤ y.
Indeed, any sufficiently large set of orthonormal fieldsmay
be used to represent discrete symbols. Fieldsmay seem like
an inefficient way to represent discrete symbols, and so it
is worth observing that with at least 146 000 neurons per
square millimeter, a one hundred thousand-word vocab-
ulary could be represented in a few square millimeters of
cortex.

Since the meaning of these fields is conveyed by the
location of activity peak in the map, that is, by the shape
of the field rather than its amplitude, the field’s ampli-
tude can be used for pragmatic scale factors, as previously
discussed (see Sect. “Nonlinear Computation via Topo-
graphic Maps”). This could be used, for example, to con-
vey the confidence or probability of a word or verbal cat-
egory, or another pragmatic factor, such as loudness (cf.
Sect. “Information Fields”).

Wave packets (coherent states, Gabor elementary
functions) are localized patterns of oscillation resulting
from the superposition of a number of nonlocal oscilla-
tors with a Gaussian distribution of frequencies [34]. The
relative phase of these oscillators determines the position
of the wave packet within its field of activity. Therefore
different phase relationships may determine field repre-
sentations for different discrete symbols. The amplitude of
the wave packet could represent pragmatic information,
and frequency could be used for other purposes, for ex-
ample for symbol binding, with bound symbols having the
same frequency. Continuous phase control could be used
to control the motion of wave packets in other representa-
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tions, such as direction fields (Sect. “Motion in Direction
Fields”).

Gradient Processes

Many optimization algorithms and adaptive processes are
implemented by gradient ascent or gradient descent. Be-
cause of its physical analogies, it is more convenient to
think of optimization as decreasing a cost function rather
than increasing some figure of merit. For example, the
function might represent the difficulty of a motor plan or
the incoherence in an interpretation of sensory data (such
as stereo disparity).

Therefore suppose that U : ˚(˝)! R is a functional
that defines the undesirability of a field; the goal is to vary
� so that U(�) decreases down a path of “steepest de-
scent”. (By analogy with physical systems, we may call U
a potential function and think of gradient descent as a re-
laxation process that decreases the potential.) The change
in the potential U is given by the chain rule for field trans-
formations (Eq. 3):

U̇(t) D (U ı �)0(t; 1)
D U 0[�(t)][� 0(t)(1)]
D hrU[�(t)] j �̇(t)i :

More briefly, suppressing the dependence on time, U̇ D
hrU(�) j �̇i. To guarantee U̇ � 0 we let �̇ D �rrU(�)
with a rate r > 0 for gradient descent. Then,

U̇ D hrU(�) j �̇i
D hrU(�) j �rrU(�)i

D �rkrU(�)k2 � 0 :

Therefore, gradient descent decreasesU so long as the gra-
dient is nonzero. (More generally, of course, so long as the
trajectory satisfies hrU(�) j �̇i < 0 the potential will de-
crease.)

Often the potential takes the form of a quadratic func-
tional:

U(�) D �K� C L� C c ;

where K 2 ˚(˝ � ˝), �K� D
R
˝

R
˝ �uKuv�vdudv, L

is a linear functional, and c 2 R. We require the coupling
field K to be symmetric: Kuv D Kvu for all u; v 2 ˝ ; typ-
ically it reflects the importance of correlated activity be-
tween any two locations u and v in � . By the Riesz Rep-
resentation Theorem (Sect. “Field Transformations”) this
quadratic functional may be written

U(�) D �K� C h� j �i C c ;

where � 2 ˚(˝). The field gradient of such a functional is
especially simple:

rU(�) D 2K� C � :

In many cases � D 0 and then gradient descent is a linear
process: �̇ D �rK� .

This process can be understood as follows. Notice that
�Kuv decreases with the coupling between locations u and
v in a field and reflects the inverse variation of the poten-
tial with the coherence of the activity at those sites (i. e., the
potential measures lack of coherence). That is, if Kuv > 0
then the potential will be lower to the extent that activity
at u covarieswith activity at v (since then��uKuv�v � 0),
and if Kuv < 0, the potential will be lower to the extent
they contravary. Therefore, the gradient descent process
�̇ D �rK� changes �u to maximally decrease the po-
tential in accord with the covariances and contravariances
with other areas as defined by K : �̇u D �r

R
˝ Kuv�vdv.

The gradient descent will stop when it produces a field ��

for which �rK�� D 0, that is, a field in the null space of K
(the set of all � 2 ˚(˝) such that K� D 0).

Universal Approximation

A system of universal computation provides a limited
range of facilities that can be programmed or otherwise set
up to implement any computation in a large and interest-
ing class. The most familiar example is the Universal Tur-
ing Machine (UTM), which can be programmed to emu-
late any Turingmachine, and therefore can implement any
(Church–Turing) computable function. While this model
of universal computation has been important in the the-
ory of digital computation, other models may be more rel-
evant in for other computing paradigms [40,41] (see also
� Analog Computation).

Models of universal computation are important for
both theory and practice. First, they allow the theoreti-
cal power of a computing paradigm to be established. For
example, what cannot be computed by a UTM cannot
be computed by a Turing machine or by any computer
equivalent to a Turing machine. Conversely, if a func-
tion in Church–Turing computable, then it can be com-
puted on a UTM or any equivalent machine (such as
a programmable, general-purpose digital computer). Sec-
ond, a model of universal computation for a computing
paradigm provides a starting point for designing a general-
purpose computer for that paradigm. Of course, there are
many engineering problems that must be solved to design
a practical general-purpose computer, but a model of uni-
versal computation establishes a theoretical foundation.
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In the context of field computing there are several ap-
proaches to universal computation. One approach to uni-
versal field computation is based on a kind of field poly-
nomial approximation based on the Taylor series for field
transformations (see Sect. “Derivatives of Field Transfor-
mations”) [32,33]. Another approach relies on a variety
of “universal approximation theorems” for real functions,
which are themselves generalizations of Fourier-series ap-
proximation (see pp. 208–209, 249–250, 264-265, 274–
278, 290–294 in [23]). To explain this approach we will
begin with the problem of interpolating a field transforma-
tion F : ˚(˝)! ˚(˝ 0) specified by the samples F(�k) D
 k , k D 1; : : : ; P. Further, we require the interpolating
function to have the form

 ̂ D

HX

jD1

r j(�)˛ j ;

for some H, where the r j : ˚(˝) ! R are fixed non-
linear functionals (real-valued field transformation), and
the ˛ j 2 ˚(˝ 0) are determined by the samples so as
to minimize the sum-of-squares error defined by E DPP

kD1 k ̂
k �  kk2, where  ̂ k D

PH
jD1 r j(�k)˛ j . (A reg-

ularization term can be added if desired (see Chap. 5
in [23]).)

A field, as an element of a Hilbert space, has the same
norm as the (infinite) sequence of its generalized Fourier
coefficiants (with respect to some ON basis). Let �1; �2; : : :
be a basis for ˚(˝ 0), and we can compute the Fourier co-
efficients of  ̂ k �  k as follows:

h�i j  ̂
k �  ki D

*

�i

ˇ̌
ˇ̌
ˇ
ˇ

HX

jD1

r j(�k)˛ j �  
k

+

D

2

4
HX

jD1

r j(�k)h�i j ˛ ji

3

5 � h�i j  ki :

Let Rk j D r j(�k), Aji D h�i j ˛ ji, and Yki D h�i j
 ki. Then, h�i j  ̂ k �  ki D

PH
jD1 Rk jA ji � Yki . The

fields may approximated arbitrarily closely by the first N
Fourier coefficients, in which case R, A, and Y are or-
dinary matrices. Then k ̂ k �  kk2 �

PN
iD1 E

2
ki , where

E D RA � Y. Therefore the approximate total error is
Ê D PP

kD1
PN

iD1 E
2
ki , or Ê D kEk2F (the squared Frobe-

nius norm).
This is a standard least-squares minimization prob-

lem, and, as is well known (see pp. 371–373 in [28]),
the error is minimized by A D RCY, where RC is the
Moore–Penrose pseudoinverse of the interpolation matrix
R : RC D (RTR)�1RT. From A we can compute the re-
quired fields to approximate F : ˛ j D

PN
iD1 Aji�i .

For universality, we require that the approximation er-
ror can be made arbitrarily small, which depends on the
choice of the basis functionals r j , as can be learned from
multivariable interpolation theory. Therefore, we repre-
sent the input fields by their first M generalized Fourier
coefficients, an approximation that can be made as accu-
rate as we like. Let ˇ1; ˇ2; : : : be an ON basis for ˚(˝)
and let pM : ˚(˝) ! RM compute this finite-dimen-
sional representation: pMj (�) D hˇ j j �i. We will ap-
proximate r j(�) � s j[pM(�)], for appropriate functions
s j : RM ! R, j D 1; : : : ;H. That is, we are approximat-
ing the field transformation F by

F(�) �
HX

jD1

s j[pM(�)]˛ j :

Now let Sk j D s j[pM(�k)], and we have corresponding
finite-dimensional interpolation conditions Y D SA with
the best least-square solution A D SCY.

Various universal approximation theorems tell us that,
given an appropriate choice of basis functions s1; : : : ; sH ,
any continuous function f : RM ! RN can be approxi-
mated arbitrarily closely by a linear combination of these
functions (see pp. 208–209 in [23]). That is, the error
Ê D kSA � Yk2F can be made as small as we like. There-
fore, appropriate choices for the s j imply corresponding
choices for the basis functionals r j .

For example, one universal class of basis functions
has the form s j(x) D c(w j � x C bj), for any noncon-
stant, bounded, monotone-increasing continuous func-
tion c (see p. 208 in [23]). This form is common in artificial
neural networks, where w j is a vector of neuron j’s input
weights (connection strengths) and bj is its bias. To find
the corresponding basis functional, r j(�) D s j[pM(�)],
observe

w j � pM(�)C bj D
MX

kD1

wjk pMk (�)C bj

D

MX

kD1

wjkhˇk j �i C bj

D

* MX

kD1

wjkˇk

ˇ̌
ˇ̌
ˇ
�

+

C bj :

Therefore, let$ j D
PM

kD1 wjkˇk , and we see that a uni-
versal class of functionals has the form:

r j(�) D c(h$ j j �i C bj) : (10)

Thus, in this field analog of an artificial neuron, the in-
put field � is matched to the neuron’s interconnection
field$ j .
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Another universal class is the radial basis functions,
s j(x) D r(kx � c jk), where the radial function r is mono-
tonically decreasing, and the centers c j are either fixed or
dependent on the function to be approximated. A corre-
sponding universal class of field functions has the form:

r j(�) D r(k� � � jk) ; (11)

where each field � j D
P

i c
j
i �i causes the maximal re-

sponse of the corresponding basis function r j . Further-
more, if we set H D P and � j D � j , then the matrix R
is invertible for a wide variety of radial functions r (see
pp. 264–265 in [23]).

Thus familiar methods of universal approximation can
be transferred to field computation, which reveals sim-
ple classes of field transformations that are universal. This
implies that universal field computers can be designed
around a small number of simple functions (e. g., field
summation, inner product, monotonic real functions).

Field Computers

Structure

As previously explained (see Sect. “Definition”), fields do
not have to be physically continuous in either variation
or spatial extension (that is, in range or domain), so long
as the discretization is sufficiently fine that a continuum
is a practical approximation. Therefore, field computation
can be implemented with ordinary serial or parallel digital
computing systems (as it has been in the past). However,
field computation has a distinctively different approach
to information representation and processing; computa-
tion tends to be shallow (in terms of operations applied),
but very wide, “massively parallel” in the literal sense of
computing with an effectively continuous mass of proces-
sors. Therefore field computation provides opportunities
for the exploitation of novel computing media that may
not be suitable for digital computation. For example, as
the brain illustrates how relatively slow, low precision ana-
log computing devices can be used to implement intelli-
gent information processing via field computation, so elec-
tronic field computers may exploit massive assemblages of
low-precision analog devices, which may be imprecisely
fabricated, located, and interconnected. Other possibili-
ties are optical computing in which fields are represented
by optical wavefronts, molecular computation based on
films of bacteriorhodopsin or similar materials, chemical
computers based on reaction-diffusion systems, and “free
space computing” based on the interactions of charge car-
riers and electrical fields in homogeneous semiconductors
(see Sect. “Field Computing Hardware”).

Field computation is a kind of analog computation,
and so there are two principal time domains in which field
computation can take place, sequential time and continu-
ous time (see� Analog Computation). In sequential com-
putation, operations take place in discrete steps in an order
prescribed by a program. Therefore, sequential field com-
putation is similar to ordinary digital computation, except
that the individual program steps may perform massively
parallel analog field operations. For example, a field as-
signment statement, such as:

 :D � C  ;

updates that field variable  to contain the sum of � and
the previous value of  .

In continuous-time computation the fields vary contin-
uously in time, generally according to differential equa-
tions in which time is the independent variable; this has
been the mode of operation of most analog computers
in the past. In this case, a simple dependence, such as
 D � C �, is assumed to have an implicit time parame-
ter,  (t) D �(t)C �(t), which represents the real time of
computation. Since continuous-time programs are often
expressed by differential equations, these computers usu-
ally provide hardware for definite integration of functions
with respect to time:

 (t) D  0 C

Z t

0
F[�(�)]d� : (12)

Continuous-time programs are expressed by circuit dia-
grams (variable-dependency diagrams) rather than by tex-
tual programs such as used in digital computer program-
ming (see Fig. 1 for an example). Although special-pur-
pose analog and digital computers are appropriate for
many purposes, already in the first half of the twenti-
eth century the value of general-purpose (programmable)
digital and analog computers had been recognized (see
� Analog Computation). Therefore it will be worthwhile
to consider briefly the sort of facilities we may expect to
find in a general-purpose field computer (whether operat-
ing in sequential or continuous time).

We have seen that the following facilities are sufficient
for universal computation (Sect. “Universal Approxima-
tion”): multiplication of fields by scalars, local (point-wise)
addition of fields ( u D �u C �u), and some means of
computing appropriate basis functionals. Neural-net style
functionals (Eq. 10) require inner product and any non-
constant, bounded, monotone-increasing scalar function
(i. e., a sigmoid function). Radial basis functionals (Eq. 11)
require the norm (which can be computed with the in-
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ner product) and any non-constant, bounded, monotone-
decreasing scalar function. (Point-wise subtraction can
be implemented, of course, by scalar multiplication and
point-wise addition.) These are modest requirements, and
we can expect practical field computers to have additional
facilities.

In addition, continuous-time field computers will im-
plement definite integration with respect to time (Eq. 12),
which is used to implement field processes defined by
differential equations. The equations are implemented in
terms of the operations required for universal computa-
tion or in terms of others, discussed next.

Additional useful operations for general-purpose field
computing include matrix-vector style field products
(Hilbert–Schmidt integral operators), outer product, con-
volution, cross-correlation, normalization, local (point-
wise) product and quotient ( u D �u�u ,  u D �u

ı
�u),

and various other local operations (log, exp, etc.). Opera-
tions on vector fields can be implemented by scalar field
operations on the vector components (Cartesian or po-
lar); in this manner, vector fields of any finite dimension
can be processed. If vector fields and operations on them
are provided by the hardware, then it is useful if these
operations include conversions between scalar and vec-
tor fields (e. g., between vector fields and their Cartesian
or polar coordinate fields). Other useful vector field op-
erations include point-wise scalar products between vec-
tor fields ( u D �u � �u), gradient (r), Laplacian (r2),
divergence (r�), and point-wise scalar-vector multiplica-
tion ( u D �u�u). Scalar analog computation is a degen-
erate case of field computation (since scalars correspond
to fields in ˚(f0g)), and so practical general-purpose field
computers will include the facilities typical of analog com-
puters (see� Analog Computation).

The Extended Analog Computer

One interesting proposal for a general-purpose field com-
puter is the Extended Analog Computer (EAC) of LA
Rubel, which was a consequence of his conviction that
the brain is an analog computer [55]. However, Rubel
and others had shown that the existing model of a gen-
eral-purpose analog computer (GPAC), the abstract dif-
ferential analyzer defined by CE Shannon, had relatively
severe theoretical limitations, and so it did not seem ad-
equate as a model of the brain (see � Analog Compu-
tation) [30,51,56,60,61]. Like Shannon’s differential ana-
lyzer, the EAC is an abstract machine intended for theo-
retical investigation of the power of analog computation,
not a proposal for a practical computer [57]; nevertheless,
some actual computing devices have been based on it.

The EAC is structured in a series of levels, each build-
ing on those below it, taking outputs from the lower layers
and applying analog operations to them to produce its own
outputs. The inputs to the lowest layer are a finite number
of “settings”, which can be thought of real-numbers (e. g.,
set by a continuously adjustable knob). This layer is able to
combine the inputs with real constants to compute poly-
nomials over which it can integrate to generate differen-
tially algebraic functions; this layer is effectively equivalent
to Shannon’s GPAC. Each layer provides a number of ana-
log devices, including “boundary-value-problem boxes”,
which can solve systems of PDEs subject to boundary con-
ditions and other constraints. That is, these conceptual de-
vices solve field computation problems. Although for his
purposes Rubel was not interested in implementation, he
did remark that PDE solvers might be implemented by
physical processes that obeyed the same class of PDEs as
the problem (e. g., using physical diffusion to solve dif-
fusion problems). This of course is precisely the old field
analogymethod, which was also used in network analyzers
(recall Sect. “Introduction”). Rubel was able to show that
the EAC is able to solve an extremely large class of prob-
lems, but the extent of its power has not been determined
(see� Analog Computation).

Field Computing Hardware

Research in field computing hardware is ongoing and
a comprehensive survey is beyond the scope of this arti-
cle; a few examples must suffice.

Although the EAC was intended as a conceptual ma-
chine (for investigating the limits of analog computing),
JW Mills has demonstrated several hardware devices in-
spired by it [46,47]. In these the diffusion of electrons in
bulk silicon or conductive gels is used to solve diffusion
equations subject to given boundary conditions, an tech-
nique he describes as “computing with empty space”. This
approach, in which a physical system satisfying certain
PDEs is used to solve problems involving similar PDEs, is
a contemporary version of the “field analogy method” de-
veloped by Kirchhoff and others (see Sect. “Introduction”).

Adamatzky and his colleagues have investigated chem-
ical field computers for implementing reaction-diffusion
equations [1,2]; see Sect. “Diffusion Processes” and � Re-
action-Diffusion Computing. These use variants of the Be-
lousov–Zhabotinsky Reaction and similar chemical reac-
tions. Although the chemical reactions proceed relatively
slowly, they are massively parallel: at the molecular level
(“molar parallelism”). Also, Chaps. 6–8 in Adamatzky
et al. [2] have designed both analog and digital elec-
tronic reaction-diffusion computers. M Perŭs and his col-
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leagues have investigated the use of quantum hologra-
phy to implement field analogues of neural-network algo-
rithms [31,49].

Several investigators have explored optical implemen-
tations of field computers. For example, Skinner et al. [62]
used self-lensing media, which respond nonlinearly to ap-
plied irradience, to implement feed-forward neural net-
works trained by back-propagation. Tõkés et al. [68,69]
have been developing an optical field computer using bac-
teriorhodopsin as a medium.

Future Directions

In the future field computation can be expected to provide
an increasingly important analytical and intuitive frame-
work for understanding massively parallel analog compu-
tation in natural and artificial intelligence.

First, field computation will provide a theoretical
framework for understanding information processing in
the brain in terms of cortical maps and, more generally,
at a level between anatomical structures and individual
neurons or small neural circuits. This will require im-
proved understanding of information processing in terms
of field computation, which will benefit from cognitive
neuroscience research, but also contribute new compu-
tational concepts to it. Increased understanding of neu-
ral field computation will improve our ability to design
very large artificial neural networks, which will be more
attractive as massively parallel neurocomputing hardware
is developed.

Traditionally, artificial intelligence has approached
knowledge representation from the perspective of discrete,
language-like structures, which are difficult to reconcile
with the massively parallel analog representations found
in the cortex. Therefore field computation will provide an
alternative framework for understanding knowledge rep-
resentation and inference, which will be more compati-
ble with neuroscience but also provide a basis for under-
standing cognitive phenomena such as context sensitivity,
perception, sensorimotor coordination, image-based cog-
nition, analogical and metaphorical thinking, and nonver-
bal intelligences (kinesthetic, emotional, aesthetic, etc.).

As we have seen, concepts from field computationmay
be applied to understanding the collective intelligence of
large groups of organisms. This approach permits sep-
arating the abstract computational principles from the
specifics of their realization by particular organisms, and
therefore permits their application to other organisms or
artificial systems. For example, principles of field compu-
tation governing the self-organization of groups of organ-
isms are applicable to distributed robotics; in particular,

they will provide a foundation for controlling very large
population of microrobots or nanobots.

Embryological morphogenesis is naturally expressed
in terms of field computation, since the differentiation and
self-organization of an (initially homogeneous) cell mass is
governed by continuous distributions of continuous quan-
tity. Therefore, field computation provides a vehicle for
rising above the specifics of particular signaling molecules,
mechanisms of cell migration, etc. in order to understand
development in abstract or formal terms. Understanding
morphogenesis in terms of field computation will facili-
tate applying its principles to other systems in which mat-
ter self-organizes into complex structures. In particular,
field computation will suggestmeans for programming the
reorganization of matter for nanotechnological applica-
tions and for describing the behavior of adaptive “smart”
materials.

As we approach the end of Moore’s Law [48], future
improvements in computing performance will depend on
developing new computing paradigms not based in se-
quential digital computation (see also � Analog Compu-
tation). Improvements in both speed and density can be
achieved by matching data representations and compu-
tational operations to the physical processes that realize
them, which are primarily continuous and parallel in op-
eration. Indeed, many of these processes are described in
terms of fields or involve physical fields (i. e., phenomeno-
logical or structural fields). Therefore field computation
points toward many structural processes that might be
used for computation and provides a framework for un-
derstanding how best to use them. Thus we anticipate
that field computation will play an important role in post-
Moore’s Law computing.

Bibliography

Primary Literature
1. Adamatzky A (2001) Computing in nonlinear media and au-

tomata collectives. Institute of Physics Publishing, Bristol
2. Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-diffu-

sion computers. Elsevier, Amsterdam
3. Anderson JA (1995) An introduction to neural networks. MIT

Press, Cambridge
4. Anderson RA (1995) Coordinate transformations and motor

planning in posterior parietal cortex. In: Gazzaniga MS (ed) The
cognitive neurosciences. MIT Press, Cambridge, pp 519–32

5. Bar-Yam Y (1997) Dynamics of complex systems. Perseus
Books, Reading

6. Bizzi E, Mussa-Ivaldi FA (1995) Toward a neurobiology of co-
ordinate transformation. In: Gazzaniga MS (ed) The cognitive
neurosciences. MIT Press, Cambridge, pp 495–506

7. BohmD, Hiley BJ (1993) The undivideduniverse: an ontological
interpretation of quantum theory. Routledge, New York



Field Computation in Natural and Artificial Intelligence F 3359

8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:
from natural to artificial systems. Santa Fe Institute Studies in
the Sciences of Complexity. Oxford University Press, New York

9. Brachman G, Narici L (1966) Functional analysis. Academic
Press, New York

10. Camazine S, Deneubourg J-L, Franks NR, Sneyd G, Theraulaz J,
Bonabeau E (2001) Self-organization in biological systems.
Princeton University Press, Princeton

11. Changeux J-P (1985) Neuronal man: the biology of mind. Ox-
ford University Press, Oxford, tr. by L. Garey

12. Daubechies I, Grossman A, Meyer Y (1986) Painless non-or-
thogonal expansions. J Math Phys 27:1271–1283

13. Daugman JG (1993) An information-theoretic view of analog
representation in striate cortex. In: Schwartz EL (ed) Computa-
tional neuroscience. MIT Press, Cambridge, pp 403–423

14. Davies JA (2005) Mechanisms of morphogensis. Elsevier,
Amsterdam

15. Deneubourg JL (1977) Application de l’ordre par fluctuation
à la description de certaines étapes de la construction du nid
chez les termites. Insectes Sociaux 24:117–130

16. Dirac PAM (1958) The principles of quantum mechanics, 4th
edn. Oxford University Press, Oxford

17. Droulez J, Berthoz A (1991) The concept of dynamicmemory in
sensorimotor control. In: Humphrey DR, Freund H-J (eds) Mo-
tor control: concepts and issues. Wiley, New York, pp 137–161

18. Droulez J, Berthoz A (1991) A neural network model of sen-
soritopic maps with predictive short-term memory properties.
Proc Natl Acad Sci USA 88:9653–9657

19. Feldman JA, Ballard DH (1982) Connectionist models and their
properties. Cogn Sci 6(3):205–254

20. Gabor D (1946) Theory of communication. J Inst Electr Eng
93(III):429–457

21. Georgopoulos AP (1995) Motor cortex and cognitive process-
ing. In: The Cognitive Neurosciences. MIT Press, Cambridge,
pp 507–517

22. Goodman SJ, Anderson RA (1989)Microstimulation of a neural-
network model for visually guided saccades. J Cogn Neurosci
1:317–326

23. Haykin S (1999) Neural networks: a comprehensive foundation,
2nd edn. Prentice-Hall, Upper Saddle River

24. Heil CE, Walnut DF (1989) Continuous and discrete wavelet
transforms. SIAM Rev 31(4):628–666

25. Hopfield JJ (1995) Pattern recognition computation using ac-
tion potential timing for stimulus response. Nature 376:33–36

26. Kirchhoff G (1845) Ueber den Durchgang eines elektrischen
Stromes durch eine Ebene, insbesondere durch eine kreisför-
mige. Ann Phys Chemie 140/64(4):497–514

27. Knudsen EJ, du Lac S, Esterly SD (1987) Computational maps in
the brain. Ann Rev Neurosc 10:41–65

28. Leon SJ (1986) Linear algebra with applications, 2nd edn.
Macmillan, New York

29. Light WA (1992) Ridge functions, sigmoidal functions and neu-
ral networks. In: Cheney EW, Chui CK, Schumaker LL (eds) Ap-
proximation theory VII. Academic Press, Boston, pp 163–206

30. Lipshitz L, Rubel LA (1987) A differentially algebraic replac-
ment theorem. Proc AmMath Soc 99(2):367–72

31. Loo CK, Peruš M, Bischof H (2004) Associative memory based
image and object recognition by quantum holography. Open
Syst Inf Dyn 11(3):277–289

32. MacLennan BJ (1987) Technology-independent design of neu-
rocomputers: the universal field computer. In: Caudill M, But-

ler C (eds) Proceedings of the IEEE First International Con-
ference on Neural Networks, vol 3. IEEE Press, Piscataway,
pp 39–49

33. MacLennan BJ (1990) Field computation: a theoretical frame-
work for massively parallel analog computation, parts I–IV.
Technical Report CS-90-100. Department of Computer Sci-
ence, University of Tennessee, Knoxville, Available from www.
cs.utk.edu/~mclennan

34. MacLennan BJ (1991) Gabor representations of spatiotempo-
ral visual images. Technical Report CS-91-144. Department of
Computer Science, University of Tennessee, Knoxville, Avail-
able from www.cs.utk.edu/~mclennan

35. MacLennan BJ (1993) Information processing in the den-
dritic net. In: Karl HP (ed) Rethinking neural networks: quan-
tum fields and biological data. Lawrence Erlbaum, Hillsdale,
pp 161–197

36. MacLennan BJ (1994) Continuous computation and the emer-
gence of the discrete. In: Karl HP (ed) Origins: brain and self-
organization. Lawrence Erlbaum, Hillsdale, pp 121–151

37. MacLennan BJ (1994) Image and symbol: continuous compu-
tation and the emergence of the discrete. In: Honavar V, Uhr L
(eds) Artificial intelligence and neural networks: steps toward
principled integration. Academic Press, New York, pp 207–224

38. MacLennan BJ (1995) Continuous formal systems: a unifying
model in language and cognition. In: Proc. of the IEEE Work-
shop on Architectures for Semiotic Modeling and Situation
Analysis in Large Complex Systems. IEEE Press, Piscataway,
pp 161–172

39. MacLennan BJ (1997) Field computation in motor con-
trol. In: Morasso PG, Sanguineti V (eds) Self-organiza-
tion, computational maps and motor control. Elsevier,
Amsterdam, pp 37–73

40. MacLennan BJ (2003) Transcending Turing computability.
Minds Mach 13:3–22

41. MacLennan BJ (2004) Natural computation and non-Turing
models of computation. Theor Comput Sci 317:115–145

42. Mathematical Society of Japan (1980) Encyclopedic dictionary
of mathematics. MIT Press, Cambridge

43. McClelland JL, Rumelhart DE, PDP Research Group (1986) Par-
allel distributed processing: explorations in themicrostructure
of cognition, vol 2. Psychological and biological models. MIT
Press, Cambridge

44. McFadden J (2002) Synchronous firing and its influence on the
brain’s electromagnetic field: evidence for an electromagnetic
field theory of consciousness. J Conscious Stud 9(4):23–50

45. Miller MI, Roysam B, Smith KR, O’Sullivan JA (1991) Represent-
ing and computing regular languages on massively parallel
networks. IEEE Trans Neural Netw 2:56–72

46. Mills JW (1996) The continuous retina: Image processing with
a single-sensor artificial neural field network. In: Proc. IEEE Con-
ference on Neural Networks. IEEE Press, Piscataway

47. Mills JW, Himebaugh B, Kopecky B, Parker M, Shue C, Weile-
mann C (2006) “Empty space” computes: the evolution of
an unconventional supercomputer. In: Proc. of the 3rd Con-
ference on Computing Frontiers. ACM Press, New York,
pp 115–126

48. Moore GE (1965) Cramming more components onto inte-
grated circuits. Electronics 38(8):114–117

49. Peruš M (1998) A quantum information-processing “algo-
rithm” based on neural nets. In: Wang P, Georgiou G,
Janikow C, Yao Y (eds) Joint conference on information sci-

http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan


3360 F Field Theoretic Methods

ences, vol II. Association for Intelligent Machinery, New York,
pp 197–200

50. Pockett S (2000) The nature of consciousness: a hypothesis.
Writers Club Press, San Jose

51. Pour-El MB (1974) Abstract computability and its relation to
the general purpose analog computer (some connections be-
tween logic, differential equations and analog computers).
Trans AmMath Soc 199:1–29

52. Powell MJD (1987) Radial basis functions for multivariable in-
terpolation: a review. In: Algorithms for approximation. Claren-
don, New York, pp 143–167

53. Pribram KH (1991) Brain and perception: holonomy and struc-
tural in figural processing. Lawrence Erlbaum, Hillsdale

54. Pribram KH, Sharafat A, Beekman GJ (1984) Frequency encod-
ing in motor systems. In: Whiting HTA (ed) Human motor ac-
tions: Bernstein reassessed. Elsevier, New York, pp 121–156

55. Rubel LA (1985) The brain as an analog computer. J Theor Neu-
robiol 4:73–81

56. Rubel LA (1988) Somemathematical limitations of the general-
purpose analog computer. Adv Appl Math 9:22–34

57. Rubel LA (1993) The extended analog computer. Adv Appl
Math 14:39–50

58. Rumelhart DE, McClelland JL, PDP Research Group (1986) Par-
allel distributed processing: explorations in themicrostructure
of cognition, vol 1. Foundations. MIT Press, Cambridge

59. Sanger TD (1996) Probability density estimation for the inter-
pretation of neural population codes. J Neurophysiol 76:2790–
2793

60. Shannon CE (1941) Mathematical theory of the differential an-
alyzer. J Math Phys Mass Inst Tech 20:337–354

61. Shannon CE (1993) Mathematical theory of the differential an-
alyzer. In: Sloane NJA, Wyner AD (eds) Claude Elwood Shan-
non: collected papers. IEEE Press, New York, pp 496–513

62. Skinner SR, Behrman EC, Cruz-Cabrera AA, Steck JE (1995) Neu-
ral network implementation using self-lensing media. Appl
Opt 34:4129–4135

63. Small JS (2001) The analogue alternative: the electronic ana-
logue computer in Britain and the USA, 1930–1975. Routledge,
London, New York

64. Solé R, Goodwin B (2000) Signs of life: how complexity per-
vades biology. Basic Books, New York

65. Soroka WW (1954) Analog methods in computation and simu-
lation. McGraw-Hill, New York

66. Steinbeck O, Tóth A, Showalter K (1995) Navigating com-
plex labyrinths: optimal paths from chemical waves. Science
267:868–871

67. Ting P-Y, Iltis RA (1994) Diffusion network architectures for im-
plementation of Gibbs samplers with applications to assign-
ment problems. IEEE Trans Neural Netw 5:622–638

68. Tõkés S, Orzó L, Ayoub A (2003) Two-wavelength POAC (pro-
grammable opto-electronic analogic computer) using bacteri-
orhodopsin as dynamic holographic material. In: Proc. of EC-
CTD ‘03 Conference, vol 3. Krakow, pp 97–100

69. Tõkés S, Orzó L, Váró G, Dér A, Ormos P, Roska T (2001) Pro-
grammable analogic cellular optical computer using bacteri-
orhodopsin as analog rewritable image memory. In: Dér A,
Keszthelyi L (eds) Bioelectronic applications of photochromic
pigments. IOS Press, Amsterdam, pp 54–73

70. Truitt TD, Rogers AE (1960) Basics of analog computers. John F.
Rider, New York

71. TuringAM (1952) The chemical basis of morphogenesis. Philos
Trans Royal Soc B 237:37–72

Books and Reviews
Bachman G, Narici L (1966) Functional analysis. Academic Press,

New York
Berberian SK (1961) Introduction to Hilbert space. Oxford, New

York
MacLennan BJ (1991) Field computation: a theoretical framework

for massively parallel analog computation, parts I–IV. Techni-
cal Report CS-90-100, Dept. of Computer Science, University
of Tennessee, Knoxville. Available from http:www.cs.utk.edu/
~mclennan

MacLennan BJ (2008) Foundations of Field Computation. In prepa-
ration. Available from http:www.cs.utk.edu/~mclennan

Field Theoretic Methods
UWE CLAUS TÄUBER
Department of Physics, Center for Stochastic Processes
in Science and Engineering, Virginia Polytechnic Institute
and State University, Blacksburg, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Correlation Functions and Field Theory
Discrete Stochastic Interacting Particle Systems
Stochastic Differential Equations
Future Directions
Acknowledgments
Bibliography

Glossary

Absorbing state State from which, once reached, an in-
teracting many-particle system cannot depart, not
even through the aid of stochastic fluctuations.

Correlation function Quantitative measure of the corre-
lation of random variables; usually set to vanish for sta-
tistically independent variables.

Critical dimension Borderline dimension dc above
which mean-field theory yields reliable results, while
for d � dc fluctuations crucially affect the system’s
large scale behavior.

External noise Stochastic forcing of a macroscopic sys-
tem induced by random external perturbations, such
as thermal noise from a coupling to a heat bath.

http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan


Field Theoretic Methods F 3361

Field theory A representation of physical processes
through continuous variables, typically governed by
an exponential probability distribution.

Generating function Laplace transform of the probabil-
ity distribution; all moments and correlation functions
follow through appropriate partial derivatives.

Internal noise Random fluctuations in a stochastic
macroscopic system originating from its internal ki-
netics.

Langevin equation Stochastic differential equation de-
scribing time evolution that is subject to fast random
forcing.

Master equation Evolution equation for a configura-
tional probability obtained by balancing gain and loss
terms through transitions into and away from each
state.

Mean-field approximation Approximative analytical ap-
proach to an interacting system with many degrees of
freedom wherein spatial and temporal fluctuations as
well as correlations between the constituents are ne-
glected.

Order parameter A macroscopic density corresponding
to an extensive variable that captures the symmetry
and thereby characterizes the ordered state of a ther-
modynamic phase in thermal equilibrium. Nonequi-
librium generalizations typically address appropriate
stationary values in the long-time limit.

Perturbation expansion
Systematic approximation scheme for an interacting
and/or nonlinear system that involves a formal expan-
sion about an exactly solvable simplication by means
of a power series with respect to a small coupling.

Definition of the Subject

Traditionally, complex macroscopic systems are often de-
scribed in terms of ordinary differential equations for the
temporal evolution of the relevant (usually collective) vari-
ables. Some natural examples are particle or population
densities, chemical reactant concentrations, and magneti-
zation or polarization densities; others involve more ab-
stract concepts such as an apt measure of activity, etc.
Complex behavior often entails (diffusive) spreading, front
propagation, and spontaneous or induced pattern forma-
tion. In order to capture these intriguing phenomena,
a more detailed level of description is required, namely
the inclusion of spatial degrees of freedom, whereupon the
above quantities all become local density fields. Stochastic-
ity, i. e., randomly occuring propagation, interactions, or
reactions, frequently represents another important feature
of complex systems. Such stochastic processes generate in-

ternal noise that may crucially affect even long-time and
large-scale properties. In addition, other system variables,
provided they fluctuate on time scales that are fast com-
pared to the characteristic evolution times for the relevant
quantities of interest, can be (approximately) accounted
for within a Langevin description in the form of external
additive or multiplicative noise.

A quantitative mathematical analysis of complex spa-
tio-temporal structures and more generally cooperative
behavior in stochastic interacting systems with many de-
grees of freedom typically relies on the study of appro-
priate correlation functions. Field-theoretic, i. e., spatially
continuous, representations both for random processes
defined through a master equation and Langevin-type
stochastic differential equations have been developed since
the 1970s. They provide a general framework for the com-
putation of correlation functions, utilizing powerful tools
that were originally developed in quantum many-body as
well as quantum and statistical field theory. Thesemethods
allow us to construct systematic approximation schemes,
e. g., perturbative expansions with respect to some pa-
rameter (presumed small) that measures the strength of
fluctuations. They also form the basis of more sophis-
ticated renormalization group methods which represent
an especially potent device to investigate scale-invariant
phenomena.

Introduction

Stochastic Complex Systems

Complex systems consist of many interacting compo-
nents. As a consequence of either these interactions and/or
the kinetics governing the system’s temporal evolution,
correlations between the constituents emerge that may in-
duce cooperative phenomena such as (quasi-)periodic os-
cillations, the formation of spatio-temporal patterns, and
phase transitions between different macroscopic states.
These are characterized in terms of some appropriate col-
lective variables, often termed order parameters, which
describe the large-scale and long-time system properties.
The time evolution of complex systems typically entails
random components: either, the kinetics itself follows
stochastic rules (certain processes occur with given proba-
bilities per unit time); or, we project our ignorance of var-
ious fast microscopic degrees of freedom (or our lack of
interest in their detailed dynamics) into their treatment as
stochastic noise.

An exact mathematical analysis of nonlinear stochas-
tic systems with many interacting degrees of freedom is
usually not feasible. One therefore has to resort to either
computer simulations of corresponding stochastic cellu-
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lar automata, or approximative treatments. A first step,
which is widely used and often provides useful qualitative
insights, consists of ignoring spatial and temporal fluctu-
ations, and just studying equations of motion for ensem-
ble-averaged order parameters. In order to arrive at closed
equations, additional simplifications tend to be necessary,
namely the factorization of correlations into powers of the
mean order parameter densities. Such approximations are
calledmean-field theories; familiar examples are rate equa-
tions for chemical reaction kinetics or Landau–Ginzburg
theory for phase transitions in thermal equilibrium. Yet
in some situations mean-field approximations are insuffi-
cient to obtain a satisfactory quantitative description (see,
e. g., the recent work collected in [1,2]). Let us consider an
illuminating example.

Example: Lotka–Volterra Model

In the 1920s, Lotka and Volterra independently formu-
lated a mathematical model to describe emerging periodic
oscillations respectively in coupled autocatalytic chemical
reactions, and in the Adriatic fish population (see, e. g.,
[3]). We shall formulate the model in the language of
population dynamics, and treat it as a stochastic system
with two species A (the ‘predators’) and B (the ‘prey’),
subject to the following reactions: predator death A! ;,
with rate �; prey proliferation B! BC B, with rate � ;
predation interaction AC B! AC A, with rate . Ob-
viously, for  D 0 the two populations decouple; while
the predators face extinction, the prey population will ex-
plode. The average predator and prey population densi-
ties a(t) and b(t) are governed by the linear differential
equations ȧ(t) D ��a(t) and ḃ(t) D �b(t), whose solu-
tions are exponentials. Interesting competition arises as
a consequence of the nonlinear process governed by the

Field Theoretic Methods, Figure 1
Snapshots of the time evolution (left to right) of activity fronts emerging in a stochastic Lotka–Volterra model simulated on
a 512� 512 lattice, with periodic boundary conditions and site occupation numbers restricted to 0 or 1. For the chosen reaction
rates, the system is in the species coexistence phase (with rates � D 4:0,� D 0:1, and� D 2:2), and the correspondingmean-field
fixed point a focus. The red, blue, and black dots respectively represent predators A, prey B, and empty sites ;. Reproduced with
permission from [4]

rate . In an exact representation of the system’s tempo-
ral evolution, we would now need to know the probability
of finding an A� B pair at time t. Moreover, in a spatial
Lotka–Volterra model, defined on a d-dimensional lattice,
say, on which the individual particles can move via near-
est-neighbor hopping, the predation reaction should occur
only if both predators and prey occupy the same or adja-
cent sites. The evolution equations for the mean densities
a(t) and b(t) would then have to be respectively amended
by the terms ˙ha(x; t)b(x; t)i. Here a(x, t) and b(x, t)
represent local concentrations, the brackets denote the en-
semble average, and ha(x; t)b(x; t)i representsA� B cross
correlations.

In the rate equation approximation, it is assumed
that the local densities are uncorrelated, whereupon
ha(x; t)b(x; t)i factorizes to ha(x; t)ihb(x; t)i D a(t)b(t).
This yields the famous deterministic Lotka–Volterra
equations

ȧ(t) D a(t)b(t)��a(t); ḃ(t) D �b(t)�a(t)b(t): (1)

Within this mean-field approximation, the quantity
K(t) D [a(t)C b(t)] � � ln a(t)� � ln b(t) (essentially
the system’s Lyapunov function) is a constant of motion,
K̇(t) D 0. This results in regular nonlinear population os-
cillations, whose frequency and amplitude are fully deter-
mined by the initial conditions, a rather unrealistic feature.
Moreover Eqs. (1) are known to be unstable with respect
to various model modifications (as discussed in [3]).

In contrast with the rate equation predictions, the
original stochastic spatial Lotka–Volterra system displays
much richer behavior (a recent overview is presented
in [4]): The predator–prey coexistence phase is governed,
for sufficiently large values of the predation rate, by an
incessant sequence of ‘pursuit and evasion’ wave fronts
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Field Theoretic Methods, Figure 2
Static correlation functions a CAA(x) (note the logarithmic scale), and b CAB(x), measured in simulations on a 1024� 1024 lattice
without any restrictions on the site occupations. The reaction rateswere� D 0:1,�D 0:1, and�was varied from 0.5 (blue triangles,
upside down), 0.75 (green triangles), to 1.0 (red squares). Reproduced with permission from [5]

that form quite complex dynamical patterns, as depicted in
Fig. 1, which shows snapshots taken in a two-dimensional
lattice Monte Carlo simulation where each site could at
most be occupied by a single particle. In finite systems,
these correlated structures induce erratic population oscil-
lations whose features are independent of the initial con-
figuration. Moreover, if locally the prey ‘carrying capac-
ity’ is limited (corresponding to restricting the maximum
site occupation number per lattice site), there appears an
extinction threshold for the predator population that sep-
arates the active coexistence regime through a continuous
phase transition from a state wherein at long times t !1
only prey survive. With respect to the predator popula-
tion, this represents an absorbing state: Once allA particles
have vanished, they cannot be produced by the stochastic
kinetics.

A quantitative characterization of the emerging spa-
tial structures utilizes equal-time correlation functions
such as CAA(x � x0; t) D ha(x; t)a(x0; t)i � a(t)2 and
CAB (x � x0; t) D ha(x; t)b(x0; t)i � a(t)b(t), computed at
some large time t in the (quasi-)stationary state. These are
shown in Fig. 2 as measured in computer simulations for
a stochastic Lotka–Volterra model (but here no restric-
tions on the site occupation numbers of theA or B particles
were implemented). The A� A (and B � B) correlations
obviously decay essentially exponentially with distance x,
CAA(x) / CBB (x) / e�jxj/� , with roughly equal correla-
tion lengths � for the predators and prey. The cross-cor-
relation function CAB (x) displays a maximum at six lat-
tice spacings; these positive correlations indicate the spa-
tial extent of the emerging activity fronts (prey followed
by the predators). At closer distance, the A and B parti-

Field Theoretic Methods, Figure 3
Space-time plot (space horizontal, with periodic boundary con-
ditions; time vertical, proceeding downward) showing the tem-
poral evolution of a one-dimensional stochastic Lotka–Volterra
model on 512 lattice sites, but without any restrictions on
the site occupation numbers (red: predators, blue: prey, ma-
genta: sites occupied by both species; rates: � D 0:1, � D 0:1,
� D 0:1). Reproduced with permission from [5]

cles become anti-correlated (CAB (x) < 0 for jxj < 3): prey
would not survive close encounters with the predators. In
a similar manner, one can address temporal correlations.
These appear prominently in the space-time plot of Fig. 3
obtained for a Monte Carlo run on a one-dimensional lat-
tice (no site occupation restrictions), indicating localized
population explosion and extinction events.

Correlation Functions and Field Theory

The above example demonstrates that stochastic fluctu-
ations and correlations induced by the dynamical inter-
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actions may lead to important features that are not ad-
equately described by mean-field approaches. We thus
require tools that allow us to systematically account for
fluctuations in the mathematical description of stochastic
complex systems and evaluate characteristic correlations.
Such a toolbox is provided through field theory represen-
tations that are conducive to the identification of underly-
ing symmetries and have proven useful starting points for
the construction of various approximation schemes. These
methods were originally devised and elaborated in the the-
ory of (quantum and classical) many-particle systems and
quantum fields ([6,7,8,9,10,11,12,13] represent a sample of
recent textbooks).

Generating Functions

The basic structure of these field theories rests in a (nor-
malized) exponential probability distribution P[Si ] for
the N relevant variables Si, i D 1; : : : ;N :

R QN
iD1 dSi

P[Si ] D 1, where the integration extends over the allowed
range of values for the Si; i. e.,

P[Si ] D
1
Z exp (�A[Si ]) ;

Z D
Z NY

iD1

dSi exp (�A[Si ]) :
(2)

In canonical equilibrium statistical mechanics, A[Si ] D
H [Si ]/kBT is essentially the Hamiltonian, and the nor-
malization is the partition function Z. In Euclidean quan-
tum field theory, the action A[Si ] is given by the Lan-
grangian.

All observables O should be functions of the basic de-
grees of freedom Si; their ensemble average thus becomes

hO[Si ]i D
Z NY

iD1

dSiO[Si ]P[Si ]

D
1
Z

Z NY

iD1

dSiO[Si ] exp (�A[Si ]) : (3)

If we are interested in n-point correlations, i. e., expecta-
tion values of the products of the variables Si, it is useful to
define a generating function

W [ ji] D

*

exp
NX

iD1

ji Si

+

; (4)

with W [ ji D 0] D 1. Notice that W [ ji ] formally is just
the Laplace transform of the probability distribution
P[Si ]. The correlation functions can now be obtained via

partial derivatives ofW [ ji] with respect to the sources ji:

hSi1 : : : Sin i D
@

@ ji1
: : :

@

@ jin
W [ ji]

ˇ̌
ˇ
j iD0

: (5)

Connected correlation functions or cumulants can be
found by similar partial derivatives of the logarithm of the
generating function:

hSi1 : : : Sin ic D
@

@ ji1
: : :

@

@ jin
lnW [ ji ]

ˇ
ˇ̌
j iD0

; (6)

e. g., hSiic D hSii, and hSi S jic D hSi S ji � hSi ihS ji D
h(Si � hSi i)(S j � hS ji)i.

Perturbation Expansion

For a Gaussian action, i. e., a quadratic form A0[Si ] D
1
2
P

i j SiAi jS j (for simplicity we assume real variables
Si), one may readily compute the corresponding gener-
ating functionW0[ ji ]. After diagonalizing the symmetric
N � N matrix Ai j , completing the squares, and evaluating
the ensuing Gaussian integrals, one obtains

Z0 D
(2�)N/2
p
detA

;

W0[ ji ] D exp

0

@1
2

NX

i; jD1

ji A�1i j j j

1

A ;
˝
Si S j

˛
0 D A�1i j :

(7)

Thus, the two-point correlation functions in the Gaussian
ensemble are given by the elements of the inverse
harmonic coupling matrix. An important special
property of the Gaussian ensemble is that all n-point
functions with odd n vanish, whereas those with even n
factorize into sums of all possible permutations of prod-
ucts of two-point functions A�1i j that can be constructed
by pairing up the variables Si (Wick’s theorem). For
example, the four-point function reads hSi S j SkSl i0 D
A�1i j A

�1
k l C A�1i k A

�1
j l C A�1i l A

�1
jk .

Let us now consider a general action, isolate the Gaus-
sian contribution, and label the remainder as the nonlin-
ear, anharmonic, or interacting part,A[Si ] D A0[Si ] C
AR [Si ]. We then observe that

Z D Z0

D
exp



�AR [Si ]

�E

0
;

hO[Si ]i D

D
O[Si ] exp



�AR [Si ]

�E

0D
exp



�AR [Si ]

�E

0

;
(8)

where the index 0 indicates that the expectation values are
computed in the Gaussian ensemble. The nonlinear terms
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in Eq. (8) may now be treated perturbatively by expanding
the exponentials in the numerator and denominator with
respect to the interacting partAR [Si ]:

hO[Si ]i D

�
O[Si ]

P1
`D0

1
`!



�AR [Si ]

�`	

0�
P1
`D0

1
`!



�AR [Si]

�`	

0

: (9)

If the interaction terms are polynomial in the variables Si,
Wick’s theorem reduces the calculation of n-point func-
tions to a summation of products of Gaussian two-point
functions. Since the number of contributing terms grows
factorially with the order ` of the perturbation expansion,
graphical representations in terms of Feynman diagrams
become very useful for the classification and evaluation of
the different contributions to the perturbation series. Basi-
cally, they consist of lines representing the Gaussian two-
point functions (‘propagators’) that are connected to ver-
tices that stem from the (polynomial) interaction terms;
for details, see, e. g., [6,7,8,9,10,11,12,13].

Continuum Limit and Functional Integrals

Discrete spatial degrees of freedom are already contained
in the above formal description: for example, on a d-di-
mensional lattice with Nd sites the index i for the fields Si
merely needs to entail the site labels, and the total number
of degrees of freedom is just N D Nd times the number of
independent relevant quantities. Upon discretizing time,
these prescriptions can be extended in effectively an addi-
tional dimension to systems with temporal evolution. We
may at last take the continuum limit by letting N !1,
while the lattice constant and elementary time step tend
to zero in such a manner that macroscopic dynamical fea-
tures are preserved. Formally, this replaces sums over lat-
tice sites and time steps with spatial and temporal integra-
tions; the actionA[Si] becomes a functional of the fields
Si (x; t); partial derivatives turn into functional deriva-
tives; and functional integrations

R QN
iD1 dSi !

R
D[Si]

are to be inserted in the previous expressions. For exam-
ple, Eqs. (3), (4) and (6) become

hO[Si ]i D
1
Z

Z
D[Si]O[Si ] exp (�A[Si]) ; (10)

W [ ji ] D

*

exp
Z

dd x
Z

dt
X

i

ji (x; t)Si (x; t)

+

; (11)

* nY

jD1

Si j (x j; t j)

+

c

D

nY

jD1

ı

ı ji j (x j; t j)
lnW [ ji ]

ˇ
ˇ̌
j iD0

: (12)

Thus we have arrived at a continuum field theory. Nev-
ertheless, we may follow the procedures outlined above;

specifically, the perturbation expansion expressions (8)
and (9) still hold, yet with arguments Si (x; t) that are now
fields depending on continuous space-time parameters.

More than thirty years ago, Janssen and De Dominicis
independently derived amapping of the stochastic kinetics
defined through nonlinear Langevin equations onto a field
theory action ([14,15]; reviewed in [16]). Almost simulta-
neously, Doi constructed a Fock space representation and
therefrom a stochastic field theory for classical interacting
particle systems from the master equation describing the
corresponding stochastic processes [17,18]. His approach
was further developed by several authors into a power-
ful method for the study of internal noise and correla-
tion effects in reaction-diffusion systems ([19,20,21,22,23];
for recent reviews, see [24,25]). We shall see below that
the field-theoretic representations of both classical mas-
ter and Langevin equations require two independent fields
for each stochastic variable. Otherwise, the computation
of correlation functions and the construction of perturba-
tive expansions fundamentally works precisely as sketched
above. But the underlying causal temporal structure in-
duces important specific features such as the absence of
‘vacuum diagrams’ (closed response loops): the denomi-
nator in Eq. (2) is simply Z D 1. (For unified and more
detailed descriptions of both versions of dynamic stochas-
tic field theories, see [26,27].)

Discrete Stochastic Interacting Particle Systems

We first outline the mapping of stochastic interacting par-
ticle dynamics as defined through a master equation onto
a field theory action [17,18,19,20,21,22,23]. Let us denote
the configurational probability for a stochastically evolv-
ing system to be in state ˛ at time t with P(˛; t). Given
the transition rates W˛!ˇ (t) from states ˛ to ˇ, a master
equation essentially balances the transitions into and out
of each state:

@P(˛; t)
@t

D
X

ˇ 6D˛

�
Wˇ!˛(t)P(ˇ; t) �W˛!ˇ (t)P(˛; t)

�
:

(13)

The dynamics of many complex systems can be cast into
the language of ‘chemical’ reactions, wherein certain par-
ticle species (upon encounter, say) transform into different
species with fixed (time-independent) reaction rates. The
‘particles’ considered here could be atoms or molecules
in chemistry, but also individuals in population dynam-
ics (as in our example in Sect. “Example: Lotka–Volterra
Model”), or appropriate effective degrees of freedom gov-
erning the system’s kinetics, such as domain walls in mag-
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nets, etc. To be specific, we envision our particles to prop-
agate via unbiased random walks (diffusion) on a d-di-
mensional hypercubic lattice, with the reactions occuring
according to prescribed rules when particles meet on a lat-
tice site. This stochastic interacting particle system is then
at any time fully characterized by the number of particles
nA; nB ; : : : of each species A; B; : : : located on any lattice
site. The following describes the construction of an associ-
ated field theory action. As important examples, we briefly
discuss annihilation reactions and absorbing state phase
transitions.

Master Equation and Fock Space Representation

The formal procedures are best explained by means of
a simple example; thus consider the irreversible binary an-
nihilation process AC A! A, happening with rate . In
terms of the occupation numbers ni of the lattice sites i, we
can construct the master equation associated with these
on-site reactions as follows. The annihilation process lo-
cally changes the occupation numbers by one; the transi-
tion rate from a state with ni particles at site i to ni � 1
particles isWni!ni�1 D ni (ni � 1), whence

@P(ni ; t)
@t

D (niC1)ni P(niC1; t)�ni (ni�1)P(ni ; t)

(14)

represents the master equation for this reaction at site i. As
an initial condition, we can for example choose a Poisson
distribution P(ni ) D n̄n i

0 e�n̄0 /ni ! with mean initial parti-
cle density n̄0. In order to capture the complete stochastic
dynamics, we just need to add similar contributions de-
scribing other processes, and finally sum over all lattice
sites i.

Since the reactions all change the site occupation num-
bers by integer values, a Fock space representation (bor-
rowed from quantum mechanics) turns out particularly
useful. To this end, we introduce the harmonic oscilla-
tor or bosonic ladder operator algebra [ai ; a j] D 0 D
[a�i ; a

�
j ], [ai ; a

�
j ] D ıi j , from which we construct the par-

ticle number eigenstates jnii, namely ai jni i D ni jni � 1i,
a�i jnii D jni C 1i, a�i ai jnii D ni jnii. (Notice that a dif-
ferent normalization than in ordinary quantum mechan-
ics has been employed here.) A general state with ni par-
ticles on sites i is obtained from the ‘vacuum’ configu-
ration j0i, defined via ai j0i D 0, through the product
jfnigi D

Q
i a
�
i
n i
j0i.

To implement the stochastic kinetics, we introduce
a formal state vector as a linear combination of all possi-
ble states weighted by the time-dependent configurational

probability:

j˚(t)i D
X

fnig

P(fni g; t)jfnigi : (15)

Simple manipulations then transform the linear time evo-
lution according to the master equation into an ‘imagi-
nary-time’ Schrödinger equation

@j˚(t)i
@t

D �Hj˚(t)i ; j˚(t)i D e�Ht j˚(0)i (16)

governed by a stochastic quasi-Hamiltonian (rather, the
Liouville time evolution operator). For on-site reaction
processes, Hreac D

P
i Hi(a

�
i ; ai) is a sum of local con-

tributions; e. g., for the binary annihilation reaction,
Hi (a

�
i ; ai ) D �(1 � a�i )a

�
i a

2
i . It is a straightforward ex-

ercise to construct the corresponding expressions within
this formalism for the generalization kA! `A,

Hi(a
�
i ; ai) D �

�
a�i
`
� a�i

k
�
aki ; (17)

and for nearest-neighbor hopping with rateD between ad-
jacent sites hi ji,

Hdiff D D
X

<i j>



a�i � a�j

� �
ai � a j


: (18)

The two contributions for each process may be inter-
preted as follows: The first term in Eq. (17) corresponds to
the actual process, and describes how many particles are
annihilated and (re-)created in each reaction. The second
term encodes the ‘order’ of each reaction, i. e., the number
operator a�i ai appears to the kth power, but in the normal-

ordered form a�i
k
aki , for a kth-order process. These proce-

dures are readily adjusted for reactions involving multiple
particle species. We merely need to specify the occupation
numbers on each site and correspondingly introduce ad-
ditional ladder operators bi ; ci ; : : : for each new species,
with [ai ; b

�
i ] D 0 D [ai ; c

�
i ] etc. For example, consider the

reversible reaction kAC `B• mC with forward rate 
and backward rate � ; the associated reaction Hamiltonian
reads

Hreac D �
X

i

�
c�i

m
� a�i

k
b�i
`
�

aki b

`
i � � c

m
i

�
: (19)

Similarly, for the Lotka–Volterra model of Sect. “Example:
Lotka–Volterra Model”, one finds

Hreac D �
X

i

h
�


1 � a�i

�
ai C �



b�i � 1

�
b�i bi

C 


a�i � b�i

�
a�i ai bi

i
: (20)
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Note that all the above quasi-Hamiltonians are non-Her-
mitean operators, which naturally reflects the creation and
destruction of particles.

Our goal is to compute averages and correlation
functions with respect to the configurational probabil-
ity P(fnig; t). Returning to a single-species system (again,
the generalization to many particle species is obvious),
this is accomplished with the aid of the projection state
hPj D h0jQi e

ai , for which hPj0i D 1 and hPja�i D hPj,
since [eai ; a�j ] D eai ıi j . For the desired statistical averages
of observables (which must all be expressible as functions
of the occupation numbers fnig), one obtains

hO(t)i D
X

fnig

O(fnig)P(fnig; t) D hPjO(fa�i aig)j˚(t)i :

(21)

For example, as a consequence of probability conser-
vation, 1 D hPj˚(t)i D hPje�Ht j˚(0)i. Thus necessarily
hPjH D 0; upon commuting e

P
i a i with H, the creation

operators are shifted a�i ! 1C a�i , whence this condi-
tion is fulfilled provided Hi(a

�
i ! 1; ai) D 0, which is

indeed satisfied by our above explicit expressions (17)
and (18). Through this prescription, we may replace
a�i ai ! ai in all averages; e. g., the particle density be-
comes a(t) D hai(t)i.

In the bosonic operator representation above, we have
assumed that no restrictions apply to the particle occupa-
tion numbers ni on each site. If ni � 2sC 1, one may in-
stead employ a representation in terms of spin s operators.
For example, particle exclusion systems with ni D 0 or 1
can thus be mapped onto non-Hermitean spin 1/2 ‘quan-
tum’ systems (for recent overviews, see [28,29]). Specifi-
cally in one dimension, such representations in terms of
integrable spin chains have been very fruitful. An alterna-
tive approach uses the bosonic theory, but incorporates the
site occupation restrictions through exponentials in the
number operators e�a

�
i a i [30].

Continuum Limit and Field Theory

As a next step, we follow an established route in quan-
tum many-particle theory [8] and proceed towards a field
theory representation through constructing the path inte-
gral equivalent to the ‘Schrödinger’ dynamics (16) based
on coherent states, which are right eigenstates of the an-
nihilation operator, ai j�ii D �i j�ii, with complex eigen-
values �i . Explicitly, j�ii D exp



� 1

2 j�i j
2 C �i a

�
i

�
j0i,

and these coherent states satisfy the overlap formula
h� jj�ii D exp



� 1

2 j�i j
2 � 1

2 j� jj
2 C ��j �i

�
, and the

(over-)completeness relation
R Q

i d
2�i jf�igihf�igj D � .

Upon splitting the temporal evolution (16) into infinitesi-
mal increments, standard procedures (elaborated in detail
in [25]) eventually yield an expression for the configura-
tional average

hO(t)i /
Z Y

i

d�i d��i O(f�ig)e�A[��i ;�i ;t] ; (22)

which is of the form (3), with the action

A[��i ; �i ; t f ] D
X

i

 

� �i(t f )

C

Z t f

0
dt
�
��i
@�i

@t
C Hi(��i ; �i )

�
� n̄0��i (0)

!

;

(23)

where the first term originates from the projection state,
and the last one stems from the initial Poisson distribu-
tion. Through this procedure, in the original quasi-Hamil-
tonian the creation and annihilation operators a�i and ai
are simply replaced with the complex numbers ��i and �i .

Finally, we proceed to the continuum limit,
�i(t)!  (x; t), ��i (t)!  ̂(x; t). The ‘bulk’ part of the
action then becomes

A[ ̂;  ] D
Z

dd x

�

Z
dt
�
 ̂

�
@

@t
� Dr2

�
 CHreac( ̂;  )

�
; (24)

where the discrete hopping contribution (18) has naturally
turned into a continuum diffusion term. We have thus ar-
rived at a microscopic field theory for stochastic reaction–
diffusion processes, without invoking any assumptions on
the form or correlations of the internal reaction noise.
Note that we require two independent fields  ̂ and  to
capture the stochastic dynamics. Actions of the type (24)
may serve as a basis for further systematic coarse-grain-
ing, constructing a perturbation expansion as outlined
in Sect. “Perturbation Expansion”, and perhaps a subse-
quent renormalization group analysis [25,26,27]. We re-
mark that it is often useful to perform a shift in the field
 ̂ about the mean-field solution,  ̂(x; t) D 1C e (x; t).
For occasionally, the resulting field theory action allows
the derivation of an equivalent Langevin dynamics, see
Sect. “Stochastic Differential Equations” below.

Annihilation Processes

Let us consider our simple single-species example
kA! `A. The reaction part of the corresponding field
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theory action reads

Hreac( ̂;  ) D �


 ̂` �  ̂ k

�
 k ; (25)

see Eq. (17). It is instructive to study the classical
field equations, namely ıA

ı
ı D 0, which is always

solved by  ̂ D 1, reflecting probability conservation, and
ıA

ı
ı ̂ D 0, which, upon inserting  ̂ D 1 yields

@ (x; t)
@t

D Dr2 (x; t)� (k � `) (x; t)k ; (26)

i. e., the mean-field equation for the local particle density
 (x; t), supplemented with a diffusion term. For k D 1,
the particle density grows (k < `) or decays (k > `) ex-
ponentially. The solution of the rate equation for k > 1,
a(t) D h (x; t)i D

�
a(0)1�k C (k � l)(k � 1)t

��1/(k�1)

implies a divergence within a finite time for k < `, and an
algebraic decay� (t)�1/(k�1) for k > `.

The full field theory action, which was derived from
the master equation defining the very stochastic process,
provides a means of systematically including fluctuations
in the mathematical treatment. Through a dimensional
analysis, we can determine the (upper) critical dimen-
sion below which fluctuations become sufficiently strong
to alter these power laws. Introducing an inverse length
scale �, [x] � ��1, and applying diffusive temporal scal-
ing, [Dt] � ��2, and [ ̂(x; t)] � �0, [ (x; t)] � �d in d
spatial dimensions, the reaction rate in terms of the dif-
fusivity scales according to [/D] � �2�(k�1)d . In large
dimensions, the kinetics is reaction-limited, and at least
qualitatively correctly described by the mean-field rate
equation. In low dimensions, the dynamics becomes dif-
fusion-limited, and the annihilation reactions generate de-
pletion zones and spatial particle anti-correlations that
slow down the density decay. The nonlinear coupling /D
becomes dimensionless at the boundary critical dimen-
sion dc(k) D 2/(k � 1) that separates these two distinct
regimes. Thus in physical dimensions, intrinsic stochas-
tic fluctuations are relevant only for pair and triplet anni-
hilation reactions. By means of a renormalization group
analysis (for details, see [25]) one finds for k D 2 and
d < dc(2) D 2: a(t) � (Dt)�d/2 [21,22], as confirmed by
exact solutions in one dimension. Precisely at the criti-
cal dimension, the mean-field decay laws acquire logarith-
mic corrections, namely a(t) � (Dt)�1 ln(Dt) for k D 2
at dc(2) D 2, and a(t) �

�
(Dt)�1 ln(Dt)

�1/2 for k D 3 at
dc(3) D 1. Annihilation reaction between different species
(e. g., AC B! ;) may introduce additional correlation
effects, such as particle segregation and the confinement
of active dynamics to narrow reaction zones [23]; a recent
overview can be found in [25].

Active to Absorbing State Phase Transitions

Competition between particle production and decay pro-
cesses leads to even richer scenarios, and can induce
genuine nonequilibrium transitions that separate ‘active’
phases (wherein the particle densities remain nonzero
in the long-time limit) from ‘inactive’ stationary states
(where the concentrations ultimately vanish). A special
but abundant case are absorbing states, where, owing to
the absence of any agents, stochastic fluctuations cease en-
tirely, and no particles can be regenerated [31,32]. These
occur in a variety of systems in nature ([33,34] contain ex-
tensive discussions of various model systems); examples
are chemical reactions involving an inert state ;, where-
from no reactants A are released anymore, or stochastic
population dynamics models, combining diffusive migra-
tion of a species A with asexual reproduction A! 2A
(with rate �), spontaneous death A! ; (at rate �),
and lethal competition 2A! A (with rate ). In the in-
active state, where no population members A are left,
clearly all processes terminate. Similar effective dynam-
ics may be used to model certain nonequilibrium phys-
ical systems, such as the domain wall kinetics in Ising
chains with competing Glauber and Kawasaki dynamics.
Here, spin flips ""##!"""# and ""#"!"""" may
be viewed as domain wall (A) hopping and pair annihila-
tion 2A! ;, whereas spin exchange ""##!"#"# rep-
resents a branching process A! 3A. Notice that the para-
and ferromagnetic phases respectively map onto the ac-
tive and inactive ‘particle’ states. The ferromagnetic state
becomes absorbing if the spin flip rates are taken at zero
temperature.

The reaction quasi-Hamiltonian corresponding to the
stochastic dynamics of the aforementioned population dy-
namics model reads

Hreac( ̂;  ) D
�
1 �  ̂

 �
� ̂ � � �  ̂ 2 : (27)

The associated rate equation is the Fisher–Kolmogorov
equation (see Murray 2002 [3])

ȧ(t) D (� � �)a(t) � a(t)2 ; (28)

which yields both inactive and active phases: For � < �

we have a(t ! 1) ! 0, whereas for � > � the
density eventually saturates at as D (� � �)/. The ex-
plicit time-dependent solution a(t) D a(0)as

ı
[a(0) C

[as � a(0)]e(��
)t] shows that both stationary states are
approached exponentially in time. They are separated by
a continuous nonequilibrium phase transition at � D
�, where the temporal decay becomes algebraic, a(t) D
a(0)/[1Ca(0)t])! 1/(t) as t !1, independent of the
initial density a(0). As in second-order equilibrium phase
transitions, however, critical fluctuations are expected to
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invalidate the mean-field power laws in low dimensions
d < dc.

If we now shift the field  ̂ about its stationary value 1
and rescale according to  ̂(x; t) D 1C

p
� /eS(x; t) and

 (x; t) D
p
/�S(x; t), the (bulk) action becomes

A
�eS; S

�
D

Z
dd x

Z
dt

"
eS
�
@

@t
C D

�
r � r2

�
S

� u
�eS � S

eSS C eS2S2
#

: (29)

Thus, the three-point vertices have been scaled to iden-
tical coupling strengths u D

p
�, which in fact repre-

sents the effective coupling of the perturbation expan-
sion. Its scaling dimension is [u] D �2�d/2, whence we in-
fer the upper critical dimension dc D 4. The four-point
vertex / , with [] D �2�d , is then found to be irrel-
evant in the renormalization group sense, and can be
dropped for the computation of universal, asymptotic scal-
ing properties. The action (29) with  D 0 is known as
Reggeon field theory [35]; it satisfies a characteristic sym-
metry, namely invariance under so-called rapidity inver-
sion S(x; t)$ �eS(x;�t). Remarkably, it has moreover
been established that the field theory action (29) describes
the scaling properties of critical directed percolation clus-
ters [36,37,38]. The fluctuation-corrected universal power
laws governing the vicinity of the phase transition can be
extracted by renormalization groupmethods (reviewed for
directed percolation in [39]). Table 1 compares the ana-
lytic results obtained in an " expansion about the critical
dimension (� D 4 � d) with the critical exponent values
measured in Monte Carlo computer simulations [33,34].

According to a conjecture originally formulated by
Janssen and Grassberger, any continuous nonequilibrium
phase transition from an active to an absorbing state in
a system governed by Markovian stochastic dynamics that
is decoupled from any other slow variable, and in the ab-
sence of special additional symmetries or quenched ran-
domness, should in fact fall in the directed percolation

Field Theoretic Methods, Table 1
Comparison of the values for the critical exponents of the directed percolation universality class measured in Monte Carlo simu-
lations with the analytic renormalization group results within the � D 4� d expansion: � denotes the correlation length, tc the
characteristic relaxation time, as the saturation density in the active state, and ac(t) the critical density decay law

Scaling exponent d D 1 d D 2 dD 4� �
� � j� j�� � 	 1:100 � 	 0:735 � D 1/2C �/16C O(�2)
tc � �z � j� j�z� z 	 1:576 z 	 1:73 z D 2� �/12C O(�2)
as � j� jˇ ˇ 	 0:2765 ˇ 	 0:584 ˇ D 1� �/6C O(�2)
ac(t) � t�˛ ˛ 	 0:160 ˛ 	 0:46 ˛ D 1� �/4C O(�2)

universality class [38,40]. This statement has indeed been
confirmed in a large variety of model sytems (many exam-
ples are listed in [33,34]). It even pertains to multi-species
generalizations [41], and applies for instance to the preda-
tor extinction threshold in the stochastic Lotka–Volterra
model with restricted site occupation numbers mentioned
in Sect. “Example: Lotka–Volterra Model” [4].

Stochastic Differential Equations

This section explains how dynamics governed by
Langevin-type stochastic differential equations can be rep-
resented through a field-theoretic formalism [14,15,16].
Such a description is especially useful to capture the ef-
fects of external noise on the temporal evolution of the
relevant quantities under consideration, which encom-
passes the case of thermal noise induced by the coupling
to a heat bath in thermal equilibrium at temperature T.
The underlying assumption in this approach is that there
exists a natural separation of time scales between the slow
variables Si, and all other degrees of freedom �i which
in comparison fluctuate rapidly, and are therefore sum-
marily gathered in zero-mean noise terms, assumed to be
uncorrelated in space and time,

h�i(x; t)i D 0 ;
˝
�i (x; t)� j(x0; t0)

˛
D 2Li j[Si ]ı(x � x0)ı(t � t0) :

(30)

Here, the noise correlator 2Li j[Si] may be a function of the
slow system variables Si, and also contain operators such as
spatial derivatives. A general set of coupled Langevin-type
stochastic differential equations then takes the form

@Si (t)
@t
D Fi[Si ]C �i ; (31)

where we may decompose the ‘systematic forces’ into
reversible terms of microscopic origin and relaxational
contributions that are induced by the noise and drive
the system towards its stationary state (see below), i. e.:
Fi[Si ] D Frev

i [Si]C Frel
i [Si ]. Both ingredients may con-

tain nonlinear terms as well as mode couplings between
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different variables. Again, we first introduce the abstract
formalism, and then proceed to discuss relaxation to ther-
mal equilibrium as well as some examples for nonequilib-
rium Langevin dynamics.

Field Theory Representation of Langevin Equations

The shortest andmost general route towards a field theory
representation of the Langevin dynamics (31) with noise
correlations (30) starts with one of the most elaborate ways
to expand unity, namely through a product of functional
delta functions (for the sake of compact notations, we im-
mediately employ a functional integration language, but in
the end all the path integrals are defined through appropri-
ate discretizations in space and time):

1 D
Z Y

i

D[Si]

�
Y

(x;t)

ı

�
@Si (x; t)
@t

� Fi[Si ](x; t) � �i(x; t)
�

D

Z Y

i

D[ieSi]D[Si ] exp
�
�

Z
dd x

�

Z
dt
X

i

eSi
�
@Si
@t
� Fi[Si ]� �i

��
: (32)

In the second line we have used the Fourier representa-
tion of the (functional) delta distribution by means of the
purely imaginary auxiliary variableseSi (also called Mar-
tin–Siggia–Rose response fields [42]). Next we require the
explicit form of the noise probability distribution that gen-
erates the correlations (30); for simplicity, we may employ
the Gaussian

W [�i] / exp
h
�

1
4

Z
dd x

�

Z t f

0
dt
X

i j

�i(x; t)
h
L�1i j � j(x; t)

i
#

: (33)

Inserting the identity (32) and the probability distribu-
tion (33) into the desired stochastic noise average of any
observableO[Si ], we arrive at

hO[Si ]i� /
Z Y

i

D[ieSi ]D[Si ]

exp

"

�

Z
dd x

Z
dt
X

i

eSi
�
@Si
@t
� Fi[Si ]

�#

O[Si ]

�

Z Y

i

D[�i] exp
�
�

Z
dd x

Z
dt

�
X

i

�
1
4
�i
X

j

L�1i j � j �eSi�i
��

: (34)

Subsequently evaluating the Gaussian integrals over the
noise �i yields at last

hO[Si ]i� D
Z Y

i

D[Si]O[Si ]P[Si] ;

P[Si ] /
Z Y

i

D[ieSi]e�A[eS i ;Si ] ;
(35)

with the statistical weight governed by the Janssen–DeDo-
minicis ‘response’ functional [14,15]

A[eSi ; Si ] D
Z

dd x
Z t f

0
dt

�
X

i

2

4eSi
�
@Si
@t
� Fi[S]

�
�eSi

X

j

Li jeS j

3

5 : (36)

It should be noted that in the above manipulations,
we have omitted the functional determinant from the
variable change f�ig ! fSig. This step can be justi-
fied through applying a forward (Itô) discretization (for
technical details, see [16,27,43]). Normalization implies
R Q

i D[ieSi]D[Si ]e�A[eS i ;S]i D 1. The first term in the ac-
tion (36) encodes the temporal evolution according to the
systematic terms in the Langevin Equations (31), whereas
the second term specifies the noise correlations (30). Since
the auxiliary fields appear only quadratically, they could be
eliminated via completing the squares and Gaussian inte-
grations. This results in the equivalent Onsager–Machlup
functional which however contains squares of the nonlin-
ear terms and the inverse of the noise correlator opera-
tors; the form (36) is therefore usuallymore convenient for
practical purposes. The Janssen–De Dominicis functional
(36) takes the form of a (d C 1)-dimensional statistical
field theory with again two independent sets of fields Si and
eSi . It may serve as a starting point for systematic approx-
imation schemes including perturbative expansions, and
subsequent renormalization group treatments. Causality is
properly incorporated in this formalism which has impor-
tant technical implications [16,27,43].

Thermal Equilibrium
and Relaxational Critical Dynamics

Consider the dynamics of a system that following some
external perturbation relaxes towards thermal equilibrium
governed by the canonical Boltzmann distribution at fixed
temperature T,

Peq[Si] D
1

Z(T) exp (�H [Si]/kBT) : (37)
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The relaxational term in the Langevin Equation (31) can
then be specified as

Frel
i [Si ] D �i

ıH [Si ]
ıSi

; (38)

with Onsager coefficients i ; for nonconserved fields,
i is a positive relaxation rate. On the other hand, if
the variable Si is a conserved quantity (such as the en-
ergy density), there is an associated continuity equation
@Si /@t Cr � Ji D 0, with a conserved current that is typi-
cally given by a gradient of the field Si: Ji D �DirSiC: : :;
as a consequence, the fluctuations of the fields Si will relax
diffusively with diffusivity Di, and i D �Dir

2 becomes
a spatial Laplacian.

In order for P(t)! Peq as t!1, the stochastic
Langevin dynamics needs to satisfy two conditions, which
can be inferred from the associated Fokker–Planck equa-
tion [27,44]. First, the reversible probability current is re-
quired to be divergence-free in the space spanned by the
fields Si:

Z
dd x

X

i

ı

ıSi (x)



Frev
i [Si]e�H [Si ]/kBT

�
D 0 : (39)

This condition severely constrains the reversible force
terms. For example, for a system whose microscopic
time evolution is determined through the Poisson brack-
ets Qi j(x; x0) D

˚
Si(x); S j(x0)

�
D �Qji(x0; x) (to be re-

placed by commutators in quantummechanics), one finds
for the reversible mode-coupling terms [44]

Frev
i [Si ](x) D �

Z
dd x0

�
X

j

�
Qi j(x; x0)

ıH [Si ]
ıS j(x0)

� kBT
ıQi j(x; x0)
ıS j(x0)

�
: (40)

Second, the noise correlator in Eq. (30) must be related
to the Onsager relaxation coefficients through the Einstein
relation

Li j D kBTiıi j : (41)

To provide a specific example, we focus on the case
of purely relaxational dynamics (i. e., reversible force
terms are absent entirely), with the (mesoscopic) Hamil-
tonian given by the Ginzburg–Landau–Wilson free en-
ergy that describes second-order phase transitions in ther-
mal equilibrium for an n-component order parameter Si,

i D 1; : : : ;N [6,7,8,9,10,11,12,13]:

H [Si] D
Z

dd x
NX

iD1

"
r
2
[Si (x)]2 C

1
2
[rSi(x)]2

C
u
4!
[Si (x)]2

NX

jD1

[S j(x)]2
#

; (42)

where the control parameter r / T � Tc changes sign at
the critical temperature Tc, and the positive constant u
governs the strength of the nonlinearity. If we assume that
the order parameter itself is not conserved under the dy-
namics, the associated response functional reads

A
�eSi ; Si

�
D

Z
dd x

Z
dt

�
X

i

eSi
�
@

@t
C i

ıH [Si]
ıSi

� kBTieSi
�
: (43)

This case is frequently referred to as model A critical dy-
namics [45]. For a diffusively relaxing conserved field,
termed model B in the classification of [45], one has in-
stead

A
�eSi ; Si

�
D

Z
dd x

Z
dt

�
X

i

eSi
�
@

@t
� Dir

2 ıH [Si ]
ıSi

C kBTDir
2eSi
�
:

(44)

Consider now the external fields hi that are ther-
modynamically conjugate to the mesoscopic variables
Si, i. e.,H (hi ) DH (hi D 0)�

R
dd x

P
i hi (x)Si (x). For

the simple relaxational models (43) and (44), we may
thus immediately relate the dynamic susceptibility to two-
point correlation functions that involve the auxiliary fields
eSi [43], namely

�i j(x � x0; t � t0) D
ıhSi (x; t)i
ıhj(x0; t0)

ˇ̌
ˇ̌
hiD0

D kBTi
˝
Si (x; t)eS j(x0; t0)

˛
(45)

for nonconserved fields, while for model B dynamics

�i j(x�x0; t� t0) D �kBTDi
˝
Si(x; t)r2eS j(x0; t0)

˛
: (46)

Finally, in thermal equilibrium the dynamic response and
correlation functions are related through the fluctuation-
dissipation theorem [43]

�i j(x�x0; t� t0) D 	(t� t0)
@

@t0
˝
Si(x; t)S j(x0; t0)

˛
: (47)
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Driven Diffusive Systems and Interface Growth

We close this section by listing a few intriguing examples
for Langevin sytems that describe genuine out-of-equilib-
rium dynamics. First, consider a driven diffusive lattice
gas (an overview is provided in [46]), namely a particle
system with conserved total density with biased diffusion
in a specified (‘k’) direction. The coarse-grained Langevin
equation for the scalar density fluctuations thus becomes
spatially anisotropic [47,48],

@S(x; t)
@t

D D


r2
? C cr2

k

�
S(x; t)C

Dg
2
rkS(x; t)2C�(x; t);

(48)

and similarly for the conserved noise with h�i D 0,

˝
�(x; t)�(x0; t0)

˛
D �2D



r2
? C c̃r2

k

�
ı(x� x0)ı(t� t0) :

(49)

Notice that the drive term / g breaks both the system’s
spatial reflection symmetry as well as the Ising symme-
try S ! �S. In one dimension, Eq. (48) coincides with
the noisy Burgers equation [49], and since in this case
(only) the condition (39) is satisfied, effectively represents
a system with equilibrium dynamics. The corresponding
Janssen–De Dominicis response functional reads

A
�eS; S

�
D

Z
dd x

Z
dteS

"
@S
@t
� D



r2
? C cr2

k

�
S

C D


r2
? C c̃r2

k

�
eS �

Dg
2
rkS2

#

: (50)

It describes a ‘massless’ theory, hence we expect the sys-
tem to generically display scale-invariant features, without
the need to tune to a special point in parameter space. The
large-scale scaling properties can be analyzed by means of
the dynamic renormalization group [47,48].

Another famous example for generic scale invariance
emerging in a nonequilibrium system is curvature-driven
interface growth, as captured by the Kardar–Parisi–Zhang
equation [50]

@S(x; t)
@t

D Dr2S(x; t)C
Dg
2

[rS(x; t)]2C�(x; t) ; (51)

with again h�i D 0 and the noise correlations
˝
�(x; t)�(x0; t0)

˛
D 2Dı(x � x0)ı(t � t0) : (52)

(For more details and intriguing variants, see e. g. [51,
52,53].) The associated field theory action

A
�eS; S

�
D

Z
dd x

�

Z
dt

"
eS
�
@S
@t
� Dr2S �

Dg
2

[rS]2
�
� DeS 2

#

(53)

encodes surprisingly rich behavior including a kinetic
roughening transition separating two distinct scaling
regimes in dimensions d > 2 [51,52,53].

Future Directions

The rich phenomenology in many complex systems is
only inadequately captured within widely used mean-field
approximations, wherein both statistical fluctuations and
correlations induced by the subunits’ interactions or the
system’s kinetics are neglected. Modern computational
techniques, empowered by recent vast improvements in
data storage and tact frequencies, as well as the develop-
ment of clever algorithms, are clearly invaluable in the the-
oretical study of model systems displaying the hallmark
features of complexity. Yet in order to gain a deeper under-
standing and to maintain control over the typically rather
large parameter space, numerical investigations need to
be supplemented by analytical approaches. The field-the-
oretic methods described in this article represent a pow-
erful set of tools to systematically include fluctuations and
correlations in the mathematical description of complex
stochastic dynamical systems composed of many inter-
acting degrees of freedom. They have already been very
fruitful in studying the intriguing physics of highly cor-
related and strongly fluctuating many-particle systems.
Aside frommany important quantitative results, they have
provided the basis for our fundamental understanding of
the emergence of universal macroscopic features.

At the time of writing, the transfer of field-theoretic
methods to problems in chemistry, biology, and other
fields such as sociology has certainly been initiated, but is
still limited to rather few and isolated case studies. This
is understandable, since becoming acquainted with the in-
tricate technicalities of the field theory formalism requires
considerable effort. Also, whereas it is straightforward to
write down the actions corresponding the stochastic pro-
cesses defined via microscopic classical discrete master or
mesoscopic Langevin equations, it is usually not that easy
to properly extract the desired information about large-
scale structures and long-time asymptotics. Yet if success-
ful, one tends to gain insights that are not accessible by
any other means. I therefore anticipate that the now well-
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developedmethods of quantum and statistical field theory,
with their extensions to stochastic dynamics, will find am-
ple successful applications in many different areas of com-
plexity science. Naturally, further approximation schemes
and other methods tailored to the questions at hand will
have to be developed, and novel concepts be devised. I look
forward to learning about and hopefully also participating
in these exciting future developments.
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Glossary

Rational expectations (RE) An assumption often intro-
duced in economic models. It assumes that agents sub-
jective distribution is equal to the true probability dis-
tribution of a random variable. The implication is that
expectation errors are purely random.

Bounded rationality The assumption that agents have
limited ability to acquire and process information and
to solve complex economic problems. These limita-
tions imply that expectations can diverge from RE.

Efficient markets hypothesis (EMH) An application of
rational expectations to asset prices. The EMH as-
sumes that asset prices reflect all available information.
It implies that asset prices behave like a random walk
process and their changes are purely random.

Artificial financial markets A market populated by
agents that have bounded rational expectations and
learning from available information. Trading in these
markets occurs based on traditional price setting
mechanisms or more realistic mechanisms inspired
by electronic markets.

Definition of the Subject

Finance can be broadly defined as studying the allocation
of resources over time in an uncertain environment. Con-
sumers are interested in saving part of their current in-
come and transfer it for consumption in the future (e. g.,
saving for retirement). On the other hand, firms are look-
ing to raise capital to finance productive investments that
will payoff in the future. In both decisions, the future is
uncertain and individuals and firms are required to evalu-
ate the risks involved in buying an asset (e. g., stocks and
bonds) or investing in a project.

The traditional modeling approach in finance is to in-
troduce strong assumptions on the behavior of agents.
They are assumed to have perfect knowledge of the struc-
ture of the economy and to correctly process the available
information. Based on these two assumptions, agents are
able to form Rational Expectations (RE) such that their
beliefs are not systematically wrong (in other words, the
forecasting errors are random). Common sense suggests
that these assumptions impose unreasonable requirements
on the cognitive and computational abilities of agents. In
practice, investors and firms are trying to learn to behave
“rationally” in an economic system that is continuously
evolving and where information is imperfect. In addition,
there is an increasing amount of empirical evidence that is
not consistent with RE theories.

These limitations have motivated an interest in fi-
nance to relax the strong assumptions on agents’ behav-
ior. Agent-based modeling contributes to this literature by
assuming that consumers and firms have limited compu-
tational abilities (also known as bounded rationality) and
learning (rather than knowing) the mechanisms govern-
ing the economy. These models have two main targets.
First, to determine the conditions that lead a population of
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bounded-rational interacting agents to produce an aggre-
gate behavior that resembles the one of a RE representative
agent model. Second, they aim at explaining the empiri-
cal facts and anomalies that the standard approach fails to
explain.

This entry is structured as follows. In Sect. “Introduc-
tion” we discuss in more detail the application of agent-
based modeling in finance. In particular, most of the
early literature has focused on one specific aspect of fi-
nancial economics, asset pricing. Sects. “The Standard RE
Model” to “Computational Agent-Based Models” intro-
duce the standard asset pricing model and describe the
agent-based approaches that have been proposed in the
literature. Sect. “Other Applications in Finance” presents
some (more recent) applications of agent-based models
to corporate finance and market microstructure and, fi-
nally, Sect. “Future Directions” discusses some possible fu-
ture directions on the application of agent-basedmodels in
finance.

Introduction

The goal of asset pricing models is to provide an expla-
nation for the “fair” valuation of a financial asset paying
an uncertain cash flow. A key role in asset pricing mod-
els is played by agents expectations regarding the future
cash flow of the asset. Standard economic models assume
that agents have Rational Expectations (RE). The RE hy-
pothesis is the outcome of some more basic assumptions
on agents behavior: they know and use all the informa-
tion available, they have unlimited computational ability,
and rationality is common knowledge in the population.
Common sense and introspection suggest that these are
quite strong assumptions if the target is to build a realistic
model of agents behavior. A justification for assuming RE
in asset pricing models is provided by [37]:

. . . this hypothesis (like utility maximization) is not
“behavioral”: it does not describe the way agents
think about their environment, how they learn, pro-
cess information, and so forth. It is rather a prop-
erty likely to be (approximately) possessed by the
outcome of this unspecified process of learning and
adapting.

Agent-based models try to address the issues left unspeci-
fied by the RE proponents: how do agents learn and pro-
cess the information available? In other words, how do
they form expectations? In fact, in the intent of the RE pro-
ponents, rationality is simply a property of the outcome
(e. g., asset price) rather than an assumption about the sub-
jective expectation formation process.

The innovative aspect of the agent-based approach is
that it explicitly models “this unspecified process of learn-
ing and adaptation” (in Lucas’s words). The common ele-
ments of the wide range of agent-based asset pricing mod-
els are:

Expectations agents hold subjective expectations that are
bounded rational, that is, they are based on processing
the available (and possibly imperfect and costly) infor-
mation and that evolve over time. Agent-based models
explicitly specify the way individuals form their expec-
tation, instead of leaving it totally unspecified as in the
RE approach.

Heterogeneity agents have different subjective expecta-
tions about the future due to heterogeneity in the way
they process or interpret information. The RE setup
suppresses agents heterogeneity: given the same infor-
mation set, there is only one way to be rational and
agents are thus homogeneous.

Evolution agents evolve in the sense that they abandon
a belief if it performs poorly. Instead, rational models
typically rely on the latent assumption that non-ratio-
nal agents will not survive a (unspecified) process of
evolutionary market competition.

Based on these basic ingredients, the agent based literature
has now grown in different directions and we can distin-
guish two clearly defined approaches to agent-based mod-
eling. The main difference between them is how they com-
bine the different characteristics discussed above:

Analytical models these models assume that there are
many expectation types and agents switch between
them according to a deterministic or stochastic pro-
cess. In the deterministic case, evolution is based on
the past performance of the beliefs: agents discard be-
lief types that perform badly compared to the other
available. Instead, models with stochastic switching as-
sume that a process governs the imitation and muta-
tion of types, with possible additional features of herd-
ing. Thesemodels are simple and analytically tractable.

Computational models agents beliefs can change (or
mutate) over time, due to the evolutionary selection of
the best performing beliefs. Contrary to the analytical
approach, the computational models renounce to ana-
lytical tractability in order to investigate more realistic
expectation formation processes. Most of these mod-
els adopt fitness criteria (e. g., a Genetic Algorithm) to
model the evolution of expectations.

The first aim of the agent-based literature is to under-
stand whether introducing less restrictive assumptions on
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Finance, Agent BasedModeling in, Figure 1
Monthly Price-to-Dividend Ratio for the S&P500 Index from1871
to 2006

agents behavior (bounded rationality, heterogeneity, and
evolutionary selection of expectations) is consistent with
the economy converging to the RE equilibrium. If this is
the case, it can be argued that relaxing the homogeneity
and rationality of agents represents a feasible way to de-
scribe the way individuals learn and adapt to achieve an
outcome consistent with RE. The second aim of this lit-
erature is to provide an explanation for the empirical be-
havior of asset prices. To illustrate the main stylized facts
of financial returns, we consider the Standard & Poors 500
(S&P500) Composite Index (a U.S. equity index). Figure 1
shows the Price-to-Dividend (PD) ratio from 1871 until
2006 at the monthly frequency. It is clear that the PD ra-
tio fluctuates significantly with some periods of extreme
valuations, as in the late 1990s. The debate on the reasons
for these fluctuations has not reached (yet) a widely ac-
cepted conclusion. On the one hand, there are RE models
that explain the variation in the PD ratio by changes in the
risk premium, i. e., the ex-ante rate of return required by
agents to invest in the risky asset. Instead, other models at-
tribute these swings to irrational expectations of investors,
that are prone to optimism (and overvaluation)when asset
prices are increasing. The two explanations are not mutu-
ally excluding since both factors might contribute to ex-
plain the observed fluctuations of the PD ratio.

Figure 2 considers the S&P500 Index from 1977 until
2007 at the daily frequency. The figure shows the returns
(defined as the percentage change of the price of a finan-
cial asset) and the absolute value of the returns. Figure 3
describes the statistical properties of returns, such as the
histogram and the autocorrelation function of the returns
and absolute returns. The main stylized facts of daily re-
turns are:

Volatility clustering returns alternate periods of high
and low volatility (or variability). In calm periods, re-
turns oscillate within a small range, while in turbulent
periods they display a much wider range of variation.
This is a feature common to different asset classes (e. g.,
equities, exchange rates, and bonds). The time series of
returns and absolute returns on the S&P500 in Fig. 2
clearly show this pattern. In certain periods returns
vary in a narrow interval between˙1%, while in other
periods their variability is higher (e. g., between ˙3
and 5%).

Leptokurtic distribution the distribution of asset returns
has a sharp peak around the mean and fat tails (com-
pared to the normal distribution). Large events (posi-
tive and negative) are more likely to occur compared
to what is expected under the assumption of normal-
ity. This property emerges clearly from the top plot of
Fig. 3 that shows the histogram of the S&P500 returns
and the normal distribution (based on the estimated
mean and variance).

No serial correlation returns do not display significant
linear serial correlation. The autocorrelation function
of the returns (mid-plot of Fig. 3) is close to 0 at all lags
considered.

Persistence in volatility on the other hand, volatility
(measured by absolute or square returns) has signifi-
cant linear dependence. The autocorrelation of the ab-
solute returns in Fig. 3 is about 0.1 (and still signifi-
cant) at lag 100.

Another relevant fact that is short of explanations is the
large trading volume that occurs in financial markets.
A model in which everybody is rational and knows that
everybody else is rational cannot account for the existence
of such relevant volume of trade. Agent-based models aim
at explaining this phenomenon based on the assumption
that agents hold heterogeneous expectations. Volume can
arise, for example, if an optimistic agent is willing to buy
an asset from a pessimistic agent (that is willing to sell).
An interesting feature of trading volume is its asymme-
try during markets cycles: it is typically high when finan-
cial markets are booming, and low when the prices are
decreasing. There is also empirical evidence that trading
volume and volatility are correlated, suggesting that the
same economic mechanism might be able to explain both
phenomena.

Summarizing, the aim of the agent-based approach to
asset pricing is to introduce more realistic assumptions
on the way agents form expectations, learn from new in-
formation, and adapt to a changing environment. The re-
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Finance, Agent BasedModeling in, Figure 2
Daily observations of the S&P500 Index from 1977 to 2007. (top) Time series of the Index, (middle) the returns, (bottom) the absolute
value of returns

Finance, Agent BasedModeling in, Figure 3
Statistical properties of the S&P500 returns: (top) histogram and normal distribution, (middle) autocorrelation function (max lag 20)
for the returns, (bottom) autocorrelation function (max lag 100) for the absolute returns

search questions the agent-based approach is trying to an-
swer are:

1. Under what conditions are these models able to re-
produce the RE equilibrium (although starting from
a more general setup where agents are not – a priori –
assumed to have RE)?

2. Another issue is the empirical validity of these models:
are they able to explain the empirical features of finan-
cial returns that standard REmodels fail to account for?

In the following Sections, we describe some of the most
well-known examples of agent-based models in finance,
both in the analytical and computational group. However,
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we first introduce a basic RE model that is the starting
point for most of the literature. In Sect. “Other Applica-
tions in Finance” we discuss other interesting applications
of agent-based models in finance.

The Standard REModel

We briefly consider the standard asset pricing model that
is used as a benchmark in the agent-based literature.
A more detailed discussion can be found in [25]. The
model assumes that agent i faces the choice of investing
her wealth among two assets: a riskless asset that pays
a constant return r, and a risky asset that pays a stochas-
tic dividend in period t denoted by Dt . A typical assump-
tion is that agents have Constant Absolute Risk Aversion
(CARA) preferences defined as U(Wi ) D �e��Wi , where
U(�) indicates the utility function, Wi denotes the wealth
of agent i and  is the coefficient of absolute risk aversion.
These preferences imply the following demand of shares
of the risky asset, Xi;t:

Xi;t D
Ei;t(PtC1 C DtC1)� (1C r)Pt

�2i;t(PtC1 C DtC1)
; (1)

where Pt is the price of the risky asset in period t, Ei;t(�)
is the conditional expectation of agent i about next-period
payoff of the risky investment, and �2i;t(�) is the conditional
variance of the payoff for agent i. Agents buy shares of the
risky asset (Xi;t > 0) if they expect the return of a share to
be higher compared to investing the same amount (Pt) in
the riskless asset.

The equilibrium price of the risky asset is such that the
aggregate demand and supply are equal. Assuming that
there are S number of shares of the risky asset available,
the equilibrium condition is

S D
X

i

Xi;t : (2)

The aggregation across different individuals is simpli-
fied by assuming a representative agent with expectation
Et(PtC1 C DtC1) (and similarly for the conditional vari-
ance) for all i’s in the economy. This is equivalent to as-
sume that agents are homogeneous in their expectation
about the future payoff of the risky asset. In addition, as-
suming that the representative agent holds RE, it can be
shown that the equilibrium price of the risky asset is a lin-
ear function of Dt given by

Pt D aC bDt ;

where a and b are constant (and related to the structural
parameters of the model).

There is an extensive literature that aims at relaxing the
strong restrictions imposed by the RE hypothesis. Models
of rational learning assume that agents (typically in a rep-
resentative agent setup) have to learn (rather than know)
the structure of the economy, e. g., the parameters govern-
ing the cash flow process. In this case, agents are rational
in the sense that they process optimally the information
available. However, they do not hold rational expectations
since they have imperfect knowledge of the structure of the
economy. An alternative route followed in the literature
is to consider the effect of behavioral biases in the expec-
tation formation process. A comparison of the vast liter-
ature on rational learning and behavioral models is pro-
vided by [6].

Agent-based models build on these extensions of the
basic asset pricing model by considering both rational
learning and irrational expectations in a richer economic
structure where agents hold heterogeneous expectations.
We will now discuss some of the most well-known models
in the analytical and computational agent-based literature
and deal with their main differences.

Analytical Agent-BasedModels

The analytical models assume that the population of
agents can choose among a small number of beliefs (or
predictors) about next period payoff of the risky asset. Het-
erogeneity is introduced by allowing agents with different
predictors to co-exist, and learning might occur if they are
allowed to switch between different beliefs in an evolution-
ary way.

These models can be described as follows. Assume
there are a set ofH belief types publicly available to agents.
Denote the belief of type h (for h D 1; : : : ;H) about next
period payoff by Eh;t(PtC1 C DtC1) and the conditional
variance by �2h;t(PtC1 C DtC1). Since these models depart
from the assumption of RE, they typically introduce a be-
havioral assumption that the beliefs are either of the fun-
damentalist or the trend-following type. [20] and [21] con-
ducted survey studies of exchange rate traders and found
that their expectations could be represented as trend-fol-
lowing in the short-run, but fundamentalist in the long
run. Fundamentalist expectations are characterized by the
belief that the market price is anchored to the asset funda-
mental valuation and deviations (of the price from the fun-
damental) are expected to disappear over time. In this case,
the belief uses both information about the asset price and
the dividend process (that drives the fundamental value)
to form an expectation about the future. On the other
hand, trend-following expectations exploit only informa-
tion contained in the price series to extrapolate the future



Finance, Agent Based Modeling in F 3379

dynamics. These types of beliefs are obviously not consis-
tent with the RE equilibrium although they are supported
by empirical evidence of their widespread use in financial
markets.

Another key assumption of agent-based models con-
cerns the evolution of beliefs: agents switch between ex-
pectations based on their past performance or because of
interaction with other agents in the population. It is pos-
sible to distinguish two families of models with different
evolutionary dynamics:

Deterministic evolution agents switch between the dif-
ferent beliefs based on a deterministic function. Typ-
ically, the switching is determined by past forecast ac-
curacy of the predictors or their realized profits.

Stochastic evolution a stochastic process governs the
switching of agents between beliefs.

Deterministic Evolution

An example of an agent-based model with deterministic
evolution is proposed by [7]. A simple version of their
model assumes that there are only two types of beliefs:
fundamentalists and trend-followers. Some simplifying as-
sumptions are used in deriving the equilibrium price: the
dividend process Dt is assumed to be i:i:d (with mean
D̄) and agents have homogeneous expectations about
the dividend process. In this case, the expectation about
next period payoff Eh;t(PtC1 C DtC1) in Eq. (1) becomes
Eh;t(PtC1)C D̄.

Lets denote by P�(D D̄/r) the constant RE fundamen-
tal price. The fundamentalist type has the following belief:

EF;t(PtC1) D P� C gF(Pt�1 � P�) : (3)

When 0 < gF < 1, fundamentalists believe the asset price
will revert toward its fundamental value, and gF can be in-
terpreted as the speed at which this adjustment is expected
to occur. This model assumes that when agents form their
belief at time t they actually do not observe the realized
asset price for period t. This explains the fact that the ex-
pectation is a function of the last observed price, Pt�1.

Brock and Hommes assume that agents pay a cost C
to acquire the fundamentalist predictor. The underlying
idea is to let them choose whether to buy a “sophisticated”
predictor (that requires calculating the fundamental value)
or, alternatively, to extrapolate from past realized prices.
The belief of the trend-followers is given by:

ETF;t(PtC1) D gTFPt�1 : (4)

The value of the parameter gTF determines the strength
of extrapolation of the trend-followers. If gTF > 1, they

expect an upward trend in prices and, vice versa, for
0 < gTF < 1.

Assuming the supply of the risky asset, S, in Eq. (2) is
equal to 0, the equilibrium asset price, Pt , is given by:

Pt D
�
nF;t(1 � gF)� r

1C r

�
P�

C

�
nF;t(gF � gTF)C gTF

1C r

�
Pt�1 ; (5)

where nF;t indicates the fraction of agents in the popu-
lation using the fundamentalist belief and the remaining
nTF;t(D 1 � nF;t) using the trend-following one. [7] as-
sumes the evolution of the fractions nF;t is governed by
a discrete choice probability model:

nF;t D
1

1 � exp
�
ˇ(UTF;t�1 � UF;t�1)

� ; (6)

whereUh;t�1(h D F; TF) is a measure of the fitness of be-
lief h defined as:

UF;t�1 D�F;t�1 C �UF;t�2 � C; and
UTF;t�1 D�TF;t�1 C �UTF;t�2 ;

where �h;t�1 measures the fitness performance (measured
by realized profits or forecast accuracy) of the belief h
at time t � 1 and � is a parameter that determines the
memory in the performance measure. C in UF;t�1 rep-
resents the cost that agents face if they adopt the funda-
mentalist belief (while the trend-following is available at
no cost). The fraction in Eq. (6) depends on the parame-
ter ˇ(> 0) that determines the speed at which agents re-
spond to differentials of performance among beliefs. If ˇ
is small, agents are very reluctant to switch and require
a significantly large difference in fitness to adopt another
predictor. On the other hand, when ˇ is large, even small
differences of performance cause dramatic changes in the
fractions. For a given value of ˇ, if the fundamentalist be-
lief significantly outperforms the trend-following (that is,
UF;t�1 	 UTF;t�1), then the fraction nF;t�1 tends to 1,
meaning that most agents in the economy switch to the
fundamentalist expectation.

The interesting feature of this model is that it can con-
verge to the RE equilibrium or generate complicated dy-
namics depending on the value of the parameters. For
some combinations of the gF and gTF parameters, the sys-
tem converges to the RE equilibrium (i. e., the deviation
is equal to 0). However, trend-followers can destabilize
the economy when their extrapolation rate, gTF is high
enough. For small values of ˇ the dynamical system con-
verges to the RE equilibrium. However, for increasing val-
ues of ˇ the system experiences a transition toward a non-
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fundamental steady state and complicated dynamics (limit
cycles and strange attractors) emerge.

In the presence of information cost (to buy the funda-
mentalist predictor) and evolutionary switching between
strategies, the economy might still converge to the RE
equilibrium for a large set of parameter values. However, it
is also able to generate large fluctuations of the asset price
around the fundamental value. Figure 4 shows a time se-
ries of the asset price Pt and the fraction of fundamen-
talists described in Eqs. (5) and (6). The constant funda-
mental value in this Figure is equal to 25. As it is clear
from the picture, the asset price experiences large swings
away from the fundamentals that are explained by the in-
creased importance of agents using the trend-following
belief. When the mispricing becomes too large, the econ-
omy experiences a sudden change of sentiment with most
agents switching to the fundamentalist belief. In this sense,
the model is more appropriate to explain the boom-bust
dynamics of financial markets.

Although the purely deterministic model captures the
relevant features of the dynamics of financial markets,
adding a stochastic component provides simulated series
that better resemble the observed ones (such as Fig. 1). The
model can be extended by considering an approximation
error term in Eq. (5) that interacts with the dynamics of
the model. Figure 5 shows the asset price and the frac-
tion of fundamentalists for a normally distributed error
term with standard deviation equal to 2. The asset price

Finance, Agent BasedModeling in, Figure 4
Brock and Hommesmodel with 2 belief types, fundamentalists and trend-followers. The top plot represents a time series of the asset
price and the bottom plot depicts the fraction of fundamentalists,nF;t . The parameters of themodel: intensity of choiceˇ D 0:5, the
interest rate r D 0:0083, the parameter of the fundamentalists gF D 0:8, the parameter of the trend-followers belief g D 1:014, the
cost of the fundamentalist predictor C D 0:5, memory parameter � D 0:99

shows large and persistent deviations from the fundamen-
tal value (P� D 25), in some periods as extreme as reach-
ing 100 while, in other periods, more moderate. Since the
dividend process is assumed to be i:i:d:, the price can also
be interpreted as a valuation (PD) ratio. Comparing the
properties of this time series with the one for the S&P500
in Fig. 1, it seems that it is able to capture its main quali-
tative features. [5] provide empirical evidence of the abil-
ity of a similar model to explain the long-run behavior of
stock prices.

The model proposed by Brock and Hommes is an ex-
ample of a literature interested in the (possible) emergence
of complicated dynamics in asset pricing models. An early
contribution to the deterministic literature is [15]. They
assume that there are two types of investors: some ex-
trapolating from past deviations while the other group is
more sophisticated and able to evaluate whether the as-
set is over- or under-valued (and sells or buys more ag-
gressively if the mispricing is large). A third actor in the
model is the market maker. The role of the market maker
is to aggregate demand and supply and to fix the price of
the asset. This mechanism is different from the assump-
tion in Eq. (2). In that case, agents submit their demand
function (quantity as a function of price) and the price is
set at the value that clears the market. Instead, the market
maker receives orders from the agents andmoves the price
to offset excess demand or supply. This represents a dise-
quilibrium mechanism since market makers use their in-
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Samemodel and parameter values used in Fig. 4 with an error term added to Eq. (5) that is normally distributed with mean zero and
standard deviation equal to 2

ventory of stocks to provide liquidity in case of excess de-
mand and accumulate stocks in case of excess supply. The
results for this model are similar to what was discussed
above. The RE equilibrium is obtained when the sophis-
ticated agents dominate the market. However, limit cycles
and chaos arise when the trend-following agents are rela-
tively important and the economy fluctuates between pe-
riods of increasing asset prices and sudden crashes. An-
other model that assumes the market maker mechanism
is proposed by [9]. In this case, agents form their expec-
tations based on either the fundamental or extrapolative
approach. However, the excess demand function of the
chartist is assumed to be nonlinear. When the extrapo-
lation rate of the chartist is sufficiently high, the system
becomes unstable and limit cycles arise. While these early
models assumed that the fractions of agents are fixed, [16]
and [17] introduced, in a similar setup, time-variation in
those fractions. The driving force for the variation of the
fractions is the relative performance of the beliefs (sim-
ilar to what we discussed above for the model of Brock
and Hommes). Some of the more recent models that ex-
tend these early contributions are [10,11,12,18,19,24,50],
and [51]. A comprehensive survey of the literature is pro-
vided in [26].

Stochastic Evolution

An early example of an agent-based model in which in-
dividuals switch in a stochastic fashion was proposed
by [27]. He uses a slightly different setup compared to

the Standard RE Model. In his model the asset is a for-
eign bond and the agent has to decide whether to invest at
home (at the riskless interest rate r) or buy a unit of foreign
currency and invest abroad (at the risky interest rate �t ,
assumed to be normally distributed with mean � and vari-
ance �2�). The price PtC1 represents the exchange rate. The
only difference with the model described earlier is that in
the demand of type h agent in Eq. (1), Eh;t(PtC1 C DtC1)
is replaced by (1C �)Eh;t(PtC1). The fundamental value
of the asset in this model is assumed to evolve as a random
walk, that is, P�t D P�t�1 C �t where �t � N(0; �2� ).

Similarly to the previous model, there are two types of
beliefs: fundamentalists and chartists. The fundamentalist
belief is the same as in Eq. (3), while the chartists have be-
lief given by:

ETF;t(PtC1) D (1 � gTF)Pt C gTFPt�1 :

The switching between beliefs in Kirman’s model is driven
by two mechanism: social interactions and herding. Inter-
action means that agents meet in pairs and communicate
about their beliefs. The result of this communication is
that, with a probability (1 � ı), an agent changes her be-
lief to the one of the other agent. In this model, market
information (such as prices or dividends) do not play any
role in the decision of the agents to adopt the fundamen-
talist or trend-following beliefs. This is in sharp contrast
to the model of [7] where the selection of the belief is en-
dogenous and based on their past performance. In addi-
tion to the probability of switching belief due to social in-
teraction, there is a probability � that an agent indepen-
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dently changes belief. If we denote by NF;t the number of
agents in the population (N is the total number of agents)
using the fundamentalist belief at time t, Kirman models
the evolution from NF;t�1 to NF;t according to a markov
chain with the following transition probabilities:

P(NF;t � NF;t�1 D 1) D
�
1 �

NF;t�1

N

�

�
� C (1 � ı)

NF;t�1

N � 1

�

P(NF;t � NF;t�1 D �1) D
NF;t�1

N�
� C (1 � ı)

N � NF;t�1

N � 1

�

P(NF;t � NF;t�1 D 0) D1 � P(NF;t � NF;t�1 D 1)
�P(NF;t � NF;t�1 D �1) :

The second part of the opinion formation can be charac-
terized as herding. Kirman assumes that the agents receive
a noisy signal, qi;t , about the fraction of the population
that is fundamentalist:

qi;t D
NF;t

N
C �i;t ;

where �i;t is distributed as N(0; �2
�
) and i D 1; : : : ;N .

Based on this signal about the average opinion in the econ-
omy, agents herd by coordinating in adopting the belief

Finance, Agent BasedModeling in, Figure 6
Time series generated from the model proposed by [27] for the following parameter values: N D 1000, variance of the � 2

� D 10,
� D 0:00018538, r D 0:000133668, gF D 0:6, gTF D 0:475, ı D 0:10, � D 0:000325, and� 2

�
D 0:43/N. The top plot shows the frac-

tion of fundamentalist agents in the population, the middle plot the deviation of the market price from the fundamental value, and
the bottom plot displays the absolute value of the asset returns

that is more popular. Agent i uses the fundamentalist be-
lief if her signal, qi;t , is larger than 0.5 and the trend-fol-
lowing belief otherwise. The fraction of agents using the
fundamentalist belief (denoted by nF;t) is then given by:

nF;t D
1
N

NX

iD1

I(qi;t � 0:5) :

Given the beliefs of the two types, the fractions and assum-
ing that the supply of foreign currency is proportional to
the time varying fundamental value, the equilibrium price
of the model is given by:

Pt D
nF;t � �

A
P�t �

nF;t gF
A

P�t�1C
(1 � nF;t)gTF

A
Pt�1 ; (7)

where the constants � andA are functions of the structural
parameters of the model.

Figure 6 shows a time series simulated from Kirman’s
model. The fraction of agents using the fundamentalist
belief, nF;t , displays significant variation over time, with
some periods being close to 1 (most agents are fundamen-
talists) and other periods close to zero (trend-followers
dominate). The resulting price dynamics can be character-
ized as follows. When fundamentalists dominate the mar-
ket, the asset price tracks closely the fundamental value
and returns volatility is high. On the other hand, when
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Statistical properties of the time series in Fig. 6. The top plot shows histogramof the series and the parametric distribution under the
assumption of normality, and the bottom plots show the autocorrelation of the returns and absolute returns, respectively

trend-followers dominate themarket the price tends to de-
viate significantly from the fundamental and volatility is
lower. The time series provide a clear intuition about the
ability of the model to account for periods of large devia-
tion from the fundamentals and of persistent volatility.

A main objective of this model is to provide an expla-
nation for the stylized facts of financial returns that were
discussed earlier. Figure 7 shows some of the statistical
properties for the simulated series. The histogram shows
the typical leptokurtic property of financial returns. The
distribution of the simulated returns shows a higher con-
centration of probability mass around zero and in the tails
(compared to the normal distribution). The returns auto-
correlations are very close to zero and statistically insignif-
icant. However, the absolute returns show significantly
positive and slowly-decaying autocorrelations. Hence, the
simulated series from Kirman’s model are able to replicate
the relevant empirical features of daily financial returns.

[41] and [42] propose a model inspired by the opin-
ion formation mechanism of Kirman. The model assumes
that agents are either fundamentalists or chartists. In addi-
tion, the chartist group is composed of agents that are ei-
ther optimistic or pessimistic. Agents can switch between
the two sub-groups due to herding (following the majority
opinion) and also to incorporate the recent trend in as-
set prices. Instead, the switching between fundamentalist
and chartist beliefs is based on the excess profits of the
rules. In this aspect, the model allows for a feedback ef-

fect from market price to the fractions similarly to [7].
A market maker mechanism aggregates the demand for
the risky asset of the agents and determines the prices. An-
other model based on interacting agents and herding be-
havior is proposed by [14]. They model the communica-
tion among (groups of) agents as a random graph and the
returns dynamics closely match the stylized facts of finan-
cial returns. [26] and [49] provide extensive overviews of
models based on random communication in a population
of interacting agents.

Computational Agent-BasedModels

Computational agent-basedmodels move one step further
compared to analytical models. The setup is very simi-
lar: the simple asset pricing model described above, the
assumption of heterogeneity of beliefs in the population,
and evolutionary pressure to use the best performing pre-
dictors. However, computational models do not assume
a priori the form of agents’ beliefs. Instead, they let agents
learn, adapt and explore a large set of strategies and use
the best performing ones. In this sense these models al-
low to investigate the emergence of trading strategies and
their survival in the market. A relevant question, and an
unsettled dispute between academics and practitioners, is
the role and importance of technical analysis. Computa-
tional agent-based models do not assume (a priori) that
trend-following rules are used by agents (as in the analyti-
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cal approach), but allow for these rules to emerge from the
evolutionary and learning processes. Hence, they can indi-
cate the conditions that lead to the emerge and survival of
trend-following rules in the market.

One of the first and most famous example of a compu-
tational agent-based model is the Santa Fe Institute (SFI)
artificial market proposed by [3]. As mentioned above, the
key feature of this and similar models is the way the expec-
tation formation process is represented.

Each agent in the economy is endowed with a set of
predictors, in the form of condition/forecast rules. These
rules are a form of classifier system that identify a state of
the world and indicate an action (in this case a forecast of
future returns). Each agent in the economy is assumed to
rely on a set J of market predictors (classifier rules) that
consist of two elements:

Condition a set of bit-strings that characterize different
possible states of themarket. Each bit represents a state
of the world, and the design of the SFI market allows
for a set of bits related to fundamentals (that relate the
asset price to the underlying dividend process) and an-
other set of technical bits (that relate the current price
to a moving-average of past prices of different length).
The role of the bit-strings is to provide the agent with
the ability to identify the current state of the market.

Forecast associated with each bit-string j (for j D 1;
: : : ; J) is a parameter vector (a j; bj) that together with
the linear forecasting rule E j

i;t(PtC1CDtC1) D a j(PtC
Dt)C bj provides agent i with the forecast for next pe-
riod payoff. The agent then combines the forecast of
the H most accurate predictors that are active, based
on the observed market condition.

The next building block of the SFI artificial market is the
learning process. This is implemented using a Genetic Al-
gorithm (GA) that enables learning in both the condition
and the forecast part of the classifier. Agents have a proba-
bility p to update their predictors through learning in every
period. The frequency of learning (measured by p) plays
a relevant role in the resulting dynamics of the model since
it identifies how quickly agents adapt to changes in the en-
vironment and respond to it. In the learning phase, 15%
of the worst performing predictors are dropped, and new
rules are generated using a GAwith uniform crossover and
mutation.

The aim of the model is to test the hypotheses dis-
cussed above:

1. Does the SFI market converge to the RE equilibrium?
2. Can the SFImarket explain the stylized facts of financial

returns?

It turns out that the answer is positive to both questions,
depending on the speed of learning parameter p. This pa-
rameter plays a crucial role in the resulting dynamics of
the SFI market and two regimes can be identified:

Slow-learning in this case the agents are engaged in learn-
ing (via the GA) every 1000 periods (on average). The
resulting price dynamics shows convergence to the
RE equilibrium characterized by agents having homo-
geneous expectations, negligible trading volume (al-
though some occurs when agents change their beliefs
due to learning), and returns that are normal and ho-
moskedastic. What is remarkable is that the conver-
gence to the RE equilibrium is not built-in the model,
but it is achieved by the learning and evolutionary pro-
cess taking place in the SFI market. Another interest-
ing result is that the technical trading bits of the classi-
fier play no role and are never active.

Fast-learning in this experiment the agents update their
predictors via learning (on average) every 250 periods.
The price dynamics shows the typical features of fi-
nancial time series, such as alternating periods of high
and low volatility, fat tailed distribution, high trading
volume, and bubbles and crashes. An interesting re-
sult of the fast-learning experiment is the emergence of
the trend-following rules. The technical trading bits of
the predictors are activated and their effect on the asset
price spurs even more agents to activate them. In this
sense, trend-following beliefs emerge endogenously in
the economy and they are not eliminated in the evo-
lution of the system, but survive. This is a quite rele-
vant result also from an empirical point of view. As we
mentioned earlier, technical analysis is widely used by
practitioners and the SFI market provides an explana-
tion for its emergence (and survival).

[29,30], and [31] have recently proposed an artificial mar-
ket that is largely inspired by the SFI market. However,
LeBaron changed some very relevant assumptions com-
pared to the earlier model. An innovation in this new
artificial market is the assumption on the preferences of
agents. While the SFI market (and many analytical mod-
els) rely on CARA preferences, [29] considers Constant
Relative Risk Aversion (CRRA) preferences. In this case,
wealth plays a role in the demand of agents (while with
CARA does not) and, consequently, allows for differen-
tial market impact of agents based on their wealth. An-
other innovation concerns the expectation formation pro-
cess. [29] departs from the SFI market assumption of dif-
ferent “speed of learning” across agents. Instead, LeBaron
assumes that agents have different memory length in eval-
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uating strategies. In every period agents assess the prof-
itability of the strategy adopted. However, agents evalu-
ate their strategy using different backtesting periods: some
agents test their strategies on only the last few months,
while other agents consider the last 20 years. In this sense,
they are heterogeneous in their memory rather than in
the speed of learning. Another feature of this model is
that the classifier predictor is replaced by a neural net-
work. The learning and evolution is always characterized
by a GA. Despite these innovations, the earlier results of
the SFI market are confirmed: a market populated by long-
memory agents converges to the RE equilibrium. How-
ever, in an economy with agents holding differentmemory
lengths, the asset price series shows the typical features of
financial returns (no serial correlation, volatility cluster-
ing, fat-tailed distribution, high trading volume, and cor-
relation between volume and volatility).

Another recent artificial stock market model is pro-
posed by [8]. The setup is the simple asset pricing model
described in Sect. “The Standard RE Model”. Chen and
Yeh assume that the expectation of agent i about next pe-
riod payoff is of the form Ei;t(PtC1CDtC1) D (PtC�)(1C
�1tanh(�2 fi;t)). The quantity fi;t characterizes the expec-
tation of the agent and it evolves according to genetic pro-
gramming. If fi;t is equal to zero the agent believes in the
efficiency and rationality of the market, that is, expects the
asset price tomorrow to increase by the expected dividend
growth rate.

Compared to the SFI market, they adopt a Genetic
Programming (GP) approach to model agents’ learning
and evolution. The model assumes that agents evolve due
to two types of pressures: peer-pressure (the agent perfor-
mance compared to the rest of the population) and self-
pressure (own evaluation of the performance). The prob-
ability that an agent searches for better forecasting rules
depends on both forms of pressure. If agents rank low in
terms of performance compared to their peers, then the
probability that they will search for other forecasting rules
is higher. The population of forecasting rules evolves due
to competition with new rules that are generated by ap-
plying genetic operators (reproduction, cross-over, muta-
tion) to the existing rules. The rules space evolves inde-
pendently of the rules adopted by the agents. When an
agent decides to search (due to the pressures mentioned
above), forecasting rules are randomly selected from the
population until a rule is found that outperforms the one
currently adopted by the agent. Chen and Yeh show that
the price dynamics of the model is consistent with an effi-
cient market. The investigation of the statistical properties
of the returns generated by the model shows that the se-
ries does not have any linear and nonlinear dependence,

although there is some evidence for volatility clustering.
Analyzing the type of rules that agents use, they show that
only a small fraction of them are actually using forecasting
rules that are consistent with an efficient market (in the
sense that they believe that Ei;t(PtC1 C DtC1) D Pt C �
in which case fi;t is equal to 0). In other words, although
a large majority of agents uses rules that imply some form
of predictability in asset returns, the aggregation of their
beliefs delivers an asset price that looks “unpredictable”. In
this sense they claim that the efficiency (or unpredictabil-
ity) of the artificial market is an emerging property that re-
sults from the aggregation of heterogeneous beliefs in the
economy. Another property that emerges from the anal-
ysis of this market is the rationality of a representative
agent. Chen and Yeh consider the expectation of a rep-
resentative agent by averaging the expectations across the
agents in the economy. The forecasting errors of this “rep-
resentative” expectation indicate that they satisfy a test for
rationality: there is no evidence of systematic forecasting
errors in the expectation (in statistical terms, the errors are
independent).

Evolution and learning (via GA) have received quite
a lot of attention in the literature. Other artificial-market
models have been proposed in the literature. Some early
examples are [4], and [46]. Some more recent examples
are [1,2,47,48]. [32] is an extensive survey of the computa-
tional agent-based modeling approach.

Other Applications in Finance

The common theme across the models presented above is
to show that departing from a representative rational agent
is a viable way to explain the empirical behavior of asset
prices. The more recent agent-based literature has shifted
interest toward nesting this type of models in more real-
istic market structures. There are two typical assumptions
used in the agent-based literature to determine the asset
price: a market clearing or a market maker mechanism.
Recent progress in the analysis of the micro-structure of
financial markets has indicated the increasing importance
of alternative trading mechanisms, such as order-driven
markets. In these markets, traders decide whether to buy
(sell) using a market or limit order. A market order means
that the trader is ready to buy (sell) a certain quantity of
stocks at the best available price; instead, with limit or-
ders traders fix both a quantity of shares and a price at
which they are willing to buy (sell). Limit orders are stored
in the book until a matching order arrives to the mar-
ket. They are different from quote-driven markets, where
a market maker provides quotes and liquidity to investors.
This has spurred a series of articles that propose agent-
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based models in this more realistic market structure. In
particular, [13,36,44], and [45] consider an order-driven
market where agents submit limit orders. Typically these
models make simple behavioral assumptions on the be-
lief formation process and do not consider learning and
evolution of agents’ expectations (typical of the compu-
tational agent-based models). In this sense, these models
are closer to the stochastic agent-based approach reviewed
in Sect. “Analytical Agent-Based Models”. Recently, [33]
has proposed a computational model for an order-driven
market in which strategies evolve by imitation of the most
successful rules.

[13] propose an order-driven market model in which
the demand for the risky asset of the agents is deter-
mined by a fundamentalist, a chartist, and a noise com-
ponent. The agents share the same demand function but
the weights on the components are different across agents.
Simulating the model suggests that the stylized facts of fi-
nancial returns can be explained when all behavioral com-
ponents (fundamentalist, chartist, and noise) participate
to determine agents’ beliefs. An additional feature of this
setup is that it accounts for the persistence in the volatil-
ity of returns and trading volume. Such a micro-structural
model allows also to investigate the effect of some keymar-
ket design parameters (such as tick size, liquidity, and av-
erage life of an order) on the price formation process.

[44] consider a market structure where agents sub-
mit limit orders and the price is determined by market
clearing of supply (sell orders) and demand (buy orders)
schedules. The behavioral assumptions are closely related
to the clustering approach of [14]: a probabilistic mecha-
nism governs the formation of clusters and, within a clus-
ters, all agents coordinate in buying or selling the risky
asset. Another behavioral assumption introduced in this
model concerns the (positive) relation between market
volatility and the limit order price. When the volatility
is low, agents set the price of their limit order close to
yesterday’s asset price. However, when the market is ex-
periencing wide swings in prices, agents’ set limit prices
that are significantly above or below yesterday’s price for
their orders. The results suggest that the model is able to
explain the main stylized facts of financial returns. [45]
consider an economy with a similar market structure
but more sophisticated assumption on agents’ behavior.
They assume the population is composed of four types of
agents: random traders (with 50% probability to buy or
sell), momentum (buy/sell following an increase/decrease
in prices), contrarian (act in the opposite direction of
momentum traders), and fundamentalists (buy/sell if the
price is below/above the fundamental value). They simu-
late the model in a way that non-random agents do not

affect the asset price. The idea is to investigate the survival
of these types of agents in the economy without affecting
the aggregate properties of the model. They show that, on
average, the fraction of wealth of momentum agents de-
creases while it increases for fundamentalist and contrar-
ian traders.

Another recent paper that models an order-driven
market is [36]. Agents can submit market and limit or-
ders. They introduce the behavioral assumption that the
agents are all fundamentalists, although they are heteroge-
neous in their belief of the fundamental value of the asset.
They show that simulated series from this simple model
follow a leptokurtic distribution and attribute this prop-
erty to the structure of the market (rather than the be-
havioral assumptions). The same result is also obtained
when random traders are considered. However, they are
not able to explain other stylized fact such as the autocor-
relation structure of volatility. This paper is interesting be-
cause it suggest that some of the stylized facts discussed
earlier might not be related to agents’ bounded rationality,
but rather to the details of the market mechanism that is
typically neglected in the agent-based literature.

Another area of application of agent-basedmodeling is
corporate finance. [43] propose an agent-based model to
investigate the security issuance preferences of firms and
investors. The empirical evidence indicates that there is
a clear dominance of debt financing, compared to other
instruments, such as equities and convertible debt. This
is a puzzle for theoretical models where it is customar-
ily assumed that the payoff structure of the financing in-
struments are common knowledge. Under this assump-
tion, the price should reflect the different characteristics
of the securities and investors should be indifferent among
them. Noe et al. consider a model that departs from the as-
sumption of perfect knowledge about the security charac-
teristics, and assume that firms and investors are learning
(via a GA) about the profitability of the different alterna-
tives. Debt and equity imply different degrees of risk-shar-
ing between investors and firms: in particular, debt pro-
vides lower risk and return, contrary to equities that have
a more volatile payoff structure. Investors’ learning about
the risk-return profile of the different instruments leads to
the prevalence of debt on equity or convertible debt. An-
other conclusion of this model is that learning is imperfect:
agents learn to price specific contracts and have difficulties
in dealing with contracts that rarely occur in the market.

Future Directions

Agent-based modeling in finance has had a significant im-
pact in shaping the way we understand the working of
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financial markets. By introducing realistic behavioral as-
sumptions, agent-based models have demonstrated that
they provide a coherent explanation for many empiri-
cal findings in finance. In addition, they are also able to
provide a framework to explain how aggregate rationality
can emerge in a population of bounded rational learning
agents.

The strength of the agent-based approach is the abil-
ity to specify in greater detail the agents’ behavior and
the structure of market interactions. Simple agent-based
models use realistic assumptions and can be solved ana-
lytically. However, they sacrifice the important aspect of
the emergence of aggregate pattern based on agents’ learn-
ing. This can be achieved by computational agent-based
models. Since the approach is not bounded by the ana-
lytical tractability of the model, very detailed (and poten-
tially more realistic) assumption can be introduced. How-
ever, this can represent a weakness of the approach since
it might lead to over-parametrized models where it is hard
to disentangle the role played by each of the assumptions
on the aggregate behavior. In this sense, agent-basedmod-
eling should aim at balancing parsimony and realism of
agents’ description.

As already suggested in Sect. “Other Applications in
Finance”, the application of agent-basedmodels is not lim-
ited to asset pricing issues. Recently, they have been used
in corporate finance and market microstructure. This is
certainly a trend that will increase in the future since these
models are particularly suitable to investigate the interac-
tion of market structure and agents’ behavior.
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Introduction

Economics and finance have slowly emerged from the
Walrasian, representative agent paradigm exemplified by
the research agenda in general equilibrium theory. This
program may have reached its pinnacle in the 1970s, with
a highly abstract treatment of the existence of a market
clearing mechanism. The normative foundation of this re-
search was provided by powerful welfare theorems that
demonstrated the optimality of the market allocations.
Unfortunately, this abstract world had little economics
in it. The models rarely provided empirical implications.
Lifetime consumption and portfolio allocation plans were
formed in infancy, unemployment was Pareto optimal,
and the role for government was largely limited to public
goods provision.

The demonstration by Benhabib, Brock, Day, Gale,
Grandmont, [1,4,8,9] and others, that even simple math-



Finance and Econometrics, Introduction to F 3389

ematical models could display highly complex dynamics
was the beginning of a new research program in eco-
nomics. This section on finance and econometrics surveys
some of the developments of the last 20 years that were
inspired by this research.

Econometrics

Time series econometrics was originally built on the rep-
resentation theorems for Euclidean spaces. The existence
of a Wold decomposition in linear time series led to the
widespread use of Box–Jenkins [3] style modeling as an al-
ternative to structural or reduced form models.

A number of stylized facts about the economy emerged
that simply could not be explained in this linear world.
Rob Engle [2] and Tim Bollerslev [5] showed that volatility
was quite persistent, even in markets that appeared to be
nearly random walks. In � GARCH Modeling, Christian
Hafner surveys the extensive development in this area.

James Hamilton [10] and Salih Neftci [11] demon-
strated that the business cycle was asymmetric and could
be well described by a Markov switching model. James
Morley � Macroeconomics, Non-linear Time Series in
and Jeremy Piger � Econometrics: Models of Regime
Changes describe the developments in this area. Virtu-
ally all the moments, not just the conditional mean, are
now thought to be varying over the business cycle. These
models help us to understand why recessions are shorter
than expansions and why certain variables lead and lag the
cycle.

Nearly all the business cycle models involve the use of
latent or unobservable state variables. This reflects a re-
ality that policy makers themselves face. We rarely know
whether we are in a recession until it is nearly over.
These latent variable models are often better described
in a Bayesian rather than a classical paradigm. Oleg Ko-
renok� BayesianMethods in Non-linear Time Series pro-
vides an introduction to the frontier research in this area.

Markets are often drawn towards equilibrium states in
the absence of exogenous shocks, and, since the 1940s, this
simple idea was reflected in the building of macroecono-
metric models. In linear models, Engle and Granger [6]
formalized this notion in an error correction framework.
When the adjustment process is taking place between two
variables that are not stationary, we say that they are coin-
tegrated. Escanciano and Escribano extend the error cor-
rection framework and cointegration analysis to nonlinear
models in� Econometrics: Non-linear Cointegration.

Because we often know very little about the data gen-
erating mechanism for an economy, nonparametric meth-
ods have become increasingly popular in the analysis of

time series. Cees Diks discusses in�Nonparametric Tests
for Independence methods to analyze both data and the
residuals from an econometric model.

Our last two entries look at the data generated by indi-
vidual consumers and households. Pravan Trivedi � Mi-
croeconometrics surveys the microeconometric literature,
and Jeff Wooldridge � Econometrics: Panel Data Meth-
ods examines the tools and techniques useful for analyzing
cross-sectional data.

Agent BasedModeling

The neo-classical synthesis in economics was built upon
the abstraction of a single optimizing agent. This assump-
tion simplified the model building and allowed for analyt-
ical solutions of the standard models. As computational
power became cheaper, it became easier to relax these
assumptions. Many economists underestimated the com-
plexity of a world in which multiple agents interact in a dy-
namic setting. Econophysicists, as Bertrand Roehner de-
scribes in � Econophysics, Observational, were not sur-
prised. Roehner is just one of scores of physicists who have
brought their tools and perspectives to economics.

Agent based modeling has had a large impact on fi-
nance. Financial economics had been led by a Chicago in-
fluenced school that saw markets as both rational and ef-
ficient. Behavioral finance has eroded the view that people
alwaysmake optimizing decisions evenwhen large sums of
money are at stake. The boundedly rational agents in Se-
bastiano Manzan’s � Finance, Agent Based Modeling in
are prone to speculative bubbles. Markets crash suddenly
in agent based computational models and in large scale ex-
perimental stock markets.

Finance

The foundation of financial economics is the theory of op-
timal consumption and saving. The goal of the empirical
literature was to identify a set of risk factors that would
explain why certain assets have a higher return than oth-
ers. Ralitsa Petkova � Financial Economics, The Cross–
Section of Stock Returns and the Fama-French Three
Factor Model surveys the canonical model of Fama and
French [7] and the extensions to this model in the last
decade.

With risk averse agents, asset returns are often pre-
dictable. Stijn van Nieuwerburgh and Ralph S.J. Koijen
� Financial Economics, Return Predictability and Mar-
ket Efficiency demonstrate the robustness of this result in
a structural model and show that the dividend price ratio
does predict future stock returns.
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Mototsugu Shintani addresses in � Financial Fore-
casting, Sensitive Dependence the concept of predictabil-
ity from an information theoretic perspective through the
use of Lyapunov exponents. The exponents not only tell
us which systems display sensitive dependence on initial
conditions (“chaos”) but also provide a predictive horizon
for data generated by the model. Shintani finds that finan-
cial data appear to not be chaotic, even though they display
local dependence on initial conditions.

Mark Kamstra and Lisa Kramer’s entry on� Financial
Economics, Time Variation in the Market Return primar-
ily focus on the equity premium, the substantially higher
return in the US and other countries on equities, over de-
fault free securities like Treasury bonds. They document
its statistical significance and discuss some behavioral ex-
planations. They demonstrate that behavioral moods can
influence asset prices.

Terence Mills’ � Financial Economics, Non-linear
Time Series in surveys the use of nonlinear time series
techniques in finance. Gloria Gonzalez-Rivera and Tae-
Hwy Lee look at the ability of nonlinear models to fore-
cast in � Financial Forecasting, Non-linear Time Series
in. They also cover the methodology for assessing forecast
improvement. The best forecast may not be the one that
predicts the mean most accurately; it may instead be the
one that keeps you from large losses.

Our last two papers in this area focus on volatility.
Markus Haas and Christian Pigorsch discuss the ubiqui-
tous phenomenon of fat-tailed distributions in asset mar-
kets in � Financial Economics, Fat-Tailed Distributions.
They provide evidence on the frequency of extreme events
in many different markets, and develop the implications
for risk management when the world is not normally dis-
tributed. Torben Andersen and Luca Benzoni� Stochastic
Volatility introduce the standard volatility model from the
continuous time finance literature. They contrast it with
the GARCH model discussed earlier and develop econo-
metric methods for estimating volatility from discretely
sampled data.

MarketMicrostructure

Market microstructure examines the institutional mech-
anisms by which prices adjust to their fundamental val-
ues. The literature has grown with the availability of trans-
actions frequency databases. Clara Vega and Christian
Miller � Market Microstructure survey the topic largely
from a theoretical perspective. Because disparate markets
are likely to have different mechanisms and regulators, the
literature has evolved by instrument. Carol Osler � Mar-
ket Microstructure, Foreign Exchange examines the mi-

crostructure of the foreign currency market, the largest
and most liquid asset market. Bruce Mizrach and Chris
Neely� Treasury Market, Microstructure of the U.S. look
at the government bond market in the US as it has evolved
into an electronic market. Michael Piwowar � Corporate
and Municipal Bond Market Microstructure in the U.S.
looks at two bond markets with a large number of issues
that trade only very infrequently. Both the markets which
he examines have become substantially more transparent
through recent government initiatives.

Conclusion

This section covers a wide range of material from theoret-
ical time series analysis to descriptive modeling of finan-
cial markets. The theme of complexity is a unifying one in
the sense that the models are generally nonlinear and can
produce a wide range of possible outcomes. There is com-
plexity in the data which now evolves at a millisecond fre-
quency. Readers should find a variety of perspectives and
directions for future research in a heterogenous but inter-
connected range of fields.
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Glossary

Market capitalization Market capitalization is a measure
of the size of a public company. It is equal to the share
price times the number of shares outstanding. Small
stocks have small market capitalizations, while large
stocks have large market capitalizations.

Book-to-market ratio A ratio used to compare a com-
pany’s book value to its market capitalization value. It
is calculated by dividing the latest book value by the
latest market value of the company.

Value stocks Value stocks tend to trade at lower prices
relative to fundamentals like dividends, earnings, sales
and others. These stocks are considered undervalued
by value investors. Value stocks usually have high div-
idend yields, and high book-to-market ratios.

Growth stocks Growth stocks tend to trade at higher
prices relative to fundamentals like dividends, earn-
ings, sales and others. Growth stocks usually do not
pay dividends and have low book-to-market ratios.

Market beta The market beta is a measure of the system-
atic risk of a security in comparison to the market as
a whole. It measures the tendency of the security re-
turn to respond to market movements.

Capital asset pricing model (CAPM) The CAPM de-
scribes the relationship between risk and expected
return and it is used in the pricing of risky securities.
According to the CAPM, the expected return of a se-
curity equals the rate on a risk-free security plus a risk
premium that increases in the security’s market beta.

Definition of the Subject

Different stocks have different expected rates of return and
many asset pricing models have been developed to un-
derstand why this is the case. According to such mod-
els, different assets earn different average returns because
they differ in their exposures to systematic risk factors in
the economy. Fama and French [12] derive a model in
which the systematic risk factors are the market index,
and two portfolios related to the size of a company, and
its ratio of book value to market value (book-to-market).
The size and book-to-market factors are empirically moti-
vated by the observation that small stocks and stocks with
high book-to-market ratios (value stocks) earn higher av-
erage returns than justified by their exposures to market
risk (beta) alone. These observations suggest that size and
book-to-market may be proxies for exposures to sources
of systematic risk different from the market return.

Introduction

An important class of asset pricing models in finance are
linear beta models. They assume that the expected return
of an asset in excess of the risk-free rate is a linear function
of exposures to systematic sources of risk. Usually, the as-
set’s exposures to common sources of risk in the economy
are referred to as betas. In general, linear beta models as-
sume the following form for the unconditional expected
excess return on assets:

E(Ri ) D �Mˇi;M C
X

�Kˇi;K ; for all i (1)

where E(Ri ) is the expected excess return of asset i, �M
is the market risk premium or the price for bearing mar-
ket risk, and �K is the price of risk for factor K . The
model stated above implies that exposures to systematic
sources of risk are the only determinants of expected re-
turns. Thus, assets with high betas earn higher expected
returns. The betas are the slope coefficients from the fol-
lowing return-generating process:

Ri;t D ˛iCˇi;MRM;tC
X

ˇi;KKtC"i;t; for all i (2)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on
the market portfolio at the end of period t, and Kt is the
realization for factor K at the end of period t.

One approach of selecting the pervasive risk factors is
based on empirical evidence. For example, many empiri-
cal studies document that small stocks have higher aver-
age returns than large stocks, and value stock have higher
average returns than growth stocks (see [12] for a review).
The differences in average returns of these classes of stocks
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are statistically and economically significant. If the market
sensitivities of small and value stocks were high then their
high average returns would be consistent with the Capi-
tal Asset Pricing Model (CAPM), which predicts that the
market beta is the only determinant of average returns.
However, the patterns in returns for these stocks cannot
be explained by the CAPM.

In a series of papers, Fama and French [12,13,14] show
that a three-factor model performs very well at captur-
ing the size and value effects in average stock returns. The
three factors are the excess return on the market portfolio,
the return on a portfolio long in value stocks and short in
growth stocks, and the return on a portfolio long in small
stocks and short in large stocks.

The impressive performance of the Fama–French
three-factor model has spurred an enthusiastic debate in
the finance literature over what underlying economic in-
terpretation to give to the size and book- to-market fac-
tors. One side of the debate favors a risk-based explana-
tion and contends that these factors reflect systematic risks
that the static CAPM has failed to capture. For example,
if the return distributions of different assets change over
time (i. e., expected returns, variances, correlation), then
the investment opportunity set available to investors varies
over time as well. If individual assets covary with variables
that track this variation then the expected returns of these
assets will reflect that. Fama and French argue that the fac-
tors in their model proxy for such variables.

Another side of the debate favors a non-risk explana-
tion. For example, Lakonishok, Shleifer, and Vishny [22]
argue that the book-to-market effect arises since investors
over-extrapolate past earnings growth into the future and
overvalue companies that have performed well in the past.
Namely, investors tend to over-extrapolate recent perfor-
mance: they overvalue the firms with good recent perfor-
mance (growth) and undervalue the firms with bad recent
performance (value). When the market realizes its mis-
take, the prices of the former fall, while the prices of the lat-
ter rise. Therefore on average, growth firms tend to under-
perform value firms. Daniel and Titman [9] suggest that
stocks characteristics, rather than risks, are priced in the
cross-section of average returns. Other authors attribute
the success of the size and book-to-market factors to data-
snooping and other biases in the data [21,27]. Berk, Green,
and Naik [1] and Gomes, Kogan, and Zhang [17] derive
models in which problems in the measurement of market
beta may explain the Fama–French results.

This article focuses on the risk-based explanation be-
hind the success of the Fama–French three-factor model.
If the Fama–French factors are to be explained in the con-
text of a rational asset pricing model, then they should

be correlated with variables that characterize time varia-
tion in the investment opportunity set. The rest of the ar-
ticle is organized as follows. Section “The Fama–French
Model as a Linear Beta Pricing Model” discusses the set-
up of the Fama–French model and presents some empir-
ical tests of the model. Section “Explaining the Perfor-
mance of the Fama–French Model: A Risk-Based Inter-
pretation” argues that the Fama–French factors proxy for
fundamental variables that describe variation in the invest-
ment opportunity set over time, and presents empirical re-
sults. Section “Other Risk-Based Interpretations” presents
additional arguments for the relation between the Fama–
French factors and more fundamental sources of risk. Sec-
tion “Future Directions” summarizes and concludes.

The Fama–FrenchModel
as a Linear Beta PricingModel

Model Set-up

Fama and French [12] propose a three-factor linear beta
model to explain the empirical performance of small and
high book-to-market stocks. The intuition behind the fac-
tors they propose is the following.

If small firms earn higher average returns than large
firms as a compensation for risk, then the return differ-
ential between a portfolios of small firms and a portfolio
of large firms would mimic the factor related to size pro-
vided the two portfolios have similar exposures to other
sources of risk. Similarly, if value firms earn higher aver-
age returns than growth firms as a compensation for risk,
then the return differential between a portfolio of value
firms and a portfolio of growth firms, would mimic the
factor related to book-to-market provided the two port-
folios have similar exposure to other sources of risk. Fama
and French [12] construct two pervasive risk factors in this
way that are now commonly used in empirical studies. The
composition of these factors is explained below.

In June of each year independent sorts are used to al-
locate the NYSE, AMEX, and NASDAQ stocks to two size
groups and three book-to-market groups. Big stocks are
above the median market equity of NYSE firms and small
stocks are below. Similarly, low book-to-market stocks are
below the 30th percentile of book-to-market for NYSE
firms, medium book-to-market stocks are in the middle
40 percent, and high book-to-market stocks are in the top
30 percent. Size is market capitalization at the end of June.
Book-to-market is book equity at the last fiscal year end
of the prior calendar year divided by market cap as of 6
months before formation. Firms with negative book eq-
uity are not considered. At the end of June of each year, six
value-weight portfolios are formed, SL, SM, SH, BL, BM,
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and BH, as the intersections of the size and book-to-mar-
ket groups. For example, SL is the value-weight return on
the portfolio of stocks that are below the NYSE median in
size and in the bottom 30 percent of book-to-market. The
portfolios are rebalanced annually. SMB in each period is
the difference between the equal-weight averages of the re-
turns on the three small stock portfolios and the three big
stock portfolios, constructed to be neutral with respect to
book-to-market:

SMB D (SLC SMC SH)/3� (BLC BMC BH)/3 : (3)

Similarly, HML in each period is the difference be-
tween the return on a portfolio of high book-to-market
stocks and the return on a portfolio of low book-to-market
stocks, constructed to be neutral with respect to size:

HML D (SH C BH)/2 � (SLC BL)/2 : (4)

Therefore, the Fama–French three-factor linear model
implies that:

E(Ri ) D �Mˇi;MC�SMBˇi;SMBC�HMLˇi;HML; for all i
(5)

where E(Ri ) is the excess return of asset i, �M is themarket
risk premium, � SMB is the price of risk for the size factor,
and �HML is the price of risk for the book-to-market fac-
tor. The betas are the slope coefficients from the following
return-generating process:

Ri;t D ˛i C ˇi;MRM;t C ˇi;SMBRSMB;t

C ˇi;HMLRHML;t C "i;t; for all i (6)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on the
market portfolio at the end of period t, RSMB;t is the return
on the SMB portfolio at the end of period t, and RHML;t is
the return on theHML portfolio at the end of period t.

Testing the Fama–French Model and Results

The return-generating process is Eq. (6) applies to the ex-
cess return of any asset. The Fama–French model is usu-
ally tested on a set of portfolios sorted by book-to-market
and size. Similarly to the construction of HML and SMB,
25 value-weighted portfolios are formed as the intersec-
tions of five size and five book-to-market groups. These
25 portfolios are the test assets used most often in test-
ing competing asset-pricing models. These assets repre-
sent one of the most challenging set of portfolios in the
asset pricing literature.

In this article, monthly data for the period from July of
1963 to December of 2001 is used. The returns on themar-
ket portfolio, the risk-free rate, HML, and SMB are taken
from Ken French’s web site, as well as the returns on 25
portfolios sorted by size and book-to-market.

To test the Fama–French specification in Eq. (5), the
Fama–MacBeth [15] cross-sectional method can be used.
In the first pass of this method, a multiple time-series re-
gression as in (6) is estimated for each one of the 25 portfo-
lios mentioned above which provides estimates of the as-
sets’ betas with respect to the market return, and the size
and book-to-market factors.

Table 1 reports the estimates of the factor loadings
computed in the first-pass time-series regression (6) for
each portfolio. The table also present joint tests of the sig-
nificance of the corresponding loadings, computed from
a seemingly unrelated regressions (SUR) system. This is
done in order to show that the Fama–French factors are
relevant in the sense that the 25 portfolios load signifi-
cantly on them.

The results from Table 1 reveal that within each size
quintile, the loadings of the portfolios with respect toHML
increase monotonically with book-to-market. Within each
size group, portfolios in the lowest book-to-market quin-
tile (growth) have negative betas with respect to HML,
while portfolios in the highest book-to-market quintile
(value) have positive betas with respect to HML. Further,
within each book-to-market quintile, the loadings of the
portfolios with respect to SMB decrease monotonically
with size. Within each book-to-market group, portfolios
in the lowest size quintile (small) have positive betas with
respect to SMB, while portfolios in the highest size quin-
tile (large) have negative betas with respect to SMB. The
table shows that small and large portfolios, and value and
growth portfolios have similar market betas.

Note that only six of the 25 intercepts in Table 1 are
significant (although the intercepts are jointly significant).
The large R-square statistics show that the excess returns
of the 25 portfolios are explained well by the three-factor
model. Furthermore the large t-statistics on the size and
book-to-market betas show that these factors contribute
significantly to the explanatory power of the model.

The second step of the Fama–MacBeth procedure in-
volves relating the average excess returns of the 25 port-
folios to their exposures to the risk factors in the model.
More specifically, the following cross-sectional relation is
estimated

Ri;t D �0C�Mb̌i;MC(�HML)b̌i;HMLC(�SMB)b̌i;SMB

C ei;t : (7)
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 1
Loadings on the Fama–French Factors from Time-Series Regressions
This table reports loadings on the excess market return, RM, and the Fama–French factors RHML and RSMB computed in time-series
regressions for 25 portfolios sorted by size and book-to-market. The corresponding t-statistics are also reported and are corrected
for autocorrelation and heteroscedasticity using the Newey–West estimator with five lags. The sample period is from July 1963 to
December 2001. The intercepts are in percentage form. The last column reports F-statistics and their corresponding p-values from
an SUR system, testing the joint significance of the corresponding loadings. The p-values are in percentage form. R2s from each
time-series regression are reported in percentage form

Regression: Ri;t D ˛i C ˇi;MRM;t C ˇi;HMLRHML;t C ˇi;SMBRSMB;t C "i;t

Low 2 3 4 High Low 2 3 4 High
˛ t˛ F

Small �0.38 0.01 0.04 0.18 0.12 �3.40 0.18 0.56 2.84 1.91 2.96
2 �0.17 �0.10 0.08 0.08 �0.00 �2.25 �1.45 1.15 1.28 �0.01 0.01
3 �0.07 �0.00 �0.09 0.01 0.00 �1.03 �0.03 �1.26 0.17 0.06
4 0.16 0.21 �0.08 0.04 �0.05 1.67 �2.27 �0.99 0.61 �0.54
Large 0.21 �0.04 �0.02 �0.09 �0.21 3.25 �0.53 �0.27 �1.29 �2.36

ˇM tˇM F
Small 1.04 0.96 0.93 0.92 0.98 44.38 39.40 50.88 46.60 43.39 > 100
2 1.11 1.03 1.00 0.99 1.08 48.84 45.42 46.47 60.69 52.11 < 0.01
3 1.09 1.07 1.03 1.01 1.10 52.59 38.53 32.93 52.70 38.97
4 1.05 1.11 1.08 1.03 1.17 46.03 36.33 36.86 41.15 36.74
Large 0.96 1.04 0.99 1.01 1.04 45.08 49.22 36.71 46.18 31.59

ˇHML tˇHML F
Small �0.31 0.09 0.31 0.47 0.69 �5.86 1.79 9.62 14.97 17.10 > 100
2 �0.38 0.18 0.43 0.59 0.76 �8.52 2.96 7.36 13.97 23.28 < 0.01
3 �0.43 0.22 0.52 0.67 0.82 �14.90 3.10 7.39 10.58 15.94
4 �0.45 0.26 0.51 0.61 0.83 �10.55 3.42 7.43 11.92 16.07
Large �0.38 0.14 0.27 0.64 0.85 �10.47 2.58 5.65 11.82 20.56

ˇ SMB tˇSMB F
Small 1.41 1.33 1.12 1.04 1.09 36.39 24.68 36.50 24.34 25.40 > 100
2 1.00 0.89 0.75 0.70 0.82 27.61 18.51 15.90 25.31 25.68 < 0.01
3 0.72 0.51 0.44 0.38 0.53 24.97 7.68 6.81 8.28 8.87
4 0.37 0.20 0.16 0.20 0.26 9.26 3.42 2.64 6.70 4.22
Large �0.26 �0.24 �0.24 �0.22 �0.08 �9.25 �6.92 �6.12 �6.81 �2.11

R2

92.61 94.32 94.89 94.51 94.58
95.16 93.99 93.56 93.85 94.62
94.88 90.22 89.49 89.69 90.31
93.52 88.31 87.65 88.41 85.77
93.35 89.79 84.32 87.39 80.60

The b̌ terms are the independent variables in the re-
gression, while the average excess returns of the assets are
the dependent variables. If loadings with respect to the
Fama–French factors are important determinants of aver-
age returns, then there should be a significant price of risk
associated with the factors.

Since the betas are estimated from the time-series re-
gression in (6), they represent generated regressors in
(7). This is the classical errors-in-variables problem, aris-
ing from the two-pass nature of this approach. Following

Shanken [33], a correction procedure can be used that ac-
counts for the errors-in-variables problem. Shanken’s cor-
rection is designed to adjust for the overstated precision
of the Fama–MacBeth standard errors. It assumes that the
error terms from the time-series regression are indepen-
dently and identically distributed over time, conditional
on the time series of observations for the risk factors. The
adjustment also assumes that the risk factors are generated
by a stationary process. Jagannathan andWang [19] argue
that if the error terms are heteroscedastic, then the Fama–
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Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 2
Cross-Sectional Regressions with the Fama–French Factor
Loadings
This table presents Fama–MacBeth cross-sectional regressions
using the average excess returns on 25 portfolios sorted by
book-to-market and size. The full-sample factor loadings, which
are the independent variables in the regressions, are computed
in one multiple time-series regression. The coefficients are ex-
pressed as percentage per month. The Adjusted R2 follows Ja-
gannathan and Wang [18] and is reported in percentage form.
The first set of t-statistics, indicated by FM t-stat, stands for
the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33].
The sample period is from July 1963 to December 2001

The Fama–French Three-Factor Model
�0 �M �HML � SMB Adj. R2

Estimate 1.15 �0.65 0.44 0.16 71.00
FM t-stat 3.30 �1.60 3.09 1.04
SH t-stat 3.19 �1.55 3.07 1.00

MacBeth procedure does not necessarily result in smaller
standard errors of the cross-sectional coefficients. In light
of these two issues, researchers often report both unad-
justed and adjusted cross-sectional statistics.

Table 2 reports the estimates of the factor prices of
risk computed in the second-pass cross-sectional re-
gression (7). The table also presents the t-statistics for
the coefficients, adjusted for errors-in-variables following
Shanken [33]. The table shows that the market beta is not
an important factor in the cross-section of returns sorted
by size and book-to-market.1 Further, the table reveals
that loadings on HML represent a significant factor in the
cross-section of the 25 portfolios, even after correcting for
the sampling error in the loadings. Loadings on SMB do
not appear to be significant in the cross-section of portfo-
lio returns for this time period. The large R-square of 0.71
shows that the loadings from the Fama–French model ex-
plain a significant portion of the cross-sectional variation
in the average returns of these portfolios.

It is also helpful to examine the performance of the
model visually. This is done by plotting the fitted expected
return of each portfolio against its realized average return
in Fig. 1. The fitted expected return is computed using the
estimated parameter values from the Fama–French model
specification. The realized average return is the time-series
average of the portfolio return. If the fitted expected return

1The estimate of the market risk premium tends to be negative.
This result is consistent with previous results reported in the litera-
ture. Fama and French [11], Jagannathan and Wang [18], and Lettau
and Ludvigson [24] report negative estimates for the market risk pre-
mium, using monthly or quarterly data.

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Figure 1
Fitted Expected Returns vs. Average Realized Returns for
1963:07-2001:12.
This figure shows realized average returns (%) on the horizon-
tal axis and fitted expected returns (%) on the vertical axis for 25
size and book-to-market sorted portfolios. Each two-digit num-
ber represents a separate portfolio. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the
second digit refers to the book-to-market quintile (1 being the
lowest and 5 the highest). For each portfolio, the realized aver-
age return is the time-series average of the portfolio return and
the fitted expected return is the fitted value for the expected re-
turn from the corresponding model. The straight line is the 45-
degree line from the origin

and the realized average return for each portfolio are the
same, then they should lie on a 45-degree line through the
origin.

Figure 1 shows the fitted versus realized returns for the
25 portfolios in two different models for the period from
July of 1963 to December of 2001. Each two-digit num-
ber represents a separate portfolio. The first digit refers to
the size quintile of the portfolio (1 being the smallest and
5 the biggest), while the second digit refers to the book-
to-market quintile (1 being the lowest and 5 the highest).
For example, portfolio 15 has the highest book-to-market
value among the portfolios in the smallest size quintile. In
other words, it is the smallest value portfolio.

It can be seen form the graph that the model goes
a long way toward explaining the value effect: in general,
the fitted expected returns on value portfolios (bigger sec-
ond digit) are higher than the fitted expected returns on
growth portfolios (lower second digit). This is consistent
with the data on realized average returns for these portfo-
lios. By inspection of Fig. 1, a few portfolios stand out as
problematic for the FF model, in terms of distance from
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the 45-degree line, namely the growth portfolios within
the smallest and largest size quintiles (11, 41, and 51) and
the value portfolios within the largest size quintiles (45, 54,
and 55).

In summary, the Fama–French model performs re-
markably well at explaining the average return difference
between small and large, and value and growth portfolios.

The natural question that arises is what drives the su-
perior performance of the Fama–Frenchmodel in explain-
ing average stock returns. One possible explanation is that
the Fama–French factorsHML and SMB proxy for sources
of risk not captured by the return on the market portfo-
lio. This explanation is consistent with a multifactor asset
pricing model like the Intertemporal Capital Asset Pricing
Model (ICAPM), which states that if investment oppor-
tunities change over time, then variables other than the
market return will be important factors driving stock re-
turns. Therefore, one possible interpretation of the HML
and SMB portfolios is that they proxy for variables that
describe how investment opportunities change over time.
The following sections examine the ICAPM explanation
behind the performance of the Fama–French model.

Explaining the Performance of the Fama–French
Model: A Risk-Based Interpretation

The ICAPM Framework

The analysis in this paper assumes that asset returns are
governed by the discrete-time version of the ICAPM of
Merton [29]. According to the ICAPM, if investment op-
portunities change over time, then assets’ exposures to
these changes are important determinants of average re-
turns in addition to the market beta. Campbell [3] devel-
ops a framework to model changes in the investment op-
portunity set as innovations in state variables that capture
uncertainty about investment opportunities in the future.
Therefore, the model for the unconditional expected ex-
cess returns on assets becomes

E(Ri ) D �Mˇi;M C
X

(�uK )ˇi;uK ; for all i (8)

where E(Ri ) is the excess return of asset i, �M is the market
risk premium, and �uK is the price of risk for innovations
in state variableK . The betas are the slope coefficients from
the following return-generating process:

Ri;t D ˛iCˇi;MRM;tC
X

(ˇi;uK )uKt C"i;t; for all i (9)

where Ri;t is the return on asset i in excess of the risk-free
rate at the end of period t, RM;t is the excess return on
the market portfolio at the end of period t, and uKt is the
innovation to state variable K at the end of period t. The

innovation is the unexpected component of the variable.
According to the asset-pricing model, only the unexpected
component of the state variable should command a risk
premium. Note that the innovations to the state variables
are contemporaneous to the excess market returns. This
equation captures the idea that the market portfolio and
the innovations to the state variables are the relevant risk
factors.

It is important to specify a process for the time-se-
ries dynamics of the state variables in the model. A vector
autoregressive (VAR) approach, for example, specifies the
excessmarket return as the first element of a state vector zt.
The other elements of zt are state variables that proxy for
changes in the investment opportunity set. The assump-
tion is that the demeaned vector zt follows a first-order
VAR:

zt D Azt�1 C ut : (10)

The residuals in the vector ut are the innovations terms
which are the risk factors in Eq. (2). These innovations are
risk factors since they represent the surprise components
of the state variables that proxy for changes in the invest-
ment opportunity set.

The State Variables of Interest

For the empirical implementation of the model described
above, it is necessary to specify the identity of the state
variables. Petkova [31] chooses a set of state variables to
model the following aspects of the investment opportunity
set: the yield curve and the conditional distribution of asset
returns. In particular, she chooses the short-term Treasury
bill, the term spread, the aggregate dividend yield, and the
default spread.

The choice of these state variables is motivated as fol-
lows. The ICAPM dictates that the yield curve is an impor-
tant part of the investment opportunity set. Furthermore,
Long [28] points out that the yield curve is important in an
economy with a bond market. Therefore, the short-term
Treasury bill yield (RF) and the term spread (TERM) are
good candidates that capture variations in the level and the
slope of the yield curve. Litterman and Scheinkman [26]
show that the two most important factors driving the term
structure of interest rates are its level and its slope.

In addition to the yield curve, the conditional distribu-
tion of asset returns is a relevant part of the investment op-
portunity set facing investors in the ICAPM world. There
is growing evidence that the conditional distribution of
asset returns, as characterized by its mean and variance,
changes over time. The time-series literature has identified
variables that proxy for variation in the mean and variance
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of returns. The aggregate dividend yield (DIV), the de-
fault spread (DEF), and interest rates are among the most
common.2

The variables described above are good candidates for
state variable within the ICAPM. Merton [29] states that
stochastic interest rates are important for changing in-
vestment opportunities. In addition, the default spread,
the dividend yield, and interest rate variables have been
used as proxies for time-varying risk premia under chang-
ing investment opportunities. Therefore, all these variables
are likely to capture the hedging concerns of investors re-
lated the changes in interest rates and to variations in risk
premia.

As argued in the previous sections of this article, two
other variables proposed as candidates for state variables
within the ICAPM are the returns on the HML and SMB
portfolios. Fama and French [12] show that these factors
capture common variation in portfolio returns that is in-
dependent of the market and that carries a different risk
premium. The goal of the following section is to show that
the FF factors proxy for the state variables described above
that have been shown to track time-variation in themarket
risk premium and the yield curve.

Econometric Approach

First, a vector autoregressive (VAR) process for the vector
of state variables is specified. The first element of the vector
is the excess return on themarket, while the other elements
are DIV , TERM, DEF, RF, RHML, and RSMB, respectively.
For convenience, all variables in the state vector have been
demeaned. The first-order VAR is as follows:

8
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>>>>>>>>;

C ut (11)

where ut represents a vector of innovations for each ele-
ment in the state vector. From ut six surprise series can be
extracted, corresponding to the dividend yield, the term
spread, the default spread, the one-month T-bill yield, and
the FF factors. They are denoted as follows: uDIV , uTERM ,
uDEF , uRF , uHML, and uSMB, respectively. This VAR rep-

2The following is only a partial list of papers that document time-
variation in the excess market return and the variables they use:
Campbell [2], term spread; Campbell and Shiller [4], dividend yield;
Fama and Schwert [16], T-bill rate; Fama and French [10], default
spread.

resents a joint specification of the dynamics of all candi-
date state variables within the ICAPM. This specification
treats the FF factors as potential candidates for state vari-
ables that command separate risk premia from the other
variables.

The innovations derived from the VAR model are
risk factors in addition to the excess return of the mar-
ket portfolio. Asset’s exposures to these risk factors are
important determinants of average returns according to
the ICAPM. To test the ICAPM specification, the Fama–
MacBeth [15] cross-sectional method can be used as pre-
viously discussed. In the first pass of this method, a multi-
ple time-series regression is specified which provides esti-
mates of the assets’ loadings with respect to the market re-
turn and the innovations in the state variables. More pre-
cisely, the following time-series regression is examined for
each asset:

Ri;t D ˛iCˇi;MRM;tC(ˇi;ûDIV )ûDIV
t C(ˇi;ûTERM)û

TERM
t

C (ˇi;ûDEF)ûDEFt C (ˇi;ûRF )ûRFt C (ˇi;ûHML)ûHML
t

C (ˇi;û SMB )ûSMB
t C "i;t; for all i :

(12)

The û-terms represent the estimated surprises in the state
variables. Note that the innovations terms are generated
regressors and they appear on the right-hand side of the
equation. However, as pointed out by Pagan [30], the OLS
estimates of the parameters’ standard errors will still be
correct if the generated regressor represents the unantic-
ipated part of a certain variable. On the other hand, if the
û-terms are only noisy proxies for the true surprises in the
state variables, then the estimates of the factor loadings in
the above regression will be biased downwards. This will
likely bias the results against finding a relation between the
innovations and asset returns.

The second step of the Fama–MacBeth procedure in-
volves relating the average excess returns of all assets to
their exposures to the risk factors in the model. Therefore,
the following cross-sectional relation applies

Ri;t D �0 C �Mb̌i;M C (�ûDIV)b̌i;ûDIV C (�ûTERM)b̌i;ûTERM

C (�ûDEF)b̌i;ûDEF C (�ûRF )b̌i;ûRF C (�ûHML)b̌i;ûHML

C (�û SMB )b̌i;û SMB C ei;t; for all t :
(13)

Data, Time-Series Analysis, and Results

In this section, monthly data for the period from July of
1963 to December of 2001 is used. The state variables in
the context of the ICAPM are the dividend yield of the
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value-weightedmarket index (computed as the sumof div-
idends over the last 12 months, divided by the level of
the index), the difference between the yield of a 10-year
and a 1-year government bond (term spread), the differ-
ence between the yield of a long-term corporate Baa bond
and a long-term government bond (default spread), and
the one-month Treasury-bill yield. Data on bond yields
is taken from the FRED® database of the Federal Reserve
Bank of St. Louis. The T-bill yield and the term spread are
used to measure the level and the slope of the yield curve,
respectively.

VAR Estimation The state variables are the FF factors
and the four predictive variables described above. All of
them are included in a first-order VAR system. Camp-
bell [3] emphasizes that it is hard to interpret estimation
results for a VAR factor model unless the factors are or-
thogonalized and scaled in some way. In his paper the in-
novations to the state variables are orthogonal to the excess
market return and to labor income. Following Campbell,
the VAR system in Eq. (4) is triangularized in a similar
way: the innovation in the excess market return is unaf-
fected, the orthogonalized innovation in DIV is the com-
ponent of the original DIV innovation orthogonal to the
excess market return, and so on. The orthogonalized in-
novation to DIV is a change in the dividend/price ratio
with no change in the market return, therefore it can be
interpreted as a shock to the dividend. Similarly, shocks
to the term spread, the default spread, the short-term rate,
and the FF factors are orthogonal to the contemporaneous
stock market return. As in Campbell [3], the innovations
are scaled to have the same variance as the innovation in
the excess market return.

It is interesting to note that the returns on the FF
factors are very highly correlated with their respective
innovation series. For example, the correlation between
RHML;t and ûHML

t is 0.90, while the correlation between
RSMB;t and ûSMB

t is 0.92. Therefore, the returns on the
HML and SMB portfolios are good proxies for the inno-
vations associated with those variables.

Relation Between RHML and RSMB and the VAR Innova-
tions As a first step towards testing whether the FF fac-
tors proxy for innovations in state variables that track in-
vestment opportunities, the joint distribution of RHML and
RSMB and innovations to DIV , TERM, DEF, and RF is ex-
amined. The following time-series regression is analyzed

ût D c0 C c1RM;t C c2RHML;t C c3RSMB;t C "t (14)

for each series of innovations in the state variables. The re-
sults for these regressions are presented in Table 3, with

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 3
Time-Series Regressions Showing the Contemporaneous Rela-
tions Between Innovations in State Variables and the Fama–
French Factors
This table presents time-series regressions of innovations in the
dividend yield (ûDIVt ), term spread (ûTERMt ), default spread (ûDEFt ),
and one-month T-bill yield (ûRFt ) on the excessmarket return, RM,
and the Fama–French factors RHML and RSMB. The innovations to
the state variables are computed in a VAR system. The t-statistics
are below the coefficients and are corrected for heteroscedas-
ticity and autocorrelation using the Newey–West estimator with
five lags. The Adjusted R2 is reported in percentage form. The
sample period is from July 1963 to December 2001

Regression: ût D c0 C c1RM;t C c2RHML;t C c3RSMB;t C "t

Dep. Variable c0 c1 c2 c3 Adj. R2

ûDIVt 0.00 �0.08 �0.30 �0.01 3.00
0.85 �0.70 �2.43 �0.09

ûTERMt �0.00 0.06 0.24 0.03 2.00
�0.56 0.75 2.30 0.59

ûDEFt �0.00 0.07 0.17 �0.12 2.00
�0.38 1.11 2.10 �1.92

ûRFt 0.00 �0.04 �0.13 0.01 0.00
0.36 �0.51 �1.36 0.14

the corresponding t-statistics, below the coefficients, cor-
rected for heteroscedasticity and autocorrelation. Innova-
tions in the dividend yield, ûDIV

t , covary negatively and
significantly with the return on HML. In addition, ûTERMt
covaries positively and significantly with the HML return.
These results are robust to the presence of the market fac-
tor in the regression. The return on the HML portfolio
covaries positively and significantly with ûDEF

t , while the
return on the SMB factor covaries negatively with ûDEF

t
(the corresponding t-statistic is marginally significant).
The last regression in Table 3 indicates that the FF factors
are not significant determinants of innovations in the T-
bill yield. The results in the table remain unchanged if the
independent variables in the equation above are the inno-
vations to RHML and RSMB derived from the VAR system.
The R-squares in the regressions reported in Table 3 are
rather low. This does not imply, however, that the innova-
tions in the state variables cannot potentially price assets
as well as the FF factors. It could be the case that only the
information in the FF factors correlated with the state vari-
ables is relevant for the pricing of risky assets. A similar
point is made by Vassalou [34].

As pointed out by FF [10], the values of the term spread
signal that expected market returns are low during expan-
sions and high during recessions. In addition, FF docu-
ment that the term spread very closely tracks the short-
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term fluctuations in the business cycle. Therefore, positive
shocks to the term premium are associated with bad times
in terms of business conditions, while negative shocks are
associated with good times. In light of the results docu-
mented by Petkova and Zhang [32], that value stocks are
riskier than growth stocks in bad times and less risky dur-
ing good times, the relation between HML and shocks to
the term spread seems natural.

Another interpretation of the relation between shocks
to the term spread and theHML portfolio is in the context
of cash flow maturities of assets. This point is discussed by
Cornell [8] and Campbell and Vuolteenaho [5]. The argu-
ment is that growth stocks are high-duration assets, which
makes them similar to long-term bonds andmore sensitive
to innovations in the long end of the term structure. Simi-
larly, value stocks have lower duration than growth stocks,
which makes them similar to short-term bonds and more
sensitive to shocks to the short end of the yield curve.

Chan and Chen [6] have argued that small firms exam-
ined in the literature tend to be marginal firms, that is, they
generally have lost market value due to poor performance,
they are likely to have high financial leverage and cash flow
problems, and they are less likely to survive poor economic
conditions. In light of this argument, it is reasonable to as-
sume that small firms will be more sensitive to news about
the state of the business cycle. Therefore, it is puzzling that
I find no significant relation between SMB and surprises to
the term spread. Innovations in the term spread seem to be
mostly related to HML. This observation suggests that the
HML portfolio might represent risk related to cash flow
maturity, captured by unexpected movements in the slope
of the term structure.

Innovations in default spread, uDEF
t , stand for changes

in forecasts about expected market returns and changes
in forecasts about default spread. FF [10] show that the
default premium tracks time variation in expected re-
turns that tends to persist beyond the short-term fluctu-
ations in the business cycle. A possible explanation for the
negative relation between SMB and shocks to the default
spread could be that bigger stocks are able to track long-
run trends in the business cycle better than the smaller
stocks. The result that HML is also related to shocks in
the default spread is consistent with the interpretation of
HML as a measure of distress risk. The distress risk in-
terpretation of the book-to-market effect is advocated by
FF [11,12,13,14] and Chen and Zhang [7], among others.

In summary, the empirical literature has documented
that both value and small stocks tend to be under distress,
with high leverage and cash flow uncertainty. The results
in this study suggest that the book-to-market factor might
be related to asset duration risk, measured by the slope of

the term structure, while the size factor might be related to
asset distress risk, measured by the default premium.

It is reasonable to test whether the significant relation
between the state variables surprises and the FF factors
gives rise to the significant explanatory power ofHML and
SMB in the cross-section of returns. The next section ex-
amines whetherHML and SMB remain significant risk fac-
tors in the presence of innovations to the other state vari-
ables. The results from the cross-sectional regressions sug-
gest that HML and SMB lose their explanatory power for
the cross-section of returns once accounting for the other
variables. This supports an ICAPM explanation behind the
empirical success of the FF three-factor model.

Cross-Sectional Regressions

Incremental Explanatory Power of the Fama–French
Factors This section examines the pricing performance
of the full set of state variables considered before over
the period from July 1963 to December 2001. The full set
of state variables consists of the dividend yield, the term
spread, the default spread, the short-term T-bill yield, and
the FF factors. The innovations to these state variables de-
rived from a VAR system are risk factors in the ICAPM
model. The objective is to test whether an asset’s loadings
with respect to these risk factors are important determi-
nants of its average return.

The first specification is

Ri;t D �0 C �MKTb̌i;MKT C (�ûDIV)b̌i;ûDIV

C (�ûTERM)b̌i;ûTERM C (�ûDEF)b̌i;ûDEF

C (�ûRF )b̌i;ûRF C (�ûHML )b̌i;ûHML

C (�ûSMB)b̌i;ûSMB C ei;t ; (15)

where the b̌ terms stand for exposures to the correspond-
ing factor, while the � terms stand for the reward for bear-
ing the risk of that factor. The b̌ terms are the independent
variables in the regression, while the average excess returns
of the assets are the dependent variables. If loadings with
respect to innovations in a state variable are important de-
terminants of average returns, then there should be a sig-
nificant price of risk associated with that state variable.

The results are reported in Table 4. The table shows
that assets’ exposures to innovations in RHML and RSMB
are not significant variables in the cross-section in the
presence of betas with respect to surprises in the other
state variables. The corresponding t-statistics are 1.40 and
1.56, respectively, under the errors-in-variables correc-
tion. Therefore, based on the results presented in Table 4,
the hypothesis that innovations in the dividend yield, the
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 4
Cross-Sectional Regressions Showing the Incremental Explanatory Power of the Fama–French Factor Loadings
This table presents Fama–MacBeth cross-sectional regressions using the average excess returns on 25 portfolios sorted by book-
to-market and size. The full-sample factor loadings, which are the independent variables in the regressions, are computed in one
multiple time-series regression. The coefficients are expressed as percentage per month. The table presents results for the model
including the excess market return, RM , and innovations in the dividend yield, term spread, default spread, one-month T-bill yield,
and the Fama–French factors HML and SMB. The Adjusted R2 follows Jagannathan and Wang [18] and is reported in percentage
form. The first set of t-statistics, indicated by FM t-stat, stands for the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33]. The table examines the sample period from July 1963 to December
2001

The Model with Innovations in All State Variables
�0 �M �ûDIV �ûTERM �ûDEF �ûRF �ûHML �ûSMB Adj. R2

Estimate 1.11 –0.57 –0.83 3.87 0.37 –2.90 0.42 0.41 77.26
FM t-stat 3.29 –1.45 –0.94 3.53 0.42 –3.33 1.62 1.75
SH t-stat 2.36 –1.10 –0.69 2.56 0.31 –2.44 1.40 1.56

term spread, the default spread, and the short-term T-bill
span the information contained in the FF factors cannot
be rejected.

AModel Based on RM, and Innovations in DIV , TERM,
DEF, andRF This part examines separately the set of in-
novations in the variables associated with time-series pre-
dictability: the dividend yield, the term spread, the default
spread, and the short-term T-bill. The model specification
is as follows

Ri;t D ˛i C ˇi;MRM;t C (ˇi;ûDIV)ûDIV
t

C (ˇi;ûTERM)û
TERM
t C (ˇi;ûDEF)ûDEFt

C (ˇi;ûRF )ûRFt C "i;t; for all i (16)

Ri;t D�0 C �Mb̌i;M C (�ûDIV)b̌i;ûDIV C (�ûTERM)b̌i;ûTERM

C (�ûDEF)b̌i;ûDEF C (�ûRF )b̌i;ûRF C e; for all t
(17)

which corresponds to a model in which the relevant risk
factors are innovations to predictive variables. The objec-
tive is to compare the pricing performance of this model
with that of the Fama–French model for the cross-sec-
tion of returns sorted by book-to-market and size. The
specification is motivated by the previous observation that
HML and SMB do not add explanatory power to the
set of state variables that are associated with time-series
predictability.

Table 5 report the estimates of the factor loadings com-
puted in the first-pass time-series regressions defined in
Eq. (16). It also presents joint tests of the significance of
the corresponding loadings, computed from a SUR sys-
tem. This is done in order to show that the innovations

factors are relevant in the sense that the 25 portfolios load
significantly on them. A similar analysis was performed
on the Fama–French model in Sect. “The Fama–French
Model as a Linear Beta Pricing Model”.

An F-test implies that the 25 loadings on innovations
to the term spread are jointly significant, with the cor-
responding p-value being 0.47%. Furthermore, portfolios’
loadings on ûTERMt are related to book-to-market: within
each size quintile, the loadings increase monotonically
from lower to higher book-to-market quintiles. In fact,
the portfolios within the lowest book-to-market quintile
have negative sensitivities with respect to ûTERMt , while
the portfolios within the highest book-to-market quintile
have positive loadings on ûTERMt . This pattern resembles
very much the one observed in Table 1 for the loadings on
RHML.

Similarly, loadings on shocks to default spread are
jointly significant in Table 5, with the correspond-
ing p-value being 0.24%.Moreover, the slopes on ûDEF

t are
systematically related to size. Within each book-to-market
quintile, the loadings increase almost monotonically from
negative values for the smaller size quintiles to positive val-
ues for the larger size quintiles. This pattern closely resem-
bles the mirror image of the one observed in Table 1 for
the loadings on RSMB. The slopes on dividend yield and
T-bill innovations do not exhibit any systematic patterns
related to size or book-to-market. However, both of these
are jointly significant.

Note that the R2s in the time-series regressions with
the innovations factors in Table 5 are smaller than the ones
in the regressions with the FF factors in Table 1. This indi-
cates that potential errors-in-variables problems that arise
in measuring the factor loadings will be more serious in
the case of the innovations terms. Therefore, the results
will be potentially biased against finding significant factor
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Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model, Table 5
Loadings on RM, ûDIVt , ûTERMt , ûDEFt , and ûRFt from Time-Series Regressions
This table reports loadings on the excessmarket return, RM, and innovations in the dividend yield (ûDIVt ), term spread (ûTERMt ), default
spread (ûDEFt ), and short-term T-bill (ûRFt ) computed in time-series regressions for 25 portfolios sorted by size and book-to-market.
The corresponding t-statistics are also reported and are corrected for autocorrelation and heteroscedasticity using the Newey–West
estimator with five lags. The sample period is from July 1963 to December 2001. The last column reports F-statistics and their corre-
sponding p-values from an SUR system, testing the joint significance of the corresponding loadings. The p-values are in percentage
form. R2s from each time-series regression are reported in percentage form

Regression: Ri;t D ˛i C ˇi;MRM;t C ˇi;ûDIV û
DIV
t C ˇi;ûTERM û

TERM
t C ˇi;ûDEF û

DEF
t C ˇi;ûRF û

RF
t C "i;t

Low 2 3 4 High Low 2 3 4 High
ˇMKT tˇMKT F

Small 1.44 1.23 1.09 1.01 1.02 24.20 22.74 20.76 19.57 18.87 > 100
2 1.44 1.18 1.04 0.98 1.05 31.33 25.11 22.63 21.90 18.76 < 0.01
3 1.38 1.12 0.98 0.90 0.98 39.96 32.34 22.52 21.58 17.66
4 1.27 1.08 0.97 0.90 0.99 45.46 29.07 24.02 23.95 19.60
Large 1.01 0.95 0.85 0.78 0.78 42.69 36.55 26.89 20.47 15.34

ˇûDIV tˇûDIV F

Small 4.75 0.43 –5.02 –5.61 –7.88 0.76 0.08 –0.89 –1.10 –1.44 2.33
2 3.38 –4.01 –7.66 –6.76 –6.51 0.76 –0.79 –1.55 –1.35 –1.09 0.02
3 7.45 –1.30 –5.91 –8.27 –9.18 2.34 –0.35 –1.16 –1.53 –1.36
4 8.65 –5.83 –6.17 –8.18 –11.81 2.90 –1.29 –1.21 –1.72 –2.04
Large –0.78 –3.49 –1.73 –9.69 –9.50 –0.29 –1.18 –0.47 –1.83 –1.49

ˇûTERM tˇûTERM F

Small 1.51 1.04 1.69 2.82 8.68 0.26 0.26 0.47 0.79 2.24 1.89
2 –8.21 –2.73 –0.19 1.36 5.16 –1.87 –0.75 0.06 0.46 1.44 0.47
3 –6.34 –3.52 –1.72 2.08 4.39 –1.77 –1.17 –0.55 0.55 1.18
4 –0.73 –1.51 0.21 0.02 2.13 –0.26 –0.59 0.06 0.01 0.54
Large –5.98 –3.26 0.78 –0.90 2.90 –2.22 –1.37 0.31 –0.26 0.74

ˇûDEF tˇûDEF F

Small –15.45 –14.54 –6.86 –4.79 –8.58 –2.27 –2.17 –1.39 –1.09 –1.68 1.99
2 –10.03 –5.90 –4.78 0.82 –2.20 –2.04 –1.62 –1.37 0.22 –0.49 0.24
3 –11.17 0.22 1.73 4.03 0.81 –2.75 0.08 0.49 1.15 0.18
4 –5.80 4.81 4.80 8.03 1.08 –2.10 1.92 1.44 2.50 0.25
Large –2.45 3.99 9.12 7.25 2.56 –0.96 1.91 3.85 1.91 0.63

ˇûRF tˇûRF F

Small 4.07 –2.58 0.07 1.03 2.77 0.77 –0.50 0.01 0.22 0.56 1.76
2 –4.37 –5.20 –6.25 –4.57 0.97 –1.00 –1.19 –1.60 –1.16 0.20 1.08
3 –7.63 –4.40 –6.53 –4.08 0.71 –2.29 –1.38 –2.07 –1.09 0.15
4 –3.43 0.47 –2.04 –5.74 –3.71 –1.12 0.16 –0.69 –1.61 –0.90
Large –3.55 –0.59 4.81 –0.89 0.30 –1.14 –0.22 1.41 –0.25 0.06

R2

61.51 60.92 63.41 62.41 59.93
73.93 73.95 74.47 71.88 67.96
79.81 81.80 77.54 73.58 68.96
84.99 86.05 80.32 77.51 69.42
87.65 86.11 77.89 67.67 55.88

loadings on the shocks to the predictive variables. Kan and
Zhang [20] emphasize that checking the joint significance
of the assets’ factor loadings is an important step in detect-
ing useless factors in the cross-section of returns.

Table 6 contains the results for Eq. (17) which corre-
spond to the second pass of the Fama–MacBeth method.
The results reveal that the explanatory power of this model
is very close to the one for the Fama–French model re-
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Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Table 6
Cross-Sectional Regressions with Loadings on Innovations in
State Variables
This table presents Fama–MacBeth cross-sectional regressions
using the average excess returns on 25 portfolios sorted by
book-to-market and size. The full-sample factor loadings, which
are the independent variables in the regressions, are computed
in one multiple time-series regression. The coefficients are ex-
pressed as percentage per month. The Adjusted R2 follows Ja-
gannathan and Wang [18] and is reported in percentage form.
The first set of t-statistics, indicated by FM t-stat, stands for
the Fama–MacBeth estimate. The second set, indicated by SH
t-stat, adjusts for errors-in-variables and follows Shanken [33].
The sample period is from July 1963 to December 2001

The Model with RM and Innovations in DIV , TERM, DEF, and RF
�0 �M �ûDIV �ûTERM �ûDEF �ûRF Adj. R2

Estimate 0.64 –0.07 –1.39 4.89 –0.54 –3.22 77.00
FM t-stat 1.74 –0.16 –1.56 4.44 –0.58 –3.79
SH t-stat 1.08 –0.11 –0.99 2.79 –0.37 –2.40

ported previously in Table 2. Figure 2 plots the fitted ver-
sus the realized average returns from the model. It can be
seen form the graph that the model based on innovation
in predictive variables goes a long way toward explaining
the value effect: in general, the fitted expected returns on
value portfolios (bigger second digit) are higher than the
fitted expected returns on growth portfolios (lower second
digit). This is consistent with the data on realized average
returns for these portfolios. Further, the model with RM ,
ûDIV , ûTERM , ûDEF , and ûRF is more successful at pricing
the portfolios that are challenging for the Fama–French
model. The realized returns on growth portfolios within
the smallest and largest size groups and the value portfo-
lios within the largest size groups are brought closer to the
45-degree line under the model with the four innovations
factors.

In summary, this section has shown that the per-
formance of the model based on innovation in predic-
tive variables is very close to the performance of the
Fama–French model in the cross-section of average re-
turns sorted by size and book-to-market. This suggest that
the Fama–French factors HML and SMB might proxy for
fundamental state variables that describe variation in in-
vestment opportunities over time.

Other Risk-Based Interpretations

Liew and Vassalou [25] show that there is a relation be-
tween the Fama–French portfolios HML and SMB and
macroeconomic events. They find that not only in the
US but also in several other countries, the corresponding

Financial Economics, The Cross-Section of Stock Returns and the
Fama-French Three Factor Model, Figure 2
Fitted Expected Returns vs. Average Realized Returns for
1963:07-2001:12.
This figure shows realized average returns (%) on the horizon-
tal axis and fitted expected returns (%) on the vertical axis for 25
size and book-to-market sorted portfolios. Each two-digit num-
ber represents a separate portfolio. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the
second digit refers to the book-to-market quintile (1 being the
lowest and 5 the highest). For each portfolio, the realized aver-
age return is the time-series average of the portfolio return and
the fitted expected return is the fitted value for the expected re-
turn from the corresponding model. The straight line is the 45-
degree line from the origin. The Model with the Excess Market
Return and Innovations in the Dividend Yield, Term Spread, De-
fault Spread, and Short-Term T-bill

HML and SMB portfolios contain information about fu-
ture GDP growth. Therefore, the authors conclude that
the size and book-to-market factors are related to future
macroeconomic growth. This evidence is consistent with
interpreting theHML and SMB factors as proxies for busi-
ness cycle risk.

Other studies try to relate the difference in average re-
turns between value and growth portfolios to the time-
varying nature of the riskiness of those portfolios. Namely,
if value stocks are riskier than growth stocks during bad
economic times and if the price of bearing risk is higher
during those times, then it follows that value stocks should
earn higher average returns than growth stocks. Lettau and
Ludvigson [24] document that HML is indeed sensitive to
bad news in bad macroeconomic times.

Petkova and Zhang [32] is another study that looks are
the time-varying risk of value and growth portfolios. They
find that themarket risk of value stocks is high in bad times
when the expected premium for risk is high and it is low
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in good times when the expected premium for risk is low.
What might lead to this time-varying of value and growth
stocks? Zhang [35] suggest that the reason might be irre-
versible investment. He notes that firms with high book-
to-market ratios on average will have larger amounts of
tangible capital. In addition, it is more costly for firms to
reduce than to expand capital. In bad times, firms want
to scale down, especially value firms that are less produc-
tive than growth firms (Fama and French [13]). Because
scaling down is more difficult, value firms are more ad-
versely affected by economic downturns. In good times,
growth firms face less flexibility because they tend to in-
vest more. Expanding is less urgent for value firms be-
cause their previously unproductive assets have become
more productive. In sum, costly reversibility causes value
firms to have higher (lower) betas than growth firms in bad
(good) times and this contributes to the return differential
between these two classes of stocks.

Future Directions

The Fama–French model states that asset returns are
driven by three market-wide factors: the excess return on
the market portfolio, and the returns on two portfolios re-
lated to size (SMB) and book-to-market (HML). TheHML
and SMB portfolios capture the empirical observation that
value firms earn higher average returns than growth firms,
and small firms earn higher average returns than large
firms. The Fama–Frenchmodel has been very successful at
explaining average stock returns, but the exact economic
interpretation of theHML and SMB portfolios has been an
issue of debate.

This article examines the risk-based explanation be-
hind the empirical success of the Fama–French model
and suggests that the value and size premia arise due
to differences in exposure to systematic sources of risk.
As mentioned in the introduction, several authors (e. g.,
Lakonishok, Shleifer, Vishny [22], La Porta, Lakonishok,
Shleifer, Vishny [23]), however, claim that the value pre-
mium results from irrationality on the side of investors.
Namely, investors tend to over-extrapolate recent stock
performance: they overvalue the stocks of growth firms
and undervalue the stocks of value firms. When the mar-
ket realizes its mistake, the prices of the former fall, while
the prices of the latter rise, resulting in the value premium.

The Fama–French model provides a useful perfor-
mance benchmark relative to a set of market-wide factors.
The results in this article suggest that the Fama–French
factors proxy for systematic sources of risk that capture
time variation in investment opportunities. However, the
debate about the economic interpretation behind the size

and value premia is still not settled. Whether they arise as
a result of rational compensation for risk or irrational in-
vestor behavior is still a matter of controversy.
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Glossary

Leptokurtosis A distribution is leptokurtic if it is more
peaked in the center and thicker tailed than the nor-
mal distribution with the samemean and variance. Oc-
casionally, leptokurtosis is also identified with a mo-
ment-based kurtosis measure larger than three, see
Sect. “Introduction”.

Return Let St be the price of a financial asset at time t.
Then the continuous return, rt, is rt D log (St/St�1).
The discrete return, Rt , is Rt D St/St�1 � 1. Both are

rather similar if �0:15 < Rt < 0:15, because rt D
log(1C Rt). See Sect. “Introduction”.

Tail The (upper) tail, denoted by F̄(x) D P (X > x),
characterizes the probability that a random variable X
exceeds a certain “large” threshold x. For analytical
purposes, “large” is often translated with “as x !1”.
For financial returns, a daily change of 5% is already
infinitely large. A Gaussian model essentially excludes
such an event.

Tail index The tail index, or tail exponent, ˛, character-
izes the rate of tail decay if the tail goes to zero, in
essence, like a power function, i. e., F̄(x) D x�˛L (x),
where L is slowly varying. Moments of order lower
(higher) than ˛ are (in)finite.

Definition of the Subject

Have a look at Fig. 1. The top plot shows the daily percent-
age changes, or returns, of the S&P500 index ranging from
January 2, 1985 to December 29, 2006, a total of 5,550 daily
observations. We will use this data set throughout the arti-
cle to illustrate some of the concepts and models to be dis-
cussed. Two observations are immediate. The first is that
both small and large changes come clustered, i. e., there are
periods of low and high volatility. The second is that, from
time to time, we observe rather large changes which may
be hard to reconcile with the standard distributional as-
sumption in statistics and econometrics, that is, normal-
ity. The most outstanding return certainly occurred on
October 19, 1987, the “Black Monday”, where the index
lost more than 20% of its value, but the phenomenon is
chronic. For example, if we fit a normal distribution to the
data, the resulting model predicts that we observe an ab-
solute daily change larger than 5% once in approximately
1,860 years, whereas we actually encountered that 13 times
during our 22-year sample period. This suggests that, com-
pared to the normal distribution, the distribution of the
returns is fat-tailed, i. e., the probability of large losses and
gains is much higher than would be implied by a time-
invariant unconditional Gaussian distribution. The latter
is obviously not suitable for describing the booms, busts,
bubbles, and bursts of activity which characterize financial
markets, and which are apparent in Fig. 1.

The two aforementioned phenomena, i. e., volatility
clustering and fat tails, have been detected in almost every
financial return series that was subject to statistical anal-
ysis since the publication of Mandelbrot’s [155] seminal
study of cotton price changes, and they are of paramount
importance for any individual or institution engaging in
the financial markets, as well as for financial economists
trying to understand their mode of operation. For exam-
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Financial Economics, Fat-Tailed Distributions, Figure 1
The top plot shows the S&P500 percentage returns, rt , from January 1985 to December 2006, i. e., rt D 100� log(St/St�1), where St
is the index level at time t. The left plot of the middle panel shows a nonparametric density estimate (solid), along with the fitted
normal density (dotted); the right graph is similar but shows the respective log-densities in order to better visualize the tail regions.
The bottom left plot represents a Hill plot for the S&P500 returns, i. e., it displays ˆ̨ k;n defined in (11) for k � 500. The bottom right
plot shows the complementary cdf, F̄(x), on a log-log scale, see Sect. “Empirical Evidence About the Tails” for discussion

ple, investors holding significant portions of their wealth
in risky assets need a realistic assessment of the likelihood
of severe losses. Similarly, economists trying to learn about
the relation between risk and return, the pricing of finan-

cial derivatives, such as options, and the inherent dynam-
ics of financial markets, can only benefit from building
their models on adequate assumptions about the stochas-
tic properties of the variables under study, and they have
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to reconcile the predictions of their models with the actual
facts.

This article reviews some of the most important con-
cepts and distributional models that are used in empiri-
cal finance to capture the (almost) ubiquitous stochastic
properties of returns as indicated above. Section “Intro-
duction” defines in a somewhat more precise manner than
above the central variable of interest, the return of a finan-
cial asset, and gives a brief account of the early history of
the problem. Section “Defining Fat-Tailedness” discusses
various operationalizations of the term “fat-tailedness”,
and Sect. “Empirical Evidence About the Tails” summa-
rizes what is or is at least widely believed to be known
about the tail characteristics of typical return distribu-
tions. Popular parametric distributional models are dis-
cussed in Sect. “Some Specific Distributions”. The alpha
stable model as the archetype of a fat-tailed distribution
in finance is considered in detail, as is the generalized hy-
perbolic distribution, which provides a convenient frame-
work for discussing, as special or limiting cases, many of
the important distributions employed in the literature. An
empirical comparison using the S&P500 returns is also in-
cluded. In Sect. “Volatility Clustering and Fat Tails”, the
relation between the two “stylized facts” mentioned above,
i. e., clusters of volatility and fatness of the tails, is high-
lighted, where we concentrate on the GARCH approach,
which has gained outstanding popularity among finan-
cial econometricians. This model has the intriguing prop-
erty of producing fat-tailed marginal distributions even
with light-tailed innovation processes, thus emphasizing
the role of the market dynamics. In Sect. “Application to
Value-at-Risk”, we compare both the unconditional para-
metric distributional models introduced in Sect. “Some
Specific Distributions” as well as the GARCH model of
Sect. “Volatility Clustering and Fat Tails” on an economic
basis by evaluating their ability to accurately measure the
Value-at-Risk, which is an important tool in risk man-
agement. Finally, Sect. “Future Directions” identifies some
open issues.

Introduction

To fix notation, let St be the price of an asset at time t, e. g.,
a stock, a market index, or an exchange rate. The continu-
ously compounded or log return from time t to time tC
t,
rt;tC�t , is then defined as

rt;tC�t D log StC�t � log St : (1)

Often the quantity defined in (1) is also multiplied by 100,
so that it can be interpreted in terms of percentage returns,
see Fig. 1.Moreover, in applications,
t is usually set equal

to one and represents the horizon over which the returns
are calculated, e. g., a day, week, or month. In this case, we
drop the first subscript and define rt :D log St � log St�1.
The log returns (1) can be additively aggregated over time,
i. e.,

rt;tC� D
�X

iD1

rtCi : (2)

Empirical work on the distribution of financial returns is
usually based on log returns. In some applications a use-
ful fact is that, over short intervals of time, when returns
tend to be small, (1) can also serve as a reasonable approx-
imation to the discrete return, Rt;tC�t :D StC�t/St � 1 D
exp(rt;tC�t)�1. For further discussion of the relationship
between continuous and discrete returns and their respec-
tive advantages and disadvantages, see, e. g., [46,76].

The seminal work ofMandelbrot [155], to be discussed
in Subsect. “Alpha Stable and Related Distributions”, is
often viewed as the beginning of modern empirical fi-
nance. As reported in [74], “[p]rior to the work of Man-
delbrot the usual assumption . . . was that the distribution
of price changes in a speculative series is approximately
Gaussian or normal”. The rationale behind this prevalent
view, which was explicitly put forward as early as 1900
by Bachelier [14], was clearly set out in [178]: If the log-
price changes (1) from transaction to transaction are inde-
pendently and identically distributed with finite variance,
and if the number of transactions is fairly uniformly dis-
tributed in time, then (2) along with the central limit theo-
rem (CLT) implies that the return distribution over longer
intervals, such as a day, a week, or a month, approaches
a Gaussian shape.

However, it is now generally acknowledged that the
distribution of financial returns over horizons shorter than
a month is not well described by a normal distribution. In
particular, the empirical return distributions, while uni-
modal and approximately symmetric, are typically found
to exhibit considerable leptokurtosis, i. e., they are more
peaked in the center and have fatter tails than the Gaussian
with the same variance. Although this has been occasion-
ally observed in the pre-Mandelbrot literature (e. g., [6]),
the first systematic account of this phenomenon appeared
in [155] and the follow-up papers by Fama [74,75] and
Mandelbrot [156], and it was consistently confirmed since
then. The typical shape of the return distribution, as com-
pared to a fitted Gaussian, is illustrated in the middle panel
of Fig. 1 for the S&P500 index returns, where a nonpara-
metric kernel density estimator (e. g., [198]) is superim-
posed on the fitted Gaussian curve (dashed line). Interest-
ingly, this pattern has been detected not only for modern
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financial markets but also for those of the eighteenth cen-
tury [103].

The (location and scale-free) standardized fourth mo-
ment, or coefficient of kurtosis,

K [X] D
E
�
(X � �)4

�

�4
; (3)

where � and � are the mean and the standard deviation
of the random variable (rv) X, respectively, is sometimes
used to assess the degree of leptokurtosis of a given dis-
tribution. For the normal distribution,K D 3, andK > 3,
referred to as excess kurtosis, is taken as an indicator of
a leptokurtic shape (e. g., [164], p. 429). For example, the
sample analogue of (3) for the S&P500 returns shown in
Fig. 1 is 47.9, indicating very strong excess kurtosis. A for-
mal test could be conducted using the fact that, under nor-
mality, the sample kurtosis is asymptotically normal with
mean 3 and standard deviation

p
24/T (T being the sam-

ple size), but the result can be anticipated.
As is well-known, however, such moment-based sum-

mary measures have to be interpreted with care, because
a particular moment need not be very informative about
a density’s shape. We know from Finucan [82] that if two
symmetric densities, f and g, have common mean and
variance and finite fourth moment, and if g is more peaked
and has thicker tails than f , then the fourth moment (and
hence K) is greater for g than for f , provided the densi-
ties cross exactly twice on both sides of the mean. How-
ever, the converse of this statement is, of course, not true,
and a couple of (mostly somewhat artificial) counterexam-
ples can be found in [16,68,121]. [158] provides some in-
tuition by relating density crossings to moment crossings.
For example, (only) if the densities cross more than four
times, it may happen that the fourth moment is greater for
f , but the sixth and all higher moments are greater for g,
reflecting the thicker tails of the latter. Nevertheless, Fin-
ucan’s result, along with his (in some respects justified)
hope that we can view “this pattern as the common expla-
nation of a high observed kurtosis”, may serve to argue for
a certain degree of usefulness of the kurtosis measure (3),
provided the fourth moment is assumed to be finite. How-
ever, a nonparametric density estimate will in any case be
more informative. Note that the density crossing condi-
tion in Finucan’s theorem is satisfied for the S&P500 re-
turns in Fig. 1.

Defining Fat-Tailedness

The notion of leptokurtosis as discussed so far is rather
vague, and both financial market researchers as well as
practitioners, such as risk managers, are interested in

a more precise description of the tail behavior of financial
variables, i. e., the laws governing the probability of large
gains and losses. To this end, we define the upper tail of
the distribution of a rv X as

F̄(x) D P (X > x) D 1 � F(x) ; (4)

where F is the cumulative distribution function (cdf) of X.
Consideration of the upper tail is the standard convention
in the literature, but it is clear that everything could be
phrased just as well in terms of the lower tail.

We are interested in the behavior of (4) as x be-
comes large. For our benchmark, i. e., the normal distri-
bution with (standardized) density (pdf) �(x) D (2�)�1/2

exp(�x2/2), we have (cf. p. 131 in [79])

F̄(x) Š
1

p
2�x

exp
�
�
x2

2

�
D
�(x)
x

as x !1 ; (5)

where the notation f (x) Š g(x) as x !1 means that
limx!1 f (x)/g(x) D 1. Thus, the tails of the normal tend
to zero faster than exponentially, establishing its very light
tails.

To appreciate the difference between the general con-
cept of leptokurtosis and the approach that focuses on the
tails, consider the class of finite normal mixtures as dis-
cussed in Subsect. “Finite Mixtures of Normal Distribu-
tions”. These are leptokurtic in the sense of peakedness
and tailedness (compared to the normal), but are light-
tailed according to the tail-based perspective.

While it is universally accepted in the literature that
the Gaussian is too light-tailed to be an appropriate model
for the distribution of financial returns, there is no com-
plete agreementwith respect to the actual shape of the tails.
This is not surprising because we cannot reasonably ex-
pect to find a model that accurately fits all markets at any
time and place. However, the current mainstream opinion
is that the probability for the occurrence of large (positive
and negative) returns can often appropriately be described
by Pareto-type tails. Such tail behavior is also frequently
adopted as the definition of fat-tailedness per se, but the
terminology in the literature is by no means unique.

A distribution has Pareto-type tails if they decay es-
sentially like a power function as x becomes large, i. e., F̄
is regularly varying (at infinity) with index �˛ (written
F̄ 2 RV�˛), meaning that

F̄(x) D x�˛L(x) ; ˛ > 0 ; (6)

where L > 0 is a slowly varying function, which can be in-
terpreted as “slower than any power function” (see [34,
188,195] for a technical treatment of regular variation).
The defining property of a slowly varying function is
limx!1 L(tx)/L(x) D 1 for any t > 0, and the aforemen-
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tioned interpretation follows from the fact that, for any
� > 0, we have (cf. [195], p. 18)

lim
x!1

x�L(x) D 1 ; lim
x!1

x��L(x) D 0 : (7)

Thus, for large x, the parameter ˛ in (6), called the tail
index or tail exponent, controls the rate of tail decay and
provides a measure for the fatness of the tails.

Typical examples of slowly varying functions include
L(x) D c, a constant, L(x) D c C o(1), or L(x) D (log x)k ,
x > 1, k 2 R. The first case corresponds to strict Pareto
tails, while in the second the tails are asymptotically Pare-
tian in the sense that F̄(x) Š cx�˛ , which includes as im-
portant examples in finance the (non-normal) stable Pare-
tian (see (13) in Subsect. “Alpha Stable and Related Dis-
tributions”) and the Student’s t distribution considered in
Sect. “The Student t Distribution”, where the tail index
coincides with the characteristic exponent and the num-
ber of degrees of freedom, respectively. As an example
for both, the Cauchy distribution with density f (x) D
[�(1 C x2)]�1 has cdf F(x) D 0:5 C ��1 arctan(x). As
arctan(x) D

P1
0 (�1)i x2iC1/(2i C 1) for jxj < 1, and

arctan(x) D �/2� arctan(1/x) for x > 0, we have F̄(x) Š
(�x)�1.

For the distributions mentioned in the previous para-
graph, it is known that their moments exist only up to
(and excluding) their tail indices, ˛. This is generally true
for rvs with regularly varying tails and follows from (7)
along with the well-known connection between moments
and tail probabilities, i. e., for a non-negative rv X, and
r > 0, E [Xr] D r

R1
0 xr�1F̄(x)dx (cf. [95], p. 75). The

only possible minor variation is that, depending on L,
E
�
X˛
�
may be finite. For example, a rv X with tail

F̄(x) D cx�1(log x)�2 has finite mean. The property that
moments greater than ˛ do not exist provides further in-
tuition for ˛ as a measure of tail-fatness.

As indicated above, there is no universal agreement in
the literature with respect to the definition of fat-tailed-
ness. For example, some authors (e. g., [72,196]) empha-
size the class of subexponential distributions, which are (al-
though not exclusively) characterized by the property that
their tails tend to zero slower than any exponential, i. e.,
for any � > 0, limx!1 e�x F̄(x) D 1, implying that the
moment generating function does not exist. Clearly a reg-
ularly varying distribution is also subexponential, but fur-
ther members of this class are, for instance, the lognor-
mal as well as the stretched exponential, or heavy-tailed
Weibull, which has a tail of the form

F̄(x) D exp


�xb

�
; 0 < b < 1 : (8)

The stretched exponential has recently been considered

by [134,152,153] as an alternative to the Pareto-type dis-
tribution (6) for modeling the tails of asset returns. Note
that, as opposed to (6), both the lognormal as well as the
stretched exponential possess power moments of all or-
ders, although no exponential moment.

In addition, [22] coined the term semi-heavy tails for
the generalized hyperbolic (GH) distribution, but the label
may be employed more generally to refer to distributions
with slower tails than the normal but existing moment
generating function. The GH, which is now very popular
in finance and nests many interesting special cases, will be
examined in detail in Subsect. “The Generalized Hyper-
bolic Distribution”.

As will be discussed in Sect. “Empirical Evidence
About the Tails”, results of extreme value theory (EVT)
are often employed to identify the tail shape of return
distributions. This has the advantage that it allows one
to concentrate fully on the tail behavior, without the
need to model the central part of the distribution. To
sketch the idea behind this approach, suppose we at-
tempt to classify distributions according to the limit-
ing behavior of their normalized maxima. To this end,
let fXi ; i � 1g be an iid sequence of rvs with common
cdf F,Mn D max fX1; : : : ; Xng, and assume there exist se-
quences an > 0, bn 2 R, n � 1, such that

P
�
Mn � bn

an
� x

�
D Fn (anx C bn)

n!1
����! G(x) ; (9)

where G is assumed nondegenerate. To see that normal-
ization is necessary, note that limn!1 P (Mn � x) D
limn!1 Fn(x) D 0 for all x < xM :D supfx : F(x) <
1g � 1, so that the limiting distribution is degenerate and
of little help. If the above assumptions are satisfied, then,
according to the classical Fisher–Tippett theorem of ex-
treme value theory (cf. [188]), the limiting distribution G
in (9) must be of the following form:

G� (x) D exp


� (1C �x)�1/�

�
; 1C �x > 0 ; (10)

which is known as the generalized extreme value distri-
bution (GEV), or von Mises representation of the extreme
value distributions (EV). The latter term can be explained
by the fact that (10) actually nests three different types of
EV distributions, namely

(i) the Fréchet distribution, denoted byGC
�
, where � > 0

and x > �1/� ,
(i) the so-calledWeibull distribution of EVT, denoted by

G�
�
, where � < 0 and x < �1/� , and

(iii) the Gumbel distribution, denoted by G0, which
corresponds to the limiting case as � ! 0, i. e.,
G0(x) D exp (� exp(�x)), where x 2 R.
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A cdf F belongs to the maximum domain of attrac-
tion (MDA) of one of the extreme value distributions
nested in (10), written F 2 MDA

�
G�

, if (9) holds, i. e.,

classifying distributions according to the limiting behav-
ior of their extrema amounts to figuring out the MDAs
of the extreme value distributions. It turns out that it is
the tail behavior of a distribution F that accounts for the
MDA it belongs to. In particular, F 2 MDA(GC

�
) if and

only if its tail F̄ 2 RV�˛ , where ˛ D 1/� . As an example,
for a strict Pareto distribution, i. e., F(x) D 1 � (u/x)˛ ,
x � u > 0, with an D n1/˛u/˛ and bn D n1/˛u, we have
limn!1 Fn(anxCbn) D limn!1(1 � n�1(1Cx/˛)�˛)n

D GC1/˛(x). Distributions in MDA(G�
�
) have a finite right

endpoint, while, roughly, most of the remaining distribu-
tions, such as the normal, the lognormal and (stretched)
exponentials, belong to MDA(G0). The latter also ac-
commodates a few distributions with finite right end-
point. See [188] for precise conditions. The important
case of non-iid rvs is discussed in [136]. A central re-
sult is that, rather generally, vis-à-vis an iid sequence
with the same marginal cdf, the maxima of stationary se-
quences converge to the same type of limiting distribution.
See [63,167] for an application of this theory to ARCH(1)
and GARCH(1,1) processes (see Sect. “Volatility Cluster-
ing and Fat Tails”), respectively.

One approach to exploit the above results, referred
to as the method of block maxima, is to divide a given
sample of return data into subsamples of equal length,
pick the maximum of each subsample, assume that these
have been generated by (10) (enriched with location and
scale parameters to account for the unknown an and bn),
and find the maximum-likelihood estimate for � , loca-
tion, and scale. Standard tests can then be conducted to
assess, e. g., whether � > 0, i. e., the return distribution
has Pareto-type tails. An alternative but related approach,
which is based on further theoretical developments and of-
ten makes more efficient use of the data, is the peaks over
thresholds (POT) method. See [72] for a critical discussion
of these and alternative techniques.

We finally note that 1� GC1/˛ (˛ (x � 1)) Š x�˛ , while
1 � G0(x) Š exp(�x), i. e., for the extremes, we have
asymptotically a Pareto and an exponential tail, respec-
tively. This may provide, on a meta-level, a certain ratio-
nale for reserving the notion of genuine fat-tailedness for
the distributions with regularly varying tails.

Empirical Evidence About the Tails

The first application of power tails in finance appeared
in Mandelbrot’s [155] study of the log-price changes of
cotton. Mandelbrot proposed to model returns with non-

normal alpha stable, or stable Paretian, distributions, the
properties of which will be discussed in some detail in
Subsect. “Alpha Stable and Related Distributions”. For the
present discussion, it suffices to note that for this model
the tail index ˛ in (6), also referred to as characteristic ex-
ponent in the context of stable distributions, is restricted
to the range 0 < ˛ < 2, and that much of its theoretical
appeal derives from the fact that, due to the generalized
CLT, “Mandelbrot’s hypothesis can actually be viewed as
a generalization of the central-limit theorem arguments
of Bachelier and Osborne to the case where the under-
lying distributions of price changes from transaction to
transaction . . . have infinite variances” [75]. For the cot-
ton price changes,Mandelbrot came up with a tail index of
about 1.7, and his work was subsequently complemented
by Fama [75] with an analysis of daily returns of the stocks
belonging to the Dow Jones Industrial Average. [75] came
to the conclusion that Mandelbrot’s theory was supported
by these data, with an average estimated ˛ close to 1.9.

The findings of Mandelbrot and Fama initiated an
extensive discussion about the appropriate distributional
model for stock returns, partly because the stable model’s
implication that the tails are so fat that even the variance
is infinite appeared to be too radical to many economists
used to working with models built on the assumption of fi-
nite second moments. The evidence concerning the stable
hypothesis gathered in the course of the debate until the
end of the 1980s was not ultimately conclusive, but there
were many papers reporting mainly negative results [4,28,
36,40,54,67,98,99,109,135,176,180,184].

From the beginning of the 1990s, a number of re-
searchers have attempted to estimate the tail behav-
ior of asset returns directly, i. e., without making spe-
cific assumptions about the entire distributional shape.
[86,115,142,143] use the method of block maxima (see
Sect. “Defining Fat-Tailedness”) to identify the maximum
domain of attraction of the distribution of stock returns.
They conclude that the Fréchet distribution with a tail in-
dex ˛ > 2 is most likely, implying Pareto-type tails which
are thinner than those of the stable Paretian.

A second strand of literature assumes a priori the pres-
ence of a Pareto-type tail and focuses on the estimation
of the tail index ˛. If, as is often the case, a power tail is
deemed adequate, an explicit estimate of ˛ is of great inter-
est both from a practical and an academic viewpoint. For
example, investors want to assess the likelihood of large
losses of financial assets. This is often done using meth-
ods of extreme value theory, which require an accurate
estimate of the tail exponent. Such estimates are also im-
portant because the properties of statistical tests and other
quantities of interest, such as empirical autocorrelation
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functions, frequently depend on certain moment condi-
tions (e. g., [144,167]). Clearly the desire to figure out the
actual tail shape has also an intrinsic component, as is re-
flected in the long-standing debate on the stable Paretian
hypothesis. People simply wanted to know whether this
distribution, with its appealing theoretical properties, is
consistent with actual data. Moreover, empirical findings
may guide economic theorizing, as they can help both in
assessing the validity of certain existing models as well as
in suggesting new explanations. Two examples will briefly
be discussed at the end of the present section.

Within this second strand of literature, the Hill estima-
tor [106] has become the most popular tool. It is given by

ˆ̨k;n D

0

@ 1
k � 1

k�1X

jD1

log Xj;n � log Xk;n

1

A

�1

; (11)

whereXi;n denotes the ith upper order statistic of a sample
of length n, i. e., X1;n � X2;n � � � � � Xn;n . See [64,72] for
various approaches to deriving (11). If the tail is not reg-
ularly varying, the Hill estimator does not estimate any-
thing.

A crucial choice to be made when using (11) is the se-
lection of the threshold value k, i. e., the number of order
statistics to be included in the estimation. Ideally, only ob-
servations from the tail region should be used, but choos-
ing k to small will reduce the precision of the estima-
tor. There exist various methods for picking k optimally
in a mean-squared error sense [61,62], but much can be
learned by looking at the Hill plot, which is obtained by
plotting ˆ̨k;n against k. If we can find a range of k-values
where the estimate is approximately constant, this can be
taken as a hint for where the “true” tail index may be lo-
cated. As illustrated in [189], however, the Hill plot may
not always be so well-behaved, and in this case the semi-
automatic methods mentioned above will presumably also
be of little help.

The theoretical properties of (11), along with tech-
nical conditions, are summarized in [72,189]. Briefly,
for iid data generated from a distribution with tail
F̄ 2 RV�˛ , the Hill estimator has been shown to be con-
sistent [159] and asymptotically normal with standard de-
viation ˛/

p
k [100]. Financial data, however, are usually

not iid but exhibit considerable dependencies in higher-
order moments (see Sect. “Volatility Clustering and Fat
Tails”). In this situation, i. e., with ARCH-type dynam-
ics, (11) will still be consistent [190], but little is known
about its asymptotic variance. However, simulations con-
ducted in [123] with an IGARCH model, as defined in
Sect. “Volatility Clustering and Fat Tails”, indicate that,

under such dependencies, the actual standard errors may
be seven to eight times larger than those implied by the
asymptotic theory for iid variables.

The Hill estimator was introduced into the economet-
rics literature in the series of articles [107,113,125,126].
[125,126], using weekly observations, compare the tails
of exchange rate returns in floating and fixed exchange
rate systems, such as the Bretton Woods period and the
EMS. They find that for the fixed systems, most tail in-
dex estimates are below 2, i. e., consistent with the al-
pha stable hypothesis, while the estimates are significantly
larger than 2 (ranging approximately from 2.5 to 4) for
the float. [126] interpret these results in the sense that
“a float lets exchange rates adjust more smoothly than any
other regime that involves some amount of fixity”. Subse-
quent studies of floating exchange rates using data ranging
from weekly [107,110,111] over daily [58,89,144] to very
high-frequency [59,61,170] have confirmed the finding of
these early papers that the tails are not fat enough to be
compatible with the stable Paretian hypothesis, with esti-
mated tail indices usually somewhere in the region 2.5–5.
[58] is the first to investigate the tail behavior of the euro
against the US dollar, and finds that it is similar both to
the German mark in the pre-euro era as well as to the yen
and the British pound, with estimated exponents hovering
around 3–3.5.

Concerning estimation with data at different time
scales, a comparison of the results reported in the litera-
ture reveals that the impact on the estimated tail indices
appears to be moderate. [59] observe an increase in the es-
timates whenmoving from 30-minute to daily returns, but
they argue that these changes, due to the greater bias at the
lower frequencies, are small enough to be consistent with
˛ being invariant under time aggregation.

Note that if returns were independently distributed,
their tail behavior would in fact be unaffected by time ag-
gregation. This is a consequence of (2) along with Feller’s
(p. 278 in [80]) theorem on the convolution of regularly
varying distributions, stating that any finite convolution
of a regularly varying cdf F(x) has a regularly varying tail
with the same index. Thus, in principle, the tail survives
forever, but, as long as the variance is finite, the CLT en-
sures that in the course of aggregation an increasing prob-
ability weight is allocated to the center of the distribution,
which becomes closer to a Gaussian shape. The probabil-
ity of observing a tail event will thus decrease. However,
for fat-tailed distributions, the convergence to normality
can be rather slow, as reflected in the observation that pro-
nounced non-normalities in financial returns are often ob-
served even at a weekly and (occasionally) monthly fre-
quency. See [41] for an informative discussion of these is-
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sues. The fact that returns are, in general, not iid makes
the interpretation of the approximate stability of the tail
index estimates observed across papers employing differ-
ent frequencies not so clear-cut, but Feller’s theorem may
nevertheless provide some insight.

There is also an extensive literature reporting tail index
estimates of stock returns, mostly based on daily [2,89,92,
112,113,144,145,146,177] and higher frequencies [2,91,92,
147,181]. The results are comparable to those for floating
exchange rates in that the tenor of this literature, which as
a whole covers all major stock markets, is that most stock
return series are characterized by a tail index somewhere
in the region 2.5–5, and most often below 4. That is, the
tails are thinner than expected under the stable Paretian
hypothesis, but the finiteness of the third and in particular
the fourth moments (and hence kurtosis) may already be
questionable. Again, the results appear to be relatively in-
sensitive with respect to the frequency of the data, indicat-
ing a rather slow convergence to the normal distribution.
Moreover, most authors do not find significant differences
between the left and the right tail, although, for stock re-
turns, the point estimates tend to be somewhat lower for
the left tail (e. g., [115,145]).

Applications to the bond market appear to be rare,
but see [201], who report tail index estimates between 2.5
and 4.5 for 5-minute and 1-hour Bund future returns and
somewhat higher values for daily data. [160] compare the
tail behaviors of spot and future prices of various com-
modities (including cotton) and find that, while future
prices resemble stock prices with tail indices in the re-
gion 2.5–4, spot prices are somewhat fatter tailed with ˛
hovering around 2.5 and, occasionally, smaller than 2.

Summarizing, it is now a widely held view that the dis-
tribution of asset returns can typically be described as fat-
tailed in the power law sense but with finite variance. Thus,
currently there seems to exist a far reaching consensus that
the stable Paretianmodel is not adequate for financial data,
but see [162,202] for a different viewpoint. A consequence
of the prevalent view is that asset return distributions be-
long to the Gaussian domain of attraction, but that the
convergence appears to be very slow.

To illustrate typical findings as reported above, let us
consider the S&P500 returns described in Sect. “Definition
of the Subject”. A first informal check of the appropriate-
ness of a power law can be obtained by means of a log-log
plot of the empirical tail, i. e., if 1� F(x) D F̄(x) � cx�˛

for large x, then a plot of the log of the empirical com-
plementary cdf, F̄(x), against log x should display a linear
behavior in its outer part. For the data at hand, such a plot
is shown in the bottom right panel of Fig. 1. Assuming ho-
mogeneity across the tails, we pool negative and positive

returns by first removing the sample mean and then tak-
ing absolute values. We have also multiplied (1) by 100,
so that the returns are interpretable in terms of percent-
age changes. The plot suggests that a power law regime
may be starting from approximately the 90% quantile. In-
cluded in Fig. 1 is also a regression line (“fit”) fitted to
the log-tail using the 500 upper (absolute) return obser-
vations. This yields, as a rough estimate for the tail in-
dex, a slope of ˆ̨ D 3:13, with a coefficient of determina-
tion R2 D 0:99. A Hill plot for k � 500 in (11) is shown in
the bottom left panel of Fig. 1. The estimates are rather sta-
ble over the entire region and suggest an ˛ somewhere in
the interval (3; 3:5), which is reconcilable with the results
in the literature summarized above. A somewhat broader
picture can be obtained by considering individual stocks.
Here we consider the 176 stocks that were listed in the
S&P500 from January 1985 to December 2006. Figure 2
presents, for each k � 500, the 5%, 50%, and 95% quan-
tiles of the distribution of (11) over the different stocks.
The median is close to 3 throughout, and it appears that
an estimate in (2:5; 4:5) would be reasonable for most
stocks.

At this point, it may be useful to note that the issue
is not whether a power law is true in the strict sense but
only if it provides a reasonable approximation in the rele-
vant tail region. For example, it might be argued that asset
returns actually have finite support, implying finiteness of
all moments and hence inappropriateness of a Pareto-type
tail. However, as concisely pointed out in [144], “saying
that the support of an empirical distribution is bounded
says very little about the nature of outlier activity that may
occur in the data”.

We clearly cannot expect to identify the “true” dis-
tribution of financial variables. For example, [153] have
demonstrated that by standard techniques of EVT it is
virtually impossible, even in rather large samples, to dis-
criminate between a power law and a stretched exponen-
tial (8) with a small value of b, thus questioning, for ex-
ample, the conclusiveness of studies relying on the block
maxima method, as referred to above. A similar point was
made in [137], who showed by simulation that a three-
factor stochastic volatility model, with a marginal distri-
bution known to have all its moments finite, can generate
apparent power laws in practically relevant sample sizes.
As put forward in [152], “for most practical applications,
the relevant question is not to determine what is the true
asymptotic tail, but what is the best effective description of
the tails in the domain of useful applications”.

As is evident in Fig. 1, a power law may (and often
does) provide a useful approximation to the tail behav-
ior of actual data, but there is no reason to expect that it
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Financial Economics, Fat-Tailed Distributions, Figure 2
Shown are, for k � 500, the 95%, 50%, and 5% quantiles of the distribution of the Hill estimator ˆ̨ k;n, as defined in (11), over
176 stocks included in the S&P500 stock index

will appear in every market, and a broad range of heavy
and semi-heavy tailed distributions (such as the GH in
Subsect. “The Generalized Hyperbolic Distribution”) may
provide an adequate fit. For instance, [93] investigate the
tail behavior of high-frequency returns of one of the most
frequently traded stocks on the Paris Stock Exchange (Al-

Financial Economics, Fat-Tailed Distributions, Figure 3
The figure shows, on a log-log scale, the complementary cdf, F̄(x), for the largest 500 absolute return observations both for the daily
S&P500 returns from January 1985 to December 2006 and the daily DAX returns from July 1987 to July 2007

catel) and conclude that the tails decay at an exponen-
tial rate, and [119,197] obtain similar results for daily re-
turns of the Nikkei 225 index and various individual US
stocks, respectively. As a further illustration, without rig-
orous statistical testing, Fig. 3 shows the log-log tail plot
for daily returns of the German stock market index DAX
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from July 3, 1987 to July 4, 2007 for the largest 500 out
of 5,218 (absolute) return observations, along with a re-
gression-based linear fit. For purposes of comparison, the
corresponding figure for the S&P500 has also been repro-
duced from Fig. 1.While the slopes of the fitted power laws
exhibit an astonishing similarity (in fact, the estimated tail
index of the DAX is 2.93), it is clear from Fig. 3 that an
asymptotic power law, although not necessarily inconsis-
tent with the data, is much less self-evident for the DAX
than for the S&P500, due to the apparent curvature partic-
ularly in the more extreme tail.

It is finally worthwhile to mention that financial the-
ory in general, although some of its models are built on
the assumption of a specific distribution, has little to say
about the distribution of financial variables. For example,
according to the efficient markets paradigm, asset prices
change in response to the arrival of relevant new infor-
mation, and, consequently, the distributional properties of
returns will essentially reflect those of the news process.
As noted by [148], an exception to this rule is the model
of rational bubbles of [35]. [148] show that this class of
processes gives rise to an (approximate) power law for the
return distribution. However, the structure of the model,
i. e., the assumption of rational expectations, restricts the
tail exponent to be below unity, which is incompatible with
observed tail behaviors.

More recently, prompted by the observation that esti-
mated tail indices are often located in a relatively narrow
interval around 3, [83,84,85] have developed a model to
explain a hypothesized “inverse cubic law for for the distri-
bution of stock price variations” [91], valid for highly de-
veloped economies, i. e., a power law tail with index ˛ D 3.
This model is based on Zipf’s law for the size of large in-
stitutional investors and the hypothesis that large price
movements are generated by the trades of large market
participants via a square-root price impact of volume, V ,
i. e., r Š h

p
V , where r is the log return and h is a con-

stant. Putting these together with a model for profit max-
imizing large funds, which have to balance between trad-
ing on a perceivedmispricing and the price impact of their
actions, leads to a power law distribution of volume with
tail index 1.5, which by the square-root price impact func-
tion and simple power law accounting then produces the
“cubic law”. See [78,182] for a discussion of this model
and the validity of its assumptions. In a somewhat similar
spirit, [161] find strong evidence for exponentially decay-
ing tails of daily Indian stock returns and speculate about
a general inverse relationship between the stage of devel-
opment of an economy and the closeness to Gaussianity
of its stock markets, but it is clear that this is really just
speculation.

Some Specific Distributions

Alpha Stable and Related Distributions

As noted in Sect. “Empirical Evidence About the Tails”,
the history of heavy tailed distributions in finance has its
origin in the alpha stable model proposed by Mandel-
brot [154,155]. Being the first alternative to the Gaussian
law, the alpha stable distribution has a long history in fi-
nancial economics and econometrics, resulting in a large
number of books and review articles.

Apart from its good empirical fit the stable distribution
has also some attractive theoretical properties such as the
stability property and domains of attraction. The stability
property states that the index of stability (or shape parame-
ter) remains the same under scaling and addition of differ-
ent stable rv with the same shape parameter. The concept
of domains of attraction is related to a generalized CLT.
More specifically, dropping the assumption of a finite vari-
ance in the classical CLT, the domains of attraction states,
loosely speaking, that the alpha stable distribution is the
only possible limit distribution. For a more detailed dis-
cussion of this concept we refer to [169], who also provide
an overview over alternative stable schemes.While the fat-
tailedness of the alpha stable distributions makes it already
an attractive candidate for modeling financial returns, the
concept of the domains of attraction provides a further ar-
gument for its use in finance, as under the relaxation of the
assumption of a finite variance of the continuously arriv-
ing return innovations the resulting return distribution at
lower frequencies is generally an alpha stable distribution.

Although the alpha stable distribution is well estab-
lished in financial economics and econometrics, there still
exists some confusion about the naming convention and
parameterization. Popular terms for the alpha stable dis-
tribution are the stable Paretian, Lévy stable or simply sta-
ble laws. The parameterization of the distribution in turn
varies mostly with its application. For instance, to numer-
ically integrate the characteristic function, it is preferable
to have a continuous parameterization in all parameters.

The numerical integration of the alpha stable distribu-
tions is important, since with the exception of a few special
cases, its pdf is unavailable in closed form. However, the
characteristic function of the standard parameterization is
given by

E
�
exp (itX)

�
D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

exp
�
�c˛ jtj˛

�
1 � iˇ sign (t) tan 	˛2



C i� t


˛ ¤ 1
exp

�
�c jtj

�
1C iˇ 2

	
sign (t) ln (jtj)



C i� t


˛ D 1 ;
(12)
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where i is the imaginary unit, sign (�) denotes the sign
function, which is defined as

sign (x) D

8
<̂

:̂

�1 x < 0
0 x D 0
1 x > 0 ;

0 < ˛ � 2 denotes the shape parameter, characteristic ex-
ponent or index of stability, �1 � ˇ � 1 is the skewness
parameter, and � 2 R and c � 0 are the location and scale
parameters, respectively.

Figure 4 highlights the impact of the parameters ˛
and ˇ. ˇ controls the skewness of the distribution. The
shape parameter ˛ controls the behavior of the tails of the
distribution and therefore the degree of leptokurtosis. For
˛ < 2moments only up to (and excluding) ˛ exist, and for
˛ > 1 we have E [X] D � . In general, for ˛ 2 (0; 1) and
ˇ D 1 (ˇ D �1) the support of the distribution is the set
(�;1) (or (�1; �)) rather than the whole real line. In the

Financial Economics, Fat-Tailed Distributions, Figure 4
Density function (pdf) of the alpha stable distribution for different parameter vectors. The right panelplots the log-densities to better
visualize the tail behavior. The upper (lower) section present the pdf for different values ofˇ (˛)

following we call this stable distribution with ˛ 2 (0; 1),
� D 0 and ˇ D 1 the positive alpha stable distribution.

Moreover, for ˛ < 2 the stable law has asymptotic
power tails,

F̄(x) D P (X > x) Š c˛d (1C ˇ) x�˛

fS (x; ˛; ˇ; c; �) Š ˛c˛d (1C ˇ) x�˛C1

with d D sin
�
	˛
2

� (˛)/� .

For ˛ D 2 the stable law is equivalent to the normal
law with variance 2c2, for ˛ D 1 and ˇ D 0 the Cauchy
distribution is obtained, and for ˛ D 1/2,ˇ D 1 and � D 0
the stable law is equivalent to the Lévy distribution, with
support over the positive real line.

An additional property of the stable laws is that they
are closed under convolution for constant ˛, i. e., for two
independent alpha stable rvs X1 � S (˛; ˇ1; c1; �1) and
X2 � S (˛; ˇ2; c2; �2) with common shape parameter ˛ we
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have

X1CX2 � S
�
˛;
ˇ1c˛1 C ˇ2c

˛
2

c˛1 C c˛2
;
�
c˛1 C c˛2

1/˛
; �1 C �2

�

and

aX1Cb �

8
<̂

:̂

S
�
˛; sign (a)ˇ; jaj c; a� C b


˛ ¤ 1

S
�
1; sign (a)ˇ; jaj c; a� C b � 2

	
ˇca log jaj



˛ D 1 :

These results can be extended to n stable rvs. The closed-
ness under convolution immediately implies the infinite
divisibility of the stable law. As such every stable law cor-
responds to a Lévy process. A more detailed analysis of
alpha stable processes in the context of Lévy processes is
given in [192,193].

The computation and estimation of the alpha stable
distribution is complicated by the aforementioned non-
existence of a closed form pdf. As a consequence, a num-
ber of different approximations for evaluating the density
have been proposed, see e. g. [65,175]. On the basis of these
approximations, parameter estimation is facilitated using
for example the maximum-likelihood estimator, see [66],
or other estimation methods. As maximum-likelihood es-
timation relies on computationally demanding numerical
integration methods, the early literature focused on al-
ternative estimation methods. The most important meth-
ods include the quantile estimation suggested by [77,163],
which is still heavily applied in order to obtain starting val-
ues for more sophisticated estimation procedures, as well
as the characteristic function approach proposed by [127,
131,186]. However, based on its nice asymptotic properties
and presently available computational power, the maxi-
mum-likelihood approach is preferable.

Many financial applications also involve the simula-
tion of a return series. In derivative pricing, for example,
the computation of an expectation is oftentimes impossi-
ble as the financial instrument is generally a highly non-
linear function of asset returns. A common way to alle-
viate this problem is to apply Monte Carlo integration,
which in turn requires quasi rvs drawn from the respec-
tive return distribution, i. e. the alpha stable distribution.
A useful simulation algorithm for alpha stable rvs is pro-
posed by [49], which is a generalization of the algorithm
of [120] to the non-symmetric case. A random variable X
distributed according to the stable law, S (˛; ˇ; c; �), can
be generated as follows:

1. Draw a rv U, uniformly distributed over the interval
(��/2; �/2), and an (independent) exponential rv E
with unit mean,

2. if ˛ ¤ 1, compute

X D cS
sin (˛ (U C B))

cos1/˛ (U)

�

�
cos (U � ˛ (U C B))

E

�(1�˛)/˛
C �

where

B :D
arctan

�
ˇ tan

�
	˛
2


˛

S :D


1C ˇ2 tan2


�˛
2

��1/(2˛)

for ˛ D 1 compute

X D c 2
	

��
	
2 C ˇU


tan (U) � ˇ log

� 	
2 E cos (U)
	
2 C ˇU

��

C
2
�
ˇc log (c)C � :

Interestingly, for ˛ D 2 the algorithm collapses to the
Box–Muller method [42] to generate normally distributed
rvs.

As further discussed in Subsect. “The Generalized Hy-
perbolic Distribution”, the mixing of normal distributions
allows one to derive interesting distributions having sup-
port over the real line and exhibiting heavier tails than
the Gaussian. While generally any distribution with sup-
port over the positive real line can be used as the mixing
distribution for the variance, transformations of the pos-
itive alpha stable distribution are often used in financial
modeling.

In this context the symmetric alpha stable distributions
have a nice representation. In particular, if X � S(˛�; 0;
c; 0) and A (independent of X) is an ˛/˛� positive alpha
stable rv with scale parameter cos˛�/˛

�
	˛
2˛�


then

Z D A1/˛�X � S (˛; 0; c; 0) :

For ˛� D 2 this property implies that every symmetric al-
pha stable distribution, i. e. an alpha stable distribution
with ˇ D 0, can be viewed as being conditionally normally
distributed, i. e., it can be represented as a continuous vari-
ance normal mixture distribution.

Generally, the tail behavior of the resulting mixture
distribution is completely determined by the (positive)
tails of the variance mixing distribution. In the case of the
positive alpha stable distribution this implies that the re-
sulting symmetric stable distribution exhibits very heavy
tails, in fact the second moment does not exist. As the lit-
erature is controversial on the adequacy of such heavy tails
(see Sect. “Empirical Evidence About the Tails”), transfor-
mations of the positive alpha stable distribution are often-
times considered to weight down the tails. The method of
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exponential tilting is very useful in this context. In a gen-
eral setup the exponential tilting of a rv X with respect
to a rv Y (defined on the same probability space) defines
a new rv X̃, whose pdf can be written as

fX̃ (x; �) D fX(x)
E
�
exp (�Y)jX D x

�

E
�
exp (�Y)

� ;

where the parameter � determines the “degree of dampen-
ing”. The exponential tilting of a rv X with respect to itself,
known as Esscher transformation, is widely used in finan-
cial economics and mathematics, see e. g. [88]. In this case
the resulting pdf is given by

fX̃ (x; �) D
exp (�x)

E
�
exp (�X)

� fX(x)

D exp (�x � K (�)) fX(x) ; (13)

with K (�) denoting the cumulant generating function,
K (�) :D log

�
E
�
exp (�X)

�
.

The tempered stable (TS) laws are given by an appli-
cation of the Esscher transform (13) to a positive alpha
stable law. Note that the Laplace transform E[exp(�tX)],
t � 0, of a positive alpha stable rv is given by exp(�ı
(2t)˛), where ı D c˛/(2˛ cos(	˛2 )). Thus, with � D
�(1/2)� 1/˛ � 0, the pdf of the tempered stable law is given
by

fTS (x;˛; ı; � )D
exp

�
� 1

2�
1/˛x



E
�
exp

�
� 1

2�
1/˛X

� fS (x;˛; 1; c (ı; ˛) ; 0)

Dexp
�
ı� � 1

2�
1/˛x


fS (x;˛; 1; c (ı; ˛) ; 0)

with 0 < ˛ < 1, ı > 0, and � � 0.
A generalization of the TS distribution was proposed

by [22]. This class of modified stable (MS) laws can be ob-
tained by applying the following transformation

fMS (x; ˛; ; ı; � ) D c (˛; ; ı; � ) x�C˛ fTS (x;˛; ı; � ) ;
(14)

with  2 R, � _ (�) > 0 and c (˛; ; ı; � ) is a norming
constant. For a more detailed analysis, we refer to [22].
Note that the terms “modified stable” or “tempered stable
distribution” are not unique in the literature. Very often
the so-called truncated Lévy flights/processes (see for ex-
ample [56,130,157]) are also called TS processes (or corre-
sponding distributions). These distributions are obtained
by applying a smooth downweighting of the large jumps
(in terms of the Lévy density).

The MS distribution is a quite flexible distribution de-
fined over the positive real line and nests several important
distributions. For instance, for ˛ D 1/2, the MS distribu-

tion reduces to the generalized inverse Gaussian (GIG) dis-
tribution, which is of main interest in Subsect. “The Gen-
eralized Hyperbolic Distribution”.

Note that in contrast to the unrestricted MS distribu-
tion, the pdf of the GIG distribution is available in closed
form and can be straightforwardly obtained by applying
the above transformation. In particular, for ˛ D 1/2, the
positive alpha stable distribution is the Lévy distribution
with closed form pdf given by

fS (x; 1/2; 1; c; 0) D
r

c
2�

exp
�
� c

2x


x3/2
:

Applying the Esscher transformation (13) with � D

�(1/2)� 2 yields the pdf of the inverse Gaussian (or Wald)
distribution

fIG (x; ı; � ) D
ı
p
2�

x�3/2 exp
�
ı� �

�
ı2x�1 C � 2x


/2

;

where ı > 0 and � � 0. Applying the transformation (14)
delivers the pdf of the GIG distribution,

fGIG (x;; ı; � ) D
(� /ı)�

2K� (ı� )
x��1

� exp
�
�
�
ı2x�1 C � 2x

ı
2

; (15)

with K� (�) being the modified Bessel function of the third
kind and of order  2 R. Note that this function is of-
tentimes called the modified Bessel function of the second
kind or Macdonald function. Nevertheless, one represen-
tation is given by

K�(x) D
1
2

Z 1

0
y��1 exp

�
�
1
2
x
�
y C y�1

�
dy :

The parameters of the GIG distribution are restricted to
satisfy the following conditions:

ı � 0 and � > 0 if  > 0
ı > 0 and � > 0 if  D 0
ı > 0 and � � 0 if  < 0 :

(16)

Importantly, in contrast to the positive alpha stable law, all
moments exist and are given by

E
�
Xr� D

�
ı

�

�r K�Cr(ı� )
K�(ı� )

(17)

for all r > 0. For a very detailed analysis of the GIG distri-
bution we refer to [117]. The GIG distribution nests sev-
eral positive distributions as special cases and as limit dis-
tributions. Since all of these distributions belong to a spe-
cial class of the generalized hyperbolic distribution, we
proceed with a discussion of the latter, thus providing
a broad framework for the discussion of many important
distributions in finance.
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The Generalized Hyperbolic Distribution

The mixing of normal distributions is well suited for fi-
nancial modeling, as it allows construction of very flexi-
ble distributions. For example, the normal variance-mean
mixture, given by

X D �C ˇV C
p
VZ ; (18)

with Z being normally distributed and V a positive ran-
dom variable, generally exhibits heavier tails than the
Gaussian distribution. Moreover, this mixture possesses
interesting properties, for an overview see [26]. First, sim-
ilarly to other mixtures, the normal variance-mean mix-
ture is a conditional Gaussian distribution with condition-
ing on the volatility states, which is appealing when mod-
eling financial returns. Second, if the mixing distribution,
i. e. the distribution of V , is infinitely divisible, then X is
likewise infinitely divisible. This implies that there exists
a Lévy process with support over the whole real line, which
is distributed at time t D 1 according to the law of X. As
the theoretical properties of Lévy processes are well estab-
lished in the literature (see, e. g., [24,194]), this result im-
mediately suggests to formulate financial models in terms
of the corresponding Lévy process.

Obviously, different choices for the distribution of V
result in different distributions of X. However, based on
the above property, an infinitely divisible distribution is
most appealing. For theMS distributions discussed in Sub-
sect. “Alpha Stable and Related Distributions”, infinite di-
visibility is not yet established, although [22] strongly sur-
mise so. However, for some special cases infinite divisi-
bility has been shown to hold. The most popular is the
GIG distribution yielding the generalized hyperbolic (GH)
distribution for X. The latter distribution was introduced
by [17] for modeling the distribution of the size of sand
particles. The infinite divisibility of the GIG distribution
was shown by [20].

To derive the GH distribution as a normal variance-
mean mixture, let V � GIG(; ı; � ) as in (15), with
� D

p
˛2 � ˇ2, and Z � N(0; 1) independent of V . Ap-

plying (18) yields the GH distributed rv X � GH(; ˛; ˇ;
�; ı) with pdf

fGH (x;; ˛; ˇ; �; ı)

D
(ı� )� (ı˛)1/2��
p
2�ıK� (ı� )

 

1C
(x � �)2

ı2

!�/2�1/4

� K��1/2

 

˛ı

r

1C
(x � �)2

ı2

!

exp (ˇ(x � �))

for � 2 R and

ı � 0 and jˇj < ˛ if  > 0
ı > 0 and jˇj < ˛ if  D 0
ı > 0 and jˇj � ˛ if  < 0 ;

which are the induced parameter restrictions of the GIG
distribution given in (16).

Note that, based on the mixture representation (18),
the existing algorithms for generating GIG distributed rvs
can be used to draw rvs from the GH distribution, see [12,
60].

For jˇ C uj < ˛, the moment generating function of
the GH distribution is given by

E
�
exp (uX)

�
D exp (�u)

�
˛2 � ˇ2

˛2 � (ˇ C u)2

��/2

�
K�


ı
p
˛2 � (ˇ C u)2

�

K�


ı
p
˛2 � ˇ2

� : (19)

As the moment generating function is infinitely differen-
tiable in the neighborhood of zero, moments of all orders
exist and have been derived in [25]. In particular, themean
and the variance of a GH rv X are given by

E [X] D �C
ˇı

p
˛2 � ˇ2

K�C1



ı
p
˛2 � ˇ2

�

K�


ı
p
˛2 � ˇ2

�

D �C ˇE [XGIG]

V [X] D
ı

p
˛2 � ˇ2

K�C1



ı
p
˛2 � ˇ2

�

K�


ı
p
˛2 � ˇ2

� C
ˇ2ı2

˛2 � ˇ2

�

0

@
K�C2



ı
p
˛2 � ˇ2

�

K�


ı
p
˛2 � ˇ2

� �
K2
�C1



ı
p
˛2 � ˇ2

�

K2
�



ı
p
˛2 � ˇ2

�

1

A

D E [XGIG]C ˇ2V [XGIG] ;

with XGIG � GIG (; ı; � ) denoting a GIG distributed rv.
Skewness and kurtosis can be derived in a similar way us-
ing the third and fourth derivative of the moment generat-
ing function (19). However, more information on the tail
behavior is given by

fGH (x;; ˛; ˇ; �; ı) Š jxj��1 exp ((�˛ C ˇ) x) ;

which shows that the GH distribution exhibits semi-heavy
tails, see [22].

The moment generating function (19) also shows that
the GH distribution is generally not closed under convo-
lution. However, for  2 f�1/2; 1/2g, the modified Bessel
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function of the third kind satisfies

K� 1
2
(x) D K 1

2
(x) D

r
�

2x
exp (�x) ;

yielding the following form of the moment generating
function for  D �1/2

E
�
exp (uX)j D �1/2

�

D exp (�u)
exp



ı
p
˛2 � ˇ2

�

exp


ı
p
˛2 � (ˇ C u)2

� ;

which is obviously closed under convolution. This spe-
cial class of the GH distribution is called normal inverse
Gaussian distribution and is discussed in more detail in
Subsect. “TheNormal Inverse GaussianDistribution”. The
closedness under convolution is an attractive property of
this distribution as it facilitates forecasting applications.

Another very popular distribution that is nested in the
GH distribution is the hyperbolic distribution given by
 D 1 (see the discussion in Subsect. “TheHyperbolic Dis-
tribution”). Its popularity is primarily based on its pdf,
which can (except for the norming constant) be expressed
in terms of elementary functions allowing for a very fast
numerical evaluation. However, given the increasing com-
puter power and the slightly better performance in repro-
ducing the unconditional return distribution, the normal
inverse Gaussian distribution is now the most often used
subclass.

Interestingly, further well-known distributions can be
expressed as limiting cases of the GH distribution, when
certain of its parameters approach their extreme values.
To this end, the following alternative parametrization
of the GH distribution turns out to be useful. Setting

� D 1/
q
1C ı

p
˛2 � ˇ2 and � D �ˇ/˛ renders the two

parameters invariant under location and scale transforma-
tions. This is an immediate result of the following property
of the GH distribution. If X � GH (; ˛; ˇ; �; ı), then

aC bX � GH
�
;

˛

jbj
;
ˇ

jbj
; aC b�; ı jbj

�
:

Furthermore, the parameters are restricted by
0 � j�j < � < 1, implying that they are located in the
so-called shape triangle introduced by [27]. Figure 5 high-
lights the impact of the parameters in the GH distribution
in terms of �; � and . Obviously, � controls the skewness
and � the tailedness of the distribution. The impact of  is
not so clear-cut. The lower panels in Fig. 5 depict the pdfs
for different values of  whereby the first two moments
and the values of � and � are kept constant to show the
“partial” influence.

As pointed out by [69], the limit distributions can be
classified by the values of � and � as well as by the values %
and � of a second location and scale invariant parametriza-
tion of the GH, given by % D ˇ/˛ and � D ı

p
˛2 � ˇ2, as

follows:

� � D 1 and �1 � � � 1: The resulting limit distribu-
tions depend here on the values of. Note, that in order
to reach the boundary either ı ! 0 or jˇj ! ˛.
– For  > 0 and jˇj ! ˛ no limit distribution ex-

ists, but for ı ! 0 the GH distribution converges to
the distribution of a variance gamma rv (see Sub-
sect. “The Variance Gamma Distribution”). How-
ever, note that jˇj < ˛ implies j�j < � and so the
limit distribution is not valid in the corners. For
these cases, the limit distributions are given by
� D j�j and 0 < � � 1, i. e. the next case.

– For  D 0 there exists no proper limit distribution.
– For  < 0 and ı ! 0 no proper distribution ex-

ists but for ˇ !˙˛ the limit distribution is given
in [185] with pdf

2�C1 �ı2 C (x � �)2
(��1/2)/2

p
2�� (�) ı2�˛��1/2

� K��1/2
�
˛

q
ı2 C (x � �)2

�

� exp (˙˛ (x � �)) ; (20)

which is the limit distribution of the corners, since
ˇ D ˙˛ is equivalent to � D ˙� . This distribu-
tion was recently called the GH skew t distribu-
tion by [1]. Assuming additionally that ˛ ! 0 and
ˇ D %˛ ! 0 with % 2 (�1; 1) yields the limit dis-
tribution in between

� (�C 1/2)
p
�ı2� (�)

 

1C
(x � �)2

ı2

!��1/2
;

which is the scaled and shifted Student’s t distri-
bution with �2 degrees of freedom, expectation
� and variance 42�/ (� � 2), for more details see
Subsect. “The Student t Distribution”.

� � D j�j and 0 < � � 1: Except for the upper corner the
limit distribution of the right boundary can be derived
for

ˇ D ˛ �
�

2
; ˛ !1 ; ı ! 0 ; ˛ı2 ! �

with � > 0 and is given by the �-shifted GIG dis-
tribution GIG

�
;
p
� ;
p
�

. The distribution for the

left boundary is the same distribution but mirrored at
x D 0. Note that the limit behavior does not depend
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Financial Economics, Fat-Tailed Distributions, Figure 5
Density function (pdf) of the GHdistribution for different parameter vectors. The right panelplots the log-densities to better visualize
the tail behavior. The upper andmiddle sectionpresent the pdf for different values of� and�. Note that these correspond to different
values of ˛ and ˇ. The lower panel highlights the influence of � if the first two moments, as well as � and �, are held fixed. This
implies that˛;ˇ;� and ı have to be adjusted accordingly
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on . However, to obtain the limit distributions for the
left and right upper corners we have to distinguish for
different values of . Recall that for the regime � D 1
and �1 � � � 1 the derivation was not possible.
– For  > 0 the limit distribution is a gamma distri-

bution.
– For  D 0 no limit distribution exists.
– For  < 0 the limit distribution is the reciprocal

gamma distribution.
� � D � D 0: This is the case for ˛ !1 or ı !1. If

only ˛ !1 then the limit distribution is the Dirac
measure concentrated in �. If in addition ı !1 and
ı/˛ ! �2 then the limit distribution is a normal distri-
bution with mean �C ˇ�2 and variance �2.

As pointed out by [185] applying the unrestricted GH dis-
tribution to financial data results in a very flat likelihood
function especially for . This characteristic is illustrated
in Fig. 6, which plots the maximum of the log likelihood
for different values of  using our sample of the S&P500
index returns. This implies that the estimate of  is gen-
erally associated with a high standard deviation. As a con-
sequence, rather than using the GH distribution directly,
the finance literature primarily predetermines the value
of , resulting in specific subclasses of the GH distribu-
tion, which are discussed in the sequel. However, it is still
interesting to derive the general results in terms of the GH
distribution (or the corresponding Lévy process) directly
and to restrict only the empirical application to a subclass.
For example [191] derived a diffusion process with GH
marginal distribution, which is a generalization of the re-
sult of [33], who proposed a diffusion process with hyper-
bolic marginal distribution.

Financial Economics, Fat-Tailed Distributions, Figure 6
Partially maximized log likelihood, estimated maximum log likelihood values of the GH distribution for different values of�

The Hyperbolic Distribution Recall, that the hyper-
bolic (HYP) distribution can be obtained as a special case
of the GH distribution by setting  D 1. Thus, all proper-
ties of the GH law can be applied to the HYP case. For in-
stance the pdf of the HYP distribution is straightforwardly
given by (19) setting  D 1

fH (x;˛; ˇ; �; ı) :D fGH (x; 1; ˛; ˇ; �; ı)

D

p
˛2 � ˇ2

2˛ıK1



ı
p
˛2 � ˇ2

�

� exp


�˛
p
ı2C (x � �)2

Cˇ(x � �)) ; (21)

where 0 � jˇj < ˛ are the shape parameter and � 2 R
and ı > 0 are the location and scale parameter, respec-
tively.

The distribution was applied to stock return data
by [70,71,132] while [33] derived a diffusion model with
marginal distribution belonging to the class of HYP distri-
butions.

The Normal Inverse Gaussian Distribution The nor-
mal inverse Gaussian (NIG) distribution is given by the
GH distribution with  D �1/2 and has the following pdf

fNIG (x;˛; ˇ; �; ı) :D fGH
�
x;�

1
2
; ˛; ˇ; �; ı

�

D

˛ıK1

�
˛

q
ı2 C (x � �)2

�

�

q
ı2 C (x � �)2

� exp (ı� C ˇ(x � �)) (22)
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with 0 < jˇj � ˛, ı > 0 and � 2 R. The moments of
a NIG distributed rv can be obtained from the moment
generating function of the GH distribution (19) and are
given by

E [X]D�C
ıˇ

p
˛2 � ˇ2

and V [X]D
ı˛2

p
˛2 � ˇ23

S [X]D3
ˇ

˛

q
ı
p
˛2 � ˇ2

and K [X]D3
˛2 C 4ˇ2

ı˛2
p
˛2 � ˇ2

:

This distribution was heavily applied in financial eco-
nomics for modeling the unconditional as well as the con-
ditional return distribution, see e. g. [18,21,185]; as well
as [10,19,114], respectively. Recently, [57] used the NIG
distribution for modeling realized variance and found im-
proved forecast performance relative to a Gaussian model.
A more realistic modeling of the distributional properties
is not only important for risk management or forecasting,
but also for statistical inference. For example the efficient
method of moments, proposed by [87] requires the avail-
ability of a highly accurate auxiliary model, which pro-
vide the objective function to estimate a more structural
model. Recently, [39] provided such an auxiliary model,
which uses the NIG distribution and realized variance
measures.

Recall that for  D �1/2 the mixing distribution is the
inverse Gaussian distribution, which facilitates the gener-
ation of rvs. Hence, rvs with NIG distribution can be gen-
erated in the following way:

1. Draw a chi-square distributed rv C with one degree of
freedom and a uniformly distributed rv over the inter-
val (0; 1) U

2. Compute

X1 D
ı

�
C

1
2ı�

�
ıC
�
�
p
4ı3C/� C ı2C2/� 2

�

3. If U < ı/(� (ı/� C X1)) return X1 else return ı2/
(� 2X1).

As pointed out by [187] the main difference between the
HYP and NIG distribution: “Hyperbolic log densities, be-
ing hyperbolas, are strictly concave everywhere. Therefore
they cannot form any sharp tips near x D 0 without loos-
ing too much mass in the tails . . . In contrast, NIG log
densities are concave only in an interval around x D 0,
and convex in the tails.” Moreover, [19] concludes, “It is,
moreover, rather typical that asset returns exhibit tail be-
havior that is somewhat heavier than log linear, and this

further strengthens the case for the NIG in the financial
context”.

The Student t Distribution Next to the alpha stable
distribution Student’s t (t thereafter) distribution has the
longest history in financial economics. One reason is that
although the non-normality of asset returns is widely ac-
cepted, there still exists some discussion on the exact tail
behavior. While the alpha stable distribution implies ex-
tremely slowly decreasing tails for ˛ ¤ 2, the t distribu-
tion exhibits power tails and existing moments up to (and
excluding) �. As such, the t distribution might be regarded
as the strongest competitor to the alpha stable distribution,
shedding also more light on the empirical tail behavior of
returns. The pdf for the scaled and shifted t distribution is
given by

ft (x; �; �; �) D
� ((� C 1) /2)
p
��� (�/2) �

�

�
1C

1
�


 x � �
�

�2��(�C1)/2
(23)

for � > 0, � > 0 and � 2 R. For � D 0 and � D 1
the well-known standard t distribution is obtained. The
shifted and scaled t distribution can also be interpreted
as a mean-variance mixture (18) with a reciprocal gamma
distribution as a mixing distribution. The mean, vari-
ance, and kurtosis (3) are given by �, �2�/ (� � 2), and
3 (� � 2) / (� � 4), provided that � > 1, � > 2, and � > 4,
respectively. The tail behavior is

ft (x; �; �; �) Š cx���1 :

The t distribution is one of the standard non-normal
distributions in financial economics, see e. g. [36,38,184].
However, as the unconditional return distribution may
exhibit skewness, a skewed version of the t distribution
might be more adequate in some cases. In fact, several
skewed t distributions were proposed in the literature, for
a short overview see [1]. The following special form of the
pdf was considered in [81,102]

ft;FS (x; �; �; �; ˇ)

D
2ˇ

ˇ2 C 1
�
�
�C1
2


� (�/2)
p
���

�


1C 1

�

� x��



2 
 1
ˇ 2 I(X��)C ˇ2I(x<�)

��� �C1
2

with ˇ > 0. For ˇ D 1 the pdf reduces to the pdf of the
usual symmetric scaled and shifted t distribution. Another
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skewed t distribution was proposed by [116] with pdf
ft;JF (x; �; �; �; ˇ)

D
� (� C ˇ) 21���ˇ

� (�/2)� (�/2C ˇ)
p
� C ˇ�

�

0

B
@1C

x��

q

� C ˇ C
� x��



2

1

C
A

(�C1)/2

�

0

B
@1 �

x��

q

� C ˇ C
� x��



2

1

C
A

ˇC(�C1)/2

for ˇ > ��/2. Again, the usual t distribution can be ob-
tained as a special case for ˇ D 0. A skewed t distribution
in terms of the pdf and cdf of the standard t distribution
ft (x; �; 0; 1) and Ft (x; �; 0; 1) is given by [13,43]

ft;AC (x; �; �; �; ˇ)

D
2
�
ft

 x � �

�
; �; 0; 1

�

� Ft

 

ˇ

 x � �

�

�s � C 1

� C
� x��



2 ; � C 1; 0; 1

!

for ˇ 2 R.
Alternatively, a skewed t distribution can also be ob-

tained as a limit distribution of the GH distribution. Recall
that for  < 0 and ˇ ! ˛ the limit distribution is given
by (20) as

ft;GH (x;;�; ı; ˛)

D
2�C1 �ı2 C (x � �)2

(��1/2)/2
p
2�� (�) ı2�˛��1/2

� K��1/2
�
˛

q
ı2 C (x � �)2

�
� exp (˛ (x � �)) :

for ˛ 2 R. The symmetric t distribution is obtained
for ˛ ! 0. The distribution was introduced by [185] and
a more detailed examination was recently given in [1].

The Variance Gamma Distribution The variance
gamma (VG) distribution can be obtained as a mean-
variance mixture with gamma mixing distribution. Note
that the gamma distribution is obtained in the limit from
the GIG distribution for  > 0 and ı ! 0. The pdf of the
VG distribution is given by

fVG (x;�; ˛; ˇ; ) :D lim
ı!0

fGH (x;; ˛; ˇ; ı; �)

D
� 2� jx � �j��1/2 K��1/2 (˛ jx � �j)

p
�� () (2˛)��1/2

expˇ (x � �) :

(24)

Note, the usual parameterization of the VG distribution

f �VG
�
x; ��; ��; ��; ��



D
2 exp

�
�� (x � ��) /��2



��1/�
�
p
2���2� (1/��)

 
(x � ��)2

2��2/�� C ��2
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1
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� K 1
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B
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(x � ��)2

�
2��2/�� C ��2



��2

1

C
A

is different from the one used here, however the parame-
ters can be transformed between these representations in
the following way

�� D

s
2

˛2 � ˇ2 ; �� D
2ˇ

˛2 � ˇ2 ;

�� D
1

; �� D � :

This distribution was introduced by [149,150,151]. For
 D 1 (the HYP case) we obtain a skewed, shifted and
scaled Laplace distribution with pdf

fL (x;˛; ˇ; �)
:D lim

ı!0
fGH (x; 1; ˛; ˇ; ı; �)

D
˛2 � ˇ2

2˛
exp (�˛ jx � �j C ˇ (x � �)) :

A generalization of the VG distribution to the so-called
CGMY distribution was proposed by [48].

The CauchyDistribution Setting  D �1/2,ˇ ! 0 and
˛ ! 0 the GH distribution converges to the Cauchy dis-
tribution with parameters � and ı. Since the Cauchy dis-
tribution belongs to the class of symmetric alpha stable
(˛ D 1) and symmetric t distributions (� D 1) we refer
to Subsect. “Alpha Stable and Related Distributions” and
“The Student t Distribution” for a more detailed discus-
sion.

The Normal Distribution For ˛ !1, ˇ D 0 and
ı D 2�2 the GH distribution converges to the normal dis-
tribution with mean � and variance �2.

Finite Mixtures of Normal Distributions

The density of a (finite) mixture of k normal distributions
is given by a linear combination of k Gaussian component
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densities, i. e.,

fNM (x; �) D
kX

jD1

 j�


x;� j; �

2
j

�
;

�
�
x;�; �2


D

1
p
2��

exp

 

�
(x � �)2

2�2

!

;

(25)

where � D (1; : : : ; k�1; �1; : : : ; �k ; �
2
1 ; : : : ; �

2
k ), k D

1 �
Pk�1

jD1  j ,  j > 0, � j 2 R, �2j > 0, j D 1; : : : ; k,
and (�i ; �

2
i ) ¤ (� j ; �

2
j ) for i ¤ j. In (25), the j, �j, and

�2j are called the mixing weights, component means, and
component variances, respectively.

Finite mixtures of normal distributions have been ap-
plied as early as 1886 in [174] to model leptokurtic phe-
nomena in astrophysics. A voluminous literature exists,
see [165] for an overview. In our discussion, we shall fo-
cus on a few aspects relevant for applications in finance.
In this context, (25) arises naturally when the component
densities are interpreted as different market regimes. For
example, in a two-component mixture (k D 2), the first
component, with a relatively high mean and small vari-
ance, may be interpreted as the bull market regime, oc-
curring with probability 1, whereas the second regime,
with a lower expected return and a greater variance, rep-
resents the bear market. This (typical) pattern emerges for
the S&P500 returns, see Table 1. Clearly (25) can be gen-
eralized to accommodate non-normal component densi-
ties; e. g., [104] model stock returns using mixtures of gen-
eralized error distributions of the form (40). However, it
may be argued that in this way much of the original ap-
peal of (25), i. e., within-regime normality along with CLT
arguments, is lost.

The moments of (25) can be inferred from those of the
normal distribution, with mean and variance given by

E [X] D
kX

jD1

 j� j ; and

V [X] D
kX

jD1

 j



�2j C �

2
j

�
�

0

@
kX

jD1

 j� j

1

A

2

;

(26)

respectively. The class of finite normal mixtures is very
flexible in modeling the leptokurtosis and, if existent,
skewness of financial data. To illustrate the first property,
consider the scale normal mixture, where, in (25), �1 D

�2 D � � � D �k :D �. In fact, when applied to financial
return data, it is often found that the market regimes differ
mainly in their variances, while the component means are
rather close in value, and often their differences are not
significant statistically. This reflects the observation that
excess kurtosis is a much more pronounced (and ubiqui-

Financial Economics, Fat-Tailed Distributions, Table 1
Maximum-likelihood parameter estimates of the iid model

Distri-
bution

Parameters Loglik

GH
�̂ �̂ ˆ̨ ˆ̌ ı̂

�7479.2�1.422 0.087 0.322 �0.046 1.152
(0.351) (0.018) (0.222) (0.022) (0.139)

tGH
�̂ ı̂ �̂ ˆ̨

�7479.70.084 1.271 3.445 �0.041
(0.018) (0.052) (0.181) (0.021)

tJF
�̂ �̂ 
̂ ˆ̌

�7480.03.348 0.098 0.684 0.091
(0.179) (0.025) (0.012) (0.049)

tAC
�̂ �̂ 
̂ ˆ̌

�7480.13.433 0.130 0.687 �0.123
(0.180) (0.042) (0.013) (0.068)

tFS
�̂ �̂ 
̂ ˆ̌

�7480.33.432 0.085 0.684 0.972
(0.180) (0.020) (0.012) (0.017)

Sym-
metric
t

�̂ �̂ 
̂

�7481.73.424 0.056 0.684
(0.179) (0.011) (0.012)

NIG
�̂ ˆ̨ ˆ̌ ı̂

�7482.00.088 0.784 �0.048 0.805
(0.018) (0.043) (0.022) (0.028)

HYP
�̂ ˆ̨ ˆ̌ ı̂

�7499.50.090 1.466 �0.053 0.176
(0.018) (0.028) (0.023) (0.043)

VG
�̂ ˆ̨ ˆ̌ �̂

�7504.20.092 1.504 �0.054 1.115
(0.013) (0.048) (0.019) (0.054)

Alpha
stable

ˆ̨ ˆ̌ ĉ �̂

�7522.51.657 �0.094 0.555 0.036
(0.024) (0.049) (0.008) (0.015)

Finite
mixture
(k D 2)

�̂1 �̂1 �̂2 
̂2
1 
̂2

2
�7580.80.872 0.063 �0.132 0.544 4.978

(0.018) (0.012) (0.096) (0.027) (0.530)

Cauchy
�̂ 
̂

�7956.60.060 0.469
(0.010) (0.008)

Normal
�̂ 
̂

�8168.90.039 1.054
(0.014) (0.010)

Shown are maximum likelihood estimates for iid models with dif-
ferent assumptions about the distribution of the innovations. Stan-
dard errors are given in parentheses. “Loglik” is the value of the
maximized log likelihood function.

tous) property of asset returns than skewness. In the scale
mixture case, the density is symmetric, but with higher
peaks and thicker tails than the normal with the same
mean and variance. To see this, note that

P
j( j/� j) >
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(
P

j  j�
2
j )
�1/2 , (
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j  j�

2
j )

1/2 > [
P

j( j/� j)]�1. But
(
P

j  j�
2
j )

1/2 >
P

j  j� j > [
P

j( j/� j)]�1 by Jensen’s
and the arithmetic-harmonic mean inequality, respec-
tively. This shows fNM(�; �) > �(�;�;

P
j  j�

2
j ), i. e.,

peakedness. Tailedness follows from the observation that
the difference between the mixture and the mean-vari-
ance equivalent normal density is asymptotically domi-
nated by the component with the greatest variance. More-
over, the densities of the scale mixture and the mean-vari-
ance equivalent Gaussian intersect exactly two times on
both sides of the mean, so that the scale mixture satis-
fies the density crossing condition in Finucan’s theorem
mentioned in Sect. “Definition of the Subject” and ob-
served in the center panel of Fig. 1. This follows from the
fact that, if a1; : : : ; an and �1 < � � � < �n are real con-
stants, and N is the number of real zeros of the function
'(x) D

P
i aie

�i x , then W � N is a non-negative even
integer, where W is the number of sign changes in the
sequence a1; : : : ; an [183]. Skewness can be incorporated
into the model when the component means are allowed
to differ. For example, if, in the two-component mixture,
the high-variance component has both a smallermean and
mixing weight, then the distribution will be skewed to the
left.

Because of their flexibility and the aforementioned
economic interpretation, finite normalmixtures have been
frequently used to model the unconditional distribution of
asset returns [40,44,129,179], and they have become rather
popular since the publication of Hamilton’s [101] paper
onMarkov-switching processes, where the mixing weights
are assumed to be time-varying according to a k-state
Markov chain; see, e. g., [200] for an early contribution in
this direction.

However, although a finite mixture of normals is
a rather flexible model, its tails decay eventually in a Gaus-
sian manner, and therefore, according to the discussion
in Sect. “Empirical Evidence About the Tails”, it may of-
ten not be appropriate to model returns at higher fre-
quencies unconditionally. Nevertheless, when incorpo-
rated into a GARCH structure (see Sect. “Volatility Clus-
tering and Fat Tails”), it provides a both useful and intu-
itively appealing framework for modeling the conditional
distribution of asset returns, as in [5,96,97]. These papers
also provide a discussion of alternative interpretations of
the mixture model (25), as well as an overview over the
extensive literature.

Empirical Comparison

In the following we empirically illustrate the adequacy of
the various distributions discussed in the previous sections

for modeling the unconditional return distribution. Ta-
ble 1 presents the estimation results for the S&P500 in-
dex assuming iid returns. The log likelihood values clearly
indicate the inadequacy of the normal, Cauchy and sta-
ble distributions. This is also highlighted in the upper
panel of Fig. 7, which clearly shows that the tails of the
Cauchy and stable distributions are too heavy, whereas
those of the normal distribution are too weak. To dis-
tinguish the other distributions in more detail, the lower
left panel is an enlarged display of the shadowed box in
the upper panel. It illustrates nicely that the two com-
ponent mixture, VG and HYP distribution exhibit semi-
heavy tails, which are probably a little bit to weak for
an adequate modeling as is indicated by the log likeli-
hood values. Similarly, the two-component finite normal
mixture, although much better than the normal, cannot
keep up with most of the other models, presumably due
to its essentially Gaussian tails. Although the pdf of the
NIG distribution lies somewhere in between the pdfs of
the HYP and the different t distributions, the log like-
lihood value clearly indicates that this distribution is in
a statistical sense importantly closer to the t distributions.
A further distinction between the other distributions in-
cluding all kinds of t distributions and the GH distribu-
tion is nearly impossible, as can be seen from the lower
right plot, which is an enlarged display of the lower left
panel. The log likelihood values also do not allow for
a clear distinction. Note also that the symmetric t dis-
tribution performs unexpectedly well. In particular, its
log likelihood is almost indistinguishable from those of
the skewed versions. Also note that, for all t distribu-
tions, the estimated tail index, �, is close to 3.5, which
is in accordance with the results from semiparametric
tail estimation in Sect. “Empirical Evidence About the
Tails”.

The ranking of the distributions in terms of the log
likelihood depends of course heavily on the dataset, and
different return series may imply different rankings. How-
ever, Table 1 also highlights some less data-dependent re-
sults, which are more or less accepted in the literature,
e. g., the tails of the Cauchy and stable distributions are
too heavy, and those of the HYP and VG are too light for
the unconditional distribution. This needs of course no
longer be valid in a different modeling setup. Especially in
a GARCH framework the conditional distribution don’t
need to imply such heavy tails because the model itself im-
poses fatter tails.

In Sect. “Application to Value-at-Risk”, the compari-
son of the models will be continued on the basis of their
ability the measure the Value-at-Risk, an important con-
cept in risk management.
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Financial Economics, Fat-Tailed Distributions, Figure 7
Plot of the estimated pdfs of the different return distributions assuming iid returns

Volatility Clustering and Fat Tails

It has long been known that the returns of most financial
assets, although close to being unpredictable, exhibit sig-
nificant dependencies in measures of volatility, such as ab-
solute or squared returns. Moreover, the empirical results
based on the recent availability of more precise volatility
measures, such as the realized volatility, which is defined
as the sum over the squared intradaily high-frequency re-
turns (see, e. g., [7] and [23]), also point towards the same
direction. In particular, the realized volatility has been
found to exhibit strong persistence in its autocorrelation
function, which shows a hyperbolic decay indicating the
presence of long memory in the volatility process. In fact,
this finding as well as other stylized features of the realized
volatility have been observed across different data sets and
markets and are therefore by now widely acknowledged
and established in the literature. For a more detailed and
originating discussion on the stylized facts of the high-fre-

quency based volatility measures for stock returns and ex-
change returns we refer to [8,9], respectively.

The observed dependence of time-varying pattern of
the volatility is usually referred to as volatility clustering.
It is also apparent in the top panel of Fig. 1 and was
already observed by Mandelbrot [155], who noted that
“large changes tend to be followed by large changes—of ei-
ther sign—and small changes tend to be followed by small
changes”. It is now well understood that volatility cluster-
ing can explain at least part of the fat-tailedness of the un-
conditional return distribution, even if the conditional dis-
tribution is Gaussian. This is also supported by the recent
observation that if the returns are scaled by the realized
volatility then the distribution of the resulting series is ap-
proximately Gaussian (see [9] and [8]). To illustrate, con-
sider a time series f�tg of the form

�t D �t�t ; (27)

where f�tg is an iid sequence with mean zero and unit
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variance, with �t being independent of � t , so that �2t is
the conditional variance of �t . With respect to the kurtosis
measureK in (3), it has been observed by [108], and earlier
by [31] in a different context, that, as long as �2t is not con-
stant, Jensen’s inequality implies E[�4t ] D E[�4t ]E[�4t ] >
E[�4t ]E2[�2t ], so that the kurtosis of the unconditional dis-
tribution exceeds that of the innovation process. Clearly,
K provides only limited information about the actual
shape of the distribution, andmore meaningful results can
be obtained by specifying the dynamics of the conditional
variance, �2t . A general useful result [167] for analyzing the
tail behavior of processes such as (27) is that, if � t and � t
are independent non-negative random variables with � t
regularly varying, i. e., P(�t > x) D L(x)x�˛ for some
slowly varying L, and E[�˛Cıt ] <1 for some ı > 0, then
�t�t is likewise regularly varying with tail index ˛, namely,

P (�t�t > x) Š E
�
�˛
�
P (�t > x) as x !1 : (28)

Arguably the most popular model for the evolution
of �2t in (27) is the generalized autoregressive condi-
tional heteroskedasticity process of orders p and q, or
GARCH(p; q), as introduced by [37,73], which specifies
the conditional variance as

�2t D ˛0 C

qX

iD1

˛i�
2
t�i C

pX

iD1

ˇi�
2
t�i : (29)

The case p D 0 in (29) is referred to as an ARCH(q) pro-
cess, which is the specification considered in [73]. Tomake
sure that the conditional variance remains positive for all t,
appropriate restrictions have to be imposed on the param-
eters in (29), i. e., ˛i, i D 0; : : : ; q, and ˇi, i D 1; : : : ; p.
It is clearly sufficient to assume that ˛0 is positive and
all the other parameters are non-negative, as in [37], but
these conditions can be relaxed substantially if p; q > 0
and pC q > 2 [173].

(27) and (29) is covariance stationary iff

P (z) D zm �
mX

iD1

(˛i C ˇi ) zm�i D 0) jzj < 1 ; (30)

where m D max fp; qg, and ˛i D 0 for i > q, and ˇi D 0
for i < p, which boils down to

P
i ˛i C

P
i ˇi < 1 in case

the non-negativity restrictions of [37] are imposed. The
situation

P
i ˛i C

P
i ˇi D 1 is referred to as an inte-

grated GARCH (IGARCH) model, and in applications it
is often found that the sum is just below unity. This in-
dicates a high degree of volatility persistence, but the in-
terpretation of this phenomenon is not so clear-cut [166].
If (30) holds, the unconditional variance of the process de-

fined by (27) and (29) is given by

E
�
�2t
�
D

˛0

1 �
Pq

iD1 ˛i �
Pp

iD1 ˇi
: (31)

In practice, the GARCH(1,1) specification is of particular
importance, and it will be the focus of our discussion too,
i. e., we shall concentrate on the model (27) with

�2t D ˛0 C
�
˛1�

2
t�1 C ˇ1


�2t�1 ;

˛0 > 0 ; ˛1 > 0 ; 1 > ˇ1 � 0 : (32)

The case ˛1 D 0 corresponds to a model with constant
variance, which is of no interest in the current discussion.

An interesting property of the GARCH process is that
its unconditional distribution is fat-tailed even with light-
tailed (e. g., Gaussian) innovations, i. e., the distributional
properties of the returns will not reflect those of the in-
novation (news) process. This has been known basically
since [37,73], who showed that, even with normally dis-
tributed innovations, (G)ARCH processes do not have all
their moments finite. For example, for the GARCH(1,1)
model, [37] showed that, with m 2 N , the unconditional
(2m)th moment of �t in (27) is finite if and only if

E
�
(˛1�2t C ˇ1)

m� < 1 ; (33)

which, as long as ˛1 > 0, will eventually be violated for all
practically relevant distributions. The argument in [37] is
based on the relation

E
�
�2mt

�
D

mX

iD0

 
m
i

!

˛ i
0E
h�
˛1�

2
t�1 C ˇ1

m�ii

E
h
�
2(m�i)
t�1

i
; (34)

which follows from (32). The coefficient of E
�
�2mt�1

�
on

the right-hand side of (34) is just the expression appear-
ing in (33), and consequently the (2m)th unconditional
moment cannot be finite if this exceeds unity. The heavy-
tailedness of the GARCH process is sometimes also exem-
plified by means of its unconditional kurtosis measure (3),
which is finite for the GARCH(1,1) model with Gaussian
innovations iff 3˛21 C 2˛1ˇ1 C ˇ2

1 < 1.Writing (34) down
for m D 2, using (31) and substituting into (3) gives

K [�t] D
3
�
1 � (˛1 C ˇ1)2

�

1 � (˛1 C ˇ1)2 � 2˛21
> 3 ;

as E
�
�4t
�
D 3E

�
�4t
�
. [73] notes that “[m]any statistical

procedures have been designed to be robust to large er-
rors, but . . . none of this literature has made use of the
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fact that temporal clustering of outliers can be used to pre-
dict their occurrence and minimize their effects. This is
exactly the approach taken by the ARCH model”. Condi-
tions for the existence of and expressions for higher-or-
der moments of the GARCH(p; q) model can be found
in [50,105,122,139]. The relation between the conditional
and unconditional kurtosis of GARCH models was inves-
tigated in [15], see also [47] for related results.

A more precise characterization of the tails of GARCH
processes has been developed by applying classical results
about the tail behavior of solutions of stochastic difference
equations as, for example, in [124]. We shall continue to
concentrate on the GARCH(1,1) case, which admits rela-
tively explicit results, and which has already been written
as a first-order stochastic difference equation in (32). Iter-
ating this,

�2t D �
2
0

tY

iD1

�
˛1�

2
t�i C ˇ1



C ˛0

"

1C
t�1X

kD1

kY

iD1

�
˛1�

2
t�i C ˇ1


#

: (35)

Nelson [171] has shown that the GARCH(1,1) process (32)
has a strictly stationary solution, given by

�2t D ˛0

"

1C
1X

kD1

kY

iD1

�
˛1�

2
t�i C ˇ1


#

; (36)

if and only if

E
�
log

�
˛1�

2
t C ˇ1

�
< 0 : (37)

The keynote of the argument in [171] is the application
of the strong law of large numbers to the terms of the
form

Qk
iD1(˛1�

2
t�i C ˇ1) D expf

Pk
1 log

�
˛1�

2
t�i C ˇ1


g

in (35), revealing that (35) converges almost surely if (37)
holds. Note thatE

�
log

�
˛1�

2
t C ˇ1

�
< logE

�
˛1�

2
t C ˇ1

�

D log (˛1 C ˇ1), i. e., stationary GARCH processes need
not be covariance stationary. Using (36) and standard mo-
ment inequalities, [171] further established that, in case
of stationarity, E

�
j�t j

p�, p > 0, is finite if and only if
E[(˛1�2t C ˇ1)p/2] < 1, which generalizes (33) to nonin-
teger moments. It may now be supposed, and, building
on the results of [90,124], has indeed been established
by [167], that the tails of the marginal distribution of �t
generated by a GARCH(1,1) process decay asymptotically
in a Pareto-type fashion, i. e.,

P(j�t j > x) Š cx�˛ as x !1 ; (38)

where the tail index ˛ is the unique positive solution of the
equation

h (˛) :D E
h�
˛1�

2
t C ˇ1

˛/2i
D 1 : (39)

This follows from (28) along with the result that the tails of
�2t and � t are asymptotically Paretian with tail indices ˛/2
and ˛, respectively. For a discussion of technical condi-
tions, see [167]. [167] also provides an expression for the
constant c in (38), which is difficult to calculate explicitly,
however. For the ARCH(1) model with Gaussian inno-
vations, (39) becomes (2˛1)˛/2 � [(˛ C 1) /2] /

p
� D 1,

which has already been obtained by [63] and was fore-
shadowed in the work of [168]. The results reported above
have been generalized in various directions, with qual-
itatively similar conclusions. The GARCH(p; q) case is
treated in [29], while [140,141] consider various exten-
sions of the standard GARCH(1,1) model.

Although the unconditional distribution of a GARCH
model with Gaussian innovations has genuinely fat tails,
it is often found in applications that the tails of empirical
return distributions are even fatter than those implied by
fitted Gaussian GARCH models, indicating that the con-
ditional distribution, i. e., the distribution of �t in (27),
is likewise fat-tailed. Therefore, it has become standard
practice to assume that the innovations �t are also heavy
tailed, although it has been questioned whether this is the
best modeling strategy [199]. The most popular example
of a heavy tailed innovation distribution is certainly the t
considered in Subsect. “The Student tDistribution”, which
was introduced by [38] into the GARCH literature. Some
authors have also found it beneficial to let the degrees of
freedom parameter � in (23) be time-varying, thus obtain-
ing time-varying conditional fat-tailedness [45].

In the following, we shall briefly discuss a few
GARCH(1,1) estimation results for the S&P500 series in
order to compare the tails implied by these models with
those from the semiparametric estimation procedures in
Sect. “Empirical Evidence About the Tails”. As distribu-
tions for the innovation process f�tg, we shall consider the
Gaussian, t, and the generalized error distribution (GED),
which was introduced by [172] into the GARCH literature,
see [128] for a recent contribution and asymmetric exten-
sions. It has earlier been used in an unconditional context
by [94] for the S&P500 returns. The density of the GED
with mean zero and unit variance is given by

fGED (x; �) D
�

21/�C1� (1/�)
exp

�
�
jxj�

2

�
; � > 0 ;

(40)

where  D 21/�
p
� (3/�) /� (1/�). Parameter � in (40)

controls the thickness of the tails. For � D 2, we get the
normal distribution, and a leptokurtic shape is obtained
for � < 2. In the latter case, the tails of (40) are therefore
thicker than those of the Gaussian, but they are not fat in
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the Pareto sense. However, even if one argues for Pareto
tails of return distributions, use of (40) may be appropri-
ate as a conditional distribution in GARCH models, be-
cause the power law already accompanies the volatility dy-
namics. To make the estimates of the parameter ˛1 in (32)
comparable, we also use the unit variance version of the t,
which requires multiplying X in (23) by

p
(� � 2) /�. Re-

turns are modeled as rt D �C �t , where � is a constant
mean and �t is generated by (27) and (32). Parameter es-
timates, obtained by maximum-likelihood estimation, are
provided in Table 2. In addition to the GARCH param-
eters in (32) and the shape parameters of the innovation
distributions, Table 2 reports the log likelihood values and
the implied tail indices, ˆ̨ , which are obtained by solv-
ing (39) numerically. First note that all the GARCH mod-
els have considerably higher likelihood values than the iid
models in Table 1, which highlights the importance of ac-
counting for conditional heteroskedasticity. We can also
conclude that the Gaussian assumption is still inadequate
as a conditional distribution in GARCH models, as both
the t and the GED achieve significantly higher likelihood
values, and their estimated shape parameters indicate pro-
nounced non-normalities. However, the degrees of free-
dom parameter of the t, �, is somewhat increased in com-
parison to Table 1, as part of the leptokurtosis is now ex-
plained by the GARCH effects.

Compared to the nonparametric tail estimates ob-
tained in Sect. “Empirical Evidence About the Tails”, the
tail index implied by the Gaussian GARCH(1,1) model
turns out to be somewhat too high, while those of themore
flexible models are both between 3 and 4 and therefore
more in line with what has been found in Sect. “Empirical
Evidence About the Tails”. However, for all three models,
the confidence intervals for ˛, as obtained from 1,000 sim-
ulations from the respective estimated GARCH processes,

Financial Economics, Fat-Tailed Distributions, Table 2
GARCH parameter estimates

Distribution �̂ ˆ̨ 0 ˆ̨ 1 ˆ̌1 �̂ ˆ̨ Loglik

Normal
0.059 0.012 0.080 0.911

—
4.70

�7271.7
(0.011) (0.002) (0.008) (0.009) (3.20, 7.22)

GED
0.063 0.007 0.058 0.936 1.291 3.95

�7088.2
(0.010) (0.002) (0.007) (0.008) (0.031) (2.52, 6.95)

Symmetric t
0.063 0.006 0.051 0.943 6.224 3.79

�7068.1
(0.010) (0.002) (0.006) (0.007) (0.507) (2.38, 5.87)

Shown are maximum-likelihood estimation results for GARCH(1,1) models, as
given by (27) and (32), with different assumptions about the distribution of the
innovations �t in (27). Standard errors for the model parameters and 95% confi-
dence intervals for the implied tail indices, ˆ̨ , are given in parentheses. “Loglik” is
the value of the maximized log likelihood function.

are rather wide, so that we cannot conclusively rule out
the existence of the unconditional fourth (and even fifth)
moment. The width of the confidence intervals reflects
the fact that the implied tail indices are very sensitive to
small variations in the underlying GARCH parameters.
For example, if, in the GARCH model with conditional
normality, we replace the estimate ˆ̌1 D 0:911 with 0.9,
the implied tail index is 7.31, and with ˇ1 D 0:92, we get
˛ D 2:05, which is close to an infinite variance. The situa-
tion is depicted in Fig. 8, showing h (˛) in (39) for the dif-
ferent values of ˇ1. The shape of h follows generally from
h(0) D 1, h0(0) < 0 by (37), h00 > 0, i. e., h is convex, and
lim˛!1 h (˛) D 1 as long as P

��
˛1�

2
t C ˇ1


> 1

�
> 0,

so that h (˛) D 1 has a unique positive solution. Note
that both 0.9 and 0.92 are covered by 0:911˙ 2 � 0:009,
i. e., a 95% confidence interval for ˇ1. This shows that the
GARCH-implied tail indices are rather noisy.

Alternatively, we may avoid precise assumptions about
the distribution of the innovation process f�tg and rely
on quasi maximum-likelihood results [138]. That is, we
estimate the innovations by �̂t D �̂t/�̂t , t D 1; : : : ; 5; 550,
where f�̂tg is the sequence of conditional standard de-
viations implied by the estimated Gaussian GARCH
model, and then solve the sample analogue of (39), i. e.,
T�1

PT
tD1( ˆ̨1�̂

2
t C

ˆ̌1)˛/2 D 1, a procedure theoretically
justified in [32]. Doing so, we obtain ˆ̨ D 2:97, so that we
recover the “universal cubic law”. However, the 95% confi-
dence interval, calculated from 1,000GARCH simulations,
where the innovation sequences are obtained by sam-
pling with replacement from the �̂t-series, is (1:73; 4:80),
which is still reconcilable with a finite fourth moment,
and even with an infinite second moment. These results
clearly underline the caveat brought out by [72] (p. 349),
that “[t]here is no free lunch when it comes to [tail index]
estimation”.
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Financial Economics, Fat-Tailed Distributions, Figure 8
The figure displays the function h (˛), as defined in (39), for Gaussian�t,˛ D 0:0799and various values ofˇ1. Note that ˆ̨ 1 D 0:0799
and ˆ̌1 D 0:911 are the maximum likelihood estimates for the S&P500 returns, as reported in Table 2

Application to Value-at-Risk

In this section, we compare the models discussed in Sects.
“Some Specific Distributions” and “Volatility Clustering
and Fat Tails” on an economic basis by employing the
Value-at-Risk (VaR) concept, which is a widely used mea-
sure to describe the downside risk of a financial position
both in industry and in academia [118]. Consider a time
series of portfolio returns, rt, and an associated series of
ex-ante VaR measures with target probability � , VaRt(�).
The VaRt(�) implied by a modelM is defined by

PrMt�1 (rt < �VaRt (�)) D � ; (41)

where PrMt�1 (�) denotes a probability derived from
modelM using the information up to time t � 1, and the
negative sign in (41) is due to the convention of reporting
VaR as a positive number. For an appropriately specified
model, we expect 100 � �% of the observed return values
not to exceed the (negative of the) respective VaR forecast.
Thus, to assess the performance of the differentmodels, we
examine the percentage shortfall frequencies,

U� D 100 �
x
T
D 100 � �̂ ; (42)

where T denotes the number of forecasts evaluated, x is
the observed shortfall frequency, i. e., the number of days
for which rt < �VaRt (�), and �̂ D x/T is the empiri-
cal shortfall probability. If �̂ is significantly less (higher)
than � , then model M tends to overestimate (underesti-
mate) the risk of the position. In the present application,
in order to capture even the more extreme tail region, we
focus on the target probabilities � D 0:001, 0.0025, 0.005,
0.01, 0.025, and 0.05.

To formally test whether a model correctly estimates
the risk (according to VaR) inherent in a given financial
position, that is, whether the empirical shortfall proba-
bility, �̂ , is statistically indistinguishable from the nom-
inal shortfall probability, � , we use the likelihood ratio
test [133]

LRTVaR D �2

(

x log
�

�̂
C (T � x) log

1 � �
1 � �̂

)
asy
� �2 (1) :

(43)

On the basis of the first 1,000 return observations, we
calculate one-day-ahead VaR measures based on param-
eter estimates obtained from an expanding data window,
where the parameters are updated every day. Thus we get,
for each model, 4,550 one-day-ahead out-of-sample VaR
measures.

Table 3 reports the realized one-day-ahead percent-
age shortfall frequencies for the different target probabili-
ties, � , as given above. The upper panel of the table shows
the results for the unconditional distributions discussed
in Sect. “Some Specific Distributions”. The results clearly
show that the normal distribution strongly underestimates
(�̂ > �) the downside risk for the lower target probabil-
ities, while the Cauchy as well as the alpha stable distri-
butions tend to significantly overestimate (�̂ < �) the tails.
This is in line with what we have observed from the em-
pirical density plots presented in Fig. 7, which, in contrast
to the out-of-sample VaR calculations, are based on esti-
mates for the entire sample. Interestingly, the finite nor-
mal mixture distribution also tends to overestimate the
risk at the lower VaR levels, leading to a rejection of cor-
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Financial Economics, Fat-Tailed Distributions, Table 3
Backtesting Value-at-Risk measures

Unconditional Distributional Models
Distribution U0:001 U0:0025 U0:005 U0:01 U0:025 U0:05

GH 0.04 0:11�� 0:24��� 0:73� 2.70 5:89���

tGH 0.07 0:11�� 0:22��� 0:75� 2.75 5:96���

tJF 0.04 0:11�� 0:31�� 0.88 2.64 5.32
tAC 0.04 0:11�� 0:26�� 0.84 2.48 5.16
tFS 0.07 0:13� 0:33�� 0.95 2.77 5.38
Symmetric t 0.07 0.15 0:31�� 0.92 3:08�� 6:35���

NIG 0.07 0.15 0:26�� 0:70�� 2.35 5.34
HYP 0.13 0.24 0.51 0.95 2.50 5.16
VG 0.13 0.24 0.51 0.92 2.46 5.10
Alpha stable 0.04 0:11�� 0:33�� 0:75� 2.44 4.90
Finite mixture (k D 2) 0.04 0:07��� 0:11��� 0:37��� 2:99�� 6:40���

Cauchy 0:00��� 0:00��� 0:00��� 0:00��� 0:09��� 0:88���

Normal 0:48��� 0:64��� 0:97��� 1:36�� 2.44 4:02���

GARCH(1,1) Models
Distribution U0:001 U0:0025 U0:005 U0:01 U0:025 U0:05

Normal 0:40��� 0:66��� 0:92��� 1:36�� 2:95� 4:57
GED 0:20� 0.33 0:44 0.79 2.48 4.79
Symmetric t 0:11 0.26 0.40 0.92 2.86 5.45

The table shows the realized one-day-ahead percentage shortfall frequencies, U� , for
given target probabilities, � , as defined in (42). Asterisks � , �� and ��� indicate signifi-
cance at the 10%, 5% and 1% levels, respectively, as obtained from the likelihood ratio
test (43).

rect coverage for almost all target probabilities. In contrast,
the HYP distribution, whose empirical tails have been very
close to those of the normal mixture in-sample (see Fig. 7),
nicely reproduces the target probabilities, as does the VG
distribution.

Similarly to the log likelihood results presented in Sub-
sect. “Empirical Comparison” the Value-at-Risk evalua-
tion does not allow for a clear distinction between the dif-
ferent t distributions, the GH and the NIG distribution.
Similar to the Cauchy and the stable, they all tend to over-
estimate the more extreme target probabilities, while they
imply too large shortfall probabilities at the five percent
quantile.

The fact thatmost unconditional distributional models
tend to overestimate the risk at the lower target probabil-
ities may be due to our use of an expanding data window
and the impact of the “Black Monday”, where the index
decreased by more than 20%, at the beginning of our sam-
ple period. In this regard, the advantages of accounting for
time-varying volatility via a GARCH(1,1) structure may
become apparent, as this model allows the more recent ob-
servations to have much more impact on the conditional
density forecasts.

In fact, by inspection of the results for the GARCH
models, as reported in the lower part of Table 3, it turns
out that the GARCH(1,1) model with a normal distribu-
tion strongly underestimates the empirical shortfall prob-
abilities at all levels except the largest (5%). However, con-
sidering a GED or t distribution for the return innovations
within the GARCH model provides accurate estimates of
downside risks.

To further discriminate between the GARCH pro-
cesses and the iid models, tests for conditional coverage
may be useful, which are discussed in the voluminous VaR
literature (e. g., [53]).

Finally, we point out that the current application is
necessarily of an illustrative nature. In particular, if the
data generating process is not constant but evolves slowly
over time and/or is subject to abrupt structural breaks, use
of a rolling data window will be preferred to an expanding
window.

Future Directions

As highlighted in the previous sections, there exists
a plethora of different and well-established approaches
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for modeling the tails of univariate financial time series.
However, on the multivariate level the number of mod-
els and distributions is still very limited, although the joint
modeling of multiple asset returns is crucial for portfo-
lio risk management and allocation decisions. The prob-
lem is then to model the dependencies between financial
assets. In the literature, this problem has been tackled,
for example, by means of multivariate extensions of the
mean-variance mixture (18) [19], multivariate GARCH
models [30], regime-switching models [11], and copu-
las [51]. The problem is particularly intricate if the num-
ber of assets to be considered is large, and much work
remains to understand and properly model their depen-
dence structure.

It is also worth mentioning that the class of GARCH
processes, due to its interesting conditional and uncondi-
tional distributional properties, has been adopted, for ex-
ample, in the signal processing literature [3,52,55], and it
is to be expected that it will be applied in other fields in the
future.
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Glossary

Arbitrage The possibility of producing a riskless profit by
exploiting price differences between identical or linked
assets.

Market efficiency A market is called efficient when all
available information is reflected accurately, instantly
and fully in the prices of traded assets. Depending on
the definition of the available information set, private,
public or that contained in historical prices, market ef-
ficiency is considered as strong, semi-strong or weak,
respectively. Themarket price of an asset in an efficient
market is an unbiased estimate of its true value. Sys-



3436 F Financial Economics, Non-linear Time Series in

tematic excess profits, which cannot be justified on the
basis of the underlying risk, are not possible in such
a market.

Martingale The term was originally used to describe
a particular gambling strategy in which the stake is
doubled following a losing bet. In probability theory
it refers to a stochastic process that is a mathemat-
ical model of ‘fair play’. This has been one of the
most widely assumed processes for financial prices. It
implies that the best forecast for tomorrow’s price is
simply today’s price or, in other words, that the ex-
pected difference between any two successive prices is
zero. Assuming a positive (negative) expected differ-
ence leads to the more general and realistic class of
submartingale (supermartingale) processes. The mar-
tingale process implies that price differences are seri-
ally uncorrelated and that univariate linear time series
models of prices have no forecasting value. However,
martingales do not preclude the potential usefulness of
nonlinear models in predicting the evolution of higher
moments, such as the variance. The efficient market
hypothesis is often incorrectly equated to the so-called
random walk hypothesis, which roughly states that fi-
nancial prices are martingales.

Option A call (put) option is a contractual agreement
which gives the holder the right to buy (sell) a spec-
ified quantity of the underlying asset, within a speci-
fied period of time, at a price that is agreed when the
contract is executed.Options are derivative assets since
their value is based upon the variation in the under-
lying, which is typically the price of some asset such
as a stock, commodity, bond, etc. Other basic types
of derivatives include futures, forwards and swaps. An
option is real, in contrast to financial, when the corre-
sponding right refers to some business decision, such
as the right to build a factory.

Portfolio theory The study of how resources should be
optimally allocated between alternative investments
on the basis of a given time investment horizon and
a set of preferences.

Systematic risk Reflects the factors affecting all securities
or firms in an economy. It cannot be reduced by di-
versification and it is also known as market risk. In the
context of one of the most popular financial models,
the Capital Asset Pricing Model (CAPM), systematic
risk is measured by the beta coefficient.

Unsystematic risk This is the part of risk that is unique
to a particular security or firm and can be reduced
through diversification. This risk cannot be explained
on the basis of fluctuations in the market as whole and
it is also known as residual or idiosyncratic risk.

Volatility Ameasure of overall risk for an asset or portfo-
lio which represents the sum of systematic and unsys-
tematic risk. While several different approaches have
been proposed for approximating this unobservable
variable, the simplest one is based on the annualized
standard deviation estimated using a historical sample
of daily returns.

Definition of the Subject

Financial economics is the branch of economic science
that deals with how groups of agents, such as households,
firms, investors, creditors and economies as a whole, al-
locate and exchange financial resources in the context of
markets. A wide variety of problems and applications fall
within this broad subject area, including asset pricing,
portfolio optimization, market efficiency, capital budget-
ing, interest and exchange rate modeling, risk manage-
ment, forecasting and trading, market microstructure and
behavioral finance. It is a highly quantitative and empiri-
cal discipline which draws its theoretical foundations and
tools primarily from economics, mathematics and econo-
metrics. Academic research in this area has flourished over
the past century in line with the growing importance of
financial markets and assets for the everyday life of cor-
porations and individuals (for a historical overview of fi-
nancial economics, see [69]). Consequently, at least 6 out
of the 39 Nobel prizes in Economics have been awarded
for research undertaken in areas related to financial eco-
nomics. The close relationship between finance and time
series analysis becamewidely apparent when Sir CliveW.J.
Granger and Robert F. Engle III jointly received the 2003
Nobel Prize. Their work in time series econometrics has
had a profound impact both on academic research and on
the practice of finance. In particular, the ARCH model,
first proposed by Engle [27] for modeling the variability
of inflation, is today one of the most well known and im-
portant applications of a nonlinear time series model in
finance. We should also acknowledge the Nobel Prize re-
ceived by Robert C. Merton and Myron S. Scholes in 1993
for their pioneering work in the 1970s on pricing financial
derivatives. In particular, they, along with Fischer Black,
developed an analytical framework and simple mathemat-
ical formulae for pricing derivative assets, such as options
and warrants, which have highly nonlinear payoff func-
tions. Their work was the first step in the development of
the derivatives industry and the whole risk management
culture and practice in finance.

The close link between finance and nonlinear time se-
ries analysis is by no means accidental, being a conse-
quence of four main factors. First, financial time series
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have always been considered ideal candidates for data-
hungry nonlinear models. The fact that organized finan-
cial markets and information brokers (e. g., newspapers,
data vendors, analysts, etc.) have been around for many
years has meant that an abundance of high quality histor-
ical data exists. Most of this data is in the form of time se-
ries and usually spans several decades, sometimes exceed-
ing a century. Furthermore, asset prices can now be col-
lected at ultra-high frequencies, often less than a minute,
so that sample sizes may run into millions of observations.
Second, the poor forecasting performance of linear models
allied to the prospect of obtaining large financial gains by
‘beating the market’ on the basis of superior forecasts pro-
duced by nonlinear time series models has provided a nat-
ural motive for researchers from several disciplines. Third,
developments in the natural sciences since the 1980s with
respect to chaos theory, nonlinear dynamics and complex-
ity have fueled a ‘nonlinearist’ movement in finance and
have motivated a new research agenda on relevant theo-
ries, models and testing procedures for financial time se-
ries. Underlying this movement was the concern that the
apparent unpredictability of financial time series may sim-
ply be due to the inadequacy of standard linear models.
Moreover, it was also thought that the irregular fluctua-
tions in financial markets may not be the result of propa-
gated exogenous random shocks but, rather, the outcome
of some, hopefully low-dimensional, chaotic system (see
the entry by Shintani on� Financial Forecasting, Sensitive
Dependence). Fourth, and most importantly, although the
bulk of financial theory and practice is built upon affine
models, a wealth of theoretical models and supporting em-
pirical evidence has been published suggesting that the na-
ture of some financial problems may be inherently nonlin-
ear. Two prime examples are the time-varying and asym-
metric nature of financial risk and the highly nonlinear re-
lationships that arise in situations involving financial op-
tions and other derivatives.

Introduction

Traditionally, theorists and empirical researchers in fi-
nance and economics have had rather different views con-
cerning nonlinearity. Theorists have shown some interest
in nonlinearities and have used them in a variety of dif-
ferent ways, such as first order conditions, multimodality,
ceilings and floors, regime switching, multiple equilibria,
peso problems, bandwagon effects, bubbles, prey-preda-
tor dynamics, time-varying parameters, asymmetries, dis-
continuities and jump behavior, non-additivity, non-tran-
sitivity, etc. Theories and structural models that have non-
linear elements can be found in most areas of finance

and economics (selective reviews with a focus mainly on
economics are given by Brock and de Lima [19], Lorenz
(see Chaps. 1–3 and 6 in [53]), Mullineux and Peng [67],
Rosser [74]; other sources include Chap. 3 and pp. 114–
147 in [40], [75]). Prominent examples include the noise-
trader models of exchange rate determination [34,35], the
target-zone exchange rate models [36,50] and the im-
perfect knowledge models [37]. Nonlinearities find their
natural place in the theory of financial derivatives (for
overviews, see [46,62]) and real options [26], where pay-
off functions and relationships between pricing variables
are inherently highly nonlinear. The popularity of nonlin-
earities is limited by the prevailing equilibrium theory as-
sumptions (convexity and continuity conditions, concav-
ity of utility and production functions, constant returns to
scale, intertemporally independent tastes and technology,
rational aggregate expectations and behavior, etc.) which
invariably lead to linear relationships.

For many years, nonlinearities were not a serious con-
sideration when attempting to build empirical models. Al-
fred Marshall, one of the great pioneers of mathematical
economics, epitomized the culture against nonlinear mod-
els when saying that “natura non facit saltum”, or nature
dislikes jumps. Although he contemplated the possibility
of multiple equilibria and switching behavior and under-
stood that this situation would entail a tendency for stable
and unstable equilibria to alternate, he dismissed it as de-
riving “from the sport of imagination rather than the obser-
vation of facts”. Correspondingly, in empirical and theo-
retical finance the mainstream approach has been to trans-
form any nonlinearities to linearized forms using Taylor
series expansions which excluded second-and higher-or-
der terms. Since the 1990s, however, there has been a sig-
nificant turn in favor of nonlinear modeling in finance. In
addition to the reasons advanced earlier, this development
has also been the result of advances in econometric estima-
tion and of the widespread availability of cheap computer
power. Some of the basic nonlinear models and relevant
theories that have been used in finance will be discussed in
the subsequent section (for a comprehensive review of the
linear and nonlinear time series models used in finance,
see [22,63]).

Basic Nonlinear Financial Time SeriesModels

Most of the theoretical and empirical research in financial
economics has typically hypothesized that asset price time
series are unit root stochastic processes with returns that
are serially unpredictable. For many years it was thought
that this unpredictability was necessary in order to en-
sure that financial markets function properly according to
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the Efficient Market Hypothesis (EMH; see the reviews by
Fama [32,33]). Within this framework, a market is consid-
ered efficient with respect to a specific information set, an
asset pricing model and a data generating process, respec-
tively. For example, a general condition of efficiency is that
market prices fully, correctly and instantaneously reflect
the available information set. This is sometimes formal-
ized as the RandomWalk Hypothesis (RWH), which pre-
dicts that prices follow random walks with price changes
that are unforecastable on the basis of past price changes.
An even milder condition is that trading on the informa-
tion set does not allow profits to be made at a level of
risk that is inconsistent with the underlying asset pric-
ing model. Although initially the EMH and RWH were
thought to be an unavoidable consequence of the widely
accepted paradigm of rational expectations, this was later
refuted by a series of studies showing that random walk
behavior was neither a necessary nor sufficient condi-
tion for rationally determined financial prices. Market effi-
ciency has profound practical economic implications inso-
far as financial prices serve both as ways of integrating and
distributing available information and as asset allocation
devices.

One of the simplest models of financial prices that can
be derived on the basis of unpredictability is the martin-
gale process:

pt D pt�1 C "t (1)

where pt is the price of an asset observed at time t and "t
is the martingale increment or martingale difference. The
martingale has the following properties: a) E(jpt j) <1
for each t, b) E(pt j=s) D ps whenever s 6 t, where =s
is the �-algebra comprized of events determined by ob-
servations over the interval [0; t], so that =s � =t when
s 6 t. Themartingale possesses theMarkov property since
the differences �pt D pt � pt�1 D "t are unpredictable
on the basis of past differences. By successive backward
substitution in (1) we can express the current price as the
accumulation of all past errors. In financial terms, errors
can be thought to be the result of unexpected information
or news. By restricting the differences "t to be identically
and independently distributed (iid) we obtain what is of-
ten called the random walk process. The random walk is
a term and assumption which is widely employed in fi-
nance. It was first used by Karl Pearson in a letter toNature
in 1905 trying to describe a mosquito infestation in a for-
est. Soon after, Pearson compared the process to the walk
of an intoxicated man, hence the graphical term “drunk-
ard’s walk“.

By representing the random walk in continuous time
with a growth rate �, as is often useful when dealing with

derivatives, we obtain the generalizedWiener process (also
called Brownian motion or diffusion):

dpt D �dt C �dwt (2)

where dwt is a standard normal random variable. The pa-
rameters� and � are referred to in finance as the drift and
volatility of the process, respectively. Another point worth
mentioning is that in both discrete and continuous time
the analysis is typically undertaken using logarithmically
transformed prices. This precludes the paradoxical possi-
bility of obtaining negative prices while, at the same time,
regularizing the statistical behavior of the data. Assuming
that prices are lognormally distributed means that loga-
rithmic returns are normally distributed and can be calcu-
lated as log pt � log pt�1 or log(pt/pt�1). These represent
continuously compounded returns and are approximately
equal to simple percentage returns.

Random walks, along with continuous-time mathe-
matical finance, were formally introduced in 1900 by Louis
Bachelier in his brilliant doctoral dissertation Théorie de
la Spéculation. Under the supervision of the great Henri
Poincaré, who first realized the possibility of chaotic mo-
tion, Bachelier developed the mathematical framework of
random walks in continuous time in order to describe the
unpredictable evolution of stock prices and to build the
first option pricing model (biographical details of Bache-
lier are given in [58]). Random walks were independently
discovered by Albert Einstein in 1905 and, of course, have
since played a fundamental role in physics and mathemat-
ics. They were later rigorously treated, along with fore-
casting and nonlinear modeling, by Norbert Wiener, the
father of cybernetics. Several important deviations from
the Bachelierian random walk and normal distribution
paradigm were developed several decades later by Benoit
Mandelbrot and his co-authors (for an overview see [59],
and the references given therein). This research developed
around the generalized Central Limit Theorem (CLT), the
stable family of distributions, long-term dependence pro-
cesses, scaling and fractals. Indeed, it is clear that Man-
delbrot views his research as similar to that of Bachelier
in that both were inspired by finance and both found great
applications later in physics or, to useMandelbrot’s words,
both were cases of the “unexpected historical primacy of
financial economics over physics” (see p. 174 in [59]).

Much of the motivation behind nonlinear time series
modeling in finance has to do with certain empirical char-
acteristics, or stylized facts, which have been observed over
the years across many financial assets, markets and time
periods. Since these characteristics were not always consis-
tent with a linear data generating process, nonlinear mod-
els seemed to be a reasonable explanation. In particular,
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Financial Economics, Non-linear Time Series in, Figure 1
Daily S&P 500 log Index Prices (left) and Returns (right) (3/1/1950–14/12/2007) (Returns are trimmed to˙5% in order to improve the
readability of the graph)

starting with Mandelbrot and others in the 1960s, several
empirical studies have reported that financial assets typi-
cally have daily returns exhibiting:

� Nonnormality: skewed and leptokurtic (fat-tailed and
high-peaked) unconditional distributions.

� Jump behavior: discontinuous variations that result in
extreme observations.

� Volatility clustering: large (small) returns inmagnitude
tend to be followed by large (small) returns of either
sign.

� Unpredictability: zero or weak serial autocorrelations
in returns.

In order to illustrate these characteristics, we investigate
the empirical behavior of daily logarithmic prices and re-
turns (simply referred to as prices and returns hereafter)
for the S&P 500 index. The series is publicly available
from Yahoo Finance. The empirical analysis is undertaken
using the econometric software packages EViews 5.0 by
Quantitative Micro Software and Time Series Modelling
4.18 by James Davidson, respectively. The sample con-
sists of 14,582 closing (end of the day) prices covering
the period 3/1/1950–14/12/2007. The index is calculated
as a weighted average of the common stock prices for the
500 largest firms traded on the New York Stock Exchange
(NYSE) and is adjusted for dividends and splits. The S&P
500 is often used as a proxy for the so-called market port-
folio and as a measure of the overall performance of the
US stock market.

The prices depicted in the left part of Fig. 1 exhibit the
upward drifting random walk behavior which is so rou-

tinely observed in financial time series. This is consistent
with the fact that the series could not be predicted on
the basis of past values using a member of the ARIMA
class of linear models (as popularized by Box and Jenk-
ins [16]). More specifically, the best fit was offered by an
ARIMA(1,1,1) model, althoughwith a disappointingly low
R-squared statistic of just 0.64% (absolute t-statistics in
brackets):

�pt D 0:0003
(3:9175)

� 0:3013
(3:3030)

�pt�1C 0:3779
(4:2664)

"t�1C "t : (3)

Such weak linear serial predictabilities are often found
at high sampling frequencies and are usually explained by
market microstructures. They do not represent true pre-
dictabilities but, rather, result from specific market mech-
anisms and trading systems (see the survey by Biais et
al. [12]).

A close examination of the return series, presented in
the right part of Fig. 1, suggests the presence of large, dis-
continuous variations. In particular, we can count 26 daily
returns which, in absolute value, exceed five standard de-
viations. This implies that such extreme events occur with
a probability of 0.18% or, on average, almost once every
two years (assuming 250 trading days in each calendar
year). Under a normal distribution, such ‘five-standard de-
viation’ events should be extremely rare, with a probability
of occurrence of only 0.00003%, or less than 3 days in ev-
ery 40,000 years! The fat tails of the return distribution are
also reflected in the kurtosis coefficient of 37.3, which is
much larger than the value of 3 that corresponds to a nor-
mal distribution. In terms of asymmetry, the distribution
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is skewed to the left with the relevant coefficient estimated
at �1.3.

Clearly, the normal distribution provides a poor ap-
proximation of reality here: the distribution of the er-
rors in the random process described by (1) should be al-
lowed to follow some non-Gaussian, fat-tailed and possi-
bly skewed distribution (see the entry by Haas and Pig-
orsch on � Financial Economics, Fat-Tailed Distribu-
tions). Various distributions having these properties have
been proposed, including the Student-t, the mixture of
normals, double Weibull, generalized beta, Tukey’s g � h,
generalized exponential, asymmetric scale gamma, etc.
(see [48,71]). Although some of the non-Gaussian dis-
tributions that have been proposed have many desirable
properties, empirical evidence regarding their appropri-
ateness for describing financial returns has been inconclu-
sive. Moreover, these distributions often bring with them
acute mathematical problems in terms of representation,
tractability, estimation, mixing and asymptotics. A distri-
bution that has received considerable attention is the sta-
ble family (also known as the stable Paretian, Pareto–Lévy,
or Lévy flight), which was initially proposed by Mandel-
brot [54,55]. Stable distributions are highly flexible, have
the normal and Cauchy as special cases, and can represent
‘problematic’ empirical densities that exhibit asymmetry
and leptokurtosis. Furthermore, they are consistent with
stochastic behavior that is characterized by discontinuities
or jumps. From a theoretical point of view, stable distri-
butions are particularly appealing since they are the lim-
iting class of distributions in the generalized CLT, which
applies to scaled sums of iid random variables with infi-
nite variances. Stable distributions also exhibit invariance
under addition, a property that is important for financial
data, which are usually produced as the result of time ag-
gregation. For a comprehensive discussion of these distri-
butions, see [54,55,64,65,71,76].

In terms of the conditional distribution, it is evident
from the graph of returns that the variance is not homo-
geneous across time, as one would expect for an iid pro-
cess. In line with this observation, the autocorrelation of
squared or absolute returns suggest the presence of strong
dependencies in higher moments, something that in turn
is indicative of conditional heteroskedasticity (see Fig. 3
below). On the basis of the above, it appears that the simple
random walk model is far too restrictive and that the more
general martingale process provides a better approxima-
tion to the data. Unlike the random walk, the martingale
rules out any dependence in the conditional expectation
of �ptC1 on the information available at t, while allow-
ing dependencies involving higher conditional moments
of �ptC1. This property of martingales is very useful for

explaining clusters in variances, since it allows persistence
(correlation) in the conditional variances of returns.

It should be noted that much of the empirical work
on nonlinear financial time series has involved modeling
time varying variances. This concentration on the variance
stems from it being the most widely used measure of risk,
which, in orthodox finance theory, is the sole determinant
of the expected return of any asset. Knowing the expected
return enables the opportunity cost of any investment or
asset to be estimated and, ultimately, to have a fair price
put on its value by discounting all future revenues against
the expected return. Variance was introduced in the path-
breaking research of Nobel Laureate Harry Markowitz in
the 1950s on investment portfolio selection, which laid
the basis for what is known today as modern portfolio
theory. The main innovation of Markowitz was that he
treated portfolio selection as a tractable, purely quantita-
tive problem of utility maximization under uncertainty,
hence the term ‘quant analysis’. Markowitz assumed that
economic agents face a choice over two-dimensional in-
difference curves of investment preferences for risk and
return. Under some additional assumptions, he obtained
a solution to this problem and described the preferences of
homogeneous investors in a normative manner using the
mean and variance of the probability distribution of single
period returns: such investors should optimize their port-
folios on the basis of a ‘mean-variance’ efficiency criterion,
which yields the investment with the highest expected re-
turn for a given level of return variance.

Let us now turn to some of the processes that have
been used to model regularities in variance. For example,
consider the GARCH(1,1) process, which has become very
popular for modeling the conditional variance, �2t , as a de-
terministic function of lagged variances and squared er-
rors (see the entry by Hafner on � GARCH Modeling):

�2t D ˛0 C ˛1"
2
t�1 C ˇ1�

2
t�1 (4)

where the "t are, in general, the residuals from a fit-
ted conditional mean equation. This specification corre-
sponds to a single-lagged version of the GARCH(p; q)
(Generalized Autoregressive Conditional Heteroskedas-
ticity) model proposed by Bollerslev [13] and can easily
be modified to include additional lagged squared errors
and variances. The GARCH model is an extension of the
ARCH process originally proposed by Engle [27] and has
served as the basis for the development of an extensive
family of related models. For a review of this huge lit-
erature see, among others, [10,14,15,52,79], and Chap. 5
in [63]. Multivariate extensions of GARCH processes have
also been proposed, but bring several computational and
estimation problems (see [9,21]).
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Two alternative approaches to modeling conditional
variances in finance are extreme value estimators (see [17])
and realized variance (see [8]). Extreme value estimators
depend on opening, closing, high and low prices during
the trading day. Although they perform relatively well in
terms of efficiency and are easy to estimate, they are quite
badly biased. Realized variances are considered to be very
accurate and are easily estimated as the sum of squared re-
turns within a fixed time interval. Their limitation is that
they require high frequency data at the intradaily level,
which can be strongly affected by market microstructures
and may not always be readily available. Rather than fo-
cusing on just the conditional variance, models have also
been proposed for higher moments, such as conditional
skewness and kurtosis (e. g., [43,47]).

To illustrate the application of some of the most
popular GARCH parameterizations, consider again the
S&P 500 return series. Using Maximum Likelihood
(ML) estimation with t-student errors, the following
‘GARCH(1,1)-in-Mean’ (GARCH-M) model was ob-
tained (absolute z-statistics appear in brackets):

�pt D 0:0785
(10:0994)

�t C "t

�2t D 5:77 � 10�7
(6:5616)

C 0:0684
(16:3924)

"2t�1 C 0:9259
(218:0935)

�2t�1 :

In this model, originally proposed by Engle et al. [30],
returns are positively related to the conditional standard
deviation, � t . This is a particularly useful specification
since it is directly consistent with Markowitz’s theory
about the positive relation between expected return and
risk. In particular, the slope coefficient in the conditional

Financial Economics, Non-linear Time Series in, Figure 2
GARCH(1,1)-M standarddeviations (left) and standardized residuals (right) (Residuals are trimmed to˙6 standarddeviations in order
to improve the readability of the graph)

mean equation can be interpreted as a relative risk aver-
sion parameter,measuring how investors are compensated
by higher returns for bearing higher levels of risk.

It is instructive to show in Fig. 2 both the estimated
GARCH(1,1)-M conditional standard deviations and the
standardized residuals, "t/�t . On the one hand, the model
clearly produces mean reversion in volatility, which re-
sembles the empirical behavior observed in the original
series. Although the estimated conditional variance pro-
cess appears to be highly persistent, it is nevertheless sta-
tionary since the sufficiency condition is satisfied because
˛1 C ˇ1 D 0:0684C 0:9259 D 0:9943 < 1. On the other
hand, the standardized residuals have a far more homo-
geneous conditional volatility than the original series and
more closely resemble a white noise process. Moreover,
the standardized residuals are closer to a normal distribu-
tion, with a kurtosis coefficient of 7.7, almost five times
smaller than that of the original return series.

Careful inspection of the relationship between returns
and conditional variance often reveals an asymmetric re-
lationship. Threshold GARCH (TGARCH) and Exponen-
tial GARCH (EGARCH) are two of the specifications of-
ten used to model this commonly encountered nonlinear-
ity. These models were estimated using the ML approach
and the following conditional variance specifications were
obtained.

TGARCH

�2t D 7:50 � 10�7
(8:5110)

C 0:0259
(6:3766)

"2t�1

C 0:0865
(13:1058)

"2t�1 g C 0:9243
(224:9279)

�2t�1
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EGARCH

log(�2t ) D � 0:2221
(13:7858)

C 0:1209
(16:9612)

j"t�1/�t�1j

� 0:0690
(15:9599)

"t�1/�t�1 C 0:9864
(703:7161)

log(�2t�1) :

In the TGARCH model, the threshold parameter is de-
fined as g D 1 if "t�1 < 0 and 0 otherwise. Standard
GARCH models, such as the GARCH-M estimated pre-
viously, assume that positive and negative errors (or news)
have a symmetric effect on volatility. In the TGARCH
and EGARCH models, news has an asymmetric effect
on volatility depending on its sign. Specifically, in the
TGARCH model news will have differential impacts on
volatility depending on the signs and sizes of the coeffi-
cients on "2t�1 and "

2
t�1 � g: good news ("t�1 > 0) has an

impact of 0.0259, while bad news ("t�1 < 0) has a stronger
impact of 0:0259C 0:0865 D 0:1124. Since the coefficient
of "2

t�1
� g is positive (0.0865), bad news tends to increase

volatility, producing what is known as the ‘leverage’ ef-
fect. This was first observed in the 1970s and postulates
that negative returns will usually reduce the stock price
and market value of the firm, which in turn means an in-
crease in leverage, i. e. a higher debt to equity ratio, and ul-
timately an increase in volatility. In the EGARCH model,
forecasts are guaranteed to be positive since logarithms of
the conditional variance are modeled. Since the sign of the
coefficient on "t�1/�t�1 is non-zero and negative we can
conclude that the effect of news on volatility is asymmetric
and that a leverage effect is present.

Inspection of the autocorrelation functions (ACFs) in
Fig. 3 for the returns and absolute returns of the S&P 500,
the latter being a proxy for volatility, suggests very differ-
ent behavior of the two series. While returns have an ACF

Financial Economics, Non-linear Time Series in, Figure 3
Autocorrelation function of S&P 500 simple (left) and absolute returns (right)

that is typical of a white noise process, the autocorrelations
of the absolute returns die out very slowly and become
negative only after 798 lags! It turns out that many finan-
cial series have such extremely persistent or long-memory
behavior. This phenomenon was first described by Man-
delbrot [56,57] in the context of the ‘Hurst effect’ and was
latter defined as fractional Brownian motion (see the rel-
evant review by Brock [18]). Hosking [45] and Granger
and Joyeux [39] modeled long-memory by extending the
ARIMA class of processes to allow for fractional unit
roots (for reviews, see [3,11,73,82]). The ARFIMA(p; d; q)
model uses a fractional difference operator based on a bi-
nomial series expansion of the parameter d for any value
between�0.5 and 0.5:

�d D 1�dBC
d (d � 1)

2!
B2�

d (d � 1) (d � 2)
3!

B3C : : :

(5)

where B is the backshift (or lag) operator with Bmxt D
xt�m . In a similar fashion, investigating the existence of
long-memory in the conditional variance of the returns
could be undertaken in the context of a Fractional GARCH
model (see [4]).

In our S&P 500 example, we have shown that non-
linearities enter through the conditional variance process
and do so in an asymmetric manner. A natural question to
ask is whether nonlinearities also exist in the conditional
mean. Consider, for example, a generalization of the lin-
ear ARMA process

�pt D f (�pt�i ; "t�i)C "t (6)

where f () is a nonlinear function and �pt�i ; "t�i are
lagged price differences and errors, respectively. A wide
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variety of testing procedures have been proposed for ex-
amining the possibility of nonlinearities in the conditional
mean process (for reviews see the relevant sections in [40],
and [63]). Here we use the BDS test of the null hypothe-
sis of serial independence, which has been widely applied
and has been shown to have good power against a variety
of nonlinear alternatives (see [20]). The test is inspired by
chaos theory and phase space analysis and is based on the
concept of the correlation integral. Specifically, the test re-
lies on the property that, for an iid series, the probability
of the distance between any two points being no greater
than a predefined distance (") should be constant. A joint
probability can also be calculated for sets comprising mul-
tiple pairs of points chosen by moving through consecu-
tive sequences of observations in the sample. The number
of consecutive data points used in such a set is called the
(embedding) dimension and may be chosen by the user.
Brock et al. [20] constructed an asymptotically normally
distributed test statistic for the constancy of the distance "
between points. When this test was applied to the residu-
als from anMA(1)-EGARCH(1,1) model fitted to the S&P
500 returns, it was always insignificant across a variety of
dimensions, implying that any nonlinear dependencies in
the returns are due solely to GARCH effects.

An agnostic, yet often convenient, way to approximate
the unknown nonlinear function (6) is to consider some
nonparametric estimator (see [72]). Although several non-
parametric estimators have been used with mixed success,
one of the most popular is based on the neural network
family of models (see [80]). A rich variety of parametric
nonlinear functions have also been proposed in finance.
A convenient and intuitive way of introducing nonlin-
earity is to allow ‘regime switching’ or ‘time-variation’ in
the parameters of the data generating process (for a re-
view see [70]). Three of the most popular approaches in
this category are theMarkov switching, the Threshold Au-
toregressive (TAR) and the Smooth Transition (STAR)
models. In the first approach (for a popular implemen-
tation, see [41,42]), the model parameters switch accord-
ing to a multiple (typically two) unobserved state Markov
process. In TAR models (see [81], for a comprehensive
description), nonlinearities are captured using piecewise
autoregressive linear models over a number of different
states. For example, consider the simple two regime case:

xt D

(
!1 C

Pp
iD1 '1i xt�iC1 C �1"t ; st�d < c

!2 C
Pp

iD1 '2i xt�iC1 C �2"t ; st�d > c
(7)

where c is the threshold value, st is a threshold variable,
d is a delay parameter assumed to be less than or equal
to p, and the "t are iid standard normal variates assumed to

be independent of lagged sts. The threshold variable is of-
ten determined by a linear combination of the lagged xts,
in which case we obtain the Self Exciting TAR (SETAR)
model. This has become a popular parameterization in
finance since it can produce different dynamic behav-
ior across regimes with characteristics such as asymme-
try, limit cycles, jumps and time irreversibility (recall the
TGARCH model introduced earlier, which has a related
specification). STAR models allow a smooth switch be-
tween regimes using a smooth transition function. Tran-
sition functions that have been considered include the cu-
mulative distribution of the standard normal, the expo-
nential (ESTAR) and the logistic (LSTAR).

It is instructive to see how regime switching can be ap-
plied in the context of asset pricing models (for a com-
prehensive treatment of asset pricing, see [24]). The best
known and most influential framework, which builds
upon Markowitz’s portfolio theory, is the Capital As-
set Pricing Model (CAPM) proposed by Sharpe, Lintner,
Black and others. The CAPM can be expressed as a single-
period equilibrium model:

E(ri ) D rf C ˇi
�
E(rm) � rf

�
(8)

where E(ri ) is the expected return on asset i; E(rm) is the
expected return on the market portfolio, rf is the risk-free
interest rate, and the slope ˇi is the so-called beta coef-
ficient of asset i, measuring its systematic risk. Empirical
implementations and tests of the CAPM are usually based
on the ‘excess market’ and ‘market model’ regressions,
respectively

ri;t � rf;t D rf;t C ˇi
�
rm;t � rf;t

�
C "i;t (9)

and

ri;t D ˛i C ˇi rm;t C "i;t : (10)

The variance of the residuals "i;t reflects the unsystem-
atic risk in asset i. In practice the CAPM is typically es-
timated using ordinary least squares regression with five
years of monthly data. A wealth of empirical evidence has
been published showing that the basic assumptions of the
CAPM regressions with respect to parameter stability and
residual iid-ness are strongly refuted (see [60]). In partic-
ular, betas have been found to be persistent but unstable
over time due to factors such as stock splits, business cycle
conditions, market maturity and other political and eco-
nomic events. In order to demonstrate the modeling of
time-varying betas in the CAPM, consider first the simple
market model regression for the stock returns of Tiffany &
Co (listed on the New York Stock Exchange) against S&P
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500 returns:

rt D 1:4081
(17:5396)

rm;t C "t ; R2 D 28:75% :

The regression was estimated using weekly returns from
30/12/1987 to 14/12/2007, a total of 1,044 observations.
The R2 statistic denotes the proportion of total risk that
can be explained by the model and which is thus system-
atic. The beta coefficient is significantly higher than unity,
suggesting that the stock is ‘aggressive’ in that it carries
more risk than the market portfolio. Allowing the beta co-
efficient to switch according to aMarkov process produces
the following two-regime market model:

rt D

8
<̂

:̂

Regime 1: 0:4797
(1:9220)

rm;t C "t

Regime 2: 1:9434
(10:6381)

rm;t C "t
R2 D 41:63% :

The explanatory power of the model has increased signif-
icantly and the stock is now characterized by both pas-
sive (ˇ D 0:4797 < 1) and aggressive (ˇ D 1:9434 > 1)
systematic risk behavior regimes. The Markov transi-
tion probabilities P

�
i j j

; j D 1; 2, were estimated as

P(1j1) D 0:6833, P(1j2) D 0:3167, P(2j1) D 0:2122 and
P(2j2) D 0:7878. The smoothed probabilities for regime
1 are depicted in Fig. 4 and are seen to be rather volatile,
so that the returns switch regimes rather frequently. For
a discussion of the threshold CAPM see [2].

Financial Economics, Non-linear Time Series in, Figure 4
Tiffany stock Markov switchingmarket model smoothed probabilities for Regime 1 of 2

Another important category of models allows for non-
linear relationships between persistent financial time se-
ries. The most popular framework here is that of cointe-
gration, which deals with variables that are individually
nonstationary but have some joint stationary representa-
tion. For example, consider the linear combination of two
unit root (I(1)) processes xt and yt

xt D aC yt C "t : (11)

In general, "t will also be I(1). However, as shown by Engle
and Granger [29], if "t is actually I(0), then xt and yt are
said to be (linearly) cointegrated and will have an error-
correction representation which, for example, could take
the form

�xt D ��"t�1 C ut (12)

where �� denotes the strength of reversal to the equilib-
rium cointegrating relationship through the error-correc-
tion term, i. e., the lagged residual from the cointegrating
regression (11). The finance literature has considered non-
linear generalizations of both the cointegrating regression
(11) and the error-correction model (12) (see the entry by
Escribano et al. on � Econometrics: Non-linear Cointe-
gration). Nonlinear error-correction mechanisms can be
accommodated rather straightforwardly within the cointe-
gration analysis framework, with the residuals from a lin-
ear cointegration relationship entering a nonlinear error-
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correction model. It has been shown that such nonlin-
earities may arise simply because of complex relation-
ships between variables (see pp. 59–61 in [40]). Justifica-
tions in terms of finance theory have been based on fac-
tors such as arbitrage in the presence of transaction costs,
heterogeneity among arbitrageurs, existence of partial ad-
justment models and market segmentation, agents’ max-
imizing or minimizing behavior, constraints on central
bank intervention, and intertemporal choice behavior un-
der asymmetric adjustment costs. While almost all the dif-
ferent nonlinear specifications discussed previously have
also been applied in error-correction modeling, threshold
models hold a prominent position, as they allow large er-
rors from equilibrium, i. e., those above some threshold, to
be corrected while small errors are ignored (see, for exam-
ple, [6]). The use of nonlinearities directly within the coin-
tegrating relationship is not as straightfoward and brings
several conceptual and estimation problems (see [63]).

Returning to the bivariate market model setting, it has
been found that cointegrating relationships do exist be-
tween stock prices and index levels (see [60]). In our ex-
ample, the logarithms of Tiffany’s stock prices are coin-
tegrated with S&P 500 logarithmic price levels. The fol-
lowing asymmetric error correction model was then esti-
mated:

rt D �0:0168
(3:0329)

"t�1 g C ut

where g is the heavyside function defined previously with
g D 1 if "t�1 < 0 and 0 otherwise, "t�1 being obtained
from the cointegrating regression.

Several studies have shown that empirical characteris-
tics and regularities, such as those discussed previously are
very unlikely to remain stable if the sampling frequency of
the data changes. For example, we find that if the S&P 500
returns are estimated at an annual frequency using the first
available January price, then their distribution becomes
approximately Gaussian with skewness and kurtosis coef-
ficients estimated at�0.4 and 2.7, respectively. The annual
prices are highly predictable using an ARIMA(2,1,2) pro-
cess with an impressive adjustedR-squared value of 15.7%.
Moreover, standard tests of heteroskedasticity suggest that
the variance of annual returns can be assumed to be con-
stant! In contrast, for very high sampling frequencies, say
at the intradaily or tick-by-tick level, the data behave in
a different manner and are characterized by strong sea-
sonalities, e. g., variances and volumes follow an inverse J
shape throughout the trading day (see the review by Good-
hart and O’Hara [38], and the discussion in [28]).

Finally, let us now turn our discussion to models in
a continuous time setting. As previously mentioned, the

analysis of derivatives provides a natural setting for non-
linear modeling since it deals with the pricing of assets
with highly nonlinear payoff functions. For example, un-
der the widely used Black–Scholes option pricing model
(see [46], for a thorough description), stock prices are log-
normally distributed and follow a Wiener process. The
Black–Scholes model allows for highly nonlinear relation-
ships between the pricing variables and parameters, as
shown in Fig. 5.

Another popular use of continuous time processes is
in modeling the autonomous dynamics of processes such
as interest rates and the prices of stocks and commodities.
A generic stochastic differential equation that can be used
to nest alternative models is the following:

dSt D � (St ; t) dt C � (St ; t) dWt C y (St; t) dqt (13)

where St is the price at time t, dWt is a standard Wiener
process, � (St ; t) is the drift, and � (St ; t) is the diffu-
sion coefficient. Both the drift and diffusion coefficients
are assumed to be functions of time and price, respec-
tively. A jump component is also allowed by incorporating
a Poisson process, dqt , with a constant arrival parameter,
i. e., Prfdqt D 1g D dt and Prfdqt D 0g D 1 � dt: y
is the jump amplitude, also a function of time and price.
dWt , dqt and y are assumed to be mutually indepen-
dent processes. Several nonlinear models can be obtained
by combining various assumptions for the components
� (St ; t), � (St ; t) and y (St ; t). For example, consider the
following processes.

Mean Reverting Square-Root Process (MRSRP)

dSt D � (� � St) dt C �
p
StdWt (14)

Constant Elasticity of Variance (CEV)

dSt D � (� � St) dt C �S
�
t dWt (15)

Geometric Wiener Process augmented by Jumps (GWPJ)

dSt D
�
� � � j


StdtC�StdWtC

�
ey � 1


Stdqt (16)

MRSRP augmented by Jumps (MRSRPJ)

dSt D � (� � St) dt C �
p
StdWt C ydqt : (17)

Model (14) has beenwidely used inmodeling interest rates
(e. g., [1,23,25]) and stochastic volatility (e. g., [44,68]).
Process (16) is often used for representing the dynamics
of stock prices and indices (e. g., [61]). Model (17) has
been recently employed by several researchers for mod-
eling volatility, because it allows rapid changes in volatil-
ity during times of market stress (e. g., [31]). While pro-
cess (16) has a proportional structure, with � being the
expected return of the asset per unit of time and � its
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Call option prices, volatility and interest rate in the Black–Scholes model (Call option prices were estimated using the Black–Scholes
model assuming a strike price of 50, 1 year time to maturity and a zero dividend yield)

volatility, the other processes have mean reverting drifts.
In Eqs. (14), (15) and (17) � is the speed of mean reversion,
� is the unconditional long-run mean, and � the volatility
of the price process. In Eq. (15), � is a free parameter to
be estimated that determines the dependence of the diffu-
sion component on the current level of S. In Eqs. (16) and
(17),  is the average number of jumps per year and y is the
jump size, which can be drawn from a normal or a double
exponential distribution (see [49]).

An alternative way of representing the conditional
variance is to use a stochastic volatility model, in which
volatility is driven by its own noise (see the entry by An-
dersen and Benzoni on � Stochastic Volatility). Stochas-
tic volatility models are advantageous in that they are very
flexible and have representations in both discrete and con-
tinuous time. The square root volatilitymodel (also known
as a scalar affine diffusion), proposed by Heston [44], is
one of the most popular models in this area and is repre-
sented by the stochastic processes

d log(pt) D (� � 0:5�t) dt C
p
VtdW1t

dVt D (˛ � ˇ�t) dt C �V
p
VtdW2t

(18)

where Vt is the instantaneous (latent) stochastic volatility,
which is assumed to follow a mean reverting square root
process. The parameter k measures the speed of mean re-
version, while � is the unconditional long run mean. dW1t
and dW2t are Brownian motions with instantaneous cor-
relation �dt.

Future Directions

The coverage in this essay has, unavoidably, been far from
exhaustive. The realm of relevant nonlinear models and
theories in finance is extremely rich and is developing
fast (a useful review of new developments is [66]). By
transcending the representative agent framework and by
extending the standard notion of rationality, researchers
are now allowing for interactions between heterogeneous
groups of investors using agent based models (for an
overview of these fascinating developments, see [51] and
the entry on� Finance, Agent BasedModeling in byMan-
zan). While such approaches can reproduce stylized facts
such as volatility clustering and long-term dependencies,
it remains to be seen how they can be standardized and
applied to the solution of specific problems by academics
and practitioners.
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Glossary

Stock return The stock return in this entry refers to the
return on the portfolio of all stocks that are traded on
the three largest equity markets in the US: the NYSE,
NASDAQ, and AMEX. The return is measured as the
price of the stock at the end of the year plus the div-
idends received during the year divided by the price
at the beginning of the year. The return of each stock
is weighted by its market capitalization when forming
the portfolio. The source for the data is CRSP.

Dividend-price ratio and dividend yield The dividend-
price ratio of a stock is the ratio of the dividends re-
ceived during the year divided by the price of the stock
at the end of the year. The dividend yield, instead, is
the ratio of the dividends received during the year di-
vided by the price of the stock at the beginning of the
year. The stock return is the sum of the dividend yield
and the capital gain yield, which measures the ratio of
the end-of-year stock price to the beginning-of-year
stock price.
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Predictability A stock return rtC1 is said to be predictable
by some variable xt if the expected return condi-
tional on xt , E[rtC1 j xt], is different from the un-
conditional expected return, E[rtC1]. No predictabil-
ity means that the best predictor of tomorrow’s re-
turn is the constant, unconditional average return, i. e.,
E[rtC1 j xt] D E[rtC1]. When stock returns are un-
predictable, stock prices are said to follow a random
walk.

Market model The market model links the return on any
asset i, ri t to the return on the market portfolio (rt).
Under joint normality of returns, it holds:

ri t D ˛i C ˇi rt C "i t ; (1)

with E["i t] D 0 and Var["i t] D �2"i , see [16]. The typ-
ical assumption in the literature until the 1980s has
been that E[r] is constant.

Definition of the Subject

The efficient market hypothesis, due to [21,22] and [23],
states that financial markets are efficient with respect to
a particular information set when prices aggregate all
available information. Testing the efficientmarket hypoth-
esis requires a “market model” which specifies how infor-
mation is incorporated into asset prices. Efficiency of mar-
kets is then synonymous with the inability of investors to
make economic, i. e., risk-adjusted, profits based on this
information set [36]. The question of market efficiency
and return predictability is of tremendous importance for
investors and academics alike. For investors, the presence
of return predictability would lead to different optimal as-
set allocation rules. Failing to make portfolios conditional
on this information may lead to substantial welfare losses.
For academics, return predictability or the lack thereof
has substantial implications for general equilibrium mod-
els that are able to accurately describe the risks and returns
in financial markets.

Introduction

Until the 1980s, the standard market model assumed con-
stant expected returns. The first empirical evidence, which
showed evidence that returns were predictable to some
extent, was therefore interpreted as a sign of market inef-
ficiency [25,54]. [56] proposed the alternative explanation
of time-varying expected returns. This prompted the ques-
tion of why aggregate stock market returns would be time
varying in equilibrium. [23] provides a summary of this
debate.

Recently developed general equilibrium models show
that expected returns can indeed be time varying, even if

markets are efficient. Time-variation in expected returns
can result from time-varying risk aversion [11], long-run
consumption risk [5], or time-variation in risk-sharing
opportunities, captured by variation in housing collat-
eral [44]. Predictability of stock returns is now, by-and-
large, interpreted as evidence of time-varying expected re-
turns rather than market inefficiency.

Motivating Predictive Regressions

Define the gross return on an equity investment between
period t and period t C 1 as

RtC1 D
PtC1 C DtC1

Pt
;

where P denotes the stock price and D denotes the divi-
dend. [9] log-linearizes the definition of a return to obtain:

rtC1 D k C
dtC1 C �dptC1 � dpt : (2)

All lower-case letters denote variables in logs; dt stands for
dividends, pt stands for the price, dpt � dt � pt is the log
dividend–price ratio, and rt stands for the return. The con-
stants k and � D (1C exp(dp))�1 are related to the long-
run average log dividend–price ratio dp. By iterating for-
ward on Eq. (2) and by imposing a transversality condition
(i. e., we rule out rational bubbles), one obtains

dpt D dpCEt

1X

jD1

� j�1
�
(rtC j � r)� (
dtC j �d)

�
: (3)

Since this equation holds both ex-post and ex-ante, an
expectation operator can be added on the right-hand
side. This equation is one of the central tenets of the re-
turn predictability literature, the so-called Campbell and
Shiller [12,13] equation. It says that, as long as the expected
returns and expected dividend growth are stationary, devi-
ations of the dividend–price ratio (dpt) from its long-term
mean (dp) ought to forecast either future returns, or future
dividend growth rates, or both.

This accounting identity has motivated some of the
earliest empirical work in return predictability, which re-
gressed returns on the lagged dividend–price ratio, as in
Eq. (4):

(rtC1 � r̄) D �r(dpt � dp)C � rtC1 ; (4)

(
dtC1 � d) D �d (dpt � dp)C �dtC1 ; (5)

(dptC1 � dp) D �(dpt � dp)C �d ptC1 ; (6)

where r̄ is the long-run mean return and � r is a mean-zero
innovation. The logic of (3) suggests that the dividend–
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price ratio could predict future dividend growth rates in-
stead of, or in addition to, future returns. Testing for div-
idend growth predictability would lead one to estimate
Eq. (5), where d denotes the long-run mean log dividend
growth.

The empirical return predictability literature started
out by estimating Eq. (4) with the dividend–price ratio
on the right-hand side; see [12,17,24,29,34,53] and [42],
among others. It found evidence for return predictability,
i. e., �r > 0. This finding was initially interpreted as evi-
dence against the efficient market hypothesis.

Around the same time, [25] and [52] document a neg-
ative autocorrelation in long-horizon returns. Good past
returns forecast bad future returns. [16] and [18] summa-
rize the evidence based on long-horizon autocorrelations
and variance ratios, and conclude that the statistical evi-
dence in favor of mean reversion in long-horizon returns
is weak, possibly due to small sample problems. This mo-
tivates [4] to use a large cross-section of countries and use
a panel approach instead. They in turn document strong
evidence in favor of mean-reversion of long-horizon re-
turns with an estimated half-life of 3–3.5 years.

Second, other financial ratios, such as the earnings-
price ratio or the book-to-market ratio, or macro-eco-
nomic variables such as the consumption-wealth ratio, the
labor income-to-consumption ratio, or the housing collat-
eral ratio, as well as corporate decisions, and the cross-
sectional price of risk have subsequently been shown to
predict returns as well; see [3,38,39,43,45,50] and [51],
among others.

Third, long-horizon returns are typically found to be
more predictable than one-period ahead returns. The co-
efficient �r(H) in the H-period regression

HX

jD1

rtC j D �r(H) dpt C �
r
t;tCH (7)

exceeds the coefficient �r in the one-period regression.
This finding is interpreted as evidence for the fact that the
time-varying component in expected returns is quite per-
sistent.

Fourth, these studies conclude that growth rates of
fundamentals, such as dividends or earnings, are much less
forecastable than returns using financial ratios. This sug-
gests that most of the variation of financial ratios is due to
variation in expected returns.

Fifth, predictability of stock returns does not only arise
for the US. Studies by [10,26,33], and [2] analyze a large
cross-section of countries and find evidence in favor of
predictability by financial ratios in some countries, even

though the evidence is mixed. More robust results are
documented for the predictive ability of term structure
variables.

These conclusions regarding predictability of stock re-
turns are controversial because the forecasting relation-
ship of financial ratios and future stock returns exhibits
three disconcerting statistical features. First, correct infer-
ence is problematic because financial ratios are extremely
persistent. The empirical literature typically augments
Eq. (4) with an auto-regressive specification for the predic-
tor variable, as in Eq. (6), where dp is the long-run mean
of the dividend–price ratio. The estimated autoregressive
parameter � is near unity and standard tests leave the
possibility of a unit root open (i. e., � D 1). [2,27,46,55]
and [58] conclude that the statistical evidence of forecasta-
bility is weaker once tests are adjusted for high persis-
tence. [1,2,15,42,57] and [20] derive asymptotic distribu-
tions for predictability coefficients under the assumption
that the forecasting variable follows a local-to-unit root,
yet stationary, process.

Second, financial ratios have poor out-of-sample fore-
casting power, as shown in [7,31], and [32], but see [35]
and [14] for different interpretations of the out-of-sample
tests and evidence.

Third, the forecasting relationship of returns and fi-
nancial ratios exhibits significant instability over time. Fig-
ure 1 shows that in rolling 30-year regressions of annual
log CRSP value-weighted returns on lagged log dividend–
price ratios, the ordinary least squares (OLS) regression
coefficient varies between zero and 0.5 and the associated
R2 ranges from close to zero to 30% depending on the sub-
sample.

The figure plots estimation results for the equation
rtC1 � r̄ D �r(dpt � dp) C � rtC1. It shows the estimates
for �r using 30-year rolling windows. The dashed line in
the left panels denote the point estimate plus or minus
one standard deviation. The standard errors are asymp-
totic. The parameters r̄ and dp are the sample means of
log returns r and the log dividend–price ratio dp. The data
are annual for 1927–2004.

[60] and [49] report evidence in favor of breaks in the
OLS coefficient in the forecasting regression of returns on
the lagged dividend–price ratio, while [41] report evidence
for structural shifts in dp. [47] use Bayesian methods to
estimate structural breaks in the equity premium.

Empirical Evidence Revisited

Table 1 reviews the empirical evidence using annual value-
weighted CRSP log return, dividend growth, and divi-
dend–price ratio data for 1927–2004. In Panel A, the sys-
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Financial Economics, Return Predictability andMarket Efficiency, Figure 1
Parameter Instability in Return Predictability Coefficient

tem of Eqs. (4) and (5) is estimated by GMM. The first
row indicates that a higher dividend–price ratio leads to
a higher return (�r D :094 in Column 2) and a higher div-
idend growth rate (�d D :005 in Column 1). The latter co-
efficient has the wrong sign, but the coefficient is statis-
tically indistinguishable from zero. The asymptotic stan-
dard error on the estimate for �r is .046. The correspond-
ing asymptotic p-value is 3.6% so that �r is statistically dif-
ferent from zero at conventional levels. In other words, the
dividend–price ratio seems to predict stock returns, but
not dividend growth. A similar result holds if returns in
excess of a risk-free rate are used, or real returns instead of
nominal returns.

[41] conduct an extensive Monte Carlo analysis to in-
vestigate the small-sample properties of estimates for �r
and �d. Consistent with [55], the estimate for �r displays
an upward small-sample bias. In addition, the standard er-
ror on �r is understated by the asymptotic standard er-
ror. As a result, one can no longer reject the null hypoth-
esis that �r is zero. Based on this evidence, one is tempted
to conclude that neither returns nor dividend growth are
forecastable.

The second and third rows implement the suggestion
of [41] to correct the long-run mean dividend–price ratio,

dp, for structural breaks. The data strongly suggest either
one break in 1991, or two breaks in 1954 and 1994 in favor
of either no breaks or three breaks. This break-adjusted
dividend–price ratio is less persistent and less volatile. Its

Financial Economics, Return Predictability andMarket Efficiency,
Table 1
Return and Dividend Growth Predictability in the Data

�d �r � PV violation
Panel A: No Long-Horizon Moments H D f1g
No Break .005 .094 .945 �.046

(.037) (.046) (.052)
1 Break (’91) .019 .235 .813 .004

(.047) (.055) (.052)
2 Breaks (’54, ’94) .124 .455 .694 �.001

(.073) (.079) (.070)
Panel B: Long-Horizon Moments H D f1; 3; 5g
No Break .021 .068 .990 .189

(.018) (.038) (.032)
1 Break (’91) .012 .210 .834 .076

(.019) (.043) (.042)
2 Breaks (’54, ’94) .080 .409 .697 .100

(.065) (.078) (.060)
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lower persistence alleviates the econometric issues men-
tioned above.

The second row of Table 1 uses the one-break ad-
justed dividend–price ratio as a regressor in the return and
dividend growth predictability equations. The evidence
in favor of return predictability is substantially strength-
ened. The point estimate for �r more than doubles to
.235, and is highly significant. In the two-break case in the
third row, the point estimate further doubles to 0.455. The
small-sample bias in �r is negligible relative to the size of
the coefficient. The R2 of the return equation is 10% in
the one-break case and even 23% in the two-break case.
This compares to 3.8% in the no-break case. Furthermore,
rolling regression estimates of �r indicate that it is much
more stable over time when the break-adjusted dp series
is used as a regressor. The dividend growth coefficient �d
remains statistically indistinguishable from zero. This ev-
idence strengthens the view that returns are predictable
and dividend growth is not, and that these findings are not
an artefact of statistical issues.

This table reports GMM estimates for the parame-
ters (�d ; �r ; �) and their asymptotic standard errors (in
parentheses). The results in panel A are for the system
with one-year ahead equations for dividend growth and
returns (H D 1, N D 0). The results in panel B are for
the system with one-year, three-year and five-year ahead
equations for dividend growth and returns (H D f1; 3; 5g,
N D 2). The first-stage GMM weighting matrix is the
identity matrix. The asymptotic standard errors and p-val-
ues are computed using the Newey–West HAC procedure
(second stage weighting matrix) with four lags in panel
A and H D 5 lags in panel B. The last column denotes the
present-value constraint violation of the univariate OLS
slope estimators: (1 � ��ols)�1(�olsr � �

ols
d ). It is expressed

in the same units as �d and �r. In panel B this number
is the average violation of the three constraints, one con-
straint at each horizon. The dividend–price ratio in rows
1 and 4 is the unadjusted one. In rows 2 and 5, the divi-
dend–price ratio is adjusted for one break in 1991, and in
rows 3 and 6, it is the series adjusted for two breaks in 1954
and 1994. All estimation results are for the annual sample
1927–2004.

StructuralModel

What are researchers estimating when they run the re-
turn predictability regression (4)? How are the return and
dividend growth predictability regressions in (4) and (5)
related? To answer these important questions, we set up
a simple structural model with time-varying expected re-
turns and expected dividend growth rates. This structural

model has the system of Eqs. (4)–(6) as its reduced-form.
The main purpose of this model is to show that (i) the
dividend–price ratio is a contaminated predictor of re-
turns and dividend growth rates, (ii) that the parameters in
(4)–(6) have to satisfy a cross-equation restriction, which
we call the present-value constraint, and (iii) this restric-
tion enables decomposing the dividend–price ratio into
expected returns and expected dividend growth. Similar
models can be derived for financial ratios other than the
dividend–price ratio (e. g., [61]). [6] show how stock re-
turns and book-to-market ratios are related in a general
equilibrium model.

A Present-Value Model

We assume that expected dividend growth, z, and expected
returns, x, follow an AR(1) process with autoregressive co-
efficient � :


dtC1 � d D zt C �tC1 ; ztC1 D �zt C �tC1 ; (8)

rtC1 � r̄ D xt C �tC1 ; xtC1 D �xt C �tC1 : (9)

The model has three fundamental shocks: an innovation
in unexpected dividends �tC1, an innovation in expected
dividends �tC1, and an innovation in expected returns
�tC1. We assume that all three errors are serially uncorre-
lated and have zero cross-covariance at all leads and lags:
Cov(�tC1; �tC j) D 0; 8 j ¤ 1, Cov(�tC1; �tC j) D 0; 8 j ¤
1, and Cov(�tC1; �tC j) D 0; 8 j, except for a contempora-
neous correlation between expected return and expected
dividend growth innovations Cov(�t ; �t) D �, and a corre-
lation between expected and unexpected dividend growth
innovations Cov(�t ; �t) D . We discuss innovations to
unexpected returns � below.

In steady-state, the log dividend–price ratio is a func-
tion of the long-runmean return and dividend growth rate
dp D log

�
(r̄ � d)/(1 C d)


. The log dividend–price ratio

in (3) can then be written as:

dpt � dp D
xt � zt
1 � ��

: (10)

The dividend–price ratio is the difference of two AR(1)
processes with the same root � , which is again an AR(1)
process. I.e., we recover Eq. (6).

The return decomposition in [9] implies that the inno-
vation to unexpected returns follows from the three fun-
damental shocks (i. e., combine (2) with (8)–(10)):

�tC1 D
��

1 � ��
�tC1 C

�

1 � ��
�tC1 C �tC1 : (11)

Since both � and � are positive and �� < 1, a positive
shock to expected returns leads, ceteris paribus, to a neg-
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ative contemporaneous return. Likewise, a shock to ex-
pected or unexpected dividend growth induces a positive
contemporaneous return.

Contaminated Predictor

The first main insight from the structural model is that
the demeaned dividend–price ratio in (10) is an imper-
fect forecaster of both returns and dividend growth. Re-
turns are predicted by xt (see Eq. (9)), but variation in the
dividend–price ratio is not only due to variation in x, but
also in expected dividend growth zt . The same argument
applies to dividend growth which is predicted by zt (see
Eq. (8)). This implies that the regressions in the reduced-
form model in (4) and (5) suffer from an errors-in-vari-
ables problem [24,30,37].

To illustrate the bias, we can link the regression co-
efficients �r and �d explicitly to the underlying structural
parameters:

�r D
Cov(rtC1; dpt)

Var(dpt)
D

(1 � ��)(�2
�
� �)

�2
�
C �2

�
� 2�

; (12)

�d D
Cov(
dtC1; dpt)

Var(dpt)
D
�(1 � ��)(�2

�
� �)

�2
�
C �2

�
� 2�

: (13)

If growth rates are constant, i. e., � D 0 and �� D 0, then
the dividend–price ratio is a perfect predictor of returns
and �?r D 1 � �� . In all other cases, there is a bias in the
return predictability coefficient:

�?r � �r D
(1 � ��)(�2

�
� �)

�2
�
C �2

�
� 2�

: (14)

[24] argue that �r is downward biased (�?r � �r > 0). In
fact, the structural parameters that are implied by the re-
duced-form model parameters indicate an upward bias.
This occurs because the correlation between expected div-
idend growth and expected returns is sufficiently high.

A similar argument applies to �d. [40] construct a vari-
able based on the co-integrating relationship between con-
sumption, dividends from asset wealth, and dividends
from human wealth. They show that this variable has
strong predictive power for dividend growth, and they
show that expected returns and expected growth rates are
highly positively correlated. This implies that expected
growth rates and expected returns have an offsetting effect
on financial ratios, which makes it hard to reliably detect
time-varying growth rates using such financial ratios.

Present-Value Constraint

The second main insight from the structural model is that
there is a cross-equation restriction on the three innova-

tions � D (�d ; � r ; �d p) of the reduced-form model (4)–
(6). Expressed in terms of the structural parameters, these
innovations are:

�dtC1 D �tC1 C xt
�
��d

1 � ��

�
C zt

�
�r

1 � ��

�
(15)

� rtC1 D �tC1 C xt
�
��d

1 � ��

�
C zt

�
�r

1 � ��

�

� �

�
�tC1 � �tC1

1 � ��

�
(16)

�
d p
tC1 D

�tC1 � �tC1

1 � ��
: (17)

They imply the present value restriction:

��
d p
tC1 D �

d
tC1 � �

r
tC1 , �r � �d D 1 � �� : (18)

Another way to write this restriction is as a restriction on
a weighted sum of �r and �d: Any two equations from
the system (4)–(6) implies the third. Evidence that divi-
dend growth is not forecastable is evidence that returns
are forecastable: if �d D 0 in Eq. (18), then �r > 0 be-
cause �� < 1. If estimating (5) uncovers that a high divi-
dend–price ratio forecasts a higher future dividend growth
(�d > 0), as we showed it does, then this strengthens the
evidence for return predictability. [19] makes an impor-
tant and closely related point: That it is important to im-
pose the present-value relationship when testing the null
hypothesis of no return predictability. That null (�r D 0)
is truly a joint hypothesis, because it implies a negative co-
efficient in the dividend growth equation (�d < 0). [19],
too, finds strong evidence for return predictability.

Returning to Panel A of Table 1, Column 3 backs out
the AR(1) coefficient � from the estimated �d and �r, and
from the present-value constraint (18).1 In the first row,
� D :945, and is statistically undistinguishable from a unit
root. This high persistence is a familiar result in the liter-
ature. The last column reports the left-hand side and the
right-hand side of Eq. (18) for univariate OLS regressions
of (4)–(6). It shows the violation of the present-value con-
straint. In the first row, the violation is half as large as the
actual point estimate �r. The standardOLS point estimates
do not satisfy the present-value constraint, which can lead
to faulty inference.

However, when we use the break-adjusted dividend–
price ratio series in rows 2 and 3, we find that (1) the
persistence of the break-adjusted dp ratio is much lower

1The linearization parameter � is tied to the average dividend–
price ratio, and is held fixed at 0.9635.



3454 F Financial Economics, Return Predictability and Market Efficiency

than the unadjusted series (.81 and .69 versus .95), and (2)
the present-value constraint is satisfied by the OLS coeffi-
cients.

A similar present-value constraint can be derived for
long-horizon return and dividend growth regressions:

�r(H) D �r
�
1 � �H

1 � �

�

�d (H) D �d
�
1 � �H

1 � �

�
:

Not only are the coefficients on the long-horizon return
predictability regressions for all horizons linked to each
other (see [8]), all long-horizon regression coefficients in
the return equations are also linked to those from the div-
idend growth equations. I. e., there is one present-value
constraint for each horizon H. Imposing these restrictions
in a joint estimation procedure improves efficiency.

Panel B of Table 1 shows the results from a joint es-
timation of 1-year, 3-year, and 5-year cumulative returns
and dividend growth rates on the lagged dividend–price
ratio. Because of the restrictions, there are only two pa-
rameters to be estimated from these six equations. The re-
sults are close to those from the one-year system in Panel
A, confirming the main message of [8]. The main conclu-
sion remains that returns are strongly predictable, and div-
idend growth rates are not.

Exploiting Correlation in Innovations

The present-value model implies a restriction on the in-
novations in returns and the dividend–price ratio (see
Eq. (18)). A third main insight from the structural model
is that this correlation contains useful information for esti-
mating the structural parameters, and hence for howmuch
return predictability and dividend growth predictability
there truly is. [48] show that exploiting the correlation
between expected and unexpected stock returns can lead
to substantially more accurate estimates. The information
in correlations is incorporated by specifying a prior belief
about the correlation between expected and unexpected
returns, and updating that prior in a Bayesian fashion us-
ing observed data. Their method ignores the present-value
constraint. The structural parameters in Panel B of Ta-
ble 1, which impose the present-value constraint, imply
that two-thirds of the variability in the price-dividend ra-
tio is due to expected future returns and one-third is due
to expected future dividend growth rates.

Likewise, [59] write down a model like (8)–(9) where
expected returns and growth rates of dividends are auto-
regressive, exploiting the present-value constraint. Be-
cause the price-dividend ratio is linear in expected re-

turns x and expected dividend growth z (see Eq. (10)),
its innovations in (17) can be attributed to either in-
novations in expected returns or expected growth rates.
The present-value constraint enables one to disentangle
the information in price-dividend ratios about both ex-
pected returns and growth rates, and therefore to undo
the contamination coming from correlated innovations.
With this decomposition in hand, it is then possible to re-
cover the full time-series of expected returns, x, and ex-
pected growth rates, z. [59] show that the resulting pro-
cesses are strong predictors of realized returns and real-
ized dividend growth rates, respectively. This underscores
the importance of specifying a present-value model to ad-
dress return predictability.

Geometric or Arithmetic Returns

As a final comment, most predictive regressions are esti-
mated using geometric, i. e. log returns, instead of arith-
metic, i. e. simple returns. This choice is predominantly
motivated by the [12] log-linearization discussed before.
Since investors are ultimately interested in arithmetic in-
stead of log returns, [59] specify a process for expected
simple returns instead. This is made possible by applying
the techniques of linearity-inducing models, recently in-
troduced by [28].

Future Directions

The efficient market hypothesis, which states that mar-
kets efficiently aggregate all information, was first inter-
preted to mean that returns are not predictable. Early evi-
dence of predictability of stock returns by the lagged div-
idend–price ratio seemed to be evidence against the ef-
ficient market hypothesis. However, return predictability
and efficient markets are not incompatible because return
predictability arises naturally in a world with time-varying
expected returns. In the last 15 years, the empirical litera-
ture has raised a set of statistical objections to return pre-
dictability findings. Meanwhile, the theoretical literature
has progressed, seemingly independently, in its pursuit of
new ways to build models with time-varying expected re-
turns. Only very recently has it become clear that theory is
necessary to understand the empirical facts.

In this entry, we have set up a simple present-value
model with time-varying expected returns that generates
the regression that is the focus of the empirical literature.
The model also features time-varying expected dividend
growth. It shows that the dividend–price ratio contains
information about both expected returns and expected
dividend growth. A regression of returns on the dividend–
price ratiomay therefore be a poor indicator of the true ex-
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tent of return predictability. At the same time, the present-
value model provides a solution to this problem: It disen-
tangles the two pieces of information in the price-dividend
ratio. This allows us to interpret the standard predictabil-
ity regressions in a meaningful way. Combining data with
the present-value model, we conclude that there is strong
evidence for return predictability. We interpret this as ev-
idence for the presence of time-varying expected returns,
not evidence against the efficient market hypothesis. The
main challenge for the future is to better understand the
underlying reasons for this time-variation.
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Glossary

AR(k) An autoregressive process of order k; a time se-
ries model allowing for first order dependence; for in-
stance, an AR(1) model is written as yt D ˛C�1yt�1C
�t where ˛ and � are parameters, � is typically assumed
to be less than 1 in absolute value, and �t is an innova-
tion term, often assumed to be Gaussian, independent,
and identically distributed over t.

ARCH(q) A special case of the GARCH(p, q) model (see
below) where p D 0.

Basis point A hundredth of one percent.
Bootstrap A computer intensive resampling procedure,

where random draws with replacement from an origi-
nal sample are used, for instance to perform inference.

Discount rate The rate of return used to discount future
cashflows, typically calculated as a risk-free rate (e. g.
the 90-day US T-bill rate) plus an equity risk premium.

Equity premium puzzle The empirical observation that
the ex post equity premium (see entry below) is higher
than is indicated by financial theory.

Ex ante equity premium The extra return investors ex-
pect they will receive for holding risky assets, over and
above the return they would receive for holding a risk-
free asset like a Treasury bill. “Ex ante” refers to the
fact that the expectation is formed in advance.

Ex post equity premium The extra return investors re-
ceived after having held a risky asset for some period
of time. The ex post equity premium often differs from
the ex ante equity premium due to random events that
impact a risky asset’s return.

Free cash flows Cash flows that could be withdrawn from
a firm without lowering the firm’s current rate of
growth. Free cash flows are substantially different from
accounting earnings and even accounting measures of
the cash flow of a firm.

Fundamental valuation The practice of determining
a stock’s intrinsic value by discounting cash flows to
their present value using the required rate of return.

GARCH(p, q) Generalized autoregressive conditional
heteroskedasticity of order (p, q), where p is the or-
der of the lagged variance terms and q is the order of
the lagged squared error terms; a time series model
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allowing for dependence in the conditional variance of
a random variable, y. A GARCH(1,1) model is speci-
fied as:

yt D ˛ C �t ; �t �
�
0; h2t



h2t D � C ˇh
2
t�1 C ��

2
t�1 ;

where ˛, � , ˇ, and � are parameters and �t is an inno-
vation term.

Market anomalies Empirical regularities in financial
market prices or returns that are difficult to reconcile
with conventional theories and/or valuation methods.

Markov model A model of a probabilistic process where
the random variable can only take on a finite number
of different values, typically called states.

Method of moments A technique for estimating parame-
ters (like parameters of the conditional mean and con-
ditional variance) by matching sample moments, then
solving the equations for the parameters to be esti-
mated.

SAD Seasonal Affective Disorder, a medical condition by
which reduced daylight in the fall and winter leads
to seasonal depression for roughly ten percent of the
world’s population.

Sensation seeking A measure used by psychologists to
capture an individual’s degree of risk tolerance. High
sensation-seeking tendency correlates with low risk
tolerance, including tolerance for risk of a financial na-
ture.

Simulated method of moments A modified version of
the method of moments (see entry above) that is based
on Monte Carlo simulation, used in situations when
the computation of analytic solutions is infeasible.

Definition of the Subject

The realized return to any given asset varies over time, oc-
casionally in a dramatic fashion. The value of an asset, its
expected return, and its volatility, are of great interest to in-
vestors and to policy makers. An asset’s expected return in
excess of the return to a riskless asset (such as a short-term
US Treasury bill) is termed the equity premium. The value
of the equity premium is central to the valuation of risky
assets, and hence a much effort has been devoted to deter-
mining the value of the equity premium, whether it varies,
and if it varies, how predictable it is. Any evidence of pre-
dictable returns is either evidence of a predictably varying
equity premium (say, because risk varies predictably) or
a challenge to the rationality of markets and the efficient
allocation of our society’s scarce resources.

In this article, we start by considering the topic of valu-
ation, with emphasis on simulation-based techniques. We

consider the valuation of income-generating assets in the
context of a constant equity premium, and we also ex-
plore the consequences of allowing some time-variation
and predictability in the equity premium. Next we con-
sider the equity premium puzzle, discussing a simulation-
based technique which allows for precise estimation of the
value of the equity premium, and which suggests some
constraints on the types of models that should be used
for specifying the equity premium process. Finally, we fo-
cus on evidence of seasonally varying expected returns in
financial markets. We consider evidence that as a whole
either presents some challenges to traditional hypotheses
of efficient markets, or suggests agents’ risk tolerance may
vary over time.

Introduction

The pricing of a firm is conceptually straightforward. One
approach to valuing a firm is to use historical dividend
payments and discount rate data to forecast future pay-
ments and discount rates. Restrictions on the dividend and
discount rate processes are typically imposed to produce
an analytic solution to the fundamental valuation equation
(an equation that involves calculating the expectation of an
infinite sum of discounted dividends).

Common amongmany of the available valuation tech-
niques is some form of consideration of multiple scenar-
ios, including good and bad growth and discount rate
evolutions, with valuation based on a weighted average
of prices from the various scenarios. The valuation tech-
nique we focus some attention on, the Donaldson and
Kamstra [14] (henceforth DK) methodology, is similar to
pricing path-dependent options, as it utilizes Monte Carlo
simulation techniques and numerical integration of the
possible paths followed by the joint processes of dividend
growth and discount rates, explicitly allowing path-depen-
dence of the evolutions. The DK method is very similar in
spirit to other approaches in the valuation literature which
consider multiple scenarios. One distinguishing feature of
the DK methodology we consider is the technique it em-
ploys for modeling the discount rate.

Cochrane [9] highlights three interesting approaches
for modeling the discount rate: a constant discount rate,
a consumption-based discount rate, and a discount rate
equal to some variable reference return plus a risk pre-
mium. Virtually the entire valuation literature limits its
attention to the constant discount rate case, as constant
discount rates lead to closed-form solutions to many valu-
ation formulas. DK explore all threemethods for modeling
the discount rate and find they lead to qualitatively simi-
lar results. However, their quantitative results indicate an
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overall better fit to the price and return data when using
a reference return plus a risk premium. Given DK’s find-
ings, we use a discount rate equal to some variable refer-
ence return plus a risk premium. In implementing this ap-
proach for modeling the discount rate used in valuation, it
is simplest to assume a constant equity premium is added
to the reference rate, in particular since the reference rate is
permitted to vary (since it is typically proxied using a vari-
able rate like the three-month US T-bill rate). We do not,
however, restrict ourselves to the constant equity premium
case.

Using the simulation-based valuation methodology of
DK and the method of simulated moments, we explore the
evidence for a time-varying equity premium and its impli-
cations for a long-standing puzzle in financial economics,
the equity premium puzzle of Mehra and Prescott [51].
Over the past century the average annual return to invest-
ing in the US stock market has been roughly 6% higher
than the return to investing in risk-free US T-bills. Making
use of consumption-based asset-pricing models, Mehra
and Prescott argue that consumption within the US has
not been sufficiently volatile to warrant such a large pre-
mium on risky stocks relative to riskless bonds, leading
them to describe this large premium as the “equity pre-
mium puzzle.”

Utilizing simulations of the distribution from which
ex post equity premia are drawn, conditional on various
possible values for investors’ ex ante equity premium and
calibrated to S&P 500 dividends and US interest rates, we
present statistical tests that show a true ex ante equity pre-
mium as low as 2% could easily produce ex post premia
of 6%. This result is consistent with the well-known ob-
servation that ex post equity premia are observed with er-
ror, and a large range of realized equity premia are consis-
tent with any given value of the ex ante equity premium.
Examining the marginal and joint distributions of finan-
cial statistics like price-dividend ratios and return volatil-
ity that arise in the simulations versus actual realizations
from the US economy, we argue that the range of ex ante
equity premia most consistent with the US market data is
very close to 3.5%, and the ex ante equity premium process
is very unlikely to be constant over time.

A natural question to ask is why might the equity pre-
mium fluctuate over time? There are only two likely expla-
nations: changing risk or changing risk aversion. Evidence
from the asset-pricing literature, including [20,37,49], and
many others shows that priced risk varies over time. We
explore some evidence that risk aversion itself may vary
over time, as revealed in what is often termed market
anomalies.Market anomalies are variations in expected re-
turns which appear to be incongruous with variations in

discount rates or risk. The most stark anomalies have to
do with deterministic asset return seasonalities, including
seasonalities at the weekly frequency such as the weekend
effect (below-average equity returns on Mondays), annual
effects like the above-average equity returns typically wit-
nessed in the month of January, and other effects like the
lower-than-average equity returns often witnessed follow-
ing daylight saving time-change weekends, and opposing
cyclicality in bond versus equity returns correlated to the
length of day (known as the SAD effect). We briefly review
some of these outstanding puzzles, focusing our attention
on the SAD effect and the daylight saving effect.

Valuation

Overview

We begin our discussion of valuation with a broad survey
of the literature, including dividend-based valuation, rela-
tive valuation, and accounting-based methods. We intro-
duce dividend-based valuation first.

Fundamental valuation techniques that utilize divi-
dends in a discrete time framework include Gordon [25],
Hawkins [30], Michaud and Davis [53], Farrell [22],
Sorensen and Williamson [73], Rappaport [63], Barsky
and DeLong [2], Hurley and Johnson [33], [34], Donald-
son and Kamstra [14], and Yao [78]. Invariably these ap-
proaches are partial equilibrium solutions to the valuation
exercise. Papers that use continuous time tools to evaluate
the fundamental present value equation include Campbell
and Kyle [6], Chiang, Davidson, and Okuney [8], Dong
and Hirshleifer [17], and Bakshi and Chen [3]. The Dong
and Hirshleifer [17] and Bakshi and Chen [3] papers con-
duct valuation by assuming dividends are proportional to
earnings and then modeling earnings. Continuous time
papers in this literature typically start with the represen-
tative agent/complete markets economic paradigm. Mod-
els are derived from primitive assumptions on markets
and preferences, such as the equilibrium condition that
there exist no arbitrage opportunities, dividend (cash flow)
growth rates follow an Ornstein–Uhlenbeck mean-revert-
ing process, and preferences over consumption are repre-
sented by the log utility function. Time-varying stochas-
tic discount rates (i. e. the pricing kernel) fall out of the
marginal rate of utility of consumption in these models,
and the solution to the fundamental valuation problem is
derived with the same tools used to price financial deriva-
tives. A critique of dividend-discounting methods is that
dividends are typically smoothed and are set low enough
so that the dividend payments can be maintained through
economic downturns. Authors such as Hackel and Livnat
(see p. 9 in [27]) argue that these sorts of considerations
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imply that historical records of dividend payments may
therefore be poor indicators of future cash payments to in-
vestors.

A distinct valuation approach, popular amongst prac-
titioners, determines the value of inactively traded firms by
finding an actively traded firm that has similar risk, prof-
itability, and investment-opportunity characteristics and
then multiplying the actively traded firm’s price-earnings
(P/E) ratio by the inactively traded firm’s earnings. This
approach to valuation is often referred to as the relative
value method or the constant P/E model. References to
this sort of approach can be found in textbooks like [4],
and journal articles such as [60,62].

There are also several valuation approaches that are
based on the book value of equity, abnormal earnings,
and free-cash flows. These approaches are linked to divi-
dends and hence to formal fundamental valuation by well-
established accounting relationships. They produce price
estimates by valuing firm assets and income streams. The
most popular of this class of techniques include the resid-
ual income and free-cash-flow methods. See [23,57,61] for
further information. All of these valuation methods im-
plicitly or explicitly take the present value of the stream of
firm-issued dividends to the investor. The motivation for
considering accounting relationships is that these account-
ing measures are not easily manipulated by firms and so
should reflect more accurately the ability of firms to gener-
ate cashflows and hence allow more accurate assessments
of the fundamental value of a firm than techniques based
on dividends.

Fundamental Valuation Methods in Detail

Now that we have surveyed the valuation literature in gen-
eral, we turn to a formal derivation of several fundamen-
tal valuation techniques. Investor rationality requires that
the current market price Pt of a stock which will pay a per
share dividend (cash payment) DtC1 one period from now
and then sell for PtC1, discounting payments received dur-
ing period t (i. e., from the beginning of period t to the be-
ginning of period t C 1) at rate rt, must satisfy Eq. (1):

Pt D Et

�
PtC1 C DtC1

1C rt

�
: (1)

Et is the expectations operator conditional on information
available up to the end of period t. Solving Eq. (1) for-
ward under the transversality condition that the expected
present value of PtCk goes to zero as k goes to infinity
(a “no-bubble” assumption) produces the familiar result
that the market price equals the expected present value of

future dividends (cash payments); i. e.,

Pt D
1X

kD0

Et

( kY

iD0

�
1

1C rtCi

�!

DtCkC1

)

: (2)

Defining the growth rate of dividends from the be-
ginning of period t to the beginning of period t C 1 as
gdt � (DtC1 � Dt)/Dt it follows that

Pt D DtEt

(
1X

kD1

 kY

iD0

"
1C gdtCi

1C rtCi

#!)

: (3)

Equation (3) is the fundamental valuation equation, which
is not controversial and can be derived under the law of
one price and non-satiation alone, as by Rubinstein [69]
and others. Notice that the cash payments DtCk in-
clude all cash disbursements from the firm, including cash
dividends and share repurchases. Fundamental valuation
methods based directly on Eq. (3) are typically called divi-
dend discount models.

Perhaps the most famous valuation estimate based on
Eq. (3) comes from the Gordon [25] GrowthModel. If div-
idend growth rates and discount rates are constant, then it
is straightforward to derive the Gordon fundamental price
estimate from Eq. (3):

PGt D Dt

"
1C gd

r � gd

#

; (4)

where r is the constant discount rate value and gd is the
(conditionally) constant growth rate of dividends. To pro-
duce the Gordon Growth Model valuation estimate, all we
need are estimates of the dividend growth rate and dis-
count rate, which can be obtained in a variety of ways, in-
cluding the use of historically observed dividends and re-
turns.

Extensions of the Gordon Growth Model exploit the
fundamental valuation equation, imposing less stringent
assumptions. The simple Gordon Growth Model imposes
a constant growth rate on dividends (dividends are ex-
pected to grow at the same rate every period) while Hurley
and Johnson [33] and [34] and Yao [78] develop Markov
models (models that presume a fixed probability of, say,
maintaining the dividend payment at current levels, and
a probability of raising it, thus incorporating more real-
istic dividend growth processes). Two examples of these
models found in Yao [78] are the Additive Markov Gor-
don model (Eq. (1) of Yao [78] and the Geometric Markov
Gordon model (Eq. (2) of Yao [78]). These models can be
interpreted as considering different scenarios for dividend
growth for a particular asset, estimating the appropriate
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price for the asset under each scenario, and then averaging
the prices using as weights the probability of given scenar-
ios being observed.

The Additive Markov Gordon Growth Model is:

PADDt D Dt/r C
�
1/r C (1/r)2

� 

qu � qd

�
� ; (5)

where r is the average discount rate, qu is the proportion
of the time the dividend increases, qd is the proportion of
the time the dividend decreases, and � D

PT
tD2 jDt �

Dt�1j/(T � 1) is the average absolute value of the level
change in the dividend payment.

The Geometric Markov Gordon Growth Model is:

PGEOt D Dt

"
1C (qu � qd)�%

r � (qu � qd)�%

#

; (6)

where�% D
PT

tD2 j(Dt � Dt�1)/Dt�1j/(T � 1) is the av-
erage absolute value of the percentage rate of change in the
dividend payment.

The method of DK is also an extension of the Gordon
Growth Model, taking the discounted dividend growth
model of Eq. (3) and re-writing it as

Pt D Dt

1X

kD0

Et

( kY

iD0

ytCi

)

; (7)

where ytCi D (1C gdtCi)/(1C rtCi) is the discounted
dividend growth rate. Under the DK method, the funda-
mental price is calculated by forecasting the range of pos-
sible evolutions of ytCi up to some distant point in the
future, period t C I, calculating PV D Dt

PI
kD0(

Qk
iD0

ytCi) for each possible evolution of ytCi , and averaging
these values of PV across all the possible evolutions. (The
value of I is chosen to produce a very small truncation er-
ror. Values of I D 400 to 500 for annual data have been
found by DK to suffice). In this way, the DK approach
mirrors other extensions of the Gordon Growth Model.
It is primarily distinguished from other approaches that
extend the Gordon Growth Model in two regards. First,
more sophisticated time series models, estimated with his-
torical data, are used to generate the different outcomes
(scenarios) by application of Monte Carlo simulation. Sec-
ond, in contrast to typical modeling in which only div-
idend growth rates vary, the joint evolution of cashflow
growth rates and discount rates are explicitly modeled as
time-varying.

Among the attractive features of the free-cash-flow
and residual income valuation methods is that they avoid
the problem of forecasting dividends, by exploiting rela-
tionships between accounting data and dividends. It is the

practical problem of forecasting dividends to infinity that
have led many researchers to explore methods based on
accounting data. See, for instance, Penman and Sougian-
nis [61].

Assume a flat term structure (i. e., a constant discount
rate rt D r for all t) and write

Pt D
1X

kD1

Et fDtCkg

(1C r)k
: (8)

The clean-surplus relationship relating dividends to
earnings is invoked in order to derive the residual income
model:

BtCk D BtCk�1 C EtCk � DtCk ; (9)

where BtCk is book value and EtCk is earnings per share.
Solving for DtCk in Eq. ( 9) and substituting into Eq. (8)
yields

Pt D
1X

kD1

Et fBtCk�1 C EtCk � BtCkg

(1C r)k
;

or

Pt D Bt C

1X

kD1

Et fEtCk � r � BtCk�1g

(1C r)k
�
Et fBtC1g

(1C r)1

D Bt C

1X

kD1

Et fEtCk � r � BtCk�1g

(1C r)k
;

(10)

where BtC1/(1C r)1 is assumed to equal zero. EtCk� r �
BtCk�1 is termed abnormal earnings.

To derive the free cash flow valuation model, we relate
dividends to cash flows with a financial assets relation in
place of the clean surplus relation:

f atCk D f atCk�1 C itCk C ctCk � DtCk ; (11)

where f atCk is financial assets net of financial obligations,
itCk is interest revenues net of interest expenses, and ctCk
is cash flows realized from operating activities net of in-
vestments in operating activities, all of which can be posi-
tive or negative. A net interest relation is often assumed,

itCk D r f atCk�1 : (12)

See Fetham and Ohlson [23] for further discussion. Solv-
ing for DtCk in Eq. (11) and substituting into Eq. (8), uti-
lizing Eq. (12) and assuming the discounted present value
of financial assets f atCk goes to zero as k increases, yields
the free-cash-flow valuation equation:

Pt D f at C
1X

kD1

Et fctCkg

(1C r)k
: (13)
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More on the Fundamental ValuationMethod
of Donaldson and Kamstra

A number of approaches can be taken to conduct valua-
tion using the DK model shown in Eq. (7). By imposing
a very simple structure for the conditional expectation of
discounted dividend growth rate (yt in Eq. (7)), the expres-
sion can be solved analytically, for instance by assuming
that the discounted dividend growth rate is a constant. As
shown by DK, however, analytic solutions become com-
plex for even simple ARMA models, and with sufficient
non-linearity, the analytics can be intractable. For this rea-
son, we present a general solution algorithm based on the
DK method of Monte Carlo simulation.

This method simulates yt into the future and performs
a numerical (Monte Carlo) integration to estimate the
terms f

Qi
kD0 ytCkg where ytCk D (1C gdtCk)/(1C rtCk)

in the classic case of a dividend-paying firm. A general
heuristic is as follows:
Step I: Model yt , t D 1; : : : ; T , as conditionally time-

varying, for instance as an AR(k)-GARCH(p, q) pro-
cess, and use the estimated model to make conditional
mean forecasts ŷt , t D 1; : : : ; T , and variance fore-
casts, conditional on data observed only before pe-
riod t. Ensure that this model is consistent with theory,
for instance that the mean level of y is less than one.
This mean value can be calibrated to available data,
such as the mean annual y value of 0.94 observed in the
last 50 years of S&P 500 data. Recall that although an-
alytic solutions are available for simple processes, the
algorithm presented here is applicable to virtually ar-
bitrarily non-linear conditional processes for the dis-
counted cash payment rate y.

Step IIa: Simulate discounted cash payment growth rates.
That is, produce ys that might be observed in period t
given what is known at period t � 1. To do this for
a given period t, simulate a population of J indepen-
dent possible shocks (say draws from a normal dis-
tribution with mean zero and appropriate variance,
or bootstrapped from the data) �t; j , j D 1; : : : ; J, and
add these shocks separately to the conditional mean
forecast ŷt from Step I, producing yt; j D ŷt C �t; j ,
j D 1; : : : ; J. The result is a simulated cross-section of J
possible realizations of yt standing at time t � 1, i. e.
different paths the economy may take next period.

Step IIb: Use the estimatedmodel from Step I tomake the
conditional mean forecast ŷtC1; j , conditional on only
the jth realization for period t (i. e., yt; j and �t; j) and
the data known at period t � 1, to form ytC1; j .

Step IIc: Repeat Step IIb to form ytC2; j; ytC3; j; : : : ; ytCI; j
for each of the J economies, where I is the number of

periods into the future at which the simulation is trun-
cated. Form the perfect foresight present value (P�t; j)
for each of the J possible economies:

P�t; j D At



yt; j C yt; j ytC1; j C yt; j ytC1; j ytC2; j

C � � � C

IY

iD0

ytCi; j

�
; j D 1; : : : ; J :

Provided I is chosen to be large enough, the truncated
terms

QK
iD0 ytCi; j , K D I C 1; : : : ;1 will be negligi-

ble.
Step III: Calculate the DK fundamental price for each

t D 1; : : : ; T :

PDKt D

JX

jD1

P�t; j/J : (14)

These fundamental price estimates PDKt can be com-
pared to the actual price (if market prices exist) at the
beginning of period t to test for bubbles as demon-
strated by DK, or if period t is the future, PDKt is the
fundamental price forecast. This procedure is repre-
sented diagrammatically in Exhibit 1.

To illustrate the sort of forecasts that can be produced us-
ing this technique, we illustrate graphically the S&P 500 in-
dex over the past 100 years together with predicted values
based on the Gordon Growth Model and the DK method.
The free-cash-flow and residual income methods are not
easily adapted to forecasting index prices like the S&P
500, and so are omitted here. The type of data depicted
in the following figure is described in some detail by Kam-
stra [39].

Figure 1 has four panels. In the panels, we plot the level
of the S&P 500 index (marked with bullets and a solid
line) alongside price forecasts from each of the valuation
techniques. In Panel A we plot the index together with
the basic Gordon Growth Model price forecasts (marked
with stars), in Panels B and C we plot the index together
with the Additive and Geometric Gordon Growth Mod-
els’ forecasts (with squares and triangles respectively), and
in Panel D we plot the index alongside the DK method’s
forecasts (marked with diamonds). In each panel the price
scale is logarithmic.

We see in Panels A, B, and C that the use of the any
of the Gordon models for forming annual forecasts of the
S&P 500 index level produces excessively smooth price
forecasts. (If we had plotted return volatility, then themar-
ket returns would appear excessively volatile in compari-
son to to forecasted returns). Evidence of periods of in-
flated market prices relative to the forecasted prices, i. e.,
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Financial Economics, Time Variation in the Market Return, Exhibit 1
Diagram of DK Monte Carlo integration

evidence of price bubbles, is apparent in the periods cov-
ering the 1920s, the 1960s, the last half of the 1980s, and
the 1990s. However, if the Gordon models are too simple
(since each Gordon-based model ignores the forecastable
nature of discount rates and dividend growth rates), then
this evidence may be misleading.

In Panel D, we see that the DK model is better able to
capture the volatility of the market, including the boom of
the 1920s, the 1960s and the 1980s. The relatively better
performance of the DK price estimate highlights the im-
portance of accounting for the slow fade rate of dividend
growth rates and discount rates, i. e., the autocorrelation
of these series. The failure of the DK method to capture
the height of the 1990s boom leaves evidence of surpris-
ingly high prices during the late 1990s. If the equity pre-
mium fell in the 1990s, as some researchers have specu-
lated (see for instance Pástor and Stambaugh [59]), then
all four sets of the plotted fundamental valuation forecasts
would be expected to produce forecasts that undershoot
actual prices in the 1990s, as all these methods incorpo-
rate a constant equity premium. If this premium were set
too high, future cashflows would be discounted too aggres-
sively, biasing the valuation methods downward.

The Equity Premium Puzzle

The fact that all four fundamental valuation methods we
consider spectacularly fail to capture the price boom of
the 1990s, possibly as a result of not allowing a time-vary-
ing equity premium, sets the stage to investigate the equity
premium puzzle of Mehra and Prescott [51]. The equity
premium is the extra return, or premium, that investors
demand in order to be compelled to purchase risky stock

instead of risk-free debt. We call this premium the ex ante
equity premium (denoted �e), and it is formally defined as
the difference between the expected return on risky assets,
EfRg, and the expected risk-free rate, Efrfg:

�e � EfRg � Efrfg : (15)

The ex post equity premium is typically estimated us-
ing historical equity returns and risk-free rates, as we do
not observe the ex ante premium. Define R as the average
historical annual return on the S&P 500 and rf as the av-
erage historical return on US T-bills. A standard approach
to calculate ex post equity premium, �̂e, is:

�̂e � R � rf : (16)

Of course it is unlikely that the stock return we esti-
mate ex post equals investors’ anticipated ex ante return.
Thus a 6% ex post equity premium in the US data may
not be a challenge to economic theory. The question we
ask is therefore: if investors’ true ex ante premium is X%,
what is the probability that the US economy could ran-
domly produce an ex post premium of at least 6%? We
can then argue whether or not the 6% ex post premium
observed in the US data is consistent with various ex ante
premium values, X%, with which standard economic the-
ory may be more compatible. We can also consider key
financial statistics and yields from the US economy to in-
vestigate if an X% ex ante equity premium could likely be
consistent with the combinations that have been observed,
such as high Sharpe ratio and low dividend yields, low in-
terest rates and high ex post equity premia, and so on.

Authors have investigated the extent to which ex ante
considerations may impact the realized equity premium.
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Financial Economics, Time Variation in the Market Return, Figure 1
S&P 500 index level versus price forecasts from four models. S&P 500 index: �, Gordon Growth price: ?, Additive Gordon Growth
price: �, Geometric Gordon Growth price:4, DK price ˘

For example, Rietz [65] investigated the effect that the fear
of a serious, but never realized, depression would have
on equilibrium asset prices and equity premia. Jorion and
Goetzmann [38] take the approach of comparing the US
stockmarket’s performance with stock market experiences
in many other countries. They find that, while some mar-

kets such as the US and Canada have done very well over
the past century, other countries have not been so fortu-
nate; average stock market returns from 1921 to 1996 in
France, Belgium, and Italy, for example, are all close to
zero, while countries such as Spain, Greece, and Roma-
nia have experienced negative returns. It is difficult, how-
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ever, to conduct statistical tests because, first, the stock in-
dices Jorion and Goetzmann consider are largely contem-
poraneous and returns from the various indices are not
independent. Statistical tests would have to take into ac-
count the panel nature of the data and explicitly model
covariances across countries. Second, many countries in
the comparison pool are difficult to compare directly to
the United States in terms of economic history and un-
derlying data generating processes. (Economies like Egypt
and Romania, for example may have equity premia gen-
erated from data generating processes that differ substan-
tially from that of the US).

There are some recent papers that make use of fun-
damental information in examining the equity premium.
One such paper, Fama and French [21], uses historical div-
idend yields and other fundamental information to calcu-
late estimates of the equity premium which are smaller
than previous estimates. Fama and French obtain point
estimates of the ex post equity premium ranging from
2.55% (based on dividend growth rate fundamentals) to
4.78% (based on bias-adjusted earnings growth rate fun-
damentals), however these estimates have large standard
errors. For example, for their point estimate of 4.32%
based on non-bias-adjusted earnings growth rates, a 99%
confidence interval stretches from approximately �1% to
about 9%. Mehra and Prescott’s [51] initially troubling es-
timate of 6% is easily within this confidence interval and
is in fact within one standard deviation of the Fama and
French point estimate.

Calibrating to economy-wide dividends and discount
rates, Donaldson, Kamstra, and Kramer [16] employ sim-
ulation methods similar to DK to simulate a distribution
of possible price and return outcomes. Comparing these
simulated distributions with moments of the actual data
then permits them to test various models for the equity
premium process. Could a realized equity premium of 6%
be consistent with an ex ante equity premium of 2%?
Could an ex ante equity premium of 2% have produced the
low dividend yields, high ex post equity premia, and high
Sharpe ratios observed in the US over the last half century?

A summary of the basic methodology implemented by
Donaldson, Kamstra, and Kramer [16], is as follows:

(a) Assume a mean value for the equity premium that in-
vestors demand when they first purchase stock (e. g.,
2%) and a time series process for the premium, say
a deterministic drift downward in the premium of 5
basis points per year, asymptoting no lower than per-
haps 1%. This assumed premium is added to the risk-
free interest rate to determine the discount rate that
an investor would rationally apply to a forecasted div-

idend stream in order to calculate the present value of
dividend-paying stock.

(b) Estimate econometric models for the time-series pro-
cesses driving dividends and interest rates in the US
economy (and, if necessary, for the equity premium
process), allowing for autocorrelation and covariation.
Then use these models to Monte Carlo simulate a va-
riety of potential paths for US dividends, interest rates,
and equity premia. The simulated paths are of course
different in each of these simulated economies because
different sequences of random innovations are ap-
plied to the common stochastic processes in each case.
However, the key drivers of the simulated economies
themselves are all still identical to those of the US
economy since all economies share common stochas-
tic processes fitted to US data.

(c) Given the assumed process for the equity premium in-
vestors demand ex ante (which is the same for all sim-
ulated economies in a given experiment), use a dis-
counted-dividend model to calculate the fundamental
stock returns (and hence ex post equity premia) that
arise in each simulated economy. All economies have
the same ex ante equity premium process, and yet all
economies have different ex post equity premia. Given
the returns and ex post equity premia for each econ-
omy, as well as the means of the interest rates and div-
idend growth rates produced for each economy, it is
feasible to calculate various other important charac-
teristics, like Sharpe ratios and dividend yields.

(d) Examine the distribution of ex post equity premia, in-
terest rates, dividend growth rates, Sharpe ratios, and
dividend yields that arise conditional on various val-
ues of the ex ante equity premia. Comparing the per-
formance of the US economy with intersections of the
various univariate and multivariate distributions of
these quantities and conducting joint hypothesis tests
allows the determination of a narrow range of equity
premia consistent with the US market data. Note that
this is themethod of simulatedmoments, which is well
adapted to estimate the ex ante equity premium. The
simulated method of moments was developed by Mc-
Fadden [50] and Pakes and Pollard [58]. Duffie and
Singleton [18] and Corradi and Swanson [11] employ
simulatedmethod of moments in an asset pricing con-
text.

Further details on the simulation methodology are pro-
vided by Donaldson, Kamstra, and Kramer [16]. They
make use of annual US stock and Treasury data observed
from 1952 through 2004, with the starting year of 1952
motivated by the US Federal Reserve Board’s adoption of
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a modern monetary policy regime in 1951. The model
that generated the data we use to illustrate this simula-
tion methodology is Model 6 of Donaldson, Kamstra, and
Kramer [16], a model that allows for trending, autocorre-
lated, and co-varying dividend growth rates, interest rates
and equity premia, as well as for a structural break in the
equity premium process. We show later that allowing for
trends and structural breaks in the equity premium pro-
cess is a crucial factor in the model’s ability to capture the
behavior of the observed US market data.

We focus on the intuition behind the Donaldson,
Kamstra, and Kramer technique by looking at bivariate
plots of simulated data, conditional on various values of
the ex ante equity premium. In every case, the pair of
statistics we plot are dependent on each other in some
way, allowing us to make interesting conditional state-
ments. Among the bivariate distributions we consider, we
will see some that serve primarily to confirm the ability of
our simulations to produce the character and diversity of
results observed in US markets. Some sets of figures rule
out ex ante equity premia below 2.5% while others rule
out ex ante equity premia above 4.5%. Viewed collectively,
the figures serve to confirm that the range of ex ante eq-
uity premia consistent with US market data is in the close
vicinity of 3.5%.

Figure 2 contains joint distributions of mean returns
and return standard deviations arising in our simulations
based on four particular values of the ex ante equity pre-
mium (2.5% in Panel A, 3.5% in Panel B, 4.5% in Panel C,
and 6% in Panel D). Each panel contains a scatter plot of
two thousand points, with each point representing a pair
of statistics (mean return and return standard deviation)
arising in one of the simulated half-century economies.
The combination based on the US realization is shown in
each plot with a crosshair (a pair of solid straight lines
with the intersection marked by a solid dot). The set of
simulated pairs in each panel is surrounded by an ellipse
which represents a 95% bivariate confidence bound, based
on the asymptotic normality (or log-normality, where ap-
propriate) of the plotted variables. (The 95% confidence
ellipsoids are asymptotic approximations based on joint
normality of the sample estimates of the moments of the
simulated data. All of the sample moment estimates we
consider are asymptotically normally distributed, as can
be seen by appealing to the appropriate law of large num-
bers). The confidence ellipse for the 2.5% case is marked
with diamonds, the 3.5% case with circles, the 4.5% case
with squares, and the 6% case with circled crosses.

Notice that the sample mean for the US economy (the
intersection of the crosshairs) lies loosely within cloud
of points that depict the set of simulated economies for

each ex ante equity premium case. That is, our simulations
produce mean returns and return volatility that roughly
match the US observed moments of returns, without our
having calibrated to returns. Notice also that the intersec-
tion of the crosshairs is outside (or very nearly outside)
the 95% confidence ellipse in all cases except that of the
3.5% ex ante equity premium. (In unreported results that
study a finer grid of ex ante equity premium values, we
found that only those simulations based on values of the
ex ante equity premium between about 2.5% and 4.5% lead
to 95% confidence ellipses that encompass the US econ-
omy crosshairs. As the value of the ex ante equity premium
falls below 2.5% or rises above 4.5%, the confidence ellipse
drifts further away from the crosshairs). Based on this set
of plots, we can conclude that ex ante equity premia much
less than or much greater than 3.5% are inconsistent at the
5% confidence level with the observed mean return and
return volatility of S&P 500 returns. �2 tests presented in
Donaldson, Kamstra, and Kramer [16] confirm this result.

We can easily condense the information contained
in these four individual plots into one plot, as shown in
Panel A of Fig. 3. The scatterplot of points representing
individual simulations are omitted in the condensed plot,
but the confidence ellipses themselves (and the symbols
used to distinguish between them) are retained. Panel A of
Fig. 3 repeats the ellipses shown in Fig. 2, so that again we
see that only the 3.5% ex ante equity premium case is well
within the confidence ellipse at the 5% significance level. In
presenting results for additional bivariate combinations,
we follow the same practice, omitting the points that rep-
resent individual simulations and using the same set of
symbols to distinguish between confidence ellipses based
on ex ante equity premia of 2.5%, 3.5%, 4.5%, and 6%.

In Panel B of Fig. 3 we consider the four sets of con-
fidence ellipses for mean return and mean dividend yield
combinations. Notice that as we increase the ex ante eq-
uity premium, the confidence ellipses shift upward and to
the right. Notice also that with higher values of the ex ante
equity premium we tend to have more variable dividend
yields. That is, the confidence ellipse covers a larger range
of dividend yields when the value of the ex ante equity
premium is larger. The observed combination of S&P 500
mean return and mean dividend yield, represented by the
intersecting crosshairs, lies within the confidence ellipse
for the 2.5% and 3.5% cases, very close to the ellipse for
the 4.5% case, and far outside the ellipse for the 6% case.

Panel C of Fig. 3 plots confidence ellipses for mean in-
terest rates versus mean ex post equity premia. The inter-
section of the crosshairs is within all four of the shown
confidence ellipses. As we calibrate our model to the US
interest rate, and as the ex post equity premium has a large
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Financial Economics, Time Variation in the Market Return, Figure 2
Bivariate scatterplots of simulated data for a model allowing for trends and structural breaks. The model upon which these scat-
terplots are based allows for trends and structural breaks in the equity premium process, as well as autocorrelated and co-varying
dividendgrowth rates, interest rates, and equity premia. Observedmarket data are indicatedwith crosshairs, and confidence ellipses
are marked as follows. Ex ante equity premium of 2.5%: ˘, Ex ante equity premium of 3.5%: ı, Ex ante equity premium of 4.5%: �,
Ex ante equity premium of 6%:˚

variance, it is not surprising that the US experience is con-
sistent with the simulated data from the entire range of ex
ante equity premia considered here. This result is merely
telling us that the ex post equity premium is not, by itself,
particularly helpful in narrowing the possible range for the

ex ante equity premium (consistent with the empirical im-
precision in measuring the ex post equity premium which
has been extensively documented in the literature). Notice
as well that the confidence ellipses in Panel C are all nega-
tively sloped: we see high mean interest rates with low eq-
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Financial Economics, Time Variation in the Market Return, Figure 3
Confidence ellipses based on simulated data for a model allowing for trends and structural breaks. The model upon which these
scatterplots are based allows for trends and structural breaks in the equity premiumprocess, aswell as autocorrelated and co-varying
dividendgrowth rates, interest rates, and equity premia. Observedmarket data are indicatedwith crosshairs, and confidence ellipses
are marked as follows. 2.5% ex post equity premium: ˘, 3.5% ex post equity premium: ı, 4.5% ex post equity premium: �, 6% ex
post equity premium:˚

uity premia and low mean interest rates with high equity
premia. Many researchers, including Weil [74], have com-
mented that the flip side of the high equity premium puz-
zle is the low risk-free rate puzzle. Here we confirm that
the dual puzzle arises in our simulated economies as well.

It appears that this puzzle is a mechanical artifact coming
out of the calculation of the premium.As the ex post equity
premium equals the mean return minus the mean interest
rate, a decrease in the interest rate, all else held constant,
must lead to a higher ex post equity equity premium.
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Panel D of Fig. 3 contains the confidence ellipses for
the Sharpe ratio (or reward-to-risk ratio, calculated as the
average annual difference between the arithmetic return
and the risk-free rate divided by the standard deviation

Financial Economics, Time Variation in the Market Return, Figure 4
Confidence ellipses based on simulated data for a restricted model that does not allow for trends and structural breaks. The
model uponwhich these scatterplots are based does not allow for trends or structural breaks in the equity premiumprocess, but does
allow for autocorrelated and co-varyingdividend growth rates, interest rates, and equity premia. Observedmarket data are indicated
with crosshairs, and confidence ellipses aremarked as follows. 2.5%ex post equity premium:˘, 3.5%ex post equity premium:ı, 4.5%
ex post equity premium: �, 6% ex post equity premium:˚

of the annual differences) and the mean dividend yield.
As the ex ante equity premium is increased from 2.5%,
the confidence ellipses shift from being centered on the
crosshairs to far to the right of the crosshairs. TheUS expe-
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rience, indicated by the crosshairs at a Sharpe ratio of ap-
proximately 0.4 and a mean dividend yield of about 3.5%,
is well outside the 95% confidence ellipse for the 6% ex
ante equity premium case, suggesting a 6% ex ante eq-
uity premium is inconsistent with the jointly observed
S&P 500 Sharpe ratio and mean dividend yield. Indeed
Fama and French [21] and Jagannathan, McGrattan, and
Scherbina [35] make reference to dividend yields to argue
that the equity premium may be much smaller than 6%;
our analysis gives us a glimpse of just how much smaller it
might be.

Overall in Fig. 3, the joint realization of key charac-
teristics of the US market data suggests that the true ex
ante equity premium is no lower than 2.5%, no higher than
4.5%, and is most likely near 3.5%. Multivariate �2 tests
performed by Donaldson, Kamstra, and Kramer [16] indi-
cate a 95% confidence interval of plus-or-minus 50 basis
points around 3.5%.

Consider now Fig. 4, which details simulated data from
a restricted model that has a time-varying equity premium
but no trends or structural breaks. Donaldson, Kamstra,
and Kramer [16] study this simplified model and find that
it performs poorly relative to the model we consider in
Figs. 2 and 3 in terms of its ability to capture the behav-
ior of US market data. Figure 4 shows that with the re-
strictedmodel, no values of the ex ante equity premium are
consistent with the observedUSmean return, standard de-
viation, and dividend yield. That is, the simulation-based
mean return and dividend yield ellipses do not contain the
US data crosshairs for any value of the ex ante equity pre-
mium considered. (�2 tests presented in Donaldson, Kam-
stra, and Kramer [16] strongly support this conclusion).
The implication is that it is essential to model trends and
structural breaks in the equity premium process in order
to accurately capture the dynamics of observed US data.
Donaldson, Kamstra, and Kramer show that model failure
becomes even more stark if the equity premium is con-
strained to be constant.

Overall, the evidence in Figs. 3 and 4 does not itself
resolve the equity premium puzzle, but evidence in Fig. 3
(based on the model that allows for trends and structural
breaks in the equity premium process) does provide a nar-
row target range of plausible equity premia that economic
models should be able to explain. Additionally, the evi-
dence in Figs. 3 and 4 points to a secondary issue ignored
in the literature prior to the work of Donaldson, Kam-
stra, and Kramer [16], that it is crucial to model the eq-
uity premium as both time-varying and as having trends
and structural breaks. We saw in Fig. 4 that high return
volatility, high ex post equity premia, and low dividend
yields cannot be explained easily by constant equity pre-

mium models. This result has clear implications for val-
uation: simple techniques that restrict the discount rate to
a constant are remarkably inconsistent with the US experi-
ence of time-varying equity premia, and serious attention
should be paid to modeling a time-varying rate for use in
discounting future expected cash flows.

Time-Varying Equity Premia:
Possible Biological Origins

To the extent that the simulation techniques considered
in the previous section suggest that the equity premium
varies over time, it is interesting to consider some empir-
ical evidence of time-varying equity premia. We first sur-
vey some examples of high-frequency variations in the eq-
uity premium, and then we explore in detail two examples
which may arise due to reasons that relate to human biol-
ogy and/or psychology.

There is a wide range of evidence of high-frequency
movement in the equity premium. At the highest fre-
quency, we observe roughly ‘U-shaped’ intra-day returns
(see [29,36,77]), with returns being perhaps somewhat
higher during the morning trading period than in the af-
ternoon (see [46]). At the weekly frequency, returns from
Friday’s close until Monday’s close are low and even neg-
ative on average, as first identified by Cross [12]. Rogal-
ski [66] found prices rose during Mondays, thus identi-
fying the negative average realizations that followed Fri-
days as a weekend effect and not a Monday effect. Turning
to the monthly domain, Ogden [56] documented a turn
of the month effect where returns in the first half of the
month are higher than returns in the second half of the
month. At the annual frequency, there is the well-known
turn-of-the-year effect, first shown by Rozeff and Kin-
ney [68]. Keim [45] showed that half of the year’s excess re-
turns for small firms arose in January, and half of the Jan-
uary returns took place in the first five days of the month.
Further, Reinganum [64] showed that January returns are
higher for small firms whose price performed poorly in the
previous year. All of this is consistent with the tax-loss-
selling hypothesis whereby investors realize losses at the
end of the tax year, leading to higher returns in January
after the tax-loss selling ends.

Next we turn our attention to two cases of time-vary-
ing equity premia that may arise for reasons related to
human physiology. One is Seasonal Affective Disorder
(SAD), and another is daylight saving time changes.

Seasonal Affective Disorder

Past research suggests there are seasonal patterns in the eq-
uity premium which may arise due to cyclical changes in
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the risk tolerance of individual investors over the course of
the year related to SAD. Themedical condition of SAD, ac-
cording to Rosenthal [67], is a recurrent depression asso-
ciated with diminished daylight in the fall, affecting many
millions of Americans, as well as peoples from around the
world, even those located near the equator. (In a study of
303 patients attending a primary care facility in Vancou-
ver, Schlager, Froom, and Jaffe [70] found that 9% were
clinically diagnosedwith SAD and another 29% had signif-
icant winter depressive symptoms without meeting con-
ditions for major depression. Other studies have found
similar magnitudes, though some research has found that
prevalence varies by latitude, with more extreme latitudes
having a larger proportion of SAD-sufferers.) SAD is clas-
sified as a major depressive disorder. The symptoms of
SAD include anxiety, periods of sadness, chronic fatigue,
difficulty concentrating, lethargy, sleep disturbance, sugar
and carbohydrate craving and associated weight gain, loss
of interest in sex, and of course, clinical depression. Psy-
chologists have shown that depressed people have less tol-
erance for risk in general. (See [7,32,82,83]). Psycholo-
gists refer to risk tolerance in terms of “sensation seeking”
tendency, measured using a scale developed by Zucker-
man [80], [81]. Those who tolerate (or seek) high levels of
risk tend to score high on the sensation-seeking scale. Dif-
ferences in sensation-seeking tendencies have been linked
to gender (see [5] for example), race (see [31] for in-
stance), age (see, for example, [84]), and other personal
characteristics.

Economists and psychologists working together have
shown that sensation-seeking tendency translates into tol-
erance for risk of a specifically financial or economic na-
ture. For instance, Wong and Carducci [76] find that indi-
viduals who score low on tests of sensation seeking display
greater risk aversion inmaking financial decisions, includ-
ing the decision to purchase stocks, bonds, and insurance.
Harlow and Brown [28] document the link between sen-
sation seeking and financial risk tolerance by building on
results from psychiatry which show that high blood levels
of a particular enzyme are associated with depression and
a lack of sensation seeking while low levels of the enzyme
are associated with a high degree of sensation seeking.
Harlow and Brown write, “Individuals with neurochemi-
cal activity characterized by lower levels of [the enzyme]
and with a higher degree of sensation-seeking are more
willing to accept economic risk . . . Conversely, high levels of
this enzyme and a low level of sensation seeking appear to
be associated with risk-averse behavior.” (pp. 50–51, em-
phasis added). These findings suggest an individual’s level
of sensation seeking is indicative of his or her tolerance for
financial risk.

Given these relationships, Kamstra, Kramer, and
Levi [42] conjecture that during the fall and winter sea-
sons, when a fraction of the population suffers from SAD,
the proportion of risk-averse investors rises. Risk-averse
investors shun risky stocks in the fall, they argue, which
has a negative influence on stock prices and returns. As
winter progresses and daylight becomesmore plentiful, in-
vestors start to recover from their depression and become
more willing to hold risky assets, at which time stock prices
and returns should be positively influenced.

If the extent or severity of SAD is greater at more
extreme latitudes, then the SAD effect on stock returns
should be greater in stock markets at high latitudes and
less in markets close to the equator. Also, the pattern of
returns in the Southern Hemisphere should be the oppo-
site of that in the Northern Hemisphere as are the seasons.
Thus, Kamstra, Kramer and Levi [42] study stock mar-
ket indices for the US, Sweden, Britain, Germany, Canada,
New Zealand, Japan, Australia, and South Africa. They
regress each country’s daily stock returns on a variety of
standard control variables plus two variables intended to
capture the impact of SAD on returns. The first of these
two variables, SADt , is a simple function of the length of
night at the latitude of the respectivemarket for the fall and
winter months for which SAD has been documented to be
most severe. The second of these variables, a fall dummy
variable denoted Fallt , is included because the SAD hy-
pothesis implies the expected effect on returns is differ-
ent before versus after winter solstice. Specifically, when
agents initially become more risk averse, they should shun
risky assets which should cause prices to be lower than
would otherwise be observed, and when agents revert to
normal as daylight becomes more plentiful, prices should
rebound. The result should be lower returns in the au-
tumn, higher returns in the winter, and thus a high equity
premium for investors who hold through the autumn and
winter periods. The Fallt dummy variable is used to cap-
ture the lower autumn returns. Both SADt and Fallt are
appropriately defined for the Southern Hemisphere coun-
tries, accounting for the six month difference in seasons
relative to the Northern Hemisphere markets.

Table 1 summarizes the average annual effect due to
each of the SAD variables, SADt and Fallt , for each of
the international indices Kamstra, Kramer, and Levi [42]
study. For comparison, the unconditional average annual
return for each index is also provided. Observe that the an-
nualized return due to SADt is positive in every country,
varying from 5.7 to 17.5 percent. The SAD effect is gen-
erally larger the further are the markets from the equa-
tor. The negative annualized returns due to Fallt demon-
strate the fact that SAD typically causes returns to be



Financial Economics, Time Variation in the Market Return F 3471

Financial Economics, Time Variation in the Market Return, Table 1
Average annual percentage return due to SAD variables

Country (Index) Annual return
due to SADt

Annual return
due to fallt

Unconditional
annual return

US (S&P 500) 9.2��� �3:6�� 6.3���

Sweden (Veckans Affärar) 13.5�� �6:9�� 17.1���

Britain (FTSE 100) 10.3�� �2.3 9.6���

Germany (DAX 30) 8.2� �4:3�� 6.5��

Canada (TSX 300) 13.2��� �4:3�� 6.1���

New Zealand (Capital 40) 10.5�� �6:6�� 3.3
Japan (NIKKEI 225) 6.9� �3:7�� 9.7���

Australia (All ordinaries) 5.7 0.5 8.8���

South Africa (Datastream global index) 17.5� �2.1 14.6���

One, two, and three asterisks denote significantly different from zero at the ten, five, and
one percent level respectively, based on one-sided tests. Source: Table 3 in [42].

shifted from the fall to the winter. Garrett, Kamstra, and
Kramer [24] study seasonally-varying risk aversion in the
context of an equilibrium asset pricing model, allowing the
price of risk to vary with length of night through the fall
and winter seasons. They find the risk premium on equity
varies through the seasons in a manner consistent with in-
vestors being more risk averse due to SAD in the fall and
winter.

Kamstra, Kramer, and Levi [43] show that there is an
opposite seasonal pattern in Treasury returns relative to
stock returns, consistent with time-varying risk aversion
being the underlying force behind the seasonal pattern
previously shown to exist in stock returns. If SAD-affected
investors are shunning risky stocks in the fall as they be-
come more risk averse, then they should be favoring safe
assets at that time, which should lead to an opposite pat-
tern in Treasury returns relative to stock returns. The sea-
sonal cycle in the Treasury market is striking, with a varia-
tion of more than 80 basis points between the highest and
lowest average monthly returns. The highest Treasury re-
turns are observedwhen equity returns are lowest, and vice
versa, which is a previously unknown pattern in Treasury
returns.

Kamstra, Kramer, and Levi [43] define a new measure
which is linked directly to the clinical incidence of SAD.
The new measure uses data on the weekly or monthly on-
set of and recovery from SAD, obtained from studies of
SAD patients in Vancouver and Chicago conducted by
medical researchers. Young, Meaden, Fogg, Cherin, and
Eastman [79] and Lam [47] document the clinical onset of
SAD symptoms and recovery from SAD symptoms among
North Americans known to be affected by SAD. Young
et al. study 190 SAD-sufferers in Chicago and find that
74 percent of them are first diagnosed with SAD in the

weeks between mid-September and early November. Lam
studies 454 SAD patients in Vancouver on a monthly basis
and finds, that the peak timing of diagnosis is during the
early fall. Lam [47] also studies the timing of clinical remis-
sion of SAD and finds it peaks in April, with almost half of
all SAD-sufferers first experiencing complete remission in
that month. March is the secondmost commonmonth for
subjects to first experience full remission, corresponding
to almost 30 percent of subjects. For most SAD patients,
the initial onset and full recovery are separated by several
months over the fall and winter.

Direct use of Kamstra, Kramer, and Levi’s [43] vari-
able (which is an estimate of population-wide SAD on-
set/recovery based on specific samples of individuals)
could impart an error-in-variables problem (see [48]), thus
they utilize an instrumented version detailed in the pa-
per, which they call Onset/Recovery, denoted ÔRt . The
instrumented SADmeasure ÔRt reflects the change in the
proportion of SAD-affected individuals actively suffering
from SAD. The measure is defined year-round (unlike the
original Kamstra, Kramer, and Levi [42], SADt variable,
which is defined for only the fall and winter months), tak-
ing on positive values in the summer and fall and negative
values in the winter and spring. Its value peaks near the
fall equinox and reaches a trough near the spring equinox.
(The exact monthly values of ÔRt are reported by Kam-
stra, Kramer, and Levi [43].) The opposite signs on ÔRt
across the fall and winter seasons should, in principle, per-
mit it to capture the opposite impact on equity or Treasury
returns across the seasons, without use of a dummy vari-
able. Kamstra, Kramer, and Levi [43] find that use of ÔRt
as a regressor to explain seasonal patterns in Treasury and
equity returns renders the SADt and Fallt (used by Kam-
stra, Kramer, and Levi [42]) as economically and statisti-
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cally insignificant, suggesting the Onset/Recovery variable
does a far better job of explaining seasonal variation in re-
turns than the original proxies which are not directly re-
lated to the incidence of SAD.

Kamstra, Kramer, and Levi [43] show that the sea-
sonal Treasury and equity return patterns are unlikely to
arise from macroeconomic seasonalities, seasonal varia-
tion in risk, cross-hedging between equity and Treasury
markets, investor sentiment, seasonalities in the Treasury
market auction schedule, seasonalities in the Treasury debt
supply, seasonalities in the Federal Reserve Board’s inter-
est-rate-setting cycle, or peculiarities of the sample period
considered. They find that the seasonal cycles in equity
and Treasury returns become more pronounced during
periods of high market volatility, consistent with time-
varying risk aversion amongmarket participants. Further-
more, they apply the White [75] reality test and find that
the correlation between returns and the clinical incidence
of seasonal depression cannot be easily dismissed as the
simple result of data snooping.

DeGennaro, Kamstra, and Kramer [13] and Kamstra,
Kramer, and Levi [13] provide further corroborating evi-
dence for the hypothesis that SAD leads to time variation
in financial markets by considering (respectively) bid-ask
spreads for stocks and the flow of funds in and out of risky
and safe mutual funds. In both papers they find strong
support for the link between seasonal depression and time-
varying risk aversion.

Daylight Saving Time Changes

The second potential biological source of time-varying eq-
uity premia we consider arises on the two dates of the
year when most of the developed world shifts clocks for-
ward or backward an hour in the name of daylight sav-
ing. Psychologists have found that changes in sleep pat-
terns (due to shift work, jet lag, or daylight saving time
changes, for example) are associated with increased anxi-
ety, which is suggestive of a link between changes in sleep
habits and time-varying risk tolerance. See [26,52], and ci-
tations found in [10] and [72] for more details on the link
between sleep disruptions and anxiety. In addition to caus-
ing heightened anxiety, changes in sleep patterns also in-
hibit rational decision-making, lower one’s information-
processing ability, affect judgment, slow reaction time, and
reduce problem-solving capabilities. Even a change of one
hour can significantly affect behavior.

Kamstra, Kramer, and Levi [40] explore the finan-
cial market ramifications of a link between daylight sav-
ing time-change-induced disruptions in sleep patterns and
individuals’ tolerance for risk. They find, consistent with

psychology studies that show a gain or loss of an hour’s
sleep leads to increased anxiety, investors seem to shun
risky stock on the trading day following a daylight sav-
ing time change. They consider stock market indexes
from four countries where the time changes happen on
non-overlapping dates, the US, Canada, Britain, and Ger-
many. Based on stock market behavior over the past three
decades, the authors find that the magnitude of the aver-
age return on spring daylight saving weekends is typically
between two to five times that of ordinary weekends, and
the effect is even stronger in the fall. Kamstra, Kramer, and
Levi [41] show that the effect is not driven by a few ex-
tremely negative observations, but rather the entire distri-
bution of returns shifts to the left following daylight sav-
ing time changes, consistent with anxious investors selling
risky stock.

Future Directions

We divide our discussion in this section into three parts,
one for each major topic discussed in the article.

Regarding fundamental valuation, a promising future
path is to compare estimates emerging from sophisticated
valuation methods to market prices, using the compari-
son to highlight inconsistencies in the modeling assump-
tions (such as restrictions on the equity premium used by
the model, restrictions on the growth rate imposed for ex-
pected cash flows, and the implied values of those quanti-
ties that can be inferred from market prices). Even if one
believes that markets are efficient and investors are ratio-
nal, there is still much to be learned from calculating fun-
damentals using models and examining discrepancies rel-
ative to observed market prices.

Regarding the simulation techniques for estimating
the equity premium, a promising direction for future re-
search is to exploit these tools to forecast the volatility of
stock prices. This may lead to new alternatives to exist-
ing option-implied volatility calculations and time-series
techniques such as ARCH (for an overview of these meth-
ods see [15]). Another fruitful future direction would be to
apply the simulation techniques to the valuation of indi-
vidual companies’ stock (as opposed to valuing, say, stock
market indexes).

Regarding the topic of time-varying equity premia that
may arise for biological reasons, a common feature of
both of the examples explored in Sect. “Time-Varying Eq-
uity Premia: Possible Biological Origins”, SAD and day-
light-saving-time-change-induced fluctuations in the risk
premium, is that in both cases the empirical evidence is
based on aggregate financial market data. There is a re-
cent trend in finance toward documenting phenomena at
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the individual level, using data such as individuals’ finan-
cial asset holdings and trades in their brokerage accounts.
(See [1,54,55] for instance). A natural course forward is to
build upon the existing aggregate market support for the
prevalence of time-varying risk aversion by testing at the
individual level whether risk aversion varies through the
course of the year due to seasonal depression and during
shorter intervals due to changes in sleep patterns. An ad-
ditional potentially fruitful direction for future research is
to integrate into classical asset pricing models the notion
that biological factors might impact asset returns through
changes in agents’ degree of risk aversion. That is, human
traits such as seasonal depression may lead to regularities
in financial markets that are not mere anomalies; rather
they may be perfectly consistent with rational agents mak-
ing sensible decisions given their changing tolerance for
risk. This new line of research would be similar in spirit to
the work of Shefrin [71] who considers the way behavioral
biases like overconfidence can be incorporated into the
pricing kernel in standard asset pricing models. While the
behavioral biases Shefrin considers typically involve hu-
mans making errors, the biological factors described here
might be considered rational due to their involvement of
time-varying risk aversion.
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Glossary

Arbitrage pricing theory (APT) the expected return of
an asset is a linear function of a set of factors.

Artificial neural network is a nonlinear flexible func-
tional form, connecting inputs to outputs, being ca-
pable of approximating a measurable function to
any desired level of accuracy provided that sufficient
complexity (in terms of number of hidden units) is
permitted.

Autoregressive conditional heteroskedasticity (ARCH)
the variance of an asset returns is a linear function of
the past squared surprises to the asset.

Bagging short for bootstrap aggregating. Bagging is
a method of smoothing the predictors’ instability by

averaging the predictors over bootstrap predictors and
thus lowering the sensitivity of the predictors to train-
ing samples. A predictor is said to be unstable if
perturbing the training sample can cause significant
changes in the predictor.

Capital asset pricing model (CAPM) the expected re-
turn of an asset is a linear function of the covari-
ance of the asset return with the return of the market
portfolio.

Factor model a linear factor model summarizes the di-
mension of a large system of variables by a set of factors
that are linear combinations of the original variables.

Financial forecasting prediction of prices, returns, direc-
tion, density or any other characteristic of financial as-
sets such as stocks, bonds, options, interest rates, ex-
change rates, etc.

Functional coefficient model a model with time-varying
and state-dependent coefficients. The number of states
can be infinite.

Linearity in mean the process fytg is linear in mean con-
ditional on Xt if

Pr
�
E(yt jXt) D X 0t�

�
�
D 1 for some �� 2 Rk :

Loss (cost) function When a forecast ft;h of a variable
YtCh is made at time t for h periods ahead, the loss
(or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of
the forecast error etCh D YtCh � ft;h is denoted as
ctCh(YtCh; ft;h), and the function ctCh(�) can change
over t and the forecast horizon h.

Markov-switching model features parameters changing
in different regimes, but in contrast with the threshold
models the change is dictated by a non-observable state
variable that is modelled as a hidden Markov chain.

Martingale property tomorrow’s asset price is expected
to be equal to today’s price given some information set

E(ptC1jFt) D pt :

Nonparametric regression is a data driven technique
where a conditional moment of a random variable is
specified as an unknown function of the data and es-
timated by means of a kernel or any other weighting
scheme on the data.

Random field a scalar random field is defined as a func-
tion m(!; x) : ˝ � A! R such that m(!; x) is a ran-
dom variable for each x 2 Awhere A � Rk .

Sieves the sieves or approximating spaces are approxima-
tions to an unknown function, that are dense in the
original function space. Sieves can be constructed us-
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ing linear spans of power series, e. g., Fourier series,
splines, or many other basis functions such as artifi-
cial neural network (ANN), and various polynomials
(Hermite, Laguerre, etc.).

Smooth transition models threshold model with the in-
dicator function replaced by a smooth monotonically
increasing differentiable function such as a probability
distribution function.

Threshold model a nonlinear model with time-varying
coefficients specified by using an indicator which takes
a non-zero value when a state variable falls on a speci-
fied partition of a set of states, and zero otherwise. The
number of partitions is finite.

Varying cross-sectional rank (VCR) of asset i is the pro-
portion of assets that have a return less than or equal
to the return of firm i at time t

zi;t � M�1
MX

jD1

1(y j;t � yi;t)

Volatility Volatility in financial economics is often mea-
sured by the conditional variance (e. g., ARCH) or
the conditional range. It is important for any decision
making under uncertainty such as portfolio allocation,
option pricing, risk management.

Definition of the Subject

Financial Forecasting

Financial forecasting is concerned with the prediction
of prices of financial assets such as stocks, bonds, op-
tions, interest rates, exchange rates, etc. Though many
agents in the economy, i. e. investors, money managers,
investment banks, hedge funds, etc. are interested in the
forecasting of financial prices per se, the importance of
financial forecasting derives primarily from the role of fi-
nancial markets within the macro economy. The devel-
opment of financial instruments and financial institutions
contribute to the growth and stability of the overall econ-
omy. Because of this interconnection between financial
markets and the real economy, financial forecasting is also
intimately linked to macroeconomic forecasting, which
is concerned with the prediction of macroeconomic ag-
gregates such as growth of the gross domestic product,
consumption growth, inflation rates, commodities prices,
etc. Financial forecasting and macroeconomic forecasting
share many of the techniques and statistical models that
will be explained in detail in this article.

In financial forecasting a major object of study is the
return to a financial asset, mostly calculated as the con-
tinuously compounded return, i. e., yt D log pt � log pt�1

where pt is the price of the asset at time t. Nowadays fi-
nancial forecasters use sophisticated techniques that com-
bine the advances in modern finance theory, pioneered by
Markowitz [113], with the advances in time series econo-
metrics, in particular the development of nonlinear mod-
els for conditional moments and conditional quantiles of
asset returns.

The aim of finance theory is to provide models for ex-
pected returns taking into account the uncertainty of the
future asset payoffs. In general, financial models are con-
cerned with investors’ decisions under uncertainty. For in-
stance the portfolio allocation problem deals with the al-
location of wealth among different assets that carry dif-
ferent levels of risk. The implementation of these theories
relies on econometric techniques that aim to estimate fi-
nancial models and testing them against the data. Finan-
cial econometrics is the branch of econometrics that pro-
vides model-based statistical inference for financial vari-
ables, and therefore financial forecasting will provide their
corresponding model-based predictions. However there
are also econometric developments that inform the con-
struction of ad hoc time series models that are valuable on
describing the stylized facts of financial data.

Since returns fytg are random variables, the aim of
financial forecasting is to forecast conditional moments,
quantiles, and eventually the conditional distribution of
these variables. Most of the time our interest will be
centered on expected returns and volatility as these two
moments are crucial components on portfolio allocation
problems, option valuation, and risk management, but it
is also possible to forecast quantiles of a random variable,
and therefore to forecast the expected probability density
function. Density forecasting is the most complete forecast
as it embeds all the information on the financial variable of
interest. Financial forecasting is also concerned with other
financial variables like durations between trades and di-
rections of price changes. In these cases, it is also possible
to construct conditional duration models and conditional
probit models that are the basis for forecasting durations
and market timing.

Critical to the understanding of the methodological
development in financial forecasting is the statistical con-
cept of martingale, which historically has its roots in the
games of chance also associated with the beginnings of
probability theory in the XVI century. Borrowing from
the concept of fair game, financial prices are said to en-
joy themartingale property if tomorrow’s price is expected
to be equal to today’s price given some information set;
in other words tomorrow’s price has an equal chance to
either move up or move down, and thus the best forecast
must be the current price. The martingale property is writ-
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ten as

E(ptC1jFt) D pt

where E is the expectation operator and the information
set Ft � fpt ; pt�1; pt�2; : : : g is the collection of past and
current prices, though it may also include other variables
known at time t such as volume. From a forecasting point
of view, the martingale model implies that changes in fi-
nancial prices (ptC1 � pt) are not predictable.

The most restrictive form of the martingale property,
proposed by Bachelier [6] in his theory of speculation is
the model (in logarithms)

log ptC1 D �t C log pt C "tC1 ;

where �t D � is a constant drift and "tC1 is an identically
and independently distributed (i.i.d.) error that is assumed
to be normally distributed with zero mean and constant
variance �2. This model is also known as a random walk
model. Since the return is the percentage change in prices,
i. e. yt D log pt � log pt�1, an equivalent model for asset
returns is

ytC1 D �t C "tC1 :

Then, taking conditional expectations, we find that
E(ytC1jFt) D �t . If the conditional mean return is not
time-varying, �t D �, then the returns are not fore-
castable based on past price information. In addition and
given the assumptions on the error term, returns are in-
dependent and identically distributed random variables.
These two properties, a constant drift and an i.i.d error
term, are too restrictive and they rule out the possibility
of any predictability in asset returns. A less restrictive and
more plausible version is obtained when the i.i.d assump-
tion is relaxed. The error term may be heteroscedastic so
that returns have different (unconditional or conditional)
variances and consequently they are not identically dis-
tributed, and/or the error term, though uncorrelated, may
exhibit dependence in higher moments and in this case the
returns are not independent random variables.

The advent of modern finance theory brings the no-
tion of systematic risk, associated with return variances
and covariances, into asset pricing. Though these theo-
ries were developed to explain the cross-sectional vari-
ability of financial returns, they also helped many years
later with the construction of time series models for fi-
nancial returns. Arguably, the two most important asset
pricing models in modern finance theory are the Capital
Asset Pricing Model (CAPM) proposed by Sharpe [137]
and Lintner [103] and the Arbitrage Pricing Theory (APT)

proposed by Ross [131]. Both models claim that the ex-
pected return to an asset is a linear function of risk; in
CAPM risk is related to the covariance of the asset return
with the return to the market portfolio, and in APT risk
is measured as exposure to a set of factors, which may in-
clude the market portfolio among others. The original ver-
sion of CAPM, based on the assumption of normally dis-
tributed returns, is written as

E(yi ) D y f C ˇim
�
E(ym ) � y f

�
;

where yf is the risk-free rate, ym is the return to the market
portfolio, and ˇim is the risk of asset i defined as

ˇim D
cov(yi ; ym)
var(ym)

D
�im

�2m
:

This model has a time series version known as the con-
ditional CAPM [17] that it may be useful for forecast-
ing purposes. For asset i and given an information set as
Ft D fyi;t; yi;t�1; : : : ; ym;t ; ym;t�1; : : : g, the expected re-
turn is a linear function of a time-varying beta

E(yi;tC1jFt) D y f C ˇim;t
�
E(ym;tC1jFt) � y f

�

where ˇim;t D
cov(yi;tC1 ;ym;tC1jFt )

var(ym;tC1 jFt )
D


im;t

2
m;t

. From this type
of models is evident that we need to model the condi-
tional second moments of returns jointly with the con-
ditional mean. A general finding of this type of models
is that when there is high volatility, expected returns are
high, and hence forecasting volatility becomes important
for the forecasting of expected returns. In the same spirit,
the APTmodels have also conditional versions that exploit
the information contained in past returns. AK-factor APT
model is written as

yt D c C B0 ft C "t ;

where f t is a K � 1 vector of factors and B is a K � 1 vec-
tor of sensitivities to the factors. If the factors have time-
varying second moments, it is possible to specify an APT
model with a factor structure in the time-varying covari-
ance matrix of asset returns [48], which in turn can be ex-
ploited for forecasting purposes.

The conditional CAPM and conditional APT models
are fine examples on how finance theory provides a base to
specify time-series models for financial returns. However
there are other time series specifications, more ad hoc in
nature, that claim that financial prices are nonlinear func-
tions – not necessarily related to time-varying second mo-
ments – of the information set and by that, they impose
some departures from the martingale property. In this
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case it is possible to observe some predictability in asset
prices. This is the subject of nonlinear financial forecast-
ing. We begin with a precise definition of linearity versus
nonlinearity.

Linearity and Nonlinearity

Lee, White, and Granger [99] are the first who precisely
define the concept of “linearity”. Let fZtg be a stochastic
process, and partition Zt as Zt D (yt X 0t)0, where (for sim-
plicity) yt is a scalar and Xt is a k � 1 vector. Xt may (but
need not necessarily) contain a constant and lagged values
of yt . LWG define that the process fytg is linear in mean
conditional on Xt if

Pr
�
E(yt jXt) D X 0t�

�
�
D 1 for some �� 2 Rk :

In the context of forecasting, Granger and Lee [71] de-
fine linearity as follows. Define �tCh D E(ytCh jFt) be-
ing the optimum least squares h-step forecast of ytCh
made at time t. �tCh will generally be a nonlinear func-
tion of the contents ofFt . Denote mtCh the optimum lin-
ear forecast of ytCh made at time t be the best forecast
that is constrained to be a linear combination of the con-
tents of Xt 2 Ft . Granger and Lee [71] define that fytg
is said to be linear in conditional mean if �tCh is linear
in Xt, i. e., Pr

�
�tCh D mtCh

�
D 1 for all t and for all h.

Under this definition the focus is the conditional mean
and thus a process exhibiting autoregressive conditional
heteroskedasticity (ARCH) [44] may nevertheless exhibit
linearity of this sort because ARCH does not refer to the
conditional mean. This is appropriate whenever we are
concerned with the adequacy of linear models for forecast-
ing the conditional mean returns. See [161], Section 2, for
a more rigorous treatment on the definitions of linearity
and nonlinearity.

This definition may be extended with some cau-
tion to the concept of linearity in higher moments and
quantiles, but the definition may depend on the focus
or interest of the researcher. Let "tCh D ytCh � �tCh
and �2tCh D E("2tCh jFt). If we consider the ARCH and
GARCH as linear models, we say

˚
�2tCh

�
is linear in con-

ditional variance if �2tCh is a linear function of lagged
"2t� j and �2t� j for some h or for all h. Alternatively,
�2tCh D E("2tCh jFt) is said to be linear in conditional vari-
ance if �2tCh is a linear function of xt 2 Ft for some h
or for all h. Similarly, we may consider linearity in condi-
tional quantiles. The issue of linearity versus nonlinearity
is most relevant for the conditional mean. It is more rele-
vant whether a certain specification is correct or incorrect
(rather than linear or nonlinear) for higher order condi-
tional moments or quantiles.

Introduction

There exists a nontrivial gap between martingale differ-
ence and serial uncorrelatedness. The former implies the
latter, but not vice versa. Consider a stationary time series
fytg. Often, serial dependence of fytg is described by its
autocorrelation function �( j), or by its standardized spec-
tral density

h(!) D
1
2�

1X

jD�1

�( j)e�i j! ; ! 2 [��; �] :

Both h(!) and �( j) are the Fourier transform of each
other, containing the same information of serial correla-
tions of fytg. A problem with using h(!) and �( j) is that
they cannot capture nonlinear time series that have zero
autocorrelation but are not serially independent. Nonlin-
ear MA and Bilinear series are good examples:

Nonlinear MA : Yt D bet�1et�2 C et ;
Bilinear : Yt D bet�1Yt�2 C et :

These processes are serially uncorrelated, but they are pre-
dictable using the past information. Hong and Lee [86]
note that the autocorrelation function, the variance ratios,
and the power spectrum can easily miss these processes.
Misleading conclusions in favor of the martingale hypoth-
esis could be reached when these test statistics are insignif-
icant. It is therefore important and interesting to explore
whether there exists a gap between serial uncorrelatedness
and martingale difference behavior for financial forecast-
ing, and if so, whether the neglected nonlinearity in con-
ditional mean can be explored to forecast financial asset
returns.

In the forthcoming sections, we will present, with-
out being exhaustive, nonlinear time series models for fi-
nancial returns, which are the basis for nonlinear fore-
casting. In Sect. “Nonlinear Forecasting Models for the
Conditional Mean”, we review nonlinear models for the
conditional mean of returns. A general representation is
ytC1 D �(yt ; yt�1; : : : ) C "tC1 with �(�) a nonlinear
function of the information set. IfE(ytC1jyt; yt�1; : : : ) D
�(yt ; yt�1; : : : ), then there is a departure from the mar-
tingale hypothesis, and past price information will be rel-
evant to predict tomorrow’s return. In Sect. “Nonlinear
Forecasting Models for the Conditional Variance”, we
review models for the conditional variance of returns.
For instance, a model like ytC1 D � C utC1�tC1 with
time-varying conditional variance �2tC1 D E((ytC1 �

�)2jFt) and i.i.d. error utC1, is still a martingale-differ-
ence for returns but it represents a departure from the
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independence assumption. The conditional mean return
may not be predictable but the conditional variance of
the return will be. In addition, as we have seen modeling
time-varying variances and covariances will be very use-
ful for the implementation of conditional CAPM and APT
models.

Nonlinear ForecastingModels
for the ConditionalMean

We consider models to forecast the expected price changes
of financial assets and we restrict the loss function of
the forecast error to be the mean squared forecast er-
ror (MSFE). Under this loss, the optimal forecast is
�tCh D E(ytCh jFt). Other loss functions may also be
used but it will be necessary to forecast other aspects of
the forecast density. For example, under a mean absolute
error loss function the optimal forecast is the conditional
median.

There is evidence for �tCh being time-varying. Simple
linear autoregressive polynomials in lagged price changes
are not sufficient to model �tCh and nonlinear specifica-
tions are needed. These can be classified into parametric
and nonparametric. Examples of parametric models are
autoregressive bilinear and threshold models. Examples of
nonparametric models are artificial neural network, kernel
and nearest neighbor regression models.

It will be impossible to have an exhaustive review of
the many nonlinear specifications. However, as discussed
in White [161] and Chen [25], some nonlinear mod-
els are universal approximators. For example, the sieves
or approximating spaces are proven to approximate very
well unknown functions and they can be constructed us-
ing linear spans of power series, Fourier series, splines,
or many other basis functions such as artificial neural
network (ANN), Hermite polynomials as used in e. g.,
[56] for modelling semi-nonparametric density, and La-
guerre polynomials used in [119] for modelling the yield
curve. Diebold and Li [36] and Huang, Lee, and Li [89]
use the Nelson–Siegel model in forecasting yields and
inflation.

We review parametric nonlinear models like thresh-
old model, smooth transition model, Markov switching
model, and random fields model; nonparametric models
like local linear, local polynomial, local exponential, and
functional coefficient models; and nonlinear models based
on sieves like ANN and various polynomials approxima-
tions. For other nonlinear specifications we recommend
some books on nonlinear time series models such as Fan
and Yao [52], Gao [57], and Tsay [153]. We begin with
a very simple nonlinear model.

A Simple Nonlinear Model with Dummy Variables

Goyal and Welch [66] forecast the equity premium on the
S&P 500 index – index return minus T-bill rate – using
many predictors such as stock-related variables (e. g., divi-
dend-yield, earning-price ratio, book-to-market ratio, cor-
porate issuing activity, etc.), interest-rate-related variables
(e. g., treasury bills, long-term yield, corporate bond re-
turns, inflation, investment to capital ratio), and ex ante
consumption, wealth, income ratio (modified from [101]).
They find that these predictors have better performance
in bad times, such as the Great Depression (1930–33), the
oil-shock period (1973–75), and the tech bubble-crash pe-
riod (1999–2001). Also, they argue that it is reasonable to
impose a lower bound (e. g., zero or 2%) on the equity pre-
mium because no investor is interested in (say) a negative
premium.

Campbell and Thompson [23], inspired by the out-of-
sample forecasting of Goyal and Welch [66], argue that if
we impose some restrictions on the signs of the predic-
tors’ coefficients and excess return forecasts, some predic-
tors can beat the historical average equity premium. Sim-
ilarly to Goyal and Welch [66], they also use a rich set
of forecasting variables – valuation ratios (e. g., dividend
price ratio, earning price ratio, and book to market ratio),
real return on equity, nominal interest rates and inflation,
and equity share of new issues and consumption-wealth
ratio. They impose two restrictions – the first one is to re-
strict the predictors’ coefficients to have the theoretically
expected sign and to set wrong-signed coefficients to zero,
and the second one is to rule out a negative equity pre-
mium forecast. They show that the effectiveness of these
theoretically-inspired restrictions almost always improve
the out-of sample performance of the predictive regres-
sions. This is an example where “shrinkage” works, that is
to reduce the forecast error variance at the cost of a higher
forecast bias but with an overall smaller mean squared
forecast error (the sum of error variance and the forecast
squared bias).

The results from Goyal and Welch [66] and Campbell
and Thompson [23] support a simple form of nonlinearity
that can be generalized to threshold models or time-vary-
ing coefficient models, which we consider next.

Threshold Models

Many financial and macroeconomic time series exhibit
different characteristics over time depending upon the
state of the economy. For instance, we observe bull and
bear stock markets, high volatility versus low volatility pe-
riods, recessions versus expansions, credit crunch versus
excess liquidity, etc. If these different regimes are present
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in economic time series data, econometric specifications
should go beyond linear models as these assume that there
is only a single structure or regime over time. Nonlinear
time series specifications that allow for the possibility of
different regimes, also known as state-dependent models,
include several types of models: threshold, smooth transi-
tion, and regime-switching models.

Threshold autoregressive (TAR) models [148,149] as-
sume that the dynamics of the process is explained by an
autoregression in each of the n regimes dictated by a con-
ditioning or threshold variable. For a process fytg, a gen-
eral specification of a TAR model is

yt D
nX

jD1

2

4�( j)
o C

p jX

iD1

�
( j)
i yt�i C "

( j)
t

3

5 1(r j�1 < xt � r j):

There are n regimes, in each one there is an autoregres-
sive process of order pj with different autoregressive pa-
rameters �( j)

i , the threshold variable is xt with rj thresh-
olds and ro D �1 and rn D C1, and the error term is
assumed i.i.d. with zeromean and different variance across
regimes "( j)t � i.i.d.



0; �2j

�
, or more generally "( j)t is as-

sumed to be a martingale difference. When the threshold
variable is the lagged dependent variable itself yt�d , the
model is known as self-exciting threshold autoregressive
(SETAR) model. The SETAR model has been applied to
the modelling of exchange rates, industrial production in-
dexes, and gross national product (GNP) growth, among
other economic data sets. The most popular specifications
within economic time series tend to find two, at most three
regimes. For instance, Boero and Marrocu [18] compare
a two and three-regime SETAR models with a linear AR
with GARCH disturbances for the euro exchange rates. On
the overall forecasting sample, the linear model performs
better than the SETAR models but there is some improve-
ment in the predictive performance of the SETAR model
when conditioning on the regime.

Smooth TransitionModels

In the SETAR specification, the number of regimes is dis-
crete and finite. It is also possible to model a continuum
of regimes as in the Smooth Transition Autoregressive
(STAR) models [144]. A typical specification is

yt D �0C
pX

iD1

�i yt�iC

 

�0 C

pX

iD1

�i yt�i

!

F(yt�d )C"t

where F(yt�d ) is the transition function that is continu-
ous and in most cases is either a logistic function or an

exponential,

F(yt�d ) D
�
1C exp

�
��

�
yt�d � r

��1

F(yt�d ) D 1 �
h
exp

�
��

�
yt�d � r

2i

This model can be understood as many autoregressive
regimes dictated by the values of the function F(yt�d ),
or alternatively as an autoregression where the autore-
gressive parameters change smoothly over time. When
F(yt�d ) is logistic and � !1, the STAR model collapses
to a threshold model SETAR with two regimes. One im-
portant characteristic of these models, SETAR and STAR,
is that the process can be stationary within some regimes
and non-stationary within others moving between explo-
sive and contractionary stages.

Since the estimation of these models can be demand-
ing, the first question to solve is whether the nonlinearity
is granted by the data. A test for linearity is imperative be-
fore engaging in the estimation of nonlinear specifications.
An LM test that has power against the two alternatives
specifications SETAR and STAR is proposed by Luukko-
nen et al. [110] and it consists of running two regressions:
under the null hypothesis of linearity, a linear autore-
gression of order p is estimated in order to calculate the
sum of squared residuals, SSE0; the second is an auxiliary
regression

yt Dˇ0 C
pX

iD1

ˇi yt�i C
pX

iD1

pX

jD1

 i j yt�i yt� j

C

pX

iD1

pX

jD1

�i j yt�i y2t� j C

pX

iD1

pX

jD1

�i j yt�i y3t� j C ut

from which we calculate the sum of squared residu-
als, SSE1. The test is constructed as �2 D T(SSE0 �
SSE1)/SSE0 that under the null hypothesis of linearity is
chi-squared distributed with p(pC 1)/2C 2p2 degrees of
freedom. There are other tests in the literature, for in-
stance Hansen [80] proposes a likelihood ratio test that
has a non-standard distribution, which is approximated by
implementing a bootstrap procedure. Tsay [151] proposes
a test based on arranged regressions with respect to the in-
creasing order of the threshold variable and by doing this
the testing problem is transformed into a change-point
problem.

If linearity is rejected, we proceed with the estimation
of the nonlinear specification. In the case of the SETAR
model, if we fix the values of the delay parameter d and
the thresholds rj, the model reduces to n linear regres-
sions for which least squares estimation is straightforward.
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Tsay [151] proposes a conditional least squares (CLS) esti-
mator. For simplicity of exposition suppose that there are
two regimes in the data and the model to estimate is

yt D

"

�(1)
o C

p1X

iD1

�
(1)
i yt�i

#

1(yt�d � r)

C

"

�(2)
o C

p2X

iD1

�
(2)
i yt�i

#

1(yt�d > r)C "t

Since r and d are fixed, we can apply least squares es-
timation to the model and to obtain the LS estimates for
the parameters � i’s. With the LS residual "̂t , we obtain the
total sum of squares S(r; d) D

P
t "̂

2
t . The CLS estimates

of r and d are obtained from (r̂; d̂) D argmin S(r; d).
For the STAR model, it is also necessary to specify

a priori the functional form of F(yt�d ). Teräsvirta [144]
proposes a modeling cycle consisting of three stages: spec-
ification, estimation, and evaluation. In general, the spec-
ification stage consists of sequence of null hypothesis to
be tested within a linearized version of the STAR model.
Parameter estimation is carried out by nonlinear least
squares or maximum likelihood. The evaluation stage
mainly consists of testing for no error autocorrelation, no
remaining nonlinearity, and parameter constancy, among
other tests.

Teräsvirta and Anderson [146] find strong nonlinear-
ity in the industrial production indexes of most of the
OECD countries. The preferredmodel is the logistic STAR
with two regimes, recessions and expansions. The dynam-
ics in each regime are country dependent. For instance, in
USA they find that the economy tends to move from re-
cessions into expansions very aggressively but it will take
a large negative shock to move rapidly from an expansion
into a recession. Other references for applications of these
models to financial series are found in [28,73,94].

For forecasting with STARmodels, see Lundbergh and
Teräsvirta [109]. It is easy to construct the one-step-ahead
forecast but the multi-step-ahead forecast is a complex
problem. For instance, for the 2-regime threshold model,
the one-step-ahead forecast is constructed as the condi-
tional mean of the process given some information set

E(ytC1jFt ; �)

D

"

�(1)
o C

p1X

iD1

�
(1)
i ytC1�i

#

1(ytC1�d � r)

C

"

�(2)
o C

p2X

iD1

�
(2)
i ytC1�i

#

1(ytC1�d > r)

provided that ytC1�i ; ytC1�d 2 Ft . However, a multi-
step-ahead forecast will be a function of variables that be-

ing dated at a future date do not belong to the information
set; in this case the solution requires the use of numeri-
cal integration techniques or simulation/bootstrap proce-
dures. See Granger and Teräsvirta [72], Chapter 9, and
Teräsvirta [145] for more details on numerical methods
for multi-step forecasts.

Markov-Switching Models

A Markov-switching (MS) model [76,77] also features
changes in regime, but in contrast with the SETARmodels
the change is dictated by a non-observable state variable
that is modelled as a Markov chain. For instance, a first
order autoregressive Markov switching model is specified
as

yt D cst C �st yt�1 C "t

where st D 1; 2; : : : ;N is the unobserved state variable
that is modelled as an N-state Markov chain with tran-
sition probabilities pi j D P(st D jjst�1 D i), and "t �

i.i.d. N(0; �2) or more generally "t is a martingale dif-
ference. Conditioning in a given state and an informa-
tion set Ft , the process fytg is linear but uncondition-
ally the process is nonlinear. The conditional forecast
is E(ytC1jstC1 D j;Ft ; �) D c j C � j yt and the uncondi-
tional forecast based on observable variables is the sum
of the conditional forecasts for each state weighted by the
probability of being in that state,

E(ytC1jFt ; �)

D

NX

jD1

P(stC1 D jjFt ; �)E(ytC1jstC1 D j;Ft ; �) :

The parameter vector � D (c1 : : : cN ; �1 : : : �N ; �2)0 as
well as the transition probabilities pij can be estimated by
maximum likelihood.

MS models have been applying to the modeling of for-
eign exchange rates with mixed success. Engel and Hamil-
ton [43] fit a two-state MS for the Dollar and find that
there are long swings and by that they reject the random
walk behavior in the exchange rate. Marsh [114] estimates
a two-state MS for the Deutschemark, the Pound Sterling,
and the Japanese Yen. Though the model approximates
the characteristics of the data well, the forecasting perfor-
mance is poor when measured by the profit/losses gener-
ated by a set of trading rules based on the predictions of
the MS model. On the contrary, Dueker and Neely [40]
find that for the same exchange rate a MS model with
three states variables – in the scale factor of the variance
of a Student-t error, in the kurtosis of the error, and in
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the expected return – produces out-of-sample excess re-
turns that are slightly superior to those generated by com-
mon trading rules. For stock returns, there is evidence that
MSmodels perform relatively well on describing two states
in the mean (high/low returns) and two states in the vari-
ance (stable/volatile periods) of returns [111]. In addition,
Perez-Quiros and Timmermann [124] propose that the er-
ror term should be modelled as a mixture of Gaussian and
Student-t distributions to capture the outliers commonly
found in stock returns. This model provides some gains in
predictive accuracy mainly for small firms returns. For in-
terest rates in USA, Germany, and United Kingdom, Ang
and Bekaert [5] find that a two-state MS model that in-
corporates information on international short rate and on
term spread is able to predict better than an univariate MS
model. Additionally they find that in USA the classifica-
tion of regimes correlates well with the business cycles.

SETAR, STAR, and MS models are successful spec-
ifications to approximate the characteristics of financial
and macroeconomic data. However, good in-sample per-
formance does not imply necessarily a good out-of-sam-
ple performance, mainly when compared to simple lin-
ear ARMA models. The success of nonlinear models de-
pends on how prominent the nonlinearity is in the data.
We should not expect a nonlinear model to perform bet-
ter than a linear model when the contribution of the non-
linearity to the overall specification of the model is very
small. As it is argued in Granger and Teräsvirta [72], the
prediction errors generated by a nonlinear model will be
smaller only when the nonlinear feature modelled in-sam-
ple is also present in the forecasting sample.

A State Dependent Mixture Model
Based on Cross-sectional Ranks

In the previous section, we have dealt with nonlinear
time series models that only incorporate time series in-
formation. González-Rivera, Lee, andMishra [63] propose
a nonlinear model that combines time series with cross
sectional information. They propose the modelling of ex-
pected returns based on the joint dynamics of a sharp jump
in the cross-sectional rank and the realized returns. They
analyze the marginal probability distribution of a jump
in the cross-sectional rank within the context of a dura-
tion model, and the probability of the asset return condi-
tional on a jump specifying different dynamics depending
on whether or not a jump has taken place. The resulting
model for expected returns is a mixture of normal distri-
butions weighted by the probability of jumping.

Let yi;t be the return of firm i at time t, and fyi;tgMiD1 be
the collection of asset returns of theM firms that constitute

the market at time t. For each time t, the asset returns are
ordered from the smallest to the largest, and define zi;t ,
the Varying Cross-sectional Rank (VCR) of firm i within
the market, as the proportion of firms that have a return
less than or equal to the return of firm i. We write

zi;t � M�1
MX

jD1

1(y j;t � yi;t) ; (1)

where 1(�) is the indicator function, and for M large,
zi;t 2 (0; 1]. Since the rank is a highly dependent vari-
able, it is assumed that small movements in the asset rank-
ing will not contain significant information and that most
likely largemovements in ranking will be the result of news
in the overall market and/or of news concerning a partic-
ular asset. Focusing on large rank movements, we define,
at time t, a sharp jump as a binary variable that takes the
value one when there is a minimum (upward or down-
ward) movement of 0.5 in the ranking of asset i, and zero
otherwise:

Ji;t � 1(jzi;t � zi;t�1j � 0:5) : (2)

A jump of this magnitude brings the asset return above
or below the median of the cross-sectional distribution of
returns. Note that this notion of jumps differs from the
more traditional meaning of the word in the context of
continuous-time modelling of the univariate return pro-
cess. A jump in the cross-sectional rank implicitly depends
on numerous univariate return processes.

The analytical problem now consists in modeling
the joint distribution of the return yi;t and the jump
Ji;t , i. e. f (yi;t; Ji;tjFt�1) where Ft�1 is the informa-
tion set up to time t � 1. Since f (yi;t; Ji;tjFt�1) D
f1(Ji;tjFt�1) f2(yi;t jJi;t;Ft�1), the analysis focuses first on
the modelling of the marginal distribution of the jump,
and subsequently on the modelling of the conditional dis-
tribution of the return.

Since Ji;t is a Bernoulli variable, the marginal distri-
bution of the jump is f1(Ji;tjFt�1) D pJi;ti;t (1 � pi;t)(1�J i;t )

where pi;t � Pr(Ji;t D 1jFt�1) is the conditional proba-
bility of a jump in the cross-sectional ranks. The mod-
elling of pi;t is performed within the context of a dynamic
duration model specified in calendar time as in Hamilton
and Jordà [79]. The calendar time approach is necessary
because asset returns are reported in calendar time (days,
weeks, etc.) and it has the advantage of incorporating any
other available information also reported in calendar time.

It is easy to see that the probability of jumping and du-
ration must have an inverse relationship. If the probability
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of jumping is high, the expected duration must be short,
and vice versa. Let�N(t) be the expected duration. The ex-
pected duration until the next jump in the cross-sectional
rank is given by �N(t) D

P1
jD1 j(1 � pt) j�1pt D p�1t .

Note that
P1

jD0(1 � pt) j D p�1t . Differentiating with re-
spect to pt yields

P1
jD0 � j(1 � pt) j�1 D �p�2t . Multiply-

ing by �pt gives
P1

jD0 j(1 � pt) j�1pt D p�1t and thus
P1

jD1 j(1 � pt) j�1pt D p�1t . Consequently, to model pi;t ,
it suffices to model the expected duration and compute
its inverse. Following Hamilton and Jordà [79], an autore-
gressive conditional hazard (ACH) model is specified. The
ACH model is a calendar-time version of the autoregres-
sive conditional duration (ACD) of Engle and Russell [49].
In both ACD and ACH models, the expected duration is
a linear function of lag durations. However as the ACD
model is set up in event time, there are some difficulties on
how to introduce information that arrives between events.
This is not the case in the ACHmodel because the set-up is
in calendar time. In the ACDmodel, the forecasting object
is the expected time between events; in the ACH model,
the objective is to forecast the probability that the event
will happen tomorrow given the information known up to
today. A general ACH model is specified as

�N(t) D

mX

jD1

˛ jDN(t)� j C

rX

jD1

ˇ j�N(t)� j : (3)

Since pt is a probability, it must be bounded between zero
and one. This implies that the conditional duration must
have a lower bound of one. Furthermore, working in cal-
endar time it is possible to incorporate information that
becomes available between jumps and can affect the prob-
ability of a jump in future periods. The conditional hazard
rate is specified as

pt D [�N(t�1) C ı
0

Xt�1]�1 ; (4)

where Xt�1 is a vector of relevant calendar time vari-
ables such as past VCRs and past returns. This completes
the marginal distribution of the jump f1(Ji;tjFt�1) D
pJi;ti;t (1 � pi;t)(1�J i;t ).

On modelling f2(yt jJt;Ft�1; �2), it is assumed that the
return to asset i may behave differently depending upon
the occurrence of a jump. The modelling of two potential
different states (whether a jump has occurred or not) will
permit to differentiate whether the conditional expected
return is driven by active or/and passive movements in the
asset ranking in conjunction with its own return dynam-
ics. A priori, different dynamics are possible in these two

states. A general specification is

f2(yt jJt;Ft�1; �2) D
�

N(�1;t ; �
2
1;t) if Jt D 1

N(�0;t ; �
2
0;t) if Jt D 0 ; (5)

where � j;t is the conditional mean and �2j;t the condi-
tional variance in each state ( j D 1; 0). Whether these two
states are present in the data is an empirical question and
it should be answered through statistical testing.

Combining the models for the marginal density of the
jump and the conditional density of the returns, the esti-
mation can be conducted with maximum likelihood tech-
niques. For a sample fyt; JtgTtD1, the joint log-likelihood
function is

TX

tD1

ln f (yt; Jt jFt�1; �)

D

TX

tD1

ln f1(Jt jFt�1; �1)C
TX

tD1

ln f2(yt jJt;Ft�1; �2) :

Let us callL1(�1) D
PT

tD1 ln f1(Jt jFt�1; �1) andL2(�2) DPT
tD1 ln f2(yt jJt;Ft�1; �2). The maximization of the joint

log-likelihood function can be achieved by maximizing
L1(�1) and L2(�2) separately without loss of efficiency by
assuming that the parameter vectors �1 and �2 are “varia-
tion free” in the sense of Engle et al. [45].

The log-likelihood function L1(�1) D
PT

tD1 ln f1(Jtj
Ft�1; �1) is

L1(�1) D
TX

tD1

�
Jt ln pt(�1)C (1 � Jt) ln(1 � pt(�1))

�
; (6)

where �1 includes all parameters in the conditional dura-
tion model.

The log-likelihood function L2(�2) D
PT

tD1 ln f2(yt j
Jt;Ft�1; �2) is

L2(�2)D
TX

tD1

ln

2

6
4

Jtq
2��21;t

exp

(

�
1
2

�
yt��1;t

�1;t

�2
)

C
1 � Jtq
2��20;t

exp

(

�
1
2

�
yt��0;t

�0;t

�2
)3

7
5;

where �2 includes all parameters in the conditional means
and conditional variances under both regimes.

If the two proposed states are granted in the data,
the marginal density function of the asset return must be
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a mixture of two normal density functions where the mix-
ture weights are given by the probability of jumping pt :

g(yt jFt�1; �) �
1X

JtD0

f (yt; Jt jFt�1; �)

D

1X

JtD0

f1(Jt jFt�1; �1) f2(yt jJt;Ft�1; �2)

D pt � f2(yt jJt D 1;Ft�1; �2)
C (1 � pt) � f2(yt jJt D 0;Ft�1; �2);

(7)

as f1(Jt jFt�1; �1) D pJtt (1 � pt)(1�Jt ). Therefore, the one-
step ahead forecast of the return is

E(ytC1jFt ; �)

D

Z
ytC1 � g(ytC1jFt ; �)dytC1

D ptC1(�1) � �1;tC1(�2)C (1 � ptC1(�1)) � �0;tC1(�2) :
(8)

The expected return is a function of the probability of
jumping pt , which is a nonlinear function of the informa-
tion set as shown in (4). Hence the expected returns are
nonlinear functions of the information set, even in a sim-
ple case where �1;t and �0;t are linear.

This model was estimated for the returns of the con-
stituents of the SP500 index from 1990 to 2000, and its per-
formance was assessed in an out-of-sample exercise from
2001 to 2005 within the context of several trading strate-
gies. Based on the one-step-ahead forecast of the mix-
ture model, a proposed trading strategy called VCR-Mix-
ture Trading Rule is shown to be a superior rule because
of its ability to generate large risk-adjusted mean returns
when compared to other technical and model-based trad-
ing rules. The VCR-Mixture Trading Rule is implemented
by computing for each firm in the SP500 index the one-
step ahead forecast of the return as in (8). Based on the
forecasted returns fŷ i;tC1(�̂t)gT�1tDR , the investor predicts
the VCR of all assets in relation to the overall market, that
is,

ẑi;tC1 D M�1
MX

jD1

1(ŷ j;tC1 � ŷ i;tC1);

t D R; : : : ; T � 1 ; (9)

and buys the top K performing assets if their forecasted
return is above the risk-free rate. In every subsequent out-
of-sample period (t D R; : : : ; T � 1), the investor revises

her portfolio, selling the assets that fall out of the top per-
formers and buying the ones that rise to the top, and she
computes the one-period portfolio return

�tC1 D K�1
MX

jD1

y j;tC1 � 1
�
ẑ j;tC1 � zKtC1


;

t D R; : : : ; T � 1 ;

(10)

where zKtC1 is the cutoff cross-sectional rank to
select the K best performing stocks such thatPM

jD1 1
�
ẑ j;tC1 � zKtC1


D K. In the analysis of González-

Rivera, Lee, and Mishra [63] a portfolio is formed with
the top 1% (K D 5 stocks) performers in the SP500 index.
Every asset in the portfolio is weighted equally. The eval-
uation criterion is to compute the “mean trading return”
over the forecasting period

MTR D P�1
T�1X

tDR

�tC1 :

It is also possible to correct MTR according to the level
of risk of the chosen portfolio. For instance, the tradi-
tional Sharpe ratio will provide the excess return per unit
of risk measured by the standard deviation of the selected
portfolio

SR D P�1
T�1X

tDR

(�tC1 � r f ;tC1)

�	tC1(�̂t)
;

where r f ;tC1 is the risk free rate. The VCR-Mixture Trad-
ing Rule produces a weekly MTR of 0:243% (63:295% cu-
mulative return over 260 weeks), equivalent to a yearly
compounded return of 13:45%, that is significantly more
than the next most favorable rule, which is the Buy-and-
Hold-the-Market Trading Rule with a weekly mean re-
turn of �0:019%, equivalent to a yearly return of �1:00%.
To assess the return-risk trade off, we implement the
Sharpe ratio. The largest SR (mean return per unit of stan-
dard deviation) is provided by the VCR-Mixture rule with
a weekly return of 0:151% (8:11% yearly compounded re-
turn per unit of standard deviation), which is lower than
the mean return provided by the same rule under the
MTR criterion, but still a dominant return when compared
to the mean returns provided by the Buy-and-Hold-the-
Market Trading Rule.

Random Fields

Hamilton [78] proposed a flexible parametric regression
model where the conditional mean has a linear para-
metric component and a potential nonlinear component
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represented by an isotropic Gaussian random field. The
model has a nonparametric flavor because no functional
form is assumed but, nevertheless, the estimation is fully
parametric.

A scalar random field is defined as a function m(!; x) :
˝ � A ! R such that m(!; x) is a random variable
for each x 2 A where A � Rk . A random field is also
denoted as m(x). If m(x) is a system of random vari-
ables with finite dimensional Gaussian distributions, then
the scalar random field is said to be Gaussian and it
is completely determined by its mean function �(x) D
E
�
m(x)

�
and its covariance function with typical ele-

ment C(x; z) D E
�
(m(x) � �(x))(m(z) � �(z))

�
for any

x; z 2 A. The random field is said to be homogeneous or
stationary if �(x) D � and the covariance function de-
pends only on the difference vector x � z and we should
write C(x; z) D C(x � z). Furthermore, the random field
is said to be isotropic if the covariance function depends
on d(x; z), where d(�) is a scalar measure of distance. In
this situation we write C(x; z) D C(d(x; z)).

The specification suggested by Hamilton [78] can be
represented as

yt D ˇ0 C x0tˇ1 C m(g ˇ xt)C �t ; (11)

for yt 2 R and xt 2 Rk , both stationary and ergodic pro-
cesses. The conditional mean has a linear component
given by ˇ0 C x0tˇ1 and a nonlinear component given by
m(g ˇ xt), where m(z), for any choice of z, represents
a realization of a Gaussian and homogenous random field
with a moving average representation; xt could be prede-
termined or exogenous and is independent of m(�), and
�t is a sequence of independent and identically distributed
N(0; �2) variates independent of both m(�) and xt as well
as of lagged values of xt . The scalar parameter  represents
the contribution of the nonlinear part to the conditional
mean, the vector g 2 Rk

0;C drives the curvature of the con-
ditional mean, and the symbolˇ denotes element-by-ele-
ment multiplication.

Let Hk be the covariance (correlation) function of
the random field m(�) with typical element defined as
Hk(x; z) D E

�
m(x)m(z)

�
. Hamilton [78] proved that the

covariance function depends solely upon the Euclidean
distance between x and z, rendering the random field
isotropic. For any x and z 2 Rk , the correlation between
m(x) and m(z) is given by the ratio of the volume of
the overlap of k-dimensional unit spheroids centered
at x and z to the volume of a single k-dimensional unit
spheroid. If the Euclidean distance between x and z is
greater than two, the correlation between m(x) and m(z)
will be equal to zero. The general expression of the corre-

lation function is

Hk(h) D

(
Gk�1(h; 1)/Gk�1(0; 1) if h � 1
0 if h > 1

; (12)

Gk(h; r) D
Z r

h
(r2 � w2)k/2dw ;

where h � 1
2dL2 (x; z), and dL2 (x; z) �

�
(x�z)0(x�z)

�1/2

is the Euclidean distance between x and z.
Within the specification (11), Dahl and González-Ri-

vera [33] provided alternative representations of the ran-
dom field that permit the construction of Lagrange mul-
tiplier tests for neglected nonlinearity, which circumvent
the problem of unidentified nuisance parameters under
the null of linearity and, at the same time, they are robust
to the specification of the covariance function associated
with the randomfield. Theymodified the Hamilton frame-
work in two directions. First, the random field is specified
in the L1 norm instead of the L2 norm, and secondly they
considered random fields that may not have a simplemov-
ing average representation. The advantage of the L1 norm,
which is exploited in the testing problem, is that this dis-
tance measure is a linear function of the nuisance parame-
ters, in contrast to the L2 norm which is a nonlinear func-
tion. Logically, Dahl and González-Rivera proceeded in
an opposite fashion to Hamilton. Whereas Hamilton first
proposed a moving average representation of the random
field, and secondly, he derived its corresponding covari-
ance function, Dahl and González-Rivera first proposed
a covariance function, and secondly they inquire whether
there is a random field associated with it. The proposed
covariance function is

Ck(h�) D

(
(1 � h�)2k if h� � 1
0 if h� > 1

; (13)

where h� � 1
2dL1 (x; z) D

1
2 jx � zj01. The function (13)

is a permissible covariance, that is, it satisfies the posi-
tive semidefiniteness condition, which is q0Ckq � 0 for all
q ¤ 0T . Furthermore, there is a random field associated
with it according to the Khinchin’s theorem (1934) and
Bochner’s theorem (1959). The basic argument is that the
class of functions which are covariance functions of ho-
mogenous random fields coincides with the class of pos-
itive semidefinite functions. Hence, (13) being a positive
semidefinite function must be the covariance function of
a homogenous random field.

The estimation of these models is carried out by
maximum likelihood. From model (11), we can write
y � N(Xˇ; 2Ck C �

2IT ) where y D (y1; y2; : : : ; yT )0,
X1 D (x01; x

0
2; : : : ; x

0
T )
0, X D (1 : X1), ˇ D (ˇ0; ˇ01)

0, � D
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(�1; �2; : : : ; �T )
0 and �2 is the variance of �t .Ck is a generic

covariance function associated with the random field,
which could be equal to the Hamilton spherical covariance
function in (12), or to the covariance in (13). The log-like-
lihood function corresponding to this model is

`(ˇ; 2; g; �2) D �
T
2
log(2�) �

1
2
log j2Ck C �

2IT j

�
1
2
(y�Xˇ)0(2CkC�

2IT)�1(y�Xˇ):

(14)

The flexible regression model has been applied suc-
cessfully to detect nonlinearity in the quarterly growth rate
of the US real GNP [34] and in the Industrial Production
Index of sixteen OECD countries [33]. This technology is
able to mimic the characteristics of the actual US business
cycle. The cycle is dissected according tomeasures of dura-
tion, amplitude, cumulation and excess cumulation of the
contraction and expansion phases. In contrast to Harding
and Pagan [82] who find that nonlinear models are not
uniformly superior to linear ones, the flexible regression
model represents a clear improvement over linear mod-
els, and it seems to capture just the right shape of the
expansion phase as opposed to Hamilton [76] and Dur-
land and McCurdy [41] models, which tend to overesti-
mate the cumulation measure in the expansion phase. It is
found that the expansion phasemust have at least two sub-
phases: an aggressive early expansion after the trough, and
a moderate/slow late expansion before the peak implying
the existence of an inflexion point that we date approx-
imately around one-third into the duration of the expan-
sion phase. This shape lends support to parametric models
of the growth rate that allow for three regimes [136], as op-
posed to models with just two regimes (contractions and
expansions). For the Industrial Production Index, test-
ing for nonlinearity within the flexible regression frame-
work brings similar conclusions to those in Teräsvirta and
Anderson [146], who propose parametric STAR models
for industrial production data. However, the tests pro-
posed in Dahl and González-Rivera [33], which have su-
perior performance to detect smooth transition dynamics,
seem to indicate that linearity cannot be rejected in the
industrial production indexes of Japan, Austria, Belgium
and Sweden as opposed to the findings of Teräsvirta and
Anderson.

Nonlinear Factor Models

For the last ten years forecasting using a data-rich envi-
ronment has been one of the most researched topic in eco-
nomics and finance, see [140,141]. In this literature, factor

models are used to reduce the dimension of the data but
mostly they are linear models. Bai and Ng (BN) [7] intro-
duce a nonlinear factor model with a quadratic principal
component model as a special case. First consider a simple
factor model

xi t D 0i Ft C ei t : (15)

By the method of principal component, the elements of ft
are linear combinations of elements of xt . The factors are
estimated by minimizing the sum of squared residuals of
the linear model, xi t D i Ft C ei t .

The factor model in (15) assumes a linear link function
between the predictor xt and the latent factors Ft. BN con-
sider a more flexible approach by a nonlinear link function
g(�) such that

g(xi t) D � 0i Jt C vi t ;

where Jt are the common factors, and � i is the vector of
factor loadings. BN consider g(xi t) to be xit augmented
by some or all of the unique cross-products of the ele-
ments of fxi tgNiD1. The second-order factor model is then
x�i t D �

0
i Jt C vi t where x�i t is an N� � 1 vector. Estimation

of Jt then proceeds by the usual method of principal com-
ponents. BN consider x�i t D fxi t x

2
i tg

N
iD1 with N� D 2N,

which they call the SPC (squared principal components).
Once the factors are estimated, the forecasting equa-

tion for ytCh would be

ytCh D (1F̂ 0t) C "t :

The forecasting equation remains linear whatever the link
function g is. An alternative way of capturing nonlinearity
is to augment the forecasting equation to include functions
of the factors

ytCh D (1F̂ 0t) C a(F̂t)C "t ;

where a(�) is nonlinear. A simple case when a(�) is
quadratic is referred to as PC2 (squared factors) in BN.

BN note that the PC2 is conceptually distinct from
SPC. While the PC2 forecasting model allows the volatil-
ity of factors estimated by linear principal components to
have predictive power for y, the SPC model allows the
factors to be possibly nonlinear functions of the predic-
tors while maintaining a linear relation between the fac-
tors and y. Ludvigson and Ng [108] found that the square
of the first factor estimated from a set of financial factors
(i. e., volatility of the first factor) is significant in the regres-
sionmodel for themean excess returns. In contrast, factors
estimated from the second moment of data (i. e., volatility
factors) are much weaker predictors of excess returns.
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Artificial Neural Network Models

Consider an augmented single hidden layer feedforward
neural network model f (xt; �) in which the network out-
put yt is determined given input xt as

yt D f (xt; �)C "t

D xtˇ C
qX

jD1

ı j (xt� j)C "t

where � D (ˇ0� 0ı0)0, ˇ is a conformable column vector
of connection strength from the input layer to the out-
put layer; � j is a conformable column vector of connec-
tion strength from the input layer to the hidden units,
j D 1; : : : ; q; ı j is a (scalar) connection strength from the
hidden unit j to the output unit, j D 1; : : : ; q; and  is
a squashing function (e. g., the logistic squasher) or a radial
basis function. Input units x send signals to intermediate
hidden units, then each of hidden unit produces an activa-
tion  that then sends signals toward the output unit. The
integer q denotes the number of hidden units added to the
affine (linear) network. When q D 0, we have a two layer
affine network yt D xtˇ C "t . Hornick, Stinchcombe and
White [88] show that neural network is a nonlinear flex-
ible functional form being capable of approximating any
Borel measurable function to any desired level of accu-
racy provided sufficiently many hidden units are available.
Stinchcombe and White [138] show that this result holds
for any  (�) belonging to the class of “generically compre-
hensively revealing” functions. These functions are “com-
prehensively revealing” in the sense that they can reveal
arbitrary model misspecifications E(yt jxt) ¤ f (xt; ��)
with non-zero probability and they are “generic” in
the sense that almost any choice for � will reveal the
misspecification.

We build an artificial neural network (ANN) model
based on a test for neglected nonlinearity likely to have
power against a range of alternatives. See White [158]
and Lee, White, and Granger [99] on the neural net-
work test and its comparison with other specification
tests. The neural network test is based on a test function
h(xt) chosen as the activations of ‘phantom’ hidden units
 (xt� j); j D 1; : : : ; q, where � j are random column vec-
tors independent of xt. That is,

E[ (xt� j)"�t j� j] D E[ (xt� j)"�t ] D 0 j D 1; : : : ; q ;
(16)

underH0, so that

E(�t"
�
t ) D 0 ; (17)

where �t D ( (xt�1); : : : ;  (xt�q))0 is a phantom hid-
den unit activation vector. Evidence of correlation of "�t
with � t is evidence against the null hypothesis that yt is
linear in mean. If correlation exists, augmenting the linear
network by including an additional hidden unit with ac-
tivations  (xt� j) would permit an improvement in net-
work performance. Thus the tests are based on sample
correlation of affine network errors with phantom hidden
unit activations,

n�1
nX

tD1

�t "̂t D n�1
nX

tD1

�t(yt � xt ˆ̌) : (18)

Under suitable regularity conditions it follows from the

central limit theorem that n�1/2
Pn

tD1�t "̂t
d
! N(0;W�)

as n!1, and if one has a consistent estimator for its
asymptotic covariance matrix, say Ŵn , then an asymptotic
chi-square statistic can be formed as

 

n�1/2
nX

tD1

�t "̂t

!0
Ŵ�1n

 

n�1/2
nX

tD1

�t "̂t

!
d
! �2(q) :

(19)

Elements of� t tend to be collinear withXt and with them-
selves. Thus LWG conduct a test on q� < q principal com-
ponents of � t not collinear with xt, denoted ��t . This
test is to determine whether or not there exists some ad-
vantage to be gained by adding hidden units to the affine
network. We can estimate Ŵn robust to the conditional
heteroskedasticity, or we may use with the empirical null
distribution of the statistic computed by a bootstrap pro-
cedure that is robust to the conditional heteroskedasticity,
e. g., wild bootstrap.

Estimation of an ANN model may be tedious
and sometimes results in unreliable estimates. Recently,
White [161] proposes a simple algorithm called Quick-
Net, a form of “relaxed greedy algorithm” because Quick-
Net searches for a single best additional hidden unit based
on a sequence of OLS regressions, that may be analo-
gous to the least angular regressions (LARS) of Efron,
Hastie, Johnstone, and Tibshirani [42]. The simplicity of
the QuickNet algorithm achieves the benefits of using
a forecasting model that is nonlinear in the predictors
while mitigating the other computational challenges to the
use of nonlinear forecasting methods. See White [161],
Section 5, for more details on QuickNet, and for other is-
sues of controlling for overfit and the selection of the ran-
dom parameter vectors � j independent of xt .

Campbell, Lo, and MacKinlay [22], Section 12.4, pro-
vide a review of these models. White [161] reviews
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the research frontier in ANN models. Trippi and Tur-
ban [150] review the applications of ANNs to finance and
investment.

Functional Coefficient Models

A functional coefficient model is introduced by Cai, Fan,
and Yao [24] (CFY), with time-varying and state-depen-
dent coefficients. It can be viewed as a special case of
Priestley’s [127] state-dependentmodel, but it includes the
models of Tong [149], Chen and Tsay [26] and regime-
switching models as special cases. Let f(yt ; st)0gntD1 be
a stationary process, where yt and st are scalar variables.
Also let Xt � (1; yt�1; : : : ; yt�d )0. We assume

E(yt jFt�1) D a0(st)C
dX

jD1

a j(st)yt� j ;

where the fa j(st)g are the autoregressive coefficients de-
pending on st , which may be chosen as a function of Xt
or something else. Intuitively, the functional coefficient
model is an AR process with time-varying autoregressive
coefficients. The coefficient functions fa j(st)g can be esti-
mated by local linear regression. At each point s, we ap-
proximate a j(st) locally by a linear function a j(st) � a jC

bj(st � s), j D 0; 1; : : : ; d, for st near s, where aj and bj are
constants. The local linear estimator at point s is then given
by â j(s) D â j , where f(â j; b̂ j)gdjD0 minimizes the sum of
local weighted squares

Pn
tD1[yt�E(yt jFt�1)]2Kh(st� s),

with Kh(�) � K(�/h)/h for a given kernel function K(�) and
bandwidth h � hn ! 0 as n!1. CFY [24], p. 944, sug-
gest to select h using amodifiedmulti-fold “leave-one-out-
type” cross-validation based on MSFE.

It is important to choose an appropriate smooth vari-
able st. Knowledge on data or economic theory may be
helpful. When no prior information is available, st may be
chosen as a function of explanatory vectorXt or using such
data-drivenmethods as AIC and cross-validation. See Fan,
Yao and Cai [52] for further discussion on the choice of
st . For exchange rate changes, Hong and Lee [85] choose
st as the difference between the exchange rate at time t � 1
and the moving average of the most recent L periods of ex-
change rates at time t � 1. The moving average is a proxy
for the local trend at time t � 1. Intuitively, this choice of
st is expected to reveal useful information on the direction
of changes.

To justify the use of the functional coefficient model,
CFY [24] suggest a goodness-of-fit test for anAR(d) model
against a functional coefficient model. The null hypothesis
of AR(d) can be stated as

H0 : a j(st) D ˇ j; j D 0; 1; : : : ; d ;

where ˇj is the autoregressive coefficient in AR(d). Under
H0, fytg is linear in mean conditional on Xt . Under the al-
ternative to H0, the autoregressive coefficients depend on
st and the AR(d) model suffers from “neglected nonlinear-
ity”. To testH0, CFY compares the residual sum of squares
(RSS) underH0

RSS0 �
nX

tD1

"̂2t D

nX

tD1

2

4Yt � ˆ̌0 �
dX

jD1

ˆ̌ jYt� j

3

5

2

with the RSS under the alternative

RSS1 �
nX

tD1

"̃2t D

nX

tD1

2

4Yt � â0(st)�
dX

jD1

â j(st)Yt� j

3

5

2

:

The test statistic is Tn D (RSS0 � RSS1)/RSS1. We re-
ject H0 for large values of Tn. CFY suggest the follow-
ing bootstrap method to obtain the p-value of Tn: (i)
generate the bootstrap residuals f"bt gntD1 from the cen-
tered residuals "̃t � "̄ where "̄ � n�1

Pn
tD1 "̃t and define

ybt � X 0t ˆ̌C "
b
t , where ˆ̌ is the OLS estimator for AR(d);

(ii) calculate the bootstrap statistic Tb
n using the bootstrap

sample fybt ; X 0t ; stg
n
tD1; (iii) repeat steps (i) and (ii) B times

(b D 1; : : : ; B) and approximate the bootstrap p-value of
Tn by B�1

PB
bD1 1(T

b
n � Tn). See Hong and Lee [85] for

empirical application of the functional coefficient model to
forecasting foreign exchange rates.

Nonparametric Regression

Let fyt; xtg; t D 1; : : : ; n, be stochastic processes, where yt
is a scalar and xt D (xt1; : : : ; xtk) is a 1 � k vector which
may contain the lagged values of yt . Consider the regres-
sion model

yt D m(xt)C ut

where m(xt) D E
�
ytjxt


is the true but unknown re-

gression function and ut is the error term such that
E(ut jxt) D 0.

If m(xt) D g(xt ; ı) is a correctly specified family of
parametric regression functions then yt D g(xt ; ı)C ut
is a correct model and, in this case, one can construct
a consistent least squares (LS) estimator of m(xt) given by
g(xt ; ı̂), where ı̂ is the LS estimator of the parameter ı.

In general, if the parametric regression g(xt; ı) is in-
correct or the form ofm(xt) is unknown then g(xt; ı̂) may
not be a consistent estimator of m(xt). For this case, an al-
ternative approach to estimate the unknown m(xt) is to
use the consistent nonparametric kernel regression esti-
mator which is essentially a local constant LS (LCLS) es-
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timator. To obtain this estimator take a Taylor series ex-
pansion of m(xt) around x so that

yt D m(xt)C ut
D m(x)C et

where et D (xt � x)m(1)(x) C 1
2 (xt � x)2m(2)(x) C

� � � C ut and m(s)(x) represents the sth derivative of m(x)
at xt D x. The LCLS estimator can then be derived by
minimizing

nX

tD1

e2t Ktx D

nX

tD1

(yt � m(x))2Ktx

with respect to constant m(x), where Ktx D K
� xt�x

h

is

a decreasing function of the distances of the regressor
vector xt from the point x D (x1; : : : ; xk), and h! 0
as n!1 is the window width (smoothing parameter)
which determines how rapidly the weights decrease as the
distance of xt from x increases. The LCLS estimator so es-
timated is

m̂(x) D
Pn

tD1 ytKtxPn
tD1 Ktx

D (i0K(x)i)�1 i0K(x)y

where K(x) is the n � n diagonal matrix with the diago-
nal elements Ktx (t D 1; : : : ; n), i is an n � 1 column vec-
tor of unit elements, and y is an n � 1 vector with el-
ements yt (t D 1; : : : ; n). The estimator m̂(x) is due to
Nadaraya [118] and Watson [155] (NW) who derived this
in an alternative way. Generally m̂(x) is calculated at the
data points xt , in which case we can write the leave-one
out estimator as

m̂(x) D
Pn

t0D1;t0¤t yt0Kt0 t
Pn

t0D1;t0¤t Kt0 t
;

where Kt0 t D K xt0�xt
h . The assumption that h! 0 as

n!1 gives xt � x D O(h)! 0 and hence Eet ! 0 as
n!1. Thus the estimator m̂(x) will be consistent under
certain smoothing conditions on h;K, and m(x). In small
samples howeverEet ¤ 0 so m̂(x) will be a biased estima-
tor, see [122] for details on asymptotic and small sample
properties.

An estimator which has a better small sample bias and
hence the mean square error (MSE) behavior is the local
linear LS (LLLS) estimator. In the LLLS estimator we take
a first order Taylor-Series expansion of m(xt) around x so
that

yt D m(xt)C ut D m(x)C (xt � x)m(1)(x)C vt
D ˛(x)C xtˇ(x)C vt
D Xtı(x)C vt

where Xt D (1 xt) and ı(x) D [˛(x) ˇ(x)0]0 with ˛(x) D
m(x)� xˇ(x) and ˇ(x) D m(1)(x). The LLLS estimator of
ı(x) is then obtained by minimizing

nX

tD1

v2t Ktx D

nX

tD1

(yt � Xtı(x))2Ktx

sand it is given by

ı̃(x) D (X0K(x)X)�1X0K(x)y : (20)

where X is an n � (k C 1) matrix with the tth row Xt
(t D 1; : : : ; n).

The LLLS estimator of ˛(x) and ˇ(x) can be calculated
as ˜̨(x) D (1 0)ı̃(x) and ˜̌(x) D (0 1)ı̃(x). This gives

m̃(x) D (1 x)ı̃(x) D ˜̨ (x)C x ˜̌(x) :

Obviously when X D i, ı̃(x) reduces to the NW’s LCLS es-
timator m̂(x). An extension of the LLLS is the local poly-
nomial LS (LPLS) estimators, see [50].

In fact one can obtain the local estimators of a general
nonlinear model g(xt ; ı) by minimizing

nX

tD1

[yt � g(xt; ı(x))]2Ktx

with respect to ı(x). For g(xt ; ı(x)) D Xtı(x) we get the
LLLS in (20). Further when h D 1;Ktx D K(0) is a con-
stant so that theminimization of K(0)

P
[yt�g(xt ; ı(x))]2

is the same as the minimization of
P

[yt � g(xt ; ı)]2, that
is the local LS becomes the global LS estimator ı̂.

The LLLS estimator in (20) can also be interpreted as
the estimator of the functional coefficient (varying coeffi-
cient) linear regression model

yt D m(xt)C ut
D Xtı(xt)C ut

where ı(xt) is approximated locally by a constant
ı(xt) ' ı(x). The minimization of

P
u2t Ktx with respect

to ı(x) then gives the LLLS estimator in (20), which can
be interpreted as the LC varying coefficient estimator. An
extension of this is to consider the linear approximation
ı(xt) ' ı(x)C D(x)(xt � x)0 where D(x) D @ı(xt )

@x0t
evalu-

ated at xt D x. In this case

yt D m(xt)C ut D Xtı(xt)C ut
' Xtı(x)C XtD(x)(xt � x)0 C ut
D Xtı(x)C [(xt � x)˝ Xt]vecD(x)C ut
D Xx

t ı
x (x)C ut



3490 F Financial Forecasting, Non-linear Time Series in

where Xx
t D [Xt (xt � x)˝ Xt] and ıx (x) D [ı(x)0

(vecD(x))0]0. The LL varying coefficient estimator of ıx (x)
can then be obtained by minimizing

nX

tD1

[yt � Xx
t ı

x (x)]2Ktx

with respect to ıx (x) as

ı̇x (x) D (Xx0K(x)Xx )�1Xx0K(x)y : (21)

From this ı̇(x) D (I 0)ı̇x (x), and hence

ṁ(x) D (1 x 0)ı̇x (x) D (1 x)ı̇(x) :

The above idea can be extended to the situations where
�t D (xt zt) such that

E(yt j�t) D m(�t) D m(xt ; zt) D Xtı(zt) ;

where the coefficients are varying with respect to only
a subset of � t ; zt is 1 � l and � t is 1 � p, p D k C l . Exam-
ples of these include functional coefficient autoregressive
models of Chen and Tsay [26] and CFY [24], random co-
efficient models of Raj and Ullah [128], smooth transition
autoregressive models of Granger and Teräsvirta [72], and
threshold autoregressive models of Tong [149].

To estimate ı(zt) we can again do a local con-
stant approximation ı(zt) ' ı(z) and then mini-
mize

P
[yt � Xtı(z)]2Ktz with respect to ı(z), where

Ktz D K( zt�zh ). This gives the LC varying coefficient
estimator

ı̃(z) D (X0K(z)X)�1X0K(z)y (22)

where K(z) is a diagonal matrix of Ktz ; t D 1; : : : ; n.
When z D x, (22) reduces to the LLLS estimator ı̃(x)
in (20).

CFY [24] consider a local linear approximation
ı(zt) ' ı(z)C D(z)(zt � z)0. The LL varying coefficient
estimator of CFY is then obtained by minimizing

nX

tD1

[yt � Xtı(zt)]2Ktz

D

nX

tD1

[yt � Xtı(z) � [(zt � z)˝ Xt]vecD(z)]2Ktz

D

nX

tD1

[yt � Xz
t ı

z(z)]2Ktz

with respect to ız(z) D [ı(z)0 (vecD(z))0]0 where Xz
t D

[Xt (zt � z)˝ Xt]. This gives

ı̈z(z) D (Xz0K(z)Xz )�1Xz0K(z)y ; (23)

and ı̈(z) D (I 0)ı̈z (z). Hence

m̈(�) D (1 x 0)ı̈z(z) D (1 x)ı̈(z) :

For the asymptotic properties of these varying coefficient
estimators, see CFY [24]. When z D x, (23) reduces to the
LL varying coefficient estimator ı̇x (x) in (21). See Lee and
Ullah [98] for more discussion of these models and issues
of testing nonlinearity.

Regime Switching Autoregressive Model
Between Unit Root and Stationary Root

To avoid the usual dichotomy between unit-root non-
stationarity and stationarity, we may consider models
that permit two regimes of unit root nonstationarity and
stationarity.

One model is the Innovation Regime-Switching (IRS)
model of Kuan, Huang, and Tsay [96]. Intuitively, it may
be implausible to believe that all random shocks exert only
one effect (permanent or transitory) on future financial as-
set prices in a long time span. This intuition underpins
the models that allow for breaks, stochastic unit root, or
regime switching. As an alternative, Kuan, Huang, and
Tsay [96] propose the IRS model that permits the random
shock in each period to be permanent or transitory, de-
pending on a switching mechanism, and hence admits dis-
tinct dynamics (unit-root nonstationarity or stationarity)
in different periods. Under the IRS framework, standard
unit-root models and stationarity models are just two ex-
treme cases. By applying the IRS model to real exchange
rate, they circumvent the difficulties arising from unit-root
(or stationarity) testing. They allow the data to speak for
themselves, rather than putting them in the straitjacket
of unit-root nonstationarity or stationarity. Huang and
Kuan [90] re-examine long-run PPP based on the IRS
model and their empirical study on US/UK real exchange
rates shows that there are both temporary and permanent
influences on the real exchange rate such that approxi-
mately 42% of the shocks in the long run are more likely
to have a permanent effect. They also found that transi-
tory shocks dominate in the fixed-rate regimes, yet perma-
nent shocks play a more important role during the float-
ing regimes. Thus, the long-run PPP is rejected due to the
presence of a significant amount of permanent shocks, but
there are still long periods of time in which the deviations
from long-run PPP are only transitory.

Another model is a threshold unit root (TUR) model
or threshold integrated moving average (TIMA) model of
Gonzalo andMartíneza [65]. Based on this model they ex-
amine whether large and small shocks have different long-
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run effects, as well as whether one of them is purely tran-
sitory. They develop a new nonlinear permanent – transi-
tory decomposition, that is applied to US stock prices to
analyze the quality of the stock market.

Comparison of these two models with the linear au-
toregressive model with a unit root or a stationary AR
model for the out-of-sample forecasting remains to be ex-
amined empirically.

Bagging Nonlinear Forecasts

To improve on unstable forecasts, bootstrap aggregat-
ing or bagging is introduced by Breiman [19]. Lee and
Yang [100] show how bagging works for binary and quan-
tile predictions. Lee and Yang [100] attributed part of the
success of the bagging predictors to the small sample esti-
mation uncertainties. Therefore, a question that may arise
is that whether the good performance of bagging predic-
tors critically depends on algorithms we employ in non-
linear estimation.

They find that bagging improves the forecasting per-
formance of predictors on highly nonlinear regression
models – e. g., artificial neural network models, especially
when the sample size is limited. It is usually hard to choose
the number of hidden nodes and the number of inputs (or
lags), and to estimate the large number of parameters in
an ANN model. Therefore, a neural network model gen-
erate poor predictions in a small sample. In such cases,
bagging can do a valuable job to improve the forecasting
performance as shown in [100], confirming the result of
Breiman [20]. A bagging predictor is a combined predic-
tor formed over a set of training sets to smooth out the “in-
stability” caused by parameter estimation uncertainty and
model uncertainty. A predictor is said to be “unstable” if
a small change in the training set will lead to a significant
change in the predictor [20].

As bagging would be valuable in nonlinear forecasting,
in this section, we will show how a bagging predictor may
improve the predicting performance of its underlying pre-
dictor. Let

Dt � f(Ys ;Xs�1)gtsDt�RC1 (t D R; : : : ; T)

be a training set at time t and let '(Xt ;Dt) be a forecast of
YtC1 or of the binary variable GtC1 � 1(YtC1 � 0) using
this training setDt and the explanatory variable vectorXt .
The optimal forecast '(Xt;Dt) for YtC1 will be the condi-
tional mean of YtC1 given Xt under the squared error loss
function, or the conditional quantile of YtC1 on Xt if the
loss is a tick function. Below we also consider the binary
forecast for GtC1 � 1(YtC1 � 0).

Suppose each training set Dt consists of R obser-
vations generated from the underlying probability dis-
tribution P. The forecast f'(Xt;Dt)gTtDR can be im-
proved if more training sets were able to be generated
from P and the forecast can be formed from averaging
the multiple forecasts obtained from the multiple train-
ing sets. Ideally, if P were known and multiple training
sets D( j)

t ( j D 1; : : : ; J) may be drawn from P, an ensem-
ble aggregating predictor 'A(Xt) can be constructed by the
weighted averaging of '(Xt ;D( j)

t ) over j, i. e.,

'A(Xt) � EDt'(Xt ;Dt) �
JX

jD1

wj;t'(Xt ;D( j)
t ) ;

where EDt (�) denotes the expectation over P, wj;t is the
weight function with

PJ
jD1 wj;t D 1, and the subscript A

in 'A denotes “aggregation”.
Lee and Yang [100] show that the ensemble aggregat-

ing predictor 'A(Xt) has not a larger expected loss than the
original predictor '(Xt ;Dt). For any convex loss function
c(�) on the forecast error ztC1, we will have

EDt ;YtC1 ;Xt c(ztC1) � EYtC1 ;Xt c(EDt (ztC1));

where EDt (ztC1) is the aggregating forecast error, and
EDt ;YtC1;Xt (�) � EXt [EYtC1 jXt fEDt (�) jXtg] denotes the
expectation EDt (�) taken over P (i. e., averaging over the
multiple training sets generated from P), then taking an
expectation of YtC1 conditioning on Xt , and then tak-
ing an expectation of Xt. Similarly we define the notation
EYtC1 ;Xt (�) � EXt [EYtC1 jXt (�) jXt]. Therefore, the aggre-
gating predictor will always have no larger expected cost
than the original predictor for a convex loss function
'(Xt ;Dt). The examples of the convex loss function in-
cludes the squared error loss and a tick (or check) loss
�˛(z) � [˛ � 1(z < 0)]z.

How much this aggregating predictor can improve
depends on the distance between EDt ;YtC1;Xt c(ztC1) and
EYtC1 ;Xt c(EDt (ztC1)). We can define this distance by
� � EDt ;YtC1;Xt c(ztC1) � EYtC1 ;Xt c(EDt (ztC1)). There-
fore, the effectiveness of the aggregating predictor depends
on the convexity of the cost function. The more convex is
the cost function, the more effective this aggregating pre-
dictor can be. If the loss function is the squared error loss,
then it can be shown that� D VDt

�
'(Xt ;Dt)

�
is the vari-

ance of the predictor, which measures the “instability” of
the predictor. See Lee and Yang [100], Proposition 1, and
Breiman [20]. If the loss is the tick function, the effective-
ness of bagging is also different for different quantile pre-
dictions: bagging works better for tail-quantile predictions
than for mid-quantile predictions.
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In practice, however, P is not known. In that case
we may estimate P by its empirical distribution, P̂(Dt),
for a given Dt . Then, from the empirical distribution
P̂(Dt), multiple training sets may be drawn by the boot-
strap method. Bagging predictors, 'B(Xt ;D�t ), can then
be computed by taking weighted average of the predictors
trained over a set of bootstrap training sets. More specifi-
cally, the bagging predictor 'B(Xt;D�t ) can be obtained in
the following steps:

1. Given a training set of data at time t,
Dt � f(Ys ;Xs�1)gtsDt�RC1, construct the jth bootstrap
sample D�( j)t � f(Y�( j)s ;X�( j)s�1)g

t
sDt�RC1, j D 1; : : : ; J,

according to the empirical distribution of P̂(Dt) ofDt .
2. Train the model (estimate parameters) from the jth

bootstrapped sampleD�( j)t .
3. Compute the bootstrap predictor '�( j)(Xt ;D�( j)t ) from

the jth bootstrapped sampleD�( j)t .
4. Finally, for mean and quantile forecast, the bagging

predictor 'B(Xt ;D�t ) can be constructed by averaging
over J bootstrap predictors

'B(Xt;D�t ) �
JX

jD1

ŵ j;t'
�( j)(Xt;D�( j)t ) ;

and for binary forecast, the bagging binary predic-
tor 'B(Xt;D�t ) can be constructed by majority voting
over J bootstrap predictors:

'B(Xt;D�t ) � 1

0

@
JX

jD1

ŵ j;t'
�( j)(Xt;D�( j)t ) > 1/2

1

A

with
PJ

jD1 ŵ j;t D 1 in both cases.

One concern of applying bagging to time series is
whether a bootstrap can provide a sound simulation sam-
ple for dependent data, for which the bootstrap is required
to be consistent. It has been shown that some bootstrap
procedure (such as moving block bootstrap) can provide
consistent densities for moment estimators and quantile
estimators. See, e. g., Fitzenberger [54].

Nonlinear ForecastingModels
for the Conditional Variance

Nonlinear Parametric Models for Volatility

Volatility models are of paramount importance in finan-
cial economics. Issues such as portfolio allocation, op-

tion pricing, risk management, and generally any decision
making under uncertainty rely on the understanding and
forecasting of volatility. This is one of the most active ares
of research in time series econometrics. Important surveys
as in Bollerslev, Chou, and Kroner [15], Bera and Hig-
gins [13], Bollerslev, Engle, and Nelson [16], Poon and
Granger [125], and Bauwens, Laurent, and Rombouts [12]
attest to the variety of issues in volatility research. The
motivation for the introduction of the first generation of
volatility models namely the ARCH models of Engle [44]
was to account for clusters of activity and fat-tail behav-
ior of financial data. Subsequent models accounted for
more complex issues. Among others and without being
exclusive, we should mention issues related to asymmet-
ric responses of volatility to news, probability distribu-
tion of the standardized innovations, i.i.d. behavior of the
standardized innovation, persistence of the volatility pro-
cess, linkages with continuous time models, intraday data
and unevenly spaced observations, seasonality and noise
in intraday data. The consequence of this research agenda
has been a vast array of specifications for the volatility
process.

Suppose that the return series fytgTC1
tD1 of a financial

asset follows the stochastic process ytC1 D �tC1 C "tC1,
whereE(ytC1jFt) D �tC1(�) andE("2tC1jFt) D �2tC1(�)
given the information set Ft (�-field) at time t. Let
ztC1 � "tC1/�tC1 have the conditional normal distribu-
tion with zero conditional mean and unit conditional vari-
ance. Volatility models can be classified in three categories:
MA family, ARCH family, and stochastic volatility (SV)
family.

The simplest method to forecast volatility is to cal-
culate a historical moving average variance, denoted as
MA(m), or an exponential weighted moving average
(EWMA):

MA(m) 
2
t D

1
m

Pm
jD1(yt�j � �̂

m
t )

2; �̂m
t D

1
m

Pm
jD1 yt�j

EWMA 
2
t D (1� �)

Pt�1
jD1 �

j�1(yt�j � �̂t)2;

�̂t D
1

t�1

Pt�1
jD1 yt�j

In the EWMA specification, a common practice is
to fix the  parameter, for instance  D 0:94 [129]. For
these two MA family models, there are not parameters to
estimate.

Second, the ARCH family is very extensive with many
variations on the original model ARCH(p) of Engle [44].
Some representativemodels are: GARCHmodel of Boller-
slev [14]; Threshold GARCH (T-GARCH) of Glosten
et al. [60]; Exponential GARCH (E-GARCH) of Nel-
son [120]; quadratic GARCH models (Q-GARCH) as
in Sentana [135]; Absolute GARCH (ABS-GARCH) of
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Taylor [143] and Schwert [134] and Smooth Transition
GARCH (ST-GARCH) of González-Rivera [61].

ARCH(p) 
2
t D ! C

Pp
iD1 ˛i"

2
t�i

GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1

I-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1; ˛C ˇ D 1

T-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1 C �"

2
t�11("t�1 � 0)

ST-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1 C �"

2
t�1F("t�1; ı)

with F("t�1; ı) D [1C exp(ı"t�1)]�1 � 0:5
E-GARCH ln
2

t D ! C ˇ ln
2
t�1 C ˛[jzt�1j � czt�1]

Q-GARCH 
2
t D ! C ˇ


2
t�1 C ˛("t�1 C � )

2

ABS-GARCH 
t D ! C ˇ
t�1 C ˛j"t�1j

The EWMA specification can be viewed as an inte-
gratedGARCHmodel with! D 0, ˛ D , and ˇ D 1 � .
In the T-GARCH model, the parameter � allows for pos-
sible asymmetric effects of positive and negative innova-
tions. In Q-GARCH models, the parameter � measures
the extent of the asymmetry in the news impact curve.
For the ST-GARCH model, the parameter � measures the
asymmetric effect of positive and negative shocks, and the
parameter ı > 0 measures the smoothness of the transi-
tion between regimes, with a higher value of ı making ST-
GARCH closer to T-GARCH.

Third, the stationary SV model of Taylor [143] with �t
is i.i.d. N (0; �2�) and � t is i.i.d. N(0; �2/2) is a representa-
tive member of the SV family.

SV 
2
t D exp(0:5ht); ln(y2t ) D �1:27C ht C �t;

ht D � C �ht�1 C �t .

With so many models, the natural question becomes
which one to choose. There is not a universal answer to
this question. The best model depends upon the objectives
of the user. Thus, given an objective function, we search
for the model(s) with the best predictive ability control-
ling for possible biases due to “data snooping” [105]. To
compare the relative performance of volatility models, it is
customary to choose either a statistical loss function or an
economic loss function.

The preferred statistical loss functions are based on
moments of forecast errors (mean-error, mean-squared
error, mean absolute error, etc.). The best model will min-
imize a function of the forecast errors. The volatility fore-
cast is often compared to a measure of realized volatil-
ity. With financial data, the common practice has been
to take squared returns as a measure of realized volatil-
ity. However, this practice is questionable. Andersen and
Bollerslev [2] argued that this measure is a noisy estimate,
and proposed the use of the intra-day (at each five min-

utes interval) squared returns to calculate the daily realized
volatility. This measure requires intra-day data, which is
subject to the variation introduced by the bid-ask spread
and the irregular spacing of the price quotes.

Some other authors have evaluated the performance
of volatility models with criteria based on economic loss
functions. For example,West, Edison, and Cho [157] con-
sidered the problem of portfolio allocation based on mod-
els that maximize the utility function of the investor. En-
gle, Kane, and Noh [46] and Noh, Engle, and Kane [121]
considered different volatility forecasts to maximize the
trading profits in buying/selling options. Lopez [107] con-
sidered probability scoring rules that were tailored to
a forecast user’s decision problem and confirmed that
the choice of loss function directly affected the forecast
evaluation of different models. Brooks and Persand [21]
evaluated volatility forecasting in a financial risk man-
agement setting in terms of Value-at-Risk (VaR). The
common feature to these branches of the volatility litera-
ture is that none of these has controlled for forecast de-
pendence across models and the inherent biases due to
data-snooping.

Controlling for model dependence [160], González-
Rivera, Lee, and Mishra [62] evaluate fifteen volatility
models for the daily returns to the SP500 index accord-
ing to their out-of-sample forecasting ability. The forecast
evaluation is based, among others, on two economic loss
functions: an option pricing formula and a utility func-
tion; and a statistical loss function: a goodness-of-fit based
on a Value-at-Risk (VaR) calculation. For option pricing,
volatility is the only component that is not observable and
it needs to be estimated. The loss function assess the dif-
ference between the actual price of a call option and the es-
timated price, which is a function of the estimated volatil-
ity of the stock. The second economic loss function refers
to the problem of wealth allocation. An investor wishes to
maximize her utility allocatingwealth between a risky asset
and a risk-free asset. The loss function assesses the perfor-
mance of the volatility estimates according to the level of
utility they generate. The statistical function based on the
goodness-of-fit of a VaR calculation is important for risk
management. The main objective of VaR is to calculate
extreme losses within a given probability of occurrence,
and the estimation of the volatility is central to the VaR
measure. The preferred models depend very strongly upon
the loss function chosen by the user. González-Rivera,
Lee, and Mishra [62] find that, for option pricing, sim-
ple models such as the exponential weighted moving av-
erage (EWMA) proposed by Riskmetrics [64] performed
as well as any GARCH model. For an utility loss function,
an asymmetric quadratic GARCH model is the most pre-
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ferred. For VaR calculations, a stochastic volatility model
dominates all other models.

Nonparametric Models for Volatility

Ziegelmann [163] considers the kernel smoothing tech-
niques that free the traditional parametric volatility es-
timators from the constraints related to their specific
models. He applies the nonparametric local ‘exponential’
estimator to estimate conditional volatility functions, en-
suring its nonnegativity. Its asymptotic properties are
established and compared with those for the local linear
estimator for the volatility model of Fan and Yao [51].
Long, Su, and Ullah [106] extend this idea to semipara-
metricmultivariate GARCH and show that theremay exist
substantial out-of-sample forecasting gain over the para-
metric models. This gain accounts for the presence of non-
linearity in the conditional variance-covariance that is ne-
glected in parametric linear models.

Forecasting Volatility Using High Frequency Data

Using high-frequency data, quadratic variation may be es-
timated using realized volatility (RV). Andersen, Boller-
slev, Diebold, and Labys [3] and Barndorff-Nielsen and
Shephard [11] establish that RV, defined as the sum of
squared intraday returns of small intervals, is an asymptot-
ically unbiased estimator of the unobserved quadratic vari-
ation as the interval length approaches zero. Besides the
use of high frequency information in volatility estimation,
volatility forecasting using high frequency information has
been addressed as well. In an application to volatility pre-
diction, Ghysels, Santa-Clara, and Valkanov [58] investi-
gate the predictive power of various regressors (lagged re-
alized volatility, squared return, realized power, and daily
range) for future volatility forecasting. They find that the
best predictor is realized power (sum of absolute intra-
day returns), andmore interestingly, direct use of intraday
squared returns in mixed data sampling (MIDAS) regres-
sions does not necessarily lead to better volatility forecasts.

Andersen, Bollerslev, Diebold, and Labys [4] represent
another approach to forecasting volatility using RV. The
model they propose is a fractional integrated AR model:
ARFI(5, d) for logarithmic RV’s obtained from foreign
exchange rates data of 30-minute frequency and demon-
strate the superior predictive power of their model.

Alternatively, Corsi [32] proposes the heterogeneous
autoregressive (HAR) model of RV, which is able to re-
produce long memory. McAleer and Medeiros [115] pro-
pose a new model that is a multiple regime smooth transi-
tion (ST) extension of the HARmodel, which is specifically
designed to model the behavior of the volatility inherent

in financial time series. The model is able to describe si-
multaneously long memory as well as sign and size asym-
metries. They apply the model to several Dow Jones In-
dustrial Average index stocks using transaction level data
from the Trades and Quotes database that covers ten years
of data, and find strong support for long memory and both
sign and size asymmetries. Furthermore, they show that
the multiple regime smooth transition HAR model, when
combined with the linear HAR model, is flexible for the
purpose of forecasting volatility.

Forecasting BeyondMean and Variance

In the previous section, we have surveyed the major de-
velopments in nonlinear time series, mainly modeling the
conditional mean and the conditional variance of finan-
cial returns. However it is not clear yet that any of those
nonlinear models may generate profits after accounting
for various market frictions and transactions costs. There-
fore, some research efforts have been directed to inves-
tigate other aspects of the conditional density of returns
such as higher moments, quantiles, directions, intervals,
and the density itself. In this section, we provide a brief
survey on forecasting these other features.

Forecasting Quantiles

The optimal forecast of a time seriesmodel depends on the
specification of the loss function. A symmetric quadratic
loss function is the most prevalent in applications due to
its simplicity. Under symmetric quadratic loss, the opti-
mal forecast is simply the conditional mean. An asymmet-
ric loss function implies a more complicated forecast that
depends on the distribution of the forecast error as well as
the loss function itself [67].

Consider a stochastic process Zt � (Yt ; X 0t)0 where
Yt is the variable of interest and Xt is a vector of
other variables. Suppose there are T C 1 (� RC P) ob-
servations. We use the observations available at time t,
R � t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �t;1 will be chosen to produce the forecast er-
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rors that minimize the expected loss

min
ft;1

Z 1

�1

c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�tC1 D YtC1 � f �t;1 :

Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1

c(y � f �t;1)dFt(y) D 0 :

Whenwe interchange the operations of differentiation and
integration,
Z 1

�1

@

@ ft;1
c(y� f �t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �t;1)jIt

�

Based on the “generalized forecast error”, gtC1 �
@
@ f t;1

c(YtC1 � f �t;1), the condition for forecast optimality
is:

H0 : E
�
gtC1jIt


D 0 a:s: ;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

To see this we consider the following two examples.
First, when the loss function is the squared error loss

c(YtC1 � ft;1) D (YtC1 � ft;1)2 ;

the generalized forecast error will be gtC1 �
@
@ f t

c(YtC1 �

f �t;1) D �2e
�
tC1 and thus E

�
e�tC1jIt


D 0 a:s:, which im-

plies that the optimal forecast

f �t;1 D E (YtC1jIt)

is the conditional mean. Next, when the loss is the check
function, c(e) D

�
˛ � 1(e < 0)

�
� e � �˛(etC1), the opti-

mal forecast ft;1, for given ˛ 2 (0; 1), minimizing

min
ft;1

E
�
c(YtC1 � ft;1)jIt

�

can be shown to satisfy

E
�
˛ � 1(YtC1 < f �t;1)jIt

�
D 0 a:s:

Hence, gtC1 � ˛ � 1(YtC1 < f �t;1) is the generalized fore-
cast error. Therefore,

˛ D E
�
1(YtC1 < f �t;1)jIt

�
D Pr(YtC1 � f �t;1jIt) ;

and the optimal forecast f �t;1 D q˛ (YtC1jIt) � q˛t is the
conditional ˛-quantile.

Forecasting conditional quantiles are of paramount
importance for risk management, which nowdays is key
activity in financial institutions due to the increasing fi-
nancial fragility in emergingmarkets and the extensive use
of derivative products over the last decade. A risk mea-
surement methodology called Value-at-Risk (VaR) has re-
ceived a great attention from both regulatory and aca-
demic fronts. During a short span of time, numerous pa-
pers have studied various aspects of the VaRmethodology.
Bao, Lee, and Saltoglu [8] examine the relative out-of-sam-
ple predictive performance of various VaR models.

An interesting VaR model is the CaViaR (conditional
autoregressive Value-at-Risk) model suggested by Engle
and Manganelli [47]. They estimate the VaR from a quan-
tile regression rather than inverting a conditional distribu-
tion. The idea is similar to the GARCH modeling in that
VaR is modeled autoregressively

qt (˛) D a0 C a1qt�1 (˛)C h(xt j�) ;

where xt 2 Ft�1, � is a parameter vector, and h(�) is
a function to explain the VaR model. Depending on the
specification of h(�), the CaViaR model may be

qt (˛) D a0 C a1qt�1 (˛)C a2jrt�1j ;

qt (˛) D a0Ca1qt�1 (˛)Ca2jrt�1jCa3jrt�1j�1(rt�1 < 0);

where the second model allow nonlinearity (asymmetry)
similarly to the asymmetric GARCH models.

Bao, Lee, and Saltoglu [8] compare various VaR mod-
els. Their results show that the CaViaR quantile regression
models of Engle and Manganelli [47] have shown some
success in predicting the VaR risk measure for various pe-
riods of time, and it is generally more stable than the mod-
els that invert a distribution function.

Forecasting Directions

It is well known that, while financial returns fYtgmay not
be predictable, their variance, sign, and quantiles may be
predictable. Christofferson and Diebold [27] show that bi-
nary variable GtC1 � 1(YtC1 > 0), where 1(�) takes the
value of 1 if the statement in the parenthesis is true, and
0 otherwise, is predictable when some conditional mo-
ments are time varying, Hong and Lee [86], Hong and
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Chung [85], Linton andWhang [104], Lee and Yang [100]
amongmany others find some evidence that the directions
of stock returns and foreign exchange rate changes are
predictable.

Lee and Yang [100] also show that forecasting quan-
tiles and forecasting binary (directional) forecasts are re-
lated, in that the former may lead to the latter. As noted by
Powell [126], using the fact that for any monotonic func-
tion h(�), q˛t (h(YtC1)jXt) D h(q˛t (YtC1jXt)), which fol-
lows immediately from observing that Pr(YtC1 < yjXt) D
Pr[h(YtC1) < h(y)jXt], and noting that the indicator
function is monotonic, q˛t (GtC1jXt) D q˛t (1(YtC1 >

0)jXt) D 1(q˛t (YtC1jXt) > 0). Therefore, predictability of
conditional quantiles of financial returns may imply pre-
dictability of conditional direction.

Probability Forecasts

Diebold and Rudebush [38] consider the probability
forecasts for the turning points of the business cy-
cle. They measure the accuracy of predicted proba-
bilities, that is the average distance between the pre-
dicted probabilities and observed realization (as mea-
sured by a zero-one dummy variable). Suppose there are
T C 1 (� RC P) observations. We use the observations
available at time t (R � t < T C 1), to estimate a model.
We then have time series of P D T � RC 1 probability
forecasts fptC1g

T
tDR where pt is the predicted probability

of the occurrence of an event (e. g., business cycle turn-
ing point) in the next period t C 1. Let fdtC1g

T
tDR be the

corresponding realization with dt D 1 if a business cycle
turning point (or any defined event) occurs in period t
and dt D 0 otherwise. The loss function analogous to the
squared error is the Brier’s score based on quadratic prob-
ability score (QPS):

QPS D P�1
TX

tDR

2(pt � dt)2 :

TheQPS ranges from 0 to 2, with 0 for perfect accuracy. As
noted by Diebold and Rudebush [38], the use of the sym-
metric loss function may not be appropriate as a forecaster
may be penalized more heavily for missing a call (making
a type II error) than for signaling a false alarm (making
a type I error). Another loss function is given by the log
probability score (LPS)

LPS D �P�1
TX

tDR

ln


pdtt (1 � pt)(1�dt )

�
;

which is similar to the loss for the interval forecast. A large
mistake is penalized more heavily under LPS than under

QPS. More loss functions are discussed in Diebold and
Rudebush [38].

Another loss function useful in this context is the
Kuipers score (KS), which is defined by

KS D Hit Rate� False Alarm Rate ;

where Hit Rate is the fraction of the bad events that were
correctly predicted as good events (power, or 1� probabil-
ity of type II error), and False Alarm Rate is the fraction
of good events that had been incorrectly predicted as bad
events (probability of type I error).

Forecasting Interval

Suppose Yt is a stationary series. Let the one-period ahead
conditional interval forecast made at time t from a model
be denoted as

Jt;1(˛) D (Lt;1(˛);Ut;1(˛)); t D R; : : : ; T ;

where Lt;1(˛) and Ut;1(˛) are the lower and upper lim-
its of the ex ante interval forecast for time t C 1 made
at time t with the coverage probability ˛. Define the
indicator variable XtC1(˛) D 1[YtC1 2 Jt;1(˛)]. The se-
quence fXtC1(˛)gTtDR is i.i.d. Bernoulli (˛). The optimal
interval forecast would satisfy E(XtC1(˛)jIt) D ˛, so that
fXtC1(˛) � ˛g will be an MD. A better model has a larger
expected Bernoulli log-likelihood

E˛XtC1(˛)(1 � ˛)[1�XtC1(˛)] :

Hence, we can choose a model for interval forecasts with
the largest out-of-sample mean of the predictive log-like-
lihood, which is defined by

P�1
TX

tDR

ln


˛xtC1(˛)(1 � ˛)[1�xtC1(˛)]

�
:

Evaluation of Nonlinear Forecasts

In order to evaluate the possible superior predictive ability
of nonlinear models, we need to compare competing mod-
els in terms of a certain loss function. The literature has re-
cently been exploding on this issue. Examples are Granger
and Newbold [69], Diebold andMariano [37], West [156],
White [160], Hansen [81], Romano and Wolf [130], Gi-
acomini and White [59], etc. In different perspective, to
test the optimality of a given model, Patton and Tim-
mermann [123] examine various testable properties that
should hold for an optimal forecast.
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Loss Functions

The loss function (or cost function) is a crucial ingredient
for the evaluation of nonlinear forecasts. When a forecast
ft;h of a variable YtCh is made at time t for h periods ahead,
the loss (or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of the fore-
cast error etCh D YtCh � ft;h is denoted as c(YtCh ; ft;h).
The loss function can depend on the time of prediction
and so it can be ctCh(YtCh ; ft;h). If the loss function is not
changing with time and does not depend on the value of
the variable YtCh , the loss can be written simply as a func-
tion of the error only, ctCh(YtCh; ft;h) D c(etCh).

Granger [67] discusses the following required proper-
ties for a loss function: (i) c(0) D 0 (no error and no loss),
(ii) mine c(e) D 0, so that c(e) � 0, and (iii) c(e) is mono-
tonically nondecreasing as emoves away from zero so that
c(e1) � c(e2) if e1 > e2 > 0 and if e1 < e2 < 0.

When c1(e); c2(e) are both loss functions, Grang-
er [67] shows that further examples of loss functions can
be generated: c(e) D ac1(e)C bc2(e); a � 0; b � 0 will be
a loss function. c(e) D c1(e)a c2(e)b , a > 0; b > 0 will be
a loss function. c(e) D 1(e > 0)c1(e)C 1(e < 0)c2(e) will
be a loss function. If h(�) is a positive monotonic nonde-
creasing function with h(0) finite, then c(e) D h(c1(e)) �
h(0) is a loss function.

Granger [68] notes that an expected loss (a risk mea-
sure) of financial return YtC1 that has a conditional pre-
dictive distribution Ft(y) � Pr(YtC1 � yjIt) with Xt 2 It
may be written as

Ec(e) D A1

Z 1

0
jy� f jpdFt(y)CA2

Z 0

�1

jy� f jpdFt(y);

with A1;A2 both > 0 and some � > 0. Considering the
symmetric case A1 D A2, one has a class of volatility mea-
sures Vp D E

�
jy � f jp

�
, which includes the variance with

p D 2, and mean absolute deviation with p D 1.
Ding, Granger, and Engle [39] study the time series

and distributional properties of these measures empiri-
cally and show that the absolute deviations are found to
have some particular properties such as the longest mem-
ory. Granger remarks that given that the financial returns
are known to come from a long tail distribution, p D 1
may be more preferable.

Another problem raised by Granger is how to
choose optimal Lp-norm in empirical works, to mini-
mize E[j"t jp] for some p to estimate the regression model
Yt D E(Yt jXt ;ˇ)C "t . As the asymptotic covariance ma-
trix of ˆ̌ depends on p, the most appropriate value of p can
be chosen to minimize the covariance matrix. In particu-
lar, Granger [68] refers to a trio of papers [84,116,117]who

find that the optimal p D 1 from Laplace and Cauchy dis-
tribution, p D 2 for Gaussian and p D 1 (min/max es-
timator) for a rectangular distribution. Granger [68] also
notes that in terms of the kurtosis �, Harter [84] sug-
gests to use p D 1 for � > 3:8; p D 2 for 2:2 � � � 3:8;
and p D 3 for � < 2:2. In finance, the kurtosis of returns
can be thought of as being well over 4 and so p D 1 is
preferred.

Forecast Optimality

Optimal forecast of a time series model extensively de-
pends on the specification of the loss function. Symmet-
ric quadratic loss function is the most prevalent in ap-
plications due to its simplicity. The optimal forecast un-
der quadratic loss is simply the conditional mean, but
an asymmetric loss function implies a more complicated
forecast that depends on the distribution of the forecast
error as well as the loss function itself [67], as the ex-
pected loss function if formulated with the expectation
taken with respect to the conditional distribution. Speci-
fication of the loss function defines the model under con-
sideration.

Consider a stochastic process Zt � (Yt ; X 0t)0 where
Yt is the variable of interest and Xt is a vector of
other variables. Suppose there are T C 1 (� RC P) ob-
servations. We use the observations available at time t,
R � t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �t;1 will be chosen to produce the forecast er-
rors that minimize the expected loss

min
ft;1

Z 1

�1

c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�tC1 D YtC1 � f �t;1:
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Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1

c(y � f �t;1)dFt(y) D 0 :

When we may interchange the operations of differentia-
tion and integration,

Z 1

�1

@

@ ft;1
c(y� f �t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �t;1)jIt

�

the “generalized forecast error”, gtC1�
@
@ f t;1

c(YtC1 � f �t;1),
forms the condition of forecast optimality:

H0 : E
�
gtC1jIt


D 0 a:s:;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

Forecast Evaluation of Nonlinear Transformations

Granger [67] note that it is implausible to use the same
loss function for forecasting YtCh and for forecasting
htC1 D h(YtCh) where h(�) is some function, such as
the log or the square, if one is interested in forecast-
ing volatility. Suppose the loss functions c1(�); c2(�) are
used for forecasting YtCh and for forecasting h(YtCh), re-
spectively. Let etC1 � YtC1 � ft;1 will result in a cost of
c1(etC1), for which the optimal forecast f �t;1 will be cho-
sen from min ft;1

R1
�1 c1(y � ft;1)dFt(y), where Ft(y) �

Pr(YtC1 � yjIt). Let "tC1 � htC1 � ht;1 will result
in a cost of c2("tC1), for which the optimal forecast
h�t;1 will be chosen from minht;1

R1
�1 c2(h � ht;1)dHt(h),

where Ht(h) � Pr(htC1 � hjIt). Then the optimal fore-
casts for Y and h would respectively satisfy

Z 1

�1

@

@ ft;1
c1(y � f �t;1)dFt(y) D 0 ;

Z 1

�1

@

@ht;1
c2(h � h�t;1)dHt(h) D 0 :

It is easy to see that the optimality condition for f �t;1
does not imply the optimality condition for h�t;1 in gen-
eral. Under some strong conditions on the functional
forms of the transformation h(�) and of the two loss func-
tions c1(�); c2(�), the above two conditions may coincide.
Granger [67] remarks that it would be strange behavior to
use the same loss function for Y and h(Y). We leave this
for further analysis in a future research.

Density Forecast Evaluation

Most of the classical finance theories, such as asset pric-
ing, portfolio selection and option valuation, aim to model
the surrounding uncertainty via a parametric distribu-
tion function. For example, extracting information about
market participants’ expectations from option prices can
be considered another form of density forecasting exer-
cise [92]. Moreover, there has also been increasing interest
in evaluating forecasting models of inflation, unemploy-
ment and output in terms of density forecasts [29]. While
evaluating each density forecast model has become versa-
tile since Diebold et al. [35], there has beenmuch less effort
in comparing alternative density forecast models.

Given the recent empirical evidence on volatility clus-
tering and asymmetry and fat-tailedness in financial re-
turn series, relative adequacy of a given model among al-
ternative models would be useful measure of evaluating
forecast models. Deciding on which distribution and/or
volatility specification to use for a particular asset is a com-
mon task even for finance practitioners. For example, de-
spite the existence of many volatility specifications, a con-
sensus on which model is most appropriate has yet to be
reached. As argued in Poon andGranger [125], most of the
(volatility) forecasting studies do not produce very con-
clusive results because only a subset of alternative models
are compared, with a potential bias towards the method
developed by the authors. Poon and Granger [125] argue
that lack of a uniform forecast evaluation technique makes
volatility forecasting a difficult task. They wrote (p. 507),
“ . . . it seems clear that one form of study that is included
is conducted just to support a viewpoint that a particular
method is useful. It might not have been submitted for
publication if the required result had not been reached.
This is one of the obvious weaknesses of a comparison
such as this; the papers being prepared for different rea-
sons, use different data sets, many kinds of assets, vari-
ous intervals between readings, and a variety of evaluation
techniques”.

Following Diebold et al. [35], it has become common
practice to evaluate the adequacy of a forecast model based
on the probability integral transform (PIT) of the process
with respect to the model’s density forecast. If the density
forecast model is correctly specified, the PIT follows an
i.i.d. uniform distribution on the unit interval and, equiva-
lently, its inverse normal transform follows an i.i.d. normal
distribution. We can therefore evaluate a density forecast
model by examining the departure of the transformed PIT
from this property (i.i.d. and normality). The departure
can be quantified by the Kullback-Leibler [97] informa-
tion criterion, or KLIC, which is the expected logarithmic
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value of the likelihood ratio (LR) of the transformed PIT
and the i.i.d. normal variate. Thus the LR statistic mea-
sures the distance of a candidate model to the unknown
true model.

Consider a financial return series fytgTtD1. This ob-
served data on a univariate series is a realization of
a stochastic process YT � fY� : ˝ ! R, � D 1; 2; : : : ; Tg
on a complete probability space (˝;FT ; PT

0 ), where
˝ D RT � �T�D1R and FT D B(RT ) is the Borel �-field
generated by the open sets of RT , and the joint probabil-
ity measure PT

0 (B) � P0[YT 2 B], B 2 B(RT ) completely
describes the stochastic process. A sample of size T is de-
noted as yT � (y1; : : : ; yT )0.

Let �-finite measure �T on B(RT ) be given. Assume
PT
0 (B) is absolutely continuous with respect to �T for all
T D 1; 2; : : :, so that there exists a measurable Radon–
Nikodým density gT (yT) D dPT

0 /d�
T , unique up to a set

of zero measure-�T .
Following White [159], we define a probability

model P as a collection of distinct probability measures
on the measurable space (˝;FT ). A probability model P
is said to be correctly specified for YT if P contains PT

0 .
Our goal is to evaluate and compare a set of paramet-
ric probability models fPT

�
g, where PT

�
(B) � P� [YT 2 B].

Suppose there exists a measurable Radon–Nikodým den-
sity f T(yT ) D dPT

�
/d�T for each � 2 � , where � is a fi-

nite-dimensional vector of parameters and is assumed to
be identified on � , a compact subset of Rk . See Theo-
rem 2.6 in White [159].

In the context of forecasting, instead of the joint
density gT (yT), we consider forecasting the conditional
density of Yt , given the information Ft�1 generated by
Yt�1. Let 't

�
yt

� 't(yt jFt�1) � g t(yt)/g t�1(yt�1) for

t D 2; 3; : : : and '1
�
y1

� '1(y1jF0) � g1(y1) D g1(y1).

Thus the goal is to forecast the (true, unknown) condi-
tional density 't

�
yt

.

For this, we use an one-step-ahead conditional den-
sity forecast model  t

�
yt ;�


�  t(yt jFt�1;�) �

f t(yt)/ f t�1(yt�1) for t D 2; 3; : : : and  1
�
y1

�

 1(y1jF0) � f 1(y1) D f 1(y1). If  t(yt ;�0) D 't(yt)
almost surely for some �0 2 � , then the one-step-ahead
density forecast is correctly specified, and it is said to be
optimal because it dominates all other density forecasts
for any loss functions as discussed in the previous section
(see [35,67,70]).

In practice, it is rarely the case that we can find an
optimal model. As it is very likely that “the true distribu-
tion is in fact too complicated to be represented by a sim-
ple mathematical function” [133], all the models proposed
by different researchers can be possibly misspecified and
thereby we regard each model as an approximation to the

truth. Our task is then to investigate which density fore-
cast model can approximate the true conditional density
most closely. We have to first define a metric to measure
the distance of a given model to the truth, and then com-
pare different models in terms of this distance.

The adequacy of a density forecast model can be mea-
sured by the conditional Kullback-Leibler [97] Informa-
tion Criterion (KLIC) divergence measure between two
conditional densities,

It (' :  ;�) D E't [ln 't
�
yt

� ln t

�
yt ;�


] ;

where the expectation is with respect to the true condi-
tional density 't (�jFt�1), E't ln't

�
ytjFt�1


<1, and

E't ln t
�
yt jFt�1;�


<1. Following White [159], we

define the distance between a density model and the true
density as the minimum of the KLIC

It
�
' :  ;��t�1


D E't

�
ln 't

�
yt

� ln t

�
yt ;��t�1

�
;

where ��t�1 D argmin It (' :  ;�) is the pseudo-true
value of � [133]. We assume that ��t�1 is an interior point
of � . The smaller this distance is, the closer the density
forecast t

�
�jFt�1;��t�1


is to the true density 't (�jFt�1).

However, It
�
' :  ;��t�1


is unknown since ��t�1 is

not observable. We need to estimate ��t�1. If our purpose
is to compare the out-of-sample predictive abilities among
competing density forecast models, we split the data into
two parts, one for estimation and the other for out-of-
sample validation. At each period t in the out-of-sample
period (t D RC 1; : : : ; T), we estimate the unknown pa-
rameter vector ��t�1 and denote the estimate as �̂ t�1. Us-
ing f�̂ t�1g

T
tDRC1, we can obtain the out-of-sample esti-

mate of It
�
' :  ;��t�1


by

IP(' :  ) �
1
P

TX

tDRC1

ln['t(yt)/ t(yt ; �̂ t�1)]

where P D T � R is the size of the out-of-sample period.
Note that

IP (' :  ) D
1
P

TX

tDRC1

ln
�
't(yt)/ t

�
yt ;��t�1

�

C
1
P

TX

tDRC1

ln[ t
�
yt ;��t�1


/ t(yt ; �̂ t�1)] ;

where the first term in IP (' :  ) measures model uncer-
tainty (the distance between the optimal density 't(yt)
and the model  t

�
yt ;��t�1


) and the second term mea-
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sures parameter estimation uncertainty due to the distance
between ��t�1 and �̂ t�1.

Since the KLIC measure takes on a smaller value when
a model is closer to the truth, we can regard it as a loss
function and use IP (' :  ) to formulate the loss-differen-
tial. The out-of-sample average of the loss-differential be-
tween model 1 and model 2 is

IP(' :  1) � IP(' :  2)

D
1
P

TX

tDRC1

ln
h
 2

t



yt ; �̂

2
t�1

�
/ 1

t



yt ; �̂

1
t�1

�i
;

which is the ratio of the two predictive log-likelihood func-
tions. With treating model 1 as a benchmark model (for
model selection) or as the model under the null hypoth-
esis (for hypothesis testing), IP(' :  1) � IP (' :  2) can
be considered as a loss function to minimize. To sum
up, the KLIC differential can serve as a loss function for
density forecast evaluation as discussed in Bao, Lee, and
Saltoglu [10]. See Corradi and Swanson [31] for the related
ideas using different loss functions.

Using the KLIC divergence measure to characterize
the extent of misspecification of a forecast model, Bao, Lee,
and Saltoglu [10], in an empirical study with the S&P500
and NASDAQ daily return series, find strong evidence for
rejecting the Normal-GARCH benchmark model, in fa-
vor of the models that can capture skewness in the con-
ditional distribution and asymmetry and long-memory in
the conditional variance. Also, Bao and Lee [8] investigate
the nonlinear predictability of stock returns when the den-
sity forecasts are evaluated/compared instead of the condi-
tional mean point forecasts. The conditional meanmodels
they use for the daily closing S&P500 index returns include
themartingale differencemodel, the linear ARMAmodels,
the STAR and SETAR models, the ANN model, and the
polynomial model. Their empirical findings suggest that
the out-of-sample predictive abilities of nonlinear models
for stock returns are asymmetric in the sense that the right
tails of the return series are predictable via many of the
nonlinear models while we find no such evidence for the
left tails or the entire distribution.

Conclusions

In this article we have selectively reviewed the state-of-the-
art in nonlinear time series models that are useful in fore-
casting financial variables. Overall financial returns are
difficult to forecast, and this may just be a reflection of the
efficiency of the markets on processing information. The
success of nonlinear time series on producing better fore-

casts than linear models depends on how persistent the
nonlinearities are in the data. We should note that though
many of the methodological developments are concerned
with the specification of the conditional mean and condi-
tional variance, there is an active area of research inves-
tigating other aspects of the conditional density – quan-
tiles, directions, intervals – that seem to be promising from
a forecasting point of view.

For a more extensive coverage to complement this re-
view, the readers may find the following additional refer-
ences useful. Campbell, Lo, and MacKinlay [22], Chap-
ter 12, provides a brief but excellent summary of non-
linear time series models for the conditional mean and
conditional variance as well and various methods such as
ANN and nonparametric methods. Similarly, the inter-
ested readers may also refer to the books and monographs
of Granger and Teräsvirta [72], Franses and van Dijk [55],
Fan and Yao [52], Tsay [153], Gao [57], and some book
chapters such as Stock [139], Tsay [152], Teräsvirta [145],
and White [161].

Future Directions

Methodological developments in nonlinear time series
have happened without much guidance from economic
theory. Nonlinear models are for most part ad hoc spec-
ifications that, from a forecasting point of view, are vali-
dated according to some statistical loss function. Though
we have surveyed some articles that employ some eco-
nomic rationale to evaluate the model and/or the fore-
cast – bull/bear cycles, utility function, profit/loss func-
tion –, there is still a vacuum on understanding why, how,
and when nonlinearities may show up in the data.

From a methodological point of view, future devel-
opments will focus on multivariate nonlinear time series
models and their associated statistical inference. Nonlin-
ear VAR-type models for the conditional mean and high-
dimensional multivariate volatility models are still in their
infancy. Dynamic specification testing in a multivariate
setting is paramount to the construction of a multivariate
forecast and though multivariate predictive densities are
inherently difficult to evaluate, they are most important in
financial economics.

Another area of future research will deal with the
econometrics of a data-rich environment. The advent of
large databases begs the introduction of new techniques
and methodologies that permits the reduction of the many
dimensions of a data set to a parsimonious but highly in-
formative set of variables. In this sense, criteria on how to
combine information and how to combine models to pro-
duce more accurate forecasts are highly desirable.
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Finally, there are some incipient developments on
defining new stochastic processes where the random vari-
ables that form the process are of a symbolic nature, i. e. in-
tervals, boxplots, histograms, etc. Though the mathemat-
ics of these processes are rather complex, future develop-
ments in this area will bring exciting results for the area of
forecasting.
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Glossary

Global Lyapunov exponent A global stability measure of
the nonlinear dynamic system. It is a long-run aver-
age of the exponential growth rate of infinitesimally
small initial deviation and is uniquely determined in
the ergodic and stationary case. In this sense, this ini-
tial value sensitivity measure does not depend on the
initial value. A system with positive Lyapunov expo-
nents is considered chaotic for both deterministic and
stochastic cases.

Local Lyapunov exponent A local stability measure
based on a short-run average of the exponential
growth rate of infinitesimally small initial deviations.
Unlike the global Lyapunov exponent, this initial value
sensitivity measure depends both on the initial value
and the horizon for the average calculation. A smaller
local Lyapunov exponent implies a better performance
at the point of forecast.

Noise amplification In a stochastic system with the addi-
tive noise, the effect of shocks can either grow, remain,
or die out with the forecast horizon. If the system is
nonlinear, this effect depends both on the initial value
and size of the shock. For a chaotic system, the degree
of noise amplification is so high that it makes the fore-
cast almost identical to the iid forecast within the next
few steps ahead.

Nonlinear impulse response function In a stochastic
system with the additive noise, the effect of shocks
on the variable in subsequent periods can be summa-
rized in impulse response functions. If the system is
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linear, the impulse response does not depend on the
initial value and its shape is proportional to the size
of shocks. If the system is nonlinear, however, the im-
pulse response depends on the initial value, or the his-
tory, and its shape is no longer proportional to the size
of shocks.

Definition of the Subject

Empirical studies show that there are at least some compo-
nents in future asset returns that are predictable using in-
formation that is currently available.When the linear time
series models are employed in prediction, the accuracy of
the forecast does not depend on the current return or the
initial condition. In contrast, with nonlinear time series
models, properties of the forecast error depend on the ini-
tial value or the history. The effect of the difference in ini-
tial values in a stable nonlinear model, however, usually
dies out quickly as the forecast horizon increases. For both
deterministic and stochastic cases, the dynamic system is
chaos if a small difference in the initial value is amplified at
an exponential rate. In a chaotic nonlinear model, the re-
liability of the forecast can decrease dramatically even for
a moderate forecast horizon. Thus, the knowledge of the
sensitive dependence on initial conditions in a particular
financial time series offers practically useful information
on its forecastability. The most frequently used measure
of initial value sensitivity is the largest Lyapunov expo-
nent, defined as the long-run average growth rate of the
difference between two nearby trajectories. It is a global
initial value sensitivity measure in the sense that it con-
tains the information on the global dynamic property of
the whole system. The dynamic properties around a sin-
gle point in the system can be also described using other
local measures. Both global and local measures of the sen-
sitive dependence on initial conditions can be estimated
nonparametrically from data without specifying the func-
tional form of the nonlinear autoregressive model.

Introduction

When the asset market is efficient, all the information con-
tained in the history of the asset price is already reflected
in the current price of the asset. Mathematically, the con-
ditional mean of asset returns becomes independent of
the conditioning information set, and thus price changes
must be unpredictable (a martingale property). A conve-
nient model to have such a characteristic is a random walk
model with independent and identically distributed (iid)
increments given by

ln Pt � ln Pt�1 D xt

for t D 0; 1; 2; : : :, where Pt is the asset price and xt is an
iid random variable with mean �x and variance �2x . When
�x D 0, the model becomes a random walk without drift,
otherwise, it is a random walk with drift �x .

Chaos is a nonlinear deterministic process that can
generate a random-like fluctuation. In principle, if a purely
deterministic model, instead of a random walk process, is
used to describe the dynamics of the asset return xt , all fu-
ture asset returns should be completely predictable. How-
ever, in the case of chaos, a small perturbation can make
the performance of a few steps ahead forecast almost iden-
tical to that of a random walk forecast. A leading example
is the tent map:

xt D 1 � j2xt�1 � 1j

with some initial value x0 between 0 and 1. This map al-
most surely has the uniform distribution U(0; 1) as its nat-
ural measure, defined as the distribution of a typical trajec-
tory of xt . This dynamic system thus provides aperiodic
trajectory or random-like fluctuation of xt as the num-
ber of iteration increases. By introducing a randomness in
the initial value x0, marginal distribution of xt approaches
the natural measure. This property, referred to as ergod-
icity, implies that the temporal average of any smooth
function of a trajectory xt;M�1

PM�1
tD0 h(xt), converges to

a mathematical expectation E[h(xt)] D
R1
�1 h(x)�(x)dx

as M tends to infinity, where the marginal distribution of
xt is expressed in terms of the probability density function
(pdf) �(x). The naturalmeasureU(0; 1) is also a stationary
or invariant distribution since the marginal distribution of
xt for any t � 1, isU(0; 1) whenever initial value x0 follows
U(0; 1). In this case, the mean �x and variance �2x are 1/2
and 1/12, respectively. Furthermore, almost all the trajec-
tories are second-order white noise in the sense that they
have a flat spectrum and zero autocorrelation at all leads
and lags.

Therefore, the knowledge of the marginal distribution
�(x) or spectrum of asset returns cannot be directly used
to distinguish between the case of a random walk com-
bined with an iid random variable and the case of the tent
map generating the returns. Yet, the two cases have signif-
icantly different implications on the predictability of asset
returns, at least for the extremely short horizon. When the
initial value x0 is given, using �x D 1/2 as a one-period-
ahead forecast at t D 0 provides a minimum mean square
forecast error (MSFE) of �2x D 1/2 for the former case. In
contrast, using 1 � j2x0 � 1j as the forecast gives zero fore-
cast error for the latter case. With a very tiny perturbation,
however, the MSFE of the multiple-period-ahead forecast
for the latter case quickly approaches �2x D 1/2, which is
identical to that of the random walk case.
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Another example is the logistic map:

xt D 4xt�1(1 � xt�1)

with some initial value x0 between 0 and 1. This map again
provides chaotic fluctuation with the natural measure al-
most surely given by beta distribution B(1/2; 1/2). Pro-
vided the same distribution as its stationary or invariant
distribution, the mean �x and variance �2x are 1/2 and
1/8, respectively (see [37] for the invariant distribution
of the logistic map in general). Again, the random walk
model combined with an iid random variable with the
same marginal distribution B(1/2; 1/2) is not distinguish-
able from the logistic map based only on the marginal dis-
tribution nor spectra. But the two have very different pre-
dictive implications.

The key feature of chaos that is not observed in the iid
random variable is the sensitivity of the trajectories to the
choice of initial values. This sensitivity can be measured
by the Lyapunov exponent which is defined as the average
rate of divergence (or convergence) of two nearby trajec-
tories. Indeed, the positivity of the Lyapunov exponent in
a bounded dissipative nonlinear system is a widely used
formal definition of chaos. To derive this measure for the
two examples above, first consider a one-dimensional gen-
eral nonlinear system

xt D f (xt�1)

where f : R! R is a continuously differentiable map,
with two initial values x0 D x0 and x�0 D x0 C ı where
ı represents infinitesimal difference in the initial condi-
tion. When the distance between two trajectories fxtg1tD0
and fx�t g1tD0 afterM steps is measured by the exponential
growth rate of ı using x�M � xM D ı exp(MM(x0)), the
average of the growth rate in each iteration is given by

M(x0) D
1
M

ln
ˇ
ˇ̌
ˇ
x�M � xM

ı

ˇ
ˇ̌
ˇ :

Further, let f (M) be the M-fold composition of f . Then
from the first order term in the Taylor series expansion
of x�M � xM D f (M)(x0 C ı) � f (M)(x0) around x0, com-
bined with the chain rule applied to d f (M)(x)/dxjxDx0
yields [ f 0(x0) f 0(x1) � � � f 0(xM�1)]ı D [

QM
tD1 f

0(xt�1)]ı.
Thus, the product

QM
tD1 f

0(xt�1) is the amplifying factor
to the initial difference after M periods. Substituting this
approximation result into the average growth rate formula
yields M(x0) D M�1

PM
tD1 ln j f

0(xt�1)j. This measure
is called a local Lyapunov exponent (of order M) and in
general depends on both x0 andM (see Fig. 1).

Next, consider the case M tending to infinity. If xt is
ergodic and stationary, M�1

PM
tD1 ln j f

0(xt�1)j converges

Financial Forecasting, Sensitive Dependence, Figure 1
Lyapunov exponent is an exponential growth rate

to E[ln j f 0(xt�1)j] D
R1
�1 ln j f 0(x)j�(x)dx, which does

not depend on x0. Thus, a global Lyapunov exponent, or
simply a Lyapunov exponent, of a one-dimensional system
is defined as  D limM!1 M(x0) or

 D lim
M!1

1
M

MX

tD1

ln
ˇ̌
f 0(xt�1)

ˇ̌
:

According to this definition, the computation of the
Lyapunov exponent of the tent map is straightforward.
Since the tent map is xt D 2xt�1 for 0 � xt�1 � 1/2
and xt D 2 � 2xt�1 for 1/2 < xt�1 � 1, its first deriva-
tive f 0(xt�1) is 2 for 0 � xt�1 � 1/2 and �2 for
1/2 < xt�1 � 1. Using the uniform distribution as its sta-
tionary distribution, we have

 D

Z 1/2

0
ln j2j dx C

Z 1

1/2
ln j�2jdx D ln 2 (� 0:693) :

Similarly, for the logistic map xt D axt�1(1 � xt�1) with
a D 4,

 D

Z 1

0

ln j4 � 8xj
�
p
x(1 � x)

dx D ln 4 � ln 2 D ln 2 :

Thus, both the tent map and the logistic map with a D 4
have a common positive Lyapunov exponent. The value
ln 2 implies that, on average, the effect of an initial devi-
ation doubles each time of iteration. Such a rapid rate of
divergence is the source of the fact that their trajectories
become unpredictable very quickly. Chaos is thus charac-
terized by sensitive dependence on initial conditions mea-
sured by a positive Lyapunov exponent.

Let us next consider a simple linear difference equa-
tion xt D �xt�1 with j�j < 1. Since its first derivative
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f 0(x) is a constant �, not only the Lyapunov expo-
nent but also the local Lyapunov exponent M(x0) does
not depend on the initial value x0. For example, when
� D 0:5,  D M(x0) D � ln 2 (� �0:693). The logistic
map xt D axt�1(1 � xt�1), can be either chaotic or stable
depending on the choice of a.When a D 1:5, all the trajec-
tories converge to a point mass at xt D 1/3, where the first
derivative is 1/2 thus  D � ln 2. For these two examples,
the system has a common negative Lyapunov exponent.
In this case, the effect of the initial condition is short-lived
and the system is not sensitive to initial conditions. The
value � ln 2 implies that, on average, the effect of initial
deviation reduces by one half each time of iteration.

Knowing the Lyapunov exponent of the asset returns,
or their transformation, thus offers a useful information
regarding the predictability of a financial market. In par-
ticular, for a system with sensitive dependence (namely,
the one with a positive Lyapunov exponent), the perfor-
mance of a multiple step forecast can worsen quickly as
the forecast horizon increases if there are (i) a small un-
certainty about the current value at the time of forecast
(observation noise) and/or (ii) a small additive noise in the
system (system noise).

Lyapunov Exponent and Forecastability

Lyapunov Spectrum

As a global measure of initial value sensitivity in a multi-
dimensional system, the largest Lyapunov exponent and
Lyapunov spectrum will first be introduced. For the p-di-
mensional deterministic nonlinear system,

xt D f
�
xt�1; : : : ; xt�p


;

where f : Rp ! R is continuously differentiable, the
(global) largest Lyapunov exponent of the system is de-
fined as

 D lim
M!1

1
2M

ln
ˇ̌
�1(T0MTM)

ˇ̌

where �1(T0MTM) is the largest eigenvalue of T0MTM , and
TM D JM�1 � JM�2 � � � � � J0. Here Jt�1’s are Jacobian ma-
trices defined as

Jt�1 D
2

6
666
6
4


 f1(Xt�1) 
 f2(Xt�1) � � � 
 fp�1(Xt�1) 
 fp(Xt�1)
1 0 � � � 0 0
0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7
777
7
5

for t D 1; : : : ;M, where 
 f j(Xt�1) D @ f (Xt�1)/@xt� j ,
for j D 1; : : : ; p, are partial derivatives of the conditional
mean function evaluated at Xt�1 D (xt�1; : : : ; xt�p)0.

Using an analogy to the one-dimensional case, the
local Lyapunov exponent can be defined similarly by
M(x) D (2M)�1 ln

ˇ
ˇ�1(T0MTM)

ˇ
ˇ with initial value x D

(x0; x�1; : : : ; x�pC1)0. Note that (2M)�1 ln
ˇ̌
�1(T0MTM)

ˇ̌

reduces to the sum of absolute derivatives in logs
used for the one-dimensional case since (2M)�1

PM
tD1

ln[ f 0(xt�1)2] D M�1
PM

tD1 ln j f
0(xt�1)j.

In the multi-dimensional case, the whole spectrum of
Lyapunov exponents can be also considered using ith Lya-
punov exponent i, for i D 1; : : : ; p, defined by replac-
ing the largest eigenvalue �1 with the ith largest eigen-
value �i. A set of all Lyapunov exponents is called the
Lyapunov spectrum. Geometrically, each Lyapunov ex-
ponent represents the rate of growth (or contraction) of
the corresponding principal axis of a growing (or shrink-
ing) ellipsoid. An attracting set of a dynamic system, or
simply the attractor, is defined as the set to which xt ap-
proaches in the limit. The attractor can be a point, a curve,
a manifold, or more complicated set. The Lyapunov spec-
trum contains information on the type of the attractor.
For example, a system with all negative Lyapunov expo-
nents has an equilibrium point as an attracting set. To
understand this claim, let xEQ be an equilibrium point
and consider a small initial deviation ı D (ı1; : : : ; ıp)0

from xEQ. By the linearization of f : Rp ! R at xEQ, the
deviation from xEQ after M periods is approximated by
c1�1 expfe1Mg C � � � C cp�p expfepMg, where ei ’s and
�i’s are the eigenvalues and eigenvectors of JEQ, respec-
tively, where JEQ is Jt�1 evaluated at Xt�1 D xEQ, and ci’s
are scalar constants. The real part ofei , denoted by Re[ei ],
represents the rate of growth (contraction) around the
equilibrium point xEQ along the direction of �i if Re[ei ] is
positive (negative). Thus if Re[ei] < 0 for all i D 1; : : : ; p,
xEQ is asymptotically stable and is an attractor. Otherwise,
xEQ is either unstable with Re[ei ] > 0 for all i, or a saddle
point with Re[ei] > 0 for some i, provided that none of
Re[ei ] is zero. In this simple case, ith Lyapunov exponent
i corresponds to Re[ei].

Among all the Lyapunov exponents, the largest Lya-
punov exponent 1, or simply , is a key measure to dis-
tinguish chaos from other stable systems. By using an anal-
ogy to the equilibrium point example,  > 0 implies the
expansion in the direction of �1. An attractor requires that
the sum of all the Lyapunov exponents be negative since
contraction on the wholemust be stronger than the expan-
sion. When this condition is met with some positive i’s,
the system is said to have a strange attractor. Chaos is thus
excluded if the largest Lyapunov exponent is not positive.
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Financial Forecasting, Sensitive Dependence, Table 1
Lyapunov spectrum and attractors

Attractor Point Closed curve k-torus Strange attractor
Steady state equilibriumpoint limit cycle (periodic) k-periodic chaotic
Dimension 0 1 k (integer) noninteger
Lyapunov exponents �i < 0 (i D 1; : : : ; p) �1 D 0

�i < 0 (i D 2; : : : ; p)
�1 D � � � D �k D 0
�i < 0 (i D kC 1; : : : ; p)

�1 > 0

A system with a zero largest Lyapunov exponent implies
that the average distance of two orbits (along some direc-
tions) is same as their initial deviation, the property often
referred to as Lyapunov stability. A zero largest Lyapunov
exponent and strictly negative remaining Lyapunov expo-
nents lead to a system with a limit cycle. If only the first
two (k) largest Lyapunov exponents are zero, the system
has a two-torus (k-torus) attractor. The types of attractors
and their relationship to the signs of Lyapunov exponents
are summarized in Table 1.

Entropy and Dimension

In a deterministic system with initial value sensitivity,
the information on how quickly trajectories separate on
the whole has a crucial implication in the predictability.
This is because if two different trajectories which are ini-
tially indistinguishable become distinguishable after a fi-
nite number of steps, the knowledge of the current state
is useful in forecasting only up to a finite times ahead.
Kolmogorov entropy of the system measures the rate at
which information is produced and has a close relation-
ship to the Lyapunov exponents. In general, the sum of
all positive Lyapunov exponents provides an upper bound
to Kolmogorov entropy, which contains the information
on how quickly trajectories separate on the whole. Un-
der some conditions, both the entropy and the sum be-
come identical (see [22,56]). This fact can intuitively be
understood as follows. Suppose a system with k positive
Lyapunov exponents and an attractor of size L. Here, the
size of an attractor roughly refers to the range of an in-
variant distribution of an attractor, which becomes unpre-
dictable as a result of magnified small initial deviation of
size d. Note that the length of the first k principal axes af-
terM steps of iteration is proportional to exp(M

Pk
iD1 i ).

From d exp(M
Pk

iD1 i ) D L, the expected time M to
reach the size of attractor is given by (1/

Pk
iD1 i ) ln(L/d).

This result implies that the larger
Pk

iD1 i becomes, the
shorter the period during which the path is predictable.

Lyapunov exponents are also closely related to the no-
tion of dimension designed to classify the type of attrac-
tors. An equilibrium point has zero dimension. A limit

cycle is one-dimensional since it resembles an interval in
a neighborhood of any point. A k-torus is k-dimensional
since it locally resembles an open subset of Rk. However,
the neighborhood of any point of a strange attractor does
not resemble any Euclidean space and does not have inte-
ger dimension. Among many possibilities of introducing
a non-integer dimension, one can consider the Lyapunov
dimension, or Kaplan–Yorke dimension, defined as

DL D k C
1

jkC1j

kX

iD1

i

where i is the ith Lyapunov exponent and k is the largest
integer for which

Pk
iD1 i � 0. This definition provides

the dimension of zero for an equilibrium point, one for
a limit cycle, and k for a k-torus. For a chaotic ex-
ample, suppose a three-dimensional system with a pos-
itive Lyapunov exponent (1 D C > 0), a zero Lya-
punov exponent (2 D 0), and a negative Lyapunov ex-
ponent (3 D � < 0). The Lyapunov dimension DL is
then given by 2C C/j�j which is a fraction that lies
strictly between 2 and 3 since an attractor should sat-
isfy C C � < 0. Likewise, in general, the Lyapunov di-
mension DL will be a fraction between k and k C 1 sincePk

iD1 i � jkC1j always holds by the definition of k (see
Fig. 2).

Since the Lyapunov spectrum contains richer infor-
mation than the largest Lyapunov exponent alone, several
empirical studies reported the Lyapunov spectrum [18], or
the transformation such as Kolmogorov entropy and Lya-
punov dimension [1,2] of financial time series. However,
one must be careful on the interpretation of these quanti-
ties since their properties under noisy environment is not
rigorously established. In addition, it should be noted that
some other forms of the entropy and the dimension can
be computed without estimating each Lyapunov exponent
separately. For example, [36] recommended using an ap-
proximation to Kolmogorov entropy, given by

K2 D lim
ı!0
p!1

ln
�

Cp(ı)
CpC1(ı)

�
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Financial Forecasting, Sensitive Dependence, Figure 2
Lyapunov dimension

where Cp(ı) is the correlation integral defined by

Cp(ı) D lim
T!1

]f(t; s)j kXt � Xsk < ıg/T2

where Xt D (xt; : : : ; xt�pC1)0 and k�k is a vector norm.
The approximation given by K2 provides a lower bound
of Kolmogorov entropy (see [22]). The correlation dimen-
sion, a type of dimension, can also be defined as

DC D lim
ı!0

lnCp(ı)
ln ı

:

Both the K2 entropy and correlation dimension can be
estimated by replacing Cp(ı) with its sample analogue.
In applications to financial time series, these two mea-
sures are computed in [30] and [50]. Finally, note that
the correlation integral has been used as the basis of the
BDS test, a well-established nonlinear dependence test fre-
quently used in economic application, developed by [9].
Formally, the test statistic relies on the sample analogue of
Cp(ı) � [C1(ı)]p and follows normal distribution under
the null hypothesis of iid randomness. The BDS test ap-
pears to have a good power against the alternative of lin-
ear or nonlinear dependence including some low-dimen-
sional chaotic process. Thus, the BDS test is useful in pro-
viding the indirect evidence of sensitive dependence and
can be complementarily used along with a more direct test
based on Lyapunov exponents (see [5] for an example on
the comparison between the two approaches).

System Noise and Noisy Chaos

Unlike the data generated from a purely deterministic sys-
tem, economic and financial data are more likely to be

contaminated by noise. There are two main types of ran-
dom noise used to extend the deterministic model to the
stochastic model in the analysis of initial value sensitiv-
ity: observation noise and system noise. In the case of the
observation noise, or measurement noise, observables are
given as the sum of stochastic noise and the unobserv-
ables generated from the deterministic model. In contrast,
with the system noise, or dynamic noise, observables are
generated directly from a nonlinear autoregressive (AR)
model. In practice, it is often convenient to introduce the
system noise in the additive manner. Theoretically, sys-
tem noise can make the system to have a unique stationary
distribution. Note that for the examples of tent map and
logistic map, aperiodic trajectory, or random-like fluctu-
ation, could not be obtained with some choice of initial
condition with measure zero. In general, the deterministic
system can have infinitely many stationary distributions.
However, typically, the presence of additive noise can ex-
clude all degenerate marginal distributions. Furthermore,
additive system noise is convenient to generalize the use
of the Lyapunov exponents, originally defined in the de-
terministic system as a measure of sensitive dependence,
to the case of a stochastic system.

To see this point, first, consider the following simple
linear system with an additive system noise. Adding an iid
stochastic error term "t, with E("t) D 0 and E("2t ) D �2,
in the previously introduced linear difference equation
leads to a linear AR model of order one,

xt D �xt�1 C "t :

The model has a stationary distribution if j�j < 1. Even
if the error term is present, since f 0(xt�1) D �, a one-
dimensional Lyapunov exponent can be computed as
 D ln j�j < 0, the value identical to the case of the deter-
ministic linear difference equation. Thus, the stationarity
condition j�j < 1 in the linear model always implies a neg-
ative Lyapunov exponent, while a unit root process � D 1
implies zero Lyapunov exponent.

Next, consider the introduction of a system noise to
a nonlinear system. A general (stationary) nonlinear AR
model of order one is defined as

xt D f (xt�1)C "t

where f : R ! R is a smooth function. For a known
unique stationary marginal distribution �(x), Lyapunov
exponent can be computed as E[ln j f 0(xt�1)j] DR1
�1 ln j f 0(x)j�(x)dx. Thus, by using an analogy of the
definition of deterministic chaos, noisy chaos can be de-
fined as a stationary nonlinear AR model with a posi-
tive Lyapunov exponent. Even if an analytical solution is
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not available, the value of Lyapunov exponent is typically
obtained numerically or by simulation. Similarly, for the
multidimensional nonlinear AR model,

xt D f (xt�1; : : : ; xt�p)C "t ;

(noisy) chaos can be defined by a positive largest Lyapunov
exponent computed from the Jacobian and the stationary
joint distribution of Xt�1 D (xt�1; : : : ; xt�p)0. Further-
more, as long as the process has a stationary distribution,
for both the chaotic and non-chaotic case,M-period ahead
least squares predictor fM(x) � E[xtCMjXt D x] and its
conditional MSFE �2M(x) � E[fxtCM � fM(x)g2jXt D x]
depend on the initial condition x D (x0; x�1; : : : ; x�pC1)0

but do not depend on the timing of forecast t.

Noise Amplification

The next issue involves the prediction in the stochastic dy-
namic system. When additive noise is present in the non-
linear system, the amplification of noise can depend on the
initial values and is not necessarily monotonic in horizon.
This feature is not unique to the chaotic model but holds
for general nonlinear models. However, a small noise is
expected to be amplified rapidly in time if the nonlinear
system is chaotic.

To understand the process of noise amplification, con-
sider the previously introduced linear AR model of order
one with a non-zero coefficient � and an initial condition
x0 D x0. Then, at the periodM,

xM D �f�xM�2 C "M�1g C "M
D �2xM�2 C �"M�1 C "M
D �Mx0 C "M C � � � C �M�1"1 :

Since f"1; "2; : : : ; "Mg are not predictable at period 0, the
least square M-period ahead predictor is �Mx0 with its
MSFE �2M given by �M�

2 where

�M D 1C � � � C �2(M�1) D 1C
M�1X

jD1

�2 j

is a monotonically increasing proportional factor that
does not depend on x0. Since �M > 1, MSFE is strictly
greater than the variance of the noise for all M. How-
ever, for a stationary process with j�j < 1, increments in
such a noise amplification become smaller and �M con-
verges to 1/(1 � �2) as M tends to infinity. Thus, even-
tually, the MSFE converges to the unconditional variance
�2x D �

2/(1 � �2). In a special case with � D 0, when the
asset price have iid increments, the proportional factor

becomes 1 for all M giving its MSFE �2M D �
2
x D �

2 for
allM.

Suppose, instead, a general nonlinear AR model of or-
der one with an initial condition x0 D x0. In addition, let
j"tj � � almost surely, where � > 0 is a small constant. By
Taylor series expansion, for M � 1,

xM D f f f (xM�2)C "M�1g C "M
D f (2) (xM�2)C f 0f f (xM�2)g"M�1 C "M C O(�2) :

Using the fact that xM�2 D f (M�2)(x0)C O(�), and re-
peating applications of Taylor series expansion,

xM D f (2) (xM�2)C f 0f f (M�1)(x0)g"M�1 C "M C O(�2)

D f (M) (x0)C "M C f 0f f (M�1)(x0)g"M�1 C � � �

C

M�1Y

kD1

f 0f f (k)(x0)g"1 C O(�2) :

Thus the least square M-period ahead predictor is
f (M)(x0) with its conditional MSFE given by

�2M(x0) D �M(x0)�2 C O(�3)

where

�M(x0) D 1C
M�1X

jD1

2

4
M�1Y

kD j

f 0f f (k)(x0)g

3

5

2

:

A comparison of �M for the linear model and �M(x0)
for the nonlinear model provides some important features
of the nonlinear prediction. First, unlike the linear case,
the proportional factor now depends not only on the fore-
cast horizon M but also on the initial condition x0. Thus,
in general, performance of the nonlinear prediction de-
pends on where you are.

Second, �M(x0) does not need to be monotonically
increasing with M in nonlinear case. The formula for
�M(x0) can be rewritten as

�MC1(x0) D 1C �M(x0) f 0f f (M)(x0)g2 :

Thus, �MC1(x0) < �M(x0) is possible when
f 0f f (M)(x0)g2 < 1 � 1/�M(x0). Therefore, with some ini-
tial value and M, the (M C 1)-period ahead MSFE can be
smaller than theM-period ahead MSFE.

Third, and most importantly, unlike the station-
ary linear model, which imposes the restriction j�j <
1; j f 0(x)j > 1 is possible for a large range of values of x in
the nonlinear model even if it has a bounded and station-
ary distribution. In such a case, �M(x0) can grow rapidly
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for the moderate or short forecast horizon M. The rapid
noise amplification makes the long-horizon forecast very
unreliable especially when the model is chaotic. To see this
point, it is convenient to rewrite the proportional factor
�M(x0) in terms of the local Lyapunov exponent as

�M(x0) D 1C
M�1X

jD1

exp
n
2(M � j)M� j( f ( j)(x0))

o
:

When the local Lyapunov exponent is positive, the pro-
portional factor grows at an exponential rate as M grows.
Recall that in the case of iid forecast (random walk fore-
cast in terms of price level), the MSFE �2M becomes �2x .
Likewise, for the chaotic case with infinitesimally small
�2, the MSFE �2M reaches �2x only after a few steps even
if the MSFE is close to zero for the one-step ahead fore-
cast. Thus, the global Lyapunov exponent or other local
measures of sensitive dependence contain important in-
formation on the predictability in the nonlinear time series
framework.

Nonparametric Estimation
of the Global Lyapunov Exponent

Local Linear Regression

The measures of initial value sensitivity can be computed
from the observed data. Since the Lyapunov exponent is by
definition the average growth rate of initial deviations be-
tween two trajectories, it can be directly computed by find-
ing pairs of neighbors and then averaging growth rates of
the subsequent deviations of such pairs [77]. This ‘direct’
method, however, provides a biased estimator when there
is a random component in the system [51]. A modified re-
gression method proposed by [63] is considered more ro-
bust to the presence of measurement noise but not nec-
essarily when the system noise is present. A natural ap-
proach to compute the Lyapunov exponent in the nonlin-
ear ARmodel framework is to rely on the estimation of the
nonlinear conditional mean function f : Rp ! R. For ex-
ample, based on an argument similar to the deterministic
case, the noisy logistic map, xt D axt�1(1 � xt�1)C "t ,
can be either chaotic or stable depending on the value of
the parameter a. The first derivative f 0(x) D a � 2ax can
be evaluated at each data point once an estimate of a is
provided. Thus, the parametric approach in the estima-
tion of Lyapunov exponents has been considered in some
cases (e. g., [7]). In practice, however, information on the
functional form is rarely available and the nonparametric
approach is a reasonable alternative. In principle, any non-
parametric estimator can be used to estimate the function f

and its partial derivatives in the nonlinear AR model,

xt D f
�
xt�1; : : : ; xt�p


C "t

where f is smooth and "t is a martingale difference se-
quence with E["t jxt�1; xt�2; : : : ] D 0 and E["2t jxt�1;
xt�2; : : : ] D �2(xt�1; : : : ; xt�p) D �2(x). To simplify the
discussion, here, the one based on a particular type of the
kernel regression estimator is explained in detail. Methods
based on other types of nonparametric estimators will be
later mentioned briefly (see, for example, [27], on the non-
parametric approach in time series analysis).

The local linear estimator of the conditional mean
function and its first partial derivatives at a point x can
be obtained by minimizing the weighted least squares
criterion

PT
tD1(xt � ˇ0 � ˇ

0
1(Xt�1 � x))2KH(Xt�1 � x),

where H is the d � d bandwidth matrix, K is d-vari-
ate kernel function such that

R
K(u)du D 1, and

KH(u) D jHj�1/2 K(H�1/2u). For example, the stan-
dard p-variate normal density

K(u) D
1

2��p/2
exp(�jjujj2/2)

with H given by hIp where h is a scalar bandwidth and Ip
is an identity matrix of order p, can be used in the estima-
tion. The solution to the minimization problem is given by
b̌(x) D (X0xWxXx )�1X0xWxY where

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�1 � x)0

3

7
5 ;

Y D (x1; : : : ; xT )0 and Wx D diag fKH(X0 � x); : : : ;
KH(XT�1�x)g. The local linear estimator of the nonlinear
function f (x) and its first derivatives (@ f )/(@xt� j)(x) for
j D 1; : : : ; p are given by b̌0(x) Dbf (x) and

b̌1(x) D

2

66
4

b̌11(x)
:::

b̌1p(x)

3

77
5 D

2

66
4


bf 1(x)
:::


bf p(x)

3

77
5 ;

respectively. [22] and [21] proposed a method, known as
the ‘Jacobian’ method, to estimate the Lyapunov exponent
by substituting
 fi (x) in the Jacobian formula by its non-
parametric estimator 
bf i (x). It should be noted that, in
general, the “sample size” T used for estimating Jacobian
bJ t and the “block length”M, which is the number of eval-
uation points used for estimating the Lyapunov exponent,
can be different. Formally, the Lyapunov exponent estima-
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tor of  is given by

bM D
1
2M

ln �1


bT0MbTM

�
;

bTM D
MY

tD1

bJM�t DbJM�1 �bJM�2 � � � � �bJ0 ;

where
bJ t�1 D
2

6
666
66
4


bf 1(Xt�1)
bf 2(Xt�1) � � � 
bf p�1(Xt�1)
bf p(Xt�1)
1 0 � � � 0 0
0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7
777
77
5

;

for t D 0; 1; : : : ;M � 1, where
bf j(x) is a nonparametric
estimator of
 f j(x) D @ f (x)/@xt� j for j D 1; : : : ; p.

As an estimator for the global Lyapunov exponent, set-
ting M D T gives the maximum number of Jacobians and
thus the most accurate estimation can be expected. The-
oretically, however, it is often convenient to have a block
lengthM smaller than T. For a fixedM, with T tends to in-
finity, bM is a consistent estimator of the local Lyapunov
exponent with initial value x D (x0; x�1; : : : ; x�pC1)0

(see [48]). In case both M and T increase with M/T tends
to zero,bM is still a consistent estimator of the global Lya-
punov exponent.

Statistical Inference on the Sign of Lyapunov Exponent

Since the positive Lyapunov exponent is the condition that
distinguishes the chaotic process from the stable system
without high initial value sensitivity, conducting the infer-
ence regarding the sign of the Lyapunov exponent is of-
ten of practical interest. For such inference, a consistent
standard error formula forbM is available. Under the con-
dition that M grows at a sufficiently slow rate, a standard
error can be computed by

p
b̊/M where

b̊ D
M�1X

jD�MC1

w( j/SM)b�( j)

with b� ( j) D
1
M

MX

tDj jjC1

b�tb�t�j jj ;

b�t Db� t �bM with b� t D
1
2
ln

0

@
�1



bT0tbTt

�

�1



bT0t�1bTt�1

�

1

A

for t � 2 and b�1 D
1
2
ln �1



bT01bT1

�
;

where w(u) and SM denote a kernel function and a lag
truncation parameter, respectively (see [67,68,74]). An ex-
ample of w(u) is the triangular (Bartlett) kernel given by
w(u) D 1 � juj for juj < 1 and w(u) D 0, otherwise. The
lag truncation parameter SM should grow at a rate slower
than the rate ofM.

The procedure above relies on the asymptotic normal-
ity of the Lyapunov exponent estimator. Therefore, if the
number of Jacobians,M, is not large, an approximation by
the normal distribution may not be appropriate. An alter-
native approach to computing the standard error is to use
the resample methods, such as bootstrapping or subsam-
pling. See [32,35] and [79] for the applications of resam-
pling methods to the evaluation of the global Lyapunov
exponent estimates.

Consistent Lag Selection

Performance of the nonparametric Lyapunov exponent es-
timator is often influenced by the choice of lag length p in
the nonlinear AR model when the true lag is not known in
practice. To see this point, artificial data is generated from
a noisy logistic map with an additive system error given by

xt D axt�1(1 � xt�1)C �(xt�1)"t

where "t � iid U(�1/2; 1/2) and �(xt�1) D 0:5 �
minfaxt�1(1 � xt�1); 1 � axt�1(1 � xt�1)g. Note that the
conditional heteroskedasticity function �(x) here ensures
that the process xt is restricted to the unit interval [0; 1].
When a D 4:0, the system has a positive Lyapunov expo-
nent 0.699. Figure 3 shows an example of a sample path
from a deterministic logistic map (left) and a noisy logistic
map with the current specification of an error term (right).
When a D 1:5, the system has a negative Lyapunov ex-
ponent �0.699. Table 2 reports the mean and median of
nonparametric estimates of Lyapunov exponents using the
lags from 1 to 4,M D T D 50, based on 1,000 replications.

The simulation results show that overfitting has rel-
atively small effect when the true Lyapunov exponent is
positive. On the other hand, in case of negative Lyapunov

Financial Forecasting, Sensitive Dependence, Table 2
Lyapunov exponent estimates when T D 50: logistic map

p D 1 p D 2 p D 3 p D 4

Logistic map
with a D 4:0
(true � D 0:699)

Mean 0.694 0.706 0.713 0.720

Median 0.696 0.704 0.710 0.715

Logistic map
with a D 1:5
(true � D �0:699)

Mean �0.560 �0.046 0.115 0.179

Median �0.661 �0.152 0.060 0.149
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Financial Forecasting, Sensitive Dependence, Figure 3
Logistic map and noisy logistic map

exponent, the upward bias caused by including redundant
lags in the nonparametric regression can result in positive
Lyapunov exponent estimates. Therefore, when the true
lag length of the system is not known, lag selection proce-
dure will be an important part of the analysis of sensitive
dependence.

There are several alternative criteria that are designed
to select lag length p in the nonparametric kernel autore-
gressions.With respect to lag selection in the nonparamet-
ric analysis of chaos, [15] suggested minimizing the cross-
validation (CV) defined by

bCV (p) D T�1
TX

tD1

n
xt �bf�(t�1)(Xt�1)

o2
W2(Xt�1)

wherebf�(t�1)(Xt�1) is the leave-one-out estimator evalu-
ated at Xt�1 andW2(x) is a weight function. [70] suggested
minimizing the nonparametric version of the final predic-
tion error (FPE) defined by

bFPE(p) D T�1
TX

tD1

n
xt �bf (Xt�1)

o2
W2(Xt�1)

C
2

Thp K(0)
pT�1

TX

tD1

fxt �bf (Xt�1)g2

�W2(Xt�1)/b�(Xt�1)

where b�(x) is a nonparametric joint density estimator
at x. [71] proposed a modification to the FPE to prevent

overfitting in a finite sample with a multiplicative correc-
tion term f1C p(T � pC 1)g�4/(pC4). All three nonpara-
metric criteria, the CV, FPE, and the corrected version of
the FPE (CFPE) are proved to be consistent lag selection
criteria so that the probability of selecting the correct p
converges to one as T increases. Table 3 reports frequen-
cies of selected lags based on these criteria among 1,000
iterations.

The simulation results show that all the lag selection
criteria perform reasonably well when the data is gener-
ated from a noisy logistic map.

While a noisy logistic map has the nonlinear AR(1)
form, it should be informative to examine the performance
of the procedures when the true process is the AR model
of a higher lag order. [15] considered a nonlinear AR(2)
model of the form,

xt D 1 � 1:4x2t�1 C 0:3xt�2 C "t

Financial Forecasting, Sensitive Dependence, Table 3
Frequencies of selected lags when T D 50: logistic map

p D 1 p D 2 p D 3 p D 4

Logistic map
with a D 4:0
(true � D 0:699)

CV 0.989 0.011 0.000 0.000
FPE 0.998 0.002 0.000 0.000
CFPE 1.000 0.000 0.000 0.000

Logistic map
with a D 1:5
(true � D �0:699)

CV 0.697 0.168 0.080 0.055
FPE 0.890 0.085 0.017 0.008
CFPE 0.989 0.011 0.000 0.000
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Financial Forecasting, Sensitive Dependence, Table 4
Lyapunov exponent estimates when T D 50: Hénonmap

p D 1 p D 2 p D 3 p D 4
Hénon map
(true � D 0:409)

Mean 0.411 0.419 0.424 0.431
Median 0.407 0.423 0.427 0.425

Financial Forecasting, Sensitive Dependence, Table 5
Frequencies of selected lags when T D 50: Hénonmap

p D 1 p D 2 p D 3 p D 4

Hénon map
(true � D 0:409)

CV 0.006 0.740 0.250 0.004
FPE 0.028 0.717 0.253 0.002
CFPE 0.043 0.762 0.194 0.001

where "t � iid U(�0:01; 0:01). This is a noisy Hénon map
with a positive Lyapunov exponent,  D 0:409. Table 4
shows the mean and median of 1,000 nonparametric es-
timates of Lyapunov exponents using the lags from 1 to 4,
M D T D 50, when the data is artificially generated from
this higher order noisy chaos process.

As in the finding from a chaotic logistic map example,
estimates do not seem to be very sensitive to the choice of
lags. The results on the lag selection criteria are provided
in Table 5.

The table shows that frequencies of selecting the true
lag (p D 2) becomes less than in the case of the chaotic
logistic map in Table 3. However, the performance of CV
improves when it is compared to the case of stable logistic
map.

The results from this small-scale simulation exercise
show that when the true lag length is not known, combin-
ing the automatic lag selection method with Lyapunov ex-
ponent estimation is recommended in practice.

Other Nonparametric Estimators

In addition to the class of kernel regression estimators,
which includes Nadaraya–Watson, local linear or local
polynomial estimators, other estimators have also been
employed in the estimation of the Lyapunov exponent.
With the kernel regression method, Jacobians are evalu-
ated using a local approximation to the nonlinear func-
tion at the lagged point Xt�1. Another example of the lo-
cal smoothingmethod used in Lyapunov exponent estima-
tion is the local thin-plate splines suggested by [51,54]. The
local estimation method, however, is subject to the data
sparseness problem in the high-dimensional system. Al-
ternatively, Jacobians can be evaluated using a global ap-
proximation to the unknown function. As a global esti-
mation method, a global spline function may be used to

smooth all the available sample. However, the most fre-
quently used global method in Lyapunov exponent esti-
mation in practice is the neural nets ([2,18,68], among oth-
ers). A single hidden-layer, feedforward neural network is
given by

f (Xt�1) D ˇ0 C
kX

jD1

ˇ j (a0jXt�1 C bj)

where  is an activation function (most commonly a lo-
gistic distribution function) and k is a number of hidden
units. The neural network estimator bf can be obtained
by minimizing the (nonlinear) least square criterion. Jaco-
bians are then evaluated using the analytical first deriva-
tive of neural net function. Compared to other functional
approximations, the neural net form is less sensitive to in-
creasing lag length, p. Thus, it has a merit in terms of the
effective sample size.

Four Local Measures of Sensitive Dependence

Local Lyapunov Exponent

The global Lyapunov exponent measures the initial value
sensitivity of long horizon forecast. For the ergodic and
stationary case, this initial value sensitivity measure does
not depend on the initial value. By definition, the global
Lyapunov exponent is the limit of the local Lyapunov ex-
ponent when its order M tends to infinity. Unlike the
global Lyapunov exponent, the local Lyapunov exponent is
a function of an initial value and thus the initial value sen-
sitivity of the short-term forecast depends on where you
are. In this sense, local measures of sensitive dependence
contain more detailed information on the predictability in
the nonlinear dynamic system.

Recall that both the deterministic tent map and the
logistic map with a D 4:0 have a common positive Lya-
punov exponent 0.693. Thus in terms of long-horizon pre-
dictability, two processes have exactly the same degree of
initial value sensitivity. Yet, in terms of short term forecast,
it is possible that predictability at the same point differs
among two processes.

The sign of local Lyapunov exponents of the single
process can also be different in some range of initial val-
ues. Figure 4 shows the local Lyapunov exponents of the
deterministic logistic map with a D 4:0 for different val-
ues of M. Consistent with the definition, as M grows, it
approaches to a flat line at the value of 0.693. However,
when M is finite, there is a range of initial values asso-
ciated with a negative local Lyapunov exponent. Within
such a range of initial values, sensitive dependence is low
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Financial Forecasting, Sensitive Dependence, Figure 4
Local and global Lyapunov exponents of logistic map

and predictability is high even if it is a globally chaotic
process.

Analysis of local Lyapunov exponent is also valid in
the presence of noise. Studies by [4,48,78], among others,
investigate the properties of the local Lyapunov exponent
in a noisy system.

The local Lyapunov exponent can be estimated non-
parametrically from data using the following procedure.
First, obtain the nonparametric Jacobian estimatebJ t�1 for
each t using a full sample, as in the case of global Lya-
punov exponent estimation. Second, choose a single hori-
zon M of interest. Third, choose the p-dimensional initial
value x D (xt� ; xt��1; : : : ; xt��pC1)0 from the data subse-
quence fxtgT�MtD�pC1. Finally, the local Lyapunov exponent
estimator at x is given by bM(x) D (2M)�1 ln �1(bT0MbTM)
wherebTM D

Qt�CM
tDt�

bJM�t .
While the local Lyapunov exponent is a simple and

straightforward local measure of the sensitive dependence,
three other useful local measures will be introduced below.

Nonlinear Impulse Response Function

The impulse response function (IRF) is a widely usedmea-
sure of the persistence effect of shocks in the analysis of
economic time series. Here, it is useful to view the IRF as

the difference between the two expected future paths: one
with and the other without a shock occurred at the cur-
rent period. When the shock, or the initial deviation, is
very small, the notion of impulse responses is thus closely
related to the concept of sensitive dependence on initial
conditions. To verify this claim, a simple example of a one-
dimensional linear IRF is first provided below, followed by
the generalization of the IRF to the case of nonlinear time-
series model.

For a linear AR model of order one, xt D �xt�1 C "t ,
theM-period ahead IRF to a unit shock is defined as

IRFM D �M :

Let fx�t g1tD0 be a sample path that contains a single unit
shock whereas fxtg1tD0 is a sample path without any shock.
Also let x0 D x0 be an initial condition for the latter path.
Then, this linear IRF can be interpreted in two ways.
One interpretation is the sequence of the responses to
a shock defined to increase one unit of x0 at time 0 (x1 D
�x0; x�1 D �(x0 C 1), x�1 � x1 D �; : : : ; x�M � xM D �M).
In this case, the initial value of x�t is given as x�0 D x0 C 1,
so the shock can be simply viewed as the deviation of two
paths at the initial condition. The other interpretation is
the sequence of the responses to a shock defined to in-
crease one unit of x1 at time 1 (x1 D �x0; x�1 D �x0 C 1,
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x�1 � x1 D 1; : : : ; x�MC1 � xMC1 D �M). In contrast
to the first case, two paths have a common initial condi-
tion x�0 D x0 D x0, but the second path is perturbed as
if a shock of "1 D 1 is realized at time 1 through the dy-
namic system of xt D �xt�1 C "t . In either interpretation,
however, IRFM is the difference between x�t and xt at ex-
actly M-period after the shock has occurred and the IRF
does not depend on the initial condition x0. In addition,
the shape of IRF is preserved even if we replace the unit
shock with a shock of size ı. The IRF becomes �Mı and
thus the IRF to a unit shock can be considered as a ratio of
�Mı to ı or the normalized IRF.

In the linear framework, the choice between the two
interpretations does not matter in practice since the two
cases yield exactly the same IRF. However, for nonlinear
models, two alternative interpretations lead to different
definitions of the IRF. Depending on the objective of the
analysis, one may use the former version [31] or the lat-
ter version [42,58] of the nonlinear IRFs. The M-period
ahead nonlinear impulse response based on the first inter-
pretation considered by [31] is defined as

IRFM(ı; x) D E
�
xtCM�1jXt�1 D x�

�

� E
�
xtCM�1jXt�1 D x

�

D E
�
xMjX0 D x�

�
� E

�
xMjX0 D x

�

D fM(x�) � fM(x)

where Xt�1 D (xt�1; : : : ; xt�p)0; x� D (x0 C ı; x�1; : : : ;
x�pC1)0 and x D (x0; x�1; : : : ; x�pC1)0. Unlike the linear
IRF, the nonlinear IRF depends on the size of shock ı and
the initial condition (or the history) X0 D x. Interestingly,
the partial derivative 
 fM;1(x) D @ fM(x)/@xt�1 corre-
sponds to normalized IRF (proportional to the nonlinear
IRF) for small ı since

lim
ı!0

IRFM(ı; x)
ı

D lim
ı!0

fM(x0 C ı; x�1; : : : ; x�pC1)
ı

�
f (x0; x�1; : : : ; x�pC1)

ı
D 
 fM;1(x) :

In the one-dimensional case, the IRF simplifies to

IRFM(ı; x0) D E
�
xtCM�1jxt�1 D x0 C ı

�

� E
�
xtCM�1jxt�1 D x0

�

D E
�
xMjx0 D x0 C ı

�
� E

�
xMjx0 D x0

�

D fM(x0 C ı) � fM(x0) :

The first derivative f 0M(x), thus corresponds to the IRF to
an infinitesimally small deviation since

lim
ı!0

IRFM(ı; x0)
ı

D lim
ı!0

fM(x0 C ı) � f (x0)
ı

D f 0M(x0):

Recall that M(x0) D M�1 ln j
QM

tD1 f
0(xt�1)j. If

QM
tD1

f 0(xt�1) can be approximated by f 0M(x0), both normalized
IRF and the local Lyapunov exponent contain the same in-
formation regarding the initial value sensitivity.

Next, based on the second interpretation, IRF can be
alternatively defined as

IRF�M(ı; x) D E
�
xtCM�1jxt D f (x)C ı;Xt�1 D x

�

� E(xtCM�1jXt�1 D x)
D E

�
xMjx1 D f (x)C ı;X0 D x

�

� E(xM jX0 D x)
D fM�1(x�) � fM(x)

where Xt�1 D (xt�1; : : : ; xt�p)0 and x D (x0; x�1; : : : ;
x�pC1)0 and x� D ( f (x) C ı; x0; x�1; : : : ; x�pC2)0. This
version of nonlinear IRF is sometimes referred to as the
generalized impulse response function [42,58]. Using the
fact that

fM(x) D fM�1
�
f (x); x0; x�1; : : : ; x�pC2


;

the equivalence of the partial derivative 
 fM�1;1(x) D
@ fM�1(x)/@xt�1 and the small deviation IRF can be also
shown as

lim
ı!0

IRF�M(ı; x)
ı

D lim
ı!0

fM�1
�
f (x)C ı; x0; x�1; : : : ; x�pC2



ı

�
fM�1

�
f (x); x0; x�1; : : : ; x�pC2



ı

D 
 fM�1;1( f (x); x0; x�1; : : : ; x�pC2) :

In the one dimensional case, the IRF formula reduces
to

IRF�M(ı; x0) D E
�
xtCM�1jxt D f (x0)C ı; xt�1 D x0

�

� E(xtCM�1jxt�1 D x0)
D E

�
xMjx1 D f (x0)C ı; x0 D x0

�

� E(xM jx0 D x0)
D E

�
xM�1jx0 D f (x0)C ı

�

� E(xM jx0 D x0)
D fM�1( f (x0)C ı) � fM(x0)
D fM�1( f (x0)C ı) � fM�1( f (x0)) :
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Similarly, the small deviation IRF is given by

lim
ı!0

IRF�M(ı; x0)
ı

D lim
ı!0

fM�1( f (x0)C ı) � fM�1( f (x0))
ı

D f 0M�1( f (x0)) :

The nonlinear impulse response function can be es-
timated nonparametrically without specifying the func-
tional form by an analogy to Lyapunov exponent estima-
tion (see [72] and [66]). Instead of minimizing

PT
tD1(xt �

ˇ0�ˇ
0
1(Xt�1�x))2KH(Xt�1�x), the local linear estimator

of M-period ahead predictor fM(x) and its partial deriva-
tives (@ fM)/(@xt� j)(x) for j D 1; : : : ; p can be obtained
by minimizing,

PT�MC1
tD1 (xtCM�1 � ˇM;0 � ˇ

0
M;1(Xt�1 �

x))2KH(Xt�1 � x), or b̌M;0(x) Dbf M(x) and

b̌M;1(x) D

2

6
6
4

b̌M;11(x)
:::

b̌M;1p(x)

3

7
7
5 D

2

6
6
4


bf M;1(x)
:::


bf M;p(x)

3

7
7
5 ;

respectively, where b̌M(x) D (b̌M;0(x); b̌M;1(x)0)0 D
(X0xWxXx )�1X0xWxY,

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�M � x)0

3

7
5 ;

Y D (xM ; : : : ; xT)0 and Wx D diag fKH(X0 � x); : : : ;
KH(XT�M � x)g. The local linear estimator of the IRF
is then given by

bIRFM(ı; x) Dbf M(x�) �bf M(x)

where x� D (x0 C ı; x�1; : : : ; x�pC1)0 and x D (x0;
x�1; : : : ; x�pC1)0. Similarly, the estimator of the alterna-
tive IRF is given by

bIRF�M(ı; x) Dbf M�1(x�) �bf M(x)

where x� D (bf (x) C ı; x0; x�1; : : : ; x�pC2)0 and x D
(x0; x�1; : : : ; x�pC1)0. When x and ı are given, comput-
ing nonparametric IRFs for a sequence ofM provide a use-
ful information on the persistence of deviation without
specifying the autoregressive function. However, instead
of reporting IRFs for many possible combinations of x
and ı, one can also compute the small deviation IRF based
on the nonparametric estimate of the first partial deriva-
tive at x. The local linear estimator of the small devia-
tion IRF is given by 
bf M;1(x) for the first version, and


bf M�1;1(bf (x); x0; x�1; : : : ; x�pC2) for the second ver-
sion, respectively. A large change in the value of deriva-
tives with increasing M represents the sensitive depen-
dence on initial conditions.

Yao and Tong’s Variance Decomposition

The initial value sensitivity of the system with dynamic
noise also has an implication in the presence of addi-
tional observation noise. Suppose that current observa-
tion is subject to a measurement error, a rounding er-
ror, or when only preliminary estimates of aggregate eco-
nomic variables announced by the statistical agency are
available. When the true current position deviates slightly
from x D (x0; x�1; : : : ; x�pC1)0 by ı D (ı1; : : : ; ıp)0, the
performance of the same predictor may be measured by
E[fxtCM � fM(x)g2jXt D x C ı]. Under a certain condi-
tion, this MSFE can be decomposed as follows:

E
�
fxtCM � fM(x)g2jXt D xC ı

�

D �2M(xC ı)C f fM(xC ı)� fM(x)g2

D �2M(xC ı)C fı0
 fM(x)g2 C o(jjıjj2)

where
 fM(x) D (
 fM;1(x); : : : ;
 fM;p(x))0; 
 fM; j(x) D
(@ fM)/(@xt� j)(x) for j D 1; : : : ; p. This decomposition
shows two dominant components in the MSFE. The first
component represents the prediction error caused by the
randomness in the system at point xC ı. This compo-
nent will be absent in the case where there is no dynamic
noise "t in the system. The second component represents
the difference caused by the deviation ı from the initial
point x. When the non-zero deviation ı is much smaller
than � , the standard deviation of "t, the first component
�2M(x C ı) D �2M(x) C O(jjıjj) is the dominant term
because the second component fı0
 fM(x)g2 is of order
O(jjıjj2). However, for a nonlinear system with a very
small error "t, the contribution of the second term can
become nonnegligible. Thus, [80] considered 
 fM(x) as
a measure of sensitivity to initial conditions for theM-pe-
riod ahead forecast (They referred to the M-step Lya-
punov-like index).

If fM(x) is replaced by a mean square consistent esti-
matorbf M(x), such as a local linear estimator b̌M;0(x),

lim
T!1

E
h
fxTCM �bf M(x)g2jXT D xC ı

i

D �2M(xC ı)C fı0
 fM(x)g2 C o(jjıjj2) :

Thus the decomposition is still valid. For the estimation
of the sensitivity measure 
 fM(x), the local linear esti-
mator b̌M;0(x) D 
bf M(x) can be used. In practice, it
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is convenient to consider a norm version of the measure
LIM(x) D jj
 fM(x)jj and report its estimator

bLIM(x) D jj
bf M(x)jj

evaluated at various x. In a one-dimensional case, they
are LIM(x0) D j f 0M(x0)j and bLIM(x0) D jbf 0M(x0)j,
respectively. Note that LIM(x) is related to the deriva-
tive of the normalized nonlinear impulse response func-
tion IRFM(ı; x). Recall that, in the one-dimensional case,
a normalized IRF to infinitesimal shocks becomes the first
derivative. Thus, LIM(x0) is the absolute value of the esti-
mator of the corresponding IRF. In the multidimensional
case, IRF to small shocks becomes the partial derivative
with respect to the first components. If shocks are also
given to other initial values in IRF, computing the norm
of the estimator of all IRFs yields LIM(x).

This sensitivity measure is also related to the local
Lyapunov exponent. In the one-dimensional case, with
a fixed M, the local Lyapunov exponent can be written
as M(x0) D M�1 ln j

QM
tD1 f

0(xt�1)j. If the contribu-
tion of "t is very small, d f (M)(x0)/dx �

QM
tD1 f

0(xt�1)
and then the estimator bf 0M(x0) becomes an estimator
of d f (M)(x0)/dx. Thus M(x0) can be also estimated by
M�1 ln bLIM(x0).

Information Matrix

The last measure of the initial value sensitivity is the
one based on the distance between two distributions
of M-steps ahead forecast, conditional on two nearby ini-
tial values x D (x0; x�1; : : : ; x�pC1)0 and xC ı where
ı D (ı1; : : : ; ıp)0. Let �M(yjx) and
�M(yjx) be the con-
ditional density function of xM given X0 D x and a p � 1
vector of its partial derivatives. [81] suggested using Kull-
back–Leibler information to measure the distance, which
is given by

KM(ı; x) D
Z C1

�1

˚
�M(yjxC ı)� �M(yjx)

�

� ln
˚
�M(yjxC ı)/�M(yjx)

�
dy :

Assuming the smoothness of conditional distribution
and interchangeability of integration and differentiation,
Taylor series expansion around x for small ı yields

KM(ı; x) D ı0IM(x)ı C o(jjıjj2)

where

IM(x) D
Z C1

�1


�M(yjx)
�M(yjx)0/�M(yjx)dy :

If initial value x is treated as a parameter vector of the dis-
tribution, IM(x) is the Fisher’s information matrix, which
represents the information on x contained in xM . This
quantity can be used as an initial value sensitivity measure
since more information on x implies more sensitivity of
distribution of xM to the initial condition x. This informa-
tion matrix measure and the M-step Lyapunov-like index
are related via the following inequality when the system is
one-dimensional,

IM(x0) �
LI2M(x0)
�2M(x0)

:

Thus, for a given M-step Lyapunov-like index, a larger
conditional MSFE implies more sensitivity. In addition,
because that M(x0) � M�1 ln LIM(x0) and �2M(x0) �
�2[1C

PM�1
jD1 expf2(M � j)M� j( f ( j)(x0))g],

ln IM(x0) � 2MM(x0)

�ln

2

41C
M�1X

jD1

exp
n
2(M � j)M� j( f ( j)(x0))

o
3

5�ln �2

holds approximately.
As an alternative to Kullback–Leibler distance, [28]

considered L2-distance given by

DM(ı; x) D
Z C1

�1

f�M(yjxC ı) � �M(yjx)g2dy :

Because of a similar argument, for small ı;DM(ı; x)
can be approximated by

DM(ı; x) D ı0 JM(x)ı C o(jjıjj2)

where

JM(x) D
Z C1

�1


�M(yjx)
�M(yjx)0dy :

Note that JM(x) cannot be interpreted as Fisher’s informa-
tion but can still be used as a sensitivity measure.

Both IM(x) and JM(x) can be estimated non-
parametrically. Consider the minimization problem ofPT�MC1

tD1 (�h(xtCM�1 � y) � ˇM;0 � ˇ
0
M;1(Xt�1 � x))2

KH(Xt�1 � x) where �h(u) D �(u/h)/h, h is the band-
width and � is a univariate kernel function, instead of
minimizing

PT�MC1
tD1 (xtCM�1 � ˇM;0 � ˇ0M;1(Xt�1 �

x))2KH(Xt�1 � x). Then, b̌M;0(x; y) D b�M(yjx) and
b̌M;1(x; y) D 
b�M(yjx), where b̌M(x; y) D (b̌M;0(x; y);
b̌M;1(x; y)0)0 D (X0xWxXx )�1X0xWxYy ,

Xx D

2

6
4

1 (X0 � x)0
:::

:::

1 (XT�M � x)0

3

7
5 ;
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Yy D f�h(xM � y); : : : ; �h(xT � y)g0 and Wx D

diag fKH(X0 � x); : : : ;KH(XT�M � x)g. Then the esti-
mators of IM(x) and JM(x) are given by

bIM(x) D
Z C1

�1


b�M(yjx)
b�M(yjx)0/b�M(yjx)dy

and

bJM(x) D
Z C1

�1


b�M(yjx)
b�M(yjx)0dy ;

respectively.

Forecasting Financial Asset Returns
and Sensitive Dependence

Nonlinear Forecasting of Asset Returns

In this subsection, a quick review of the general issues of
forecasting financial asset returns is first provided, then
the empirical results on the nonlinear forecasting based on
nonparametric methods are summarized.

In the past, the random walk model was considered as
the most appropriate model to describe the dynamics of
asset prices in practice (see [24]). However, after decades
of investigation, more evidence on some predictable com-
ponents of asset returns has been documented in the lit-
erature. Although the evidence is often not very strong,
several studies report the positive serial dependence for
relatively short horizon stock returns. For example, [47]
show that first-order autocorrelation of weekly returns on
the Center for Research in Security Prices (CRSP) index
is as high as 30 percent and significant when an equal-
weighted index is used, but is somewhat less when a value-
weighted index is used ([12] provide similar evidence for
the daily return). The conditional mean of stock returns
may not depend only on the past returns but also on other
economic variables, including dividend yields, price earn-
ings ratio, short and long interest rates, industrial produc-
tion and inflation rate. A comprehensive statistical analy-
sis to evaluate the 1-month-ahead out-of-sample forecast
of 1 month excess returns by these predictors is conducted
by [55]. Some results on the long-horizon predictability in
stock returns, based on lagged returns (e. g., [25] and [57])
and other economic variables such as dividend yields or
dividend-price ratios (e. g., [26] and [13]) are also avail-
able. This evidence on long-horizon forecasts, however, is
still controversial because the standard statistical inference
procedure may not be reliable in case when the correlation
coefficient is computed from a small number of nonover-
lapping observations [62] or when the predictor is very
persistent in the forecasting regression [73].

The question is whether the introduction of nonlin-
ear structure helps improve the forecasting performance of
future asset returns. When the nonlinear condition mean
function is unspecified, the neural network method has of-
ten been employed as a reliable nonparametric method in
predicting the returns. For IBM daily stock returns, [75]
found no improvement in out-of-sample predictability
based on the neural network model. For daily returns of
the Dow Jones Industrial Average (DJIA) index, [33] esti-
mated a nonlinear AR model using the same method. He,
in contrast, showed that MSFE reduction over a bench-
mark linear AR model could be as large as 12.3 percent
for the 10-day-ahead out-of-sample forecast. The role of
economic fundamentals as predictors can be also investi-
gated under the nonlinear framework. Using a model se-
lection procedure similar to the one employed by [55],
some evidence of MSFE improvement from neural net-
work-based forecast of excess returns was provided in [60]
and [59] but no encouraging evidence was found in simi-
lar studies by [61] and [49]. In practice, ‘noise traders’ or
‘chartists’ may predict prices using some technical trad-
ing rules (TTRs) rather than using economic fundamen-
tals. For example, a simple TTR based on the moving aver-
age can generate a buy signal when the current asset price
level Pt is above n�1

Pn
iD1 Pt�iC1 for some positive inte-

ger n and a sell signal when it is below. [11] found some
evidence on the nonlinearity in the conditional mean of
DJIA returns conditional on buy-sell signals. [33] further
considered including past buy-sell signals as predictors in
the neural networkmodel and found that an improvement
in MSFE over the linear AR model was even larger than
the case when only lagged returns are used as a predictor
in the neural network model. One useful nonlinear model
is the functional coefficient AR model where the AR coef-
ficient can depend on time or some variables. For exam-
ple, as in [39], the AR coefficient can be a function of buy-
sell signals. [44] claimed that a functional coefficient AR
model with a coefficient as a function of the moving aver-
age of squared returns well described the serial correlation
feature of stock returns.

This moderate but increasing evidence of nonlinear
forecastability applies not only to the stock market but
also to the foreign exchange market. In the past, [52]
could not find any reasonable linear model that could
out-perform the random walk model in an out-of-sam-
ple forecast of foreign exchange rates. The nonlinear AR
model was estimated nonparametrically by [19] but no
forecasting improvement over the random walk model
could be found in their analysis. However, many follow-
up studies, including [34,39,43,76], provided some evi-
dence on forecastability with nonlinear AR models es-
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timated using neural networks or other nonparametric
methods.

One important and robust empirical fact is that much
higher positive serial correlation is typically observed for
the volatility measures such as the absolute returns, jxtj,
and their power transformation, jxtj˛ for ˛ > 0, than
for the returns, xt ([20,69]). This observation is often re-
ferred to as a volatility clustering. As a result, forecast-
ing volatility has been much more successful than fore-
casting returns themselves. The most commonly used ap-
proach in forecasting volatility is to describe the condi-
tional variance of asset returns using the class of ARCH
and GARCH models ([8,23]). The volatility of stock re-
turns is also known to respond more strongly to negative
shocks in returns than positive ones. This ‘leverage effect’
often motivates the introduction of nonlinear structure in
volatility modeling such as the EGARCH model of [53].
Instead of estimating the unknown parameter in a speci-
fied ARCH model, the nonparametric method can be also
employed to estimate the possibly nonlinear ARCHmodel
in forecasting (see [46]). The better forecastability of mar-
ket direction (or market timing), sign (xt), than that of re-
turns, has also been documented in the literature. Exam-
ples are [55] for the stock market and [39,43], and [16]
for the foreign exchange market. Since the return, xt , can
be decomposed into a product of the two components,
jxtj � sign (xt), one may think the strong linear or nonlin-
ear forecastability of the volatility and the sign of returns
should lead to forecastability of the returns as well. Inter-
estingly, however, [17] theoretically showed that the serial
dependence of asset return volatilities and that of return
signs did not necessarily imply the serial dependence of
returns.

In summary, a growing number of recent studies show
some evidence of linear and nonlinear forecastability of as-
set returns, and stronger evidence of forecastability of their
nonlinear transformations, such as the squared returns,
absolute returns and the sign of returns. In this sense, the
nonlinearity seems to be playing a non-negligible role in
explaining the dynamic behavior of asset prices.

Initial Value Sensitivity in Financial Data

Theoretically, when investors have heterogeneous expec-
tations about the future prices, asset price dynamics can be
chaotic with a positive Lyapunov exponent [10]. A com-
prehensive list on earlier empirical work related to the
sensitive dependence and chaos in financial data is pro-
vided in [2,6]. Many early studies employed either the
BDS test or a dimension estimator and provided the in-
direct evidence on sensitive dependence and chaos. For

example, [64] applied the BDS test to weekly returns on
the value-weighted CRSP portfolio and rejected iid ran-
domness. [41] further examined weekly value-weighted
and equally weighted CRSP portfolio returns, as well as
Standard & Poor 500 (S&P 500) index returns for var-
ious frequencies, and found strong evidence against iid.
Similar findings are also reported for the daily foreign ex-
change rate returns in [40]. For financial variables, high-
frequency data or tick data is often available to researchers.
Earlier examples of studies on chaos using high-frequency
data include [50], who found some evidence of low-di-
mensional chaos based on the correlation dimension and
K2 entropy of 20-second S&P 500 index returns, with
a number of observations as large as 19,027. Estimation
results on Lyapunov exponents for high-frequency stock
returns are also available. In addition to the BDS test, [1]
and [2] employed the neural network method and found
negative Lyapunov exponents in 1- and 5-minute returns
of cash series of S&P 500, UK Financial Times Stock
Exchange-100 (FTSE-100) index, Deutscher Aktienindex
(DAX), the Nikkei 225 Stock Average, and of futures series
of S&P 500 and FTSE-100. Using the resampling proce-
dure of [32], [65] obtained significantly negative Lyapunov
exponents for daily stock returns of the Austrian Traded
Index (ATX). For the foreign exchange market, [18] es-
timated Lyapunov exponents of the Canadian, German,
Italian and Japanese monthly spot exchange rates us-
ing neural nets and found some mixed result regarding
their sign.

By using the absolute returns or their power transfor-
mation instead of using returns themselves, sensitive de-
pendence of volatility on initial conditions may be exam-
ined nonparametrically. [68] used neural nets and esti-
mated Lyapunov exponents of higher order daily returns
of the DJIA index. Figure 5 shows their global Lyapunov
exponent estimates for simple returns, squared returns
and absolute returns. For all cases, Lyapunov exponents
are significantly negative but the values of absolute returns
are always larger than that of simple returns. While some
estimates are close to zero, the observation of the mono-
tonically increasing Lyapunov exponent with increasing p,
for daily and absolute returns, resembles the simulation
results of the previous section implying the upward bias
when the true Lyapunov exponent is negative.

For the exchange rate market, [29] applied [63]’s
method to absolute changes and their power transforma-
tion of Canadian and German nominal exchange rates and
did not reject the null hypothesis of chaos.

For a local measure of initial value sensitivity, [68]
also reported the median values of 145 estimates of lo-
cal Lyapunov exponents for DJIA returns, in addition
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Financial Forecasting, Sensitive Dependence, Figure 5
Global Lyapunov exponents of stock returns

to the global Lyapunov exponents. [45] reported the
nonlinear impulse response functions of yen/dollar and
deutschemark/dollar exchange rate returns based on para-
metrically estimated GARCH model. [14] reported a Lya-

Financial Forecasting, Sensitive Dependence, Figure 6
Upper panel displays the time series plot of the CRSP daily returns. Lower panel shows the absolute CRSP daily returns with data
coloured redwhenever their Lyapunov-like indices are above the third quartile of the indices, and data coloured yellow if their indices
are between the median and the third quartile

punov-like index of [80] for the simple returns and abso-
lute returns of CRSP data used in [64]. From Fig. 6, they
concluded that (i) the first half of the CRSP series is more
volatile than its second half, suggesting that the market
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becomes more mature with time, and (ii) volatile periods
tend to form clusters. [65] reported the information ma-
trix measure of local sensitive dependence computed from
ATX data based on the parametric estimation of ARCH
and GARCH models, in addition to nonparametric esti-
mates of the global Lyapunov exponent.

On the whole, empirical studies on global and local
sensitivity measures suggested less sensitive dependence
than the chaotic model would predict, but some sensitivity
of short-term forecastability on initial conditions.

Future Directions

Some of the possible directions of future research topics
are in order.

The first direction is to search for the economic the-
ory behind the initial value sensitivity if detected in the
data. The statistical procedures introduced here are basi-
cally data description and the empirical results obtained
by this approach are not directly connected to underly-
ing economic or finance theory. Theories, such as the one
developed by [10], can predict complex behavior of as-
set prices but direct estimation of the model are typically
not possible. Thus, for most cases, the model is evalu-
ated by matching the actual data with the one generated
from the model in simulation. Thus direct implication to
the sensitive dependence measure would provide a more
convincing argument for the importance of knowing the
structure. [38] may be considered as one attempt in this
direction.

The second direction is to develop better procedures
in estimating the initial value sensitivity with the im-
proved accuracy in the environment of a relatively small
sample size. In the Jacobian method of estimating the
Lyapunov exponent, the conditional mean function has
been estimated either parametrically and nonparametri-
cally. A fully nonparametric approach, however, is known
to suffer from a high dimensionality problem. A semipara-
metric approach, such as the one for an additiveARmodel,
is likely to be useful in this context but has not been used
in the initial value sensitivity estimation.

The third direction is towards further analysis based
on high-frequency data, which has become more com-
monly available in empirical finance. Much progress has
been made in the statistical theory on the realized volatil-
ity computed from such data, and forecasting volatility
of asset returns based on the realized volatility has been
empirically successful (see, e. g., [3]). However, so far,
this approach has not been used in detecting the initial
value sensitivity in volatility. In addition, realized volatil-
ity is known to suffer from market microstructure noise

when sampling frequency increases. Given the fact that
the initial value sensitivity measures can be considered in
the framework of the nonlinear AR models, namely, the
stochastic environment in the presence of noise, it is of in-
terest in investigating the robustness of the procedure to
the marketmicrostructure noise when applied to high-fre-
quency returns.
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Glossary

Control system A control system is a dynamical sys-
tem incorporating a control input designed to achieve
a control objective. It is finite dimensional if the phase
space (e. g. a vector space or a manifold) is of finite di-
mension. A continuous-time control system takes the
form dx/dt D f (x; u), x 2 X, u 2 U and t 2 R denot-
ing respectively the state, the input, and the contin-
uous time. A discrete-time system assumes the form
xkC1 D f (xk ; uk ), where k 2 Z is the discrete time.

Open/closed loop A control system is said to be in open
loop form when the input u is any function of time,
and in closed loop form when the input u is a func-
tion of the state only, i. e., it takes the more restrictive
form u D h(x(t)), where h : X ! U is a given func-
tion called a feedback law.

Controllability A control system is controllable if any
pair of states may be connected by a trajectory of the
system corresponding to an appropriate choice of the
control input.

Stabilizability A control system is asymptotically sta-
bilizable around an equilibrium point if there exists
a feedback law such that the corresponding closed
loop system is asymptotically stable at the equilibrium
point.

Output function An output function is any function of
the state.

Observability A control system given together with an
output function is said to be observable if two different
states give rise to two different outputs for a convenient
choice of the input function.

Flatness An output function is said to be flat if the state
and the input can be expressed as functions of the out-
put and of a finite number of its derivatives.

Definition of the Subject

A control system is controllable if any state can be steered
to another one in the phase space by an appropriate choice
of the control input. While the stabilization issue has been
addressed since the XIXth century (Watt’s steam engine
governor providing a famous instance of a stabilization
mechanism at the beginning of the English Industrial Rev-
olution), the controllability issue has been addressed for
the first time by Kalman in the 1960s [20]. The control-
lability is a basic mathematical property which character-
izes the degrees of freedom available when we try to con-
trol a system. It is strongly connected to other control
concepts: optimal control, observability, and stabilizabil-
ity. While the controllability of linear finite-dimensional
systems is well understood since Kalman’s seminal papers,
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the situation is more tricky for nonlinear systems. For the
later, concepts borrowed from differential geometry (e. g.
Lie brackets, holonomy, . . . ) come into play, and the study
of their controllability is still a field of active research.

The controllability of finite dimensional systems is
a basic concept in control theory, as well as a notion
involved in many applications, such as spatial dynamics
(with e. g. spatial rendezvous), airplane autopilot, indus-
trial robots, quantic chemistry.

Introduction

A very familiar example of a controllable finite dimen-
sional system is given by a car that one attempts to park
at some place in a parking. The phase space is roughly the
three dimensional Euclidean space R3, a state being com-
posed of the two coordinates of the center of mass together
with the angle formed by some axis linked to the car with
the (fixed) abscissa axis. The driver may act on the angle
of the wheels and on their velocity, which may thus be
taken as control inputs. In general, the presence of obsta-
cles (e. g. other cars) impose to change the phase space R3

to a subset of it. The controllability issue is roughly how to
combine changes of direction and of velocity to drive the
car from a position to another one. Note that the system
is controllable, even if the number of control inputs (2) is
less than the number of independent coordinates (3). This
is an important property resting upon the many connec-
tions between the coordinates of the state. While in nature
each motion is generally controlled by an input (think of
the muscles in an arm), the control theory focuses on the
study of systems in which an input living in a space of low
dimension (typically, one) is sufficient to control the coor-
dinates of a state living in a space of high dimension.

The article is outlined as follows. In Sect. “Control
Systems”, we introduce the basic concepts (controllabil-
ity, stabilizability) used thereafter. In the next section, we
review the linear theory, recalling the Kalman and Hau-
tus tests for the controllability of a time invariant system,
and the Gramian test for a time dependent system. Sec-
tion “Linearization Principle” is devoted to the lineariza-
tion principle, which allows to deduce the controllability
of a nonlinear system from the controllability of its lin-
earization along a trajectory. The focus in Sect. “High Or-
der Tests” is on nonlinear systems for which the linear
test fails, i. e., the linearized system fails to be controllable.
High order conditions based upon Lie brackets ensuring
controllability will be given, first for systems without drift,
and next for systems with a drift. Section “Controllability
and Observability” explores the connections between con-
trollability and observability, while Sect. “Controllability

and Stabilizability” shows how to derive stabilization re-
sults from the controllability property. A final section on
the flatness, a new theory used in many applications to de-
sign explicit control inputs, is followed by some thoughts
on future directions.

Control Systems

A finite dimensional (continuous-time) control system
is a differential equation of the form

ẋ D f (x; u) (1)

where x 2 X is the state, u 2 U is the input,
f : X � U ! U is a smooth (typically real analytic) non-
linear function, ẋ D dx/dt, and X and U denote finite
dimensional manifolds. For the sake of simplicity, we
shall assume here that X � Rn and U � Rm are open
sets. Sometimes, we impose U to be bounded (or to be
a compact set) to force the control input to be bounded.
Given some control input u 2 L1(I;U), i. e. a measurable
essentially bounded function u : I ! U , a solution of (1)
is a locally Lipschitz continuous function x(�) : J ! X,
where J � I, such that

ẋ(t) D f (x(t); u(t)) for almost every t 2 J : (2)

Note that J � I only, that is, x needs not exist on all I, as it
may escape to infinity in finite time. In general, u is piece-
wise smooth, so that (2) holds actually for all t except for
finitelymany values. The basic problem of the controllabil-
ity is the issue whether, given an initial state x0 2 X, a ter-
minal state xT 2 X, and a control time T > 0, one may
design a control input u 2 L1([0; T];U) such that the so-
lution of the system

(
ẋ(t) D f (x(t) ; u(t))
x(0) Dx0

(3)

satisfies x(T) D xT .
An equilibrium position for (1) is a point x 2 X such

that there exists a value u 2 U (typically, 0) such that
f (x; u) D 0.

An asymptotically stabilizing feedback law is a func-
tion k : X ! U with k(x) D u, such that the closed loop
system

ẋ D f (x; k(x)) (4)

obtained by plugging the control input

u(t) :D k(x(t)) (5)
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into (1), is locally asymptotically stable at x. Recall that
it means that (i) the equilibrium point is stable: for any
" > 0, there exists some ı > 0 such that any solution of (4)
starting from a point x0 such that jx0 � xj < ı at t D 0, is
defined onRC and satisfies jx(t)j � " for all t � 0; (ii) the
equilibrium point is attractive. For some ı > 0 as in (i),
we have also that x(t)! 0 as t !1 whenever jx0j < ı.

The feedback laws considered here will be continu-
ous, and we shall mean by a solution of (4) any function
x(t) satisfying (4) for all t. Notice that the solutions of the
Cauchy problems exist (locally in time) by virtue of Peano
theorem.

A control system is asymptotically stabilizable
around an equilibrium position if an asymptotically sta-
bilizing feedback law as above does exist. In the following,
we shall also consider time-varying systems, i. e. systems
of the form

ẋ D f (x; t; u) (6)

where f : X � I � U ! X is smooth and I � R denotes
some interval. The controllability and stabilizability con-
cepts extend in a natural way to that setting. Time-varying
feedback laws

u(t) D k(x(t); t) (7)

where k : X �R! U is a smooth (generally time peri-
odic) function, prove to be useful in situations where the
classical static stabilization defined above fails.

Linear Systems

Time Invariant Linear Systems

A time invariant linear system is a system of the form

ẋ D Ax C Bu (8)

where A 2 Rn�n , B 2 Rn�m denote some time invari-
ant matrices. This corresponds to the situation where the
function f in (1) is linear in both the state and the input.
Here, x 2 Rn and u 2 Rm , and we consider square inte-
grable inputs u 2 L2([0; T];Rm ). We say that (8) is con-
trollable in time T if for any pair of states x0; xT 2 Rn ,
one may construct an input u 2 L2([0; T];Rm) that
steers (8) from x0 to xT . Recall that the solution of (8) em-
anating from x0 at t D 0 is given by Duhamel formula

x(t) D etAx0 C
Z t

0
e(t�s)ABu(s) ds :

Let us introduce the n�nmmatrixR(A; B)D (BjABjA2Bj
� � � jAn�1B) obtained by gathering together the matrices

B;AB;A2B; : : : ;An�1B. Then we have the following rank
condition due to Kalman [20] for the controllability of
a linear system.

Theorem 1 (Kalman) The linear system (8) is controllable
in time T if and only if rankR(A; B) D n.

We notice that the controllability of a linear system does
not depend of the control time T, and that the con-
trol input may actually be chosen very smooth (e. g. in
C1([0; T];Rn)).

Example 1 Consider a pendulum to which is applied
a torque as a control input. A simplified model is then
given by the following linear system

ẋ1 D x2 (9)

ẋ2 D �x1 C u (10)

where x1; x2 and u stand respectively for the angle with the
vertical, the angular velocity, and the torque. Here, n D 2,
m D 1, and

AD
�

0 1
�1 0

�
and B D

�
0
1

�
: (11)

As rank(B;AB) D 2, we infer from Kalman rank test
that (9)–(10) is controllable.

When (8) fails to be controllable, it may be important (e. g.
when studying the stabilizability) to identify the uncon-
trollable part of (8). Assume that (8) is not controllable,
and let r D rank R(A; B) < n. It may be seen that the
reachable space from the origin, that is the set

R D
(

xT 2 Rn ; 9T > 0; 9u 2 L2
�
[0; T] ;Rn ;

Z T

0
e(T�s)ABu(s) ds D xT

)

;

(12)

coincides with the space spanned by the columns of the
matrixR(A; B):

R D fR(A; B)V ;V 2 Rnmg (13)

In particular, dimR D rankR(A; B) D r < n. Let e D
fe1; : : : ; eng be the canonical basis of Rn , and let f f1; : : : ;
frg be a basis of R, that we complete in a basis f D
f f1; : : : ; fng of Rn . If x (resp. x̃) denotes the vector of the
coordinates of a point in the basis e (resp. f), then x D Tx̃
where T D ( f1; f2; : : : ; fn) 2 Rn�n . In the new coordi-
nates x̃, (8) may be written

˙̃x D Ãx̃ C B̃u (14)
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where Ã :D T�1AT and B̃ :D T�1B read

ÃD
�

Ã1 Ã2
0 Ã3

�
B̃ D

�
B̃1
0

�
(15)

with Ã1 2 Rr�r , B̃1 2 Rr�m . Writing x̃ D (x̃1; x̃2) 2 Rr �

Rn�r , we have

˙̃x1 D Ã1 x̃1 C Ã2 x̃2 C B̃1u (16)

˙̃x2 D Ã3 x̃2 (17)

and it may be proved that

rank R(Ã1; B̃1) D r : (18)

This is the Kalman controllability decomposition.
By (18), the dynamics of x̃1 is well controlled. Actually,
a solution of (18) evaluated at t D T assumes the form

x̃1(T) D eTÃ1 x̃1(0)C
Z T

0
e(T�s)Ã1 Ã2 x̃2(s) ds

C

Z T

0
e(T�s)Ã1 B̃1u(s)ds

D eTÃ1x1 C
Z T

0
e(T�s)Ã1 B̃1u(s)ds

if we set x1 D x̃1(0)C
R T
0 e�sÃ1 Ã2 x̃2(s)ds. Hence x̃1(T)

may be given any value inRr . On the other hand, no con-
trol input is present in (17). Thus x̃2 stands for the uncon-
trolled part of the dynamics of (8).

Another test based upon a spectral analysis has been
furnished by Hautus in [16].

Theorem 2 (Hautus) The control system (8) is controllable
in time T if and only if rank(I � A; B) D n for all  2 C.

Notice that in Hautus test we may restrict ourselves to the
complex numbers  which are eigenvalues of A, for other-
wise rank(I � A) D n.

Time-Varying Linear Systems

Let us now turn to the controllability issue for a time-vary-
ing linear system

ẋ(t) D A(t)x(t)C B(t)u(t) (19)

where A 2 L1([0; T] ;Rn�n), B 2 L1([0; T] ;Rn�m ) de-
note time-varying matrices. Such a system arises in a nat-
ural way when linearizing a control system (1) along a tra-
jectory. The input u(t) is any function in L1([0; T] ;Rm)
and a solution of (19) is any locally Lipschitz continuous
function satisfying (19) almost everywhere.

We define the fundamental solution � associated
with A as follows. Pick any s 2 [0; T], and letM : [0; T]!
Rn�n denote the solution of the system

Ṁ(t) DA(t)M(t)
M(s) D I

(20)

Then �(t; s) :D M(t). Notice that �(t; s) D e(t�s)A

when A is constant.
The solution x of (20) starting from x0 at time t0 reads

then

x(t) D �(t; t0)x0 C
Z t

t0
�(t; s)B(s)u(s)ds :

The controllability Gramian of (20) is the matrix

G D
Z T

0
�(T; t)B(t)B�(t)��(T; t)dt

where � denotes transpose. Note that G 2 Rn�n , and
that G is a nonnegative symmetric matrix. Then the fol-
lowing result holds.

Theorem 3 (Gramian test) The system (19) is controllable
on [0; T] if and only if the Gramian G is invertible.

Note that the Gramian test provides a third criterion to test
whether a time invariant linear system (8) is controllable
or not.

Corollary 4 (8) is controllable in time T if and only if the
Gramian

G D
Z T

0
e(T�t)ABB�e(T�t)A

�

dt

is invertible.

As the value of the control time T plays no role according
to Kalman test, it follows that the Gramian G is invertible
for all T > 0 whenever it is invertible for one T > 0.

If (19) is controllable, then an explicit control input
steering (19) from x0 to xT is given by

u(t) D B�(t)��(T; t)G�1(xT � �(T; 0)x0) : (21)

A remarkable property of the control input u is that umin-
imizes the control cost

E(u) D
Z T

0
ju(t)j2dt

among all the control inputs u 2 L1([0; T] ;Rm) (or
u 2 L2([0; T] ;Rm )) steering (19) from x0 to xT . Actually
a little more can be said.
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Proposition 5 If u 2 L2([0; T] ;Rm ) is such that the so-
lution x of (19) emanating from x0 at t D 0 reaches xT at
time T, and if u ¤ u, then

E(u) < E(u):

The main drawback of the Gramian test is that the knowl-
edge of the fundamental solution �(t; s) and the compu-
tation of an integral term are both required. In the situ-
ation where A(t) and B(t) are smooth functions of time,
a criterion based only upon derivatives in time is also
available. Assume that A 2 C1([0; T] ;Rn�n) and that
B 2 C1([0; T] ;Rn�m), and define a sequence of func-
tions Bi 2 C1([0; T] ;Rn�m) by induction on i by

B0 D B

Bi DABi�1 �
dBi�1

dt
:

(22)

Then the following result holds (see, e. g., [11]).

Theorem 6 Assume that there exists a time t 2 [0; T] such
that

span(Bi (t)v ; v 2 Rm ; i � 0) D Rn : (23)

Then (19) is controllable.

The converse of Theorem 6 is true when A and B are real
analytic functions of time. More precisely, we have the fol-
lowing result.

Theorem 7 If A and B are real analytic on [0; T], then (20)
is controllable if and only if for all t 2 [0; T]

span(Bi (t)v ; v 2 Rm ; i � 0) D Rn :

Clearly, Theorem 7 is not valid whenA and B are merely of
class C1. (Take n D m D 1, A(t) D 0, B(t) D exp(�t�1)
and t D 0.)

Linear Control Systems in Infinite Dimension

Let us end this section with some comments concerning
the extensions of the above controllability tests to control
systems in infinite dimension (see [30] for more details).
Let us consider a control system of the form

ẋ D Ax C Bu (24)

where A : D(A) � X ! X is an (unbounded) operator
generating a strongly continuous semigroup (S(t))t�0 on
a (complex) Hilbert space X, and B : U ! X is a bounded
operator, U denoting another Hilbert space.

Definition 8 We shall say that (24) is

� Exactly controllable in time T if for any x0; xT 2 X
there exists u 2 L2([0; T];U) such that the solution x
of (24) emanating from x0 at t D 0 satisfies x(T) D xT ;

� Null controllable in time T if for any x0 2 X there ex-
ists u 2 L2([0; T] ;U) such that the solution x of (24)
emanating from x0 at t D 0 satisfies x(T) D 0;

� Approximatively controllable in time T if for any
x0; xT 2 X and any " > 0 there exists u 2 L2([0; T];U)
such that the solution x of (24) emanating from x0
at t D 0 satisfies jjx(T)� xT jj < " (jj � jj denoting the
norm in X).

This setting is convenient for a partial differential equation
with an internal control Bu :D gu(t), where g D g(x) is
such that gU � X. Let us review the above controllability
tests.

� Kalman rank test, which is based on a computation of
the dimension of the reachable space, possesses some
extension giving the approximate (not exact!) control-
lability of (24) (See [13], Theorem 3.16). More inter-
estingly, a Kalman-type condition has been introduced
in [23] to investigate the null controllability of a system
of coupled parabolic equations.

� Hautus test admits the following extension due to
Liu [25]: (24) is (exactly) controllable in time T if and
only if there exists some constant ı > 0 such that

jj(A� � I)zjj2 C jjB�zjj2 � ıjjzjj2

8z 2 D(A�) ;8 2 C : (25)

In (25), A� (resp. B�) denotes the adjoint of the opera-
tor A (resp. B), and jj � jj denotes the norm in X.

� The Gramian test admits the following extension, due
to Dolecky–Russell [14] and J.L. Lions [24]: (24) is ex-
actly controllable in time T if and only if there exists
some constant ı > 0 such that
Z T

0
jjB�S�(t)x0jj2dt � ıjjx0jj2 8x0 2 X :

Linearization Principle

Assume given a smooth nonlinear control system

ẋ D f (x; u) (26)

where f : X � U ! Rn is a smooth map (i. e. of class C1)
and X � Rn , U � Rm denote some open sets. Assume
also given a reference trajectory (x; u) : [0; T]! X � U
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where u 2 L1([0; T] ;U) is the control input and x
solves (26) for u � u. We introduce the linearized system
along the reference trajectory defined as

ẏ D A(t)y C B(t)v (27)

where

A(t) D
@ f
@x

(x(t); u(t)) 2 Rn�n ;

B(t) D
@ f
@u

(x(t); u(t)) 2 Rn�m
(28)

and y 2 Rn , v 2 Rm . (27) is formally derived from (26) by
letting x D x C y, u D u C v and observing that

ẏ D ẋ � ẋ D f (x C y; u C v) � f (x; u)

�
@ f
@x

(x; u)y C
@ f
@u

(x; u)v :

Notice that if (x0; u0) is an equilibrium point of f (i. e.
f (x0; u0) D 0) and x(t) � x0, u(t) � u0, then A(t) D
A D @ f

@x (x0; u0) and B(t) D B D @ f
@u (x0; u0) take constant

values. Equation (27) is in that case the time invariant lin-
ear system

ẏ D Ay C Bv : (29)

Let x0; xT 2 X. We seek for a trajectory x of (26) connect-
ing x0 to xT when x0 (resp. xT) is close to x(0) (resp. x(T)).
In addition, wewill impose that the trajectory (x, u) be uni-
formly close to the reference trajectory (x; u). We are led
to the following

Definition 9 The system (26) is said to be controllable
along (x; u) if for each " > 0, there exists some ı > 0 such
that for each x0; xT 2 X with jjx0 � x(0)jj < ı, jjxT �
x(T)jj < ı, there exists a control input u 2 L1([0; T] ;U)
such that the solution of (26) starting from x0 at t D 0
satisfies x(T) D xT and

sup
t2[0;T]

�
jx(t) � x(t)j C ju(t) � u(t)j


� " :

We are in a position to state the linearization principle.

Theorem 10 Let (x; u) be a trajectory of (26). If the lin-
earized system (27) along (x; u) is controllable, then the sys-
tem (26) is controllable along the trajectory (x; u).

When the reference trajectory is stationary, we obtain the
following result.

Corollary 11 Let (x0; u0) be such that f (x0; u0) D 0. If
the linearized system (29) is controllable, then the sys-
tem (26) is controllable along the stationary trajectory
(x; u) D (x0; u0).

Notice that the converse of Corollary 11 is not true. (Con-
sider the system ẋ D u3 with n D m D 1, x0 D u0 D 0,
which is controllable at the origin as it may be seen by
performing the change of inputs v D u3.) Often, the non-
linear part of f plays a crucial role in the controllability
of (26). This will be explained in the next section using
Lie algebraic techniques. Another way to use the nonlin-
ear contribution in f is to consider a linearization of (26)
along a convenient (not stationary) trajectory. We con-
sider a system introduced by Brockett in [6] to exhibit an
obstruction to stabilizability.

Example 2 The Brockett’s system reads

ẋ1 D u1 (30)

ẋ2 D u2 (31)

ẋ3 D x1u2 � x2u1 : (32)

Its linearization along (x0; u0) D (0; 0), which reads

ẏ1 D v1
ẏ2 D v2
ẏ3 D 0 ;

is not controllable, by virtue of the Kalman rank condi-
tion. We may however construct a smooth closed trajec-
tory such that the linearization of (30)–(32) along it is con-
trollable. Pick any time T > 0 and let u1(t) D cos(� t/T),
u2(t) D 0 for t 2 [0; T] and x0 D 0. Let x denote the
corresponding solution of (30)–(32). Notice that x1(t) D
(T/�) sin(� t/T) (hence x1(T) D 0), and x2 D x3 � 0.
The linearization of (30)–(32) along (x; u) is (27) with

A(t) D

0

@
0 0 0
0 0 0
0 � cos(� t/T) 0

1

A ;

B(t) D

0

@
1 0
0 1
0 (T/�) sin(� t/T)

1

A :

(33)

Notice that A and B are real analytic, so that we may apply
Theorem 8 to check whether (27) is controllable or not on
[0; T]. Simple computations give

B1(t) D

0

@
0 0
0 0
0 �2 cos(� t/T)

1

A :

Clearly,

span

 

B0(0)
�

1
0

�
; B0(0)

�
0
1

�
; B1(0)

�
0
1

�!

D R3
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hence (27) is controllable. We infer from Theorem 10
that (30)–(32) is controllable along (x; u).

Notice that if we want to prove the controllability around
an equilibrium point as above for Brockett’s system, we
have to design a reference control input u so that

x0 D x(0) D x(T) : (34)

When f is odd with respect to the control, i. e.

f (x;�u) D � f (x; u) ; (35)

then (34) is automatically satisfied whenever u fulfills

u(t) D �u(T � t) 8t 2 [0; T] : (36)

Indeed, it follows from (35)–(36) that the solution x to (26)
starting from x0 at t D 0 satisfies

x(t) D x(T � t) 8t 2 [0; T] : (37)

In particular, x(T) D x(0) D x0. Of course, the control
inputs of interest are those for which the linearized sys-
tem (27) is controllable, and the latter property is “gener-
ically” satisfied for a controllable system. The above con-
struction of the reference trajectory is due to J.-M. Coron,
and is referred to as the return method. A precursor to
that method is [34]. Beside giving interesting results for
the stabilization of finite dimensional systems (see be-
low Sect. “Controllability and Stabilizability”), the return
method has also been successfully applied for the control
of some important partial differential equations arising in
Fluid Mechanics (see [11]).

High Order Tests

In this section, we shall derive new controllability tests
for systems for which the linearization principle is incon-
clusive; that is, the linearization at an equilibrium point
fails to be controllable. To simplify the exposition, we shall
limit ourselves to systems affine in the control, i. e. sys-
tems of the form

ẋ D f0(x)Cu1 f1(x)C� � �Cum fm(x); x 2 Rn ; juj1 � ı
(38)

where juj1 :D sup1�i�m jui j and ı > 0 denotes a fixed
number. We assume that f0(0) D 0 and that fi 2
C1(Rn ;Rn) for each i 2 f0; : : : ;mg. To state the results
we need to introduce a few notations. Let v D (v1; : : : ; vn)
and w D (w1; : : : ;wn) be two vector fields of class C1 on

Rn . The Lie bracket of v and w, denoted by [v;w], is the
vector field

[v;w] D
@w
@x

v �
@v
@x

w

where @w/@x is the Jacobian matrix (@wi /@x j)i; jD1;:::;n ,
and the vector v(x) D (v1(x); : : : ; vn(x)) is identified to

the column

 
v1(x)

:
:
:

vn (x)

!

. As [v;w] is still a smooth vector field,

we may bracket it with v, or w, etc. Vector fields like
[v; [v;w]], [[v;w]; [v; [v;w]]], etc. are termed iterated Lie
brackets of v, w.

The Lie bracketing of vector fields is an operation sat-
isfying the two following properties (easy to check)

1. Anticommutativity: [w; v] D �[v;w];
2. Jacobi identity: [ f ; [g; h]]C [g; [h; f ]]C [h; [ f ; g]] D 0.

The Lie algebra generated by f 1, . . . ,f m, denoted
Lie( f1; : : : ; fm), is the smallest vector subspace v of
C1(Rn ;Rn) which contains f 1, . . . ,f m andwhich is closed
under Lie bracketing (i. e. v;w 2 V ) [v;w] 2 V). It
is easily to see that Lie( f1; : : : ; fm) is the vector space
spanned by all the iterated Lie brackets of f 1,. . . ,f m. (Actu-
ally, using the anticommutativity and Jacobi identity, we
may restrict ourselves to iterated Lie brackets of the form
[ fi1 ; [ fi2 ; [: : : [ fi p�1 ; fi p ] : : : ]]] to span Lie( f1; : : : ; fm).)
For any x 2 Rn , we set

Lie( f1; : : : ; fm)(x) D fg(x); g 2 Lie( f1; : : : ; fm)g � Rn :

Example 3
Let us consider the system

ẋ D u1 f1(x)Cu2 f2(x) D u1

0

@
1
0
0

1

ACu2

0

@
0
1
x1

1

A (39)

where x D (x1; x2; x3) 2 R3. Clearly, the linearized sys-
tem at (x0; u0) D (0; 0), which reduces to ẋ D u1 f1(0) C
u2 f2(0), is not controllable. However, we shall see later that
the system (39) is controllable. First, each point (˙"; 0; 0)
(resp. (0;˙"; 0)) may be reached from the origin by letting
u(t) D (˙1; 0) (resp. u(t) D (0;˙1)) on the time interval
[0; "]. More interestingly, any point (0; 0; "2) may also be
reached from the origin in a time T D O("), even though
(0; 0; 1) 62 span( f1(0); f2(0)). To prove the last claim, let
us introduce for i D 1; 2 the flow map � t

i defined by
� t
i (x0) D x(t), where x(�) solves

ẋ D fi(x) ; x(0) D x0 :

Then, it is easy to see that

��"2 ��"1 �"2�
"
1 (0) D (0; 0; "2) :
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Finite Dimensional Controllability, Figure 1
Trajectory from x0 D (0;0;0) to xT D (0;0; "2)

It means that the control

u(t) D

8
ˆ̂
<

ˆ̂:

(1; 0) if 0 � t < "
(0; 1) if " � t < 2"
(�1; 0) if 2" � t < 3"
(0;�1) if 3" � t < 4"

steers the solution of (39) from x0 D (0; 0; 0) at t D 0 to
xT D (0; 0; "2) at T D 4". (See Fig. 1.) More generally, if
f 1 and f 2 denote arbitrary smooth vector fields and � t

1, �
t
2

denote the corresponding flow maps, we have that

��"2 ��"1 �"2�
"
1 (0) D "

2[ f1; f2](0)C O("3) : (40)

Thus, it is possible to reach points in the direction of the
Lie bracket [ f1; f2](0). However, the process is not very ef-
ficient: in the direction of the Lie bracket [ f1; f2](0), only
points located at a distance from the origin of order "2 may
be reached in a time of order ".

Let us proceed to the controllability properties of affine
systems. We first review the results for systems without
drift (i. e. f0 D 0), and next consider the general (only par-
tially understood) situation where a drift exists.

Affine Systems Without Drift

We assume that f0 D 0, so that (38) takes the form

ẋ D u1 f1(x)C � � � C um fm(x) : (41)

When m < n, the linearized system at any stationary tra-
jectory (x; 0), which reads

ẏ D ( f1(x) � � � fm(x))v ; (42)

cannot be controllable. High order tests are therefore very
useful in this setting. We adopt the following

Definition 12 The system (41) is said to be controllable
if for any T > 0 and any x0; xT 2 Rn , there exists a con-
trol u 2 L1([0; T] ;Rm ) such that the solution x(t) of (41)
emanating from x0 at t D 0 reaches xT at time t D T .

Note that the controllability may be supplemented with
the words: local, with small controls, in small time, in large
time, etc. An important instance, the small-time local con-
trollability, is introduced below in Definition 14.

The following result has been obtained by Rashevs-
ki [28] and Chow [8].

Theorem 13 (Rashevski–Chow) Assume that fi 2 C1

(Rn ;Rn) for all i 2 f1; : : : ;mg. If

Lie( f1; : : : ; fm)(x) D Rn 8x 2 Rn ; (43)

then (41) is controllable.

Example 3 continued (39) is controllable, since [ f1; f2] D
(0; 0; 1) gives

span( f1(x); f2(x); [ f1; f2](x)) D R3 8x 2 R3 : (44)

Example 2 continued Brockett’s system is also control-
lable, since [ f1; f2] D (0; 0; 2) gives (43).

Notice that Theorem 13 is almost sharp. Indeed, it has
been proved by Sussmann–Jurdjevic in [36] that (43) has
to be satisfied for a controllable system (41) with real ana-
lytic vector fields (i. e. fi 2 C! (Rn ;Rn) for each i).

Affine Systems with Drifts

We consider now a control system with a drift

ẋ D f0(x)C u1 f1(x)C � � � C um fm(x) (45)

where fi 2 C1(Rn ;Rn) for any i 2 f0; : : : ;mg, and
f0(0) D 0 but f0 6� 0. As no control is associated with
the vector field f 0, one expects that the latter will occupy
a singular place in the controllability tests.

Let � > 0 be a given number. We assume that the con-
trol input u is a measurable function taking its values in
the compact set U� D [��; �]m . To emphasize the depen-
dence in u, we shall sometimes denote by x(t, u) the so-
lution of (45) such that x(0; u) D 0. The attainable set at
time T > 0 is the set

A�(T) D
˚
x(T; u); u(t) 2 U�8t 2 [0; T]

�
:
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Definition 14 We shall say that the control system (45) is

� accessible from the origin if the interior of A�(T) is
nonempty for any T > 0;

� small time locally controllable (STLC) at the origin if
for any T > 0 there exists a number ı > 0 such that for
any pair of states (x0; xT) with jx0j < ı; jxT j < ı, there
exists a control input u 2 L1([0; T] ;U�) such that the
solution x of

ẋ D f0(x)Cu1 f1(x)C � � � Cum fm(x); x(0) D x0 (46)

satisfies x(T) D xT .

(Notice that in the definition of the small time local con-
trollability, certain authors assume x0 D 0 in above defi-
nition, or require the existence of ı > 0 for any T > 0 and
any � > 0.)

The accessibility property turns out to be easy to char-
acterize. As a STLC system is clearly accessible, the acces-
sibility property is often considered as the first property to
test before investigating the controllability of a given affine
system.

The following result provides an accessibility test based
upon the rank at the origin of the Lie algebra generated by
all the vectors fields involved in the control system.

Theorem 15 (Hermann–Nagano) If

dimLie( f0; f1; : : : ; fm)(0) D n (47)

then the system (45) is accessible from the origin. Con-
versely, if (45) is accessible from the origin and the vector
fields f 0, f 1, . . . , f m are real analytic, then (47) has to be
satisfied.

Example 4 Pick any k 2 N� and consider as in [22] the
system

�
ẋ1 D u; juj � 1 ;
ẋ2 D (x1)k

(48)

so that n D 2, m D 1, and f0(x) D (0; (x1)k), f1(x) D
(1; 0). Setting

(ad f1; f0) D [ f1; f0]

(adiC1 f1; f0) D [ f1; (adi f1; f0)] 8i � 1

we obtain at once that

(adk f1; f0)(x) D (0; k !)

hence

Lie( f0; f1)(0) D R2 :

It follows from Theorem 15 that (48) is accessible from
the origin. On the other hand, it is clear that (48) is not
STLC at the origin when k is even, since ẋ2 D (x1)k � 0,
hence x2 is nondecreasing. Using a controllability test due
to Hermes [17], it may be shown that (48) is STLC at the
origin if and only if k is odd. Note that the linearized sys-
tem at the origin fails to be controllable whenever k � 2.

Let us consider some affine system (45) which is accessi-
ble from the origin. We exclude the trivial situation when
the linearization principle may be applied, and seek for
a Lie algebraic condition ensuring that (45) is STLC. If
h is a given iterated Lie bracket of f0; f1; : : : ; fm , we let
ıi (h) denote the number of occurrences of f i in the def-
inition of h. For instance, if m D 3 and

h D [[ f1; [ f1; f0]]; [ f1; f2]] (49)

then

ı0(h) D 1 ; ı1(h) D 3 ; ı2(h) D 1 ; ı3(h) D 0 :

Notice that the fields f0; f1; : : : ; fm are considered as in-
determinates when computing the ıi(h)’s, their effective
values as vector fields being ignored.

Let Sm denote the usual symmetric group, i. e. Sm is
the group of all the permutations of the set f1; : : : ;mg. If
 2 Sm and h is an iterated Lie bracket of f0; f1; : : : ; fm ,
we denote by h the iterated Lie bracket obtained by
replacing, in the definition of h, f i by f (i) for each
i 2 f1; : : : ;mg. For instance, if  D (1 2 3) and h is as
in (49), then

h D [[ f2; [ f2; f0]]; [ f2; f3]] :

Finally, we set

�(h) D
X

 2Sm

h :

With h as in (49), and
S3 D

˚
idf1;2;3g; (1 2 3); (1 3 2); (1 2); (1 3); (2 3)

�
, we obtain

�(h) D [[ f1; [ f1; f0]]; [ f1; f2]]C [[ f2; [ f2; f0]]; [ f2; f3]]
C [[ f3; [ f3; f0]]; [ f3; f1]]C [[ f2; [ f2; f0]]; [ f2; f1]]
C [[ f3; [ f3; f0]]; [ f3; f2]]C [[ f1; [ f1; f0]]; [ f1; f3]] :

We need the following

Definition 16 Let � 2 [0; 1]. We say that the system (45)
satisfies the condition S(�) if, for any iterated Lie bracket h
with ı0(h) odd and ıi (h) even for all i 2 f1; : : : ;mg, the
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vector �(h)(0) belongs to the vector space spanned by the
vectors g(0) where g is an iterated Lie bracket satisfying

�ı0(g)C
mX

iD1

ıi (g) < �ı0(h)C
mX

iD1

ıi(h) :

Then we have the following result proved in [35].

Theorem 17 (Sussmann) If the condition S(�) is satisfied
for some � 2 [0; 1], then the system (45) is small time locally
controllable at the origin.

When � D 0, Sussmann’s theorem is nothing else than
Hermes’ theorem. Sussmann’s theorem, which is in itself
very useful in Engineering (see, e. g., [5]), has been ex-
tended in [1,4,18].

Controllability and Observability

Assume given a control system

ẋ D f (x; u) (50)

together with an output function

y D h(x) (51)

where f : X � U ! Rn and h : X ! Y are smooth func-
tions, and X � Rn , U � Rm and Y � Rp denote some
open sets. y typically stands for a (partial) measurement
of the state, e. g. the p first coordinates, where p < n. Of-
ten, only y is available, and for the stabilization of (50)
we should consider an output feedback law of the form
u D k(y). We shall say that (50)–(51) is observable on the
interval [0; T] if, for any pair x0; x̃0 of points in X, one
may find a control input u 2 L1([0; T] ;U) such that if
x (resp. x̃) denotes the solution of (50) emanating from x0
(resp. x̃0) at time t D 0, and y (resp. ỹ) denotes the corre-
sponding output function, we have

y(t) ¤ ỹ(t) for some t 2 [0; T] : (52)

For a time invariant linear control system and a linear out-
put function

ẋ D Ax C Bu (53)

y D Cx (54)

with A 2 Rn�n , B 2 Rn�m , C 2 Rp�n , the output is
found to be

y(t) D Cx(t) D CetAx0 C C
Z t

0
e(t�s)ABu(s)ds : (55)

In particular,

y(t) � ỹ(t) D CetA(x0 � x̃0) (56)

and B does not play any role. Therefore, (53)–(54) is ob-
servable in time T if and only if the only state x 2 Rn such
that CetAx D 0 for any t 2 [0; T] is x D 0. Differentiating
in time and applying Cayley–Hamilton theorem, we ob-
tain the following result.

Theorem 18 System (53)–(54) is observable in time T if
and only if rankO(A;C) D n, where the observability ma-
trix O(A;C) 2 Rnp�n is defined by

O(A;C) D

0

BB
B
@

C
CA
:::

CAn�1

1

CC
C
A
�

Noticing that

R(A; B)� D O(A�; B�)

and introducing the adjoint system

˙̃x D A� x̃ (57)

ỹ D B� x̃ (58)

we arrive to the following duality principle.

Theorem 19 A time invariant linear system is controllable
if and only if its adjoint system is observable.

Notice that the observability of the adjoint system is easily
shown to be equivalent to the existence of a constant ı > 0
such that

Z T

0
jjB�etA

�

x0jj2dt � ıjjx0jj2 8x0 2 Rn : (59)

As it has been pointed out in Sect. “Linear Systems”, the
equivalence between the controllability of a system and the
observability of its adjoint, expressed in the form (59), is
still true in infinite dimension, and provides a very useful
way to investigate the controllability of a partial differen-
tial equation.

Finally, using the duality principle, we see that any
controllability test gives rise to an observability test, and
vice-versa.
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Controllability and Stabilizability

In this section we shall explore the connections between
the controllability and the stabilizability of a system. Let
us begin with a linear control system

ẋ D Ax C Bu : (60)

Performing a linear change of coordinates if needed, we
may assume that (60) has the block structure given by the
Kalman controllability decomposition

�
ẋ1
ẋ2

�
D

�
A1 A2
0 A3

��
x1
x2

�
C

�
B1
0

�
u (61)

where A1 2 Rr�r , B1 2 Rr�m , and where rankR
(A1; B1) D r. For any square matrixM 2 Cn�n we denote
by �(M) its spectrum, i. e.

�(M) D f 2 C ; det(M � I) D 0g :

Let us note C� :D f 2 C ; Re < 0g. Then the asymp-
totic stabilizability of (60) may be characterized as follows.

Theorem 20 There exists a (continuous) asymptotically
stabilizing feedback law u D k(x) with k(0) D 0 for (60) if
and only if �(A3) � C�. If it is the case, then for any family
S D (i )1�i�r of elements ofC� invariant by conjugation,
there exists a linear asymptotically stabilizing feedback law
u(x) D Kx, with K 2 Rm�n , such that

�(AC BK) D �(A3)[ S : (62)

The property (62), which shows to what extend the spec-
trum of the closed loop system can be assigned, is referred
to as the pole shifting theorem.

As a direct consequence of Theorem 20, we obtain the
following result.

Corollary 21 A time invariant linear system which is con-
trollable is also asymptotically stabilizable.

It is natural to ask whether Corollary 21 is still true for
a nonlinear system, i. e. if a controllable system is neces-
sarily asymptotically stabilizable. A general result cannot
be obtained, as is shown by Brockett’s system.

Example 2 continued Brockett’s system (30)–(32) may be
written ẋ D u1 f1(x)C u2 f2(x) D f (x; u), and it follows
from Theorem 13 that (30)–(32) is controllable around
(x0; u0) D (0; 0). Let us now recall a necessary condition
for stabilizability due to R. Brockett [6].
Brockett third condition for stabilizability. Let
f 2 C(Rn �Rm ;Rn) with f (x0; u0) D 0. If the control
system ẋ D f (x; u) can be locally asymptotically stabilized
at x0 by means of a continuous feedback law u satisfying

u(x0) D u0, then the image by f of any open neighborhood
of (x0; u0) 2 Rn �Rm contains an open neighborhood of
0 2 Rn .

Here, for any neighborhood V of (x0; u0) in R5, f (V)
does not cover an open neighborhood of 0 in R3, since
(0; 0; ") 62 f (V) for any " 2 R. According to Brockett’s
condition, the system (30)–(32) is not asymptotically sta-
bilizable at the origin.

Thus a controllable system may fail to be asymptoti-
cally stabilizable by a continuous feedback law u D k(x)
due to topological obstructions. It turns out that this phe-
nomenon does not occur when the phase space is the
plane, as it has been demonstrated by Kawski in [21].

Theorem 22 (Kawski) Let f0; f1 be real analytic vector
fields onR2 with f0(0) D 0 and f1(0) ¤ 0. Assume that the
system

ẋ D f0(x)C u f1(x) ; u 2 R (63)

is small time locally controllable at the origin. Then it is also
asymptotically stabilizable at the origin by a Hölder contin-
uous feedback law u D k(x).

In larger dimension (n � 3), a way to go round the topo-
logical obstruction is to consider a time-varying feedback
law u D k(x; t). It has been first observed by Sontag and
Sussmann in [33] that for one-dimensional state and in-
put (n D m D 1), the controllability implies the asymp-
totic stabilizability by means of a time-varying feedback
law. This kind of stabilizability was later established by
Samson in [31] for Brockett’s system (n D 3 and m D 2).
Finally, using the return method, Coron proved that the
implication
Controllability ) Asymptotic Stabilizability by Time-
Varying Feedback
was a principle verified in most cases. To state precise re-
sults, we consider affine systems

ẋ D f0(x)C
mX

iD1

ui fi(x) ; x 2 Rn

and distinguish again two cases: (1) f0 � 0 (no drift);
(2) f0 6� 0 (a drift).
(1) System without drift

Theorem 23 (Coron [9]) Assume that (43) holds for
the system (41). Pick any number T > 0. Then there ex-
ists a feedback law u D (u1; : : : ; um) 2 C1(Rn �R;Rm )
such that

u(0; t) D 0 8t 2 R (64)

u(x; t C T) D u(x; t) 8(x; t) 2 Rn �R (65)
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and such that 0 is globally asymptotically stable for the sys-
tem

ẋ D
mX

iD1

ui (x; t) fi(x) :

(2) System with a drift

Theorem 24 (Coron [10]) Assume that the system (45)
satisfies the condition S(�) for some � 2 [0; 1]. Assume also
that n 62 f2; 3g and that

Lie( f0; f1; : : : ; fm)(0) D Rn :

Pick any T > 0. Then there exists a feedback law u D
(u1; : : : ; um) 2 C0(Rn�R;Rm )with u 2 C1((Rn nf0g)�
R;Rm ) such that (64)–(65) hold and such that 0 is locally
asymptotically stable for the system

ẋ D f0(x)C
mX

iD1

ui (x; t) fi(x) :

Flatness

While powerful criterions enable us to decide whether
a control system is controllable or not, most of them do
not provide any indication on how to design an explicit
control input steering the system from a point to another
one. Fortunately, there exists a large class of systems, the
so-called flat systems, for which explicit control inputs
may easily be found. The flatness theory has been intro-
duced by Fliess, Levine, Martin, and Rouchon in [15], and
since then it has attracted the interest of many researchers
thanks to its numerous applications in Engineering. Here,
we only sketch the main ideas, referring the interested
reader to [27] for a comprehensive introduction to the
subject.

Let us consider a smooth control system

ẋ D f (x; u) ; x 2 Rn ; u 2 Rm

given together with an output y 2 Rm depending on x, u,
and a finite number of derivatives of u

y D h(x; u; u̇; : : : ; u(r)) :

Following [15], we shall say that y is a flat output if the
components of y are differentially independent, and both
x and u may be expressed as functions of y and of a finite
number of its derivatives

x D k(y; ẏ; : : : ; y(p)) (66)

u D l(y; ẏ; : : : ; y(q)) : (67)

In (66)–(67), p and q denote some nonnegative integers,
and k and l denote some smooth functions. Since the

state x and the input u are parameterized by the flat out-
put y, to solve the controllability problem

ẋ D f (x; u) (68)

x(0) D x0 ; x(T) D xT (69)

it is sufficient to pick any function y 2 Cmax(p;q)([0; T];
Rm) such that

k(y; ẏ; : : : ; y(p))(0) D x(0) D x0 (70)

k(y; ẏ; : : : ; y(p))(T) D x(T) D xT : (71)

The constraints (70)–(71) are generally very easy to satisfy.
The desired control input u is then given by (67). Let us
show how this program may be carried out on two simple
examples.

Example 5 For the simple integrator

ẋ1 Dx2
ẋ2 Du

the output y D x1 is flat, for x2 D ẏ and u D ÿ. The out-
put z D x2 is not flat, as x1 D

R
z(t) dt. To steer the system

from x0 D (0; 0) to xT D (1; 0) in time T, we only have to
pick a function y 2 C2([0; T];R) such that

y(0) D 0 ; ẏ(0) D 0 ; y(T) D 1 ; and ẏ(T) D 0 :

Clearly, y(t) D t2(2T � t)2/T4 is convenient.

Example 6 Consider now the nonlinear system

ẋ1 D u1 (72)

ẋ2 D u2 (73)

ẋ3 D x2u1 : (74)

Eliminating the input u1 in (72)–(74) yields ẋ3 D x2 ẋ1, so
that x2 may be expressed as a function of x1; x3 and their
derivatives. The same is true for u2, thanks to (73). Let us
pick

y D (y1; y2) D (x1; x3) :

We claim that y is a flat output. Indeed,

(x1; x2; x3) D (y1;
ẏ2
ẏ1
; y2) ; (75)

(u1; u2) D (ẏ1;
ÿ2 ẏ1 � ẏ2 ÿ1

(ẏ1)2
) : (76)
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Pick x0 D (0; 0; 0) and xT D (0; 0; 1). Notice that, by the
mean value theorem, ẏ1 has to vanish somewhere, say at
t D t̄. We shall construct y1 in such a way that ẏ1 vanishes
only at t D t̄. For x2 not to be singular at t̄, we have to
impose the condition

ẏ2(t̄) D 0 :

If y1 and y2 are both analytic near t̄, we notice that
x2 D ẏ2/ẏ1 is analytic near t̄, hence u2 D ẋ2 is well-de-
fined (and analytic) near t̄. To steer the solution of (72)–
(74) from x0 D (0; 0; 0) to xT D (0; 0; 1), it is then suf-
ficient to pick a function y D (y1; y2) 2 C!([0; T];R2)
such that

y1(0) D y2(0) D 0; ẏ2(0) D 0; and ẏ1(0) ¤ 0 ;
y1(T) D 0; y2(T) D 1; ẏ2(T) D 0; and ẏ1(T) ¤ 0 :

ẏ1
�
T
2

�
D 0; ẏ2

�
T
2

�
D 0; ÿ1

�
T
2

�
¤ 0

and ẏ1(t) ¤ 0 for t ¤
T
2
:

Clearly,

(y1(t); y2(t)) D
�
t(T � t);

t4

4
�

Tt3

2
C

T2t2

4

�

is convenient.

Future Directions

Lie algebraic techniques have been used to provide power-
ful controllability tests for affine systems.However, there is
still an important gap between the known necessary con-
ditions (e. g. the Legendre Clebsh condition or its exten-
sions) and the sufficient conditions (e. g. the S(�) condi-
tion) for the small time local controllability. On the other
hand, it has been noticed by Kawski in ([22], Example 6.1)
that certain systems can be controlled on small time in-
tervals [0; T] only by using faster switching control vari-
ations, the number of switchings tending to infinity as T
tends to zero. As for switched systems [2], it is not clear
whether purely algebraic conditions be sufficient to char-
acterize the controllability of systems with drift.

Of great interest for applications is the development of
methods providing explicit control inputs, or control in-
puts computed in real time with the aid of some numerical
schemes, both for the motion planning and the stabiliza-
tion issue. The flatness theory seems to be a very promising
method, and it has been successfully applied in Engineer-
ing. An active research is devoted to filling the gap between
necessary and sufficient conditions for the existence of flat

outputs, and to extending the theory to partial differential
equations.

The control of nonlinear partial differential equations
may sometimes be reduced to the control of a family
of finite-dimensional systems by means of the Galerkin
method [3]. On the other hand, the spatial discretization
of partial differential equations by means of finite differ-
ences, finite elements, or spectral methods leads in a nat-
ural way to the control of finite dimensional systems (see,
e. g., [38]). Of great importance is the uniform bounded-
ness with respect to the discretization parameter of the
L2(0; T)-norms of the control inputs associated with the
finite dimensional approximations.

Geometric ideas borrowed from the control of finite
dimensional systems (e. g. the return method, the power
series expansion, the quasistatic deformation) have been
applied to prove the controllability of certain nonlinear
partial differential equations whose linearization fails to be
controllable. (See [11] for a survey of these techniques.)
The Korteweg–de Vries equation provides an interesting
example of a partial differential equation whose lineariza-
tion fails to be controllable for certain lengths of the space
domain [29]. However, for these critical lengths the reach-
able space proves to be of finite codimension, and it may
be proved that the full equation is controllable by using
the nonlinear term in order to reach the missing direc-
tions [7,12].
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Glossary

Cellular automaton A cellular automaton is a discrete
computational model studied in mathematics, com-
puter science, economics, biology, physics and chem-
istry etc. It consists of a regular array of cells, each cell
is a finite state automaton. The array can be in any
finite number of dimensions. Time (step) is also dis-
crete, and the state of a cell at time t (� 1) is a func-
tion of the states of a finite number of cells (called its
neighborhood) at time t � 1. Each cell has a same rule
set for updating its next state, based on the states in
the neighborhood. At every step the rules are applied
to the whole array synchronously, yielding a new con-
figuration.

Time-space diagram A time-space diagram is frequently
used to represent signal propagations in one-dimen-
sional cellular space. Usually, the time is drawn on the
vertical axis and the space on the horizontal axis. The
trajectories of individual signals in propagation are ex-
pressed in this diagram by sloping lines. The slope of
the line represents the propagation speed of the signal.
Time-space-diagrams that show the position of indi-
vidual signals in time and in space are very useful for
understanding cellular algorithms, signal propagations
and crossings in the cellular space.

Definition of the Subject

The firing squad synchronization problem (FSSP for
short) is formalized in terms of the model of cellular au-
tomata. Figure 1 shows a finite one-dimensional cellular
array consisting of n cells, denoted by Ci, where 1 � i � n.
All cells (except the end cells) are identical finite state au-
tomata. The array operates in lock-step mode such that the
next state of each cell (except the end cells) is determined
by both its own present state and the present states of its
right and left neighbors. All cells (soldiers), except the left
end cell, are initially in the quiescent state at time t D 0 and
have the property whereby the next state of a quiescent cell
having quiescent neighbors is the quiescent state. At time
t D 0 the left end cell (general) is in the fire-when-ready
state, which is an initiation signal to the array.

The firing squad synchronization problem is stated as
follows: Given an array of n identical cellular automata,
including a general on the left end which is activated at
time t D 0, one wants to give the description (state set and
next-state transition function) of the automata so that, at
some future time, all of the cells will simultaneously and,
for the first time, enter a special firing state. The set of
states and the next-state transition function must be in-
dependent of n. Without loss of generality, it is assumed

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 1
One-dimensional cellular automaton

that n � 2. The tricky part of the problem is that the same
kind of soldiers having a fixed number of states must be
synchronized, regardless of the length n of the array. The
problem itself is interesting as a mathematical puzzle and
a good example of recursive divide-and-conquer strategy
operating in parallel. It has been referred to as achieving
macro-synchronization given in micro-synchronization sys-
tems and realizing a global synchronization using only local
information exchange [10].

Introduction

Cellular automata are considered to be a nice model of
complex systems in which an infinite one-dimensional
array of finite state machines (cells) updates itself in
synchronous manner according to a uniform local rule.
A comprehensive study is made for a synchronization
problem that gives a finite-state protocol for synchroniz-
ing a large scale of cellular automata. Synchronization of
general network is a computing primitive of parallel and
distributed computations. The synchronization in cellu-
lar automata has been known as firing squad synchroniza-
tion problem since its development, in which it was orig-
inally proposed by J. Myhill in Moore [29] to synchro-
nize all parts of self-reproducing cellular automata. The
problem has been studied extensively for more than 40
years [1–80].

The present article firstly examines the state transition
rule sets for the famous firing squad synchronization al-
gorithms that give a finite-state protocol for synchroniz-
ing large-scale cellular automata, focusing on the funda-
mental synchronization algorithms operating in optimum
steps on one-dimensional cellular arrays. The algorithms
discussed herein are the Goto’s first algorithm [12], the
eight-state Balzer’s algorithm [1], the seven-state Gerken’s
algorithm [9], the six-state Mazoyer’s algorithm [25], the
16-state Waksman’s algorithm [74] and a number of re-
vised versions thereof. In addition, the article constructs
a survey of current optimum-time synchronization algo-
rithms and compares their transition rule sets with respect
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to the number of internal states of each finite state au-
tomaton, the number of transition rules realizing the syn-
chronization, and the number of state-changes on the ar-
ray. It also presents herein a survey and a comparison of
the quantitative and qualitative aspects of the optimum-
time synchronization algorithms developed thus far for
one-dimensional cellular arrays. Then, it provides sev-
eral variants of the firing squad synchronization prob-
lems including fault-tolerant synchronization protocols,
one-bit communication protocols, non-optimum-time al-
gorithms, and partial solutions etc. Finally, a survey on
two-dimensional firing squad synchronization algorithms
is presented. Several new results and viewpoints are also
given.

Firing Squad Synchronization Problem

A Brief History of the Developments
of Firing Squad Synchronization Algorithms

The problem known as the firing squad synchronization
problem was devised in 1957 by J. Myhill, and first ap-
peared in print in a paper by E.F. Moore [29]. This prob-
lem has been widely circulated, and has attracted much
attention. The firing squad synchronization problem first
arose in connection with the need to simultaneously turn
on all parts of a self-reproducing machine. The problem
was first solved by J. McCarthy and M. Minsky [28] who
presented a non-optimum-time synchronization scheme
that operates in 3nCO(1) steps for synchronizing n cells.
In 1962, the first optimum-time, i. e. (2n � 2)-step, syn-
chronization algorithm was presented by Goto [12], with
each cell having several thousands of states.Waksman [74]
presented a 16-state optimum-time synchronization algo-
rithm. Afterward, Balzer [1] and Gerken [9] developed
an eight-state algorithm and a seven-state algorithm, re-
spectively, thus decreasing the number of states required
for the synchronization. In 1987, Mazoyer [25] developed
a six-state synchronization algorithm which, at present, is
the algorithm having the fewest states.

Firing Squad Synchronization Algorithm

Section “Firing Squad Synchronization Algorithm” briefly
sketches the design scheme for the firing squad synchro-
nization algorithm according to Waksman [74] in which
the first transition rule set was presented. It is quoted from
Waksman [74].

The code book of the state transitions of machines
is so arranged to cause the array to progressively
divide itself into 2k equal parts, where k is an in-
teger and an increasing function of time. The end

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 2
Time-space diagram for Waksman’s optimum-time firing squad
synchronization algorithm

machines in each partition assume a special state so
that when the last partition occurs, all the machines
have for both neighbors machines at this state. This
is made the only condition for any machine to as-
sume terminal state.

Figure 2 is a time-space diagram for the Waksman’s
optimum-step firing squad synchronization algorithm.
The general at time t D 0 emits an infinite number of sig-
nals which propagate at 1/(2kC1 � 1) speed, where k is
positive integer. These signals meet with a reflected sig-
nal at half point, quarter points, . . . , etc., denoted by ˇ in
Fig. 2. It is noted that these cells indicated by ˇ are syn-
chronized. By increasing the number of synchronized cells
exponentially, eventually all of the cells are synchronized.

Complexity Measures and Properties
in Firing Squad Synchronization Algorithms

Time Complexity Any solution to the firing squad syn-
chronization problem can easily be shown to require
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(2n � 2)-steps for synchronizing n cells, since signals on
the array can propagate no faster than one cell per step,
and the time from the general’s instruction until the
synchronization must be at least 2n � 2. See Balzer [1],
Goto [12] and Waksman [74] for a proof. The next two
theorems show the optimum-time complexity for syn-
chronizing n cells on one-dimensional arrays.

Theorem 1 ([1,12,74]) Synchronization of n cells in less
than (2n � 2)-steps is impossible.

Theorem 2 ([1,12,74]) Synchronization of n cells at ex-
actly (2n � 2)-steps is possible.

Number of States The following three distinct states: the
quiescent state, the general state, and the firing state, are
required in order to define any cellular automaton that
can solve the firing squad synchronization problem. The
boundary state for C0 and CnC1 is not generally counted
as an internal state. Balzer [1] implemented a search strat-
egy in order to prove that there exists no four-state solu-
tion. He showed that no four-state optimum-time solution
exists. Sanders [40] studied a similar problem on a parallel
computer and showed that the Balzer’s backtrack heuristic
was not correct, rendering the proof incomplete and gave
a proof based on a computer simulation for the non-ex-
istence of four-state solution. Balzer [1] also showed that
there exist no five-state optimum-time solution satisfying
special conditions. It is noted that the Balzer’s special con-
ditions do not hold for the Mazoyer’s six-state solution
with the fewest states known at present. The question that
remains is: “What is the minimum number of states for
an optimum-time solution of the problem?” At present,
that number is five or six. Section “Partial Solutions” gives
some 4- and 5-state partial solutions that can synchronize
infinite cells, but not all.

Theorem 3 ([1,40]) There is no four-state CA that can
synchronize n cells.

Berthiaume, Bittner, Perković, Settle and Simon [2] con-
sidered the state lower bound on ring-connected cellular
automata. It is shown that there exists no three-state solu-
tion and no four-state symmetric solution for rings.

Theorem 4 ([2]) There is no four-state symmetric opti-
mum-time solution for ring-connected cellular automata.

Number of Transition Rules Any k-state transition ta-
ble for the synchronization has at most (k � 1)k2 en-
tries in (k � 1) matrices of size k � k. The number of
transition rules reflects the complexity of synchronization
algorithms.

Transition Rule Sets for Optimum-Time
Firing Squad Synchronization Algorithms

Section “Transition Rule Sets for Optimum-Time Firing
Squad Synchronization Algorithms” implements most of
the transition rule sets for the synchronization algorithms
above mentioned on a computer and check whether these
rule sets yield successful firing configurations at exactly
t D 2n � 2 steps for any n such that 2 � n � 10; 000.

Waksman’s 16-State Algorithm Waksman [74] pro-
posed a 16-state firing squad synchronization algo-
rithm, which, together with an unpublished algorithm
by Goto [12], is referred to as the first-in-the-world op-
timum-time synchronization algorithm. Waksman pre-
sented the first set of transition rules described in terms
of a state transition table that is defined on the following
state set D consisting of 16 states such that D = fQ, T,
P0, P1, B0, B1, R0, R1, A000, A001, A010, A011, A100, A101,
A110, A111g, where Q is a quiescent state, T is a firing state,
P0 and P1 are prefiring states, B0 and B1 are states for sig-
nals propagating at various speeds, R0 and R1 are trigger
states which cause the B0 and B1 states move in the left or
right direction and Ai jk ; i; j; k 2 f0; 1g are control states
which generate the state R0 or R1 either with a unit delay
or without any delay. The state P0 also acts as an initial
general.

USN Transition Rule Set Cellular automata researchers
have reported that some errors are included in the Waks-
man’s transition table. A computer simulation made in
Umeo, Sogabe and Nomura [64] reveals this to be true.
They corrected some errors included in the original Waks-
man’s transition rule set. The correction procedures can
be found in Umeo, Sogabe and Nomura [64]. This sub-
section gives a complete list of the transition rules which
yield successful synchronizations for any n. Figure 3 is the
complete list, which consists of 202 transition rules. The
list is referred to as the USN transition rule set. In the cor-
rection, a ninety-three percent reduction in the number
of transition rules is realized compared to the Waksman’s
original list. The computer simulation based on the table
of Fig. 3 gives the following observation. Figure 4 shows
snapshots of the Waksman’s 16-state optimum-time syn-
chronization algorithm on 21 cells.

Observation 3.1 ([54,64]) The set of rules given in Fig. 3
is the smallest transition rule set for Waksman’s optimum-
time firing squad synchronization algorithm.

Balzer’s Eight-State Algorithm Balzer [1] constructed
an eight-state, 182-rule synchronization algorithm and
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Firing Squad Synchronization Problem in Cellular Automata, Figure 3
USN transition table consisting of 202 rules that realizeWaksman’s synchronization algorithm. The symbol � represents the bound-
ary state

the structure of which is completely identical to that of
Waksman [74]. A computer examination made by Umeo,
Hisaoka and Sogabe [54] revealed no errors, however, 17
rules were found to be redundant. Figure 5 gives a list of
transition rules for Balzer’s algorithm and snapshots for
synchronization operations on 28 cells. Those redundant
rules are indicated by shaded squares. In the transition ta-
ble, the symbols “M”, “L”, “F” and “X” represent the gen-
eral, quiescent, firing and boundary states, respectively.

Noguchi [34] also constructed an eight-state, 119-rule op-
timum-time synchronization algorithm.

Gerken’s Seven-State Algorithm Gerken [9] construct-
ed a seven-state, 118-rule synchronization algorithm. In
the computer examination, no errors were found, how-
ever, 13 rules were found to be redundant. Figure 6 gives
a list of the transition rules for Gerken’s algorithm and
snapshots for synchronization operations on 28 cells. The
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 4
Snapshots of the Waksman’s 16-state optimum-time synchro-
nization algorithm on 21 cells

13 redundant rules are marked by shaded squares in the
table. The symbols “>”, “/”, “. . . ” and “#” represent the
general, quiescent, firing and boundary states, respectively.
The symbol “. . . ” is replaced by “F” in the configuration
(right) at time t D 54.

Mazoyer’s Six-State Algorithm Mazoyer [25] proposed
a six-state, 120-rule synchronization algorithm, the struc-
ture of which differs greatly from the previous three al-
gorithms discussed above. The computer examination re-

vealed no errors and only one redundant rule. Figure 7
presents a list of transition rules for Mazoyer’s algorithm
and snapshots of configurations on 28 cells. In the tran-
sition table, the letters “G”, “L”, “F” and “X” represent the
general, quiescent, firing and boundary states, respectively.

Goto’s Algorithm The first synchronization algorithm
presented by Goto [12] was not published as a journal pa-
per. According to Prof. Goto, the original note Goto [12] is
now unavailable, and the only existing material that treats
the algorithm is Goto [13]. The Goto’s study presents one
figure (Fig. 3.8 in Goto [13]) demonstrating how the algo-
rithm works on 13 cells with a very short description in
Japanese. Umeo [50] reconstructed the Goto’s algorithm
based on this figure. Mazoyer [27] also reconstructed this
algorithm again. The algorithm that Umeo [50] recon-
structed is a non-recursive algorithm consisting of amark-
ing phase and a 3n-step synchronization phase. In the first
phase, by printing a special marker in the cellular space,
the entire cellular space is divided into many smaller sub-
spaces, the lengths of which increase exponentially with
a common ratio of two, that is 2j, for any integer j such
that 1 � j � blog2 nc � 1. Themarking is made from both
the left and right ends. In the second phase, each subspace
is synchronized using a well-known conventional 3n-step
simple synchronization algorithm. A time-space diagram
of the reconstructed algorithm is shown in Fig. 8.

Gerken’s 155-State Algorithm Gerken [9] constructed
two kinds of optimum-time synchronization algorithms.
One seven-state algorithm has been discussed in the previ-
ous subsection, and the other is a 155-state algorithm hav-
ing 	(n log n) state-change complexity. The transition ta-
ble given in Gerken [9] is described in terms of two-layer
construction with 32 states and 347 rules. An expansion of
the transition table into a single-layer format yields a 155-
state table consisting of 2371 rules. Figure 9 shows a con-
figuration on 28 cells.

State Change Complexity

Vollmar [73] introduced a state-change complexity in or-
der to measure the efficiency of cellular algorithms and
showed that ˝(n log n) state-changes are required for the
synchronization of n cells in (2n � 2) steps.

Theorem 5 ([73]) ˝(n log n) state-change is necessary for
synchronizing n cells in (2n � 2) steps.

Theorem 6 ([9,54]) Each optimum-time synchroniza-
tion algorithm developed by Balzer [1], Gerken [9], Ma-
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Firing Squad Synchronization Problem in Cellular Automata, Figure 5
Transition table for the Balzer’s eight-state protocol (left) and its snapshots for synchronization operations on 28 cells (right)

zoyer [25] and Waksman [74] has an O(n2) state-change
complexity, respectively.

Theorem 7 ([9]) Gerken’s 155-state synchronization algo-
rithm has a	(n log n) state-change complexity.

It has been shown that any 3n-step thread-like synchro-
nization algorithm has a	(n log n) state-change complex-
ity and such a 3n-step thread-like synchronization algo-
rithm can be used for subspace synchronization in the

Goto’s time-optimum synchronization algorithm. Umeo,
Hisaoka and Sogabe [54] has shown that:

Theorem 8 ([54]) Goto’s time-optimum synchronization
algorithm as reconstructed by Umeo [50] has 	(n log n)
state-change complexity.

Figure 10 shows a comparison of the state-change com-
plexities in several optimum-time synchronization algo-
rithms.
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Firing Squad Synchronization Problem in Cellular Automata, Figure 6
Transition table for the Gerken’s seven-state protocol (left) and snapshots for synchronization operations on 28 cells (right)

A Comparison of Quantitative Aspects
of Optimum-Time Synchronization Algorithms

Section “A Comparison of Quantitative Aspects of Opti-
mum-Time Synchronization Algorithms” presents a ta-
ble based on a quantitative comparison of optimum-time
synchronization algorithms and their transition tables dis-
cussed above with respect to the number of internal states
of each finite state automaton, the number of transition

rules realizing the synchronization, and the number of
state-changes on the array.

One-Sided vs. Two-Sided Recursive Algorithms

Firing squad synchronization algorithms have been de-
signed on the basis of parallel divide-and-conquer strat-
egy that calls itself recursively in parallel. Those recursive
calls are implemented by generating many Generals that
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Firing Squad Synchronization Problem in Cellular Automata, Figure 7
Transition table for the Mazoyer’s six-state protocol (left) and its snapshots of configurations on 28 cells (right)

work for synchronizing divided small areas in the cellular
space. Initially a General G0 located at the left end works
for synchronizing the whole cellular space consisting of n
cells. In Fig. 11 (left), G1 synchronizes the subspace be-
tween G1 and the right end of the array. The ith Gen-
eral Gi, i D 2; 3; : : : ; works for synchronizing the cellular
space between Gi�1 and Gi, respectively. Thus, all of the
Generals generated by G0 are located at the left end of the
divided cellular spaces to be synchronized. On the other
hand, in Fig. 11 (right), the General G0 generates General
Gi, i D 1; 2; 3; : : : ; . Each Gi, i D 1; 2; 3; : : : ; synchronizes

the divided space between Gi and GiC1, respectively. In
addition, Gi, i D 2; 3; : : : ; does the same operations as G0.
Thus, in Fig. 11 (right) one can find Generals located at ei-
ther end of the subspace for which they are responsible. If
all of the recursive calls for the synchronization are issued
byGenerals located at one (both two) end(s) of partitioned
cellular spaces for which the General works, the synchro-
nization algorithm is said to have one-sided (two-sided)
recursive property, respectively. A synchronization algo-
rithm with the one-sided (two-sided) recursive property
is referred to as one-sided (two-sided) recursive synchro-
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Firing Squad Synchronization Problem in Cellular Automata, Table 1
Quantitative comparison of transition rule sets for optimum-time firing squad synchronization algorithms. The � symbol shows the
correction and reduction of transition rules made in Umeo, Hisaoka and Sogabe [54]. The �� symbol indicates the number of states
and rules obtained after the expansion of the original two-layer construction

Algorithm # of states # of transition rules State change complexity
Goto [12] many thousands – �(n log n)
Waksman [74] 16 202�(3216) O(n2)
Balzer [1] 8 165� (182) O(n2)
Noguchi [34] 8 119 O(n2)
Gerken [9] 7 105� (118) O(n2)
Mazoyer [25] 6 119� (120) O(n2)
Gerken [9] 155��(32) 2371��(347) �(n log n)

Firing Squad Synchronization Problem in Cellular Automata, Table 2
A qualitative comparison of optimum-time firing squad synchronization algorithms

Algorithm One-/two-sided Recursive/non-recursive # of signals
Goto [12] – non-recursive finite
Waksman [74] two-sided recursive infinite
Balzer [1] two-sided recursive infinite
Noguchi [34] two-sided recursive infinite
Gerken [9] two-sided recursive infinite
Mazoyer [25] one-sided recursive infinite
Gerken [9] two-sided recursive finite

nization algorithm. Figure 11 illustrates a time-space dia-
gram for one-sided (Fig. 11 (left)) and two-sided (Fig. 11
(right)) recursive synchronization algorithms both oper-
ating in optimum 2n � 2 steps. It is noted that optimum-
time synchronization algorithms developed by Balzer [1],
Gerken [9], Noguchi [34] and Waksman [74] are two-
sided ones and an algorithm proposed by Mazoyer [25]
is an only synchronization algorithm with the one-sided
recursive property.

Observation 3.2 ([54]) Optimum-time synchroniza-
tion algorithms developed by Balzer [1], Gerken [9],
Noguchi [34] and Waksman [74] are two-sided ones. The
algorithm proposed by Mazoyer [25] is a one-sided one.

Amore general design scheme for one-sided recursive op-
timum-time synchronization algorithms can be found in
Mazoyer [24].

Recursive vs. Non-recursive algorithms

As is shown in the previous section, the optimum-
time synchronization algorithms developed by Balzer [1],
Gerken [9], Mazoyer [25], Noguchi [34] and Waks-
man [74] are recursive ones. On the other hand, it is
noted that overall structure of the reconstructed Goto’s
algorithm is a non-recursive one, however divided sub-

spaces are synchronized by using a recursive 3nC O(1)-
step synchronization algorithm.

Number of Signals

Waksman [74] devised an efficient way to cause a gen-
eral cell to generate infinite signals at propagating speeds
of 1/1; 1/3; 1/7, .., 1/(2k � 1), where k is any natural num-
ber. These signals play an important role in dividing the
array into two, four, eight, . . . , equal parts synchronously.
The same set of signals is used in Balzer [1]. Gerken [9]
had a similar idea in the construction of his seven-state
algorithm. Thus infinite set of signals with different prop-
agation speed is used in the first three algorithms. On the
other hand, finite sets of signals with propagating speed
f1/5; 1/2; 1/1g and f1/3; 1/2; 3/5; 1/1g are made use of in
Gerken’s 155-state algorithm and the reconstructed Goto’s
algorithm, respectively.

A Comparison of Qualitative Aspects
of Optimum-Time Synchronization Algorithms

Section “A Comparison of Qualitative Aspects of Opti-
mum-Time Synchronization Algorithms” presents a table
based on a qualitative comparison of optimum-time syn-
chronization algorithms with respect to one/two-sided re-
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 8
Time-space diagram for Goto’s algorithm as reconstructed by
Umeo [50]

cursive properties and the number of signals being used
for simultaneous space divisions.

Variants of the Firing Squad
Synchronization Problem

Generalized Firing Squad Synchronization Problem

Section “Generalized Firing Squad Synchronization Prob-
lem” considers a generalized firing squad synchroniza-
tion problem which allows the general to be located any-

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 9
Snapshots of the Gerken’s 155-state algorithm on 28 cells

where on the array. It has been shown to be impossi-
ble to synchronize any array of length n less than n �
2 C max(k; n � k C 1) steps, where the general is lo-
cated on Ck. Moore and Langdon [30], Szwerinski [45]
and Varshavsky, Marakhovsky and Peschansky [69] devel-
oped a generalized optimum-time synchronization algo-
rithm with 17, 10 and 10 internal states, respectively, that
can synchronize any array of length n at exactly n � 2 C
max(k; n � k C 1) steps. Recently, Settle and Simon [43]
and Umeo, Hisaoka, Michisaka, Nishioka and Maeda [56]
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Firing Squad Synchronization Problem in Cellular Automata, Figure 10
A comparison of state-change complexities in optimum-time synchronization algorithms

Firing Squad Synchronization Problem in Cellular Automata, Figure 11
One-sided recursive synchronization scheme (left) and two-sided recursive synchronization scheme (right)



Firing Squad Synchronization Problem in Cellular Automata F 3549

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 12
Snapshots of the three Russian’s 10-state generalized optimum-
time synchronization algorithm on 22 cells

have proposed a 9-state generalized synchronization algo-
rithm operating in optimum-step. Figure 12 shows snap-
shots for synchronization configurations based on the rule
set of Varshavsky, Marakhovsky and Peschansky [69].

Theorem 9 ([30,43,45,56,69]) There exists a cellular au-
tomaton that can synchronize any one-dimensional array
of length n in optimum n � 2Cmax(k; n � k C 1) steps,
where the general is located on the kth cell from left end.

Non-Optimum-Time 3n-Step Synchronization
Algorithms

Non-optimum-time 3n-step algorithm is a simple and
straightforward one that exploits a parallel divide-and-
conquer strategy based on an efficient use of 1/1- and 1/3-
speed of signals. Minsky and MacCarthy [28] gave an idea
for designing the 3n-step synchronization algorithm, and

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 13
Transition table for symmetric six-state protocol (left) and snap-
shots for synchronization algorithm on 14 cells

Fischer [8] implemented the 3n-step algorithm, yielding
a 15-state implementation, respectively. Yunès [76] devel-
oped two seven-state synchronization algorithms, thus de-
creasing the number of internal states of each cellular au-
tomaton. This section presents a new symmetric six-state
3n-step firing squad synchronization algorithm developed
in Umeo, Maeda and Hongyo [61]. The number six is
the smallest one known at present in the class of 3n-step
synchronization algorithms. Figure 13 shows the 6-state
transition table and snapshots for synchronization on 14
cells. In the transition table, the symbols “P”, “Q”, “F” and
“*” represent the general, quiescent, firing and boundary
states, respectively. Yunès [79] also developed a symmet-
ric 6-state 3n-step solution.

Theorem 10 ([61,79]) There exists a symmetric 6-state
cellular automaton that can synchronize any n cells in 3n
+ O(log n) steps.
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 14
Transition table for generalized symmetric six-state protocol
(left) and snapshots for synchronization algorithm on 15 cells
with a General on C5

A non-trivial, new symmetric six-state 3n-step generalized
firing squad synchronization algorithm is also presented
in Umeo, Maeda and Hongyo [61]. Figure 14 gives a list of
transition rules for the 6-state generalized synchronization
algorithm and snapshots of configurations on 15 cells. The
symbol “M” is the general state.

Theorem 11 ([61]) There exists a symmetric 6-state cellu-
lar automaton that can solve the generalized firing squad
synchronization problem in max(k; n � k C 1)C 2n +
O(log n) steps.

In addition, a state-change complexity is studied in
3n-step firing squad synchronization algorithms. It has
been shown that the six-state algorithms presented above
have O(n2) state-change complexity, on the other hand,
the thread-like 3n-step algorithms developed so far have
O(n log n) state-change complexity. Here, the following

table presents a quantitative comparison of the 3n-step
synchronization algorithms developed so far.

Delayed Firing Squad Synchronization Algorithm

This section introduces a freezing-thawing technique
that yields a delayed synchronization algorithm for one-
dimensional arrays. The technique is very useful in the de-
sign of time-efficient synchronization algorithms for one-
and two-dimensional arrays in Umeo [52], Yunès [77] and
Umeo and Uchino [65]. A similar technique was used by
Romani [37] in the tree synchronization. The technique is
stated as in the following theorem.

Theorem 12 ([52]) Let t0, t1, t2 and 
t be any inte-
ger such that t0 � 0, t0 � t1 � t0 C n � 1, t1 � t2 and

t D t2 � t1. It is assumed that a usual optimum-time
synchronization operation is started at time t D t0 by gen-
erating a special signal at the left end of one-dimensional
array and the right end cell of the array receives another
special signals from outside at time t D t1 and t2, respec-
tively. Then, there exists a one-dimensional cellular au-
tomaton that can synchronize the array of length n at time
t D t0 C 2n � 2C
t.

The array operates as follows:

1. Start an optimum-time firing squad synchronization al-
gorithm at time t D t0 at the left end of the array. A 1/1-
speed signal is propagated towards the right direction
to wake-up cells in quiescent state. The signal is re-
ferred to as wake-up signal. A freezing signal is given
from outside at time t D t1 at the right end of the ar-
ray. The signal is propagated in the left direction at its
maximum speed, that is, 1 cell per 1 step, and freezes
the configuration progressively. Any cell that receives
the freezing signal from its right neighbor has to stop
its state-change and transmits the freezing signal to its
left neighbor. The frozen cell keeps its state as long as
no thawing signal will arrive.

2. A special signal supplied with outside at time t D t2
is used as a thawing signal that thaws the frozen con-
figuration. The thawing signal forces the frozen cell to
resume its state-change procedures immediately. See
Fig. 15 (left). The signal is also transmitted toward the
left end at speed 1/1.

The readers can see how those three signals work. The en-
tire configuration can be freezed during 
t steps and the
synchronization on the array is delayed for 
t steps. It is
easily seen that the freezing signal can be replaced by the
reflected signal of the wake-up signal, that is generated at
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Firing Squad Synchronization Problem in Cellular Automata, Table 3
A comparison of 3n-step firing squad synchronization algorithms

Algorithm # States # Rules Time complexity State-
change
complexity

Generals’s
position

Type Notes Ref.

Minsky and MacCarthy 13 – 3nC �n log nC c O(n log n) left thread 0 � �n < 1 [28]
Fischer 15 – 3n� 4 O(n log n) left thread – [8]
Yunès 7 105 3n˙ 2�n log nC c O(n log n) left thread 0 � �n < 1 [76]
Yunès 7 107 3n˙ 2�n log nC c O(n log n) left thread 0 � �n < 1 [76]
Settle and Simon 6 134 3nC 1 O(n2) right plane – [43]
Settle and Simon 7 127 2n� 2C k O(n2) arbitrary plane – [43]
Umeo et al. 6 78 3nC O(log n) O(n2) left plane – [61]
Umeo et al. 6 115 max(k;n� kC 1)C 2nC O(log n) O(n2) arbitrary plane – [61]
Umeo and Yanagihara 5 67 3n� 3 O(n2) left/right plane n D 2k;

k D
1; 2; : : :

[67]

Yunès 6 105 3nC dlog ne � 3 O(n log n) left thread [79]

Firing Squad Synchronization Problem in Cellular Automata, Figure 15
Time-space diagram for delayed firing squad synchronization scheme based on the freezing-thawing technique (left) and a delayed
(for	t D 5 steps) configuration in Balzer’s optimum-time firing squad synchronization algorithm on nD 11 cells (right)
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the right end cell at time t D t0 C n � 1. See Fig. 15. The
scheme is referred to as freezing-thawing technique.

Fault-Tolerant Firing Squad Synchronization Problem

Consider a one-dimensional array of cells, some of which
are defective. At time t D 0, the left end cell C1 is in the
fire-when-ready state, which is the initialization signal for
the array. The fault-tolerant firing squad synchronization
problem for cellular automata with defective cells is to de-
termine a description of cells that ensures all intact cells
enter the fire state at exactly the same time and for the
first time. The fault-tolerant firing squad synchronization
problem has been studied in Kutrib and Vollmar [22,23],
Umeo [52] and Yunès [77].

Cellular Automata with Defective Cells

� Intact and Defective Cells: Each cell has its own self-
diagnosis circuit that diagnoses itself before its opera-
tion. A consecutive defective (intact) cells are referred
to as a defective (intact) segment, respectively. Any de-
fective and intact cell can detect whether its neighbor
cells are defective or not. Cellular arrays are assumed to
have an intact segment at its left and right ends. New
defections do not occur during the operational lifetime
on any cell.

� Signal Propagation in a Defective Segment: It is as-
sumed that any cell in defective segment can only trans-
mit the signal to its right or left neighbor depending
on the direction in which it comes to the defective seg-
ment. The speed of the signal in any defective segment
is fixed to 1/1, that is, one cell per one step. In defective
segments, both the information carried by the signal
and the direction in which the signal is propagated are
preservedwithout anymodifications. Thus, one can see
that any defective segment has two one-way pipelines
that can transfer one state at 1/1 speed in either direc-
tion. Note that from a standard viewpoint of state tran-
sition of usual CA each cell in a defective segment can
change its internal states in a specific manner.

The array consists of p defective segments and (pC 1) in-
tact segments, where they are denoted by Ii andDj, respec-
tively and p is any positive integer. Let ni and mj be num-
ber of cells on the ith intact and jth defective segments,
where i and j be any integer such that 1 � i � pC 1 and
1 � j � p. Let n be the number of cells of the array such
that n D (n1Cm1)C(n2Cm2)C; : : : ;C(npCmp)CnpC1.

Fault-Tolerant Firing Squad Synchronization Algo-
rithms Umeo [52] studied the synchronization algo-

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 16
Time-space diagram for optimum-time firing squad synchro-
nization algorithmwith one defective segment

rithms for such arrays that there are locally more intact
cells than defective ones, i. e., ni � mi for any i such that
1 � i � p. First, consider the case p D 1 where the array
has one defective segment and n1 � m1. Figure 16 illus-
trates a simple synchronization scheme. The fault-tolerant
synchronization algorithm for one defective segment is
stated as follows:

Theorem 13 ([52]) Let M be any cellular array of length n
with one defective and two intact segments such that n1 �
m1, where n1 and m1 denote the number of cells on the first
intact and defective segments, respectively. Then, M is syn-
chronizable in 2n � 2 optimum-time.

The synchronization scheme above can be generalized to
arrays with multiple defective segments more than two.
Figure 17 shows the synchronization scheme for a cellu-
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 17
Time-space diagram for optimum-time firing squad synchro-
nization algorithmwith three defective segments

lar array with three defective segments. Details of the algo-
rithm can be found in Umeo [52].

Theorem 14 ([52]) Let p be any positive integer and M
be any cellular array of length n with p defective segments,
where ni � mi and ni C mi � p � i, for any i such that
1 � i � p. Then, M is synchronizable in 2n � 2C p steps.

Partial Solutions

The original firing squad synchronization problem is de-
fined to synchronize all cells of one-dimensional array. In
this section, consider a partial FSSP solution that can syn-
chronize an infinite number of cells, but not all. The first
partial solution was given by Umeo and Yanagihara [67].
They proposed a five-state solution that can synchronize
any one-dimensional cellular array of length n D 2k in
3n � 3 steps for any positive integer k. Figure 18 shows

the five-state transition table consisting of 67 rules and its
snapshots for n D 8 and 16. In the transition table, the
symbols “R”, “Q”, “F” and “*” represent the general, quies-
cent, firing and boundary states, respectively.

Theorem 15 ([67]) There exists a 5-state cellular automa-
ton that can synchronize any array of length n D 2k in
3n � 3 steps, where k is any positive integer.

Surprisingly, Yunès [80] and Umeo, Kamikawa and Yu-
nès [58] proposed four-state synchronization protocols
which are based on an algebraic property of Wolfram’s
two-state cellular automata.

Theorem 16 ([58,80]) There exists a 4-state cellular au-
tomaton that can synchronize any array of length n D 2k

in non-optimum 2n � 1 steps, where k is any positive inte-
ger.

Figure 19 shows the four-state transition table given by
Yunès [80] which is based on Wolfram’s Rule 60. It con-
sists of 32 rules. Snapshots for n D 16 cells are also il-
lustrated in Fig. 19. In the transition table, the symbols
“G”, “Q”, “F” and “*” represent the general, quiescent, fir-
ing and boundary states, respectively. Figure 20 shows the
four-state transition table given by Umeo, Kamikawa and
Yunès [58] which is based onWolfram’s Rule 150. It has 32
transition rules. Snapshots for n D 16 are given in the fig-
ure. In the transition table, the symbols “G”, “Q”, “F” and
“*” represent the general, quiescent, firing and boundary
states, respectively.

Umeo, Kamikawa and Yunès [58] proposed a differ-
ent, but looking-similar, 4-state protocol based on Wol-
fram’s Rule 150. Figure 21 shows the four-state transition
table consisting of 37 rules and its snapshots for n D 9 and
17. The four-state protocol has some desirable properties.
Note that the algorithm operates in optimum-step and its
transition rule is symmetric. The state of a general can be
either “G” or “A”. Its initial position can be at the left or
right end.

Theorem 17 ([58]) There exists a symmetric 4-state cel-
lular automaton that can synchronize any array of length
n D 2k C 1 in 2n � 2 optimum-steps, where k is any posi-
tive integer.

Yunès [80] has given a state lower bound for the partial
solution:

Theorem 18 ([80]) There is no 3-state partial solution.

Thus, the 4-state partial solutions given above are opti-
mum in state-number complexity in partial solutions.
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Firing Squad Synchronization Problem in Cellular Automata, Figure 18
Transition table for the five-state protocol (left) and its snapshots of configurations on 8 and 16 cells (right)

Synchronization Algorithm
for One-Bit Communication Cellular Automata

In the study of cellular automata, the amount of bit-
information exchanged at one step between neighbor-
ing cells has been assumed to be O(1)-bit. An O(1)-bit
communication CA is a conventional cellular automaton
in which the number of communication bits exchanged
at one step between neighboring cells is assumed to be
O(1)-bit, however, such an inter-cell bit-information ex-
change has been hidden behind the definition of conven-
tional automata-theoretic finite state description. On the
other hand, the 1-bit inter-cell communication model is
a new cellular automaton in which inter-cell communi-
cation is restricted to 1-bit data, referred to as the 1-bit
CA model (CA1�bit). The number of internal states of the

CA1�bit is assumed to be finite in the usual sense. The
next state of each cell is determined by the present state
of that cell and two binary 1-bit inputs from its left and
right neighbor cells. Thus, the CA1�bit can be thought of
as one of the most powerless and the simplest models in
a variety of CA’s. A precise definition of the CA1�bit can
be found in Umeo [51] and Umeo and Kamikawa [57].
Mazoyer [26] and Nishimura and Umeo [32] each de-
signed an optimum-time synchronization algorithm on
the CA1�bit based on Balzer’s algorithm and Waksman’s
algorithm, respectively. Figure 22 shows a configuration
of the 1-bit synchronization algorithm on 15 cells that is
based on the design of Nishimura and Umeo [32]. Each
cell has 78 internal states and 208 transition rules. The
small black triangles I and J indicate a 1-signal transfer
in the right or left direction, respectively, between neigh-
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 19
Transition table for the four-state protocol based on Wolfram’s
Rule 60 (left) and its snapshots of configurations on 16 cells
(right)

boring cells. A symbol in a cell shows an internal state of
the cell.

Theorem 19 ([26,32]) There exists a CA1�bit that can syn-
chronize n cells in optimum 2n � 2 steps.

Synchronization Algorithms
for Multi-Bit Communication Cellular Automata

Section “Synchronization Algorithms for Multi-Bit Com-
munication Cellular Automata” studies a trade-off be-
tween internal states and communication bits in fir-
ing squad synchronization protocols for k-bit commu-
nication-restricted cellular automata (CAk�bit) and pro-
pose several time-optimum state-efficient bit-transfer-
based synchronization protocols. It is shown that there
exists a 1-state CA5�bit that can synchronize any n cells
in 2n � 2 optimum-step. The result is interesting, since
one knows that there exists no 4-state synchronization al-
gorithm on conventional O(1)-bit communication cellu-
lar automata. A bit-transfer complexity is also introduced
to measure the efficiency of synchronization protocols.
It is shown that ˝(n log n) bit-transfer is a lower-bound

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 20
Transition table for the four-state protocol based on Wolfram’s
Rule 150 (left) and its snapshots of configurations on 16 cells
(right)

for synchronizing n cells in (2n � 2) steps. In addition,
each optimum-time/non-optimum-time synchronization
protocols presented has an O(n2) bit-transfer complex-
ity, respectively. Most of the results presented here are
from Umeo, Yanagihara and Kanazawa [68]. A computa-
tional relation between the conventional CA and CAk�bit
is stated as follows:

Lemma 20 ([57]) Let N be any s-state conventional cellu-
lar automaton with time complexity T(n). Then, there exists
a CA1�bit which can simulate N in kT(n) steps, where k is
a positive constant integer such that k D dlog2 se.

Lemma 21 ([68]) Let N be any s-state conventional cellu-
lar automaton. Then, there exists an s-state CAk�bit which
can simulate N in real time, where k is a positive integer
such that k D dlog2 se.

The following theorems show a trade-off between internal
states and communication bits, and present state-efficient
synchronization protocols Pi ; 1 � i � 5. In some sense,
no internal state is necessary to synchronize the whole ar-
ray, as is shown in Theorem 27. The protocol design is
based on the 6-state Mazoyer’s algorithm given in Ma-
zoyer [25].
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Firing Squad Synchronization Problem in Cellular Automata, Figure 21
Transition table for the four-state protocol (left) and its snapshots of configurations on 9 and 17 cells (right)

Firing Squad Synchronization Problem in Cellular Automata, Table 4
A comparison of optimum-time/non-optimum-time firing squad synchronization protocols for multi-bit communication cellular au-
tomata

Synchronization protocol Communication
bits transferred

# of
states

# of Transition
rules

Time
complexity

One-/Two-sided
recursiveness

P1 1 54 207 2n� 1 One-sided
P2 2 6 60 2n� 2 One-sided
P3 3 4 76 2n� 2 One-sided
P4 4 3 87 2n� 2 One-sided
P�4 4 2 88 2n� 2 One-sided
P5 5 1 114 2n� 2 One-sided
Mazoyer [26] 1 58 – 2n� 2 Two-sided
Mazoyer [26] 12 3 – 2n� 2 –
Nishimura and Umeo [32] 1 78 208 2n� 2 Two-sided

Theorem 22 ([68]) There exists a 54-state CA1�bit with
protocol P1 that can synchronize any n cells in 2n � 1
optimum-step.

Theorem 23 ([68]) There exists a 6-state CA2�bit with
protocol P2 that can synchronize any n cells in 2n � 2
optimum-step.

Theorem 24 ([68]) There exists a 4-state CA3�bit with
protocol P3 that can synchronize any n cells in 2n � 2
optimum-step.

Figure 23 illustrates snapshots of the 6-state (2n � 2)-step
synchronization protocol P2 operating on CA2�bit (left)
and for the 4-state protocol P3 operating on CA3�bit with
24 cells (right).
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 22
A configuration of optimum-time synchronization algorithm
with 1-bit inter-cell communication on 15 cells

Theorem 25 ([68]) There exists a 3-state CA4�bit with
protocol P4 that can synchronize any n cells in 2n � 2
optimum-step.

Theorem 26 ([68]) There exists a 2-state CA4�bit with
protocol P�4 that can synchronize any n cells in 2n � 2
optimum-step.

Theorem 27 ([68]) There exists a 1-state CA5�bit with
protocol P5 that can synchronize any n cells in 2n � 2
optimum-step.

Figures 24 and 25 illustrate snapshots of the 3-state
(2n � 2)-step synchronization protocol P4 operating on
CA4�bit (left) and for the 1-state protocol P5 operating on
CA5�bit (right).

Let BT(n) be total number of bits transferred which
is needed for synchronizing n cells on CAk�bit. By us-
ing the similar technique developed by Vollmar [73],
a lower-bound on bit-transfer complexity can be estab-
lished for synchronizing n cells on CAk�bit in a way such
that BT(n) D ˝(n log n). In addition, it is shown that
each synchronization protocol Pi ; 1 � i � 5 and P�4 pre-
sented above has an O(n2) bit-transfer complexity, respec-
tively.

Theorem 28 ([68]) ˝(n log n) bit-transfer is a lower
bound for synchronizing n cells on CAk�bit in (2n � 2)
steps.

Theorem 29 ([68]) Each optimum-time/non-optimum-
time synchronization protocols Pi ; 1 � i � 5 and P�4 has
an O(n2) bit-transfer complexity, respectively.

Firing Squad Synchronization Problem
on Two-Dimensional Arrays

Figure 26 shows a finite two-dimensional (2-D) cellular ar-
ray consisting of m � n cells. The array operates in lock-
step mode in such a way that the next state of each cell (ex-
cept border cells) is determined by both its own present
state and the present states of its north, south, east and
west neighbors. All cells (soldiers), except the north-west
corner cell (general), are initially in the quiescent state at
time t D 0 with the property that the next state of a qui-
escent cell with quiescent neighbors is the quiescent state
again. At time t D 0, the north-west corner cell C11 is
in the fire-when-ready state, which is the initiation signal
for the synchronization. The firing squad synchronization
problem is to determine a description (state set and next-
state function) of cells that ensures all cells enter the fire
state at exactly the same time and for the first time. The set
of states and transition function must be independent of
m and n.

Several synchronization algorithms on 2-D arrays have
been proposed by Beyer [3], Grasselli [14], Shinahr [44],
Szwerinski [45], Umeo, Maeda and Fujiwara [59], and
Umeo, Hisaoka and Akiguchi [53]. Most of the synchro-
nization algorithms for 2-D arrays are based on mapping
schemes which map synchronized configurations for 1-D
arrays onto 2-D arrays. Section “Firing Squad Synchro-
nization Problem on Two-Dimensional Arrays” presents
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Firing Squad Synchronization Problem in Cellular Automata, Figure 23
Snapshots for the 6-state protocol P∈ operating on CA2�bit with 24 cells (left) and for the 4-state protocol P3 operating on CA3�bit
with 24 cells (right)

such several mapping schemes that yield time-efficient 2-
D synchronization algorithms.

Orthogonal Mapping:
A Simple Linear-Time Algorithm

In this section, a very simple synchronization algorithm is
provided for 2-D arrays. The overall of the algorithm is as
follows:

1. First, synchronize the first column cells using a usual
optimum-step 1-D algorithm with a general at one end,
thus requiring 2m � 2 steps.

2. Then, start the row synchronization operation on each
row simultaneously. Additional 2n � 2 steps are re-
quired for the row synchronization. Totally, its time
complexity is 2(mC n) � 4 steps.

The implementation is referred to as orthogonal mapping.
It is shown that sC 2 states are enough for the implemen-
tation of the algorithm above, where s is the number of in-
ternal states of the 1-D base algorithm. Figure 27 shows
snapshots of the 8-state synchronization algorithm run-
ning on a rectangular array of size 4 � 6.
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 24
Snapshots for 3-state (2n� 2)-step synchronization protocolP4
operating on CA4�bit with 24 cells

Theorem 30 There exists an (sC 2)-state protocol for syn-
chronizing any m � n rectangular arrays in 2(mC n) � 4
steps, where s is number of states of any optimum-time 1-D
synchronization protocol.

L-shaped Mapping:
Shinar’s Optimum-Time Algorithm

The first optimum-time 2-D synchronization algorithm
was developed by Shinar [44] and Beyer [3]. The rectan-
gular array of size m � n is regarded as min(m; n) rotated
(90ı in clockwise direction) L-shaped 1-D arrays, where

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 25
Snapshots for 1-state (2n� 2)-step synchronization protocolP5
operating on CA5�bit with 18 cells

they are synchronized independently using the general-
ized firing squad synchronization algorithm. The config-
uration of the generalized synchronization on 1-D array
can be mapped on 2-D array. See Fig. 28. Thus, an m � n
array synchronization problem is reduced to independent
min(m; n) 1-D generalized synchronization problems
such that: P(m;m C n � 1), P(m � 1;mC n � 3), . . . ,
P(1; n � mC 1) in the case m�n and P(m;m C n � 1),
P(m � 1;mC n � 3), . . . , P(m � nC 1;m � nC 1) in
the case m > n, where P(k; `) means the 1-D general-
ized synchronization problem for ` cells with a general
on the kth cell from left end. Beyer [3] and Shinahr [44]
have shown that an optimum-time complexity for syn-
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 26
A two-dimensional cellular automaton

chronizing any m � n arrays is m C nCmax(m; n) � 3
steps. Shinahr [44] has also given a 28-state implementa-
tion.

Theorem 31 ([3,44]) There exists an optimum-time 28-
state protocol for synchronizing any m � n rectangular ar-
rays in mC nCmax(m; n) � 3 steps.

Diagonal Mapping I: Six-State Linear-Time Algorithm

The proposal is a simple and state-efficient mapping
scheme that enables us to embed any 1-D firing squad
synchronization algorithm with a general at one end onto
two-dimensional arrays without introducing additional
states. Consider a 2-D array of sizem � n, wherem; n � 2.
Firstly, dividemn cells on the array intomC n � 1 groups

Firing Squad Synchronization Problem in Cellular Automata, Figure 27
Snapshots of the synchronization process on 4� 6 array

gk, 1 � k � mC n � 1, defined as follows.

gk D fCi; jj(i � 1)C ( j � 1) D k � 1g ; i. e.;
g1 D fC1;1g ; g2 D fC1;2;C2;1g ;

g3 D fC1;3;C2;2;C3;1g ; : : : ; gmCn�1 D fCm;ng :

Figure 29 shows the division of the two-dimensional array
of sizem � n intomC n � 1 groups. LetM be any 1-DCA
that synchronizes ` cells in T(`) steps. Assume thatM has
m C n � 1 cells, denoted by Ci, where 1 � i � mC n � 1.
Then, consider a one-to-one correspondence between the
ith group gi and the ith cell Ci on M such that gi $ Ci,
where 1 � i � mC n � 1. One can construct a 2-D CA
N such that all cells in gi simulate the ith cell Ci in real-
time and N can synchronize any m � n arrays at time
t D T(mC n � 1) if and only if M synchronizes 1-D ar-
rays of length mC n � 1 at time t D T(m C n � 1). It is
noted that the set of internal states of N constructed is
the same asM. Thus an m � n 2-D array synchronization
problem is reduced to one 1-D synchronization problem
with the general at the left end. The algorithm obtained
is slightly slower than the optimum ones, but the number
of internal states is considerably smaller. Figure 30 shows
snapshots of the proposed 6-state linear-time firing squad
synchronization algorithm on rectangular arrays. For the
details of the construction of the transition rule set, see
Umeo, Maeda, Hisaoka and Teraoka [60].

Theorem 32 ([60]) Let A be any s-state firing synchro-
nization algorithm operating in T(`) steps on 1-D ` cells.
Then, there exists a 2-D s-state cellular automaton that can
synchronize any m � n rectangular array in T(m C n � 1)
steps.
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 28
An optimum-time synchronization scheme for rectangular ar-
rays

Theorem 33 ([60]) There exists a 6-state 2-D CA that can
synchronize any m � n rectangular array in 2(mC n) � 4
steps.

Theorem 34 ([60]) There exists a 6-state 2-D CA that can
synchronize any m � n rectangular array containing iso-
lated rectangular holes in 2(mC n) � 4 steps.

Theorem 35 ([60]) There exists a 6-state firing squad
synchronization algorithm that can synchronize any 3-D
m � n � ` solid arrays in 2(mC nC `) � 6 steps.

Diagonal Mapping II:
Twelve-State Time-Optimum Algorithm

The second diagonal mapping scheme in this section
enables us to embed a special class of 1-D generalized
synchronization algorithm onto two-dimensional arrays
without introducing additional states. An m � n 2-D ar-
ray synchronization problem is reduced to one 1-D gen-
eralized synchronization problem: P(m;m C n � 1). Di-

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 29
A correspondence between 1-D and 2-D arrays

videmn cells into mC n � 1 groups gk defined as follows,
where k is any integer such that �(m � 1) � k � n � 1:

gk D fCi; jj j � i D kg ; �(m � 1) � k � n � 1 :

Figure 31 shows the correspondence between 1-D and 2-D
arrays.

PropertyA: Let Sti denote the state of Ci at step t. It is
said that a generalized firing algorithm has a property A,
where any state Sti appearing in the area A can be com-
puted from its left and right neighbor states St�1i�1 and St�1iC1
but it never depends on its own previous state St�1i . Fig-
ure 32 shows the area A in the time-space diagram for
the generalized optimum-step firing squad synchroniza-
tion algorithm.

Any one-dimensional generalized firing squad syn-
chronization algorithm with the propertyA can be easily
embedded onto two-dimensional arrays without introduc-
ing additional states.
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Firing Squad Synchronization Problem in Cellular Automata, Figure 30
Snapshots of the proposed 6-state linear-time firing squad synchronization algorithm on rectangular arrays

Theorem 36 ([53]) Let M be any s-state generalized syn-
chronization algorithm with the property A operating in
T(k; `) steps on 1-D ` cells with a general on the kth cell
from the left end. Then, based onM, one can construct a 2-D
s-state cellular automaton that can synchronize any m � n
rectangular array in T(m;m C n � 1) steps.

It has been shown in Umeo, Hisaoka and Akiguchi [53]
that there exists a 12-state implementation of the gener-
alized optimum-time synchronization algorithms having
the property A. Then, one can get a 12-state optimum-
time synchronization algorithm for rectangular arrays.
Figure 33 shows snapshots of the proposed 12-state
optimum-time firing squad synchronization algorithm
operating on a 7 � 9 array.

Theorem 37 ([53]) There exists a 12-state firing squad
synchronization algorithm that can synchronize any m � n
rectangular array in optimum m C nCmax(m; n) � 3
steps.

Rotated L-Shaped Mapping: Time-Optimum
Algorithm

In this section we present an optimum-time synchro-
nization algorithm based on a rotated L-shaped mapping.
The synchronization scheme is quite different from previ-
ous designs. The scheme uses the freezing-thawing tech-
nique. Without loss of generality, it is assumed thatm� n.

A rectangular array of size m � n is regarded as m ro-
tated (90ı in counterclockwise direction) L-shaped 1-D
arrays. Each L-shaped array is denoted by Li ; 1 � i � m.
See Fig 34. Each Li consists of three segments of length
i, n � m, and i, respectively. Each segment can be syn-
chronized by the freezing-thawing technique. Synchro-
nization operations for Li ; 1 � i � m are as follows: Fig-
ure 35 shows a time-space diagram for synchronizing
Li. The wake-up signals for the three segments of Li
are generated at time t D mC 2(m � i)� 1; 3m � i � 2,
and nC 2(m � i) � 1, respectively. Synchronization op-
erations on each segments are delayed for 
ti j ; 1 � j � 3
such that:


ti j D

8
<̂

:̂

2(n � m) j D 1
i j D 2
n � m j D 3

: (1)

The synchronization for the first segment of Li is started
at time t D mC 2(m � i)� 1 and its operations are de-
layed for 
t D 
ti1 D 2(n � m) steps. Now letting t0 D
m C 2(m � i) � 1; 
t D 
ti1 D 2(n � m) in freezing-
thawing technique, the first segment of Li can be syn-
chronized at time t D t0 C 2i � 2C
t D mC 2n � 3.
In a similar way, the second and the third segments can
be synchronized at time t D mC 2n � 3. Thus, Li can be
synchronized at time t D mC 2n � 3. Figure 36 shows
some snapshots of the synchronization process operating
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 31
Correspondence between 1-D and 2-D cellular arrays

in optimum-steps on 5 � 8 array. Now the next theorem
can be established.

Theorem 38 ([65]) The algorithm above can synchro-
nize any m � n rectangular array in optimum m C n C
max(m; n) � 3 steps.

FrameMapping: Time-Optimum Algorithm

Section “Frame Mapping: Time-Optimum Algorithm”
presents an optimum-time 2-D synchronization algorithm
based on frame mapping. Without loss of generality, it
is assumed that m� n. A rectangular array of size m � n
is regarded as consisting of rectangle-shaped frames of
width 1. See Fig. 37. Each frame Li ; 0 � i � dm/2e � 1,
is divided into six segments and these six segments are
synchronized using the freezing-thawing technique. The
length of each segment of Li is m � 2i, m � 2i, n � m,
m � 2i, m � 2i, and n � m, respectively. Figure 38 shows
a time-space diagram of the synchronization operations

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 32
Time-space diagram for generalized optimum-step firing squad
synchronization algorithm

for the outermost frame L0. Synchronization operations
on jth segment of L0 are delayed for
t0 j steps, 1 � j � 6,
such that:


t0 j D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

2(n � m) j D 1
2(n � m) j D 2
m j D 3
n � m j D 4
n � m j D 5
m j D 6

: (2)

Using the freezing-thawing technique, L0 can be synchro-
nized at time t D mC 2n � 3. The synchronization op-
eration for Li, i � 1 can be done similarly. Note that the
ith frame is of size (m � 2i) � (n � 2i). Let Ti be steps re-
quired for synchronizing the ith frame with the synchro-
nization operations given above starting at time t D 0.
Then, Ti D mC 2n � 3 � 6i D T0 � 6i, for any i such
that 0 � i � dm/2e � 1. Thus, Ti � Ti�1 D 6. Therefore,
the starting time for synchronizing each frame is delayed
for 6 steps so that synchronization operations for each
frame can be finished simultaneously. In order to start the
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Firing Squad Synchronization Problem in Cellular Automata, Figure 33
Snapshots of the proposed 12-state optimum-time firing squad synchronization algorithm on rectangular arrays

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 34
A two-dimensional array of sizem� n is regarded as consisting
of m rotated (90ı in counterclockwise direction) L-shaped 1-D
array

operation progressively, an activating signal that travels in
the diagonal direction is given to each north-west corner
of each Li at time t D 6i. In this way all of the frames can
be synchronized. Figure 39 illustrates some snapshots of
the synchronization process operating in optimum-steps
on 5 � 8 array.

Theorem 39 ([66]) The algorithm based on frame map-
ping can synchronize any m � n rectangular array in m C
nCmax(m; n) � 3 optimum steps.

Generalized Firing Squad Synchronization Algorithms
for Two-Dimensional Rectangular Cellular Automata

Szwerinski [45] presented a first optimum-time general-
ized firing squad synchronization algorithm for rectan-
gular arrays. Umeo, Hisaoka, Teraoka and Maeda [55]
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 35
Time-space diagram for synchronizing Li

proposed a new optimum-time generalized synchroniza-
tion algorithm. Section “Generalized Firing Squad Syn-
chronization Algorithms for Two-Dimensional Rectangu-
lar Cellular Automata” presents the generalized optimum-
time algorithm based on Umeo et al. [55]. The algo-
rithm can synchronize any rectangular arrays of size
m � n with the general being located at any position
(r; s) on the array in m C n C max(m; n) � min(r;m �
r C 1) � min(s; n � s C 1) � 1 optimum steps, where
1 � r � m; 1 � s � n. The following theorem is a useful
technique for delaying the generalized synchronization on
1-D arrays.

Theorem 40 ([55]) Let A be any 1-D cellular automaton
that runs a generalized T(s; n)-step synchronization algo-
rithm on n cells with a general on Cs(1 � s � n) and t0,
t1, t2, ` be any integer satisfying the following conditions
such that 
t D t2 � t1 D 2`, ` � 1, t2 > t1 � t0 � 0 and
t1 C t2 � 2t0 � 2T(s; n) � 2max(s; n � s C 1)C 2. It is

assumed that three special signals are given to cell Cs at
step t D t0, t1, and t2. These signals play an important
role of initializing the generalized synchronization pro-
cess, starting the delayed operation, and stopping the de-
layed operation, respectively. Then, one can construct a cel-
lular automaton B that synchronizes the array at time
t D t0 C `C T(s; n). In the case where T(s; n) is an op-
timum time complexity such that T(s; n) D n � 2 C
max(s; n � s C 1), the constructed B synchronizes at time
t D t0 C ` C n � 2 C max(s; n � s C 1). Thus the syn-
chronization operation is delayed for ` steps. Figure 40 is
a time-space diagram for the delayed optimum-time gen-
eralized synchronization algorithm operating on n cells. In
the darker area of the diagram, each cell simulates the oper-
ation of A at speed 1/2 by repeating a simulate-one-step of
A then keep-the-state operations alternatively at each step.

Consider the case where m � n, 1 � r < dm/2e and
1 � s < dn/2e. An array of size m � n is regarded as
consisting of m rows of length n. An optimum-time gen-
eralized synchronization algorithm with a general at Ci;s
(1 � i � m) is used for the synchronization of the ith row.
The operation is referred to as row-synchronization. To
synchronize all rows simultaneously, an efficient timing
control scheme shown in Fig. 41 is developed. Figure 41
is a time-space diagram for giving special signals to each
cell on the s-column. These special signals act as a tim-
ing t D t0, t1 and t2 stated in Theorem 40. For example,
the row-synchronization on the yth (r � y � m) row is
started at time t D t0 D t1 D y � r and the process is de-
layed from time t D t1 D y � r to t D t2 D 2m � y � r,
shown in the darker area in Fig. 41. Thus ` D m � y.
Based on Theorem 40 the yth row is synchronized at time
t D mC 2n � r � s � 1. Figure 42 is a time-space dia-
gram for the row-synchronization on the xth and yth row,
where 1 � x < r and r � y � m. The readers can see how
all rows are synchronized at time t D mC 2n � r � s � 1.

Thus, the following theorem can be developed.

Theorem 41 ([55]) In the row-synchronization process,
all of the rows can be synchronized simultaneously at time
t D mC 2n � r � s � 1 in the case m � n, 1 � r < dm/2e
and 1 � s < dn/2e.

In the column-synchronization process, all of the cells take
a firing state prior to the row-synchronization, but the
column-synchronization fails to synchronize. Symmetri-
cally, the following theorem holds in the case where the
array is longer than is wide.

Theorem 42 ([55]) In the column-synchronization pro-
cess, all of the columns can be synchronized simultane-
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Firing Squad Synchronization Problem in Cellular Automata, Figure 36
Snapshots of the synchronization process on 5� 8 array

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 37
A two-dimensional array of sizem� n is regarded as consisting
of dm/2e frames

ously at time t D nC 2m � r � s � 1 in the case m � n,
1 � r < dm/2e and 1 � s < dn/2e.

To synchronize the array in optimum-time, the array per-
forms both row- and column-synchronization operations.
Each cell should take a firing state on each layer at two
different times. The first one is false and it should be ig-

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 38
Time-space diagram for synchronizing L0

nored. The second one is the right firing state. By com-
bining the Theorems 41, 42, the following theorem can be
established.
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Firing Squad Synchronization Problem in Cellular Automata, Figure 39
Snapshots of the synchronization process on 5� 8 array

Theorem 43 ([55]) The scheme given above can synchro-
nize any m � n array in mC nCmax(m; n)�min(r;m�
rC1)�min(s; n�sC1)�1 optimum steps, where (r; s) is the
general’s initial position such that 1 � r � m; 1 � s � n.

The number of internal states of an automaton realiz-
ing the Szwerinski’s algorithm is 25,600. Umeo, Maeda,
Hisaoka and Teraoka [60] presented a 14-state implemen-
tation for a non-optimum-time generalized algorithm.
The 2-D generalized synchronization algorithm ismax(rC
s;mC n� r � sC 2)�max(m; n)Cmin(r;m� rC 1)C
min(s; n � s C 1) � 3 steps larger than the optimum al-
gorithm proposed by Szwerinski [45]. However, the num-
ber of internal states required to yield the synchronizing
condition is the smallest known at present. Snapshots of
the 14-state generalized synchronization algorithm run-
ning on a rectangular array of size 6 � 8 with the general
at C2;3 are shown in Fig. 43.

Theorem 44 ([60]) There exists a 14-state 2-D CA that
can synchronize any m � n rectangular array in m C n C
max(rC s;mC n� r� sC 2)� 4 steps with the general at
an arbitrary initial position (r; s).

Firing Squad Synchronization Algorithms
for Two-Dimensional Square Cellular Automata

An optimum-time square synchronization algorithm has
been proposed by Shinahr [44]. The algorithm operates

as follows: By dividing the entire square array into n ro-
tated L-shaped 1-D arrays such that the length of the ith L
is 2n � 2i C 1 (1 � i � n), one treats the square synchro-
nization as n independent 1-D synchronizations with the
general located at the center cell. On the ith L, a general is
generated at Ci;i at time t D 2i � 2, and the general ini-
tiates the horizontal and vertical synchronizations on the
row and column arrays via an optimum-time synchroniza-
tion algorithm. The array can be synchronized in optimum
time t D 2i � 2C 2(n � i C 1)� 2 D 2n � 2. It has been
shown in Umeo, Maeda and Fujiwara [59] that 9 states are
sufficient for the optimum-time square synchronization.
The implementation is based on Mazoyer’s 6-state algo-
rithm. Figure 44 shows snapshots of configurations of the
9-state synchronization algorithm running on a square of
size 8 � 8.

Theorem 45 ([44,59]) There exists a 9-state 2-D CA that
can synchronize any n � n square array in 2n � 2 steps.

Firing Squad Synchronization Algorithms
for Two-Dimensional One-Bit Communication
Cellular Automata

The firing squad synchronization problem for 2-D one-
bit communication cellular automata has been studied
by Torre, Napoli and Parente [49], Umeo, Michisaka
and Kamikawa [62], Gruska, Torre, and Parente [17],
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Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 40
Time-space diagram for delayed optimum-time generalized syn-
chronization algorithm

and Umeo, Michisaka, Kamikawa and Kanazawa [63].
Section “Firing Squad Synchronization Algorithms for
Two-Dimensional One-Bit Communication Cellular Au-
tomata” presents two implementations of the square and
rectangular synchronization algorithms on CA1�bit. The
first one is for square arrays given in Umeo, Michisaka,
Kamikawa and Kanazawa [63]. It runs in (2n � 1) steps
on n � n square arrays. The proposed implementation is
one step slower than optimum-time for the O(1)-bit com-
munication model. The total numbers of internal states
and transition rules of the CA1�bit are 127 and 405, re-
spectively. Figure 45 shows snapshots of configurations
of the 127-state implementation running on a square of
size 8 � 8. Gruska, Torre, and Parente [17] presented an
optimum-time algorithm.

Theorem 46 ([17]) There exists a 2-D CA1�bit that can
synchronize any n � n square arrays in 2n � 2 steps.

Firing SquadSynchronization Problem in Cellular Automata, Fig-
ure 41
Time-space diagram for delaying row synchronization

Umeo, Michisaka, Kamikawa and Kanazawa [63] has also
implemented the rectangular synchronization algorithm
for 2-D CA1�bit. The total numbers of internal states and
transition rules of the CA1�bit are 862 and 2217, respec-
tively. Figure 46 shows snapshots of the synchronization
process on a 5 � 8 rectangular array.

Theorem 47 ([63]) There exists a 2-D CA1�bit that can
synchronize any m � n rectangular arrays in m C n C
max(m; n) steps.

Summary and Future Directions

The present article has examined via computer the state
transition rule sets for which optimum-time synchroniza-
tion algorithms were designed over the past forty years.
The smallest transition rule sets for the well-known fir-
ing squad synchronization algorithms are useful and im-
portant for researchers who might have interests in those
transition rule sets that realize the classical optimum-
time firing algorithms quoted frequently in the literatures.
It has also presented a survey and a comparison of the
quantitative and qualitative aspects of the optimum-time
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Firing Squad Synchronization Problem in Cellular Automata, Figure 42
Time-space diagram for the row-synchronization on the xth and yth row of a rectangular array of size m� n, where m � n,
1 � r < dm/2e, 1 � s < dn/2e, 1 � x < r and r � y � m

synchronization algorithms developed thus far for one-
dimensional cellular arrays. It has studied several vari-
ants of the firing squad synchronization problems includ-
ing fault-tolerant synchronization protocols, 4- and 5-state
partial solutions, one-bit communication protocols and
non-optimum-time algorithms etc. Finally a survey on
two-dimensional firing squad synchronization algorithms
has been given. Several new results and new viewpoints
have been provided. The question: “What is the mini-
mum number of states for an optimum-time solution of
the problem?” still remains open. A new approach should
be required.
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Glossary

Complexity in time Complex structures may be charac-
terized by non regular time behavior of a describing
variable q 2 Rd . Thus the challenge is to understand
or tomodel the time dependence of q(t), which may be
achieved by a differential equation d

dt q(t) D : : : or by
the discrete dynamics q(t C �) D f (q(t); : : : ) fixing
the evolution in the future. Of special interest are not
only nonlinear equations leading to chaotic dynamics
but also those which include general noise terms, too.

Complexity in space Complex structures may be charac-
terized by their spatial disorder. The disorder on a se-
lected scale l may be measured at the location x by
some scale dependent quantities, q(l ; x), like wavelets,
increments and so on. The challenge is to understand
or to model the features of the disorder variable q(l ; x)
on different scales l. If the moments of q show power
behavior hq(l ; x)ni / l�(n) the complex structures are
called fractals. Well known examples of spatial com-
plex structures are turbulence or financial market data.
In the first case the complexity of velocity fluctuations
over different distances l are investigated, in the sec-
ond case the complexity of price changes over different
time steps (time scale) are of interest.

Fokker–Planck equation The evolution of a variable x(t)
from x0 at t0 to x at t, with t0 > t, is described in a sta-
tistical manner by the conditional probability distribu-
tion p(x; tjx0; t0). The conditional probability is subject
to a Fokker–Planck equation, also known as second
Kolmogorov equation, if

@

@t
p(x; t j x0; t0) D

�

dX

iD1

@

@xi
D(1)

i (x; t)p(x; t j x0; t0)

C
1
2

dX

i; jD1

@2

@xi@x j
D(2)

i j (x; t)p(x; t j x
0; t0) ;

holds. Here D(1) and D(2) are the drift vector and the
diffusion matrix, respectively.
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Kramers–Moyal coefficients Knowing for a stochas-
tic process the conditional probability distribution
p(x(t); tjx0; t0), for all t and t0 the Kamers–Moyal coef-
ficients can be estimated as nth order moments of the
conditional probability distribution. In this way also
the drift and diffusion coefficient of the Fokker–Planck
equation can be obtained form the empirically mea-
sured conditional probability distributions.

Langevin equation The time evolution of a variable x(t)
is described by Langevin equation if for x(t) it holds:

d
dt

x(t) D D(1)(x; t) � � C
p
D(2)(x; t) � � (ti ) :

Using Itô’s interpretation the deterministic part of the
differential equation is equal to the drift term, the noise
amplitude is equal to the square root of the diffu-
sion term of a corresponding Fokker–Planck equation.
Note, for vanishing noise a purely deterministic dy-
namics is included in this description.

Stochastic process in scale For the description of com-
plex system with spatial or scale disorder usually
ameasure of disorder on different scales q(l ; x) is used.
A stochastic process in scale is now a description of
the l evolution of q(l ; x) by means of stochastic equa-
tions. As a special case the single event q(l ; x) follows
a Langevin equation, whereas the probability p(q(l))
follows a Fokker–Planck equation.

Definition of the Subject

Measurements of time signals of complex systems of the
inanimate and the animate world like turbulent fluid mo-
tions, traffic flow or human brain activity yield fluctuat-
ing time series. In recent years, methods have been de-
vised which allow for a detailed analysis of such data. In
particular methods for parameter free estimations of the
underlying stochastic equations have been proposed. The
present article gives an overview on the achievements ob-
tained so far for analyzing stochastic data and describes
results obtained for a variety of complex systems ranging
from electrical nonlinear circuits, fluid turbulence, to traf-
fic flow and financial market data. The systems will be di-
vided into two classes, namely systems with complexity in
time and systems with complexity in scale.

Introduction

The central theme of the present article is exhibited in
Fig. 1. Given a fluctuating, sequentially measured set of
experimental data one can pose the question whether it
is possible to determine underlying trends and to assess

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 1
Stochastic time series, data generated numerically and mea-
sured in a Rayleigh–Bénard experiment: Is it possible to disen-
tangle turbulent trends from chances?

the characteristics of the fluctuations generating the ex-
perimental traces. This question becomes especially im-
portant for nonlinear systems, which can only partly be
analyzed by the evaluation of the powerspectra obtained
from a Fourier representation of the data.

In recent years it has become evident that for a wide
class of stochastic processes the posed question can be
answered in an affirmative way. A common method has
been developed which can deal with stochastic processes
(Langevin processes, Lévy processes) in time as well as in
scale. In the first case, one faces the analysis of temporal
disorder, whereas in the second case one considers scale
disorder, which is an inherent feature of turbulent fluid
motion and, quite interestingly, can also be detected in fi-
nancial time series. This scale disorder is often linked to
fractal scaling behavior and can be treated by a stochastic
ansatz in a more general way.

In the present article we shall give an overview on the
developed methods for analyzing stochastic data in time
and scale. Furthermore, we list complex systems ranging
from electrical nonlinear circuits, fluid turbulence, finance
to biological data like heart beat data or data of human
tremor, for which a successful application of the data anal-
ysis method has been performed. Furthermore, we shall
focus on results obtained from some exemplary applica-
tions of the method to electronics, traffic flow, turbulence,
and finance.

Complexity in Time

Complex systems are composed of a large number of sub-
systems behaving in a collective manner. In systems far
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from equilibrium collectivity arises due to selforganiza-
tion [1,2,3]. It results in the formation of temporal, spatial,
spatio-temporal and functional structures.

The investigation of systems like lasers, hydrodynamic
instabilities and chemical reactions has shown that selfor-
ganization can be described in terms of order parameters
ui (t) which obey a set of stochastic differential equations
of the form

dui D Ni [u1; ::; un ]dt C
X

j

gi j(u1; ::; un)dWj ; (1)

where Wj are independent Wiener processes. Although
the state vector q(t) of the complex systemunder consider-
ation is high dimensional, its long time behavior is entirely
governed by the dynamics of typically few order parame-
ters:

q(t) D Q(u1; : : : un) : (2)

This fact allows one to perform a macroscopic treatment
of complex systems on the basis of the order parameter
concept [1,2,3].

For hydrodynamic instabilities in the laminar flow
regime like Rayleigh–Bénard convection or the Taylor–
Couette experiment thermal fluctuations are usually small
and can be neglected. However, in nonlinear optics and,
especially, in biological systems the impact of noise has
been shown to be of great importance. In principle, the
order parameter equations (1) can be derived from basic
equations characterizing the system under consideration
close to instabilities [1,2]. However if the basic equations
are not available, as is the case e. g. for systems considered
in biology or medicine, the order parameter concept yields
a top-down approach to complexity [3].

In this top-down approach the analysis of experimen-
tal time series becomes a central issue. Methods of nonlin-
ear time series analysis (c.f. the monograph of Kantz and
Schreiber [4]) have been widely applied to analyze com-
plex systems. However, the developed methods aim at the
understanding of deterministic systems and can only be
successful if the stochastic forces are weak. Apparently,
these methods have to be extended to include stochastic
processes.

Complexity in Scale

In the case of selfsimilar structures complexity is com-
monly investigated by a local measure q(l ; x) character-
izing the structure on the scale l at x. Selfsimilarity means
that in a certain range of l the processes

q(l ; x) ; �q(l ; � x) (3)

should have the same statistics. More precisely, the proba-
bility distribution of the quantity q takes the form

f (q; l) D
1
l�
F
�
q
l�

�
(4)

with a universal function F(Q). Furthermore, the mo-
ments exhibt scaling behavior

hqn(l)i D
Z

dq qn
1
l�
F
�
q
l�

�
D Qn ln� (5)

Such type of behavior has been termed fractal scaling
behavior.

There aremany experimental examples of systems, like
turbulent fields or surface roughness, just to mention two,
that such a simple picture of a complex structure is only
a rough, first approximation. In fact, especially for turbu-
lence where q(l ; x) is taken as a velocity increment, it has
been argued that multifractal behavior is more appropri-
ate, where the nth order moments scale according to

hqn(l)i D Qn l�(n) ; (6)

where the scaling indices �(n) are nonlinear functions of
the order n:

�(n) D n�0 C n2�1 C n3�2 C � � � : (7)

Such a behavior can formally be obtained by the assump-
tion that the probability distribution f (q; l) has the follow-
ing form

f (q; l) D
Z

d� p(�; l)
1
l�
F
�
q
l�

�
: (8)

This formula is based on the assumption that in a tur-
bulent flow regions with different scaling indices � exist,
where p(�; l) gives a measure of the scaling indices � at
scale l. The major shortcoming of the fractal and multi-
fractal approach to complexity in scale is the fact that it
only addresses the statistics of the measure q(l ; x) at a sin-
gle scale l. In general one has to expect dependencies of the
measures q(l ; x) and q(l 0; x) from different scales. Thus
the question, which we will address in the following, can
be posed, are there methods, which lead to a more com-
prehensive characterization of the scale disorder by gen-
eral joint statistics

f (qN ; lN ; qN�1; lN�1; : : : ; q1; l1; q0; l0) (9)

of the local measure q at multiple scales li.
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Stochastic Data Analysis

Processes in time and scale can be analyzed in a simi-
lar way, if we generalize the time process given in (1) to
a stochastic process equation evolving in scale

q(l C dl) D q(l)C N(q; l)dl C g(q; l)dW(l) (10)

where dW belongs to a random process. The aim of data
analysis is to disentangle deterministic dynamics and the
impact of fluctuations. Loosely speaking, this amounts
to detect trends and chances in data series of complex
systems.

A complete analysis of experimental data, which is
generated by the interplay of deterministic dynamics and
dynamical noise, has to address the following issues

� Identification of the order parameters
� Extracting the deterministic dynamics
� Evaluating the properties of fluctuations

The outline of the present article is as follows. First, we
shall summarize the description of stochastic processes fo-
cusingmainly onMarkovian processes. Second, we discuss
the approach developed to analyze stochastic processes.
The last parts are devoted to applications of the data anal-
ysis method to processes in time and processes in scale.

Stochastic Processes

In the following we consider the class of systems which are
described by a multivariate state vector X(t) contained in
a d-dimensional state space fxg. The evolution of the state
vector X(t) is assumed to be governed by a deterministic
part and by noise:

d
dt

X(t) D N
�
X(t); t


C F

�
X(t); t


: (11)

N denotes a nonlinear function depending on the stochas-
tic variable X(t) and additionally, may explicitly depend
on time t (Note, time t can also be considered as a general
variable and replaced for example by a scale variable l like
in (86)). Because the functionN can be nonlinear, also sys-
tems exhibiting chaotic time evolution in the deterministic
case are included in the class of stochastic processes (11).

The second part, F(X(t); t), fluctuates on a fast time
scale. We assume that the d components Fi can be repre-
sented in the form

Fi
�
X(t); t


D

dX

jD1

gi j
�
X(t); t


� j(t) : (12)

The quantities � j(t) are considered to be random func-
tions, whose statistical characteristics are well-defined. It

is evident that these properties significantly determine the
dynamical behavior of the state vector X(t). Formally,
our approach also includes purely deterministic processes
taking F D 0.

Discrete Time Evolution

It is convenient to consider the temporal evolution (11) of
the state vector X(t) on a time scale, which is large com-
pared to the time scale of the fluctuations � j(t).

As we shall briefly indicate below, a stochastic process
related to the evolution Equation (11) can be modeled by
stochastic evolution laws relating the state vectors X(t) at
times ti ; tiC1 D ti C �; tiC2 D ti C 2�; : : : for small but
finite values of � .

In the present article we shall deal with the class of
proper Langevin processes and generalized Langevin pro-
cesses, which are defined by the following discrete time
evolutions.

a) Proper Langevin Equations: White Noise The dis-
crete time evolution of a proper Langevin process is given
by

X(tiC1) D X(ti )CN(X(ti ); ti ) � �
C g(X(ti ); ti ) �

p
��(ti ) (13)

where the stochastic increment �(ti ) is a fluctuating quan-
tity characterized by a Gaussian distribution with zero
mean, h�(ti )i D 0

h(�) D
1

(
p
2�)d

e�
	2
2 D

1
(
p
2�)d

e�
Pd
˛D1

�2˛
2 (14)

Furthermore, the increments are statistically independent
for different times

h�(ti )�(t j)i D ıi j (15)

b) Generalized Langevin Equations: Lévy Noise
A more general class is formed by the discrete time evolu-
tion laws [5,6],

X(tiC1) D X(ti )CN(X(ti ); ti ) � �

C g(X(ti ); ti ) � �1/˛�˛;ˇ (ti ) (16)

where the increment �˛;ˇ (ti ) is a fluctuating quantity dis-
tributed according to the Lévy stable law characterized by
the Lévy parameters ˛, ˇ, [7].
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As is well-known, only the Fourier-transform of this
distribution can be given:

h˛;ˇ D
1
2�

Z
dk Z(k; ˛; ˇ) e�i kx

Z(k; ˛; ˇ) D e�ijkj
˛(1�iˇ sign(k)˚)

˚ D tan�
˛

2
˛ ¤ 1 ;

˚ D �
2
�

ln jkj ˛ D 1 :

(17)

The Gaussian distribution is contained in the class of Lévy
stable distributions (˛ D 2, ˇ D 0). Formally, ˛ can be
taken from the interval 0 < ˛ � 2. However, for applica-
tions it seems reasonable to choose 1 < ˛ � 2 in order that
the first moment of the noise source exists.

The consideration of this type of statistics for the noise
variables � is based on the central limit theorem, as dis-
cussed in a subsection below.

The discrete Langevin (13) and generalized Langevin
Equations (16) have to be considered in the limit � ! 0.
They are the basis of all further treatments. A central point
is that if one assumes the noise sources to be independent
of the variable X(ti) the discrete time evolution equations
define a Markov process, whose generator, i. e. the con-
ditional probability distribution or short time propagator
can be established on the basis of (13), (16).

In the following we shall discuss, how the discrete
time processes can be related to the stochastic evolution
equation (11).

Discrete Time Approximation of Stochastic Evolution
Equations In order to motivate the discrete time ap-
proximations (13), (16) we integrate the evolution law (11)
over a finite but small time increment � :

X(t C �) D X(t)C
Z tC�

t
dt0 N(X(t0); t0)

C

Z tC�

t
dt0 g(X(t0); t0)� (t0)

� X(t)C �N(X(t); t)

C

Z tC�

t
dt0 g(X(t0); t0)� (t0) :

(18)

The time interval � is chosen to be larger than the time
scale of the fluctuations of � j(t). It involves the rapidly
fluctuating quantities � j(t) and is denoted as a stochastic
integral [8,9,10,11].

If we assume the matrix g to be independent on time t
and state vector X(t), we arrive at the integrals

dW(t; �) D
Z tC�

t
dt0 � (t0) : (19)

These are the quantities, for which a statistical character-
ization can be given. We shall pursue this problem in the
next subsection.

However, looking at (18) we encounter the difficulty
that the integrals over the noise forces may involve func-
tions of the state vector within the time interval (t; t C �).
The interpretation of such integrals for wildly fluctuating,
stochastic quantities � (t) is difficult. The simplest way is
to formulate an interpretation of these terms leading to
different interpretations of the stochastic evolution equa-
tion (11). We formulate the widely used definitions due to
Itô and Stratonovich.

In the Itô sense, the integral is interpreted as

Z tC�

t
dt0 g(X(t0); t0)� (t0) D g(X(t); t)

Z tC�

t
dt0 � (t0)

D g(X(t); t)dW(t; �) :
(20)

The Stratonovich definition is
Z tC�

t
dt0 g(X(t0); t0)� (t0)

D g
�
X(t C �)C X(t)

2
; t C

�

2

�Z tC�

t
dt0 � (t0)

D g
�
X(t C �)C X(t)

2
; t C

�

2

�
dW(t; �) :

(21)

Since from experiments one obtains probability dis-
tributions of stochastic processes which are related to
stochastic Langevin equations, we are free to choose a cer-
tain interpretation of the process. In the following we
shall always adopt the Itô interpretation. In this case, the
drift vector D1(x; t) D N(x; t) coincides with the nonlin-
ear vector fieldN(x; t).

Limit Theorems, Wiener Process, Lévy Process In the
following we shall discuss possibilities to characterize the
stochastic integrals

W(t C �) �W(t) D
Z tC�

t
dt0 � (t0) (22)

� (t) is a rapidly fluctuating quantity of zero mean. In or-
der to characterize the properties of this force one can re-
sort to the limit theorems of statistical mechanics [7].

The central limit theorem states that if the quantities
� j , j D 1; : : : ; n are statistically independent variables of
zero mean and variance �2 then the sum

1
p
n

nX

jD1

� j D � (23)
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tends to a Gaussian random variable with variance �2 for
large values of n. The limiting probability distribution h(�)
is then a Gaussian distribution with variance �2:

h(�) D
1

p
2��2

e�
�2

2�2 : (24)

As is well known, there is a generalization of the central
limit theorem, which applies to random variables whose
second moment does not exist. It states that the distri-
bution of the sum over identically distributed random
variables � j

1
n1/˛

nX

jD1

� j D �˛;ˇ (25)

tends to a random variable �˛;ˇ , which is distributed ac-
cording to the Lévy-stable distribution h˛;ˇ (�). The Lévy
stable distributions can only be given by their Fourier –
transforms, cf. Eq. (17).

In order to evaluate the integral (22) using the limit
theorems, it is convenient to represent the stochastic force
� (t) as a sum over N� ı-kicks occuring at discrete times tj

� (t) D
X

j

� j(
t)1/˛ı(t � t j) : (26)

Thereby,
t is the time difference between the occurrence
of two kicks. Then, we obtain

dW(t; �) D
X

j;t j2�

� j(
t)1/˛

D (N�
t)1/˛
1

N1/˛
�

X

j;t j2�

� j D �
1/˛�(t) :

(27)

An application of the central limit theorem shows that
if the quantities � j are identically distributed independet
variables the integral

1
�1/˛

Z tC�

t
D �(t) (28)

can be considered to be a random variable �(t) which in
the limit N� !1 tends to a stable random variable.

Thus, for the case ˛ D 2, i. e. for the case where the
second moments of the random kicks exist, the stochastic
variable dW(t; �) can be represented by the increments

dW(t; �) D
p
��(t) (29)

where �(t) is a Gaussian distributed random variable.
For the more general case, dW(t; �) is a stochastic

variable

dW(t; �) D �1/˛�˛;ˇ (t) (30)

where the distribution of �˛;ˇ is the Lévy distribution (17).

Statistical Description of Stochastic Processes

In the previous subsection we have discussed processes de-
scribed by stochastic equations. In the present subsection
we shall summarize the corresponding statistical descrip-
tion. Such a description is achieved by introducing suitable
statistical averages. We shall denote these averages by the
brackets h: : :i. For stationary processes the averages can be
viewed as a time average. For nonstationary processes av-
erages are defined as ensemble averages, i. e. averages over
an ensemble of experimental (or numerical) realizations
of the stochastic process (11). For stationary processes in
time, one usually deals with time averages. For processes
in scale, the average is an ensemble average.

Probability Distributions The set of stochastic evo-
lution equations (11), or it’s finite time representa-
tions (13), (16) define a Markov process. We consider the
joint probability density

f (xn; tn ; : : : ; x1; t1; x0; t0) (31)

which is related to the joint probability, to find the system
at times ti in the volume 
Vi in phase space. If we take
times ti which are separated by the small time increment
� D tiC1 � ti , then the probability density can be related
to the discrete time representation of the stochastic pro-
cess (13), (16) according to

f (xn; tn ; : : : ; x1; t1; x0; t0)
D hı(xn � X(tn)) : : : ı(x0 � X(t0))i ; (32)

where the brackets indicate the statistical average, which
may be a time average (for stationary processes) or an en-
semble average.

Markov Processes An important subclass of stochastic
processes are Markov processes. For these processes the
joint probability distribution f (xn; tn ; : : : ; x1; t1; x0; t0)
can be constructed from the knowledge of the conditional
probability distributions

p(xiC1; tiC1jxi ; ti ) D
f (xiC1; tiC1; xi ; ti)

f (xi ; ti )
(33)

according to

f (xn; tn ; : : : ; x1; t1; x0; t0)
D p(xn ; tn jxn�1; tn�1) : : : p(x1; t1jx0; t0) f (x0; t0) ;

(34)

Here the Markov property of a process for multiple condi-
tioned probabilities

p(xi ; ti j xi�1; ti�1; : : : ; x0; t0) D p(xi ; ti j xi�1; ti�1) (35)
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is used. As a consequence, the knowledge of the transition
probabilities together with the initial probability distribu-
tion f (x0; t0) suffices to define theN-times probability dis-
tribution.

It is straightforward to prove the Chapman–Kolmo-
gorov equation

p(x j ; t j j xi ; ti ) D
Z

dxk p(x j ; t j j xk ; tk) p(xk ; tk j xi ; ti ):

(36)

This relation is valid for all times ti < tk < t j . In the
following we shall show that the transition probabilities
p(x jC1; tC� jx j; t) can be determined for small time differ-
ences � . This defines the so-called short time propagators.

Short Time Propagator of Langevin Processes It is
straightforward to determine the short time propaga-
tor from the finite time approximation (13) of the
Langevin equation. We shall denote these propagators by
p(x jC1; t C � jx j; t), in contrast to the finite time propa-
gators (33), for which the time interval tiC1 � ti is large
compared to � .

We first consider the case of Gaussian noise. The vari-
ables �(ti ) are Gaussian random vectors with probability
distribution

h[�] D
1

p
(2�)d

exp
h
�
� � �

2

i
: (37)

The finite time intepretation of the Langevin equation can
be rewritten in the form

�(ti ) D
1
�1/2

[g(X(ti ); ti )]�1[X(tiC1) � X(ti )

� �N(X(ti ))] : (38)

This relation, in turn, defines the transition probability
distribution

p(xiC1; tiC1 j xi ; ti )dxiC1 D h[� D �(ti )]J(xi ; ti )dxiC1 ;

(39)

where J is the determinant of the Jacobian

J˛ˇ D
@�˛(ti )
@xiC1;ˇ

; (40)

and [g]�1 denotes the inverse of the matrix g (which is
assumed to exist).

For the following it will be convenient to define the so-
called diffusion matrix D(2)(xi ; ti )

D(2)(xi ; ti) D gT(xi ; ti ) g(xi ; ti ) (41)

We are now able to explicitly state the short time prop-
agator of the process (13):

p(xiC�; tiC1jxi ; ti ) D
1

p
(2��)dDet[D(2)]

e�S(xiC1;xi ;t i ;�)

(42)

We have defined the quantity S(xiC1; xi ; ti ; �) according
to

S(xiC1; xi ; ti ; �) D �
hxiC1 � xi

�
�D(1)(xi ; t)

i

� [D(2)(xi ; ti )]�1
hxiC1 � xi

�
�D(1)(xi ; ti )

i
: (43)

As we see, the short time propagator, which yields the
transition probability density from state xi to state xiC1 in
the finite but small time interval � is a normal distribution.

Short Time Propagator of Lévy Processes It is now
straightforward to determine the short time propagator
for Lévy processes. We have to replace the Gaussian dis-
tribution by the (multivariate) Lévy distribution h˛;ˇ (�).
As a consequence, we obtain the conditional probability,
i. e. the short time propagator, for Lévy processes:

p(xiC1; ti C � j xi ; ti ) D
1

Det[g(xi ; ti )]
h˛;ˇ

�

�
1
�1/˛

[g(x(ti ); ti )]�1[x(tiC1) � x(ti ) � �N(x(ti ))]
�

(44)

Joint Probability Distribution and Markovian Proper-
ties Due to statistical independence of the random vec-
tors �(ti ), �(t j) for i ¤ j we obtain the joint probability
distribution as a product of the distributions h(�):

h(�N ; : : : ;�0) D h(�N ) h(�N�1) : : : h(�0) (45)

Furthermore, we observe that under the assumption that
the random vector �(ti ) is independent on the variables
X(t j) for all j � i we can construct the N-time probability
distribution

f (xn ; tn ; : : : ; x1; t1; x0; t0)
D p(xn ; tn j xn�1; tn�1) : : : p(x1; t1 j x0; t0) f (x0; t0)

(46)

However, this is the definition of aMarkov chain. Thereby,
the transition probabilities are the short time propagators,
i. e. the representation (46) is valid in the short time limit
� ! 0. The probability distribution (46) is the discrete
approximation of the path integral representation of the
stochastic process under consideration [8].
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Let us summarize: The statistical description of the
Langevin equation based on the n-times joint probabil-
ity distribution leads to the representation in terms of the
conditional probability distribution. This representation is
the definition of a Markov process.

Due to the assumptions on the statistics of the fluctuat-
ing forces different processes arise. If the fluctuating forces
are assumed to be Gaussian the short time propagator is
Gaussian and, as a consequence, solely defined by the drift
vector and the diffusion matrix.

If the fluctuating forces are assumed to be Lévy dis-
tributed, more complicated short time propagators arise.

Let us add the following remarks:
a) The assumption of Gaussianity of the statistics is not

necessary. One can consider fluctuating forces with non-
Gaussian probability distributions. In this case the proba-
bility distributions have to be characterized by higher or-
der moments, or, more explicitly, by its cumulants. At this
point we remind the reader that for non-Gaussian distri-
butions, infinitely many cumulants exist.

b) The Markovian property, i. e. the fact that the prop-
agator p(xi ; ti jxi�1ti�1) does not depend on states xk at
times tk < ti�1 is usually violated for physical systems
due to the fact that the noise sources become correlated
for small time differences Tmar. This point already has
been emphasized in the famous work of A. Einstein on
Brownian motion, which is one of the first works on
stochastic processes [12]. This time scale is denoted as
Markov–Einstein scale. It seems to be a highly interesting
quantity especially for nonequilibrium systems like turbu-
lence [13,14] and earthquake signals [15].

Finite Time Propagators

Up to now, we have considered the short time propaga-
tors p(xi ; ti jxi�1; ti�1) for inifinitesimal time differences
ti � ti�1 D � . However, one is interested in the condi-
tional probability distributions for finite time intervals,
p(x; tjx0; t0), t � t0 	 � .

Fokker–Planck Equation The conditional probability
distribution p(x; tjx0; t0), t � t0 	 � can be obtained from
the solution of the Fokker–Planck equation (also known
as second Kolmogorov equation [16]):

@

@t
p(x; t j x0; t0) D �

dX

iD1

@

@xi
D(1)

i (x; t) p(x; t j x0; t0)

C
1
2

dX

i; jD1

@2

@xi@x j
D(2)

i j (x; t) p(x; t j x
0; t0) ; (47)

D(1) andD(2) are drift vector and diffusion matrix.

Under consideration of Itô’s definitions of stochastic
integrals the coefficients D(1), D(2) of the Fokker–Planck
equation (47) and the functionals N, g of the Langevin
equation (11), (12) are related by

D(1)
i (x; t) D Ni(x; t) ; (48)

D(2)
i j (x; t) D

dX

lD1

gi l (x; t) g jl (x; t) : (49)

They are defined according to

D(1)
i (x; t) D lim

�!0

1
�
hXi(t C �) � xiijX(t)Dx

D lim
�!0

1
�

Z
dx0 p(x0; t C � j x; t)

�
x0i � xi



(50)

D(2)
i j (x; t)

D lim
�!0

1
�
h(Xi (t C �) � xi)(Xj(t C �) � x j)ijX(t)Dx

D lim
�!0

1
�

Z
dx0 p(x0; t C � jx; t)

�
x0i � xi

�
x0j � x j


:

(51)

These expressions demonstrate that drift vector and dif-
fusion matrix can be determined as the first and sec-
ond moments of the conditional probability distributions
p(x0; t C � jx; t) in the small time limit.

Fractional Fokker–Planck Equations The finite time
propagators or conditional probability distributions of
stochastic processes containing Lévy-noise lead to frac-
tional diffusion equations. For a discussion of this topic
we refer the reader to [5,6].

Master Equation The most general equation specifying
a Markov process for a continuous state vector X(t) takes
the form
@

@t
p(x; t j x0; t0) D

Z
dx0 w(x; x0; t) p(x0; t j x0; t0)

�

Z
dx0 w(x0; x; t) p(x; t j x0; t0) (52)

here w denote transition probabilities.

Measurement Noise

We can now go a step ahead and include measurement
noise. Due to measurement noise, the observed state vec-
tor, which we shall now denote by Y(ti ), is related to the
stochastic variable X(ti ) by an additional noise term �(ti ):

Y(ti) D X(ti )C �(ti ) (53)
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We assume that the stochastic variables �(ti ) have zero
mean, are statistically independent and obey the probabil-
ity density h(�). Then the probability distribution for the
variable Yt i is given by

g(yn ; tn ; : : : ; y0; t0) D
Z
: : :

Z
d�n : : : d�0

� f (yn � �n ; tn ; : : : ; y0 � �0; t0) h(�n) : : : h(�0) :
(54)

The short time propagator recently has been deter-
mined for the Ornstein–Uhlenbeck process, a process with
linear drift term and constant diffusion. Analysis of data
sets spoilt by measurement noise is currently under inves-
tigation [17,18].

Stochastic Time Series Analysis

The ultimate goal of nonlinear time series analysis ap-
plied to deterministic systems is to extract the underlying
nonlinear dynamical system directly from measured time
series in the form of a system of differential equations,
cf. [4]. The role played by dynamic fluctuations has not
been fully appreciated. Mostly, noise has been considered
as a random variable additively superimposed on a trajec-
tory generated by a deterministic dynamical system. Noise
has been usually considered as extrinsic or measurement
noise. The problem of dynamical noise, i. e. fluctuations
which interfere with the deterministic dynamical evolu-
tion, has not been addressed in full details.

The natural extension of the nonlinear time series
analysis to (continuous) Markov processes is the estima-
tion of short time propagators from time series. During re-
cent years, it has become evident that such an approach is
feasible. In fact, noise may help in the estimation of the de-
terministic ingredients of the dynamics. Due to dynamical
noise the system explores a larger part of phase space and
thus measurements of signals yield considerably more in-
formation about the dynamics as compared to the purely
deterministic case, where the trajectories fastly converge to
attractors providing only limited information.

The analysis of data set’s of stochastic systems exhibit-
ing Markov properties has to be performed along the fol-
lowing lines:

� Disentangling Measurement and Dynamical Noise
� Evaluating Markovian Properties
� Determination of Short Time Propagators
� Reconstruction of Data

Since the methods for disentangling measurement and dy-
namical noise are currently under intense investigation,
see Subsect. “Measurement Noise”, our focus is on the
three remaining issues.

Evaluating Markovian Properties

In principle it is a difficult task to decide on Marko-
vian properties by an inspection of experimental data. The
main point is that Markovian properties usually are vio-
lated for small time increments � , as it already has been
pointed out above and in [12]. There are at least two rea-
sons for this fact.

First, the dynamical noise sources become correlated
at small time differences. If we consider Gaussian noise
sources one usually observes an exponential decay of cor-
relations

h�i (t)� j(t0)i D ıi j
e�jt�t0j/Tmar

Tmar
(55)

Markovian properties can only expected to hold for time
increments � > Tmar.

Second, measurement noise can spoil Markovian
properties [19].

Thus, the estimation of the Markovian time scale Tmar
is a necessary step for stochastic data analysis. Several
methods have been proposed to test Markov properties.

Direct Evaluation of Markovian Properties A direct
way is to use the definition of a Markov process (35)
and to consider the higher order conditional probability
distributions

p(x3; t3 j x2t2; x1; t1) D
f (x3; t3; x2t2; x1; t1)

f (x2t2; x1; t1)
D p(x3; t3 j x2t2) (56)

This procedure is feasible if large data sets are avail-
able. Due to the different conditioning both probabili-
ties are typically based on different number of events. As
an appropriate method to statistically show the similarity
of (56) the Wilcoxon Test has been proposed, for details
see [20,21].

In principle, higher order conditional probability dis-
tributions should be considered in a similar way. How-
ever, the validity of relation (56) is a strong hint for
Markovianity.

Evaluation of Chapman–Kolmogorov Equation An
indirect way is to use the Chapman–Kolmogorov equa-
tion (36), whose validity is a necessary condition for
Markovianity. The method is based on a comparison be-
tween the conditional pdf

p(xk ; tk j xi ; ti ) (57)
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taken from experiment and the one calculated by the
Chapman–Kolmogorov equation

p̃(xk ; tk jxi ; ti) D
Z

dx j p(xk ; tk jx j; t j) p(x j ; t j jxi ; ti )

(58)

where tj is an intermediate time ti < t j < tk . A refined
method can be based on an iteration of the Chapman–
Kolmogorov equation, i. e. considering several intermedi-
ate times. If the Chapman–Kolmogorov equation is not
fulfilled, deviations are enhanced by each iteration.

Direct Estimation of Stochastic Forces Probably the
most direct way is the determination of the stochastic
forces from data. If the drift vector fieldD(1)(x; t) has been
established, as discussed below, the fluctuating forces can
be estimated according to

g(x; t)� (t) D
dx� �D(1)(x; t)

p
�

: (59)

The correlations of this force can then be examined di-
rectly, see also [22] and Subsect. “Noisy Circuits”.

Differentiating Between Stochastic Process and Noise
Data Looking at the joint statistics of increments ex-
tracted from given data, it could be shown that the nest-
ing of increments and the resulting statistics can be used
to differentiate between noise – like data sets and those re-
sulting from stochastic time processes [24].

Estimating the Short Time Propagator

A crucial step in the stochastic analysis is the assessment
of the short time propagator of the continuous Markov
process. This gives access to the deterministic part of the
dynamics as well as to the fluctuations.

Gaussian Noise We shall first consider the case of Gaus-
sian white noise. As we have already indicated, drift vec-
tor and diffusion matrix are defined as the first and sec-
ond moments of the conditional probability distribution
or short time propagator, Eq. (50).

We shall now describe an operational approach, which
allows one to estimate drift vector and diffusion matrix
from data and has been successfully applied to a variety of
stochastic processes.We shall discuss the case, where aver-
ages are taken with respect to an ensemble of experimen-
tal realizations of the stochastic process under considera-
tion in order to include nonstationary processes. Replac-
ing the ensemble averages by time averages for statistically
stationary processes is straightforward.

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 2
Estimated drift terms from the numerical and experimental data
of Fig. 1. In part a also the exact function of the numerical model
is shown as solid curve, in part b the line D(1) D 0 is shown to
visualize the multiple fixed points; after [23]

For illustration we show in Fig. 2 the estimated func-
tions of the drift terms obtained from the analysis of the
data of Fig. 1.

The procedure is as follows:

� The data is represented in a d-dimensional phase space
� The phase space is partitioned into a set of finite, but

small d-dimensional volume elements
� For each bin (denoted by ˛), located at the point x˛ of

the partition we consider the quantity

x(t jC �) D x(t j)CD(1)(x(t j); t j)�C
p
� g(x(t j)� (t j)

(60)
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Thereby, the considered points x(ti ) are taken from
the bin located at x˛ . Since we consider time depen-
dent processes this has to be done for each time step tj
separately

� Estimation of the drift vector:
The drift vector assigned to the bin located at x˛ is de-
termined as the small �- limit

D(1)(x; t) D lim
�!0

1
�
M(x; t; �) (61)

of the conditional moment

M(1)(x˛; t j ; �) D
1
N˛

X

x(t j)2˛

[x(t j C �)� x(t j)] (62)

The sum is over all N˛ points contained in the bin ˛.
Proof: The drift vector assigned to the bin ˛ located
at x˛ is approximated by the conditional expectation
value

M(1)(x˛; t; �) D �
1
N˛

X

x(t j)2˛

D(1)(x j ; t j)

C
p
�

1
N˛

X

x(t j)2˛

g(x(t j)� (t j) (63)

Thereby, the sum is over all points x(t j) located in the
bin assigned to x˛ . Assuming thatD(1)(x; t) and g(x; t)
do not vary significantly over the bin, the second con-
tribution drops out since

1
N˛

X

x j2˛
� (t j)! 0 (64)

�
� Estimation of the Diffusion matrix

The diffusion matrix can be estimated by the small �-
limit

D(2)(x; t) D lim
�!0

1
�
M(2)(x; t; �) (65)

of the conditional second moment

M(2)(x˛ ; t; �)

D
1
N˛

X

j

f[x(t j C �) � x(t j)] � �D(1)(x j ; t j)g2

(66)

Proof:We consider the quantity

M(2)(x˛ ; t; �)

D �
1
N˛

X

x(tk )2˛

X

k

g(x(tk ); tk)� (tk )g(x(t j)� (t j)

(67)

If the bin size is small comparable to the scale, where
the matrix g(x; t) varies significantly, we can replace
g(x(tk ); tk) by g(x˛; tk) such that

M(2)(x˛ ; t; �)

D g(x˛; tk )

2

4 1
N˛

X

x j2˛

X

xk2˛
� (tk)� (t j)

3

5 gT (x˛ ; tk)

D � g(x˛; tk )gT (x˛; tk )
(68)

Thereby, we have used the assumption of the statistical
independence of the fluctuations

1
N˛

X

x(t j)2˛

X

x(tk )2˛

� (tk)� (t j) D ık jE (69)

�
� Higher order cumulants

In a similar way one may estimate higher cumulants
Mn, which in the small time limit converge to the so-
called Kramers–Moyal coefficients. The estimation of
these quantities allows to answer the question whether
the noise sources actually are Gaussian distributed ran-
dom variables

Technical Aspects The above procedure of estimating
drift vector and diffusion matrix explicitly shows the
properties, which limit the accuracy of the determined
quantities.

First of all, the bin size influences the results. The bin
size should allow for a resonable number of events such
that the sums converge, however, it should be reasonable
small in order to allow for a accurate resolution of drift
vector and diffusion matrix.

Second, the data should allow for the estimation of the
conditional moments in the limit lim�!0 [25,26]. Here,
a finite Markov–Einstein coherence length may cause
problems. Furthermore, measurement noise can spoil the
possibility of performing this limit.

From the investigation of the Fokker–Planck equation
much is known on the � dependence of the conditional
moments. This may be used for further improved estima-
tions, as has been discussed in [27]. Furthermore, as we
shall discuss below, extended estimation procedures have
been devised, which overcome the problems related with
the small �-limit.

Lévy Processes A procedure to analyze Lévy processes
along the same lines has been proposed in [28]. An im-
portant point here is the determination of the Lévy para-
meter ˛.
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Selfconsistency After determining the drift vector and
the characteristics of the noise sources from data, it is
straightforward to synthetically generate data sets by it-
erating the corresponding stochastic evolution equations.
Subsequently, their statistical properties can be compared
with the properties of the real world data. This yields a self-
consistent check of the obtained results.

Estimation of Drift and Diffusion
from Sparsely Sampled Time Series

As we have discussed, the results from an analysis of data
sets can be reconsidered selfconsistently. This fact can be
used to extend the procedure to data sets with insufficient
amount of data or sparsely sampled time series, for which
the estimation of conditional moments M(i)(x; t; �) and
the subsequent limiting procedure � ! 0 can not be per-
formed accurately.

In this case, one may proceed as follows. In a first step
one obtains a zeroth order approximation of drift vector
D(1)(x) and diffusion matrix D(2)(x). Based on this esti-
mate one performes, in a second step, a suitable ansatz for
the drift vector and the diffusion matrix containing a set of
free parameters �

D(1)(x; �);D(2)(x; �) (70)

defining a class of Langevin-equations. Each Langevin
equation defines a joint probability distribution

f (xn; tn ; : : : x1; t1; �) (71)

This joint probability distribution can be compared with
the experimental one, f (xn ; tn ; : : : x1; t1; exp). The best
representative of the class of Langevin equations for the
reconstruction of experimental data is then obtained by
minimizing a suitably defined distance between the two
distributions:

Distf f (xn; tn ; : : : x1; t1; �) � f (xn ; tn ; : : : x1; t1; exp)g
D Min (72)

A reasonable choice is the so-called Kullback–Leibler dis-
tance between two distributions, defined as

K D
Z

d f (xn ; tn ; : : : ; x1; t1; exp)

� ln
f (xn ; tn ; : : : ; x1; t1; exp)
f (xn ; tn ; : : : ; x1; t1; �)

(73)

Recently, it has been shown how the iteration procedure
can be obtained from maximum likelihood arguments.

For more details, we refer the reader to [29,30]. A techni-
cal question concerns the determination of the minimum.
In [31] the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm for constraint problems has been used
for the solution of the optimization problem.

Applications: Processes in Time

Themethod outlined in the previous section has been used
for revealing nonlinear deterministic behavior in a variety
of problems ranging from physics, meteorology, biology
to medicine. In most of these cases, alternative procedures
with strong emphasis on deterministic features have only
been partly successful due to their inappropriate treatment
of dynamical fluctuations. The following list (with some
exemplary citations) gives an overview on the investigated
phenomena, which range from technical applications
over many particle systems to biological and geophysical
systems.

� Chatter in cutting processes [32,33]
� Identification of bifurcations towards drifting solitary

structures in a gas-discharge system [34,35,36,37,38]
� Electric circuits [17,39,40]
� Wind energy convertors [41,42,43,44]
� Traffic flow [45]
� Inverse grading of granular flows [46]
� Heart rythms [47,48,49,50]
� Tremor data [39]
� Epileptic brain dynamics [51]
� Meteorological data like El NINO [52,53,54]
� Earth quake prediction [15]

The main advantage of the stochastic data analysis method
is its independence on modeling assumptions. It is purely
data driven and is based on the mathematical features of
Markov processes. As mentioned above these properties
can be verified and validated selfconsistently.

Before we proceed to consider some exemplary ap-
plications we would like to add the following comment.
The described analysis method cleans data from dynam-
ical and measurement noise and provides the drift vec-
tor field, i. e. one obtains the underlying deterministic dy-
namical system. In turn, this system can be analyzed by
the methods of nonlinear time series analysis: One can
determine proper embedding, Ljapunov-exponents, di-
mensions, fixed points, stable and unstable limit cycles
etc. [55]. We want to point out that the determination of
these quantities from uncleaned data usually is flawed by
the presence of dynamical noise.
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Synthetic Data: Potential Systems, Limit Cycles, Chaos

The above method of disentangling drift and dynamical
noise has been tested for synthetically generated data. The
investigated systems include the pitchfork bifurcation, the
Van der Pol oscillator as an example of a nonlinear oscil-
lator, as well as the noisy Lorenz equations as an example
of a system exhibiting chaos [56,57]. Furthermore, it has
been shown how one can analyze processes which addi-
tionally contain a time periodic forcing [58]. This is of high
interest for analyzing systems exhibiting the phenomena
of stochastic resonance. Quite recently, stochastic systems
with time delay have been considered [59,60].

The results of these investigations may be summarized
as follows: Provided there is enough data and the data is
well sampled, it is possible to extract the underlying de-
terministic dynamics and the strength of the fluctuations
accurately. Figure 3 summarizes what can be achieved for
the example of the noisy Lorenz model. For a detailed dis-
cussion we refer the reader to [57].

Noisy Circuits

Next, we present the application of the method to data
sets from experimental systems. As first example, a chaotic
electric circuit has been chosen. Its dynamics is formed
by a damped oscillator with nonlinear energy support and
additional dynamic noise terms. In this case, well defined
electric quantities are measured for which the dynamic
equations are known. The measured time series are an-
alyzed according to the numerical algorithm described

Fluctuations, Importance of: Complexity in the View of Stochastic Processes, Figure 3
Time series of the stochastic Lorenz equation from top to bottom: a) Original time series b) Deterministic time series c) Time series
obtained from an integration of the reconstructed vector field d) Reconstructed time series including noise. For details cf. [57]

above. Afterwards, the numerically determined results and
the expected results according to the system’s equations
are compared.

The dynamic equations of the electric circuit are given
by the following equations, where the deterministic part is
known as Shinriki oscillator [61]:

Ẋ1 D

�
�

1
RNICC1

�
1

R1C1

�
X1

�
f (X1 � X2)

C1
C

1
RNICC1

� (t)
(74)

D g1(X1; X2)C h1� (t) (75)

Ẋ2 D
f (X1 � X2)

C2
�

1
R3C2

X3 D g2(X1; X2; X3) (76)

Ẋ3 D �
R3

L
(X2 � X3) D g3(X2; X3) (77)

X1; X2 and X3 denote voltage terms, Ri are values of
resistors, L and C stand for inductivity and capacity val-
ues. The function f (X1 � X2) denotes the characteristic
of the nonlinear element. The quantities Xi, characteriz-
ing the stochastic variable of the Shinriki oscillator with
dynamical noise, were measured by means of a 12 bit A/D
converter. Our analysis is based on the measurement of
100.000 data points [39]. The attractor of the noise free
dynamics is shown in Fig. 4.

The measured 3-dimensional time series were ana-
lyzed as outlined above. The determined deterministic dy-
namics – expressed by the deterministic part of the evo-
lution equations – corresponds to a vector field in the
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Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 4
Trajectory for the Shinriki oscillator in the phase space without
noise; after [40]

three dimensional state space. For presentation of the
results, cuts of lower dimension have been generated.
Part a) of Fig. 5 illustrates the vector field (g1(x1; x2),
g2(x1; x2; x3 D 0)) of the reconstructed deterministic
parts affiliated with (75), (76). Furthermore, the one-di-
mensional curve g1(x1; x2 D 0) is drawn in part b). Ad-
ditionally to the numerically determined results found by
data analysis the expected vector field and curve (75), (76)
are shown for comparison. A good agreement can be
recognized.

Based on the reconstructed deterministic functions it
is possible to reconstruct also the noisy part from the data
set, see Subsect. “Direct Estimation of Stochastic Forces”.
This has been performed for the three dimensionally em-
bedded data, as well for the case of two dimensional em-
bedding. From these reconstructed noise data, the auto-
correlation was estimated. As shown in Fig. 6 correlated
noise is obtained for wrong embedding indicating the vio-
lation of Markovian properties. In fact such an approach
can be used to verify the correct embedding of nonlin-
ear noisy dynamical systems.We emphasize that, provided
sufficient data is available, this check of correct embedding
can also be performed locally in phase space to find out
where for the corresponding deterministic system crossing
of trajectories take place. This procedure can be utilized to
find the correct local embedding of data.

The electronic circuit of the Shinriki oscillator has also
been investigated with two further perturbations. In [17]
the reconstruction of the deterministic dynamics by the
presence of additional measurement noise has been ad-

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 5
Cuts of the function D(1)(x) reconstructed from experimental
data of the electric circuit in comparisonwith the expected func-
tions according to the known differential (Eq. (75), (76)). In part
a the cut g1(X1;X2), g2(X1;X2; X3 D 0) is shown as a two-dimen-
sional vector field. Thick arrows represent values determined by
data analysis, thin arrows represent the theoretically expected
values. In areas of the state space where the trajectory did not
show up during the measurement no estimated values for the
functions are obtained. Figure b shows the one dimensional cut
g1(X1; X2 D 0). Crosses represent values estimated numerically
by data analysis. Additionally, the affiliated theoretically curve is
printed as well; after [39]

dressed. In [40] the Langevin noise has been exchanged
by a high frequency periodic source, as shown in Fig. 7.
Even for this case reasonable (correct) estimations of the
deterministic part can be achieved.

Many Particle Physics – Traffic Flow

Far from equilibrium interacting many particle systems
exhibit collective macroscopic phenomena like pattern
formation, which can be described by the concept of order
parameters. In the following we shall exemplify for the case
of traffic flow how complex behavior can be analyzed by
means of the proposed method leading to stochastic equa-
tions for the macroscopic description of the system.
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Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 6
Autocorrelation function of reconstructed dynamical noise,
a correctly three dimensional embedded showing ı-correlated
noise, b the projected dynamics in the twodimensional phase
space X1(t) and X3(t), showing finite time correlations; after [17]

Traffic flow certainly is a collective phenomena, for
which a huge amount of data is available. Measured quan-
tities are velocity v and current q D �v of cars passing
a fixed line on the highway. Theoretical models of traf-
fic flow are based on the so-called fundamental diagram,
which is a type of material law for traffic flow relating cur-
rent and velocity of the traffic flow

q D Q(v) (78)

The special form of this relation has been much under de-
bate in recent years.

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 7
a Trajectory for the Shinriki oscillator in the phase space with
a sinusoidal force. b The corresponding trajectory in the phase
space, compare Fig. 5b; after [40]

It is tempting to describe the dynamics by the follow-
ing set of stochastic difference equation

vNC1 D G(vN ; qN )C �N
qNC1 D F(vN ; qN )C �N

(79)

Here, vNC1, qN C 1 are velocity and current of the N C 1
car traversing the line. �N and �N are noise terms with zero
mean, which may depend on the variables u and q. The
drift vector fieldD1 D [D1

1(v; q);D
1
2(v; q)] has been deter-

mined in [45]. We point out that the meaning of the drift
vector field does not depend on the assumption of ideal
noise sources, as has been discussed above Subsect. “Esti-
mating the Short Time Propagator” and Subsect. “Noisy
Circuits”. The obtained drift vector field is depicted in
Fig. 8.
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Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 8
Deterministic dynamics of the twodimensional traffic states
(q; v) given by the drift vector for a right lane of freeway with
vans and b all three lanes. Bold dots indicate stable fixed points
and open dots saddle points, respectively; after [45]

The phase space yields interesting behavior. For the
traffic data involving all three lanes there are three fixed
points, two sinks separated by a saddle point. Further-
more, the arrows representing the drift vector field indi-
cate the existence of an invariant manifold,

q D Q(v) (80)

which has to be interpreted as the abovementioned funda-
mental diagram of traffic flow. It is interesting to see differ-
ences caused by separation of the traffic dynamics into that
of cars and that of vans. This has been roughly achieved
by considering different lanes of the highway. In Figs. 8a
and 9a the dynamics of the right lane caused by vans is
shown. It can clearly be seen that up to a speed of about
80 km/h a meta stable plateau is present corresponding to
a quasi interaction free dynamics of vans. Up to now the

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 9
Corresponding potentials for the deterministic dynamics given
by the drift coefficients of a one dimensional projection of the
results in Fig. 8 [45]

information contained in the noise terms has not led to
clear new insights.

For the discussion of further examples we refer the
reader to the literature. In particular, we want to men-
tion the analysis of segregational dynamics of single par-
ticles with different sizes in avalanches [46], which can be
treated along similar lines .

Applications: Processes in Scale

In the following we shall consider complex behavior in
scale as discussed in the introduction by the method of
stochastic processes.

In order to statistically describe scale complexity in
a comprehensive way, one has to study joint probability
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distributions

f (qN ; lN ; qN�1; lN�1; : : : ; q1; l1; q0; l0) (81)

of the local measure q at multiple scales li. To grasp rela-
tions across several scales (like given by “coherent” struc-
tures) all qi tuples are taken at common locations x. In the
case of statistical independency of q at different scales li,
this joint probability density factorizes:

f (qN ; lN ; qN�1; lN�1; : : : ; q1; l1; q0; l0)
D f (qN ; lN) : : : f (q0; l0) : (82)

In this case multifractal scaling (6) is a sufficient charac-
terization of systems with scale complexity, provided the
scaling property is given. If there is no factorization, one
can use the joint probability distribution Eq. (81) to de-
fine a stochastic process in scale. Thus, one can identify
the scale l with time t and try to obtain a representation of
the spatial disorder in the form of a stochastic process sim-
ilar to a stochastic process in time (see Subsect. “Statistical
Description of Stochastic Processes” and Subsect. “Finite
Time Propagators”).

For such problems our method has been used as an al-
ternative description of multifractal behavior. The present
method has the advantage to relate the random variables
across different scales by introducing a conditional prob-
ability distribution or, in fact, a two scale probability dis-
tribution. Scaling properties are no prerequisite. Provided
that theMarkovian property holds, which can be tested ex-
perimentally, a complete statistical characterization of the
process across scale is obtained. Themethod has been used
to characterize the complexity of data sets for the following
systems (with some exemplary citations):

� Turbulent flows [20,62,63,64]
� Passive scalar in turbulent flows [21]
� Financial data [65,66,67,68]
� Surface roughness [69,70,71,72,73,74]
� Earthquakes [15]
� Cosmic background radiation [75]

The stochastic analysis of scale dependent complex sys-
tem aims to achieve a n-scale characterization, from which
the question arose, whether it will be possible to derive
from these stochastic processes methods for generating
synthetic time series.

Based on the knowledge of the n-scale statistics a way
to estimate the n-point statistics has been proposed, which
enables to generate synthetic time series with the same
n-scale statistics [76]. It is even possible to extend given
data sets, an interesting subject for forecasting. Other ap-
proaches has been proposed in [70,77].

Turbulence and Financial Market Data

In the following we present results from investigations of
fully developed turbulence and from data of the financial
market. The complexity of turbulent fields still has not
been understood in detail. Although the basic equations,
namely the Navier Stokes equations, are known for more
than 150 years, a general solution of these equations for
high Reynolds numbers, i. e. for turbulence, is not known.
Even with the use of powerful computers no rigorous so-
lutions can be obtained. Thus for a long time there has
been the challenge to understand at least the complexity
of an idealized turbulent situation, which is taken to be
isotropic and homogeneous. The main problem is to for-
mulate statistical laws based on the treatment of the deter-
ministic evolution laws of fluid dynamics. A first approach
is due to Kolmogorov [78], who formulated a phenomeno-
logical theory characterizing properties of turbulent fluid
motions by statistical quantities. The central observable of
Kolmogorov’s theory is the so-called longitudinal velocity
increment (which we label here with q) of a turbulent ve-
locity field u(x; t) defined according to:

qx(l; t) D
l
l
� [u(xC l; t) � u(x; t)] : (83)

A statistical description is given in terms of the probability
distribution

f (q; l; t; x) D hı(q � qx(l; t))i : (84)

For stationary, homogeneous and isotropic turbulence,
this probability distribution is independent of the refer-
ence point x, time t, and, due to isotropy, only depends on
the scale l D jlj. As a consequence, the central statistical
quantity is the probability distribution f (q; l). Turbulent
fields have been considered from the viewpoint of selfsim-
ilarity addressing scaling behavior of the probability distri-
bution f (q; l) and their nth order moments, the so-called
structure functions hqni. Multifractal scaling properties,
mentioned already in Eq. (7), of the velocity increments
for turbulence are identical to the well known intermit-
tency problem1, whichmanifests itself in the occurrence of
heavy tailed statistics, i. e. an unexpected high probability

1Here it should be noted that the term “intermittency” is used fre-
quently in physics for different phenomena, and may cause confu-
sions. This turbulent intermittency is not equal to the intermittency
of chaos. There are also different intermittency phenomena intro-
duced for turbulence. There is this intermittency due to the nonlinear
scaling, there is the intermittency of switches between turbulent and
laminar flows for non local isotropic fully developed turbulent flows,
there is the intermittency due to the statistics of small scale turbulence
which we discuss here as heavy tailed statistics.
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of extreme events. Kolmogorov and Oboukhov proposed
the so-called intermittency correction [79]

hq(l ; x)ni D l�n with �n D
n
3
��

n(n � 3)
18

and n > 2

(85)

with 0:25 < � < 0:5 (for further details see [80]). The
form of �n has been heavily debated during the last
decades. For isotropic turbulence the central issue is to re-
veal the mechanism, which leads to this anomalous statis-
tics (see [80,81]).

A completely different point of view of the properties
of turbulent fields is gained by interpreting the probabil-
ity distribution as the distribution of a random process
in scale l [62,63]. It is tempting to hypothesize the exist-
ence of a stochastic process, see Subsect. “Stochastic Data
Analysis”

q(l C dl) D q(l)C N(q; l)dl C g(q; l)dW(l) ; (86)

where dW(l) is an increment of a random process. This
type of stochastic equation indicates how the velocity in-
crement of a snapshot of the turbulent field changes as
a function of scale l. In this respect, the process q(l)
can be considered to be a stochastic cascade process in
“time l”.

This concept of complexity in scale can be carried over
to other systems like the roughness of surfaces or financial
data. In the latter case the scale variable l is replaced by the
time distance or time scale � .

Anomalous Statistics

A direct consequence of multifractal scaling related with
nonlinear behavior of the scaling exponents �n is the fact
that the shape of the probability distribution f (q; l) has to
change its shape as a function of scale. A selfsimilar behav-
ior of the form (4) would lead to fractal scaling behavior,
as outlined in Eq. (5). Using experimental data from a tur-
bulent flow this change of the shape of the pdf becomes
obvious. In Fig. 10 we present f (q; l) for a data set mea-
sured in the central line of a free jet with Reynolds num-
ber of 2:7 � 104, see [20]. Note for large scales (l � L0) the
distributions become nearly Gaussian. As the scale is de-
creased the probability densities become more and more
heavy tailed.

Quite astonishingly, the anomalous statistical features
of data from the financial market are similar to the just
discussed intermittency of turbulence [82]. The follow-
ing analysis is based on a data set Y(t), which consists
of 1 472 241 quotes for US dollar-German Mark exchange

Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 10
Comparison of the numerical solution of the Fokker–Planck
equation (solid lines) for the pdfs f (q(x); l) with the pdfs obtained
directly from the experimental data (bold symbols). The scales l
are (from top to bottom): l D L0; 0:6L0; 0:35L0; 0:2L0 and
0:1L0. The distribution at the largest scale L0 was parametrized
(dashed line) and used as initial condition for the Fokker–Planck
equation (L0 is the correlation length of the turbulent velocity
signal). The pdfs have been shifted in vertical direction for clar-
ity of presentation and all pdfs have been normalized to their
standard deviations; after [20]

rates from the years 1992 and 1993. Many of the fea-
tures we will discuss here are also found in other fi-
nancial data like for instance quotes of stocks, see [83].
A central issue is the understanding of the statistics of
price changes over a certain time interval � which de-
termines losses and gains. The changes of a time series
of quotations Y(t) are commonly measured by returns
r(�; t) :D Y(t C �)/Y(t), logarithmic returns or by incre-
ments q(�; t) :D Y(t C �) � Y(t) [84]. The moments of
these quantities often exhibit power law behavior similar
to the just discussed Kolmogorov scaling for turbulence,
cf. [85,86,87]. For the probability distributions one addi-
tionally observes an increasing tendency to heavy tailed
probability distributions for small � (see Fig. 11). This rep-
resents the high frequency dynamics of the financial mar-
ket. The identification of the underlying process leading
to these heavy tailed probability density functions of price
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Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 11
Probability densities (pdf ) f (q(t); �) of the price changes q(�;
t) D Y(tC�)�Y(t) for the time delays� D 5120;10240;20480;
40960 s (frombottom to top). Symbols: results obtained from the
analysis of middle prices of bit-ask quotes for the US dollar-Ger-
man Mark exchange rates from October 1st, 1992 until Septem-
ber 30th, 1993. Full lines: results from a numerical iteration of
the Fokker–Planck equation (95); the probability distribution for
� D 40960s (dashed lines) was taken as the initial condition. The
pdfs have been shifted in vertical direction for clarity of presen-
tation and all pdfs have been normalized to their standard devi-
ations; after [66]

changes is a prominent puzzle (see [86,87,88,89,90,91]),
like it is for turbulence.

Stochastic Cascade Process for Scale

The occurrence of the heavy tailed probability distribu-
tions on small scales will be discussed as a consequence of
stochastic process evolving in scale, using the above men-
tioned methods. Guided by the finding that the statistics
changes with scale, as shown in Figs. 10 and 11, we con-
sider the evolution of the quantity q(l ; x), or q(�; t) with
the scale variable l or � , respectively.

For a single fixed scale l we get the scale dependent dis-
order by the statistics of q(l ; x). The complete stochastic
information of the disorder on all length scales is given by

the joint probability density function

f (q1; : : : ; qn) ; (87)

where we set qi D q(li ; x). Without loss of generality we
take li < liC1. This joint probability may be seen in anal-
ogy to joint probabilities of statistical mechanics (thermo-
dynamics), describing in the most general way the occupa-
tion probabilities of the microstates of n particles, where q
is a six-dimensional phase state vector (space andmomen-
tum).

Next, the question is, whether it is possible to simplify
the joint probability by conditional probabilities:

f (q1; : : : ; qn) D p(q1jq2; : : : ; qn)
� p(q2jq3; : : : ; qn) : : : p(qn�1jqn) f (qn) ;

(88)

where the multiple conditioned probabilities are given by

p(qi j qiC1; : : : ; qn) D p(qi j qiC1) : (89)

Eq. (89) is nothing else than the condition for a Markov
process evolving from state qiC1 to the state qi, i. e. from
scale liC1 to li as it has been introduced above, see Eq. (35).

A “single particle approximation” would correspond
to the representation:

f (q1; : : : ; qn) D f (q1) f (q2) : : : f (qn) : (90)

According to Eqs. (89) and (90), Eq. (91) holds if
p(qi jqiC1) D f (qi). Only for this case, the knowledge
of f (qi) is sufficient to characterize the complexity of the
whole system. Otherwise an analysis of the single scale
probability distribution f (qi ) is an incomplete description
of the complexity of the whole system. This is the defi-
ciency of the approach characterizing complex structures
by means of fractality or multiaffinity (cf. for multiaffin-
ity [92], for turbulence [80,81], for financial market [85]).
The scaling analysis of moments as indicated for turbu-
lence in Eq. (85) provides a complete knowledge of any
joint n-scale probability density only if Eq. (90) is valid.

These remarks underline the necessity to investigate
these conditional probabilities, which can be done in
a straightforward manner from given experimental or nu-
merical data. For the case of turbulence as well as for
financial data we see that p(qi jqiC1) does not coincide
with f (qi ), as it is shown for turbulence data in Fig. 12.
If p(qi jqiC1) D f (qi) no dependency on qiC1 could be
detected.

The next point of interest is whether theMarkov prop-
erties are fulfilled. Therefore doubly conditioned probabil-
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Fluctuations, Importance of: Complexity in the View of Stochas-
tic Processes, Figure 12
Comparison of the numerical solution of the Fokker–Planck
equation for the conditional pdf p(q; ljq0; l0) denoted in this fig-
ure as p(v; rjv0; r0) with the experimental data. a: Contour plots
of p(v; rjv0; r0) for r0 D L and r D 0:6L, where L denotes the
integral length. Dashed lines: numerical solution of (94), solid
lines: experimental data. b and c: Cuts through p(v; rjv0; r0) for
v0 DC�1 and v0 D ��1 respectively. Open symbols: experi-
mental data, solid lines: numerical solution of the Fokker–Planck
equation; after [20]

ities were extracted from data and compared to the sin-
gle conditioned ones. For financial data as well as for tur-
bulence we found evidence that the Markov property is
fulfilled if the step size is larger than a Markov–Einstein
length [20,66]. For turbulence it could be shown that the
Markov–Einstein length coincides with the Taylor length
marking the small scale end of the inertial range [14]. (The
extensive discussion of the analysis of financial and turbu-
lent data can be found in [20,65,66,93]).

Based on the fact that the multiconditioned probabil-
ities are equal to the single conditioned probabilities, and
taking this as a verification ofMarkovian properties we can
proceed according to Subsect. “Estimating the Short Time

Propagator” and estimate from given data sets the stochas-
tic equations underlying the cascade process. The evo-
lution of the conditional probability density p(q; l jq0; l0)
starting from a selected scale l0 follows

� l
@

@l
p(q; l jq0; l0)

D

1X

kD1

1
k!

�
�
@

@q

�k
D(k)(q; l) p(q; l jq0; l0) :

(91)

(The minus sign on the left side is introduced, because
we consider processes running to smaller scales l, fur-
thermore we multiply the stochastic equation by l, which
leads to a new parametrization of the cascade by the vari-
able ln(1/l), a simplification for a process with scaling
law behavior of its moments.) This equation is known as
the Kramers–Moyal expansion [8]. As outlined in Sub-
sect. “Finite Time Propagators” and Subsect. “Estimating
the Short Time Propagator”, the Kramers–Moyal coeffi-
cients D(k)(q; l) are now defined as the limit 
l ! 0 of
the conditional moments M(k)(q; l ; 
l):

D(k)(q; l) D lim
�l!0

M(k)(q; l ; 
l) ; (92)

M(k)(q; l ; 
l) :D
l

l

C1Z

�1

�
q̃ � q

k p
�
q̃; l �
l j q; l


d q̃:

(93)

Thus, for the estimation of the D(k) coefficients it is
only necessary to estimate the conditional probabili-
ties p(q̃; l �
l jq; l). For a general stochastic process,
all Kramers–Moyal coefficients are different from zero.
According to Pawula’s theorem, however, the Kramers–
Moyal expansion stops after the second term, provided
that the fourth order coefficient D(4)(q; l) vanishes. In
that case the Kramers–Moyal expansion is reduced to
a Fokker–Planck equation:

� l
@

@l
p(q; l jq0; l0)

D

�
�
@

@q
D(1)(q; l)C

1
2
@2

@q2
D(2)(q; l)

�
p(q; l jq0; l0) :

(94)

D(1) is denoted as drift term, D(2) as diffusion term now
for the cascade process. The probability density function
f (q; l) has to obey the same equation:

� l
@

@l
f (q; l)

D

�
�
@

@q
D(1)(q; l)C

1
2
@2

@q2
D(2)(q; l)

�
f (q; l) :

(95)
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The novel point of our analysis here is that knowing
the evolution equation (91), the n-increment statistics
f (q1; : : : ; qn) can be retrieved as well. Definitely, informa-
tion like scaling behavior of the moments of q(l ; x) can
also be extracted from the knowledge of the process equa-
tions. Multiplying (91) by qn and successively integrating
over q, an equation for the moments is obtained:

� l
@

@l
hqni D

nX

kD1

�
�
@

@q

�k n!
k!(n � k)!

hD(k)(q; l)qn�ki :

(96)

Scaling, i. e. multi affinity as described in Eq. (7), is ob-
tained if D(k)(q; l) / qk , see [71,94].

We summarize: By the described procedure we were
able to reconstruct stochastic processes in scale directly
from given data. Knowing these processes one can per-
form numerical solutions in order to obtain a selfcon-
sistent check of the procedure(see [20,66]). In Figs. 10,
11 and 12 the numerical solutions are shown by solid
(dashed) curves. The heavy tailed structure of the single
scale probabilities as well as the conditional probabilities
are well described by this approach based on a Fokker–
Planck equation. Further improvements can be achieved
by optimization procedures mentioned in Subsect. “Es-
timation of Drift and Diffusion from Sparsely Sampled
Time Series”.

New Insights

The fact that the complexity of financial market data as
well as turbulent data can be expressed by a Markovian
process in scale, has the consequence that the conditioned
probabilities involving only two different scales are suffi-
cient for the general n scale statistics. This indicates that
three or four point correlation are sufficient for the for-
mulation of n-point statistics.

The finding of a finite length scale above which the
Markov properties are fulfilled [14] has lead to a new in-
terpretation of the Taylor length for turbulence, which so
far had no specific physical meaning.

For financial, as well as, for the turbulent data it has
been found that the diffusion term is quadratic in the state
space of the scale resolved variable. With respect to the
corresponding Langevin equation, the multiplicative na-
ture of the noise term becomes evident, which causes heavy
tailed probability densities and multifractal scaling. The
scale dependency of drift and diffusion terms corresponds
to a non-stationary process in scale variables � and l, re-
spectively. From this point we conclude that a Levy statis-
tics for one fixed scale, i. e. for the statistics of q(l ; x) for

fixed l can not be an adequate class for the statistical de-
scription of financial and turbulent data.

Comparing the maximum of the distributions at small
scales in Figs. 10 and 11 one finds a less sharp tip for the
turbulence data. This finding is in accordance with a com-
parably larger additive contribution in the diffusion term
D(2) D aC bq2 for turbulence data. Knowing that D(2)

has an additive term and quadratic q dependence it is clear
that for small q values, i. e. for the tips of the distribution,
the additive term dominates. Taking this result in combi-
nation with the Langevin equation, we see that for small q
values Gaussian noise is present, which leads to aGaussian
tip of the probability distribution, as found in Fig. 10.

A further consequence of the additive term in D(2) is
that the structure functions as given by Eq. (96) are not
independent and a general scaling solution does not ex-
ist. This fact has been confirmed by optimizing the coeffi-
cients [31]. This nonscaling behavior of turbulence seems to
be present also for higher Reynolds numbers. It has been
found that the additive terms becomes smaller but still re-
mains relevant [96]. The cascade processes encoded in the
functions D(1) and D(2) seem to depend on the Reynolds
number, which might indicate that turbulence is less uni-
versal as commonly thought.

As has been outlined above it is straight forward to ex-
tend the analysis to higher dimensions. For the case of lon-
gitudinal and transversal increments a symmetry for these
two different directions of the complex velocity field has
been found in the way that the cascade process runs with
different speeds. The factor is 3/2 [64,96] and again is not
in accordance with the proposed multifractal scaling prop-
erty of turbulence.

The investigation of the advection of passive scalar in
a turbulent flow along the present method has revealed the
interesting result that the Markovian properties are ful-
filled but that higher orderKramers–Moyal coefficients are
nonnegligible [21]. This indicates that for passive scalars
non-Gaussian noise is present, which can be attributed to
the existence of shock like structures in the distribution of
the passive scalar.

Future Directions

The description of complex systems on the basis of
stochastic processes, which include nonlinear dynamics,
seems to by a promising approach for the future. The chal-
lenge will be to extend the understanding to more com-
plicated processes, like Levy processes, processes with no
white noise or higher dimensional processes, just to men-
tion some. As it has been shown in this contribution, for
these cases it should be possible to derive from precise
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mathematical results general methods of data series analy-
sis, too.

Besides the further improve of themethod, we are con-
vinced that there is still a wide range of further appli-
cations. Advanced sensor techniques enables scientists to
collect huge data sets measured with high precision. Based
on the stochastic approach we have presented here it is not
any more the question to put much efforts into noise re-
duction, but in contrary the involved noise can help to de-
rive a better characterization and thus a better understand-
ing of the system considered. Thus there seem to be many
applications in the inanimate and the animateworld, rang-
ing form technical applications over socio-econo systems
to biomedical applications. An interesting feature will be
the extraction of of higher correlation aspects, like the
question of the cause and effect chain, which may be un-
folded by asymmetric determinism and noise terms recon-
structed from data.

Further Reading

For further reading we suggest the publications [1,2,3,4,
8,9,10,11].
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Glossary

Trajectory or path A crucial concept in the statistical de-
scription of small system is that of a trajectory or path.
A path is the time sequence of configurations followed
by the system as it is driven to a non-equilibrium state
by the action of an external perturbation.

Control parameter External perturbations are usually
described in terms of the control parameter . These
are a set of external parameters (e. g. an electric field,
magnetic field, optical force, . . . ) that can be experi-
mentally controlled and do not fluctuate. Experimen-
tally, control parameters are produced by macroscopic
systems that are used to manipulate the small system
under study and which are insensitive to thermal fluc-
tuations (but that produce other sorts of uncontrolled
instrumental noises and drift effects).

Single molecule experiments (SME) Recent technologi-
cal developments have provided the tools to design
and build scientific instruments of high enough sen-
sitivity and precision to manipulate and visualize indi-
vidual molecules and measure microscopic forces. Us-
ing SME it is possible to manipulate molecules one at
a time and measure distributions describing molecu-
lar properties, characterize the kinetics of bio-molec-
ular reactions, and detect molecular intermediates.
SME provide the additional information about ther-
modynamics and kinetics of bio-molecular processes.
This complements information obtained in traditional
bulk assays. In SME it is also possible to measure
small energies and detect large Brownian deviations in
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bio-molecular reactions, thereby offering new meth-
ods and systems to scrutinize the basic foundations
of statistical mechanics. Common single molecule ex-
perimental techniques are: atomic-force microscopy,
laser optical tweezers, magnetic tweezers and single-
molecule fluorescence.

Free energy The natural or spontaneous evolution of any
thermodynamic process is determined by the free en-
ergy. The free energy in thermodynamics is the equiv-
alent of the mechanical energy in classical mechanics.
Spontaneous transformations take place by a decrease
of the free energy in the system. In addition, mechan-
ical work must be exerted by an external agent upon
the system to increase its free energy. For reversible
processes the amount of work is equal to the free en-
ergy change. However, in general, processes are irre-
versible and the work must be always larger than the
free energy difference (a statement of the second law
of thermodynamics). Free energies in small systems
are typically expressed in either work (pN�nm) or en-
ergy units (kJ/mol, kcal/mol or kBT where kB is the
Boltzmann constant andT is a reference temperature –
usually 298K or 25 degrees Celsius). The conversion
factors are (T D 298K) : 1 kBT D 4:11 pN � nm D
4:1110�21 J, 1 kBT D 0:6 kcal/mol D 2:4 kJ/mol.

ATP Acronym for adenosine triphosphate, the molecule
that carries the energy necessary to sustain life pro-
cesses. ATP is made of one adenosine base weakly
bonded to three phosphate groups. Upon conver-
sion (by hydrolysis) to ADP (adenosine diphos-
phate) and inorganic phosphate or AMP (adenosine
monophosphate) and pirophosphate (P-P), ATP de-
livers a considerable amount of free energy (in the
range 8–12 kcal/mol, depending on buffer conditions).
By coupling to other reactions, ATP hydrolysis sup-
plies the energy necessary to carry out unfavorable
transformations.

RNA RNA (ribonucleic acid) is a very important player
in molecular biology that shows biological functions
in between those attributed to DNA and proteins. For
the biophysicist and the statistical physicist RNA is
also a fascinating molecule. Primarily found in na-
ture in single stranded form, RNA folds into a three
dimensional structure mainly stabilized by stacking
interactions and hydrogen bonds between comple-
mentary bases (A-U,G-C). Full complementarity be-
tween different RNA segments is often impossible
so, at difference with DNA, RNA structure includes
also mismatches between bases as well other struc-
tural defects (bulges, loops, junctions, . . . ). In addi-
tion toWatson–Crick base pairing, RNA forms a com-

pact structure through specific interactions mediated
by magnesium ions that bring together distal RNA
segments.

Definition of the Subject

The thermodynamics of small systems describes energy
exchange processes between a system and its environment
in the low energy range of a few kBT where Brownian
fluctuations are dominant [1]. The main goal of this disci-
pline is to identify the building blocks of a general theory
describing energy fluctuations in non-equilibrium pro-
cesses occurring in systems ranging from condensed mat-
ter physics to biophysics.

Thermodynamics, a scientific discipline inherited
from the 18th century, is facing new challenges in the de-
scription of non-equilibrium small (sometimes also called
mesoscopic) systems. Thermodynamics is a discipline
built in order to explain and interpret energetic processes
occurring in macroscopic systems made out of a large
number of molecules on the order of the Avogadro num-
ber. The subsequent development of statistical mechanics
has provided a solid probabilistic basis to thermodynamics
and increased its predictive power at the same time. The
development of statistical mechanics goes together with
the establishment of the molecular hypothesis. Matter is
made out of interacting molecules in motion. Heat, en-
ergy and work are measurable quantities that depend on
the motion of molecules. The laws of thermodynamics op-
erate at all scales.

However, thermodynamics, a science inherited in the
18th century from the times of the industrial revolu-
tion, has been inspired by motors and steam engines that
proved to be indispensable during that time. It is fair
then to question the relevance and applicability of all this
knowledge when scientists immerse into the realm of the
very small, far from the initial context that inspired Carnot
and others.

What are the novel features of thermodynamics when
applied to small (also calledmesoscopic) systems? Is it nec-
essary to revisit some of the main concepts that we learned
from standard thermodynamics? How are energy dissi-
pation and efficiency related for non-equilibrium small
systems where energy fluctuations are dominant? Finally,
what are the implications in quantum systems already gov-
erned by quantum fluctuations? Answering such questions
is one of the main goals of this new discipline.

Introduction

The non-equilibrium thermodynamics of small systems is
becoming quite popular among statistical physicists who
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recognize there new aspects of thermodynamics where
large Brownian fluctuations are of pivotal importance as
compared to fluctuations in macroscopic (or large) sys-
tems. In macroscopic systems, fluctuations represent just
small deviations respect to the average behavior. For ex-
ample, an ideal gas ofN molecules in thermal contact with
a bath at temperature T has an average total kinetic en-
ergy of (3/2)NkBT . However, the total energy is not a con-
served quantity but fluctuates, its spectrum being a Gaus-
sian distribution of variance (3/2)N(kBT)2 according to
the law of equipartition. Therefore, relative deviations of
the energy are on the order 1/

p
N respect to the aver-

age value. For macroscopic systems such deviations are
very small: for N D 1012 (this is the typical number of
molecules in a 1ml test tube at nanomolar concentration)
relative deviations are on the order of 10�6, hence experi-
mentally unobservable by calorimetry methods. For a few
molecules, N � O(1), relative deviations are on the same
order. Fluctuations are then measurable by direct observa-
tion of individual molecules.

Small systems share the property that energy fluctua-
tions are much larger than �

p
E (the prediction by the

law of large numbers) where E is the average total en-
ergy. Large deviations from average values are normally
observed in mesoscopic systems where non-equilibrium
fluctuations are governed by a few degrees of freedom. Ex-
amples abound in physics and biology: the Brownian mo-
tion of a micron-size silica bead captured in an optical
trap; the unfolding of a bio-molecule (e. g. a nucleic acid
hairpin or a protein); the movement of molecular motors
inside the cell; the cooperative rearrangement of a nano-
sized region containing a few molecules inside an amor-
phous material such as a glass.

As a rule of thumb we can say that small systems
are those where the typical energy content of the sys-
tem is a few times kBT , maybe from 1 to 1000 but not
much more. As often happens, there is no well defined
frontier separating the small-size regime from the large-
size regime. The name thermodynamics of small systems
was first coined by T. L. Hill [2] who showed the impor-
tance of the statistical ensemble in thermodynamic rela-
tions. Amain result of statistical mechanics is the indepen-
dence of the equation of state on the statistical ensemble
in the thermodynamic limit. Such independence breaks
down in small systems due to the contribution of fluctu-
ations which depend on the type of statistical ensemble
considered. In biology, the most important aspect of these
tiny machines is that they operate far from equilibrium;
its consequences and importance in their biological func-
tion are still unknown. The combination of small size and
non-equilibrium behavior is the playground for the strik-

ing behavior observed in condensed matter physics and
biophysics.

Prominent in the field is the study of the so called
work and heat fluctuations in systems driven to a non-
equilibrium state. Fluctuation theorems are mathematical
relations that quantify the relative probability of trajecto-
ries that release and absorb a given amount of work/heat
to and from the environment. Taken individually, the
work and heat along these trajectories can violate some
of the inequalities of thermodynamics, leading to what is
commonly referred as transient violations of the second
law. This name has raised strong objections among some
groups of physicists. Of course the second law remains
inviolate. The name just stresses the fact that Brownian
fluctuations are big enough for such deviations from the
average value to be observed. For macroscopic systems
these trajectories are known to be irrelevant and unob-
servable, however at the level of small system sizes, when
the energies involved are of order of several times kBT ,
these trajectories become important. Although thermo-
dynamic inequalities are known to describe the behavior
of average values, it is important to explore the implica-
tions and relevance of these deviations in our understand-
ing of energy transformation processes at the molecular
level.

The quantitative experimental observation and mea-
surement of large energy fluctuations has become possi-
ble only recently with the development of new micro-ma-
nipulation tools. Particularly important are the application
of single-molecule techniques to explore physical theories
in systems out of equilibrium. The use of new micro-ma-
nipulation tools in the exploration of the behavior of tiny
objects (such as bio-molecules and motors) embedded in
a thermal environment opens the possibility to investigate
how these systems exchange energy with their environ-
ment. This question is of great interest both at a funda-
mental and practical level. From a fundamental point of
view, the comprehension of how bio-molecules operating
very far from equilibrium are so efficient raises the ques-
tion whether such tiny systems exploit rare and large de-
viations from their average behavior by rectifying thermal
fluctuations from the bath. From a practical point of view,
this might help in the design of efficient nanomotors in the
future.

In the next sections we overview a selection of top-
ics in this fascinating area of research. We will start by
discussing molecular motors in Sect. “Molecular Motors”.
In Sect. “Non-equilibrium Thermodynamics of Small Sys-
tems” we explain what are the main types of non-equilib-
rium states and introduce the microscopic definitions of
heat and work. In Subsect. “The Jarzynski Equality” we
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derive the Jarzynski equality by using the master equation
approach. This part is a bit technical and the reader who
is not interested in the details can jump to Eq. (17) and
continue reading from there. Finally, in Sect. “Fluctuation
Theorems” we discuss fluctuation theorems and review
some of their applications to condensed matter physics
and biophysics. The article finishes with a discussion of fu-
ture directions in research.

MolecularMotors

Molecular motors are proteins that use the energy ex-
tracted from the hydrolysis of ATP to exert mechanical
work (Fig. 1) [3]. The mechanism by which motors uti-
lize the energy stored in the high energy bonds of the ATP
molecules to performmechanical work is based on two hy-
pothesized mechanisms: 1) Power stroke generation or 2)
Brownian ratchet mechanism. In the first mechanism the
release of the pyrophosphate during the ATP hydrolysis
cycle is tightly coupled to the generation of force which

Fluctuation Theorems, Brownian Motors and Thermodynamics of Small Systems, Figure 1
Examples of molecular machines: a Kinesin walking a long micro-tubule and transporting a cargo. b F1-ATP synthase is the proton
pump responsible of producing ATP in the mitochondria of eukaryotic cells. c Helicases are forerunners of the DNA polymerase that
unwind DNA by transforming dsDNA into two strands of ssDNA. d The ribosome is one among the largest molecularmachines inside
the cytoplasm of the cell in charge of manufacturing proteins

drives the motor. In the second mechanism, the motor
diffuses reversibly along the substrate. Movement is then
produced by the hydrolysis of ATP that induces a confor-
mational change in the protein. This change is then rec-
tified by thermal fluctuations that induce the release of
ADP. By steady repetition of this mechanochemical cy-
cle (one ATP molecule is hydrolyzed per cycle) the mo-
tor carries out important cellular functions. Motors are
characterized by the so called processivity or number of
turnover cycles the motor does until detaching from the
substrate. Processivities of molecular motors can vary by
several orders of magnitude depending on the type of mo-
tor and the presence of other regulating factors. For exam-
ple, the muscle myosin II motors work in large assemblies,
each myosin having a processivity around 1, meaning that
each myosin performs one mechanochemical cycle on av-
erage before detaching from the substrate. In the other ex-
treme of the scale there are DNA polymerases in eukary-
otes which show processivities that range from 1 (adding
approximately one nucleotide before detaching) up to sev-
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eral thousands or even millions. However, in the presence
of sliding clamps (proteins with the shape of a doughnut
that encircle the DNA and tightly bind DNA polymerases)
processivities go up to 109. Molecular motors are magnif-
icent objects from the point of view of their efficiency. If
we define the efficiency rate as the ratio between the useful
work performed by the motor and the energy released in
the hydrolysis of one ATPmolecule in onemechanochem-
ical cycle, then typical values for the efficiencies are around
several tens per cent, reaching the value of 90% in some
cases (like in the rotary motor F1-ATPase). For exam-
ple, out of the 20 kBT obtained from the hydrolysis of
one molecule of ATP, kinesin exerts a mechanical work of
12 kBT at every step, having an efficiency of around 60%.
Such large efficiencies are rarely found inmacroscopic sys-
tems (motors of cars have efficiencies below 20%)meaning
that molecular motors have been designed by evolution to
efficiently operate in a highly noisy environment. Molecu-
lar motors are expected to be essential constituents of fu-
ture nanodevices.

What is the relation between molecular motors and
the non-equilibrium thermodynamics of small systems? It
is a well established fact that the typical amounts of en-
ergy obtained from chemical sources (e. g. ATP or GTP
hydrolysis) used by most molecular machines are a few
kcal per mol (at T � 300K this corresponds to a few units
of kBT , 1 kBT ' 0:6 kcal/mol). Let us consider the ex-
ample of RNA transcription. The process by which RNA
nucleotides (A,U,G,C) are added to the newly synthe-
sized RNA strand during the transcription process in-
volves the hydrolysis of the different nucleoside-phosphate
complexes as they are added to the 3’ end of the grow-
ing chain. The overall process by which one base is added
to the newly synthesized strand is a highly favorable re-
action (mainly driven by the hydrolysis of the pyrophos-
phate) with a free energy release, 
G, in the range be-
tween 7 and 12 kcal/mol mainly depending on the magne-
sium concentration in the environment. Effectively this is
an irreversible process that generates an amount of avail-
able energy between 10 and 20 kBT at room temperature
(� 300K, 1kBT ' 0:6 kcal/mol) per base pair added. This
energy would be lost to the environment in the form of
heat were it not for the fact that a big part of the energy is
used by the RNA polymerase to locally unwind the dou-
ble DNA helix and pull apart the two DNA strands to
produce a bubble a few bases long of denatured DNA.
This bubble is then used by the DNA/RNA/polymerase
ternary complex as a substrate to polymerize the RNA. As
transcription proceeds the bubble moves downstream to-
gether with the RNA polymerase and the RNA transcript
is synthesized.

For this process to occur, the RNA polymerase must
move against the Stokes friction produced by water as
well as other roadblocks that hamper its motion. In par-
ticular, the RNA polymerase must exert force and torque
on the DNA. Typical forces to unzip DNA are on the
order of 15 pN meaning that the minimum mechani-
cal work necessary to unzip one base pair is around
15 pN times 12 Angstroms (the typical extension gained
after pulling apart two bases at the fork of a DNA
hairpin), which is equal to 18 pN � nm or equivalently
4:4 kBT (1 kBT ' 4:11pN � nm at room temperature). We
can define the efficiency of the RNA motor as the ratio
between the mechanical work needed to unzip one base
pair and the amount of energy obtained from hydrolysis
upon the addition of a nucleotide (however this is not the
only way to define mechanical efficiencies, e. g. see [4,5]).
The efficiency of the transcription process is then about
40 per cent, a quite remarkable feat if we compare this
number with the ones obtained in man made machines
(cars have efficiencies below 20 per cent). The motion
of a single RNA polymerase has been studied in several
prokaryotic systems using optical and magnetic tweez-
ers [6,7]. In these experiments a DNA/polymerase com-
plex is tethered between a trapped bead and an strepta-
vidin coated immobilized bead or surface. To initiate tran-
scription nucleotides are allowed to flow inside the cham-
ber and the elongation of the transcript can be followed
in real time while force is applied on the tether. The ex-
tension of the RNA transcript as a function of time re-
veals a complex intermittent motion of the polymerase
with pauses (temporary stops), arrests (permanent stops)
and even backtracking events [8,9].

Non-equilibrium Thermodynamics of Small Systems

Non-equilibrium States

An important concept in thermodynamics is the state
variable. State variables are those that, once determined,
uniquely specify the thermodynamic state of the system.
Examples are the temperature, the pressure, the volume
and the mass of the different components in a given sys-
tem. To specify the state variables of a system it is common
to put the system in contact with a bath. The bath is any set
of sources (of energy, volume, mass, etc.) large enough to
remain unaffected by the interaction with the system un-
der study. The bath ensures that a system can reach a given
temperature, pressure, volume and mass concentrations
of the different components when put in thermal contact
with the bath (i. e. with all the relevant sources). Equilib-
rium states are then generated by putting the system in
contact with a bath and waiting until the system proper-
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ties relax to the equilibrium values. Under such conditions
the system properties do not change with time and the av-
erage heat/work/mass exchanged between the system and
the bath is zero.

Non-equilibrium states can be produced in many
ways, either by continuously changing the parameters of
the bath or by preparing the system in an initial non-
equilibrium state that slowly relaxes toward equilibrium.
In general a non-equilibrium state is produced whenever
the system properties change with time and/or the net
heat/work/mass exchanged by the system and the bath is
non zero.We can distinguish at least three different classes
of non-equilibrium states:

� Non-equilibrium transient state (NETS) The system
is initially prepared in an equilibrium state and later
driven out of equilibrium by switching on an exter-
nal perturbation. The system quickly returns to a new
equilibrium state once the external perturbation stops
changing.
A classic example of NETS is the case of a protein
in its initial native state that is mechanically pulled
(e. g. using AFM) by exerting force on the ends of the
molecule. The protein is initially folded and in ther-
mal equilibrium with the surrounding aqueous solvent.
Upon pulling the protein is driven away from equilib-
rium into a transient state until it finally settles into
the unfolded and extended equilibrium state. Another
example of a NETS is a bead immersed in water and
trapped in an optical well generated by a focused laser
beam.When the trap is moved to a nearby new position
(e. g. by moving the laser beams) the bead is driven to
a NETS. After some time the bead reaches equilibrium
again at the new position of the trap. In another ex-
periment the trap is suddenly put in motion at a speed
v so the bead is transiently driven away from its equi-
librium average position until it settles into a non-equi-
librium steady-state (NESS, see below) characterized by
the speed of the trap. The average position of the bead
lags behind the position of the center of the trap.

� Non-equilibrium steady-state (NESS) The system
is driven by external forces (either time dependent
or non-conservative) in a stationary non-equilibrium
state where its properties do not change with time. The
steady state cannot be described by the Boltzmann–
Gibbs distribution and the average net heat that is dis-
sipated by the system (equal to the entropy production
of the bath) is positive.
A classic example of a NESS is an electrical circuit made
out of a battery and a resistance. The current flows
through the resistance and the chemical energy stored

in the battery is dissipated to the environment in the
form of heat; the average dissipated power, Pdis D VI,
is equal to the power supplied by the battery. Another
example is a sheared fluid between two plates or cover-
slips and one of them is moved relative to the other at
a constant velocity v. To sustain such state a mechani-
cal power equal to P / �v2 has to be exerted upon the
moving plate where � is the viscosity of water. The me-
chanical work produced is then dissipated in the form
of heat through the viscous friction between contigu-
ous fluid layers. Further examples of NESS are chemical
reactions in metabolic pathways that are sustained by
activated carrier molecules such as ATP. In such cases,
hydrolysis of ATP is strongly coupled to specific oxida-
tive reactions. For example, ionic channels use ATP hy-
drolysis to transport protons against the electromotive
force.

� Non-equilibrium aging state (NEAS) The system is
initially prepared in a non-equilibrium state and put in
contact with the sources. However, at difference with
NETS, the system fails to reach thermal equilibrium
in observable or laboratory time scales. In this case
the system is in a non-stationary slowly relaxing non-
equilibrium state called aging state and characterized
by a very small entropy production of the sources. In
the aging state two-time correlations decay slower as
the system becomes older. Two-time correlation func-
tions depend on both times and not just on their dif-
ference. The classic example of a NEAS is a super-
cooled liquid cooled below its glass transition tem-
perature [10]. The liquid solidifies into an amorphous
slowly relaxing state characterized by huge relaxational
times and anomalous low frequency response. Other
systems are colloids that can be prepared in a NEAS by
the sudden reduction/increase of the volume fraction
of the colloidal particles or by putting the system under
a strain/stress [11].

The classes of non-equilibrium states previously described
do not make distinctions whether the system is macro-
scopic or small. In small systems, however, it is common
to speak about the control parameter to emphasize the im-
portance of the constraints imposed by the bath that are
externally controlled and do not fluctuate. The control pa-
rameter () represents a value (in general, a set of val-
ues) that defines the state of the bath. Its value determines
the equilibrium properties of the system, e. g. the equa-
tion of state. In macroscopic systems it is unnecessary to
discern which value is externally controlled because fluc-
tuations are small and all equilibrium ensembles give the
same equivalent thermodynamic description, i. e. the same
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equation of state. Differences arise when taking into ac-
count fluctuations. The non-equilibrium behavior of small
systems is then strongly dependent on the specific non-
equilibrium protocol. Figure 2 shows a representation of
a few examples of NESS and control parameters.

Microscopic Definitions of Work and Heat

Microscopic definitions of work and heat can be given us-
ingMarkov processes. Let us consider a general system de-
scribed by an energy function E(C) where C is a generic
configuration in contact with a bath at temperature T. For
instance, in a gas of N molecules, C would stand for their
positions and momenta. The dynamics are assumed to be
discrete in time with elementary time-step 
t. A trajec-
tory or path of the system is characterized by the sequence
of configurations

� � fCk ; 0 � k � Mg � fC0;C1;C2; : : : ;CMg (1)

where k is the index for the discrete time step and M is
the total number of time steps. The time corresponding
to step k is then given by t D k
t with t D 0 (k D 0) and
t f (k D M/�t) denoting the initial and final times respec-

Fluctuation Theorems, BrownianMotors and Thermodynamics of Small Systems, Figure 2
Examples of NESS: a An electric current I flowing through a resistance R and maintained by a voltage source or control parameter
V. b A fluid sheared between two plates that move at speed v (the control parameter) relative to each other. c A chemical reaction
A! B coupled to ATP hydrolysis. The control parameters are the concentrations of ATP and ADP

tively. The continuous-time limit is recovered by taking
�t ! 0;M !1 with tf finite.

Now we will treat the case where the system is per-
turbed in a prescribed way. Because the dynamics is
stochastic, it will generate an ensemble of trajectories when
the same experiment is repeated many times. In addition
to the configuration C, and in order to characterize the
perturbation protocol, we need to specify the temporal se-
quence of values fk ; 0 � k � Mg. The control parameter
 shifts the energy levels of the system according to the
relation,

E�(C) D E(C) � A(C) (2)

where A(C) is the observable coupled to the external per-
turbation  (e. g., if  is a magnetic or gravitational field
then A stands for the magnetization or the height of the
center of mass respectively).

We now consider the variation of energy along a given
path �E(� ) D E� f (C f ) � E�0 (C0) where C0;C f are the
initial and final configurations for that path and 0;  f are
the initial and final values of the control parameter as de-
fined by the protocol (path independent). From Eq. (2) the
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energy variation is given by,

�E(� ) D E�M (CM) � E�0 (C0)

D

M�1X

kD0

�
E�kC1 (CkC1) � E�k (CkC1)



�

M�1X

kD0

�
E�k (Ck) � E�k (CkC1)


(3)

with �k D kC1 � k . This decomposition identifies
work and heat by using the first law of thermodynamics,
�E D W � Q. The first term in Eq. (3) is identified as the
workW exerted upon the system whereas the second cor-
responds to the heat Q transferred from the system to the
bath,

W(� ) D
M�1X

kD0

�
E�kC1 (CkC1) � E�k (CkC1)


(4)

Q(� ) D
M�1X

kD0

�
E�k (Ck) � E�k (CkC1)


: (5)

We concentrate our attention on the work exerted upon
the system along a given path � . Inserting (2) in (4) we
get

W(� ) D
M�1X

kD0

�
@E�(Ck)
@

�

�D�k

�k

D �

M�1X

kD0

A(Ck)�k � �
Z t

0
dṡ(s)A(C(s))ds

(6)

where we have applied the continuous-time limit in the
last term in the r.h.s. of (6).

As the path is stochastic the work is a fluctuating quan-
tity that can be characterized by its probability distribution
P(W) defined as,

P(W) D
X

�

P(� )ı(W �W(� )) (7)

where � stands for the path and P(� ) indicates the prob-
ability of that path. The importance of P(W) relies upon
the fact that it is a quantity that is experimentally measur-
able and therefore is suitable to quantitatively characterize
work fluctuations with the aid of recently developed mi-
cro-manipulation tools.

The Jarzynski Equality

In 1997 Chris Jarzynski derived a remarkable equality de-
scribing work fluctuations in non-equilibrium isothermal

systems [12]. This relation was somewhat unexpected be-
cause it related the free energy change in a reversible pro-
cess with exponential averages of the work measured in
irreversible processes. The equality applies to all non-equi-
librium systems under general assumptions of local de-
tailed balance and ergodicity. In what follows we show
a derivation of the equality based on a master equation
approach. The following calculation intends to show the
simplicity of the algebraic math used in the derivation of
this general result. The reader not interested in math de-
tails can jump directly to Eq. (17) and continue reading
from there.

Let us consider a system in contact with a thermal bath
at temperature T that is initially in thermal equilibrium.
The system is then driven to a NETS under the action of an
external perturbation described by the temporal sequence
of values fk ; 0 � k � Mg.

We consider the ensemble of all possible trajectories
that start from an initial state characterized by the dis-
tribution P�0 (C). Dynamics of the system are then given
by the set of probabilities P�k (C) for the system to be
found at configuration C at time-step k. These probabil-
ities satisfy a master equation. For a Markov process the
time evolution of the P�(C) depends on the quantities,
W�k (C ! C0), defined as the transition probability per
unit time to go from configuration C to C0 at time-step
k. The W ’s are assumed to lead to an ergodic dynamics
(where any pair of configurations are always connected by
at least one trajectory, i. e. dynamics is irreducible) and sat-
isfy the detailed balance condition,

W�k (C ! C0)
W�k (C0 ! C) D

Peq
�k
(C0)

Peq
�k
(C)

D exp
�
�ˇ(E�k (C0) � E�k (C))


(8)

where ˇ D 1/kBT , kB is the Boltzmann constant and T is
the temperature. The Peq

�k
(C) is the Boltzmann–Gibbs dis-

tribution,

Peq
�
(C) D exp(�ˇE�(C0))/Z� ;

Z� D
X

C
exp(ˇE�(C) (9)

where Z� D exp(�ˇF�) is the partition function and
F� is the free energy.

The energy function E�k (C) is given in (2). Under very
general conditions these dynamics guarantee that the sys-
tem reaches a stationary state where configurations are
populated according to the Boltzmann–Gibbs weight. The
solution to the master equation gives the time evolution
for the system.
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For a generic path-dependent observable A(� ), the
ensemble average value is given by,

hAi D
X

�

P(� )A(� ) : (10)

Using the fact that the dynamics are Markovian together
with the definition (1) we can write,

P(� ) D Peq
�0
(C0)

M�1Y

kD0

W�k (Ck ! CkC1) (11)

where the system initially starts in equilibrium at 0. By
inserting (11) into (10) we obtain,

hAi D
X

�

A(� )Peq
�0
(C0)

M�1Y

kD0

W�k (Ck ! CkC1) : (12)

Using the detailed balance condition (8) this expression
reduces to,

hAi D
X

�

Peq
�0
(C0)A(� )

M�1Y

kD0

"

W�k (CkC1 ! Ck)

exp
�
�ˇ(E�k (CkC1) � E�k (Ck))

�
#

(13)

D
X

�

A(� )Peq
�0
(C0)

exp

"

�ˇ

M�1X

kD0

�
E�k (CkC1)� E�k (Ck)


#

M�1Y

kD0

W�k (CkC1 ! Ck) : (14)

This equation can not be worked out further for a gen-
eral observable A. However, let us consider the observ-
able, A(� ) D exp(�W(� )), where W(� ) stands for the
work defined in (4). By inserting this expression in (14) we
obtain the Jarzynski equaltity:

hexp(�W)i

D
1
Z�0

X

�

M�1Y

kD0

W�k (CkC1 ! Ck) exp(�ˇE�M (C0))

D
Z�M

Z�0
D exp

�
�ˇF�M � F�0


D exp(�ˇ�F)

(15)

where we have applied a telescopic sum and used (9).
To carry out the telescopic sums we first summed over

C0;C1 : : : by applying the normalization condition on the
transition probabilities,

X

C0
Wk(C ! C0) D 1 : (16)

The second law of thermodynamics, hWi � �F , also fol-
lows naturally as a particular case of (15) by using the con-
vexity inequality, hexp(x)i � exphxi. The Jarzynski equal-
ity is often written in the form,

hexp(�Wdiss)i D 1 (17)

whereWdiss D W ��F is called the dissipated work. The
second law of thermodynamics puts bounds on the min-
imum amount of average work performed on the sys-
tem: although W may strongly fluctuate from path to
path its mean value (averaged over an infinite number
of repeated experiments, i. e. the first moment of P(W))
is always greater than the reversible or quasi-static work,
Wrev, which is also equal to the free energy difference �F
between the initial and final equilibrium states. The re-
versible work is the value of the work that is obtained for
protocols that are adiabatic or quasi-static, i. e. the control
parameters are changed infinitely slowly. The difference
between the actual work and the reversible work then cor-
responds to the dissipated work, Wdiss D W ��F . The
second law establishes that in average a positive amount
of heat is irreversibly lost to the environment, hWdissi � 0
(Fig. 3). The amount of dissipation in irreversible pro-
cesses is then related to the asymmetry between the phase
space densities obtained when the process is run forward
and backward in time [13].

Gaussian work distributions exactly satisfy (17) pro-
vided the average dissipated work hWdissi and the vari-
ance of the work, �2W , are related by �2W D 2kBThWdissi.
A fluctuation-dissipation parameter R can be introduced
to quantify deviations from the Gaussian behavior [14],

R D
�2W

2kBThWdissi
: (18)

For Gaussian work distributions R D 1, corresponding to
non-equilibrium processes in the linear regime where the
fluctuation-dissipation theorem holds.

The validity of the Jarzynski equality extends to de-
terministic dynamics (e. g. Hamiltonian or thermostated).
In Hamiltonian dynamics the set of phase space points
then behaves as an incompressible fluid, a consequence of
the Liouville theorem. The case of Hamiltonian dynam-
ics was originally addressed by Jarzynski in his original
derivation of the non-equilibrium work relation [12]. The
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Fluctuation Theorems, Brownian Motors and Thermodynamics
of Small Systems, Figure 3
Probability distribution of the dissipated work: According to
the second law of thermodynamics the average dissipated work
is always positive. However, because of fluctuations, the dissi-
pated work of some paths can be negative (shaded area). These
paths are sometimes referred to as “transient violations of the
second law”

stochastic case has been analyzed also for general Markov
processes by Crooks [15,16] and for Langevin dynamics
by Kurchan [17] and Seifert [18]. Equation (15) has ap-
peared in the past in the literature in the form of a general-
ized fluctuation-dissipation relation proposed by Bochkov
and Kuzovlev [19] which is mathematically identical to the
Jarzynski equality [12]. Related results to the Jarzynski’s
equality can be also traced back also in the free-energy per-
turbation identity derived by Zwanzig [20] and the Kirk-
wood formula [21].

Fluctuation Theorems

Since the beginning of the 90’s some exact results in statis-
tical mechanics have provided a mathematical description
of energy fluctuations (in the form of heat and work) for
non-equilibrium systems. This new class of results go un-
der the name of fluctuation theorems (FTs) and provide
a solid theoretical basis to quantify energy fluctuations
in non-equilibrium systems. FTs describe energy fluctu-
ations in systems while they execute transitions between
different types of states. For these fluctuations to be ob-
servable the system has to be small enough and/or operate
over short periods of time, otherwise the measured prop-
erties approach the macroscopic limit where fluctuations
get masked by the dominant average behavior. Most fluc-
tuation theorems are of the form,

P(CS)
P(�S) D exp

� S
kB

�
; (19)

where S has the dimensions of an entropy that may repre-
sent heat and/or work produced during a given time in-
terval. The precise mathematical form of relations such
as (19) (for instance, the precise definition of S or whether
they are valid at finite time intervals or just in the limit
where the time interval goes to infinity) depends on the
particular non-equilibrium conditions (e. g. whether the
systems starts in an equilibrium Gibbs state, or whether
the system is in a non-equilibrium steady state, or whether
the system executes transitions between steady states, etc.).

Generally speaking, FTs relate the amounts of work or
heat exchanged between the system and its environment
for a given non-equilibrium process and its corresponding
time-reversed process. The time-reversed process is de-
fined as follows. Let us consider a given non-equilibrium
process (we call it forward, denoted by F) characterized by
the protocol F(t) of duration tf . In the reverse process
(denoted by R) the system starts at t D 0 in a stationary
state at the valueF(t f ) and the control parameter is varied
for the same duration tf as in the forward process accord-
ing to the protocol R(t) D F(t f � t). FTs depend on the
type of initial state and the particular type of dynamics (de-
terministic versus stochastic) or thermostated conditions.

Despite of the fact that most of these theorems are
treated as distinct they are in fact closely related. The main
hypothesis for all theorems is the validity of some form
of microscopic reversibility or local detailed balance (see
however [22,23,24] for some controversy). Major classes
of FTs include the transient FT (TFT) and the steady state
FT (SSFT):

� The transient FT (TFT) In the TFT the system initially
starts in an equilibrium (Boltzmann–Gibbs) state and is
driven away from equilibrium by the action of time-de-
pendent forces that derive from a time-dependent po-
tential V�(t). The potential depends on time through
the value of the control parameter (t). At any time
during the process the system in an unknown transient
non-equilibrium state. If the value of  is kept fixed
then the system relaxes into a new equilibrium state.
The TFT was introduced by Evans and Searles [25] in
thermos-tatted systems and later extended by Crooks
to Markov processes [15].

� The steady state FT (SSFT) In the SSFT the system is in
a non-equilibrium steady state where it exchanges net
heat and work with the environment. The existence of
the SSFTwas numerically anticipated by Evans and col-
laborators for thermostated systems [26] and demon-
strated for deterministic Anosov systems by Gallavotti
and Cohen [27]. The entropy production S by the sys-
tem (equal to the heat exchanged by the system divided
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by the temperature of the environment) satisfies the re-
lation (19) in the asymptotic limit of large times t !1
and for bounded energy fluctuations, � D jSjt < �

�

where �� is a model dependent quantity. Other classes
of SSFTs include stochastic Langevin dynamics [17],
Markov chains [28,29] or the case where the system ini-
tially starts in a steady state [30] and executes transi-
tions between different steady states [31,32].

Particularly relevant to the single molecule context is the
FT by Crooks [15,16] which relates the work distributions
measured along the forward (F) and reverse (R) paths,

PF(W)
PR(�W)

D exp
�
W �
F
kBT

�
; (20)

where PF(W); PR(�W) are the work distributions along
the F and R processes respectively, and 
F is the free en-
ergy difference between the equilibrium states correspond-
ing to the final value of the control parameter  f D (t f )
and the initial one i D (0). A particular result of (20)
is the Jarzynski equality [12] described in Subsect. “The
Jarzynski Equality” that is obtained from (20) by rewrit-
ing it as PR(�W) D exp

�
�WC�G

kBT

PF(W) and integrat-

ing both sides of the equation between W D �1 and
W D 1. Because of the normalization property of proba-
bility distributions, the left hand side is equal to 1 and the
Jarzynski equality reads,

�
exp

�
�

W
kBT

�	

F
D exp

�
�

F
kBT

�
or


F D �kBT log
��

exp
�
�

W
kBT

	

F

�
;

(21)

where < : : : >F denotes an average over an infinite num-
ber of paths, all generated by a given forward protocol
F(t).

Experimental Tests and Free Energy Recovery

Various categories of FTs have been introduced and ex-
perimentally validated. The first experimental tests of
FTs were carried out by Ciliberto and coworkers for the
Gallavoti–Cohen FT in Rayleigh–Bernard convection [33]
and turbulent flows [34]. Later on FTs were tested for
beads trapped in an optical potential and moved through
water at low Reynolds numbers. The motion of the bead is
then well described by a Langevin equation that includes
a friction (non-conservative) force, a confining (conser-
vative) potential and a source of stochastic noise. Exper-
iments have been carried out by Evans and collaborators
who have tested the validity of the TFT [35,36], and by

Liphardt and collaborators for a bead executing transitions
between different steady states [37]. The validity of the
TFT has been also recently tested for non-Gaussian optical
trap potentials [38].

The Jarzynski equality and the FT by Crooks can be
used to recover equilibrium free-energy differences be-
tween different molecular states by using non-equilibrium
measurements in single molecule experiments [39,40,41].
In particular, by using the Jarzynski equality (21) it is
possible to extract the value of 
F from repeated mea-
surements of the mechanical work along many trajecto-
ries. The idea is to repeat non-equilibrium experiments
many times and evaluate the exponential average in the
r.h.s of (21) to extract the work corresponding to the re-
versible process. Would it then not be easier to directly
measure the work for a reversible process? Unfortunately
many processes cannot be carried in quasistatic conditions
(either simulations or experiments) and therefore, alter-
native methods are required to determine free-energy dif-
ferences. There are practical difficulties in the applicabil-
ity of (21) as the number of trajectories included in the
exponential average must be actually infinite. This is un-
realizable in practice as non-equilibrium experiments can
be performed only a finite number of times and the finite-
ness of the number of trajectories introduces a bias. It is
known that the number of trajectories required to eval-
uate the Jarzynski equality grows exponentially with the
average value of the dissipated work. The dependence of
the bias and error with the number of pulls has been es-
timated in some cases [42,43]. In general this dependence
can be quite complicated as it depends on the behavior of
the low-work tails of the distribution P(W) which are dif-
ficult to analyze in general.

In 2002, the Jarzynski equality was experimentally
tested by pulling the P5ab RNA hairpin, a derivative of
the Tetrahymena Termophila L21 ribozyme [44] using op-
tical tweezers. However, in that case the molecule was
pulled not too far from equilibrium. The Jarzynski equal-
ity and related identities for athermal systems have been
recently put under scrutiny in other systems [45,46,47].
The Jarzynski equality and the FT by Crooks have inspired
several theoretical papers discussing other related exact
results [48,49,50,51,52,53], free-energy recovery from nu-
merical simulations [54,55,56,57,58,59], bias and error es-
timates for free-energy differences [42,43,60,61,62,63], en-
zyme kinetics [64,65] or solvable models [66,67,68,69,70].
In addition, analytical studies on small systems thermo-
dynamics show that work/heat distributions display non-
Gaussian tails describing large and rare deviations from
the average and/or most probable behavior [71,72,73,74].
These theoretical studies open the way to investigate the
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possible relevance of these large deviations in other non-
equilibrium systems in condensed matter physics.

The FT by Crooks can be applied and tested by mea-
suring the unfolding and refolding work distributions in
single molecule pulling experiments (Fig. 4a). For exam-
ple, let us consider the case of a molecule (e. g. a DNA or
RNA hairpin or a protein) initially in thermal equilibrium
in the folded (F) or native state. By applying mechanical
force (e. g. using atomic force microscopy or optical tweez-
ers) the molecule can be mechanically unfolded and the
conformation of the molecule changed from the native to
the unfolded (U) state. The unfolding event is observed by
the presence of a rip in the force-extension curve of the
molecule (Fig. 4b). During the unfolding process the tip of

Fluctuation Theorems, Brownian Motors and Thermodynamics of Small Systems, Figure 4
Experimental measurement of work fluctuations in small systems using single molecules. a Experimental setup in RNA force pulling
experiments using optical tweezers. An RNA hairpin of a few tens of base pairs is inserted between twomolecular handles (A and B)
that are attached to two beads. One bead is trapped in the optical well, the other bead is immobilized on the tip of a micropipette.
As the optical trap is moved relative to the micropipette the RNA molecule is stretched. bMeasured force-extension cycle showing
a force rip around 15pN characteristic of the unfolding/refolding of the RNA molecule. The work along a given unfolding/refolding
force-extension curve corresponds to the area below the curve integrated along a given range of themolecular extension (indicated
by the two vertical dashed lines). c Work distributions for the unfolding and refolding process measured at three different pulling
speeds. According to the FT by Crooks all curves should cross at a given value of the work,W D	F, independently of the pulling
speed. In this case	F ' 110kBT , a number that includes also the stretching contributions from the hybrid handles and the ssRNA.
d Experimental verification of the FT by Crooks for four different tethered molecules (all with identical sequence). The black dashed
line is the best fit for all curves and has slope equal to 0:9˙ 0:1. Results taken from [75]

the cantilever or the bead in the trap exerts a mechanical
work on the molecule that is given by,

W D
Z x f

x0
Fdx (22)

where x0; x f are the initial and final extension of the
molecule. In (22) we are assuming that the molecular
extension x is the externally controlled parameter (i. e.
 � x) which is not necessarily the case. However the
corrections introduced by using (22) are shown to be of-
ten small. The work (22) done upon the molecule along
a given path corresponds to the area below the force-ex-
tension curve that is limited by the initial and final exten-
sions, x0 and xf (Fig. 4b). Because the unfolding of the
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molecule is a stochastic (i. e. random) process, the value
of the force at which the molecule unfolds changes from
experiment to experiment and so does the value of the
mechanical work required to unfold the molecule. Upon
repetition of the experiment many times a distribution of
unfolding work values for the molecule to go from the
folded (F) to the unfolded (U) state is obtained, PF!U(W).
A related work distribution can be obtained if we reverse
the pulling process by releasing the molecular extension
at the same speed at which the molecule was previously
pulled, to allow the molecule to go from the unfolded (U)
to the folded (F) state. In that case the molecule refolds
by performing mechanical work on the cantilever or the
optical trap. Upon repetition of the folding process many
times the work distribution, PU!F(W) can be also mea-
sured. The unfolding and refolding work distributions can
then be measured in stretching/releasing cycles (Fig. 4c).
From (20) we observe that PF(
F) D PR(�
F) so the for-
ward and reverse work probability distributions cross each
other atW D 
F. In Fig. 4c we observe that both distribu-
tions cross each other at a value (
F) that is independent
of the pulling speed as expected. Figure 4d shows the ex-
perimental verification of (20).

The FT by Crooks has been tested in different types of
RNA molecules and the method has been shown capable
of recovering free-energies under strong non-equilibrium
conditions [75]. The work probability distributions were
measured along the unfolding and refolding pathways for
a three-way junction RNAmolecule and found to strongly
deviate from a Gaussian distribution [75]. These experi-
mental results pave the way for other related studies, for
example in molecular dynamics simulations [76].

These kind of studies will expand in the future to cover
more complex cases and other non-equilibrium situations
such as the free-energy recovery of folding free energies
in native states in proteins or free energies in misfolded
structures and intermediate states in RNA molecules and
proteins. Ultimately FTs, when combined with SME, will
offer an excellent opportunity to characterize and under-
stand the possible biological relevance of large deviations
and extremal fluctuations in molecular systems.

Future Directions

The experimental and theoretical study of non-equilib-
rium small systems offers exciting possibilities for the sta-
tistical physicist and the biophysicist. This discipline aims
to describe the novel properties observed in bio-molecules
and molecular machines operating far from equilibrium,
such as the folding of a nucleic acid or a protein or the
trans-location motion of a molecular motor.

We are just starting to have a glance about how these
small objects exchange energy with their environment. It
is a well known fact in molecular biology and biochemistry
that biological function at the molecular level is tightly re-
lated to structure. It might not be surprising that the link
betweenmolecular structure and biological function is en-
coded in the low frequency region of the spectrum of non-
equilibrium energy fluctuations (the spectrum of energy
fluctuations extending far at the most extreme tails of the
distribution). It is difficult to imagine how bio-molecular
processes, often carrying a lot of information, can operate
solely from high frequency events describing the motion
of a few number of atoms. Rather, these should somehow
rely on the low frequency cooperative motion between
different and distant parts of the molecule. Investigating
fluctuations in non-equilibrium systems calls for a deeper
theoretical understanding of large deviation functions in
non-equilibrium systems as well as more systematic and
accurate experiments identifying sources of large energy
fluctuations in biological systems.

We are at the dawn of an interdisciplinary scientific
discipline that will bring together scientists with exper-
tises coming from very different branches of knowledge.
This merging process might culminate with the future en-
gineering of artificial mesoscopic structures capable of re-
producing and even improving the behavior of the biolog-
ical ones.
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Glossary

Order parameter(s) (Field) variable(s) characterizing the
spatio-temporal state of a system. Other state variables
such as velocity, temperature, density, etc. can be com-
puted if the order parameter(s) are known.

Control parameter(s) Parameters which are fixed and
can be tuned from outside of the system under con-
sideration.

Critical point, threshold, onset The points in control pa-
rameter space where new and qualitatively different
solutions bifurcate from (usually simpler) ones.

Slaving principle Stated by H. Haken in 1975, the slav-
ing principle allows for a huge reduction of degrees of
freedom close to a critical point. It states that a very
large number of linearly damped modes are slaved to
and therefore completely determined by the fewmodes
that grow in the vicinity of the critical point. The am-
plitudes of the growing modes are also called order pa-
rameters.

Natural patterns Spatial patterns showing a certain peri-
odic (near) order, but also defects, grain boundaries
etc.

Turing patterns Natural patterns that have a certain typi-
cal length scale and that show relaxation to a stationary
state in the long term. Typical ingredients of Turing
patterns are stripes, hexagons and squares.

Swift–Hohenberg equation Derived by Swift and Ho-
henberg in 1977 and nowadays established as the stan-
dard form for a scalar, real-valued order parameter
equation showing Turing patterns at onset.

Coarsening The monotonic increase of the typical length
scale of a structure in time. Often connected to spin-
odal decomposition, for example, of a binary mix-
ture of non-mixing components such as water and oil.
Small oil droplets in the beginning merge and finally
form a large oil drop on the water surface. Coarsening
slows down if the length scale increases.

Definition of the Subject

The state of a fluid is described by its velocity, density,
pressure, and temperature. All these variables depend in
general on space and time. Pattern formation refers to the
situation where one or more of these variables are orga-
nized within a certain spatial and/or temporal order. This
order hasmacroscopic length and time scales, that is, char-
acteristic lengths and times are much larger than those of
the atoms or molecules which constitute the fluid. There-
fore a continuous description is appropriate.

Macroscopic fluid patterns may be encountered in na-
ture as well as in technological applications for a large vari-

ety of different systems. Far from being complete, we men-
tion some examples:

� Water waves caused by wind or by sea quakes and land
slides (Tsunamis).

� Localized excitations of the surface of a fluid (solitons),
such as that seen on shallow water channels.

� Shear instabilities in clouds or in multi-layer sys-
tems such as the Kelvin–Helmholtz instability or the
Rayleigh–Taylor-instability.

� Surface deflections in the form of holes or drops of thin
fluid films in coating or wetting processes.

� Convection instabilities in laboratory experiments, but
also in the atmosphere, in the earth’s interior or in stars.

� Creation and controlled growth of ordered structures
in (nano-) technological applications.

� Biological applications: Behavior of liquid films on
leaves or of the tear film on the cornea of the eye. Dy-
namics of thin blood layers, blood clotting.

� Films on the walls of combustion cells.
� Lubrication films in mechanical machines.

Fluid patterns may occur due to several mechanisms. One
can distinguish between two main cases: Patterns excited
and organized by some external forces or disturbances
(such as Tsunamis) and those formed by instabilities. The
latter may show the aspects of self-organization and will be
the focus of the present contribution.

Introduction

Since the first observations of Michael Faraday almost
180 years ago [42] (Fig. 1), pattern formation in liquids
or gases (fluids) has been subject to innumerable experi-
mental [19,80,90], theoretical [32,34,43] and, later on, nu-
merical work [5,26,73]. After the famous experiments by
Henri Bénard around 1901 [17], convection in a single
or later in multi-component fluids came into the focus of
interest. The first theoretical studies were made by Lord
Rayleigh [78]. Theoretical computations up to the early
1960s were restricted on the linearized basic equations and
could explain the existence of critical points in parameter
space as well as the observed length scales of the structures
found experimentally [18,72]. In the meantime, Alan Tur-
ing [89] showed in his famous paper of 1952 that similar
patterns could emerge out of equilibrium in reaction-dif-
fusion systems. It took almost 40 years for an experimental
confirmation using the so-called CIMA reaction [31,71].

With the appearance and rapid development of com-
puters, the field gained further momentum from the new
discipline of nonlinear dynamics and nonlinear system
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Fluid Dynamics, Pattern Formation, Figure 1
Michael Faraday observed surface patterns on a liquid horizontal layer if the whole layer vibrated vertically with a certain amplitude
and frequency. Very often, regular squaresare found, as shown in the time series as a numerical result of the shallowwater equations
(see Sect. “Surface Waves”)

theory [4,45,48,50]. Early computations in 1963 by Ed-
ward Lorenz of a system of three coupled ordinary differ-
ential equations derived by a crudely truncated mode ex-
pansion of the Navier–Stokes equations revealed the first
chaotic attractor of a dissipative system [60]. Though the
chaotic behavior seen in the Lorenz equations does not
originate from hydrodynamic equations and has nothing
to do with irregular fluid behavior, the Lorenz model now
stands on its own as a paradigm for a relatively simple sys-
tem showing low dimensional chaos [87].

Patterns that emerge from an instability roughly pass
through two phases. As long as amplitudes (or order pa-
rameters) are small, the behavior is often determined by
the linear parts of the system and exponential growth of
a certain part of themode spectrum is found. In the second
phase, nonlinearities come into play and may lead to sat-
uration and selection of certain mode configurations, seen
then as regular structures in configuration space (Fig. 2).
The full mathematical description of hydrodynamic sys-
tems has been well known for a long time. Fluid motion
is described by the Euler or Navier–Stokes equations, tem-
perature fields by the heat equation and chemical concen-
trations by some nonlinear reaction-diffusion equations.
The location and spatio-temporal evolution of surfaces or
interfaces can be computed by the kinematic boundary
conditions if the velocity of the fluid near the interface is
known. All these equations can be coupled and provided
with suitable boundary and initial conditions, resulting in
rather complicated systems of nonlinear partial differen-
tial equations. Even today in the age of supercomputers,
their further treatment, especially in three spatial dimen-
sions, remains a challenge.

On the other hand, directly solving the basic equations,
can be consideredmerely as another experiment. For these
reasons and to get a deeper insight into the physics behind

pattern formation, other methods have been devised. Very
often one of the three spatial dimension is distinguished,
either for physical reasons or simply due to the geometry
of the system. A good example is surface waves on a wa-
ter layer. Here, the behavior of the solutions in the vertical
direction (z) is very different from those in the horizon-
tal ones. For shallow water waves (wave length long com-
pared to the layer depth) the velocities are more or less
independent on z, where in the other limit of deep water
waves, fluid motion takes only place along a small layer
under the surface and decreases exponentially with depth.
In both cases one may reduce the dimension of the basic
problem by an expansion with respect to simple functions
for the vertical dependence of the variables [33]. An ana-
logue method can be applied describing thin film surface
patterns [70]. Also for convection cells, the vertical dimen-
sion plays a special role and the solution can be projected
onto a few modes near the critical point [25,73].

Another concept that reduces the number of depen-
dent variables and equations is that of order parameters.
The notion of the “order parameter” goes back to Lan-
dau [58] and refers originally to a variable that measures
the order of a certain system. Rather a variable than a pa-
rameter, the order parameter normally depends on time
and, in theories describing the formation of natural pat-
terns, also on space [66]. Thus, the order parameter equa-
tion (abbreviated: OPE) is a partial differential equation
with certain nonlinear terms that become important for
pattern selection and saturation.

Theoretical methods developed by the Haken
school [47,48,50] starting in the 1970s allow for a sys-
tematic derivation of the OPEs (sometimes also called
“generalized Ginzburg–Landau equations”) for a great va-
riety of nonequilibrium and open systems from physics,
chemistry and biology. The key idea is to find a reduced
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Fluid Dynamics, Pattern Formation, Figure 2
The composition of plane waves with the same wave number but different orientation in 2D space results in regular patterns. For
twomodes (N D 2) one sees squares, for N D 3 hexagons and for N > 3 quasi periodic structures in space or Penrose tilings [74] are
found

description in terms of relevant or active modes close
to a certain bifurcation point. The amplitudes of these
active modes, the order parameters, now generalized to
a nonequilibrium, pattern forming system, obey unified
and simplified equations, namely the OPEs. It turns out
that the structure of these equations depends not so much
on the particular system under consideration as on the
type of bifurcation. To each type of bifurcation a special
“normal form” of OPE is related [35]. In deriving the
OPEs, the slaving principle [50] allows us to eliminate
a huge number of slaved variables and express them by the
active ones.

This contribution is concerned mainly with struc-
tures in fluids that originate from self-organized processes.
It tries to bring together direct numerical solutions of
hydrodynamic equations with the modern concepts of
pattern formation. After introducing the basic equations
(Sect. “The Basic Equations of Fluid Dynamics”) of fluid
dynamics, it presents a short section on waves and de-
scriptions reduced by geometrical reasons. Several types
of instabilities are discussed in Sect. “Instabilities”, to-
gether with computer solutions for the different cases. Sec-
tion “Order Parameter Equations” presents different types
of two-dimensional order parameter equations. Finally,
Sect. “ConservedOrder Parameter Fields” is devoted to the
special case of conserved order parameters.

The Basic Equations of Fluid Dynamics

Let the state of a fluid be described by its velocity, its den-
sity, its pressure, and its temperature field

Ev(Er; t) ; �(Er; t) ; p(Er; t) ; T(Er; t) : (1)

In this section we wish to specify the basic hydrody-
namic equations that rule the spatio-temporal behavior

of these seven variables. They have to be completed by
suitable boundary conditions (abbreviated: b.c.) which we
shall present later with the particular systems under con-
sideration.

Continuity Equation

The conservation of mass yields the continuity equation

@t�C div(�Ev) D @t� C (Ev � r)�C � div Ev D 0 : (2)

In most cases, liquids are difficult to compress. One can
usually assume that a volume element does not change its
density while it moves with the fluid (Lagrangian descrip-
tion)

@t�C (Ev � r)� D 0 :

From (2) one finds the condition of incompressibility

div Ev(Er; t) D 0 ; (3)

or, in other words, the velocity field is free of sources and
sinks. Equation (3) can be satisfied by the ansatz

Ev(Er; t) D curl EA(Er; t) (4)

where EA plays the role of a vector potential. In (4) one can
use the particular decomposition [5,32]

Ev(Er; t) D curl(˚ êz)C curl curl(� êz)

D

0

@
@y˚ C @z@x�

�@x˚ C @z@y�

��2�

1

A (5)

with the two independent scalar functions ˚(Er; t) and
� (Er; t) and�2 D @

2
xx C @

2
y y as the 2D-Laplacian.
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If the velocity field is irrotational, that is without vor-
tices (curl Ev D 0), it can be derived from a scalar potential

Ev D grad� : (6)

For incompressible and irrotational flows, hydrodynamics
is reduced to a boundary value problem, since the potential
must fulfill the Laplace equation

div Ev D �� D 0 (7)

and the velocity field is solely determined by its boundary
conditions.

Euler Equations

For a perfect fluid, a fluid with no viscosity, one derives the
Euler equations from the law of conservation of momen-
tum [56]. They read

�(Er; t)
�
@tEv(Er; t)C (Ev(Er; t) � r) Ev(Er; t)

�
D

� grad p(Er; t)C Ef (Er; t) ; (8)

where Ef denotes external volume forces. Together with
a state equation of the form

p D p(�; T) ; (9)

the continuity equation (2) and the temperature equations
(to be shown below) (Subsect. “Transport Equations”)
constitute the basic set for the seven state variables (1).

Incompressible Fluids For an incompressible fluid,
a state equation of the form (9) makes no sense since pres-
sure will not change with density. So p can be eliminated
by forming the curl of (8)

@t E̋ D curl(Ev � E̋ )C
1
�
curl Ef (10)

where

E̋ D curl Ev (11)

denotes the vorticity. If p must be known, it can be com-
puted from the divergence of (8) which yields

r2p D �
˚
� Tr

�
(r ı Ev)(r ı Ev)

�
C div Ef

�
; (12)

where ı is the dyadic product and Tr[: : : ] the trace.

Incompressible Irrotational Fluids If, in addition, the
flow is free of vortices, one may integrate the Euler equa-
tions and find the theorem of Bernoulli

@t� D �
1
�
(pC U) �

1
2
(r�)2 (13)

where U is the potential to Ef ( Ef must be irrotational, too).
For stationary solutions, the velocity potential � is found
from (7) and (13) can be used to determine the pressure.

Navier–Stokes Equations

Compressible Fluids In real fluids, shear stresses are
a result of friction. They must be added to the balance
of momentum and yield the Navier–Stokes equations. For
a compressible Newtonian fluid they read

�
�
@tEv C (Ev � r) Ev

�

D � grad pC Ef C ��Ev C


� C

�

3

�
grad div Ev (14)

where � denotes the first and � the second viscosity [59].

Incompressible Fluids TheNavier–Stokes equations for
incompressible fluids are simpler:

�
�
@tEv C (Ev � r) Ev

�
D �rpC Ef C ��Ev : (15)

Again, pressure can be eliminated by forming the curl.
Taking the ansatz (5), the z-components of the curl and
of the curl of the curl of (15), we have

f� � � @tg�2˚(Er; t)

D
�
curl((Ev � r)Ev)

�
z C

1
�

�
@x fy � @y fx


(16a)

f� � � @tg��2� (Er; t) D
�
curl curl((Ev � r)Ev)

�
z

C
1
�

�
�2 fz � @x@z fx � @y@z fy


: (16b)

Here we have introduced the kinematic viscosity � D �/�.
We note that this decomposition is of particular interest
if fx D fy D 0 as is the case in convection problems of
a plane layer.

Incompressible Fluids with a Small Reynolds Number
For some applications it is convenient to use the Navier–
Stokes equations in dimensionless form.With scaling with
respect to a characteristic length L and velocity V0:

Er D L � Er 0 ; t D (L/V0) � t0 ; Ev D V0 � Ev 0 ; p0 D
L
�V0
� p;
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(15) turns into

Re
�
@t0 Ev 0 C (Ev 0 � r 0) Ev 0

�
D �r 0p0 C�0Ev 0 : (17)

(We assumed a potential for Ef which can be confined
into p.) The dimensionless quantity

Re D
LV0
�

(18)

is the Reynolds number. If Re 
 1, the left hand side
of (17) can be neglected and the Navier–Stokes equations
become linear (primes omitted):

�Ev D rp : (19)

This is the Stokes equation, in which no time derivative of
Ev occurs. Thus, as known from over-damped motion, the
velocity field directly follows the pressure gradients.

Transport Equations

Scalar fields such as temperature or concentration of
a mixture that may diffuse into and be transported with
the fluid are ruled by the transport equation. Let S(Er; t) be
the scalar field, then the transport equation reads

@t S C (Ev � r) S D Ds�S ; (20)

where Ds is the appropriate diffusion coefficient.

SurfaceWaves

The only elastic forces in fluids are those coming from
volume changes and may exist, therefore, only in com-
pressible fluids. They give rise to longitudinal compression
waves which usually have small amplitudes and behave
linearly in a good approximation. A linear wave equation
can be derived with a (space dependent) sound speed [56].

A transversal wave which is also possible in incom-
pressible fluids can be formed along a deformable inter-
face. Gravity and, for small wavelengths, surface tension

Fluid Dynamics, Pattern Formation, Figure 3
Left: an (incompressible) fluid with a free and deformable surface located at z D h(x; y; t), on which a constant external pressure p0
is applied. Right: The location of a certain point of the surface changes if the fluid is in motion

provide the stabilizing mechanism of a flat surface, around
which oscillations (gravity waves) may occur. If their am-
plitudes are big enough, nonlinearities may play an es-
sential role for surface waves, as is clearly seen by soli-
tons [40,64] and wave breaking [39]. For this reason we
shall discuss only surface waves in this section.

Gravity Waves

If one assumes an irrotational flow of a perfect and in-
compressible fluid on a flat substrate and with a free, de-
formable surface (Fig. 3), then the velocity is determined
by the Laplace equation (7) which must be accomplished
by boundary conditions at z D 0

vz
ˇ̌
zD0 D @z�

ˇ̌
zD0 D 0 (21)

and at z D h(x; y; t)

@t�
ˇ̌
zDh D �gh � p(h)

ı
� �

1
2
(r�)2 (22)

where g denotes the gravitational acceleration. Equa-
tion (22) is nothing other than the Bernoulli equation (13)
evaluated at the surface. The surface itself is determined by
the so-called kinematic boundary condition that reads (see
Fig. 3, right frame).

@t h D vz
ˇ̌
zDh � vx

ˇ̌
zDh@x h � vy

ˇ̌
zDh@y h

D @z�
ˇ̌
zDh � (@x h) (@x�)zDh � (@y h)(@y�)zDh :

(23)

ShallowWater Equations

For shallow water waves, one can introduce the small pa-
rameter

ı D d/` (24)

which is the ratio of the water depth d and a typical hor-
izontal scale (such as a wavelength) `. Then (7) can be
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solved iteratively; the result is a power series in ı2 [33,39]:

�(Er; t) D ˚(x; y; t)

C ı2
�
�
z2

2
�2˚(x; y; t)C '(1)(x; y; t)

�
C O(ı4)

(25)

with an arbitrary function '1. Inserting (25) into (23)
and (22) yields up to the lowest order in ı the shallow wa-
ter equations

@t h D �h�2˚ � (@x h) (@x˚) � (@y h)(@y˚) (26a)

@t˚ D �gh � p(h)
ı
� �

1
2
(@x˚)2 �

1
2
(@y˚)2 : (26b)

This is the first example of how to derive a two-di-
mensional system starting from three-dimensional fluid
motion. Equations (26) constitute a closed system of par-
tial differential equations for the evolution of the two
functions h(x; y; t) and ˚(x; y; t). Using (25), one imme-
diately finds from the latter the velocity field (up to the
order ı2).

Numerical Solutions

Figure 4 shows numerical solutions of the shallow water
equations (left frame in one dimension, right frame in two
dimensions). In one dimension, one sees clearly traveling
surface waves which may run around due to the periodic
boundary conditions in x. On the other hand, one can
recognize a second wave with a smaller amplitude going
to the left hand side. Both waves seem to penetrate each
other without further interaction. The reason seems to be
the smallness of the amplitude which results in a more or

Fluid Dynamics, Pattern Formation, Figure 4
Numerical solutions of the shallowwater equations, left frame shows a temporal evolution in one dimension, right frame a snapshot
in two dimensions.Dashed contour linesmark troughs, solid ones correspond to peaks of the sea

less linear behavior. In the two-dimensional frame, a snap-
shot of the temporal evolution of the surface is presented.
The initial condition was chosen randomly. For numer-
ical stability reasons, an additional damping of the form
�̃�2˚ was added to the right hand side of (26b) which
filters out the short wave lengths. This could be justified
phenomenologically by friction and leads in the long term
to a fluid at rest, if only gravity acts.

Instabilities

Laplace Pressure and Disjoining Pressure To discuss
Eqs. (26) further, we must elaborate a little on the depen-
dence of the surface pressure on the depth h(x; y; t) and
on its curvature ��h.

The length scale of the surface structures is propor-
tional to the depth of the fluid layer. If the films are very
thin, we expect to have scales in the range or even well be-
low the capillary length a D

p
� /g� where � denotes the

surface tension. Then one has to take into account the ad-
ditional pressure which originates from the curvature of
the surface, the so-called Laplace pressure [59] ���2h.
Thus we substitute in (26b)

p(h) D p1(h) � ��2h ; (27)

with a function p1 (the disjoining pressure) that will be
specified later [38,91].

Linear Stability Analysis of the Flat Surface To see if
the flat film h D h0 is stable against small perturbations,
one may perform a linear stability analysis. Inserting

(h � h0; ˚) D (a; b) exp(t C ikx)
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into (26) yields, after linearization with respect to a; b,
a linear eigenvalue problem with the solvability condition

12(k) D �
�̃k2

2

˙ ijkj
q
h0
�
g C p01 C � k2


/� � �̃2k2/4 ; (28)

where

p01 D
dp1
dh

ˇ̌
ˇ̌
hDh0

:

We assume that the artificial viscosity is small, �̃2 
 � /�.
An instability occurs first at k D 0 if the expression under
the integral can be negative, that is, for p01 C �g < 0. This
corresponds to the region of initial thickness h0 where the
generalized pressure

p1(h)C �gh (29)

has a negative slope. For that case, the real part of 1
starts at k D 0 at zero with positive slope, has a maxi-
mum at k D kc and decreases again to the value ��k2/2.
We shall revisit this instability in the next section and call
it there, in a more systematic classification, a type II in-
stability. How can (29) have a negative slope for a cer-
tain range of h0? It is obvious that one has to assume
that the pressure p1 depends in some nonlinear non-
monotonic fashion on the value of h (Fig. 5). As we shall
see later, this can be the case for very thin films where
van der Waals forces between the solid support and the
free surface come into play [38,52,91]. But also, in thicker
films, this should be possible in non-isothermal situations,
where the surface temperature, and therefore the surface
tension, changes with the vertical coordinate (Marangoni
effect, see Sect. “Instabilities”, Fig. 8). If we take (for in-
stance) as a model the polynomial

p1 D c � h � (h � h1) � (h � h2) ; c > 0 ; (30)

then the flat surface is unstable for h between the two spin-
odals

h� < h < hC

with h˙ being the roots of

3h2 � 2h(h1 C h2)C h1h2 C �g/c D 0 :

Figure 6 shows a numerically determined time series of
a random dot initial condition. The mean thickness h0 was
chosen in the unstable region. The formation shows trav-
eling waves in the linear phase, followed by coarsening to
a large scale structure, in this case one big region of depres-
sion, or a hole. This hole becomes more and more sym-

Fluid Dynamics, Pattern Formation, Figure 5
If the pressure depends on h and has a certain region with a neg-
ative slope, the flat film is unstable in this region andpattern for-
mation sets in

metric while the velocity decays due to the friction term.
Finally, a steady state of a big circular hole remains.

Parametric Excitation of a Thin Bistable Fluid Layer
One way to replace the energy lost by damping (to “open”
the system) is to accelerate the whole layer periodically in
the vertical direction. This was done first in an experiment
by Michael Faraday in 1831 [42]. He obtained regular sur-
face patterns normally in the form of squares, see Fig. 1.

Faraday patterns can be seen as a solution of the shal-
low water equations if the gravity constant g is modulated
harmonically [7]

g(t) D g0 C g1 cos! t : (31)

A linear stability analysis leads to a Mathieu equation [1].
The flat film is unstable if frequency and amplitude fall
into certain domains, the so-called Arnold tongues. There,
one usually finds squares for not-too-supercritical values.

We conclude this section by showing a numerical solu-
tion of (26) with parameters as in Fig. 6, but now with an
additional periodic excitation (Fig. 7). Coarsening is still
present, but now oscillating drops emerge in the form of
stars. No time stable structure is found in the long time
limit.

Instabilities

Mechanisms of Instability in Fluids

We start with the specific case of a plane layer of a viscous
fluid with a vertically applied, constant temperature gradi-
ent ˇ (Fig. 11), where

ˇ D (T1 � T0)/d (32)

and T0; T1 are the temperatures at the lower, upper side
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Fluid Dynamics, Pattern Formation, Figure 6
Time series from a numerical solution of (26) with artificial damping and bistable pressure according to (30). Coarsening dominates
the nonlinear evolution and eventually a stationary circular region of surface depression (a hole) remains. Periodic boundary condi-
tions in both horizontal directions have been used

of the layer. We assume that a motionless stationary state
exists as a (stable or unstable) solution of (15) and of an
equation such as (20) for the temperature. The temper-
ature and pressure distribution of that state can then be
computed from (15, 20) by putting Ev and all time deriva-

tives to zero:

rp0 D Ef (33a)


T0 D 0 : (33b)
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Fluid Dynamics, Pattern Formation, Figure 7
Continuation of the series of Fig. 6, but with additional parametric excitation according to (30) switched on at t D 72. Instead of
stationary patterns pulsating stars are found

If an external force is provided by buoyancy, we may align
the z-axis of the coordinate system along Ef which yields

Ef D �g �(Er) êz ;

where g is the gravitational acceleration. Equation (33a)
can be solved only if � does not depend on x and y. If one
assumes that the density depends on temperature

� D �(T0) (34)

then T0 can also depend only on z. Thus one finds
from (33b)

T0(z) D aC bz : (35)

Taking a linear relation for (34)

�(T) D �0[1 � ˛(T � T0)] (36)

with the heat expansion coefficient ˛ � ���10 d�/dT and
�0 as the density at the reference temperature T0, one may
integrate (33a) and find for the pressure of the motionless
state (hydrostatic pressure)

p0(z) D �g
Z
�dz D �g�0

�
z �

1
2
˛ˇz2

�
(37)

where we put a D T0 and b D ˇ, in agreement with (32).

A linear stability analysis [32] shows that the motion-
less, nonequilibrium state (35) can become unstable if the
temperature gradient ˇ exceeds a certain critical value, de-
pending on the fluid properties and the geometry of the
layer. There are two differentmechanisms, if the fluid layer
is heated from below:

(1) Buoyancy: Hot fluid particles (volume elements)
near the bottom are lighter than colder ones and want to
rise. Colder particles near the top want to sink. If the sta-
bilizing forces of thermal conduction and friction in the
fluid are exceeded by the externally applied temperature
gradient, patterned fluid motion sets in.

(2) Surface tension: If the upper surface of the fluid
is free, that is, in contact with the ambient air, tangential
surface tension normally increases with decreasing surface
temperature (Fig. 8a–c). If a fluid particle near the surface
moves by fluctuations, say, to the right, then warmer fluid
is pulled up from the bottom, increasing the surface tem-
perature locally. Due to laterally increasing surface ten-
sion with respect to the neighbored points, even more hot
fluid is pumped up from the bottom and the fluid starts to
move. This is called the Marangoni effect and works even
without gravity, that is, in space experiments.

In both cases, the typical length of the structures which
bifurcate from the motionless state is of the order of the
layer depth. These instabilities are sometimes called small
scale instabilities.
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Fluid Dynamics, Pattern Formation, Figure 8
a–c The Marangoni effect may destabilize a fluid layer at rest andmay generate a (regular) fluid motion. The surface remains flat (to
a good approximation). If the surface is deformable d, a large scale instability may occur as a consequence of the Marangoni effect
andmass conservation. For both instabilities, it is sufficient to assume the surface tension as a linear function of temperature. (+/-/0)
denote relative temperatures

Fluid Dynamics, Pattern Formation, Figure 9
The two cases “thick films” and “thin films” are defined by the instability that comes firstwhen the temperature gradient is increased.
The two instabilities differ in the wavelength� (wave number k D 2�/�) of the growing structures

In the situation described above, the surface can be as-
sumed to be flat and undeformable. Of course this is only
an approximation, but valid for not-too-thin fluid layers
and parameters not too far from threshold. If, on the other
hand, the thickness of the fluid layer is less than a certain
value which is on the order of 10�4 m for common sil-
icone oils, another mechanism comes to the foreground.
This mechanism is based on

Surface Deformation. If the surface is locally depressed
by an arbitrary fluctuation, the depressed part is heated
up due to the vertical temperature gradient. A lateral sur-
face tension gradient is formed which pulls the liquid out-
side the depressed region (Fig. 8d). Since the continu-
ity equation must hold, the surface becomes even more
depressed and an instability occurs. The same mecha-
nism leads to the growth of elevated parts of the sur-
face, under which fluid is pumped in from adjacent re-
gions [44,65,70]. The deformation mode belongs to the
so-called large-scale instability. This means that the fastest
growing modes have a wavelength that is very large com-
pared to the layer depth. It is the depth of the layer which

distinguishes which instability occurs first if the temper-
ature gradient is increased from the sub-critical region
(Fig. 9).

In ultra-thin films (depth of few 100 nm or less), other
mechanisms are possible. Van der Waals forces between
the free surface and the solid substrate then become im-
portant. They have a potential and can be expressed in
the pressure by an extra term, disjoining pressure, as al-
ready shown in Sect. “Surface Waves”. If that pressure in-
creases with decreasing layer depth, fluid is pressed out of
depressed regions and pumped into elevated regions and
an instability occurs, even for isothermal cases (Fig. 10).

Pattern Formation – Examples

What happens if the critical value for the temperature gra-
dient is exceeded? Since the famous experiments of Henri
Bénard [17] in the beginning of the 20th century, one
knows that the fluid starts to move in form of hexagons
if the surface is free and the layer is “thick” (Fig. 11). These
kinds of experiments were repeated many times under ex-
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Fluid Dynamics, Pattern Formation, Figure 10
In ultra-thin films [79,85,92], van der Waals forces between free surface and solid substrate may destabilize a plane fluid layer even
without an external temperature gradient (+/� denote relative values of the disjoining pressure)

Fluid Dynamics, Pattern Formation, Figure 11
Hexagonal motion of a fluid heated from below, found by com-
puter solution. Shown are contour lines of the temperature field
(after [5])

cellent conditions, for free and closed surfaces, with differ-
ent fluids, even under micro gravity conditions [55,83].

Surprisingly, a secondary instability takes place for
a larger external temperature gradient, which was not
known before 1995, almost 100 years after Bénard. This
instability shows the occurrence of rather regular squares
and was discovered by Eckert and Thess in Dresden, Ger-
many [6,41,67] and, in the meantime but independently,
by Schatz and Swinney in Austin, Texas [80,81] (Fig. 12).

If the fluid is covered by a good thermal conduc-
tor (a sapphire plate, for instance), hexagons are not the
typically found structure at onset, but rather stripes or
rolls are encountered [90]. This can be understood in the
frame of reduced order parameter equations by simple
symmetry arguments. We shall discuss this in more detail
in Sect. “Order Parameter Equations”. For small Prandtl
numbers (the ratio between viscosity and thermal diffusiv-
ity of the fluid) more complicated and time dependent pat-
terns are found in the form of spirals (Fig. 13) [15,61,73].

The initial growth of patterns, with a certain horizon-
tal length scale of the order of the depth of the fluid layer,
is typical for pattern formation in thick films. In the long
term, these structures can be stationary or time dependent,
depending on several control and fluid parameters (tem-
perature gradient, material properties, etc.). On the other

Fluid Dynamics, Pattern Formation, Figure 12
Regular squares as a secondary instability of hexagons. Numeri-
cal solution of the basic equations [6]

hand, the spatio-temporal behavior is completely different
for thin and ultra-thin films. Here one finds, after a rather
short initial phase, the formation of larger and larger struc-
tures, known as coarsening. Eventually, the dynamics con-
verge to a stationary state that consists of a single eleva-
tion (drop) or suppression (hole) on the surface (Fig. 14
left panel). This development can be interrupted by rup-
ture of the film. Rupture is obtained if the surface touches
the substrate and the thickness reaches zero in certain do-
mains. Rupture can be avoided by introducing a repelling
disjoining pressure acting for a very small depth. In this
situation, a completely dry region cannot exist but the sub-
strate is, rather, covered by a so-called (ultra thin) precur-
sor film [38,70], already proposed by Hardy in 1919 [51].

If, in addition, horizontal forces are applied, that is,
by inclining the fluid layer, interesting studies of falling
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Fluid Dynamics, Pattern Formation, Figure 13
Left: Rolls for high Prandtl number (Pr) fluids; Right: spirals for low Pr are found if the surface is covered by a good thermal conductor

Fluid Dynamics, Pattern Formation, Figure 14
Numerical solution of the thin film equation (see Sect. “Conserved Order Parameter Fields”), red: elevation, yellow: suppression. Left:
Coarsening is the typical spatial behavior for a thin film. Finally, a stationary solution consisting of one single hole would survive.
Right: If the layer is inclined, the motion of fronts and the development of front instabilities can be examined. From [16]
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films and front instabilities can be made in the frame of
the thin film equation [13,82]. A typical example is shown
in Fig. 14, right panel.

Types of Instabilities

Different types of instabilities can be classified according
to their linear behavior at onset. Consider a mode having
the complex eigenvalue

(k2) D i!(k2)C �(k2) (38)

with real valued frequency ! and real valued growth
rate � . Due to rotation symmetry with respect to the hor-
izontal coordinates, all values depend only on the modu-
lus of the wave vector of the unstable mode (assumed as
a plane wave in horizontal direction).

According to [36], we use the following notions:
Type IIIs “s” denotes stationary or monotonic and refers

to the temporal behavior of the unstable mode close
to onset. The type number specifies the spatial behav-
ior of the modes. Type III means slowly varying or
even constant in space (k � 0). The spatial structure
beyond instability is then mainly dominated by the ge-
ometry and boundary conditions of the system under
consideration. For (38) this means

! D 0 and
d�
dk

ˇ̌
ˇ
ˇ
kD0
D 0 ;

See Fig. 15. A typical example for a type IIIs instabil-
ity is the real Ginzburg–Landau equation. A computer
solution clearly showing the spatially (and temporally)
slowly varying behavior can be seen in Fig. 16.

Type IIIo “o” stands for oscillatory and denotes a non-
vanishing imaginary part of (38) at threshold. This
type includes Hopf-instabilities which have the same

Fluid Dynamics, Pattern Formation, Figure 15
Schematic drawing of the real part of the eigenvalue (38) as function of the wave vector for the three types of instabilities

slow spatial behavior as IIIs. In (38) we have

! ¤ 0 and
d�
dk

ˇ̌
ˇ
ˇ
kD0
D 0 :

For this kind of instability one needs at least two cou-
pled diffusion equations. It is often encountered in re-
action diffusion systems, as for instance the “Brussela-
tor” [76,77].

Type Is The short scale pattern forming instabilities
shown in Figs. 11–13 with periodicity in space, kc ¤ 0
are of this type, see Fig. 15 middle frame. Again one
needs at least two coupled diffusion equations to ob-
tain such an instability. For the eigenvalue,

! D 0 and
d�
dk

ˇ
ˇ̌
ˇ
kDkc

D 0 with kc ¤ 0

holds. Sometimes these kinds of patterns are called
Turing structures or Turing instabilities, after the sem-
inal work of Alan Turing, who predicted this patterns
in skin, scales, or hair coating of certain animals [89]
(Fig. 17). For more details and pattern formation in bi-
ology see [63].

Type Io Denotes oscillating Turing structures, sometimes
also calledwave instabilities. The eigenvalue then has
the form

! ¤ 0 and
d�
dk

ˇ
ˇ̌
ˇ
kDkc

D 0 with kc ¤ 0 :

For this instability, the system must be described by
at least three coupled diffusion equations. In fluid me-
chanics, this kind of instability can be encountered in
binary mixtures and give rise to a very complicated, in
general chaotic, spatio-temporal behavior just at on-
set [9].

Type IIs This type is realized in the surface patterns of
thin films, Fig. 14. Here,  depends on k as shown in
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Fluid Dynamics, Pattern Formation, Figure 16
Numerical solution (time series) of the real Ginzburg–Landau equation. (39) which shows a IIIs instability. The Ginzburg–Landau
equation can be considered as a simplemodel for themagnetization of a ferromagnet. Then the two rows show the spatio-temporal
evolution of the magnetization, Top: without external field, Bottom: with external field

Fluid Dynamics, Pattern Formation, Figure 17
After a theory by A. Turing the painting on skin, scales, or coats of animals is organized by a nonequilibrium chemical reaction during
the embryonal phase. Left: regular spots arranged in a hexagonal manner on the panther fish, Right: stripes with defects on the lion
fish (pictures taken by the author in the Berlin Zoo)

the right frame of Fig. 15. One has

! D 0 and
d�
dk

ˇ̌
ˇ̌
kDkc

D 0 with kc ¤ 0

and in addition

�(k D 0) D 0 :

From the last condition one sees that modes with
k D 0, that is, those which are homogeneous in space,
are marginally stable, meaning neither stable nor un-

stable. One may then add a constant to the order pa-
rameter (the mode amplitude)

� 0 D � C const ;

where � 0 is still a solution of the linear part of the or-
der parameter equation. This property usually has its
origin in a symmetry of the basic problem. We shall
discuss this instability type in Sect. “Conserved Order
Parameter Fields” on thin films. There, the symmetry
corresponds to a global shift of the surface in vertical
direction.
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Type II0 The same as IIs but with an additional imaginary
part ! ¤ 0. We mention this type only for the sake of
completeness; there will be no further examples in this
contribution.

Order Parameter Equations

Order Parameters

In this section, we wish to describe pattern formation in
the weakly nonlinear regime.We shall mainly restrict our-
selves to the case of monotonic (non-oscillatory) insta-
bilities. For further references see [10,12,36,47,50]. Close
to a bifurcation point to a new state, it is natural to ex-
pand nonlinearities with respect to small deviations from
the old, unstable state. These deviations can be written as
a composition of certain Galerkin functions or modes; the
amplitudes of these modes are called order parameters. If
the order parameters are functions only of time, the dy-
namics given by the order parameter equations (ordinary
differential equations, abbreviated: ODE) are perfect pat-
terns, for instance parallel stripes, squares (two order pa-
rameters) or hexagons (three order parameters). Natural
patterns having defects and grain boundaries, as for in-
stance the structures shown in Figs. 11, 12 and 13 can also
be described in this frame. One then has to make the ad-
ditional assumption that the order parameters also vary
(slowly) in space and are ruled by partial differential equa-
tions (abbreviated: PDE).

The Ginzburg–Landau Equation

A prominent (and historically the first) example of such
a PDE order parameter equation is the Ginzburg–Landau
equation [3,58]. In one spatial dimension it has the normal
form

@t�(x; t) D " �(x; t)C q20 @
2
xx�(x; t)� c3j�(x; t)j2�(x; t)

(39)

and describes the spatio-temporal evolution of the com-
plex order parameter field � . If � is the mode amplitude of
a roll structure with a certain wave number, for example,
the critical one, then stripes with defects are obtained if �
varies (slowly) in space. If c3 and q0 are real valued, (39)
is called the real Ginzburg–Landau equation. For com-
plex values of the coefficients, an incomparably richer and
much more complicated spatio-temporal behavior of the
order parameter is encountered, for details we refer to [3].

In the theory of nonequilibrium pattern formation,
writing down an equation such as (39) is far from being
purely phenomenological. It can be derived rather system-
atically from the basic hydrodynamic equations [48,66].

To give an idea of that, we do it briefly for the (two-dimen-
sional) case of convection (the reader who is not interested
in technical details can skip the rest of this section).

Starting point are the Eqs. (16) and (20) where in the
latter, S stands for temperature T.

Scaling of independent (Er; t) and dependent (Ev; T)
variables allows the reduction of the numbers of param-
eters:

Er D Ẽr � d ; t D t̃ � (d2/�) ; Ev D Ẽv � (�/d) ; T D T̃ � ˇ � d;
(40)

with the constant depth d and the externally applied tem-
perature gradient (32). Note that if the liquid is heated
from below, ˇ < 0. Introducing the deviation 	 from the
thermally conducting state

T(Er; t) D T0(z)C	(Er; t) D T0 C ˇzC	(Er; t) (41)

transforms (20) into

f� � @tg	(Er; t) D ��2� (Er; t)C (Ev � r)	(Er; t) (42)

and (16) into
�
� �

1
Pr
@t

�
�2˚(Er; t) D �

1
Pr
�
curl((Ev � r)Ev)

�
z (43a)

�
� �

1
Pr
@t

�
��2� (Er; t)

D �R �2	(Er; t) �
1
Pr
�
curl curl((Ev � r)Ev)

�
z : (43b)

Two dimensionless numbers occurred. One is the material
dependent Prandtl number

Pr D
�

�
; (44)

which measures the ratio of the diffusion times of heat and
momentum. The other one is called the Rayleigh number
and turns out to be

R D �
ˇg˛d4

��
(45)

with ˛ defined in (36). The system (42), (43) constitutes
the basic equations for the three scalar fields ˚ , � , and	
which describe convective motion and temperature of
a plane fluid layer with a flat and undeformable surface
onto a plane substrate. This can be further simplified by
taking the large Prandtl number limes 1/Pr D 0 (good for
fluids with high viscosity, oils, etc.). Then ˚ vanishes ev-
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erywhere and only two equations are left:

�2� (Er; t) D �R	(Er; t) (46a)

f� � @tg	(Er; t) D ��2� (Er; t)C (Ev � r)	(Er; t) : (46b)

A general nonlinear (2D) solution of Eqs. (46) may be ex-
pressed by

�
� (x; z; t)
	(x; z; t)

�

D
X

`

Z 1

�1

dk�`(k; t)
�

f`(k2; z)
g`(k2; z)

�
e�i kx (47)

and

�`(k; t) D ��` (�k; t)

where f and g are eigenfunctions of the ODE eigenvalue
problem

(d2z � k2)2 f` C R g` D 0
�
d2z � k2 � `(k2)


g` � k2 f` D 0 :

(48)

Here, ` labels the different eigenfunctions. Equation (48) is
obtained by inserting (47) with �` � exp(t) into (46) and
keeping only linear terms. The functions f` and g` can be
calculated numerically by a finite differencemethod in ver-
tical direction where suitable boundary conditions must be
implemented.

Inserting (47) into (46) yields, aftermultiplication with
the adjoint function gC

`
exp (ikx) and integration over the

spatial coordinates, the system:

@t�`(k; t) D `(k2)�`(k; t)

�
X

`0`00

Z 1

�1

dk0dk00c``0`00 (kk0k00)�`0 (k0; t)�`00(k00; t)

ı(k � k0 � k00) ; (49)

where the coefficients c are matrix elements that can be
computed directly from the basic equations for any given
set of control parameters:

c``0`00(kk0k00)

� k02
Z 1

0
dzgC

`
(k2; z) f`0 (k0

2
; z)@z g`00(k00

2
; z)

� k0k00
Z 1

0
dzgC

`
(k2; z)g`0 (k0

2
; z)@z f`00(k00

2
; z) :(50)

Here we are still at the same level of complexity; the in-
finitely many degrees of freedom intrinsic in the basic

partial differential equations are expressed by an infinite
number of mode amplitudes �`(k; t). To eliminate the fast
dampedmodes by the linearly growing ones, we divide the
eigenmodes into two groups:

l �!

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

u(k2) � 0 H) �u(k; t);
jkj � kc; u D ` D 1

s (k2)
 0 H) �s(k; t);
s D ` > 1 or s D ` D 1 but jkj ¤ kc :

(51)

In the following we may therefore substitute the in-
dex ` by u (unstable) or s (stable), depending on the val-
ues of ` and jkj. Now we express the amplitudes of the
enslaved modes invoking an adiabatic elimination (kc de-
notes the wave vector that maximizes u). In this case,
the dynamics of the enslaved modes are neglected, they
follow instantaneously to the order parameters. This is
a special case of the slaving principle of synergetics, which
can be used in many other disciplines beyond hydro-
dynamics [47].

The remaining equations for the order parameters �u,
the amplitude equations, read (here and in the following
we suppress the index u at � and ):

@t�(k; t) D (k2)�(k; t)

C

Z
dk0dk00dk000B(k; k0; k00; k000)�(k0; t)�(k00; t)

�(k000; t)ı(k � k0 � k00 � k000) (52)

where jkj; jk0j; jk00j; jk000j � jkcj. Note that there are no
quadratic expressions in � . This is because k � k0 � k00

cannot vanish if all wave numbers have the same (non-
zero) absolute value. In three spatial dimensions this is dif-
ferent. Three k-vectors can then form a resonant triangle,
which is the reason why stable hexagons may occur.

The Landau coefficient B is directly related to the ma-
trix elements (50):

B(k; k0; k00; k000) D
X

s

1
s ((k00 C k000)2)

csuu(k00 C k000; k0; k00)
�
cuus(k; k0; k00 C k000)

C cusu(k; k00 C k000; k0)
�

where the indices u and s are defined in (51).
To arrive at the Ginzburg–Landau equation, one must

transform back to real space. If we express the ı-function
in (52) as

ı(k � k0 � k00 � k000) D
1
2�

Z
dx ei(k�k

0�k00�k000)x
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and assume, that the coefficient B does not depend much
on k (it can be evaluated at k D ˙kc), the cubic part of (52)
takes the form

B̄
2�

Z
dxei kx

Z
dk0�(k0; t) e�i k

0x
Z

dk00�(k00; t)

e�i k
00x
Z

dk000�(k000; t) e�i k
000x

D
B̄
2�

Z
dx ei kx� 3(x; t) (53)

where we have introduced the Fourier transform

� (x; t) D
Z

dk �(k; t) e�i kx : (54)

Inserting (53) into (52), multiplying with e�i k x̃ and in-
tegrating over k yields the order parameter equation in real
space

@t� (x̃; t) D
Z

dk(k)�(k; t)e�i k x̃ C B̄ � 3(x̃; t) : (55)

If we replace the k2-dependence of  under the integral
by �@2x̃ x̃ , we may pull  out of the integral and write (55)
in the form

@t� (x; t) D (�@2xx ) � (x; t)C B̄ � 3(x; t) : (56)

The function � (x; t) can also be called an “order pa-
rameter”, though it is not slowly varying in space com-
pared to the small scale structure of the rolls, an idea which
we shall work out in the following section. One big advan-
tage can already be seen: the reduction of the number of
space dimensions by one. We started with the hydrody-
namic equations in two dimensions and get an order pa-
rameter equation in only one spatial dimension.

To find the form of the Ginzburg–Landau equation, we
must introduce a slowly varying order parameter. This is
done by recalling that the Fourier transform of� is mainly
excited around k D ˙kc. Then it is natural to make a “ro-
tating wave approximation” with respect to x of the form

� (x; t) D �(x; t) ei kcx C ��(x; t) e�i kcx : (57)

Inserting this into (56), multiplying by e�i kcx and in-
tegrating with respect to x over one period 2�/kc yields
with the assumption of constant (slowly varying) � in this
period

@t�(x; t) D (�(@xC ikc)2) �(x; t)C3B̄ j�(x; t)j2�(x; t):

The last approximation is concerned with the evalu-
ation of the eigenvalue in form of a differential operator.

Close to kc, it has the form of a parabola, see Fig. 15 mid-
dle frame. Thus we may approximate

(k2) D " � q2
�
k2 � k2c

2 (58)

and also

(�(@x C ikc)2) D " � q2((@x C ikc)2 C k2c )
2

D " � q2(@2xx C 2ikc@x )2

� "C 4q2k2c@
2
xx : (59)

For the last conversion, we neglect higher derivatives,
which is justified due to the slowly varying spatial depen-
dence of � . After scaling of � and the additional assump-
tion B̄ < 0 we finally have derived the Ginzburg–Landau
equation (39).

The Swift–Hohenberg Equation

In two spatial dimensions, the drawback of the Ginzburg–
Landau equation is its lack of rotational symmetry. There-
fore, it is better to pass on the rotating wave approxima-
tion (57) and to consider instead the fully space-dependent
function � as an order parameter, but now in two spatial
dimensions. The resulting evolution equation in its lowest
nonlinear approximation is the Swift–Hohenberg equa-
tion [88]

�̇ (Ex; t) D
�
" � (1C�2)2

�
� (Ex; t) � � 3(Ex; t) ; (60)

which we shall derive now.

Non-local Order Parameter Equations To this end we
go back to (52) and write it down in two dimensions, now
including the quadratic terms (Ek D (kx ; ky)):

@t�(Ek; t) D (k2)�(Ek; t)C
Z

d2Ek0d2Ek00A(Ek; Ek0; Ek00)

� �(Ek0; t)�(Ek00; t)ı(Ek � Ek0 � Ek00)C
Z

d2Ek0d2Ek00d2Ek000

� B(Ek; Ek0; Ek00; Ek000)�(Ek0; t)�(Ek00; t)�(Ek000; t)

� ı(Ek � Ek0 � Ek00 � Ek000) :
(61)

Introducing the (2D) Fourier transform (Ex D (x; y)),

� (Ex; t) D
Z

d2Ek �(Ek; t) e�iEkEx : (62)
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and transforming (61) to real space yields the integro-dif-
ferential equation

@t� (Ex; t) D (�)� (Ex ; t)

C

“
d2 Ex0 d2 Ex00 G(2)(Ex � Ex0; Ex � Ex00)� (Ex0; t)� (Ex00; t)

C

•
d2 Ex0d2 Ex00d2 Ex000 G(3)(Ex � Ex0; Ex � Ex00; Ex � Ex000)

� (Ex0; t)� (Ex00; t)� (Ex000; t)
(63)

where the kernels are computed by the Fourier transforms:

G(2)(Ex; Ex0)

D
1

16�4

Z
d2Ekd2Ek0A(Ek C Ek0; Ek; Ek0)e�iEkEx e�iEk

0 Ex0 ;

G(3)(Ex; Ex0; Ex000)

D
1

64�6

Z
d2Ekd2Ek0d2Ek00B



Ek C Ek0 C Ek00; Ek; Ek0; Ek00

�

� e�iEkEx e�iEk
0 Ex0 e�iEk

00 Ex00 :

(64)

Gradient Expansion Although Eq. (63) has a rather gen-
eral form, its further numerical treatment is not practica-
ble, at least not in two dimensions. Each integral must be
approximated somehow as a sum over mesh points. The
cubic coefficients would result in a 6-fold sum with, if N is
the number of mesh points, N6 summands, which is, if N
is around the size of 100, rather hopeless.

On the other hand, the excitation of � mainly close to
kc, in two dimensions on a (narrow) ring in Fourier space
with radius kc, makes it natural to expand � under the
integrals around Ex. This works well if the kernels (64) have
a finite (small) range with significant contribution only for
jEx � Ex0j < � with� D 2�/kc.

To save space we demonstrate the method only for
the quadratic term of (63) and in one spatial dimension.
A Taylor expansion of � leads to

“
dx0 dx00G(2)(x � x0; x � x00)

1X

m;nD0

1
m!n!

@m�

@xm
@n�

@xn
(x � x0)m(x � x00)n ;

where the derivatives must be evaluated at x. They can be
written in front of the integrals, yielding

1X

m;nD0

g(2)mn
@m�

@xm
@n�

@xn
(65)

with the moments

g(2)mn D
1

m!n!

“
dx1 dx2 G(2)(x1; x2) xm1 xn2 :

A similar expression can be found for the cubic coeffi-
cient. A series of the form (65) is called gradient expansion.
In this way, a local order parameter equation results, but
which now has infinitely many nonlinear terms. It reads

@t� D (�)� C
1X

m;nD0

g(2)mn
@m�

@xm
@n�

@xn

C

1X

`;m;nD0

g(3)
`mn

@`�

@x`
@m�

@xm
@n�

@xn
(66)

with

g(3)
`mn

D
1

`!m!n!

•
dx1 dx2 dx3 G(3)(x1; x2; x3)x`1x

m
2 xn3 :

For more details see [10].

Swift–Hohenberg–Haken Equation The series in (66)
will converge rapidly if the kernels have a short range.
Here we consider only the extreme case of ı-shaped ker-
nels, now in two dimensions:

G(2)(Ex1; Ex2) D A � ı(Ex1)ı(Ex2) ;

G(3)(Ex1; Ex2 ; Ex3) D B � ı(Ex1)ı(Ex2)ı(Ex3) :

All coefficients vanish, except g(2)00 and g(3)000. Then (66)
simplifies to

@t� (Ex; t) D (�)� (Ex ; t)CA � 2(Ex; t)CB � 3(Ex; t): (67)

For the linear part we again use the expansion (58) and re-
place k2 by��. After rescaling of length, time and � , (67)
turns into the canonical form

�̇ (Ex; t) D
�
" � (1C�2)2

�
� (Ex; t)Ca � 2(Ex; t)�� 3(Ex; t)

(68)

with

a D
A
p
�B

:

Equation (68) is the Swift–Hohenberg–Haken equation
derived first using the theoretical methods of synergetics
by Haken [11,49].
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Numerical solutions of (68) with a D 0 are shown
in Fig. 18. Stripes as known from convection, but also
from Turing instabilities, can be clearly seen. If jaj ex-
ceeds a certain value which depends on

p
", hexagonal

structures are found which agree qualitatively with those
obtained in Bénard–Marangoni convection (Fig. 19). It
can be shown that the symmetry break z! �z caused

Fluid Dynamics, Pattern Formation, Figure 18
Computer solutions of the Swift–Hohenberg Eq. (60) for several " D 0:01;0:1;1:0;2:0 (top to bottom). The evolution time scales
with 1/", the number of defects increases with "

by the different vertical boundary conditions on top and
bottom of the fluid gives rise to a (positive) quadratic co-
efficient. In the Swift–Hohenberg equation, this violates
the symmetry � ! �� and may stabilize two different
sorts of hexagons, namely the alreadymentioned `- and g-
hexagons. The first ones are found for large enough posi-
tive a, the latter for negative a.
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Fluid Dynamics, Pattern Formation, Figure 19
Evolution of a randomdot initial condition from (68) with " D 0:1, a D 0:26 (top) and a D 1:3 (bottom). For a in the bistable region,
top row, stripes and hexagons coexist for a long time until hexagons win. Bottom: for rather large a hexagons are formed soon
showing many defects and grain boundaries. The defects survive for quite a long time

The Swift–Hohenberg equation can be considered as
normal form of type Is instabilities. The bifurcation sce-
nario is general (Fig. 20): hexagons are the generic form at
onset if symmetry breaking (quadratic) terms occur, which
is normal. Even very small symmetry breaking effects lead
to hexagons, although their stability region will decrease
and finally shrink to the critical point " D 0 if a! 0. Well
above threshold, stripes are expected – or squares.

Squares A linear stability analysis of the Swift–Hohen-
berg Eq. (68) shows that squares are always unstable in fa-
vor of rolls (or hexagons). Therefore there exists no stable
square pattern as a solution. This can be changed includ-
ing higher order terms in the gradient expansion (66), for
details see [14]. In this spirit, the equation

@t� D " � � (�C 1)2� � b � 3 � c � �2(� 2) (69)

has a stable square solution for �32c/9 < b < 0. In Fig. 21
we present numerical solutions of (69) for two different
values of the parameter b.

Regular squares are found in convection experiments
with two poorly conducting top and bottom plates [28]
or in binary mixtures with a certain mean concentra-

Fluid Dynamics, Pattern Formation, Figure 20
Stability regions in the parameter plane of Eq. (68). Hexagons
bifurcate subcritically from the trivial solution 
 D 0. As a sec-
ondary instability, stripes emerge. The transition hexagons-
stripes as well as trivial sol-hexagons both show hysteresis

tion [62]. If the fluid viscosity is strongly temperature de-
pendent (non-boussinesq effects), squares are also pre-
ferred, as shown in [27]. For all these cases, an equation of
the form (69) can be approximately derived close to onset.
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Fluid Dynamics, Pattern Formation, Figure 21
Numerical solutions of (69) for "D 0:1, c D 1/16 and b D 0 (top), bD �0:1 (bottom). For bD 0 both squares and stripes are stable.
After a longer time squares win the competition. Bottom: clearly in the square region of parameter space. Squares are formed soon
havingmany defects and grain boundaries. Finally, a rather regular square pattern evolves

ConservedOrder Parameter Fields

In the previous section, the OPE had the general form

@t�(Er; t) D F(�;r�;��) (70)

with no further restrictions (except of boundary condi-
tions) for the order parameter field � . However, there are
many cases where the physical meaning of the order pa-
rameter is that of a density belonging to a conserved quan-
tity such as total mass, volume or charge. Let � be such
a density; then the mean value

M D hFi �
1
V

Z

V
d3Er F(�;r�;��) (71)

should vanish, if h�i is a conserved quantity in the constant
volume V . Then F can be written as

F(�;r�;��) D � div Ej(Er; t) (72)

if the total flow of the current density Ej through the sur-
face A of V vanishes

I

A(V )
d2 Ef � Ej(Er; t) D 0 : (73)

With (72), Eq. (70) takes the form of a continuity equa-
tion. In this section we wish to consider OPEs that ful-
fil (72) and (73).

Thin Films

Consider a fluid with a free and deformable surface located
at z D h(x; y; t) as already shown in Fig. 3. If the fluid is
incompressible and there is no flow through the sidewalls,
the total volume of the fluid layer

A � hhi D
Z

A
dx dy h(x; y; t) (74)

is a conserved quantity, where A is the base area of the
layer. As a consequence, the evolution equation for hmust
have the form

@t h D � div Ej D �@x jx � @y jy : (75)

Comparing (75) with the kinematic boundary condi-
tions (23) and taking vz

ˇ̌
zDh from the integral of the in-

compressibility condition (3)

vz
ˇ̌
zDh D �

Z h

0
dz (@x vx C @yvy)C vz

ˇ̌
zD0

one finds with vz
ˇ̌
zD0 D 0

Ej D
Z h

0
dz EvH ; (76)

where EvH denotes the two horizontal velocity components.



Fluid Dynamics, Pattern Formation F 3633

The Lubrication Approximation To close the Eqs. (75),
(76), it is necessary to compute EvH as a function of h. For
thin films, the Reynolds number is small and the Stokes
equation (19) determines the fluid velocity to a good ap-
proximation. Using scaling [70]

x D x̃ � ` ; y D ỹ � ` ; z D z̃ � d ; t D t̃ � � ; h D h̃ � d;
(77)

(19) turns into
�
ı2
�
@2x̃ x̃ C @

2
ỹ ỹ

C @2z̃ z̃


ẼvH D r̃2P̃ (78a)

ı2
�
ı2
�
@2x̃ x̃ C @

2
ỹ ỹ

C @2z̃ z̃


ṽz D @z̃ P̃ : (78b)

with the 2D-gradientr2 D (@x ; @y). In (78) we have intro-
duced the dimensionless velocity and pressure

EvH D ẼvH �
`

�
; vz D ṽz �

d
�
; P D P̃ �

�

ı2�

and ı D d/` as a small parameter already defined in (24).
In the limit ı ! 0 it follows from (78b)

@z̃ P̃ D 0 or P̃ D P̃(x̃; ỹ) :

Thus one can integrate (78a) twice over z̃ and finds
with the no-slip condition ẼvH(0) D 0

ẼvH(x̃; ỹ; z̃) D Ef (x̃; ỹ) � z̃C
1
2
(r̃2P̃(x̃; ỹ)) � z̃2 (79)

with a function Ef (x̃; ỹ) which can be determined by the
boundary conditions. To this end we consider an inhomo-
geneous surface tension (caused, for example, by a temper-
ature gradient) at the free surface, which yields the condi-
tion

� @z EvH jzDh D r2� jzDh :

Inserting (79) there one finds

Ef D r̃2�̃ � (r̃2P̃) � h̃

with the non-dimensional surface tension

�̃ D �
�d
�`2

:

Inserting everything into (76) and integrating by z̃ fi-
nally yields (all tildes omitted)

@t h D �r2 �
�
�
h3

3
r2P C

h2

2
r2�

�
: (80)

This is the basic equation for the evolution of the sur-
face of a thin film in the so-called lubrication approxima-

tion [68]. Equation (80) is sometimes denoted as the thin
film equation [70,92].

The Disjoining Pressure for Ultra–thin Films Gravi-
tation and surface tension can be included into the pres-
sure P as already outlined in Sect. “Surface Waves”. They
both stabilize the flat film.On the other hand, an instability
mechanism is encountered in very thin (ultra-thin) films
where the thickness is some 100 nm or even less [52,79,84].
Then, van der Waals forces between free surface and solid
substrate can no longer be neglected [52]. For an attractive
force between surface and substrate one has

dhP < 0 :

But there can also exist a repelling van derWaals force
with dhP > 0 which stabilizes the flat surface. Attractive
and repelling forces have different ranges. Usually, the re-
pelling force is short range, the attractive one long range.
Then, the initially “thick” film can be unstable due to at-
traction but rupture is avoided by repulsion. In this way
completely dry regions cannot exist but the substrate al-
ways remains covered by an extremely thin film (some
nm), called precursor film, Fig. 22 [51].

The complete expression for such an attractive/repul-
sive disjoining pressure including gravity and surface ten-
sion would be (Fig. 23)

P(h) D
A3

h3
�

A9

h9
C Gh � q �2 h (81)

where A3 and A9 are material parameters, the Hamaker
constants, and

G D
d3g�
`2�

; q D �
�d3

`4�

denote the dimensionless gravitation number and the sur-
face tension, respectively.

Spinodal Dewetting – Numerical Results If a thin liq-
uid film is exposed to a non- or partially wetting substrate,
a small perturbance is sufficient to destabilize the flat sur-
face. The fluid then bubbles and many small drops are
formed. This phenomenon can be seen for instance if rain
falls on a waxed cloth or on a well polished car roof. Such
a process is called spinodal dewetting and refers to the un-
stable region of Fig. 23, [13,86]. As already explained in
Sect. “Instabilities”, an instability of the flat film occurs in
the region where P has a negative slope. This instability is
of type II, as is shown in Fig. 23, right frame, and has the
growth rate (dispersion relation)

 D
1
3
h30
�
�D(h0)k2 � k4


(82)
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Fluid Dynamics, Pattern Formation, Figure 22
Left: Thin flat films are unstable due to an attractive, long range van derWaals force between the free surface and the solid substrate
of the fluid. Right: If the film is extremely thin (some nm), a repelling short range force acts as a stabilizer and the precursor film
remains intact instead of rupturing

Fluid Dynamics, Pattern Formation, Figure 23
Left: The disjoining pressure for a film with uniform thickness h including gravitation, A3 D 3;A9 D 1;G D 0:1. The region of un-
stable films is bounded by ha and hb. The critical pressure (depth) Pc (hM) where drops turn into holes is determined by a Maxwell
construction. Right: Growth rates of periodic disturbances of the plane surface with wave number k. The solid line corresponds to
a film with a mean thickness in the unstable regime. Waves having a wave number 0 < k < k0 grow exponentially, the mode with
k D kc has the largest growth rate (most dangerous mode). The instability is of type II

with the “diffusion coefficient”

D(h) D dhP :

(Here we restrict our further study to fluids with a uniform
surface tension. For non-isothermal films with r2� ¤ 0
we refer to [16,69]). Next we wish to present numerical so-
lutions of the fully nonlinear Eq. (80) with (81). To this end
we used the parameters of Fig. 23 and several initial depths
h0. As initial condition a random distribution around the
average depth h0 was chosen.

In the early stage of the evolution (top line of Fig. 24),
structures having a length scale of the critical wave length
� D 2�/kc, occur, were kc is the wave number of the
fastest growing mode

kc D
r

�
D
2
:

This can be called “linear phase” since the amplitudes are
still small and nonlinearities play no important role. The
structure grows on the typical time scale

� D �1(kc) D
12

h30D2 D
12
h30

�
P0(h0)

�2
;

which is inverse to the square of the slope of the disjoin-
ing pressure. This is the reason why pattern formation in
thicker films takes much longer (right column in Fig. 24).
As a consequence, the small scale (linear phase) structures
are overlayed by holes created by certain seeds. After the
linear phase, the position of h0 with respect to the Maxwell
point hM (Fig. 23, left frame) is decisive. If h0 > hM , holes
are formed, for h0 < hM , one finds drops. If h0 � hM ,
maze-like patterns are obtained in form of bent, rather ir-
regular stripes (Fig. 24, middle column). In a last, strongly
nonlinear phase, coarsening is observed. The final station-
ary structure (long term) is often a single entity in the form
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Fluid Dynamics, Pattern Formation, Figure 24
Time series found by numerical integration of (80) for h0 D 1:2 (left column), 1.862 (middle), and 2.8 (right). Light areas correspond
to elevated regions of the surface (from [8])

of one big drop or hole. The whole spatio-temporal evolu-
tion is transient and can be formulated as a gradient dy-
namics. The potential plays the role of a generalized free
energy reaching its minimum in the steady end state [16].

The flat film is unstable with respect to infinitesimal
disturbances if h0 is in the region between ha and hb. On

the other hand, two meta-stable domains exist, where the
flat film is stable, although the free energy could be lowered
by pattern formation. Then, a finite disturbance is neces-
sary, which can be caused by seeds coming, for instance,
from impurities. Such a process is called nucleation and
can be seen in the right column of Fig. 24. There, the seeds
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were provided by the random dot initial conditions and
two holes are formed. Both processes (nucleation and wet-
ting) converge in this region and it is a question of time
scales which one emerges first. In experiments, the forma-
tion of holes by nucleation is seen quite often. The reason
is that for a Lennard–Jones like disjoining pressure as (81),
the meta-stable hole region is much larger compared to
that of drops (Fig. 23, left frame).

Phase Field Models

In solidification processes, phase fields are introduced as
additional variables to describe the state, here liquid or
solid, of the system [57]. Phase fields depend on space and
time and governing equations for the phase field variables
must be stated or derived. If the phase field obeys an equa-
tion of the form of (70), it is called Model A, according to
a classification given by Hohenberg and Halperin [46].

Model B Here, we are more interested in phase field
equations belonging to Model B. The phase field (we call
it ˚) is conserved and a continuity equation

@t˚ D � div Ej (83)

must hold. As in nonequilibrium thermodynamics [30]
one assumes that the current density Ej is proportional to
a generalized force Ef

Ej D Q(˚) � Ef (84)

where Q stands for a non-negative mobility, which is nor-
mally a function of the phase field itself, but may also ex-
plicitly depend on space coordinates. If the force can be
derived from a potential P (pressure)

Ef D �rP(˚) (85)

which in turn can be written as functional derivative of
another (thermodynamic) potential (free energy) F

P D
ıF
ı˚

; (86)

we finally obtain a closed equation for (83) of the form

@t˚ D div
�
Q(˚)r

ıF
ı˚

�
: (87)

With (87) it is easy to show that dt F � 0.

The Cahn–Hilliard Equation As known from the
Ginzburg–Landau equation, one may expand the free en-
ergy with respect to powers of the phase field. The surface

term (r˚)2 penalizes phase field variations with respect
to space by an increase of F:

F[˚] D
Z

V
d3Er

hD
2
(r˚)2 C a0˚ C

a1
2
˚2

C
a2
3
˚3 C

a3
4
˚4 C : : :

i
: (88)

Substituting this into (87) yields

@t˚ D div
�
Q(˚)r

�
� D�˚ C a0 C a1˚

C a2˚2 C a3˚3� : (89)

We further assume a2 D 0 (this can be always obtained
by a simple shift of ˚) and a1 < 0; a3 > 0. If we restrict
us to the case of a constant mobility, we arrive from (89)
after a suitable scaling at the Cahn–Hilliard Eq. [29]

@t˚ D ��˚ ��
2˚ C�(˚3) : (90)

Equation (90) can be considered as a simple model for
a conserved order parameter. A family of stationary so-
lutions of (90) is given by ˚ D ˚0 D constant. A linear
stability analysis shows that these solutions are type II un-
stable if ˚2

0 <
1
3 holds. Since (90) belongs to Model B, an

infinitesimal disturbance can grow only in a way that keeps
the mean value of ˚ D ˚0 constant. Therefore, spatially
structured solutions are expected (Fig. 25).

The density of the free energy of a homogeneous solu-
tion reads

f (˚) D �
˚2

2
C
˚4

4
(91)

and has its minima at ˚m D ˙1. From Fig. 25 it becomes
clear that the stationary pattern forming solutions are lo-
cated between these two minima independently from the
mean ˚0. If the mean value is increased, the regions with
˚ � 1 grow at the cost of the regions with ˚ � �1 and
vice versa. Taking (90) as a simple model for the phase
transition from liquid to gas, the phase field defines the
state of aggregation. The density can then be found from
the linear relation

�(Er; t) D
1
2
(� f � �g ) ˚(Er; t)C

1
2
(� f C �g) (92)

with �g (�f ) as the density of the gaseous (liquid) state.
Regions where ˚ � �1 are gaseous, those with ˚ � C1
liquid.

Equation (90) has no free parameters. On the other
hand, the mean ˚0 D h˚i is a conserved quantity which
influences the dynamics of pattern formation qualitatively
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Fluid Dynamics, Pattern Formation, Figure 25
Stationary solutions of the 1D Cahn–Hilliard equation for several mean values˚0

and which can be considered as a control parameter. Inte-
grating (92) over the volume, it turns out that˚0 is linked
to the total massM of the gas/liquid system

M D
1
2
(� f � �g ) ˚0 � V C

1
2
(� f C �g) � V :

The stable homogeneous solutions ˚2
0 > 1/3 corre-

spond to a pure gas phase (˚0 < 0, small total mass), or
to a pure liquid phase (˚0 > 0, large total mass). In the

Fluid Dynamics, Pattern Formation, Figure 26
Numerical solution of the Cahn–Hilliard Eq (90) in three room dimensions. The time series (top left to bottom right) shows how liquid
drops are formed in an oversaturated gas atmosphere. Finally they merge to one big drop by coarsening, a typical dynamic for
a type II instability (from [7])

unstable regime ˚2
0 < 1/3 the (homogeneous) system has

a medium density; this corresponds either to an oversatu-
rated vapor atmosphere (˚0 < 0) or to a liquid with a tem-
perature above its boiling point. In both cases, an infinites-
imally small disturbance is sufficient to trigger pattern for-
mation in the form of phase separation. In the first case,
one observes drops in the gas atmosphere, in the latter,
bubbles in the liquid. Figure 26 shows a numerical sim-
ulation of (90) in three dimensions.
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The Fluid Density as Phase Field

Writing down an equation such as (87) and an expansion
such as (88) seems to be rather ad hoc. However, for pure
fluids it is evident to use the density itself as the phase field,
if one is interested in the liquid/gas phase transition. Then,
the continuity equation (2)may serve as a phase field equa-
tion in lieu of (87). Consequently, the fluid can no longer
be considered incompressible.

The Model The Navier–Stokes equations for a com-
pressible fluid (14) must be extended by a force term com-
ing from spatial variations of the phase field (density).
They read [21,53]

�
�
@t Ev C (Ev � r) Ev

�
D � grad pC Ef C ��Ev

C


� C

�

3

�
grad div Ev CK� grad�� : (93)

The extra term at the end of (93) was first used
by Korteweg in 1901 and is sometimes called Korteweg
stress [54]. For (93) we assumed constant material param-
eters �; �, andK. Using the methods of thermodynamics,

Fluid Dynamics, Pattern Formation, Figure 27
Transition from a flat unstable liquid layer to a drop running down on an inclined substrate (arrows) under gravity effects. Numerical
simulation [22] of (93) with (96) and the material parameters for water/vapor from [24] and�w D 0:5�f

the pressure is related to the free energy density f [2,37]

p(�) D �
@ f (�)
@�
� f (�) (94)

and the free energy as a functional of � reads

F[�] D
Z

V
d3Er

�K
2
(r�)2 C f (�)

�
; (95)

according to (88). Equations (93) with (94) and (2) form
a closed system for the variables Ev and �. Wetting prop-
erties and contact angles at the walls depend on the
boundary conditions � D �w along the wall [75]. The
choice �w D � f corresponds to a completely wetting (hy-
drophilic) material, �w D �g to a non-wetting (hydropho-
bic) boundary. The boundary condition for Ev can either be
no-slip (along a wall), no flux, or periodic. It is straightfor-
ward to include evaporation and condensation effects into
the model, which is studied in [20].

Note that now the free energy (95) is not needed for
determining the evolution of the phase field by (ad-hoc)
gradient dynamics. However, it can be shown that the free
energy decreases monotonically in time.
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Fluid Dynamics, Pattern Formation, Figure 28
Two final states showing a drop sliding down the inclined substrate with �w D 0:1�f (left, almost hydrophobic) and �w D 0:8�f
(right, almost hydrophilic). The flow in the gas and in the liquid is indicated by small arrows [23]

Results Again, we wish to consider the formation of one
state of aggregation on the background of the other. To
account for the two stable states, liquid and gaseous, we
take (for sake of simplicity we assume �g � 0)

f (�) D ��2(� � � f )2 : (96)

where � is a positive material constant. In Fig. 27 we show
results of the breakup of a flat liquid film aligned along
a rigid bottom plate. The layer is inclined by an angle ' and
under vertical gravitation. Thus, an external force density
of the form

Ef D �g
�

sin '
� cos '

�

occurs in (93). The bottom material is assumed to be par-
tially wetting (�w D 0:5� f ) and the initial film is unsta-
ble under these conditions. Periodic disturbances grow
along the fluid’s surface. After rupture, bubbles separate
and travel from left to right due to downhill force. Fig-
ure 28 shows final states of a sliding drop for two boundary
values �w. Clearly, the contact angles are different [22].

The phase field description goes far beyond the one
based on the thin film equation of Sect. “Thin Films”, since
there the treatment was restricted to small contact angles
and rupture was excluded from the beginning.

Future Directions

There is a huge number of applications in science, indus-
try, and technology where the methods and models out-
lined in the present article can be used and developed fur-
ther. In the field of patterns not formed by self-organized
processes, but rather by external events such as tidal waves,
storm surges or Tsunamis, a reduced and simplified de-
scription as discussed in Sects. “Surface Waves”, “Order
Parameter Equations” should allow for a better under-

standing of the underlying mechanisms and their effects.
Highly involved problems, as for instance the flow, tem-
perature, and concentration fields inside a combustion
cell, could be tackled by such models, extended in a suit-
able way.

Self-organized fluid patterns (Sect. “Instabilities”) are
the focus of attention in many actual fields of quite differ-
ent disciplines and scales. The conditions that lead to the
creation and stabilization of hurricanes are not yet com-
pletely known. The rather high probability of the occur-
rence of freak waves in the open sea still waits for an ex-
planation. On a planetary scale, convection problems are
encountered in the interior of planets and stars and may
give rise to the spontaneous formation of a magnetic field.
Another problem of great interest for the geophysicist is
that of a fluid (such as oil) in a porous medium. The equa-
tions for that case differ only a little from that discussed in
Sect. “The Basic Equations of Fluid Dynamics” and could
therefore be treated in the same spirit.

Understanding the mechanisms responsible for pat-
tern formation can also help to control systems to avoid
the occurrence of spatial patterns. In this way, the qual-
ity of products obtained from industrial processes, such
as coating or solidification (crystal growth), might be
improved.

On the micro-scale, fluid problems in general ruled by
the Stokes equations discussed in Sect. “Conserved Order
Parameter Fields” form a major issue, founding the new
discipline of micro-fluidics. But even on the nanoscale,
there are new applications in view. The self-organized
growth of structures could be a promising tool in the con-
ception and construction of nano-circuits.

An extension of the treatment to complex fluids such
asmixtures and emulsions, or to non-Newtonian fluids us-
ing the phase field approach (Sect. “Conserved Order Pa-
rameter Fields”), is desirable. These fluids are important
for biological applications.
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Glossary

Basic equation of fluid dynamics Fluid motion is math-
ematically treated on the basis of a continuum theory.
The fundamental evolution equations are the Euler
equation for ideal fluids and the Navier–Stokes equa-
tion for Newtonian fluids.

Vortex motions Numerical calculations of turbulent flow
fields show that the flows are dominated by coher-
ent structures in form of vortex sheets or tube-like
vortices. The question, why vorticity tends to be con-
densed in localized objects, is one of the central issues
of fluid dynamics. Regarding two-dimensional flows
there are attempts to approximate fluid motion by
a collection of point vortices. This allows one to inves-
tigate properties of flows on the basis of a finite dimen-
sional (Hamiltonian) dynamical system.

Turbulence modeling and large eddy simulations The
evolution equation for the average velocity field of tur-
bulent flows contains the Reynolds stresses, whose ori-
gin are the turbulent pulsations. Turbulence model-
ing consists of relating the Reynolds stresses to aver-
aged quantities of the fluid motion. This allows one to
perform numerical computations of large-scale flows
without resolving the turbulent fine structure.

Phenomenological theories of the fine structure of tur-
bulence Phenomenological theories play an important

role in physics, and are quite often formulated before
a microscopic understanding of the physical problem
has been achieved. Phenomenological theories have
been developed for the fine structure of turbulence. Of
great importance is the theory of Kolmogorov, which
he formulated in the year 1941 and refined in 1962.

The so-called K41 and K62 theories focus on the self-
similar behavior of statistical properties of velocity
increments, i. e. the velocity difference between two
points with a spatial distance r. Recently, phenomeno-
logical theories have been developed that consider the
joint probabilities of velocity increments at different
scales. It is expected that multiple scale analysis of
turbulence will provide new insights into the spatio-
temporal complexity of turbulence.

Turbulent cascades Fluid motions are dissipative sys-
tems. Stationary flows can only be maintained by
a constant energy input in the form of shear flows or
body forces. Usually, the length and time scales related
to the energy input are widely separated from the ones
on which energy is dissipated. A consequence is the
establishment of an energy transport across scales. It
is believed that this energy transport is local in scale
leading to the so-called energy cascades. These cas-
cades are related to the emergence of scaling behavior.
There is a direct energy cascade in three dimensions
from large to small scales and an inverse cascade of
energy from small scales to large scales in two-dimen-
sional flows.

Analytical theories of turbulence Analytical theories of
turbulence try to assess the experimental results on
turbulent flows directly from a statistical treatment of
the basic fluid dynamical equations. Analytical theo-
ries rely on renormalized perturbation expansions and
use methods from quantum field theory and renor-
malization group methods. However, no generally ac-
cepted theory has emerged so far.

Definition of the Subject

Fluid flows are open systems far from equilibrium. Fluid
motion is sustained by energy injected at a certain scale,
the so-called integral scale and is dissipated by viscosity
mainly in small-scale structures. If the integral scale and
the dissipative scale are widely separated and the motions
on the integral scale are sufficiently strong, the fluid devel-
ops a range of spatio-temporal structures. In three-dimen-
sional flows these structures steadily decay into smaller
structures and are generated by the instability of larger
structures. This leads to a cascading process which trans-
ports energy across scales. Turbulence appears if the fluid
motion is driven far away from equilibrium. It develops
through sequences of instabilities and processes of selfor-
ganization. From this respect, turbulence is a highly or-
dered phenomenon, whose spatio-temporal complexity,
however, has still to be explored.
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Introduction

Turbulence is one of the outstanding problems in the field
of nonlinear dynamics and complex systems. Although the
basic equations of ideal fluid dynamics were formulated
by L. Euler 250 years ago and the equations for viscous
flows, the so-called Navier–Stokes equation, were estab-
lished about 150 years ago [13], only a few analytical solu-
tions have been found so far, because of the inherent non-
linear character of fluid flows. Furthermore, fluid motions
are systems far from equilibrium. Their maintenance re-
quires a constant input of energy, which is transformed by
the viscous flow into heat. Ameasure for the distance from
equilibrium, which corresponds to vanishing fluid veloc-
ity, is the Reynolds number,

Re D
UL
�

(1)

where U is a characteristic velocity, L a characteristic
length scale, and � is the kinematic viscosity. Flows with
Reynolds numbers larger than Re D 1000 usually are tur-
bulent. A turbulent field generated in a free jet experiment
is exhibited in Fig. 1. By increasing the Reynolds number
one observes the occurrence of various types of instabili-
ties resulting in time-dependent and chaotic patternsmak-
ing these systems paradigms of self-organization. Whereas
the flows generated by the first few instabilities can be
treated satisfactorily the transitions and properties of flows
at higher Reynolds numbers are by far less understood.
This lack of understanding hinders the scientific devel-
opment in various fields, ranging from astrophysics, en-
gineering to the life sciences.

Basic research on turbulence has always stimulated
and contributed to the formulation of new scientific con-
cepts like self-organization and pattern formation, chaos,
and the theory of fractals. As a classical nonlinear field the-
ory the description of fluidmotion has advanced themath-
ematical understanding of infinite dimensional nonlinear
dynamical systems and the development of efficient com-
putational tools. It is expected that combined experimen-

Fluid Dynamics, Turbulence, Figure 1
Development of turbulent structures in a free jet experiment

tal and theoretical efforts will lead to a satisfactory under-
standing of high Reynolds number flows in the near future.

The Basic Hydrodynamic Equations

Fluid motions are described in terms of a continuum the-
ory. The basic ingredients of continuum theories are bal-
ance equations for a density h(x; t) of a physical quantity
like mass or momentum defined at location x and time t:

@

@t
hCr � [uhC jh] D q : (2)

Here, u denotes the fluid velocity, jh the current cor-
responding to the density h and q denotes a source
term [11,47].

The balance equation for the mass density � reads

@

@t
�Cr � �u D 0 : (3)

Since mass is conserved, the source term vanishes identi-
cally, q D 0.

Incompressible fluid motions are characterized by the
condition

r � u D 0 : (4)

In the present review we shall mainly focus on incom-
pressible fluids.

The balance equation for the density of momentum,
�u(x; t), takes the form

@

@t
�uiC

X

j

@

@x j
u j�ui D �

@

@xi
pC

X

j

@

@x j
�i jC fi ; (5)

where the momentum current jh is expressed by pressure p
and the viscous stress tensor � ij. External forces are sum-
marized in f i. A complete description requires the formu-
lation of boundary conditions for the velocity field.

It is straightforward to derive the balance equation for
the density of the kinetic energy, �u2(x; t)/2, from the con-
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servation law of momentum (5) for incompressible flows:
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u2 C p

i
�
X

i

� jiui

)
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X

i j

�i j
@ui
@x j
C
X

j

u j f j : (6)

This equation shows that energy is conserved provided the
viscous stresses � ij vanish.

Ideal Fluids: Euler’s Equation

For ideal fluid motions, the kinetic energy is conserved
provided external forces are absent. The balance Eq. (6)
shows that in this case the viscous stresses � ij have to van-
ish leading to the Euler equation for incompressible fluid
motions:

�
@

@t
C u � r

�
u D �

1
�
rpC

1
�
f : (7)

The dynamics of ideal fluidmotion is restricted by Kelvin’s
theorem. The circulation

H
u(x; t)dr along closed curves

going with the flow remains constant [11,47].

Newtonian Fluids: Navier–Stokes Equation

Newtonian fluids are characterized by the presence of vis-
cous stresses. They are assumed to be proportional to the
strain matrix Sij

�i j D ��Si j D ��
1
2

�
@ui
@x j
C
@uj

@xi

�
: (8)

Assuming isotropic material properties of the fluid as well
as incompressibility one obtains the Navier–Stokes equa-
tion:

�
@

@t
C u � r

�
u D ��u � rpC f : (9)

The kinematic viscosity � characterizes different fluids.
The local energy dissipation rate, denoted by � is obtained
from the balance equation of the density of kinetic en-
ergy, (6):

� D
�

2

X

i j

�
@ui
@x j
C
@ui
@x j

�2
: (10)

This quantity plays a crucial role for the understanding of
turbulent fluid motions.

At first glance, the Navier–Stokes equation seems to
be underdetermined due to the appearance of the gradient

pressure term. However, as a result of incompressibility,
the pressure is uniquely defined by the Poisson equation
in connection with suitable boundary conditions:

�p D �
X

i j

@ui
@x j

@uj

@xi
: (11)

The pressure can be determined with the help of Green’s
function G of the Laplacian,

�G(x � x0) D �ı(x � x0) ; (12)

and yields the pressure as a functional of the velocity field:

p D
Z

dx0 G(x � x0)
X

i j

@ui
@x0j

@uj

@x0i
: (13)

This clearly demonstrates that incompressible fluid mo-
tions are governed by nonlinear, nonlocal interactions.
The gradient pressure term can be regarded as a Lagrange
parameter which guaranties the incompressibility of fluid
motion.

Vorticity Formulation of Incompressible Fluid Dynam-
ics It is possible to formulate the basic fluid dynamic
equations using the vorticity !(x; t) D r � u(x; t). Pro-
vided the vorticity is known, one can obtain the velocity
field by the analogue of Maxwell’s equation of magneto-
statics:

r � u D ! ; r � u D 0 : (14)

The velocity field is determined by the analogy to Biot–
Savart’s law

u(x; t) D
Z

dx0!(x0; t) � K(x� x0)Cr˚ ; (15)

where K is related to Green’s function G(x) of the Lapla-
cianK(x) D rG(x). The potential˚ has to fulfill�˚ D 0.

It is straightforward to derive an evolution equation
for the vorticity:

@

@t
!C u � r! D ! � ruC ��!C f! : (16)

Here, an important difference between two- and three-
dimensional fluid motion becomes evident. For two-
dimensional flows the vorticity only has a component per-
pendicular to the motion and the so-called vortex stretch-
ing term ! � ru vanishes identically.
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Lagrangian Formulation of Incompressible Fluid Dy-
namics Up to now, we have treated fluid dynamics from
the Eulerian point of view by considering fields defined at
a fixed spatial location. There is an alternative approach to
the description of fluid motion. This so-called Lagrangian
treatment is based on the introduction of the Lagrangian
velocity U(y; t) and the Lagrangian path X(y; t) of a point
moving with the flow starting at time t D 0 at the loca-
tion y. For obvious reasons the quantity X(y; t) is also de-
noted as Lagrangian map. The inverse map is denoted as
y(x; t). The basic fluid dynamical equations can also be
formulated in this Lagrangian picture.

As an example we formulate the evolution equation
for the Lagrangian vorticity for two-dimensional incom-
pressible flows. To this end we introduce the Lagrangian
vorticity˝(y; t) D !(X(y; t); t). The first equation defines
the Lagrangian path, the second the evolution of the La-
grangian vorticity.

@

@t
X(y; t) D

Z
dy0˝(y0; t)fez � K[X(y; t) � X(y0; t)]g ;
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D �
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@2Yl
@xi@xi
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3

5˝(y; t) :

(17)

For two-dimensional flows the gradient of Green’s func-
tion of the Laplacian takes the form K(x) D x

2	jxj2 . It is
immediately obvious that in the ideal fluid case, the two-
dimensional vorticity is conserved along Lagrangian tra-
jectories. A similar formulation exists for three-dimen-
sional flows, where, however, the evolution equation for
vorticity contains the vortex stretching term.

Recently, the Lagrangian formulation of fluid dynam-
ics has become important due to the possibility to measure
the path of passive tracer particles [46,63,69]. Its impor-
tance for the description of turbulence has already been
emphasized by Taylor [82] and Richardson [77].

Existence and Smoothness Results

Although the Euler and the Navier–Stokes equations are
of fundamental interest for various fields ranging from
astrophysics to applied mechanics and engineering, their
mathematical properties still remain puzzling. Especially
for three-dimensional flows results on the existence (or
nonexistence) and smoothness of solutions could not yet
be obtained. This topic is one of the millennium problems
formulated by the ClayMathematics Institute. As an intro-
duction to the subject we refer the reader to the webpage

of the Clay institute with an outline of the mathematical
problem due to Fefferman [90], as well as the two mono-
graphs [16,20].

Vortex Solutions of the Navier–Stokes Equation

Figure 2 shows a volume rendering of the absolute value
of vorticity above a certain threshold obtained from a di-
rect numerical solution of the vorticity equation. The field
is characterized by the presence of elongated vortex struc-
tures [39]. Whereas fully developed turbulent flows tend
to be dominated by vortex-like objects it seems that mod-
est turbulent flows are characterized by the presence of
sheet-like structures. There are several exact solutions of
the Navier–Stokes equation, which seem to be related with
the vortex structures observed in fully developed turbu-
lence. They can be investigated using symmetry arguments
and methods from group theory [31].

Axisymmetric Vortices: Lamb–Oseen Vortex

An axisymmetric vorticity distribution ! D ˝(r)ez gen-
erates a purely azimuthal velocity field. This fact has the
consequence that in the vorticity equation both, the con-
vective term u � r! and the vortex stretching term! � ru,
identically vanish, leading to an equation which is the ra-
dially symmetric heat equation

@

@t
˝ D �

1
r
@

@r
r
@

@r
˝ : (18)

Fluid Dynamics, Turbulence, Figure 2
Direct numerical calculation of the vorticity field of a turbulent
fluidmotion: Absolute value of vorticity above a given threshold.
After [88]
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Fluid Dynamics, Turbulence, Figure 3
Vorticity field of a two-armed Lundgren spiral

A solution is the so-called Lamb–Oseen vortex,

˝ D
�

�r2B
e�r

2/r2B ; r2B D 4�t : (19)

The corresponding velocity field is azimuthal and has the
form

v'(r) D
�

2�r

h
1 � e�r

2/r2B
i
: (20)

It decays like � /2�r for large distances. Because of viscos-
ity the velocity field at the origin vanishes identically.

The Lundgren Spiral

Another vortex solution in the form of a spiral vorticity
distribution has been considered by Lundgren [53]. It is
generated by a localized central, strong vorticity distribu-
tion whose velocity field drags surrounding, weaker vor-
ticity distributions into spiral arms. In this way it is also
possible to generate multiple-armed spirals. This process
is depicted in Fig. 3. Recently the Lundgren spiral has been
generated experimentally by the group of Petitjeans [12].

Stretched Vortices

A highly interesting class of solutions has been found by
Lundgren. He considered the velocity field

u(x; t) D
a(t)
2

[�x;�y; 2z]

C [w1(x; y; t);w2(x; y; t); 0] (21)

and showed that the two-dimensional velocity field
w(x; y; t) can be obtained from the velocity field
W(�1; �2; �) by the Lundgren transformation

w(x; y; t) D A(t)W[A(t)x;A(t)y; �(t)]

A(t) D e
R t
0 dt0a(t0) ; �(t) D

Z t

0
dt0A(t0)2 :

(22)

Thereby, the field W(�1; �2; �) obeys the two-dimensional
Navier–Stokes equation.

In the case of a time constant a, the decaying Lamb–
Oseen vortex, Eq. (19) is changed into the Burgers vortex,
where rB becomes constant, r2B D

4�
a .

The corresponding two-dimensional velocity field is
an azimuthal field, which, for large values of r decays
like 1

r . In the limit � ! 0 the vorticity field approaches
a delta-distribution.

Vorticity Alignment

Figure 2 exhibits the vorticity field obtained from a nu-
merical simulation of the Navier–Stokes equation. Exhib-
ited is a volume rendering of the absolute value of vortic-
ity above a given value and it is quite evident that Burgers-
like vortices play a major role in the spatio-temporal or-
ganization of turbulence. Consequently, the Burgers vor-
tices have been denoted as the sinews of turbulence [60].
Although the emergence of vortex-like objects as organi-
zation centers of turbulence has not yet been fully clari-
fied, it is clear that it is related to the phenomenon of vor-
ticity alignment [28]. It has been emphasized that locally
the vorticity vector is predominantly aligned to the eigen-
vector of the intermediate eigenvalue 2 of the strain ma-
trix S, Eq. (8). This matrix is symmetric and has three real
eigenvalues 1 � 2 � 3. Vorticity alignment is still in-
vestigated intensively [36].

Vorticity alignment has also played a major role in the
discussion of the possibility of finite time singularities in
Euler flows [30,32], a question which is fundamentally re-
lated to the question of the existence of solutions of the
Euler and Navier–Stokes equations [16,20].

Modeling Turbulent Fields
by Random Vortex Distributions

There have been several attempts to model the fine struc-
ture of turbulent fields by statistically distributed vortex
solutions of the Navier–Stokes equations. Townsend [84]
used a random arrangement of Burgers vortices. As al-
ready mentioned Lundgren [53,54] considered the above-
mentioned spiral structures in a strain field. He showed
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that suitable space-time average over a decaying Lund-
gren spiral leads to an energy spectrum predicted by Kol-
mogorov’s phenomenological theory of turbulence. A cas-
cade interpretation of Lundgren’s model has been given
by Gilbert [29]. Kambe [37] discussed randomly arranged
Burgers vortices in a strain field and was able to model in-
termittency effects of Eulerian velocity increments.

Patterns, Chaos, and Turbulence

Pattern Formation and Routes to Chaos
in Fluid Dynamics

Experiments on fluid dynamics in confined geometries
like the Rayleigh–Bénard system or the Taylor–Couette
experiment exhibit a variety of instabilities leading from
stationary patterns to time periodic structures and to
chaotic motions. For an overview with further references
on fluid instabilities we refer the reader to the monograph
of Manneville [55]. These flows are characterized by tem-
poral complexity, however the flow structures remain spa-
tially coherent. The scale of energy injection and the scale
of energy dissipation usually are not widely separated in
these systems. This has the consequence that only few de-
grees of freedom are excited. Such types of flows can be
successfully treated on the basis of the slaving principle of
synergetics [34,35]. In mathematical terms, these types of
flows are related to the existence of center or inertial man-
ifolds [83] in phase space. This allows explanation of the
various routes to chaos or routes to turbulence observed in
fluidmotions, especially in confined geometries, on the ba-
sis of the theory of low-dimensional dynamical systems.

Point Vortex Motion

The Lagrangian map X(y; t) of a two-dimensional ideal
fluid motion is determined by the solution of the integro-
differential Eq. (17), where the Lagrangian vorticity
˝(y; t) is temporally constant. This integrodifferential
equation can be reduced to a finite set of ordinary differen-
tial equations by considering fields with strongly localized
vorticity

˝(y; t) D
X

j

� jı(y � y j) : (23)

Introducing the notationX(y j; t) D x j(t) we obtain the set
of differential equations for the positions x j(t) of the point
vortices:

ẋi D
X

j¤i

� j

2�
ez �

xi � x j
jxi � x jj2

: (24)

This set of equations for the vortex positions was already
known by Kirchhoff [41]. Since then, there have been
many studies of this problem [3,4,56,64].Wemention that
the N-vortex problem of two-dimensional fluid motion
shares many properties with the N-body problem of clas-
sical mechanics.

The Lagrangian motion of an arbitrary point X(y; t)
can be determined by the solution of the nonautonomous
differential equation

Ẋ(y; t) D
NX

iD1

�i

2�
ez �

X(y; t) � xi (t)
jX(y; t) � xi (t)j2

; (25)

where the point vortex positions xi (t) are given by the
evolution equations (24). The point vortex approxima-
tion, thus, allows one to study mixing in two- dimensional
flows on the basis of sets of ordinary differential equa-
tions [3,70,81].

Since the point vortex system is obtained from the
two-dimensional Euler equation it is evident that the ki-
netic energy is conserved. In fact, introducing the Hamil-
ton function

H D �
1
4�

X

i¤ j

�i ln jxi � x jj� j

D
1
2

X

i¤ j

�iG(xi ; x j)� j (26)

we can rewrite the evolution equations in Hamiltonian
form

�i ẋi D ez � rH : (27)

There are further conserved quantities due to symmetry.
The center of vorticity,

R D
X

i

�ixi ; (28)

as well as the quantity

I D
X

i

�ix2i (29)

are time constants.
The advantage of considering the motion of point vor-

tices in two- dimensional ideal flows is the applicability of
methods and notions from the theory of finite Hamilto-
nian systems. Explicitly, one can investigate the integra-
bility of point vortex motions, i. e. the formation of time
periodic as well as quasiperiodic vortex motions and the
emergence of chaotic motions. Because of the existence of
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Fluid Dynamics, Turbulence, Figure 4
Mixing induced by the motion of four point vortices

the integrals of motions (26), (28), (29) the motion of two
vortices as well as three point vortices is integrable lead-
ing to quasiperiodic motions in time. Furthermore, it has
been shown that in the four vortex problem, in addition
to quasiperiodic motions, chaotic motion is possible. We
refer the reader to the review articles of Aref [3,4] and
the monograph of Newton [64]. Also the investigations of
mixing by point vortex motion has revealed interesting in-
sights into the geometry and the complexity of the mix-
ing process. An example of the missing process by four
point vortices is exhibited in Fig. 4. Similar concepts are
expected to be applicable for general two- and three- di-
mensional turbulent flows.

Onsager’s Statistical Theory
of Two-Dimensional Turbulence

Onsager [68] recognized the importance of two-
dimensional vortex models for turbulent flows. Since the
dynamics is Hamiltonian, one can perform a statistical
treatment along the lines of equilibrium statistical me-
chanics. One can determine the corresponding probability
distributions. If we focus onto the canonical ensemble, i. e.
a point vortex system in connection with a heat bath, the
probability distribution reads

f (xi ) D Z�1(ˇ)e�ˇ
h
1
2
P

i j �iG(xi ;x j)� j

i

D Z�1(ˇ)e�ˇH :
(30)

Onsager recognized that this probability distribution is
normalizable both for negative as well as for positive values
of ˇ, which in statistical mechanics is related to tempera-

ture. A consequence of the existence of these negative tem-
perature states is the tendency of the vortices to form large-
scale flow structures. This property can be seen quite eas-
ily by recognizing that the probability distribution is the
stationary probability distribution of the set of Langevin
equations

d
dt

xi D �ˇrxi H C � j : (31)

Here, �j represents Gaussian white noise. For negative
temperatures the force between two point vortices is at-
tractive for �i� j > 0 and repulsive in the other case. This
leads to the formation of large-scale flows. We refer the
reader to the recent review [18].

Extension to Three Dimensions

The extension of the philosophy of point vortex motion to
three dimensions leads one to consider vortex filaments.
The location of a single vortex filament is given by the lo-
cal induction equation for the position X(s; t) of the fila-
ment as a function of arclength s and time t. This equation
is again obtained from Biot–Savart’s law assuming a fila-
mentary vorticity distribution:

@

@t
X(s; t) D

@

@s
X(s; t) �

@2

@s2
X(s; t) (32)

It has been shown that the single filament equation is inte-
grable. For a discussion we refer the reader to [64].

Turbulence: Determinism and Stochasticity

It is evident that an understanding of the characteristics
of turbulent fluid motions has to be based on the deter-
ministic dynamics generated by the basic fluid dynami-
cal equations in combination with methods of statistical
physics. This has led to the field of Statistical Hydrody-
namics, a topic which has been treated extensively by the
Russian school founded by Kolmogorov [61,62]. A good
overview can be found in [26,50].

Statistical Averages

In Statistical Hydrodynamics the Eulerian velocity field
and related fields are treated as random fields in a prob-
abilistic sense. To this end one has to define suitable
averages, where usually ensemble averages are chosen.
They are defined by specifying the statistics of the ini-
tial flow field by probability distributions f (u1; x1; t D 0),
f (u1; x1; t D 0; : : : ;uN ; xN ; t D 0) of the velocities ui at
positions xi at initial time t D 0. The transition to a con-
tinuum of points requires one to consider a probability
density functional F[u(x); t D 0].
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In practice, instead of ensemble averages, time aver-
ages are taken, provided the flow is stationary in a statisti-
cal sense.

The corresponding probability distributions at time t,
which specify the temporal evolution of the considered
statistical ensemble are given by

f (u; x; t) D hı(u � u(x; t;u0))i : (33)

Here, u(x; t;u0) is the solution of the fluid dynamic equa-
tion with the initial value of the velocity field at point x:
u(x; t D 0;u0) D u0. The brackets denote an ensemble av-
erage. Joint probability distributions and the probability
functional F(u(x; t)) are defined accordingly. Frequently,
the characteristic functions, defined as the Fourier trans-
form of the probability distributions are used. The charac-
teristic functional

Z(˛) D hei
R
dt
R
d3x˛(x;t)�u(x;t)i (34)

is the functional Fourier transform of the probability func-
tional. The ultimate goal of statistical hydrodynamics is
the determination of this functional, since it contains all
information on the various correlation functions of the
Eulerian velocity fields of the statistical ensemble.

Similar probability distributions can be defined for the
Lagrangian description of fluid dynamics.

Hierarchy of Moment Equations

The temporal evolution of moments of the velocity field
are determined by the basic fluid dynamical equations. For
instance, an equation for the moment hui (x; t)uj(x0; t)i
can be obtained in a straightforward manner from the
Navier–Stokes equation

@

@t
hui (x; t)uj(x0; t)i C

X

k

@

@xk
huk(x; t)ui (x; t)uj(x0; t)i

C
X

k

@

@x0k
huk (x0; t)ui (x; t)uj(x0; t)i

D �
@

@xi
hp(x; t)uj(x0; t)i �

@

@x0j
hp(x0; t)ui (x; t)i

C �[�x C�x0 ]hui (x; t)uj(x0; t)i :
(35)

Similar equations can be formulated for the higher-order
moments hui (x1; t1)uj(x2; t2) : : : uj(xN ; tN )i using the
Navier–Stokes equation. The equation for the average flow
field hu(x; t)i has been considered by O. Reynolds [76] (see
the discussion below). The chain of evolution equations
for the higher-order correlation functions are the so-called
Friedmann–Keller equations.

The moment equations are not closed. The evolution
equation containing the Nth order moment contains the
(N+1)-th order moment. This is the famous closure prob-
lem of turbulence. It is an immediate consequence of the
nonlinearity of the Navier–Stokes equation. A mathemat-
ical discussion of the closure problem is given in [27].

Evolution Equations for Probability Distributions

It is straightforward to derive evolution equations for the
probability distributions from the Navier–Stokes equa-
tion. This has been emphasized by Lundgren [52] and
Ulinich and Lyubimov [86]. The evolution equation for
f (u; x; t) reads

�
@

@t
C u � rx

�
f (u; x; t)

D �ru �

Z
du0 dx0K(x � x0)(u0 � rx0 )2 f (u0; x0; t;u; x; t)

� ru �

Z
du0 dx0ı(x � x0)�x0u0 f (u0; x0; t;u; x; t) :

(36)

(Here, K(x) is the gradient of Green’s function G(x) of
the Laplacian.) The dynamics of the single-point proba-
bility distribution f (u; x; t) is coupled to the two-point
probability distribution f (u0; x0; t;u; x; t) by the nonlocal
pressure term and the dissipative term. Similar equations
can be obtained for higher-order probability distributions.
Again, the hierarchy shows clearly the closure problem of
turbulence theory. The hierarchy is of considerable inter-
est for the so-called Lagrangian pdf (probability density
function) model approach advocated by S.B. Pope [72,73].
In this approach, the terms involving the two-point pdf’s
are modeled leading to a description of the turbulent ve-
locity in terms of a stochastic process.

For the case of Burgers equation, which is the Navier–
Stokes equation without the pressure term, it has been pos-
sible to solve the corresponding Lundgren hierarchy with-
out approximation for a certain external forcing [17].

Functional Equations

The Lundgren hierarchy of evolution equations arises due
to the fact that the N-point probability distributions con-
tain incomplete information on the evolution of the fluid
continuum. A closed evolution equation is obtained for
the characteristic functional (34). This equation is the fa-
mous Hopf functional equation [38], which forms a con-
cise formulation of the statistical treatment of fluid mo-
tions. For a more detailed treatment we refer the reader to
the monograph of Monin and Yaglom [62].
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Path-Integral Formulation

As has been emphasized by Martin, Siggia and Rose [58],
each classical field theory can be represented in terms of
the path integral formalism. This is essentially true for
a fluid motion driven by a fluctuating force, which is Gaus-
sian and ı-correlated in time. The generating (MSR) func-
tional has the following path integral representation

Z(˛; ˆ̨ )

D

Z
DuDûeS[u;û]Ci

R
dx
R
dt˛(x;t)�u(x;t)C ˆ̨ (x;t)�û(x;t) :

(37)

The functional Z(˛; ˆ̨ D 0) is just the Hopf characteristic
functional (34). The MSR-action is defined according to

S D i
Z

dx
Z

dtû(x; t)

�
˚
u̇(x; t)C u(x; t) � ru(x; t) � ��u(x; t)Crp(x; t)

�

�
1
2

Z
dt
Z

dx0
Z

dxû(x; t)Q(x � x0)û(x0; t) :

(38)

The MSR-formalism is a convenient starting point for
an analytical determination of correlation functions of
the velocity field. A naive perturbation expansion of this
functional yields the diagrammatic representation of the
series by Wyld [89]. A renormalized perturbation expan-
sion leads to the so-called direct interaction approxima-
tion (DIA) of Kraichnan and related analytical approxi-
mations. For an overview we refer the reader to the mono-
graphs of Lesieur [49] and McComb [59]. Also the recent
work by V. L’vov and I. Procaccia [45] is based on this
approach.

Reynolds Equation and TurbulenceModeling

O. Reynolds [76] suggested to decompose a turbulent flow
field u(x; t) into a mean flow hui and turbulent pulsations
w(x; t):

u(x; t) D hu(x; t)i C w(x; t) : (39)

By averaging the Navier–Stokes equation one ends up
with the famous Reynolds’s equation, which is the first
equation of the hierarchy of moment equations (35):

�
@

@t
C hui � r

�
hui

D �rp �
X

i j

@2

@xi@x j
hwiwji C ��hui C h f i : (40)

This equation contains the so-called Reynolds stress ten-
sor hwiwji, which cannot be neglected since the turbulent
pulsations w can be larger than the averaged velocity hui.
The turbulent pulsations w are closely linked to the fine
structures of turbulence.

If the Reynolds stress tensor is known as a functional of
the mean velocity field, the Reynolds equation is a closed
evolution equation determining average flow properties.
This makes numerical computations of the average flow
quantities rather efficient since the fine structures or the
small-scale flow have not to be resolved by numerical
schemes.

The Reynolds stress tensor has been the subject of var-
ious investigations. Since a general theory determining the
Reynolds stress tensor is lacking, engineers have developed
the area of turbulence modeling in order to overcome the
closure problem. Famous turbulence models are eddy vis-
cosity models, which replace the Reynolds stress tensor
by an effective damping term modeling the energy flux
from the averaged flow into the turbulent pulsations, or
so-called K � � models, which are based on the evolution
equation for the local energy dissipation rate � of the tur-
bulent pulsations.

Turbulence modeling has to fulfill the requirement of
physical realizability and should, for example, not lead
to the development of negative kinetic energies. Fur-
thermore, symmetry arguments should be taken into ac-
count [65].

Turbulence modeling has led to the development of
the field of Large Eddy Simulations (LES), which has pro-
vided a variety of numerical, also commercially available
schemes for calculating the large-scale flows of applied
fluid dynamical problems. The LES-approach, however,
is limited by the fact that the properties of the Reynolds
stresses cannot yet be derived from a physical treatment of
the small-scale turbulent pulsations of flows and the ob-
tained numerical results have to be met with caution. For
details we refer the reader to Piquet [71], Jovanovic [40],
and the reviews of Métais and Leschziner in [50]. Of con-
siderable interest are the two articles of Johansson and
Oberlack in [66].

The Fine Structure of Turbulence

The fine structure of turbulence essentially influences the
large-scale flows via the Reynolds stresses. Therefore, the
investigation of the fine structure of turbulent flows is
a central theme in turbulence research. It is commonly
believed that the statistical characteristics of the turbu-
lent fine structures are universal. A point emphasized by
U. Frisch [26] is that in the fine structures symmetries of
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the Euler equation of fluid dynamics are restored in a sta-
tistical sense. The symmetries of the Euler equations are
translational symmetry, isotropy, and rescaling symmetry
of space, time, and velocity. Although each of these sym-
metries are broken by the turbulent flows, the symmetries
are restored for averaged quantities. If this hypothesis is
true, then the turbulent fine structure is related with a uni-
versal state, which is called fully developed stationary, ho-
mogeneous, and isotropic turbulence.

Increments

The fine-scale structure of turbulence is evaluated by the
introduction of the so-called velocity increment vx(r; t)

vx(r; t) D u(xC r; t)� u(x; t) : (41)

Velocity increments are defined with respect to a refer-
ence point x. A mean flow is eliminated by the defini-
tion of increments. Furthermore, one may consider veloc-
ity increments with respect to a moving reference point
x D X(y; t). In the following we shall consider such mov-
ing increments.

The corresponding evolution equation for the incom-
pressible velocity increment can easily be established using
the definition (41) and the Navier–Stokes equation:

�
@

@t
C v(r; t) � rr

�
v(r; t)

D � rr p(r; t)C ��rv(r; t)
�
�
� rr p(r; t)C ��rv(r; t)

�
rD0 ;

r � vx(r; t) D 0 :
(42)

Length and Time Scales in Turbulent Flows

The Integral Scale The integral scales are measures for
a spatial distance L or a time interval T, across which the
turbulent fluctuations become uncorrelated. The integral
length scale is based on the velocity-velocity correlation
function

hu(x C r; t)u(x; t)i D hu(x; t)u(x; t)iF

 r
L

�
; (43)

which decays to zero as a function of the distance r. The
integral length scale L is defined by the integral

L D
Z 1

0
drF


 r
L

�
: (44)

Similarly, one can define temporal integral scales based
on the decay of temporal correlations hu(x; t C �)u(x; t)i

D hu(x; t)u(x; t)iF
�
�
T

leading to the definition of the

integral time scale T. An integral velocity scale can be
formed quite naturally by the ratio

Uint D L/T : (45)

The velocity field u(x; t) describes the turbulent pulsa-
tions. Amean flow has already been subtracted. The corre-
lation functions (43) actually are tensors. For flows which
are nonisotropic in the statistical sense, it might be neces-
sary to introduce different integral length scales.

The Kolmogorov Scales The Navier–Stokes equation
involves the kinematic viscosity � as well as a measure of
the excitation of turbulence, themean local energy dissipa-
tion �. It is convenient to form length and time scales from
these two quantities and obtain the so-called Kolmogorov
scales

� D

�
�3

�

�1/4

; �� D

�
�

�1/2
; u� D

�

��
D (��)1/4 :

(46)

On the basis of these quantities one can define a Reynolds
number which turns out to be unity, Re D �u�

�
D 1.

Therefore, the Kolmogorov scales have to be related with
small scale motions, which, due to dissipation, can be con-
sidered to be laminar on these scales.

Relation Between the Integral and the Kolmogorov
Length Scale One may find a relation between the in-
tegral length scale L and the Kolmogorov length scale �.
This relation is based on the observation that the local en-
ergy dissipation rate � can be dimensionally expressed in
terms of the velocity at the integral scale, Uint, Eq. (45) via

� �
U3
int
L
: (47)

This relation allows one to determine the ratio of the
intergal scale L and the Kolmogorov scale � leading to
a Reynolds number dependence

L
�
� Re3/4 D

�
UintL
�

�3/4
: (48)

The ratio increases with the Reynolds number. Typical
length scales estimated from experimental data of a grid
flow are shown in Fig. 5. It is seen that the estimate (48)
can be confirmed experimentally.

From a dynamical point of view the quantity
( L
�
)3 � Re9/4 is a measure of the number of active degrees

of freedom of the fluid motion.
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Fluid Dynamics, Turbulence, Figure 5
Reynolds number dependence of the Kolmogorov scale (a) and
the integral length scale (b) estimated from data of a grid exper-
iment, [51]

The Taylor Length and the Taylor-Based Reynolds
Number A third length scale has been used to charac-
terize a turbulent flow field. This is the so-called Taylor
length, which frequently is denoted also as Taylor mi-
croscale, .

It can be derived from the velocity u (here u denotes
again the fluctuating part of a measured velocity signal)
and the derivative @u/@x as

2 D lim
hu2i

h(@u/@x)2i
: (49)

Aronson and Löfdahl [6] suggested to estimate the Taylor
length using the velocity increment v(r) D u(xCr)�u(x):

2 D lim
r!0

˝
u(x)2

˛
r2

h v(r)2 i
: (50)

For the Taylor length it is expected that L
�
� Re1/2 holds,

which is also found experimentally see Fig. 6a.
On the basis of this Taylor length it is also possible

to define a new Reynolds number by the ratio of veloc-
ity times length scale and kinematic viscosity. The Taylor
length-based Reynolds number R� should scale with the
square of the usual Reynolds number, see Fig. 6b.

Fluid Dynamics, Turbulence, Figure 6
Reynolds number dependence of the Taylor scale (a) and the
Taylor length-based Reynold number from data of a grid experi-
ment, [51]

Statistics of Increments: Structure Functions

A great amount of work in turbulence research has been
devoted to the so-called structure functions. In general,
structure functions are equal timemoments of the velocity
increments:

hvi (r; t)v j(r; t)i ; hvi (r; t)v j(r; t)vk(r; t)i : (51)

For stationary, homogeneous, and isotropic turbulence the
tensorial quantities can be considerably reduced by sym-
metry arguments. For homogeneous and isotropic turbu-
lence the second- and third-order moments can be related
to the so-called longitudinal structure functions, i. e. the
moments of the component of the velocity increment in
the direction of r, er � v(r; t). They are defined according
to

SN (r) D
�
 r

r
� v(r; t)

�N	
: (52)

For small values of r, the structure functions have to be-
have like SN � rN , since for small r the velocity increment
can be expanded in a Taylor series.

The structure functions of different orders are re-
lated through the Navier–Stokes dynamics. The evalua-
tion of the structure functions from the resulting hierar-
chy of evolution equations is one of the major theoretical
challenges in turbulence research. However, it seems that
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so far only the lowest-order equations relating second-
and third-order structure (the so-called Kolmogorov’s
-4/5 law) functions have been exploited rigorously.

Kolmogorov’s -4/5 Law

Kolmogorov (c. f. [26,62]) showed that the mean kinetic
energy in an eddy of scale r, hvx(r; t)2i, in a homogeneous,
isotropic turbulent field is given by the equation

@

@t

�
vx (r; t)2

2

	
Crr �

�
vx (r; t)

vx (r; t)2

2

	

D ��hvx(r; t)2i � h�i ; (53)

where h�i denotes the mean local energy dissipation rate

h�i D
�

2

X

i j

*�
@ui
@x j
C
@uj

@xi

�2
+

: (54)

We formally consider the turbulent limit � ! 0. In this
limit the mean local energy dissipation rate h�i has to be
constant. Thus, one can estimate that the gradients have
to behave like
@ui
@x j
�

1
p
�
: (55)

The relation (53) can be obtained as a balance equation
for the density of the mean kinetic energy from the evo-
lution equation for the velocity increment (42) by scalar
multiplication with v, and subsequent averaging. The cor-
relations involving the pressure term drop out due to ho-
mogeneity.

The resulting equation reads:

S3(r) � 6�
d
dr

S2(r) D �
4
5
h�ir : (56)

This equation relates the second- and third-order
structure functions and, at first glance, seems to be under-
determined. However, for small values of r we can neglect
the third-order structure function, since S3(r) � r3. The
second-order structure function is then given by

S2(r) D
h�i

15�
r2 : (57)

The range of validity of this law is denoted as the dissi-
pative range and is close to the Kolmogorov length and
smaller. It is dominated by viscous structures.

In the second regime, whose existence is inferred by
the -4/5th law, the third-order structure function domi-
nates, leading to

S3(r) D �
4
5
h�ir : (58)

This defines the so-called inertial range and is located be-

tween the Taylor length and the integral length. For data
from a free jet experiment with high Reynolds numbers we
show in Fig. 7 the third-order structure function in differ-
ent presentations, which clearly demonstrate the existence
of the inertial range.

Fluid Dynamics, Turbulence, Figure 7
Third-order structure function S3(r) (a) of cryogenic free jet mea-
surements with Re D 210:000 and the compensated structure
functions S3(r)/r in a semi logarithmic plot (b) and in a linear plot
(c), showing in more detail the quality of the present scaling be-
havior. (Note here we used the absolute values for S3(r), thus the
values are all positive). [9]
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Phenomenological Theories of Turbulence

Kolmogorov’s Theory K41:
Selfsimilarity in the Inertial Range

The inertial range is characterized by the decay of eddies,
which can be assumed to be self-similar. As a consequence,
the probability distribution of the longitudinal velocity in-
crement v at scale r, f (v; r), should have the form

f (v; r) D
1

p
hv(r)2i

F

 
v

p
hv(r)2i

!

; (59)

where F(�) is a universal function in the range of scales
 < r < L. As a consequence, the nth order moments
should have the form

hvn(r)i D
Z

dv vn
1

p
hv(r)2i

F

 
v

p
hv(r)2i

!

D hv(r)2in/2
Z

dw wnF(w) D hv(r)2in/2Vn :

(60)

Since the r-dependence of the 3rd-ordermoment is known
in the limit of high Reynolds number,

hv3(r)i D V3h�ir D hv(r)2i3/2V3 ; (61)

we obtain

hv(r)2i D K (h�ir)2/3 : (62)

The K41 assumption of self-similarity of the velocity
increment statistics in the inertial range leads to the fol-
lowing fractal scaling behavior of the nth order moments

hjv(r)jni D Kn (h�ir)n/3 : (63)

The corresponding probability distribution is entirely de-
termined by the constants Kn. The scaling exponents
�n D N/3 are linear functions of n.

Failure of K41: Intermittency

Kolmogorov’s hypothesis on the self-similarity of the
statistics in the inertial range has been tested experimen-
tally as well as numerically. Figure 8 exhibits the probabil-
ity distribution of the scaled variable ṽ

ṽ D
v
�(r)

with �(r) D
p
hv(r)2i : (64)

Because of K41 theory all probability distributions should
collapse for values of r taken from the inertial range. Both,
experimental and numerical results show clear deviations
from this behavior. Although the scaling exponents of

Fluid Dynamics, Turbulence, Figure 8
Probability density functions (pdf) for velocity increments on
three different length scales r D L; L/5; L/30 � �. The pdfs are
shifted along the ordinate for a better representation. On the
largest scale L a Gaussian distribution is fitted for comparison.
Towards smaller scales the deviations from the Gaussian form
become obvious (R� D 180). For further details see [79]

the second-order structure function is close to the K41
value 2/3, a characteristic change of shape of the proba-
bility distribution can be detected. The change of the pdf
with scale r in the inertial range is a signature of the phe-
nomenon called intermittency. Consequently, the struc-
ture functions do not scale as suggested by the theory of
Kolmogorov. This has been experimentally documented
by [1] and has been discussed by several groups.

Kolmogorov’s Theory K62

In a famous note in the volume on hydrodynamics in his
Course on Theoretical Physics Landau [47] remarked that
the formula of the K41 theory contains the mean value of
the local energy dissipation rate, h�i . However, this quan-
tity is a strongly fluctuating quantity in space, due to the
strong spatial variations of the velocity gradient, as can be
seen from Fig. 9. According to Landau these fluctuations
should show up in the structure functions. Instead of the
K41-result (63) he suggested use of the following represen-
tation

hjv(r)jni D K̃nh�
n/3
r ir

n/3 (65)

Fluid Dynamics, Turbulence, Figure 9
Spatial distribution of the local energy dissipation rate. The
quantity strongly fluctuates in space. Data is obtained from the
experiment [79]
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where the quantity �r denotes the local energy dissipation
rate averaged over a sphere of radius r. This reasoning
leads to an extension of the K41 formula for the proba-
bility distribution in the form

f (v; r) D
Z

d�r p


�r ;

r
L

� 1
(�r)2/3

F
�

v
(�r r)2/3

�
: (66)

In 1962 Kolmogorov [44] suggested use of a lognormal
distribution for the local energy dissipation rate �r , whose
variance is � ln(L/r). As a result, the structure functions
scale like

hjv(r)jni D K̃nrn/3(L/r)�n(n�3) : (67)

The experimental value for � can be obtained from a fit of
the K62 formula to experimental data. However, we note
that the formula can only be valid for small values of n,
since the scaling exponents �n have to be a monotonously
increasing function of the order n of the structure func-
tion.

TheMultifractal Model

The multifractal model was introduced by U. Frisch and
G. Parisi. For a detailed description we refer the reader
to [26]. The basic idea is to view a turbulent field to be
composed of regions where the velocity increment field is
assumed to be characterized by a scaling index h:

v(r; t) D ˇ

 r
L

�h
: (68)

The structure functions are then given by

SN (r) D ˇN

Z
dhP(h; r)


 r
L

�Nh
; (69)

where P(r; h)dh is the probability to find increments for
a certain scale r with scaling exponent h. Assuming self-
similarity P(h; r) should have the form

P(h; r) D

 r
L

�3�D(h)
: (70)

Consequently, we have

SN (r) D ˇN

Z
dh

 r
L

�NhC3�D(h)
� r�N ; (71)

where the evaluation of the integral with the method of
steepest descend yields

�N D Min[NhC 3 � D(h)] : (72)

The scaling indices �N are related to the dimension D(h)
via a Legendre transform. Recently, an extension of the

multifractal model has been presented by Chevillard et
al. [10]. This approach is essentially based on the repre-
sentation of the probability distribution due to [8]. They
succeeded to obtain a model for the symmetric part of
the probability function of the longitudinal velocity in-
crement, which is valid both in the integral as well as
the dissipative scale. This gives a reasonable approxima-
tion to the experimentally determined probability distri-
bution f (v; r).

As we have seen, the statistics of the longitudinal veloc-
ity increment for a single scale r can be modeled in various
ways in order to describe the deviations from the fractal
scaling behavior predicted by the phenomenological the-
ory of Kolmogorov formulated in 1941. The major short-
coming of these approaches, however, is the fact that they
contain no information on the joint statistics of the veloc-
ity fields at different scales and times. However, due to the
presumed energy cascade, the velocity increments on dif-
ferent scales have to be correlated.

Multiscale Analysis of Turbulent Fields

The spatial correlation of the velocity of turbulent fields
has been examined in two ways. From a field theoretic
point of view, pursued by V. L’vov and I. Procaccia, the
existence of so-called fusion rules have been hypothesized.
For this approach we refer the reader to the survey [45]
and the work cited therein. A phenomenological approach
has been performed by Friedrich and Peinke [22,23]. In
this approach notions from the theory of stochastic pro-
cesses have been used in order to characterize multiscale
statistics of velocity increments. Relations to the fusion
rule approach has been discussed in [15]. In the following
we shall discuss the phenomenological approach to multi-
scale statistics of turbulence.

Statistics Across Scales

In order to address the spatial signatures of the cas-
cading process underlying stationary, homogeneous, and
isotropic turbulence it is necessary to consider the prob-
ability distributions for velocity increments at different
scales:

f N(v1; r1; v2; r2; : : : ; vN ; rN ) : (73)

Thereby, the quantities vi are velocity increments with re-
spect to a common point of reference, vi (ri ; t) D u(x C
ri ; t)� u(x; t) and different distances ri.

In the following we shall consider the longitudinal
velocity increments and locations ri positioned along
a straight line. These quantities are easily accessible from
experimental data.
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In case that the longitudinal velocity increments vi of
different scales ri are statistically independent, the N-point
probability distribution simply factorizes:

f N(v1; r1; v2; r2; : : : ; vN ; rN )

D f 1(v1; r1) f 1(v2; r2) : : : f 1(vN ; rN ) : (74)

Because of the cascading process, which involves the dy-
namics of velocity increments at different scales, this rela-
tionship cannot hold true. However, provided the cascade
is generated locally by the nonlinear interaction of veloc-
ity increments at neighboring scales, one may expect that
the two scale probability distributions or the conditional
probability distribution

p(v1; r1jv2; r2) D
f 2(v1; r1; v2; r2)

f 1(v2; r2)
(75)

contains the most important information on the N-scale
probability distribution (73).

Markovian Properties

One may wonder whether the knowledge of the condi-
tional probability distribution suffices to reconstruct the
N-scale probability distribution (73) in the form

f N(v1; r1; : : : ; vN ; rN )
D p(v1; r1jv2; r2) : : : p(vN�1; rN�1jvN ; rN ) � f (vN ; rN ) :

(76)

In this case, the probability distribution f N defines
a Markov chain.

The question, whether Markovian properties in scale
exist for fully developed turbulence, has been pursued in
several ways. First of all, a necessary condition for the ex-
istence of Markovian properties is the validity of the Chap-
man–Kolmogorov equation:

p(v1; r1jv3; r3) D
Z

dv2 p(v1; r1jv2; r2)p(v2; r2jv3; r3) :

(77)

This approach has been pursued in [24]. Second, one can
validate theMarkovian properties by a direct inspection of
the conditional probability distribution (75). Defining the
conditional probability distribution

p(v1; r1jv2; r2; v3; r3) D
f 3(v1; r1; v2; r2; v3; r3)

f 2(v2; r2; v3; r3)
; (78)

the Markovian property can be assessed by comparing the
conditional probability distributions

p(v1; r1jv2; r2; v3; r3) D p(v1; r1jv2; r2) : (79)

Summarizing the outcomes of the experimental investi-
gations one can state that the Markovian property can
be empirically validated provided the differences of the
scales r1 � r2, r2 � r3 are not too small. This statement can
be made even more precise. As has been shown in [51],
the Markovian property breaks down provided the scale
differences are smaller than the Taylor microscale [see
Eq. (49)]. This finding attributes a statistical definition to
the Taylor length scale. Because of the memory effect we
have now called this length Markov–Einstein coherence
length Lmar [51].

Estimation of the Conditional Probability Distribution

Markov processes are defined through their conditional
probability distributions. If one considers the statistics on
scales larger compared to theMarkov–Einstein length, one
may perform the limit Lmar! 0 and consider the process
to be continuous in scale r, the conditional probability dis-
tribution obeys a Fokker–Planck equation of the form

�
@

@r
p(v; rjv0r0)

D

�
�
@

@v
D1(v; r)C

@2

@v2
D2(v; r)

�
p(v; rjv0r0) ; (80)

where the statistics are determined by the drift function
D1(v; r) and the diffusion function D2(v; r). We remind
the reader that in the definition of p(v; rjv0; r0) we have
used r0 > r, which leads to the minus sign in the Fokker–
Planck equation.

The drift function and the diffusion function have been
determined empirically using methods of data analysis of
stochastic processes, for further details see [74]. We also
refer the reader to [57].

Path-Integral Representation of the N-Scale
Probability Distribution

Since the joint N-point probability distribution can be
constructed by the conditional probability function due to
the Markovian property one can write down a path inte-
gral formula for the turbulent cascade in the form

F[v(r)] D Z�1 exp

2

6
4�

Z
dr0

h
� dv(r0)

dr0 � D1(v(r0); r0)
i2

D2(v(r0); r0)

3

7
5 :

(81)

This probability distribution is the analog to the Gibbs dis-
tribution describing the statistics of systems in thermody-
namic equilibrium.
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Fluid Dynamics, Turbulence, Figure 10
The u1 and u2 dependence of the drift vector for the scale
r D L/4. a The drift coefficient D(1)

1 , b the drift coefficient D(1)
2 .

Note that the vertical axis is rotated for better comparison be-
tween a and b. Both coefficients are linear functions in u [79]

Statistics of Longitudinal and Transversal Components

Recently, an analysis of the joint statistics of the longitudi-
nal and transversal components of the velocity increments
has been performed [78,79]. The result is a Fokker–Planck
equation of the form

� r
@

@r
p(u; rju0; r0)

D

�
�
@

@ui
D(1)

i (u; r)C
@2

@ui@uj
D(2)

i j (u; t)
�

� p(u; rju0; r0) : (82)

Here, u D (u1; u2) denotes the increment vector of the
longitudinal and transversal components, respectively. As
mentioned above and worked out in more detail in an-
other contribution to this Encyclopedia of Complexity
and System Science [25] both drift and diffusion terms
D(1);D(2) can be estimated directly from given data. Typ-

Fluid Dynamics, Turbulence, Figure 11
The u1 and u2-dependence of the diffusionmatrix for the scale r D L/4. a The coefficient D(2)

11 , b the coefficientD(2)
22 . It can be seen that

the diagonal coefficients are not constant but have a parabolic form, which ismore pronounced for theD(2)
22 coefficient (multiplicative

noise). Both coefficients are symmetric under reflection with respect to u2!�u2, but not for u1 !�u1. c The saddle-formed off-
diagonal coefficient D(2)

12 [79]

ical results are shown in Figs. 10 and 11. The drift terms
turn out to be linear,

D(1)
i (u; r) D di (r)ui : (83)

Furthermore, the diffusion matrix can be approximated by
low-order polynomials

D(2)
i j (u; r) D di j(r)C

X

k

di j;kukC
X

k l

di j;k l (r)ukul : (84)

Knowing the drift and diffusion coefficient it is pos-
sible to solve the Fokker–Planck equation numerically,
which can be taken as a selfconsistent verification of the es-
timation procedure. In Fig. 12 it is shown that the numer-
ical solution of the Fokker–Planck equation reproduces
the probability distribution directly obtained from the data
quite well.

It is quite interesting to notice that the resulting mo-
ment equations reproduce Karman’s equation, which is
a relation between the longitudinal and transversal veloc-
ity increments

hu2(r)2i D
1
2r

d
dr

r2hu1(r)2i : (85)

Karman’s equation is a direct consequence of the in-
compressibility of the fluid motion. It can be interpreted
as a low-order Taylor expansion of hu2(r)2i D hu1( 32 r)

2i

which leads to the proposition that the complex structures
of longitudinal and transversal velocity increments mainly
differ in a different scale parametrization of the cascade,
r ! 3

2 r.
Using these findings the different scaling exponents

found for longitudinal and transversal increments can
be explained. In Fig. 13 the longitudinal and transversal
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Fluid Dynamics, Turbulence, Figure 12
Solution of the Fokker–Planck equation. a Contour plot of the initial condition in logarithmic scale. The simulation starts at the inte-
gral length r D L with a Gaussian distribution fitted to the data. b The contour plots in logarithm scale of the simulated probability
distribution on the scale r D 2�. The distance between the contour lines is chosen in logarithmic scale and corresponds to a factor
10. Dashed lines indicate the probability distribution calculated directly from data, the full lines are the simulation ones. The simula-
tion reproduces well the properties of the data [79]

Fluid Dynamics, Turbulence, Figure 13
The sixth-order longitudinal (black squares) and transversal (white squares) structure function in a ESS representation and b ESST
representation [79]

structure function are shown as a function of the third-
order structure function, which should reveal the scal-
ing behavior, too, as the third-order structure function
is expected to depend linearly on r. (This presentation is
called ESS – extended self-similarity [7]). Most interest-
ingly, the difference in the scaling exponents vanishes if
the 3/2 rescaling is applied, see Fig. 13b. The result indi-
cates that proper scaling behavior is not detected and can
only be valid approximately.

The Markov analysis of turbulent velocity fields yields
a closed phenomenological description of the spatial com-
plexity of turbulence. We note that a similar multiscale
analysis has been performed for a turbulent passive scalar
field [85].

Lagrangian FluidDynamics

Because of experimental progress in the detection of the
Lagrangian path of passive tracer particles [46,63] inter-
est in the formulation of stochastic processes describing
Lagrangian motion in turbulent fluids has been renewed.

One of the first descriptions of such a process is due to
Obukhov [67], who suggested to model the Lagrangian ac-
celeration as a white noise process. He formulated the cor-
responding evolution equation for the probability distri-
bution f (x;u; t) specifying the Lagrangian path in form of
a Fokker–Planck equation. The results, which can be de-
rived from the Fokker–Planck equation indicate scaling
behavior for the Lagrangian velocity increments and the
distance traveled by the particle during time t:

h(u(t) � u(0))2i D ch�it ;

h(x(t) � x(0))2i D d(h�it)3 :
(86)

This scaling behavior is inferred from dimensional con-
siderations along the theory of Kolmogorov (K41). There-
fore, it is not a surprise that the experimentally observed
probability distributions deviate from the Gaussian shape
required by the Oboukhov model [63]. A modification of
Oboukhov’s model has been suggested in [21]. Recently,
Lagrangian particle statistics has been modeled on the ba-
sis of a simple vortexmodel [87], reproducing qualitatively
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the intermittent characteristics of Lagrangian velocity in-
crements [63].

The investigations of the Lagrangian statistics of tur-
bulent flows have benefited a lot from the investigation
of passive tracers in disordered flows. Especially the treat-
ment of the Kraichnan model has led to considerable in-
sights into the statistics of particles in flows. We refer the
reader to the review article [19].

Future Directions

Although a fundamental understanding is still lacking tur-
bulence research has always led to new concepts and sci-
entific ideas, which substantially have influenced the de-
velopment of modern science. This will especially hold
true for the future, where one may expect a major break-
through due to combined efforts of experimental, numer-
ical, and analytical work. The following points for future
direction of research are only a rather subjective listing of
the authors.
Fine Structure of Turbulence: A question which should

be investigated experimentally in more detail is
whether and how the fine structure is influenced by the
mechanism of the generation of turbulence. This will
also involve turbulent flows close to walls or in pipes.
From the experimental side high precision measure-
ments are required.

Geometrical and Topological Aspects of Turbulence:
There is a variational formulation of ideal hydrody-
namics, emphasized by V.I. Arnold [5]. We expect
that research based on topological and geometrical
reasoning will yield further important insights into the
spatio-temporal organization of fluid flow.

Statistical Properties of the LagrangianMap: Topologi-
cal and geometrical aspects are intimately related with
the properties of the Lagrangian map. A further anal-
ysis of the trajectories of several Lagrangian particles
is currently under consideration. A highly interesting
question is whether the stochastic processes of the
particle motion in the inertial range can be assessed.

Further Reading

For further reading we suggest the monographs and pro-
ceedings [5,13,14,26,33,61,62,73,80].
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Glossary

Connectance(C) The proportion of possible links in
a food web that actually occur. There are many algo-
rithms for calculating connectance. The simplest and
most widely used algorithm, sometimes referred to as
“directed connectance,” is links per species2 (L/S2),
where S2 represents all possible directed feeding inter-
actions among S species, and L is the total number of
actual feeding links. Connectance ranges from � 0.03
to 0.3 in food webs, with a mean of� 0.10 to 0.15.

Consumer-resource interactions A generic way of refer-
ring to a wide variety of feeding interactions, such
as predator-prey, herbivore-plant or parasite-host in-
teractions. Similarly, “consumer” refers generically to
anything that consumes or preys on something else,
and “resource” refers to anything that is consumed or
preyed upon. Many taxa are both consumers and re-
sources within a particular food web.

Food web The network of feeding interactions among di-
verse co-occurring species in a particular habitat.

Trophic species (S) Defined within the context of a par-
ticular food web, a trophic species is comprised of a set
of taxa that share the same set of consumers and re-
sources. A particular trophic species is represented by
a single node in the network, and that node is topologi-
cally distinct from all other nodes. “Trophic species” is
a convention introduced to minimize bias due to un-
even resolution in food web data and to focus analysis
and modeling on functionally distinct network com-
ponents. S is used to denote the number of trophic
species in a food web. The terms “trophic species,”
“species,” and “taxa” will be used somewhat inter-
changeably throughout this article to refer to nodes in
a food web. “Original species” will be used specifically
to denote the taxa found in the original dataset, prior
to trophic species aggregation.

Definition of the Subject

Food webs refer to the networks of feeding (“trophic”)
interactions among species that co-occur within partic-
ular habitats. Research on food webs is one of the few
subdisciplines within ecology that seeks to quantify and
analyze direct and indirect interactions among diverse
species, rather than focusing on particular types of taxa.
Food webs ideally represent whole communities including
plants, bacteria, fungi, invertebrates and vertebrates. Feed-
ing links represent transfers of biomass and encompass
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a variety of trophic strategies including detritivory, her-
bivory, predation, cannibalism and parasitism. At the base
of every food web are one or more types of autotrophs,
organisms such as plants or chemoautotrophic bacteria,
which produce complex organic compounds from an ex-
ternal energy source (e. g., light) and simple inorganic car-
bon molecules (e. g., CO2). Food webs also have a detrital
component—non-living particulate organic material that
comes from the body tissues of organisms. Feeding-medi-
ated transfers of organic material, which ultimately trace
back to autotrophs or detritus via food chains of varying
lengths, provide the energy, organic carbon and nutrients
necessary to fuel metabolism in all other organisms, re-
ferred to as heterotrophs.

While food webs have been a topic of interest in ecol-
ogy for many decades, some aspects of contemporary food
web research fall within the scope of the broader cross-
disciplinary research agenda focused on complex, “real-
world” networks, both biotic and abiotic [2,83,101]. Using
the language of graph theory and the framework of net-
work analysis, species are represented by vertices (nodes)
and feeding links are represented by edges (links) between
vertices. As with any other network, the structure and dy-
namics of food webs can be quantified, analyzed andmod-
eled. Links in food webs are generally considered directed,
since biomass flows from a resource species to a consumer
species (A ! B). However, trophic links are sometimes
treated as undirected, since any given trophic interaction
alters the population and biomass dynamics of both the
consumer and resource species ( A $ B). The types of
questions explored in food web research range from “Do
food webs from different habitats display universal topo-
logical characteristics, and how does their structure com-
pare to that of other types of networks?” to “What fac-
tors promote different aspects of stability of complex food
webs and their components given internal dynamics and
external perturbations?” Two fundamental measures used
to characterize food webs are S, the number of species or
nodes in a web, and C, connectance—the proportion of
possible feeding links that are actually realized in a web
(C D L/S2, where L is the number of observed directed
feeding links, and S2 is the number of possible directed
feeding interactions among S taxa).

This article focuses on research that falls at the inter-
section of food webs and complex networks, with an em-
phasis on network structure augmented by a brief discus-
sion of dynamics. This is a subset of a wide variety of eco-
logical research that has been conducted on feeding inter-
actions and food webs. Refer to the “Books and Reviews”
in the bibliography for more information about a broader
range of research related to food webs.

Introduction: FoodWeb Concepts and Data

The concept of food chains (e. g., grass is eaten by
grasshoppers which are eaten by mice which are eaten by
owls; A !B ! C ! D) goes back at least several hun-
dred years, as evidenced by two terrestrial and aquatic food
chains briefly described by Carl Linnaeus in 1749 [42]. The
earliest description of a food web may be the mostly detri-
tal-based feeding interactions observed by Charles Darwin
in 1832 on the island of St. Paul, which had only two bird
species (Darwin 1939, as reported by Egerton [42]):

By the side of many of these [tern] nests a small
flying-fish was placed; which, I suppose, had been
brought by the male bird for its partner . . . quickly
a large and active crab (Craspus), which inhabits the
crevices of the rock, stole the fish from the side of
the nest, as soon as we had disturbed the birds. Not
a single plant, not even a lichen, grows on this is-
land; yet it is inhabited by several insects and spi-
ders. The following list completes, I believe, the ter-
restrial fauna: a species of Feronia and an acarus,
which must have come here as parasites on the
birds; a small brown moth, belonging to a genus
that feeds on feathers; a staphylinus (Quedius) and
a woodlouse from beneath the dung; and lastly, nu-
merous spiders, which I suppose prey on these small
attendants on, and scavengers of the waterfowl.

The earliest known diagrams of generalized food chains
and food webs appeared in the late 1800s, and diagrams of
specific food webs, began appearing in the early 1900s, for
example the network of insect predators and parasites on
cotton-feeding weevils (“the boll weevil complex,” [87]).
By the late 1920s, diagrams and descriptions of terres-
trial and marine food webs were becoming more common
(e. g., Fig. 1 from [103], see also [48,104]). Charles Elton
introduced the terms “food chain” and “food cycle” in his
classic early textbook, Animal Ecology [43]. By the time
Eugene Odum published a later classic textbook, Funda-
mentals of Ecology [84], the term “food web” was starting
to replace “food cycle.”

From the 1920s to the 1980s, dozens of system-specific
food web diagrams and descriptions were published, as
well as some webs that were more stylized (e. g., [60]) and
that quantified link flows or species biomasses. In 1977,
Joel Cohen published the first comparative studies of em-
pirical food web network structure using up to 30 food
webs collected from the literature [23,24]. To standardize
the data, he transformed the diagrams and descriptions of
webs in the literature into binarymatrices withm rows and
n columns [24]. Each column is headed by the number of
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Food Webs, Figure 1
A diagram of a terrestrial Arctic food web, with a focus on nitrogen cycling, for Bear Island, published in 1923 [103]

one of the consumer taxa in a particular web, and each row
is headed by the number of one of the resource taxa for
that web. If wij represents the entry in the ith row and the
jth column, it equals 1 if consumer j eats resource i or 0 if j
does not eat i. This matrix-based representation of data is
still often used, particularly in a full S by S format (where
S is the number of taxa in the web), but for larger datasets
a compressed two- or three-column notation for observed
links is more efficient (Fig. 2).

By the mid-1980s, those 30 initial webs had expanded
into a 113-web catalog [30] which included webs mostly
culled from the literature, dating back to the 1923 Bear
Island food web ([103], Fig. 1). However, it was appar-
ent that there were many problems with the data. Most
of the 113 food webs had very low diversity compared to
the biodiversity known to be present in ecosystems, with
a range of only 5 to 48 species in the original datasets and
3 to 48 trophic species. This low diversity was largely due
to very uneven resolution and inclusion of taxa in most
of these webs. The webs were put together in many dif-
ferent ways and for various purposes that did not include
comparative, quantitative research. Many types of organ-
isms were aggregated, underrepresented, or missing alto-
gether, and in a few cases animal taxa had no food chains
connecting them to basal species. In addition, cannibalis-
tic links were purged when the webs were compiled into
the 113-web catalog. To many ecologists, these food webs
looked like little more than idiosyncratic cartoons of much
richer and more complex species interactions found in

natural systems, and they appeared to be an extremely un-
sound foundation on which to build understanding and
theory [86,92].

Another catalog of “small” webs emerged in the late
1980s, a set of 60 insect-dominated webs with 2 to 87 orig-
inal species (mean = 22) and 2 to 54 trophic species (mean
= 12) [102]. Unlike the 113-web catalog, these webs are
highly taxonomically resolved, mostly to the species level.
However, they are still small due to their focus, in most
cases, on insect interactions in ephemeral microhabitats
such as phytotelmata (i. e., plant-held aquatic systems such
as water in tree holes or pitcher plants) and singular detri-
tal sources (e. g., dung paddies, rotting logs, animal car-
casses). Thus, while the 113-web catalog presented food
webs for communities at fairly broad temporal and spa-
tial scales, but with low and uneven resolution, the 60-web
catalog presented highly resolved but very small spatial
and temporal slices of broader communities. These two
very different catalogs were compiled into ECOWeB, the
“Ecologists Co-Operative Web Bank,” a machine readable
database of food webs that was made available by Joel Co-
hen in 1989 [26]. The two catalogs, both separately and
together as ECOWeB, were used in many studies of regu-
larities in food web network structure, as discussed in the
next Sect. “Early Food Web Structure Research”.

A new level of detail, resolution and comprehensive-
ness in whole-community food web characterization was
presented in two seminal papers in 1991. Gary Polis [92]
published an enormous array of data for taxa found in the
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Food Webs, Figure 2
Examples of formats for standardized notation of binary food webdata. A hypothetical webwith 6 taxa and 12 links is used.Numbers
1–6 correspond to the different taxa. a Partial matrix format: the 1s or 0s inside the matrix denote the presence or absence of a feed-
ing link between a consumer (whose numbers 3–6 head columns) and a resource (whose numbers 1–6 head rows); b Full matrix
format: similar to a, but all 6 taxa are listed at the heads of columns and rows; c Two-column format: a consumer’s number appears
in the first column, and one of its resource’s numbers appears in the second column; d Three-column format: similar to c, but where
there is a third number, the second and third numbers refer to a range of resource taxa. In this hypothetical web, taxa numbers 1 and
2 are basal taxa (i. e., taxa that do not feed on other taxa—autotrophs or detritus), and taxa numbers 3, 5, and 6 have cannibalistic
links to themselves

Coachella Valley desert (California). Over two decades, he
collected taxonomic and trophic information on at least
174 vascular plant species, 138 vertebrate species, 55 spider
species, thousands of insect species including parasitoids,
and unknown numbers of microorganisms, acari, and ne-
matodes. He did not compile a complete food web includ-
ing all of that information, but instead reported a number
of detailed subwebs (e. g., a soil web, a scorpion-focused
web, a carnivore web, etc.), each of which was more di-
verse than most of the ECOWeB webs. On the basis of
the subwebs and a simplified, aggregated 30-taxa web of
the whole community, he concluded that “. . . most cata-
logued webs are oversimplified caricatures of actual com-
munities . . . [they are]grossly incomplete representations of
communities in terms of both diversity and trophic connec-
tions.”

At about the same time, Neo Martinez [63] published
a detailed food web for Little Rock Lake (Wisconsin) that
he compiled explicitly to test food web theory and patterns
(see Sect. “Early Food Web Structure Research”). By piec-
ing together diversity and trophic information from mul-
tiple investigators actively studying various types of taxa in
the lake, he was able to put together a relatively complete
and highly resolved food web of 182 taxa, most identified
to the genus, species, or ontogentic life-stage level, includ-
ing fishes, copepods, cladocera, rotifers, diptera and other
insects, mollusks, worms, porifera, algae, and cyanobac-
teria. In later publications, Martinez modified the origi-

nal dataset slightly into one with 181 taxa. The 181 taxa
web aggregates into a 92 trophic-species web, with nearly
1000 links among the taxa (Fig. 3). This dataset, and the
accompanying analysis, set a new standard for food web
empiricism and analysis. It still stands as the best whole-
community food web compiled, in terms of even, detailed,
comprehensive resolution.

Since 2000, the use of the ECOWeB database for com-
parative analysis and modeling has mostly given way to
a focus on a smaller set of more recently published food
webs [10,37,39,99,110]. These webs, available through
www.foodwebs.org or from individual researchers, are
compiled for particular, broad-scale habitats such as St.
Mark’s Estuary [22], Little Rock Lake [63], the island of
St. Martin [46], and the Northeast U.S. Marine Shelf [61].
Most of the food webs used in contemporary compara-
tive research are still problematic—while they generally
are more diverse and/or evenly resolved than the earlier
webs, most could still be resolved more highly and evenly.
Among several issues, organisms such as parasites are usu-
ally left out (but see [51,59,67,74]), microorganisms are ei-
ther missing or highly aggregated, and there is still a ten-
dency to resolve vertebrates more highly than lower level
organisms. An important part of future food web research
is the compilation of more inclusive, evenly resolved, and
well-defined datasets.Meanwhile, the careful selection and
justification of datasets to analyze is an important part of
current research that all too often is ignored.

http://www.foodwebs.org


Food Webs F 3665

Food Webs, Figure 3
Food web of Little Rock Lake, Wisconsin [63]. 997 feeding links among 92 trophic species are shown. Image produced with Food-
Web3D, written by R.J. Williams, available at the Pacific Ecoinformatics and Computational Ecology Lab (www.foodwebs.org)

How exactly are food web data collected? In general,
the approach is to compile as complete a species list as
possible for a site, and then to determine the diets of
each species present at that site. However, researchers have
taken a number of different approaches to compiling food
webs. In some cases, researchers base their food webs on
observations they make themselves in the field. For ex-
ample, ecologists in New Zealand have characterized the
structure of stream food webs by taking samples from
particular patches in the streams, identifying the species
present in those samples, taking several individuals of each
species present, and identifying their diets through gut-
content analysis [106]. In other cases, researchers compile
food web data by consulting with experts and conducting
literature searches. For example, Martinez [63] compiled
the Little Rock Lake (WI) food web by drawing on the ex-
pertise of more than a dozen biologists who were special-
ists on various types of taxa and who had been working at
Little Rock Lake for many years. Combinations of these
two approaches can also come into play—for example,
a researcher might compile a relatively complete species
list through field-based observations and sampling, and
then assign trophic habits to those taxa through a combi-
nation of observation, consulting with experts, and search-
ing the literature and online databases.

It is important to note that most of the webs used
for comparative research can be considered “cumulative”
webs. Contemporary food web data range from time- and
space-averaged or “cumulative” (e. g., [63]) to more finely

resolved in time (e. g., seasonal webs—[6]) and/or space
(e. g., patch-scale webs—[106]; microhabitat webs—[94]).
The generally implicit assumption underlying cumulative
food web data is that the set of species in question co-exist
within a habitat and individuals of those species have the
opportunity over some span of time and space to inter-
act directly. To the degree possible, such webs document
who eats whom among all species within a macrohabitat,
such as a lake or meadow, over multiple seasons or years,
including interactions that are low frequency or repre-
sent a small proportion of consumption. Such cumulative
webs are used widely for comparative research to look at
whether there are regularities in food web structure across
habitat (see Sect. “Food Webs Compared to Other Net-
works” and Sect. “Models of Food Web Structure”). More
narrowly defined webs at finer scales of time or space, or
that utilize strict evidence standards (e. g., recording links
only through gut content sampling), have been useful for
characterizing how such constraints influence perceived
structure within habitats [105,106], but are not used as
much to look for cross-system regularities in trophic net-
work structure.

Early FoodWeb Structure Research

The earliest comparative studies of food web structure
were published by Joel Cohen in 1977. Using data from
the first 30-web catalog, one study focused on the ratio
of predators to prey in food webs [23], and the other in-

http://www.foodwebs.org
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vestigated whether food webs could be represented by sin-
gle dimension interval graphs [24], a topic which contin-
ues to be of interest today (see Sect. “Food Webs Com-
pared to Other Networks”). In both cases, he found regu-
larities—(1) a ratio of prey to predators of � 3/4 regard-
less of the size of the web, and (2) most of the webs are
interval, such that all species in a food web can be placed
in a fixed order on a line such that each predator’s set of
prey forms a single contiguous segment of that line. The
prey-predator ratio paper proved to be the first salvo in
a quickly growing set of papers that suggested that a va-
riety of food web properties were “scale-invariant.” In its
strong sense, scale invariance means that certain prop-
erties have constant values as the size (S) of food webs
change. In its weak sense, scale-invariance refers to prop-
erties not changing systematically with changing S. Other
scale-invariant patterns identified include constant pro-
portions of top species (Top, species with no predators),
intermediate species (Int, species with both predators and
prey), and basal species (Bas, species with no prey), col-
lectively called “species scaling laws” [12], and constant
proportions of T-I, I-B, T-B, and I-I links between T, I,
and B species, collectively called “link scaling laws” [27].
Other general properties of food webs were thought to in-
clude: food chains are short [31,43,50,89]; cycling/looping
is rare (e. g., A! B! C! A; [28]); compartments, or
subwebs with many internal links that have few links to
other subwebs, are rare [91]; omnivory, or feeding at more
than one trophic level, is uncommon [90]; and webs tend
to be interval, with instances of intervality decreasing as S
increases [24,29,116].Most of these patterns were reported
for the 113-web catalog [31], and some of the regularities
were also documented in a subset the 60 insect-dominated
webs [102].

Another, related prominent line of early comparative
food web research was inspired by Bob May’s work from
the early 1970s showing that simple, abstract communities
of interacting species will tend to transition sharply from
local stability to instability as the complexity of the system
increases—in particular as the number of species (S), the
connectance (C) or the average interaction strength (i) in-
crease beyond critical values [69,70]. He formalized this as
a criterion that ecological communities near equilibrium
will tend to be stable if i(SC)1/2 < 1. This mathematical
analysis flew in the face of the intuition of many ecolo-
gists (e. g., [44,50,62,84]) who felt that increased complex-
ity (in terms of greater numbers of species and links be-
tween them) in ecosystems gives rise to stability.

May’s criterion and the general question of how di-
versity is maintained in communities provided a frame-
work within which to analyze some readily accessible em-

pirical data, namely the numbers of links and species in
food webs. Assuming that average interaction strength (i)
is constant, May’s criterion suggests that communities can
be stable given increasing diversity (S) as long as con-
nectance (C) decreases. This can be empirically demon-
strated using food web data in three similar ways, by show-
ing that 1) C hyperbolically declines as S increases, so that
the product SC remains constant, 2) the ratio of links to
species (L/S), also referred to as link or linkage density,
remains constant as S increases, or 3) L plotted as a func-
tion of S on a log-log graph, producing a power-law rela-
tion of the form L D ˛Sˇ , displays an exponent of ˇ D 1
(the slope of the regression) indicating a linear relation-
ship between L and S. These relationships were demon-
strated across food webs in a variety of studies (see detailed
review in [36]), culminating with support from the 113-
web catalog and the 60 insect-dominated web catalog. Co-
hen and colleagues identified the “link-species scaling law”
of L/S � 2 using the 113 web catalog (i. e., there are two
links per species on average in any given food web, regard-
less of its size) [28,30], and SCwas reported as “roughly in-
dependent of species number” in a subset of the 60 insect-
dominated webs [102].

However, these early conclusions about patterns of
food web structure began to crumble with the advent of
improved data and new analysis methods that focused on
the issues of species aggregation, sampling effort, and sam-
pling consistency [36]. Even before there was access to
improved data, Tom Schoener [93] set the stage for cri-
tiques of the conventional paradigm in his Ecological So-
ciety of America MacArthur Award lecture, in which he
explored the ramifications of a simple conceptual model
based on notions of “generality” (what Schoener referred
to as “generalization”) and “vulnerability.” He adopted the
basic notion underlying the “link-species scaling law”: that
how many different taxa something can eat is constrained,
which results in the number of resource taxa per consumer
taxon (generality) holding relatively steadywith increasing
S. However, he further hypothesized that the ability of re-
source taxa to defend again consumers is also constrained,
such that the number of consumer taxa per resource taxon
(vulnerability) should increase with increasing S. A major
consequence of this conceptual model is that total links per
species (L/S, which includes links to resources and con-
sumers) and most other food web properties should dis-
play scale-dependence, not scale-invariance. A statistical
reanalysis of a subset of the 113-web catalog supported this
contention as well as the basic assumptions of his concep-
tual model about generality and vulnerability.

Shortly thereafter, more comprehensive, detailed
datasets, like the ones for Coachella Valley [92] and Little
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Rock Lake [63], began to appear in the literature. These
and other new datasets provided direct empirical coun-
terpoints to many of the prevailing notions about food
webs: their connectance and links per species were much
higher than expected from the “link-species scaling law,”
food chains could be quite long, omnivory and cannibal-
ism and looping could be quite frequent, etc. In addition,
analyzes such as the one byMartinez [63], in which he sys-
tematically aggregated the Little Rock Lake food web taxa
and links to generate small webs that looked like the earlier
data, demonstrated that “most published food web patterns
appear to be artifacts of poorly resolved data.” Compara-
tive studies incorporating newly available data further un-
dermined the whole notion of “scale invariance” of most
properties, particularly L/S(e. g., [65,66]).

For many researchers, the array of issues brought to
light by the improved data and more sophisticated ana-
lyzes was enough for them to turn their back on struc-
tural food web research. A few hardy researchers sought
to build new theory on top of the improved data. “Con-
stant connectance” was suggested as an alternative hy-
pothesis to constant L/S (the “link-species scaling law”),
based on a comparative analysis of the relationship of
L to S across a subset of available food webs including
Little Rock Lake [64]. The mathematical difference be-
tween constant C and constant L/S can be simply stated
using a log-log graph of links as a function of species
(Fig. 4). If a power law exists of the form L D ˛Sˇ , in the
case of the link-species scaling law ˇ D 1, which means
that L D ˛S; L/S D ˛, indicating constant L/S. In the
case of constant connectance, ˇ D 2 and thus L D ˛S2,
L/S2 D ˛, indicating constant C (L/S2). Constant con-
nectance means that L/S increases as a fixed proportion of
S. One ecological interpretation of constant connectance
is that consumers are likely to exploit an approximately
constant fraction of available prey species, so as diversity
increases, links per species increases [108].

Given the L D ˛Sˇ framework, ˇ D 2 was reported
for a set of 15 webs derived from an English pond [108],
and ˇ D 1:9 for a set of 50 Adirondack lakes [65], sug-
gesting connectance may be constant across webs within
a habitat or type of habitat. Across habitats, the picture is
less clear. While ˇ D 2 was reported for a small subset of
the 5 most “credible” food webs then available from differ-
ent habitats [64], several analyzes of both the old ECOWeB
data and the more reliable newer data suggest that the ex-
ponent lies somewhere between 1 and 2, suggesting that C
declines non-linearly with S (Fig. 4, [27,30,36,64,79,93]).
For example, Schoener’s reanalysis of the 113-web catalog
suggested thatˇ D 1:5, indicating that L2/3 is proportional
to S. A recent analysis of 19 recent trophic-species food

Food Webs, Figure 4
The relationship of links to species for 19 trophic-species food
webs froma variety of habitats (black circles). The solid line shows
the log-log regression for the empirical data, the dashed line
shows the prediction for constant connectance, and the dotted
line shows the prediction for the link-species scaling law (repro-
duced from [36], Fig. 1)

webs with S of 25 to 172 also reported ˇ D 1:5, with much
scatter in the data (Fig. 4).

A recent analysis has provided a possible mechanistic
basis for the observed constrained variation in C (� 0.03
to 0.3 in cumulative community webs) as well as the scal-
ing of C with S implied by ˇ intermediate between 1 and
2 [10]. A simple diet breadth model based on optimal for-
aging theory predicts both of these patterns across food
webs as an emergent consequence of individual foraging
behavior of consumers. In particular, a contingency model
of optimal foraging is used to predict meandiet breadth for
S animal species in a food web, based on three parameters
for an individual of species j: (1) net energy gain from con-
sumption of an individual of species i, (2) the encounter
rate of individuals of species i, and (3) the handling time
spent attacking an individual of species i. This allows es-
timation of C for the animal portion of food webs, once
data aggregation and cumulative sampling, well-known
features of empirical datasets, are taken into account. The
model does a good job of predicting values of C observed
in empirical food webs and associated patterns of C across
food webs.

FoodWeb Properties

Food webs have been characterized by a variety of prop-
erties or metrics, several of which have been mentioned
previously (Sect. “Early Food Web Structure Research”).
Many of these properties are quantifiable just using the ba-
sic network structure (“topology”) of feeding interactions.
These types of topological properties have been used to
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evaluate simple models of food web structure (Sect. “Food
Web Properties”). Any number of properties can be cal-
culated on a given network—ecologists tend to focus on
properties that are meaningful within the context of eco-
logical research, although other properties such as path
length (Path) and clustering coefficient (Cl) have been
borrowed from network research [109]. Examples of sev-
eral types of food web network structure properties, with
common abbreviations and definitions, follow.

Fundamental Properties: These properties characterize
very simple, overall attributes of food web network struc-
ture.

S: number of nodes in a food web
L: number of links in a food web
L/S: links per species
C, or L/S2: connectance, or the proportion of possible

links that are realized

Types of Taxa: These properties characterize what pro-
portion or percentage of taxa within a food web fall into
particular topologically defined roles.

Bas: percentage of basal taxa (taxa without resources)
Int: percentage of intermediate taxa (taxa with both con-

sumers and resources)
Top: percentage of top taxa (taxa with no consumers)
Herb: percentage of herbivores plus detritivores (taxa that

feed on autotrophs or detritus)
Can: percentage of cannibals (taxa that feed on their own

taxa)
Omn: percentage of omnivores (taxa that feed that feed

on taxa at different trophic levels
Loop: percentage of taxa that are in loops, food chains in

which a taxon occur twice (e. g., A! B! C! A)

Network Structure: These properties characterize other
attributes of network structure, based on how links are dis-
tributed among taxa.

TL: trophic level averaged across taxa. Trophic level rep-
resents how many steps energy must take to get from
an energy source to a taxon. Basal taxa haveTL = 1, and
obligate herbivores are TL = 2. TL can be calculated
using many different algorithms that take into account
multiple food chains that can connect higher level or-
ganisms to basal taxa (Williams and Martinez 2004).

ChLen: mean food chain length, averaged over all species
ChSD: standard deviation of ChLen
ChNum: log number of food chains

LinkSD: normalized standard deviation of links (# links
per taxon)

GenSD: normalized standard deviation of generality (#
resources per taxon)

VulSD: normalized standard deviation of vulnerability (#
consumers per taxon)

MaxSim: mean across taxa of the maximum trophic sim-
ilarity of each taxon to other taxa

Ddiet: the level of diet discontinuity—the proportion of
triplets of taxa with an irreducible gap in feeding links
over the number of possible triplets [19]—a local esti-
mate of intervality

Cl: clustering coefficient (probability that two taxa linked
to the same taxon are linked)

Path: characteristic path length, the mean shortest set of
links (where links are treated as undirected) between
species pairs

The previous properties (most of which are described
in [110] and [39]) each provide a single metric that charac-
terizes some aspect of food web structure. There are other
properties, such as Degree Distribution, which are not
single-number properties. “Degree” refers to the number
of links that connect to a particular node, and the de-
gree distribution of a network describes (in the format
of a function or a graph) the total number of nodes in
a network that have a given degree for each level of de-
gree (Subsect. “Degree Distribution”). In food web analy-
sis, LinkSD, GenSD, and VulSD characterize the variabil-
ity of different aspects of degree distribution. Many food
web structure properties are correlated with each other,
and vary in predictable ways with S and/or C. This pro-
vides opportunities for topological modeling that are dis-
cussed below (Sect. “Models of Food Web Structure”).

In addition to these types of metrics based on networks
with unweighted links and nodes, it is possible to calculate
a variety of metrics for food webs with nodes and/or links
that are weighted by measures such as biomass, numer-
ical abundance, frequency, interaction strength, or body
size [11,33,67,81]. However, few food web datasets are
“enriched” with such quantitative data and it remains to
be seen whether such approaches are primarily a tool
for richer description of particular ecosystems or whether
they can give rise to novel generalities, models and predic-
tions. One potential generality was suggested by a study
of interaction strengths in seven soil food webs, where in-
teraction strength reflects the size of the effects of species
on each other’s dynamics near equilibrium. Interaction
strengths appear to be organized such that long loops con-
tain many weak links, a pattern which enhances stability
of complex food webs [81].
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FoodWebs Compared to Other Networks

Small-World Properties

How does the structure of food webs compare to that
of other kinds of networks? One common way that vari-
ous networks have been compared is in terms of whether
they are “small-world” networks. Small-world networks
are characterized by two of the properties described previ-
ously, characteristic path length (Path) and clustering co-
efficient (Cl) [109]. Most real-world networks appear to
have high clustering, like what is seen on some types of
regular spatial lattices (such as a planar triangular lattice,
where many of a node’s neighbors are neighbors of one
another), but have short path lengths, like what is seen
on “random graphs” (i. e., networks in which links are
distributed randomly). Food webs do display short path
lengths that are similar to what is seen in random webs
(Table 1, [16,37,78,113]). On average, taxa are about two
links from other taxa in a food web (“two degrees of sep-
aration”), and path length decreases with increasing con-
nectance [113].

However, clustering tends to be quite low in many
food webs, closer to the clustering expected on a random
network (Table 1). This relatively low clustering in food
webs appears consistent with their small size compared
to most other kinds of networks studied, since the ra-
tio of clustering in empirical versus comparable random

Food Webs, Table 1
Topological properties of empirical and random food webs, listed in order of increasing connectance. Path refers to characteristic
path length, and Cl refers to the clustering coefficient. Pathr and Clr refer to the mean D and Cl for 100 random webs with the same
S and C. Modified from [37] Table 1

Food Web S C(L/S2) L/S Path Pathr Cl Clr Cl/Clr
Grassland 61 0.026 1.59 3.74 3.63 0.11 0.03 3.7

Scotch Broom 85 0.031 2.62 3.11 2.82 0.12 0.04 3.0

Ythan Estuary 1 124 0.038 4.67 2.34 2.39 0.15 0.04 3.8

Ythan Estuary 2 83 0.057 4.76 2.20 2.19 0.16 0.06 2.7

El Verde Rainforest 155 0.063 9.74 2.20 1.95 0.12 0.07 1.4

Canton Creek 102 0.067 6.83 2.27 2.01 0.02 0.07 0.3

Stony Stream 109 0.070 7.61 2.31 1.96 0.03 0.07 0.4

Chesapeake Bay 31 0.071 2.19 2.65 2.40 0.09 0.09 1.0

St. Marks Seagrass 48 0.096 4.60 2.04 1.94 0.14 0.11 1.3

St. Martin Island 42 0.116 4.88 1.88 1.85 0.14 0.13 1.1

Little Rock Lake 92 0.118 10.84 1.89 1.77 0.25 0.12 2.1

Lake Tahoe 172 0.131 22.59 1.81 1.74 0.14 0.13 1.1

Mirror Lake 172 0.146 25.13 1.76 1.72 0.14 0.15 0.9

Bridge Brook Lake 25 0.171 4.28 1.85 1.68 0.16 0.19 0.8

Coachella Valley 29 0.312 9.03 1.42 1.43 0.43 0.32 1.3

Skipwith Pond 25 0.315 7.88 1.33 1.41 0.33 0.33 1.0

networks increases linearly with the size of the network
(Fig. 5).

Degree Distribution

In addition to small-world properties, many real-world
networks appear to display power-law degree distribu-
tions [2]. Whereas regular graphs have the same number
of links per node, and random graphs display a Poisson
degree distribution, many empirical networks, both biotic
and abiotic, display a highly skewed power-law (“scale-
free”) degree distribution, where most nodes have few
links and a few nodes have many links. However, some
empirical networks display less-skewed distributions such
as exponential distributions [4]. Most empirical food webs
display exponential or uniform degree distributions, not
power-law distributions [16,37], and it has been suggested
that normalized degree distributions in food webs follow
universal functional forms [16] although there is a quite
a bit of scatter when a wide range of data are consid-
ered (Fig. 6, [37]). Variable degree distributions, like what
is seen in individual food webs, could result from sim-
ple mechanisms. For example, exponential and uniform
food web degree distributions are generated by a model
that combines (1) random immigration to local webs from
a randomly linked regional set of taxa, and (2) random ex-
tinctions in the local webs [5]. The general lack of power-
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Food Webs, Figure 5
Trends in clustering coefficient across networks. The ratio of
clustering in empirical networks (Clempirical) to clustering in
random networks with the same number of nodes and links
(Clrandom) is shown as a function of the size of the network (num-
ber of nodes). Reproduced from [37], Fig. 1

law degree distributions in food webs may result partly
from the small size and large connectance of such net-
works, which limits the potential for highly skewed dis-
tributions. Many of the networks displaying power-law
degree distributions are much larger and much more
sparsely connected than food webs.

Other Properties

Assortative mixing, or the tendency of nodes with similar
degree to be linked to each other, appears to be a pervasive
phenomenon in a variety of social networks [82]. How-
ever, other kinds of networks, including technological and
biological networks, tend to show disassortative mixing,
where nodes with high degree tend to link to nodes with
low degree. Biological networks, and particularly two food
webs examined, show strong disassortativity [82]. Some of
this may relate to a finite-size effect in systems like food
webs that have limits on how many links are recorded be-
tween pairs of nodes. However, in food webs it may also
result from the stabilizing effects of having feeding special-
ists linked to feeding generalists, as has been suggested for
plant-animal pollination and frugivory (fruit-eating) net-
works ([7], Sect. “Ecological Networks”).

Another aspect of structure that has been directly com-
pared across several types of networks including food webs
are “motifs,” defined as “recurring, significant patterns of

Food Webs, Figure 6
Log-log overlay plot of the cumulative distributions of links per
species in 16 food webs. The link data are normalized by the av-
erage number of links/species in each web. If the distributions
followed a power law, the data would tend to follow a straight
line. Instead, they follow a roughly exponential shape. Repro-
duced from [37], Fig. 3

interconnections” [77]. A variety of networks (transcrip-
tional gene regulation, neuron connectivity, food webs,
two types of electronic circuits, the World Wide Web)
were scanned for all possible subgraphs that could be
constructed out of 3 or 4 nodes (13 and 199 possible
subgraphs, respectively). Subgraphs that appeared signifi-
cantly more often in empirical webs than in their random-
ized counterparts (i. e., networks with the same number of
nodes and links, and the same degree for each node, but
with links otherwise randomly distributed) were identi-
fied. For the seven food webs examined, there were two
“consensus motifs” shared by most of the webs—a three-
node food chain, and a four-species diamond where
a predator has two prey, which in turn prey on the same
species (Fig. 7). The four-node motif was shared by two
other types of networks (neuron connectivity, one type
of electronic circuit), and nothing shared the three-node
chain. The WWW and food web networks appear most
dissimilar to other types of networks (and to each other)
in terms of significant motifs.

Complex networks can be decomposed into minimum
spanning trees (MST). A MST is a simplified version of
a network created by removing links to minimize the dis-
tance between nodes and some destination. For example,
a food web can be turned into MST by adding an “en-
vironment” node that all basal taxa link to, tracing the
shortest food chain from each species to the environment
node, and removing links that do not appear in the short-
est chains. Given this algorithm, a MST removes links that
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Food Webs, Figure 7
The two 3 or 4-node network motifs found to occur significantly
more often than expected in most of seven food webs exam-
ined. There is one significant 3-node motif (out of 13 possible
motifs), a food chain of the form A eats B eats C. There is one
significant 4-node motif (out of 199 possible motifs), a trophic
diamond (“bi-parallel”) of the form A eats B and C, which both
eat D

occur in loops and retains a basic backbone that has a tree-
like structure. In a MST, the quantity Ai is defined as the
number of nodes in a subtree rooted at node i, and can be
regarded as the transportation rate through that node.Ci is
defined as the integral ofAi (i. e., the sumofAi for all nodes
rooted at node i) and can be regarded as the transporta-
tion cost at node i. These properties can be used to plot Ci
versus Ai for each node in a networks, or to plot whole-
system Co versus Ao across multiple networks, to identify
whether scaling relationships of the form C(A) / An are
present, indicating self-similarity in the structure of the
MST (see [18] for review). In a food web MST, the most
efficient configuration is a star, where every species links
directly to the environment node, resulting in an expo-
nent of 1, and the least efficient configuration is a single
chain, where resources have to pass through each species
in a line, resulting in an exponent of 2. It has been sug-
gested that food webs display a universal exponent of
1.13 [18,45], reflecting an invariant functional food web
property relating to very efficient resource transportation
within an ecosystem. However, analyzes based on a larger
set of webs (17 webs versus 7) suggest that exponents for
Ci as a function of Ai range from 1.09 to 1.26 and are
thus not universal, that the exponents are quite sensitive to
small changes in food web structure, and that the observed
range of exponent values would be similarly constrained
in any network with only 3 levels, as is seen in food web
MSTs [15].

Models of FoodWeb Structure

An important area of research on food webs has been
whether their observed structure, which often appears
quite complex, can emerge from simple rules or models.
As with other kinds of “real-world” networks, models that

assign links among nodes randomly, according to fixed
probabilities, fail to reproduce the network structure of
empirically observed food webs [24,28,110]. Instead, sev-
eral models that combine stochastic elements with simple
link assignment rules have been proposed to generate and
predict the network structure of empirical food webs.

The models share a basic formulation [110]. There
are two empirically quantifiable parameters: (1) S, the
number of trophic species in a food web, and (2) C, the
connectance of a food web, defined as links per species
squared, L/S2. Thus, S specifies the number of nodes in
a network, and C specifies the number of links in a net-
work with S nodes. Each species is assigned a “niche value”
ni drawn randomly and uniformly from the interval [0,1].
The models differ in the rules used to distribute links
among species. The link distribution rules follow in the or-
der the models were introduced in the literature:

Cascade Model (Cohen and Newman [28]): Each
species has the fixed probability P D 2CS/(S � 1) of con-
suming species with niche values less than its own. This
creates a food web with hierarchical feeding, since it does
not allow feeding on taxa with the same niche value
(cannibalism) or taxa with higher niche values (loop-
ing/cycling). This formulation [110] is a modified version
of the original cascade model that allows L/S, equivalent
to the CS term in the probability statement above, to vary
as a tunable parameter, rather than be fixed as a con-
stant [28].

Niche Model (Williams and Martinez [110], Fig. 8):
Each species consumes all species within a segment of the
[0,1] interval whose size ri is calculated using the feeding
range width algorithm described below. The ri’s center ci
is set at a random value drawn uniformly from the interval
[ri /2; ni ] or [ri /2; 1 � ri /2] if ni > 1 � ri /2, which places
ci equal to or lower than the niche value ni and keeps the
ri segment within [0,1]. The ci rule relaxes the strict feed-
ing hierarchy of the cascade model and allows for the pos-
sibility of cannibalism and looping. Also, the ri rule en-
sures that species feed on a contiguous range of species,
necessarily creating interval graphs (i. e., species can be
lined up along a single interval such that all of their re-
source species are located in contiguous segments along
the interval).

Feeding range width algorithm: The value of
ri D xni , where 0 < x < 1 is randomly drawn from
the probability density function p(x) D ˇ(1�x)b�1

(the beta distribution), where ˇ D (1/2C)�1 to ob-
tain a C close to the desired C.
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Food Webs, Figure 8
Graphical representation of the niche model: Species i feeds on
4 taxa including itself and one with a higher niche value

Nested-Hierarchy Model (Cattin et al. [19]): Like the
niche model, the number of prey items for each species is
drawn randomly from a beta distribution that constrainsC
close to a target value. Once the number of prey items for
each species is set, those links are assigned in a multistep
process. First, a link is randomly assigned from species i to
a species j with a lower ni. If j is fed on by other species,
the next feeding links for i are selected randomly from the
pool of prey species fed on by a set of consumer species
defined as follows: they share at least one prey species and
at least one of them feeds on j. If more links need to be dis-
tributed, they are then randomly assigned to species with-
out predators and with niche values < ni , and finally to
those with niche value � ni . These rules were chosen to
relax the contiguity rule of the niche model and to allow
for trophic habit overlap among taxa in a manner which
the authors suggest evokes phylogenetic constraints.

Generalized Cascade Model (Stouffer et al. [99]):
Species i feeds on species j if nj � ni with a probability
drawn from the interval [0,1] using the beta or an expo-
nential distribution. This model combines the beta distri-
bution introduced in the niche model with the hierarchi-
cal, non-contiguous feeding of the cascade model.

Thesemodels have been evaluatedwith respect to their
relative fit to empirical data in a variety of ways. In a se-
ries of six papers published from 1985 to 1990 with the
common title “A stochastic theory of community food
webs,” the cascade model was proposed as a means of ex-
plaining “the phenomenology of observed food web struc-
ture, using a minimum of hypotheses” [31]. This was not
the first simple model proposed for generating food web
structure [25,88,89,116], but it was the most well-devel-
oped model. Cohen and colleagues also examined sev-
eral model variations, most of which performed poorly.
While the cascade model appeared to generate structures
that qualitatively fit general patterns in the data from the
113-web catalog, subsequent statistical analyzes suggested
that the fit between the model and that early data was

poor [93,96,97]. Once improved data began to emerge, it
became clear that some of the basic assumptions built in to
the cascade model, such as no looping and minimal over-
lap and no clustering of feeding habits across taxa, are vi-
olated by common features of multi-species interactions.

The niche model was introduced in 2000, along with
a new approach to analysis: numerical simulations to com-
pare statistically the ability of the niche model, the cascade
model, and one type of random network model to fit em-
pirical food web data [110]. Because of stochastic varia-
tion in how species and links are distributed in any par-
ticular model web, analysis begins with the generation of
hundreds to thousands of model webs with the same S and
similar C as an empirical food web of interest. Model webs
that fall within 3% of the targetC are retained. Model-gen-
erated webs occasionally contain species with no links to
other species, or species that are trophically identical. Ei-
ther those webs are thrown out, or those species are elim-
inated and replaced, until every model web has no dis-
connected or identical species. Also, each model web must
contain at least one basal species. These requirements en-
sure that model webs can be sensibly comparable to em-
pirical trophic-species webs.

Once a set of model webs are generated with the same
S and C as an empirical web, model means and standard
deviations are calculated for each food web property of
interest, which can then be compared to empirical val-
ues. Raw error, the difference between the value of an
empirical property and a model mean for that property,
is normalized by dividing it by the standard deviation of
the property’s simulated distribution. This approach al-
lows assessment not only of whether a model over- or un-
der-estimates empirical properties as indicated by the raw
error, but also to what degree a model’s mean deviates
from the empirical value. Normalized errors within ˙2
are considered to indicate a good fit between the model
prediction and the empirical value. This approach has also
been used to analyze network motifs [77] (Subsect. “Other
Properties”).

The initial niche model analyzes examined sevenmore
recent, diverse food webs (S D 24 to 92) and up to 12 net-
work structure properties for each web [110]. The random
model (links are distributed randomly among nodes) per-
forms poorly, with an average normalized error (ANE) of
27.1 (SD D 202). The cascade model performs better, with
ANE of -3.0 (SD D 14:1). The niche model performs an
order of magnitude better than the cascade model, with
ANE of 0.22 (SD D 1:8). Only the niche model falls within
˙2 ANE considered to show a good fit to the data. Not
surprisingly, there is variability in how all three models fit
different food webs and properties. For example, the niche
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model generally overestimates food-chain length. Specific
mismatches are generally attributable either to limitations
of the models or biases in the data [110]. A separate test
of the niche and cascade models with three marine food
webs, a type of habitat not included in the original analysis,
obtained similar results [39]. These analyzes demonstrate
that the structure of food webs is far from random and that
simple link distribution rules can yield apparently com-
plex network structure, similar to that observed in empir-
ical data. In addition, the analyzes suggest that food webs
from a variety of habitats share a fundamentally similar
network structure, and that the structure is scale-depen-
dent in predictable ways with S and C.

The nested-hierarchy model [19] and generalized cas-
cade model [99], variants of the niche model, do not ap-
pear to improve on the niche model, and in fact may be
worse at representing several aspects of empirical network
structure. Although the nested-hierarchymodel breaks the
intervality of the niche model and uses a complicated-
sounding set of link distribution rules to try to mimic
phylogenetic constraints on trophic structure, it “gener-
ates webs characterized by the same universal distribu-
tions of numbers of prey, predators, and links” as the niche
model [99]. Both the niche and nested-hierarchy models
have a beta distribution at their core. The beta distribution
is reasonably approximated by an exponential distribution
for C < 0:12 [99], and thus reproduces the exponential de-
gree distributions observed in many empirical webs, par-
ticularly those with average or less-than-average C [37].
The generalized cascade model was proposed as a simpli-
fiedmodel that would return the same distributions of taxa
and links as the niche and nested-hierarchy models. It is
defined using only two criteria: (1) taxa form a totally or-
dered set—this is fulfilled by the arrangement of taxa along
a single “niche” interval or dimension, and (2) each species
has an exponentially decaying probability of preying on
a given fraction of species with lower niche values [99].

Although the generalized cascade model does capture
a central tendency of successful food web models, only
some food web properties are derivable from link distribu-
tions (e. g., Top, Bas, Can, VulSD, GenSD, Clus). There are
a variety of food web structure properties of interest that
are not derivable from degree distributions (e. g., Loop,
Omn,Herb, TL, food-chain statistics, intervality statistics).
The accurate representation of these types of properties
may depend on additional factors, for example the con-
tiguous feeding ranges specified by the niche model but
absent from the cascade, nested-hierarchy, and general-
ized cascademodels.While it is known that empirical food
webs are not interval, until recently it was not clear how
non-interval they are. Intervality is a brittle property that

is broken by a single gap in a single feeding range (i. e.,
a single missing link in a food web), and trying to ar-
range species in a food web into their most interval or-
dering is a computationally challenging problem. A more
robust measure of intervality in food webs has been devel-
oped, in conjunction with the use of simulated annealing
to estimate the most interval ordering of empirical food
webs [100]. This analysis suggests that complex food webs
“do exhibit a strong bias toward contiguity of prey, that is,
toward intervality” when compared to several alternative
“null” models, including the generalized cascade model.
Thus, the intervality assumption of the niche model, ini-
tially critiqued as a flaw of themodel [19], helps to produce
a better fit to empirical data than the non-interval alternate
models.

Structural Robustness of FoodWebs

A series of papers have examined the response of a va-
riety of networks including the Internet and WWW web
pages [1] and metabolic and protein networks [52,53] to
the simulated loss of nodes. In each case, the networks, all
of which display highly skewed power-law degree distribu-
tions, appear very sensitive to the targeted loss of highly-
connected nodes but relatively robust to random loss of
nodes. When highly-connected nodes are removed from
scale-free networks, the average path length tends to in-
crease rapidly, and the networks quickly fragment into
isolated clusters. In essence, paths of information flow in
highly skewed networks are easily disrupted by loss of
nodes that are directly connected to an unusually large
number of other nodes. In contrast, random networks
with much less skewed Poisson degree distributions dis-
play similar responses to targeted loss of highly-connected
nodes versus random node loss [101].

Within ecology, species deletions on small (S < 14)
hypothetical food web networks as well as a subset of the
113-web catalog have been used to examine the reliability
of network flow, or the probability that sources (produc-
ers) are connected to sinks (consumers) in food webs [54].
The structure of the empirical webs appears to conform
to reliable flow patterns identified using the hypothetical
webs, but that result is based on low diversity, poorly re-
solved data. The use of more highly resolved data with
node knock-out algorithms to simulate the loss of species
allows assessment of potential secondary extinctions in
complex empirical food webs. Secondary extinctions result
when the removal of taxa results in one ormore consumers
losing all of their resource taxa. Even though most food
webs do not have power-law degree distributions, they
show similar patterns of robustness to other networks: re-
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moval of highly-connected species results in much higher
rates of secondary extinctions than random loss of species
([38,39,95], Fig. 9). In addition, loss of high-degree species
results in more rapid fragmentation of the webs [95]. Pro-
tecting basal taxa from primary removal increases the ro-
bustness of the web (i. e., fewer secondary extinctions oc-
cur) ([38], Fig. 9). While removing species with few links
generally results in few secondary extinctions, in a quarter
of the food webs examined, removing low-degree species
results in secondary extinctions comparable to or greater
than what is seen with removal of high-degree species [38].
This tends to occur in webs with relatively high C.

Beyond differential impacts of various sequences of
species loss in food webs, food web ‘structural robustness’
can be defined as the fraction of primary species loss that
induces some level of species loss (primary + secondary ex-
tinctions) for a particular trophic-species web. Analysis of
R50 (i. e., what proportion of species have to be removed
to achieve � 50% total species loss) across multiple food
webs shows that robustness increases approximately log-
arithmically with increasing connectance ([38,39], Fig. 9,
10). In essence, from a topological perspective food webs
with more densely interconnected taxa are better pro-
tected from species loss, since it takes greater species loss
for consumers to lose all of their resources.

It is also potentially important from a conservation
perspective to identify particular species likely to result
in the greatest number of secondary extinctions through
their loss. The loss of a particular highly-connected species
may or may not result in secondary extinctions. One

Food Webs, Figure 9
Secondary extinctions resulting from primary species loss in 4 food webs ordered by increasing connectance (C). The y-axis shows
the cumulative secondary extinctions as a fraction of initial S, and the x-axis shows the primary removals of species as a fraction
of initial S. 95% error bars for the random removals fall within the size of the symbols and are not shown. For the most connected
(circles), least connected (triangles), and random removal (plus symbols) sequences, the data series end at the black diagonal dashed
line, where primary removals plus secondary extinctions equal S and the web disappears. For the most connected species removals
with basal species preserved (black dots), the data points end when only basal species remain. The shorter red diagonal lines show
the points at which 50%of species are lost through combined primary removals and secondary extinctions (“robustness” or R50)

Food Webs, Figure 10
The proportion of primary species removals required to induce
a total loss (primary removals plus secondary extinctions) of 50%
of the species in each of 16 food webs (“robustness,” see the
shorter red line of Fig. 9 for visual representation) as a function
of the connectance of each web. Logarithmic fits to the three
data sets are shown, with a solid line for the most connected
deletion order, a long dashed line for the most connected with
basal species preserved deletion order, and a short dashed line
for random deletion order. The maximum possible y value is
0.50. The equations for the fits are: y D 0:162 ln(x)C 0:651 for
most connected species removals, y D 0:148 ln(x)C 0:691 for
most connected species removals with basal species preserved,
and y D 0:067 ln(x)C 0:571 for random species removals. Re-
produced from [38], Fig. 2

way to identify critical taxa is to reduce the topologi-
cal structure of empirical food webs into linear pathways
that define the essential chains of energy delivery in each
web. A particular species can be said to “dominate” other
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species if it passes energy to them along a chain in the
dominator tree. The higher the number of species that
a particular species dominates, the greater the secondary
extinctions that may result from its removal [3]. This ap-
proach has the advantage of going beyond assessment of
direct interactions to include indirect interactions.

As in food webs, the order of pollinator loss has an
effect on potential plant extinction patterns in plant-pol-
linator networks [75] (see Sect. “Ecological Networks”).
Loss of plant diversity associated with targeted removal of
highly-connected pollinators is not as extreme as compa-
rable secondary extinctions in food webs, which may be
due to pollinator redundancy and the nested topology of
those networks.

While the order in which species go locally extinct
clearly affects the potential for secondary extinctions in
ecosystems, the focus on high-degree, random, or even
dominator species does not provide insight on ecologi-
cally plausible species loss scenarios, whether the focus is
on human perturbations or natural dynamics. The issue of
what realistic natural extinction sequences might look like
has been explored using a set of pelagic-focused food webs
for 50 Adirondack lakes [49] with up to 75 species [98].
The geographic nestedness of species composition across
the lakes is used to derive an ecologically plausible extinc-
tion sequence scenario, with the most restricted taxa the
most likely to go extinct. This sequence is corroborated by
the pH tolerances of the species. Species removal simula-
tions show that the food webs are highly robust in terms
of secondary extinctions to the “realistic” extinction order
and highly sensitive to the reverse order. This suggests that
nested geographical distribution patterns coupled with lo-
cal food web interaction patterns appear to buffer effects
of likely species losses. This highlights important aspects
of community organization that may help to minimize
biodiversity loss in the face of a naturally changing envi-
ronment. However, anthropogenic disturbances may dis-
rupt the inherent buffering of how taxa are organized ge-
ographically and trophically, reducing the robustness of
ecosystems.

FoodWeb Dynamics

Analysis of the topology of food webs has proven very use-
ful for exploring basic patterns and generalities of “who
eats whom” in ecosystems. This approach seeks to iden-
tify “the most universal, high-level, persistent elements of
organization” [35] in trophic networks, and to leverage
understanding of such organization for thinking about
ecosystem robustness. However, food webs are inher-
ently dynamical systems, since feeding interactions in-

volve biomass flows among species whose “stocks” can be
characterized by numbers of individuals and/or aggregate
population biomass. All of these stocks and flows change
through time in response to direct and indirect trophic
and other types of interactions. Determining the interplay
among network structure, network dynamics, and various
aspects of stability such as persistence, robustness, and re-
silience in complex “real-world” networks is one of the
great current challenges in network research [101]. It is
particularly important in the study of ecosystems, since
they face a variety of anthropogenic perturbations such as
climate change, habitat loss, and invasions, and since hu-
mans depend on them for a variety of “ecosystem services”
such as supply of clean water and pollination of crops [34].

Because it is nearly impossible to compile detailed,
long-term empirical data for dynamics of more than two
interacting species, most research on species interaction
dynamics relies on analytical or simulation modeling.
Most modeling studies of trophic dynamics have focused
narrowly on predator-prey or parasite-host interactions.
However, as the previous sections should make clear, in
natural ecosystems such interaction dyads are embedded
in diverse, complex networks, where many additional taxa
and their direct and indirect interactions can play impor-
tant roles for the stability of focal species as well as the
stability or persistence of the broader community. Mov-
ing beyond the two-species population dynamics model-
ing paradigm, there is a strong tradition of research that
looks at interactions among 3–8 species, exploring dynam-
ics and simple variations in structure in slightlymore com-
plex systems (see reviews in [40,55]). However, these in-
teraction modules still present a drastic simplification of
the diversity and structure of natural ecosystems. Other
dynamical approaches have focused on higher diversity
model systems [69], but ignore network structure in order
to conduct analytically tractable analyzes.

Researchers are increasingly integrating dynamics
with complex food web structure in modeling studies that
move beyond small modules. The Lotka–Volterra cascade
model [20,21,32] was an early incarnation of this type of
integration. As its name suggests, the Lotka–Volterra cas-
cade model runs classic L-V dynamics, including a non-
saturating linear functional response, on sets of species in-
teractions structured according to the cascade model [28].
The cascademodel was also used to generate the structural
framework for a dynamical food web model with a lin-
ear functional response [58] used to study the effects of
prey-switching on ecosystem stability. Improving on as-
pects of biological realism of both dynamics and struc-
ture, a bioenergetic dynamical model with nonlinear func-
tional responses [119] was used in conjunction with em-



3676 F Food Webs

pirically-defined food web structure among 29 species to
simulate the biomass dynamics of a marine fisheries food
web [117,118]. This type of nonlinear bioenergetic dynam-
ical modeling approach has been integrated with niche
model network structure and used to study more com-
plex networks [13,14,68,112]. A variety of types of dy-
namics are observed in these non-linear models, includ-
ing equilibrium, limit cycle, and chaotic dynamics, which
may ormay not be persistent over short or long time scales
(Fig. 11). Other approaches model ecological and evolu-
tionary dynamics to assemble species into networks, rather
than imposing a particular structure on them. These mod-
els, which typically employ an enormous amount of pa-
rameters, are evaluated as to whether they generate plau-
sible persistence, diversity, and network structure (see re-
view by [72]). All of these approaches are generally used to
examine stability, characterized in a diversity of ways, in
ecosystems with complex structure and dynamics [71,85].

While it is basically impossible to empirically validate
models of integrated structure and dynamics for com-
plex ecological networks, in some situations it is possi-
ble to draw interesting connections between models and
data at more aggregated levels. This provides opportuni-
ties to move beyond the merely heuristic role that such
models generally play. For example, nonlinear bioener-
getic models of population dynamics parametrized by bi-
ological rates allometrically scaled to populations’ average
body masses have been run on various types of model food
web structures [14]. This approach has allowed the com-
parison of trends in two different measures of food web
stability, and how they relate to consumer-resource body-
size ratios and to initial network structure. One measure
of stability is the fraction of original species that display
persistent dynamics, i. e., what fraction of species do not
go extinct in the model when it is run over many time
steps (“species persistence”). Another measure of stability
is how variable the densities of all of the persistent species
are (“population stability”)—greater variability across all
the species indicates decreased stability in terms of popu-
lation dynamics.

Brose and colleagues [14] ran the model using differ-
ent hypothetical consumer-resource body-size ratios that
range from 10�2 (consumers are 100 times smaller than
their resources) to 105 (consumers are 100,000 times larger
than their resources) (Fig. 12). Species persistence in-
creases dramatically with increasing body-size ratios, un-
til inflection points are reached at which persistence shifts
to high levels (� 0.80) of persistence (Fig. 12a). How-
ever, population stability decreases with increasing body-
size ratios until inflection points are reached that show
the lowest stability, and then increases again beyond those

Food Webs, Figure 11
5 different types of population dynamics shown as time series of
population density (from [40], Fig. 10.1). The types of dynamics
shown include a stable equilibrium, damped oscillations, limit
cycles, amplified oscillations, and chaotic oscillations

points (Fig. 12b). In both cases, the inflection points corre-
spond to empirically observed consumer-resource body-
size ratios, both for webs parametrized to represent in-
vertebrate dominated webs, and for webs parametrized
to represent ectotherm vertebrate dominated webs. Thus,
across thousands of observations, invertebrate consumer-
resource body size ratios are � 101, and ectotherm verte-
brate consumer-resource body size ratios are� 102, which
correspond to themodel’s inflection points for species per-
sistence and population stability (Fig. 12). It is interesting
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Food Webs, Figure 12
a shows the fraction of species that display persistent dynamics as a function of consumer-resource body-size ratios for model
food webs parametrized for invertebrates (gray line) and ectotherm vertebrates (black line). The inflection points for shifts to high-
persistence dynamics are indicated by red arrows for both curves, and those inflection points correspond to empirically observed
consumer-resource body size ratios for invertebrate dominated webs (101—consumers are on average 10 times larger than their
resources) and ectotherm vertebrate dominated webs (102—consumers are on average 100 times larger than their resources). b
shows results for population stability, the mean of how variable species population biomasses are in persistent webs. In this case,
the inflection points for shifts to low population stability are indicated by red arrows, and those inflection points also correspond to
the empirically observed body-size ratios for consumers and resources. Figure adapted from [14]

to note that high species persistence is coupled to low pop-
ulation stability—i. e., an aspect of increased stability of the
whole system (species persistence) is linked to an aspect of
decreased stability of components of that system (popula-
tion stability). It is also interesting to note that in this for-
mulation, using initial cascade versus niche model struc-
ture had little impact on species persistence or population
stability [14], although other formulations show increased
persistence when dynamics are initiated with niche model
versus other structures [68]. How structure influences dy-
namics, and vice-versa, is an open question.

Ecological Networks

This article has focused on food webs, which gener-
ally concern classic predator-herbivore-primary producer
feeding interactions. However, the basic concept of food
webs can be extended to a broader framework of “ecolog-
ical networks” that is more inclusive of different compo-
nents of ecosystem biomass flow, and that takes into con-
sideration different kinds of species interactions that are
not classic “predator-prey” interactions. Three examples
are mentioned here. First, parasites have typically been
given short shrift in traditional food webs, although ex-
ceptions exist (e. g., [51,67,74]). This is changing as it be-
comes clear that parasites are ubiquitous, often have sig-
nificant impacts on predator-prey dynamics, and may be
the dominant trophic habitat in most food webs, poten-
tially altering our understanding of structure and dynam-

ics [59]. The dynamical models described previously have
been parametrized with more conventional, non-parasite
consumers in mind. An interesting open question is how
altering dynamical model parameters such as metabolic
rate, functional response, and consumer-resource body
size ratios to reflect parasite characteristics will affect our
understanding of food web stability.

Second, the role of detritus, or dead organic matter,
in food webs has yet to be adequately resolved in either
structural or dynamical approaches. Detritus has typically
been included as one or several separate nodes in many bi-
nary-link and flow-weighted food webs. In some cases, it is
treated as an additional “primary producer,” while in other
cases both primary producers and detritivores connect to
it. Researchersmust think much more carefully about how
to include detritus in all kinds of ecological studies [80],
given that it plays a fundamental role in most ecosystems
and has particular characteristics that differ from other
food web nodes: it is non-living organic matter, all species
contribute to detrital pools, it is a major resource for many
species, and the forms it takes are extremely heterogeneous
(e. g., suspended organic matter in water columns; fecal
material; rotting trees; dead animal bodies; small bits of
plants and molted cuticle, skin, and hair mixed in soil;
etc.).

Third, there are many interactions that species par-
ticipate in that go beyond strictly trophic interactions.
Plant-animal mutualistic networks, particularly pollina-
tion and seed dispersal or “frugivory” networks, have re-
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ceived the most attention thus far. They are character-
ized as “bipartite” (two-level) graphs, with links from an-
imals to plants, but no links among plants or among ani-
mals [7,9,56,57,73,107]. While both pollination and seed
dispersal do involve a trophic interaction, with animals
gaining nutrition from plants during the interactions, un-
like in classic predator-prey relationships a positive bene-
fit is conferred upon both partners in the interaction. The
evolutionary and ecological dynamics of such mutualis-
tic relationships place unique constraints on the network
structure of these interactions and the dynamical stabil-
ity of such networks. For example, plant-animal mutualis-
tic networks are highly nested and thus asymmetric, such
that generalist plants and generalist animals tend to in-
teract among themselves, but specialist species (whether
plants or animals) also tend to interact with the most gen-
eralist species [7,107]. When simple dynamics are run on
these types of “coevolutionary” bipartite networks, it ap-
pears that the asymmetric structure enhances long-term
species coexistence and thus biodiversity maintenance [9].

Future Directions

Food web research of all kinds has expanded greatly over
the last several years, and there are many opportunities
for exciting new work at the intersection of ecology and
network structure and dynamics. In terms of empiricism,
there is still a paucity of detailed, evenly resolved com-
munity food webs in every habitat type. Current theory,
models, and applications need to be tested against more
diverse, more complete, and more highly quantified data.
In addition, there are many types of datasets that could be
compiled which would support novel research. For exam-
ple, certain kinds of fossil assemblagesmay allow the com-
pilation of detailed paleo food webs, which in turn could
allow examination of questions about how and why food
web structure does or does not change over deep time or
in response tomajor extinction events. Another example is
data illustrating the assembly of food [41] webs in partic-
ular habitats over ecological time. In particular, areas un-
dergoing rapid successional dynamics would be excellent
candidates, such as an area covered by volcanic lava flows,
a field exposed by a retreating glacier, a hillside denuded by
an earth slide, or a forest burned in a large fire. This type of
data would allow empirically-based research on the topo-
logical dynamics of food webs. Another empirical frontier
is the integration of multiple kinds of ecological interac-
tion data into networks with multiple kinds of links—for
example, networks that combine mutualistic interactions
such as pollination and antagonistic interactions such as
predator-prey relationships. In addition, more spatially

explicit food web data can be compiled across microhab-
itats or linked macrohabitats [8]. Most current food web
data is effectively aspatial even though trophic interactions
occur within a spatial context. More could also be done to
collect food web data based on specific instances of trophic
interactions. This was done for the insects that live inside
the stems of grasses in British fields. The web includes
multiple grass species, grass herbivores, their parasitoids,
hyper-parasitoids, and hyper-hyper parasitoids [67]. Dis-
section of over 160,000 grass stems allowed detailed quan-
tification of the frequency with which the species (S D 77
insect plus 10 grass species) and different trophic interac-
tions (L D 126) were observed.

Better empiricism will support improved and novel
analysis, modeling, and theory development and testing.
For example, while food webs appear fundamentally dif-
ferent in some ways from other kinds of “real-world” net-
works (e. g., they don’t display power-law degree distribu-
tions), they also appear to share a common core network
structure that is scale-dependent with species richness and
connectance in predicable ways, as suggested by the suc-
cess of the niche and related models. Some of the dispar-
ity with other kinds of networks, and the shared structure
across food webs, may be explicable through finite-size ef-
fects or other methodological or empirical constraints or
artifacts. However, aspects of these patterns may reflect at-
tributes of ecosystems that relate to particular ecological,
evolutionary, or thermodynamic mechanisms underlying
how species are organized in complex bioenergetic net-
works of feeding interactions. Untangling artifacts from
attributes [63] and determining potential mechanisms un-
derlying robust phenomenological patterns (e. g., [10]) is
an important area of ongoing and future research. As
a part of this, there is much work to be done to continue
to integrate structure and dynamics of complex ecologi-
cal networks. This is critical for gaining a more compre-
hensive understanding of the conditions that underlie and
promote different aspects of stability, at different levels of
organization, in response to external perturbations and to
endogenous short- and long-term dynamics.

As the empiricism, analysis and modeling of food web
structure and dynamics improves, food web network re-
search can play a more central and critical role in con-
servation and management [76]. It is increasingly appar-
ent that an ecological network perspective, which encom-
passes direct and indirect effects among interacting taxa,
is critical for understanding, predicting, andmanaging the
impacts of species loss and invasion, habitat conversion,
and climate change. Far too often, critical issues of ecosys-
tem management have been decided on extremely limited
knowledge of one or a very few taxa. For example, this
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has been an ongoing problem in fisheries science. The nar-
row focus of most research driving fisheries management
decisions has resulted in overly optimistic assessments of
sustainable fishing levels. Coupled with climate stressors,
over-fishing appears to be driving steep, rapid declines in
diversity of common predator target species, and proba-
bly many other kinds of associated taxa [114]. Until we
acknowledge that species of interest to humans are em-
bedded within complex networks of interactions that can
produce unexpected effects through the interplay of direct
and indirect effects, we will continue to experience nega-
tive outcomes from our management decisions [118]. An
important part of minimizing and mitigating human im-
pacts on ecosystems also involves research that explicitly
integrates human and natural dynamics. Network research
provides a natural framework for analyzing and modeling
the complex ways in which humans interact with and im-
pact the world’s ecosystems, whether through local forag-
ing or large-scale commercial harvesting driven by global
economic markets.

These and other related research directions will de-
pend on efficient management of increasingly dispersed
and diversely formatted ecological and environmental
data. Ecoinformatic tools—the technologies and practices
for gathering, synthesizing, analyzing, visualizing, stor-
ing, retrieving and otherwise managing ecological knowl-
edge and information—are playing an increasingly impor-
tant role in the study of complex ecosystems, including
food web research [47]. Indeed, ecology provides an ex-
cellent testbed for developing, implementing, and testing
new information technologies in a biocomplexity research
context (e. g., Semantic Prototypes in Research Ecoinfor-
matics/SPiRE: spire.umbc.edu/us/; Science Environment
for Ecological Knowledge/SEEK: seek.ecoinformatics.org;
Webs on the Web/WoW: www.foodwebs.org). Synergis-
tic ties between ecology, physics, computer science and
other disciplines will dramatically increase the efficacy of
research that takes advantage of such interdisciplinary ap-
proaches, as is currently happening in food web and re-
lated research.
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Glossary

Autonomy In robotics autonomy conventionally refers to
the degree to which a robot is able to make its own de-
cisions about which actions to take next. Thus a fully
autonomous robot would be capable of carrying out
its entire mission or function without human control
or intervention. A semi-autonomous robot would have
a degree of autonomy but require some human super-
vision.

Behavior-based control Behavior-based control de-
scribes a class of robot control systems characterized
by a set of conceptually independent task achieving
modules, or behaviors. All task achieving modules are
able to access the robot’s sensors and when a particular
module becomes active it is able to temporarily take
control of the robot’s actuators [2].

Braitenberg vehicle In robotics a Braitenberg vehicle is
a conceptual mobile robot in which simple sensors
are connected directly to drive wheels. Thus if, for
instance, a front-left-side sensor is connected to the
right-side drive wheel and vice-versa, then if the sen-
sors are light sensitive the robot will automatically
steer towards a light source [11].

Finite state machine In the context of this article a fi-
nite state machine (FSM) is a model of robot behavior
which has a fixed number of states. Each state repre-
sents a particular set of actions or behaviors. The robot
can be in only one of these states at any given instant
in time and transitions between statesmay be triggered
by either external or internal events.

Odometry Odometry refers to the technique of self-lo-
calization in which a robot measures how far it has
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traveled by, for instance, counting the revolutions of
its wheels. Odometry suffers the problem that wheel-
slip leads to cumulative errors so odometric position
estimates are generally inaccurate and of limited value
unless combined with other localization techniques.

Robot In this article the terms robot andmobile robot are
used interchangeably. A mobile robot is a man-made
device or vehicle capable of (1) sensing its environ-
ment and (2) purposefully moving through and acting
upon or within that environment. A robot may be fully
autonomous, semi-autonomous or tele-operated.

Swarm intelligence The term swarm intelligence de-
scribes the purposeful collective behaviors observed in
nature, most dramatically in social insects. Swarm in-
telligence is the study of those collective behaviors, in
both natural and artificial systems of multiple agents,
and how they emerge from the local interactions of
the agents with each other and with their environ-
ment [8,19].

Tele-operation A robot is said to be tele-operated if it is
remotely controlled by a human operator.

Definition of the Subject

Foraging robots are mobile robots capable of searching
for and, when found, transporting objects to one or more
collection points. Foraging robots may be single robots
operating individually, or multiple robots operating col-
lectively. Single foraging robots may be remotely tele-op-
erated or semi-autonomous; multiple foraging robots are
more likely to be fully autonomous systems. In robotics
foraging is important for several reasons: firstly, it is
a metaphor for a broad class of problems integrating ex-
ploration, navigation and object identification, manipula-
tion and transport; secondly, inmulti-robot systems forag-
ing is a canonical problem for the study of robot-robot co-
operation, and thirdly, many actual or potential real-world
applications for robotics are instances of foraging robots,
for instance cleaning, harvesting, search and rescue, land-
mine clearance or planetary exploration.

Introduction

Foraging is a benchmark problem for robotics, especially
for multi-robot systems. It is a powerful benchmark prob-
lem for several reasons: (1) sophisticated foraging ob-
served in social insects, recently becoming well under-
stood, provides both inspiration and system level models
for artificial systems. (2) Foraging is a complex task in-
volving the coordination of several – each also difficult –
tasks including efficient exploration (searching) for food
or prey, physical collection (harvesting) of food or prey al-

most certainly requiring physical manipulation, transport
of the food or prey, homing or navigation whilst carrying
the food or prey back to a nest site, and deposition of the
food item in the nest before returning to foraging. (3) Ef-
fective foraging requires cooperation between individuals
involving either communication to signal to others where
food or prey may be found (e. g. pheromone trails, or di-
rection giving) and/or cooperative transport of food items
too large for a single individual to transport.

There are, at the time of writing, very few types of for-
aging robots successfully employed in real-world applica-
tions. Most foraging robots are to be found in research
laboratories or, if they are aimed at real-world applica-
tions, are at the stage of prototype or proof-of-concept.
The reason for this is that foraging is a complex task which
requires a range of competencies to be tightly integrated
within the physical robot and, although the principles of
robot foraging are now becoming established, many of the
sub-system technologies required for foraging robots re-
main very challenging. In particular, sensing and situa-
tional awareness; power and energy autonomy; actuation,
locomotion and safe navigation in unknown physical envi-
ronments and proof of safety and dependability all remain
difficult problems in robotics.

This article therefore focuses on describing and defin-
ing the principles of robot foraging. The majority of ex-
amples will necessarily be of laboratory systems not aimed
at solving real-world applications but designed to model,
illuminate and demonstrate those principles. The article
proceeds as follows. Section “An Abstract Model of Robot
Foraging” describes an abstract model of robot foraging,
using a finite state machine (FSM) description to define
the discrete sub-tasks, or states, that constitute foraging.
The FSMmethod will be used throughout this article. The
section then develops a taxonomy of robot foraging. Sec-
tion “Single Robot Foraging” describes the essential de-
sign features that are a requirement of any foraging robot,
whether operating singly or in a multi-robot team, and the
technologies currently available to implement those fea-
tures; the section then outlines a number of examples of
single-robot foraging, including robots that are commer-
cially available. Section “Multi-Robot (Collective) Forag-
ing” then describes the development and state-of-the-art
in multi-robot (collective) foraging; strategies for cooper-
ation are described including information sharing, coop-
erative transport and division of labor (task allocation),
the section then reviews approaches to the mathematical
modeling of multi-robot foraging. The article concludes
in Sect. “Future Directions” with a discussion of future di-
rections in robot foraging and an outline of the technical
challenges that remain to be solved.
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An Abstract Model of Robot Foraging

Foraging, by humans or animals, is the act of searching
(widely) for and collecting (or capturing) food for storage
or consumption. Robot foraging is defined more broadly
as searching for and collecting any objects, then return-
ing those objects to a collection point. Of course if the
robot(s) are searching for energy resources for themselves
then robot foraging will have precisely the same meaning
as human or animal foraging. In their definitive review pa-
per on cooperative mobile robotics Cao et al. state sim-
ply “In foraging, a group of robots must pick up objects
scattered in the environment” [14]. Østergaard et al. de-
fine foraging as “a two-step repetitive process in which (1)
robots search a designated region of space for certain ob-
jects, and (2) once found these objects are brought to a goal
region using some form of navigation” [54].

Figure 1 shows a Finite State Machine (FSM) repre-
sentation of a foraging robot (or robots). In the model the
robot is in always in one of four states: searching, grab-
bing, homing or depositing. Implied in this model is, firstly,
that the environment or search space contains more than
one of the target objects; secondly, that there is a single
collection point (hence this model is sometimes referred
to as central-place foraging), and thirdly, that the pro-
cess continues indefinitely. The four states are defined as
follows.

1. Searching. In this state the robot is physically moving
through the search space using its sensors to locate and
recognize the target items. At this level of abstraction
we do not need to state how the robot searches: it could,
for instance, wander at random, or it could employ
a systematic strategy such asmoving alternately left and
right in a search pattern. The fact that the robot has to
search at all follows from the pragmatic real-world as-
sumptions that either the robot’s sensors are of short
range and/or the items are hidden (behind occluding
obstacles for instance); in either event we must assume
that the robot cannot find items simply by staying in
one place and scanning the whole environment with its

Foraging Robots, Figure 1
Finite State Machine for Basic Foraging

sensors. Object identification or recognition could re-
quire one of a wide range of sensors and techniques.
When the robot finds an item it changes state from
searching to grabbing. If the robot fails to find the tar-
get item then it remains in the searching state forever;
searching is therefore the ‘default’ state.

2. Grabbing. In this state the robot physically captures and
grabs the item ready to transport it back to the home
region. Here we assume that the item is capable of be-
ing grabbed and conveyed by a single robot (the case of
larger items that require cooperative transport by more
than one robot will be covered later in this article). As
soon as the item has been grabbed the robot will change
state to homing.

3. Homing. In this state the robot must move, with its col-
lected object, to a home or nest region. Homing clearly
requires a number of stages, firstly, determination of
the position of the home region relative to where the
robot is now, secondly, orientation toward that posi-
tion and, thirdly, navigation to the home region. Again
there are a number of strategies for homing: one would
be to re-trace the robot’s path back to the home region
using, for instance, odometry or by following a marker
trail; another would be to home in on a beacon with
a long range beacon sensor. When the robot has suc-
cessfully reached the home region it will change state to
depositing.

4. Depositing. In this state the robot deposits or deliv-
ers the item in the home region, and then immediately
changes state to searching and hence resumes its search.

There are clearly numerous variations on this basic forag-
ing model. Some are simplifications: for instance if a robot
is searching for one or a known fixed number of objects
then the process will not loop indefinitely. Real robots do
not have infinite energy and so a model of practical for-
aging would need to take account of energy management.
However, many variations entail either complexity within
one or more of the four basic states (consider, for instance,
objects that actively evade capture – a predator-preymodel
of foraging), or complexity in the interaction or coopera-
tion between robots in multi-robot foraging. Thus the ba-
sic model stands as a powerful top-level abstraction.

A Taxonomy of Robot Foraging

Oster and Wilson classify the foraging strategies of social
insects into five types, summarized in Table 1 [53]. Höll-
dobler and Wilson describe a more comprehensive tax-
onomy of insect foraging as a combination of strategies
for (1) hunting, (2) retrieval and (3) defense [30]. How-
ever, since we will not be concerned in this article with
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Foraging Robots, Table 1
Oster andWilson’s classification of insect foraging

Type Description
I Solitary insects find and retrieve prey singly
II As I except that solitary foragers signal the location of

food to other insects
III Foragers depart the nest and follow ‘trunk trails’ before

branching off to search unmarked terrain
IV As II except that a group of insects assaults or retrieves

the prey en-masse
V Multiple insects forage as groups

defensive robot(s), then Oster and Wilson’s classification
is more than sufficient as a basis for consideration of robot
foraging.

In robotics several taxonomies have been proposed
for multi-robot systems. Dudek et al. define seven taxo-
nomic axes: collective size; communications [range, topol-
ogy and bandwidth]; collective reconfigurability; process-
ing ability and collective composition [21]. Here collective
size may be: single robot, pair of robots, limited (in rela-
tion to the size of the environment) or infinite (number of
robots Nr 	 1); communications rangemay be: none (i. e.
robots do not communicate directly), near (robots have
limited range communication) or infinite (any robot may
communicate with any other). Collective reconfigurabil-
ity refers to spatial organization and may be: static (robots
are in a fixed formation); coordinated (robots may coor-
dinate to alter their formation) or dynamic (spatial orga-
nization may change arbitrarily). Processing ability refers
to the computational model of individuals, here Dudek et
al. make the distinction between the general purpose com-
puter which most practical robots will have, or simpler
models including the finite state machine. Collective com-
position may be: identical (robots are both physically and
functionally identical), homogeneous or heterogeneous.
Dudek et al. makes the distinction – highly relevant to for-
aging robots – between tasks that are traditionally single-
agent, tasks that are traditionally multi-agent, tasks that
require multiple agents, or tasks that may benefit from
multiple agents.

In contrast to Dudek’s taxonomy which is based upon
the characteristics of the robot(s), Balch characterizes tasks
and rewards [3]. Balch’s task taxonomy is particularly rele-
vant to robot foraging because it leads naturally to the def-
inition of performance metrics. Balch articulates six task
axes: time; criteria; subject of action; resource limits; group
movement and platform capabilities. Time and criteria are
linked; time may be: limited (task performance is deter-
mined by how much can be achieved in the fixed time);

minimum (task performance is measured as time taken
to complete the task); unlimited time, or synchronized
(robots must synchronize their actions). Criteria refers to
how performance is optimized over time; it may be fi-
nite (performance is summed over a finite number of time
steps); average (performance is averaged over all time) or
discounted (future performance is discounted geometri-
cally). Subject of action may be: object- or robot-based,
depending upon whether the movement or positioning
of objects or robots, respectively, is important. Balch’s
fourth criterion is again relevant to foraging: resource lim-
its which may be: limited (external resources, i. e. objects
to be foraged, are limited); energy (energy consumption
must be minimized); internally competitive (one robot’s
success reduces the likelihood of success of another), or ex-
ternally competitive (if, for instance, one robot team com-
petes against another). See also [24] for a formal analysis
and taxonomy of task allocation.

Østergaard et al. [54] develop a simple taxonomy of
foraging by defining eight characteristics each of which has
two values:

1. number of robots: single or multiple;
2. number of sinks (collection points for foraged items):

single or multiple;
3. number of source areas (of objects to be collected): sin-

gle or multiple;
4. search space: unbounded or constrained;
5. number of types of object to be collected: single or mul-

tiple;
6. object placement: in fixed areas or randomly scattered;
7. robots: homogeneous or heterogeneous and
8. communication: none or with.

This taxonomy maps more closely (but not fully) onto the
insect foraging taxonomy of Table 1, but fails to capture
task performance criteria, nor does it specify the strategy
for either searching for, physically collecting or retrieving
objects. Tables 2 and 3 propose amore comprehensive tax-
onomy for robot foraging that incorporates the robot-cen-
tric and task/performance oriented features of Dudek et al.
and Balch, respectively, with the environmental features
of Østergaard et al., whilst mapping onto the insect for-
aging classification of Oster and Wilson. The four major
axes are Environment, Robot(s), Performance and Strat-
egy. Each major axis has several minor axes and each of
these can take the values enumerated in the third column
of Tables 2 and 3. The majority of the values are self-ex-
planatory, those that are not are annotated. Table 3 sug-
gests a mapping of Oster and Wilson’s classification onto
robot foraging strategies.
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Foraging Robots, Table 2
A taxonomy of robot foraging, part A

Major Axis Minor Axis Value Notes
Environment Search space Unbounded

Constrained
Source areas Single limited Fixed number of objects

Single unlimited Objects ‘re-grow’
Multiple

Sinks Single Home, nest or collection point
Multiple

Object types Single static One type of static object, food or ‘prey’
Multiple static
Single active One type of prey which evades capture

Object placement Fixed known locations
Uniform distribution
Clustered

Robot(s) Number Single
Multiple

Type Homogeneous
Heterogeneous

Object sensing Limited Short-range sensing
Unlimited Unlimited-range sensing

Localization None
Relative
Absolute

Communications None
Near
Infinite

Power Limited Robot can run out of energy
Forage Robot forages for own energy
Unlimited

Following Balch [3], we can formalize successful object
collection and retrieval as follows:

F(Oi ; t) D

(
1 if object Oi is in a sink at time t
0 otherwise :

(1)

If the foraging task is performance time limited (Perfor-
mance time = fixed) and the objective is to maximize the
number of objects foraged within fixed time T, then we
may define a performance metric for the number of ob-
jects collected in time T,

P D
NoX

iD1

F(Oi ; t0 C T) (2)

where No is the number of objects available for collection
and t0 is the start time. A metric for the number of objects
foraged per second is clearly, Pt D P/T . P as defined here

is independent of the number of robots. In order to mea-
sure the performance improvement of multi-robot forag-
ing, for example the benefit gained by search or homing
with trail following, recruitment or coordination (assum-
ing the task can be completed by a single robot, grabbing
= single and transport = single), then we may define the
performance of a single robot Ps as defined in Eq. 2 and
use this a baseline for the normalized performance Pm of
a multi-robot system,

Pm D
P
Nr

(3)

where Nr is the total number of robots. The efficiency of
multi-robot foraging is then the ratio Pm/Ps .

Consider now that we wish instead tominimize the en-
ergy cost of foraging (Performance energy = minimum). If
the energy cost of foraging object i is Ei, then we may de-
fine a performance metric for the number of objects for-
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Foraging Robots, Table 3
A taxonomy of robot foraging, part B

Major Axis Minor Axis Value Notes
Performance Time Fixed Objects foraged per second

Minimum Minimize time to forage
Unlimited

Energy Fixed Objects foraged per Joule
Minimum Minimize energy used
Unlimited

Strategy Search Random wander
Geometrical pattern
Trail following Type III
Follow other robots
In teams Type V

Grabbing Single
Cooperative Type IV

Transport Single
Cooperative Type IV

Homing Self-navigation
Home on beacon
Follow trail

Recruitment None Type I
Direct Type II
Indirect

Coordination None Type I
Self-organized Types II-V
Master slave
Central control

aged per Joule of energy,

Pe D
No

PNo
iD1 Ei

(4)

then seek the foraging strategy that achieves the highest
value for Pe.

Single Robot Foraging

The design of any foraging robot, whether operating alone
or as part of a multi-robot team, will necessarily follow
a similar basic pattern. The robot will require one or more
sensors, with which it can both sense its environment for
safe navigation and detect the objects or food-items it
seeks; actuators for both locomotion through the environ-
ment and for physically collecting, holding then depositing
its prey, and a control system to provide the robot with –
at the very least – a set of basic reflex behaviors. Since
robots are machines that perform work, which requires
energy, then power management is important; if, for in-
stance, the robot is foraging for its own energy then bal-
ancing its energy needs with the energy cost of foraging is

clearly critical. Normally, a communication transceiver is
also a requirement, either to allow remote tele-operation
or monitoring or, in the case of multi-robot collective for-
aging, for robot-robot communications. A foraging robot
is therefore a complex set of interconnected sub-systems
and, although its system-level structure may follow a stan-
dard pattern, the shape and form of the robot will vary sig-
nificantly depending upon its intended environment and
application.

This section will review approaches and techniques for
sensing, actuation, communications and control, within
the context of robot foraging and with reference to re-
search which focuses on advancing specific capabilities
within each of these domains of interest. Then a number
of examples of single robot foraging are given, including
real-world applications.

Sensing

Obstacle Avoidance and Path Planning There are
many sensors available to designers of foraging robots and
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a comprehensive review can be found in [22]. A foraging
robot will typically require short or medium range prox-
imity sensors for obstacle avoidance, such as infra-red re-
turn-signal-intensity or ultrasonic- or laser-based time-of-
flight systems. The most versatile and widely used device
is the 2D or 3D scanning laser range finder which can pro-
vide the robot with a set of radial distance measurements
and hence allow the robot to plan a safe path through ob-
stacles [64].

Localization All but the simplest foraging robots will
also require sensors for localization, that is to enable the
robot to estimate its own position in the environment. If
external reference signals are available such as fixed bea-
cons so that a robot can use radio trilateration to fix its
position relative to those beacons, or a satellite naviga-
tion system such as the Global Positioning System (GPS),
then localization is relatively straightforward. If no exter-
nal infrastructure is available then a robot will typically
make use of several sensors including odometry, an in-
ertial measurement unit (IMU) and a magnetic compass,
often combining the data from all of these sensors, in-
cluding laser scanning data, to form an estimate of its po-
sition. Simultaneous Localization and Mapping (SLAM)
is a well-known stochastic approach which typically em-
ploys Kalman filters to allow a robot (or a team of robots)
to both fix their position relative to observed landmarks
and map those landmarks with increasing confidence as
the robot(s) move through the environment [18].

Object Detection Vision is often the sensor of choice
for object detection in laboratory experiments in foraging
robots. If, for instance, the object of interest has a distinct
color which stands out in the environment then standard
image processing techniques can be used to detect then
steer towards the object [31]. However, if the environment
is visually cluttered, unknown or poorly illuminated then
vision becomes problematical. Alternative approaches to
object detection include, for instance, artificial odor sen-
sors: Hayes et al. demonstrated a multi-robot approach to
localization of an odor source [28]. An artificial whisker
modeled on the Rat mystacial vibrissae has recently been
demonstrated [56], such a sensor could be of particular
value in dusty or smoky environments.

Actuation

Locomotion The means of physical locomotion for
a foraging robot can take many forms and clearly depends
on the environment in which the robot is intended to op-
erate. Ground robots typically use wheels, tracks or legs,

although wheels are predominantly employed in proof-of-
concept or demonstrator foraging robots. An introduction
to the technology of robot mobility can be found in [63].
Flying robots (unmanned air vehicles – UAVs) are ei-
ther fixed- or rotary-wing; for recent examples of work to-
wards teams of flying robots see [13] (fixed-wing) and [51]
(rotary-wing). Underwater robots (unmanned underwa-
ter vehicles – UUVs) generally use the same principles
for propulsion as submersible remotely operated vehicles
(ROVs), [70]. Whatever the means of locomotion impor-
tant principles which apply to all foraging robots are that
robot(s) must be able to (1) move with sufficient stability
for the object detection sensors to be able to operate effec-
tively and (2) position themselves with sufficient precision
and stability to allow the object to be physically grabbed.
These factors place high demands on a foraging robot’s
physical locomotion system, especially if the robot is re-
quired to operate in soft or unstable terrain.

Object Manipulation The manipulation required of
a foraging robot is clearly dependent on the form of the
object and the way the object presents itself to the robot
as it approaches. The majority of foraging experiments or
demonstrations have simplified the problem of object ma-
nipulation by using objects that are, for instance, always
the right way up (metal pucks or wooden sticks protrud-
ing from holes) so that a simple gripper mounted on the
front of the robot is able to grasp the objects with reason-
able reliability. However, in general a foraging robot would
require the versatility of a robot arm (multi-axis manipu-
lator) and general purpose gripper (hand) such that – with
appropriate vision sensing – the robot can pick up the ob-
ject regardless of its shape and orientation. This technol-
ogy is well developed in tele-operated robots used for re-
mote inspection and handling of dangerous materials or
devices, see [62,66].

Communications

Communications is of fundamental importance to robot
foraging. Only in the simplest case of a single robot for-
aging autonomously would communications be unneces-
sary. For single robot teleoperation radio communication
between operator and robot is clearly an essential require-
ment. In multi-robot foraging robot-robot communica-
tion is frequently employed to improve multi-robot per-
formance; all six axes of strategy in the taxonomy of Ta-
ble 3: search, grabbing, transport, homing, recruitment
and coordination may require some form of robot-robot
communication. Arai et al. point out the important dis-
tinction between explicit and implicit communication [1].
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Explicit Communication Explicit communication ap-
plies when robots need to exchange information directly.
The physical medium of communication is frequently
(but not necessarily) radio, and wireless local area net-
work (WLAN) technology is highly appropriate to ter-
restrial multi-robot systems, not least because a spatially
distributed team of wireless networked robots naturally
forms an ad-hoc network, which – providing the team
maintains sufficient connectivity – allows any robot to
communicate with any other via multiple hops, [69].
A method for linking wireless connectivity to locomotion
in order tomaintain connectivity is described in [52]; work
that falls within the framework of situated communica-
tions proposed by Støy. Situated communication pertains
when “both the physical properties of the signal that trans-
fers the message and the content of the message contribute
to its meaning” [65].

Implicit Communication Implicit communication ap-
plies when robots communicate not directly but via the
environment, also known as stigmergic communications.
Thus one robot changes the environment and another
senses the change and alters its behavior accordingly.
Beckers et al., in one of the first demonstrations of self-
organized multi-robot puck clustering, show that stig-
mergic communication alone can give rise to the desired
overall group behavior [6]. However, in their study on
multi-robot communication, Balch and Arkin show that
while stigmergy may be sufficient to complete the task,
direct communication can increase efficiency [4]. Trail
following, in which a robot follows a short-lived trail
left by other(s), is an example of implicit communica-
tion [59,60].

Control

From a control perspective the simplicity of the finite state
machine for basic foraging, in Fig. 1, is deceptive. In prin-
ciple, a very simple foraging robot could be built with basic
hard-wired reflex actions such as obstacle avoidance and
taxis toward the attractor object; such a robot is known as
a Braitenberg vehicle, after his landmark work [11]. How-
ever, even simple foraging requires a complex set of com-
petencies that would be impractical to implement except
as a program on one or more embedded computers (mi-
croprocessors) in the robot. There are clearlymanyways of
building such a control program, but in the field of mobile
robotics a number of robot control architectures have been
defined. Such architectures mean that robot designers can
approach the design of the control system in a principled
way.

Foraging Robots, Figure 2
Subsumption control architecture for basic foraging

A widely adopted robot control architecture, first pro-
posed and developed by Brooks, is the layered subsump-
tion architecture known generically as behavior-based
control [12]. Behavior-based control is particularly rele-
vant to foraging robots since, like foraging, it is biologi-
cally inspired. In particular, as Arkin describes in [2], the
principles of behavior-based control draw upon ethology –
the study of animal behavior in the natural environment.
Essentially behavior-based control replaces the functional
modularity of earlier robot control architectures with task
achieving modules, or behaviors. Matarić uses Brooks’ be-
havior language (BL) to implement a set of basic behaviors
for multi-robot foraging, as described in more detail below
in Sect. Multi-Robot (Collective) Foraging, [46,47]. Refer
to [14] for a comprehensive review of group control archi-
tectures for multi-robot systems.

Figure 2 shows the subsumption architecture for ba-
sic foraging (from Fig. 1), with the addition of avoidance
for safely avoiding obstacles (including other robots in
the case of multi-robot foraging). Each behavior runs in
parallel and, when activated suppresses the output of the
layer(s) below to take control of the robot’s actuators.

Examples of Single Robot Foraging

A Soda-Can Collecting Robot Possibly the first demon-
stration of autonomous single-robot foraging is Connell’s
soda-can collecting robot Herbert, [15]. Herbert’s task was
to wander safely through an office environment while
searching for empty soda-cans; upon finding a soda-can
Herbert would need to carefully grab the can with its hand
and 2 degrees-of-freedom arm, then return to a waste bas-
ket to deposit it before resuming the search. Herbert there-
fore represents an implementation of exactly the basic for-
agingmodel of Fig. 1 and 2. However, two of the behaviors
are not so straightforward. Both searching and homing re-
quire the robot to be able to navigate safely through a clut-
tered and unstructured ‘real-world’ environment, while
grabbing is equally complex given the precision required
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to safely reach and grab the soda-can. Thus Herbert’s con-
trol system required around 40 low-level behaviors in or-
der to realize foraging.

A Robot Predator Arguably the first attempt to build
a robot capable of actively predating for its own energy is
the Slugbot of Holland and co-workers, [26,33]. The Slug-
bot (Fig. 3) solved the difficult problems of finding and
collecting slugs in an energy efficient manner by means of,
firstly, a long but light articulated arm which allows the
robot to scan (in spiral fashion) a large area of ground for
slugs without having to physically move the whole robot
(which is much more costly in energy). Secondly, the spe-
cial purpose gripper at the end of the arm is equipped with
a camera which, by means of reflected red light and appro-
priate vision processing, is able to reliably detect and col-
lect the slugs. An evolution of the Slugbot, the Ecobot, uses
microbial fuel cell (MFC) technology to generate electrical
energy directly from unrefined biomass [49].

Real-World Foraging Robots Autonomous crop har-
vesting is an obvious real-world application of single-
robot foraging. The Demeter system [57] has success-
fully demonstrated automated harvesting of cereal crops.
Demeter uses a combination of GPS for coarse navigation
and vision to sense the crop-line and hence fine-tune the
harvester’s steering to achieve a straight and even cut of the
crop. The vision processing is challenging because it has to
cope with a wide range of lighting conditions including –
in conditions of bright sunlight – shadows cast onto the
crop line by the harvester itself. In the field of automated
agriculture a number of proof-of-concept robot harvesters
have been demonstrated for cucumber, tomato and other
fruits [34,35].

Robot lawn mowers and vacuum cleaners can simi-
larly be regarded as simple forms of foraging robot and
are notable because they are the only form of autonomous
foraging robot in commercial production; in both cases

Foraging Robots, Figure 3
The Slugbot: a proof-of-concept robot predator

the search task is simple because the grass, or dirt are
not discrete objects to be found. The search problem for
robot lawnmovers and vacuum cleaners thus becomes the
problem of energy efficient strategies for (1) safely cover-
ing the whole search space while avoiding obstacles and
(2) homing and docking to a re-charging station. Robot
lawn mowers typically require a wire to be installed at the
perimeter of the lawn, thus delimiting the robot’s work-
ing area, see [29] for a survey of commercial robot lawn
mowers. A short account of the development of a vacuum
cleaning robot is given in [58].

Although technically an off-world application, the
planetary rover may be regarded as an instance of sin-
gle-robot foraging in which the objects of interest (ge-
ological samples) are collected and analyzed within the
robot. Autonomous sample-return robots would be true
foragers [61]. The proof-of-concept robot astrobiologist
Zoë forages – in effect – for evidence of life [67].

Multi-Robot (Collective) Foraging

Foraging is clearly a task that lends itself to multi-robot
systems and, even if the task can be accomplished by a sin-
gle robot, foraging should – with careful design of strate-
gies for cooperation – benefit frommultiple robots. Swarm
intelligence is the study of natural and artificial systems of
multiple agents in which there is no centralized or hier-
archical command or control. Instead, global swarm be-
haviors emerge as a result of local interactions between
the agents and each other, and between agents and the
environment, [8]. Swarm robotics is concerned with the
design of artificial robot swarms based upon the princi-
ples of swarm intelligence, thus control is completely dis-
tributed and robots, typically, must choose actions on the
basis only of local sensing and communications, [7,16].
Swarm robotics is thus a sub-set of multi-robot systems
and, in the taxonomy of Table 2 the strategy: coordination
= self-organized.
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Foraging is therefore a benchmark problem within
swarm robotics, not least because of the strong cross-over
between the study of self-organization in social insects and
their artificial counterparts within swarm intelligence [19].
This section will therefore focus on examples of multi-
robot foraging from within the field of swarm robotics.
Three strategies for cooperation will be outlined: informa-
tion sharing, physical cooperation and division of labor.
The section will conclude with an outline of the problem
of mathematical modeling of swarms of foraging robots.

Without Cooperation

Balch and co-workers describe the winners of the ‘Of-
fice Cleanup Event’ of the 1994 AAAI Mobile Robot
Competition: a multi-robot trash-collecting team [5]. The
robots were equipped with a vision system for recogni-
tion and distance estimation of trash items (primarily soda
cans) and differentiation between trash items, wastebas-
kets and other robots. The robots did not communicate,
but employed a collective strategy in which robots gen-
erate a strong repulsive force if they see each other while
searching, and a weaker (but sufficient for avoidance) re-
pulsive force while in other states; this had the effect of
causing the robots to spread-out and hence search the
environment more efficiently. Interestingly, Balch et al.
found that the high density of trash in the competition
favored a ‘sit-and-spin’ strategy to scan for trash items
rather than the random wander approach of the origi-
nal design. The FSM was essentially the same schema as
shown in Fig. 1 except that since there could be a num-
ber of wastebaskets at unknown locations then ‘homing’
becomes ‘search for nearest wastebasket’.

Strategies for Cooperation

Information Sharing Matarić and Marjanovic provide
what is believed to be the first description of a multi-
robot foraging experiment using real (laboratory) robots
in which there is no centralized control [47]. They describe
a system of 20 identical 1200 4-wheeled robots, equipped
with: a two-pronged forklift for picking up, carrying and
stacking metal pucks; proximity and bump sensors; radio
transceivers for data communication and a sonar-based
global positioning system. Matarić and Marjanovic extend
the basic five state foraging model (wandering, grabbing,
homing, dropping and avoiding), to introduce informa-
tion sharing as follows. If a robot finds a puck it will grab
it but also broadcast a radio message to tell other robots it
has found a puck. Meanwhile, if another robot in the lo-
cale hears this message it will first enter state tracking to
home in on the source of the message, then state search-

Foraging Robots, Figure 4
Finite State Machine for multi-robot foraging with recruitment –
adapted from [47]

ing – a more localized form of wandering. The robot will
return to wandering if it finds no puck within some time
out period. Furthermore, while in state tracking a robot
will also transmit a radio signal. If nearby robots hear this
signal they will switch from wandering into following to
pursue the tracking robot. Thus the tracking robot actively
recruits additional robots as it seeks the original success-
ful robot (a form of secondary swarming, [48]); when the
tracking robot switches to searching its recruits will do the
same. Figure 4 shows a simplified FSM. Within the taxon-
omy of Table 3 Strategy : recruitment = direct and indirect.

Physical Cooperation

Cooperative Grabbing Consider the case of multi-robot
foraging in which the object to be collected cannot be
grabbed by a single robot working alone, in Table 3
this is Strategy: grabbing = cooperative. Ijspeert et al.
describe an experiment in collaborative stick-pulling in
which two robots must work together to pull a stick out
of a hole [32,44]. Each Khephera robot is equipped with
a gripper capable of grabbing and lifting the stick, but the
hole containing the stick is too deep for one robot to be
able to pull the stick out alone; one robot must pull the
stick half-way then wait for another robot to grab the stick
and lift it clear of the hole, see Fig. 5. Ijspeert and co-
workers describe an elegant minimalist strategy which re-
quires no direct communication between robots. If one
robot finds a stick it will lift it and wait. If another finds
the same stick it will also lift it, on sensing the force on the
stick from the second robot the first robot will let go, hence
allowing the second to complete the operation.

Cooperative Transport Now consider the the situation in
which the object to be collected is too large to be trans-
ported by a single robot, in Table 3 Strategy: transport =
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Foraging Robots, Figure 5
Cooperative grabbing: Khephera robots engaged in collective stick-pulling. With kind permission of A. Martinoli

Foraging Robots, Figure 6
Cooperative transport by s-bots. (Left) s-bots approach the attractor object, (middle) s-bots start to grab the object, (right) s-bots
collectively drag the object toward a beacon. With kind permission of M. Dorigo

cooperative. Parker describes the ALLIANCE group con-
trol architecture applied to an example of cooperative box-
pushing by two robots [55].

Arguably the most accomplished demonstration of
cooperative multi-robot foraging to date is within the
swarm-bot project of Dorigo and co-workers [20]. The
s-bot is a modular robot equipped with both a gripper
and a gripping ring, which allows one robot to grip an-
other [50]. Importantly, the robot is able to rotate its
wheelbase independently of the gripping ring so that
robots can grip each other at any arbitrary point on the
circumference of the grip ring but then rotate and align
their wheels in order to be able to move as a single unit
(a swarm-bot). Groß et al. describe cooperative transport
which uses visual signaling [27]. s-bots are attracted to the
(large) object to be collected by its ring of red LEDs. The s-
bot’s LEDs are blue, but when an s-bot finds and grabs the
attractor object it switches its LEDs to red. This increases
the red light intensity to attract further s-bots which may
grab either the object, or arbitrarily a robot already holding
the object. The s-bots are then able to align and collectively
move the object.

Division of Labor In multi-robot foraging it is well
know that overall performance (measured, for instance, as
the number of objects foraged per robot in a given time

interval), does not increase monotonically with increasing
team size because of interference between robots (over-
crowding), [4,25,38]. Division of labor in ant colonies has
been well studied and in particular a response threshold
model is described in [9] and [10]; in essence a thresh-
old model means that an individual will engage in a task
when the level of some task-associated stimulus exceeds
its threshold.

For threshold-based multi-robot foraging with divi-
sion of labor Fig. 7 shows a generalized finite state ma-
chine for each robot. In this foraging model the robot will
not search endlessly. If the robot fails to find a food-item
because, for instance, its searching time exceeds a maxi-
mum search time threshold Ts, or its energy level falls be-
low a minimum energy threshold, then it will abandon its
search and return home without food, shown as failure.
Conversely success means food was found, grabbed and
deposited. Note, however, that a robot might see a food-
item but fail to grab it because, for instance, of competi-
tion with another robot for the same food-item. The robot
now also has a resting state during which time it remains in
the nest conserving energy. The robot will stop resting and
leave home which might be according to some threshold
criterion, such as its resting time exceeding the maximum
rest time threshold Tr , or the overall nest energy falling
below a given threshold.
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Foraging Robots, Figure 7
Finite State Machine for foraging with division of labor

Let us consider the special case of multi-robot forag-
ing in which robots are foraging for their own energy. For
an individual robot foraging costs energy, whereas rest-
ing conserves energy. We can formally express this as fol-
lows. Each robot consumes energy at A units per second
while searching or retrieving and B units per second while
resting, where A > B. Each discrete food item collected by
a robot provides C units of energy to the swarm. The av-
erage food item retrieval time, is a function of the number
of foraging robots x, and the density of food items in the
environment, �, thus t D f (x; �).

If there are N robots in the swarm, Ec is the energy
consumed and Er the energy retrieved, per second, by the
swarm then

Ec D Ax C B(N � x) (5)

Er D Cx/t D
Cx

f (x; �)
: (6)

The average energy income to the swarm, per second, is
clearly the difference between the energy retrieved and the
energy consumed,

E D Er � Ec D

�
C

f (x; �)
� (A� B)

�
x � BN (7)

Equation 7 shows that maximizing the energy income to
the swarm requires either increasing the number of for-
agers x or decreasing the average retrieval time f (x; �).
However, if we assume that the density of robots in the for-
aging area is high enough that interference between robots
will occur then, for constant �, increasing x will increase
f (x; �). Therefore, for a given food density � there must
be an optimal number of foragers x�.

Krieger ad Billeter adopt a threshold-based approach
to the allocation of robots to either foraging or resting; in
their scheme each robot is allocated a fixed but randomly

chosen activation threshold [36]. While waiting in the nest
each robot listens to a periodic radio broadcast indicating
the nest-energy level E; when the nest-energy level falls be-
low the robot’s personal activation threshold then it leaves
the nest and searches for food. It will continue to search
until either its search is successful, or it runs out of energy
and returns home; if its search is successful and it finds
another food-item the robot will record its position (us-
ing odometry). On returning home the robot will radio
its energy consumption thus allowing the nest to update
its overall net energy. Krieger and Billeter show that team
sizes of 3 or 6 robots perform better than 1 robot foraging
alone, but larger teams of 9 or 12 robots perform less well.
Additionally, they test a recruitment mechanism in which
a robot signals to another robot waiting in the nest to fol-
low it to the food source, in tandem. Krieger’s approach
is, strictly speaking, not fully distributed in that the nest
is continuously tracking the average energy income E; the
nest is – in effect – acting as a central coordinator.

Based upon the work of [17] on individual adaptation
and division of labor in ants, Labella et al. describe a fully
distributed approach that allows the swarm to self-orga-
nize to automatically find the optimal value x� [37]. They
propose a simple adaptive mechanism to change the ratio
of foragers to resters by adjusting the probability of leaving
home based upon successful retrieval of food. With refer-
ence to Fig. 7 the mechanism works as follows. Each robot
will leave home, i. e. change state from resting to searching,
with probability Pl. Each time the robot makes the success
transition from deposit to resting, it increments its Pl value
by a constant � multiplied by the number of consecutive
successes, up to a maximum value Pmax. Conversely, if the
robot’s searching time is up, the transition failure in Fig. 7,
it will decrement its Pl by � times the number of consec-
utive failures, down to minimum Pmin. Interestingly, tri-
als with laboratory robots show that the same robots self-
select as foragers or resters – the algorithm exploits minor
mechanical differences thatmean that some robots are bet-
ter suited as foragers.

Recently Liu et al. have extended this fully distributed
approach by introducing two additional adaptation
rules [43]. As in the case of Labella et al. individual robots
use internal cues (successful object retrieval), but Liu adds
environmental cues (collisions with team mates while
searching), and social cues (team mate success in object
retrieval), to dynamically vary the time spent foraging or
resting. Furthermore, Liu investigates the performance of
a number of different adaptation strategies based on com-
binations of these three cues. The three cues increment or
decrement the searching time and resting time thresholds
Ts and Tr as follows (note that adjusting Tr is equivalent
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Foraging Robots, Table 4
Foraging swarm strategy – cue combinations

Internal cues Social cues Environment cues
S1 (baseline) × × ×
S2 X × ×
S3 X X ×
S4 X X X

to changing the probability of leaving the nest Pl):

1. Internal cues. If a robot successfully finds food it will
reduce its own rest time Tr; conversely if the robot fails
to find food it will increase its own rest time Tr.

2. Environment cues. If a robot collides with another
robot while searching, it will reduce its Ts and increase
its Tr times.

3. Social cues. When a robot returns to the nest it will
communicate its food retrieval success or failure to the
other robots in the nest. A successful retrieval will cause
the other robots in the nest to increase their Ts and re-
duce their Tr times. Conversely failure will cause the
other robots in the nest to reduce their Ts and increase
their Tr times.

In order to evaluate the relative effect of these cues three
different strategies are tested, against a baseline strategy
of no cooperation. The strategy/cue combinations are
detailed in Table 4.

Figures 8 and 9, from [43], show the number of active
foragers and the instantaneous net swarm energy, respec-
tively, for a swarm of eight robots. In both plots the food
density in the environment is changed at time t D 5000
and again at time t D 10000 seconds. Figure 8 shows the
swarm’s ability to automatically adapt the number of ac-
tive foragers in response to each of the step changes in
food density. The baseline strategy S1 shows of course that
all eight robots are actively foraging continuously; S2–S4
however require fewer active foragers and strategies with
social and environmental cues, S3 and S4, clearly show the
best performance. Notice, firstly that the additional of so-
cial cues – communication between robots – significantly
improves the rate at which the system can adapt the ra-
tio of foragers to resters and, secondly, that the addition of
environmental cues – collisions with other robots – brings
only a marginal improvement. The rates of change of net
swarm energy in Fig. 9 tell a similar story. Interestingly,
however, we see very similar gradients for S2–S4 when the
food density is high (on the RHS of the plot), but when the
food density is medium or poor the rate of increase in net
energy of strategies S3 and S4 is significantly better than

S2. This result interestingly suggests that foraging robots
benefit more from cooperation when food is scarce, than
when food is plentiful.

Mathematical Modeling

A multi-robot system of foraging robots is typically
a stochastic non-linear dynamical system and therefore
challenging to mathematically model, but without such
models any claims about the correctness of foraging al-
gorithms are weak. Experiments in computer simulation
or with real-robots (which provide in effect an ‘embod-
ied’ simulation) allow limited exploration of the parameter
space and can at best only provide weak inductive proof of
correctness. Mathematical models on the other hand, al-
low analysis of the whole parameter space and discovery
of optimal parameters. Ultimately, in real-world applica-
tions, validation of a foraging robot system for safety and
dependability will require a range of formal approaches in-
cluding mathematical modeling.

Martinoli and coworkers proposed a microscopic ap-
proach to study collective behavior of a swarm of robots
engaged in cluster aggregation [45] and collaborative
stick-pulling [32], in which a robot’s interactions with
other robots and the environment are modeled as a series
of stochastic events, with probabilities determined by sim-
ple geometric considerations and systematic experiments
with one or two real robots.

Lerman, Martinoli and co-workers have also devel-
oped themacroscopic approach, as widely used in physics,
chemistry, biology and the social sciences, to directly de-
scribe the collective behavior of the robotic swarm. A class
of macroscopic models have been used to study the ef-
fect of interference in a swarm of foraging robots [38]
and collaborative stick-pulling [39,44]. A review of macro-
scopic models is given in [41]. More recently, Lerman et
al. [40] successfully expanded the macroscopic probabilis-
tic model to study dynamic task allocation in a group of
robots engaged in a puck collecting task, in which the
robots need to decide whether to pick up red or green
pucks based on observed local information.

A Macroscopic Mathematical Model of Multi-Robot
Foraging with Division of Labor Recently Liu et al.
have applied themacroscopic approach to develop amath-
ematical model for foraging with division of labor (as de-
scribed above in Section “Division of Labor”), [42]. The
finite state machine of Fig. 7 is extended in order to de-
scribe the probabilistic behavior of the whole swarm, re-
sulting in a probabilistic finite state machine (PFSM). In
Fig. 10 each state represents the average number of robots
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Foraging Robots, Figure 8
Number of foraging robots x in a foraging swarm of N D 8 robots with self-organized division of labor. S1 is the baseline (no coop-
eration strategy); S2, S3 and S4 are three different cooperation strategies (see Table 4). Food density changes from 0.03 (medium) to
0.015 (poor) at t D 5000, then from 0.015 (poor) to 0.045 (rich) at t D 10000. Each plot is the average of 10 runs

Foraging Robots, Figure 9
Instantaneous net energy E of a foraging swarm with self-organized division of labor. S1 is the baseline (no cooperation strategy);
S2, S3 and S4 are three different cooperation strategies (see Table 4). Food density changes from 0.03 (medium) to 0.015 (poor) at
t D 5000, then from 0.015 (poor) to 0.045 (rich) at t D 10000. Each plot is the average of 10 runs

in that state. The five basic states are S for searching,H for
homing, G for grabbing, D for depositing and R for resting,
and the average number of robots in each of these states is
respectively NS, NH , NG, ND and NR. �S , �H , �G , �D and
�R represent the average times a robot will spend in each
state before moving to the next state.

In each time step a robot in state S has probability � f of
finding a food-item and moving to state G, in which it will

move towards the target food-item until it is close enough
to grab it using the gripper. Once the robot successfully
grabs the food-item it will move to state D, in which the
robot moves back to the ‘nest’ carrying the food-item and
deposits it. After the robot has unloaded the food-item it
will rest in state R, for �R seconds and then move to S to
resume searching. Meanwhile, if the robot in state S fails to
find a food-itemwithin time �S , it will move to stateH, and
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Foraging Robots, Figure 10
Probabilistic Finite State Machine (PFSM) for foraging with divi-
sion of labor

return to the ‘nest’ to save energy or minimize interference
with other robots. Because of competition among robots
more than one robot may see the same food-item and thus
move towards it at the same time; clearly only one of them
can grab it, a robot in state G therefore has probability �l
to lose sight of the food-item if it has already been grabbed
by another robot, which in turn drives the robot back to
state S to resume its search.

In foraging interference between robots because of
overcrowding, competition for food-items or simply ran-
dom collisions is a key aspect of the dynamics of foraging.
Thus collision avoidance is modeled as follows. Robots in
states S, G, D and H will move to avoidance states A, AG,
AD and AH respectively with probability �r , as shown in
Fig. 10. The avoidance behavior then takes �A seconds to
complete before the robot moves back to its previous state.

Constructing the mathematical model requires two
further steps. Firstly, writing down a set of difference equa-
tions (DEs) describing the change in the average number
of robots in each state from one time step to the next and,
secondly, estimating the state transition probabilities. Ex-
pressing the PFSM as a set of DEs is relatively straightfor-
ward. For instance, the change in the average number of
robots NA in state A from time step k to k C 1 is given as:

NA(k C 1) D NA(k)C �rNS (k)� �rNS(k � TA) (8)

where �rNS(k) is the number of robots that move from
the search to the avoidance state A and �rNS(k � TA) is
the number of robots that return to S from state A after
time TA (note TA is �A discretized for time step duration
�t). The full set of DEs is given in [42]. Clearly, the total
number of robots in the swarm remains constant from one
time step to the next,

N DNS(k)C NR(k)C NG(k)C ND(k)C NH(k)
C NA(k)C NAH (k)C NAG (k)C NAD (k)

(9)

Foraging Robots, Figure 11
Foraging environment showing 8 robots labeled A� H. The nest
region is the grey circle with radius Rh at the center. Robot A is
shown with its arc of vision in which it can sense food items;
robots C, E and F have grabbed food items and are in the process
of returning to the nest to deposit these. Food items, shown as
small squares, ‘grow’ in order to maintain uniform density within
the annular region between circleswith radius Rinner and Router

Estimating state transition probabilities can be challenging
but if we simplify the environment by placing the ‘nest’ re-
gion at the center of a circular environment in which the
food growing area is bounded by two concentric rings in
a bounded arena, as shown in Fig. 11, then a purely geo-
metrical approach can be used to estimate � f , �r and �l to-
gether with the average times for grabbing, depositing and
homing �G , �D and �H . Clearly �R and �S are the design
parameters we seek to optimize, while �A is determined by
the physical design of the robot and its sensors.

Figure 12, from [42], plots the average number of
robots, from both simulation and themathematicalmodel,
in states searching, resting and homing for the swarm with
�r D 80. The average number of robots in each state pre-
dicted by the probabilistic model quickly settles to a con-
stant value. In contrast, but as one would expect, the aver-
age number of robots from simulation oscillates over time
but stays near the value predicted by the model.

Figure 13 compares the predicted value of net swarm
energy from the mathematical model, with the measured
value from simulation, for resting time parameter �r in-
creasing from 0 to 200s. The two curves show, firstly
a good match between measured and predicted curves
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Foraging Robots, Figure 12
The number of robots in states searching, resting and homing for the swarmwith �r D 80 seconds. The horizontal black dashed lines
are predicted by the mathematical model; colored graphs show the instantaneous number of robots measured from simulation

Foraging Robots, Figure 13
The net energy of the swarm for different values of the resting time parameter�r . The black curve is the prediction of themathemat-
ical model; the dashed curvewith error bars is measured from simulation

therefore validating the mathematical model and, sec-
ondly, that there is indeed an optimal value for �r (at about
160 seconds). We thus have confirmation that a mathe-
matical model can be used to analyze the effect of indi-
vidual parameters on the overall performance of collective
foraging.

Future Directions

This article has defined robot foraging, set out a taxon-
omy and described both the development and state-of-

the-art in robot foraging. Although the principles of robot
foraging are well understood, the engineering realization
of those principles remains a research problem. Consider
multi-robot cooperative robot foraging. Separate aspects
have been thoroughly researched and demonstrated, and
a number of exemplars have been described in this arti-
cle. However, to date there has been no demonstration of
autonomous multi-robot foraging which integrates self-
organized cooperative search, object manipulation and
transport in unknown or unstructured real-world envi-
ronments. Such a demonstration would be a precursor to
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a number of compelling real-world applications including
search and rescue, toxic waste cleanup or foraging for re-
cycling of materials.

The future directions for foraging robots lie along two
separate axes. One axis is the continuing investigation and
discovery of foraging algorithms – especially those which
seek to mimic biologically inspired principles of self-or-
ganization. The other axis is the real-world application of
foraging robots and it is here that many key challenges and
future directions are to be found. Foraging robot teams are
complex systems and the key challenges are in systems in-
tegration and engineering, which would need to address:

1. Principled design and test methodologies for self-orga-
nized multi-robot foraging robot systems.

2. Rigorous methodologies and tools for the specification,
analysis and modeling of multi-robot foraging robot
systems.

3. Agreed metrics and quantitative benchmarks to al-
low comparative evaluation of different approaches and
systems.

4. Tools and methodologies for provable multi-robot for-
aging stability, safety and dependability [23,68].
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Definition of the Subject

In this chapter we present some definitions related to the
fractal concept as well as several methods for calculating
the fractal dimension and other relevant exponents. The
purpose is to introduce the reader to the basic properties
of fractals and self-affine structures so that this book will
be self contained. We do not give references to most of the
original works, but, we refer mostly to books and reviews
on fractal geometry where the original references can be
found.

Fractal geometry is a mathematical tool for dealing
with complex systems that have no characteristic length
scale. A well-known example is the shape of a coastline.
When we see two pictures of a coastline on two differ-
ent scales, with 1 cm corresponding for example to 0.1 km
or 10 km, we cannot tell which scale belongs to which
picture: both look the same, and this features charac-
terizes also many other geographical patterns like rivers,
cracks, mountains, and clouds. This means that the coast-
line is scale invariant or, equivalently, has no characteristic
length scale. Another example are financial records. When
looking at a daily, monthly or annual record, one cannot
tell the difference. They all look the same.

Scale-invariant systems are usually characterized by
noninteger (“fractal”) dimensions. The notion of nonin-
teger dimensions and several basic properties of fractal
objects were studied as long ago as the last century by
Georg Cantor, Giuseppe Peano, and David Hilbert, and
in the beginning of this century by Helge von Koch, Wa-
claw Sierpinski, Gaston Julia, and Felix Hausdorff. Even
earlier traces of this concept can be found in the study
of arithmetic-geometric averages by Carl Friedrich Gauss
about 200 years ago and in the artwork of Albrecht Dürer
(see Fig. 1) about 500 years ago. Georg Friedrich Licht-
enberg discovered, about 230 years ago, fractal discharge
patterns. He was the first to describe the observed self-sim-
ilarity of the patterns: A part looks like the whole. Benoit
Mandelbrot [1] showed the relevance of fractal geometry
to many systems in nature and presented many important
features of fractals. For further books and reviews on frac-
tals see [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].

Before introducing the concept of fractal dimension,
we should like to remind the reader of the concept of di-
mension in regular systems. It is well known that in regular
systems (with uniform density) such as long wires, large
thin plates, or large filled cubes, the dimension d charac-
terizes how the mass M(L) changes with the linear size L
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Fractal Geometry, A Brief Introduction to, Figure 1
TheDürer pentagon after five iterations. For the generating rule,
see Fig. 8. The Dürer pentagon is in blue, its external perimeter is
in red, Courtesy of M. Meyer

Fractal Geometry, A Brief Introduction to, Figure 2
Examples of regular systems with dimensions d D 1, d D 2, and
d D 3

of the system. If we consider a smaller part of the system of
linear size bL (b < 1), thenM(bL) is decreased by a factor
of bd , i. e.,

M(bL) D bdM(L) : (1)

The solution of the functional equation (1) is simply
M(L) D ALd . For the long wire the mass changes linearly
with b, i. e., d D 1. For the thin plates we obtain d D 2,
and for the cubes d D 3; see Fig. 2.

Next we consider fractal objects. Here we distinguish
between deterministic and random fractals. Determinis-
tic fractals are generated iteratively in a deterministic way,
while random fractals are generated using a stochastic pro-
cess. Although fractal structures in nature are random, it
is useful to study deterministic fractals where the fractal

properties can be determined exactly. By studying deter-
ministic fractals one can gain also insight into the frac-
tal properties of random fractals, which usually cannot be
treated rigorously.

Deterministic Fractals

In this section, we describe several examples of determin-
istic fractals and use them to introduce useful fractal con-
cepts such as fractal and chemical dimension, self simi-
larity, ramification, and fractal substructures (minimum
path, external perimeter, backbone, and red bonds).

The Koch Curve

One of the most common deterministic fractals is the
Koch curve. Figure 3 shows the first n D 4 iterations of
this fractal curve. By each iteration the length of the curve
is increased by a factor of 4/3. The mathematical fractal is
defined in the limit of infinite iterations, n!1, where
the total length of the curve approaches infinity.

The dimension of the curve can be obtained as for reg-
ular objects. From Fig. 3 we notice that, if we decrease the
linear size by a factor of b D 1/3, the total length (mass) of
the curve decreases by a factor of 1/4, i. e.,

M
� 1
3 L

D 1

4 M(L) : (2)

Fractal Geometry, A Brief Introduction to, Figure 3
The first iterations of the Koch curve. The fractal dimension of
the Koch curve is df D log 4/ log 3
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This feature is very different from regular curves, where
the length of the object decreases proportional to the linear
scale. In order to satisfy Eqs. (1) and (2) we are led to intro-
duce a noninteger dimension, satisfying 1/4 D (1/3)d , i. e.,
d D log 4/ log 3. For such non-integer dimensions Man-
delbrot coined the name “fractal dimension” and those ob-
jects described by a fractal dimension are called fractals.
Thus, to include fractal structures, Eq. (1) is generalized
by

M(bL) D bdfM(L) ; (3)

and

M(L) D ALdf ; (4)

where df is the fractal dimension.
When generating the Koch curve and calculating df,

we observe the striking property of fractals – the property
of self-similarity. If we examine the Koch curve, we notice
that there is a central object in the figure that is reminiscent
of a snowman. To the right and left of this central snow-
man there are two other snowmen, each being an exact
reproduction, only smaller by a factor of 1/3. Each of the
smaller snowmen has again still smaller copies (by 1/3) of
itself to the right and to the left, etc. Now, if we take any
such triplet of snowmen (consisting of 1/3m of the curve),
for any m, and magnify it by 3m , we will obtain exactly
the original Koch curve. This property of self-similarity or
scale invariance is the basic feature of all deterministic and
random fractals: if we take a part of a fractal andmagnify it
by the samemagnification factor in all directions, the mag-
nified picture cannot be distinguished from the original.

For the Koch curve as well as for all deterministic frac-
tals generated iteratively, Eqs. (3) and (4) are of course
valid only for length scales L below the linear size L0 of the
whole curve (see Fig. 3). If the number of iterations n is fi-
nite, then Eqs. (3) and (4) are valid only above a lower cut
off length Lmin, Lmin D L0/3n for the Koch curve. Hence,
for a finite number of iterations, there exist two cut-off
length scales in the system, an upper cut-off Lmax D L0
representing the total linear size of the fractal, and a lower
cut-off Lmin. This feature of having two characteristic cut-
off lengths is shared by all fractals in nature.

An interesting modification of the Koch curve is
shown in Fig. 4, which demonstrates that the chemical
distance is an important concept for describing structural
properties of fractals (for a review see, for example, [16]
and Chap. 2 in [13]). The chemical distance ` is defined as
shortest path on the fractal between two sites of the fractal.
In analogy to the fractal dimension df that characterizes
how the mass of a fractal scales with (air) distance L, we

Fractal Geometry, A Brief Introduction to, Figure 4
The first iterations of amodified Koch curve,which has a nontriv-
ial chemical distancemetric

introduce the chemical dimension d` in order to charac-
terize how the mass scales with the chemical distance `,

M(b`) D bd`M(`) ; or M(`) D B`d` : (5)

From Fig. 4 we see that if we reduce ` by a factor
of 5, the mass of the fractal within the reduced chem-
ical distance is reduced by a factor of 7, i. e., M(1/5 `)
D 1/7M(`), yielding d` D log 7/ log 5 Š 1:209. Note that
the chemical dimension is smaller than the fractal di-
mension df D log 7/ log 4 Š 1:404, which follows from
M(1/4 L) D 1/7M(L).

The structure of the shortest path between two sites
represents an interesting fractal by itself. By definition, the
length of the path is the chemical distance `, and the frac-
tal dimension of the shortest path, dmin, characterizes how `
scales with (air) distance L. Using Eqs. (4) and (5), we ob-
tain

` � Ldf /d` � Ldmin ; (6)

fromwhich follows dmin D df/d`. For our example we find
that dmin D log 5/ log 4 Š 1:161. For the Koch curve, as
well as for any linear fractal, one simply has d` D 1 and
hence dmin D df. Since, by definition, dmin � 1, it follows
that d` � df for all fractals.

The Sierpinski Gasket, Carpet, and Sponge

Next we discuss the Sierpinski fractal family: the “gasket”,
the “carpet”, and the “sponge”.
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Fractal Geometry, A Brief Introduction to, Figure 5
The Sierpinski gasket. The fractal dimension of the Sierpinski
gasket is df D log 3/ log 2

The Sierpinski Gasket The Sierpinski gasket is gener-
ated by dividing a full triangle into four smaller triangles
and removing the central triangle (see Fig. 5). In the fol-
lowing iterations, this procedure is repeated by dividing
each of the remaining triangles into four smaller triangles
and removing the central triangles.

To obtain the fractal dimension, we consider the mass
of the gasket within a linear size L and compare it with the
mass within 1/2 L. Since M(1/2 L) D 1/3M(L), we have
df D log 3/ log 2 Š 1:585. It is easy to see that d` D df and
dmin D 1.

The Sierpinski Carpet The Sierpinski carpet is gener-
ated in close analogy to the Sierpinski gasket.

Instead of starting with a full triangle, we start with
a full square, which we divide into n2 equal squares. Out
of these squares we choose k squares and remove them.
In the next iteration, we repeat this procedure by dividing
each of the small squares left into n2 smaller squares and
removing those k squares that are located at the same po-
sitions as in the first iteration. This procedure is repeated
again and again.

Figure 6 shows the Sierpinski carpet for n D 5 and the
specific choice of k D 9. It is clear that the k squares can be
chosen in many different ways, and the fractal structures
will all look very different. However, since M(1/n L) D
1/(n2 � k)M(L) it follows that df D log(n2 � k)/ log n, ir-
respective of the way the k squares are chosen. Similarly to
the gasket, we have d` D df and hence dmin D 1.

Fractal Geometry, A Brief Introduction to, Figure 6
A Sierpinski carpet with n D 5 and k D 9. The fractal dimension
of this structure is df D log 16/ log 5

In contrast, the external perimeter (“hull”, see also
Fig. 1) of the carpet and its fractal dimension dh depend
strongly on the way the squares are chosen. The hull con-
sists of those sites of the cluster, which are adjacent to
empty sites and are connected with infinity via empty sites.
In our example, see Fig. 6, the hull is a fractal with the
fractal dimension dh D log 9/ log 5 Š 1:365. On the other
hand, if a Sierpinski gasket is constructed with the k D 9
squares chosen from the center, the external perimeter
stays smooth and dh D 1.

Although the rules for generating the Sierpinski gasket
and carpet are quite similar, the resulting fractal structures
belong to two different classes, to finitely ramified and
infinitely ramified fractals. A fractal is called finitely rami-
fied if any bounded subset of the fractal can be isolated by
cutting a finite number of bonds or sites. The Sierpinski
gasket and the Koch curve are finitely ramified, while the
Sierpinski carpet is infinitely ramified. For finitely rami-
fied fractals like the Sierpinski gasket many physical prop-
erties, such as conductivity and vibrational excitations, can
be calculated exactly. These exact solutions help to provide
insight onto the anomalous behavior of physical properties
on fractals, as was shown in Chap. 3 in [13].

The Sierpinski Sponge The Sierpinski sponge shown in
Fig. 7 is constructed by starting from a cube, subdividing
it into 3 � 3 � 3 D 27 smaller cubes, and taking out the
central small cube and its six nearest neighbor cubes. Each
of the remaining 20 small cubes is processed in the same
way, and the whole procedure is iterated ad infinitum. Af-
ter each iteration, the volume of the sponge is reduced by
a factor of 20/27, while the total surface area increases. In
the limit of infinite iterations, the surface area is infinite,
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The Sierpinski sponge (third iteration). The fractal dimension of
the Sierpinski sponge is df D log 20/ log 3

Fractal Geometry, A Brief Introduction to, Figure 8
The first iterations of the Dürer pentagon. The fractal dimension
of the Dürer pentagon is df D log 6/ log(1C g)

while the volume vanishes. Since M(1/3 L) D 1/20M(L),
the fractal dimension is df D log 20/ log 3 Š 2:727. We
leave it to the reader to prove that both the fractal dimen-
sion dh of the external surface and the chemical dimension
d` is the same as the fractal dimension df.

Modification of the Sierpinski sponge, in analogy to
the modifications of the carpet can lead to fractals, where
the fractal dimension of the hull, dh, differs from df.

The Dürer Pentagon

Five-hundred years ago the artist Albrecht Dürer designed
a fractal based on regular pentagons, where in each itera-
tion each pentagon is divided into six smaller pentagons
and five isosceles triangles, and the triangles are removed
(see Fig. 8). In each triangle, the ratio of the larger side to
the smaller side is the famous proportio divina or golden
ratio, g � 1/(2 cos 72ı) � (1C

p
5)/2. Hence, in each it-

eration the sides of the pentagons are reduced by 1C g.
Since M(L/(1C g)) D 1/6M(L), the fractal dimension of
the Dürer pentagon is df D log 6/ log(1C g) Š 1:862. The
external perimeter of the fractal (see Fig. 1) forms a fractal
curve with dh D log 4/ log(1C g).

Fractal Geometry, A Brief Introduction to, Figure 9
The first iterations of the David fractal. The fractal dimension of
the David fractal is df D log 6/ log 3

A nice modification of the Dürer pentagon is a frac-
tal based on regular hexagons, where in each iteration one
hexagon is divided into six smaller hexagons, six equilat-
eral triangles, and a David-star in the center, and the trian-
gles and the David-star are removed (see Fig. 9). We leave
it as an exercise to the reader to show that df D log 6/ log 3
and dh D log 4/ log 3.

The Cantor Set

Cantor sets are examples of disconnected fractals (frac-
tal dust). The simplest set is the triadic Cantor set (see
Fig. 10). We divide a unit interval [0; 1] into three equal
intervals and remove the central one. In each follow-
ing iteration, each of the remaining intervals is treated
in this way. In the limit of n D 1 iterations one ob-
tains a set of points. Since M(1/3 L) D 1/2M(L), we have
df D log 2/ log 3 Š 0:631, which is smaller than one.

In chaotic systems, strange fractal attractors occur. The
simplest strange attractor is the Cantor set. It occurs, for
example, when considering the one-dimensional logistic
map

xtC1 D xt(1 � xt) : (7)

The index t D 0; 1; 2; : : : represents a discrete time. For
0 �  � 4 and x0 between 0 and 1, the trajectories xt are
bounded between 0 and 1. The dynamical behavior of xt
for t!1 depends on the parameter . Below 1 D 3,
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The first iterations of the triadic Cantor set. The fractal dimension
of this Cantor set is df D log 2/ log 3

only one stable fixed-point exists to which xt is attracted.
At 1, this fixed-point becomes unstable and bifurcates
into two new stable fixed-points. At large times, the trajec-
tories move alternately between both fixed-points, and the
motion is periodic with period 2. At 2 D 1C

p
6 Š 3:449

each of the two fixed-points bifurcates into two new stable
fix points and the motion becomes periodic with period 4.
As  is increased, further bifurcation points n occur, with
periods of 2n between n and nC1.

For large n, the differences between nC1 and n be-
come smaller and smaller, according to the law nC1 �

n D (n � n�1)/ı, where ı Š 4:6692 is the so-called
Feigenbaum constant. The Feigenbaum constant is “uni-
versal”, since it applies to all nonlinear “single-hump”
maps with a quadratic maximum [17].

At 1 Š 3:569 945 6, an infinite period occurs, where
the trajectories xt move in a “chaotic” way between the
infinite attractor points. These attractor points define the

Fractal Geometry, A Brief Introduction to, Figure 11
Three generations of the Mandelbrot–Given fractal. The fractal dimension of the Mandelbrot–Given fractal is df D log 8/ log 3

strange attractor, which forms a Cantor set with a frac-
tal dimension df Š 0:538 [18]. For a further discussion of
strange attractors and chaotic dynamics we refer to [3,8,9].

The Mandelbrot–Given Fractal

This fractal was suggested as a model for percolation
clusters and its substructures (see Sect. 3.4 and Chap. 2
in [13]). Figure 11 shows the first three generations of the
Mandelbrot–Given fractal [19]. At each generation, each
segment of length a is replaced by 8 segments of length
a/3. Accordingly, the fractal dimension is df D log 8/ log 3
Š 1:893, which is very close to df D 91/46 Š 1:896 for
percolation in two dimensions. It is easy to verify that
d`D df, and therefore dmin D 1. The structure contains
loops, branches, and dangling ends of all length scales.

Imagine applying a voltage difference between two
sites at opposite edges of a metallic Mandelbrot–Given
fractal: the backbone of the fractal consists of those bonds
which carry the electric current. The dangling ends are
those parts of the cluster which carry no current and are
connected to the backbone by a single bond only. The red
bonds (or singly connected bonds) are those bonds that
carry the total current; when they are cut the current flow
stops. The blobs, finally, are those parts of the backbone
that remain after the red bonds have been removed.

The backbone of this fractal can be obtained easily
by eliminating the dangling ends when generating the
fractal (see Fig. 12). It is easy to see that the fractal di-
mension of the backbone is dB D log 6/ log 3 Š 1:63. The
red bonds are all located along the x axis of the fig-
ure and form a Cantor set with the fractal dimension
dred D log 2/ log 3 Š 0:63.
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The backbone of the Mandelbrot–Given fractal, with the red
bonds shown in bold

Julia Sets and the Mandelbrot Set

A complex version of the logistic map (7) is

ztC1 D z2t C c ; (8)

where both the trajectories zt and the constant c are com-
plex numbers. The question is: if a certain c-value is given,
for example c D �1:5652 � i1:03225, for which initial val-
ues z0 are the trajectories zt bounded? The set of those val-
ues forms the filled-in Julia set, and the boundary points of
them form the Julia set.

To clarify these definitions, consider the simple case
c D 0. For jz0j > 1, zt tends to infinity, while for jz0j < 1,
zt tends to zero. Accordingly, the filled-in Julia set is the
set of all points jz0j � 1, the Julia set is the set of all points
jz0j D 1.

In general, points on the Julia set form a chaotic mo-
tion on the set, while points outside the Julia set move
away from the set. Accordingly, the Julia set can be re-
garded as a “repeller” with respect to Eq. (8). To generate
the Julia set, it is thus practical to use the inverted trans-
formation

zt D ˙
p
ztC1 � c ; (9)

start with an arbitrarily large value for t C 1, and go back-
ward in time. By going backward in time, even points far
away from the Julia set are attracted by the Julia set.

For obtaining the Julia set for a given value of c, one
starts with some arbitrary value for ztC1, for example,
ztC1 D 2. To obtain zt, we use Eq. (9), and determine the
sign randomly. This procedure is continued to obtain zt�1,
zt�2, etc. By disregarding the initial points, e. g., the first
1000 points, one obtains a good approximation of the Ju-
lia set.

The Julia sets can be connected (Fig. 13a) or discon-
nected (Fig. 13b) like the Cantor sets. The self-similar-
ity of the pictures is easy to see. The set of c values that
yield connected Julia sets forms the famous Mandelbrot

Fractal Geometry, A Brief Introduction to, Figure 13
Julia sets for a c D i and b c D 0:11031� i0:67037. After [9]

set. It has been shown by Douady and Hubbard [20] that
the Mandelbrot set is identical to that set of c values for
which zt converges starting from the initial point z0 D 0.
For a detailed discussion with beautiful pictures see [10]
and Chaps. 13 and 14 in [3].

Random FractalModels

In this section we present several random fractal models
that are widely used tomimic fractal systems in nature.We
begin with perhaps the simplest fractal model, the random
walk.

RandomWalks

Imagine a random walker on a square lattice or a simple
cubic lattice. In one unit of time, the random walker ad-
vances one step of length a to a randomly chosen nearest
neighbor site. Let us assume that the walker is unwind-
ing a wire, which he connects to each site along his way.
The length (mass)M of the wire that connects the random
walker with his starting point is proportional to the num-
ber of steps n (Fig. 14) performed by the walker.

Since for a random walk in any d-dimensional space
themean end-to-end distance R is proportional to n1/2 (for

Fractal Geometry, A Brief Introduction to, Figure 14
a A normal random walk with loops. b A random walk without
loops
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a simple derivation see e. g., Chap. 3 in [13], it follows that
M � R2. Thus Eq. (4) implies that the fractal dimension of
the structure formed by this wire is df D 2, for all lattices.

The resulting structure has loops, since the walker can
return to the same site. We expect the chemical dimension
d` to be 2 in d D 2 and to decreasewith increasing d, since.
Loops become less relevant. For d � 4 we have d` D 1. If
we assume, however, that there is no contact between sec-
tions of the wire connected to the same site (Fig. 14b), the
structure is by definition linear, i. e., d` D 1 for all d. For
more details on randomwalks and its relation to Brownian
motion, see Chap. 5 in [15] and [21].

Self-AvoidingWalks

Self-avoiding walks (SAWs) are defined as the subset of all
nonintersecting random walk configurations. An example
is shown in Fig. 15a. As was found by Flory in 1944 [22],
the end-to-end distance of SAWs scales with the number
of steps n as

R � n� ; (10)

with � D 3/(d C 2) for d � 4 and � D 1/2 for d > 4.
Since n is proportional to the mass of the chain, it fol-
lows from Eq. (4) that df D 1/�. Self-avoiding walks serve
as models for polymers in solution, see [23].

Subsets of SAWs do not necessarily have the same
fractal dimension. Examples are the kinetic growth walk
(KGW) [24] and the smart growth walk (SGW) [25],
sometimes also called the “true” or “intelligent” self-avoid-
ing walk. In the KGW, a random walker can only step on
those sites that have not been visited before. Asymptoti-
cally, after many steps n, the KGW has the same fractal
dimension as SAWs. In d D 2, however, the asymptotic
regime is difficult to reach numerically, since the random
walker can be trapped with high probability (see Fig. 15b).
A related structure is the hull of a random walk in d D 2.
It has been conjectured by Mandelbrot [1] that the fractal
dimension of the hull is dh D 4/3, see also [26].

In the SGW, the random walker avoids traps by step-
ping only at those sites from which he can reach infinity.
The structure formed by the SGW is more compact and
characterized by df D 7/4 in d D 2 [25]. Related structures
with the same fractal dimension are the hull of percolation
clusters (see also Sect. “Percolation”) and diffusion fronts
(for a detailed discussion of both systems see also Chaps. 2
and 7 in [13]).

Kinetic Aggregation

The simplest model of a fractal generated by diffusion
of particles is the diffusion-limited aggregation (DLA)
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a A typical self-avoiding walk. b A kinetic growth walk after 8
steps. The available sites aremarked by crosses. cA smart growth
walk after 19 steps. The only available site is marked by “yes”

model, which was introduced by Witten and Sander in
1981 [27]. In the lattice version of the model, a seed parti-
cle is fixed at the origin of a given lattice and a second par-
ticle is released from a circle around the origin. This parti-
cle performs a random walk on the lattice. When it comes
to a nearest neighbor site of the seed, it sticks and a cluster
(aggregate) of two particles is formed. Next, a third par-
ticle is released from the circle and performs a random
walk. When it reaches a neighboring site of the aggregate,
it sticks and becomes part of the cluster. This procedure is
repeated many times until a cluster of the desired number
of sites is generated. For saving computational time it is
convenient to eliminate particles that have diffused too far
away from the cluster (see Fig. 16).

In the continuum (off-lattice) version of the model,
the particles have a certain radius a and are not re-
stricted to diffusing on lattice sites. At each time step,
the length (�a) and the direction of the step are cho-
sen randomly. The diffusing particle sticks to the cluster,
when its center comes within a distance a of the clus-
ter perimeter. It was found numerically that for off-lat-
tice DLA, df D 1:71˙ 0:01 in d D 2 and df D 2:5˙ 0:1
in d D 3 [28,29]. These results may be compared with
the mean field result df D (d2 C 1)/(d C 1) [30]. For
a renormalization group approach, see [31] and references
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a Generation of a DLA cluster. The inner release radius is usually
a little larger than the maximum distance of a cluster site from
the center, the outer absorbing radius is typically 10 times this
distance. b A typical off-lattice DLA cluster of 10,000 particles

therein. The chemical dimension d` is found to be equal
to df [32].

Diffusion-limited aggregation serves as an archetype
for a large number of fractal realizations in nature, in-
cluding viscous fingering, dielectric breakdown, chemi-
cal dissolution, electrodeposition, dendritic and snowflake
growth, and the growth of bacterial colonies. For a de-
tailed discussion of the applications of DLA we refer
to [5,13], and [29]. Models for the complex structure
of DLA have been developed by Mandelbrot [33] and
Schwarzer et al. [34].

A somewhat related model for aggregation is the clus-
ter-cluster aggregation (CCA) [35]. In CCA, one starts
from a very low concentration of particles diffusing on
a lattice. When two particles meet, they form a cluster of
two, which can also diffuse. When the cluster meets an-
other particle or another cluster, a larger cluster is formed.
In this way, larger and larger aggregates are formed. The
structures are less compact than DLA, with df Š 1:4 in
d D 2 and df Š 1:8 in d D 3. CCA seems to be a good
model for smoke aggregates in air and for gold colloids.
For a discussion see Chap. 8 in [13].

Percolation

Consider a square lattice, where each site is occupied ran-
domly with probability p or empty with probability 1� p.
At low concentration p, the occupied sites are either iso-
lated or form small clusters (Fig. 17a). Two occupied sites
belong to the same cluster, if they are connected by a path
of nearest neighbor occupied sites. When p is increased,
the average size of the clusters increases. At a critical con-
centration pc (also called the percolation threshold) a large
cluster appears which connects opposite edges of the lat-
tice (Fig. 17b). This cluster is called the infinite cluster,
since its size diverges when the size of the lattice is in-
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Square lattice of size 20� 20. Sites have been randomly occu-
pied with probability p (p D 0:20, 0.59, 0.80). Sites belonging to
finite clusters aremarked by full circles, while sites on the infinite
cluster aremarked by open circles

creased to infinity. When p is increased further, the density
of the infinite cluster increases, since more and more sites
become part of the infinite cluster, and the average size of
the finite clusters decreases (Fig. 17c).

The percolation transition is characterized by the geo-
metrical properties of the clusters near pc. The probability
P1 that a site belongs to the infinite cluster is zero below
pc and increases above pc as

P1 � (p � pc)ˇ : (11)

The linear size of the finite clusters, below and above pc, is
characterized by the correlation length � . The correlation
length is defined as the mean distance between two sites
on the same finite cluster and represents the characteris-
tic length scale in percolation. When p approaches pc, �
increases as

� � jp � pcj�� ; (12)

with the same exponent � below and above the threshold.
While pc depends explicitly on the type of the lattice (e. g.,
pc Š 0:593 for the square lattice and 1/2 for the triangular
lattice), the critical exponents ˇ and � are universal and
depend only on the dimension d of the lattice, but not on
the type of the lattice.

Near pc, on length scales smaller than � , both the in-
finite cluster and the finite clusters are self-similar. Above
pc, on length scales larger than � , the infinite cluster can be
regarded as an homogeneous systemwhich is composed of
many unit cells of size � . Mathematically, this can be sum-
marized as

M(r) �

(
rdf ; r
 � ;

rd ; r	 � :
(13)

The fractal dimension df can be related to ˇ and �:

df D d �
ˇ

�
: (14)

Since ˇ and � are universal exponents, df is also universal.
One obtains df D 91/48 in d D 2 and df Š 2:5 in d D 3.
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A large percolation cluster in d D 3. The colors mark the topo-
logical distance from anarbitrary center of the cluster in themid-
dle of the page. Courtesy of M. Meyer

The chemical dimension d` is smaller than df, d` Š 1:15
in d D 2 and d` Š 1:33 in d D 3. A large percolation clus-
ter in d D 3 is shown in Fig. 18.

Interestingly, a percolation cluster is composed of sev-
eral fractal sub-structures such as the backbone, dangling
ends, blobs, External perimeter, and the red bonds, which
are all described by different fractal dimensions.

The percolation model has found applications in
physics, chemistry, and biology, where occupied and
empty sites may represent very different physical, chem-
ical, or biological properties. Examples are the physics of
two component systems (the random resistor, magnetic or
superconducting networks), the polymerization process in
chemistry, and the spreading of epidemics and forest fires.
For reviews with a comprehensive list of references, see
Chaps. 2 and 3 of [13] and [36,37,38].

How toMeasure the Fractal Dimension

One of the most important “practical” problems is to de-
termine the fractal dimension df of either a computer gen-
erated fractal or a digitized fractal picture. Here we sketch
the two most useful methods: the “sandbox” method and
the “box counting” method.

The Sandbox Method

To determine df, we first choose one site (or one
pixel) of the fractal as the origin for n circles of radii

R1 < R2 < � � � < Rn , where Rn is smaller than the radius R
of the fractal, and count the number of points (pixels)
M1(Ri ) within each circle i. (Sometimes, it is more con-
venient to choose n squares of side length L1. . .Ln instead
of the circles.) We repeat this procedure by choosing ran-
domlymany other (altogetherm) pixels as origins for the n
circles and determine the corresponding number of points
Mj(Ri ), j D 2; 3; : : : ;m within each circle (see Fig. 19a).
We obtain the mean number of points M(Ri ) within each
circle by averaging,M(Ri) D 1/m

Pm
jD1 Mj(Ri ), and plot

M(Ri) versus Ri in a double logarithmic plot. The slope
of the curve, for large values of Ri, determines the fractal
dimension.

In order to avoid boundary effects, the radii must be
smaller than the radius of the fractal, and the centers of
the circles must be chosen well inside the fractal, so that
the largest circles will be well within the fractal. In order
to obtain good statistics, one has either to take a very large
fractal cluster with many centers of circles or many real-
izations of the same fractal.

The Box Counting Method

We draw a grid on the fractal that consists of N2
1 squares,

and determine the number of squares S(N1) that are
needed to cover the fractal (see Fig. 19b). Next we choose
finer and finer grids with N2

1 < N2
2 < N2

3 < � � � < N2
m

squares and calculate the corresponding numbers of
squares S(N1) . . . S(Nm) needed to cover the fractal. Since
S(N) scales as

S(N) � N�df ; (15)

we obtain the fractal dimension by plotting S(N) versus
1/N in a double logarithmic plot. The asymptotic slope,
for large N, gives df.

Fractal Geometry, A Brief Introduction to, Figure 19
Illustrations for determining the fractal dimension: a the sand-
box method, b the box counting method
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Of course, the finest grid size must be larger than the
pixel size, so that many pixels can fall into the smallest
square. To improve statistics, one should average S(N)
over many realizations of the fractal. For applying this
method to identify self-similarity in real networks, see
Song et al. [39].

Self-Affine Fractals

The fractal structures we have discussed in the previous
sections are self-similar: if we cut a small piece out of
a fractal and magnify it isotropically to the size of the
original, both the original and the magnification look the
same. By magnifying isotropically, we have rescaled the x,
y, and z axis by the same factor.

There exist, however, systems that are invariant only
under anisotropicmagnifications. These systems are called
self-affine [1]. A simple model for a self-affine fractal
is shown in Fig. 20. The structure is invariant under
the anisotropic magnification x ! 4x, y ! 2y. If we cut
a small piece out of the original picture (in the limit of
n!1 iterations), and rescale the x axis by a factor of
four and the y axis by a factor of two, we will obtain ex-
actly the original structure. In other words, if we describe
the form of the curve in Fig. 20 by the function F(x), this
function satisfies the equation F(4x) D 2F(x) D 41/2F(x).

In general, if a self-affine curve is scale invariant under
the transformation x ! bx , y! ay, we have

F(bx) D aF(x) � bHF(x) ; (16)

Fractal Geometry, A Brief Introduction to, Figure 20
A simple deterministic model of a self-affine fractal

where the exponent H D log a/ log b is called the Hurst
exponent [1]. The solution of the functional equation (16)
is simply F(x) D AxH . In the example of Fig. 20, H D 1/2.

Next we consider random self-affine structures, which
are used as models for random surfaces. The simplest
structure is generated by a one-dimensional random walk,
where the abscissa is the time axis and the ordinate is the
displacement Z(t) D

Pt
iD1 ei of the walker from its start-

ing point. Here, ei D ˙1 is the unit step made by the ran-
dom walker at time t. Since different steps of the random
walker are uncorrelated, hei e ji D ıi j , it follows that the
root mean square displacement F(t) � hZ2(t)i1/2 D t1/2,
and the Hurst exponent of the structure is H D 1/2.

Next we assume that different steps i and j are corre-
lated in such a way that hei e ji D bji � jj�� , 1 > � � 0.
To see how the Hurst exponent depends on � , we have
to evaluate again hZ2(t)i D

Pt
i; jhei e ji. For calculating the

double sum it is convenient to introduce the Fourier trans-
form of ei, e! D (1/˝)1/2

P˝
lD1 el exp(�i! l), where˝ is

the number of sites in the system. It is easy to verify that
hZ2(t)i can be expressed in terms of the power spectrum
he! e�!i [40]:

hZ2(t)i D
1
˝

X

!

he! e�!ij f (!; t)j2 ; (17a)

where

f (!; t) �
e�i!(tC1) � 1
e�i! � 1

:
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Illustration of the successive random addition method in d D 1
and d D 2. The circlesmark those points that have been consid-
ered already in the earlier iterations, the crosses mark the new
midpoints added at the present iteration. At each iteration n,
first the Z values of the midpoints are determined by linear in-
terpolation from the neighboring points, and then random dis-
placements of variance� n are added to all Z values

Since the power spectrum scales as

he! e�!i � !�(1��) ; (17b)

the integration of (17a) yields, for large t,

hZ2(t)i � t2�� : (17c)

Therefore, the Hurst exponent is H D (2 � � )/2. Accord-
ing to Eq. (17c), for 0 < � < 1, hZ2(t)i increases faster in
time than the uncorrelated random walk. The long-range
correlated random walks were called fractional Brownian
motion by Mandelbrot [1].

There exist severalmethods to generate correlated ran-
dom surfaces. We shall describe the successive random ad-
ditions method [41], which iteratively generates the self-
affine function Z(x) in the unit interval 0 � x � 1. An al-
ternativemethod that is detailed in the chapter of Jan Kan-
telhardt is the Fourier-filtering technique and its variants.

In the n D 0 iteration, we start at the edges x D 0 and
x D 1 of the unit interval and choose the values of Z(0)
and Z(1) from a distribution with zero mean and variance
�20 D 1 (see Fig. 21). In the n D 1 iteration, we choose the
midpoint x D 1/2 and determine Z(1/2) by linear interpo-
lation, i. e., Z(1/2) D (Z(0)C Z(1))/2, and add to all so-
far calculated Z values (Z(0), Z(1/2), and Z(1)) random
displacements from the same distribution as before, but
with a variance �1 D (1/2)H (see Fig. 21). In the n D 2 it-
eration we again first choose the midpoints (x D 1/4 and
x D 3/4), determine their Z values by linear interpola-
tion, and add to all so-far calculated Z values random dis-
placements from the same distribution as before, but with
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Correlated random walks with H D 0:2, 0.5, and 0.8, generated
by the successive random addition method in d D 1

a variance �2 D (1/2)2H . In general, in the nth iteration,
one first interpolates the Z values of the midpoints and
then adds random displacements to all existing Z values,
with variance �n D (1/2)nH . The procedure is repeated
until the required resolution of the surface is obtained. Fig-
ure 22 shows the graphs of three random surfaces gener-
ated this way, with H D 0:2, H D 0:5, and H D 0:8.

The generalization of the successive random addi-
tion method to two dimensions is straightforward (see
Fig. 21). We consider a function Z(x; y) on the unit square
0 � x; y � 1. In the n D 0 iteration, we start with the
four corners (x; y) D (0; 0); (1; 0); (1; 1); (0; 1) of the unit
square and choose their Z values from a distribution with
zero mean and variance �20 D 1 (see Fig. 21). In the n D 1
iteration, we choose the midpoint at (x; y) D (1/2; 1/2)
and determine Z(1/2; 1/2) by linear interpolation, i. e.,
Z(1/2; 1/2)D (Z(0; 0)CZ(0; 1)CZ(1; 1)CZ(1; 0))/4. Then
we add to all so far calculated Z-values (Z(0; 0), Z(0; 1),



3712 F Fractal Geometry, A Brief Introduction to

Z(1; 0), Z(1; 1) and Z(1/2; 1/2)) random displacements
from the same distribution as before, but with a vari-
ance �1 D (1/

p
2)H (see Fig. 21). In the n D 2 iteration

we again choose the midpoints of the five sites (0; 1/2),
(1/2; 0), (1/2; 1) and (1; 1/2), determine their Z value by
linear interpolation, and add to all so far calculated Z val-
ues random displacements from the same distribution as
before, but with a variance �2 D (1/

p
2)2H . This proce-

dure is repeated again and again, until the required res-
olution of the surface is obtained.

At the end of this section we like to note that self-
similar or self-affine fractal structures with features simi-
lar to those fractal models discussed above can be found
in nature on all, astronomic as well as microscopic, length
scales. Examples include clusters of galaxies (the fractal di-
mension of the mass distribution is about 1.2 [42]), the
crater landscape of the moon, the distribution of earth-
quakes (see Chap. 2 in [15]), and the structure of coast-
lines, rivers, mountains, and clouds. Fractal cracks (see, for
example, Chap. 5 in [13]) occur on length scales ranging
from 103 km (like the San Andreas fault) to micrometers
(like fractures in solid materials) [44].

Many naturally growing plants show fractal struc-
tures, examples range from trees and the roots of trees
to cauliflower and broccoli. The patterns of blood vessels
in the human body, the kidney, the lung, and some types
of nerve cells have fractal features (see Chap. 3 in [15]).
In materials sciences, fractals appear in polymers, gels,
ionic glasses, aggregates, electro-deposition, rough inter-
faces and surfaces (see [13] and Chaps. 4 and 6 in [15]), as
well as in fine particle systems [43]. In all these structures
there is no characteristic length scale in the system besides
the physical upper and lower cut-offs.

The occurrence of self-similar or self-affine fractals is
not limited to structures in real space as we will discuss in
the next section.

Long-Term Correlated Records

Long-range dependencies as described in the previ-
ous section do not only occur in surfaces. Of great
interest is long-term memory in climate, physiology
and financial markets, the examples range from river
floods [45,46,47,48,49], temperatures [50,51,52,53,54],
and wind fields [55] to market volatilities [56], heart-beat
intervals [57,58] and internet traffic [59].

Consider a record xi of discrete numbers, where the
index i runs from 1 to N. xi may be daily or annual tem-
peratures, daily or annual river flows, or any other set of
data consisting of N successive data points. We are inter-
ested in the fluctuations of the data around their (some-

times seasonal) mean value. Without loss of generality, we
assume that the mean of the data is zero and the variance
equal to one. In analogy to the previous section, we call the
data long-term correlated, when the corresponding auto-
correlation function Cx (s) decays by a power law,

Cx (s) D hxi xiCsi �
1

N � s

N�sX

iD1

x1xiCs � s�� ; (18)

where � denotes the correlation exponent, 0 < � < 1.
Such correlations are named ‘long-term’ since the mean
correlation time T D

R1
0 Cx (s) ds diverges in the limit of

infinitely long series where N !1. If the xi are uncorre-
lated, Cx (s) D 0 for s > 0. More generally, if correlations
exist up to a certain correlation time sx, then C(s) > 0 for
s < sx and C(s) D 0 for s > sx .

Figure 23 shows parts of an uncorrelated (left) and
a long-term correlated (right) record, with � D 0:4; both
series have been generated by the computer. The red line
is the moving average over 30 data points. For the uncor-
related data, the moving average is close to zero, while for
the long-term correlated data set, the moving average can
have large deviations from the mean, forming some kind
of mountain valley structure. This structure is a conse-
quence of the power-law persistence. The mountains and
valleys in Fig. 23b look as if they had been generated by ex-
ternal trends, and one might be inclined to draw a trend-
line and to extrapolate the line into the near future for
some kind of prognosis. But since the data are trend-free,
only a short-term prognosis utilizing the persistence can
be made, and not a longer-term prognosis, which often is
the aim of such a regression analysis.

Alternatively, in analogy to what we described above
for self-affine surfaces, one can divide the data set in Ks
equidistant windows of length s and determine in each
window � the squared sum

F2
�(s) D

 sX

iD1

xi

!2

(19a)

and detect how the average of this quantity over all win-
dows, F2(s) D 1/Ks

PKs
�D1 F

2
�(s), scales with the window

size s. For long-term correlated data one can show that
F2(s) scales as hZ2(t)i in the previous section, i. e.

F2(s) � s2˛ ; (19b)

where ˛ D 1 � � /2. This relation represents an alternative
way to determine the correlation exponent � .

Since trends resemble long-term correlations and vice
versa, there is a general problem to distinguish between
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Fractal Geometry, A Brief Introduction to, Figure 23
Comparison of an uncorrelated and a long-term correlated record with � D 0:4. The full line is the moving average over 30 data
points

trends and long-term persistence. In recent years, several
methods have been developed,mostly based on the hierar-
chical detrended fluctuation analysis (DFAn) where long-
term correlations in the presence of smooth polynomial
trends of order n � 1 can be detected [57,58,60] (see also
� Fractal and Multifractal Time Series). In DFAn, one
considers the cumulated sum (“profile”) of the xi and di-
vides the N data points of the profile into equidistant win-
dows of fixed length s. Then one determines, in each win-
dow, the best fit of the profile by an nth order polynomial
and determines the variance around the fit. Finally, one av-
erages these variances to obtain themean variance F2

(n) and
the corresponding mean standard deviation (mean fluctu-
ation) F(n)(s). One can show that for long-term correlated
trend-free data F(n)(s) scales with the window size s as F(s)
in Eq. (19b), i. e., F(n)(s) � s˛ , with ˛ D 1 � � /2, irrespec-
tive of the order of the polynomial n. For short-term cor-
related records (including the case � � 1), the exponent is
1/2 for s above sx. It is easy to verify that trends of order
k � 1 in the original data are eliminated in F(k)(s) but con-
tribute to F(k�1); F(k�2) etc., and this allows one to deter-
mine the correlation exponent � in the presence of trends.
For example, in the case of a linear trend, DFA0 and DFA1
(where F(0)(s) and F(1)(s) are determined) are affected by
the trend and will exaggerate the asymptotic exponents ˛,
while DFA2, DFA3 etc. (where F(2)(s) and F(3)(s) etc. is
determined) are not affected by the trend and will show, in
a double logarithmic plot, the same value of ˛, which then
gives immediately the correlation exponent � . When � is
known this way, one can try to detect the trend, but there is
no unique treatment available. In recent papers [61,62,63],
different kinds of analysis have been elaborated and ap-
plied to estimate trends in the temperature records of the
Northern Hemisphere and Siberian locations.

Climate Records

Figure 24 shows representative results of the DFAn anal-
ysis, for temperature, precipitation and run-off data. For
continental temperatures, the exponent ˛ is around 0.65,
while for island stations and sea surface temperatures the
exponent is considerably higher. There is no crossover to-
wards uncorrelated behavior at larger time scales. For the
precipitation data, the exponent is close to 0.55, not being
significantly larger than for uncorrelated records.

Figure 25 shows a summary of the exponent ˛ for
a large number of climate records. It is interesting to
note that while the distribution of ˛-values is quite
broad for run-off, sea-surface temperature, and precipi-
tation records, the distribution is quite narrow, located
around ˛ D 0:65 for continental atmospheric tempera-
ture records. For the island records, the exponent is larger.
The quite universal exponent ˛ D 0:65 for continental sta-
tions can be used as an efficient test bed for climate mod-
els [62,64,65].

The time window accessible by DFAn is typically 1/4
of the length of the record. For instrumental records, the
time window is thus restricted to about 50 years. For ex-
tending this limit, one has to take reconstructed records
or model data, which range up to 2000y. Both have, of
course, large uncertainties, but it is remarkable that exactly
the same kind of long-term correlations can be found in
these data, thus extending the time scale where long-term
memory exists to at least 500y [61,62].

Clustering of Extreme Events

Next we consider the consequences of long-term mem-
ory on the occurrence of rare events. Understanding (and
predicting) the occurrence of extreme events is one of the
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Fractal Geometry, A Brief Introduction to, Figure 24
DFAn analysis of six temperature records, one precipitation record and two run-off records. The black curves are the DFA0 results,
while the upper red curves refer to DFA1 and the lower red curves to DFA2. The blue numbers denote the asymptotic slopes of the
curves

major challenges in science (see, e. g., [68]). An important
quantity here is the time interval between successive ex-
treme events (see Fig. 26), and by understanding the statis-
tics of these return intervals one aims to better understand
the occurrence of extreme events.

Since extreme events are, by definition, very rare and
the statistics of their return intervals poor, one usually
studies also the return intervals between less extreme
events, where the data are above some threshold q and
where the statistics is better, and hopes to find some gen-
eral “scaling” relations between the return intervals at low
and high thresholds, which then allows one to extrapolate
the results to very large, extreme thresholds (see Fig. 26).

For uncorrelated data, the return intervals are in-
dependent of each other and their probability density
function (pdf) is a simple exponential, Pq(r) D (1/Rq)
� exp(�r/Rq). In this case, all relevant quantities can be
derived from the knowledge of the mean return interval
Rq. Since the return intervals are uncorrelated, a sequen-
tial ordering cannot occur. There aremany cases, however,
where some kind of ordering has been observed where
the hazardous events cluster, for example in the floods

in Central Europe during the middle ages or in the his-
toric water levels of the Nile river which are shown in
Fig. 26 for 663y. Even by eye one can realize that the events
are not distributed randomly but are arranged in clusters.
A similar clustering was observed for extreme floods, win-
ter storms, and avalanches in Central Europe (see, e. g.,
Figs. 4.4, 4.7, 4.10, and 4.13 in [69], Fig. 66 in [70], and
Fig. 2 in [71]). The reason for this clustering is the long-
term memory.

Figure 27 shows Pq(r) for long-term correlated records
with ˛ D 0:4 (corresponding to � D 0:8), for three values
of the mean return interval Rq (which is easily obtained
from the threshold q and independent of the correlations).
The pdf is plotted in a scaled way, i. e., RqPq(r) as a func-
tion of r/Rq . The figure shows that all three curves collapse.
Accordingly, when we know the functional form of the pdf
for one value of Rq, we can easily deduce its functional
form also for very large Rq values which due to its poor
statistics cannot be obtained directly from the data. This
scaling is a very important property, since it allows one to
make predictions also for rare events which otherwise are
not accessible with meaningful statistics. When the data
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Fractal Geometry, A Brief Introduction to, Figure 25
Distribution of fluctuation exponents ˛ for several kinds of climate records (from [53,66,67])

Fractal Geometry, A Brief Introduction to, Figure 26
Illustration of the return intervals for three equidistant thresh-
old values q1;q2; q3 for the water levels of the Nile at Roda (near
Cairo, Egypt). One return interval for each threshold (quantile) q
is indicated by arrows

are shuffled, the long-term correlations are destroyed and
the pdf becomes a simple exponential.

The functional form of the pdf is a quite natural ex-
tension of the uncorrelated case. The figure suggests that

ln Pq(r) � �(r/Rq)� (20)

i. e. simple stretched exponential behavior [72,73]. For �
approaching 1, the long-term correlations tend to vanish

Fractal Geometry, A Brief Introduction to, Figure 27
Probability density function of the return intervals in long-term
correlated data, for three different return periods Rq, plotted in
a scaled way. The full line is a stretched exponential, with expo-
nent � D 0:4 (after [73])

and we obtain the simple exponential behavior character-
istic for uncorrelated processes. For r well below Rq, how-
ever, there are deviations from the pure stretched expo-
nential behavior. Closer inspection of the data shows that
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for r/Rq 
 the decay of the pdf is characterized by a power
law, with the exponent � � 1. This overall behavior does
not depend crucially on the way the original data are dis-
tributed. In the cases shown here, the data had a Gaus-
sian distribution, but similar results have been obtained
also for exponential, power-law and log-normal distribu-
tions [74]. Indeed, the characteristic stretched exponential
behavior of the pdf can also be seen in long historic and
reconstructed records [73].

The form of the pdf indicates that return intervals both
well below and well above their average value are consid-
erably more frequent for long-term correlated data than
for uncorrelated data. The distribution does not quantify,
however, if the return intervals themselves are arranged in
a correlated or in an uncorrelated fashion, and if cluster-
ing of rare events may be induced by long-term correla-
tions.

To study this question, [73] and [74] have evaluated
the autocorrelation function of the return intervals in syn-
thetic long-term correlated records. They found that also
the return intervals are arranged in a long-term correlated
fashion, with the same exponent as the original data. Ac-
cordingly, a large return interval is more likely to be fol-
lowed by a large one than by a short one, and a small re-
turn interval is more likely to be followed by a small one
than by a large one, and this leads to clustering of events
above some threshold q, including extreme events.

Fractal Geometry, A Brief Introduction to, Figure 28
Mean of the (conditional) return intervals that either follow a re-
turn interval below the median (lower dashed line) or above the
median (upper dashed line), as a function of the correlation expo-
nent � , for five long reconstructed and natural climate records.
The theoretical curves are comparedwith the correspondingval-
ues of the climate records (from right to left): The reconstructed
run-offs of the Sacramento River, the reconstructed tempera-
tures of Baffin Island, the reconstructed precipitation record of
New Mexico, the historic water levels of the Nile and one of the
reconstructed temperature records of the Northern hemisphere
(Mann record) (after [73])

As a consequence of the long-term memory, the prob-
ability of finding a certain return interval depends on the
preceding interval. This effect can be easily seen in syn-
thetic data sets generated numerically, but not so well in
climate records where the statistics is comparatively poor.
To improve the statistics, we now only distinguish between
two kinds of return intervals, “small” ones (below the me-
dian) and “large” ones (above the median), and determine
the mean RCq and R�q of those return intervals following
a large (C) or a small (�) return interval. Due to scal-
ing, RCq /Rq and R�q /Rq are independent of q. Figure 28
shows both quantities (calculated numerically for long-
term correlated Gaussian data) as a function of the cor-
relation exponent � . The lower dashed line is R�q /Rq , the
upper dashed line is RCq /Rq . In the limit of vanishing long-
term memory, for � D 1, both quantities coincide, as ex-
pected. Figure 28 also shows RCq /Rq and R�q /Rq for five
climate records with different values of � . One can see that
the data agree very well, within the error bars, with the the-
oretical curves.

Long-Term Correlations in FinancialMarkets
and Seismic Activity

The characteristic behavior of the return intervals, i. e.
long-term correlations and stretched exponential decay,
can also be observed in financial markets and seismic ac-
tivity. It is well known (see, e. g. [56]) that the volatility
of stocks and exchange rates is long-term correlated. Fig-
ure 29 shows that, as expected from the foregoing, also
the return intervals between daily volatilities are long-
term correlated, with roughly the same exponent � as the
original data [75]. It has further been shown [75] that
also the pdfs show the characteristic behavior predicted
above.

A further example where long-term correlations seem
to play an important role, are earthquakes in certain
bounded areas (e. g. California) in time regimes where the
seismic activity is (quasi) stationary. It has been discov-
ered recently by [76] that the magnitudes of earthquakes
in Northern and Southern California, from 1995 until
1998, are long-term correlated with an exponent around
� D 0:4, and that also the return intervals between the
earthquakes are long-term correlated with the same expo-
nent. For the given exponential distribution of the earth-
quake magnitudes (following the Gutenberg–Richter law),
the long-term correlations lead to a characteristic depen-
dence on the scaled variable r/Rq which can explain, with-
out any fit parameter, the previous results on the pdf of the
return intervals by [77].
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Fractal Geometry, A Brief Introduction to, Figure 29
Long-term correlation exponent � for the daily volatility (left) and the corresponding return intervals (right). The studied commodi-
ties are (from left to right), the S&P 500 index, six stocks (IBM, DuPont, AT&T, Kodak, General Electric, Coca-Cola) and seven currency
exchange rates (US$ vs. Japanese Yen, British Pound vs. Swiss Franc, US$ vs. Swedish Krona, Danish Krone vs. Australian $, Danish
Krone vs. Norwegian Krone, US$ vs. Canadian $ and US$ vs. South African $). Courtesy of Lev Muchnik

Multifractal Records

Many records do not exhibit a simple monofractal scal-
ing behavior, which can be accounted for by a single scal-
ing exponent. In some cases, there exist crossover (time-)
scales sx separating regimes with different scaling expo-
nents, e. g. long-term correlations on small scales below sx
and another type of correlations or uncorrelated behavior
on larger scales above sx. In other cases, the scaling behav-
ior is more complicated, and different scaling exponents
are required for different parts of the series. In even more
complicated cases, such different scaling behavior can be
observed for many interwoven fractal subsets of the time
series. In this case a multitude of scaling exponents is re-
quired for a full description of the scaling behavior, and
a multifractal analysis must be applied (see, e. g., [78,79]
and literature therein).

To see this, it is meaningful to extend Eqs. (19a)
and (19b) by considering the more general average

Fq(s) D
1
Ks

KsX

�D1

�
F2
�(s)

�q/2 (21)

with q between�1 andC1. For q
 �1 the small fluc-
tuations will dominate the sum, while for q	 1 the large
fluctuations are dominant. It is reasonable to assume that
the q-dependent average scales with s as

Fq(s) � sqˇ (q) ; (22)

with ˇ(2) D ˛. Equation (22) generalizes Eq. (19b). Ifˇ(q)
is independent of q, we have (Fq(s))1/q � s˛ , independent
of q, and both large and small fluctuations scale the same.
In this case, a single exponent is sufficient to character-
ize the record, which then is referred to as monofractal. If

ˇ(q) is not identical to ˛, we have a multifractal [1,4,12].
In this case, the dependence of ˇ(q) on q characterizes
the record. Instead of ˇ(q) one considers frequently the
spectrum f (!) that one obtains by Legendre transform of
qˇ(q), ! D d(qˇ(q))/dq, f (!) D q! � qˇ(q)C 1. In the
monofractal limit we have f (!) D 1.

For generating multifractal data sets, one consid-
ers mostly multiplicative random cascade processes, de-
scribed, e. g., in [3,4]. In this process, the data set is
obtained in an iterative way, where the length of the
record doubles in each iteration. It is possible to gener-
ate random cascades with vanishing autocorrelation func-
tion (Cx (s) D 0 for s � 1) or with algebraically decay-
ing autocorrelation functions (Cx (s) � s�� ). Here we fo-
cus on a multiplicative random cascade with vanishing
autocorrelation function, which is particularly interesting
since it can be used as a model for the arithmetic returns
(Pi � Pi�1)/Pi of daily stock closing prices Pi [80]. In the
zeroth iteration n D 0, the data set (xi) consists of one
value, x(nD0)

1 D 1. In the nth iteration, the data x(n)i consist
of 2n values that are obtained from

x(n)2l�1 D x(n�1)l m(n)
2l�1

and

x(n)2l D x(n�1)l m(n)
2l ; (23)

where the multipliers m are independent and identically
distributed (i.i.d.) random numbers with zero mean and
unit variance. The resulting pdf is symmetric with log-
normal tails, with vanishing correlation function Cx (s) for
s � 1.



3718 F Fractal Geometry, A Brief Introduction to

It has been shown that in this case, the pdf of the return
intervals decays by a power-law

Pq(r) �
�

r
Rq

��ı(q)
; (24)

where the exponent ı depends explicitly on Rq and seems
to converge to a limiting curve for large data sets. Despite
of the vanishing autocorrelation function of the original
record, the autocorrelation function of the return inter-
vals decays by a power law with a threshold-dependent ex-
ponent [80]. Obviously, these long-term correlations have
been induced by the nonlinear correlations in the mul-
tifractal data set. Extracting the return interval sequence
from a data set is a nonlinear operation, and thus the re-
turn intervals are influenced by the nonlinear correlations
in the original data set. Accordingly, the return intervals
in data sets without linear correlations are sensitive indi-
cators for nonlinear correlations in the data records. The
power-law dependence of Pq(r) can be used for an im-
proved risk estimation. Both power-law dependencies can
be observed in economic and physiological records that
are known to be multifractal [81].
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Glossary

Fractal A fractal is a geometric object which is self-similar
and characterized by an effective dimension which is
not an integer.

Multifractal A multifractal measure is a non-negative
real function) defined on a support (a geometric re-
gion) which has a spectrum of scaling exponents.

Diffusion-limited aggregation Diffusion-limited aggre-
gation (DLA) is a discrete model for the irreversible

growth of a cluster. The rules of the model involve a se-
quence of random walkers that are incorporated into
a growing aggregate when they wander into contact
with one of the previously aggregated walkers.

Dielectric breakdown model The dielectric breakdown
model (DBM) is a generalization of DLA where the
probability to grow is proportional to a power of the
diffusive flux onto the aggregate. If the power is unity,
the model is equivalent to DLA: in this version it is
called Laplacian growth.

Harmonic measure If a geometric object is thought of as
an isolated grounded conductor of fixed charge, the
distribution of electric field on its surface is the har-
monic measure. The harmonic measure of a DLA clus-
ter is the distribution of growth probability on the
surface.

Definition of the Subject

Fractal growth processes are a class of phenomena which
produce self-similar, disordered objects in the course of
development far from equilibrium. The most famous of
these processes involve growth which can be modeled on
the large scale by the diffusion-limited aggregation al-
gorithm of Witten and Sander [1]. DLA is a paradigm
for pattern formation modeling which has been very in-
fluential.

The algorithm describes growth limited by diffusion:
many natural processes fall in this category, and the salient
characteristics of clusters produced by the DLA algorithm
are observed in a large number of systems such as elec-
trodeposition clusters, viscous fingering patterns, colonies
of bacteria, dielectric breakdown patterns, and patterns of
blood vessels.

At the same time the DLA algorithm poses a very rich
problem in mathematical physics. A full “solution” of the
DLA problem, in the sense of a scaling theory that can
predict the important features of computer simulations
is still lacking. However, the problem shows many fea-
tures that resemble thermal continuous phase transitions,
and a number of partially successful approaches have been
given. There are deep connections betweenDLA in two di-
mensions and theories such as Loewner evolution that use
conformal maps.

Introduction

In the 1970s Benoit Mandelbrot [2] developed the idea of
fractal geometry to unify a number of earlier studies of ir-
regular shapes and natural processes. Mandelbrot focused
on a particular set of such objects and shapes, those that
are self-similar, i. e., where a part of the object is identical



Fractal Growth Processes F 3721

(either in shape, or for an ensemble of shapes, in distribu-
tion) to a larger piece. He dubbed these fractals. He noted
the surprising ubiquity of self-similar shapes in nature.

Of particular interest to Mandelbrot and his collabora-
tors were incipient percolation clusters [3]. These are the
shapes generated when, for example, a lattice is diluted
by cutting bonds at random until a cluster of connected
bonds just reaches across a large lattice. Thismodel has ob-
vious applications in physical processes such as transport
in randommedia. The model has a non-trivial mapping to
a statistical model [4] and can be treated by the methods of
equilibrium statistical physics. It is likely that percolation
processes account for quite a few observations of fractals
in nature.

In 1981 Tom Witten and the present author observed
that a completely different type of process surprisingly
appears to make fractals [1,5]. These are unstable, irre-
versible, growth processes which we called diffusion-lim-
ited aggregation (DLA). DLA is a kinetic process which
is not related to equilibrium statistical physics, but rather
defined by growth rules. The rules idealize growth limited
by diffusion: in the model there are random walking “par-
ticles” which attach irreversibly to a single cluster made
up of previously aggregated particles. As we will see, quite
a few natural processes can be described by DLA rules, and
DLA-like clusters are reasonably common in nature. The
Witten–Sander paper and subsequent developments un-
leashed a large amount of activity – the original work has
been cited more than 2700 times as of this writing. The lit-
erature in this area up to 1998 was reviewed in a very com-
prehensivemanner by T. Vicsek [6] and P. Meakin [7]. See
also the chapter by the present author in [8]. For non-tech-
nical reviews see [9,10,11].

There are three major areas where self-similar shapes
arising from non-equilibrium processes have been studied.
The first is the related to the original DLA algorithm. The
model may be seen as an idealization of solidification of
an amorphous substance. The study of this simple-seem-
ing model is quite unexpectedly rich, and quite difficult to
treat theoretically. It will be our focus in this article. We
will review the early work, but emphasize developments
since [7].

Meakin [12] and Kolb, et al. [13] generalized DLA to
consider cluster-cluster or colloid aggregation. In this pro-
cess particles aggregate when they come into contact, but
the clusters so formed are mobile, and themselves aggre-
gate by attaching to each other. This is an idealization of
colloid or coagulated aerosol formation. This model also
produces fractals but this is not really a surprise: at each
stage, clusters of similar size are aggregating, and the re-
sult is an approximately hierarchical object. This model is

quite important in applications in colloid science. The in-
terested reader should consult [6,14].

A third line of work arose from studies of ballistic ag-
gregation [15] and the Edenmodel [16]. In the former case
particles attach to an aggregate after moving in straight
paths, and in the latter, particles are simply added to the
surface of an aggregate at any available site, with equal
probability. These models give rise to non-fractal clusters
with random rough surfaces. The surfaces have scaling
properties which are often characterized at the continuum
level by a stochastic partial differential equation proposed
by Kardar, Parisi, and Zhang [17]. For accounts of this area
the reader can consult [18,19,20].

The remainder of this article is organized as follows:
we first briefly review fractals and multifractals. Then we
give details about DLA and related models, numerical
methods, and applications of the models. The major de-
velopment that has fueled a remarkable revival of inter-
est in this area was the work of Hastings and Levitov [21]
who related two-dimensional DLA to a certain class of
conformal maps. Developments of this theme is the sub-
ject of the subsequent section. Then we discuss the ques-
tion of the distribution of growth probabilities on the clus-
ter surface, and finally turn to scaling theories of DLA.

Fractals andMultifractals

The kind of object that we deal with in this article is highly
irregular; see Fig. 1. We think of the object as being made
up of a large number,N, of units, and to be of overall linear
dimension R. In growth processes the objects are formed
by adding the units according to some dynamics. We will
call the units “particles”, and take their size to be a.

Such patterns need not be merely random, but can
have well-defined scaling properties in the regime a
 R.
The picture is of a geometric object in two dimensions, but
the concepts we introduce here are often applied to more
abstract spaces. For example, a strange attractor in phase
space often has the kind of scaling properties described
here.

In order to characterize the geometry of such complex
objects, we first cover the points in question with a set of
n(l) “boxes” of fixed size, l such that a
 l 
 R. Clearly,
for a smooth curve the product ln(l) approaches a limit
(the length of the curve) as l ! 0. This is a number of or-
der R. For a planar region with smooth boundaries l2n(l)
approaches the area, of order R2. The objects of ordinary
geometry in d dimensions have measures given by the
limit of l d n(l). For an object with many scales (a fractal),
in general none of these relations hold. Rather, the product
l Dn(l) approaches a limit with D not necessarily an inte-
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Fractal Growth Processes, Figure 1
A partial covering of a pattern with boxes. Smaller boxes reveal
smaller scales of the pattern. For a pattern withmany scales (like
this one) there is a non-trivial scaling between the box size, l and
the number of boxes

ger; D is called the (similarity) fractal dimension. Said an-
other way, we define the fractal dimension by:

n(l) / (R/l)D : (1)

For many simple examples of mathematical objects with
non-integer values of D see [2,6].

For an infinite fractal there are no characteristic
lengths. For a finite size object there is a characteristic
length, the overall scale, R. This can be taken to be any
measure of the size such as the radius of gyration or the
extremal radius – all such lengths must be proportional.

It is useful to generalize this definition in two ways.
First we consider not only a geometric object, but also
ameasure, that is a non-negative function� defined on the
points of the object such that

R
d� D 1. For the geometry,

we take themeasure to be uniform on the points. However,
for the case of growing fractals, we could also consider the
growth probability at a point. As we will see, this is very
non-uniform for DLA. Second, we define a sequence of
generalized dimensions. If we are interested in geometry,
we denote the mass of the object covered by box i by pi.
For an arbitrary measure, we define:

pi D
Z

d� ; (2)

where the integral is over the box labeled i. Then, follow-
ing [22,23] we define a partition function for the pi:

�(q) D
nX

iD1

pqi ; (3)

where q is a real number. For an object with well-defined
scaling properties we often find that � scales with l in the
following way as l/R! 0:

�(q) / (R/l)��(q) � (R/l)�(q�1)Dq ;
�(q) D (q � 1)Dq :

(4)

Objects with this property are called fractals if all the Dq
are the same. Otherwise they aremultifractals.

Some of theDq have special significance. The similarity
(or box-counting) dimensionmentioned above isD0 since
in this case � D n. If we take the limit q! 1 we have the
information dimension of dynamical systems theory:

D1 D
d�
dq

ˇ
ˇ̌
ˇ
qD1
D
X

i

pi
ln pi
ln l

: (5)

D2 is called the correlation dimension since p2i measures
the probability that two points are close together, i. e. the
number of pairs within distance l. This interpretation gives
rise to a popular way to measure D2. If we suppose that
the structure is homogeneous, then the number of pairs of
points can be found by focusing on any point, and drawing
a d-dimensional disk of radius r around it. The number
of other points in the disk will scale as rD2 . For DLA, it
is common to simply count the number of points within
radius r of the origin, or, alternatively, the dependence of
some mean radius, R on the total number of aggregated
particles,N, that is N / RD2 Thismethod is closely related
to the Grassberger–Procaccia correlation integral [24].

For a simple fractal all of the Dq are the same, and
we use the symbol D. If the generalized dimensions dif-
fer, then we have a multifractal. Multifractals were intro-
duced by Mandelbrot [25] in the context of turbulence. In
the context of fractal growth processes, the clusters them-
selves are usually simple fractals. They are the support for
a multifractal measure, the growth probability.

We need another bit of formalism. It is useful to look
at the fractal measure and note how the pi scale with l/R.
Suppose we assume a power-law form, pi / (l/R)˛ , where
there are different values of ˛ for different parts of the
measure. Also, suppose that we make a histogram of the ˛,
and look at the parts of the support on which we have the
same scaling. It is natural to adopt a form like Eq. (1) for
the size of these sets, (l/R)� f (˛). (It is natural to think of
f (˛) as the fractal dimension of the set on which the mea-
sure has exponent ˛, but this is not quite right because f
can be negative due to ensemble averaging.) Then it is not
hard to show [23] that ˛; f (˛) are related to q; �(q) by
a Legendre transform:

f (˛) D q
d�
dq
� � ; ˛ D

d�
dq
: (6)
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AggregationModels

In this section we review aggregation models of the DLA
type, and their relationship to certain continuum process-
es.We look at practical methods of simulation, and exhibit
a few applications to physical and biological processes.

DLA

The original DLA algorithm [1,5] was quite simple: on
a lattice, declare that the point at the origin is the first
member of the cluster. Then launch a randomwalker from
a distant point and allow it to wander until it arrives at
a neighboring site to the origin, and attach it to the cluster,
i. e., freeze its position. Then launch another walker and
let it attach to one of the two previous points, and so on.
The name, diffusion-limited aggregation, refers to the fact
that random walkers, i. e., diffusing particles, control the
growth. DLA is a simplified view of a common physical
process, growth limited by diffusion.

It became evident that for large clusters the overall
shape is dependent on the lattice type [26,27], that is,
DLA clusters are deformed by lattice anisotropy. This is
an interesting subject [26,28,29,30,31] but most modern
work is on DLA clusters without anisotropy, off-lattice
clusters. The off-lattice algorithm is similar to the original
one: instead of a random walk on a lattice the particle
is considered to have radius a. For each step of the walk
the particle moves its center from the current position to
a random point on its perimeter. If it overlaps a particle
of the current cluster, it is backed up until it just touches
the cluster, and frozen at that point. Then another walker
is launched. A reasonably large cluster grown in two di-
mensions is shown in Fig. 2, along with a smaller three-
dimensional example. Most of the work on DLA has been
for two dimensions, but dimensions up to 8 have been
considered [32].

Patterns like the one in Fig. 2 have been analyzed
for fractal properties. Careful measurements of both D0
andD2 (using themethod,mentioned above, of fitting n(r)
to rD2 ) give the same fractal dimension, D=1.71 [32,33,34];
see Fig. 3. There is some disagreement about the next digit.
There have been suggestions that DLA is a massmultifrac-
tal [35], but most authors now agree that all of the Dq are
the same for the mass distribution. For three dimensions
D � 2:5 [31,32], and for four dimensions D � 3:4 [32].

However, some authors [36,37] have claimed that
plane DLA is not a self-similar fractal at all, and that the
fractal dimension will drift towards 2 as the number of
particles increases. More recent work based on conformal
maps [38] has cast doubt on this. We will return to this
point below.

Fractal Growth Processes, Figure 2
a A DLA cluster of 50,000,000 particles produced with an off-
lattice algorithm by E. Somfai. b A three-dimensional off-lattice
cluster. Figure courtesy of R. Ball

Fractal Growth Processes, Figure 3
The number of particles inside of radius r for a large DLA cluster.
This plot gives an estimate of D2

Plane DLA clusters can be grown in restricted geome-
tries, see Fig. 4. The shape of such clusters is an inter-
esting problem in pattern formation [39,40,41,42]. It was
long thought that DLA grown in a channel had a differ-
ent fractal dimension than in radial geometry [43,44,45].
However, more careful work has shown that the dimen-
sions are the same in the two cases [34].

Laplacian Growth and DBM

Suppose we ask how the cluster of Fig. 2 gets to be rough.
A simple answer is that if we already have a rough shape,
it is quite difficult for a random walker to penetrate a nar-
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Fractal Growth Processes, Figure 4
DLA grown in a channel (a) and a wedge (b). The boxes in a are the hierarchical maps of the Sect. “Numerical Methods”. Figures due
to E. Somfai

row channel. (Just how difficult is treated in the Sect. “Har-
monic Measure”, below) The channels don’t fill in, and
the shape might be preserved. But we can also ask why
a a smooth outline, e. g. a disk, does not continue to
grow smoothly. In fact, it is easy to test that any ini-
tial condition is soon forgotten in the growth [5]. If we
start with a smooth shape it roughens immediately be-
cause of a growth instability intrinsic to diffusion-limited
growth. This instability was discovered by Mullins and
Sekerka [46] who used a statement of the problem of diffu-
sion-limited growth in continuum terms: this is known as
the Stefan problem (see [47,48]), and is the standard way
to idealize crystallization in the diffusion-limited case.

The Stefan problem goes as follows: suppose that we
have a density �(r; t) of particles that diffuse until they
reach the growing cluster where they deposit. Then we
have:
@�

@t
D �r2� (7)

@�

@n
/ vn (8)

That is, � should obey the diffusion equation; � is the dif-
fusion constant. The normal growth velocity, vn, of the in-

terface is proportional to the flux onto the surface, @�/@n.
However the term @�/@t is of order v@�/@x, where v is
a typical growth velocity. Now jr2�j � (v/D)j@�/@nj. In
the DLA case we launch one particle at a time, so that the
velocity goes to zero. Hence Eq. (7) reduces to the Laplace
equation,

r2� D 0 (9)

Since the cluster absorbs the particles, we should think of it
as having � D 0 on the surface. We are to solve an electro-
statics problem: the cluster is a grounded conductor with
fixed electric flux far away. We grow by an amount pro-
portional to the electric field at each point on the surface.
This is called the quasi-static or Laplacian growth regime
for deterministic growth. A linear stability analysis of these
equations gives the Mullins–Sekerka instability [46]. The
qualitative reason for the instability is that near the tips of
the cluster the contours of � are compressed so that @�/@n,
the growth rate, is large. Thus tips grow unstably. We ex-
pect DLA to have a growth instability.

However, we can turn the argument, and use these ob-
servations to give a restatement of the DLA algorithm in
continuum terms: we calculate the electric field on the sur-



Fractal Growth Processes F 3725

face of the aggregate, and interpret Eq. (8) as giving the dis-
tribution of the growth probability, p, at a point on the sur-
face. We add a particle with this probability distribution,
recalculate the potential using Eq. (9) and continue. This is
called Laplacian growth. Simulations of Laplacian growth
yield the same sort of clusters as the original discrete al-
gorithm. (Some authors use the term Laplacian growth in
a different way, to denote deterministic growth according
to the Stefan model without surface tension [49].)

DLA is thus closely related to one of the classic prob-
lems of mathematical physics, dendritic crystal growth in
the quasistatic regime. However, it is not quite the same
for several reasons: DLA is dominated by noise, whereas
the Stefan problem is deterministic. Also, the boundary
conditions are different [48]: for a crystal, if we interpret u
as T � Tm, where T is the temperature, and Tm the melt-
ing temperature, we have � D 0 only on a flat surface. On
a curved surface we need � / �� where � is the surface
stiffness, and � is the curvature. The surface tension acts
as a regularization which prevents theMullins–Sekerka in-
stability from producing sharp cusps [50]. In DLA the reg-
ularization is provided by the finite particle size. And, of
course, crystals have anisotropy in the surface tension.

There is another classic problem very similar to this,
that of viscous fingering in Hele–Shaw flow [48]. This is
the description of the displacement of an incompressible
viscous fluid by an inviscid one: the “bubble” of inviscid
fluid plays the role of the cluster, � is the difference of pres-
sures in the viscous fluid and the bubble, and the Laplace
equation is the direct result of incompressibility, r � v D 0
and D’Arcy’s law, v D kr� where k is the permeability,
and v the fluid velocity [51].

These considerations led Niemeyer, Pietronero, and
Weismann [52] to a clever generalization of Laplacian
growth. They were interested in dielectric breakdown
with � representing a real electrostatic potential. This is

Fractal Growth Processes, Figure 5
DBM patterns for 1000 particles on a triangular lattice. a � D 0:5 b � D 1. This is a small DLA cluster. c � D 2. d � D 3

known to be a threshold process so that we expect that the
breakdown probability is non-linear in @�/@n. To gener-
alize they chose:

p /
�
@�

@n

��
; (10)

where � is a non-negative real number.
There are some interesting special cases for this model.

For � D 0 each growth site is equally likely to be used.
This is the Eden model [16]. For � D 1 we have the Lapla-
cian growth version of DLA, and for larger � we get
a higher probability to grow at the tips so that the aggre-
gates are more spread out (as in a real dielectric break-
down pattern like atmospheric lightning). There is a re-
markable fact which was suggested numerically in [53] and
confirmed more recently [54,55]: for � > 4 the aggregate
prefers growth at tips so much that it becomes essentially
linear and non-fractal. DBM patterns for small numbers of
particles are shown in Fig. 5.

A large number of variants of the basic model have
been proposed such as having the random walkers per-
form Lévy flights, having a variable particle size, impos-
ing a drift on the random walkers, imposing anisotropy
in attachment, etc. For references on these and other vari-
ants, see [7]. There are two qualitative results from these
studies that are worth mentioning here: In the presence
of drift, DLA clusters cross over to (non-fractal) Eden-like
clusters [56,57]. And, anisotropy deforms the shape of the
clusters on the large scale, as we mentioned above.

Numerical Methods

In the foregoing we have talked about the algorithm for
DLA, but we have not described what is actually done
to compute the positions of 50,000,000 particles. This is
a daunting computational task, and considerable ingenu-
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Fractal Growth Processes, Figure 6
A cluster is surrounded by a starting circle (gray). A random
walker outside the circle can safely take steps of length of the
black circle. If the walker is at any point, it can walk on a circle
equal in size to the distance to the nearest point of the cluster.
However, finding that circle appears to require a time-consum-
ing search

ity has been devoted to making efficient algorithms. The
techniques are quite interesting in their own right, and
have been applied to other types of simulation.

The first observation to make is that the algorithm is
an idealization of growth due to particles wandering into
contact with the aggregate from far away. However, it is
not necessary to start the particles far away: they arrive at
the aggregate with uniform probability on a circle which
just circumscribes all of the presently aggregated particles;
thus we can start the particles there. As the cluster grows,
the starting circle grows. This was already done in the orig-
inal simulations [1,5].

However, particles can wander in and then out of the
starting circle without attaching. These walkers must be
followed, and could take a long time to find the cluster
again.However, since there is nomatter outside, it is possi-
ble to speed up the algorithm by noting that if the random
walker takes large steps it will still have the same proba-
bility distribution, provided that it cannot encounter any
matter. For example, if it walks onto the circumference of
a circle that just reaches the starting circle, it will have the
correct distribution. The radius of this circle is easy to find.
This observation, due to P. Meakin, is the key to what fol-
lows: see Fig. 6.

We should note that the most efficient way to deal with
particles that wander away is to return the particle to the
starting circle in one step using the Green’s function for
a point charge outside an absorbing circle. A useful algo-
rithm to do this is given in [58]. However, the idea of tak-
ing big steps is still a good one because there is a good deal
of empty space inside the starting circle. If we could take
steps in this empty space (see Fig. 6) we could again speed
up the algorithm. The trick is to efficiently find the largest

circle centered on the random walker that has no point of
the aggregate within it.

One could imagine simply doing a spiral search from
the current walker position. This technique has actually
been used in a completely different setting, that of Ki-
netic Monte Carlo simulations of surface growth in ma-
terials science [59]. For the case of DLA an even more
efficient method, the method of hierarchical maps, was
devised [26]. It was extended and applied to higher di-
mensions and off-lattice in [32], and is now the standard
method.

One version of the idea is illustrated in Fig. 4a for the
case of growth in a channel.What is shown is an adaptively
refined square mesh. The cluster is covered with a square –
a map. The square is subdivided into four smaller squares,
and each is further divided, but only if the cluster is closer
to it than half of the side of the square. The subdivision
continues only up to a predefined maximum depth so that
the smallest maps are a few particle diameters. All particles
of the cluster will be in one of the smallest maps: a list of
the particles is attached to these maps.

As the cluster grows the maps are updated. Each time
a particle is added to a previously empty smallest map,
the neighboring maps (on all levels) are checked to see
whether they satisfy the rule. If not, they are subdivided
until they do. When a walker lands, we find the smallest
map containing the point. If this map is not at the max-
imum depth, then the particle is far away from any mat-
ter, and half the side of the map is a lower estimate of the
walker’s distance from the cluster. If, on the other hand,
the particle lands in a map of maximum depth, then it is
close to the cluster. The particle lists of the map and of the
neighboring smallest size maps can be checked to calculate
the exact distance from the cluster. Either way, the parti-
cle is enclosed in an empty circle of known radius, and can
be brought to the perimeter of the circle in one step. Note
that updating the map means that there is only a search
for the cluster if we are in the smallest map. Empirically,
the computational time, T for an N particle cluster obeys
T � N1:1, and the memory is linear in N. A more recent
version of the algorithm for three-dimensional growth
uses a covering with balls rather than cubes [31].

For simulations of the Laplacian growth version of
the situation is quite different, and simulations are much
slower. The reason is that a literal interpretation of the al-
gorithm requires that the Laplace equation be solved each
time a particle is added, for example, by the relaxation
or boundary-integral method. This is how corresponding
simulations for viscous fingering are done [60]. For DBM
clusters the growth step requires taking a power of the
electric field at the surface.
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It is possible to make DBM clusters using random
walkers [61], but the method is rather subtle. It involves
estimating the growth probability at a point by figuring out
the “age” of a site, i. e., the time between attachments. This
can be converted into an estimate of the growth probabil-
ity. This algorithm is quite fast.

There is another class of methods involving conformal
maps. These are slow methods: the practical limit of the
size of clusters that can be grown this way is about 50,000.
However, this method calculates the growth probability as
it goes along, and thus is of great interest. Conformal map-
ping is discussed in the Sect. “Loewner Evolution and the
Hastings–Levitov Scheme”, below.

Selected Applications

Probably the most important impact of the DLA model
has been the realization that diffusion-limited growth nat-
urally gives rise to tenuous, branched objects. Of course,
in the context of crystallization, this was understood
in the centuries-long quest to understand the shape of
snowflakes. However, applications of DLA gave rise to
a unification of this with the study of many other physi-
cal applications. Broad surveys are given in [6,7,10]. Here
we will concentrate on a few illustrative examples.

Rapid crystallization in a random environment is the
most direct application of DLA scheme. One particularly
accessible example is the growth of islands on surfaces
in molecular beam epitaxy experiments. In the proper
growth conditions it is easy to see patterns dominated
by the Mullins–Sekerka instability. These are often re-

Fractal Growth Processes, Figure 7
a A scanning tunneling microscope picture of Rh metal islands. The color scale indicates height, and the figure is about 500Å across.
Figure courtesy of R. Clarke. bAbacteria colony on a Petri dish. The figure is a few centimeters across. Figure courtesy of E. Ben-Jacob

ferred to with the unlovely phrase “fractal-like”. An exam-
ple is given in Fig. 7a. There are many examples of this
type, e. g. [62]. A related example is the electrodeposition
of metal ions from solution. For overpotential situations
DLA patterns are often observed [44,63,64,65].

There are also examples of Laplacian growth. A case
of this type was discovered by Matsushita and collabo-
rators [66], and exploited in a series of very interesting
studies by the group of Ben-Jacob [67] and others. This
is the growth of colonies of bacteria on hard agar plates
in conditions of low nutrient supply. In this case, bacteria
movement is suppressed (by the hard agar) and the limit-
ing step in colony growth is the diffusion of nutrients to
the colony. Thus we have an almost literal realization of
Laplacian growth, and, indeed, colonies do look like DLA
clusters in these conditions; see Fig. 7b. The detailed study
of this system has led to very interesting insights into the
biophysics of bacteria: these are far from our subject here,
and the reader should consult [67].

We remarked above that noisy viscous fingering pat-
terns are similar to DLA clusters, but not the same in de-
tail: in viscous fingering the surface tension boundary con-
dition is different from that of DLA which involves dis-
crete particles. We should note that for viscous fingering
patterns in a channel, the asymptotic state is not a disor-
derly cluster, but rather a single finger that fills half the
channel [48] because surface tension smooths the finger.
In radial growth this is not true: the Mullins–Sekerka in-
stability gives rise to a disorderly pattern [51] which looks
verymuch like a DLA cluster, see Fig. 8. Even for growth in
a channel, if there is sufficient noise, patterns look rather
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Fractal Growth Processes, Figure 8
A radial viscous fingering pattern. Courtesy of M. Moore and E.
Sharon

like those in Fig. 4a. In fact, Tang [68] used a version of
DLA which allowed him to reduce the noise (see below)
and introduce surface tension to do simulations of viscous
fingering.

We should ask if this resemblance is more than a mere
coincidence. It is the case that the measured fractal dimen-
sion of patterns like the one in Fig. 8 is close to 1.71, as for
DLA. On this basis there are several claims in the litera-
ture that the large-scale structure of the patterns is identi-
cal [9,51,69]. Many authors have disagreed and given in-
genious arguments about how to verify this. For example,
some have claimed that viscous patterns become two-di-
mensional at large scales [70], or that viscous fingering
patterns are most like DBM patterns with � � 1:2 [71].
Most recently a measurement of the growth probability of
a large viscous fingering pattern was found to agree with
that of DLA [72]. On this basis, these authors claim that
DLA and viscous fingering are in the same universality
class. In our opinion, this subject is still open.

ConformalMapping

For pattern formation in two dimensions the use of ana-
lytic function theory and conformal mapping methods al-
lows a new look at growth processes. The idea is to think of
a pattern in the z plane as the image of a simple reference
shape, e. g. the unit circle in the w plane, under a time-de-
pendent analytic function, z D Ft(w). More precisely, we
think of the region outside of the pattern as the image of
the region outside of the reference shape. By the Riemann
mapping theorem the map exists and is unique if we set

a boundary condition such as F(w)! r0w asw !1.We
will also use the inverse map, w D G(z) D F�1(z).

For Laplacian growth processes this idea is particularly
interesting since the growth rules depend on solving the
Laplace equation outside the cluster. We recall that the
Laplace equation is conformally invariant; that is, it re-
tains its form under a conformal transformation. Thus we
can solve in the w plane, and transform the solution: if
r2�(w) D 0, and � D 0 on the unit circle, and we take �
to be the real part of a complex potential ˚ in the w plane,
then Re ˚(G(z)) solves the Laplace equation in the z plane
with Re ˚ D 0 on the cluster boundary. Thus we can solve
for the potential outside the unit circle in w-space (which
is easy):˚ D ln(w). Then if we map to z space we have the
solution outside of the cluster:

˚(z) D lnG(z) : (11)

Note that the constant r0 has the interpretation of a mean
radius since ˚ ! ln(z/r0) as z !1. In fact, r0 is the ra-
dius of the disk that gives the same potential as the cluster
far away.

This has another consequence: the electric field (i. e.
the growth probability) is uniform around the unit circle
in the w plane. This means that equal intervals on the unit
circle in w space map into equal regions of growth proba-
bility in the z plane. The map contains not only the shape
of the cluster (the image of jwj D 1) but also information
about the growth probability: using Eq. (11) we have:

jr˚ j D jG0j D
1
jF 0j

: (12)

The problem remains to construct the maps G or F for
a given cluster. Somfai, et al. gave a direct method [38]:
for a given cluster release a large number, M, of random
walkers and record where they hit, say at points zj. We
know from the previous paragraph that the images of these
points are spaced roughly equally on the unit circle in
the w plane. That is, if we start somewhere on the cluster
and number the landing positions sequentially around the
cluster surface, the images in the w-plane, wj D r jei� j , are
given by � j D 2� j/M; r j D 1. Thus we have the bound-
ary values of the map and by analytic continuation we
can construct the entire map. In fact, if we represent F by
a Laurent series:

F(w) D r0w C A0 C

1X

jD1

Aj

w j ; (13)

it is easy to see that the Fourier coefficients of the function
F(� j) are the Aj.
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Unfortunately, for DLA this method only gives a map
of the highly probable points on the surface of the clus-
ter. The inner, frozen, regions are very badly sampled by
random walkers, so the generated map will not represent
these regions.

Loewner Evolution and the Hastings–Levitov Scheme

A more useful approach to finding F is to impose a dy-
namics on the map which gives rise to the growth of the
cluster. This is very closely related to Loewner evolution,
where a curve in the z plane is generated by a map that
obeys an equation of motion:

dGt(z)
dt

D
2

Gt(z) � �(t)
: (14)

The map is to the upper half plane from the upper half
plane minus the set of singularities, G D � . (For an el-
ementary discussion and references see [73].) If �(t) is
a stochastic process then many interesting statistical ob-
jects such as percolation clusters can be generated.

For DLA a similar approach was presented by Hast-
ings and Levitov [21,30]. In this case the evolution is dis-
crete, and is designed to represent the addition of particles
to a cluster. The process is iterative: suppose we know the
map for N particles, FN . Then we want to add a “bump”
corresponding to a new particle. This is accomplished by
adding the bump of area  in the w-plane on the surface of
the unit circle at angle � . There are various explicit func-
tions that generate bumps; for the most popular example
see [21]. This is a function that depends on a parameter
which gives the aspect ratio of the bump.

Let us call the resulting transformation f�;� . If we use
FN to transform the unit circlewith a bumpwe get a cluster
with an extra bump in the z-plane: that is, we have added
a particle to the cluster and FNC1 D FN ı f . The scheme
is represented in Fig. 9.

There are two matters that need to be dealt with. First,
we need to pick � . Since the probability to grow is uniform
on the circle in w-space, we take � to be a random variable
uniformly distributed between 0 and 2� . Also, we need the
bump in z-space to have a fixed area, 0. That means that
the bump in w-space needs to be adjusted because confor-
mal transformations stretch lengths by jF 0j. A first guess
for the area  is:

NC1 D
0

jF 0N(ei�NC1)j2
: (15)

However, this is just a first guess. The stretching of lengths
varies over the cluster, and there can be some regions
where the approximation of Eq. (15) is not adequate. In

Fractal Growth Processes, Figure 9
The Hastings–Levitov scheme for fractal growth. At each stage
a “bump” of the proper size is added to the unit circle. The com-
position of the bump map,�, with the map at stage N gives the
map at stageNC 1

this case an iterative procedure is necessary to get the area
right [30,34]. The transformation itself is given by:

FN D f�1;�1 ı f�2;�2 ı � � � ı f�N ;�N : (16)

All of the information needed to specify the mapping is
contained in the list  j; � j ; 1 � j � N. An example of
a cluster made this way is shown in Fig. 10.

If we choose � uniformly in w-space, we have chosen
points with the harmonic measure, jF 0j�1 and we make
DLA clusters. To simulate DBM clusters with � ¤ 1 we
must choose the angles non-uniformly. Hastings [54] has
shown how to do this: since a uniform distribution gives
a distribution according to jF 0j�1 (see Eq. (12)) we have to
pick angles with probability jF 0j1�� in order to grow with
probability jr�j�. This can be done with a Metropolis al-
gorithm with p(�NC1) D jF 0N(e

i� )j1�� playing the role of
a Boltzmann factor.

Applications of the Hastings–Levitov Method:
Scaling and Crossovers

The Hastings–Levitov method is a new numerical algo-
rithm for DLA, but not a very efficient one. Construct-
ing the composed map takes of order N steps so that
the algorithm is of order N2. One may wonder what has
been gained. The essential point is that new understanding
arises from considering the objects that are produced in
the course of the computation. For example, Davidovitch
and collaborators [74] showed that averages of  over the
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Fractal Growth Processes, Figure 10
A DLA cluster made by iterated conformal maps. Courtesy of E.
Somfai

cluster boundary are related to the generalized dimensions
of the growth probability measure, cf. Eq. (4). Further, the
Laurent coefficients of the map, Eq. (13), are meaningful
in themselves and have interesting scaling properties. We
have seen above that r0 is the radius of a disk with the same
capacitance as the cluster. It scales as N1/D , as we expect.
The constant, A0 gives the wandering of the center of the
cluster from its original position. Its scaling can be worked
out in terms of D and the generalized dimension, D2.

The other coefficients, Aj, are related to the moments
of the charge density on the cluster surface. We expect
them to scale in the same way as r0 for the following rea-
son: there is an elementary theorem in complex analy-
sis [75] for any univalent map that says, in our notation:

�r20 D SN C �
X

kD1

kjAkj
2 : (17)

Here SN is the area of the cluster. However, this is just the
area of N particles, and is linear in N. Therefore, in lead-
ing order, the sum must cancel the N2/D dependence of
r20. The simplest way this can occur is if every term in the
sum goes as N2/D . This seemed to be incorrect according
to the data in [74]: they found that for for the first few k the
scaling exponents of the hjAk j

2i were smaller than 2/D.
However, later work [38] showed that the asymptotic

scaling of all of the coefficients is the same. The apparent
difference in the exponents is due to a slow crossover. This

effect also seems to resolve a long-standing controversy
about the asymptotic scaling behavior of DLA clusters,
namely the anomalous behavior of the penetration depth
of random walkers as the clusters grow.

The anomaly was pointed out numerically by Plischke
and Racz [76] soon after the DLA algorithm was intro-
duced. These authors showed numerically that the width
of the region where deposition occurred, � , (a measure of
penetration of random walkers into the cluster) seemed to
grow more slowly with N than the mean radius of depo-
sition, Rdep. However for a simple fractal all of the char-
acteristic lengths must scale in the same way, R / N1/D .
Mandelbrot and collaborators [36,37,77] used this and
other numerical evidence to suggest that DLA would not
be a simple fractal for large N. However, Meakin and
Sander [78] gave numerical evidence that the anomaly in
the scaling of � is not due to a different exponent, but is
a crossover.

The controversy is resolved [38] by noting that the
penetration depth can be estimated from the Laurent co-
efficients of f :

�2 D
1
2

X

kD1

jAkj
2 : (18)

It is easy to see [38] that this version of the penetration
depth can be interpreted as the rms deviation of the posi-
tion of the end of a field line from those for a disk of ra-
dius r0. Thus an anomaly in the scaling of the Ak is related
to the effect discovered in [76]. Further, a slow crossover
in Ak for small k is reasonable geometrically since this is
a slow crossover in low moments of the charge. These low
moments might be expected to have intrinsically slow dy-
namics.

In [38,79,80] strong numerical evidence was given for
the crossover and for universal asymptotic scaling of the
Ak. Indeed, many quantities with the interpretation of
a length fit an expression of the form:

N1/D
�
1C

C
N�

�
; (19)

where the subdominant correction to scaling is charac-
terized by an exponent � D 0:33˙ 0:06. This observation
verifies the crossover of � . The asymptotic value of the
penetration depth is measured to be �/Rdep ! 0:12. The
same value is found in three dimensions [81].

In fact, the crossover probably accounts for the anoma-
lies reported in [36,37,77]. Further, a careful analysis of
numerical data shows that the reported multiscaling [82]
(an apparent dependence of D on the distance from the
center of the cluster) is also a crossover effect. These in-
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Fractal Growth Processes, Figure 11
An aggregate grown by the advection-diffusion mechanism,
Eq. (20) for Pe=10. Courtesy of M. Bazant

sights lead to the view that DLA clusters are simple frac-
tals up to a slow crossover. The origin of the crossover ex-
ponent, � � 1/3, is not understood. In three dimensions
a similar crossover exponent was found by different tech-
niques [81] with a value of 0:22˙ 0:03.

Conformal Mapping
for Other Discrete Growth Processes

The Hastings–Levitov scheme depends on the conformal
invariance of the Laplace equation. Bazant and collabora-
tors [83,84] pointed out that the same techniques can be
used for more general growth processes. For example, con-
sider growth of an aggregate in a flowing fluid. Now there
are two relevant fields, the particle concentration, c, and
the velocity of the fluid, v D r (for potential flow). The
current associated with c can be written j D �cv � �rc,
where � is a mobility and � a diffusion coefficient. For
steady incompressible flow we have, after rescaling:

Per � rc D r2c ; r2 D 0 : (20)

Here Pe is the Péclet number, UL/�, where U is the value
of the velocity far from the aggregate and L its initial size.
These equations are conformally invariant, and the prob-
lem of flow past a disk in the w plane is easily solved.
In [83] growth was accomplished by choosing bumps with
probability distribution @c/@n using the method described
above. This scheme solves the flow equation past the com-
plex growing aggregate and adds particles according to
their flux at the surface. An example of a pattern of this
type is given in Fig. 11.

It has long been known that it is possible to treat
quasi-static fracture as a growth process similar to
DLA [85,86,87]. This is due to the fact that the Lamé equa-
tion of elasticity is similar in form to the Laplace equa-
tion and the condition for breaking a region of the or-

der of a process zone is related to the stress at the current
crack, i. e., boundary values of derivatives of the displace-
ment field. Recent work has exploited this similarity to give
yet another application of conformal mapping. For exam-
ple, for Mode III fracture the quasi-static elastic equation
reduces to the Laplace equation, and it is only necessary
to replace the growth probability and the boundary con-
ditions in order to use the method of iterated conformal
maps [88]. For Mode I and Mode II fracture it is neces-
sary to solve for two analytic functions, but this can also
be done [89].

Harmonic Measure

The distribution of the boundary values of the normal
derivatives of a potential on a electrode of complex shape
is called the problem of the harmonic measure. For DLA it
is equivalent to the distribution of growth probabilities on
the surface of the cluster, or, in other terms, the penetra-
tion of randomwalkers into the cluster. For other complex
shapes the problem is still interesting. Its practical signif-
icance is that of the study of electrodes [90] or catalytic
surfaces. In some cases the harmonic measure has deep re-
lationships to conformal field theory.

For the case of the harmonic measure we can interpret
the variable ˛ of Eq. (6) as the singularity strength of the
electric field near a sharp tip. This is seen as follows: it is
well known [91] that near the apex of a wedge-shaped con-
ductor the electric field diverges as r	/ˇ�1 where r is the
distance from the tip and the exterior angle of the wedge
is ˇ. For example, near a square corner with ˇ D 3�/2
there is a r�1/3 divergence. Now the quantity pi is the in-
tegral over a box of size l. Thus a sequence of boxes cen-
tered on the tip will give a power-law l	/ˇ D l˛. Smaller ˛
means stronger divergence.

For fractals that can be treated with the methods of
conformal field theory, a good deal is known about the
harmonic measure. For example, for a percolation cluster
at pc the harmonic measure is completely understood [92].
The Dq are given by a formula:

Dq D
1
2
C

5
p
24qC 1C 5

; q � �
1
24
: (21)

The f (˛) spectrum is easy to compute from this. This for-
mula in good accord with the numerical results of Meakin
and collaborators [93] who sampled the measure by firing
many random walkers at a cluster. There is an interesting
feature of this formula: D0 D 4/3 is the dimension of the
support of the measure. This is less than the dimension of
a percolation hull, 7/4. There is a large part of the surface of
a percolation cluster which is inaccessible to randomwalk-
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ers – the interior surfaces are cut off from the exterior by
narrow necks whose widths vanish in the scaling regime.

For DLA the harmonic measure is much less well
understood. Some results are known. For example,
Makarov [94] proved that D1 D 1 under very general
circumstances for a two-dimensional harmonic measure.
Halsey [95] used Green’s functions for electrostatics to
prove the following for DBM models with parameter �:

�(�C 2) � �(�) D D ; (22)

Here D is the fractal dimension of the cluster. For DLA
� D 1, and �(1) D 0. Thus �(3) D D D 1:71.

We introduced the function f (˛) as the Legendre
transform of D(q). There is an argument due to Turke-
vich and Sher [96] which allows us to see a feature of f (˛)
directly by giving an estimate of the singularity associated
with the most active tip of the growing cluster. Note that
the growth rate of the extremal radius of the cluster is re-
lated to the fractal dimension because Rext / N1/D . Sup-
pose we imagine adding one particle per unit time and re-
call that ptip / (l/Rext)˛tip . Then:

dRext

dt
D

dRext

dN
dN
dt
/ R�˛tipext

D D 1C ˛tip � 1C ˛min : (23)

Since the singularity at the tip is close to being the most
active one, we have an estimate of theminimumvalue of ˛.

There have been a very large number of numerical
investigations of D(q); f (˛) for two dimensional DLA;
see [7] for a comprehensive list. They proceed either by
launching many random walkers, e. g. [93] or by solving
the Laplace equation [97], or, most recently, by using the
Hastings–Levitov method [98]. The general features of the
results are shown in Fig. 12. There is fairly good agreement
about the left hand side of the curve which corresponds
to large probabilities. The intercept for small ˛ is close to
the Turkevich–Sher relation above. The maximum of the
curve corresponds to d f /d˛ D q D 0; thus it is the dimen-
sion of the support of the measure. This seems to be quite
close toD so that the whole surface is accessible to random
walkers.

There is very little agreement about the right hand side
of the curve. It arises from regions with small probabilities
which are very hard to estimate. The most reliable current
method is that of [98] where conformal maps are manip-
ulated to get at probabilities as small as 10�70, quite be-
yond the reach of other techniques. Unfortunately, these
computations are for rather small clusters (N � 50; 000)
which are the largest ones that can be made by the Hast-

Fractal Growth Processes, Figure 12
A sketch of the f (˛) curve. Some authors find a maximum slope
at a position like that marked by the dot so that the curve ends
there. The curve is extended to the real axis with a straight line.
This is referred to as a phase transition

ings–Levitov method. A particularly active controversy re-
lates to the value of ˛max, if it exists at all; that is, the
question is whether there is a maximum value of the slope
d� /dq. The authors of [98] find ˛max � 20.

Scaling Theories

Our understanding of non-equilibrium fractal growth
processes is not very satisfactory compared to that of equi-
librium processes. A long-term goal of many groups has
been to find a “theory of DLA” which has the nice features
of the renormalization theory of critical phenomena. The
result of a good deal of work is that we have theories that
give the general features of DLA, but they do not explain
things in satisfactory detail.

We should note that a mere estimate of the fractal di-
mension, D, is not what we have in mind. There are sev-
eral ad hoc estimates in the literature that give reason-
able values of D [41,99]. We seek, rather, a theory that
allows a good understanding of the fixed point of fractal
growth with a description of relevant and irrelevant oper-
ators, crossovers, etc. There have been an number of such
attempts. In the first section below we describe a semi-nu-
merical scheme which sheds light on the fixed point. Then
we look at several attempts at ab initio theory.

Scaling of Noise

The first question one might ask about DLA growth is
the role of noise. It might seem that for a very large clus-
ter the noise of individual particle arrivals should average
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out. However, this is not the case. Clusters fluctuate on all
scales for large N .

Further, the noise-free case seems to be unstable. We
can see this by asking about the related question of the
growth of viscous fingers in two dimensions. As was re-
marked long ago [51] this sort of growth is always unsta-
ble. Numerical simulations of viscous fingering [69] show
that any asymmetric initial condition develops into a pat-
tern with a fractal dimension close to that of DLA. DLA
organizes its noise to a fixed point exactly as turbulence
does.

Several authors [79,81,100] have looked at the idea that
the noise (measured in some way) flows to a fixed value as
clusters grow large. For example, we could characterize the
shape fluctuations by measuring the scaled variance of the
number of particles necessary to grow to a fixed extremal
radius:

ıN
N

ˇ̌
ˇ
ˇ
Rext

D
p
A� : (24)

This is easy to measure for large clusters. In two dimen-
sions A� D :0036 [79]. In [100] it was argued that DLA
will be at its fixed point if if one unit of growth acts
as a coarse graining of DLA on finer length scales. This
amounts to a kind of real-space renormalization.

For the original DLA model the scaled noise to grow
one unit of length is of order unity. We can reduce it to
the fixed point value by noise reduction. The slow approach
to the fixed point governed by the exponent � can be in-
terpreted as the drift of the noise to its proper value as N
grows.

Noise reduction was introduced into lattice models by
Tang [68]. He kept a counter on each site and only grew
there if a certain number of random walkers, m, hit that
point. For off-lattice clusters a similar reduction is ob-
tained if shallow bumps of height A are added to the clus-
ter by letting the particles overlap as they stick. We must
add m D 1/A particles to advance the growth by one par-
ticle diameter [79]. For the Hastings–Levitov method it
is equivalent to use a bump map with a small aspect ra-
tio [30].

In either case if we examine a number of sites whose
mean advance is one unit, we will find ıN/N D

p
A. We

should expect that if we tune the input value of A to A�

we will get to asymptotic behavior quickly. This is what
is observed in two dimensions [79] and in three dimen-
sions [81]. The amplitude of the crossover, the parame-
ter C in Eq. (19), is smallest for A near the fixed point. In
Fig. 13 we show two clusters, a small one grown with noise
reduction, and a much larger one with AD 1. They both

Fractal Growth Processes, Figure 13
A small noise-reduced cluster and a larger one with no noise re-
duction. Noise reduction of the proper size accelerates the ap-
proach to the fixed point. From [79]

have the same value of �/Rdep, near the asymptotic value
of 0.12.

Attempts at Theoretical Description

The last section described a semi-empirical approach to
DLA. The reader may wonder why the techniques of
phase transition theory are not simply applicable here.
One problem is that one of the favorite methods in equi-
librium theory, the "-expansion, cannot be used because
DLA has no upper critical dimension [5,101].

To be more precise, in other cluster theories such as
percolation there is a dimension, dc such that if d > dc
the fractal dimension of the cluster does not change. For
example, percolation clusters are 4 dimensional for all di-
mensions above 6. For DLA this is not true because if d
is much bigger than D then random walkers will penetrate
and fill up the cluster so that its dimension would increase.
This results [5] from the fact that for a random walker the
number of sites visited in radius R is Nw / R2. In the same
region there are RD sites of the cluster, so the density of
cluster sites goes as RD�d . The mean number of intersec-
tions is RD�dR2. Therefore if DC 2 < d there are a van-
ishing number of intersections, and the cluster will fill up.
Thus we must have D � d � 2. A related argument [101]
sharpens the bound to D � d � 1: the fractal dimension
increases without limit as d increases.

Halsey and collaborators have given a theoretical de-
scription based on branch competition [102,103]. This
method has been used to give an estimate of Dq for pos-
itive q [104]. The idea is to think of two branches that
are born from a single site. Then the probability to stick
to the first or second is called p1; p2 where p1 C p2 D pb
is the total probability to stick to that branch. Simi-
larly there are numbers of particles, n1 C n2 D nb . Define
x D p1/pb ; y D n1/nb . The two variables x; y regulate the
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branch competition. On the average p1 D dn1/dnb so we
have:

nb
dy
dnb
D x � y : (25)

The equation of motion for x is assumed to be of similar
form:

nb
dx
dnb
D g(x; y) : (26)

Thus the competition is reduced to a two-dimensional dy-
namical system with an unstable fixed point at x D y D
1/2 corresponding to the point when the two branches
start with equal numbers. The fixed point is unstable be-
cause one branch will eventually screen the other. If g is
known, then the unstable manifold of this fixed point de-
scribes the growth of the dominant branch, and it turns
out, by counting the number of particles that attach to the
dominant branch, that the eigenvalue of the unstable man-
ifold is 1/D. The starting conditions for the growth are
taken to result from microscopic processes that distribute
points randomly near the fixed point.

The problem remains to find g. This was done several
ways: numerically, by doing a large number of simulations
of branches that start equally, or in terms of a complicated
self-consistent equation [103]. The result is a fractal di-
mension of 1.66, and a multifractal spectrum that agrees
pretty well with direct simulations [104].

Another approach is due to Pietronero and collabora-
tors [105]. It is called the method of fixed scale transfor-
mations. It is a real-space method where a small system
at one scale is solved essentially exactly, and the behav-
ior at the next coarse-grained scale estimated by assum-
ing that there is a scale-invariant dynamics and estimating
the parameters from the fixed-scale solution. The method
is much more general than a theory of DLA: in [105] it is
applied to directed percolation, the Eden model, sandpile
models, and DBM. For DLA the fractal dimension calcu-
lated is about 1.6. The rescaled noise (cf. the previous sec-
tion) comes out to be of order unity rather than the small
value, 0.0036, quoted above [106] .

The most recent attempt at a fundamental theory is
due to Ball and Somfai [71,107]. The idea depends on
a mapping from DLA to an instance of the DBM which
has different boundary conditions on the growing tip. The
scaling of the noise and the multifractal spectrum (for
small ˛) are successfully predicted.

Future Directions

The DLA model is 27 years old as of this writing. Every
year (including last year) there have been about 100 ref-

erences to the paper. Needless to say, this author has only
read a small fraction of them. Space and time prevented
presenting here even the interesting ones that I am famil-
iar with.

For example, there is a remarkable literature associated
with the viscous-fingering problem without surface ten-
sion which seems, on the one hand, to describe some facets
of experiments [108] and on the other to have deep rela-
tionships with the theory of 2d quantum gravity [109,110].
Where this line of work will lead is a fascinating question.
There are other examples: I hope that those whose work I
have not covered will not feel slighted. There is simply too
much going on.

A direction that should be pursued is to use the inge-
nious techniques that have been developed for the DLA
problem for problems in different areas; [59,83] are exam-
ples of this.

It is clear that this field is as lively as ever after 27 years,
and will certainly hold more surprises.
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Glossary

Conductance (G) The relation between the current I
in an electrical network and the applied voltage V :
I D GV .

Conductance exponent (t) The relation between the
conductanceG and the resistor (or conductor) concen-
tration p near the percolation threshold:G � (p�pc )t .

Effective medium theory (EMT) A theory to calculate
the conductance of a heterogeneous system that is
based on a homogenization procedure.

Fractal A geometrical object that is invariant at any scale
of magnification or reduction.

Multifractal A generalization of a fractal in which differ-
ent subsets of an object have different scaling behav-
iors.

Percolation Connectivity of a random porous network.
Percolation threshold pc The transition between a con-

nected and disconnected network as the density of
links is varied.

Random resistor network A percolation network in
which the connections consist of electrical resistors
that are present with probability p and absent with
probability 1 � p.

Definition of the Subject

Consider an arbitrary network of nodes connected by
links, each of which is a resistor with a specified electrical
resistance. Suppose that this network is connected to the
leads of a battery. Two natural scenarios are: (a) the “bus-
bar geometry” (Fig. 1), in which the network is connected
to two parallel lines (in two dimensions), plates (in three
dimensions), etc., and the battery is connected across the
two plates, and (b) the “two-point geometry”, in which
a battery is connected to two distinct nodes, so that a cur-
rent I injected at a one node and the same current with-
drawn from the other node. In both cases, a basic question
is: what is the nature of the current flow through the net-
work?

There are many reasons why current flows in resis-
tor networks have been the focus of more than a century
of research. First, understanding currents in networks is
one of the earliest subjects in electrical engineering. Sec-
ond, the development of this topic has been characterized
by beautiful mathematical advancements, such as Kirch-
hoff’s formal solution for current flows in networks in
terms of tree matrices [52], symmetry arguments to deter-
mine the electrical conductance of continuous two-com-
ponent media [10,29,48,69,74], clever geometrical meth-
ods to simplify networks [33,35,61,62], and the use of in-
tegral transform methods to solve node voltages on reg-
ular networks [6,16,94,95]. Third, the nodes voltages of
a network through which a steady electrical current flows
are harmonic [26]; that is, the voltage at a given node is
a suitably-weighted average of the voltages at neighboring
nodes. This same harmonicity also occurs in the probabil-
ity distribution of random walks. Consequently, there are
deep connections between the probability distribution of
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Fractal andMultifractal Scaling of Electrical Conduction in Random Resistor Networks, Figure 1
Resistor networks in a the bus-bar geometry, and b the two-point geometry

random walks on a given network and the node voltages
on the same network [26].

Another important theme in the subject of resistor net-
works is the essential role played by randomness on cur-
rent-carrying properties. When the randomness is weak,
effective medium theory [10,53,54,55,57,74] is appropriate
to characterize how the randomness affects the conduc-
tance. When the randomness is strong, as embodied by
a network consisting of a randommixture of resistors and
insulators, this random resistor network undergoes a tran-
sition between a conducting phase and an insulating phase
when the resistor concentration passes through a perco-
lation threshold [54]. The feature underlying this phase
change is that for a small density of resistors, the net-
work consists of disconnected clusters. However, when
the resistor density passes through the percolation thresh-
old, a macroscopic cluster of resistors spans the system
through which current can flow. Percolation phenomenol-
ogy has motivated theoretical developments, such as scal-
ing, critical point exponents, and multifractals that have
advanced our understanding of electrical conduction in
random resistor networks.

This article begins with an introduction to electrical
current flows in networks. Next, we briefly discuss ana-
lytical methods to solve the conductance of an arbitrary
resistor network. We then turn to basic results related to
percolation: namely, the conduction properties of a large
random resistor network as the fraction of resistors is var-
ied. We will focus on how the conductance of such a net-
work vanishes as the percolation threshold is approached
from above. Next, we investigate the more microscopic
current distributionwithin each resistor of a large network.
At the percolation threshold, this distribution ismultifrac-
tal in that all moments of this distribution have indepen-

dent scaling properties. We will discuss the meaning of
multifractal scaling and its implications for current flows
in networks, especially the largest current in the network.
Finally, we discuss the relation between resistor networks
and random walks and show how the classic phenomena
of recurrence and transience of random walks are simply
related to the conductance of a corresponding electrical
network.

The subject of current flows on resistor networks is
a vast subject, with extensive literature in physics, math-
ematics, and engineering journals. This review has the
modest goal of providing an overview, from my own my-
opic perspective, on some of the basic properties of ran-
dom resistor networks near the percolation threshold.
Thus many important topics are simply not mentioned
and the reference list is incomplete because of space limi-
tations. The reader is encouraged to consult the review ar-
ticles listed in the reference list to obtain a more complete
perspective.

Introduction

In an elementary electromagnetism course, the following
classic problem has been assigned to many generations
of physics and engineering students: consider an infinite
square lattice in which each bond is a 1 ohm resistor;
equivalently, the conductance of each resistor (the inverse
resistance) also equals 1. There are perfect electrical con-
nections at all vertices where four resistors meet. A cur-
rent I is injected at one point and the same current I is
extracted at a nearest-neighbor lattice point. What is the
electrical resistance between the input and output? Amore
challenging question is: what is the resistance between two
diagonal points, or between two arbitrary points? As we
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shall discuss, the latter questions can be solved elegantly
using Fourier transform methods.

For the resistance between neighboring points, super-
position provides a simple solution. Decompose the cur-
rent source and sink into its two constituents. For a cur-
rent source I, symmetry tells us that a current I/4 flows
from the source along each resistor joined to this input.
Similarly, for a current sink �I, a current I/4 flows into
the sink along each adjoining resistor. For the source/sink
combination, superposition tells us that a current I/2 flows
along the resistor directly between the source and sink.
Since the total current is I, a current of I/2 flows indirectly
from source to sink via the rest of the lattice. Because the
direct and indirect currents between the input and output
points are the same, the resistance of the direct resistor and
the resistance of rest of the lattice are the same, and thus
both equal to 1. Finally, since these two elements are con-
nected in parallel, the resistance of the infinite lattice be-
tween the source and the sink equals 1/2 (conductance 2).
As we shall see in Sect. “EffectiveMediumTheory”, this ar-
gument is the basis for constructing an effective medium
theory for the conductance of a random network.

More generally, suppose that currents Ii are injected at
each node of a lattice network (normally many of these
currents are zero and there would be both positive and
negative currents in the steady state). Let Vi denote the
voltage at node i. Then by Kirchhoff’s law, the currents and
voltages are related by

Ii D
X

j

gi j(Vi � Vj) ; (1)

where gij is the conductance of link ij, and the sum runs
over all links ij. This equation simply states that the current
flowing into a node by an external current source equals
the current flowing out of the node along the adjoining
resistors. The right-hand side of Eq. (1) is a discrete Lapla-
cian operator. Partly for this reason, Kirchhoff’s law has
a natural connection to randomwalks. At nodes where the
external current is zero, the node voltages in Eq. (1) satisfy

Vi D

P
j gi jVj
P

j gi j
!

1
z

X

j

Vj : (2)

The last step applies if all the conductances are identical;
here z is the coordination number of the network. Thus
for steady current flow, the voltage at each unforced node
equals the weighted average of the voltages at the neigh-
boring sites. This condition defines Vi as a harmonic func-
tion with respect to the weight function gij.

An important general question is the role of spatial dis-
order on current flows in networks. One important exam-

ple is the random resistor network, where the resistors of
a lattice are either present with probability p or absent with
probability 1 � p [54]. Here the analysis tools for regular
lattice networks are no longer applicable, and one must
turn to qualitative and numerical approaches to under-
stand the current-carrying properties of the system. A ma-
jor goal of this article is to outline the essential role that
spatial disorder has on the current-carrying properties of
a resistor network by such approaches.

A final issue that we will discuss is the deep relation be-
tween resistor networks and random walks [26,63]. Con-
sider a resistor network in which the positive terminal of
a battery (voltage V D 1) is connected to a set of bound-
ary nodes, defined to be BC), and where a disjoint set
of boundary nodes B� are at V D 0. Now suppose that
a random walk hops between nodes of the same geomet-
rical network in which the probability of hopping from
node i to node j in a single step is gi j/

P
k gik , where k

is one of the neighbors of i and the boundary sets are ab-
sorbing. For this random walk, we can ask: what is the
probability Fi for a walk to eventually be absorbed on BC
when it starts at node i? We shall show in Sect. “Ran-
domWalks and Resistor Networks” that Fi satisfies Eq. (2):
Fi D

P
j gi jFj/

P
j gi j ! We then exploit this connection

to provide insights about randomwalks in terms of known
results about resistor networks and vice versa.

Solving Resistor Networks

Fourier Transform

The translational invariance of an infinite lattice resistor
network with identical bond conductances gi j D 1 cries
out for applying Fourier transform methods to determine
node voltages. Let’s study the problem mentioned previ-
ously: what is the voltage at any node of the network when
a unit current enters at some point? Our discussion is
specifically for the square lattice; the extension to other lat-
tices is straightforward.

For the square lattice, we label each site i by its x; y co-
ordinates. When a unit current is injected at r0 D (x0; y0),
Eq. (1) becomes

� ıx;x0 ıy;y0 D V (x C 1; y)C V(x � 1; y)
C V (x; y C 1)C V(x; y � 1) � 4V(x; y) ; (3)

which clearly exposes the second difference operator of
the discrete Laplacian. To find the node voltages, we de-
fine V(k) D

P
r V(r) eik�r and then we Fourier transform

Eq. (3) to convert this infinite set of difference equations
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into the single algebraic equation

V(k) D
eik�r0

4 � 2(cos kx C cos ky)
: (4)

Now we calculate V(r) by inverting the Fourier transform

V(r) D
1

(2�)2

	Z

�	

	Z

�	

e�ik�(r�r0)

4 � 2(cos kx C cos ky)
dk : (5)

Formally, at least, the solution is trivial. However, the inte-
gral in the inverse Fourier transform, known as a Watson
integral [96], is non-trivial, but considerable understand-
ing has gradually been developed for evaluating this type
of integral [6,16,94,95,96].

For a unit input current at the origin and a unit sink
of current at r0, the resistance between these two points is
V(0) � V(r0), and Eq. (5) gives

R D V(0) � V(r0)

D
1

(2�)2

	Z

�	

	Z

�	

(1 � eik�r0)
4 � 2(cos kx C cos ky)

dk : (6)

Tables for the values of R for a set of closely-sepa-
rated input and output points are given in [6,94]. As
some specific examples, for r0 D (1; 0), R D 1/2, thus
reproducing the symmetry argument result. For two
points separated by a diagonal, r0 D (1; 1), R D 2/� . For
r0 D (2; 0), R D 2 � 4/� . Finally, for two points separated
by a knight’s move, r0 D (2; 1), R D 4/� � 1/2.

Direct Matrix Solution

Another way to solve Eq. (1), is to recast Kirchhoff’s law as
the matrix equation

Ii D
NX

jD1

Gi jVj ; i D 1; 2; : : : ;N (7)

where the elements of the conductance matrix are:

Gi j D

(P
k¤i gi k ; i D j

�gi j ; i ¤ j :

The conductance matrix is an example of a tree matrix,
as G has the property that the sum of any row or any col-
umn equals zero. An important consequence of this tree
property is that all cofactors of G are identical and are
equal to the spanning tree polynomial [43]. This polyno-
mial is obtained by enumerating all possible tree graphs

(graphs with no closed loops) on the original electrical net-
work that includes each node of the network. The weight
of each spanning tree is simply the product of the conduc-
tances for each bond in the tree.

Inverting Eq. (7), one obtains the voltage Vi at each
node i in terms of the external currents Ij ( j D 1; 2; : : : ;N)
and the conductances gij. Thus the two-point resistance Rij
between two arbitrary (not necessarily connected) nodes i
and j is then given by Ri j D (Vi � Vj) / I, where the net-
work is subject to a specified external current; for ex-
ample, for the two-point geometry, Ii D 1, I j D �1, and
Ik D 0 for k ¤ i; j. Formally, the two-point resistance can
be written as [99]

Ri j D
jG(i j)j

jG( j)j
; (8)

where jG( j)j is the determinant of the conductance ma-
trix with the jth row and column removed and jG(i j)j is
the determinant with the ith and jth rows and columns
removed. There is a simple geometric interpretation for
this conductance matrix inversion. The numerator is just
the spanning tree polynomial for the original network,
while the denominator is the spanning tree polynomial
for the network with the additional constraint that nodes i
and j are identified as a single point. This result provides
a concrete prescription to compute the conductance of an
arbitrary network. While useful for small networks, this
method is prohibitively inefficient for larger networks be-
cause the number of spanning trees grows exponentially
with network size.

Potts Model Connection

Thematrix solution of the resistance has an alternative and
elegant formulation in terms of the spin correlation func-
tion of the q-state Potts model of ferromagnetism in the
q! 0 limit [88,99]. This connection between a statisti-
cal mechanical model in a seemingly unphysical limit and
an enumerative geometrical problem is one of the unex-
pected charms of statistical physics. Another such exam-
ple is the n-vector model, in which ferromagnetically in-
teracting spins “live” in an n-dimensional spin space. In
the limit n! 0 [20], the spin correlation functions of this
model are directly related to all self-avoiding walk config-
urations.

In the q-state Potts model, each site i of a lattice is oc-
cupied by a spin si that can assume one of q discrete values.
The Hamiltonian of the system is

H D �
X

i; j

J ıs i ;s j ;
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where the sum is over all nearest-neighbor interacting spin
pairs, and ıs i ;s j is the Kronecker delta function (ıs i ;s j D 1
if si D s j and ıs i ;s j D 0 otherwise). Neighboring aligned
spin pairs have energy �J, while spin pairs in different
states have energy zero. One can view the spins as point-
ing from the center to a vertex of a q-simplex, and the in-
teraction energy is proportional to the dot product of two
interacting spins.

The partition function of a system of N spins is

ZN D
X

fsg

eˇ
P

i; j J ıs i ;s j ; (9)

where the sum is over all 2N spin states fsg. To make the
connection to resistor networks, notice that: (i) the expo-
nential factor associated with each link ij in the partition
function takes the values 1 or eˇ J , and (ii) the exponential
of the sum can be written as the product

ZN D
X

fs ig

Y

i; j

(1C vıs i ;s j ) ; (10)

with v D tanhˇJ. We now make a high-temperature
(small-v) expansion by multiplying out the product in (10)
to generate all possible graphs on the lattice, in which each
bond carries a weight vıs i ;s j . Summing over all states, the
spins in each disjoint cluster must be in the same state, and
the last sum over the common state of all spins leads to
each cluster being weighted by a factor of q. The partition
function then becomes

ZN D
X

graphs

qNc vNb ; (11)

where Nc is the number of distinct clusters and Nb is the
total number of bonds in the graph.

It was shown by Kasteleyn and Fortuin [47] that the
limit q D 1 corresponds to the percolation problem when
one chooses v D p / (1 � p), where p is the bond occupa-
tion probability in percolation. Even more striking [34],
if one chooses v D ˛q1/2, where ˛ is a constant, then
limq!0 ZN /q(NC1)/2 D ˛N�1TN , where TN is again the
spanning tree polynomial; in the case where all interac-
tions between neighboring spins have the same strength,
then the polynomial reduces to the number of spanning
trees on the lattice. It is because of this connection to span-
ning trees that the resistor network and Potts model are
intimately connected [99]. In a similar vein, one can show
that the correlation function between two spins at nodes
i and j in the Potts model is simply related to the conduc-
tance between these same two nodes when the interactions
Jij between the spins at nodes i and j are equal to the con-
ductances gij between these same two nodes in the corre-
sponding resistor network [99].

Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 2
Illustration of the�-Y and Y-� transforms

�-Y and Y-� Transforms

In elementary courses on circuit theory, one learns how
to combine resistors in series and parallel to reduce the
complexity of an electrical circuit. For two resistors with
resistances R1 and R2 in series, the net resistance is
R D R1 C R2, while for resistors in parallel, the net resis-
tance is R D

�
R�11 C R�22

�1. These rules provide the re-
sistance of a network that contains only series and parallel
connections. What happens if the network is more com-
plicated? One useful way to simplify such a network is by
the�-Y and Y-� transforms that was apparently first dis-
covered by Kennelly in 1899 [50] and applied extensively
since then [33,35,61,62,81].

The basic idea of the �-Y transform is illustrated in
Fig. 2. Any triangular arrangement of resistors R12, R13,
and R23 within a larger circuit can be replaced by a star,
with resistances R1, R2, and R3, such that all resistances
between any two points among the three vertices in the
triangle and the star are the same. The conditions that all
two-point resistances are the same are:

(R1 C R2) D
�
R�112 C (R13 C R23)�1

��1

� a12 C cyclic permutations :

Solving for R1; R2, and R3 gives R1 D
1
2 (a12 � a23 C a13)

+ cyclic permutations; the explicit result in terms of the Rij
is:

R1 D
R12R13

R12 C R13 C R23
C cyclic permutations; (12)

as well as the companion result for the conductances
Gi D R�1i :

G1 D
G12G13 C G12G23 C G13G23

G23
Ccyclic permutations:

These relations allow one to replace any triangle by a star
to reduce an electrical network.

However, sometimes we need to replace a star by a tri-
angle to simplify a network. To construct the inverse Y-�
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transform, notice that the �-Y transform gives the resis-
tance ratios R1/R2 D R13/R23 + cyclic permutations, from
which R13 D R12(R3/R2) and R23 D R12(R3/R1). Substi-
tuting these last two results in Eq. (12), we eliminate R13
and R23 and thus solve for R12 in terms of the Ri:

R12 D
R1R2 C R1R3 C R2R3

R3
Ccyclic permutations; (13)

and similarly for Gi j D R�1i j . To appreciate the utility of
the�-Y and Y-� transforms, the reader is invited to apply
them on the Wheatstone bridge.

When employed judiciously and repeatedly, these
transforms systematically reduce planar lattice circuits to
a single bond, and thus provide a powerful approach to
calculate the conductance of large networks near the per-
colation threshold. We will return to this aspect of the
problem in Sect. “Conductance Exponent”.

Effective Medium Theory

Effective medium theory (EMT) determines the macro-
scopic conductance of a random resistor network by a ho-
mogenization procedure [10,53,54,55,57,74] that is remi-
niscent of the Curie–Weiss effective field theory of mag-
netism. The basic idea in EMT is to replace the random
network by an effective homogeneous medium in which
the conductance of each resistor is determined self-consis-
tently to optimally match the conductances of the origi-
nal and homogenized systems. EMT is quite versatile and
has been applied, for example, to estimate the dielectric
constant of dielectric composites and the conductance of
conducting composites. Here we focus on the conductance
of random resistor networks, in which each resistor (with
conductance g0) is present with probability p and absent
with probability 1 � p. The goal is to determine the con-
ductance as a function of p.

To implement EMT, we first replace the random net-
work by an effective homogeneous medium in which each
bond has the same conductance gm (Fig. 3). If a voltage is
applied across this effective medium, there will be a poten-
tial drop Vm and a current Im D gmVm across each bond.
The next step in EMT is to assign one bond in the ef-
fective medium a conductance g and adjust the external
voltage to maintain a fixed total current I passing through
the network. Now an additional current ı i passes through
the conductor g. Consequently, a current �ı i must flow
through one terminal of g to the other terminal via the re-
mainder of the network (Fig. 3). This current perturbation
leads to an additional voltage drop ıV across g. Thus the
current-voltage relations for the marked bond and the re-

Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 3
Illustration of EMT. (left) The homogenized network with con-
ductances gm and one bond with conductance g. (right) The
equivalent circuit to the lattice

mainder of the network are

Im C ı i D g(Vm C ıV)
�ı i D GabıV ; (14)

where Gab is the conductance of the rest of the lattice be-
tween the terminals of the conductor g.

The last step in EMT is to require that the mean value
ıV averaged over the probability distribution of individ-
ual bond conductances is zero. Thus the effective medium
“matches” the current-carrying properties of the original
network. Solving Eq. (14) for ıV , and using the probabil-
ity distribution P(g) D pı(g � g0)C (1 � p)ı(g) appro-
priate for the random resistor network, we obtain

hıVi D Vm

�
(gm � g0)p
(Gab C g0)

C
gm(1 � p)

Gab

�
D 0 : (15)

It is now convenient to write Gab D ˛gm , where ˛ is a lat-
tice-dependent constant of the order of one. With this def-
inition, Eq. (15) simplifies to

gm D go
p(1C ˛) � 1

˛
: (16)

The value of ˛ – the proportionality constant for the con-
ductance of the initial lattice with a single bond removed –
can usually be determined by a symmetry argument of the
type presented in Sect. “Introduction to Current Flows”.
For example, for the triangular lattice (coordination num-
ber 6), the conductance Gab D 2gm and ˛ D 2. For the
hypercubic lattice in d dimensions (coordination number
z D 2d ), Gab D ((z � 2)/2)gm .

The main features of the effective conductance gm that
arises from EMT are: (i) the conductance vanishes at a lat-
tice-dependent percolation threshold pc D 1/(1C ˛); for
the hypercubic lattice ˛ D (z � 2)/2 and the percolation
threshold pc D 2/z D 21�d (fortuitously reproducing the
exact percolation threshold in two dimensions); (ii) the
conductance varies linearly with p and vanishes linearly
in p � pc as p approaches pc from above. The linearity
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of the effective conductance away from the percolation
threshold accords with numerical and experimental re-
sults. However, EMT fails near the percolation threshold,
where large fluctuations arise that invalidate the underly-
ing assumptions of EMT. In this regime, alternative meth-
ods are needed to estimate the conductance.

ConductionNear the Percolation Threshold

Scaling Behavior

EMT provides a qualitative but crude picture of the cur-
rent-carrying properties of a random resistor network.
While EMT accounts for the existence of a percolation
transition, it also predicts a linear dependence of the con-
ductance on p. However, near the percolation threshold it
is well known that the conductance varies non-linearly in
p � pc near pc [85]. This non-linearity defines the conduc-
tance exponent t by

G � (p � pc )t p # pc ; (17)

and much research on random resistor networks [85] has
been performed to determine this exponent. The conduc-
tance exponent generically depends only on the spatial
dimension of the network and not on any other details
(a notable exception, however, is when link resistances
are broadly distributed, see [40,93]). This universality is

Fractal andMultifractal Scaling of Electrical Conduction in Random Resistor Networks, Figure 4
(left) Realization of bond percolation on a 25� 25 square lattice at p=0.505. (right) Schematic picture of the nodes (shaded circles),
links and blobs picture of percolation for p & pc

one of the central tenets of the theory of critical phenom-
ena [64,83]. For percolation, the mechanism underlying
universality is the absence of a characteristic length scale;
as illustrated in Fig. 4, clusters on all length scales exist
when a network is close to the percolation threshold.

The scale of the largest cluster defines the correlation
length � by � � (pc � p)�� as p! pc . The divergence
in � also applies for p > pc by defining the correlation
length as the typical size of finite clusters only (Fig. 4), thus
eliminating the infinite percolating cluster from consider-
ation. At the percolation threshold, clusters on all length
scales exist, and the absence of a characteristic length im-
plies that the singularity in the conductance should not
depend on microscopic variables. The only parameter re-
maining upon which the conductance exponent t can de-
pend upon is the spatial dimension d [64,83]. As typifies
critical phenomena, the conductance exponent has a con-
stant value in all spatial dimensions d > dc , where dc is
the upper critical dimension which equals 6 for percola-
tion [22]. Above this critical dimension, mean-field theory
(not to be confused with EMT) gives the correct values of
critical exponents.

While there does not yet exist a complete theory for the
dimension dependence of the conductance exponent be-
low the critical dimension, a crude but useful nodes, links,
and blobs picture of the infinite cluster [21,82,84] provides
partial information. The basic idea of this picture is that
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for p & pc , a large system has an irregular network-like
topology that consists of quasi-linear chains that are sep-
arated by the correlation length � (Fig. 4). For a macro-
scopic sample of linear dimension L with a bus bar-ge-
ometry, the percolating cluster above pc then consists of
(L/�)d�1 statistically identical chains in parallel, in which
each chain consists of L/� macrolinks in series, and the
macrolinks consists of nested blob-like structures.

The conductance of a macrolink is expected to vanish
as (p � pc)� , with � a new unknown exponent. Although
a theory for the conductance of a single macrolink, and
even a precise definition of a macrolink, is still lacking, the
nodes, links, and blobs picture provides a starting point
for understanding the dimension dependence of the con-
ductance exponent. Using the rules for combining parallel
and series conductances, the conductance of a large resis-
tor network of linear dimension L is then

G(p; L) �
�
L
�

�d�1 (p � pc)�

L/�

� Ld�2 (p � pc)(d�2)�C� : (18)

In the limit of large spatial dimension, we expect that
amacrolink is merely a randomwalk between nodes. Since
the spatial separation between nodes is � , the number of
bonds in the macrolink, and hence its resistance, scales
as �2 [92]. Using the mean-field result � � (p � pc)�1/2,
the resistance of the macrolink scales as (p � pc)�1 and
thus the exponent � D 1. Using the mean-field exponents
� D 1/2 and � D 1 at the upper critical dimension of
dc D 6, we then infer the mean-field value of the conduc-
tance exponent t D 3 [22,91,92].

Scaling also determines the conductance of a finite-
size system of linear dimension L exactly at the percola-
tion threshold. Although the correlation length formally
diverges when p � pc D 0, � is limited by L in a finite sys-
tem of linear dimension L. Thus the only variable upon
which the conductance can depend is L itself. Equivalently,
deviations in p � pc that are smaller than L�1/� cannot
influence critical behavior because � can never exceed L.
Thus to determine the dependence of a singular observable
for a finite-size system at pc, we may replace (p � pc) by
L�1/� . By this prescription, the conductance at pc of a large
finite-size system of linear dimension L becomes

G(pc ; L) � Ld�2(L�1/� )(d�2)�C� � L��/� : (19)

In this finite-size scaling [85], we fix the occupation prob-
ability to be exactly at pc and study the dependence of
an observable on L to determine percolation exponents.
This approach provides a convenient and more accurate
method to determine the conductance exponent com-

pared to studying the dependence of the conductance of
a large system as a function of p � pc .

Conductance Exponent

In percolation and in the random resistor network, much
effort has been devoted to computing the exponents that
characterize basic physical observables – such as the cor-
relation length � and the conductance G – to high preci-
sion. There are several reasons for this focus on exponents.
First, because of the universality hypothesis, exponents are
a meaningful quantifier of phase transitions. Second, vari-
ous observables near a phase transition can sometimes be
related by a scaling argument that leads to a correspond-
ing exponent relation. Such relations may provide a deci-
sive test of a theory that can be checked numerically. Fi-
nally, there is the intellectual challenge of developing ac-
curate numerical methods to determine critical exponents.
The best such methods have become quite sophisticated in
their execution.

A seminal contribution was the “theorists’ experi-
ment” of Last and Thouless [58] in which they punched
holes at random in a conducting sheet of paper and mea-
sured the conductance of the sheet as a function of the
area fraction of conducting material. They found that the
conductance vanished faster than linearly with (p � pc );
here p corresponds to the area fraction of the conductor.
Until this experiment, there was a sentiment that the con-
ductance should be related to the fraction of material in
the percolating cluster [30] – the percolation probability
P(p) – a quantity that vanished slower than linearly with
(p � pc ). The reason for this disparity is that in a resistor
network, much of the percolating cluster consists of dan-
gling ends – bonds that carry no current – and thus make
no contribution to the conductance. A natural geometri-
cal quantity that ought to be related to the conductance
is the fraction of bonds B(p) in the conducting backbone –
the subset of the percolating cluster without dangling ends.
However, a clear relation between the conductivity and
a geometrical property of the backbone has not yet been
established.

Analytically, there are primary two methods that have
been developed to compute the conductance exponent: the
renormalization group [44,86,87,89] and low-density se-
ries expansions [1,2,32]. In the real-space version of the
renormalization group, the evolution of conductance dis-
tribution under length rescaling is determined, while the
momentum-space version involves a diagrammatic imple-
mentation of this length rescaling in momentum space.
The latter is a perturbative approach away frommean-field
theory in the variable 6 � d that become exact as d ! 6.



Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks F 3745

Considerable effort has been devoted to determining
the conductance exponent by numerical and algorithmic
methods. Typically, the conductance is computed for net-
works of various linear dimensions L at p D pc , and the
conductance exponent is extracted from the L dependence
of the conductance, which should vanish as L��/� . An ex-
act approach, but computationally impractical for large
networks, is Gauss elimination to invert the conductance
matrix [79]. A simple approximate method is Gauss re-
laxation [59,68,80,90,97] (and its more efficient variant of
Gauss–Seidel relaxation [71]). This method uses Eq. (2) as
the basis for an iteration scheme, in which the voltage Vi
at node i at the nth update step is computed from (2) us-
ing the values of Vj at the (n � 1)st update in the right-
hand side of this equation. However, one can do much
better by the conjugate gradient algorithm [27] and speed-
ing up this method still further by Fourier acceleration
methods [7].

Another computational approach is based on the node
elimination method, in which the �-Y and Y-� trans-
forms are used to successively eliminate bonds from the
network and ultimately reduce a large network to a sin-
gle bond [33,35,62]. In a different vein, the transfer ma-
trix method has proved to be extremely accurate and effi-
cient [24,25,70,100]. The method is based on building up
the network one bond at a time and immediately calculat-
ing the conductance of the network after each bond addi-
tion. This method is most useful when applied to very long
strips of transverse dimension L so that a single realization
gives an accurate value for the conductance.

As a result of these investigations, as well as by se-
ries expansions for the conductance, the following ex-
ponents have been found. For d D 2, where most of
the computational effort has been applied, the best es-
timate [70] for the exponent t (using � D t in d D 2
only) is t D 1:299˙ 0:002. One reason for the focus on
two dimensions is that early estimates for t were tanta-
lizingly close to the correlation length exponent � that
is now known to exactly equal 4/3 [23]. Another such
connection was the Alexander–Orbach conjecture [5],
which predicted t D 91/72 D 1:2638 : : :, but again is in-
compatible with the best numerical estimate for t. In
d D 3, the best available numerical estimate for t appears
to be t D 2:003˙ 0:047 [12,36], while the low concen-
tration series method gives an equally precise result of
t D 2:02˙ 0:05 [1,2]. These estimates are just compati-
ble with the rigorous bound that t � 2 in d D 3 [37,38].
In greater than three dimensions, these series expansions
give t D 2:40˙ 0:03 for d D 4 and t D 2:74˙ 0:03 for
d D 5, and the dimension dependence is consistent with
t D 3 when d reaches 6.

Voltage Distribution in RandomNetworks

Multifractal Scaling

While much research has been devoted to understand-
ing the critical behavior of the conductance, it was re-
alized that the distribution of voltages across each resis-
tor of the network was quite rich and exhibited multifrac-
tal scaling [17,19,72,73]. Multifractality is a generalization
of fractal scaling in which the distribution of an observ-
able is sufficiently broad that different moments of the
distribution scale independently. Such multifractal scaling
arises in phenomena as diverse as turbulence [45,66], lo-
calization [13], and diffusion-limited aggregation [41,42].
All these diverse examples showed scaling properties that
were much richer than first anticipated.

To make the discussion of multifractality concrete,
consider the example of the Maxwell–Boltzmann velocity
distribution of a one-dimensional ideal gas

P(v) D
r

m
2�kBT

e�mv2/2kBT �
1

q
2�v2th

e�v
2/2v2th ;

where kB is Boltzmann’s constant, m is the particle mass,
T is the temperature, and vth D

p
kBT/m is the charac-

teristic thermal velocity. The even integer moments of the
velocity distribution are

h(v2)ni /
�
v 2
th
n
�
�
v 2
th
p(n)

:

Thus a single velocity scale, vth, characterizes all positive
moments of the velocity distribution. Alternatively, the ex-
ponent p(n) is linear in n. This linear dependence of suc-
cessive moment exponents characterizes single-parame-
ter scaling. The new feature of multifractal scaling is that
a wide range of scales characterizes the voltage distribution
(Fig. 5). As a consequence, the moment exponent p(n) is
a non-linear function of n.

One motivation for studying the voltage distribution
is its relation to basic aspects of electrical conduction. If
a voltage V D 1 is applied across a resistor network, then
the conductance G and the total current flow I are equal:
I D G. Consider now the power dissipated through the
network P D IV D GV2 ! G. We may also compute the
dissipated power by adding up these losses in each resistor
to give

P D G D
X

i j

gi jV2
i j !

X

i j

V 2
i j D

X

V

V 2 N(V) : (20)

Here gi j D 1 is the conductance of resistor ij, and Vij is
the corresponding voltage drop across this bond. In the
last equality,N(V) is the number of resistors with a voltage
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Fractal andMultifractal Scaling of Electrical Conduction in Random Resistor Networks, Figure 5
The voltage distribution on an L� L square lattice random resistor network at the percolation threshold for a L D 4 (exact),b L D 10,
and c L D 130. The latter two plots are based on simulation data. For L D 4, a number of peaks, that correspond to simple rational
fractions of the unit potential drop, are indicated. Also shown are the average voltage over all realizations, Vav, the most probable
voltage, Vmp, and the average of the minimum voltage in each realization, hVmini. [Reprinted from Ref. [19]]

drop V . Thus the conductance is just the second moment
of the distribution of voltage drops across each bond in the
network.

From the statistical physics perspective it is natural to
study other moments of the voltage distribution and the
voltage distribution itself. Analogous to the velocity dis-
tribution, we define the family of exponents p(k) for the
scaling dependence of the voltage distribution at p D pc
by

M(k) �
X

V

N(V)Vk � L�p(k)/� : (21)

Since M(2) is just the network conductance, p(2) D �.
Other moments of the voltage distribution also have sim-

ple interpretations. For example, hV 4i is related to the
magnitude of the noise in the network [9,73], while hVki

for k!1 weights the bonds with the highest currents,
or the “hottest” bonds of the network, most strongly,
and they help understand the dynamics of fuse networks
of failure [4,18]. On the other hand, negative moments
weight low-current bonds more strongly and empha-
size the low-voltage tail of the distribution. For exam-
ple, M(�1) characterizes hydrodynamic dispersion [56],
in which passive tracer particles disperse in a network due
to a multiplicity of network paths. In hydrodynamics dis-
persion, the transit time across each bond is proportional
to the inverse of the current in the bond, while the proba-
bility for tracer to enter a bond is proportional to the enter-
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Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 6
The first few iterations of a hierarchical model

ing current. As a result, the kth moment of the transit time
distribution varies asM(�k C 1), so that the quantity that
quantifies dispersion, ht2i � hti2, scales asM(�1).

A simple fractal model [3,11,67] of the conducting
backbone (Fig. 6) illustrates the multifractal scaling of the
voltage distribution near the percolation threshold [17].
To obtain the Nth-order structure, each bond in the
(N � 1)st iteration is replaced by the first-order structure.
The resulting fractal has a hierarchical embedding of links
and blobs that captures the basic geometry of the percolat-
ing backbone. Between successive generations, the length
scale changes by a factor of 3, while the number of bonds
changes by a factor of 4. Defining the fractal dimension
df as the scaling relation between mass (M D 4N ) and the
length scale (` D 3N ) via M � `d f , gives a fractal dimen-
sion d f D ln 4/ ln 3.

Now let’s determine the distribution of voltage drops
across the bonds. If a unit voltage is applied at the oppo-
site ends of a first-order structure (N D 1) and each bond
is a 1 ohm resistor, then the two resistors in the central
bubble each have a voltage drop of 1/5, while the two re-
sistors at the ends have a voltage drop 2/5. In an Nth-order
hierarchy, the voltage of any resistor is the product of these
two factors, with number of times each factor occurs de-
pendent on the level of embedding of a resistor within the
blobs. It is a simple exercise to show that the voltage dis-
tribution is [17]

N(V( j)) D 2N
 
N
j

!

; (22)

where the voltage V(j) can take the values 2 j/5N (with
j D 0; 1; : : : ;N). Because j varies logarithmically in V , the
voltage distribution is log binomial [75]. Using this distri-

bution in Eq. (21), the moments of the voltage distribution
are

M(k) D

"
2(1C 2k)

5k

#N

: (23)

In particular, the average voltage, M(1)/M(0) � Vav
equals ((3/2)/5)N , which is very different from the most
probable voltage,Vmp D (

p
2/5)N as N !1. The under-

lying multiplicativity of the bond voltages is the ultimate
source of the large disparity between the average and most
probable values.

To calculate the moment exponent p(k), we first need
to relate the iteration index N to a physical length scale.
For percolation, the appropriate relation is based on
Coniglio’s theorem [15], which is a simple but profound
statement about the structure of the percolating cluster.
This theorem states that the number of singly-connected
bonds in a system of linear dimension L,Ns , varies as L1/� .
Singly-connected bonds are those that would disconnect
the network if they were cut. An equivalent form of the
theorem isNs D @p0/@p, where p0 is the probability that
a spanning cluster exists in the system. This relation re-
flects the fact that when p is decreased slightly, p0 changes
only if a singly-connected bond happens to be deleted.

In the Nth-order hierarchy, the number of such singly-
connected links is simply 2N . Equating these two gives an
effective linear dimension, L D 2N� . Using this relation
in (23), the moment exponent p(k) is

p(k) D k� 1C
h
k ln (5/4) � ln(1C 2�k)

i ı
ln 2 : (24)

Because each p(k) is independent, the moments of the
voltage distribution are characterized by an infinite set of
exponents. Equation (24) is in excellent agreement with
numerical data for the voltage distribution in two-dimen-
sional random resistor networks at the percolation thresh-
old [19]. A similar multifractal behavior was also found for
the voltage distribution of the resistor network at the per-
colation threshold in three dimensions [8].

Maximum Voltage

An important aspect of the voltage distribution, both be-
cause of its peculiar scaling properties [27] and its appli-
cation to breakdown problems [18,27], is the maximum
voltage in a network. The salient features of this maximum
voltage are: (i) logarithmic scaling as a function of system
size [14,27,28,60,65], and (ii) non-monotonic dependence
on the resistor concentration p [46]. The former property
is a consequence of the expected size of the largest defect
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Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 7
Defect configurations in two dimensions. a An ellipse and its
square lattice counterpart, b a funnel, with the region of good
conductor shown shaded, and a 2-slit configuration on the
square lattice

in the network that gives maximal local currents. Here, we
use the terms maximum local voltage and maximum local
current interchangeably because they are equivalent.

To find the maximal current, we first need to iden-
tify the optimal defects that lead to large local currents.
A natural candidate is an ellipse [27,28] with major and
minor axes a and b (continuum), or its discrete analog of
a linear crack (hyperplanar crack in greater than two di-
mensions) in which n resistors are missing (Fig. 7). Be-
cause current has to detour around the defect, the lo-
cal current at the ends of the defect is magnified. For
the continuum problem, the current at the tip of the
ellipse is Itip D I0(1Ca / b), where I0 is the current in
the unperturbed system [27]. For the maximum cur-
rent in the lattice system, one must integrate the contin-
uum current over a one lattice spacing and identify a/b
with n [60]. This approach gives the maximal current at
the tip of a crack Imax / (1C n1/2) in two dimensions and
as Imax / (1C n1/2(d�1)) in d dimensions.

Next, we need to find the size of the largest defect,
which is an extreme-value statistics exercise [39]. For
a linear crack, each broken bond occurs with probabil-
ity 1 � p, so that the probability for a crack of length n
is (1 � p)n � e�an , with a D � ln(1 � p). In a network
of volume Ld, we estimate the size of the largest defect
by Ld

R1
nmax

e�an dx D 1; that is, there exists of the order

of one defect of size nmax or larger in the network [39].
This estimate gives nmax varying as ln L. Combining this
result with the current at the tip of a crack of length n,
the largest current in a system of linear dimension L scales
as (ln L)1/2(d�1).

A more thorough analysis shows, however, that a sin-
gle crack is not quite optimal. For a continuum two-com-
ponent network with conductors of resistance 1 with prob-
ability p and with resistance r > 1 with probability 1� p,
the configuration that maximizes the local current is a fun-
nel [14,65]. For a funnel of linear dimension `, the maxi-
mum current at the apex of the funnel is proportional to
`1�� , where � D (4/�) tan�1(r�1/2) [14,65]. The probabil-
ity to find a funnel of linear dimension ` now scales as
e�b`2 (exponentially in its area), with b a constant. By the
same extreme statistics reasoning given above, the size of
the largest funnel in a system of linear dimension L then
scales as (ln L)1/2, and the largest expected current cor-
respondingly scales as (ln L)(1��)/2. In the limit r!1,
where one component is an insulator, the optimal dis-
crete configuration in two dimensions becomes two paral-
lel slits, each of length n, betweenwhich a single resistor re-
mains [60]. For this two-slit configuration, the maximum
current is proportional to n in two dimensions, rather than
n1/2 for the single crack. Thus the maximal current in
a system of linear dimension L scales as ln L rather than
as a fractional power of ln L.

The p dependence of the maximum voltage is intrigu-
ing because it is non-monotonic. As p, the fraction of oc-
cupied bonds, decreases from 1, less total current flows
(for a fixed overall voltage drop) because the conduc-
tance is decreasing, while local current in a funnel is en-
hanced because such defects grow larger. The competi-
tion between these two effects leads to Vmax attaining its
peak at ppeak above the percolation threshold that only
slowly approaches pc as L!1. An experimental man-
ifestation of this non-monotonicity in Vmax occurred in
a resistor-diode network [77], where the network repro-
ducibly burned (solder connections melting and smoking)
when p ' 0:77, compared to a percolation threshold of
pc ' 0:58. Although the directionality constraint imposed
by diodes enhances funneling, similar behavior should oc-
cur in a random resistor network.

The non-monotonic p dependence of Vmax can be
understood within the quasi-one-dimensional “bubble”
model [46] that captures the interplay between local fun-
neling and overall current reduction as p decreases (Fig. 8).
Although this system looks one-dimensional, it can be
engineered to reproduce the percolation properties of
a system in greater than one dimension by choosing the
length L to scale exponentially with the widthw. The prob-
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Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 8
The bubblemodel: a chain of L bubbles in series, each consisting
of w bonds in parallel. Each bond is independently present with
probability p

ability for a spanning path in this structure is

p0 D
�
1 � (1 � p)w

�L

! exp[�L e�pw] L;w !1; (25)

which suddenly changes from 0 to 1 – indicative of per-
colation – at a threshold that lies strictly within (0,1) as
L!1 and L � ew . In what follows, we take L D 2w ,
which gives pc D 1/2.

To determine the effect of bottlenecking, we appeal to
the statement of Coniglio’s theorem [15], @p0/@p equals
the average number of singly-connected bonds in the
system. Evaluating @p0/@p in Eq. (25) at the percolation
threshold of pc D 1/2 gives

@p0

@p
D w CO(e�w ) � ln L : (26)

Thus at pc there are w � ln L bottlenecks. However, cur-
rent focusing due to bottlenecks is substantially diluted
because the conductance, and hence the total current
through the network, is small at pc.What is needed is a sin-
gle bottleneck of width 1. One such bottleneck ensures the
total current flow is still substantial, while the narrowing to
width 1 endures that the focusing effect of the bottleneck
is maximally effective.

Clearly, a single bottleneck of width 1 occurs above the
percolation threshold. Thus let’s determine when a such
an isolated bottleneck of width 1 first appears as a function
of p. The probability that a single non-empty bubble con-
tains at least two bonds is (1 � qw � wpqw�1) / (1 � qw ),
where q D 1 � p. Then the probability P1(p) that the
width of the narrowest bottleneck has width 1 in a chain
of L bubbles is

P1(p) D 1 �
�
1 �

wpqw�1

1 � qw

�L

� 1 � exp
�
�Lw

p
q(1 � qw )

e�pw
�
: (27)

The subtracted term is the probability that L non-empty
bubbles contain at least two bonds, and then P1(p) is the

complement of this quantity. As p decreases from 1, P1(p)
sharply increases from 0 to 1 when the argument of the
outer exponential becomes of the order of 1; this change
occurs at p̂ � pc C O(ln(ln L) / ln L). At this point, a bot-
tleneck of width 1 first appears and therefore Vmax also oc-
curs for this value of p.

RandomWalks and Resistor Networks

The Basic Relation

We now discuss how the voltages at each node in a re-
sistor network and the resistance of the network are
directly related to first-passage properties of random
walks [31,63,76,98]. To develop this connection, consider
a random walk on a finite network that can hop between
nearest-neighbor sites i to j with probability pij in a single
step. We divide the boundary points of the network into
two disjoint classes,BC andB�, that we are free to choose;
a typical situation is the geometry shown in Fig. 9.We now
ask: starting at an arbitrary point i, what is the probability
that the walk eventually reaches the boundary setBC with-
out first reaching any node inB�? This quantity is termed
the exit probability EC(i) (with an analogous definition
for the exit probability E�(i) D 1 � EC(i) to B�).

We obtain the exit probability EC(i) by summing the
probabilities for all walk trajectories that start at i and
reach a site in BC without touching any site in B� (and
similarly for E�(i)). Thus

E˙(i) D
X

p
˙

Pp
˙
(i) ; (28)

where Pp
˙
(i) denotes the probability of a path from i to

B˙ that avoidsB�. The sum over all these restricted paths

Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 9
a Lattice network with boundary sitesBC orB� . b Correspond-
ing resistor network in which each rectangle is a 1 ohm resistor.
The sites in BC are all fixed at potential V D 1, and sites in B�

are all grounded
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can be decomposed into the outcome after one step, when
the walk reaches some intermediate site j, and the sum
over all path remainders from j to B˙. This decomposi-
tion gives

E˙(i) D
X

j

pi j E˙( j) : (29)

Thus E˙(i) is a harmonic function because it equals
a weighted average of E˙ at neighboring points, with
weighting function pij. This is exactly the same relation
obeyed by the node voltages in Eq. (2) for the correspond-
ing resistor network when we identify the single-step hop-
ping probabilities pij with the conductances gi j /

P
j gi j .

We thus have the following equivalence:

� Let the boundary sets BC and B� in a resistor network
be fixed at voltages 1 and 0 respectively, with gij the
conductance of the bond between sites i and j. Then the
voltage at any interior site i coincides with the probabil-
ity for a randomwalk, which starts at i, to reachBC be-
fore reaching B�, when the hopping probability from
i to j is pi j D gi j /

P
j gi j .

If all the bond conductances are the same – correspond-
ing to single - step hopping probabilities in the equivalent
random walk being identical – then Eq. (29) is just the
discrete Laplace equation. We can then exploit this cor-
respondence between conductances and hopping proba-
bilities to infer non-trivial results about random walks and
about resistor networks from basic electrostatics. This cor-
respondence can also be extended in a natural way to gen-
eral random walks with a spatially-varying bias and diffu-
sion coefficient, and to continuous media.

The consequences of this equivalence between ran-
dom walks and resistor networks is profound. As an ex-
ample [76], consider a diffusing particle that is initially at
distance r0 from the center of a sphere of radius a < r0 in
otherwise empty d-dimensional space. By the correspon-
dence with electrostatics, the probability that this particle
eventually hits the sphere is simply the electrostatic poten-
tial at r0 ; E�(r0) D (a/r0)d�2 !

Network Resistance and Pólya’s Theorem

An important extension of the relation between exit prob-
ability and node voltages is to infinite resistor networks.
This extension provides a simple connection between the
classic recurrence/transience transition of random walks
on a given network [31,63,76,98] and the electrical resis-
tance of this same network [26]. Consider a symmetric
random walk on a regular lattice in d spatial dimensions.

Suppose that the walk starts at the origin at t D 0. What is
the probability that the walk eventually returns to its start-
ing point? The answer is strikingly simple:

� For d � 2, a randomwalk is certain to eventually return
to the origin. This property is known as recurrence.

� For d > 2, there is a non-zero probability that the ran-
dom walk will never return to the origin. This property
is known as transience.

Let’s now derive the transience and recurrence prop-
erties of random walks in terms of the equivalent resis-
tor network problem. Suppose that the voltage V at the
boundary sites BC is set to one. Then by Kirchhoff’s law,
the total current entering the network is

I D
X

j

(1 � Vj)gC j D
X

j

(1 � Vj)pC j
X

k

gCk : (30)

Here gC j is the conductance of the resistor between BC
and a neighboring site j, and pC j D gC j /

P
j gC j . Be-

cause the voltageVj also equals the probability for the cor-
responding random walk to reach BC without reaching
B�, the term Vj pC j is just the probability that a random
walk starts at BC, makes a single step to one of the sites j
adjacent to BC (with hopping probability pij), and then
returns to BC without reaching B�. We therefore deduce
that

I D
X

j

(1 � Vj)gC j

D
X

k

gCk
X

j

(1 � Vj)pC j

D
X

k

gCk � (1 � return probability )

D
X

k

gCk � escape probability : (31)

Here “escape” means that the random walk reaches the set
B� without returning to a node in BC.

On the other hand, the current and the voltage drop
across the network are related to the conductance G be-
tween the two boundary sets by I D GV D G. From this
fact, Eq. (31) gives the fundamental result

escape probability � Pescape D
G

P
k gCk

: (32)

Suppose now that a current I is injected at a single point of
an infinite network, with outflow at infinity (Fig. 10). Thus
the probability for a random walk to never return to its
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Fractal and Multifractal Scaling of Electrical Conduction in Ran-
dom Resistor Networks, Figure 10
Decomposition of a conducting medium into concentric shells,
each of which consists of fixed-conductance blocks. A current I
is injected at the origin and flows radially outward through the
medium

starting point, is simply proportional to the conductanceG
from this starting point to infinity of the same network.
Thus a subtle feature of random walks, namely, the escape
probability, is directly related to currents and voltages in
an equivalent resistor network.

Part of the reason why this connection is so useful is
that the conductance of the infinite network for various
spatial dimensions can be easily determined, while a direct
calculation of the return probability for a random walk is
more difficult. In one dimension, the conductance of an
infinitely long chain of identical resistors is clearly zero.
Thus Pescape D 0 or, equivalently, Preturn D 1. Thus a ran-
dom walk in one dimension is recurrent. As alluded to at
the outset of Sect. “Introduction to Current Flows”, the
conductance between one point and infinity in an infinite
resistor lattice in general spatial dimension is somewhat
challenging. However, to merely determine the recurrence
or transience of a random walk, we only need to know if
the return probability is zero or greater than zero. Such
a simple question can be answered by a crude physical es-
timate of the network conductance.

To estimate the conductance from one point to infin-
ity, we replace the discrete lattice by a continuummedium
of constant conductance. We then estimate the conduc-
tance of the infinite medium by decomposing it into a se-
ries of concentric shells of fixed thickness dr. A shell at ra-
dius r can be regarded as a parallel array of rd�1 volume
elements, each of which has a fixed conductance. The con-
ductance of one such shell is proportional to its surface
area, and the overall resistance is the sum of these shell re-

sistances. This reasoning gives

R �
1Z
Rshell(r)dr

�

1Z
dr
rd�1

D

(
1 for d � 2
(Pescape

P
j gC j)�1 for d > 2 :

(33)

The above estimate gives an easy solution to the recur-
rence/transience transition of random walks. For d � 2,
the conductance to infinity is zero because there are an
insufficient number of independent paths from the ori-
gin to infinity. Correspondingly, the escape probability is
zero and the random walk is recurrent. The case d D 2
is more delicate because the integral in Eq. (33) diverges
only logarithmically at the upper limit. Nevertheless, the
conductance to infinity is still zero and the corresponding
random walk is recurrent (but just barely). For d > 2, the
conductance between a single point and infinity in an infi-
nite homogeneous resistor network is non zero and there-
fore the escape probability of the corresponding random
walk is also non zero – the walk is now transient.

There are many amusing ramifications of the recur-
rence of random walks and we mention two such prop-
erties. First, for d � 2, even though a random walk even-
tually returns to its starting point, the mean time for this
event is infinite! This divergence stems from a power-law
tail in the time dependence of the first-passage probabil-
ity [31,76], namely, the probability that a random walk re-
turns to the origin for the first time. Another striking as-
pect of recurrence is that because a random walk returns
to its starting point with certainty, it necessarily returns an
infinite number of times.

Future Directions

There is a good general understanding of the conduc-
tance of resistor networks, both far from the percolation
threshold, where effective medium theory applies, and
close to percolation, where the conductance G vanishes
as (p � pc )t . Many advancements in numerical techniques
have been developed to determine the conductance accu-
rately and thereby obtain precise values for the conduc-
tance exponent, especially in two dimensions. In spite of
this progress, we still do not yet have the right way, if it
exists at all, to link the geometry of the percolation clus-
ter or the conducting backbone to the conductivity itself.
Furthermore, many exponents of two-dimensional perco-
lation are known exactly. Is it possible that the exact ap-
proaches developed to determine percolation exponents
can be extended to give the exact conductance exponent?
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Finally, there are aspects about conduction in random
networks that are worth highlighting. The first falls under
the rubric of directed percolation [51]. Here each link in
a network has an intrinsic directionality that allows cur-
rent to flow in one direction only – a resistor and diode
in series. Links are also globally oriented; on the square
lattice for example, current can flow rightward and up-
ward. A qualitative understanding of directed percolation
and directed conduction has been achieved that parallels
that of isotropic percolation. However, there is one facet
of directed conduction that is barely explored. Namely,
the state of the network (the bonds that are forward bi-
ased) must be determined self consistently from the cur-
rent flows. This type of non-linearity is muchmore serious
when the circuit elements are randomly oriented. These
questions about the coupling between the state of the net-
work and its conductance are central when the circuit el-
ements are intrinsically non-linear [49,78]. This is a topic
that seems ripe for new developments.
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Glossary

Time series One dimensional array of numbers (xi ); i D
1; : : : ;N , representing values of an observable x usu-
ally measured equidistant (or nearly equidistant) in
time.

Complex system A system consisting of many non-lin-
early interacting components. It cannot be split into
simpler sub-systems without tampering with the dy-
namical properties.

Scaling law A power law with a scaling exponent (e. g. ˛)
describing the behavior of a quantity F (e. g., fluctu-
ation, spectral power) as function of a scale param-
eter s (e. g., time scale, frequency) at least asymptot-
ically: F(s) � s˛ . The power law should be valid for
a large range of s values, e. g., at least for one order of
magnitude.

Fractal system A system characterized by a scaling law
with a fractal, i. e., non-integer exponent. Fractal sys-
tems are self-similar, i. e., a magnification of a small
part is statistically equivalent to the whole.

Self-affine system Generalization of a fractal system,
where different magnifications s and s0 D sH have to
be used for different directions in order to obtain a sta-
tistically equivalent magnification. The exponent H
is called Hurst exponent. Self-affine time series and
time series becoming self-affine upon integration are
commonly denoted as fractal using a less strict termi-
nology.

Multifractal system A system characterized by scaling
laws with an infinite number of different fractal ex-
ponents. The scaling laws must be valid for the same
range of the scale parameter.

Crossover Change point in a scaling law, where one scal-
ing exponent applies for small scale parameters and
another scaling exponent applies for large scale pa-
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rameters. The center of the crossover is denoted by its
characteristic scale parameter s� in this article.

Persistence In a persistent time series, a large value is usu-
ally (i. e., with high statistical preference) followed by
a large value and a small value is followed by a small
value. A fractal scaling law holds at least for a limited
range of scales.

Short-term correlations Correlations that decay suffi-
ciently fast that they can be described by a characteris-
tic correlation time scale; e. g., exponentially decaying
correlations. A crossover to uncorrelated behavior is
observed on larger scales.

Long-term correlations Correlations that decay suffi-
ciently slow that a characteristic correlation time scale
cannot be defined; e. g., power-law correlations with
an exponent between 0 and 1. Power-law scaling is
observed on large time scales and asymptotically. The
term long-range correlations should be used if the data
is not a time series.

Non-stationarities If the mean or the standard devia-
tion of the data values change with time, the weak
definition of stationarity is violated. The strong def-
inition of stationarity requires that all moments re-
main constant, i. e., the distribution density of the val-
ues does not change with time. Non-stationarities like
monotonous, periodic, or step-like trends are often
caused by external effects. In a more general sense,
changes in the dynamics of the system also represent
non-stationarities.

Definition of the Subject

Data series generated by complex systems exhibit fluctu-
ations on a wide range of time scales and/or broad dis-
tributions of the values. In both equilibrium and non-
equilibrium situations, the natural fluctuations are often
found to follow a scaling relation over several orders of
magnitude. Such scaling laws allow for a characterization
of the data and the generating complex system by frac-
tal (or multifractal) scaling exponents, which can serve as
characteristic fingerprints of the systems in comparisons
with other systems and withmodels. Fractal scaling behav-
ior has been observed, e. g., in many data series from ex-
perimental physics, geophysics, medicine, physiology, and
even social sciences. Although the underlying causes of the
observed fractal scaling are often not known in detail, the
fractal or multifractal characterization can be used for gen-
erating surrogate (test) data, modeling the time series, and
deriving predictions regarding extreme events or future
behavior. The main application, however, is still the char-
acterization of different states or phases of the complex

system based on the observed scaling behavior. For exam-
ple, the health status and different physiological states of
the human cardiovascular system are represented by the
fractal scaling behavior of the time series of intervals be-
tween successive heartbeats, and the coarsening dynam-
ics in metal alloys are represented by the fractal scaling of
the time-dependent speckle intensities observed in coher-
ent X-ray spectroscopy.

In order to observe fractal and multifractal scaling be-
havior in time series, several tools have been developed.
Besides older techniques assuming stationary data, there
aremore recently establishedmethods differentiating truly
fractal dynamics from fake scaling behavior caused by
non-stationarities in the data. In addition, short-term and
long-term correlations have to be clearly distinguished to
show fractal scaling behavior unambiguously. This arti-
cle describes several methods originating from statistical
physics and applied mathematics, which have been used
for fractal and multifractal time series analysis in station-
ary and non-stationary data.

Introduction

The characterization and understanding of complex sys-
tems is a difficult task, since they cannot be split into
simpler subsystems without tampering with the dynami-
cal properties. One approach in studying such systems is
the recording of long time series of several selected vari-
ables (observables), which reflect the state of the system
in a dimensionally reduced representation. Some systems
are characterized by periodic or nearly periodic behav-
ior, which might be caused by oscillatory components or
closed-loop regulation chains. However, in truly complex
systems such periodic components are usually not lim-
ited to one or two characteristic frequencies or frequency
bands. They rather extend over a wide spectrum, and fluc-
tuations on many time scales as well as broad distributions
of the values are found. Often no specific lower frequency
limit – or, equivalently, upper characteristic time scale –
can be observed. In these cases, the dynamics can be char-
acterized by scaling laws which are valid over a wide (pos-
sibly even unlimited) range of time scales or frequencies;
at least over orders of magnitude. Such dynamics are usu-
ally denoted as fractal or multifractal, depending on the
question if they are characterized by one scaling exponent
or by a multitude of scaling exponents.

The first scientist who applied fractal analysis to natu-
ral time series was Benoit B. Mandelbrot [1,2,3], who in-
cluded early approaches by H.E. Hurst regarding hydro-
logical systems [4,5]. For extensive introductions describ-
ing fractal scaling in complex systems, we refer to [6,7,8,
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9,10,11,12,13]. In the last decade, fractal and multifractal
scaling behavior has been reported in many natural time
series generated by complex systems, including

� Geophysics time series (recordings of temperature, pre-
cipitation, water runoff, ozone levels, wind speed, seis-
mic events, vegetational patterns, and climate dynam-
ics),

� Medical and physiological time series (recordings of
heartbeat, respiration, blood pressure, blood flow,
nerve spike intervals, human gait, glucose levels, and
gene expression data),

� DNA sequences (they are not actually time series),
� Astrophysical time series (X-ray light sources and

sunspot numbers),
� Technical time series (internet traffic, highway traffic,

and neutronic power from a reactor),
� Social time series (finance and economy, language

characteristics, fatalities in conflicts), as well as
� Physics data (also going beyond time series), e. g., sur-

face roughness, chaotic spectra of atoms, and photon
correlation spectroscopy recordings.

If one finds that a complex system is characterized by frac-
tal (or multifractal) dynamics with particular scaling expo-
nents, this finding will help in obtaining predictions on the
future behavior of the system and on its reaction to exter-
nal perturbations or changes in the boundary conditions.
Phase transitions in the regulation behavior of a complex
system are often associated with changes in their fractal
dynamics, allowing for a detection of such transitions (or
the corresponding states) by fractal analysis. One example
for a successful application of this approach is the human
cardiovascular system, where the fractality of heartbeat in-
terval time series was shown to reflect certain cardiac im-
pairments as well as sleep stages [14,15]. In addition, one
can test and iteratively improve models of the system until
they reproduce the observed scaling behavior. One exam-
ple for such an approach is climate modeling, where the
models were shown to need input from volcanos and solar
radiation in order to reproduce the long-term correlated
(fractal) scaling behavior [16] previously found in obser-
vational temperature data [17].

Fractal (or multifractal) scaling behavior certainly can-
not be assumed a priori, but has to be established. Hence,
there is a need for refined analysis techniques, which help
to differentiate truly fractal dynamics from fake scaling be-
havior caused, e. g., by non-stationarities in the data. If
conventional statistical methods are applied for the anal-
ysis of time series representing the dynamics of a com-
plex system [18,19], there are two major problems. (i) The
number of data series and their durations (lengths) are

usually very limited, making it difficult to extract sig-
nificant information on the dynamics of the system in
a reliable way. (ii) If the length of the data is extended
using computer-based recording techniques or historical
(proxy) data, non-stationarities in the signals tend to be
superimposed upon the intrinsic fluctuation properties
and measurement noise. Non-stationarities are caused by
external or internal effects that lead to either continuous
or sudden changes in the average values, standard devia-
tions or regulation mechanism. They are a major problem
for the characterization of the dynamics, in particular for
finding the scaling properties of given data.

Fractal andMultifractal Time Series

Fractality, Self-Affinity, and Scaling

The topic of this article is the fractality (and/or multi-
fractality) of time series. Since fractals and multifractals
in general are discussed in many other articles of the en-
cyclopedia, the concept is not thoroughly explained here.
In particular, we refer to the articles � Fractal Geometry,
A Brief Introduction to and � Fractals and Multifractals,
Introduction to for the formalism describing fractal and
multifractal structures, respectively.

In a strict sense, most time series are one dimensional,
since the values of the considered observable are mea-
sured in homogeneous time intervals. Hence, unless there
are missing values, the fractal dimension of the support is
D(0) D 1. However, there are rare cases where most of the
values of a time series are very small or even zero, caus-
ing a dimension D(0) < 1 of the support. In these cases,
one has to be very careful in selecting appropriate analysis
techniques, since many of the methods presented in this
article are not accurate for such data; the wavelet trans-
form modulus maxima technique (see Subsect. “Wavelet
Transform Modulus Maxima (WTMM) Method”) is the
most advanced applicable method.

Even if the fractal dimension of support is one, the
information dimension D(1) and the correlation dimen-
sion D(2) can be studied. As we will see in Subsect. “The
Structure Function Approach and Singularity Spectra”,
D(2) is in fact explicitly related to all exponents stud-
ied in monofractal time series analysis. However, usually
a slightly different approach is employed based on the no-
tion of self-affinity instead of (multi-) fractality. Here, one
takes into account that the time axis and the axis of the
measured values x(t) are not equivalent. Hence, a rescaling
of time t by a factor a may require rescaling of the series
values x(t) by a different factor aH in order to obtain a sta-
tistically similar (i. e., self-similar) picture. In this case the
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scaling relation

x(t)! aHx(at) (1)

holds for an arbitrary factor a, describing the data as self-
affine (see, e. g., [6]). The Hurst exponent H (after the
water engineer H.E. Hurst [4]) characterizes the type of
self affinity. Figure 1a shows several examples of self-affine
time series with different H. The trace of a random walk
(Brownian motion, third line in Fig. 1a), for example, is
characterized by H D 0:5, implying that the position axis
must be rescaled by a factor of two if the time axis is
rescaled by a factor of four. Note that self-affine series are
often denoted as fractal even though they are not fractal
in the strict sense. In this article the term “fractal” will be
used in the more general sense including all data, where
a Hurst exponent H can be reasonably defined.

The scaling behavior of self-affine data can also be
characterized by looking at their mean-square displace-
ment. Since the mean-square displacement of a random
walker is known to increase linearly in time, hx2(t)i � t,
deviations from this law will indicate the presence of self-
affine scaling. As we will see in Subsect. “Fluctuation Anal-
ysis (FA)”, one can thus retrieve the Hurst (or self-affin-
ity) exponent H by studying the scaling behavior of the
mean-square displacement, or the mean-square fluctua-
tions hx2(t)i � t2H .

Persistence, Long- and Short-Term Correlations

Self-affine data are persistent in the sense that a large value
is usually (i. e., with high statistical preference) followed

Fractal andMultifractal Time Series, Figure 1
a Examples of self-affine series xi characterized by different Hurst exponents H = 0.9, 0.7, 0.5, 0.3 (from top to bottom). The data
has been generated by Fourier filtering using the same seed for the random number generator. b Differentiated series	xi of the
data from a; the	xi are characterized by positive long-term correlations (persistence) with � = 0.2 and 0.6 (first and second line),
uncorrelated behavior (third line), and anti-correlations (bottom line), respectively

by a large value and a small value is followed by a small
value. For the trace of a random walk, persistence on all
time scales is trivial, since a later position is just a for-
mer one plus some random increment(s). The persistence
holds for all time scales, where the self-affinity relation (1)
holds. However, the degree of persistence can also vary on
different time scales. Weather is a typical example: while
the weather tomorrow or in one week is probably similar
to the weather today (due to a stable general weather con-
dition), persistence is much harder to be seen on longer
time scales.

Considering the increments
xi D xi � xi�1 of a self-
affine series, (xi), i D 1; : : : ;N with N values measured
equidistant in time, one finds that the 
xi can be either
persistent, independent, or anti-persistent. Examples for
all cases are shown in Fig. 1b. In our example of the ran-
dom walk with H D 0:5 (third line in the figure), the in-
crements (steps) are fully independent of each other. Per-
sistent and anti-persistent increments, where a positive in-
crement is likely to be followed by another positive or neg-
ative increment, respectively, are also leading to persistent
integrated series xi D

Pi
jD1
x j .

For stationary data with constant mean and standard
deviation the auto-covariance function of the increments,

C(s) D
˝

xi
xiCs

˛
D

1
N � s

N�sX

iD1


xi
xiCs (2)

can be studied to determine the degree of persistence. If
C(s) is divided by the variance h(
xi )2i, it becomes the
auto-correlation function; both are identical if the data are
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Fractal andMultifractal Time Series, Figure 2
Comparison of the autocorrelation functions C(s) (decreasing
functions) and fluctuation functions F2(s) (increasing functions)
for short-term correlated data (top panel) and long-term cor-
related data (� D 0:4, bottom panel). The asymptotic slope
H � ˛ D 0:5 of F2(s) clearly indicatesmissing long-term correla-
tions, while H � ˛ D 1� �/2 > 0:5 indicates long-term corre-
lations. The difference is much harder to observe in C(s), where
statistical fluctuations and negative values start occurring above
s � 100. The data have been generated by an AR process Eq. (4)
and Fourier filtering, respectively. The dashed lines indicate the
theoretical curves

normalized with unit variance. If the
xi are uncorrelated
(as for the random walk), C(s) is zero for s > 0. Short-
range correlations of the increments 
xi are usually de-
scribed by C(s) declining exponentially,

C(s) � exp(�s/t�) (3)

with a characteristic decay time t�. Such behavior is typ-
ical for increments generated by an auto-regressive (AR)
process


xi D c
xi�1 C "i (4)

with random uncorrelated offsets "i and c D exp(�1/t�).
Figure 2a shows the auto-correlation function for one con-
figuration of an AR process with t� D 48.

For so-called long-range correlations
R1
0 C(s)ds di-

verges in the limit of infinitely long series (N !1). In
practice, this means that t� cannot be defined because it
increases with increasing N. For example, C(s) declines as
a power-law

C(s) / s�� (5)

with an exponent 0 < � < 1. Figure 2b shows C(s) for
one configuration with � D 0:4. This type of behavior can

be modeled by the Fourier filtering technique (see Sub-
sect. “Fourier Filtering”). Long-term correlated, i. e. per-
sistent, behavior of the 
xi leads to self-affine scaling be-
havior of the xi, characterized by H D 1 � � /2, as will be
shown below.

Crossovers and Non-Stationarities in Time Series

Short-term correlated increments 
xi characterized by
a finite characteristic correlation decay time t� lead to
a crossover in the scaling behavior of the integrated se-
ries xi D

Pi
jD1
x j , see Fig. 2a for an example. Since

the position of the crossover might be numerically dif-
ferent from t�, we denote it by s� here. Time series with
a crossover are not self-affine and there is no unique Hurst
exponent H characterizing them. While H > 0:5 is ob-
served on small time scales (indicating correlations in the
increments), the asymptotic behavior (for large time scales
s	 t� and 	 s�) is always characterized by H D 0:5,
since all correlations have decayed. Many natural record-
ings are characterized by pronounced short-term corre-
lations in addition to scaling long-term correlations. For
example, there are short-term correlations due to particu-
lar general weather situations in temperature data and due
to respirational effects in heartbeat data. Crossovers in the
scaling behavior of complex time series can also be caused
by different regulation mechanisms on fast and slow time
scales. Fluctuations of river runoff, for example, show dif-
ferent scaling behavior on time scales below and above ap-
proximately one year.

Non-stationarities can also cause crossovers in the
scaling behavior of data if they are not properly taken
into account. In the most strict sense, non-stationarities
are variations in the mean or the standard deviation of
the data (violating weak stationarity) or the distribution
of the data values (violating strong stationarity). Non-sta-
tionarities like monotonous, periodic or step-like trends
are often caused by external effects, e. g., by the green-
house warming and seasonal variations for temperature
records, different levels of activity in long-term physiolog-
ical data, or unstable light sources in photon correlation
spectroscopy. Another example for non-stationary data is
a record consisting of segments with strong fluctuations
alternating with segments with weak fluctuations. Such be-
havior will cause a crossover in scaling at the time scale
corresponding to the typical duration of the homogeneous
segments. Different mechanisms of regulation during dif-
ferent time segments – like, e. g., different heartbeat reg-
ulation during different sleep stages at night – can also
cause crossovers; they are regarded as non-stationarities
here, too. Hence, if crossovers in the scaling behavior of
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data are observed, more detailed studies are needed to find
out the cause of the crossovers. One can try to obtain ho-
mogenous data by splitting the original series and employ-
ing methods that are at least insensitive to monotonous
(polynomially shaped) trends.

To characterize a complex system based on time se-
ries, trends and fluctuations are usually studied separately
(see, e. g., [20] for a discussion). Strong trends in data can
lead to a false detection of long-range statistical persis-
tence if only one (non-detrending) method is used or if
the results are not carefully interpreted. Using several ad-
vanced techniques of scaling time series analysis (as de-
scribed in Sect. “Methods for Non-stationary Fractal Time
Series Analysis”) crossovers due to trends can be distin-
guished from crossovers due to different regulation mech-
anisms on fast and slow time scales. The techniques can
thus assist in gaining insight into the scaling behavior of
the natural variability as well as into the kind of trends of
the considered time series.

It has to be stressed that crossovers in scaling behav-
ior must not be confused withmultifractality. Even though
several scaling exponents are needed, they are not appli-
cable for the same regime (i. e., the same range of time
scales). Real multifractality, on the other hand, is charac-
terized by different scaling behavior of different moments
over the full range of time scales (see next section).

Multifractal Time Series

Many records do not exhibit a simple monofractal scal-
ing behavior, which can be accounted for by a single scal-
ing exponent. As discussed in the previous section, there
might exist crossover (time-) scales s� separating regimes
with different scaling exponents. In other cases, the scaling
behavior is more complicated, and different scaling expo-
nents are required for different parts of the series. In even
more complicated cases, such different scaling behavior
can be observed for many interwoven fractal subsets of the
time series. In this case a multitude of scaling exponents
is required for a full description of the scaling behavior in
the same range of time scales, and a multifractal analysis
must be applied.

Two general types of multifractality in time series can
be distinguished: (i) Multifractality due to a broad prob-
ability distribution (density function) for the values of
the time series, e. g. a Levy distribution. In this case the
multifractality cannot be removed by shuffling the series.
(ii) Multifractality due to different long-term correlations
of the small and large fluctuations. In this case the prob-
ability density function of the values can be a regular dis-
tribution with finite moments, e. g., a Gaussian distribu-

tion. The corresponding shuffled series will exhibit non-
multifractal scaling, since all long-range correlations are
destroyed by the shuffling procedure. Randomly shuffling
the order of the values in the time series is the easiest way
of generating surrogate data; however, there are more ad-
vanced alternatives (see Sect. “Simple Models for Fractal
and Multifractal Time Series”). If both kinds of multifrac-
tality are present, the shuffled series will show weakermul-
tifractality than the original series.

A multifractal analysis of time series will also reveal
higher order correlations. Multifractal scaling can be ob-
served if, e. g., three or four-point correlations scale dif-
ferently from the standard two-point correlations studied
by classical autocorrelation analysis (Eq. (2)). In addition,
multifractal scaling is observed if the scaling behavior of
small and large fluctuations is different. For example, ex-
treme events might be more or less correlated than typical
events.

Methods for Stationary Fractal Time Series Analysis

In this section we describe four traditional approaches for
the fractal analysis of stationary time series, see [21,22,23]
for comparative studies. The main focus is on the de-
termination of the scaling exponents H or � , defined in
Eqs. (1) and (5), respectively, and linked by H D 1 � � /2
in long-term persistent data. Methods taking non-station-
arities into account will be discussed in the next chapter.

Autocorrelation Function Analysis

We consider a record (xi ) of i D 1; : : : ;N equidistant
measurements. In most applications, the index i will cor-
respond to the time of the measurements. We are in-
terested in the correlation of the values xi and xiCs for
different time lags, i. e. correlations over different time
scales s. In order to remove a constant offset in the
data, the mean hxi D 1

N
PN

iD1 xi is usually subtracted,
x̃i � xi � hxi. Alternatively, the correlation properties
of increments x̃i D 
xi D xi � xi�1 of the original se-
ries can be studied (see also Subsect. “Persistence, Long-
and Short-Term Correlations”). Quantitatively, correla-
tions between x̃-values separated by s steps are defined
by the (auto-) covariance function C(s) D hx̃i x̃iCsi or the
(auto-) correlation function C(s)/hx̃2i i, see also Eq. (2).

As already mentioned in Subsect. “Persistence, Long-
and Short-Term Correlations”, the x̃i are short-term cor-
related if C(s) declines exponentially, C(s) � exp(�s/t�),
and long-term correlated if C(s) declines as a power-law
C(s) / s�� with a correlation exponent 0 < � < 1 (see
Eqs. (3) and (5), respectively). As illustrated by the two
examples shown in Fig. 2, a direct calculation of C(s) is
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usually not appropriate due to noise superimposed on
the data x̃i and due to underlying non-stationarities of
unknown origin. Non-stationarities make the definition
of C(s) problematic, because the average hxi is not well-
defined. Furthermore,C(s) strongly fluctuates around zero
on large scales s (see Fig. 2b), making it impossible to find
the correct correlation exponent � . Thus, one has to deter-
mine the value of � indirectly.

Spectral Analysis

If the time series is stationary, we can apply standard spec-
tral analysis techniques (Fourier transform) and calculate
the power spectrum S( f ) of the time series (x̃i) as a func-
tion of the frequency f to determine self-affine scaling be-
havior [24]. For long-term correlated data characterized
by the correlation exponent � , we have

S( f ) � f�ˇ with ˇ D 1 � � : (6)

The spectral exponent ˇ and the correlation exponent �
can thus be obtained by fitting a power-law to a double
logarithmic plot of the power spectrum S( f ). An example
is shown in Fig. 3. The relation (6) can be derived from
the Wiener–Khinchin theorem (see, e. g., [25]). If, instead
of x̃i D 
xi the integrated runoff time series is Fourier
transformed, i. e., x̃i D xi X D

Pi
jD1
x j , the resulting

power spectrum scales as S( f ) � f�2�ˇ .
Spectral analysis, however, does not yield more reli-

able results than auto-correlation analysis unless a loga-
rithmic binning procedure is applied to the double loga-

Fractal andMultifractal Time Series, Figure 3
Spectral analysis of a fractal time series characterized by long-
term correlations with � D 0:4 (ˇ D 0:6). The expected scaling
behavior (dashed line indicating the slope –ˇ) is observed only
after binning of the spectrum (circles). The data has been gener-
ated by Fourier filtering

rithmic plot of S( f ) [21], see also Fig. 3. I. e., the average
of log S( f ) is calculated in successive, logarithmically wide
bands from an f0 to anC1 f0, where f 0 is the minimum fre-
quency, a > 1 is a factor (e. g., a D 1:1), and the index n is
counting the bins. Spectral analysis also requires station-
arity of the data.

Hurst’s Rescaled-Range Analysis

The first method for the analysis of long-term persistence
in time series based on random walk theory has been pro-
posed by the water construction engineer Harold Edwin
Hurst (1880–1978), who developed it while working in
Egypt. His so-called rescaled range analysis (R/S analy-
sis) [1,2,4,5,6] begins with splitting of the time series (x̃i )
into non-overlapping segments � of size (time scale) s (first
step), yielding Ns D int(N/s) segments altogether. In the
second step, the profile (integrated data) is calculated in
each segment � D 0; : : : ;Ns � 1,

Y�( j) D
jX

iD1

(x̃�sCi � hx̃�sCiis)

D

jX

iD1

x̃�sCi �
j
s

sX

iD1

x̃�sCi : (7)

By the subtraction of the local averages, piecewise constant
trends in the data are eliminated. In the third step, the dif-
ferences between minimum and maximum value (ranges)
R� (s) and the standard deviations S� (s) in each segment
are calculated,

R� (s) D maxsjD1Y�( j) �minsjD1Y�( j);

S� (s) D

vuu
t1

s

sX

jD1

Y2
� ( j) :

(8)

Finally, the rescaled range is averaged over all segments to
obtain the fluctuation function F(s),

FRS(s) D
1
Ns

Ns�1X

�D0

R�(s)
S�(s)

� sH for s	 1 ; (9)

where H is the Hurst exponent already introduced in
Eq. (1). One can show [1,24] that H is related to ˇ and �
by 2H � 1C ˇ D 2 � � (see also Eqs. (6) and (14)). Note
that 0 < � < 1, so that the right part of the equation does
not hold unless 0:5 < H < 1. The relationship does not
hold in general for multifractal data. Note also that H
actually characterizes the self-affinity of the profile func-
tion (7), while ˇ and � refer to the original data.
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The values of H, that can be obtained by Hurst’s
rescaled range analysis, are limited to 0 < H < 2, and
significant inaccuracies are to be expected close to the
bounds. Since H can be increased or decreased by one
if the data is integrated (x̃ j !

P j
iD1 x̃i) or differentiated

(x̃i ! x̃i � x̃i�1), respectively, one can always find a way
to calculate H by rescaled range analysis provided the data
is stationary. While values H < 1/2 indicate long-term
anti-correlated behavior of the data x̃i , H > 1/2 indicates
long-term positively correlated behavior. For power-law
correlations decaying faster than 1/s, we have H D 1/2 for
large s values, like for uncorrelated data.

Compared with spectral analysis, Hurst’s rescaled
range analysis yields smoother curves with less effort (no
binning procedure is necessary) and works also for data
with piecewise constant trends.

Fluctuation Analysis (FA)

The standard fluctuation analysis (FA) [8,26] is also
based on random walk theory. For a time series (x̃i),
i D 1; : : : ;N , with zero mean, we consider the global pro-
file, i. e., the cumulative sum (cf. Eq. (7))

Y( j) D
jX

iD1

x̃i ; j D 0; 1; 2; : : : ;N ; (10)

and study how the fluctuations of the profile, in a given
time window of size s, increase with s. The procedure is
illustrated in Fig. 4 for two values of s. We can consider the
profile Y( j) as the position of a random walker on a linear
chain after j steps. The random walker starts at the origin
and performs, in the ith step, a jump of length x̃i to the
bottom, if x̃i is positive, and to the top, if x̃i is negative.

To find how the square-fluctuations of the profile scale
with s, we first divide the record of N elements into
Ns D int(N/s) non-overlapping segments of size s start-
ing from the beginning (see Fig. 4) and another Ns non-
overlapping segments of size s starting from the end of the
considered series. This way neither data at the end nor at
the beginning of the record is neglected. Then we deter-
mine the fluctuations in each segment �.

In the standard FA, we obtain the fluctuations just
from the values of the profile at both endpoints of each
segment � D 1; : : : ;Ns ,

F2
FA(�; s) D [Y(�s) � Y((�1)s)]2 ; (11)

(see Fig. 4) and analogous for � D NsC1; : : : ; 2Ns ,

F2
FA(�; s) D [Y(N�(��Ns)s)�Y(N�(��1�Ns )s)]2: (12)

Fractal andMultifractal Time Series, Figure 4
Illustration of the fluctuation analysis (FA) and the detrended
fluctuation analysis (DFA). For two segment durations (time
scales) s D 100 (a) and 200 (b), the profiles Y( j) (blue lines; de-
fined in Eq. (11), the values used for fluctuation analysis in
Eq. (12) (green circles), and least-square quadratic fits to the pro-
files (red lines) are shown

Then we average F2
FA(�; s) over all subsequences to obtain

the mean fluctuation F2(s),

F2(s) D

"
1

2Ns

2NsX

�D1

F2
FA(�; s)

#1/2

� s˛ : (13)

By definition, F2(s) can be viewed as the root-mean-square
displacement of the random walker on the chain, after s
steps (the reason for the index 2 will become clear later).
For uncorrelated xi values, we obtain Fick’s diffusion law
F2(s) � s1/2. For the relevant case of long-term correla-
tions, in which C(s) follows the power-law behavior of
Eq. (5), F2(s) increases by a power law,

F2(s) � s˛ with ˛ � H ; (14)

where the fluctuation exponent ˛ is identical with the
Hurst exponent H for mono-fractal data and related to �
and ˇ by

2˛ D 1C ˇ D 2 � � : (15)

The typical behavior of F2(s) for short-term correlated and
long-term correlated data is illustrated in Fig. 2. The re-
lation (15) can be derived straightforwardly by inserting
Eqs. (10), (2), and (5) into Eq. (11) and separating sums
over products x̃i x̃ j with identical and different i and j, re-
spectively.

The range of the ˛ values that can be studied by stan-
dard FA is limited to 0 < ˛ < 1, again with significant in-
accuracies close to the bounds. Regarding integration or
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differentiation of the data, the same rules apply as listed
forH in the previous subsection. The results of FA become
statistically unreliable for scales s larger than one tenth of
the length of the data, i. e. the analysis should be limited by
s < N/10.

Methods for Non-stationary
Fractal Time Series Analysis

Wavelet Analysis

The origins of wavelet analysis come from signal theory,
where frequency decompositions of time series were stud-
ied [27,28]. Like the Fourier transform, the wavelet trans-
form of a signal x(t) is a convolution integral to be re-
placed by a summation in case of a discrete time series
(x̃i ); i D 1; : : : ;N ,

L (�; s) D
1
s

Z 1

�1

x(t) [(t � �)/s] dt

D
1
s

NX

iD1

x̃i  [(i � �)/s] : (16)

Here,  (t) is a so-called mother wavelet, from which all
daughter wavelets  �;s(t) D  ((t � �)/s) evolve by shift-
ing and stretching of the time axis. The wavelet coefficients
L (�; s) thus depend on both time position � and scale s.
Hence, the local frequency decomposition of the signal is
described with a time resolution appropriate for the con-
sidered frequency f D 1/s (i. e., inverse time scale).

All wavelets  (t) must have zero mean. They are of-
ten chosen to be orthogonal to polynomial trends, so that
the analysis method becomes insensitive to possible trends
in the data. Simple examples are derivatives of a Gaus-
sian,  (n)

Gauss(t) D
dn
dtn exp(�x

2/2), like the Mexican hat
wavelet � (2)

Gauss and the Haar wavelet,  (1)
Haar(t) D C1 if

0 � t < 1, �1 if 1 � t < 2, and 0 otherwise. It is straight-
forward to construct higher order Haar wavelets that are
orthogonal to linear, quadratic and cubic trends, e. g.,
 

(2)
Haar(t) D 1 for t 2 [0; 1) [ [2; 3),�2 for t 2 [1; 2), and 0

otherwise, or  (3)
Haar(t) D 1 for t 2 [0; 1), �3 for t 2 [1; 2),

+3 for t 2 [2; 3), �1 for t 2 [3; 4), and 0 otherwise.

Discrete Wavelet Transform (WT) Approach

A detrending fractal analysis of time series can be easily
implemented by considering Haar wavelet coefficients of
the profile Y( j), Eq. (10) [17,30]. In this case the convo-
lution (16) corresponds to the addition and subtraction
of mean values of Y( j) within segments of size s. Hence,
defining Ȳ�(s) D 1

s
Ps

jD1 Y(�s C j), the coefficients can

be written as

FWT1(�; s) � L
 

(0)
Haar

(�s; s) D Ȳ�(s) � Ȳ�C1(s) ; (17)

FWT2(�; s) � L
 

(1)
Haar

(�s; s)

D Ȳ�(s) � 2Ȳ�C1(s)C Ȳ�C2(s) ; (18)

and

FWT3(�; s) � L
 

(2)
Haar

(�s; s)

D Ȳ�(s) � 3Ȳ�C1(s)C 3Ȳ�C2(s) � Ȳ�C3(s)
(19)

for constant, linear and quadratic detrending, respectively.
The generalization for higher orders of detrending is ob-
vious. The resulting mean-square fluctuations F2

WTn(�; s)
are averaged over all � to obtain the mean fluctuation
F2(s), see Eq. (13). Figure 5 shows typical results for WT
analysis of long-term correlated, short-term correlated
and uncorrelated data.

Regarding trend-elimination, wavelet transform WT0
corresponds to standard FA (see Subsect. “Fluctuation
Analysis (FA)”), and only constant trends in the profile
are eliminated. WT1 is similar to Hurst’s rescaled range
analysis (see Subsect. “Hurst’s Rescaled-Range Analysis”):
linear trends in the profile and constant trends in the data
are eliminated, and the range of the fluctuation exponent

Fractal andMultifractal Time Series, Figure 5
Application of discrete wavelet transform (WT) analysis on
uncorrelated data (black circles), long-term correlated data
(� D 0:8;˛ D 0:6, red squares), and short-term correlated data
(summation of three AR processes, green diamonds). Averages
of F2(s) averaged over 20 series with N D 216 points and divided
by s1/2 are shown, so that a horizontal line corresponds to uncor-
related behavior. The blue open triangles show the result for one
selected extreme configuration, where it is hard to decide about
the existence of long-term correlations (figure after [29])
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˛ � H is up to 2. In general, WTn determines the fluctu-
ations from the nth derivative, this way eliminating trends
described by (n � 1)st-order polynomials in the data. The
results become statistically unreliable for scales s larger
than one tenth of the length of the data, just as for FA.

Detrended Fluctuation Analysis (DFA)

In the last 14 yearsDetrended Fluctuation Analysis (DFA),
originally introduced by Peng et al. [31], has been estab-
lished as an important method to reliably detect long-
range (auto-) correlations in non-stationary time series.
The method is based on random walk theory and basi-
cally represents a linear detrending version of FA (see Sub-
sect. “Fluctuation Analysis (FA)”). DFA was later gener-
alized for higher order detrending [15], separate analysis
of sign and magnitude series [32] (see Subsect. “Sign and
Magnitude (Volatility) DFA”), multifractal analysis [33]
(see Subsect. “Multifractal Detrended Fluctuation Anal-
ysis (MFDFA)”), and data with more than one dimen-
sion [34]. Its features have been studied in many arti-
cles [35,36,37,38,39,40]. In addition, several comparisons
of DFA with other methods for stationary and non-
stationary time-series analysis have been published, see,
e. g., [21,23,41,42] and in particular [22], where DFA is
compared with many other established methods for short
data sets, and [43], where it is compared with recently sug-
gested improved methods. Altogether, there are about 600
papers applying DFA (till September 2008). In most cases
positive auto-correlations were reported leaving only a few
exceptions with anti-correlations, see, e. g., [44,45,46].

Like in the FA method, one first calculates the global
profile according to Eq. (10) and divides the profile into
Ns D int(N/s) non-overlapping segments of size s start-
ing from the beginning and another Ns segments starting
from the end of the considered series. DFA explicitly deals
with monotonous trends in a detrending procedure. This
is done by estimating a polynomial trend ym�;s( j) within
each segment � by least-square fitting and subtracting this
trend from the original profile (‘detrending’),

Ỹs( j) D Y( j) � ym�;s( j) : (20)

The degree of the polynomial can be varied in order
to eliminate constant (m D 0), linear (m D 1), quadratic
(m D 2) or higher order trends of the profile function [15].
Conventionally the DFA is named after the order of the
fitting polynomial (DFA0, DFA1, DFA2, . . . ). In DFAm,
trends of orderm in the profile Y( j) and of orderm � 1 in
the original record x̃i are eliminated. The variance of the
detrended profile Ỹs ( j) in each segment � yields the mean-

Fractal andMultifractal Time Series, Figure 6
Application of Detrended Fluctuation Analysis (DFA) on the data
already studied in Fig. 5 (figure after [29])

square fluctuations,

F2
DFAm(�; s) D

1
s

sX

jD1

Ỹ2
s ( j) : (21)

As for FA and discrete wavelet analysis, the F2
DFAm(�; s)

are averaged over all segments � to obtain the mean fluc-
tuations F2(s), see Eq. (13). Calculating F2(s) for many s,
the fluctuation scaling exponent ˛ can be determined just
as with FA, see Eq. (14). Figure 6 shows typical results for
DFA of the same long-term correlated, short-term corre-
lated and uncorrelated data studied already in Fig. 5.

We note that in studies that include averaging over
many records (or one record cut into many separate pieces
by the elimination of some unreliable intermediate data
points) the averaging procedure (13) must be performed
for all data. Taking the square root is always the final step
after all averaging is finished. It is not appropriate to cal-
culate F2(s) for parts of the data and then average the F2(s)
values, since such a procedure will bias the results towards
smaller scaling exponents on large time scales.

If F2(s) increases for increasing s by F2(s) � s˛ with
0:5 < ˛ < 1, one finds that the scaling exponent ˛ � H
is related to the correlation exponent � by ˛ D 1 � � /2
(see Eq. (15)). A value of ˛ D 0:5 thus indicates that there
are no (or only short-range) correlations. If ˛ > 0:5 for all
scales s, the data are long-term correlated. The higher ˛,
the stronger the correlations in the signal are. ˛ > 1 indi-
cates a non-stationary local average of the data; in this case,
FA fails and yields only ˛ D 1. The case ˛ < 0:5 corre-
sponds to long-term anti-correlations, meaning that large
values are most likely to be followed by small values and
vice versa. ˛ values below 0 are not possible. Since the
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maximum value for ˛ in DFAm is mC 1, higher detrend-
ing orders should be used for very non-stationary data
with large ˛. Like in FA and Hurst’s analysis, ˛ will de-
crease or increase by one upon additional differentiation
or integration of the data, respectively.

Small deviations from the scaling law (14), i. e. devia-
tions from a straight line in a double logarithmic plot, oc-
cur for small scales s, in particular for DFAm with large
detrending order m. These deviations are intrinsic to the
usual DFA method, since the scaling behavior is only ap-
proached asymptotically. The deviations limit the capabil-
ity of DFA to determine the correct correlation behavior
in very short records and in the regime of small s. DFA6,
e. g., is only defined for s � 8, and significant deviations
from the scaling law F2(s) � s˛ occur even up to s � 30.
They will lead to an over-estimation of the fluctuation ex-
ponent ˛, if the regime of small s is used in a fitting pro-
cedure. An approach for correction of this systematic arte-
fact in DFA is described in [35].

The number of independent segments of length s is
larger in DFA than in WT, and the fluctuations in FA are
larger than in DFA. Hence, the analysis has to be based
on s values lower than smax D N/4 for DFA compared
with smax D N/10 for FA and WT. The accuracy of scal-
ing exponents ˛ determined by DFA was recently stud-
ied as a function of the length N of the data [43] (fitting
range s 2 [10;N/2] was used). The results show that sta-
tistical standard errors of ˛ (one standard deviation) are
approximately 0.1 for N D 500, 0.05 for N D 3000, and
reach 0.03 for N D 10,000. Findings of long-term correla-
tions with ˛ D 0:6 in data with only 500 points are thus
not significant.

A generalization of DFA for two-dimensional data (or
even higher dimensions d) was recently suggested [34].
The generalization works well when tested with syn-
thetic surfaces including fractional Brownian surfaces
and multifractal surfaces. In the 2D procedure, a dou-
ble cumulative sum (profile) is calculated by summing
over both directional indices analogous with Eq. (10),
Y(k; l) D

Pk
iD1

Pl
jD1 x̃i; j . This surface is partitioned

into squares of size s � s with indices � and �, in which
polynomials like y2�;�;s(i; j) D ai2Cb j2Cci jCdiCe jC f
are fitted. The fluctuation function F2(s) is again obtained
by calculating the variance of the profile from the fits.

Detection of Trends and Crossovers with DFA

Frequently, the correlations of recorded data do not fol-
low the same scaling law for all time scales s, but one
or sometimes even more crossovers between different
scaling regimes are observed (see Subsect. “Crossovers

and Non-stationarities in Time Series”). Time series with
a well-defined crossover at s� and vanishing correlations
above s� are most easily generated by Fourier filtering (see
Subsect. “Fourier Filtering”). The power spectrum S( f ) of
an uncorrelated random series is multiplied by ( f / f�)�ˇ

with ˇ D 2˛ � 1 for frequencies f > f� D 1/s� only. The
series obtained by inverse Fourier transform of this mod-
ified power spectrum exhibits power-law correlations on
time scales s < s� only, while the behavior becomes un-
correlated on larger time scales s > s�.

The crossover from F2(s) � s˛ to F2(s) � s1/2 is clearly
visible in double logarithmic plots of the DFA fluctuation
function for such short-term correlated data. However, it
occurs at times s(m)

� that are different from the original s�
used for the generation of the data and that depend on the
detrending orderm. This systematic deviation is most sig-
nificant in the DFAm with higher m. Extensive numeri-
cal simulations (see Fig. 3 in [35]) show that the ratios of
s(m)
� /s� are 1.6, 2.6, 3.6, 4.5, and 5.4 for DFA1, DFA2, . . . ,
DFA5, with an error bar of approximately 0.1. Note, how-
ever, that the precise value of this ratio will depend on the
method used for fitting the crossover times s(m)

� (and the
method used for generating the data if generated data is
analyzed). If results for different orders of DFA shall be
compared, an observed crossover s(m)

� can be systemati-
cally corrected dividing by the ratio for the corresponding
DFAm. If several orders of DFA are used in the procedure,
several estimates for the real s� will be obtained, which can
be checked for consistency or used for an error approx-
imation. A real crossover can thus be well distinguished
from the effects of non-stationarities in the data, which
lead to a different dependence of an apparent crossover
on m.

The procedure is also required if the characteristic time
scale of short-term correlations shall be studied with DFA.
If consistent (corrected) s� values are obtained based on
DFAm with different m, the existence of a real character-
istic correlation time scale is positively confirmed. Note
that lower detrending orders are advantageous in this case,
since the observed crossover time scale s(m)

� might be-
come quite large and nearly reach one forth of the total
series length (N/4), where the results become statistically
inaccurate.

We would like to note that studies showing scaling
long-term correlations should not be based on DFA or
variants of this method alone in most applications. In par-
ticular, if it is not clear whether a given time series is in-
deed long-term correlated or just short-term correlated
with a fairly large crossover time scale, results of DFA
should be comparedwith othermethods. For example, one
can employ wavelet methods (see, e. g., Subsect. “Discrete
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Wavelet Transform (WT) Approach”). Another option is
to remove short-term correlations by considering aver-
aged series for comparison. For a time series with daily ob-
servations and possible short-term correlations up to two
years, for example, one might consider the series of two-
year averages and apply DFA together with FA, binned
power spectra analysis, and/or wavelet analysis. Only if
these methods still indicate long-term correlations, one
can be sure that the data are indeed long-term correlated.

As discussed in Subsect. “Crossovers and Non-station-
arities in Time Series”, records from real measurements
are often affected by non-stationarities, and in particular
by trends. They have to be well distinguished from the in-
trinsic fluctuations of the system. To investigate the effect
of trends on the DFAm fluctuation functions, one can gen-
erate artificial series (x̃i) with smooth monotonous trends
by adding polynomials of different power p to the original
record (xi ),

x̃i D xi C Axp with x D i/N : (22)

For the DFAm, such trends in the data can lead to an
artificial crossover in the scaling behavior of F2(s), i. e.,
the slope ˛ is strongly increased for large time scales s.
The position of this artificial crossover depends on the
strength A and the power p of the trend. Evidently, no ar-
tificial crossover is observed, if the detrending order m is
larger than p and p is integer. The order p of the trends
in the data can be determined easily by applying the dif-
ferent DFAm. If p is larger than m or p is not an integer,
an artificial crossover is observed, the slope ˛trend in the
large s regime strongly depends on m, and the position
of the artificial crossover also depends strongly onm. The
artificial crossover can thus be clearly distinguished from
real crossovers in the correlation behavior, which result in
identical slopes ˛ and rather similar crossover positions
for all detrending orders m. For more extensive studies of
trends with non-integer powers we refer to [35,36]. The
effects of periodic trends are also studied in [35].

If the functional form of the trend in given data is not
known a priori, the fluctuation function F2(s) should be
calculated for several orders m of the fitting polynomial.
If m is too low, F2(s) will show a pronounced crossover
to a regime with larger slope for large scales s [35,36].
The maximum slope of log F2(s) versus log s ismC 1. The
crossover will move to larger scales s or disappear whenm
is increased, unless it is a real crossover not due to trends.
Hence, one can find m such that detrending is sufficient.
However, m should not be larger than necessary, because
shifts of the observed crossover time scales and deviations
on short scales s increase with increasingm.

Sign andMagnitude (Volatility) DFA

To study the origin of long-term fractal correlations in
a time series, the series can be split into two parts which
are analyzed separately. It is particularly useful to split the
series of increments,
xi D xi � xi�1, i D 1; : : : ;N , into
a series of signs x̃i D si D sign
xi and a series of mag-
nitudes x̃i D mi D j
xi j [32,47,48]. There is an extensive
interest in the magnitude time series in economics [49,50].
These data, usually called volatility, represent the absolute
variations in stock (or commodity) prices and are used
as a measure quantifying the risk of investments. While
the actual prices are only short-term correlated, long-term
correlations have been observed in volatility series [49,50].

Time series having identical distributions and long-
range correlation properties can exhibit quite different
temporal organizations of the magnitude and sign sub-se-
ries. The DFA method can be applied independently to
both of these series. Since in particular the signs are often
rather strongly anti-correlated andDFAwill give incorrect
results if ˛ is too close to zero, one often studies integrated
sign and magnitude series. As mentioned above, integra-
tion x̃i !

Pi
jD1 x̃ j increases ˛ by one.

Most published results report short-term anti-corre-
lations and no long-term correlations in the sign se-
ries, i. e., ˛sign < 1/2 for the non-integrated signs si (or
˛sign < 3/2 for the integrated signs) on low time scales
and ˛sign ! 1/2 asymptotically for large s. The magnitude
series, on the other hand, are usually either uncorrelated
˛magn D 1/2 (or 3/2) or positively long-term correlated
˛magn > 1/2 (or 3/2). It has been suggested that findings
of ˛magn > 1/2 are related with nonlinear properties of the
data and in particular multifractality [32,47,48], if ˛ < 1:5
in standard DFA. Specifically, the results suggest that the
correlation exponent of the magnitude series is a mono-
tonically increasing function of the multifractal spectrum
(i. e., the singularity spectrum) width of the original se-
ries (see Subsect. “The Structure Function Approach and
Singularity Spectra”). On the other hand, the sign series
mainly relates to linear properties of the original series. At
small time scales s < 16 the standard ˛ is approximately
the average of ˛sign and ˛magn, if integrated sign and mag-
nitude series are analyzed. For ˛ > 1:5 in the original se-
ries, the integratedmagnitude and sign series have approx-
imately the same two-point scaling exponents [47]. An an-
alytical treatment is presented in [48].

Further Detrending Approaches

A possible drawback of the DFAmethod is the occurrence
of abrupt jumps in the detrended profile Ỹs ( j) (Eq. (20))
at the boundaries between the segments, since the fit-



3766 F Fractal and Multifractal Time Series

ting polynomials in neighboring segments are not related.
A possible way to avoid these jumps would be the calcula-
tion of F2(s) based on polynomial fits in overlapping win-
dows. However, this is rather time consuming due to the
polynomial fit in each segment and is consequently not
done in most applications. To overcome the problem of
jumps several modifications and extensions of the FA and
DFA methods have been suggested in recent years. These
methods include

� The detrended moving average technique [51,52,53],
which we denote by the backward moving average
(BMA) technique (following [54]),

� The centered moving average (CMA) method [54], an
essentially improved version of BMA,

� The modified detrended fluctuation analysis
(MDFA) [55], which is essentially a mixture of old
FA and DFA,

� The continuous DFA (CDFA) technique [56,57], which
is particularly useful for the detection of crossovers,

� The Fourier DFA [58],
� A variant of DFA based on empirical mode decompo-

sition (EMD) [59],
� A variant of DFA based on singular value decomposi-

tion (SVD) [60,61], and
� A variant of DFA based on high-pass filtering [62].

Detrended moving average techniques will be thoroughly
described and discussed in the next section. A study com-
paring DFA with CMA and MDFA can be found in [43].
For studies comparing DFA and BMA, see [63,64]; note
that [64] also discusses CMA.

The method we denote as modified detrended fluctu-
ation analysis (MDFA) [55], eliminates trends similar to
the DFAmethod. A polynomial is fitted to the profile func-
tion Y( j) in each segment � and the deviation between
the profile function and the polynomial fit is calculated,
Ỹs ( j) D Y( j) � yp�;s( j) (Eq. (20)). To estimate correlations
in the data, this method uses a derivative of Ỹs ( j), obtained
for each segment �, by 
Ỹs ( j) D Ỹs ( jC s/2)� Ỹs ( j).
Hence, the fluctuation function (compare with Eqs. (13)
and (21)) is calculated as follows:

F2(s) D

2

4 1
N

NX

jD1

�
Ỹs( jC s/2) � Ỹs ( j)

2
3

5

1/2

: (23)

As in case of DFA, MDFA can easily be generalized to
remove higher order trends in the data. Since the fitting
polynomials in adjacent segments are not related, Ỹs ( j)
shows abrupt jumps on their boundaries as well. This leads

to fluctuations of F2(s) for large segment sizes s and lim-
its the maximum usable scale to s < N/4 as for DFA. The
detection of crossovers in the data, however, is more ex-
act with MDFA (compared with DFA), since no correc-
tion of the estimated crossover time scales seems to be
needed [43].

The Fourier-detrended fluctuation analysis [58] aims
to eliminate slow oscillatory trends which are found espe-
cially in weather and climate series due to seasonal influ-
ences. The character of these trends can be rather periodic
and regular or irregular, and their influence on the detec-
tion of long-range correlations by means of DFA was sys-
tematically studied previously [35]. Among other things it
has been shown that slowly varying periodic trends dis-
turb the scaling behavior of the results much stronger
than quickly oscillating trends and thus have to be re-
moved prior to the analysis. In the case of periodic and
regular oscillations, e. g., in temperature fluctuations, one
simply removes the low frequency seasonal trend by sub-
tracting the daily mean temperatures from the data. An-
other way, which the Fourier-detrended fluctuation anal-
ysis suggests, is to filter out the relevant frequencies in the
signals’ Fourier spectrum before applying DFA to the fil-
tered signal. Nevertheless, this method faces several dif-
ficulties especially its limitation to periodic and regular
trends and the need for a priori knowledge of the inter-
fering frequency band.

To study correlations in data with quasi-periodic or ir-
regular oscillating trends, empirical mode decomposition
(EMD) was suggested [59]. The EMD algorithm breaks
down the signal into its intrinsic mode functions (IMFs)
which can be used to distinguish between fluctuations and
background. The background, estimated by a quasi-peri-
odic fit containing the dominating frequencies of a suf-
ficiently large number of IMFs, is subtracted from the
data, yielding a slightly better scaling behavior in the DFA
curves. However, we believe that the method might be too
complicated for wide-spread applications.

Another method which was shown to minimize the
effect of periodic and quasi-periodic trends is based on
singular value decomposition (SVD) [60,61]. In this ap-
proach, one first embeds the original signal in a matrix
whose dimension has to be much larger than the num-
ber of frequency components of the periodic or quasi-pe-
riodic trends obtained in the power spectrum. Applying
SVD yields a diagonal matrix which can be manipulated
by setting the dominant eigenvalues (associated with the
trends) to zero. The filtered matrix finally leads to the fil-
tered data, and it has been shown that subsequent appli-
cation of DFA determines the expected scaling behavior
if the embedding dimension is sufficiently large. None the
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less, the performance of this rather complexmethod seems
to decrease for larger values of the scaling exponent. Fur-
thermore SVD-DFA assumes that trends are deterministic
and narrow banded.

The detrending procedure in DFA (Eq. (20)) can be re-
garded as a scale-dependent high-pass filter since (low-fre-
quency) fluctuations exceeding a specific scale s are elim-
inated. Therefore, it has been suggested to obtain the de-
trended profile Ỹs ( j) for each scale s directly by applying
digital high-pass filters [62]. In particular, Butterworth,
Chebyshev-I, Chebyshev-II, and an elliptical filter were
suggested. While the elliptical filter showed the best per-
formance in detecting long-range correlations in artificial
data, the Chebyshev-II filter was found to be problematic.
Additionally, in order to avoid a time shift between filtered
and original profile, the average of the directly filtered sig-
nal and the time reversed filtered signal is considered. The
effects of these complicated filters on the scaling behavior
are, however, not fully understood.

Finally, a continuous DFA method has been sug-
gested in the context of studying heartbeat data during
sleep [56,57]. The method compares unnormalized fluctu-
ation functions F2(s) for increasing length of the data. I. e.,
one starts with a very short recording and subsequently
adds more points of data. The method is particularly suit-
able for the detection of change points in the data, e. g.,
physiological transitions between different activity or sleep
stages. Since the main objective of the method is not the
study of scaling behavior, we do not discuss it in detail
here.

Centered Moving Average (CMA) Analysis

Particular attractive modifications of DFA are the de-
trended moving average (DMA) methods, where run-
ning averages replace the polynomial fits. The first sug-
gested version, the backward moving average (BMA)
method [51,52,53], however, suffers from severe problems,
because an artificial time shift of s between the original sig-
nal and the moving average is introduced. This time shift
leads to an additional contribution to the detrended pro-
file Ỹs ( j), which causes a larger fluctuation function F2(s)
in particular for small scales in the case of long-term cor-
related data. Hence, the scaling exponent ˛ is systemati-
cally underestimated [63]. In addition, the BMA method
preforms even worse for data with trends [64], and its
slope is limited by ˛ < 1 just as for the non-detrending
method FA.

It was soon recognized that the intrinsic error of
BMA can be overcome by eliminating the artificial time
shift. This leads to the centered moving average (CMA)

method [54], where Ỹs( j) is calculated as

Ỹs( j) D Y( j) �
1
s

(s�1)/2X

iD�(s�1)/2

Y( jC i) ; (24)

replacing Eq. (20) while Eq. (21) and the rest of the DFA
procedure described in Subsect. “Detrended Fluctuation
Analysis (DFA)” stay the same. Unlike DFA, the CMA
method cannot easily be generalized to remove linear and
higher order trends in the data.

It was recently proposed [43] that the scaling behav-
ior of the CMA method is more stable than for DFA1 and
MDFA1, suggesting that CMA could be used for reliable
computation of ˛ even for scales s < 10 (without correc-
tion of any systematic deviations needed in DFA for this
regime) and up to smax D N/2. The standard errors in de-
termining the scaling exponent ˛ by fitting straight lines
to the double logarithmic plots of F2(s) have been studied
in [43]; they are comparable with DFA1 (see end of Sub-
sect. “Detrended Fluctuation Analysis (DFA)”).

Regarding the determination of crossovers, CMA is
comparable to DFA1. Ultimately, the CMA seems to be
a good alternative to DFA1 when analyzing the scaling
properties in short data sets without trends. Neverthe-
less for data with possible unknown trends we recom-
mend the application of standard DFA with several differ-
ent detrending polynomial orders in order to distinguish
real crossovers from artificial crossovers due to trends.
In addition, an independent approach (e. g., wavelet anal-
ysis) should be used to confirm findings of long-term
correlations (see also Subsect. “Detection of Trends and
Crossovers with DFA”).

Methods for Multifractal Time Series Analysis

This section describes the multifractal characterization of
time series, for an introduction, see Subsect. “Multifrac-
tal Time Series”. The simplest type of multifractal analysis
is based upon the standard partition function multifractal
formalism, which has been developed for the multi-
fractal characterization of normalized, stationary mea-
sures [6,12,65,66]. Unfortunately, this standard formalism
does not give correct results for non-stationary time se-
ries that are affected by trends or that cannot be normal-
ized. Thus, in the early 1990s an improvedmultifractal for-
malism has been developed, the wavelet transform modu-
lus maxima (WTMM) method [67,68,69,70,71], which is
based on wavelet analysis and involves tracing the max-
ima lines in the continuous wavelet transform over all
scales. An important alternative is the multifractal DFA
(MFDFA) algorithm [33], which does not require the
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modulus maxima procedure, and hence involves little
more effort in programming than the conventional DFA.
For studies comparing methods for detrending multifrac-
tal analysis (MFDFA andWTMM, see [33,72,73].

The Structure Function Approach
and Singularity Spectra

In the general multifractal formalism, one considers a nor-
malized measure �(t), t 2 [0; 1], and defines the box
probabilities �̃s (t) D

R tCs/2
t�s/2 �(t

0) dt0 in neighborhoods of
(scale) length s
 1 around t. The multifractal approach
is then introduced by the partition function

Zq(s) D
1/s�1X

�D0

�̃
q
s [(� C 1/2)s] � s�(q) for s
 1 ; (25)

where �(q) is the Renyi scaling exponent and q is a real
parameter that can take positive as well as negative val-
ues. Note that �(q) is sometimes defined with opposite
sign (see, e. g., [6]). A record is called monofractal (or
self-affine), when the Renyi scaling exponent �(q) de-
pends linearly on q; otherwise it is called multifractal. The
generalized multifractal dimensions D(q) (see also Sub-
sect. “Multifractal Time Series”) are related to �(q) by
D(q) D �(q)/(q � 1), such that the fractal dimension of
the support is D(0) D ��(0) and the correlation dimen-
sion is D(2) D �(2).

In time series, a discrete version has to be used, and
the considered data (xi ), i D 1; : : : ;N may usually in-
clude negative values. Hence, setting Ns D int(N/s) and
X(�; s) D

Ps
iD1 x�sCi for � D 0; : : : ;Ns � 1 we can de-

fine [6,12],

Zq(s) D
Ns�1X

�D0

jX(�; s)jq � s�(q) for s > 1 : (26)

Inserting the profile Y( j) and FFA(�; s) from Eqs. (10)
and (11), respectively, we obtain

Zq(s) D
Ns�1X

�D0

˚
[Y((� C 1)s)� Y(�s)]2

�q/2

D

NsX

�D1

jFFA(�; s)j : (27)

Comparing Eq. (27) with (13), we see that this multifrac-
tal approach can be considered as a generalized version of
the fluctuation analysis (FA) method, where the exponent
2 is replaced by q. In particular we find (disregarding the

summation over the second partition of the time series)

F2(s) �
�
1
Ns

Z2(s)
�1/2
� s[1C�(2)]/2

) 2˛ D 1C �(2) D 1C D(2): (28)

We thus see that all methods for (mono-)fractal time anal-
ysis (discussed in Sect. “Methods for Stationary Fractal
Time Series Analysis”and Sect. “Methods for Non-sta-
tionary Fractal Time Series Analysis”) in fact study the
correlation dimension D(2) D 2˛ � 1 D ˇ D 1 � � (see
Eq. (15)).

It is straightforward to define a generalized (multifrac-
tal) Hurst exponent h(q) for the scaling behavior of the qth
moments of the fluctuations [65,66],

Fq(s) D
�
1
Ns

Z2(s)
�1/q
� s[1C�(q)]/q D sh(q)

) h(q) D
1C �(q)

q
(29)

with h(2) D ˛ � H. In the following, we will use only h(2)
for the standard fluctuation exponent (denoted by ˛ in the
previous chapters), and reserve the letter ˛ for the Hölder
exponent.

Another way to characterize a multifractal series is the
singularity spectrum f (˛), that is related to �(q) via a Leg-
endre transform [6,12],

˛ D
d
dq
�(q) and f (˛) D q˛ � �(q) : (30)

Here, ˛ is the singularity strength or Hölder exponent (see
also � Fractals and Multifractals, Introduction to in the
encyclopedia), while f (˛) denotes the dimension of the
subset of the series that is characterized by ˛. Note that ˛
is not the fluctuation scaling exponent in this section, al-
though the same letter is traditionally used for both. Using
Eq. (29), we can directly relate ˛ and f (˛) to h(q),

˛ D h(q)Cqh0(q) and f (˛) D q[˛�h(q)]C1 : (31)

Wavelet TransformModulus
Maxima (WTMM)Method

The wavelet transform modulus maxima (WTMM)
method [67,68,69,70,71] is a well-known method to inves-
tigate the multifractal scaling properties of fractal and self-
affine objects in the presence of non-stationarities. For ap-
plications, see e. g. [74,75]. It is based upon the wavelet
transform with continuous basis functions as defined in
Subsect. “Wavelet Analysis”, Eq. (16). Note that in this
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case the series x̃i are analyzed directly instead of the pro-
file Y( j) defined in Eq. (10). Using wavelets orthogonal
to mth order polynomials, the corresponding trends are
eliminated.

Instead of averaging over all wavelet coefficients L (�;
s), one averages, within the modulo-maximamethod, only
the local maxima of jL (�; s)j. First, one determines for
a given scale s, the positions � j of the local maxima of
jW(�; s)j as a function of � , so that jL (� j � 1; s)j <
jL (� j ; s)j � jL (� jC1; s)j for j D 1; : : : ; jmax. Thismax-
ima procedure is demonstrated in Fig. 7. Then one sums
up the qth power of the maxima,

Z(q; s) D
jmaxX

jD1

jL (� j; s)jq : (32)

The reason for the maxima procedure is that the abso-
lute wavelet coefficients jL (�; s)j can become arbitrarily
small. The analyzing wavelet  (x) must always have pos-
itive values for some x and negative values for other x,
since it has to be orthogonal to possible constant trends.
Hence there are always positive and negative terms in
the sum (16), and these terms might cancel. If that hap-
pens, jL (�; s)j can become close to zero. Since such small
terms would spoil the calculation of negative moments in
Eq. (32), they have to be eliminated by the maxima pro-
cedure.

In fluctuation analysis, on the other hand, the calcula-
tion of the variances F2(�; s), e. g. in Eq. (11), involves only
positive terms under the summation. The variances can-
not become arbitrarily small, and hence nomaximumpro-
cedure is required for series with compact support. In ad-
dition, the variances will increase if the segment length s is
increased, because the fit will usually be worse for a longer
segment. In the WTMMmethod, in contrast, the absolute
wavelet coefficients jL (�; s)j need not increase with in-
creasing scale s, even if only the local maxima are consid-
ered. The values jL (�; s)j might become smaller for in-
creasing s since just more (positive and negative) terms are
included in the summation (16), and these might cancel
even better. Thus, an additional supremum procedure has
been introduced in the WTMM method in order to keep
the dependence of Z(q; s) on smonotonous. If, for a given
scale s, a maximum at a certain position � j happens to be
smaller than amaximumat � 0j � � j for a lower scale s

0 < s,
then L (� j; s) is replaced by L (� 0j ; s

0) in Eq. (32).
Often, scaling behavior is observed for Z(q; s), and

scaling exponents �̂(q) can be defined that describe how
Z(q; s) scales with s,

Z(q; s) � s�̂(q) : (33)

Fractal andMultifractal Time Series, Figure 7
Example of the wavelet transform modulus maxima (WTMM)
method, showing the original data (top), its continuous wavelet
transform (gray scale coded amplitude of wavelet coefficients,
middle), and the extracted maxima lines (bottom) (figure taken
from [68])

The exponents �̂(q) characterize the multifractal proper-
ties of the series under investigation, and theoretically they
are identical with the �(q) defined in Eq. (26) [67,68,69,71]
and related to h(q) by Eq. (29).

Multifractal Detrended Fluctuation Analysis (MFDFA)

Themultifractal DFA (MFDFA) procedure consists of five
steps [33]. The first three steps are essentially identical to
the conventional DFA procedure (see Subsect. “Detrended
Fluctuation Analysis (DFA)” and Fig. 4). Let us assume
that (x̃i) is a series of length N, and that this series is of
compact support. The support can be defined as the set of
the indices j with nonzero values x̃ j , and it is compact if
x̃ j D 0 for an insignificant fraction of the series only. The
value of x̃ j D 0 is interpreted as having no value at this j.
Note that we are not discussing the fractal or multifractal
features of the plot of the time series in a two-dimensional
graph (see also the discussion in Subsect. “Fractality, Self-
Affinity, and Scaling”), but analyzing time series as one-
dimensional structures with values assigned to each point.
Since real time series always have finite length N, we ex-
plicitly want to determine the multifractality of finite se-
ries, and we are not discussing the limit for N !1 here
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(see also Subsect. “The Structure Function Approach and
Singularity Spectra”).

Step 1 Calculate the profile Y( j), Eq. (10), by integrating
the time series.

Step 2 Divide the profile Y( j) into Ns D int(N/s) non-
overlapping segments of equal length s. Since the
length N of the series is often not a multiple of the
considered time scale s, the same procedure can be re-
peated starting from the opposite end. Thereby, 2Ns
segments are obtained altogether.

Step 3 Calculate the local trend for each of the 2Ns seg-
ments by a least-square fit of the profile. Then deter-
mine the variance by Eqs. (20) and (21) for each seg-
ment � D 1; : : : ; 2Ns . Again, linear, quadratic, cubic,
or higher order polynomials can be used in the fit-
ting procedure, and the corresponding methods are
thus called MFDFA1, MFDFA2, MFDFA3, . . . ) [33].
In (MF-)DFAm [mth order (MF-)DFA] trends of or-
derm in the profile (or, equivalently, of orderm � 1 in
the original series) are eliminated. Thus a comparison
of the results for different orders of DFA allows one to
estimate the type of the polynomial trend in the time
series [35,36].

Step 4 Average over all segments to obtain the qth order
fluctuation function

Fq(s) D

(
1

2Ns

2NsX

�D1

�
F2
DFAm(�; s)

�q/2
) 1/q

: (34)

This is the generalization of Eq. (13) suggested by
the relations derived in Subsect. “The Structure Func-
tion Approach and Singularity Spectra”. For q D 2, the
standard DFA procedure is retrieved. One is interested
in how the generalized q dependent fluctuation func-
tions Fq(s) depend on the time scale s for different val-
ues of q. Hence, we must repeat steps 2 to 4 for several
time scales s. It is apparent that Fq(s) will increase with
increasing s. Of course, Fq(s) depends on the order m.
By construction, Fq(s) is only defined for s � mC 2.

Step 5 Determine the scaling behavior of the fluctuation
functions by analyzing log-log plots Fq(s) versus s for
each value of q. If the series x̃i are long-range power-
law correlated, Fq(s) increases, for large values of s, as
a power-law,

Fq(s) � sh(q) with h(q) D
1C �(q)

q
: (35)

For very large scales, s > N/4, Fq(s) becomes statisti-
cally unreliable because the number of segmentsNs for the

averaging procedure in step 4 becomes very small. Thus,
scales s > N/4 should be excluded from the fitting proce-
dure determining h(q). Besides that, systematic deviations
from the scaling behavior in Eq. (35), which can be cor-
rected, occur for small scales s � 10.

The value of h(0), which corresponds to the limit h(q)
for q! 0, cannot be determined directly using the aver-
aging procedure in Eq. (34) because of the diverging expo-
nent. Instead, a logarithmic averaging procedure has to be
employed,

F0(s) D exp

(
1

4Ns

2NsX

�D1

ln
�
F2(�; s)

�
)

� sh(0) : (36)

Note that h(0) cannot be defined for time series with frac-
tal support, where h(q) diverges for q! 0.

For monofractal time series with compact support,
h(q) is independent of q, since the scaling behavior of the
variances F2

DFAm(�; s) is identical for all segments �, and
the averaging procedure in Eq. (34) will give just this iden-
tical scaling behavior for all values of q. Only if small and
large fluctuations scale differently, there will be a signifi-
cant dependence of h(q) on q. If we consider positive val-
ues of q, the segments � with large variance F2(�; s) (i. e.
large deviations from the corresponding fit) will domi-
nate the average Fq(s). Thus, for positive values of q, h(q)
describes the scaling behavior of the segments with large
fluctuations. On the contrary, for negative values of q, the
segments � with small variance F2

DFAm(�; s) will dominate
the average Fq(s). Hence, for negative values of q, h(q) de-
scribes the scaling behavior of the segments with small
fluctuations. Figure 8 shows typical results obtained for
Fq(s) in the MFDFA procedure.

Usually the large fluctuations are characterized by
a smaller scaling exponent h(q) for multifractal series than
the small fluctuations. This can be understood from the
following arguments. For the maximum scale s D N the
fluctuation function Fq(s) is independent of q, since the
sum in Eq. (34) runs over only two identical segments. For
smaller scales s
 N the averaging procedure runs over
several segments, and the average value Fq(s) will be dom-
inated by the F2(�; s) from the segments with small (large)
fluctuations if q < 0 (q > 0). Thus, for s
 N , Fq(s) with
q < 0 will be smaller than Fq(s) with q > 0, while both
become equal for s D N. Hence, if we assume an homo-
geneous scaling behavior of Fq(s) following Eq. (35), the
slope h(q) in a log-log plot of Fq(s) with q < 0 versus s
must be larger than the corresponding slope for Fq(s) with
q > 0. Thus, h(q) for q < 0 will usually be larger than h(q)
for q > 0.
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Fractal andMultifractal Time Series, Figure 8
Multifractal detrended fluctuationanalysis (MFDFA)ofdata from
the binomial multifractal model (see Subsect. “The Extended Bi-
nomial Multifractal Model”) with a D 0:75. Fq(s) is plotted ver-
sus s for the q values given in the legend; the slopes of the curves
correspond to the values ofh(q). Thedashed lineshave the slopes
of the theoretical slopes h(˙1) from Eq. (42). 100 configura-
tions have been averaged

However, the MFDFA method can only determine
positive generalized Hurst exponents h(q), and it already
becomes inaccurate for strongly anti-correlated signals
when h(q) is close to zero. In such cases, a modified
(MF-)DFA technique has to be used. The most simple way
to analyze such data is to integrate the time series before
the MFDFA procedure. Following the MFDFA procedure
as described above, we obtain a generalized fluctuation
functions described by a scaling lawwith h̃(q) D h(q)C 1.
The scaling behavior can thus be accurately determined
even for h(q) which are smaller than zero for some values
of q.

The accuracy of h(q) determined by MFDFA certainly
depends on the length N of the data. For q D ˙10 and
data with N D 10,000 and 100,000, systematic and statis-
tical error bars (standard deviations) up to
h(q) � ˙0:1
and� ˙0:05 should be expected, respectively [33]. A dif-
ference of h(�10) � h(C10) D 0:2, corresponding to an
even larger width
˛ of the singularity spectrum f (˛) de-
fined in Eq. (30) is thus not significant unless the data was
longer than N D 10,000 points. Hence, one has to be very
careful when concluding multifractal properties from dif-
ferences in h(q).

As already mentioned in the introduction, two types
of multifractality in time series can be distinguished. Both
of them require a multitude of scaling exponents for small
and large fluctuations: (i) Multifractality of a time series
can be due to a broad probability density function for the
values of the time series, and (ii) multifractality can also
be due to different long-range correlations for small and
large fluctuations. The most easy way to distinguish be-

tween these two types is by analyzing also the correspond-
ing randomly shuffled series [33]. In the shuffling proce-
dure the values are put into random order, and thus all
correlations are destroyed. Hence the shuffled series from
multifractals of type (ii) will exhibit simple random behav-
ior, hshuf(q) D 0:5, i. e. non-multifractal scaling. For mul-
tifractals of type (i), on the contrary, the original h(q) de-
pendence is not changed, h(q) D hshuf(q), since the mul-
tifractality is due to the probability density, which is not
affected by the shuffling procedure. If both kinds of mul-
tifractality are present in a given series, the shuffled series
will show weaker multifractality than the original one.

Comparison of WTMM andMFDFA

The MFDFA results turn out to be slightly more reli-
able than the WTMM results [33,72,73]. In particular, the
MFDFA has slight advantages for negative q values and
short series. In the other cases the results of the two meth-
ods are rather equivalent. Besides that, the main advan-
tage of the MFDFA method compared with the WTMM
method lies in the simplicity of theMFDFAmethod.How-
ever, contrary to WTMM, MFDFA is restricted to studies
of data with full one-dimensional support, while WTMM
is not. Both WTMM and MFDFA have been general-
ized for higher dimensional data, see [34] for higher di-
mensional MFDFA and, e. g., [71] for higher dimensional
WTMM. Studies of other generalizations of detrending
methods like the discreteWT approach (see Subsect. “Dis-
crete Wavelet Transform (WT) Approach”) and the CMA
method (see Subsect. “Centered Moving Average (CMA)
Analysis”) are currently under investigation [76].

Statistics of Extreme Events in Fractal Time Series

The statistics of return intervals between well defined ex-
tremal events is a powerful tool to characterize the tem-
poral scaling properties of observed time series and to
derive quantities for the estimation of the risk for haz-
ardous events like floods, very high temperatures, or earth-
quakes. It was shown recently that long-term correlations
represent a natural mechanism for the clustering of the
hazardous events [77]. In this section we will discuss the
most important consequences of long-term correlations
and fractal scaling of time series upon the statistics of
extreme events [77,78,79,80,81]. Corresponding work re-
garding multifractal data [82] is not discussed here.

Return Intervals Between Extreme Events

To study the statistics of return intervals we consider again
a time series (xi ), i D 1; : : : ;N with fractal scaling behav-
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ior, sampled homogeneously and normalized to zeromean
and unit variance. For describing the reoccurrence of rare
events exceeding a certain threshold q, we investigate the
return intervals rq between these events, see Fig. 9. The av-
erage return interval Rq D hrqi increases as a function of
the threshold q (see, e. g. [83]). It is known that for uncor-
related records (‘white noise’), the return intervals are also
uncorrelated and distributed according to the Poisson dis-
tribution, Pq(r) D 1

Rq
exp(�r/Rq). For fractal (long-term

correlated) data with auto-correlations following Eq. (5),
we obtain a stretched exponential [77,78,79,80,84],

Pq(r) D
a�
Rq

exp
�
�b� (r/Rq )�

�
: (37)

This behavior is shown in Fig. 10. The exponent � is
the correlation exponent from C(s), and the parameters a�
and b� are independent of q. They can be determined from
the normalization conditions for Pq(r), i. e.,

R
Pq(r) dr D 1

and
R
rPq(r) dr D Rq . The form of the distribution (37)

indicates that return intervals both well below and well
above their average value Rq (which is independent of � )
are considerably more frequent for long-term correlated

Fractal andMultifractal Time Series, Figure 9
Illustration for the definition of return intervals rq between extreme events above two quantiles (thresholds) q1 and q2 (figure by Jan
Eichner)

Fractal andMultifractal Time Series, Figure 10
Normalized rescaled distribution density functions RqPq(r) of r values with Rq D 100 as a function of r/Rq for long-term correlated
data with � D 0:4 (open symbols) and � D 0:2 (filled symbols; we multiplied the data for the filled symbols by a factor 100 to avoid
overlapping curves). In a the original data were Gaussian distributed, in b exponentially distributed, in c power-law distributed
with power �5.5, and in d log-normally distributed. All four figures follow quite well stretched exponential curves (solid lines) over
several decades. For small r/Rq values a power-law regime seems to dominate, while on large scales deviations from the stretched
exponential behavior are due to finite-size effects (figure by Jan Eichner)

than for uncorrelated data. It has to be noted that there are
deviations from the stretched exponential law (37) for very
small r (discretization effects and an additional power-law
regime) and for very large r (finite size effects), see Fig. 10.
The extent of the deviations from Eq. (37) depends on the
distribution of the values xi of the time series. For a discus-
sion of these effects, see [80].

Equation (37) does not quantify, however, if the re-
turn intervals themselves are arranged in a correlated or
in an uncorrelated fashion, and if clustering of rare events
may be induced by long-term correlations. To study this
question, one has to evaluate the auto-covariance func-
tion Cr (s) D hrq(l)rq(l C s)i � R2

q of the return intervals.
The results for model data suggests that also the return in-
tervals are long-term power-law correlated, with the same
exponent � as the original record. Accordingly, large and
small return intervals are not arranged in a random fash-
ion but are expected to form clusters. As a consequence,
the probability of finding a certain return interval r de-
pends on the value of the preceding interval r0, and this
effect has to be taken into account in predictions and risk
estimations [77,80].
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The conditional distribution function Pq(rjr0) is a ba-
sic quantity, from which the relevant quantities in risk es-
timations can be derived [83]. For example, the first mo-
ment of Pq(rjr0) is the average value Rq(r0) of those re-
turn intervals that directly follow r0. By definition, Rq(r0)
is the expected waiting time to the next event, when the
two events before were separated by r0. The more general
quantity is the expected waiting time �q(xjr0) to the next
event, when the time x has elapsed. For x D 0, �q(0jr0)
is identical to Rq(r0). In general, �q(xjr0) is related to
Pq(rjr0) by

�q(xjr0) D
Z 1

x
(r�x)Pq(rjr0)dr

�Z 1

x
Pq(rjr0)dr: (38)

For uncorrelated records, �q(xjr0)/Rq D 1 (except for
discreteness effects that lead to �q(xjr0)/Rq > 1 for x > 0,
see [85]). Due to the scaling of Pq(rjr0), also �q(xjr0)/Rq
scales with r0/Rq and x/Rq . Small and large return in-
tervals are more likely to be followed by small and large
ones, respectively, and hence �q(0jr0)/Rq D Rq(r0)/Rq is
well below (above) one for r0/Rq well below (above) one.
With increasing x, the expected residual time to the next
event increases. Note that only for an infinite long-term
correlated record, the value of �q(xjr0) will increase indef-
initely with x and r0. For real (finite) records, there exists
a maximum return interval which limits the values of x, r0
and �q(xjr0).

Distribution of Extreme Events

In this section we describe how the presence of fractal
long-term correlations affects the statistics of the extreme
events, i. e., maxima within time segments of fixed dura-
tion R, see Fig. 11 for illustration. By definition, extreme
events are rare occurrences of extraordinary nature, such
as, e. g. floods, very high temperatures, or earthquakes. In
hydrological engineering such conventional extreme value
statistics are commonly applied to decide what building
projects are required to protect river-side areas against
typical floods that occur, for example, once in 100 years.
Most of these results are based on statistically indepen-
dent values xi and hold only in the limit R!1. How-
ever, both of these assumptions are not strictly fulfilled for
correlated fractal scaling data.

In classical extreme value statistics one assumes that
records (xi) consist of i.i.d. data, described by density dis-
tributions P(x), which can be, e. g., a Gaussian or an expo-
nential distribution. One is interested in the distribution
density function PR(m) of the maxima (mj) determined in
segments of length R in the original series (xi), see Fig. 11.
Note that all maxima are also elements of the original data.

Fractal andMultifractal Time Series, Figure 11
Illustration for the definition of maxima mR within periods of
R D 365 values (figure by Jan Eichner)

The corresponding integratedmaxima distributionGR (m)
is defined as

GR(m) D 1 � ER (m) D
Z m

�1

PR (m0)dm0 : (39)

Since GR(m) is the probability of finding a maximum
smaller than m, ER(m) denotes the probability of find-
ing a maximum that exceeds m. One of the main results
of traditional extreme value statistics states that for inde-
pendently and identically distributed (i.i.d.) data (xi) with
Gaussian or exponential distribution density function P(x)
the integrated distribution GR (m) converges to a double
exponential (Fisher–Tippet–Gumbel) distribution (often
labeled as Type I) [86,87,88,89,90], i. e.,

GR(m)! G

m � u

˛

�
D exp

h
� exp



�
m � u
˛

�i
(40)

for R !1, where ˛ is the scale parameter and u the lo-
cation parameter. By the method of moments those pa-
rameters are given by ˛ D

p
6/� �R and u D mR � ne˛

with the Euler constant ne D 0:577216 [89,91,92,93]. Here
mR and �R denote the (R-dependent)meanmaximum and
the standard deviation, respectively. Note that different
asymptotics will be reached for broader distributions of
data (xi) that belong to other domains of attraction [89].
For example, for data following a power-law distribution
(or Pareto distribution), P(x) D (x/x0)�k , GR (m) con-
verges to a Fréchet distribution, often labeled as Type II.
For data following a distribution with finite upper end-
point, for example the uniform distribution P(x) D 1 for
0 � x � 1,GR (m) converges to aWeibull distribution, of-
ten labeled as Type III. We do not consider the latter two
types of asymptotics here.

Numerical studies of fractal model data have recently
shown that the distribution P(x) of the original data has
a much stronger effect upon the convergence towards the
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Gumbel distribution than the long-term correlations in
the data. Long-term correlations just slightly delay the
convergence of GR (m) towards the Gumbel distribution
(40). This can be observed very clearly in a plot of the
integrated and scaled distribution GR (m) on logarithmic
scale [81].

Furthermore, it was found numerically that (i) the
maxima series (mj) exhibit long-term correlations simi-
lar to those of the original data (xi), and most notably
(ii) the maxima distribution as well as the mean maxima
significantly depend on the history, in particular on the
previous maximum [81]. The last item implies that con-
ditional mean maxima and conditional maxima distribu-
tions should be considered for improved extreme event
predictions.

SimpleModels for Fractal
andMultifractal Time Series

Fourier Filtering

Fractal scaling with long-term correlations can be intro-
duced most easily into time series by the Fourier-filter-
ing technique, see, e. g., [94,95,96]. The Fourier filtering
technique is not limited to the generation of long-term
correlated data characterized by a power-law auto-correla-
tion function C(s) � x�� with 0 < � < 1. All values of the
scaling exponents ˛ D h(2) � H or ˇ D 2˛ � 1 can be
obtained, even those that cannot be found directly by the
fractal analysis techniques described in Sect. “Methods for
Stationary Fractal Time Series Analysis” and Sect. “Meth-
ods for Non-stationary Fractal Time Series Analysis” (e. g.
˛ < 0). Note, however, that Fourier filtering will always
yield Gaussian distributed data values and that no non-
linear or multifractal properties can be achieved (see also
Subsect. “Multifractal Time Series”, Subsect. “Sign and
Magnitude (Volatility) DFA”, and Sect. “Methods forMul-
tifractal Time Series Analysis”). In Subsect. “Detection of
Trends and Crossovers with DFA”, we have briefly de-
scribed a modification of Fourier filtering for obtaining re-
liable short-term correlated data.

For the generation of data characterized by fractal scal-
ing with ˇ D 2˛ � 1 [94,95] we start with uncorrelated
Gaussian distributed random numbers xi from an i.i.d.
generator. Transforming a series of such numbers into
frequency space with discrete Fourier transform or FFT
(fast Fourier transform, for suitable series lengthsN) yields
a flat power spectrum, since random numbers correspond
to white noise. Multiplying the (complex) Fourier coef-
ficients by f�ˇ /2, where f / 1/s is the frequency, will
rescale the power spectrum S( f ) to follow Eq. (6), as ex-
pected for time series with fractal scaling. After transform-

ing back to the time domain (using inverse Fourier trans-
form or inverse FFT) we will thus obtain the desired long-
term correlated data x̃i . The final step is the normalization
of this data.

The Fourier filtering method can be improved using
modified Bessel functions instead of the simple factors
f�ˇ /2 in modifying the Fourier coefficients [96]. This way
problems with the divergence of the autocorrelation func-
tion C(s) at s D 0 can be avoided.

An alternative method to the Fourier filtering tech-
nique, the random midpoint displacement method, is
based on the construction of self-affine surfaces by an it-
erative procedure, see, e. g. [6]. Starting with one interval
with constant values, the intervals are iterative split in the
middle and the midpoint is displaced by a random off-
set. The amplitude of this offset is scaled according to the
length of the interval. Since the method generates a self-
affine surface xi characterized by a Hurst exponent H, the
differentiated series 
xi can be used as long-term corre-
lated or anti-correlated random numbers. Note, however,
that the correlations do not persist for the whole length of
the data generated this way. Another option is the use of
wavelet synthesis, the reverse of wavelet analysis described
in Subsect. “Wavelet Analysis”. In that method, the scaling
law is introduced by setting the magnitudes of the wavelet
coefficients according to the corresponding time scale s.

The Schmitz–Schreiber Method

When long-term correlations in random numbers are in-
troduced by the Fourier-filtering technique (see previous
section), the original distribution P(x) of the time series
values xi is always modified such that it becomes closer to
a Gaussian. Hence, no series (xi) with broad distributions
of the values and fractal scaling can be generated. In these
cases an iterative algorithm introduced by Schreiber and
Schmitz [98,99] must be applied.

The algorithm consists of the following steps: First
one creates a Gaussian distributed long-term corre-
lated data set with the desired correlation exponent �
by standard Fourier-filtering [96]. The power spectrum
SG( f ) D FG( f )F�G( f ) of this data set is considered as refer-
ence spectrum (where f denotes the frequency in Fourier
space and the FG( f ) are the complex Fourier coefficients).
Next one creates an uncorrelated sequence of random
numbers (xrefi ), following a desired distribution P(x). The
(complex) Fourier transform F( f ) of the (xrefi ) is now di-
vided by its absolute value and multiplied by the square
root of the reference spectrum,

Fnew( f ) D
F( f )

p
SG( f )

jF( f )j
: (41)
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After the Fourier back-transformation of Fnew( f ), the new
sequence (xnewi ) has the desired correlations (i. e. the de-
sired � ), but the shape of the distribution has changed to-
wards a (more or less) Gaussian distribution. In order to
enforce the desired distribution, we exchange the (xnewi )
by the (xrefi ), such that the largest value of the new set is
replaced by the largest value of the reference set, the sec-
ond largest of the new set by the second largest of the refer-
ence set and so on. After this the new sequence has the de-
sired distribution and is clearly correlated. However, due
to the exchange algorithm the perfect long-term correla-
tions of the new data sequence were slightly altered again.
So the procedure is repeated: the new sequence is Fourier
transformed followed by spectrum adjustment, and the
exchange algorithm is applied to the Fourier back-trans-
formed data set. These steps are repeated several times,
until the desired quality (or the best possible quality) of
the spectrum of the new data series is achieved.

The Extended Binomial Multifractal Model

The multifractal cascade model [6,33,65] is a standard
model for multifractal data, which is often applied, e. g.,
in hydrology [97]. In the model, a record xi of length
N D 2nmax is constructed recursively as follows. In gener-
ation n D 0, the record elements are constant, i. e. xi D 1
for all i D 1; : : : ;N . In the first step of the cascade (gen-
eration n D 1), the first half of the series is multiplied by
a factor a and the second half of the series is multiplied
by a factor b. This yields xi D a for i D 1; : : : ;N/2 and
xi D b for i D N/2C 1; : : : ;N. The parameters a and b
are between zero and one, 0 < a < b < 1. One need not
restrict the model to b D 1 � a as is often done in the liter-
ature [6]. In the second step (generation n D 2), we apply
the process of step 1 to the two subseries, yielding xi D a2

for i D 1; : : : ;N/4, xi D ab for i D N/4C 1; : : : ;N/2,
xi D ba D ab for i D N/2C 1; : : : ; 3N/4, and xi D b2

for i D 3N/4C 1; : : : ;N. In general, in step nC 1, each
subseries of step n is divided into two subseries of equal
length, and the first half of the xi is multiplied by a
while the second half is multiplied by b. For example,
in generation n D 3 the values in the eight subseries are
a3; a2b; a2b; ab2; a2b; ab2; ab2; b3. After nmax steps, the
final generation has been reached, where all subseries have
length 1 and no more splitting is possible. We note that
the final record can be written as xi D anmax�n(i�1)bn(i�1),
where n(i) is the number of digits 1 in the binary represen-
tation of the index i, e. g. n(13) D 3, since 13 corresponds
to binary 1101.

For this multiplicative cascade model, the formula
for �(q) has been derived earlier [6,33,65]. The result is

�(q) D [� ln(aq C bq)C q ln(aC b)]/ ln 2 or

h(q) D
1
q
�

ln(aq C bq)
q ln 2

C
ln(aC b)

ln 2
: (42)

It is easy to see that h(1) D 1 for all values of a and b.
Thus, in this form the model is limited to cases where h(1),
which is the exponent Hurst defined originally in the R/S
method, is equal to one.

In order to generalize this multifractal cascade process
such that any value of h(1) is possible, one can subtract
the offset
h D ln(aC b)/ ln(2) from h(q) [100]. The con-
stant offset
h corresponds to additional long-term corre-
lations incorporated in the multiplicative cascade model.
For generating records without this offset, we rescale the
power spectrum. First, we transform (FFT) the simple
multiplicative cascade data into the frequency domain.
Then, we multiply all Fourier coefficients by f��h , where f
is the frequency. This way, the slope ˇ of the power spectra
S( f ) � f�ˇ is decreased from ˇ D 2h(2)� 1 D [2 ln(aC
b) � ln(a2 C b2)]/ ln 2 into ˇ0 D 2[h(2) � 
h] � 1 D
� ln(a2 C b2)/ ln 2. Finally, backward FFT is employed to
transform the signal back into the time domain.

The Bi-fractal Model

In some cases a simple bi-fractal model is already sufficient
for modeling apparently multifractal data [101]. For bi-
fractal records the Renyi exponents �(q) are characterized
by two distinct slopes ˛1 and ˛2,

�(q) D

(
q˛1 � 1 q � q�
q˛2 C q�(˛1 � ˛2) � 1 q > q�

(43)

or

�(q) D

(
q˛1 C q�(˛2 � ˛1) � 1 q � q�
q˛2 � 1 q > q�

: (44)

If this behavior is translated into the h(q) picture us-
ing Eq. (29), we obtain that h(q) exhibits a plateau from
q D �1 up to a certain q� and decays hyperbolically for
q > q�,

h(q) D

(
˛1 q � q�
q�(˛1 � ˛2) 1q C ˛2 q > q�

; (45)

or vice versa,

h(q) D

(
q�(˛2 � ˛1) 1q C ˛1 q � q�
˛2 q > q�

: (46)

Both versions of this bi-fractal model require three param-
eters. The multifractal spectrum is degenerated to two sin-
gle points, thus its width can be defined as
˛ D ˛1 � ˛2.
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Future Directions

The most straightforward future direction is to analyze
more types of time series from other complex systems than
those listed in Sect. “Introduction” to check for the pres-
ence of fractal scaling and in particular long-term correla-
tions. Such applications may include (i) data that are not
recorded as a function of time but as a function of another
parameter and (ii) higher dimensional data. In particular,
the inter-relationship between fractal time series and spa-
tially fractal structures can be studied. Studies of fieldswith
fractal scaling in time and space have already been per-
formed in Geophysics. In some cases studying new types
of data will require dealing with more difficult types of
non-stationarities and transient behavior, making further
development of the methods necessary. In many studies,
detrending methods have not been applied yet. However,
discovering fractal scaling in more and more systems can-
not be an aim on its own.

Up to now, the reasons for observed fractal or multi-
fractal scaling are not clear in most applications. It is thus
highly desirable to study causes for fractal and multifrac-
tal correlations in time series, which is a difficult task, of
course. One approach might be based on modeling and
comparing the fractal aspects of real and modeled time se-
ries by applying the methods described in this article. The
fractal or multifractal characterization can thus be helpful
in improving the models. For many applications, practi-
cally usable models which display fractal or transient frac-
tal scaling still have to be developed. One example for
a model explaining fractal scaling might be a precipitation,
storage and runoff model, in which the fractal scaling of
runoff time series could be explained by fractional inte-
gration of rainfall in soil, groundwater reservoirs, or river
networks characterized by a fractal structure. Also stud-
ies regarding the inter-relationship between fractal scal-
ing and complex networks, representing the structure of
a complex system, are desirable. This way one could gain
an interpretation of the causes for fractal behavior.

Another direction of future research is regarding the
linear and especially non-linear inter-relationships be-
tween several time series. There is great need for improved
methods characterizing cross-correlations and similar sta-
tistical inter-relationships between several non-stationary
time series. Most methods available so far are reserved to
stationary data, which is, however, hardly found in natu-
ral recordings. An even more ambitious aim is the (time-
dependent) characterization of a larger network of signals.
In such a network, the signals themselves would represent
the nodes, while the (possibly directed) inter-relationships
between each pair represent the links (or bonds) between

the nodes. The properties of both nodes and links can vary
with time or change abruptly, when the represented com-
plex system goes through a phase transition.

Finally, more work will have to be invested in study-
ing the practical consequences of fractal scaling in time se-
ries. Studies should particularly focus on predictions of fu-
ture values and behavior of time series and whole complex
systems. This is very relevant, not only in hydrology and
climate research, where a clear distinguishing of trends
and natural fluctuations is crucial, but also for predicting
dangerous medical events on-line in patients based on the
continuous recording of time series.
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Glossary

Allometric laws An allometric law describes the relation-
ship between two attributes of living organisms y
and x, and is usually expressed as a power-law: y � x˛ ,
where ˛ is the scaling exponent of the law. For ex-
ample, x can represent total body mass M and y
can represent the mass of a brain mb. In this case
mb � M3/4. Another example of an allometric law:
B � M3/4 where B is metabolic rate and M is body
mass. Allometric laws can be also found in ecology:
the number of different species N found in a habitat
of area A scales as N � A1/4.

Radial distribution function Radial distribution func-
tion g(r) describes how the average density of points
of a set behaves as function of distance r from
a point of this set. For an empirical set of N data
points, the distances between all pair of points are
computed and the number of pairs Np(r) such that
their distance is less then r is found. Then M(r) D
2Np(r)/N gives the average number of the neigh-
bors (mass) of the set within a distance r. For a cer-
tain distance bin r1 < r < r2, we define g[(r2 C
r1)/2] D [M(r2) � M(r1)]/[Vd (r2) � Vd (r1)], where

Vd (r) D 2�d/2rd /[d� (d/2)] is the volume/area/length
of a d-dimensional sphere/circle/interval of radius r.

Fractal set We define a fractal set with the fractal di-
mension 0 < df < d as a set for which M(r) � rdf
for r !1. Accordingly, for such a set g(r) decreases
as a power law of the distance g(r) � r�� , where
� D d � df.

Correlation function For a superposition of a fractal set
and a set with a finite density defined as � D

limr!1M(r)/Vd (r), the correlation function is de-
fined as h(r) � g(r) � �.

Long-range power law correlations The set of points has
long-range power law correlations (LRPLC) if h(r) �
r�� for r !1 with 0 < � < d. LRPLC indicate
the presence of a fractal set with fractal dimension
df D d � � superposed with a uniform set.

Critical point Critical point is defined as a point in the
system parameter space (e. g. temperature, T D Tc,
and pressure P D Pc), near which the system acquires
LRPLC

h(r) �
1

rd�2C�
exp(r/�) ; (1)

where � is the correlation length which diverges near
the critical point as � jT � Tcj�� . Here � > 0 and
� > 0 are critical exponents which depend on the
few system characteristics such as dimensionality of
space. Accordingly, the system is characterized by frac-
tal density fluctuations with df D 2 � �.

Self-organized criticality Self-organized criticality (SOC)
is a term which describes a system for which the criti-
cal behavior characterized by a large correlation length
is achieved for a wide range of parameters and thus
does not require special tuning. This usually occurs
when a critical point corresponds to an infinite value
of a system parameter, such as a ratio of the charac-
teristic time of the stress build up and a characteristic
time of the stress release.

Morphogenesis Morphogenesis is a branch of develop-
mental biology concerned with the shapes of organs
and the entire organisms. Several types of molecules
are particularly important during morphogenesis.
Morphogens are soluble molecules that can diffuse
and carry signals that control cell differentiation de-
cisions in a concentration-dependent fashion. Mor-
phogens typically act through binding to specific pro-
tein receptors. An important class of molecules in-
volved in morphogenesis are transcription factor pro-
teins that determine the fate of cells by interacting with
DNA. Themorphogenesis of the branching fractal-like
structures such as lungs involves a dozen of morpho-
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genes. The mechanism for keeping self-similarity of
the branches at different levels of branching hierar-
chy is not yet fully understood. The experiments with
transgenic mice with certain genes knocked-out pro-
duce mice without limbs and lungs or without termi-
nal buds.

Definition of the Subject

Fractals occur in a wide range of biological applications:

1) In morphology when the shape of an organism (tree)
or an organ (vertebrate lung) has a self-similar brunch-
ing structure which can be approximated by a fractal set
(Sect. “Self-Similar Branching Structures”).

2) In allometry when the allometric power laws can be de-
duced from the fractal nature of the circulatory system
(Sect. “Fractal Metabolic Rates”).

3) In ecology when a colony or a habitat acquire frac-
tal shapes due to some SOC processes such as diffu-
sion limited aggregation (DLA) or percolation which
describes forest fires (Sects. “Physical Models of Biolog-
ical Fractals”–“Percolation and Forest Fires”).

4) In epidemiology when some of the features of the
epidemics is described by percolation which in turn
leads to fractal behavior (Sect. “Percolation and Forest
Fires”).

5) In behavioral sciences, when a trajectory of foraging
animal acquires fractal features (Sect. “Lévy Flight For-
aging”).

6) In population dynamics, when the population size fluc-
tuates chaotically (Sect. “Dynamic Fractals”).

7) In physiology, when time series have LRPLC
(Sect. “Fractals and Time Series”).

8) In evolution theory, which may have some features de-
scribed by SOC (Sect. “SOC and Biological Evolution”).

9) In bioinformatics when a DNA sequence has a LRPLC
or a network describing protein interactions has a self-
similar fractal behavior (Sect. “Fractal Features of DNA
Sequences”).

Fractal geometry along with Euclidian geometry be-
came a part of general culture which any scientist must be
familiar with. Fractals often originate in the theory of com-
plex systems describing the behavior of many interacting
elements and therefore have a great number of biological
applications. Complex systems have a general tendency for
self-organization and complex pattern formation. Some
of these patterns have certain nontrivial symmetries, for
example fractals are characterized by scale invariance i. e.
they look similarly on different magnification. Fractals are
characterized by their fractal dimension, which is specific

for each model and therefore may shed light on the origin
of a particular biological phenomenon. In Sect. “Diffusion
Limited Aggregation and Bacterial Colonies”, we discuss
the techniques for measuring fractal dimension and their
limitations.

Introduction

The fact that simple objects of Euclidian geometry such as
straight lines, circles, cubes, and spheres are not sufficient
to describe complex biological shapes has been known for
centuries. Physicists were always accused by biologists for
introducing a “spherical cow”. Nevertheless people from
antiquity to our days were fascinated by finding simple
mathematical regularities which can describe the anatomy
and physiology of leaving creatures. Five centuries ago,
Leonardo da Vinci observed that “the branches of a tree
at every stage of its height when put together are equal
in thickness to the trunk” [107]. Another famous but still
poorly understood phenomenon is the emergence of the
Fibonacci numbers in certain types of pine cones and com-
posite flowers [31,134].

In the middle of the seventies a new concept of frac-
tal geometry was introduced by Mandelbrot [79]. This
concept was readily accepted for analysis of the complex
shapes in the biological world. However, after initial splash
of enthusiasm, [14,40,41,74,75,76,88,122] the application
of fractals in biology significantly dwindled and today the
general consensus is that a “fractal cow” is often not much
better than a “spherical cow”. Nature is always more com-
plex than mathematical abstractions.

Strictly speaking the fractal is an object whosemass,M,
grows as a fractional power law of its linear dimension, L,

M � Ldf ; (2)

where df is a non-integer quantity called fractal dimen-
sion. Simple examples of fractal objects of various fractal
dimensions are given by iterative self-similar constructs
such as a Cantor set, a Koch curve, a Sierpinski gasket, and
aMenger sponge [94]. In all this constructs a next iteration
of the object is created by arranging p exact copies of the
previous iteration of the object (Fig. 1) in such a way that
the linear size of the next iteration is q times larger than
the linear size of the previous iteration. Thus the mass,Mn,
and the length, Ln, of the nth iteration scale as

Mn D pnM0

Ln D qnL0 ;
(3)

where M0 and L0 are mass and length of the zero order
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Fractals in Biology, Figure 1
a Cantor set (pD 2, q D 3, df D ln 2/ ln 3 � 0:63) is an example of fractal “dust” with fractal dimension less then 1; b Fractal tree
(p D 3, qD 2, df D ln 3/ ln 2 � 1:58) with branches removed so that only the terminal points (leaves) can be seen. c The same tree
with the trunks added. Both trees are produced by recursive combining of the three smaller trees: one serving as the top of the
tree and the other two rotated by 90ı clockwise and counter-clockwise serving as two brunches joined with the top at the middle.
In c a vertical segment representing a trunk of the length equal to the diagonal of the branches is added at each recursive step.
Mathematically, the fractal dimensions of setsb and c are the same, because themass of the treewith trunks (number of black pixels)
for the system of linear size 2n grows as 3nC1 � 2nC1, while for the tree without trunks mass scales simply as 3n. In the limit n!1
this leads to the same fractal dimension ln 3/ ln 2. However, visual inspection suggests that the tree with branches has a larger fractal
dimension. This is in accord with the box counting method, which produces a higher value of the slope for the finite tree with the
trunks. The slope slowly converges to the theoretical value as the number of recursive steps increases. d Sierpinski gasket has the
same fractal dimension as the fractal tree (p D 3, qD 2) but has totally different topology and visual appearance than the tree

iteration. Excluding n from Eq. (3), we get

Mn D M0

�
Ln
L0

�df
; (4)

where

df D ln p/ ln q (5)

can be identified as fractal dimension. The above-de-
scribed objects have the property of self-similarity, the pre-
vious iterationmagnified q times looks exactly like the next
iteration once we neglect coarse-graining on the lowest it-
eration level, which can be assumed to be infinitely small.
An interesting feature of such fractals is the power law dis-
tribution of their parts. For example, the cumulative dis-
tribution of distances L between the points of Cantor set
and the branch lengths of the fractal tree (Fig. 1) follows
a power law:

P(L > x) � x�df : (6)

Thus the emergence of power law distributions and other
power law dependencies is often associated with fractals
and often these power law regularities not necessarily re-
lated to geometrical fractals are loosely referred as fractal
properties.

Self-similar Branching Structures

Perfect deterministic fractals described above are never
observed in nature, where all shapes are subjects to ran-
dom variations. The natural examples closest to the deter-
ministic fractals are structures of trees, certain plants such
as a cauliflower, lungs and a cardiovascular system. The
control of branching morphogenesis [85,114,138] involves
determining when and where a branch will occur, how
long the tube grows before branching again, and at what
angle the branch will form. The development of different
organs (such as salivary gland, mammary gland, kidney,
and lung) creates branching patterns easily distinguished
from each other. Moreover, during the development of
a particular organ, the form of branching often changes,
depending on the place or time when the branching oc-
curs. Morphogenesis is controlled by complex molecular
interactions of morphogenes.

Let us illustrate the idea of calculating fractal dimen-
sion of a branching object such as a cauliflower [51,64]. If
we assume (which is not quite correct, see Fig. 2) that each
branch of a cauliflower give rise to exactly p branches of
the next generation exactly q times smaller than the orig-
inal branch applying Eq. (5), we get df D ln q/ ln p. Note
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Fractals in Biology, Figure 2
a Cauliflower anatomy. A complete head of a cauliflower (left) and after it is taken apart (right). We remove 17 branches until the
diameter of the remaining part becomes half of the diameter of the original head. b Diameters of the branches presented in a.
c Estimation of the fractal dimension for asymmetric lungs (� D 3) and trees (� D 2) with branching parameter r using Eq. (7). For
r > 0:855 or r < 0:145 the fractal dimension is not defined due to the “infrared catastrophe”: the number of large branches diverge
in the limit of an infinite tree

that this is not the fractal dimension of the cauliflower it-
self, but of its skeleton in which each brunch is represented
by the elements of its daughter branches, with an addi-
tion of a straight line connecting the daughter branches
as in the example of a fractal tree (Fig. 1b, c). Because
this addition does not change the fractal dimension for-
mula, the fractal dimension of the skeleton is equal to the

fractal dimension of the surface of a cauliflower, which
can be represented as the set of the terminal branches.
As a physical object, the cauliflower is not a fractal but
a three-dimensional body so that the mass of a branch
of length L scales as L3. This is because the diame-
ter of each branch is proportional to the length of the
branch.
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The distribution of lengths of the collection of all the
branches of a cauliflower is also a power law given by
a simple idea that there are Nn D

Pn�1
kD0 p

k � pn /(p � 1)
branches of length larger than Ln D L0q�n . Excluding n
gives Nn(L > Ln) � L�dfn . In reality, however (Fig. 2a, b),
the branching structure of a cauliflower is more com-
plex. Simple measurements show that there are about
p D 18 branches of sizes Lk D L0 � L0[0:5 � 0:2(k � 1)]
for k D 1; 2; : : :; p, where L0 is the diameter of the com-
plete head of the cauliflower. (We keep removing branches
until the diameter of the central remaining part is equal to
the half diameter of the complete head and we assume that
it is similar to the rest of the branches). Subsequent genera-
tions (we count at least eight) obey similar rules, however p
has a tendency to decreasewith the generation number. To
find fractal dimension of a cauliflower we will count the
number of branches N(L) larger than certain size L. As in
case of equal branches, this number scales as L�df . Calcu-
lations, similar to those presented in [77] show that in this
case the fractal dimension is equal to

df D �
�

�2

0

@

s

1 � ln p
2�2

�2 � 1

1

A ; (7)

where � and � are the mean and the standard devia-
tion of ln qk � ln(L0/Lk). For the particular cauliflower
shown in Fig. 2a the measurements presented in Fig. 2b
give df D 2:75, which is very close to the estimate df D 2:8,
of [64]. The physiological reason for such a peculiar
branching pattern of cauliflower is not known. It is prob-
ably designed to store energy for a quick production of
a dense inflorescence.

For a tree, [142] the sum of the cross-section areas of
the two daughter branches according to Leonardo is equal
to the cross-section area of the mother branch. This can be
understood because the number of capillary bundles go-
ing from the mother to the daughters is conserved. Ac-
cordingly, we have a relation between the daughter branch
diameters d1 and d2 and the mother branch diameter d0,

d�1 C d�2 D d�0 ; (8)

where � D 2. We can assume that the branch diameter of
the largest daughter branch scales as d�1 D rd�0 , where r
is asymmetry ratio maintaining for each generation of
branches. In case of a symmetric tree d1 D d2, r D 1/2.
If we assume that the branch length L D sd, where s is
a constant which is the same for any branch of the tree,
then we can relate our tree to a fractal model with p D 2
and q D 21/� . Using Eq. (5) we get df D � D 2, i. e. the tree
skeleton or the surface of the terminal branches is an ob-

ject of fractal dimension two embedded in the three-di-
mensional space. This is quite natural because all the leaves
whose number is proportional to the number of terminal
branches must be exposed to the sunlight and the easiest
way to achieve this is to place all the leaves on the surface
of a sphere which is a two-dimensional object.

For an asymmetric tree the fractal dimension can be
computed using Eq. (7) with

� D j ln[r(1 � r)]/2�j (9)

and

� D j ln[r/(1 � r)]/2�j : (10)

This value is slightly larger than 2 for a wide range of r
(Fig. 2c). This property may be related to a tendency of
a tree to maximize the surface of it leaves, which must not
be necessarily exposed to the direct sunlight but can suffice
on the light reflected by the outer leaves.

For a lung [56,66,77,102,117], the flow is not a capil-
lary but can be assumed viscous. According to flow conser-
vation, the sum of the air flows of the daughter branches
must be equal to the flow of the mother branch:

Q1 C Q2 D Q0 : (11)

For the Poiseuille flow, Q � 
Pd4/L, where 
P is the
pressure drop, which is supposed to be the same for the
airways of all sizes. Assuming that the lung maintains the
ratio s D L/d in all generations of branches, we conclude
that the diameters of the daughter and mother branches
must satisfy Eq. (8) with � D 4 � 1 D 3. Accordingly, for
a symmetrically branching lung df D � D 3, which means
that the surface of the alveoli which is proportional to the
number of terminal airways scales as L3, i. e. it is a space
filling object. Again this prediction is quite reasonable be-
cause nature tends to maximize the gas exchange area so
that it completely fills the volume of the lung.

In reality, the flow in the large airways is turbulent,
and the parameter � of lungs of different species varies
between 2 and 3 [77]. Also the lungs are known to be
asymmetric and the ratio r D Q1/Q0 ¤ 1/2 changes from
one generation of the airways to the next [77]. However,
Eq. (7) with � and � given by Eqs. (9) and (10) shows that
the fractal dimension of an asymmetric tree remains very
close to 3 for a wide range of 0:146 < r < 0:854 (Fig. 2c).
The fact that the estimated fractal dimension is slightly
larger than 3 does not contradict common sense because
the branching stops when the airway diameter becomes
smaller than some critical cutoff. Other implications of the
lung asymmetry are discussed in [77]. An interesting idea
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was proposed in [117], according to which the dependence
of the branching pattern on the generation of the airways
can be derived from optimization principles and give rise
to the complex value of the fractal dimension.

An interesting property of the crackle sound produced
by diseased lungs is that during inflation the resistance to
airflow of the small airways decreases in discrete jumps.
Airways do not open individually, but in a sequence of
bursts or avalanches involving many airways; both the size
of these jumps and the time intervals between jumps fol-
low power-law distributions [128]. These avalanches are
not related to the SOC as one might expect, but their
power law distributions directly follow from the branch-
ing structure of lungs (see [3] and references therein).

FractalMetabolic Rates

An important question in biology is the scaling of the
metabolic rate with respect to the body mass (Kleiber’s
Law). It turns out that for almost all species of animals,
which differ in terms of mass by 21 orders of magnitudes,
the metabolic rate B scales as B � M3/4 [28,112,140]. The
scatter plot ln B vs lnM is a narrow cloud concentrated
around the straight line with a slope 3/4 (Fig. 3). This is
one of the many examples of the allometric laws which de-
scribe the dependence of various biological parameters on
the body mass or population size [1,9,87,105,106].

A simple argument based on the idea that the ther-
mal energy loss and hence the metabolic rate should be
proportional to the surface area predicts however that

Fractals in Biology, Figure 3
Dependence of metabolic rate on body mass for different types
of organisms (Kleiber’s Law, after [112]). The least square fit lines
have slopes 0:76˙ 0:01

B � L2 � M2/3. Postulating that the metabolic rate is
proportional to some effective metabolic area leads to
a strange prediction that this area should have a fractal di-
mension of 9/4.

Many attempts has been made to explain this interest-
ing fact [10,32,142,143]. One particular attempt [142] was
based on the ideas of energy optimization and the frac-
tal organization of the cardiovascular system. However,
the arguments were crucially dependent on such details as
turbulent vs laminar flow, the elasticity of the blood ves-
sels and the pulsatory nature of the cardiovascular system.
The fact that this derivation does not work for species with
different types of circulatory systems suggests that there
might be a completely different and quite general explana-
tion of this phenomenon.

Recently [10], as the theory of networks has became
a hot subject, a general explanation of the metabolic rates
was provided using a mathematical theorem that the to-
tal flow Q (e. g. of the blood) in the most efficient supply
network must scale as Q � BL/u, where L is the linear
size of the network, B is the total consumption rate (e. g.
metabolic rate), and u is the linear size of each consump-
tion unit (e. g. cell). The authors argue that the total flow
is proportional to the total amount of the liquid in the net-
work, which must scale as the body massM. On the other
hand, L � M1/3. If one assumes that u is independent of
the body mass, then B � M2/3, which is identical to the
simple but incorrect prediction based on the surface area.
In order to make ends meet, the authors postulate that
some combination of parameters must be independent of
the body size, from where it follows that u � M1/12. If one
identifies a consumption unit with the cell, it seems that
the cell size must scale as L1/4. Thus the cells of a whale
(L D 30m) must be about 12 times larger than those of
a C. elegance (L D 1mm), which more or less consis-
tent with the empirical data [110] for slowly dividing cells
such as neurons in mammals. However, the issue of the
metabolic scaling is still not fully resolved [11,33,144]. It is
likely that the universal explanation of Kleiber’s law is im-
possible. Moreover, recently it was observed that Kleiber’s
law does not hold for plants [105].

An interesting example of an allometric lawwhichmay
have some fractal implications is the scaling of the brain
size with the body mass Mb � M3/4 [1]. Assuming that
the mass of the brain is proportional to the mass of the
neurons in the body, we can conclude that if the aver-
age mass of a neuron does not depend on the body mass,
neurons must form a fractal set with the fractal dimen-
sion 9/4. However, if we assume that the mass of a neu-
ron must scale with the body mass as M1/12, as it follows
from [10,110], we can conclude that the number of neu-
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rons in the body scales simply as M2/3 � L2, which means
that the number of neurons is proportional to the surface
area of the body. The latter conclusion is physiologically
more plausible than the former, since it is obvious that the
neurons are more likely to be located near the surface of
an organism.

From the point of view of comparative zoology, the
universal scaling of the brain mass is not as important as
the deviations from it. It is useful [1] to characterize an or-
ganism by the ratio of its actual brain mass to its expected
brain mass which is defined as Eb D AM3/4, where A is
a constant measured by the intercept of the log–log graph
of brain mass versus body mass. Homo sapiens have the
largest Mb/Eb D 8, several times larger than those of go-
rillas and chimpanzees.

Physical Models of Biological Fractals

The fractals discussed in Sect. “Self-Similar Branching
Structures”, which are based on the explicit rules of con-
struction and self-similarity, are useful concepts for ana-
lyzing branching structures in the living organisms whose
development and growth are programmed according to
these rules. However, in nature, there are many instances
when fractal shapes emerge just from general physical
principles without a special fractal “blueprint” [26,34,
58,124,125,131]. One of such examples particularly rel-
evant to biology is the diffusion limited aggregation
(DLA) [145]. Another phenomenon, described by the
same equations as DLA and thus producing similar shapes
is viscous fingering [17,26,131]. Other examples are a ran-
dom walk (RW) [42,58,104,141], a self-avoiding walk
(SAW) [34,58], and a percolation cluster [26,58,127].

DLA explains the growth of ramified inorganic aggre-
gates which sometimes can be found in rock cracks. The
aggregates grow because certain ions or molecules deposit
on the surface of the aggregate. These ions come to the
surface due to diffusion which is equivalent on the micro-
scopic level to Brownian motion of individual ions. The
Brownian trajectories can be modeled as random walks in
which the direction of each next step is independent of the
previous steps.

The Brownian trajectory itself has fractal properties
expressed by the Einstein formula:

r2 D 2dtD ; (12)

where r2 is the average square displacement of the Brow-
nian particle during time t, D is the diffusion coefficient
and d is the dimensionality of the embedding space. The
number of steps, n, of the random walk is proportional
to time of the Brownian motion t D n� , where � is the

Fractals in Biology, Figure 4
A randomwalk of nD 216 steps is surrounded by its pD 4 parts
ofm D n/p D 214 stepsmagnified by factor of qDp4 D 2. One
can see that the shapes and sizes of each of the magnified parts
are similar to the shape and size of the whole

average duration of the random walk step. The diffusion
coefficient can be expressed as D D r2(m)/(2dm� ), where
r2(m) is the average square displacement during m time
steps. Accordingly,

r(n) D
p
pr(m) ; (13)

which shows that the random walk of n steps consists of
p D n/m copies of the one-step walks arranged in space
in such a way that the average linear size of this arrange-
ment is q D

p
n/m times larger than the size of them-step

walk (Fig. 4). Applying Eq. (5), we get df D 2 which
does not depend on the embedding space. It is the same
in one-dimensional, two-dimensional, and three-dimen-
sional space. Note that Brownian trajectory is self-simi-
lar only in a statistical sense: each of the n concatenated
copies of am-step trajectory are different from each other,
but their average square displacements are the same. Our
eye can easily catch this statistical self-similarity. A ran-
dom walk is a cloudy object of an elongated shape, its in-
ertia ellipsoid is characterized by the average ratios of the
squares of its axis: 12.1/2.71/1 [18].

The Brownian trajectory itself has a relevance in bi-
ology, since it may describe the changing of the electri-
cal potential of a neuron [46], spreading of a colony [68],
the foraging trajectory of a bacteria or an animal as well
as the motion of proteins and other molecules in the cell.
The self-avoiding walk (SAW) which has a smaller frac-
tal dimension (df,SAW D 4/3 in d D 2 and df,SAW � 1:7 in



3786 F Fractals in Biology

Fractals in Biology, Figure 5
A self-avoiding walk (a) of n D 104 in comparison with a ran-
dom walk (b) of the same number of steps, both in d D 3. Both
walks are produced by molecular dynamic simulations of the
bead-on-a-string model of polymers. The hard core diameter of
monomers in the SAW is equal to thebond length`, while for the
RW it is zero. Comparing their fractal dimensions df,SAW � 1:7,
and df,RW D 2, one can predict that the average size (radius of
inertia) of SAWmust be n1/df,SAW�1/df,RW � 2:3 times larger than
that of RW. Indeed the average radius of inertia of SAW and RW
are 98` and 40`, respectively. The fact that their complex shapes
resemble leaving creatures was noticed by P. G. de Gennes in
a cartoon published in his book “Scaling Concepts in Polymer
Physics” [34]

d D 3) is a model of a polymer (Fig. 5) in a good solvent,
such as for example a random coil conformation of a pro-
tein. Thus a SAW provides another example of a fractal
object which has certain relevance in molecular biology.
The fractal properties of SAWs are well established in the
works of Nobel Laureates Flory and de Gennes [34,44,63].

Diffusion Limited Aggregation
and Bacterial Colonies

The properties of a Brownian trajectory explain the rami-
fied structure of the DLA cluster. Since the Brownian tra-
jectory is not straight, it is very difficult for it to penetrate
deep into the fiords of a DLA cluster. With a much higher
probability it hits the tips of the branches. Thus DLA clus-
ter (Fig. 6a) has a tree-like structure with usually 5 main
branches in 2 dimensions. The analytical determination of
its fractal dimension is one of the most challenging ques-
tions in modern mathematics. In computer simulations it
is defined by measuring the number of aggregated parti-
cles versus the radius of gyration of the aggregate (Fig. 6c).
The fractal dimension thus found is approximately 1.71

Fractals in Biology, Figure 6
aADLA cluster ofn D 214 particles produced by the aggregation
of the randomwalks on the square lattice (top). A comparison of
a small BD cluster (b) and a DLA cluster (c). The color in b and c
indicates the deposition time of a particle. The slopes of the log-
log graphs of the mass of the growing aggregates versus their
gyration radius give the values of their fractal dimensions in the
limit of large mass
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Fractals in Biology, Figure 7
A typical DLA-like colony grown in a Petri dish with a highly viscous substrate (top). A change in morphology from DLA-like colony
growth to a swimming chiral pattern presumably due to a cell morphotype transition (bottom) (from [15])
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in two dimensions and 2.50 in three dimensions [34]. It
seems that as the aggregate grows larger the fractal dimen-
sion slightly increases.

Note that if the deposition is made by particles mov-
ing along straight lines (ballistic deposition) the aggre-
gate changes its morphology and becomes almost compact
and circular with small fluctuation on the boundaries and
small holes in the interior (Fig. 6b). The fractal dimen-
sion of the ballistic aggregate coincides with the dimen-
sion of embedding space. Ballistic deposition (BD) belongs
to the same universality class as the Eden model, the first
model to describe the growth of cancer. In this model, each
cell on the surface of the cluster can produce an offspring
with equal probability. This cell does not diffuse but oc-
cupies one of the empty spaces neighboring to the parent
cell [13,83].

DLA is supposed to be a goodmodel for growth of bac-
terial colonies in the regimewhen nutrients are coming via
diffusion in a viscous media from the exterior. Under dif-
ferent conditions bacteria colonies observe various transi-
tion in their morphology. If the nutrient supply is greater,
the colonies increase their fractal dimension and start to
resemble BD.

An interesting phenomenon is observed upon chang-
ing the viscosity of the substrate [15]. If the viscosity is
small it is profitable for bacteria to swim in order to get
to the regions with high nutrient concentrations. If the
viscosity is large it is more profitable to grow in a static
colony which is supplied by the diffusion of the nutrient
from the outside. It seems that the way how the colony
grows is inherited in the bacteria gene expression. When
a bacteria grown at high viscosity is planted into a low vis-
cosity substrate, its descendants continue to grow in aDLA
pattern until a transition in a gene-expression happens in
a sufficiently large number of neighboring bacteria which
change their morphotype to a swimming one (Fig. 7). All
the descendants of these bacteria start to swim and thus
quickly take over the slower growing morphotype. Con-
versely, when a swimming bacteria is planted into a vis-
cous media its descendants continue to swim until a re-
verse transition of a morphotype happens and the de-
scendants of the bacteria with this new morphotype start
a DLA-like growing colony. The morphotype transition
can be also induced by fungi. Thus, it is likely that although
bacteria are unicellular organisms, they exchange chemi-
cal signals similarly to the cells in the multicellular organ-
isms, which undergo a complex process of cell differentia-
tion during organism development (morphogenesis).

There is evidence that the tree roots also follow the
DLA pattern, growing in the direction of diffusing nutri-
ents [43]. Coral reefs [80] whose life depends on the diffu-

sion of oxygen and nutrients also may to a certain degree
follow DLA or BD patterns. Another interesting conjec-
ture is that neuronal dendrites grow in vivo obeying the
same mechanism [29]. In this case, they follow signaling
chemicals released by other cells. It was also conjectured
that even fingers of vertebrate organisms may branch in
a DLA controlled fashion, resembling the pattern of vis-
cous fingering which are observed when a liquid of low
viscosity is pushed into a liquid of higher viscosity.

Measuring Fractal Dimension
of Real Biological Fractals

There were attempts to measure fractal dimension of
growing neurons [29] and other biological objects from
photographs using a box-counting method and a circle
method developed for empirical determination of fractal
dimension. The circle method is the simplified version of
the radial distribution function analysis described in the
definition section. It consists of placing a center of a cir-
cle or a sphere of a variable radius R at each point of an
object and counting the average number of other points of
this objectM(R) found inside these circles or spheres. The
slope of lnM(R) vs. ln R gives an estimate of the fractal
dimension.

The box counting method consists of placing a square
grid of a given spacing ` on a photograph and counting
number of boxes n(`) needed to cover all the points be-
longing to a fractal set under investigation. Each box con-
taining at least one point of a fractal set is likely to con-
tain on average N(`) D `df other points of this set, and
n(`)N(`) D N, where N is the total number of the points.
Thus for a fractal image n(`) � N/`df � `�df . Accord-
ingly the fractal dimension of the image can be estimated
by the slope of a graph of ln n(`) vs. ln `.

The problem is that real biological objects do not have
many orders of self-similarity, and also, as we see above,
only a skeleton or a perimeter of a real object has frac-
tal properties. The box counting method usually produces
curvy lines on a log–log paper with at best one decade of
approximately constant slope (Fig. 8). What is most disap-
pointing is that almost any image analyzed in this fashion
produces a graph of similar quality. For example, an Ein-
stein cartoon presented in [93] has the same fractal dimen-
sion as some of the growing neurons. Therefore, exper-
imental determination of the fractal dimension from the
photographs is no longer in use in scientific publications.
However, in the 1980s and early 1990s when the computer
scanning of images became popular and the fractals were
at the highest point of their career, these exercises were
frequent.
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Fractals in Biology, Figure 8
An image of a neuron and its box-counting analysis (a) together with the analogous analysis of an Einstein cartoon (b). The log–log
plot of the box-counting data has a shape of a curvewith the changing slope. Bars represent the local slope of this graph, whichmay
be interpreted as some effective fractal dimension. However, in both graphs the slopes change dramatically from 1 to almost 1.7 and
it is obvious that any comparison to the DLA growth mechanism based on these graphs is invalid (from [93])

For example, R. Voss [137] analyzed fractal dimen-
sions of Chinese graphics of various historical periods. He
found that the fractal dimension of the drawings fluctu-
ated from century to century and was about 1.3 at the time
of the highest achievements of this technique. It was ar-
gued that the perimeters of many natural objects such as
perimeters of the percolation clusters and random walks
have similar fractal dimension; hence the works of the
artists who were able to reproduce this feature were the
most pleasant for our eyes.

Recently, the box counting method was used to an-
alyze complex networks such as protein interaction net-
works (PIN). In this case the size of the box was defined as
the maximal number of edges needed to connect any two
nodes belonging to the box. The box-counting method ap-
pears to be a powerful tool for analyzing self-similarity of
the network structure [120,121].

Percolation and Forest Fires

It was also conjectured that biological habitats of certain
species may have fractal properties. However it is not clear
whether we have a true self-similarity or just an apparent
mosaic pattern which is due to complex topography and
geology of the area. If there is no reasonable theoretical
model of an ecological process, which displays true fractal
properties the assertions of the fractality of a habitat are
pointless. One such model, which produces fractal clus-
ters is percolation [26,127]. Suppose a lightning hits a ran-
dom tree in the forest. If the forest is sufficiently dry, and
the inflammable trees are close enough the fire will spread
from a tree to a tree and can burn the entire forest. If
the inflammable trees form a connected cluster, defined as
such that its any two trees are connected with a path along
which the fire can spread, all the trees in this cluster will
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be burnt down. Percolation theory guarantees that there
is a critical density pc of inflammable trees below which
all the connected clusters are finite and the fire will natu-
rally extinguish burning only an infinitesimally small por-
tion of the forest. In contrast, above this threshold there
exists a giant cluster which constitutes a finite portion of
the forest so that the fire started by a random lightning
will on average destroy a finite portion of the forest. Ex-
actly at the critical threshold, the giant cluster is a fractal
with a fractal dimension df D 91/48 � 1:89. The proba-
bility to burn a finite cluster of mass S follows a power law
P(S) � S�d/df . Above and below the percolation thresh-
old, this distribution is truncated by an exponential factor
which specifies that clusters of linear dimensions exceed-
ing a characteristic size are exponentially rare. The struc-
ture of the clusters which do not exceed this characteristic
scale is also fractal, so if their mass S is plotted versus their
linear size R (e. g. radius of inertia) it follows a power law
S � Rdf

In the natural environment the thunderstorms hap-
pen regularly and they produce fractal patterns of burned
down patches. However, if the density of trees is small, the
patches are finite and the fires are confined. As the den-
sity the trees reaches the critical threshold, the next thun-
derstorm is likely to destroy the giant cluster of the forest,
which will produce a bare patch of a fractal shape spread-
ing over the entire forest. No major forest fire will happen
until the new forest covers this patch creating a new giant
cluster, because the remaining disconnected groves are of
finite size.

There is an evidence that the forest is the system which
drives itself to a critical point [30,78,111] (Fig. 9). Suppose
that each year there is certain number of lightning strokes
per unit area nl. The average number of trees in a clus-
ter is hSi D ajp � pcj�� , where � D 43/18 is one of the
critical exponents describing percolation, a is a constant,
and p is the number of inflammable trees per unit area.
Thus the number of trees destroyed annually per unit area
is nlajpc � p]�� . On the other hand, since the trees are
growing, the number of trees per unit area increases an-
nually by nt, which is the parameter of the ecosystem. At
equilibrium, nlajpc � p]�� D nt. Accordingly, the equi-
librium density of trees must reach pe D pc � (anl/nt)1/� .
For very low nl, pe will be almost equal to pc, and the
chance that in the next forest fire a giant cluster which
spans the entire ecosystem will be burned is very high.
It can be shown that for a given chance c of hitting such
a cluster in a random lightning stroke, the density of trees
must reach p D pc � f (c)L�1/� , where L is the linear size
of the forest, � D 4/3 is the correlation critical exponent
and f (c) > 0 is a logarithmically growing function of c.

Accordingly, if nt/nl > bL� /� , where b is some constant,
the chance of getting a devastating forest fire is close to
100%. We have here a paradoxical situation: the more fre-
quent are the forest fires, the least dangerous they are. This
implies that the fire fighters should not extinguish small
forest fires which will be contained by themselves. Rather
they should annually cut a certain fraction of trees to de-
crease nt.

As we see, the forest fires can be regarded as a self-or-
ganized critical (SOC) system which drive themselves to-
wards criticality. As in many SOC systems, here there are
two processes one is by several orders of magnitudes faster
than the other. In this case they are the tree growing pro-
cess and the lightning striking process. The model reaches
the critical point if a tuning parameter nt/nl !1 and in
addition nt ! 0 and L!1, which are quite reasonable
assumptions. In a regular critical system a tuning parame-
ter (e. g. temperature) must be in the vicinity of a specific
finite value. In a SOC system the tuning parameter must
be just large enough.

There is an evidence, that the forest fires follow
a power law distribution [109]. One can also speculate that
the areas burned down by the previous fires shape frac-
tal habitats for light loving and fire-resistant trees such
as pines. The attempts to measure a fractal dimension of
such habitats from aerial photographs are dubious due to
the limitations discussed above and also because by adjust-
ing a color threshold one can produce fractal-like clusters
in almost any image. This artifact is itself a trivial conse-
quence of the percolation theory.

The frequently reported Zipf’s law for the sizes of
colonies of various species including the areas and popu-
lations of the cities [146] usually arises not from fractality
of the habitats but from preferential attachment growth in
which the old colonies grow in proportion to their present
population, while the new colonies may form with a small
probability. The preferential attachment model is a very
simple mechanism which can create a power-law distri-
bution of colony sizes P(S) � S�2�� , where � is a small
correction which is proportional to the probability of for-
mation of new colonies [25]. Other examples of power
laws in biology [67], such as distributions of clusters in
the metabolic networks, the distribution of families of pro-
teins, etc. are also most likely come from the preferential
attachment or also, in some cases, can arise as artifacts
of specifically selected similarity threshold, which brings
a network under consideration to a critical point of the
percolation theory.

The epidemic spreading can also be described by a per-
colation model. In this case the contagious disease spreads
from a person to a person as the forest fire spreads from
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Fractals in Biology, Figure 9
A sequence of frames of a forest fire model. Each tree occupies a site on 500� 500 square lattice. At each time step a tree (a colored
site) is planted at a randomly chosen empty site (black). Each 10,000 time steps a lightning strikes a randomly chosen tree and the
forest fire eliminates a connected cluster of trees. The frames are separated by 60,000 time steps. The color code indicates the age
of the trees from blue (young) to red (old). The initial state of the system is an empty lattice. As the concentration of trees reaches
percolation threshold (frame 3) a small finite cluster is burned. However it does not sufficiently decrease the concentration of trees
and it continues to build up until a devastating forest fire occurs between frames 3 and 4, with only few green groves left. Between
frames 4 and 5 several lightnings hit these groves and they are burned down, while surroundingpatch of the old fire continues to be
populated by the new trees. Between frame 5 and 6 a new devastating forest fire occurs. At the end of the movie huge intermittent
forest fires produce gigantic patches of dense and rare groves of various ages

a tree to a tree. Analogously to the forest fire model,
a person who caught the disease dies or recovers and be-
comes immune to the disease, so he or she cannot catch it
again. This model is called susceptible-infective-removed
(SIR) [62]. The main difference is that the epidemics
spread not on a two-dimensional plane but on the net-
work describing contacts among people [61,86]. This net-
work is usually supposed to be scale free, i. e. the number
of contacts different people have (degree) is distributed ac-
cording to a an inverse power law [2,71]. As the epidemic
spreads the number of connections in the susceptible pop-
ulation depletes [115] so the susceptible population comes
to a percolation threshold after which the epidemic stops.

This model explains for example why the Black Death epi-
demic stopped in the late 14th century after killing about
one third of the total European population.

Critical Point and Long-Range Correlations

Percolation critical threshold [26,127] is an example of
critical phenomena the most well known of which is the
liquid-gas critical point [124]. As one heats a sample of
any liquid occupying a certain fraction of a closed rigid
container, part of the liquid evaporates and the pressure
in the container increases so that the sample of liquid re-
mains at equilibrium with its vapor. However, at certain



3792 F Fractals in Biology

temperature the visible boundary between the liquid at the
bottom and the gas on the top becomes fuzzy and even-
tually the system becomes completely nontransparent as
milk. This phenomena is called critical opalescence and
the temperature, pressure, and density at which it happens
is called a critical point of this liquid. For water, the critical
point is Tc D 374Cı, Pc D 220 atm and �c D 330 kg/m3.
As the temperature goes above the critical point the sys-
tem becomes transparent again, but the phase boundary
disappears: liquid and gas cannot coexist above the critical
temperature. They form a single phase, supercritical fluid,
which has certain properties of both gas (high compress-
ibility) and liquid (high density and slow diffusivity).

At the critical point the system consists of regions of
high density (liquid like) and low density (gas like) of all
sizes from the size of a single molecule to several microns
across which are larger than the wave length of visible light
� 0:5�m. These giant density fluctuations scatter visible
light causing the critical opalescence. The characteristic
linear size of the density fluctuations is called the corre-
lation length � which diverges at critical temperature as
� � jT � Tcj�� . The shapes of these density fluctuations
are self-similar, fractal-like. The system can be represented
as a superposition of a uniform set with the density corre-
sponding to the average density of the system and a frac-
tal set with the fractal dimension df. The density correla-
tion function h(r) decreases for r !1 as r�� exp(�r/�),
where � � d � 2C � D d � df and d D 1; 2; 3; : : : is the
dimension of space in which the critical behavior is ob-
served. The exponential cutoff sets the upper limit of the
fractal density fluctuations to be equal to the correlation
length. The lower limit of the fractal behavior of the den-
sity fluctuations is onemolecule. As the system approaches
the critical point, the range of fractal behavior increases
and can reach at least three orders of magnitude in the
narrow vicinity of the critical point. The intensity of light
scattered by density fluctuations at certain angle can be
expressed via the Fourier transform of the density corre-
lation function S(f) �

R
h(r) exp(ir � f)dr, where the inte-

gral is taken over d-dimensional space. This experimen-
tally observed quantity S(f ) is called the structure fac-
tor. It is a powerful tool to study the fractal properties of
matter since it can uncover the presence of a fractal set
even if it is superposed with a set of uniform density. If
the density correlation function has a power law behavior
h(r) � r��, the structure factor also has a power law be-
havior S( f ) � f ��d . For the true fractals with df < d, the
average density over the entire embedding space is zero, so
the correlation function coincides with the average density
of points of the set at certain distance from a given point,
h(r) � r�dC1dM(r)/dr � rd f�d , where M(r) � rdf is the

mass of the fractal within the radius r from a given point.
Thus, for a fractal set of points with fractal dimension
df, the structure factor has a simple power law form
S( f ) � f�df . Therefore whenever S( f ) � f�ˇ , ˇ < d is
identified with the fractal dimension and the system is said
to have fractal density fluctuations even if the average den-
sity of the system is not zero.

There are several methods of detecting spatial corre-
lations in ecology [45,108] including box-counting [101].
In addition one can study the density correlation function
h(r) of certain species on the surface of the Earth defined
as h(r) D N(r)/2�r
r � N/A, where N(r) is the average
number of the representatives of a species within a circu-
lar rim of radius r and width 
r from a given representa-
tive, N is the total population, and A is the total area. For
certain species, the correlation function may follow about
one order of magnitude of a fractal (power-law) behav-
ior [9,54,101]. One can speculate that there is some effec-
tive attraction between the individuals such as cooperation
(mimicking the van der Walls forces between molecules)
and a tendency to spread over the larger territory (mim-
icking the thermal motion of the particles). The interplay
of these two tendenciesmay produce a fractal behavior like
in the vicinity of the critical point.

However, there is no reason of why the ecological sys-
tem although complex and chaotic [81] should drive it-
self to a critical point. Whether or not there is a fractal be-
havior, the density correlation function is a useful way to
describe the spatial distribution of the population. It can
be applied not only in ecology but also in physiology and
anatomy to describe the distribution of cells, for example,
neurons in the cortex [22].

Lévy Flight Foraging

A different set of mathematical models which produce
fractal patterns and may be relevant in ecology is the Lévy
flight and Lévy walk models [118,147]. The Lévy flight
model is a generalization of a random walk, in which
the distribution of the steps (flights) of length ` follows
a power law P(`) � `�� with � < 3. Such distributions
do not have a finite variance. The probability density of the
landing points of the Lévy flight converges not to a Gaus-
sian as for a normal random walk with a finite step vari-
ance but to a Lévy stable distribution with the parameter
˛ � � � 1. The landing points of a Lévy flight form frac-
tal dust similar to a Cantor set with the fractal dimension
df D ˛.

It was conjectured that certain animals may fol-
low Lévy flights during foraging [103,116,132,133]. It is
a mathematical theorem [23,24] that in case when targets
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are scarce but there is a high probability that a new tar-
get could be discovered in the vicinity of the previously
found target, the optimal strategy for a forager is to per-
form a Lévy flight with � D 2C � , where � is a small cor-
rection which depends on the density of the target sites,
the radius of sight of the forager and the probability to find
a new target in the vicinity of the old one. In this type of
“inverse square” foraging strategy a balance is reached be-
tween finding new rich random target areas and return-
ing back to the previously visited area which although de-
pleted, may still provide some food necessary for survival.
The original report [132] of the distribution of the flight
times of wandering albatross was in agreement with the
theory.

However, recent work [39] using much longer flight
time records and more reliable analysis showed that the
distribution of flight times is better described by a Poisson
distribution corresponding to regular random walk rather
then by a power law. Several other reports of the Lévy flight
foraging are also found dubious. The theory [23] how-
ever predicts that the inverse square law of foraging is op-
timal only in case of scarce sources distribution. Thus if
the harvest is good and the food is plenty there is no rea-
son to discover the new target locations and the regular
random walk strategy becomes the most efficient. Subse-
quent observations show that power laws exist in some
other marine predator search behavior [119]. In order to
find a definitive answer, the study must be repeated for the
course of many successive years characterized by different
harvests.

Once the miniature electronic devices for tracing an-
imals are becoming cheaper and more efficient, a new
branch of electronic ecology is emerging with the goal of
quantifying migratory patterns and foraging strategies of
various species in various environments. Whether or not
the foraging patterns are fractal, this novel approach will
help to establish better conservational policy with scientifi-
cally sound borders of wild-life reservations. Recent obser-
vations indicate that human mobility patterns might also
possess Lévy flight properties [49].

Dynamic Fractals

It is not necessary that a fractal is a real geometrical object
embedded in the regular three-dimensional space. Frac-
tals can be found in the properties of the time series de-
scribing the behavior of the biological objects. One classi-
cal example of a biological phenomenon which under cer-
tain condition may display fractal properties is the famous
logistic map [38,82,95,123] based on the ideas of a great
British economist and demographer Robert Malthus. Sup-

pose that there is a population Nt of a certain species en-
closed in a finite habitat (e. g. island) at time t. Here t is an
integer index which may denote year. Suppose that at time
t C 1 the population becomes

NtC1 D bNt � dN2
t ;

where b is the natural birth rate and d is the death rate
caused by the competition for limited resources. In the
most primitive model, the animals are treated as particles
randomly distributed over areaA annihilating at each time
step if the distance between them is less than r. In this
case d D �r2/A. The normalized population xt D dNt/b
obeys a recursive relation with a single parameter b:

xtC1 D bxt(1 � xt) :

The behavior of the population is quite different for dif-
ferent b. For b � 1 the population dies out as t!1. For
1 < b � b0 D 3 the population converges to a stable size.
If bn�1 < b � bn , the population repetitively visits 2n val-
ues 0 < x1; : : : ; x2n < 1 called attractors as t!1. The
bifurcation points 3 D b0 < b1 < b2 < � � � < bn < b1 �
3:569945672 converge to a critical value b1, at which the
set of population sizes becomes a fractal with fractal di-
mension df � 0:52 [50]. This fractal set resembles a Can-
tor set confined between 0 and 1. For b1 < b < 4, the
behavior is extremely complex. At certain values b chaos
emerges and the behavior of the population become un-
predictable, i. e. exponentially sensitive to the initial con-
ditions. At some intervals of parameter b, the predictable
behavior with a finite attractor set is restored. For b > 4,
the population inevitably dies out. Although the set of at-
tractors becomes truly fractal only at certain values of the
birth rate, and the particular value of the fractal dimen-
sion does not have any biological meaning, the logistic
map has a paradigmatic value in the studies of popula-
tion dynamics with an essentially Malthusian take home
massage: excessive birth rate leads to disastrous conse-
quences such as famines coming at unpredictable times,
and in the case of Homo sapiens to devastating wars and
revolutions.

Fractals and Time Series

As we can see in the previous section, even simple sys-
tems characterized by nonlinear feedbacks may display
complex temporal behavior, which often becomes chaotic
and sometimes to fractal. Obviously, such featuresmust be
present in the behavior of the nervous system, in particular
in the human brain which is probably the most complex
system known to contemporary science. Nevertheless, the
source of fractal behavior can be sometimes trivial with-
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out evidence of any cognitive ability. An a example of such
a trivial fractal behavior is the random firing of a neu-
ron [46] which integrates through its dendritic synapses
inhibitory and excitatory signals from its neighbors. The
action potential of such a neuron can be viewed as per-
forming a one-dimensional randomwalk going down if an
inhibitory signal comes from a synapse or going up if an
excitatory signal comes form a different synapse. As soon
as the action potential reaches a firing threshold the neu-
ron fires, its action potential drops to an original value and
the random walk starts again. Thus the time intervals be-
tween the firing spikes of such a neuron are distributed as
the returning times of a one-dimensional random walk to
an origin. It is well known [42,58,104,141], that the prob-
ability density P(
t) of the random walk returns scales
as (
t)�� with � D 3/2. Accordingly, the spikes on the
time axis form a fractal dust with the fractal dimension
df D � � 1 D 1/2.

A useful way to study the correlations in the time series
is to compute its autocorrelation function and its Fourier
transform which is called power spectrum, analogous to
the structure factor for the spatial correlation analysis.
Due to the property of the Fourier transform to convert
a convolution into a product, the power spectrum is also
equal to the square of the Fourier transform of the origi-
nal time series. Accordingly it has a simple physical mean-
ing telling how much energy is carried in a certain fre-
quency range. In case of a completely uncorrelated signal,
the power spectrum is completely flat, whichmeans that all
frequencies carry the same energy as in white light which
is the mixture of all the rainbow colors of different fre-
quencies. Accordingly a signal which has a flat power spec-
trum is called white noise. If the autocorrelation function
C(t) decays for t!1 as C(t) � t��, where 0 < � < 1,
the power spectrum S(f ) of this time series diverges as
f�ˇ , with ˇ D 1 � �. Thus the LRPLC in the time series
can be detected by studying the power spectrum. There
are alternative ways of detecting LRPLC in time series,
such as Hurst analysis [41], detrended fluctuation analysis
(DFA) [19,98] and wavelet analysis [4]. These methods are
useful for studying short time series for which the power
spectrum is too noisy. They measure the Hurst exponent
˛ D (1C ˇ)/2 D 1 � �/2.

It can be shown [123] that for a time series which is
equal to zero everywhere except at points t1; t2; : : : ; tn ; : : :,
at which it is equal to unity and these points form a frac-
tal set with fractal dimension df, the time autocorrela-
tion function C(t) decreases for t !1 as C(t) � t��,
where � D 1 � df. Therefore the power spectrum S(f )
of this time series diverges for f ! 0 as f�ˇ , with
ˇ D 1 � � D df. Accordingly, for the random walk model

of neuron firing, the power spectrum is characterized by
ˇ D 1/2.

In the more general case, the distribution of the
intervals 
tn D tn � tn�1 can decay as a power law
P(
t) � (
t)��, with 1 < � < 3. For � < 2, the set
t1; t2; : : : ; tn is a fractal, and the power spectrum decreases
as power law S( f ) � f�df D f��C1. For 2 < � < 3, the
set t1; t2; : : : ; tn has a finite density, with df D D D 1.
However, the power spectrum and the correlation func-
tion maintain their power law behavior for � < 3. This
behavior indicates that although the time series itself is
uniform, the temporal fluctuations remain fractal. In this
case, the exponent ˇ characterizing the low frequency
limit is given by ˇ D 3 � �. The maximal value of ˇ D 1
is achieved when � D 2. This type of signal is called 1/ f -
noise or “red” noise. If � � 3, ˇ D 0 in the limit of low
frequencies and we again recover white noise.

The physical meaning of 1/ f noise is that the temporal
correlations are of infinite range. For the majority of the
processes in nature, temporal correlations decay exponen-
tially C(t) � exp(�t/�), where the characteristic memory
span � is called relaxation or correlation time. For a time
series with a finite correlation time � , the power spec-
trum has a Lorentzian shape, namely it stays constant for
f < 1/� and decreases as 1/ f 2 for f > 1/� . The signal in
which S( f ) � 1/ f 2 is called brown noise, because it de-
scribes the time behavior of the one-dimensional Brow-
nian motion. Thus for the majority of the natural pro-
cesses, the time spectrum has a crossover from a white
noise at low frequencies to a brown noise at high frequen-
cies. The relatively unusual case when S( f ) � f�ˇ , where
0 < ˇ < 1 is called fractal noise because as we see above it
describes the behavior of the fractal time series. 1/ f -noise
is the special type of the fractal noise corresponding to the
maximal value of ˇ, which can be achieved in the limit of
low frequencies.

R. Voss and J. Clarke [135,136] had analyzed the
music written by different composers and found that it
follows 1/ f noise over at least three orders of magni-
tude. It means that music does not have a characteristic
time-scale. There is an evidence that physiological process
such as heart-beat, gate, breath and sleeping patterns as
well as certain types of human activity such as sending
e-mails has certain fractal features [6,16,20,27,47,55,57,
72,73,97,99,100,113,126,129]. A. Goldberger [99,126] sug-
gested that music is pleasant for us because it mimics the
fractal features of our physiology. It has to be pointed out
that in all these physiological time series there is no clear
power law behavior expanding over many orders of mag-
nitude. There is also no simple clear explanation of the ori-
gins of fractality. One possible mechanism could be due
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the distribution of the return times of a random walk,
which has been used to explain the sleeping patterns and
response to the e-mails.

SOC and Biological Evolution

Self-organized criticality (SOC) [8,92] describes the behav-
ior of the systems far form equilibrium, the general feature
of which is a slow increase of strain which is interrupted by
an avalanche-like stress release. These avalanches are dis-
tributed in a power law fashion. The power spectrum of an
activity at a given spatial site is described by a fractal noise.
One of the most successful application of SOC is the ex-
planation of the power-law distribution of the magnitudes
of the earthquakes (Gutenberg–Richter’s law) [89,130].

The simple physical models of self-organized critical-
ity are invasion percolation [26,127], sand-pile model [8],
and Bak–Sneppen model of biological evolution [7]. In
the one-dimensional Bak–Sneppen model, an ecosystem
is represented by a linear chain of the pray-predator rela-
tionships in with each species is represented by a site on
a straight line surrounded by its predator (a site to the
right) and a pray (a site to the left). Each site is charac-
terized by its fitness f which at the beginning is uniformly
distributed between 0 and 1. At each time step, a site
with the lowest fitness becomes extinct and is replaced by
a mutated species with a new fitness randomly taken from
a uniform distribution between 0 and 1. The fitnesses of
its two neighbors (predator and prey) are also changed
at random. After certain equilibration time, the fitness of
almost all the species except a few becomes larger than
a certain critical value fc. These few active species with
low fitness which can spontaneously mutate form a frac-
tal set on the pray-predator line. The activity of each site
can be represented by a time series of mutations shown as
spikes corresponding to the times of individual mutations
at this site. The power spectrum of this time series indi-
cates the presence of the fractal noise. At a steady state
the minimal fitness value which spontaneously mutates
fluctuates below fc with a small probability P(�) comes
into the interval between fc � � and fc. The distribution
of the first return times
t� to a given �-vicinity of fc fol-
lows a power law with an �-dependent exponential cut-
off. Since each time step corresponds to a mutation, the
time interval for which f stays below fc � � corresponds to
an avalanche of mutations caused by a mutation of a very
stable species with f > fc � �. Accordingly one can spec-
ulate, that evolution goes as a punctuated equilibrium so
that an extinction of a stable species causes a gigantic ex-
tinction of many other species which hitherto have been
well adopted. The problem with this SOCmodel is the def-

inition of a time step. In order to develop a realistic model
of evolution one needs to assume that the real time needed
for a spontaneous mutation of species with different fit-
ness dramatically increases with f , going for example as
exp( f A), where A is a large value. Unfortunately, it is im-
possible to verify the predictions of this model because pa-
leontological records do not provide us with a sufficient
statistics.

Fractal Features of DNA Sequences

DNA molecules are probably the largest molecules in na-
ture [139]. Each strand of DNA in large human chro-
mosomes consist of about 108 monomers or base-pairs
(bp) which are adenine (A), cytosine (C), guanine (G),
and thymine (T). The length of this molecule if stretched
would reach several centimeters. The geometrical pack-
ing of DNA in a cell resembles a self-similar structure
with at least 6 levels of packing: a turn of the double he-
lix (10 bp), a nucleosome (200 bp), a unit of 30 nm fiber
(6 nucleosomes), a loop domain (� 100 units of 30 nm
fiber), a turn of a metaphase chromosome (� 100 loop
domains), a metaphase chromosome (� 100 turns). The
packing principle is quite similar to the organization of
the information in the library: letters form lines, lines form
pages, pages form books, books are placed on the shelves,
shelves form bookcases, bookcases form rows, and rows
are placed in different rooms. This structure however is
not a rigorous fractal, because packing of the units on dif-
ferent levels follows different organization principles.

The DNA sequence treated as a sequence of letters
also has certain fractal properties [4,5,19,69,70,96]. This
sequence can be transformed into a numerical sequence
by several mapping rules: for example A rule, in which
A is replaced by 1 and C, T, G are replaced by 0, or SW
rule in which strongly bonded bp (C and G) are replaced
by 1 and weakly bonded bp (A and T) are replaced by
� 1. Purine-Pyrimidine (RY)mapping rule (A,G: +1; C,T:-
1) and KM mapping rule (A,C:+1; G,T -1) are also pos-
sible. Power spectra of such sequences display large re-
gions of approximate power law behavior in the range
from f D 10�2 to f D 10�8. For SW mapping rule we
has almost perfect 1/ f noise in the region of low frequen-
cies (Fig. 10). This is not surprising because chromosomes
are organized in a large CG rich patches followed by AT
rich patches called isochors which extend over millions
of bp. The changing slope of the power spectra for differ-
ent frequency ranges clearly indicates that DNA sequences
are also not rigorous fractals but rather a mosaic struc-
tures with different organization principles on different
length-scales [60,98]. A possible relation between the frac-
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Fractals in Biology, Figure 10
a Power spectra for seven different mapping rules computed for the Homo sapiens chromosome XIV, genomic contig NT_026437.
The result is obtained by averaging 1330power spectra computed by fast Fourier transform for non-overlapping segments of length
N D 216 D 65536.b Power spectra for SW, RY, and KMmapping rules for the same contig extended to the low frequency region char-
acterizing extremely long range correlations. The extension is obtained by extracting low frequencies from the power spectra com-
puted by FFT with N D 224 � 16� 106 bp. Three distinct correlation regimes can be identified. High frequency regime (f < 0:003)
is characterized by small sharp peaks. Medium frequency regime (0:5 � 10�5 < f < 0:003) is characterized by approximate power-
law behavior for RY and SW mapping rules with exponent ˇM D 0:57. Low frequency regime (f < 0:5 � 10�5) is characterized by
ˇ D 1:00 for SW rule. The high frequency regime for RY rule can be approximated by ˇH D 0:16 in agreement with the data of
Fig. 11. c RY Power spectra for the entire genome of E. coli (bacteria), S. cerevisae (yeast) chromosome IV, H. sapiens (human) chro-
mosome XIV and the largest contig (NT_032977.6)on the chromosome I; and C. elegans (worm) chromosome X. It can be clearly seen
that the high frequency peaks for the two different human chromosomes are exactly the same, while they are totally different from
thehigh frequencypeaks for other organisms. These high frequencypeaks are associatedwith the interspersed repeats. One can also
notice the presence of enormous peaks for f D 1/3 in E. coli and yeast, indicating that their genomes do not have introns, so that the
lengths of coding segments are very large. TheC. elegansdata canbe verywell approximated bypower law correlations S(f ) � f�0:28

for 10�4 < f < 10�2. d Log–log plot of the RY power spectrum for E. coliwith subtractedwhite noise level versus jf � 1/3j. It shows
a typical behavior for a signal with finite correlation length, indicating that the distribution of the coding segments in E. coli has finite
average square length of approximately 3� 103 bp
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Fractals in Biology, Figure 11
RY Power spectra averaged over all eukaryotic sequences longer
than 512bp, obtained by FFT with window size 512. Upper curve
is average over 29,453 coding sequences; lower curve is average
over 33,301noncoding sequences. For clarity, the power spectra
are shifted vertically by arbitrary quantities. The straight linesare
least squares fits for second decade (RegionM). The values ofˇM
for coding and noncoding DNA obtained from the slopes of the
fits are 0.03 and 0.21, respectively (from [21])

tal correlations of DNA sequences and packing of DNA
molecules was suggested in [52,53].

An intriguing property of the DNA of multicellular or-
ganisms is that an overwhelming portion of it (97% in case
of humans) is not used for coding proteins. It is interest-
ing that the percent of non-coding DNA increases with
the complexity of an organism. Bacteria practically do not
have non-coding DNA, and Yeast has only 30% of it. The
coding sequences form genes (� 104 bp) which carry in-
formation for one protein. The genes of multicellular or-
ganisms are broken by many noncoding intervening se-
quences (introns). Only exons which are short (� 102 bp)
coding sequences located between introns (� 103 bp) are
eventually translated into a protein. The genes themselves
are separated by very long intergenic sequences� 105 bp.
Thus the coding structure of DNA resembles a Cantor set.

The purpose and properties of coding DNA are well
understood. Each three consequent bp form a codon,
which is translated into one amino acid of the protein se-
quence. Accordingly, the power spectrum computed for
the coding DNA has a characteristic peak at f D 1/3 cor-
responding to the inverse codon length (Figs. 11 and 12).
Coding DNA is highly conserved and the power spectra of
coding DNA of different organisms are very similar and in
case of mammals are indistinguishable (Fig. 12).

The properties of noncoding DNA are very different.
Non coding DNA contains a lot of useful information in-

Fractals in Biology, Figure 12
Comparisonof the correlationproperties of codingandnon-cod-
ing DNA of different mammals. Shown RY power spectra aver-
aged over all complimentary DNA sequences of Homo sapiens
(HS-C) and Mus musculus (mouse) (MM-C). The complimentary
DNA sequences are obtained from messenger RNA by reverse
transcriptase and thus lack non-coding elements. They are char-
acterized byhugepeaks at f D 1/3, corresponding to the inverse
codon length 3 bp. The power spectra for human and mouse
are almost indistinguishable. Also shown RY power spectra of
large continuously sequenced segments of chromosomes (con-
tigs) of about 107 bp long formouse (MM), human (HS) and chim-
panzee (PT, Pan troglodytes). Their power spectra have different
high frequency peaks absent in the coding DNA power spectra:
a peak at f D 1/2, corresponding to simple repeats and several
large peaks in the range from f D 1/3 to f D 1/100 correspond-
ing to interspersed repeats. Notice that the magnitudes of these
peaks are similar for humans and chimpanzees (although for hu-
mans they are slightly larger, especially the peak at 80bp cor-
responding to the long interspersed repeats) and much larger
than those of mouse. This means that mouse has much smaller
number of the interspersed repeats than primates. On the other
hand, mouse has much larger fraction of dimeric simple repeats
indicated by the peak at f D 1/2

cluding protein binding sites controlling gene transcrip-
tion and expression and other regulatory sequences. How-
ever its overwhelming fraction lacks any known purpose.
This “junk” DNA is full of simple repeats such as CA-
CACACA. . . as well as the interspersed repeats or retro-
posons which are virus-like sequences inserting them-
selves in great number of copies into the intergenic DNA.
It is a great challenge of molecular biology and genetics
to understand the meaning of non-coding DNA and even
to learn how to manipulate it. It would be very interest-
ing to create transgenic animals without non-coding DNA
and test if their phenotype will differ from that of the wild
type species. The non-coding DNA even for very closely
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related species can significantly differ (Fig. 12). The length
of simple repeats varies even for close relatives. That is why
simple repeats are used in forensic studies.

The power spectra of non-coding DNA significantly
differ from those of coding DNA. Non-coding DNA does
not have a peak at f D 1/3. The presence of simple repeats
make non-coding DNAmore correlated than coding DNA
on a scale from 10 to 100 bp [21] (Fig. 11). This differ-
ence observed in 1992 [70,96] lead to the hypothesis that
noncoding DNA is governed by some mutation-duplica-
tion stochastic process which creates long-range (fractal)
correlations, while the coding DNA lacks long-range cor-
relations because it is highly conserved. Almost any mu-
tation which happens in coding DNA alter the sequence
of the corresponding protein and thus may negatively af-
fect its function and lead to a non-viable or less fit organ-
ism. Researchers have proposed using the difference in the
long-range correlations to find the coding sequences in the
sea of non-coding DNA [91]. However this method ap-
pears to be unreliable and today the non-coding sequences
are found with much greater accuracy by the bioinformat-
ics methods based on sequence similarity to the known
proteins.

Bioinformatics has developed powerful methods for
comparing DNA of different species. Even a few hundred
bp stretch of the mitochondrial DNA of a Neanderthal
man can tell that Neanderthals diverged from humans
about 500 000 years ago [65]. The power spectra and other
correlation methods such as DFA or wavelet analysis does
not have such an accuracy. Never the less, power spectra
of the large stretches of DNA carry important information
on the evolutionary processes in the DNA. They are sim-
ilar for different chromosomes of the same organism, but
differ even for closely related species (Fig. 12). In this sense
they can play a role similar to the role played by X-ray or
Raman spectra for chemical substances. A quick look at
them can tell a human and a mouse and even a human
and amonkey apart. Especially interesting is the difference
in peak heights produced by different interspersed repeats.
The height of these peaks is proportional to the number of
the copies of the interspersed repeats. According to this
simple criterion, the main difference between humans and
chimps is the insertion of hundreds of thousands of extra
copies of interspersed repeats into human DNA [59].

Future Directions

All the above examples show that there are no rigorous
fractals in biology. First of all, there are always a lower
and an upper cutoff of the fractal behavior. For example,
a polymer in a good solvent which is probably the most

rigorous of all real fractals in biology has the lower cut-
off corresponding to the persistence length comprised of
a few monomers and the upper cutoff corresponding to
the length of the entire polymer or to the size of the com-
partment in which it is confined.

For the hierarchical structures such as trees and lungs,
in addition to the obvious lower and upper cutoffs, the
branching pattern changes from one generation to the
next. In the DNA, the packing principles employ different
mechanisms on the different levels of packing. In bacterial
colonies, the lower cutoff is due to some tendency of bacte-
ria to clump together analogous to surface tension, and the
upper cutoff is due to the finite concentration of the nu-
trients, which originally are uniformly distributed on the
Petri dish. In the ideal DLA case, the concentration of the
diffusing particles is infinitesimally small, so at any given
moment of time there is only one particle in the vicinity of
the aggregate.

The temporal physiological series are also not exactly
self-similar, but are strongly affected by the daily schedule
with a characteristic frequency of 24 h and shorter over-
tones. Some of these signals can be described with help of
multifractals.

Fractals in ecology are limited by the topographical
features of the land which may be also fractal due to com-
plex geological processes, so it is very difficult to distin-
guish whether certain features are caused by biology or
geology. The measurements of the fractal dimension are
hampered by the lack of statistics, the noise in the image
or signal, and by the crossovers due to intrinsic features
of the system which is differently organized on different
length scales. So very often the mosaic organization of the
system with patches of several fixed length scales can be
mistakenly identified with the fractal behavior. Thus the
use of fractal dimension or Hurst exponent for diagnos-
tics or distinguishing some parts of the system from one
another has a limited value. After all, the fractal dimen-
sion is only one number which is usually obtained from
a slope of a least square linear fit of a log–log graph over
a subjectively identified range of values. Other features of
the power spectrum, such as peaks at certain characteris-
tic frequencies may havemore biological information than
fractal dimension. Moreover, the presence of certain frac-
tal behaviormay originate from simple physical principles,
while the deviation from it may indicate the presence of
a nontrivial biological phenomenon.

On the other hand, fractal geometry is an important
concept which can be used for qualitative understanding
of the mechanisms behind certain biological processes.
The use of similar organization principles on different
length scales is a remarkable feature, which is certainly em-
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ployed by nature to design the shape and behavior of living
organisms.

Though fractals themselves may have a limited value
in biology, the theory of complex systems in which they
often emerge continues to be a leading approach in un-
derstanding life. One of the most impelling challenges of
modern interdisciplinary science which involves biology,
chemistry, physics, mathematics, computer science, and
bioinformatics is to build a comprehensive theory of mor-
phogenesis. Such a great mind as de Gennes turned to this
subject in his late years [35,36,37]. In these studies the the-
ory of complex networks [2,12,48,67,90] which describe
interactions of biomolecules with many complex positive
and negative feedbacks will take a leading part.

Challenges of the same magnitude face researches in
neuroscience, behavioral science, and ecology. Only com-
plex interdisciplinary approach involving the specialists in
the theory of complex systems may lead to new break-
throughs in this field.
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Glossary

Fractal An adjective or a noun representing complex con-
figurations having scale-free characteristics or self-
similar properties. Mathematically, any fractal can be
characterized by a power law distribution.

Power law distribution For this distribution the proba-
bility density is given by a power law, p(r) D c � r�˛�1,
where c and ˛ are positive constants.

Foreign exchange market A free market of currencies,
exchanging money in one currency for other, such as
purchasing a United States dollar (USD) with Japanese
yen (JPY). The major banks of the world are trading
24 hours and it is the largest market in the world.

Definition of the Subject

Market price fluctuation was the very first example of frac-
tals, and since then many examples of fractals have been
found in the field of Economics. Fractals are everywhere
in economics. In this article the main attention is focused
on real world examples of fractals in the field of economics,
especially market properties, income distributions, money
flow, sales data and network structures. Basic mathemat-
ics and physics models of power law distributions are re-
viewed so that readers can start reading without any spe-
cial knowledge.

Introduction

Fractal is the scientific word coined by B.B. Mandel-
brot in 1975 from the Latin word fractus, meaning “frac-
tured” [25]. However, fractal does not directly mean frac-
ture itself. As an image of a fractal Fig. 1 shows a photo of
fractured pieces of plaster fallen on a hard floor. There are
several large pieces, manymiddle size pieces and countless
fine pieces. If you have a microscope and observe a part
of floor carefully then you will find in your vision several
large pieces, many small pieces and countless fine pieces,
again in the microscopic world. Such scale-invariant na-
ture is the heart of the fractal. There is no explicit defini-
tion on the word fractal, it generally means a complicated
scale-invariant configuration.

Scale-invariance can be defined mathematically [42].
Let P(� r) denote the probability that the diameter of
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Fractals and Economics, Figure 1
Fractured pieces of plaster fallen on a hard floor (provided by H.
Inaoka)

a randomly chosen fractured piece is larger than r, then
this distribution is called scale-invariant if this function
satisfies the following proportional relation for any posi-
tive scale factor  in a considering scale range:

P(� r) / P(� r) : (1)

The proportional factor should be a function of , so we
can re-write Eq. (1) as

P(� r) D C()P(� r) : (2)

Assuming that P(� r) is a differentiable function, and dif-
ferentiate Eq. (2) by , and then let  D 1.

rP0(� r) D C0(1)P(� r) (3)

As C0(1) is a constant this differential equation is readily
integrated as

P(� r) D c0rC
0(1) : (4)

P(� r) is a cumulative distribution and it is a non-increas-
ing function in general, the exponent C0(1) can be replaced
by �˛ where ˛ is a positive constant. Namely, from the
scale-invariance with the assumption of differentiability
we have the following power law:

P(� r) D c0r�˛ : (5)

The reversed logic also holds, namely for any power law
distribution there is a fractal configuration or a scale-in-
variant state.

In the case of real impact fracture, the size distribution
of pieces is experimentally obtained by repeating sieves of

Fractals and Economics, Figure 2
Sierpinski gasket

various sizes, and it is empirically well-known that a frac-
tured piece’s diameter follows a power law with the ex-
ponent about ˛ D 2 independent of the details about the
material or the way of impact [14]. This law is one of the
most stubborn physical laws in nature as it is known to
hold from 10�6 m to 105 m, from glass pieces around us to
asteroids. From theoretical viewpoint this phenomenon is
known to be described by a scale-free dynamics of crack
propagation and the universal properties of the exponent
value are well understood [19].

Usually fractal is considered geometric concept intro-
ducing the quantity fractal dimension or the concept of
self-similarity. However, in economics there are very few
geometric objects, so, the concept of fractals in economics
are mostly used in the sense of power law distributions.

It should be noted that any geometrical fractal object
accompanies a power law distribution even a determinis-
tic fractal such as Sierpinski gasket. Figure 2 shows Sier-
pinski gasket which is usually characterized by the fractal
dimension D given by

D D
log 3
log 2

: (6)

Paying attention to the distribution of length r of white tri-
angles in this figure, it is easy to show that the probability
that a randomly chosen white triangle’s side is larger than
r, P(� r), follows the power law,

P(� r) / r�˛ ; ˛ D D D
log 3
log 2

: (7)

Here, the power law exponent of distribution equals to the
fractal dimension; however, such coincidence occurs only
when the considering distribution is for a length distribu-
tion. For example, in Sierpinski gasket the area s of white
triangles follow the power law,

P(� s) / s�˛ ; ˛ D
log 3
log 4

: (8)
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The fractal dimension is applicable only for geometric
fractals, however, power law distributions are applicable
for any fractal phenomena including shapeless quantities.
In such cases the power law exponent is the most impor-
tant quantity for quantitative characterization of fractals.

According to Mandelbrot’s own review on his life the
concept of fractal was inspired when he was studying eco-
nomics data [26]. At that time he found two basic prop-
erties in the time series data of daily prices of New York
cotton market [24]:

(A) Geometrical similarity between large scale chart and
an expanded chart.

(B) Power law distribution of price changes in a unit time
interval, which is independent of the time scale of the
unit.

He thought such scale invariance in both shape and
distribution is a quite general property, not only in price
charts but also in nature at large. His inspiration was cor-
rect and the concept of fractals spread over physics first
and then over almost all fields of science. In the history of
science it is a rare event that a concept originally born in
economics has been spread widely to all area of sciences.

Basic mathematical properties of cumulative distribu-
tion can be summarized as follows (here we consider dis-
tribution of non-negative quantity for simplicity):

1. P(� 0) D 1 , P(� 1) D 0.
2. P(� r) is a non-increasing function of r.
3. The probability density is given as p(r) � � d

dr P(� r).
As for power law distributions there are three peculiar
characteristics:

4. Difficulty in normalization. Assuming that P(� r) D
c0r�˛ for all in the range 0 � r <1, then the nor-
malization factor c0 must be 0 considering the limit of
r ! 0. To avoid this difficulty it is generally assumed
that the power law does not hold in the vicinity of
r D 0. In the case of observing distribution from real
data there are naturally lower and upper bounds, so this
difficulty should be necessary only for theoretical treat-
ment.

5. Divergence of moments. As for moments defined by
hrni �

R1
0 rn p(r)dr, hrni D 1 for n � ˛. In the spe-

cial case of 2 � ˛ > 0 the basic statistical quantity, the
variance, diverges, �2 � hr2i � hri2 D 1. In the case
of 1 � ˛ > 0 even the average can not be defined as
hri D 1.

6. Stationary or non-stationary? In view of the data anal-
ysis, the above characteristics of diverging moments
is likely to cause a wrong conclusion that the phe-
nomenon is non-stationary by observing its averaged

value. For example, assume that we observe k samples
fr1; r2; : : : ; rkg independently from the power law dis-
tribution with the exponent, 1 � ˛ > 0. Then, the sam-
ple average, hrik � 1

k fr1 C r2 C � � � C rkg, is shown to
diverge as, hrik / k1/˛ . Such tendency of monotonic
increase of averaged quantity might be regarded as a re-
sult of non-stationarity, however, this is simply a gen-
eral property of a power law distribution. The best way
to avoid such confusion is to observe the distribution
directly from the data.

Other than the power law distribution there is another im-
portant statistical quantity in the study of fractals, that is,
the autocorrelation. For given time series, fx(t)g, the auto-
correlation is defined as,

C(T) �
hx(t C T)x(t)i � hx(t)i2

hx(t)2i � hx(t)i2
; (9)

where h� � � i denotes an average over realizations. The au-
tocorrelation can be defined only for stationary time series
with finite variance, in which any statistical quantities do
not depend on the location of the origin of time axis.

For any case, the autocorrelation satisfies the following
basic properties,

1. C(0) D 1 and C(1) D 0
2. jC(T)j � 1 for any T � 0.
3. The Wiener–Khinchin theorem holds, C(T) DR1

0 S( f ) cos 2� fd f , where S(f ) is the power spectrum
defined by S( f ) � hbx( f )bx(� f )i, with the Fourier trans-
form,bx( f ) �

R
x(t)e2	 i f tdt.

In the case that the autocorrelation function is charac-
terized by a power law, C(T) / T�ˇ , ˇ > 0, then the
time series fx(t)g is said to have a fractal property, in
the sense that the autocorrelation function is scale-inde-
pendent for any scale-factor,  > 0, C(T) / C(T). In
the case 1 > ˇ > 0 the corresponding power spectrum is
given as S( f ) / f�1Cˇ .

The power spectrum can be applied to any time se-
ries including non-stationary situations. A simple way of
telling non-stationary situation is to check the power law
exponent of S( f ) / f�1Cˇ in the vicinity of f D 0, for
0 > ˇ the time series is non-stationary.

Three basic examples of fractal time series are the fol-
lowings:

1. White noise. In the case that fx(t)g is a stationary inde-
pendent noise, the autocorrelation is given by the Kro-
necker’s function, C(T) D ıT , where

ıT D

(
1 ; T D 0
0 ; T ¤ 0 :
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The corresponding power spectrum is S( f ) / f 0. This
case is called white noise from an analogy that super-
position of all frequency lights with the same amplitude
make a colorless white light. White noise is a plausible
model of random phenomena in general including eco-
nomic activities.

2. Random walk. This is defined by summation of a white
noise, X(t) D X(0)C

Pt
sD0 x(s), and the power spec-

trum is given by S( f ) / f�2. In this case the autocor-
relation function can not be defined because the data is
non-stationary. Random walks are quite generic mod-
els widely used from Brownian motions of colloid to
market prices. The graph of a random walk has a frac-
tal property such that an expansion of any part of the
graph looks similar to the whole graph.

3. The 1/f noise. The boundary of stationary and non-
stationary states is given by the so-called 1/f noise,
S( f ) / f�1. This type of power spectrum is also widely
observed in various fields of sciences from electrical
circuit noise [16] to information traffics in the Inter-
net [53]. The graph of this 1/f noise also has the fractal
property.

Examples in Economics

In this chapter fractals observed in real economic activi-
ties are reviewed.Mathematicalmodels derived from these
empirical findings will be summarized in the next chapter.

As mentioned in the previous chapter the very first ex-
ample of a fractal was the price fluctuation of the New
York cotton market analyzed byMandelbrot with the daily
data for a period of more than a hundred years [24]. This
research attracted much attention at that time, however,
there was no other goodmarket data available for scientific
analysis, and no intensive follow-up research was done un-
til the 1990s. Instead of earnest scientific data analysis arti-
ficial mathematical models of market prices based on ran-
domwalk theory became popular by the name of Financial
Technology during the years 1960–1980.

Fractal properties of market prices are confirmed with
huge amount of high resolution market data since the
1990s [26,43,44]. This is due to informationization of fi-
nancial markets in which transaction orders are processed
by computers and detail information is recorded auto-
matically, while until the 1980s many people gathered
at a market and prices are determined by shouting and
screaming which could not be recorded. Now there are
more than 100 financial market providers in the world
and the number of transacted items exceeds one million.
Namely, millions of prices in financial markets are chang-
ing with time scale in seconds, and you can access anymar-

ket price at real time if you have a financial provider’s ter-
minal on your desk via the Internet.

Among these millions of items one of the most repre-
sentative financial markets is the US Dollar-Japanese Yen
(USD-JPY) market. In this market Dollar and Yen are ex-
changed among dealers of major international banks. Un-
like the case of stock markets there is no physical trad-
ing place, but major international banks are linked by
computer networks and orders are emitted from each
dealer’s terminal and transactions are done at an electronic
broking system. Such a broking system and the computer
networks are provided by financial provider companies
like Reuters.

The foreign exchange markets are open 24 hours and
deals are done whenever buy- and sell-orders meet. The
minimum unit of a deal is one million USD (called a bar),
and about three million bars are traded everyday in the
whole foreign exchange markets in which more than 100
kinds of currencies are exchanged continuously. The to-
tal amount of money flow is about 100 times bigger than
the total amount of daily world trade, so it is believed that
most of deals are done not for the real world’s needs, but
they are based on speculative strategy or risk hedge, that
is, to get profit by buying at a low price and selling at
a high price, or to avoid financial loss by selling decreas-
ing currency.

In Fig. 3 the price of one US Dollar paid by Japanese
Yen in the foreign exchange markets is shown for 13
years [30]. The total number of data points is about 20
million, that is, about 10 thousand per day or the aver-
aged transaction interval is seven seconds. A magnified
part of the top figure for one year is shown in the second
figure. The third figure is the enlargement of one month
in the second figure. The bottom figure is again a part of
the third figure, here the width is one day. It seems that at
least the top three figures look quite similar. This is one of
the fractal properties of market price (A) introduced in the
previous chapter. This geometrical fractal property can be
found in any market, so that this is a very universal market
property.

However, it should be noted that this geometrical frac-
tal property breaks down for very short time scale as typi-
cally shown in Fig. 4. In this figure the abscissa is 10 min-
utes range and we can observe each transaction separately.
Obviously the price up down is more zigzag and more dis-
crete than the large scale continuous market fluctuations
shown in Fig. 3. In the case of USD-JPY market the time
scale that this breakdown of scale invariance occurs typi-
cally at time scale of several hours.

The distribution of rate change in a unit time (one
minute) is shown in Fig. 5. Here, there are two plots of cu-
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Fractals and Economics, Figure 3
Dollar-Yen rate for 13 years (Top). Dark areas are enlarged in the
following figure [30]

Fractals and Economics, Figure 4
Market price changes in 10minutes

mulative distributions, P(> 
x) for positive rate changes
and P(> j
xj) for negative rate changes, which are al-
most identical meaning that the up-down symmetry of
rate changes is nearly perfect. In this log–log plot the es-
timated power law distribution’s exponent is 2.5. In the

Fractals and Economics, Figure 5
Log–log plot of cumulative distribution of rate change [30]

original finding of Mandelbrot, (B) in the previous chap-
ter, the reported exponent value is about 1.7 for cotton
prices. In the case of stock markets power laws are con-
firmed universally for all items, however, the power expo-
nents are not universal, taking value from near one to near
five, typically around three [15]. Also the exponent values
change in time year by year.

In order to demonstrate the importance of large fluc-
tuations, Fig. 6 shows a comparison of threemarket prices.
The top figure is the original rate changes for a week. The
middle figure is produced from the same data, but it is con-
sisted of rate changes of which absolute values are larger
than 2� , that is, about 5 % of all the data. In the bottom
curve such large rate changes are omitted and the residue
of 95 % of small changes makes the fluctuations. As known
from these figures the middle figure is much closer to the
original market price changes. Namely, the contribution
from the power law tails of price change distribution is
very large for macro-scale market prices.

Power law distribution of market price changes is
also a quite general property which can be confirmed for
any market. Up-down symmetry also holds universally in
short time scale in general, however, for larger unit time
the distribution of price changes gradually deforms and
for very large unit time the distribution becomes closer to
a Gaussian distribution. It should be noted that in special
cases of market crashes or bubbles or hyper-inflations the
up-down symmetry breaks down and the power law dis-
tribution is also likely to be deformed.

The autocorrelation of the time sequence of price
changes generally decays quickly to zero, sometimes ac-
companied by a negative correlation in a very short time.
This result implies that the market price changes are ap-
parently approximated by white noise, and market prices
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Fractals and Economics, Figure 6
USD-JPY exchange rate for a week (top) Rate changes smaller
than 2� are neglected (middle) Rate changes larger than 2� are
neglected (bottom)

Fractals and Economics, Figure 7
Autocorrelation of volatility [30]

are known to follow nearly a random walk as a result.
However, market price is not a simple random walk. In
Fig. 7 the autocorrelation of volatility, which is defined
by the square of price change, is shown in log–log scale.
In the case of a simple random walk this autocorrela-
tion should also decay quickly. The actual volatility au-
tocorrelation nearly satisfies a power law implying that
the volatility time series has a fractal clustering property.
(See also Fig. 31 representing an example of price change
clustering.)

Another fractal nature of markets can be found in the
intervals of transactions. As shown in Fig. 8 the transac-

Fractals and Economics, Figure 8
Clustering of transaction intervals

Fractals and Economics, Figure 9
Power spectrum of transaction intervals [50]

tion intervals fluctuate a lot in very short time scale. It is
known that the intervalsmake clusters, namely, shorter in-
tervals tend to gather. To characterize such clustering ef-
fect we can make a time sequence consisted of 0 and 1,
where 0 denotes no deal was done at that time, and 1 de-
notes a deal was done. The corresponding power spectrum
follows a 1/f power spectrum as shown in Fig. 9 [50].

Fractal properties are found not only in financial mar-
kets. Company’s income distribution is known to follow
also a power law [35]. A company’s income is roughly
given by subtraction of incoming money flow minus out-
going money flow, which can take both positive and nega-
tive values. There are about six million companies in Japan
and Fig. 10 shows the cumulative distribution of annual
income of these companies. Clearly we have a power law
distribution of income I with the exponent very close to
�1 in the middle size range, so-called the Zipf’s law,

P(> I) / I�ˇ ; ˇ D 1 : (10)

Although in each year every company’s income fluctuates,
and some percentage of companies disappear or are newly
born, this power law is known to hold for more than 30
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Fractals and Economics, Figure 10
Income distribution of companies in Japan

Fractals and Economics, Figure 11
Income distribution of companies in France [13]

years. Similar power laws are confirmed in various coun-
tries, the case of France is plotted in Fig. 11 [13].

Observingmore details by categorizing the companies,
it is found that the income distribution in each job cate-
gory follows nearly a power lawwith the exponent depend-
ing on the job category as shown in Fig. 12 [29]. The impli-
cation of this phenomenon will be discussed in Sect. “In-
come Distribution Models”.

A company’s size can also be viewed by the amount of
whole sale or the number of employee. In Figs. 13 and 14
distributions of these quantities are plotted [34]. In both
cases clear power laws are confirmed. The size distribution

Fractals and Economics, Figure 12
Income distribution of companies in each category [29]

Fractals and Economics, Figure 13
The distribution of whole sales [34]

of debts of bankrupted companies is also known to follow
a power law as shown Fig. 15 [12].

A power law distribution can also be found in per-
sonal income. Figure 16 shows the personal income dis-
tribution in Japan in a log–log plot [1]. The distribution
is clearly separated into two parts. The majority of peo-
ple’s incomes are well approximated by a log-normal dis-
tribution (the left top part of the graph), and the top few
percent of people’s income distribution is nicely charac-
terized by a power law (the linear line in the left part of the
graph). The majority of people are getting salaries from
companies. This type of composite of two distributions
is well-known from the pioneering study by Pareto about
100 years ago and it holds in various countries [8,22].
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Fractals and Economics, Figure 14
The distribution of employee numbers [34]

Fractals and Economics, Figure 15
The size distribution of debts of bankrupted companies [12]

A typical value of the power exponent is about two,
significantly larger than the income distribution of com-
panies. However, the exponent of the power law seems to
be not universal and the value changes county by country
or year by year. There is a tendency that the exponent is
smaller, meaning more rich people, when the economy is
improving [40].

Another fractal in economics can be found in a net-
work of economic agents such as banks’ money transfer
network. As a daily activity banks transfer money to other

Fractals and Economics, Figure 16
Personal income distribution in Japan [1]

banks for various reasons. In Japan all of these interbank
money transfers are done via a special computer network
provided by the Bank of Japan. Detailed data of actual
money transfer among banks are recorded and analyzed
for the basic study.

The total amount of money flow among banks in
a day is about 30 � 1012 yen with the number of trans-
actions about 10 000. Figure 17 shows the distribution of
the amount of money at a transaction. The range is not
wide enough but we can find a power law with an expo-
nent about 1.3 [20].

The number of banks is about 600, so the daily trans-
action number is only a few percent of the theoretically

Fractals and Economics, Figure 17
The distribution of the amount of transferredmoney [21]
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Fractals and Economics, Figure 18
The number distribution of active links per site [20]

possible combinations. It is confirmed that there are many
pairs of banks which never transact directly. We can de-
fine active links between banks for pairs with the averaged
number of transaction larger than one per day. By this cri-
terion the number of links becomes about 2000, that is,
about 0.5 percent of all possible link numbers. Compared
with the complete network, the actual network topologies
are much more sparse.

In Fig. 18 the number distribution of active links per
site are plotted in log–log plot [21]. As is known from
this graph, there is an intermediate range in which the
link number distribution follows a power law. In the ter-
minology of recent complex network study, this property
is called the scale-free network [5]. The scale-free net-
work structure among these intermediate banks is shown
in Fig. 19.

Fractals and Economics, Figure 19
Scale-free network of intermediate banks [20]

Fractals and Economics, Figure 20
Distribution of total deposit for Japanese banks [57] Power law
breaks down from 1999

There are about 10 banks with large link numbers
which deviate from the power law, also small link num-
ber banks with link number less than four are out of the
power law. Such small banks are known to make a satellite
structure that many banks linked to one large link num-
ber banks. It is yet to clarify why intermediate banks make
fractal network, and also to clarify the role of large banks
and small banks which are out of the fractal configuration.

In relation with the banks, there are fractal properties
other than cash flow and the transaction network. The dis-
tribution of the whole amount of deposit of Japanese bank
is approximated by a power law as shown in Fig. 20 [57].
In recent years large banks merged making a few mega
banks and the distribution is a little deformed. Histori-
cally there were more than 6000 banks in Japan, however,
now we have about 600 as mentioned. It is very rare that
a bank disappears, instead banks are merged or absorbed.
The number distribution of banks which are historically
behind a present bank is plotted in Fig. 21, again a power
law can be confirmed.

Other than the example of the bank network, network
structures are very important generally in economics. In
production process from materials, through various parts
to final products the network structure is recently studied
in view of complex network analysis [18]. Trade networks
among companies can also be described by network termi-
nology. Recently, network characterization quantities such
as link numbers (Fig. 22), degrees of authority, and Page-
ranks are found to follow power laws from real trade data
for nearly a million of companies in Japan [34].

Still more power laws in economics can be found in
sales data. A recent study on the distribution of expen-
diture at convenience stores in one shopping trip shows
a clear power law distribution with the exponent close to
two as shown in Fig. 23 [33]. Also, book sales, movie hits,
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Fractals and Economics, Figure 21
Distribution of bank numbers historically behind a present
bank [57]

Fractals and Economics, Figure 22
Distribution of in-degrees and out-degrees in Japanese com-
pany network [34]

news paper sales are known to be approximated by power
laws [39].

Viewing all these data in economics, we may say that
fractals are everywhere in economics. In order to under-
stand why fractals appear so frequently, we firstly need to
make simple toy models of fractals which can be analyzed
completely, and then, based on such basic models we can
make more realistic models which can be directly compa-
rable with real data. At that level of study we will be able to
predict or control the complex real world economy.

Fractals and Economics, Figure 23
Distribution of expenditure in one shopping trip [33]

Basic Models of Power Laws

In this chapter we introduce general mathematical and
physical models which produce power law distributions.
By solving these simple and basic cases we can deepen our
understanding of the underlying mechanism of fractals or
power law distributions in economics.

Transformation of Basic Distributions

A power law distribution can be easily produced by vari-
able transformation from basic distributions.

1. Let x be a stochastic variable following a uniform dis-
tribution in the range (0, 1], then, y � x�1/˛ satisfies
a power law, P(> y) D y�˛ for y � 1. This is a useful
transformation in case of numerical simulation using
random variable following power laws.

2. Let x be a stochastic variable following an exponen-
tial distribution, P(> x) D e�x , for positive x, then,
y � ex/˛ satisfies a power law, P(> y) / y�˛ . As expo-
nential distributions occur frequently in random pro-
cess such as the Poisson process, or energy distribution
in thermal equilibrium, this simple exponential variable
transformation can make it a power law.

Superposition of Basic Distributions

A power law distribution can also be easily produced by
superposition of basic distributions.

Let x be a Gaussian distribution with the probability
density given by

pR(x) D
p
R

p
2�

e�
R
2 x

2
; (11)
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and R be a �2 distribution with degrees of freedom ˛,

w(R) D
� 1
2
˛/2

�
�
˛
2
 R

˛
2 �1e�

R
2 : (12)

Then, the superposition of Gaussian distribution, Eq. (11),
with the weight given by Eq. (12) becomes the T-distribu-
tion having power law tails:

p(x) D
1Z

0

W(R)pR(x)dR

D
�
�
˛C1
2


p
��

�
˛
2


1

(1C x2)
˛C1
2

/ jxj�˛�1 ; (13)

which is P(> jxj) / jxj�˛ in cumulative distribution. In
the special case that R, the inverse of variance of the nor-
mal distribution, distributes exponentially, the value of ˛
is 2. Similar super-position can be considered for any basic
distributions and power law distributions can be produced
by such superposition.

Stable Distributions

Assume that stochastic variables, x1; x2; : : : ; xn , are inde-
pendent and follow the same distribution, p(x), then con-
sider the following normalized summation;

Xn �
x1 C x2 C � � � C xn � �n

n1/˛
: (14)

If there exists ˛ > 0 and �n , such that the distribution of
Xn is identical to p(x), then, the distribution belongs to
one of the Levy stable distributions [10]. The parameter
˛ is called the characteristic exponent which takes a value
in the range (0, 2]. The stable distribution is character-
ized by four continuous parameters, the characteristic ex-
ponent, an asymmetry parameter which takes a value in
[�1, 1], the scale factor which takes a positive value and
the location parameterwhich takes any real number. Here,
we introduce just a simple case of symmetric distribution
around the origin with the unit scale factor. The probabil-
ity density is then given as

p(x;˛) D
1
2�

1Z

�1

e�i�xe�j�j
˛

d� : (15)

For large jxj the cumulative distribution follows the power
law, P(> x;˛) / jxj�˛ except the case of ˛ D 2. The sta-
ble distribution with ˛ D 2 is the Gaussian distribution.

The most important property of the stable distribu-
tion is the generalized central limit theorem: If the distri-
bution of sum of any independent identically distributed

random variables like Xn in Eq. (14) converges in the limit
of n!1 for some value of ˛, then the limit distribution
is a stable distribution with the characteristic exponent ˛.
For any distribution with finite variance, the ordinary cen-
tral limit theory holds, that is, the special case of ˛ D 2. For
any infinite variance distribution the limit distribution is
˛ ¤ 2 with a power law tail. Namely, a power law realizes
simply by summing up infinitely many stochastic variables
with diverging variance.

Entropy Approaches

Let x0 be a positive constant and consider a probability
density p(x) defined in the interval [x0;1), the entropy
of this distribution is given by

S � �
1Z

x0

p(x) log p(x)dx : (16)

Here, we find a distribution that maximizes the entropy
with a constraint such that the expectation of logarithm
of x is a constant, hlog xi D M. Then, applying the varia-
tional principle to the following function,

L � �
1Z

x0

p(x) log p(x)dx � 1

0

@
1Z

x0

p(x)dx � 1

1

A

C 2

0

@
1Z

x0

p(x) log xdx �M

1

A (17)

the power law is obtained,

P(� x) D
�

x
x0

�� 1
M�log x0

: (18)

In other words, a power law distribution maximizes the
entropy in the situation where products are conserved.
To be more precise, consider two time dependent ran-
dom variables interacting each other satisfying the re-
lation, x1(t) � x2(t) D x1(t0) � x2(t0), then the equilibrium
distribution follows a power law.

Another entropy approach to the power laws is to gen-
eralize the entropy by the following form [56],

Sq �
1 �

1R

x0
p(x)qdx

q � 1
; (19)

where q is a real number. This function is called the q-en-
tropy and the ordinary entropy, Eq. (15), recovers in the
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limit of q! 1. Maximizing the q-entropy keeping the
variance constant, so-called a q-Gaussian distribution is
obtained, which has the same functional form with the
T-distribution, Eq. (12), with the exponent ˛ given by

˛ D
q � 3
1 � q

: (20)

This generalized entropy formulation is often applied
to nonlinear systems having long correlations, in which
power law distributions play the central role.

RandomMultiplicative Process

Stochastic time evolution described by the following for-
mulation is called the multiplicative process,

x(t C 1) D b(t)x(t)C f (t) ; (21)

where b(t) and f (t) are both independent random vari-
ables [17]. In the case that b(t) is a constant, the distribu-
tion of x(t) depends on the distribution of f (t), for exam-
ple, if f (t) follows a Gaussian distribution, then the distri-
bution of x(t) is also a Gaussian. However, in the case that
b(t) fluctuates randomly, the resulting distribution of x(t)
is known to follows a power law independent of f (t),

P(> x) / jxj�˛ ; (22)

where the exponent ˛ is determined by solving the follow-
ing equation [48],

hjb(t)j˛i D 1 : (23)

This steady distribution exists when hlog jb(t)ji < 0
and f (t) is not identically 0. As a special case that b(t) D 0
with a finite probability, then a steady state exists. It is
proved rigorously that there exists only one steady state,
and starting from any initial distribution the system con-
verges to the power law steady state.

In the case hlog jb(t)ji � 0 there is no statistically
steady state, intuitively the value of jb(t)j is so large that
x(t) is likely to diverge. Also in the case f (t) is identically
0 there is no steady state as known from Eq. (21) that
log jx(t)j follows a simple randomwalkwith random noise
term, log jb(t)j.

The reason why this random multiplicative process
produces a power law can be understood easily by con-
sidering a special case that b(t) D b > 1 with probabil-
ity 0.5 and b(t) D 0 otherwise, with a constant value
of f (t) D 1. In such a situation the value of x(t) is
1C bC b2 C � � � C bK with probability (0:5)K . From this

we can directly evaluate the distribution of x(t),

P
�
�

bKC1 � 1
b � 1

�
D 2�KC1 i: e:

P(� x) D 4(1C (b � 1)x)�˛ ; ˛D
log 2
log b

:

(24)

As is known from this discussion, the mechanism of
this power law is deeply related to the above mentioned
transformation of exponential distribution in Sect. “Trans-
formation of Basic Distributions”.

The power law distribution of a randommultiplicative
process can also be confirmed experimentally by an elec-
trical circuit in which resistivity fluctuates randomly [38].
In an ordinary electrical circuit the voltage fluctuations
in thermal equilibrium is nearly Gaussian, however, for
a circuit with random resistivity a power law distribution
holds.

Aggregation with Injection

Assume the situation that many particles are moving ran-
domly and when two particles collide they coalesce mak-
ing a particle with mass conserved. Without any injection
of particles the system converges to the trivial state that
only one particle remains. In the presence of continuous
injection of small mass particles there exists a non-trivial
statistically steady state in which mass distribution follows
a power law [41]. Actually, the mass distribution of aerosol
in the atmosphere is known to follow a power law in gen-
eral [11].

The above system of aggregation with injection can
be described by the following model. Let j be the discrete
space, and x j(t) be the mass on site j at time t, then choose
one site and let the particle move to another site and parti-
cles on the visited site merge, then add small mass particles
to all sites, this process can be mathematically given as,

x j(tC1) D

8
<̂

:̂

x j(t)C xk(t)C f j(t) ; prob D 1/N
xj(t)C f j(t) ; prob D (N � 2)/N
f j(t) ; prob D 1/N

(25)

whereN is the total number of sites and f j(t) is the injected
mass to the site j.

The characteristic function, Z(�; t) � he��x j(t)i,
which is the Laplace transform of the probability density,
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satisfies the following equation by assuming uniformity,

Z(�; t C 1)

D

�
N � 2
N

Z(�; t)2 C
1
N
Z(�; t)C

1
N

�
he�� f j(t)i :

(26)

The steady state solution in the vicinity of � D 0 is ob-
tained as

Z(�) D 1 �
p
h f i�1/2 C � � � : (27)

From this behavior the following power law steady distri-
bution is obtained.

P(� x) / x�˛ ; ˛D
1
2
: (28)

By introducing a collision coefficient depending on the
size of particles power laws with various values of expo-
nents realized in the steady state of such aggregation with
injection system [46].

Critical Point of a Branching Process

Consider the situation that a branch grows and splits with
probability q or stops growing with probability 1 � q as
shown in Fig. 24. What is the size distribution of the
branch? This problem can be solved in the following way.
Let p(r) be the probability of finding a branch of size r,
then the next relation holds.

p(r C 1) D q
r�1X

sD1

p(s)p(r � s) : (29)

Multiplying yrC1 and summing up by r from 0 to 1,
a closed equation of the generating function, M(y), is ob-
tained,

M(y)�1Cq D q � y �M(y)2 ; M(y) �
1X

rD0

yr p(r) : (30)

Solving this quadratic equation and expanding in terms of
y, we have the probability density,

p(r) / r�3/2e�Q(q)r ; Q(q) � log 4q(1 � q) : (31)

For q < 0:5 the probability decays exponentially for large
r, in this case all branches has a finite size. At q D 0:5
the branch size follows the power law, P(� r) / r�1/2,
and the average size of branch becomes infinity. For

Fractals and Economics, Figure 24
Branching process (from left to right)

q > 0:5 there is a finite probability that a branch grows
infinitely. The probability of having an infinite branch,
p(1) D 1 � M(1), is given as,

p(1) D
2q � 1C

p
1 � 4q(1 � q)
2q

; (32)

which grows monotonically from zero to one in the range
q D [0:5; 1]. It should be noted that the power law distri-
bution realizes at the critical point between the finite-size
phase and the infinite-size phase [42].

Compared with the preceding model of aggregation
with injection, Eq. (28), the mass distribution is the same
as the branch size distribution at the critical point in
Eq. (31). This coincidence is not an accident, but it
is known that aggregation with injection automatically
chooses the critical point parameter. Aggregation and
branching are reversed process and the steady occur-
rence of aggregation implies that branching numbers keep
a constant value on average and this requires the critical
point condition. This type of critical behaviors is called the
self-organized criticality and examples are found in vari-
ous fields [4].

Finite Portion Transport

Here, a kind of mixture of aggregation and branching
is considered. Assume that conserved quantities are dis-
tributed in N-sites. At each time step choose one site ran-
domly, and transport a finite portion, �x j(t), to another
randomly chosen site, where � is a parameter in the range
[0, 1].

x j(t C 1) D (1 � �)x j(t) ;
xk(t C 1) D xk(t)C �x j(t) : (33)
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It is known that for small positive � the statistically steady
distribution x is well approximated by a Gaussian like the
case of thermal fluctuations. For � close to 1 the fluctua-
tion of x is very large and its distribution is close to a power
law. In the limit � goes to 1 and the distribution converges
to Eq. (28), the aggregation with injection case. For inter-
mediate values of � the distribution accompanies a fat tail
between Gaussian and a power law [49].

Fractal Tiling

A fractal tiling is introduced as the final basic model. Fig-
ure 25 shows an example of fractal tiling of a plane by
squares. Like this case Euclidean space is covered by var-
ious sizes of simple shapes like squares, triangles, circles
etc. The area size distribution of squares in Fig. 25 follows
the power law,

P(� x) / x�˛ ; ˛D 1/2 : (34)

Generalizing this model in d-dimensional space, the dis-
tribution of d-dimensional volume x is characterized by
a power law distribution with an exponent, ˛ D (d � 1)/d,
therefore, the Zipf’s law which is the case of ˛ D 1 realizes
in the limit of d D 1. The fracture size distribution mea-
sured in mass introduced in the beginning of this article
corresponds to the case of d D 3.

A classical example of fractal tiling is the Apollonian
gasket, that is, a plane is covered totally by infinite num-
ber of circles which are tangent each other. For a given
river pattern like Fig. 26 the basin area distribution follows
a power law with exponent about ˛ D 0:4 [45]. Although
these are very simple geometric models, simple models
may sometimes help our intuitive understanding of frac-
tal phenomena in economics.

Fractals and Economics, Figure 25
An example of fractal tiling

Fractals and Economics, Figure 26
Fractal tiling by river patterns [45]

MarketModels

In this chapter market price models are reviewed in view
of fractals. There are two approaches for construction of
market models. One is modeling the time sequences di-
rectly by some stochastic model, and the other is model-
ing markets by agent models which are artificial markets
in computer consisted of programmed dealers.

The first market price model was proposed by Bache-
lier in 1900 written as his Ph.D thesis [3], that is, five years
before the model of Einstein’s random walk model of col-
loid particles. His idea was forgotten for nearly 50 years.
In 1950’s Markowitz developed the portfolio theory based
on a random walk model of market prices [28]. The the-
ory of option prices by Black and Scholes was introduced
in the 1970s, which is also based on random walkmodel of
market prices, or to be more precise a logarithm of market
prices in continuum description [7].

In 1982 Engle introduced a modification of the sim-
ple random walk model, the ARCH model, which is the
abbreviation of auto-regressive conditional heteroscedas-
ticity [9]. This model is formulated for market price differ-
ence as,


x(t) D �(t) f (t) ; (35)

where f (t) is a random variable following a Gaussian dis-
tribution with 0 mean and variance unity, the local vari-
ance �(t) is given as

�(t)2 D c0 C
kX

jD1

ck(
x(t � k))2 ; (36)
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with adjustable positive parameters, fc0; c1; : : : ; ckg. By
the effect of this modulation on variance, the distribution
of price difference becomes superposition of Gaussian dis-
tribution with various values of variance, and the distribu-
tion becomes closer to a power law. Also, volatility cluster-
ing occurs automatically so that the volatility autocorrela-
tion becomes longer.

There are many variants of ARCH models, such as
GARCH and IGARCH, but all of them are based on purely
probabilistic modeling, and the probability of prices going
up and that of going down are identical.

Another type of market price model has been pro-
posed from physics view point [53]. The model is called
the PUCK model, an abbreviation of potentials of unbal-
anced complex kinetics, which assumes the existence of
market’s time-dependentpotential force,UM(x; t), and the
time evolution of market price is given by the following set
of equations;

x(tC1)�x(t) D �
d
dx

UM(x; t)
ˇ̌
ˇ
ˇ
xDx(t)�xM(t)

C f (t) ; (37)

UM(x; t) �
b(t)
M � 1

x2

2
; (38)

where M is the number of moving average needed to de-
fine the center of potential force,

xM(t) �
1
M

M�1X

kD0

x(t � k) : (39)

In this model f (t) is the external noise and b(t) is the curva-
ture of quadratic potential which changes with time.When
b(t) D 0 the model is identical to the simple random walk
model. When b(t) > 0 the market prices are attracted to
the moving averaged price, xM(t), the market is stable, and
when b(t) < 0 prices are repelled from xM(t) so that the
price fluctuation is large and the market is unstable. For
b(t) < �2 the price motion becomes an exponential func-
tion of time, which can describe singular behavior such as
bubbles and crashes very nicely.

In the simplest case ofM D 2 the time evolution equa-
tion becomes,


x(t C 1) D �
b(t)
2

x(t)C f (t) : (40)

As is known from this functional form in the case b(t) fluc-
tuates randomly, the distribution of price difference fol-
lows a power law as mentioned in the previous Sect. “Ran-
dom Multiplicative Process”, Random multiplicative pro-
cess. Especially the PUCK model derives the ARCH
model by introducing a random nonlinear potential func-
tion [54]. The value of b(t) can be estimated from the

data and most of known empirical statistical laws includ-
ing fractal properties are fulfilled as a result [55].

The peculiar difference of this model compared with fi-
nancial technology models is that directional prediction is
possible in some sense. Actually, from the data it is known
that b(t) changes slowly in time, and for non-zero b(t)
the autocorrelation is not zero implying that the up-down
statistics in the near future is not symmetric. Moreover in
the case of b(t) < �2 the price motion show an exponen-
tial dynamical growth hence predictable.

As introduced in Sect. “Examples in Economics” the
tick interval fluctuations can be characterized by the 1/f
power spectrum. This power law can be explained by
a model called the self-modulation model [52]. Let
t j be
the jth tick interval, and we assume that the tick interval
can be approximated by the following random process,


t jC1 D � j
1
K

K�1X

kD0


t j�k C g j ; (41)

where �j is a positive random number following an ex-
ponential distribution with the mean value 1, and K is
an integer which means the number of moving average,
gj is a positive random variable. Due to the moving aver-
age term in Eq. (41) the tick interval automatically make
clusters as shown in Fig. 27, and the corresponding power
spectrum is proved to be proportional to 1/ f as typically
represented in Fig. 28.

The market data of tick intervals are tested whether
Eq. (41) really works or not. In Fig. 29 the cumulative
probability of estimated value of �j from market data is
plotted where themoving average size is determinedby the
physical time of 150 seconds and 400 seconds. As known
from this figure, the distribution fits very nicely with the
exponential distribution when the moving average size is
150 seconds. This result implies that dealers in the mar-
ket are mostly paying attention to the latest transaction for
about a few minutes only. And the dealers’ clocks in their

Fractals and Economics, Figure 27
Tick intervals of Poisson process (top) and the self-modulation
process (bottom) [52]
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Fractals and Economics, Figure 28
The power spectrum of the self-modulation process [52]

Fractals and Economics, Figure 29
The distribution of normalized time interval [50]

minds move quicker if the market becomes busier. By this
self-modulation effect transactions in markets automati-
cally make a fractal configuration.

Next, we introduce a dealer model approach to the
market [47]. In any financial market dealers’ final goal is to
gain profit from the market. To this end dealers try to buy
at the lowest price and to sell at the highest price. Assume
that there are N dealers at a market, and let the jth dealer’s
buying and selling prices in their mind Bj(t) and S j(t). For
each dealer the inequality, Bj(t) < S j(t), always holds. We
pay attention to the maximum price of fBj(t)g called the
best bid, and to the minimum price of fS j(t)g called the

best ask. Transactions occur in the market if there exists
a pair of dealers, j and k, who give the best bid and best ask
respectively, and they fulfill the following condition,

Bj(t) � Sk(t) : (42)

In the model the market price is given by the mean value
of these two prices.

As a simple situation we consider a deterministic time
evolution rule for these dealers. For all dealers the spread,
S j(t) � Bj(t), is set to be a constant L. Each dealer has a po-
sition, either a seller or a buyer. When the jth dealer’s po-
sition is a seller the selling price in mind, S j(t), decreases
every time step until he can actually sell. Similar dynamics
is applied to a buyer with the opposite direction of motion.
In addition we assume that all dealers shift their prices in
mind proportional to a market price change. When this
proportional coefficient is positive, the dealer is catego-
rized as a trend-follower. If this coefficient is negative, the
dealer is called a contrarian. These rules are summarized
by the following time evolution equations.

Bj(t C 1) D Bj(t)C a jS j C bj
x(t) ; (43)

where Sj takes either +1 or�1 meaning the buyer position
or seller position, respectively, 
x(t) gives the latest mar-
ket price change, fa jg are positive numbers given initially,
fbjg are also parameters given initially.

Figure 30 shows an example of market price evolu-
tion in the case of three dealers. It should be noted that
although the system is deterministic, namely, the future
price is determined uniquely by the set of initial values,
resulting market price fluctuates almost randomly even in
the minimum case of three dealers. The case of N D 2

Fractals and Economics, Figure 30
Price evolution of a market with deterministic three dealers
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Fractals and Economics, Figure 31
Cumulative distribution of a dealer model for different values
of b. For weaker trend-follow the slope is steeper [38]

Fractals and Economics, Figure 32
Price difference time series for a real market (top) and a dealer
model (bottom)

gives only periodic time evolution as expected, while for
N � 3 the system can produce market price fluctuations
similar to the real market price fluctuations, for example,
the fractal properties of price chart and the power law dis-
tribution of price difference are realized.

In the case that the value of fbjg are identical for all
dealers, b, then the distribution of market price difference
follows a power law where the exponent is controllable by
this trend-follow parameter, b as shown in Fig. 31 [37].
The volatility clustering is also observed automatically for
large dealer number case as shown in Fig. 32 (bottom)
which looks quite similar to a real price difference time
series Fig. 32 (top).

By adding a few features to this basic dealer model it is
now possible to reproduce almost all statistical characteris-
tics of market, such as tick-interval fluctuations, abnormal
diffusions etc. [58]. In this sense the study of market be-
haviors are now available by computer simulations based
on the dealer model. Experiments on the market is either
impossible or very difficult for a real market, however, in
an artificial market we can repeat occurrence of bubbles
and crashes any times, so that we might be able to find
a way to avoid catastrophic market behaviors by numeri-
cal simulation.

Income DistributionModels

Let us start with a famous historical problem, the St. Pe-
tersburg Paradox, as a model of income. This paradox was
named after Daniel Bernoulli’s paper written when he was
staying in the Russian city, Saint Petersburg, in 1738 [6].
This paradox treats a simple lottery as described in the
following, which is deeply related to the infinite expected
value problem in probability theory and also it has been
attracting a lot of economists’ interest in relation with the
essential concept in economics, the utility [2].

Assume that you enjoy a game of chance, you pay
a fixed fee, X dollars, to enter, and then you toss a fair coin
repeatedly until a tail firstly appears. You win 2n dollars
where n is the number of heads. What is the fair price of
the entrance fee, X?

Mathematically a fair price should be equal to the ex-
pectation value, therefore, it should be given as,

X D
1X

nD0

2n �
1

2nC1 D 1 : (44)

This mathematical answer implies that even X is one mil-
lion dollars this lottery is generous enough and you should
buy because expectation is infinity. But, would you dare to
buy this lottery, in which you will win only one dollar with
probability 0.5, and two dollars with probability 0.25, . . . ?

http://en.wikipedia.org/wiki/Saint_Petersburg
http://en.wikipedia.org/wiki/Saint_Petersburg
http://en.wikipedia.org/wiki/1738
http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Game_of_chance
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Bernoulli’s answer to this paradox is to introduce the
human feeling of value, or utility, which is proportional to
the logarithm of price, for example. Based on this expected
utility hypothesis the fair value of X is given as follows,

X D
1X

nD0

U(2n)
2nC1 D

1X

nD0

log(2n)
2nC1 D1Clog 2 � 1:69 ; (45)

where the utility function, U(x) D 1C log x, is normal-
ized to satisfy U(1) D 1. This result implies that the ap-
propriate entry fee X should be about two dollars.

The idea of utility was highly developed in economics
for description of human behavior, in the way that human
preference is determined by maximal point of utility func-
tion, the physics concept of the variational principle ap-
plied to human action. Recently, in the field of behavioral
finance which emerged from psychology the actual obser-
vation of human behaviors about money is the main task
and the St. Petersburg paradox is attracting attention [36].

Although Bernoulli’s solution may explain the human
behavior, the fee X D 2 is obviously so small that the
bookmaker of this lottery will bankrupt immediately if the
entrance fee is actually fixed as two dollars and if a lot of
people actually buy it. The paradox is still a paradox.

To clarify what is the problem we calculate the distri-
bution of income of a gambler. As an income is 2n with
probability 2�n�1, the cumulative distribution of income
is readily obtained as,

P(� x) / 1/x : (46)

This is the power law which we observed for income dis-
tribution of companies in Sect. “Examples in Economics”.

The key of this lottery is the mechanism that the prize
money doubles at each time a head appears and the coin
toss stops when a tail appears. By denoting the number
of coin toss by t, we can introduce a stochastic process or
a new lottery which is very much related to the St. Peters-
burg lottery.

x(t C 1) D b(t)x(t)C 1 ; (47)

where b(t) is 2 with probability 0.5 and is 0 otherwise. As
introduced in Sect. “Random Multiplicative Process”, this
problem is solved easily and it is confirmed that the steady
state cumulative distribution of x(t) also follows Eq. (46).
The difference between the St. Petersburg lottery and the
new lottery Eq. (47) is the way of payment of entrance
fee. In the case of St. Petersburg lottery the entrance fee
X is paid in advance, while in the case of new lottery you
have to add one dollar each time you toss a coin. This new

lottery is fair from both the gambler side and the book-
maker side because the expectation of income is given by
hx(t)i D t and the amount of paid fee is also t.

Now we introduce a company’s income model by gen-
eralizing this new fair lottery in the following way,

I(t C 1) D b(t)I(t)C f (t) ; (48)

where I(t) denotes the annual income of a company, b(t)
represents the growth rate which is given randomly from
a growth rate distribution g(b), and f (t) is a random noise.
Readily from the results of Sect. “Random Multiplicative
Process”, we have a condition to satisfy the empirical rela-
tion, Eq. (10),

hb(t)i D
Z

bg(b) D 1 : (49)

This relation is confirmed to hold approximately in actual
company data [32].

In order to explain the job category dependence of the
company’s income distribution already shown in Fig. 12,
we plot the comparison of exponents in Fig. 33. Empiri-
cally estimated exponents are plotted in the ordinate and
the solutions of the following equation calculated in each
job category are plotted in the abscissa,

hb(t)ˇ i D 1 : (50)

The data points are roughly on a straight line demonstrat-
ing that the simple growth model of Eq. (48) seems to be
meaningful.

An implication of this result is that if a job category
is expanding, namely, hb(t)i > 1, then the power law ex-
ponent determined by Eq. (50) is smaller than 1. On the
other hand if a job category is shrinking, we have an expo-
nent that is larger than 1.

This type of company’s income model can be gener-
alized to take into account the effect of company’s size

Fractals and Economics, Figure 33
Theoretical predicted exponent value vs. observed value [29]
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Fractals and Economics, Figure 34
Numerical simulation of income distribution evolution of Japa-
nese companies [32]

Fractals and Economics, Figure 35
Numerical simulation of income distribution evolution of USA
companies [32]

dependence on the distribution of growth rate. Also, the
magnitude of the random force term can be estimated
from the probability of occurrence of negative income.
Then, assuming that the present growth rate distribution
continues we can perform a numerical simulation of com-
pany’s income distribution starting from a uniform distri-
bution as shown in Fig. 34 for Japan and in Fig. 35 for USA.
It is shown that in the case of Japan, the company size dis-
tribution converges to the power law with exponent �1 in
20 years, while in the case of USA the steady power law’s
slope is about �0.7 and it takes about 100 years to con-
verge [31]. According to this result extremely large com-
panies with size about 10 times bigger than the present
biggest company will appear in USA in this century. Of
course the growth rate distribution will change faster than
this prediction, however, this model can tell the qualita-
tive direction and the speed of change in verymacroscopic
economical conditions.

Other than this simple random multiplicative model
approach there are various approaches to explain empiri-
cal facts about company’s statistics assuming a hierarchical
structure of organization, for example [23].

Future Directions

Fractal properties generally appear in almost any huge
data in economics. As for financial market models, em-
pirical fractal laws are reproduced and the frontier of
study is now at the level of practical applications. How-
ever, there are more than a million markets in the world
and little is known about their interaction. More research
on market interaction will be promising. Company data
so far analyzed show various fractal properties as intro-
duced in Sect. “Examples in Economics”, however, they
are just a few cross-sections of global economics. Espe-
cially, companies’ interaction data are inevitable to ana-
lyze the underlying network structures. Not only money
flow data it will be very important to observe material flow
data in manufacturing and consumption processes. From
the viewpoint of environmental study, such material flow
network will be of special importance in the near future.
Detail sales data analysis is a new topic and progress is
expected.
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Glossary

Fractal A collection of objects that have a power-law de-
pendence of number on size.

Fractal dimension The power-law exponent in a fractal
distribution.

Definition of the Subject

The scale invariance of geological phenomena is one of
the first concepts taught to a student of geology. When
a photograph of a geological feature is taken, it is essen-
tial to include an object that defines the scale, for exam-
ple, a coin or a person. It was in this context that Mandel-
brot [7] introduced the concept of fractals. The length of
a rocky coastline is obtained using a measuring rod with

a specified length. Because of scale invariance, the length
of the coastline increases as the length of the measuring
rod decreases according to a power law. It is not possible
to obtain a specific value for the length of a coastline due to
small indentations down to a scale of millimeters or less.

A fractal distribution requires that the number of ob-
jects N with a linear size greater than r has an inverse
power-law dependence on r so that

N D
C
rD

(1)

where C is a constant and the powerD is the fractal dimen-
sion. This power-law scaling is the only distribution that is
scale invariant. However, the power-law dependence can-
not be used to define a statistical distribution because the
integral of the distribution diverges to infinity either for
large values or small values of r. Thus fractal distributions
never appear in compilations of statistical distributions.
A variety of statistical distributions have power-law behav-
ior either at large scales or small scales, but not both. An
example is the Pareto distribution.

Many geological phenomena are scale invariant. Ex-
amples include the frequency-size distributions of frag-
ments, faults, earthquakes, volcanic eruptions, and land-
slides. Stream networks and landforms exhibit scale in-
variance. In terms of these applications there must
always be upper and lower cutoffs to the applicability of
a fractal distribution. As a specific application consider
earthquakes on the Earth. The number of earthquakes has
a power-law dependence on the size of the rupture over
a wide range of sizes. But the largest earthquake cannot
exceed the size of the Earth, say 104 km. Also, the smallest
earthquake cannot be smaller than the grain size of rocks,
say 1mm. But this range of scales is 1010. Actual earth-
quakes appear to satisfy fractal scaling over the range 1m
to 103 km.

An example of fractal scaling is the number-area distri-
bution of lakes [10], this example is illustrated in Fig. 1. Ex-
cellent agreement with the fractal relation given in Eq. (1)
is obtained taking D D 1:90. The linear dimension r is
taken to be the square root of the area A and the power-law
(fractal) scaling extends from r D 100m to r D 300 km.

Introduction

Fractal scaling evolved primarily as an empirical means of
correlating data. A number of examples are given below.
More recently a theoretical basis has evolved for the ap-
plicability of fractal distributions. The foundation of this
basis is the concept of self-organized criticality. A num-
ber of simple computational models have been shown to
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Fractals in Geology and Geophysics, Figure 1
Dependence of the cumulative number of lakes N with areas
greater than A as a function of A. Also shown is the linear dimen-
sion r which is taken to be the square root of A. The straight-line
correlation is with Eq. (1) taking the fractal dimension D D 1:90

yield fractal distributions. Examples include the sand-pile
model, the forest-fire model, and the slider-block model.

Drainage Networks

Drainage networks are a universal feature of land-
scapes on the Earth. Small streams merge to form larger
streams, large streams merge to form rivers, and so forth.
Strahler [16] quantified stream networks by introducing
an ordering system.When two like-order streams of order
imerge they form a stream of order i C 1. Thus two i D 1
streams merge to form a i D 2 stream, two i D 2 streams
merge to from a i D 3 stream and so forth. A bifurcation
ratio Rb is defined by

Rb D
Ni

NiC1
(2)

where Ni is the number of streams of order i. A length or-
der ratio Rr is defined by

Rr D
riC1

ri
(3)

where ri is the mean length of streams of order i. Empir-
ically both Rb and Rr are found to be nearly constant for
a range of stream orders in a drainage basin. From Eq. (1)
the fractal dimension of a drainage basin

D D
ln(Ni /NiC1)
ln(riC1/ri )

D
ln Rb

ln Rr
(4)

Typically Rb D 4:6, Rr D 2:2, and the corresponding frac-
tal dimension is D D 1:9. This scale invariant scaling of
drainage networks was recognized some 20 years before
the concept of fractals was introduced in 1967.

A major advance in the quantification of stream net-
works was made by Tokunaga [17]. This author was the
first to recognize the importance of side branching, that is
some i D 1 streams intersect i D 2, i D 3, and all higher-
order streams. Similarly, i D 2 streams intersect i D 3
and higher- order streams and so forth. A fully self-sim-
ilar, side-branching topology was developed. Applications
to drainage networks have been summarized by Peck-
ham [11] and Pelletier [13].

Fragmentation

An important application of power-law (fractal) scaling is
to fragmentation. In many examples the frequency-mass
distributions of fragments are fractal. Explosive fragmen-
tation of rocks (for example in mining) give fractal distri-
butions. At the largest scale the frequency size distribution
of the tectonic plates of plate tectonics are reasonably well
approximated by a power-law distribution. Fault gouge is
generated by the grinding process due to earthquakes on
a fault. The frequency-mass distribution of the gouge frag-
ments is fractal. Grinding (comminution) processes are
common in tectonics. Thus it is not surprising that frac-
tal distributions are ubiquitous in geology.

As a specific example consider the frequency-mass dis-
tribution of asteroids. Direct measurements give a fractal
distribution. Since asteroids are responsible for the impact
craters on themoon, it is not surprising that the frequency-
area distribution of lunar craters is also fractal.

Using evidence from the moon and a fractal extrapo-
lation it is estimated that on average, a 1m diameter me-
teorite impacts the earth every year, that a 100m diame-
ter meteorite impacts every 10,000 years, and that a 10 km
diameter meteorite impacts the earth every 100,000,000
years. The classic impact crater is Meteor Crater in Ari-
zona, it is over 1 km wide and 200m deep. Meteor Crater
formed about 50,000 years ago and it is estimated that the
impacting meteorite had a diameter of 30m. The largest
impact to occur in the 20th century was the June 30, 1908
Tunguska event in central Siberia. The impact was ob-
served globally and destroyed over 1000 km2 of forest. It
is believed that this event was the result of a 30m diameter
meteorite that exploded in the atmosphere.

One of the major global extinctions occurred at the
Cretaceous/Tertiary boundary 65 million years ago. Some
65% of the existing species were destroyed including di-
nosaurs. This extinction is attributed to a massive impact
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at the Chicxulub site on the Yucatan Peninsula, Mexico. It
is estimated that the impacting meteorite had a 10 km di-
ameter. In addition to the damage done by impacts there
is evidence that impacts on the oceans have created mas-
sive tsunamis. The fractal power-law scaling can be used
to quantify the risk of future impacts.

Earthquakes

Earthquakes universally satisfy several scaling laws. The
most famous of these is Gutenberg–Richter frequency-
magnitude scaling. The magnitude M of an earthquake is
an empirical measure of the size of an earthquake. If the
magnitude is increased by one unit it is observed that the
cumulative number of earthquakes greater than the speci-
fied magnitude is reduced by a factor of 10.

For the entire earth, on average, there is 1 magnitude 8
earthquake per year, 10 magnitude 7 earthquakes per year,
and 100 magnitude 6 earthquakes per year. When magni-
tude is converted to rupture area a fractal relation is ob-
tained. The numbers of earthquakes that occur in a speci-
fied region and time interval have a power-law dependence
on the rupture area.

The validity of this fractal scaling has important impli-
cations for probabilistic seismic risk assessment. The num-
ber of small earthquakes that occur in a region can be ex-
trapolated to estimate the risk of larger earthquakes [1].
As an example consider southern California. On average
there are 30 magnitude 4 or larger earthquakes per year.
Using the fractal scaling it is estimated that the expected
intervals betweenmagnitude 6 earthquakes will be 3 years,
betweenmagnitude 7 earthquakes will be 30 years, and be-
tween magnitude 8 earthquakes will be 300 years.

The fractal scaling of earthquakes illustrate a useful
aspect of fractal distributions. The fractal distribution re-
quires two parameters. The first parameter, the fractal di-
mension D (known as the b-value in seismology), gives
the dependence of number on size (magnitude). For earth-
quakes the fractal dimension is almost constant indepen-
dent of the tectonic setting. The second parameter gives
the level of activity. For example, this can be the number of
earthquakes greater than a specifiedmagnitude in a region.
This level of activity varies widely and is an accepted mea-
sure of seismic risk. The level is essentially zero in states
like Minnesota and is a maximum in California.

Volcanic Eruptions

There is good evidence that the frequency-volume statis-
tics of volcanic eruptions are also fractal [9]. Although it is
difficult to quantify the volumes of magma and ash associ-
ated with older eruptions, the observations suggest that an

eruption with a volume of 1 km3 would be expected each
10 years, 10 km3 each 100 years, and 100 km3 each 1000
years. For example, the 1991 Mount Pinatubo, Philippines
eruption had an estimated volume of about 5 km3. The
most violent eruption in the last 200 years was the 1815
Tambora, Indonesia eruption with an estimated volume
of 150 km3. This eruption influenced the global climate
in 1816 which was known as the year without a summer.
It is estimated that the Long Valley, California eruption
with an age of about 760,000 years had a volume of about
600 km3 and the Yellowstone eruptions of about 600,000
years ago had a volume of about 2000 km3.

Although the validity of the power-law (fractal) ex-
trapolation of volcanic eruption volumes to long periods
in the past can be questioned, the extrapolation does give
some indication of the risk of future eruptions to global
climate. There is no doubt that the large eruptions that are
known to have occurred on time scales of 105 to 106 years
would have a catastrophic impact on global agricultural
production.

Landslides

Landslides are a complex natural phenomenon that con-
stitutes a serious natural hazard in many countries. Land-
slides also play a major role in the evolution of landforms.
Landslides are generally associated with a trigger, such as
an earthquake, a rapid snowmelt, or a large storm. The
landslide event can include a single landslide or many
thousands. The frequency-area distribution of a landslide
event quantifies the number of landslides that occur at dif-
ferent sizes. It is generally accepted that the number of
large landslides with area A has a power-law dependence
on A with an exponent in the range 1.3 to 1.5 [5].

Unlike earthquakes, a complete statistical distribution
can be defined for landslides. A universal fit to an inverse-
gamma distribution has been found for a number of event
inventories. This distribution has a power-law (fractal) be-
havior for large landslides and an exponential cut-off for
small landslides. The most probable landslides have areas
of about 40m2. Very few small landslides are generated.

As a specific example we consider the 11,111 land-
slides generated by themagnitude 6.7 Northridge (Califor-
nia) earthquake on January 17, 1994. The total area of the
landslides was 23.8 km2 and the area of the largest land-
slide was 0.26 km2. The inventory of landslide areas had
a good power-law dependence on area for areas greater
than 103 m2 (10�3 km2). The number of landslides gen-
erated by earthquakes have a strong dependence on earth-
quake magnitude. Typically earthquakes with magnitudes
M less than 4 do not generate any landslides [6].
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Floods

Floods are a major hazard to many cities and estimates
of flood hazards have serious economic implications. The
standardmeasure of the flood hazard is the 100-year flood.
This is quantified as the river dischargeQ100 expected dur-
ing a 100 year period. Since there is seldom a long enough
history to establish Q100 directly, it is necessary to extrap-
olate smaller floods that occur more often.

One extrapolation approach is to assume that flood
discharges are fractal (power-law) [3,19]. This scale invari-
ant distribution can be expressed in terms of the ratio F of
the peak discharge over a 10 year interval to the peak dis-
charge over a 1 year interval, F D Q10/Q1. With self-simi-
larity the parameter F is also the ratio of the 100 year peak
discharge to the 10 year peak discharge, F D Q100/Q10.
Values of F have a strong dependence on climate. In tem-
perate climates such as the northeastern and northwestern
US values are typically in the range F D 2–3. In arid and
tropical climates such as the southwestern and southeast-
ern US values are typically in the range F D 4–6.

The applicability of fractal concepts to flood forecast-
ing is certainly controversial. In 1982, the US government
adopted the log-Pearson type 3 (LP3) distribution for the
legal definition of the flood hazard [20]. The LP3 is a thin-
tailed distribution relative to the thicker tailed power-law
(fractal) distribution. Thus the forecast 100 year flood us-
ing LP3 is considerably smaller than the forecast using the
fractal approach. This difference is illustrated by consid-
ering the great 1993 Mississippi River flood. Considering
data at the Keukuk, Iowa gauging station [4] this flood was
found to be a typical 100 year flood using the power-law
(fractal) analysis and a 1000 to 10,000 year flood using the
federal LP3 formulation. Concepts of self-similarity argue
for the applicability of fractal concepts for flood-frequency
forecasting. This applicability also has important implica-
tions for erosion. Erosion will be dominated by the very
largest floods.

Self-Affine Fractals

Mandelbrot and Van Ness [8] extended the concept of
fractals to time series. Examples of time series in geology
and geophysics include global temperature, the strength of
the Earth’s magnetic field, and the discharge rate in a river.
After periodicities and trends have been removed, the re-
maining values are the stochastic (noise) component of
the time series. The standard approach to quantifying the
noise component is to carry out a Fourier transform on the
time series [2]. The power-spectral density coefficients Si
are proportional to the squares of the Fourier coefficients.
The time series is a self-affine fractal if the power-spectral

density coefficients have an inverse power-law dependence
on frequency f i, that is

Si D
C

f ˇi
(5)

where C is a constant and ˇ is the power-law exponent.
For a Gaussian white noise the values in the time se-

ries are selected randomly from a Gaussian distribution.
Adjacent values are not correlated with each other. In this
case the spectrum is flat and the power spectral density
coefficients are not a function of frequency, ˇ D 0. The
classic example of a self-affine fractal is a Brownian walk.
A Brownian walk is obtained by taking the running sum
of a Gaussian white noise. In this case we have ˇ D 2. An-
other important self-affine time series is a red (or pink)
noise with power spectral density coefficients proportional
to 1/ f , that is ˇ D 1. We will see that the variability in the
Earth’s magnetic field is well approximated by a 1/ f noise.

Self-affine fractal time series in the range ˇ D 0 to 1
are known as fractional Gaussian noises. These noises are
stationary and the standard deviation is a constant inde-
pendent of the length of the time series. Self-affine time
series with ˇ larger than 1 are known as fractional Brow-
nian walk. These motions are not stationary and the stan-
dard deviation increases as a power of the length of the
time series, there is a drift. For a Brownian walk the stan-
dard deviation increases with the square root of the length
of the time series.

Topography

The height of topography along linear tracks can be con-
sidered to be a continuous time series. In this case we con-
sider the wave number ki (1/wave length) instead of fre-
quency. Topography is a self-affine fractal if

Si D
C

kˇi
(6)

Spectral expansions of global topography have been car-
ried out, an example [15] is given in Fig. 2. Excellent agree-
ment with the fractal relation given in Eq. (6) is obtained
taking ˇ D 2, topography is well approximated by a Brow-
nian walk. It has also shown that this fractal behavior of
topography is found for the moon, Venus, and Mars [18].

Earth’s Magnetic Field

Paleomagnetic studies have given the strength and polar-
ity of the Earth’s magnetic field as a function of time over
millions of years. These studies have also shown that the
field has experienced a sequence of reversals.
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Fractals in Geology and Geophysics, Figure 2
Power spectral density S as a function of wave number k for
a spherical harmonic expansion of the Earth’s topography (de-
gree l). The straight-line correlation is with Eq. (6) taking ˇ D 2,
a Brownian walk

Spectral studies of the absolute amplitude of the field
have been shown that it is a self-affine fractal [12,14]. The
power-spectral density is proportional to one over the fre-
quency, it is a 1/ f noise. When the fluctuations of the 1/ f
noise take the magnitude to zero the polarity of the field
reverses. The predicted distribution of polarity intervals is
fractal and is in good agreementwith the observed polarity
intervals.

Future Directions

There is no question that fractals are a useful empirical
tool. They provide a rational means for the extrapolation
and interpolation of observations. The wide applicability
of power-law (fractal) distributions is generally accepted,
but does this applicability have a more fundamental basis?
Fractality appears to be fundamentally related to chaotic
behavior and to numerical simulations exhibiting self-or-
ganized criticality. The entire area of fractals, chaos, self-
organized criticality, and complexity remains extremely
active, and it is impossible to predict with certainty what
the future holds.
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Glossary

Dimension The traditional meaning of dimension in
modern mathematics is “topological dimension” and
is an extension of the classical Greekmeaning. Inmod-
ern concepts of this dimension can be defined in terms
of a separable metric space. For the practicalities of
Fractals and Chaos the notion of dimension can be
limited to subsets of Euclidean n-space where n is an
integer. The newly arrived “fractal dimension” is met-
rically based and can take on fractional values. Just as
for topological dimension.
As for topological dimension itself there is a profusion
of different (but related) concepts of metrical dimen-
sion. These are widely used in the study of fractals, the
ones of principal interest being:

� Hausdorff dimension (more fully, Hausdorff–Be-
sicovitch dimension),

� Box dimension (often referred to as Minkowski–
Bouligand dimension),

� Correlation dimension (due to A. Rényi, P. Grass-
berger and I. Procaccia).

Other types of metric dimension are also possible.
There is “divider dimension” (based on ideas of an En-
glish mathematician/meteorologist L. F. Richardson in
the 1920s); the “Kaplan–Yorke dimension” (1979) de-
rived from Lyapunov exponents, known also as the
“Lyapunov dimension”; “packing dimension” intro-
duced by Tricot (1982). In addition there is an over-
all general dimension due to A. Rényi (1970) which
admits box dimension, correlation dimension and in-
formation dimension as special cases. With many

of the concepts of dimension there are upper and
lower refinements, for example, the separate upper and
lower box dimensions. Key references to the vast (and
highly technical) subject of mathematical dimension
include [31,32,33,60,73,92,93].

Hausdorff dimension (Hausdorff–Besicovitch dimen-
sion). In the study of fractals, the most sophisticated
concept of dimension is Hausdorff dimension, devel-
oped in the 1920s.
The following definition of Hausdorff dimension is
given for a subset A of the real number line. This is
readily generalized to subsets of the plane, Euclidean
3-space and Euclidean n-space, and more abstractly
to separable metric spaces by taking neighborhoods
as disks instead of intervals. Let fUig be an r-covering
of A, (a covering of A where the width of all intervals
Ui, satisfies w(Ui ) � r). The measuremr is defined by

mr(A) D inf

 
1X

iD1

w(Ui )

!

;

where the infimum (or greatest of the minimum val-
ues) is taken over all r-coverings of A.
The Hausdorff dimension DH of A is:

DH D lim
r!0

mr(A) ;

provided the limit exists. The subset E D f1/n : n D
1; 2; ; 3; : : :g of the unit interval has DH D 0 (the Haus-
dorff dimension of a countable set is always zero). The
Hausdorff dimension is the basis of “fractal dimen-
sion” but because it takes into account intervals of un-
equal widths it may be difficult to calculate in practice.

Box dimension (or Minkowski–Bouligand dimension,
known also as capacity dimension, cover dimen-
sion, grid dimension). The box counting dimension is
a more direct and practical method for computing di-
mension in the case of fractals. To define it, we again
confine our attention to the real number line in the
knowledge that box dimension is readily extended to
subsets of more general spaces.
As before, let fUig be an r-covering of A, and let Nr(A)
be the least number of sets in such a covering. The box
dimension DB of A is defined by:

DB D lim
r!0

log Nr(A)
log 1/r

:

The box dimension of the subset E D f1/n : n D
1; 2; 3; : : :g of the unit interval can be calculated to give
DB D 0:5.
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In general Hausdorff and Box dimensions are related
to each other by the inequality DB � DH, as happens
in the above example. The relationship between DH
and DB is investigated in [49]. For compact, self-simi-
lar fractal sets DB D DH but there are fractal sets for
which DB > DH [76]. Though Hausdorff dimension
and Box dimension have similar properties, Box di-
mension is only finitely additive, while Hausdorff di-
mension is countably additive.

Correlation dimension For a set of n points A on the real
number line, let P(r) be the probability that two dif-
ferent points of A chosen at random are closer than r
apart. For a large number of points n, the graph of
v D log P(r) against u D log r is approximated to its
slope for small values of r, and theoretically, a straight
line. The correlation dimension DC is defined as its
slope for small values of r, that is,

DC D lim
r!0

dv
du

:

The correlation dimension involves the separation of
points into “boxes”, whereas the box dimensionmerely
counts the boxes that cover A.
If Pi is the probability of a point of A being in box i
(approximately ni /n where ni is the number of points
in box i and n is the totality of points in A) then an al-
ternative definition of correlation dimension is

DC D lim
r!0

log
P

i
P2i

log r
:

Attractor A point set in phase space which “attracts” tra-
jectories in its vicinity. More formally, a bounded set A
in phase space is called an attractor for the solution
x(t) of a differential equation if

� x(0) 2 A) x(t) 2 A f or al l t. Thus, an attrac-
tor is invariant under the dynamics (trajectories
which start in A remain in A).

� There is a neighborhood U � A such that any tra-
jectory starting in U is attracted to A (the trajectory
gets closer and closer to A).

� If B � A and if B satisfies the above two properties
then B D A.

An attractor is therefore the minimal set of points A
which attracts all orbits starting at some point in
a neighborhood of A.

Orbit is a sequence of points fxig D x0; x1; x2; : : : de-
fined by an iteration xn D f n(x0). If n is a positive it
is called a forwards orbit, and if n is negative a back-
wards orbit. If x0 D xn for some finite value n, the or-
bit is periodic. In this case, the smallest value of n for

which this is true is called the period of the orbit.
For an invertible function f , a point x is homoclinic
to a if

lim f n(x) D lim f�n(x) D a as n!1 :

and in this case the orbit f f n(x0)g is called a homo-
clinic orbit – the orbit which converges to the same
saddle point a forwards or backwards. This term was
introduced by Poincaré.
The terminology “orbit” may be regarded as applied to
the solution of a difference equation, in a similar way
the solution of a differential equation x(t) is termed
a trajectory. Orbit is the term used for discrete dynam-
ical system and trajectory for the continuous time case.

Basin of attraction If a is an attractive fixed point of
a function f , its basin of attraction B(a) is the subset
of points defined by

B(a) D fx : f k(x)! a ; as k!1g :

It is the subset containing all the initial points of orbits
attracted to a. The basins of attractionmay have a com-
plicated structure. An important example applies to
the case where a is a point in the complex plane C.

Julia set A set Jf is the boundary between the basins
of attraction of a function f . For example, in the
case where z D ˙1 are attracting points (solutions
of z2 � 1 D 0), the Julia set of the “Newton–Fourier”
function f (z) D z � ((z2 � 1)/2z) is the set of com-
plex numbers which lie along the imaginary axis x D 0
(as proved by Schröder and Cayley in the 1870s). The
case of the Julia set involved with the solutions of
z3 � 1 D 0 was beyond these pioneers and is fractal in
nature. An alternative definition for a Julia set is the
closure of the subset of the complex plane whose or-
bits of f tend to infinity.

Definition of the Subject

Though “Chaos” and “Fractals” are yoked together to form
“Fractals and Chaos” they have had separate lines of devel-
opment. And though the names are modern, the mathe-
matical ideas which lie behind them have taken more than
a century to gain the prominence they enjoy today. Chaos
carries an applied connotation and is linked to differen-
tial equations which model physical phenomena. Fractals
is directly linked to subsets of Euclidean space which have
a fractional dimension, which may be obtained by the iter-
ation of functions.

This brief survey seeks to highlight some of the sig-
nificant points in the history of both of these subjects.
There are brief academic histories of the field. A history of
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Chaos has been shown attention [4,46], while an account
of the early history of the iteration of complex functions
(up to Julia and Fatou) is given in [3]. A broad survey of
the whole field of fractals is given in [18,50]. Accounts of
Chaos and Fractals tend to concentrate on one side at the
expense of the other. Indeed, it is only quite recently that
the two subjects have been seen to have a substantial bear-
ing on each other [72].

This account treats a “prehistory” and a “modern pe-
riod”. In the prehistory period, before about 1960, topics
which contributed to the modern theory are not so promi-
nent. There is a lack of impetus to create a new field. In
the modern period there is a greater sense of continuity,
driven on by the popular interest in the subject. The mod-
ern theory coincided with a rapid increase in the power of
computers unavailable to the early workers in the prehis-
tory period. Scientists, mathematicians, and a wider public
could now “see” the beautiful geometrical shapes displayed
before them [25].

The whole theory of “fractals and chaos” necessarily
involves nonlinearity. It is a mathematical theory based
on the properties of processes which are assumed to be
modeled by nonlinear differential equations and nonlinear
functions. Chaos shows itself when solutions to these dif-
ferential equations become unstable. The study of stabil-
ity is rooted in the mathematics of the nineteenth century.
Fractals are derived from the geometric study of curves
and sets of points generally, and from abstract iterative
schemes. The modern theory of fractals is the outcome of
explorations bymathematicians and scientists in the 1960s
and 1970s, though, as we shall see, it too has an extensive
prehistory.

Recently, there has been an explosion of published
work in Fractals and Chaos. Just in Chaos theory alone
a bibliography of six hundred articles and books com-
piled by 1982, grew to over seven thousand by the end of
1990 [97]. This is most likely an excessive underestimate.
Fractals and Chaos has since grown into a wide-ranging
and variegated theory which is rapidly developing. It has
widespread applications in such areas as
Astronomy the motions of planets and galaxies
Biology population dynamics chemistry chemical reac-

tions
Economics time series, analysis of financial markets
Engineering capsize of ships, analysis of road traffic flow
Geography measurement of coastlines, growth of cities,

weather forecasting
Graphic art analysis of early Chinese Landscape Paint-

ings, fractal geometry of music
Medicine dynamics of the brain, psychology, heart

rhythms.

There are many works which address the application of
Chaos and Fractals to a broad sweep of subjects. In partic-
ular, see [13,19,27,59,63,64,87,96].

Introduction

“Fractals and Chaos” is the popular name for the sub-
ject which burst onto the scientific scene in the 1970s and
1980s and drew together practical scientists and mathe-
maticians. The subject reached the popular ear and per-
haps most importantly, its eye. Computers were becoming
very powerful and capable of producing remarkable visual
images. Quite elementary mathematics was capable of cre-
ating beautiful pictures that the world had never seen be-
fore.

The popular ear was captivated – momentarily at
least – by the neologisms created for the theory. “Chaos”
was one, but “fractals”, the “horseshoe”, and the superb
“strange attractors” became an essential part of the sci-
entific vocabulary. In addition, these were being passed
around by those who dwelled far from the scientific front.
It seemed all could take part, from scientific and mathe-
matical researchers to lay scientists and amateur mathe-
maticians. All could at least experience the excitement the
new subject offered. Fractals and Chaos also carried impli-
cations for the philosophy of science.

The widespread interest in the subject owes much to
articles and books written for the popular market. J. Gle-
ick’s Chaos was at the top of the heap in this respect and
became a best seller. He advised his readership that chaos
theory was one of the great discoveries of the twentieth
century and quoted scientists who placed chaos theory
alongside the revolutions of Relativity and Quantum Me-
chanics. Gleick claimed that “chaos [theory] eliminates
the Laplacean fantasy of deterministic predictability”. In
a somewhat speculative flourish, he reasoned: “Of the
three theories, the revolution in chaos applies to the uni-
verse we see and touch, to objects at human scale. Every-
day experience and real pictures of the world become le-
gitimate targets for inquiry. There has long been a feeling,
not always expressed openly, that theoretical physics has
strayed far from human intuition about the world [38].”

More properly chaos is “deterministic chaos”. The
equations and functions used to model a dynamical sys-
tem are stated exactly. The contradictory nature of chaos
is that the mathematical solutions appeared to be random.
On the one hand the situation is deterministic, but on
the other there did not seem to be any order in the solu-
tions. Chaos theory resolves this difficulty by conceptualiz-
ing the notion of orbits, trajectories phase space, attractors,
and fractals. What appeared paradoxical seen through the
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old lenses offered explanation through a more embracing
mathematical theory.

In the scientific literature the modern Chaos is pre-
sented through “dynamical systems”, and this terminology
gives us a clue to its antecedents. Dynamical systems con-
veys the idea of a physical system. It is clear that mechan-
ical problems, for example, those involving motion are
genuine dynamical systems because they evolve in space
through time. Thus the pendulum swings backwards and
forwards in time, planets trace out orbits, and the beat of
a heart occurs in time.

The differential equations which describe physical dy-
namical system give rise to chaos, but how do fractals en-
ter the scene? In short, the trajectories in the phase space
which describes the physical system through a process of
spreading and folding pass through neighborhoods of the
attractor set infinitely often, and on magnification reveal
them running closer and closer together. This is the fine
structure of the attractor. Measuring the metric dimension
of this set results in a fraction and it is there that the con-
nection with fractals is made. But this is running ahead of
the story.

Dynamical Systems

The source of “Chaos” lies in the analysis of physical sys-
tems and goes back to the eighteenth century and the work
of the Swiss mathematician Leonhard Euler. The most
prolific mathematician of all time, Euler (whose birth ter-
centenary occurred in 2007) was amongst natural philoso-
phers who made a study of differential equations in order
to solve practical mechanical and astronomical problems.
Chief among the problems is the problem of fluid flow
which occurs in hydrodynamics.

Sensitive Initial Conditions

The key characteristic of “chaotic solutions” is their sen-
sitivity to initial conditions: two sets of initial conditions
close together can generate very different solution trajec-
tories, which after a long time has elapsed will bear very
little relation to each other. Twins growing up in the same
household will have a similar life for the childhood years
but their lives may diverge completely in the fullness of
time. Another image used in conjunction with chaos is the
so-called “butterfly effect” – the metaphor that the differ-
ence between a butterfly flapping its wings in the south-
ern hemisphere (or not) is the difference between fine
weather and hurricanes in Europe. The butterfly effect no-
tion most likely got its name from the lecture E. Lorenz
gave in Washington in 1972 entitled “Predictability: Does
the Flap of a Butterfly’s wings in Brazil Set off a Tornado in

Texas?” [54]. An implication of chaos theory is that predic-
tion in the long term is impossible for we can never know
for certain whether the “causal” butterfly really did flap its
wings.

The sensitivity of a system to initial conditions, the
hallmark of what makes a chaotic solution to a differential
equation is derived from the stability of a system. Writing
in 1873, the mathematical physicist James Clerk Maxwell
alluded to this sensitivity in a letter toman of science Fran-
cis Galton:

Much light may be thrown on some of these ques-
tions [of mechanical systems] by the considera-
tion of stability and instability. When the state of
things is such that an infinitely small variation of
the present state will alter only by an infinitely small
quantity the state at some future time, the condition
of the system, whether at rest or in motion, is said
to be stable; but when an infinitely small variation
in the present state may bring about a finite differ-
ence in the state of the system in a finite time, the
condition is said to be unstable [44].

H. Poincaré too, was well aware that small divergences in
initial conditions could result in great differences in fu-
ture outcomes, and said so in his discourse on Science and
Method: “It may happen that slight differences in the initial
conditions produce very great differences in the final phe-
nomena; a slight error in the former would make an enor-
mous error in the latter. Prediction becomes impossible.”
As an example of this he looked at the task of weather fore-
casting:

Why have the meteorologists such difficulty in pre-
dicting the weather with any certainty? Why do the
rains, the tempests seem to us to come by chance, so
that many persons find it quite natural to pray for
rain or shine, when they would think it ridiculous
to pray for an eclipse? We see that great perturba-
tions generally happen in regions where the atmo-
sphere is in unstable equilibrium. . . . one tenth of
a degree more or less at any point, and the cyclone
bursts here and not there, and spreads its ravages
over countries it would have spared. . . . Here again
we find the same contrast between a very slight
cause, unappreciable to the observer, and impor-
tant effects, which are sometimes tremendous dis-
asters [75].

So here is the answer to one conundrum – Poincaré is the
true author of the butterfly effect! Weather forecasting is
ultimately a problem of fluid flow in this case air flow.
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Fluid Motion and Turbulence

The study of the motion of fluids predates Poincaré and
Lorenz. Euler published “General Principles of the Motion
of Fluids” in 1755 in which he wrote down a set of partial
differential equations to describe the motion of non-vis-
cous fluids. These were improved by the French engineer
C. Navier when in 1821 he published a paper which took
viscosity into account. From a different starting point in
1845 the British mathematical physicist G. G. Stokes de-
rived the same equations in a paper entitled “On the The-
ories of the Internal Friction of Fluids in Motion.”

These are the Navier–Stokes equations, a set of non-
linear partial differential equations which generally apply
to fluid motion and which are studied by the mathemat-
ical physicist. In modern vector notation (in the case of
unforced incompressible flow) they are

@v
@t
C v:rv D �

1
�
rpC

�

�
r2v ;

where v is velocity, p is pressure, and � and � are den-
sity and viscosity constants. It is the nonlinearity of the
Navier–Stokes equations which makes them intractable,
the nonlinearity manifested by the “products of terms” like
v:rv which occur in them. They have been studied inten-
sively since the nineteenth century particularly in special
forms obtained by making simplifying assumptions.

L. F. Richardson, who enters the subject of Fractals and
Chaos at different points made attempts to solve nonlin-
ear differential equations by numerical methods. In the
1920s, Richardson adapted words from Gulliver’s Trav-
els in one of his well-known refrains on turbulence: “big
whirls have little whirls that feed on their velocity, and
little whirls have lesser whirls and so on to viscosity – in
the molecular sense” [79]. This numerical work was ham-
pered by the lack of computing power. The only comput-
ers available in the 1920s were human ones, and the tradi-
tions of using paid “human computers” was still in oper-
ation. Richardson visualized an orchestra of human com-
puters harmoniously carrying out the vast array of calcu-
lations under the baton of a mathematician. There were
glimmers of all this changing, and during the 1920s the
appearance of electrical devices gave an impetus to the
mathematical study of both numerical analysis and the
study of nonlinear differential equations. John von Neu-
mann for one saw the need for the electronic devices as
an aid tomathematics. Notwithstanding this development,
the problem of fluid flow posed intrinsic mathematical dif-
ficulties.

In 1932, Horace Lamb addressed the British Associ-
ation for the Advancement of Science, with a prophetic

statement dashed with his impish touch of humor: “I am
an old man now, and when I die and go to Heaven there
are twomatters on which I hope for enlightenment. One is
quantum electro-dynamics, and the other is the turbulent
motion of fluids. And about the former I am really rather
optimistic.” Forty years on Werner Heisenberg continued
in the same vein. He certainly knew about quantum the-
ory, having invented it, but chose relativity as the compet-
ing theory with turbulence for his own lamb’s tale. On his
death bed it is said he compared quantum theory with tur-
bulence and is reputed to have singled out turbulence as of
the greater difficulty.

In 1941, A. Kolmogorov, the many-sided Russian
mathematician published two papers on problems of tur-
bulence caused by the jet engine and astronomy. Kol-
mogorov also made contributions to probability and
topology though these two papers are the ones rated highly
by fluid dynamicists and physicists. In 1946 he was ap-
pointed to head the Turbulence Laboratory of the Aca-
demic Institute of Theoretical Geophysics. With Kolmol-
gov, an influential school of mathematicians that included
L. S. Pontryagin, A. A. Andronov, D. V. Anosov and V. I.
Arnol’d became active in Russia in the field of dynamical
systems [24].

Qualitative Differential Equations and Topology

Poincaré’s qualitative study of differential equations pio-
neered the idea of viewing the solution of differential equa-
tions as curves rather than functions and replacing the lo-
cal with the global. Poincaré’s viewpoint was revolution-
ary. As he explained it in Science and Method: “formerly
an equation was considered solved only when its solution
had been expressed by aid of a finite number of known
functions; but that is possible scarcely once in a hundred
times. What we always can do, or rather what we should
always seek to do, is to solve the problem qualitatively [his
italics] so to speak; that is to say; seek to know the gen-
eral form of the curve [trajectory] which represents the un-
known function.”

For the case of the plane, m D 2, for instance, what do
the solutions to differential equations look like across the
whole plane, viewing them as trajectories x(t) starting at
an initial point? This contrasts with the traditional view
of solving differential equations whereby specific functions
are sought which satisfy initial and boundary conditions.

Poincaré’s attack on the three body problem (the mo-
tion of the moon, earth, sun, is an example) was stimu-
lated by a prize offered in 1885 to commemorate the sixti-
eth birthday of King Oscar II of Sweden. The problem set
was for an n-body problem but Poincaré’s essay on the re-
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stricted three-body problem was judged so significant that
he was awarded the prize in January 1889. Before publi-
cation, Poincaré went over his working and found a sig-
nificant error. It proved a profound error. According to
Barrow-Green his description of doubly asymptotic tra-
jectories is the first mathematical description of chaotic
motion in a dynamical system [6,7]. Poincaré introduced
the “Poincaré section” the surface section that transversely
intersects the trajectory in phase space and defines a se-
quence of points on it. In the case of the damped pendu-
lum, for example, a sequence of points is obtained as the
spiral trajectory in phase space hits the section. This idea
brings a physical dynamical systems problem in conjunc-
tion with topology, a theme developed further by Birkhoff
in 1927 [1,10].

Poincaré also introduced the idea of phase space but
his study mainly revolves around periodic trajectories and
not the non periodic ones typical of chaos. Poincaré said
of periodic orbits, that they were “the only gap through
which may attempt to penetrate, into a place where up to
now was reputed to be unreachable”. The concentration
on periodic trajectories has a parallel in nearby pure math-
ematics – where irregular curves designated as “monsters”
were ignored in favor of “normal curves”.

G. D. Birkhoff learned from Poincaré. It was said that,
apart from J. Hadamard, no other mathematician knew
Poincaré’s work as well as Birkhoff did. Like his mentor,
Birkhoff adopted phase space as his template, and em-
phasised periodic solutions and treated conservative sys-
tems and not dissipative systems (such as the damped
pendulum which loses energy). Birkhoff spent the ma-
jor part of his career, between 1912 and 1945 contribut-
ing to the theory of dynamical systems. His aim was to
provide a qualitative theory which characterized equilib-
rium points in connection with their stability. A dynam-
ical system was defined by a set of n differential equa-
tions dxi /dt D Fi(x1; : : : ; xn) defined locally. An inter-
pretation of these could be a situation in chemistry where
x1(t); : : : ; xn(t) might be the concentrations of n chemical
reactants at time t where the initial values x1(0); : : : ; xn(0)
are given, though applications were not Birkhoff’s main
concern.

In 1941, towards the end of his career, Birkhoff reap-
praised the field in “Some unsolved problems of theoreti-
cal dynamics” Later M. Morse discussed these and pointed
out that Birkhoff listed the same problems he had consid-
ered in 1920. In 1920 Birkhoff had written about dynami-
cal systems in terms of the “general analysis” propounded
by E. H. Moore in Chicago where he had been a stu-
dent. In the essay of 1941 modern topological language
was used:

As was first realized about fifty years ago by the
great French mathematician, Henri Poincaré, the
study of dynamical systems (such as the solar sys-
tem) leads directly to extraordinary diverse and im-
portant problems in point-set theory, topology and
the theory of functions of real variables.

The idea was to describe the phase space by an abstract
topological space. In his talk of 1941, Birkhoff continued:

The kind of abstract space which it seems best to
employ is a compact metric space. The individual
points represent “states of motion”, and each curve
of motion represents a complete motion of the ab-
stract dynamical system [11].

Using Birkhoff’s reappraisal, Morse set out future goals: “
‘Conservative flows’ are to be studied both in the topologi-
cal and the statistical sense, and abstract variational theory
is to enter. There is no doubt about the challenge of the
field, and the need for a powerful and varied attack [68].”

Duffing, Van der Pol and Radar

It is significant that chaos theory was first derived from
practical problems. Poincaré was an early pioneer with
a problem in astronomy but other applications shortly ar-
rived. C. Duffing (1918) introduced a second order non-
linear differential equation which described a mechanical
oscillating device. In a simple form of it (with zero forcing
term):

d2x/dt2 C ˛dx/dt C (ˇx3 C �x) D 0 ;

Duffing’s equation exhibits chaotic solutions. B. van der
Pol working at the Radio Scientific Research group at
the Philips Laboratory at Eindhoven, described “irregular
noise” in an electronic diode. Van der Pol’s equations of
the form (with right hand side forcing term):

d2x/dt2 C k(x2 � 1)dx/dt C x D A cos˝ t

described “relaxational” oscillations or arrhythmic beats
of an electrical circuit. Such “relaxational” oscillations are
of the type which also occur in the beating of the heart.
Richardson noted the transition from periodic solutions to
van der Pol’s equation (1926) to unstable solutions. Both
Duffing’s equation and Van der Pol’s equation play an im-
portant part in chaos theory.

In 1938 the English mathematician Mary Cartwright
answered a call for help from the British Department of
Scientific and Industrial Research. A solution to the differ-
ential equations connected with the new radar technology
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waswanted, and van der Pol’s equation was relevant. It was
in the connection this equation that she collaborated with
J. E. Littlewood in the 1940s and made discoveries which
presaged modern Chaos.

The mathematical difficulty was caused by the equa-
tion being nonlinear but otherwise the equation appear
nondescript. Yet in mathematics, the nondescript can
yield surprises. A corner of mathematics was discov-
ered that Cartwright described as “a curious branch of
mathematics developed by different people from different
standpoints – straight mechanics, radio oscillations, pure
mathematics and servo-mechanisms of automatic control
theory [65]” The mathematician and physicist Freeman
Dyson wrote of this work and its practical significance:

Cartwright had been working with Littlewood on
the solutions of the equation, which describe the
output of a nonlinear radio amplifier when the in-
put is a pure sine-wave. The whole development of
radio inWorldWar II depended on high power am-
plifiers, and it was a matter of life and death to have
amplifiers that did what they were supposed to do.
The soldiers were plagued with amplifiers that mis-
behaved, and blamed the manufacturers for their
erratic behavior. Cartwright and Littlewood discov-
ered that the manufacturers were not to blame. The
equation itself was to blame. They discovered that
as you raise the gain [the ratio of output to input] of
the amplifier, the solutions of the equation become
more and more irregular. At low power the solution
has the same period as the input, but as the power
increases you see solutions with double the period,
and finally you have solutions that are not periodic
at all [30].

The story is now familiar: there is the phenomenon of pe-
riod doubling of solutions followed by chaotic solutions
as the gain of the amplifier is raised still higher. A further
contribution to the theory of this equation was made by N.
Levinson of the Massachusetts Institute of Technology in
the United States.

Curves and Dimension

The subject of “Fractals” is a more recent development.
First inklings of them appeared in “Analysis situs” in the
latter part of the nineteenth century when the young sub-
ject of topology was gaining ground. Questions were being
asked about the properties of sets of points in Euclidean
spaces, the nature of curves, and the meaning of dimen-
sion itself.

Crinkly Curves

In 1872, K. Weierstrass introduced the famous function
defined by a convergent series:

f (x) D
1X

kD0

bk cos(ak�x) (a > 1; 0 < b < 1; ab > 1);

which was continuous everywhere but differentiable
nowhere. It was the original “crinkly curve” but in 1904,
H. von Koch produced a much simpler one based only
on elementary geometry. While the idea of a function be-
ing continuous but not differentiable could be traced back
to A-M Ampère at the beginning of the nineteenth cen-
tury, von Koch’s construction has similarities with exam-
ples produced by B. Bolzano. Von Koch’s curve has be-
come a classic half-way between a “monster curves” and
regularity – an example of a curve of infinite length which
encloses a finite area, as well as being an iconic fractal.

In retrospect G. Cantor’s middle third set (also dis-
covered by H.J.S. Smith (1875) a professor at Oxford), is
also a fractal. It is a totally disconnected and uncountable
set, with the curiosity that after subtractions of themiddle-
third segments from the unit interval the ultimate Cantor
set has same cardinality as the original unit interval.

At the beginning of the twentieth century searching
questions about the theory of curves were being asked. The
very basic question “what is a curve” had been brought to
life by G. Peano by his space filling curve which is defined
in accordance with Jordan’s definition of a curve but fills
out a “two-dimensional square.” Clearly the theory of di-
mension needed serious attention for how could an osten-
sibly two-dimensional “filled-in square” be a curve?

The Iteration of Functions

A principal source of fractals is obtained by the iteration of
functions, what is now called a discrete dynamical system,
or a system of symbolic dynamics [15,23].

One of the earliest forays in this field was made by
the English mathematician A. Cayley, but he was not the
first as D. S. Alexander has pointed out. F.W. K. E. (Ernst)
Schröder anticipated him, and may even have been the in-
spiration for Cayley’s attraction to the problem.

Is there a link between the two mathematicians?
Schröder studied at Heidelberg and where L. O. Hesse was
his doctoral adviser. Hesse who contributed to algebra, ge-
ometry, and invariant theory and was known to Cayley.
Nowadays Schröder is known for his contributions to logic
but in 1871 he published “Ueber iterite Functionen” in
the newly founded Mathematische Annalen. The princi-
pal objective of this journal was the publication of articles
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on invariant theory then a preoccupation of the English
and German schools of mathematics, and Cayley was at
the forefront of this research.

So did Cayley know of Schröder’s work? Cayley had
an appetite for all things (pure) mathematical and had
acquired encyclopedic knowledge of the field, just about
possible in the 1870s. In 1871 Cayley published an arti-
cle (“Note on the theory of invariants”) in the same vol-
ume and issue of the Mathematische Annalen in which
Schröder’s article appeared, and actually published three
articles in the volume. In this period of his life, when
he was in his fifties he allowed his interests full rein and
became a veritable magpie of mathematics. He covered
a wide range of topics, too many to list here, but his con-
tributions were invariably short. Moreover he dropped in-
variant theory at this point and only resumed in 1878
when J. J. Sylvester reawakened his interest. There was
time to rediscover the four color problem and perhaps
Schröder’s work on the iteration of functions. It was a field
where Schroeder had previously “encountered very few
collaborators.” The custom of English mathematicians cit-
ing previous work of others began in the 1880s and Cayley
was one of the first to do this. The fact that Cayley did not
cite Schröder is not significant.

In February 1879, Cayley wrote to Sir William Thom-
son (the later Lord Kelvin) about the Newton–Fourier
method of finding the root of an equation, named after I.
Newton (c.1669) and J. Fourier (1818) that dealt with the
real variable version of the method. This achieved a de-
gree of significance in Cayley’s mind, for a few days later
he wrote to another colleague about it:

I have a beautiful question which is bothering me –
the extension of the Newton–Fourier method of ap-
proximation to imaginary values: it is very easy and
pretty for a quadric equation, but I do not yet see
how it comes out for a cubic. The general notion is
that the plane must be divided into regions; such
that starting with a point P in one of these say
the A-region . . . [his ellipsis], the whole series of de-
rived points P1; P2; P3; : : : up is P1 (which will be
the point A) lies in this [planar] region; . . . and so
for the B. and C. regions. But I do not yet see how to
find the bounding curves [of these regions] [21].

So Cayley’s regions are the modern basins of attraction for
the point A, the bounding curves now known as Julia sets.
He tried out the idea before the Cambridge Philosophical
Society, and by the beginning of March had done enough
to send the problem for publication:

In connexion herewith, throwing aside the restric-
tions as to reality, we have what I call the Newton–

Fourier Imaginary Problem, as follows.

Take f (u) a given rational and integral function
[a polynomial] of u, with real or imaginary coeffi-
cients; z, a given real or imaginary value, and from
this derive z1 by the formula

z1 D z �
f (z)
f 0(z)

and thence z1; z2; z3; : : : each from the preceding
one by the like formula. . . . The solution is easy and
elegant in the case of a quadric equation: but the
next succeeding case of the cubic equation appears
to present considerable difficulty [17].

Cayley’s connection with German mathematicians was
close in the 1870s, and later on in 1879 (and in 1880) he
went on tours of Germany, and visited mathematicians.
No doubt he took the problem with him, and it was one he
returned to periodically.

Both Cayley and Schröder solved this problem for the
roots of z2 D 1 but their methods differ. Cayley’s is geo-
metrical whereas Schröder’s was analytical. There are only
two fixed points z D ˙1 and the boundary (Julia set) be-
tween the two basins of attraction of the root finding func-
tion is the “y-axis.” The algorithm for finding the com-
plex roots of the cubic equation z3 D 1 has three stable
fixed points at z D 1; z D exp(2� i/3); z D exp(�2� i/3)
and with the iteration z! z � (z3 � 1)/3z2, three do-
mains, basins of attraction exist with highly interlaced
boundaries. The problem of determining the Julia set for
the quadratic was straightforward but the cubic seemed
impossible [42]. For good reason, with the aid of modern
computing machinery the Julia set in the case of the cubic
is an intricately laced trefoil. But some progress was made
before computers entered the field. After WWI G. Julia
and P. Fatou published lengthy papers on iteration and
later C. L. Siegel studied the field [35,48,85].

Topological Dimension

The concept of dimension has been an enduring study for
millennia, and fractals has prolonged the centrality of this
concept in mathematics. The ordinary meaning of dimen-
sions one, two, three dimensions applied to line, plane,
solid of theGreeks, was initially extended to n-dimensions.
Since the 1870s mathematicians ascribed newer meanings
to the term.

At the beginning of the twentieth century, Topology
was in its infancy, and emerging from “analysis situs.”
An impetus was the Hausdorff’s definition of a topologi-
cal space in terms of neighborhoods in 1914. The evolu-
tion of topological dimension was developed in the hands
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of such mathematicians as L. E. J. Brouwer, H. Poincaré,
K. Menger, P. Urysohn, F. Hausdorff but in the new sur-
roundings, the concepts of curve and dimension proved
elusive.

Poincaré made several attempts to define dimension.
One was in terms of group theory, one he described as
a “dynamical theory.” This was unsatisfactory for why
should dimension depend on the idea of a group. He gave
another definition that he described as a “statical theory.”
Accordingly in papers of 1903, and 1912, a topological
notion of n-dimensions (where n a natural number) was
based on the notion of a cut, and Poincaré wrote:

If to divide a continuum it suffices to consider as
cuts a certain number of elements all distinguish-
able from one another, we say this continuum is of
one dimension; if, on the contrary, to divide a con-
tinuum it is necessary to consider as cuts a system
of elements themselves forming one or several con-
tinua, we shall say that this continuum is of several
dimensions. If to divide a continuum C, cuts which
form one or several continua of one dimension suf-
fice, we shall say thatC is a continuum of two dimen-
sions; if cuts which form one or several continua of
at most two dimensions suffice, we shall say that C
is a continuum of three dimensions; and so on [74].

To illustrate the pitfalls of this game of cat and mouse
where “definition” attempts to capture the right notion,
we see this definition yielded some curious results – the
dimension of a double cone ostensibly of two dimensions
turns out to be of one dimension, since one can delete the
zero dimensional point where the two ends of the cone
meet.

Curves were equally difficult to pin down. Menger
used a physical metaphor to get at the pure notion of
a curve:

We can think of a curve as being represented by fine
wires, surfaces as produced from thin metal sheets,
bodies as if they were made of wood. Then we see
that in order to separate a point in the surface from
points in a neighborhood or from other surfaces, we
have to cut the surfaces along continuous lines with
a scissors. In order to extract a point in a body from
its neighborhood we have to saw our way through
whole surfaces. On the other hand in order to ex-
cise a point in a curve from its neighborhood irre-
spective of how twisted or tangled the curve may
be, it suffices to pinch at discrete points with tweez-
ers. This fact, that is independent of the particular
form of curves or surfaces we consider, equips us
with a strong conceptual description [22].

Menger set out his ideas about basic notions in mathemat-
ical papers and in the books Dimensionstheorie (1928) and
Kurventheorie (1932). In Dimensionstheorie he gave an in-
ductive definition of dimension, on the implicit under-
standing that dimension only made sense for n an integer
(� �1):

A space is called at most n-dimensional, if every
point is contained in arbitrarily small neighbor-
hoods with an most (n � 1)-dimensional bound-
aries. A space that is not at most (n � 1)-
dimensional we call at least n-dimensional. . . .
A Space is called n-dimensional, if it is both at
most n-dimensional and also at least n-dimensional,
in other words, if every point is contained in arbi-
trarily small neighborhoods with at most (n � 1)-
dimensional boundaries, but at least one point is
not contained in arbitrarily small boundaries with
less than (n � 1)-dimensional boundaries. . . . The
empty set and only this is (–1)-dimensional (and at
most (–1)-dimensional. A space that for no natural
number n is n-dimensional we call infinite dimen-
sional.

Different notions of topological dimension defined in the
1920s and 1930s, were ind X (the small inductive dimen-
sion), Ind X (the large inductive dimension), and dim X
(the Lebesgue covering dimension). Researchers investi-
gated the various inequalities between these and the prop-
erties of abstract topological spaces which ensured all these
notions coincided. By 1950, the theory of topological di-
mension was still in its infancy [20,47,66].

Metric Dimension

For the purposes of fractals, it is the metric definitions of
dimension which are fundamental.

For instance, how can we define the dimension of the
Cantor’s “middle third” set which takes into account its
metric structure? What about the iconic fractal known as
the von Koch curve snow flake curve (1904)? These sets
pose interesting questions. Pictorially von Koch’s curve is
made up of small 1 dimensional lines and wemight be per-
suaded that it too should be 1 dimensional. But the real
von Koch curve is defined as a limiting curve and for this
there are differences between it and a line. Between any
two points on a 1 dimensional line there is a finite distance
but between any two points on the Koch curve the distance
is infinite. This suggests its dimensionality is greater than 1
while at the same time it does not fill out a 2 dimensional
region. The Sierpinski curve (or gasket) is another exam-
ple, but perhaps more spectacular is the “sponge curve”. In
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Kurventheorie (1932) Menger gave what is now known as
the Menger Sponge, the set obtained from the unit cube by
successively deleting sub-blocks in the same way as Can-
tor’s middle third set is obtained from the unit interval.

A colorful approach to defining metric dimension is
provided by L. F. Richardson. Richardson (1951) took on
the practical measurement of coastlines from maps. To
measure the coastline, Richardson used dividers set a dis-
tance l apart. The length of the coastline will be L D

P
l

after walking the dividers around the coast. Richardson
was a practical man, and he found by plotting L against l,
the purely empirical result that L / l�˛ for a constant ˛
that depends on the chosen coastline. So, for a given coun-
try we get an approximate length L D cl�˛ but the smaller
the dividers are set apart the longer becomes the coastline!

The phenomenon of the coastline length being “di-
vider dependent” explains the discrepancy of 227 kilome-
ters in the measurement by of the border between Spain
and Portugal (987 km stated by Spain, and 1214 km stated
by Portugal). The length of the Australian coastline turns
out to be 9400 km if one divider space represents 2000 km,
and is 14,420 km if the divider space represent 100 km.
Richardson cautions “to speak simply of the “length” of
a coast is therefore to make an unwarranted assump-
tion. When a man says that he “walked 10 miles along
the coast,” he usually means that he walked 10 miles [on
a smooth curve] near the coast.” Richardson goes into in-
credible numerical data and his work is of an empirical
nature, but it paid off, and he was able to combine two
branches of science, the empirical and the mathematical.
Moreover here we have a link with chaos: Richardson de-
scribed the “sensitivity to initial conditions” where a small
difference in the setting of the dividers can result in a large
difference in the “length” of the coastline.

The constant ˛ is a characteristic of the coastline or
frontier whose value is dependent on its place in the range
between smoothness and jaggedness. So if the frontier is
a straight line, ˛ would be zero, and increases the more ir-
regular the coast line. In the case of Australia, ˛ was found
to be about 0.13 and for the very irregular west coast of
Britain, ˛ was found to be about 0.25. The value 1C ˛ an-
ticipates the mathematical concept known as “divider di-
mension”. So, for example, the divider dimension of the
west coast of Britain would be 1.25. The divider dimen-
sion idea is fruitful – it can be applied to Brownian mo-
tion, a mathematical theory set out by Norbert Wiener in
the 1920s but it is not the main one when applied to fractal
dimension.

“Fractal dimension” means Hausdorff dimension, or
as we already noted, the Hausdorff–Besicovitch dimen-
sion. Generally Hausdorff dimension is difficult to cal-

culate, but for the self-similar sets and curves such as
Cantor’s middle-third set, the Sierpinski curve, the von
Koch curve, Menger’s sponge, it is equivalent to calcu-
lating the box dimension or Minkowski–Bouligand di-
mension (see also [61]). The middle third set has frac-
tal dimension DH D log 2/ log 3 D 0:63 : : :, and the Sier-
pinski curve has DH D log 3/ log 2 D 1:58 : : :, the von
Koch curve DH D log 4/ log 3 D 1:26 : : :, and Menger’s
sponge embedded in three-dimensional Euclidean space
has Hausdorff dimension DH D log 20/ log 3 D 2:72 : : :.

Chaos Comes of Age

The modern theory of Chaos occurred around the end of
the 1950s. S. Smale, Y. Ueda, E. N. Lorenz made discover-
ies which ushered in the new age. The subject became ex-
tremely popular in the early 1970s and the “avant-garde”
looked back to this period as the beginning of chaos the-
ory. They contributed some of the most often cited papers
in further developments.

Physical Systems

In 1961 Y. Ueda, a third year undergraduate student in
Japan discovered a curious phenomenon in connection
with the single “Van der Pol” type nonlinear equation

d2x/dt2 C k(�x2 � 1)dx/dt C x3 D ˇ cost ;

another example of an equation used to model an oscilla-
tor. With the parameter values set at k D 0:2; � D 8; ˇ D
0:35 Ueda found the dynamics was “chaotic” – though of
course he did not use that term. With an analogue com-
puter, of a type then used to solve differential equations,
the attractor in phase space appeared as a “shattered egg.”
Solutions for many other values of the parameters revealed
orderly behavior, but what was special about the values 0.2,
8, 0.35? Ueda had no idea he had stumbled on a major
discovery. Forty years later he reminisced on the higher
principles of the scientific quest: “but while I was toiling
alone in my laboratory,” he said, “I was never trying to
pursue such a grandiose dream as making a revolutionary
new discovery, not did I ever anticipate writing a memoir
about it. I was simply trying to find an answer to a per-
sistent question, faithfully trying to follow the lead of my
own perception of a problem [2].”

In 1963, E. N. Lorenz published a landmark paper
(with at least 5000 citations to date) but it was one pub-
lished in a journal off the beaten track for mathematicians.
Lorenz investigated a simple model for atmospheric con-
vection along the lines of the Rayleigh–Bernard convec-
tion model. To see what Lorenz actually did we quote the
abstract to his original paper:



Fractals Meet Chaos F 3837

Finite systems of deterministic ordinary nonlinear
differential equations may be designed to repre-
sent forced dissipative hydrodynamical flow. Solu-
tions of these equations can be identified with tra-
jectories in phase space. For those solutions with
bounded solutions, it is found that non periodic so-
lutions are ordinarily unstable with respect to small
modifications, so that slightly differing initial states
can evolve into considerably different states. Sys-
tems with bounded solutions are shown to possess
bounded numerical solutions. A simple system rep-
resenting cellular convection is solved numerically.
All of the solutions are found to be unstable, and al-
most all of them are non periodic [53].

The oft quoted equations (with simplifying assumptions,
and a truncated version of the Navier–Stokes equations)
used to model Rayleigh–Bernard convection are the non-
linear equations [89]:

dx/dt D �(y � x)
dy/dt D rx � y � xz
dz/dt D xy � bz ;

where � is called the Prandtl number, r is the Rayleigh
number and b is a geometrically determined param-
eter. From the qualitative viewpoint, the solution of
these equations, (x1(t); x2(t); x3(t)) with initial values
(x1(0); x2(0); x3(0)) traces out a trajectory in 3-dimen-
sional phase space. Lorenz solved the equations numer-
ically by a forward difference procedure based on the
time honored Runge–Kutta method which set up an it-
erative scheme of difference equations. Lorenz discovered
that the case where the parameters have specific values
of � D 10; r D 28; b D 8/3 gave chaotic trajectories which
wind around the famous Lorenz attractor in the phase
space – and by accident, he discovered the butterfly ef-
fect. The significance of Lorenz’s work was the discovery
of Chaos in low dimensional systems – the equations de-
scribed dynamical behavior of a kind seen by only a few –
including Ueda in Japan. One can imagine his surprise and
delight, for though working in Meteorology, Lorenz had
been a graduate student of G. D. Birkhoff at Harvard. Once
the chink in the mathematical fabric was made, the same
kind of mathematical behavior of chaos was discovered in
other systems of differential equations.

The Lorenz attractor became the subject of intensive
research. Once it was discovered by mathematicians – not
many mathematicians read the meteorology journals – it
excited much attention and helped to launch the chaos
craze. But one outstanding problem remained: did the

Lorenz attractor actually exist or was its presence due to
the accumulation of numerical errors in the approximate
methods used to solve the differential equations. Comput-
ing power was in its infancy and Lorenz made his calcu-
lations on a fairly primitive string and sealing-wax Royal
McBee LGP-30 machine.

Some believed that the numerical evidence was suffi-
cient for the existence of a Lorenz attractor but this did not
satisfy everyone. This question of actual existence resisted
all attempts at its solution because there were no mathe-
matical tools to solve the equations explicitly. The prob-
lem was eventually cracked by W. Tucker in 1999 then
a postgraduate student at the University of Uppsala [94].
Tucker’s proof that the Lorenz attractor actually exists in-
volved a rigorous computer algorithm in conjunction with
a rigorous set of bounds on the possible numerical errors
which could occur. It is very technical [95].

Other sets of differential equations which exemplified
the chaos phenomena, one even more basic than Lorenz’s
is due to O. Rössler, equations which modeled chemical
reactions:

dx/dt D �y � z
dy/dt D x C ˛y
dz/dt D ˛ � �z C xz :

Rössler discovered chaos for the parameter values ˛ D 0:2
and � D 5:7 [77]. This is the simplest system yet found,
for it has only one nonlinear term xz compared with
two in the case of Lorenz’s equations. Other examples of
chaotic solutions are found in the dripping faucet experi-
ment caried out by Shaw (1984) [84].

Strange Attractors

An attractor is a set of points in phase space with the prop-
erty that a trajectory with an initial point near it will be
attracted to it – and if the trajectory touches the attractor
it is trapped to stay within it. But what makes an attractor
“strange”?

The simple pendulum swings to and fro. This is a dissi-
pative system as the loss of energy causes the bob to come
to rest. Whatever the initial point stating point of the bob,
the trajectory in phase space will spiral down to the origin.
The attractor in this case is simply the point at the origin;
the rest point where displacement is nil and velocity is nil.
This point is said to attract all solutions of the differential
equations which models the pendulum. This single point
attractor is hardly strange.

If the pendulum is configured to swing to and fro with
a fixed amplitude, the attractor in phase space will be a cir-
cle. In this case the system conserves energy and the whole
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system is called a conservative system. If the pendulum
is slightly perturbed it will return to the previous am-
plitude, and in this sense the circle or a limit cycle will
have attracted the displaced trajectory. Neither is the circle
strange.

The case of the driven pendulum is different. In the
driven pendulum the anchor point of the pendulum oscil-
lates with a constant amplitude a and constant drive fre-
quency f . The equation of motion of the angular displace-
ment from the vertical � with damping parameter q can
be described as a second order nonlinear (because of the
presence of the sin � term in the differential equation):

d2� /dt2 C (1/q)d� /dt C sin � D a cos f t :

Alternatively this motion can be described by three simul-
taneous equations:

dw/dt D �(1/q)w � sin � C a cos�
d� /dt D w
d�/dt D f ;

where � is the phase of the drive term. The three vari-
ables (w; �; �) describe the motion of the driven pendu-
lum in three–dimensional phase space and its shape will
depend on the values of the parameters (a; f ; q). For some
values, just as for the Lorenz attractor, the motion will be
chaotic [5].

For an attractor to be strange, it should be fractal in
structure. The notion of strange attractor is due to D. Ru-
elle and F. Takens in papers of 1971 [82]. In their work
there is no mention of fractals, simply because fractals had
not risen to prominence at that time. Strange attractors
for Ruelle and Takens were infinite sets of points in phase
space corresponding to points of a physical dynamic sys-
tem which appeared to have a complicated evolution –
they were just very weird sets of points. But the principle
was gained. Dynamical systems, like the gusts in wind tur-
bulence, are in principle modeled by deterministic differ-
ential equations but now their solution trajectories seemed
random. In classical physics mechanical processes were
supposed to be as uncomplicated as the pendulum where
the attractor was a single point or a circular limit cycle. The
seemingly random processes that now appeared offered
the mathematician and physicist a considerable challenge.

The name “strange attractor” caught on and quickly
captured the scientific and popular imagination. Ruelle
asked Takens if he had dreamed up the name, and he
replied: “Did you ever ask God whether he created this
damned universe? . . . I don’t remember anything . . . I of-
ten create without remembering it . . . ” and Ruelle wrote

the “creation of strange attractors thus seems to be sur-
rounded by clouds and thunder. Anyway, the name is
beautiful, and I well suited to these astonishing objects, of
which we understand so little [80].” Ruelle wrote “These
systems of curves [arising in the study of turbulence], these
clouds of points, sometimes evoke galaxies or fireworks,
other times quite weird and disturbing blossomings. There
is a whole world of forms still to be explored, and har-
monies still to be discovered [45,91].”

Initially a strange attractor was a set which was ex-
traordinary in some sense and there were naturally at-
tempts to pin this down. In particular distinctions between
“strange attractors” and “chaotic behavior” were drawn
out [14]. Accordingly, a strange attractor is an attractor
which is not (i) a finite set of points (ii) a closed curve
(iii) a smooth or piecewise smooth surface or a volume
bounded by such a surface. “Chaotic behavior” relates to
the behavior of trajectories on the points of the attrac-
tor where nearby orbits around the attractor diverge with
time. A strange nonchaotic attractor is one (with the above
exclusions) where the trajectories are not chaotic, that is,
there is an absence of sensitivity to initial conditions.

Pure Dynamical Systems

Chaos had its origins in real physical problems and the
consequent differential equations, but the way had been
set by Poincaré and Birkhoff for the entry of pure mathe-
maticians. S. Smale gained his doctorate from the Univer-
sity of Michigan in 1956 supervised by the topologist R.
Bott, stepped into this role. In seeking out fresh fields for
research he surveyed Birkhoff’s Collected Papers and read
the papers of Levinson on the van der Pol equation..

On a visit to Rio de Janeiro in late 1959, Smale focused
on general dynamical systems. What better place to do re-
search than on the beach:

My work was mostly scribbling down ideas and try-
ing to see how arguments could be sequenced. Also
I would sketch crude diagrams of geometric ob-
jects flowing through space and try to link the pic-
tures with formal deductions. Deeply involved in
this kind of thinking and writing on a pad of pa-
per, the distraction of the beach did not bother me.
Moreover, one could take time off from the research
to swim [88].

He got into hotter water to the north when it was brought
to the attention of government officials that national re-
search grants were being spent at the seaside. They seemed
unaware that amathematical researcher is always working.
Smale certainly had a capacity for hard concentrated work.
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Receiving a letter from N. Levinson, about the Van der Pol
equation, he reported:

I worked day and night to try to resolve the chal-
lenge to my beliefs that letter posed. It was neces-
sary to translate Levinson’s analytic argument into
my own geometric way of thinking. At least in my
own case, understandingmathematics doesn’t come
from reading or even listening. It comes from re-
thinking what I see or hear. I must redo the mathe-
matics in the context of my particular background.
. . . In any case I eventually convinced myself that
Levinson was correct, and that my conjecture was
wrong. Chaos was already implicit in the analyzes
of Cartwright and Littlewood! The paradox was re-
solved, I had guessed wrongly. But while learning
that, I discovered the horseshoe [8].

The famous “horseshoe” mapping allowed him to con-
struct a proof of the Poincaré conjecture in dimensions
greater than or equal to five, and for this, he was awarded
a Field’s medal in 1966.

Iteration provides an example of a dynamical system,
of a kind involving discrete time intervals. These were the
systems suggested by Schröder and Cayley, and take on
a pure mathematical guise with no physical experiment-
ing to act as a guide. In the late 1950s, a research group in
Toulouse led by I. Gumowski and his student C. Mira pur-
sued an exploration of nonlinear systems from this point
of view. Their approach was inductive, and started with
the simplest example of nonlinear maps of the plane which
were then iterated. Functions chosen for exploration were
the family,

x ! y � F(x)
y! x C F(y � F(x)) ;

for various rational functions F(x). The pictures in the
plane were noted for their spectacular “chaos esthétique.”

The connection of chaos with the iteration of functions
was pioneered by Gumowski and Mira, O. M. Sharkovsky
(in 1964), Smale (in 1967) [86], and N. Metropolis, M.
Stein, P. Stein (in 1973) [67]. M. Feigenbaum (in the late
1970s) studied the quadratic logistic map x ! x(1 � x)
and its iterates and discovered period doubling and
the connection with physical phenomena. For the value
 D 3:5699456 : : : the orbit is non periodic and the attrac-
tor is the Cantor set so it is a strange attractor.

Feigenbaum studied one dimensional iterativemaps of
a general type x !  f (x) for a general f and discovered
properties independent of the form of the recursion func-
tion. The Feigenbaum number, the bifurcation rate ı with

value ı D 4:6692 : : : is the limit of the parameter inter-
vals in which period doubling takes place before the onset
of chaos. The intervals are shortened at each period dou-
bling by the inverse of the Feigenbaum number, a univer-
sal value for many functions [36,37]. In the case of fluid
flow, it was discovered that the transition from smooth
flow to turbulence is linked with period doubling.

The iteration of functions, a very simple process, was
brought to the attention of the wider scientific public by
R. May. In his oft quoted piece on the one dimension
quadratic mapping, he stressed the importance it held for
mathematical education:

I would therefore urge that people be introduced to,
say, equation x ! x(1 � x) early in their math-
ematical education. This equation can be studied
phenomenologically by iterating it on a calculator,
or even by hand. Its study does not involve as much
conceptual sophistication as does elementary calcu-
lus. Such study would greatly enrich the student’s
intuition about nonlinear systems.

Not only in research, but also in the everyday world
of politics and economics, we would all be better off
if more people realized that simple nonlinear sys-
tems do not necessarily possess simple dynamical
properties [62].

The example of x ! x(1 � x) provides another link with
the mathematical past, which amply demonstrates that
Fractals and Chaos is not merely a child of the sixties
but is joined to the mainstream of mathematics which
slowly evolves over centuries. The Schwarzian derivative
y D f (x) defined by

S(y) D
dx
dy

d3y
dx3
�

3
2

 
dx
dy

d2y
dx2

!2

;

is connected with complex analysis and also introduced
into invariant theory (where it was called a differentiant) of
a hundred years previously. It was introduced by D. Singer
in 1978 in the context of one dimensional dynamical sys-
tems [26].

While the quadratic map is one dimensional, we can
go into two dimensions with pairs of nonlinear differ-
ence equations. A beautiful example is the one (x; y) !
(y � x2; a C bx) or in the equivalent form (x; y) !
(1Cy�ax2; bx). In this case, for some values of the param-
eters ellipses are generated, but in others we gain strange
attractors. This is the Hénon schemeb D 0:3, and a near
1.4 the attractor has an infinity of attracting points, and
being a fractal set it is a strange attractor [81]. A Poincaré
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section of this attractor is a Cantor set, further evidence for
the set being a strange attractor.

The Hénon map is one of the earliest examples illus-
trating chaos. It has Jacobian (which measures area) b for
all points in the plane, so if jbj < 1 the Hénon mapping
of the plane contracts area by a constant factor b for any
point in the plane [41]. The effect of iterating this mapping
is to stretch and fold its image in the manner of the Smale
horseshoe mapping. The Hénon attractor is the prototype
strange attractor. It arises in the case of a diffeomorphism
of the plane which stretches and folds an open set U with
the property that f (Ū) � U .

The Advent of Fractals

The term was coined by B. B. Mandelbrot in the 1970s
and now Mandelbrot is regarded as the “father of frac-
tals” [55,56]. His first forays were to study fractals which
were invariant under linear transformations. His uncle
(SzolemMandelbrojt, a professor of Mathematics andMe-
chanics at the Collège de France and later at the French
Académie des Sciences) encouraged him to read the origi-
nal papers by G. Julia and P. Fatou as a young man.

Euclid’s Elements

Fractals are revolutionary because they challenge one of
the sacred texts of mathematics. Euclid’s Elements had
reigned over mathematics for well over two thousand
years and enjoys the distinction of still be referred to by
working mathematicians. Up to the nineteenth century it
was the essential fare of mathematics taught in schools.
In Britain the Elements exerted the same authority as the
Bible which was the other book committed to memory
by generations of school pupils. Towards the end of the
nineteenth century its central position in the curriculum
was challenged, and it was much for the same reasons that
Mandelbrot challenged it in the 1980s.

Praised for its logical structure, learning Euclid’s de-
ductive proofs by heart was simply not the way to teach
an understanding of geometry. In France it had been dis-
placed at the beginning of the century but in Britain and
many other countries the attack on its centrality came at
the end of the century. Ironically one of the main uphold-
ers of the sovereignty of Euclid and a staunch defender
of the sacred book was Cayley. He was just the man who
a few years before had shown himself to be more in the
Mandelbrot mode, who threw aside “the restrictions as to
reality” in his investigation of primitive symbolic dynamic
systems. And there is a second irony, for Cayley was a man
who loved nature and likened the beauty of the natural
world to the terrain of mathematics itself – and in prac-

tical terms used his mountaineering exploits as a way of
discovering new ideas in the subject.

A century later Mandelbrot’s criticism came but from
a different direction but containing enough phrases which
would have gained a nod of agreement from those who
mounted their opposition all those years before. Mandel-
brot’s opening paragraph launched the attack:

Why is geometry often described as “cold” and
“dry”? One reason lies in its inability to describe the
shape of a cloud, a mountain, a coastline, or a tree.
Clouds are nor spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line [57].

Mandelbrot was setting out an ambitious claim, and be-
hind it was the way he used for conducting mathemati-
cal research. He advocated a different methodology from
the Euclidean style updated by the Bourbakian mantra of
“definition, theorem, proof”. In fact he describes himself as
an exile, driven from France by the Bourbaki school. Jean
Dieudonné, a leading Bourbakian was at the opposite end
of the spectrum in hismathematical style. Dieudonné’s ob-
jective, as set out in a graduate text Foundations of Mod-
ern Analysis (1960) was to “train the student in the use
of the most fundamental mathematical tool of our time –
the axiomatic method with which he [sic] will have had
very little contact, if any at all, during his undergraduate
years”. Echoing the attitude of the nineteenth century ge-
ometer Jacob Steiner, who eschewed diagrams of any kind
as inimical to the property development of the subject,
Dieudonné appealed only to axiomatic methods, and to
make the point in his book, he deliberately avoided in-
troducing any diagrams and appeal to “geometric intu-
ition”[28].

What Mandelbrot advocated was the methodology of
the physician’s and lawyer’s “casebook.” He noted “this
term has no counterpart in science, and I suggest we ap-
propriate it”. This was rather novel and presents a counter-
point to the image that the Bourbakian ideal of great the-
orems with nicely turned out proofs are what is required
above all else. If mathematics is presented as a completed
house built by a great mathematician, as the Bourkadians
could suggest, questions are only to be found in the higher
reaches of the subjects, that demand years of study to reach
them.

In his autobiography, Mandelbrot claimed “in pure
mathematics, my main contribution has not been to pro-
vide proofs, but to ask new questions – usually very hard
ones – suggested by physics and pictures”. His questions
spring from elementary objects in mathematics, but ones
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which start off in the world. He summarizes his long career
in his autobiography:

My whole career became one long, ardent pursuit
of the concept of roughness. The roughness of clus-
ters in the physics of disorder, of turbulent flows, of
exotic noises, of chaotic dynamical systems, of the
distribution of galaxies, of coastlines, of stock-prize
charts, and of mathematical constructions [58].

The “monster” examples which previously existed as in-
stances of known theorems (and therefore were of little in-
terest in themselves from the novelty point of view) or put
aside because they were not examples, were now brought
into the limelight and put on to the dissecting table to be
investigated.

What is a Fractal?

In his essay (1975)Mandelbrot said “I stopped short of giv-
ing a mathematical definition, because I felt this notion –
like a good wine – demanded a bit of ageing before being
‘bottled’.” [71]. He knew of Hausdorff dimension and de-
veloped an intuitive understanding for it, but postponed
a definition. A little later he adopted a working definition,
and in his Fractal Geometry of Nature (1982) he gave his
manifesto for fractals.

What is Mandelbrot’s subsequent working definition
of a fractal? It is simply a point set for which the Haus-
dorff dimension exceeds its topological dimension, DH >

DT. Examples are Cantor middle third set. where DH D

log 2/ log 3 D 0:63 : : : with DT D 0, and the von Koch
Curve where DH D log 4/ log 3 D 1:26 : : : with DT D 1.

Mandelbrot’s definition gives rise to a programme of
research similar in nature to one carried out by Menger
and Urysohn in the 1920s. Just as they asked “what is
a curve?” and “what is dimension?” it could now be asked
“what is a fractal exactly?” and “what is fractal dimen-
sion?” The whole game of topological dimension was to be
played over for metric dimension. Mandelbrot’s definition
of a fractal fired a first shot in answering one question but,
just as there were exceptions to C. Jordan’s definitions of
curve like Peano’s famous space filling curve of the 1890s,
exceptions were found to Mandelbrot’s preliminary defi-
nition. It was a regret, for example, that the example of the
“devil’s staircase” (characterized in terms of a continuous
weight function defined on the Cantor middle third set)
which looked like a fractal did not conform to the working
definition of a fractal since in this case DH D DT D 1.

There are, however, many examples of obvious frac-
tals, in nature and inmathematics. The pathological curves
of the late nineteenth century which suffered this fate of

not conforming to definitions of “normal curves” were
brought back to life. The pathologies, such as those in-
vented by Brouwer and Cantor had been put in a cup-
board and locked away. An instance of this is Brouwer’s
decomposition of the plane into three “countries” so that
the boundary points touch each other (not just meeting
at one point). Brouwer’s decomposition is not unlike the
shape of a fractal. Cantor’s examples were equally patho-
logical.

Mandelbrot made his own discoveries, but when he
opened the cupboard of “monster curves” he liked what
he saw. Otto Rössler, with justification called Mandel-
brot “Cantor’s time-displaced younger friend”. As Free-
man Dyson wrote: “Now, as Mandelbrot points out, . . . ,
Nature has played a joke on themathematicians. The nine-
teenth century mathematicians may have been lacking in
imagination [in limiting themselves to Euclid and New-
ton], but nature has not. The same pathological structures
[the gallery of monster curves] that the mathematicians
invented to break loose from nineteenth century natural-
ism turn out to be inherent in familiar objects all around
us [38].”

The Mandelbrot Set

Just how did Mandelbrot arrive at the famous Mandelbrot
set? With the freedom of being funded by an IBM fellow-
ship, he went further into the study of pc (z) D z2 C c and
experimented. The basement of the Thomas J.Watson Re-
search Center in the early 1980s held a brand new VAX
main frame computer and a Tektronix cathode ray tube
for viewing results.

The quadraticmap pc(z) D z2 C c is the simplest of all
the nonlinear rational transformations. The key element
is to consider z; c as complex numbers. The Mandelbrot
setM in the plane is defined as

M D fc 2 C : the Julia set Jc is connectedg

or, alternatively, in terms of the sequence fpkc (0)g

M D fc 2 C : fpkc (0)g is boundedg :

It was an exciting event when Mandelbrot first glimpsed
the set, which was initially called an M-set. First observed
on the Tektronix cathode ray tube, was the messy out-
line a fault in the primitive equipment? He and his col-
leagues tried again with a more powerful computer but
found “the mess had failed to vanish” and even that the
image showed signs of being more systematic. Mandebrot
reported “we promptly took a much closer look. Many
specks of dirt duly vanished after we zoomed in. But some
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specks failed to vanish; in fact, they proved to resolve into
complex structures endowed with ‘sprouts’ very similar to
those of the whole set M. Peter Moldave and I could not
contain our excitement.” Yet concrete mathematical prop-
erties were hard to come by. One immediate result did fol-
low quickly, when theM-set, now termed the Mandelbrot
set was proved to be a connected set [29].

TheMerger

When chaos theory was being discussed in the 1970s,
strange attractors were regarded as weird subsets of Eu-
clidean space. To be sure their importance was recognized
but their nature was only vaguely understood. Towards the
end of the 1970s, prompted by the advent of fractals, at-
tractors could be viewed in a new light. But Chaos which
arose in physical situations did not give rise to ordinary
self-similar fractals, like the Koch curve, but to more com-
plicated sets. The outcome of Chaos is apparent random-
ness while the key properties of ordinary fractals is regu-
larity.

Measuring Strange Attractors

Once strange attractors were brought to light, the next
stage was to measure them. This perspective was put by
practitioners in the 1980s:

Nonlinear physics presents us with a perplexing
variety of complicated fractal objects and strange
sets. Notable examples include strange attractors for
chaotic dynamical systems. . . . Naturally one wishes
to characterize the objects and described the events
occurring on them. For example, in dynamical sys-
tems theory one is often interested in a strange at-
tractor . . . [43].

At the same time other researchers put a similar point of
view, and an explanation for making the calculations. The
way to characterize strange attractors was by the natural
measure of a fractal – its fractal dimension – and this be-
came the way to proceed:

The determination of the fractal dimension d of
strange attractors has become a standard diagnos-
tic tool in the analysis of dynamical systems. The di-
mension roughly speaking measures the number of
degrees of freedom that are relevant to the dynam-
ics. Most work on dimension has concerned maps,
such as the Hénon map, or systems given by a few
coupled ordinary differential equations, such as the
Lorenz and Rössler models. For any chaotic sys-
tem described by differential equations, d must be

greater than 2, but d could be much larger for a sys-
tem described by partial differential equations, such
as the Navier–Stokes equations [12].

As an example, the fractal dimension of the original
Lorenz attractor derived from the meteorology differential
equations was found to be approximately 2.05 [34].

Newer Concepts of Dimension

Just as for metric free topological dimension itself, there
are a myriad of different concepts of metrically based di-
mension. What was wanted were measures which could
be used in practice. What “dimensions” would shine light
on the onset of chaotic solutions to a set of differential
equations ?

One was the Lyapunov dimension drawing on the
work of the Russian mathematician Alexander Lyapunov,
and investigated by J. L. Kaplan and J. A. Yorke (1979).
The Lyapunov dimension of an attractor A embedded in
an Euclidean space of dimension n is defined by:

DL D k C
1 C 2 C � � � C k

jkC1j
;

where 1; 2; : : : ; k are Lyapunov exponents and k is
the maximum integer for which

Pk
iD1 i � 0. In the case

where k D 1 which occurs for two-dimensional chaotic
maps, for instance,

DL D 1 �
1

2

and because in this case 2 < 0 the value of the Lyapunov
dimension will be sandwiched between 1 and the topolog-
ical dimension which is 2. In the case of the Hénon map-
ping of the plane, the Lyapunov dimension of the attractor
is approximately 1.25.

In a different direction, a generalized dimension Dq
was introduced by A. Rényi in the 1950s [78]. Working in
probability and information theory, he defined a spectrum
of dimensions:

Dq D lim
r!0

1
q � 1

log
P

i
Pq
i

log r

depending on the value of q.
The special cases are worth noting:

� D0 D DB the box dimension
� D1 D “information dimension“ related to C. Shannon’s

entropy [39,40]
� D2 D DC the correlation dimension.
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The correlation dimension is a very practical measure
and can be applied to experimental data which has been
presented visually, as well as other shapes, such as pho-
tographs where the calculation involves counting points.
It has been used for applications in hydrodynamics, busi-
ness, lasers, astronomy, signal analysis. It can be calculated
directly for time series where the “phase space” points are
derived from lags or time-delays. In two dimensions this
would be a sequence of points (x(n); x(n C l)) where l is
the chosen lag. A successful computation depends on the
number of points chosen. For example, it is possible to
estimate the fractal dimension of the Hénon attractor to
within 6% of its supposed value with 500 data points [70].

There is a sequence of inequalities between the vari-
ous dimensions of a set A from the embedding space of
topological dimension DE D n to the topological dimen-
sion DT of A [90]:

DT � : : : � D2 � D1 � DH � D0 � n :

Historically these questions of inequalities between the
various types of dimension are of the same type as had
been asked about topological dimension fifty years before.
Just as it was shown that the “coincidence theorem”

ind X D Ind X D dim X

holds for well behaved spaces, such as compact metric
spaces, so it is true that

DL D DB D D1

for ordinary point sets such as single points and limit cy-
cles. For the Lorenz attractor DL agrees with the value of
DB and that of D2 [69]. But each of the equalities fails for
some fractal sets; the study of fractal dimension of attrac-
tors is covered in [34,83].

Multifractals

An ordinary fractal is one where the generalized Rényi di-
mension Dq is independent of q and returns a single value
for the whole fractal. This occurs for the standard fractals
such as the von Koch curve. Amultifractal is a set in which
Dq is dependent on q and a continuous spectrum of values
results.

While an ordinary self-similar fractal are useful for ex-
pository purposes (and are beautifully symmetric shapes)
the attractors found in physics are not uniformly self-simi-
lar. The resulting object is called a multifractal because it is
multi-dimensional. The values of Dq is called its spectrum
of the multifractal. Practical examples usually require their
strange attractors to be modeled by multifractals.

Future Directions

The range of written material on Fractals and Chaos has
exploded since the 1970s. A vast number of expository
articles have been lodged in such journals as Nature and
New Scientist and technical articles in Physica D and Non-
linearity [9].

Complexity Theory and Chaos Theory are relatively
new sciences that can revolutionize the way we see our
world. Stephen Hawking has said, “Complexity will be the
science of the 21st century.” There is even a relationship
between fractals with the yet unproved Riemann hypo-
thesis [51].

Many problems remain. Here it is sufficient to men-
tion one representative of the genre. Fluid dynamicists are
broadly in agreement that fluids are accurately modeled
by the nonlinear Navier–Stokes equations. These are based
on Newtonian principles and are deterministic, but theo-
retically the solution of these equations is largely unknown
territory. A proof of the global regularity of the solutions
represents a formidable challenge. The current view is that
there is a dichotomy between laminar flow (like flow in
the upper atmosphere) being smooth while turbulent flow
(like flow near the earth’s surface) is violent. Yet even this
“turbulent” flow could be regular but of a complicated
kind. A substantial advance in the theory will be rewarded
with one of the Clay Institute’s million dollar prizes. One
expert is not optimistic the prize will be claimed in the near
future [52].

The implication of Chaos dependent as it is on the sen-
sitivity of initial conditions, suggests that forecasting some
physical processes is theoretically impossible. Long range
weather forecasting falls into this mould since it is predi-
cated on knowing the weather conditions exactly at some
point in time. There will inevitably be inaccuracies so ex-
actness appears to be an impossibility.

No doubt “Chaos and (multi)Fractals” is here to stay.
Rössler wrote of Chaos as the key to understanding Na-
ture: “hairs and noodles and spaghettis and dough and
taffy form an irresistible, disentanglable mess. The world
of causality is thereby caricatured and, paradoxically,
faithfully represented [2]”. Meanwhile, the challenge for
scientists and mathematicians remains [16].
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Fractals generalize Euclidean geometrical objects to non-
integer dimensions and allow us, for the first time, to delve
into the study of complex systems, disorder, and chaos.
In the words of B. Mandelbrot: “Clouds are not spheres,
mountains are not cones, coastlines are not circles, bark
is not smooth, nor does lightning travel in a straight
line,” [1]. Indeed, much has changed in our perception of
nature, and today it is hard to conceive of natural phenom-
ena that are not fractal, in the same way that it is hard to
conceive of everyday life dynamical systems that are not
non-linear. The discovery of fractals over three decades
ago signaled a profound shift in the way we understand
and analyze the physical world around us.

Not only does fractal geometry model complex dis-
ordered objects such as clouds and mountains, coastlines
and lightning, but it also finds a beautiful new symmetry
in the midst of all this complexity – invariance under dila-
tion of space – and it is this self-similarity symmetry that
lends fractals their tremendous power and analytical ap-
peal (� Fractals and Multifractals, Introduction to). The
same symmetry plays a significant role in critical phase
transitions, and one of the earliest applications of frac-
tals has been to the study of the paradigmatic model of
percolation (� Fractals and Percolation). Soon after their
advent, researchers systematically used fractals to explain
a host of anomalous phenomena (anomalous with respect

to the expectations from regular Euclidean objects) in con-
densedmatter and solid state physics (� Fractal Structures
in Condensed Matter Physics).

One of the most influential models of nonequilibrium
growth, Diffusion Limited Aggregation (DLA), produces
a fractal object that is still studied today for its fascinat-
ing connections to the Laplace equation and electrical dis-
charge, conformal mapping, patterns of bacterial growth,
and viscous fingering (� Fractal Growth Processes). Frac-
tals and fractal scaling also arise in regular systems with
superposed disorder, for example when resistances from
a random distribution are assigned to the bonds of a reg-
ular lattice (� Fractal and Multifractal Scaling of Electri-
cal Conduction in Random Resistor Networks). More re-
cently, interest has grown in the study of large, stochas-
tic complex nets, which seem infinite-dimensional at the
outset, but even so can be found to have fractal geometry
(� Fractal and Transfractal Scale-Free Networks). Having
realized that the geometry of everyday life objects around
us is more likely fractal than not, it was only natural to ask
about the physics of phase transitions in disorderedmedia,
for example, for the magnetization of spins in the Ising
model, placed on the nodes of fractals (� Phase Transi-
tions on Fractals and Networks).

Early on, interest developed in the physics of transport
in fractal substrates. It was quickly discovered that frac-
tal media diffusion, the most elementary mode of trans-
port, does not obey Fick’s law but is, rather, anomalous
(� Anomalous Diffusion on Fractal Networks), leading
to entirely new ways of viewing and analyzing transport,
most notably among them Lévy flights, continuum ran-
dom walks, and fractional diffusion equations (� Levy
Statistics andAnomalous Transport: Levy Flights and Sub-
diffusion). Because of the anomalous diffusion of reactants
in fractal disordered media, so are the kinetics of reactions
among them anomalous (� Reaction Kinetics in Fractals).
The graph Laplacian in fractals has an anomalous spec-
trum that displays a peculiar scaling, having a profound
effect on dynamics in general (� Dynamics on Fractals).

Fractals refer not only to geometrical objects but, more
broadly, to any kind of phenomena possessing scaling
that exhibits dilation symmetry, or scale invariance, of-
ten characterized by the appearance of a power-law dis-
tribution. A whole suite of techniques has evolved to ana-
lyze this type of fractal scaling (� Fractal and Multifractal
Time Series). Fractal phenomena of this type (and occa-
sionally fractal objects) find applications in several diverse
fields of interest, such as finances and economics (� Frac-
tals and Economics), geology (� Fractals in Geology and
Geophysics), the analysis of DNA sequences (� Fractals
and Wavelets: What Can We Learn on Transcription and
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Replication from Wavelet-Based Multifractal Analysis of
DNA Sequences?), biology (� Fractals in Biology), and
even in path integrals in the quantum theory of spacetime
(� Fractals in the Quantum Theory of Spacetime).

Fractals and the modern study of nonlinear systems,
strange attractors, and chaos have infused and enriched
one another from their very incipience (� Fractals Meet
Chaos). Together they provide us with a fundamentally
new way of understanding the everyday world around us.

Despite our best intentions, this Section on Fractals
and Multifractals remains incomplete, as it fails to include
numerous important subjects such as the practical use of
fractals for image compression, their ubiquity in medicine,
astronomy, and their prominence in the study of real
systems of porous materials, electrodeposition, molecular
surfaces, colloids, and polymers, to name just a few. We
hope that some, if not all of these subjects will be included
in future editions.
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Glossary

Percolation In the traditional meaning, percolation con-
cerns the movement and filtering of fluids through
porous materials. In this chapter, percolation is the
subject of physical andmathematicalmodels of porous

media that describe the formation of a long-range con-
nectivity in random systems and phase transitions. The
most common percolation model is a lattice, where
each site is occupied randomly with a probability p or
empty with probability 1� p. At low p values, there is
no connectivity between the edges of the lattice. Above
some concentration pc, the percolation threshold, con-
nectivity appears between the edges. Percolation rep-
resents a geometric critical phenomena where p is the
analogue of temperature in thermal phase transitions.

Fractal A fractal is a structure which can be subdivided
into parts, where the shape of each part is similar to
that of the original structure. This property of fractals
is called self-similarity, and it was first recognized by
G.C. Lichtenberg more than 200 years ago. Random
fractals represent models for a large variety of struc-
tures in nature, among them porous media, colloids,
aggregates, flashes, etc. The concepts of self-similarity
and fractal dimensions are used to characterize per-
colation clusters. Self-similarity is strongly related to
renormalization properties used in critical phenom-
ena, in general, and in percolation phase transition
properties.

Definition of the Subject

Percolation theory is useful for characterizing many dis-
ordered systems. Percolation is a pure random process of
choosing sites to be randomly occupied or empty with
certain probabilities. However, the topology obtained in
such processes has a rich structure related to fractals. The
structural properties of percolation clusters have become
clearer thanks to the development of fractal geometry
since the 1980s.

Introduction

Percolation represents the simplest model of a phase
transition [1,8,13,14,26,27,30,48,49,61,64,65,68]. Assume
a regular lattice (grid) where each site (or bond) is occu-
pied with probability p or empty with probability 1 � p.
At a critical threshold, pc, a long-range connectivity first
appears: pc is called the percolation threshold (see Fig. 1).
Occupied and empty sites (or bonds) may stand for very
different physical properties. For example, occupied sites
may represent electrical conductors, empty sites may rep-
resent insulators, and electrical current may flow only
through nearest-neighbor conducting sites. Below pc, the
grid represents an isolator since there is no conducting
path between two adjacent bars of the lattice, while above
pc, conducting paths start to occur and the grid becomes
a conductor. One can also consider percolation as a model
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Fractals and Percolation, Figure 1
Square lattice of size 20� 20. Sites have been randomly occupied with probability p (pD 0:20, 0.59, 0.80). Sites belonging to finite
clusters are marked by full circles, while sites on the infinite cluster are marked by open circles

Fractals and Percolation, Figure 2
Invasion percolation through porous media

for liquid filtration (i. e., invasion percolation (see Fig. 2),
which is the source of this terminology) through porous
media.

A possible application of bond percolation in chem-
istry is the polymerization process [25,31,44], where small
branching molecules can form large molecules by activat-
ing more and more bonds between them. If the activa-
tion probability p is above the critical concentration, a net-
work of chemical bonds spanning the whole system can be
formed, while below pc only macromolecules of finite size
can be generated. This process is called a sol-gel transition.
An example of this gelation process is the boiling of an egg,
which at room temperature is liquid but, upon heating, be-
comes a solid-like gel.

An example from biology concerns the spreading of an
epidemic [35]. In its simplest form, an epidemic starts with
one sick individual which can infect its nearest neighbors
with probability p in one time step. After one time step, it
dies, and the infected neighbors in turn can infect their (so
far) uninfected neighbors, and the process is continued.
Here the critical concentration separates a phase at low p
where the epidemic always dies out after a finite number

of time steps, from a phase where the epidemic can con-
tinue forever. The same process can be used as a model for
forest fires [52,60,64,71], with the infection probability re-
placed by the probability that a burning tree can ignite its
nearest-neighbor trees in the next time step. In addition
to these simple examples, percolation concepts have been
found useful for describing a large number of disordered
systems in physics and chemistry.

The first study introducing the concept of percolation
is attributable to Flory and Stockmayer about 65 years
ago, when studying the gelation process [32]. The name
percolation was proposed by Broadbent and Hammers-
ley in 1957 when they were studying the spreading of
fluids in random media [15]. They also introduced rele-
vant geometrical and probabilistic concepts. The develop-
ments of phase transition theory in the following years,
in particular the series expansion method by Domb [27]
and renormalization group theory by Wilson, Fisher and
Kadanoff [51,65], very much stimulated research activities
into the geometric percolation transition.

At the percolation threshold, the conducting (as well as
insulating) clusters are self-similar (see Fig. 3) and, there-
fore, can be described by fractal geometry [53], where vari-
ous fractal dimensions are introduced to quantify the clus-
ters and their physical properties.

Percolation

As above (see Sect. “Introduction”), consider a square lat-
tice, where each site is occupied randomly with probabil-
ity p (see Fig. 1). For simplicity, let us assume that the oc-
cupied sites are electrical conductors and the empty sites
represent insulators. At low concentration p, the occupied
sites either are isolated or form small clusters (Fig. 1a).
Two occupied sites belong to the same cluster if they are
connected by a path of nearest-neighbor occupied sites
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Fractals and Percolation, Figure 3
Self-similarity of the random percolation cluster at the critical
concentration; courtesy of M. Meyer

and a current can flow between them.When p is increased,
the average size of the clusters increases. At a critical con-
centration pc (also called the percolation threshold), a large
cluster appears which connects opposite edges of the lat-
tice (Fig. 1). This cluster is called the infinite cluster, since
its size diverges when the size of the lattice is increased to
infinity. When p is increased further, the density of the in-
finite cluster increases, since more and more sites become
part of the infinite cluster, and the average size of the finite
clusters decreases (Fig. 1c).

The percolation threshold separates two different
phases and, therefore, the percolation transition is a ge-
ometrical phase transition, which is characterized by the
geometric features of large clusters in the neighborhood
of pc. At low values of p, only small clusters of occupied
sites exist. When the concentration p is increased, the av-
erage size of the clusters increases. At the critical concen-
tration pc, a large cluster appears which connects opposite
edges of the lattice. Accordingly, the average size of the fi-
nite clusters which do not belong to the infinite cluster de-
creases. At p D 1, trivially, all sites belong to the infinite
cluster.

Similar to site percolation, it is possible to consider
bond percolation when the bonds between sites are ran-
domly occupied. An example of bond percolation in
physics is a random resistor network, where the metallic
wires in a regular network are cut at random. If sites are
occupied with probability p and bonds are occupied with
probability q, we speak of site-bond percolation. Two occu-
pied sites belong to the same cluster if they are connected
by a path of nearest-neighbor occupied sites with occupied
bonds in between.

The definitions of site and bond percolation on
a square lattice can easily be generalized to any lattice
in d-dimensions. In general, in a given lattice, a bond has
more nearest neighbors than a site. Thus, large clusters of
bonds can be formed more effectively than large clusters
of sites, and therefore, on a given lattice, the percolation
threshold for bonds is smaller than the percolation thresh-
old for sites (see Table 1).

A natural example of percolation, is continuum per-
colation, where the positions of the two components of
a random mixture are not restricted to the discrete sites
of a regular lattice [9,73]. As a simple example, consider
a sheet of conductivematerial, with circular holes punched
randomly in it (Swiss cheese model, see Fig. 4). The rele-
vant quantity now is the fraction p of remaining conduc-
tive material.

Fractals and Percolation, Table 1
Percolation thresholds for the Cayley tree and several two- and
three-dimensional lattices (see Refs. [8,14,41,64,75] and refer-
ences therein)

Lattice
Percolation of
Sites Bonds

Triangular 1/2 2 sin(	/18)
Square 0.5927460 1/2
Honeycomb 0.6962 1� 2 sin(	/18)
Face Centered Cubic 0.198 0.119
Body Centered Cubic 0.245 0.1803
Simple Cubic (1stnn) 0.31161 0.248814
Simple Cubic (2ndnn) 0.137 –
Simple Cubic (3rdnn) 0.097 –
Cayley Tree 1/(z � 1) 1/(z� 1)

Fractals and Percolation, Figure 4
Continuum percolation: Swiss cheese model
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Hopping Percolation

Above, we have discussed traditional percolation with only
two values of local conductivities, 0 and 1 (insulator–
conductor) or1 and 1 (superconductor–normal conduc-
tor). However, quantum systems should be treated by hop-
ping conductivity, which can be described by an expo-
nential function representing the local conductivities (be-
tween ith and jth sites): �i j � exp

�
��xi j


. Here � can be

interpreted as the dimensionless mean hopping distance
or as the degree of disorder (the smaller the density of the
deposited grains, the larger � becomes), and xij is a ran-
dom number taken from a uniform distribution in the
range (0,1) [70].

In contrast to the traditional bond (or site) percolation
model, in which the system is either a metal or an insula-
tor, in the hopping percolation model the system always
conducts some current. However, there are two regimes
of such percolation [70]. A regime with many conduct-
ing paths which is not sensitive to the removal of a single
bond (weak disorder L/�� > 1, where L is size of the sys-
tem and � is percolation critical exponent) and a regime
with a single or only a few dominating conducting paths
which is very sensitive to the removal of a specific single
bond with the highest current (strong disorder L/�� 
 1).
In the strong disorder regime, the trajectories along which
the highest current flows (analogous to the spanning clus-
ter at criticality in the traditional percolation network, see
Fig. 5) can be distinguished and a single bond can deter-
mine the transport properties of the entire macroscopic
system.

Percolation as a Critical Phenomenon

In percolation, the concentration p of occupied sites plays
the same role as temperature in thermal phase transitions.
The percolation transition is a geometrical phase transi-
tion where the critical concentration pc separates a phase
of finite clusters (p < pc) from a phase where an infinite
cluster is present (p > pc).

An important quantity is the probability P1 that a site
(or a bond) belongs to the infinite cluster. For p < pc, only
finite clusters exist, and P1 D 0. For p > pc, P1 increases
with p by a power law

P1 � (p � pc)ˇ : (1)

P1 can be identified as the order parameter similar to
magnetization, m(T) � (Tc � T)ˇ , in magnetic materials.
With decreasing temperature, T, more elementary mag-
netic moments (spins) become aligned in the same direc-
tion, and the system becomes more ordered.

Fractals and Percolation, Figure 5
A color density plot of the current distribution in a bond-perco-
lating lattice for which voltage is applied in the vertical direction
for strong disorderwith�D 10. The current between the sites is
shown by the different colors (orange corresponds to the high-
est value, green to the lowest). a The location of the resistor, on
which the value of the local current is maximal, is shown by a cir-
cle. b The current distribution after removing the above resistor.
This removal results in a significant change of the current trajec-
tories

The linear size of the finite clusters, below and above
pc, is characterized by correlation length � . Correlation
length is defined as themean distance between two sites on
the same finite cluster. When p approaches pc, � increases
as

� � jp � pcj�� ; (2)

with the same exponent � below and above the threshold.
The mean number of sites (mass) of a finite cluster also
diverges,

S � jp � pcj�� ; (3)

again with the same exponent � above and below pc. Anal-
ogous to S in magnetic systems is the susceptibility � (see
Fig. 6 and Table 2).

The exponents ˇ, �, and � describe the critical be-
havior of typical quantities associated with the percolation
transition, and are called critical exponents. The exponents
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Fractals and Percolation, Figure 6
P1 and S compared withmagnetizationM and susceptibility�

Fractals and Percolation, Table 2
Exact and best estimate values for the critical exponents for per-
colation (see Refs. [8,14,41,64] and references therein)

Percolation d D 2 d D 3 d � 6
Order parameter P1: ˇ 5/36 0:417˙ 0:003 1
Correlation length � : � 4/3 0:875˙ 0:008 1/2
Mean cluster size S: � 43/18 1:795˙ 0:005 1

are universal and do not depend on the structural details
of the lattice (e. g., square or triangular) nor on the type of
percolation (site, bond, or continuum), but depend only
on the dimension d of the lattice.

This universality property is a general feature of phase
transitions, where the order parameter vanishes continu-
ously at the critical point (second order phase transition).

In Table 2, the values of the critical exponents ˇ, �,
and � for percolation in two, three, and six dimensions.
The exponents considered here describe the geometri-
cal properties of the percolation transition. The physi-
cal properties associated with this transition also show
power-law behavior near pc and are characterized by criti-
cal exponents. Examples include the conductivity in a ran-
dom resistor or random superconducting network and the
spreading velocity of an epidemic disease near the criti-
cal infection probability. It is believed that the “dynamical”
exponents cannot be generally related to the geometric ex-
ponents discussed above.

Note that all quantities described above are defined in
the thermodynamic limit of large systems. In a finite sys-
tem, for example, P1, is not strictly zero below pc.

PercolationClusters as Fractals

As first noticed by Stanley [66], the structure of percola-
tion clusters (when the length scale is smaller than �) can

be well described by the fractal concept [53]. Fractal ge-
ometry is a mathematical tool for dealing with complex
structures that have no characteristic length scale. Scale-
invariant systems are usually characterized by noninteger
(“fractal”) dimensions. This terminology is associated with
B. Mandelbrot [53] (though some notion of noninteger
dimensions and several basic properties of fractal objects
were studied earlier by G. Cantor, G. Peano, D. Hilbert,
H. von Koch, W. Sierpinski, G. Julia, F. Hausdorff, C. F.
Gauss, and A. Dürer).

Fractal Dimension df
In regular systems (with uniform density) such as long
wires, large thin plates, or large filled cubes, the dimen-
sion d characterizes how the mass M(L) changes with the
linear size L of the system. If we consider a smaller part of
a system of linear size bL (b < 1), thenM(bL) is decreased
by a factor of bd , i. e.,

M(bL) D bdM(L) : (4)

The solution of the functional Eq. (4) is simply M(L) D
ALd . For a long wire, mass changes linearly with b, i. e.,
d D 1. For the thin plates, we obtain d D 2, and for cubes
d D 3; see Fig. 7.

Mandelbrot coined the name “fractal dimension”, and
those objects described by a fractal dimension are called
fractals. Thus, to include fractal structures, (4) we can gen-
eralize

M(bL) D bd f M(L) ; (5)

and

M(L) D ALd f ; (6)

where df is the fractal dimension and can be a noninteger.
Below, we present two examples of dealing with df : (i) the
deterministic Sierpinski Gasket and (ii) random percola-
tion clusters and criticality.

Fractals and Percolation, Figure 7
Examples of regular systems with dimensions d D 1, d D 2, and
d D 3
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Fractals and Percolation, Figure 8
2D Sierpinski gasket. Generation and self-similarity

Sierpinski Gasket This fractal is generated by dividing
a full triangle into four smaller triangles and removing the
central triangle (see Fig. 8). In subsequent iterations, this
procedure is repeated by dividing each of the remaining
triangles into four smaller triangles and removing the cen-
tral triangles. To obtain the fractal dimension, we consider
the mass of the gasket within a linear size L and compare it
with the mass within 1

2L. Since M( 12L) D
1
3M(L), we have

d f D log 3/ log 2 Š 1:585.

Percolation Fractal

We assume that at pc (� D 1) the clusters are fractals.
Thus for p > pc, we expect length scales smaller than �
to have critical properties and therefore a fractal structure.
For length scales larger than � , one expects a homogeneous
system which is composed of many unit cells of size � :

M(r) �

(
rd f ; r 
 � ;

rd ; r 	 � :
(7)

For a demonstration of this feature see Fig. 9.
One can relate the fractal dimension df of percolation

clusters to the exponents ˇ and �. The probability that an
arbitrary site within a circle of radius r smaller than � be-
longs to the infinite cluster, is the ratio between the num-
ber of sites on the infinite cluster and the total number of
sites,

P1 � rd f /rd ; r < � : (8)

This equation is certainly correct for r D a� , where a is
an arbitrary constant smaller than 1. Substituting r D a�

Fractals and Percolation, Figure 9
Lattice composed of Sierpinski gasket cells of size �

Fractals and Percolation, Figure 10
Shortest path between two sites A and B on a percolation cluster

in (8) yields P1 � �d f /�d . Both sides are powers of
p � pc. Substituting Eqs. (1) and (2) into the latter one ob-
tains [8,28,41,49,64],

d f D d � ˇ/� : (9)

Thus, the fractal dimension of the infinite cluster at
pc is not a new independent exponent but depends on ˇ
and �. Since ˇ and � are universal exponents, df is also
universal.

Shortest Path Dimensions, dmin and d`
The fractal dimension, however, is not sufficient to fully
characterize a percolation cluster, since two clusters with
very different topologies may have the same fractal dimen-
sion df . As an additional characterization of a fractal, one
can consider, e. g., the shortest path between two arbitrary
sites A and B on the cluster (see Figs. 10, 11) [3,16,35,
42,55,58].

The structure formed by the sites of this path is
also self-similar and is described by a fractal dimension
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Fractals and Percolation, Figure 11
Percolation system at critical concentration in a 510� 510
square lattice. The finite clusters are in yellow. Substructures of
the infinite percolation cluster are shown in different colors: the
shortest path between two points at opposite sites of the sys-
tem is shown in white, the single connected sites (“red” sites) in
red, the loops in blue and the dangling ends in green; courtesy of
S. Schwarzer

dmin [46,67]. Accordingly, the length ` of the path, which
is often called the “chemical distance”, scales with the “Eu-
clidean distance” r between A and B as

` � rdmin : (10)

The inverse relation

r � `1/dmin � `�̃ (11)

tells how r scales with `.
Closely related to dmin and df is the “chemical” dimen-

sion d`, which describes how the clustermassMwithin the
chemical distance ` from a given site scales with `,

M(`) � `d` : (12)

While the fractal dimension df characterizes how the mass
of a cluster scales with the Euclidean distance r, the graph
dimension d` characterizes how the mass scales with the
chemical distance `. Combining Eqs. (7), (10) and (12) we
obtain the relation between dmin, d` and df

d` D d f /dmin : (13)

To measure df , an arbitrary site is chosen on the clus-
ter and one determines the number M(r) of sites within
a distance r from this site. To measure d`, an arbitrary
site is chosen on the cluster at criticality and one deter-
mines the number M(`) of sites which are connected to

this site by a shortest path with length less than or equal
to `. Finally, to measure dmin, two arbitrary sites are cho-
sen on the cluster and one determines the length `(r) of
the shortest path connecting them. As for M(r), averages
must be performed for M(`) and r(`) over many realiza-
tions. In regular Euclidean lattices, both d` and df coincide
with the Euclidean space dimension d and dmin D 1.

The chemical dimension d` (or dmin D 1/�̃) is an
important tool for distinguishing between different frac-
tal structures which may have a similar fractal dimen-
sion. In d D 3, for example, DLA (diffusion limited ag-
gregation) clusters and percolation clusters have approxi-
mately the same fractal dimension d f Š 2:5, but have dif-
ferent �̃: �̃ D 1 for DLA [54] but �̃ Š 0:73 for percola-
tion [36,46,63,69].

While df has been related to the (known) critical ex-
ponents, (9), no such relation has been found for dmin or
d`. The values of d` or dmin are known only from approx-
imate methods, mainly numerical simulations (see also
Refs. [17,37,57,76]).

Fractal Substructures

The fractal dimensions df and d` are not the only expo-
nents characterizing a percolation cluster at pc. A percola-
tion cluster is composed of several fractal sub-structures,
which are described by other exponents. Imagine applying
a voltage difference between two sites at opposite edges of
a metallic percolation cluster: The backbone of the cluster
consists of those sites (or bonds) which carry the electric
current. The dangling ends are those parts of the cluster
which carry no current and are connected to the backbone
by a single site only. The red bonds (or singly connected
bonds) [22,66] are those bonds that carry the total cur-
rent; when they are cut the current flow stops. In analogy
to red bonds we can define anti-red bonds [34]. If an anti-
red bond is added to a nonconducting percolation system
below pc, the current will be able to flow in the system. The
blobs, finally, are those parts of the backbone that remain
after the red bonds have been removed.

Further fractal substructures of the cluster are the ex-
ternal perimeter (which is also called the hull), the skeleton
and the elastic backbone. The hull consists of those sites of
the cluster which are adjacent to empty sites and are con-
nected with infinity via empty sites. In contrast, the total
perimeter also includes the holes in the cluster. The ex-
ternal perimeter is an important model for random frac-
tal interfaces. The skeleton is defined as the union of all
shortest paths from a given site to all sites at a chemical
distance ` [43]. The elastic backbone is the union of all
shortest paths between two sites [47].
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Fractals and Percolation, Figure 12
Percolation cluster at the critical concentration in a simple cubic
lattice. The backbone between two (green) cluster sites is shown
in red, the gray sites represent the dangling ends; courtesy of
M. Porto

The fractal dimension dB of the backbone is smaller
than the fractal dimension df of the cluster (see Table 3).
This reflects the fact that most of the mass of the cluster
is concentrated in the dangling ends, which is seen clearly
in Fig. 12. The value of the fractal dimension of the back-
bone is known only from numerical simulations [45,59].
Note, also, that the graph dimension dB

`
of the backbone is

smaller than that of percolation. In contrast, �̃ is the same
for both backbone and percolation cluster, indicating the
more universal nature of �̃. This can be understood by re-
calling that every two sites on a percolation cluster are lo-
cated on the corresponding backbone.

The fractal dimensions of the red bonds dred and the
hull dh are known from exact analytical arguments. It has
been proven by Coniglio [22,23] that the mean number of
red bonds varies with p as

nred � (p � pc)�1 � �1/� � r1/� ; (14)

and the fractal dimension of the red bonds is therefore
dred D 1/�. The fractal dimension of the skeleton is very
close to dmin D 1/�̃, supporting the assumption that per-
colation clusters at criticality are finitely ramified [43].

The hull of the cluster in d D 2 has the fractal di-
mension dh D 7/4, which was first found numerically by
Sapoval, Rosso, and Gouyet [63] and proven rigorously by
Saleur and Duplantier [62]. If the hull is defined slightly
differently and next-nearest neighbors of the perimeter are
regarded as connected, many “fjords” are removed from

Fractals and Percolation, Table 3
Fractal dimensions of the substructures composing percolation
clusters (see Ref. [8,14,41,59,64] and references therein). For
fractal dimensions in d D 4 and d D 5 see Ref. [57]

Fractal
dimensions

Space dimension
d D 2 d D 3 d � 6

df 91/48 2:524˙ 0:008 4
d` 1:678˙ 0:005 1:84˙ 0:02 2
dmin 1:13˙ 0:004 1:374˙ 0:004 2
dred 3/4 1:143˙ 0:01 2
dh 7/4 2:548˙ 0:014 4
dB 1:64˙ 0:02 1:87˙ 0:04 2
dB
`

1:43˙ 0:02 1:34˙ 0:03 1

the hull. According to Grossmann and Aharony [38], the
fractal dimension of this modified hull is close to 4/3, the
fractal dimension of self-avoiding random walks in d D 2.
In three dimensions, in contrast, themass of the hull seems
to be proportional to the mass of the cluster, and both have
the same fractal dimension.

In Table 3 we summarize the values of the fractal di-
mension df and the graph dimension d` of the percolation
cluster and its fractal substructures.

Anomalous Transport on PercolationClusters:
Diffusion and Conductivity

Due to self-similarity, transport quantities are significantly
modified on fractal substrates. This can be seen in two rep-
resentative examples:

(1) total resistance or the conductivity,
(2) mean square displacement and the probability density

of random walks.

Consider a metallic network of size Ld. At opposite
faces of the network are metallic bars with a voltage dif-
ference between them.

If we vary the linear size L of the system, the total re-
sistance R varies as

R � ��1L/Ld�1 ; (15)

where � � L0 D const is the conductivity (inverse to the
resistivity, � D ��1) of the metal. Since � does not de-
pend on L, (15) states that the total resistance of the
network depends on its linear size L via the power law
R � L2�d � L�̃ , which defines the resistance exponent �̃,
here �̃ D 2 � d.

The idea that transport properties of percolation sys-
tems can be efficiently studied by means of diffusion was
suggested by de Gennes [24] (see also Kopelman [50]).



Fractals and Percolation F 3855

The diffusion process can be modeled by random walkers,
which can jump randomly between nearest-neighbor oc-
cupied sites in the lattice. For such a random walker mov-
ing in a disordered environment, including bottlenecks,
loops, and dead ends, de Gennes coined the term ant in
the labyrinth.

By calculating the mean square displacement of the
walker, one obtains the diffusion constant, which accord-
ing to Einstein is proportional to dc conductivity. Not only
are the conductivity and diffusion exponents above pc re-
lated; also related are the exponents characterizing the size
dependence of the dc conductivity and the time depen-
dence of the mean square displacement of the random
walker. Since it is numerically more efficient to calculate
the relevant transport quantities by simulating random
walks than to determine the conductivity directly from
Kirchhoff’s equations, the study of random walks has im-
proved our knowledge not only of diffusion but also of
the transport process in percolation in general [5,6,10,12,
18,39,40,56,74].

Due to the presence of large holes, bottlenecks, and
dangling ends in the fractal, the motion of a random
walker is slowed down. Fick’s law for the mean square dis-
placement (hr2(t)i D a2t) is no longer valid. Instead, the
mean square displacement is described by a more general
power law,

hr2(t)i � t2/dw ; (16)

where the new exponent dw (“diffusion exponent” or
“fractal dimension of the random walk”) is always greater
than 2.

Both the resistance exponent �̃ and the exponent dw
can be related by the Einstein equation

� D (e2n/kBT)D ; (17)

which relates the dc conductivity � of the system to the
diffusion constant D D limt!1hr2(t)i/2dt of the random
walk. In Eq. (17), e and n denote charge and density of the
mobile particles, respectively.

Simple scaling arguments can now be used to relate
dw to �̃ and �̃. Since n is proportional to the density of
the substrate, n � Ld f�d , the right-hand side of Eq. (17)
is proportional to Ld f�d t2/dw�1. The left-hand side of
Eq. (17) is proportional to L��̃. Since the time a random
walker takes to travel a distance L scales as Ldw , we find
L��̃ � Ld f�dC2�dw , from which the Einstein relation [4]

dw D d f � d C 2C �̃ D d f C �̃ (18)

follows. For example, for the Sierpinski gasket d f D log 3/
log 2, and �̃ D log(5/3)/ log(2/4), therefore dw D log 5/
log 2.

In general, determining dw for random fractals is not
easy. An exception is topologically linear fractal structures
(d` D 1), which can be considered as nonintersecting
paths. Along a path (in `-space), diffusion is normal and
h`2(t)i D t. Since ` � rd f , the mean square displacement
in r-space scales as hr2i � t1/d f , leading to dw D 2d f in
this case. In percolation, dw cannot be calculated exactly,
but upper and lower bounds can be derived which are very
close to each other in d � 3 dimensions. A good estimate
is dw Š 3d f /2 (Alexander–Orbach conjecture [4]).

The long-term behavior of the mean square displace-
ment of a random walker on an infinite percolation clus-
ter is characterized by the diffusion constant D. It is easy
to see that D is related to the diffusion constant D0 of the
whole percolation system: above pc, the dc conductivity
of the percolation system increases as � � (p � pc)�, so
due to the Einstein relation, Eq. (17), the diffusion con-
stant D0 must also increase in this way. The mean square
displacement (and hence D0) is obtained by averaging over
all possible starting points of a particle in the percolation
system. It is clear that only those particles which start on
the infinite cluster can travel from one side of the system
to the other, and thus contribute to D0. Particles that start
on a finite cluster cannot leave the cluster, and thus do not
contribute to D0. Hence D0 is related to D by D0 D DP1,
implying

D � (p � pc)��ˇ � ��(��ˇ )/� : (19)

Combining (16) and (19), the mean square displacement
on the infinite cluster can be written as [7,33,72]

hr2(t)i �

(
t2/dw if t 
 t� ;
(p � pc)��ˇ t if t 	 t� ;

(20)

where

t� � �dw (21)

describes the time scale the random walker needs, on
average, to explore the fractal regime in the cluster. As
� � (p � pc)�� is the only length scale here, t� is the
only relevant time scale, and we can bridge the short time
regime and the long time regime by a scaling function
f (t/t�),

hr2(t)i D t2/dw f (t/t�) : (22)

To satisfy (20)–(21), we require f (x) � x0 for x 
 1
and f (x) � x1�2/dw for x 	 1. The first relation triv-
ially satisfies (20)–(21). The second relation gives D D
limt!1hr2(t)i/2dt � t2/dw�1

�
, which in connection
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with (19) and (21) yields a relation between dw and � [7,
33,72],

dw D 2C (� � ˇ)/� : (23)

Comparing (18) and (23) one can express the exponent �̃
by �,

�̃ D �/� : (24)

Networks

Networks are defined as nodes connected by links, called
graphs in mathematics. Many real world system can be
describe as networks. Perhaps the best known example
of a network is the Internet, where computers (nodes)
around the globe are connected by cables (links) in such
a way that an email message can travel from one com-
puter to another by traveling along only a few links. So-
cial relations between people can be represented by a social
network [2]; nodes represent people and links represent
their relations. One important property of a network is the
“small world” phenomena. The shortest path (minimum
number of hops) between any two nodes is very small,
of the order of log N or smaller, where N is the number
of nodes in the network [11,19,29]. The lattices discussed
in Sect. “Percolation” are also networks, where the sites
of the lattice are the nodes and the bonds represent the
links. In this case, the number of links per node is fixed
but, in general, the number of links per node can be taken
from any degree distribution, P(k). In lattices, due to spa-
tial constraints, the distances between nodes is large and
scales as N1/d , where d is the dimension of the lattice. Since
many networks have no spatial constraints, it follows that
such networks can be regarded as embedded in infinite di-
mension, d D 1, justifying a very small distance, of order
logN . In networks which are not constrained to geograph-
ical space, there is no Euclidean distance and the distance
metric is only the shortest path ` defined in Sect. “Percola-
tion Clusters as Fractals”.

We will show in this chapter that ideas from percola-
tion and fractals can be applied to obtain useful results in
networks which are not embedded in space. The main dif-
ference compared to lattices is that the condition for per-
colation is no longer the spanning property, but rather the
property of having a cluster containing number of nodes
of order N , where N is the total original number of nodes
in the network. Such a component, if it exists, is termed
the giant component. The condition for the existence of
a giant component above the percolation threshold, and
its absence below the threshold, applies also to lattices,
and therefore can be regarded as more general than the

spanning property. An interesting property of percolation,
called universality, is that the behavior at and close to the
critical point depends only on the dimensionality of the
lattice, and not on the microscopic connection details of
the lattice. This behavior is characterized by a set of crit-
ical exponents that are the same for all two-dimensional
lattices, square, triangular or hexagonal, and for either site
or bond percolation. However, a different set of critical ex-
ponents will be obtained for a lattice of another dimension.
Furthermore, above some critical dimension (dc D 6 for
percolation in d-dimensional lattices), known as the upper
critical dimension, the critical behavior remains the same
for all d � dc. This is due to the insignificance of loops in
high dimensions, and thus usually allows for easy determi-
nation of the critical exponents for high dimensions, using
the “infinite dimensional” or “mean field” approach. Erdős
and Rényi (ER) studied an ensemble of networks with N
nodes and 2M links that randomly connect pairs of nodes.
They found that pc D 1/hki D N/2M. Percolation on ER
networks or on infinite dimensional lattices, as well as on
Cayley trees, has the same critical exponents, due to the
fact that their topology is the same and no spatial con-
straint is imposed on the networks. For ER networks, as
for lattices, in d � 6 the size S of the percolation cluster at
pc, scales with N as, S � N2/3 [11,20].

The value of 2/3 can be related to the upper critical di-
mension, dc D 6, and to the fractal dimension of percola-
tion clusters d f D 4 for d D 6. Since N D L6 and S D L4,
it follows that S � N2/3.

In recent years it was realized [2] that P(k) for many
real networks is very broad and, in many cases, is best
represented by a power law, P(k) � k�� . Networks with
a power law degree distribution are called scale free (SF)
network. Heterogeneity of the degrees may affect critical
behavior, even above the upper critical dimension. The
heterogeneity of the degrees can be regarded as a break-
down of translational symmetry that exists in lattices, ER
networks and Cayley trees. In these cases, each node has
a typical number of neighbors, while in scale free networks
the variation between node degrees is very large. A general
result for pc for any random network with a given degree
distribution is [21]

pc D
1

� � 1
; � �

hk2i
hki

:

This result yields that for � < 3, hk2i ! 1 and there-
fore pc ! 0. That is, no finite percolation threshold ex-
ists. Thus, even if most of the nodes of the Internet are
removed, those which are left can still communicate. This
explains the puzzle of why viruses and worms stay a long
time in the Internet even if many people use antivirus soft-
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ware. It also explains why in order to effectively immunize
populations, one needs to immunize most of the people.

The percolation critical exponents for SF networks are
still mean-field or infinite-dimensional in the sense of the
insignificance of loops. However, they are different from
those of the standard mean field percolation. Indeed, for
scale free networks [2], the size of the spanning percolation
cluster is [20],

S �

(
N (��2)/(��1) ; 3 < � < 4
N2/3 ; � > 4

(25)

As shown above, for � < 3, there is no percolation thresh-
old, and therefore no spanning percolation cluster. Note
that SF networks can be regarded as a generalization of
ER networks, since for � > 4 one obtains the ER network
results.

Summary and Future Directions

The percolation problem and its numerous modifications
can be useful in describing several physical, chemical, and
biological processes, such as the spreading of epidemics or
forest fires, gelation processes, and the invasion of water
into oil in porous media, which is relevant for the process
of recovering oil from porous rocks. In some cases, modi-
fication changes the universality class of a percolation. We
begin with an example in which the universality class does
not change. We showed that a random process such as
percolation can lead naturally to fractal structures. This
may be one of the reasons why fractals occur frequently
in nature.
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Glossary

Fractality In the context of the present article, the geo-
metric property of being structured over all (or many)
scales, involving explicit scale dependence which may
go up to scale divergence.
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Spacetime Inter-relational level of description of the set
of all positions and instants (events) and of their
transformations. The events are defined with respect
to a given reference system (i. e., in a relative way),
but a spacetime is characterized by invariant relations
which are valid in all reference systems, such as, e. g.,
the metric invariant. In the generalization to a fractal
space-time, the events become explicitly dependent on
resolution.

Relativity The property of physical quantities according
to which they can be defined only in terms of relation-
ships, not in an abolute way. These quantities depend
on the state of the reference system, itself defined in
a relative way, i. e., with respect to other coordinate
systems.

Covariance Invariance of the form of equations under
general coordinate transformations.

Geodesics Curves in a space (more generally in a space-
time) which minimize the proper time. In a geomet-
ric spacetime theory, the motion equation is given by
a geodesic equation.

QuantumMechanics Fundamental axiomatic theory of
elementary particle, nuclear, atomic, molecular, etc.
physical phenomena, according to which the state of
a physical system is described by a wave function
whose square modulus yields the probability density
of the variables, and which is solution of a Schrödinger
equation constructed from a correspondence principle
(among other postulates).

Definition of the Subject

The question of the foundation of quantum mechanics
from first principles remains one of the main open prob-
lems of modern physics. In its current form, it is an ax-
iomatic theory of an algebraic nature founded upon a set
of postulates, rules and derived principles. This is to be
compared with Einstein’s theory of gravitation, which is
founded on the principle of relativity and, as such, is of an
essentially geometric nature. In its framework, gravitation
is understood as a very manifestation of the curvature of
a Riemannian space-time.

It is therefore relevant to question the nature of the
quantum space-time and to ask for a possible refoundation
of the quantum theory upon geometric first principles. In
this context, it has been suggested that the quantum laws
and properties could actually be manifestations of a fractal
and nondifferentiable geometry of space-time [52,69,71],
coming under the principle of scale relativity [53,54]. This
principle extends, to scale transformations of the reference
system, the theories of relativity (which have been, up to

now, applied to transformations of position, orientation
and motion).

Such an approach allows one to recover the main tools
and equations of standard quantum mechanics, but also
to suggest generalizations, in particular toward high ener-
gies, since it leads to the conclusion that the Planck length
scale could be aminimum scale in nature, unreachable and
invariant under dilations [53].

But it has another radical consequence. Namely, it al-
lows the possibility of a new form of macroscopic quan-
tum-type behavior for a large class of complex systems,
namely those whose behavior is characterized by Newto-
nian dynamics, fractal stochastic fluctuations over a large
range of scales, and small scale irreversibility. In this case
the equation of motionmay take the form of a Schrödinger
equation, which yields peaks of probability density ac-
cording to the symmetry, field and limit conditions. These
peaks may be interpreted as a tendency for the system to
form structures [57], in terms of a macroscopic constant
which is no longer ¯, therefore possibly leading to a new
theory of self-organization.

It is remarkable that, under such a relativistic view, the
question of complexity may be posed in an original way.
Namely, in a fully relativistic theory there is no intrinsic
complexity, since the various physical properties of an ‘ob-
ject’ are expected to vanish in the proper system of coordi-
nates linked to the object. Therefore, in such a framework
the apparent complexity of a system comes from the com-
plexity of the change of reference frames from the proper
frame to the observer (or measurement apparatus) refer-
ence frame. This does not mean that the complexity can
always be reduced, since this change can itself be infinitely
complex, as it is the case in the situation described here of
a fractal and nondifferentiable space-time.

Introduction

There have been many attempts during the 20th century
at understanding the quantum behavior in terms of dif-
ferentiable manifolds. The failure of these attempts in-
dicates that a possible ‘quantum geometry’ should be of
a completely new nature. Moreover, following the lessons
of Einstein’s construction of a geometric theory of grav-
itation, it seems clear that any geometric property to be
attributed to space-time itself, and not only to particular
objects or systems embedded in space-time, must neces-
sarily be universal.

Fortunately, the founders of quantum theory have
brought to light a universal and fundamental behavior of
the quantum realm, in opposition to the classical world;
namely, the explicit dependence of the measurement re-
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sults on the apparatus resolution described by the Heisen-
berg uncertainty relations. This leads one to contemplate
the possibility that the space-time underlying the quantum
mechanical laws can be explicitly dependent on the scale
of observation [52,69,71]. Now the concept of a scale-de-
pendent geometry (at the level of objects and media) has
already been introduced and developed by Benoit Mandel-
brot, who coined the word ‘fractal’ in 1975 to describe it.
But here we consider a complementary program that uses
fractal geometry, not only for describing ‘objects’ (that re-
main embedded in an Euclidean space), but also for intrin-
sically describing the geometry of space-time itself.

A preliminary work toward such a goal may consist of
introducing the fractal geometry in Einstein’s equations
of general relativity at the level of the source terms. This
would amount to giving a better description of the den-
sity of matter in the Universe accounting for its hierar-
chical organization and fractality over many scales (al-
though possibly not all scales), then to solve Einstein’s field
equations for such a scale dependent momentum-energy
tensor. A full implementation of this approach remains
a challenge to cosmology.

But a more direct connection of the fractal geometry
with fundamental physics comes from its use in describing
not only the distribution ofmatter in space, but also the ge-
ometry of space-time itself. Such a goal may be considered
as the continuation of Einstein’s program of generaliza-
tion of the geometric description of space-time. In the new
fractal space-time theory, [27,52,54,69,71], the essence of
quantum physics is a manifestation of the nondifferen-
tiable and fractal geometry of space-time.

Another line of thought leading to the same suggestion
comes, not from relativity and space-time theories, but
from quantummechanics itself. Indeed, it has been discov-
ered by Feynman [30] that the typical quantum mechani-
cal paths (i. e., those that contribute in a main way to the
path integral) are nondifferentiable and fractal. Namely,
Feynman has proved that, although a mean velocity can
be defined for them, no mean-square velocity exists at any
point, since it is given by hv2i / ıt�1. One now recognizes
in this expression the behavior of a curve of fractal dimen-
sion DF D 2 [1].

Based on these premises, the reverse proposal, accord-
ing to which the laws of quantum physics find their very
origin in the fractal geometry of space-time, has been
developed along three different and complementary ap-
proaches.

Ord and co-workers [50,71,72,73], extending the
Feynman chessboard model, have worked in terms of
probabilistic models in the framework of the statistical me-
chanics of binary random walks.

El Naschie has suggested to give up not only the
differentiability, but also the continuity of space-time.
This leads him to work in terms of a ‘Cantorian’ space-
time [27,28,29], and to therefore use in a preferential way
the mathematical tool of number theory (see a more de-
tailed review of these two approaches in Ref. [45]).

The scale relativity approach [52,54,56,63,69] which
is the subject of the present article, is, on the contrary,
founded on a fundamentally continuous geometry of
space-time which therefore includes the differentiable and
nondifferentiable cases, constrained by the principle of rel-
ativity applied to both motion and scale.

Other applications of fractals to the quantum theory of
space-time have been proposed in the framework of a pos-
sible quantum gravity theory. They are of another nature
than those considered in the present article, since they are
applicable only in the framework of the quantum theory
instead of deriving it from the geometry, and they concern
only very small scales on themagnitude of the Planck scale.
We send the interested reader to Kröger’s review paper on
“Fractal geometry in quantummechanics, field theory and
spin systems”, and to references therein [45].

In the present article, we summarize the steps by which
one recovers, in the scale relativity and fractal space-
time framework, the main tools and postulates of quan-
tum mechanics and of gauge field theories. A more de-
tailed account can be found in Refs. [22,23,54,56,63,67,68],
including possible applications of the theory to various
sciences.

Foundations of Scale Relativity Theory

The theory of scale relativity is based on giving up the hy-
pothesis of manifold differentiability. In this framework,
the coordinate transformations are continuous but can
be nondifferentiable. This has several consequences [54],
leading to the following preliminary steps of construction
of the theory:

(1) One can prove the following theorem [5,17,18,54,
56]: a continuous and nondifferentiable curve is fractal
in a general meaning, namely, its length is explicitly de-
pendent on a scale variable ", i. e., L D L("), and it di-
verges, L!1, when "! 0. This theorem can be read-
ily extended to a continuous and nondifferentiable mani-
fold, which is therefore fractal not as an hypothesis, but as
a consequence of giving up an hypothesis (that of differen-
tiability).

(2) The fractality of space-time [52,54,69,71] involves
the scale dependence of the reference frames. One there-
fore adds a new variable " which characterizes the ‘state of
scale’ to the usual variables defining the coordinate system.
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In particular, the coordinates themselves become func-
tions of these scale variables, i. e., X D X(").

(3) The scale variables " can never be defined in an ab-
solute way, but only in a relative way. Namely, only their
ratio � D "0/" has a physical meaning. In experimental sit-
uations, these scale variables amount to the resolution of
the measurement apparatus (it may be defined as standard
errors, intervals, pixel size, etc.). In a theoretical analysis,
they are the space and time differential elements them-
selves. This universal behavior extends to the principle of
relativity in such a way that it also applies to the trans-
formations (dilations and contractions) of these resolution
variables [52,53,54].

Scale Laws

Fractal Coordinate and Differential Dilation Operator

Consider a variable length measured on a fractal curve,
and (more generally) a non-differentiable (fractal) curvi-
linear coordinate L(s; "), that depends on some parame-
ter s which characterizes the position on the curve (it may
be, e. g., a time coordinate), and on the resolution ". Such
a coordinate generalizes the concept of curvilinear coor-
dinates introduced for curved Riemannian space-times in
Einstein’s general relativity [54] to nondifferentiable and
fractal space-times.

Such a scale-dependent fractal length L(s; ") remains
finite and differentiable when " ¤ 0; namely, one can de-
fine a slope for any resolution ", being aware that this slope
is itself a scale-dependent fractal function. It is only at the
limit "! 0 that the length is infinite and the slope unde-
fined, i. e., that nondifferentiability manifests itself.

Therefore the laws of dependence of this length upon
position and scale may be written in terms of a double dif-
ferential calculus, i. e., it can be the solution of differen-
tial equations involving the derivatives of L with respect
to both s and ".

As a preliminary step, one needs to establish the rel-
evant form of the scale variables and the way they inter-
vene in scale differential equations. For this purpose, let us
apply an infinitesimal dilation d� to the resolution, which
is therefore transformed as "! "0 D "(1C d�). The de-
pendence on position is omitted at this stage in order to
simplify the notation. By applying this transformation to
a fractal coordinate L, one obtains, to the first order in the
differential element,

L("0) D L("C " d�) D L(")C @L(")
@"

" d�

D (1C D̃d�)L(") ; (1)

where D̃ is, by definition, the dilation operator.

Since d"/" D d ln ", the identification of the two last
members of Eq. (1) yields

D̃ D "
@

@"
D

@

@ ln "
: (2)

This form of the infinitesimal dilation operator shows that
the natural variable for the resolution is ln ", and that the
expected new differential equations will indeed involve
quantities such as @L(s; ")/@ ln ". This theoretical result
agrees and explains the current knowledge according to
which most measurement devices (of light, sound, etc.),
including their physiological counterparts (eye, ear, etc.)
respond according to the logarithm of the intensity (e. g.,
magnitudes, decibels, etc.).

Self-similar Fractals as Solutions
of a First Order Scale Differential Equation

Let us start by writing the simplest possible differential
equation of scale, and then solve it. We shall subsequently
verify that the solutions obtained comply with the princi-
ple of relativity. As we shall see, this very simple approach
already yields a fundamental result: it gives a foundation
and an understanding from first principles for self-sim-
ilar fractal laws, which have been shown by Mandelbrot
and many others to be a general description of a large
number of natural phenomena, in particular biological
ones (see, e. g., [48,49,70], other volumes of these series
and references therein). In addition, the obtained laws,
which combine fractal and scale-independent behaviours,
are the equivalent for scales of what inertial laws are for
motion [49]. Since they serve as a fundamental basis of de-
scription for all the subsequent theoretical constructions,
we shall now describe their derivation in detail.

The simplest differential equation of explicit scale de-
pendence which one can write is of first order and states
that the variation of L under an infinitesimal scale trans-
formation d ln " depends only on L itself. Basing ourselves
on the previous derivation of the form of the dilation op-
erator, we thus write

@L(s; ")
@ ln "

D ˇ(L) : (3)

The function ˇ is a priori unknown. However, still looking
for the simplest form of such an equation, we expand ˇ(L)
in powers of L, namely we write ˇ(L) D aC bLC : : :.
Disregarding for the moment the s dependence, we obtain,
to the first order, the following linear equation in which a
and b are constants:

dL
d ln "

D aC bL : (4)
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Fractals in the Quantum Theory of Spacetime, Figure 1
Scale dependence of the length (left) and of the effective fractal dimension DF D �F C 1 (right) in the case of “inertial” scale laws
(which are solutions of the simplest, first order scale differential equation). Toward the small scale one gets a scale-invariant lawwith
constant fractal dimension, while the explicit scale-dependence is lost at scales larger than a transition scale�

In order to find the solution of this equation, let us change
the names of the constants as �F D �b and L0 D a/�F, so
that aC bL D ��F(L � L0). We obtain the equation

dL
L � L0

D ��F d ln " : (5)

Its solution is (see Fig. 1)

L(") D L0

�
1C

�


"

��F�
; (6)

where  is an integration constant. This solution corre-
sponds to a length measured on a fractal curve up to
a given point. One can now generalize it to a variable
length that also depends on the position characterized by
the parameter s. One obtains

L(s; ") D L0(s)
�
1C �(s)

�


"

��F�
; (7)

in which, in the most general case, the exponent �F may
itself be a variable depending on the position.

The same kind of result is obtained for the projections
on a given axis of such a fractal length [54]. Let X(s; ") be
one of these projections, it reads

X(s; ") D x(s)
�
1C �x (s)

�


"

��F�
: (8)

In this case �x (s) becomes a highly fluctuating function
which may be described by a stochastic variable, as can be
seen in Fig. 2.

The important point here and for what follows is that
the solution obtained is the sum of two terms (a classi-
cal-like, “differentiable part” and a nondifferentiable “frac-

Fractals in the Quantum Theory of Spacetime, Figure 2
A fractal function. An example of such a fractal function is given
by the projections of a fractal curve on Cartesian coordinates, as
a function of a continuous andmonotonous parameter (here the
time t) whichmarks the position on the curve. The figure also ex-
hibits the relation between space and time differential elements
for such a fractal function, and compares the differentiable part
ıx and nondifferentiable part ı� of the space elementary dis-
placement ıX D ıxC ı�. While the differentiable coordinate
variation ıx D hıXi is of the same order as the time differen-
tial ıt, the fractal fluctuation becomesmuch larger than ıtwhen
ıt� T, where T is a transition time scale, and it depends on the
fractal dimension DF as ı� / ıt1/DF . Therefore the two contri-
butions to the full differential displacement are related by the
fractal law ı�DF / ıx, since ıx and ıt are differential elements
of the same order

tal part”) which is explicitly scale-dependent and tends to
infinity when "! 0 [22,54]. By differentiating these two
parts in the above projection, we obtain the differential
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formulation of this essential result,

dX D dx C d� ; (9)

where dx is a classical differential element, while d� is
a differential element of fractional order (see Fig. 2, in
which the parameter s that characterizes the position on
the fractal curve has been taken to be the time t). This re-
lation plays a fundamental role in the subsequent develop-
ments of the theory.

Consider the case when �F is constant. In the asymp-
totic small scale regime, "
 , one obtains a power-law
dependence on resolution which reads

L(s; ") D L0(s)
�


"

��F
: (10)

In this expression we recognize the standard form of a self-
similar fractal behavior with constant fractal dimension
DF D 1C �F, which has already been found to yield a fair
description of many physical and biological systems [49].
Here the topological dimension is DT D 1, since we deal
with a length, but this can be easily generalized to sur-
faces (DT D 2), volumes (DT D 3), etc., according to the
general relation DF D DT C �F. The new feature here is
that this result has been derived from a theoretical analy-
sis based on first principles, instead of being postulated or
deduced from a fit of observational data.

It should be noted that in the above expressions, the
resolution is a length interval, " D ıX defined along the
fractal curve (or one of its projected coordinate). But one
may also travel on the curve and measure its length on
constant time intervals, then change the time scale. In this
case the resolution " is a time interval, " D ıt. Since they
are related by the fundamental relation (see Fig. 2)

ıXDF � ıt ; (11)

the fractal length depends on the time resolution as

X(s; ıt) D X0(s) �
�
T
ıt

�1�1/DF

: (12)

An example of the use of such a relation is Feynman’s re-
sult according to which the mean square value of the ve-
locity of a quantum mechanical particle is proportional
to ıt�1 (see p. 176 in [30]), which corresponds to a frac-
tal dimension DF D 2, as later recovered by Abbott and
Wise [1] by using a space resolution.

More generally (in the usual case when " D ıX), fol-
lowing Mandelbrot, the scale exponent �F D DF � DT can
be defined as the slope of the (ln "; lnL) curve, namely

�F D
d lnL

d ln(/")
: (13)

For a self-similar fractal such as that described by the frac-
tal part of the above solution, this definition yields a con-
stant value which is the exponent in Eq. (10). However,
one can anticipate on the following, and use this definition
to compute an “effective” or “local” fractal dimension, now
variable, from the complete solution that includes the dif-
ferentiable and the nondifferentiable parts, and therefore
a transition to effective scale independence. Differentiat-
ing the logarithm of Eq. (16) yields an effective exponent
given by

�eff D
�F

1C ("/)�F
: (14)

The effective fractal dimension DF D 1C �F therefore
jumps from the nonfractal value DF D DT D 1 to its con-
stant asymptotic value at the transition scale  (see right
part of Fig. 1).

Galilean Relativity of Scales

We can now check that the fractal part of such a law
is compatible with the principle of relativity extended
to scale transformations of the resolutions (i. e., with
the principle of scale relativity). It reads L D L0(/")�F
(Eq. 10), and it is therefore a law involving two variables
(lnL and �F) as a function of one parameter (") which,
according to the relativistic view, characterizes the state
of scale of the system (its relativity is apparent in the fact
that we need another scale  to define it by their ratio).
More generally, all the following statements remain true
for the complete scale law including the transition to scale-
independence, bymaking the replacement ofL byL � L0.
Note that, to be complete, we anticipate on what follows
and consider a priori �F to be a variable, even if, in the
simple law first considered here, it takes a constant value.

Let us take the logarithm of Eq. (10). It yields
ln(L/L0) D �F ln(/"). The two quantities lnL and �F
then transform under a finite scale transformation " !
"0 D � " as

ln
L("0)
L0
D ln

L(")
L0
� �F ln � ; (15)

and to be complete,

� 0F D �F : (16)

These transformations have exactly the same mathemat-
ical structure as the Galilean group of motion transfor-
mation (applied here to scale rather than motion), which
reads

x0 D x � t v; t0 D t : (17)
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This is confirmed by the dilation composition law,
"! "0 ! "00, which reads

ln
"00

"
D ln

"0

"
C ln

"00

"0
; (18)

and is therefore similar to the law of composition of veloc-
ities between three reference systems K , K0 and K00,

V 00(K00/K) D V(K0/K)C V 0(K00/K0) : (19)

Since the Galileo group of motion transformations is
known to be the simplest group that implements the prin-
ciple of relativity, the same is true for scale transfor-
mations.

It is important to realize that this is more than a sim-
ple analogy: the same physical problem is set in both cases,
and is therefore solved under similar mathematical struc-
tures (since the logarithm transforms what would have
been a multiplicative group into an additive group). In-
deed, in both cases, it is equivalent to finding the transfor-
mation law of a position variable (X for motion in a Carte-
sian system of coordinates, lnL for scales in a fractal sys-
tem of coordinates) under a change of the state of the co-
ordinate system (change of velocity V for motion and of
resolution ln � for scale), knowing that these state vari-
ables are defined only in a relative way. Namely, V is the
relative velocity between the reference systems K and K0,
and � is the relative scale: note that " and "0 have indeed
disappeared in the transformation law, only their ratio re-
mains. This remark establishes the status of resolutions as
(relative) “scale velocities” and of the scale exponent �F as
a “scale time”.

Recall finally that since the Galilean group of mo-
tion is only a limiting case of the more general Lorentz
group, a similar generalization is expected in the case of
scale transformations, which we shall briefly consider in
Sect. “Special Scale-Relativity”.

Breaking of Scale Invariance

The standard self-similar fractal laws can be derived from
the scale relativity approach. However, it is important to
note that Eq. (16) provides us with another fundamental
result, as shown in Fig. 1. Namely, it also contains a spon-
taneous breaking of the scale symmetry. Indeed, it is char-
acterized by the existence of a transition from a fractal to
a non-fractal behavior at scales larger than some transi-
tion scale . The existence of such a breaking of scale in-
variance is also a fundamental feature of many natural sys-
tems, which remains, in most cases, misunderstood.

The advantage of the way it is derived here is that it ap-
pears as a natural, spontaneous, but only effective symme-
try breaking, since it does not affect the underlying scale

symmetry. Indeed, the obtained solution is the sum of
two terms, the scale-independent contribution (differen-
tiable part), and the explicitly scale-dependent and diver-
gent contribution (fractal part). At large scales the scaling
part becomes dominated by the classical part, but it is still
underlying even though it is hidden. There is therefore an
apparent symmetry breaking (see Fig. 1), though the un-
derlying scale symmetry actually remains unbroken.

The origin of this transition is, once again, to be found
in relativity (namely, in the relativity of position and mo-
tion). Indeed, if one starts from a strictly scale-invari-
ant law without any transition, L D L0(/")�F , then adds
a translation in standard position space (L! LC L1),
one obtains

L0 D L1 C L0

�


"

��F
D L1

�
1C

�
1

"

��F�
: (20)

Therefore one recovers the broken solution (that corre-
sponds to the constant a ¤ 0 in the initial scale differen-
tial equation). This solution is now asymptotically scale-
dependent (in a scale-invariant way) only at small scales,
and becomes independent of scale at large scales, beyond
some relative transition 1 which is partly determined by
the translation itself.

Multiple Scale Transitions

Multiple transitions can be obtained by a simple gener-
alization of the above result [58]. Still considering a per-
turbative approach and taking the Taylor expansion of the
differential equation dL/d ln " D ˇ(L), but now to the sec-
ond order of the expansion, one obtains the equation

dL
d ln "

D aC bLC cL2 C � � � : (21)

One of its solutions, which generalizes that of Eq. (5), de-
scribes a scaling behavior which is broken toward both the
small and large scales, as observed in most real fractal sys-
tems,

L D L0

�
1C (0/")�F

1C (1/")�F

�
: (22)

Due to the non-linearity of the ˇ function, there are now
two transition scales in such a law. Indeed,

*when " < 1 < 0, one has (0/")	 1 and
(1/")	 1, so that L D L0(0/1)�F � cst, independent
of scale;

*when 1 < " < 0, one has (0/")	 1 but
(1/")
 1, so that the denominator disappears, and one
recovers the previous pure scaling law L D L0 (0/")�F ;

*when 1 < 0 < ", one has (0/")
 1 and
(1/")
 1, so that L D L0 D cst, independent of scale.
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Scale Relativity Versus Scale Invariance

Let us briefly be more specific about the way in which
the scale relativity viewpoint differs from scaling or sim-
ple scale invariance. In the standard concept of scale in-
variance, one considers scale transformations of the coor-
dinate,

X ! X 0 D q � X ; (23)

then one looks for the effect of such a transformation on
some function f (X). It is scaling when

f (qX) D q˛ � f (X) : (24)

The scale relativity approach involves a more profound
level of description, since the coordinate X is now ex-
plicitly resolution-dependent, i. e. X D X("). Therefore we
now look for a scale transformation of the resolution,

"! "0 D � " ; (25)

which implies a scale transformation of the position vari-
able that takes in the self-similar case the form

X(� ") D ���FX(") : (26)

But now the scale factor on the variable has a physi-
cal meaning which goes beyond a trivial change of units.
It corresponds to a coordinate measured at two differ-
ent resolutions on a fractal curve of fractal dimension
DF D 1C �F, and one can obtain a scaling function of
a fractal coordinate,

f (���FX) D ��˛�F � f (X) : (27)

In other words, there are now three levels of transforma-
tion in the scale relativity framework (the resolution, the
variable, and its function) instead of only two in the usual
conception of scaling.

Generalized Scale Laws

Discrete Scale Invariance, Complex Dimension, and
Log-Periodic Behavior Fluctuations with respect to
pure scale invariance are potentially important, namely
the log-periodic correction to power laws that is provided,
e. g., by complex exponents or complex fractal dimensions.
It has been shown that such a behavior provides a very sat-
isfactory and possibly predictive model of the time evolu-
tion of many critical systems, including earthquakes and
market crashes ([79] and references therein). More re-
cently, it has been applied to the analysis of major event
chronology of the evolutionary tree of life [14,65,66], of

human development [11] and of the main economic crisis
of western and precolumbian civilizations [36,37,40,65].

One can recover log-periodic corrections to self-sim-
ilar power laws through the requirement of covariance
(i. e., of form invariance of equations) applied to scale dif-
ferential equations [58]. Consider a scale-dependent func-
tionL("). In the applications to temporal evolution quoted
above, the scale variable is identified with the time interval
jt � tc j, where tc is the date of a crisis. Assume that L sat-
isfies a first order differential equation,

dL
d ln "

� �L D 0 ; (28)

whose solution is a pure power law L(") / "� (cf Sect.
“Self-Similar Fractals as Solutions of a First Order Scale
Differential Equation”). Now looking for corrections to
this law, one remarks that simply incorporating a com-
plex value of the exponent � would lead to large log-pe-
riodic fluctuations rather than to a controllable correction
to the power law. So let us assume that the right-hand side
of Eq. (28) actually differs from zero:

dL
d ln "

� �L D � : (29)

We can now apply the scale covariance principle and
require that the new function � be a solution of an equa-
tion which keeps the same form as the initial equation,

d�
d ln "

� �0� D 0 : (30)

Setting �0 D � C �, we find that L must be a solution of
a second-order equation:

d2L
(d ln ")2

� (2� C �)
dL
d ln "

C �(� C �)L D 0 : (31)

The solution reads L(") D a"�(1C b"�), and finally, the
choice of an imaginary exponent � D i! yields a solution
whose real part includes a log-periodic correction:

L(") D a"� [1C b cos(! ln ")] : (32)

As previously recalled in Sect. “Breaking of Scale Invari-
ance,” adding a constant term (a translation) provides
a transition to scale independence at large scales (see
Fig. 3).

Lagrangian Approach to Scale Laws In order to obtain
physically relevant generalizations of the above simplest
(scale-invariant) laws, a Lagrangian approach can be used
in scale space analogously to using it to derive the laws of
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Fractals in the Quantum Theory of Spacetime, Figure 3
Scale dependence of the length L of a fractal curve and of the effective “scale time” �F D DF � DT (fractal dimension mi-
nus topological dimension) in the case of a log-periodic behavior with fractal/non-fractal transition at scale �, which reads
L(") D L0f1C (�/")� exp[b cos(! ln("/�))]g

motion, leading to reversal of the definition and meaning
of the variables [58].

This reversal is analogous to that achieved by Galileo
concerning the laws of motion. Indeed, from the Aristotle
viewpoint, “time is the measure of motion”. In the same
way, the fractal dimension, in its standard (Mandelbrot’s)
acception, is defined from the topological measure of the
fractal object (length of a curve, area of a surface, etc.) and
resolution, namely (see Eq. 13)

t D
x
v
$ �F D DF � DT D

d lnL
d ln(/")

: (33)

In the case mainly considered here, when L represents
a length (i. e., more generally, a fractal coordinate), the
topological dimension is DT D 1 so that �F D DF � 1.
With Galileo, time becomes a primary variable, and the
velocity is deduced from space and time, which are there-
fore treated on the same footing, in terms of a space-time
(even though the Galilean space-time remains degenerate
because of the implicitly assumed infinite velocity of light).

In analogy, the scale exponent �F D DF � 1 becomes
in this new representation a primary variable that plays,
for scale laws, the same role as played by time in motion
laws (it is called “djinn” in some publications which there-
fore introduce a five-dimensional ‘space-time-djinn’ com-
bining the four fractal fluctuations and the scale time).

Carrying on the analogy, in the same way that the ve-
locity is the derivative of position with respect to time,
v D dx/dt, we expect the derivative of lnL with respect
to scale time �F to be a “scale velocity”. Consider as ref-
erence the self-similar case, that reads lnL D �F ln(/").
Deriving with respect to �F, now considered as a variable,

yields d lnL/d�F D ln(/"), i. e., the logarithm of resolu-
tion. By extension, one assumes that this scale velocity pro-
vides a new general definition of resolution even in more
general situations, namely,

V D ln
�


"

�
D

d lnL
d�F

: (34)

One can now introduce a scale Lagrange function
eL(lnL;V ; �F), from which a scale action is constructed:

eS D
Z �2

�1

eL(lnL;V ; �F)d�F : (35)

The application of the action principle yields a scale Euler–
Lagrange equation which reads

d
d�F

@eL
@V
D

@eL
@ lnL : (36)

One can now verify that in the free case, i. e., in the ab-
sence of any “scale force” (i. e., @L̃/@ lnL D 0), one recov-
ers the standard fractal laws derived hereabove. Indeed, in
this case the Euler–Lagrange equation becomes

@L̃/@V D const ) V D const: (37)

which is the equivalent for scale of what inertia is for mo-
tion. Still in analogy with motion laws, the simplest possi-
ble form for the Lagrange function is a quadratic depen-
dence on the scale velocity, (i. e., L̃ / V 2). The constancy
of V D ln(/") means that it is independent of the scale
time �F. Equation (34) can therefore be integrated to give
the usual power law behavior,L D L0(/")�F , as expected.

But this reversed viewpoint also has several advantages
which allow a full implementation of the principle of scale
relativity:
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(i) The scale time �F is given the status of a fifth dimen-
sion and the logarithm of the resolutionV D ln(/"),
is given the status of a scale velocity (see Eq. 34).
This is in accordance with its scale-relativistic defi-
nition, in which it characterizes the state of scale of
the reference system, in the same way as the velocity
v D dx/dt characterizes its state of motion.

(ii) This allows one to generalize the formalism to the
case of four independent space-time resolutions,
V� D ln(�/"�) D d lnL�/d�F.

(iii) Scale laws more general than the simplest self-sim-
ilar ones can be derived from more general scale
Lagrangians [57,58] involving “scale accelerations”
I- D d2 lnL/d�2F D d ln(/")/d�F, as we shall see in
what follows.

Note however that there is also a shortcoming in this
approach. Contrary to the case of motion laws, in which
time is always flowing toward the future (except possibly
in elementary particle physics at very small time scales),
the variation of the scale time may be non-monotonic, as
exemplified by the previous case of log-periodicity. There-
fore this Lagrangian approach is restricted to monotonous
variations of the fractal dimension, or, more generally, to
scale intervals on which it varies in a monotonous way.

Scale Dynamics The previous discussion indicates that
the scale invariant behavior corresponds to freedom (i. e.
scale force-free behavior) in the framework of a scale
physics. However, in the same way as there are forces in
nature that imply departure from inertial, rectilinear uni-
form motion, we expect most natural fractal systems to
also present distortions in their scale behavior with respect
to pure scale invariance. This implies taking non-linearity
in the scale space into account. Such distorsions may be,
as a first step, attributed to the effect of the dynamics of
scale (“scale dynamics”), i. e., of a “scale field”, but it must
be clear from the very beginning of the description that
they are of geometric nature (in analogy with the Newto-
nian interpretation of gravitation as the result of a force,
which has later been understood from Einstein’s general
relativity theory as a manifestation of the curved geometry
of space-time).

In this case the Lagrange scale-equation takes the form
of Newton’s equation of dynamics,

F D �
d2 lnL
d�2F

; (38)

where � is a “scale mass”, which measures how the system
resists to the scale force, and where I- D d2 lnL/d�2F D
d ln(/")/d�F is the scale acceleration.

In this framework one can therefore attempt to define
generic, scale-dynamical behaviours which could be com-
mon to very different systems, as corresponding to a given
form of the scale force.

Constant Scale Force A typical example is the case of
a constant scale force. Setting G D F/�, the potential
reads ' D G lnL, analogous to the potential of a con-
stant force f in space, which is ' D � f x, since the force
is �@'/@x D f . The scale differential equation is

d2 lnL
d�2F

D G : (39)

It can be easily integrated. A first integration yields
d lnL/d�F D G�F C V0, where V0 is a constant. Then
a second integration yields a parabolic solution (which is
the equivalent for scale laws of parabolic motion in a con-
stant field),

V D V0 C G�F ; lnL D lnL0 CV0�F C
1
2
G �2F ; (40)

where V D d lnL/d�F D ln(/").
However the physical meaning of this result is not clear

under this form. This is due to the fact that, while in the
case of motion laws we search for the evolution of the sys-
tem with time, in the case of scale laws we search for the
dependence of the system on resolution, which is the di-
rectly measured observable. Since the reference scale  is
arbitrary, the variables can be re-defined in such a way
that V0 D 0, i. e.,  D 0. Indeed, from Eq. (40) one gets
�F D (V �V0)/G D [ln(/")� ln(/0)]/G D ln(0/")/G.
Then one obtains

�F D
1
G

ln
�
0

"

�
; ln

� L
L0

�
D

1
2G

ln2
�
0

"

�
: (41)

The scale time �F becomes a linear function of resolu-
tion (the same being true, as a consequence, of the frac-
tal dimension DF D 1C �F), and the (lnL; ln ") relation
is now parabolic instead of linear (see Fig. 4 and compare
to Fig. 1). Note that, as in previous cases, we have con-
sidered here only the small scale asymptotic behavior, and
that we can once again easily generalize this result by in-
cluding a transition to scale-independence at large scale.
This is simply achieved by replacing L by (L � L0) in ev-
ery equations.

There are several physical situations where, after care-
ful examination of the data, the power-law models were
clearly rejected since no constant slope could be defined in
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Fractals in the Quantum Theory of Spacetime, Figure 4
Scale dependence of the length of a fractal curve lnL and of its effective fractal dimension (DF D DT C �F, whereDT is the topological
dimension) in the case of a constant scale force, with an additional fractal to non-fractal transition

the (logL; log ") plane. In the several cases where a clear
curvature appears in this plane, e. g., turbulence [26],
sandpiles [9], fractured surfaces in solid mechanics [10],
the physics could come under such a scale-dynamical de-
scription. In these cases it might be of interest to identify
and study the scale force responsible for the scale distor-
tion (i. e., for the deviation from standard scaling).

Special Scale-Relativity

Let us close this section about the derivation of scale laws
of increasing complexity by coming back to the question of
finding the general laws of scale transformations that meet
the principle of scale relativity [53]. It has been shown in
Sect. “Galilean Relativity of Scales” that the standard self-
similar fractal laws come under a Galilean group of scale
transformations. However, the Galilean relativity group is
known, for motion laws, to be only a degenerate form of
the Lorentz group. It has been proved that a similar result
holds for scale laws [53,54].

The problem of finding the linear transformation laws
of fields in a scale transformation V D ln � ("! "0)
amounts to finding four quantities, a(V ); b(V ); c(V ), and
d(V ), such that

ln
L0
L0
D a(V ) ln

L
L0
C b(V ) �F ;

�F0 D c(V ) ln
L
L0
C d(V )�F :

(42)

Set in this way, it immediately appears that the current
‘scale-invariant’ scale transformation law of the standard
form (Eq. 8), given by a D 1; b D V ; c D 0 and d D 1,
corresponds to a Galilean group.

This is also clear from the law of composition of di-
latations, "! "0 ! "00, which has a simple additive form,

V 00 D V C V 0 : (43)

However the general solution to the ‘special relativity
problem’ (namely, find a; b; c and d from the principle
of relativity) is the Lorentz group [47,53]. This result has
led to the suggestion of replacing the standard law of
dilatation, "! "0 D % � " by a new Lorentzian relation,
namely, for " < 0 and "0 < 0

ln
"0

0
D

ln("/0)C ln%
1C ln % ln("/0)/ ln2(�/0)

: (44)

This relation introduces a fundamental length scale �,
which is naturally identified, towards the small scales, with
the Planck length (currently 1:6160(11) � 10�35 m) [53],

� D lP D („G/c3)1/2 ; (45)

and toward the large scales (for " > 0 and "0 > 0) with
the scale of the cosmological constant, L D ��1/2 (see
Chap. 7.1 in [54]).

As one can see from Eq. (44), if one starts from the
scale " D � and apply any dilatation or contraction %, one
obtains again the scale "0 D �, whatever the initial value of
0. In other words,� can be interpreted as a limiting lower
(or upper) length-scale, which is impassable and invariant
under dilatations and contractions.

Concerning the length measured along a fractal
coordinate which was previously scale-dependent as
ln(L/L0) D �0 ln(0/") for " < 0, it becomes in the new
framework, in the simplified case when one starts from the
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Fractals in the Quantum Theory of Spacetime, Figure 5
Scale dependence of the logarithm of the length and of the effective fractal dimension, DF D 1C �F, in the case of scale-rela-
tivistic Lorentzian scale laws including a transition to scale independence toward large scales. The constant C has been taken to
be C D 4�2 � 39:478, which is a fundamental value for scale ratios in elementary particle physics in the scale relativity frame-
work [53,54,63], while the effective fractal dimension jumps from DF D 1 to DF D 2 at the transition, then increases without any
limit toward small scales

reference scale L0 (see Fig. 5)

ln
L
L 0
D

�0 ln(0/")p
1 � ln2(0/")/ ln2(0/�)

: (46)

The main new feature of scale relativity with respect to the
previous fractal or scale-invariant approaches is that the
scale exponent �F and the fractal dimension DF D 1C �F,
which were previously constant (DF D 2; �F D 1), are now
explicitly varying with scale (see Fig. 5), following the law
(given once again in the simplified case whenwe start from
the reference scale L0):

�F(") D
�0p

1 � ln2(0/")/ ln2(0/�)
: (47)

Under this form, the scale covariance is explicit, since
one keeps a power law form for the length variation,
L D L0(/")�F("), but now in terms of a variable fractal di-
mension.

For a more complete development of special relativ-
ity, including its implications regarding new conservative
quantities and applications in elementary particle physics
and cosmology, see [53,54,56,63].

The question of the nature of space-time geometry
at the Planck scale is a subject of intense work (see,
e. g., [3,46] and references therein). This is a central ques-
tion for practically all theoretical attempts, including non-
commutative geometry [15,16], supersymmetry, and su-
perstring theories [35,75] – for which the compactifica-
tion scale is close to the Planck scale – and particularly for
the theory of quantum gravity. Indeed, the development
of loop quantum gravity by Rovelli and Smolin [76] led to
the conclusion that the Planck scale could be a quantized
minimal scale in Nature, involving also a quantization of
surfaces and volumes [77].

Over the last years, there has also been significant re-
search effort aimed at the development of a ‘Doubly-Spe-
cial-Relativity’ [2] (see a review in [3]), according to which
the laws of physics involve a fundamental velocity scale c
and a fundamental minimum length scale Lp, identified
with the Planck length.

The concept of a new relativity in which the Planck
length-scale would become a minimum invariant length is
exactly the founding idea of the special scale relativity the-
ory [53], which has been incorporated in other attempts of
extended relativity theories [12,13]. But, despite the simi-
larity of aim and analysis, the main difference between the
‘Doubly-Special-Relativity’ approach and the scale relativ-
ity one is that the question of defining an invariant length-
scale is considered in the scale relativity/fractal space-time
theory as coming under a relativity of scales. Therefore
the new group to be constructed is a multiplicative group,
that becomes additive only when working with the loga-
rithms of scale ratios, which are definitely the physically
relevant scale variables, as one can show by applying the
Gell-Mann-Levy method to the construction of the dila-
tion operator (see Sect. “Fractal Coordinate and Differen-
tial Dilation Operator”).

From Fractal Space to Nonrelativistic
QuantumMechanics

The first step in the construction of a theory of the quan-
tum space-time from fractal and nondifferentiable geome-
try, which has been described in the previous sections, has
consisted of finding the laws of explicit scale dependence
at a given “point” or “instant” (under their new fractal def-
inition).

The next step, which will now be considered, amounts
to writing the equation of motion in such a fractal space(-
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time) in terms of a geodesic equation. As we shall see, after
integration this equation takes the form of a Schrödinger
equation (and of the Klein-Gordon and Dirac equa-
tions in the relativistic case). This result, first obtained
in Ref. [54], has later been confirmed by many subse-
quent physical [22,25,56,57] and mathematical works, in
particular by Cresson and Ben Adda [6,7,17,19] and Ju-
marie [41,42,43,44], including attempts of generalizations
using the tool of the fractional integro-differential calcu-
lus [7,21,44].

In what follows, we consider only the simplest case
of fractal laws, namely, those characterized by a constant
fractal dimension. The various generalized scale laws con-
sidered in the previous section lead to new possible gener-
alizations of quantum mechanics [56,63].

Critical Fractal Dimension 2

Moreover, we simplify again the description by consider-
ing only the case DF D 2. Indeed, the nondifferentiability
and fractality of space implies that the paths are random
walks of the Markovian type, which corresponds to such
a fractal dimension. This choice is also justified by Feyn-
man’s result [30], according to which the typical paths of
quantum particles (those which contribute mainly to the
path integral) are nondifferentiable and of fractal dimen-
sion DF D 2 [1]. The case DF ¤ 2, which yields gener-
alizations to standard quantum mechanics has also been
studied in detail (see [56,63] and references therein). This
study shows that DF D 2 plays a critical role in the the-
ory, since it suppresses the explicit scale dependence in the
motion (Schrödinger) equation – but this dependence re-
mains hidden and reappears through, e. g., the Heisenberg
relations and the explicit dependence of measurement re-
sults on the resolution of the measurement apparatus.

Let us start from the result of the previous section, ac-
cording to which the solution of a first order scale differ-
ential equation reads for DF D 2, after differentiation and
reintroduction of the indices,

dX� D dx� C d�� D v�ds C ��
p
c ds ; (48)

where c is a length scale which must be introduced for
dimensional reasons and which, as we shall see, general-
izes the Compton length. The �� are dimensionless highly
fluctuating functions. Due to their highly erratic charac-
ter, we can replace them by stochastic variables such that
h��i D 0, h(�0)2i D �1 and h(�k)2i D 1 (k D1 to 3). The
mean is taken here on a purely mathematic probability law
which can be fully general, since the final result does not
depend on its choice.

Metric of a Fractal Space-Time

Now one can also write the fractal fluctuations in terms
of the coordinate differentials, d�� D ��

p
� dx�. The

identification of this expression with that of Eq. (3) leads
one to recover the Einstein-de Broglie length and time
scales,

x D
c

dx/ds
D
„

px
; � D

c

dt/ds
D
„

E
: (49)

Let us now assume that the large scale (classical)
behavior is given by the Riemannian metric poten-
tials g��(x; y; z; t). The invariant proper time dS along
a geodesic in terms of the complete differential elements
dX� D dx� C d��

dS2 D g��dX�dX� D g��(dx�Cd��)(dx�Cd��): (50)

Now replacing the d� ’s by their expression, one obtains
a fractal metric [54,68]. Its two-dimensional and diagonal
expression, neglecting the terms of the zeromean (in order
to simplify its writing) reads

dS2 Dg00(x; t)


1C �20

�F

dt

�
c2dt2

� g11(x; t)
�
1C �21

x

dx

�
dx2 : (51)

We therefore obtain generalized fractal metric poten-
tials which are divergent and explicitly dependent on the
coordinate differential elements [52,54]. Another equiva-
lent way to understand this metric consists in remarking
that it is no longer only quadratic in the space-time dif-
ferental elements, but that it also contains them in a linear
way.

As a consequence, the curvature is also explicitly scale-
dependent and divergent when the scale intervals tend to
zero. This property ensures the fundamentally non-Rie-
mannian character of a fractal space-time, as well as the
possibility to characterize it in an intrinsic way. Indeed,
such a characterization, which is a necessary condition
for defining a space in a genuine way, can be easily made
by measuring the curvature at smaller and smaller scales.
While the curvature vanishes by definition toward the
small scales in Gauss-Riemann geometry, a fractal space
can be characterized from the interior by the verification of
the divergence toward small scales of curvature, and there-
fore of physical quantities like energy and momentum.

Now the expression of this divergence is nothing but
the Heisenberg relations themselves, which therefore ac-
quire in this framework the status of a fundamental geo-
metric test of the fractality of space-time [52,54,69].
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Geodesics of a Fractal Space-Time

The next step in such a geometric approach consists of
the identifying the wave-particles with fractal space-time
geodesics. Any measurement is interpreted as a selection
of the geodesics bundle linked to the interaction with the
measurement apparatus (that depends on its resolution)
and/or to the information known about it (for example,
the which-way-information in a two-slit experiment [56].

The three main consequences of nondifferentiability
are:

(i) The number of fractal geodesics is infinite. This
leads one to adopt a generalized statistical fluid-like de-
scription where the velocity V�(s) is replaced by a scale-
dependent velocity field V�[X�(s; ds); s; ds].

(ii) There is a breaking of the reflexion invariance of
the differential element ds. Indeed, in terms of fractal func-
tions f (s; ds), two derivatives are defined,

X 0C(s; ds) D
X(sC ds; ds)� X(s; ds)

ds
;

X 0�(s; ds) D
X(s; ds) � X(s � ds; ds)

ds
;

(52)

which transform into each other under the reflection
(ds$ �ds), and which have a priori no reason to be equal.
This leads to a fundamental two-valuedness of the velocity
field.

(iii) The geodesics are themselves fractal curves of frac-
tal dimension DF D 2 [30].

This means that one defines two divergent frac-
tal velocity fields, VC[x(s; ds); s; ds] D vC[x(s); s] C
wC[x(s; ds); s; ds] and V�[x(s; ds); s; ds] D v�[x(s); s] C
w�[x(s; ds); s; ds], which can be decomposed in terms of
differentiable parts vC and v�, and of fractal parts wC and
w�. Note that, contrary to other attempts such as Nelson’s
stochastic quantum mechanics which introduces forward
and backward velocities [51] (and which has been later dis-
proved [34,80]), the two velocities are here both forward,
since they do not correspond to a reversal of the time coor-
dinate, but of the time differential element now considered
as an independent variable.

More generally, we define two differentiable parts of
derivatives dC/ds and d�/ds, which, when they are ap-
plied to x�, yield the differential parts of the velocity fields,
v�C D dCx�/ds and v�� D d�x�/ds.

Covariant Total Derivative

Let us first consider the non-relativistic case. It corre-
sponds to a three-dimensional fractal space, without frac-
tal time, in which the invariant ds is therefore identified
with the time differential element dt. One describes the

elementary displacements dXk , where k D 1; 2; 3, on the
geodesics of a nondifferentiable fractal space in terms of
the sum of the two terms (omitting the indices for sim-
plicity) dX˙ D d˙x C d�˙, where dx represents the dif-
ferentiable part and d� the fractal (nondifferentiable) part,
defined as

d˙x D v˙dt ; d�˙ D �˙
p
2D dt1/2 : (53)

Here �˙ are stochastic dimensionless variables such that
h�˙i D 0 and h�2

˙
i D 1, andD is a parameter that gener-

alizes the Compton scale (namely, D D „/2m in the case
of standard quantum mechanics) up to the fundamental
constant c/2. The two time derivatives are then combined
in terms of a complex total time derivative operator [54],

bd
dt
D

1
2

�
dC
dt
C

d�
dt

�
�

i
2

�
dC
dt
�

d�
dt

�
: (54)

Applying this operator to the differentiable part of the po-
sition vector yields a complex velocity

V D
bd
dt

x(t) D V � iU D
vC C v�

2
� i

vC � v�
2

: (55)

In order to find the expression for the complex time
derivative operator, let us first calculate the derivative of
a scalar function f . Since the fractal dimension is 2, one
needs to go to the second order of expansion. For one vari-
able it reads

d f
dt
D
@ f
@t
C
@ f
@X

dX
dt
C

1
2
@2 f
@X2

dX2

dt
: (56)

Generalizing this process to three dimensions is straight-
forward.

Let us now take the stochastic mean of this expres-
sion, i. e., we take the mean on the stochastic variables �˙
which appear in the definition of the fractal fluctuation
d�˙. By definition, since dX D dx C d� and hd�i D 0, we
have hdXi D dx, so that the second term is reduced (in 3
dimensions) to v:r f . Now concerning the term dX2/dt, it
is infinitesimal and therefore it would not be taken into
account in the standard differentiable case. But in the
nondifferentiable case considered here, the mean square
fluctuation is non-vanishing and of order dt, namely,
hd�2i D 2Ddt, so that the last term of Eq. (56) amounts
in three dimensions to a Laplacian operator. One obtains,
respectively for the (+) and (�) processes,

d˙ f
dt
D

�
@

@t
C v˙:r ˙D


�
f : (57)
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Finally, by combining these two derivatives in terms of the
complex derivative of Eq. (54), it reads [54]

bd
dt
D

@

@t
CV :r � iD
: (58)

Under this form, this expression is not fully covariant [74],
since it involves derivatives of the second order, so that its
Leibniz rule is a linear combination of the first and sec-
ond order Leibniz rules. By introducing the velocity oper-
ator [61]

bV D V � iDr; (59)

it may be given a fully covariant expression,

bd
dt
D

@

@t
C bV :r : (60)

Under this form it satisfies the first order Leibniz rule for
partial derivatives.

We shall now see that bd/dt plays the role of a “co-
variant derivative operator” (in analogy with the covari-
ant derivative of general relativity). Namely, one maywrite
in its terms the equation of physics in a nondifferentiable
space under a strongly covariant form identical to the dif-
ferentiable case.

Complex Action and Momentum

The steps of construction of classical mechanics can now
be followed, but in terms of complex and scale dependent
quantities. One defines a Lagrange function that keeps its
usual form, L(x;V ; t), but which is now complex. Then
one defines a generalized complex action

S D
Z t2

t1
L(x;V ; t)dt : (61)

Generalized Euler–Lagrange equations that keep their
standard form in terms of the new complex variables can
be derived from this action [22,54], namely

bd
dt

@L
@V �

@L
@x
D 0 : (62)

From the homogeneity of space and Noether’s theorem,
one defines a generalized complex momentum given by
the same form as in classical mechanics as

P D @L
@V : (63)

If the action is now considered as a function of the upper
limit of integration in Eq. (61), the variation of the action

from a trajectory to another nearby trajectory yields a gen-
eralization of another well-known relation of classical me-
chanics,

P D rS : (64)

Motion Equation

As an example, consider the case of a single particle in
an external scalar field with potential energy � (but the
method can be applied to any situation described by a La-
grange function). The Lagrange function, L D 1

2mv2 � �,
is generalized as L(x;V ; t) D 1

2mV 2 � �. The Euler–
Lagrange equations then keep the form of Newton’s fun-
damental equation of dynamics F D m dv/dt, namely,

m
bd
dt
V D �r� ; (65)

which is now written in terms of complex variables and
complex operators.

In the case when there is no external field (� D 0), the
covariance is explicit, since Eq. (65) takes the free form of
the equation of inertial motion, i. e., of a geodesic equation,

bd
dt
V D 0 : (66)

This is analogous to Einstein’s general relativity, where the
equivalence principle leads to the covariant equation of the
motion of a free particle in the form of an inertial motion
(geodesic) equation Du�/ds D 0, written in terms of the
general-relativistic covariant derivativeD, of the four-vec-
tor u� and of the proper time differential ds.

The covariance induced by the effects of the nondif-
ferentiable geometry leads to an analogous transformation
of the equation of motions, which, as we show below, be-
come after integration the Schrödinger equation, which
can therefore be considered as the integral of a geodesic
equation in a fractal space.

In the one-particle case the complex momentum P
reads

P D mV ; (67)

so that from Eq. (64) the complex velocity V appears as
a gradient, namely the gradient of the complex action

V D rS/m : (68)

Wave Function

Up to now the various concepts and variables used were
of a classical type (space, geodesics, velocity fields), even if
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they were generalized to the fractal and nondifferentiable,
explicitly scale-dependent case whose essence is funda-
mentally not classical.

We shall now make essential changes of variable, that
transform this apparently classical-like tool to quantum
mechanical tools (without any hidden parameter or new
degree of freedom). The complex wave function  is in-
troduced as simply another expression for the complex ac-
tion S, by making the transformation

 D eiS/S0 : (69)

Note that, despite its apparent form, this expression in-
volves a phase and a modulus since S is complex. The
factor S0 has the dimension of an action (i. e., an angular
momentum) and must be introduced because S is dimen-
sioned while the phase should be dimensionless. When
this formalism is applied to standard quantum mechanics,
S0 is nothing but the fundamental constant ¯. As a conse-
quence, since

S D �iS0 ln ; (70)

one finds that the function  is related to the complex ve-
locity appearing in Eq. (68) as follows

V D �i S0
m
r ln : (71)

This expression is the fundamental relation that connects
the two description tools while giving the meaning of the
wave function in the new framework. Namely, it is de-
fined here as a velocity potential for the velocity field of
the infinite family of geodesics of the fractal space. Because
of nondifferentiability, the set of geodesics that defines
a ‘particle’ in this framework is fundamentally non-local.
It can easily be generalized to a multiple particle situation
(in particular to entangled states) which are described by
a single wave function  , from which the various veloc-
ity fields of the subsets of the geodesic bundle are derived
asVk D �i (S0/mk)rk ln , where k is an index for each
particle. The indistinguishability of identical particles nat-
urally follows from the fact that the ‘particles’ are identified
with the geodesics themselves, i. e., with an infinite ensem-
ble of purely geometric curves. In this description there is
no longer any point-mass with ‘internal’ properties which
would follow a ‘trajectory’, since the various properties of
the particle – energy, momentum, mass, spin, charge (see
next sections) – can be derived from the geometric prop-
erties of the geodesic fluid itself.

Correspondence Principle

Since we have P D �iS0r ln D �iS0(r )/ , we ob-
tain the equality [54]

P D �i„r (72)

in the standard quantum mechanical case S0 D „, which
establishes a correspondence between the classical mo-
mentum p, which is the real part of the complex momen-
tum in the classical limit, and the operator �i„r.

This result is generalizable to other variables, in partic-
ular to the Hamiltonian. Indeed, a strongly covariant form
of the Hamiltonian can be obtained by using the fully co-
variant form of the covariant derivative operator given by
Eq. (60). With this tool, the expression of the relation be-
tween the complex action and the complex Lagrange func-
tion reads

L D
bd S
dt
D
@S
dt
C bV :rS : (73)

Since P D rS andH D �@S/@t, one obtains for the gen-
eralized complex Hamilton function the same form it has
in classical mechanics, namely [63,67],

H D bV :P � L : (74)

After expanding the velocity operator, one obtains
H D V :P � iDr:P � L, which includes an additional
term [74], whose origin is now understood as an expres-
sion of nondifferentiability and strong covariance.

Schrödinger Equation and Compton Relation

The next step of the construction amounts to writing the
fundamental equation of dynamics Eq. (65) in terms of the
function  . It takes the form

iS0
bd
dt

(r ln ) D r� : (75)

As we shall now see, this equation can be integrated in
a general way in the form of a Schrödinger equation. Re-
placingbd/dt andV by their expressions yields

r˚ D iS0
�
@

@t
r ln � i

�
S0
m
(r ln :r)(r ln )

CD
(r ln )
� �

: (76)

This equation may be simplified thanks to the iden-
tity [54],

r

�

 

 

�
D 2(r ln :r)(r ln )C
(r ln ) : (77)
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We recognize, in the right-hand side of Eq. (77), the two
terms of Eq. (76), which were respectively a factor of S0/m
andD. This leads to the definition of the wave function as

 D eiS/2mD ; (78)

which means that the arbitrary parameter S0 (which is
identified with the constant ¯ in standard QM) is now
linked to the fractal fluctuation parameter by the relation

S0 D 2mD : (79)

This relation (which can actually be proved instead of sim-
ply being set as a simplifying choice, see [62,67]) is actually
a generalization of the Compton relation, since the geo-
metric parameterD D hd�2i/2dt can be written in terms
of a length scale asD D c/2, so that, when S0 D „, it be-
comes  D „/mc. But a geometric meaning is now given
to the Compton length (and therefore to the inertial mass
of the particle) in the fractal space-time framework.

The fundamental equation of dynamics now reads

r� D 2imD
�
@

@t
r ln � i

˚
2D(r ln :r)(r ln )

CD
(r ln )
��
: (80)

Using the above remarkable identity and the fact that @/@t
and r commute, it becomes

�
r�

m
D �2Dr

�
i
@

@t
ln CD
 

 

�
: (81)

The full equation becomes a gradient,

r

�
�

m
� 2Dr

�
i @ /@t CD
 

 

��
D 0 (82)

and it can be easily integrated to finally obtain a general-
ized Schrödinger equation [54]

D2
 C iD @

@t
 �

�

2m
 D 0 ; (83)

up to an arbitrary phase factor which may be set to zero
by a suitable choice of the  phase. One recovers the stan-
dard Schrödinger equation of quantum mechanics for the
particular case whenD D „/2m.

Von Neumann’s and Born’s Postulates

In the framework described here, “particles” are identi-
fiedwith the various geometric properties of fractal space(-
time) geodesics. In such an interpretation, a measurement

(and more generally any knowledge about the system)
amounts to selecting the sub-set of the geodesics fam-
ily which only contains the geodesics with the geomet-
ric properties corresponding to the measurement result.
Therefore, just after the measurement, the system is in the
state given by the measurement result, which is precisely
the von Neumann postulate of quantum mechanics.

The Born postulate can also be inferred from the scale-
relativity construction [22,62,67]. Indeed, the probability
for the particle to be found at a given position must be
proportional to the density of the geodesics fluid at this
point. The velocity and the density of the fluid are expected
to be solutions of a Euler and continuity system of four
equations, with four unknowns, (�;Vx ;Vy ;Vz ).

Now, by separating the real and imaginary parts of the
Schrödinger equation, setting  D

p
P � ei� and using

a mixed representation (P;V ), where V D fVx ;Vy ;Vzg,
one precisely obtains such a standard system of fluid dy-
namics equations, namely,

�
@

@t
C V � r

�
V D �r

 

� � 2D2

p
P

p
P

!

;

@P
@t
C div(PV ) D 0 :

(84)

This allows one to unequivocally identify P D j j2 with
the probability density of the geodesics and therefore with
the probability of presence of the ‘particle’. Moreover,

Q D �2D2

p
P

p
P

(85)

can be interpreted as the new potential which is expected
to emerge from the fractal geometry, in analogy with the
identification of the gravitational field as a manifestation
of the curved geometry in Einstein’s general relativity. This
result is supported by numerical simulations, in which the
probability density is obtained directly from the distribu-
tion of geodesics without writing the Schrödinger equa-
tion [39,63].

Nondifferentiable Wave Function

In more recent works, instead of taking only the differ-
entiable part of the velocity field into account, one con-
structs the covariant derivative and the wave function
in terms of the full velocity field, including its divergent
nondifferentiable part of zero mean [59,62]. As we shall
briefly see now, this still leads to the standard form of the
Schrödinger equation. This means that, in the scale rel-
ativity framework, one expects the Schrödinger equation
to have fractal and nondifferentiable solutions. This result
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agrees with a similar conclusion by Berry [8] andHall [38],
but it is considered here as a direct manifestation of the
nondifferentiability of space itself.

Consider the full complex velocity field, including its
differentiable and nondifferentiable parts,

Ṽ D V CW D
�
vC C v�

2
� i

vC � v�
2

�

C

�
wC C w�

2
� i

wC � w�
2

�
: (86)

It is related to a full complex action S̃ and a full wave func-
tion  ̃ as

Ṽ D V CW D rS̃/m D �2iDr ln  ̃ : (87)

Under the standard point of view, the complex fluctuation
W is infinite and therefore r ln  ̃ is undefined, so that
Eq. (87) would be meaningless. In the scale relativity ap-
proach, on the contrary, this equation keeps a mathemat-
ical and physical meaning, in terms of fractal functions,
which are explicitly dependent on the scale interval dt and
divergent when dt ! 0.

After some calculations [59,62], one finds that the co-
variant derivative built from the total process (including
the differentiable and nondifferentiable divergent terms)
is finally

bd
dt
D

@

@t
C Ṽ :r � iD
 : (88)

The subsequent steps of the derivation of the Schrödinger
equation are unchanged (now in terms of scale-dependent
fractal functions), so that one obtains

D2
 ̃ C iD @ ̃

@t
�
�

2m
 ̃ D 0 ; (89)

where  ̃ can now be a nondifferentiable and fractal func-
tion. The research of such a behavior in laboratory ex-
periments is an interesting new challenge for quantum
physics.

One may finally stress the fact that this result is ob-
tained by accounting for all the terms, differentiable (dx)
and nondifferentiable (d�), in the description of the ele-
mentary displacements in a nondifferentiable space, and
that it does not depend at all on the probability distri-
bution of the stochastic variables d� , about which no hy-
pothesis is needed. This means that the description is fully
general, and that the effect on motion of a nondifferen-
tiable space(-time) amounts to a fundamental indetermin-
ism, i. e., to a total loss of information about the past path
which will in all cases lead to the QM description.

From Fractal Space-Time to Relativistic
QuantumMechanics

All these results can be generalized to relativistic quan-
tum mechanics, which corresponds in the scale relativity
framework to a full fractal space-time. This yields, as a first
step, the Klein–Gordon equation [22,55,56].

Then an account of the new two-valuedness of the
velocity allows one to suggest a geometric origin for the
spin and to obtain the Dirac equation [22]. Indeed, the
total derivative of a physical quantity also involves par-
tial derivatives with respect to the space variables, @/@x�.
From the very definition of derivatives, the discrete sym-
metry under the reflection dx� $ �dx� is also broken.
Since, at this level of description, one should also account
for parity as in the standard quantum theory, this leads
to introduce a bi-quaternionic velocity field [22], in terms
of which the Dirac bispinor wave function can be con-
structed.

The successive steps that lead to the Dirac equation
naturally generalize the Schrödinger case. One introduces
a biquaternionic generalization of the covariant derivative
that keeps the same form as in the complex case, namely,

bd
ds
D V �@� C i



2
@�@� ; (90)

where  D 2D/c. The biquaternionic velocity field is re-
lated to the biquaternionic (i. e., bispinorial) wave func-
tion, by

V� D i
S0
m
 �1@� : (91)

This is the relativistic expression of the fundamental re-
lation between the scale relativity tools and the quantum
mechanical tools of description. It gives a geometric in-
terpretation to the wave function, which is, in this frame-
work, a manifestation of the geodesic fluid and of its as-
sociated fractal velocity field. The covariance principle al-
lows us to write the equation of motion under the form of
a geodesic differential equation,

bd V�
ds
D 0 : (92)

After some calculations, this equation can be integrated
and factorized, and one finally derives the Dirac equa-
tion [22],

1
c
@ 

@t
D �˛k @ 

@xk
� i

mc
„
ˇ : (93)

Finally it is easy to recover the Pauli equation and Pauli
spinors as nonrelativistic approximations of the Dirac
equation and Dirac bispinors [23].
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Gauge Fields as Manifestations of Fractal Geometry

General Scale Transformations and Gauge Fields

Finally, let us briefly recall the main steps of applying of
the scale relativity principles to the foundation of gauge
theories, in the Abelian [55,56] and non-Abelian [63,68]
cases.

This application is based on a general description of
the internal fractal structures of the “particle” (identified
with the geodesics of a nondifferentiable space-time) in
terms of scale variables �˛ˇ (x; y; z; t) D %˛ˇ "˛ "ˇ whose
true nature is tensorial, since it involves resolutions that
may be different for the four space-time coordinates and
may be correlated. This resolution tensor (similar to a co-
variance error matrix) generalizes the single resolution
variable ". Moreover, one considers a more profound level
of description in which the scale variables may now be
functions of the coordinates. Namely, the internal struc-
tures of the geodesics may vary from place to place and
during the time evolution, in agreement with the non-
absolute character of the scale space. This generalization
amounts to the construction of a ‘general scale relativity’
theory.

We assume, for simplicity of the writing, that the
two tensorial indices can be gathered under one common
index. We therefore write the scale variables under the
simplified form �˛1˛2 D �˛ , ˛ D 1 to N D n(nC 1)/2,
where n is the number of space-time dimensions (n D 3;
N D 6 for fractal space, n D 4; N D 10 for fractal space-
time and n D 5; N D 15 in the special scale relativity case
where one treats the djinn (scale-time �F) as a fifth dimen-
sion [53]).

Let us consider infinitesimal scale transformations.
The transformation law on the �˛ can be written in a linear
way as

�0˛ D �˛ C ı�˛ D (ı˛ˇ C ı�˛ˇ ) �ˇ ; (94)

where ı˛ˇ is the Kronecker symbol. Let us now assume
that the �˛ ’s are functions of the standard space-time co-
ordinates. This leads one to define a new scale-covariant
derivative by writing the total variation of the resolution
variables as the sum of the inertial variation, described by
the covariant derivative, and of the new geometric contri-
bution, namely,

d�˛ D D�˛ � �ˇ ı�˛ˇ D D�˛ � �ˇW
�

˛ˇ
dx� : (95)

This covariant derivative is similar to that of general rel-
ativity, i. e., it amounts to the subtraction of the new ge-
ometric part in order to only keep the inertial part (for
which themotion equation will therefore take a geodesical,

free-like form). This is different from the case of the previ-
ous quantum-covariant derivative, which includes the ef-
fects of nondifferentiability by adding new terms in the to-
tal derivative.

In this new situation we are led to introduce “gauge
field potentials”W�

˛ˇ
that enter naturally in the geometri-

cal framework of Eq. (95). These potentials are linked to
the scale transformations as follows:

ı�˛ˇ D W�

˛ˇ
dx� : (96)

But one should keep in mind, when using this expression,
that these potentials find their origin in a covariant deriva-
tive process and are therefore not gradients.

Generalized Charges

After having written the transformation law of the basic
variables (the �˛ ’s), one now needs to describe how vari-
ous physical quantities transform under these �˛ transfor-
mations. These new transformation laws are expected to
depend on the nature of the objects they transform (e. g.,
vectors, tensors, spinors, etc.), which implies a jump to
group representations.

We anticipate the existence of charges (which are fully
constructed herebelow) by generalizing the relation (91)
to multiplets between the velocity field and the wave func-
tion. In this case the multivalued velocity becomes a bi-
quaternionic matrix,

V�
jk D i  �1j @� k : (97)

The biquaternionic, and therefore non-commutative, na-
ture of the wave function [15], which is equivalent to Dirac
bispinors, plays an essential role here. Indeed, the general
structure of Yang–Mills theories and the correct construc-
tion of non-Abelian charges can be obtained thanks to this
result [68].

The action also becomes a tensorial biquaternionic
quantity,

dS jk D dS jk
�
x�;V�

jk ; �˛

; (98)

and, in the absence of a field (free particle) it is linked to the
generalized velocity (and therefore to the spinor multiplet)
by the relation

@�S jk D �mc V�
jk D �i„  

�1
j @� k : (99)

Now, in the presence of a field (i. e., when the second-
order effects of the fractal geometry appearing in the right
hand side of Eq. (95) are included), using the complete ex-
pression for @��˛ ,

@��˛ D D��˛ �W�

˛ˇ
�ˇ ; (100)
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one obtains a non-Abelian relation,

@�S jk D D�S jk � �ˇ
@S jk
@�˛

W�

˛ˇ
: (101)

This finally leads to the definition of a general group of
scale transformations whose generators are

T˛ˇ D �ˇ@˛ (102)

(where we use the compact notation @˛ D @/@�˛), yielding
the generalized charges,

g̃
c
t˛ˇjk D �

ˇ
@S jk
@�˛

: (103)

This unified group is submitted to a unitarity condition,
since, when it is applied to the wave functions,   � must
be conserved. Knowing that ˛; ˇ represent two indices
each, this is a large group – at least SO(10) – that contains
the electroweak theory [33,78,81] and the standard model
U(1) � SU(2) � SU(3) and its simplest grand unified ex-
tension SU(5) [31,32] as a subset (see [53,54] for solutions
in the special scale relativity framework to the problems
encountered by SU(5) GUTs).

As it is shown in more detail in Ref. [68], the var-
ious ingredients of Yang–Mills theories (gauge covari-
ant derivative, gauge invariance, charges, potentials, fields,
etc.) may subsequently be recovered in such a framework,
but they now have a first principle and geometric scale-
relativistic foundation.

Future Directions

In this contribution, we have recalled the main steps that
lead to a new foundation of quantum mechanics and of
gauge fields on the principle of relativity itself (once it in-
cludes scale transformations of the reference system), and
on the generalized geometry of space-time which is natu-
rally associated with such a principle, namely, nondiffer-
entiability and fractality.

For this purpose, two covariant derivatives have been
constructed, which account for the nondifferentiable and
fractal geometry of space-time, and which allow one to
write the equations of motion as geodesics equations. After
a change of variable, these equations finally take the form
of the quantum mechanical and quantum field equations.

Let us conclude by listing some original features of the
scale relativity approach which could lead to experimen-
tal tests of the theory and/or to new experiments in the
future [63,67]: (i) nondifferentiable and fractal solutions
of the Schrödinger equation; (ii) zero particle interference
in a Young slit experiment; (iii) possible breaking of the

Born postulate for a possible effective kinetic energy op-
eratorbT ¤ �(„2/2m)
 [67]; (iv) underlying quantum be-
havior in the classical domain, at scales far larger than the
de Broglie scale [67]; (v) macroscopic systems described
by a Schrödinger-type mechanics based on a generalized
macroscopic parameterD ¤ „/2m (see Chap. 7.2 in [54]
and [24,57]); (vi) applications to cosmology [60]; (vii) ap-
plications to life sciences and other sciences [4,64,65], etc.
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Glossary

Anomalous diffusion It is well known that the mean-
square displacement hr2(t)i of a diffusing particle on
a uniform system is proportional to the time t such
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as hr2(t)i � t. This is called normal diffusion. Parti-
cles on fractal networks diffuse more slowly compared
with the case of normal diffusion. This slow diffusion
called anomalous diffusion follows the relation given
by hr2(t)i � ta , where the condition 0 < a < 1 always
holds.

Brownian motion Einstein published the important pa-
per in 1905 opening the way to investigate the move-
ment of small particles suspended in a stationary liq-
uid, the so-called Brownian motion, which stimulated
J. Perrin in 1909 to pursue his experimental work con-
firming the atomic nature of matter. The trail of a ran-
dom walker provides an instructive example for un-
derstanding the meaning of random fractal structures.

Fractons Fractons, excitations on fractal elastic-net-
works, were named by S. Alexander and R. Orbach
in 1982. Fractons manifest not only static properties
of fractal structures but also their dynamic proper-
ties. These modes show unique characteristics such as
strongly localized nature with the localization length of
the order of wavelength.

Spectral density of states The spectral density of states of
ordinary elastic networks are expressed by the De-
bye spectral density of states given by D(!) � !d�1,
where d is the Euclidean dimensionality. The spec-
tral density of states of fractal networks is given by
D(!) � !ds�1, where ds is called the spectral or frac-
ton dimension of the system.

Spectral dimension This exponent characterizes the
spectral density of states for vibrational modes ex-
cited on fractal networks. The spectral dimension
constitutes the dynamic exponent of fractal networks
together with the conductivity exponent and the expo-
nent of anomalous diffusion.

Definition of the Subject

The idea of fractals is based on self-similarity, which is
a symmetry property of a system characterized by invari-
ance under an isotropic scale-transformation on certain
length scales. The term scale-invariance has the implica-
tion that objects look the same on different scales of obser-
vations. While the underlying concept of fractals is quite
simple, the concept is used for an extremely broad range
of topics, providing a simple description of highly com-
plex structures found in nature. The term fractal was first
introduced by Benoit B. Mandelbrot in 1975, who gave
a definition on fractals in a simple manner “A fractal is
a shape made of parts similar to the whole in some way”.
Thus far, the concept of fractals has been extensively used
to understand the behaviors of many complex systems or

has been applied from physics, chemistry, and biology for
applied sciences and technological purposes. Examples of
fractal structures in condensed matter physics are numer-
ous such as polymers, colloidal aggregations, porous me-
dia, rough surfaces, crystal growth, spin configurations of
diluted magnets, and others. The critical phenomena of
phase transitions are another example where self-similar-
ity plays a crucial role. Several books have been published
on fractals and reviews concerned with special topics on
fractals have appeared.

Length, area, and volume are special cases of ordi-
nary Euclidean measures. For example, length is the mea-
sure of a one-dimensional (1d) object, area the measure of
a two-dimensional (2d) object, and volume the measure of
a three-dimensional (3d) object. Let us employ a physical
quantity (observable) as the measure to define dimensions
for Euclidean systems, for example, a total mass M(r) of
a fractal object of the size r. For this, the following relation
should hold

r / M(r)1/d ; (1)

where d is the Euclidean dimensionality. Note that Eu-
clidean spaces are the simplest scale-invariant systems.
We extend this idea to introduce dimensions for self-
similar fractal structures. Consider a set of particles with
unit massm randomly distributed on a d-dimensional Eu-
clidean space called the embedding space of the system.
Draw a sphere of radius r and denote the total mass of par-
ticles included in the sphere byM(r). Provided that the fol-
lowing relation holds in the meaning of statistical average
such as

r / hM(r)i1/Df ; (2)

where h: : :i denotes the ensemble-average over different
spheres of radius r, we call Df the similarity dimension. It
is necessary, of course, that Df is smaller than the embed-
ding Euclidean dimension d. The definition of dimension
as a statistical quantity is quite useful to specify the charac-
teristic of a self-similar object if we could choose a suitable
measure.

There are many definitions to allocate dimensions.
Sometimes these take the same value as each other and
sometimes not. The capacity dimension is based on the
coverage procedure. As an example, the length of a curved
line L is given by the product of the number N of straight-
line segment of length r needed to step along the curve
from one end to the other such as L(r) D N(r)r. While,
the area S(r) or the volume V(r) of arbitrary objects can
be measured by covering it with squares or cubes of linear
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size r. The identical relation,

M(r) / N(r)rd (3)

should hold for the total massM(r) as measure, for exam-
ple. If this relation does not change as r! 0, we have the
relation N(r) / r�d . We can extend the idea to define the
dimensions of fractal structures such as

N(r) / r�Df ; (4)

from which the capacity dimension Df is given by

Df :D lim
r!0

lnN(r)
ln(1/r)

: (5)

The definition of Df can be rendered in the following im-
plicit form

lim
r!0

N(r)rDf D const : (6)

Equation (5) brings out a key property of the Hausdorff
dimension [10], where the product N(r)rDf remains finite
as r! 0. If Df is altered even by an infinitesimal amount,
this product will diverge either to zero or to infinity. The
Hausdorff dimension coincides with the capacity dimen-
sion for many fractal structures, although the Hausdorff
dimension is defined less than or equal to the capacity di-
mension. Hereafter, we refer to the capacity dimension or
the Hausdorff dimension mentioned above as the fractal
dimension.

Introduction

Fractal structures are classified into two categories; deter-
ministic fractals and random fractals. In condensed mat-
ter physics, we encounter many examples of random frac-
tals. The most important characteristic of random frac-
tals is the spatial and/or sample-to-sample fluctuations in

Fractal Structures in Condensed Matter Physics, Figure 1
Mandelbrot–Given fractal. a The initial structure with eight line segments, b the object obtained by replacing each line segment of
the initial structure by the initial structure itself (the second stage), and c the third stage of the Mandelbrot–Given fractal obtained
by replacing each line segment of the second-sage structure by the initial structure

their properties. We must discuss their characteristics by
averaging over a large ensemble. The nature of determin-
istic fractals can be easily understood from some exam-
ples. An instructive example is theMandelbrot–Given frac-
tal [12], which can be constructed by starting with a struc-
ture with eight line segments as shown in Fig. 1a (the
first stage of the Mandelbrot–Given fractal). In the sec-
ond stage, each line segment of the initial structure is re-
placed by the initial structure itself (Fig. 1b). This pro-
cess is repeated indefinitely. The Mandelbrot–Given frac-
tal possesses an obvious dilatational symmetry, as seen
from Fig. 1c, i. e., when we magnify a part of the structure,
the enlarged portion looks just like the original one. Let us
apply (5) to determine Df of the Mandelbrot–Given frac-
tal. The Mandelbrot–Given fractal is composed of 8 parts
of size 1/3, hence, N(1/3) D 8, N((1/3)2) D 82, and so on.
We thus have a relation of the form N(r) / r� ln3 8, which
gives the fractal dimension Df D ln3 8 D 1:89278 : : :. The
Mandelbrot–Given fractal has many analogous features
with percolation networks (see Sect. “Dynamical Proper-
ties of Fractal Structures”), a typical random fractal, such
that the fractal dimension of a 2d percolation network is
Df D 91/48 D 1:895833: : :, which is very close to that of
the Mandelbrot–Given fractal.

The geometric characteristics of random fractals can
be understood by considering two extreme cases of ran-
dom structures. Figure 2a represents the case in which
particles are randomly but homogeneously distributed in
a d-dimensional box of size L, where d represents ordinary
Euclidean dimensionality of the embedding space. If we
divide this box into smaller boxes of size l, the mass den-
sity of the ith box is

�i (l) D
Mi(l)
l d

; (7)
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Fractal Structures in Condensed Matter Physics, Figure 2
aHomogeneous random structure in which particles are randomly but homogeneously distributed, and b the distribution functions
of local densities �, where�(l) is the average mass density independent of l

where Mi(l) represents the total mass (measure) inside
box i. Since this quantity depends on the box i, we plot the
distribution function P(�), from which curves like those in
Fig. 2b may be obtained for two box sizes l1 and (l2 < l2).
We see that the central peak position of the distribution
function P(�) is the same for each case. This means that
the average mass density yields

�(l) D
hMi(l)ii

l d

becomes constant, indicating that hMi(l)ii / l d . The
above is equivalent to

� D
m
ad
; (8)

where a is the average distance (characteristic length-
scale) between particles and the mass of a single particle.
This indicates that there exists a single length scale a char-
acterizing the random system given in Fig. 2a.

Fractal Structures in Condensed Matter Physics, Figure 3
a Correlated random fractal structure inwhich particles are randomly distributed, but correlatedwith each other, and b the distribu-
tion functions of local densities�with finite values, where the averagemass densities depend on l

The other type of random structure is shown in Fig. 3a,
where particle positions are correlated with each other
and �i (l) greatly fluctuates from box to box, as shown in
Fig. 3b. The relation hMi(l)ii / l d may not hold at all for
this type of structure. Assuming the fractality for this sys-
tem, namely, if the power law hMi(l)ii / l Df holds, the av-
erage mass density becomes

�̄(l) D
hMi(l)ii

l d
/ l Df�d ; (9)

where �i(l) D 0 is excluded. In the case Df < d, �̄(l) de-
pends on l and decreases with increasing l. Thus, there is
no characteristic length scale for the type of random struc-
ture shown in Fig. 3a. If (9) holds with Df < d, so that
hMi(l)ii is proportional to l Df , the structure is said to be
fractal. It is important to note that there is no characteristic
length scale for the type of random fractal structure shown
in Fig. 3b. Thus, we can extend the idea of self-similarity
not only for deterministic self-similar structures, but also
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Fractal Structures in Condensed Matter Physics, Figure 4
a 2d site-percolation network and circles with different radii. b The power law relation holds between r and the number of particles
in the sphere of radius r, indicating the fractal dimension of the 2d network is Df D 1:89 : : : D 91/48

for random and disordered structures, the so-called ran-
dom fractals, in the meaning of statistical average.

The percolation network made by putting particles or
bonds on a lattice with the probability p is a typical exam-
ple of random fractals. The theory of percolation was ini-
tiated in 1957 by S.R. Broadbent and J.M. Hammersley [5]
in connection with the diffusion of gases through porous
media. Since their work, it has been widely accepted that
the percolation theory describes a large number of phys-
ical and chemical phenomena such as gelation processes,
transport in amorphous materials, hopping conduction in
doped semiconductors, the quantumHall effect, andmany
other applications. In addition, it forms the basis for stud-
ies of the flow of liquids or gases through porous media.
Percolating networks thus serve as a model which helps
us to understand physical properties of complex fractal
structures.

For both deterministic and random fractals, it is re-
markable that no characteristic length scale exists, and
this is a key feature of fractal structures. In other words,
fractals are defined to be objects invariant under isotropic
scale transformations, i. e., uniform dilatation of the sys-
tem in every spatial direction. In contrast, there exist sys-
tems which are invariant under anisotropic transforma-
tions. These are called self-affine fractals.

Determining Fractal Dimensions

There are severalmethods to determine fractal dimensions
Df of complex structures encountered in condensed mat-

ter physics. The following methods for obtaining the frac-
tal dimension Df are known to be quite efficient.

Coverage Method

The idea of coverage in the definition of the capacity di-
mension (see (5)) can be applied to obtain the fractal di-
mension Df of material surfaces. An example is the frac-
tality of rough surfaces or inner surfaces of porous media.
The fractal nature is probed by changing the sizes of ad-
sorbedmolecules on solid surfaces. Power laws are verified
by plotting the total number of adsorbed molecules versus
their size r. The area of a surface can be estimated with the
aid of molecules weakly adsorbed by van derWaals forces.
Gas molecules are adsorbed on empty sites until the sur-
face is uniformly covered with a layer one molecule thick.
Provided that the radius r of one adsorbed molecule and
the number of adsorbed molecules N(r) are known, the
surface area S obtained by molecules is given by

S(r) / N(r)r2 : (10)

If the surface of the adsorbate is perfectly smooth, we ex-
pect the measured area to be independent of the radius r
of the probe molecules, which indicates the power law

N(r) / r�2 : (11)

However, if the surface of the adsorbate is rough or con-
tains pores that are small compared with r, less of the sur-
face area S is accessible with increasing size r. For a fractal
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surface with fractal dimension Df, (11) gives the relation

N(r) / r�Df : (12)

Box-Counting Method

Consider as an example a set of particles distributed in
a space. First, we divide the space into small boxes of size r
and count the number of boxes containing more than one
particle, which we denote by N(r). From the definition of
the capacity dimension (4), the number of particle

N(r) / r�Df : (13)

For homogeneous objects distributed in a d-dimensional
space, the number of boxes of size r becomes, of course

N(r) / r�d :

Correlation Function

The fractal dimension Df can be obtained via the correla-
tion function, which is the fundamental statistical quantity
observed by means of X-ray, light, and neutron scattering
experiments. These techniques are available to bulk mate-
rials (not surface), and is widely used in condensed matter
physics. Let �(r) be the number density of atoms at posi-
tion r. The density-density correlation function G(r; r0) is
defined by

G(r; r0) D h�(r)�(r0)i ; (14)

where h: : :i denotes an ensemble average. This gives the
correlation of the number-density fluctuation. Provided
that the distribution is isotropic, the correlation function
becomes a function of only one variable, the radial dis-
tance r D jr � r0j, which is defined in spherical coordi-
nates. Because of the translational invariance of the system
on average, r0 can be fixed at the coordinate origin r0 D 0.
We can write the correlation function as

G(r) D h�(r)�(0)i : (15)

The quantity h�(r)�(0)i is proportional to the probability
that a particle exists at a distance r from another particle.
This probability is proportional to the particle density �(r)
within a sphere of radius r. Since �(r) / rDf�d for a fractal
distribution, the correlation function becomes

G(r) / rDf�d ; (16)

whereDf and d are the fractal and the embeddedEuclidean
dimensions, respectively. This relation is often used di-
rectly to determine Df for random fractal structures.

The scattering intensity in an actual experiment is pro-
portional to the structure factor S(q), which is the Fourier
transform of the correlation function G(r). The structure
factor is calculated from (16) as

S(q) D
1
V

Z

V
G(r)ei q�rdr / q�Df (17)

where V is the volume of the system. Here dr is the d-di-
mensional volume element. Using this relation, we can de-
termine the fractal dimension Df from the data obtained
by scattering experiments.

When applying these methods to obtain the fractal di-
mension Df, we need to take care over the following point.
Any fractal structures found in nature must have upper
and lower length-limits for their fractality. There usually
exists a crossover from homogeneous to fractal. Fractal
properties should be observed only between these limits.

We describe in the succeeding Sections several exam-
ples of fractal structures encountered in condensed matter
physics.

Polymer Chains in Solvents

Since the concept of fractal was coined by B.B. Mandelbrot
in 1975, scientists reinterpreted random complex struc-
tures found in condensed matter physics in terms of frac-
tals. They found that a lot of objects are classified as fractal
structures. We show at first from polymer physics an in-
structive example exhibiting the fractal structure. That is
an early work by P.J. Flory in 1949 on the relationship be-
tween the mean-square end-to-end distance of a polymer
chain hr2i and the degree of polymerization N. Consider
a dilute solution of separate coils in a solvent, where the
total length of a flexible polymer chain with a monomer
length a is Na. The simplest idealization views the poly-
mer chain in analogy with a Brownianmotion of a random
walker. The walk is made by a succession of N steps from
the origin r D 0 to the end point r. According to the cen-
tral limit theorem of the probability theory, the probability
to find a walker at r after N steps (N 	 1) follows the dif-
fusion equation and we have the expression for the proba-
bility to find a particle after N steps at r

PN (r) D (2�Na2/3)�3/2 exp(�3r2/2Na2) ; (18)

where the prefactor arises from the normalization of
PN (r). The mean squared distance calculated from PN (r)
becomes

hr2i D
Z

r2PN (r)d3r D Na2 : (19)

Then, the mean-average end-to-end distance of a poly-
mer chain yields R D hr2i1/2 D N1/2a. Since the number
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of polymerization N corresponds to the total mass M of
a polymer chain, the use of (19) leads to the relation
such as M(R) � R2. The massM(R) can be considered as
a measure of a polymer chain, the fractal dimension of this
ideal chain as well as the trace of Brown motion becomes
Df D 2 for any d-dimensional embedding space.

The entropy of the idealized chain of the length
L D Na is obtained from (18) as

S(r) D S(0) �
3r2

2R2 ; (20)

from which the free energy Fel D U � TS is obtained as

Fel(r) D Fel(0)C
3kBTr2

2R2 : (21)

Here U is assumed to be independent of distinct con-
figurations of polymer chains. This is an elastic energy
of an ideal chain due to entropy where Fel decreases as
N ! large. P.J. Flory added the repulsive energy term
due to monomer-monomer interactions, the so-called ex-
cluded volume effect. This has an analogy with self-avoiding
random walk. The contribution to the free energy is ob-
tained by the virial expansion into the power series on the
concentration cint D N/rd . According to the mean field
theory on the repulsive term Fint / c2int, we have the total
free-energy F such as

F
kBT

D
3r2

2Na2
C

v(T)N2

rd
; (22)

where v(T) is the excluded volume parameter. We can ob-
tain a minimum of F(r) at r D R by differentiating F(r)
with respect to r such that

M(R) / R
dC2
3 : (23)

Here the number of polymerization N corresponds to the
total mass M(R) of a polymer chain. Thus, we have the
fractal dimension Df D (d C 2)/3, in particular, Df D

5/3 D 1:666 : : : for a polymer chain in a solvent.

Aggregates and Flocs

The structures of a wide variety of flocculated colloids in
suspension (called aggregates or flocs) can be described in
terms of fractals. A colloidal suspension is a fluid contain-
ing small charged particles that are kept apart by Coulomb
repulsion and kept afloat by Brownian motion. A change
in the particle-particle interaction can be induced by vary-
ing the chemical composition of the solution and in this
manner an aggregation process can be initiated. Aggre-
gation processes are classified into two simple types: dif-
fusion-limited aggregation (DLA) and diffusion-limited

cluster-cluster aggregation (DLCA), where a DLA is due
to the cluster-particle coalescence and a DLCA to the clus-
ter-cluster flocculation. Inmost cases, actual aggregates in-
volve a complex interplay between a variety of flocculation
processes. The pioneering work was done by M.V. Smolu-
chowski in 1906, who formulated a kinetic theory for
the irreversible aggregation of particles into clusters and
further clusters combining with clusters. The inclusion
of cluster-cluster aggregation makes this process distinct
from the DLA process due to particle-cluster interaction.
There are two distinct limiting regimes of the irreversible
colloidal aggregation process: the diffusion-limited CCA
(DLCA) in dilute solutions and the reaction-limited CCA
(RLCA) in dense solutions. The DLCA is due to the fast
process determined by the time for the clusters to en-
counter each other by diffusion, and the RLCA is due to
the slow process since the cluster-cluster repulsion has to
dominate thermal activation.

Much of our understanding on the mechanism form-
ing aggregates or flocs has been mainly due to computer
simulations. The first simulation was carried out by Vold
in 1963 [23], who used the ballistic aggregation model
and found that the number of particles N(r) within a dis-
tance r measured from the first seed particle is given by
N(r) � r2:3. Though this relation surely exhibits the scal-
ing form of (2), the applicability of this model for real sys-
tems was doubted in later years. The researches on fractal
aggregates has been developed from a simulation model
on DLA introduced by T.A. Witten and L.M. Sander in
1981 [26] and on the DLCAmodel proposed by P. Meakin
in 1983 [14] andM. Kolb et al. in 1983 [11], independently.
The DLA has been used to describe diverse phenomena
forming fractal patterns such as electro-depositions, sur-
face corrosions and dielectric breakdowns. In the simplest
version of the DLA model for irreversible colloidal ag-
gregation, a particle is located at an initial site r D 0 as
a seed for cluster formation. Another particle starts a ran-
dom walk from a randomly chosen site in the spherical
shell of radius r with width dr(
 r) and center r D 0. As
a first step, a random walk is continued until the particle
contacts the seed. The cluster composed of two particles
is then formed. Note that the finite-size of particles is the
very reason of dendrite structures of DLA. This procedure
is repeatedmany times, in each of which the radius r of the
starting spherical shell should be much larger than the gy-
ration radius of the cluster. If the number of particles con-
tained in the DLA cluster is huge (typically 104 � 108), the
cluster generated by this process is highly branched, and
forms fractal structures in the meaning of statistical aver-
age. The fractality arises from the fact that the faster grow-
ing parts of the cluster shield the other parts, which there-
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Fractal Structures in Condensed Matter Physics, Figure 5
Simulated results of a 2d diffusion-limited aggregation (DLA).
The number of particles contained in this DLA cluster is 104

fore become less accessible to incoming particles. An arriv-
ing randomwalker is far more likely to attach to one of the
tips of the cluster. Thus, the essence of the fractal-pattern
formation arises surely from nonlinear process. Figure 5

Fractal Structures in Condensed Matter Physics, Figure 6
The fractal structures of zinc metal leaves grown by electrodeposition. Photographs a–dwere taken 3,5,9, and 15min after initiating
the electrolysis, respectively. After [13]

illustrates a simulated result for a 2d DLA cluster obtained
by the procedure mentioned above. The number of parti-
cles N inside a sphere of radius L (
 the gyration radius
of the cluster) follows the scaling law given by

N / LDf ; (24)

where the fractal dimension takes a value of Df � 1:71 for
the 2d DLA cluster and Df � 2:5 for the 3d DLA clus-
ter without an underlying lattice. Note that these fractal
dimensions are sensitive to the embedding lattice struc-
ture. The reason for this open structure is that a wander-
ingmolecule will settle preferentially near one of the tips of
the fractal, rather than inside a cluster. Thus, different sites
have different growth probabilities, which are high near
the tips and decreasewith increasing depth inside a cluster.

One of the most extensively studied DLA processes
is the growth of metallic forms by electrochemical depo-
sition. The scaling properties of electrodeposited metals
were pointed out by R.M. Brady and R.C. Ball in 1984 for
copper electrodepositions. The confirmation of the frac-
tality for zinc metal leaves was made by M. Matsushita et
al. in 1984. In their experiments [13], zinc metal leaves are
grown two-dimensionally by electrodeposition. The struc-
tures clearly recover the pattern obtained by computer
simulations for the DLA model proposed by T.A. Witten
and L.M. Sander in 1981. Figure 6 shows a typical zinc
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dendrite that was deposited on the cathode in one of these
experiments. The fractal dimensionality Df D 1:66˙ 0:33
was obtained by computing the density-density correla-
tion function G(r) for patterns grown at applied voltages
of less than 8V.

The fractality of uniformly sized gold-colloid aggre-
gates according to the DLCA was experimentally demon-
strated by D.A. Weitz in 1984 [25]. They used trans-
mission-electron micrographs to determine the fractal di-
mension of this systems to be Df D 1:75. They also per-
formed quasi-elastic light-scattering experiments to inves-
tigate the dynamic characteristics of DLCA of aqueous
gold colloids. They confirmed the scaling behaviors for the
dependence of the mean cluster size on both time and ini-
tial concentration.

These works were performed consciously to examine
the fractality of aggregates. There had been earlier works
exhibiting the mass-size scaling relationship for actual
aggregates. J.M. Beeckmans [2] pointed out in 1963 the
power law behaviors by analyzing the data for aerosol and
precipitated smokes in the literature (1922–1961). He used
in his paper the term “aggregates-within-aggregates”, im-
plying the fractality of aggregates. However, the data avail-
able at that stage were not adequate and scattered. There-
fore, this work did not provide decisive results on the frac-
tal dimensions of aggregates. There were smarter experi-
ments by N. Tambo and Y. Watanabe in 1967 [20], which
precisely determined fractal dimensions of flocs formed
in an aqueous solution. These were performed without
being aware of the concept of fractals. Original works
were published in Japanese. The English versions of these
works were published in 1979 [21].We discuss these works
below.

Flocs generated in aqueous solutions have been the
subject of numerous studies ranging from basic to applied
sciences. In particular, the settling process of flocs formed
in water incorporating kaolin colloids is relevant to wa-
ter and wastewater treatment. The papers by N. Tambo
and Y. Watanabe pioneered the discussion on the so-
called fractal approach to floc structures; they performed
their own settling experiments to clarifying the size depen-
dences of mass densities for clay-aluminum flocs by us-
ing Stokes’ law ur / 
�(r)r2 where 
� is the difference
between the densities of water and flocs taking so-small
values 
� � 0:01–0:001 g/cm3. Thus, the settling veloci-
ties ur are very slow of the order of 0:001m/sec for flocs of
sizes r � 0:1mm, which enabled them to perform precise
measurements. Since flocs are very fragile aggregates, they
made the settling experiments with special cautions on
convection and turbulence, and by careful and intensive
experiments of flocculation conditions. They confirmed

from thousands of pieces of data the scaling relationship
between settling velocities ur and sizes of aggregates such
as ur / rb . From the analysis of these data, they found
the scaling relation between effective mass densities and
sizes of flocs such as 
�(r) / r�c , where the exponents c
were found to take values from 1.25 to 1.00 depending on
the aluminum-ion concentration, showing that the frac-
tal dimensions become Df D 1:75 to 2.00 with increas-
ing aluminum-ion concentration. This is because the re-
pulsive force between charged clay-particles is screened,
and van der Waals attractive force dominates between the
pair of particles. It is remarkable that these fractal dimen-
sions Df show excellent agreement with those determined
for actual DLCA and RLCA clusters in the 1980s by us-
ing various experimental and computer simulation meth-
ods. Thus, they had found that the size dependences of
mass densities of flocs are controlled by the aluminum-
ion concentration dosed/suspended particle concentra-
tion, which they named the ALT ratio. These correspond

Fractal Structures in CondensedMatter Physics, Figure 7
Observed scaling relations between floc densities and their di-
ameters where aluminum chloride is used as coagulants. Af-
ter [21]



Fractal Structures in Condensed Matter Physics F 3887

to the transition from DLCA (established now taking the
value of Df � 1:78 from computer simulations) process to
the RLCA one (established at present from computer sim-
ulations as Df � 2:11). The ALT ratio has since the publi-
cation of the paper been used in practice as a criterion for
the coagulation to produce flocs with better settling prop-
erties and less sludge volume.We show their experimental
data in Fig. 7, which demonstrate clearly that flocs (aggre-
gates) are fractal.

Aerogels

Silica aerogels are extremely light materials with porosi-
ties as high as 98% and take fractal structures. The initial
step in the preparation is the hydrolysis of an alkoxysi-
lane Si(OR)4, where R is CH3 or C2H5. The hydrolysis
produces silicon hydroxide Si(OH)4 groups which poly-
condense into siloxane bonds –Si–O–Si–, and small par-
ticles start to grow in the solution. These particles bind
to each other by diffusion-limited cluster-cluster aggrega-
tion (DLCA) (see Sect. “Aggregates and Flocs”) until even-
tually they produce a disordered network filling the re-
action volume. After suitable aging, if the solvent is ex-
tracted above the critical point, the open porous structure
of the network is preserved and decimeter-size monolithic
blocks with a range of densities from 50 to 500 kg/m3 can
be obtained. As a consequence, aerogels exhibit unusual
physical properties, making them suitable for a number of
practical applications, such as Cerenkov radiation detec-
tors, supports for catalysis, or thermal insulators.

Silica aerogels possess two different length scales. One
is the radius r of primary particles. The other length is the
correlation length of the gel. At intermediate length scales,
lying between these two length scales, the clusters possess
a fractal structure and at larger length scales the gel is a ho-
mogeneous porous glass. Aerogels have a very low thermal
conductivity, solid-like elasticity, and very large internal
surfaces.

In elastic neutron scattering experiments, the scatter-
ing differential cross-section measures the Fourier compo-
nents of spatial fluctuations in the mass density. For aero-
gels, the differential cross-section is the product of three
factors, and is expressed by

d�
d˝
D Af 2(q)S(q)C(q) C B : (25)

Here A is a coefficient proportional to the particle con-
centration and f (q) is the primary-particle form factor.
The structure factor S(q) describes the correlation between
particles in a cluster and C(q) accounts for cluster-clus-
ter correlations. The incoherent background is expressed

by B. The structure factor S(q) is proportional to the spatial
Fourier transform of the density-density correlation func-
tion defined by (16), and is given by (17). Since the struc-
ture of the aerogel is fractal up to the correlation length
� of the system and homogeneous for larger scales, the
correlation function G(r) is expressed by (25) for r
 �

and G(r) D Const. for r 	 � . Corresponding to this, the
structure factor S(q) is given by (17) for q� 	 1, while
S(q) is independent of q for q� 
 1. The wavenumber
regime for which S(q) becomes a constant is called the
Guinier regime. The value of Df can be deduced from the
slope of the observed intensity versus momentum trans-
fer (q� 	 1) in a double logarithmic plot. For very large q,
there exists a regime called the Porod regime in which the
scattering intensity is proportional to q�4.

Fractal Structures in Condensed Matter Physics, Figure 8
Scattered intensities for eight neutrally reacted samples. Curves
are labeled with� in kg/m3. After [22]
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The results in Fig. 8 by R. Vacher et al. [22] are
from small-angle neutron scattering experiments on sil-
ica aerogels. The various curves are labeled by the macro-
scopic density � of the corresponding sample in Fig. 8.
For example, 95 refers to a neutrally reacted sample with
� D 95 kg/m3. Solid lines represent best fits. They are pre-
sented even in the particle regime q > 0:15Å-1 to em-
phasize that the fits do not apply in the region, particu-
larly for the denser samples. Remarkably, Df is indepen-
dent of sample density to within experimental accuracy:
Df D 2:40˙ 0:03 for samples 95 to 360. The departure
of S(q) from the q�Df dependence at large q indicates the
presence of particles with gyration radii of a few Å.

Dynamical Properties of Fractal Structures

The dynamics of fractal objects is deeply related to the
time-scale problems such as diffusion, vibration and trans-
port on fractal support. For the diffusion of a particle
on any d-dimensional ordinary Euclidean space, it is well
known that the mean-square displacement hr2(t)i is pro-
portional to the time such as hr2(t)i / t for any Euclidean
dimension d (see also (19)). This is called normal diffusion.
While, on fractal supports, a particle more slowly diffuses,
and the mean-square displacement follows the power law

hr2(t)i / t2/dw ; (26)

where dw is termed the exponent of anomalous diffusion.
The exponents is expressed as dw D 2C � with a pos-
itive � > 0 (see (31)), implying that the diffusion be-
comes slower compared with the case of normal diffusion.
This is because the inequality 2/dw < 1 always holds. This
slow diffusions on fractal supports are called anomalous
diffusion.

The scaling relation between the length-scale and
the time-scale can be easily extended to the problem of
atomic vibrations of elastic fractal-networks. This is be-
cause various types of equations governing dynamics can
be mapped onto the diffusion equation. This implies that
both equations are governed by the same eigenvalue prob-
lem, namely, the replacement of eigenvalues ! ! !2 be-
tween the diffusion equation and the equation of atomic
vibrations is justified. Thus, the basic properties of vibra-
tions of fractal networks, such as the density of states,
the dispersion relation and the localization/delocalization
property, can be derived from the same arguments for
diffusion on fractal networks. The dispersion relation be-
tween the frequency ! and the wavelength �(!) is ob-
tained from (26) by using the reciprocal relation t ! !�2

(here the diffusion problem is mapped onto the vibrational

one) and hr2(t)i ! �(!)�2. Thus we obtain the disper-
sion relation for vibrational excitations on fractal networks
such as

! / �(!)dw/2 : (27)

If dw D 2, we have the ordinary dispersion relation
! / �(!) for elastic waves excited on homogeneous
systems.

Consider the diffusion of a random walker on a perco-
lating fractal network. How does hr2(t)i behave in the case
of fractal percolating networks? For this, P.G. deGennes in
1976 [7] posed the problem called an ant in the labyrinth.
Y. Gefen et al. in 1983 [9] gave a fundamental description
of this problem in terms of a scaling argument. D. Ben-
Avraham and S. Havlin in 1982 [3] investigated this prob-
lem in terms of Monte Carlo simulations. The work by
Y. Gefen [9] triggered further developments in the dynam-
ics of fractal systems, where the spectral (or fracton) di-
mension ds is a key dimension for describing the dynamics
of fractal networks, in addition to the fractal dimensionDf.
The fractal dimension Df characterizes how the geometri-
cal distribution of a static structure depends on its length
scale, whereas the spectral dimension ds plays a central
role in characterizing dynamic quantities on fractal net-
works. These dynamical properties are described in a uni-
fied way by introducing a new dynamic exponent called
the spectral or fracton dimension defined by

ds D
2Df

dw
: (28)

The term fracton, coined by S. Alexander and R. Orbach
in 1982 [1], denotes vibrational modes peculiar to frac-
tal structures. The characteristics of fracton modes cover
a rich variety of physical implications. These modes are
strongly localized in space and their localization length is
of the order of their wavelengths.

We give below the explicit form of the exponent of
anomalous diffusion dw by illustrating percolation frac-
tal networks. The mean-square displacement hr2(t)i after
a sufficiently long time t should follow the anomalous dif-
fusion described by (26). For a finite network with a size
� , the mean-square distance at sufficiently large time be-
comes hr2(t)i � �2, so we have the diffusion coefficient for
anomalous diffusion from (26) such as

D / �2�dw : (29)

For percolating networks, the diffusion constant D in the
vicinity of the critical percolation density pc behaves

D / (p � pc)t�ˇ / ��(t�ˇ )/� ; (30)
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where t is called the conductivity exponent defined by
�dc � (p � pc)t , ˇ the exponent for the percolation order
parameter defined by S(p) / (p � pc)ˇ , and � the expo-
nent for the correlation length defined by � / jp � pcj�� ,
respectively. Comparing (29) and (30), we have the rela-
tion between exponents such as

dw D 2C
t � ˇ
�
D 2C � : (31)

Due to the condition t > ˇ, and hence � > 0, implying
that the diffusion becomes slow compared with the case of
normal diffusion. This slow diffusion is called anomalous
diffusion.

Spectral Density of States and Spectral Dimensions

The spectral density of states of atomic vibrations is the
most fundamental quantity describing the dynamic prop-
erties of homogeneous or fractal systems such as specific
heats, heat transport, scattering of waves and others. The
simplest derivation of the spectral density of states (abbre-
viated, SDOS) of a homogeneous elastic system is given
below. The density of states at ! is defined as the number
of modes per particle, which is expressed by

D(
!) D
1


!Ld
; (32)

where 
! is the frequency interval between adjacent
eigenfrequencies close to ! and L is the linear size of the
system. In the lowest frequency region, 
! is the low-
est eigenfrequency which depends on the size L. The re-
lation between the frequency 
! and L is obtained from
the well-known linear dispersion relationship ! D (k,
where ( is the velocity of phonons (quantized elastic
waves) such that


! D
2�(

/

1
L
: (33)

The substitution of (33) into (32) yields

D(
!) / 
!d�1 : (34)

Since this relation holds for any length scale L due to
the scale-invariance property of homogeneous systems, we
can replace the frequency 
! by an arbitrary !. There-
fore, we obtain the conventional Debye density of states as

D(!) / !d�1 : (35)

It should be noted that this derivation is based on the scale
invariance of the system, suggesting that we can derive the

SDOS for fractal networks in the same line with this treat-
ment. Consider the SDOS of a fractal structure of size L
with fractal dimension Df. The density of states per parti-
cle at the lowest frequency
! for this system is, as in the
case of (32), written as

D(
!) /
1

LDf 
!
: (36)

Assuming that the dispersion relation for
! correspond-
ing to (33) is


! / L�z ; (37)

we can eliminate L from (36) and obtain

D(
!) / 
!Df/z�1 : (38)

The exponent z of the dispersion relation (37) is evaluated
from the exponent of anomalous diffusion dw. Consider-
ing the mapping correspondence between diffusion and
atomic vibrations, we can replace hr2(t)i and t by L2 and
1/
!2, respectively. Equation (26) can then be read as

L / 
!�2/dw : (39)

The comparison of (28),(37) and (39) leads to

z D
dw
2
D

Df

ds
: (40)

Since the system has a scale-invariant fractal (self-similar)
structure
!, can be replaced by an arbitrary frequency !.
Hence, from (38) and (40) the SDOS for fractal networks
is found to be

D(!) / !ds�1 ; (41)

and the dispersion relation (39) becomes

! / L(!)�Df/ds : (42)

For percolating networks, the spectral dimension is ob-
tained from (40)

ds D
2Df

2C �
D

2(Df

2( C � � ˇ
: (43)

This exponent ds is called the fracton dimension after
S. Alexander and R. Orbach [1] or the spectral dimen-
sion after R. Rammal and G. Toulouse [17], hereafter we
use the term spectral dimension for ds. S. Alexander and
R. Orbach [1] estimated the values of ds for percolat-
ing networks on d-dimensional Euclidean lattices from
the known values of the exponents Df; (; � and ˇ. They
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pointed out that, while these exponents depend largely
on d, the spectral dimension (fracton) dimension ds does
not.

The spectral dimension ds can be obtained from the
value of the conductivity exponent t or vice versa. In the
case of percolating networks, the conductivity exponent t
is related to ds through (43), which means that the con-
ductivity �dc � (p � pc)t is also characterized by the spec-
tral dimension ds. In this sense, the spectral dimension ds
is an intrinsic exponent related to the dynamics of fractal
systems. We can determine the precise values of ds from
the numerical calculations of the spectral density of states
of percolation fractal networks.

The fracton SDOS for 2d, 3d, and 4d bond perco-
lation networks at the percolation threshold p D pc are
given in Fig. 9a and b, which were calculated by K. Yakubo
and T. Nakayama in 1989. These were obtained by large-
scale computer simulations [27]. At p D pc, the correla-
tion length diverges as � / jp � pcj�� and the network
has a fractal structure at any length scale. Therefore, frac-
ton SDOS should be recovered in the wide frequency range
!L 
 ! 
 !D, where !D is the Debye cutoff frequency
and !L is the lower cutoff determined by the system size.
The SDOSs and the integrated SDOSs per atom are shown
by the filled squares for a 2d bond percolation (abbrevi-
ated, BP) network at pc D 0:5. The lowest frequency !L
is quite small (! � 10�5 for the 2d systems) as seen from
the results in Fig. 9 because of the large sizes of the systems.

Fractal Structures in Condensed Matter Physics, Figure 9
a Spectral densities of states (SDOS) per atom for 2d, 3d, and4d BP networks at p D pc. The angular frequency! is definedwithmass
unitsmD 1 and force constant Kij D 1. The networks are formed on 1100� 1100 (2d), 100� 100� 100 (3d), and 30� 30� 30� 30
(4d) lattices with periodic boundary conditions, respectively. b Integrated densities of states for the same

The spectral dimension ds is obtained as ds D 1:33˙ 0:11
from Fig. 9a, whereas data in Fig. 9b give the more pre-
cise value ds D 1:325˙ 0:002. The SDOS and the inte-
grated SDOS for 3d BP networks at pc D 0:249 are given
in Fig. 9a and b by the filled triangles (middle). The spec-
tral dimension ds is obtained as ds D 1:31˙ 0:02 from
Fig. 9a and ds D 1:317˙ 0:003 from Fig. 9b. The SDOS
and the integrated SDOS of 4d BP networks at pc D 0:160.

A typical mode pattern of a fracton on a 2d percola-
tion network is shown in Fig. 10a, where the eigenmode
belongs to the angular frequency ! D 0:04997. To bring
out the details more clearly, Fig. 10b by K. Yakubo and
T. Nakayama [28] shows cross-sections of this fracton
mode along the line drawn in Fig. 10a. Filled and open
circles represent occupied and vacant sites in the perco-
lation network, respectively. We see that the fracton core
(the largest amplitude) possesses very clear boundaries for
the edges of the excitation, with an almost step-like char-
acter and a long tail in the direction of the weak segments.
It should be noted that displacements of atoms in dead
ends (weakly connected portions in the percolation net-
work) move in phase, and fall off sharply at their edges.

The spectral dimension can be obtained exactly for de-
terministic fractals. In the case of the d-dimensional Sier-
pinski gasket, the spectral dimension is given by [17]

ds D
2 log(d C 1)
log(d C 3)

:



Fractal Structures in Condensed Matter Physics F 3891

Fractal Structures in Condensed Matter Physics, Figure 10
a Typical fracton mode (! D 0:04997) on a 2d network. Bright region represents the large amplitude portion of the mode. b Cross-
section of the fracton mode shown in a along thewhite line. The four figures are snapshots at different times. After [28]

We see from this that the upper bound for a Sierpinski gas-
ket is ds D 2 as d !1. The spectral dimension for the
Mandelbrot–Given fractal depicted is also calculated ana-
lytically as

ds D
2 log 8
log 22

D 1:345 : : : :

This value is close to those for percolating networks men-
tioned above, in addition to the fact that the fractal dimen-
sion ds D log 8/ log 3 of the Mandelbrot–Given fractal is
close to Df D 91/48 for 2d percolating networks and that
the Mandelbrot–Given fractal has a structure with nodes,
links, and blobs as in the case of percolating networks.

For real systems, E. Courtens et al. in 1988 [6] observed
fracton excitations in aerogels by means of inelastic light
scattering.

Future Directions

The significance of fractal researches in sciences is that the
very idea of fractals opposes reductionism.Modern physics
has developed by making efforts to elucidate the physi-
cal mechanisms of smaller and smaller structures such as
molecules, atoms, and elementary particles. An example in

condensed matter physics is the band theory of electrons
in solids. Energy spectra of electrons can be obtained by
incorporating group theory based on the translational and
rotational symmetry of the systems. The use of this math-
ematical tool greatly simplifies the treatment of systems
composed of 1022 atoms. If the energy spectrum of a unit
cell molecule is solved, the whole energy spectrum of the
solid can be computed by applying the group theory. In
this context, the problem of an ordered solid is reduced
to that of a unit cell. Weakly disordered systems can be
handled by regarding impurities as a small perturbation to
the corresponding ordered systems. However, a different
approach is required for elucidating the physical proper-
ties of strongly disordered/complex systems with correla-
tions, or of medium-scale objects, for which it is difficult
to find an easily identifiable small parameter that would al-
low a perturbative analysis. For such systems, the concept
of fractals plays an important role in building pictures of
the realm of nature.

Our established knowledge on fractals is mainly due to
experimental observations or computer simulations. The
researches are at the phenomenological level stage, not at
the intrinsic level, except for a few examples. Concerning
future directions of the researches on fractals in condensed
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matter physics apart from such a question as “What kinds
of fractal structures are involved in condensed matter?”,
we should consider two directions: one is the very ba-
sic aspect such as the problem “Why are there numerous
examples showing fractal structures in nature/condensed
matter?” However, this type of question is hard. The ki-
netic growth-mechanisms of fractal systems have a rich
variety of applications from the basic to applied sciences
and attract much attention as one of the important sub-
jects in non-equilibrium statistical physics and nonlin-
ear physics. Network formation in society is one example
where the kinetic growth is relevant. However, many as-
pects related to the mechanisms of network formations re-
main puzzling because arguments are at the phenomeno-
logical stage. If we compare with researches on Brown-
ian motion as an example, the DLA researches need to
advance to the stage of Einstein’s intrinsic theory [8], or
that of Smoluchowski [18] and H. Nyquist [15]. It is no-
table that the DLA is a stochastic version of the Hele–Shaw
problem, the flow in composite fluids with high and low
viscosities: the particles diffuse in the DLA, while the fluid
pressure diffuses in Hele–Shaw flow [19]. These are deeply
related to each other and involvemany open questions for
basic physics and mathematical physics.

Concerning the opposite direction, one of the impor-
tant issues in fractal research is to explore practical uses
of fractal structures. In fact, the characteristics of fractals
are applied to many cases such as the formation of tailor-
made nano-scale fractal structures, fractal-shaped anten-
nae with much reduced sizes compared with those of ordi-
nary antennae, and fractal molecules sensitive to frequen-
cies in the infrared region of light.

Deep insights into fractal physics in condensed matter
will open the door to new sciences and its application to
technologies in the near future.
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Glossary

Fractal Fractals are complex mathematical objects that
are invariant with respect to dilations (self-similarity)
and therefore do not possess a characteristic length
scale. Fractal objects display scale-invariance proper-
ties that can either fluctuate from point to point (mul-
tifractal) or be homogeneous (monofractal). Mathe-
matically, these properties should hold over all scales.
However, in the real world, there are necessarily lower
and upper bounds over which self-similarity applies.

Wavelet transform The continuous wavelet transform
(WT) is a mathematical technique introduced in the
early 1980s to perform time-frequency analysis. The
WT has been early recognized as a mathematical mi-
croscope that is well adapted to characterize the scale-
invariance properties of fractal objects and to reveal
the hierarchy that governs the spatial distribution of
the singularities of multifractal measures and func-
tions. More specifically, the WT is a space-scale analy-
sis which consists in expanding signals in terms of
wavelets that are constructed from a single function,
the analyzing wavelet, by means of translations and
dilations.
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Wavelet transformmodulus maxima method The
WTMM method provides a unified statistical (ther-
modynamic) description of multifractal distributions
including measures and functions. This method re-
lies on the computation of partition functions from
the wavelet transform skeleton defined by the wavelet
transform modulus maxima (WTMM). This skeleton
provides an adaptive space-scale partition of the frac-
tal distribution under study, from which one can ex-
tract the D(h) singularity spectrum as the equivalent
of a thermodynamic potential (entropy). With some
appropriate choice of the analyzing wavelet, one can
show that the WTMMmethod provides a natural gen-
eralization of the classical box-counting and structure
function techniques.

Compositional strand asymmetry The DNA double he-
lix is made of two strands that are maintained to-
gether by hydrogen bonds involved in the base-pair-
ing between Adenine (resp. Guanine) on one strand
and Thymine (resp. Cytosine) on the other strand.
Under no-strand bias conditions, i. e. when mutation
rates are identical on the two strands, in other words
when the two strands are strictly equivalent, one ex-
pects equimolarities of adenine and thymine and of
guanine and cytosine on each DNA strand, a property
named Chargaff’s second parity rule. Compositional
strand asymmetry refers to deviations from this rule
which can be assessed by measuring departure from
intrastrand equimolarities. Note that two major bio-
logical processes, transcription and replication, both
requiring the opening of the double helix, actually
break the symmetry between the twoDNA strands and
can thus be at the origin of compositional strand asym-
metries.

Eukaryote Organisms whose cells contain a nucleus, the
structure containing the geneticmaterial arranged into
chromosomes. Eukaryotes constitute one of the three
domains of life, the two others, called prokaryotes
(without nucleus), being the eubacteria and the ar-
chaebacteria.

Transcription Transcription is the process whereby the
DNA sequence of a gene is enzymatically copied into
a complementary messenger RNA. In a following step,
translation takes place where each messenger RNA
serves as a template to the biosynthesis of a specific
protein.

Replication DNA replication is the process of making an
identical copy of a double-stranded DNA molecule.
DNA replication is an essential cellular function re-
sponsible for the accurate transmission of genetic in-
formation though successive cell generations. This

process starts with the binding of initiating proteins to
a DNA locus called origin of replication. The recruit-
ment of additional factors initiates the bi-directional
progression of two replication forks along the chro-
mosome. In eukaryotic cells, this binding event hap-
pens at a multitude of replication origins along each
chromosome from which replication propagates until
two converging forks collide at a terminus of repli-
cation.

Chromatin Chromatin is the compound of DNA and
proteins that forms the chromosomes in living cells. In
eukaryotic cells, chromatin is located in the nucleus.

Histones Histones are amajor family of proteins found in
eukaryotic chromatin. The wrapping of DNA around
a core of 8 histones forms a nucleosome, the first step
of eukaryotic DNA compaction.

Definition of the Subject

The continuous wavelet transform (WT) is a mathemat-
ical technique introduced in signal analysis in the early
1980s [1,2]. Since then, it has been the subject of consid-
erable theoretical developments and practical applications
in a wide variety of fields. The WT has been early recog-
nized as a mathematical microscope that is well adapted
to reveal the hierarchy that governs the spatial distribu-
tion of singularities of multifractal measures [3,4,5]. What
makes the WT of fundamental use in the present study
is that its singularity scanning ability equally applies to
singular functions than to singular measures [3,4,5,6,7,
8,9,10,11]. This has led Alain Arneodo and his collabo-
rators [12,13,14,15,16] to elaborate a unified thermody-
namic description of multifractal distributions including
measures and functions, the so-called Wavelet Transform
Modulus Maxima (WTMM) method. By using wavelets
instead of boxes, one can take advantage of the freedom
in the choice of these “generalized oscillating boxes” to get
rid of possible (smooth) polynomial behavior that might
either mask singularities or perturb the estimation of their
strength h (Hölder exponent), remedying in this way for
one of the main failures of the classical multifractal meth-
ods (e. g. the box-counting algorithms in the case of mea-
sures and the structure function method in the case of
functions [12,13,15,16]). The other fundamental advan-
tage of using wavelets is that the skeleton defined by the
WTMM [10,11], provides an adaptative space-scale parti-
tioning from which one can extract the D(h) singularity
spectrum via the Legendre transform of the scaling expo-
nents �(q) (q real, positive as well as negative) of some par-
tition functions defined from the WT skeleton. We refer
the reader to Bacry et al. [13], Jaffard [17,18] for rigorous
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mathematical results and to Hentschel [19] for the theo-
retical treatment of randommultifractal functions.

Applications of the WTMM method to 1D signals
have already provided insights into a wide variety of prob-
lems [20], e. g., the validation of the log-normal cascade
phenomenology of fully developed turbulence [21,22,23,
24] and of high-resolution temporal rainfall [25,26], the
characterization and the understanding of long-range cor-
relations in DNA sequences [27,28,29,30], the demonstra-
tion of the existence of causal cascade of information from
large to small scales in financial time series [31,32], the
use of the multifractal formalism to discriminate between
healthy and sick heartbeat dynamics [33,34], the discov-
ery of a Fibonacci structural ordering in 1D cuts of diffu-
sion limited aggregates (DLA) [35,36,37,38]. The canoni-
cal WTMMmethod has been further generalized from 1D
to 2D with the specific goal to achieve multifractal analy-
sis of rough surfaces with fractal dimensions DF anywhere
between 2 and 3 [39,40,41]. The 2D WTMM method has
been successfully applied to characterize the intermittent
nature of satellite images of the cloud structure [42,43], to
perform a morphological analysis of the anisotropic struc-
ture of atomic hydrogen (HI) density in Galactic spiral
arms [44] and to assist in the diagnosis in digitized mam-
mograms [45]. We refer the reader to Arneodo et al. [46]
for a review of the 2DWTMMmethodology, from the the-
oretical concepts to experimental applications. In a recent
work, Kestener and Arneodo [47] have further extended
the WTMM method to 3D analysis. After some convinc-
ing test applications to synthetic 3D monofractal Brow-
nian fields and to 3D multifractal realizations of singular
cascade measures as well as their random function coun-
terpart obtained by fractional integration, the 3DWTMM
method has been applied to dissipation and enstrophy 3D
numerical data issued from direct numerical simulations
(DNS) of isotropic turbulence. The results so-obtained
have revealed that the multifractal spatial structure of both
dissipation and enstrophy fields are likely to be well de-
scribed by a multiplicative cascade process clearly non-
conservative. This contrasts with the conclusions of previ-
ous box-counting analysis [48] that failed to estimate cor-
rectly the corresponding multifractal spectra because of
their intrinsic inability to master non-conservative singu-
lar cascade measures [47].

For many years, the multifractal description has been
mainly devoted to scalar measures and functions. How-
ever, in physics as well as in other fundamental and ap-
plied sciences, fractals appear not only as deterministic or
random scalar fields but also as vector-valued determin-
istic or random fields. Very recently, Kestener and Ar-
neodo [49,50] have combined singular value decomposi-

tion techniques and WT analysis to generalize the mul-
tifractal formalism to vector-valued random fields. The
so-called Tensorial Wavelet Transform Modulus Maxima
(TWTMM) method has been applied to turbulent velocity
and vorticity fields generated in (256)3 DNS of the incom-
pressible Navier–Stokes equations. This study reveals the
existence of an intimate relationship Dv(hC 1) D D!(h)
between the singularity spectra of these two vector fields
that are found significantly more intermittent that previ-
ously estimated from longitudinal and transverse veloc-
ity increment statistics. Furthermore, thanks to the singu-
lar value decomposition, the TWTMMmethod looks very
promising for future simultaneous multifractal and struc-
tural (vorticity sheets, vorticity filaments) analysis of tur-
bulent flows [49,50].

Introduction

The possible relevance of scale invariance and fractal con-
cepts to the structural complexity of genomic sequences
has been the subject of considerable increasing inter-
est [20,51,52]. During the past fifteen years or so, there
has been intense discussion about the existence, the na-
ture and the origin of the long-range correlations (LRC)
observed in DNA sequences. Different techniques includ-
ing mutual information functions [53,54], auto-correla-
tion functions [55,56], power-spectra [54,57,58], “DNA
walk” representation [52,59], Zipf analysis [60,61] and en-
tropies [62,63], were used for the statistical analysis of
DNA sequences. For years there has been some perma-
nent debate on rather struggling questions like the fact that
the reported LRC might be just an artifact of the composi-
tional heterogeneity of the genome organization [20,27,52,
55,56,64,65,66,67]. Another controversial issue is whether
or not LRC properties are different for protein-coding (ex-
onic) and non-coding (intronic, intergenic) sequences [20,
27,52,54,55,56,57,58,59,61,68]. Actually, there were many
objective reasons for this somehow controversial situation.
Most of the pioneering investigations of LRC in DNA se-
quences were performed using different techniques that
all consisted in measuring power-law behavior of some
characteristic quantity, e. g., the fractal dimension of the
DNA walk, the scaling exponent of the correlation func-
tion or the power-law exponent of the power spectrum.
Therefore, in practice, they all faced the same difficulties,
namely finite-size effects due to the finiteness of the se-
quence [69,70,71] and statistical convergence issue that
required some precautions when averaging over many
sequences [52,65]. But beyond these practical problems,
there was also a more fundamental restriction since the
measurement of a unique exponent characterizing the
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global scaling properties of a sequence failed to resolve
multifractality [27], and thus provided very poor informa-
tion upon the nature of the underlying LRC (if they were
any). Actually, it can be shown that for a homogeneous
(monofractal) DNA sequence, the scaling exponents esti-
mated with the techniques previously mentioned, can all
be expressed as a function of the so-called Hurst or rough-
ness exponent H of the corresponding DNA walk land-
scape [20,27,52]. H D 1/2 corresponds to classical Brown-
ian, i. e. uncorrelated random walk. For any other value
of H, the steps (increments) are either positively corre-
lated (H > 1/2: Persistent randomwalk) or anti-correlated
(H < 1/2: Anti-persistent random walk).

One of the main obstacles to LRC analysis in DNA
sequences is the genuine mosaic structure of these se-
quences which are well known to be formed of “patches”
of different underlying composition [72,73,74]. When us-
ing the “DNA walk” representation, these patches appear
as trends in the DNA walk landscapes that are likely to
break scale-invariance [20,52,59,64,65,66,67,75,76]. Most
of the techniques, e. g. the variance method, used for char-
acterizing the presence of LRC are not well adapted to
study non-stationary sequences. There have been some
phenomenological attempts to differentiate local patch-
iness from LRC using ad hoc methods such as the so-
called “min-max method” [59] and the “detrended fluc-
tuation analysis” [77]. In previous works [27,28], the WT
has been emphasized as a well suited technique to over-
come this difficulty. By considering analyzingwavelets that
make the WT microscope blind to low-frequency trends,
any bias in the DNA walk can be removed and the ex-
istence of power-law correlations with specific scale in-
variance properties can be revealed accurately. In [78],
from a systematic WT analysis of human exons, CDSs
and introns, LRC were found in non-coding sequences as
well as in coding regions somehow hidden in their inner
codon structure. These results made rather questionable
the model based on genome plasticity proposed at that
time to account for the reported absence of LRC in coding
sequences [27,28,52,54,59,68]. More recently, some struc-
tural interpretation of these LRC has emerged from a com-
parative multifractal analysis of DNA sequences using
structural coding tables based on nucleosome positioning
data [29,30]. The application of the WTMM method has
revealed that the corresponding DNA chain bending pro-
files are monofractal (homogeneous) and that there exists
two LRC regimes. In the 10–200 bp range, LRC are ob-
served for eukaryotic sequences as quantified by a Hurst
exponent valueH ' 0:6 (but not for eubacterial sequences
for which H D 0:5) as the signature of the nucleosomal
structure. These LRCwere shown to favor the autonomous

formation of small (a few hundred bps) 2D DNA loops
and in turn the propensity of eukaryotic DNA to inter-
act with histones to form nucleosomes [79,80]. In addi-
tion, these LRC might induce some local hyperdiffusion
of these loops which would be a very attractive interpre-
tation of the nucleosomal repositioning dynamics. Over
larger distances (& 200 bp), stronger LRC with H ' 0:8
seem to exist in any sequence [29,30]. These LRC are ac-
tually observed in the S. cerevisiae nucleosome position-
ing data [81] suggesting that they are involved in the nu-
cleosome organization in the so-called 30 nm chromatin
fiber [82]. The fact that this second regime of LRC is also
present in eubacterial sequences shows that it is likely to
be a possible key to the understanding of the structure and
dynamics of both eukaryotic and prokaryotic chromatin
fibers. In regards to their potential role in regulating the
hierarchical structure and dynamics of chromatin, the re-
cent report [83] of sequence-induced LRC effects on the
conformations of naked DNA molecules deposited onto
mica surface under 2D thermodynamic equilibrium ob-
served by Atomic Force Microscopy (AFM) is a definite
experimental breakthrough.

Our purpose here is to take advantage of the avail-
ability of fully sequenced genomes to generalize the ap-
plication of the WTMM method to genome-wide mul-
tifractal sequence analysis when using codings that have
a clear functional meaning. According to the second par-
ity rule [84,85], under no strand-bias conditions, each
genomic DNA strand should present equimolarities of
adenines A and thymines T and of guanines G and cy-
tosines C [86,87]. Deviations from intrastrand equimolar-
ities have been extensively studied during the past decade
and the observed skews have been attributed to asym-
metries intrinsic to the replication and transcription pro-
cesses that both require the opening of the double helix.
Actually, during these processes mutational events can af-
fect the two strands differently and an asymmetry can
result if one strand undergoes different mutations, or
is repaired differently than the other strand. The exis-
tence of transcription and/or replication associated strand
asymmetries has been mainly established for prokaryote,
organelle and virus genomes [88,89,90,91,92,93,94]. For
a long time the existence of compositional biases in eu-
karyotic genomes has been unclear and it is only recently
that (i) the statistical analysis of eukaryotic gene introns
have revealed the presence of transcription-coupled strand
asymmetries [95,96,97] and (ii) the genome wide multi-
scale analysis of mammalian genomes has clearly shown
some departure from intrastrand equimolarities in inter-
genic regions and further confirmed the existence of repli-
cation-associated strand asymmetries [98,99,100]. In this
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manuscript, we will review recent results obtained when
using the WT microscope to explore the scale invariance
properties of the TA and GC skew profiles in the 22 hu-
man autosomes [98,99,100]. These results will enlighten
the richness of information that can be extracted from
these functional codings of DNA sequences including the
prediction of 1012 putative human replication origins. In
particular, this study will reveal a remarkable human gene
organization driven by the coordination of transcription
and replication [101].

AWavelet-BasedMultifractal Formalism

The Continuous Wavelet Transform

TheWT is a space-scale analysis which consists in expand-
ing signals in terms ofwaveletswhich are constructed from
a single function, the analyzing wavelet  , by means of
translations and dilations. The WT of a real-valued func-
tion f is defined as [1,2]:

T [ f ] (x0; a) D
1
a

C1Z

�1

f (x) 

 x � x0

a

�
dx ; (1)

where x0 is the space parameter and a (> 0) the scale pa-
rameter. The analyzing wavelet  is generally chosen to
be well localized in both space and frequency. Usually  
is required to be of zero mean for the WT to be invertible.
But for the particular purpose of singularity tracking that
is of interest here, we will further require  to be orthog-
onal to low-order polynomials in Fig. 1 [7,8,9,10,11,12,13,
14,15,16]:

C1Z

�1

xm (x)dx ; 0 � m < n : (2)

As originally pointed out by Mallat and collabora-
tors [10,11], for the specific purpose of analyzing the reg-
ularity of a function, one can get rid of the redundancy of
the WT by concentrating on the WT skeleton defined by
its modulus maxima only. These maxima are defined, at
each scale a, as the local maxima of jT [ f ](x; a)j consid-
ered as a function of x. As illustrated in Figs. 2e, 2f, these
WTMM are disposed on connected curves in the space-
scale (or time-scale) half-plane, called maxima lines. Let
us define L(a0) as the set of all the maxima lines that ex-
ist at the scale a0 and which contain maxima at any scale
a � a0. An important feature of these maxima lines, when
analyzing singular functions, is that there is at least one
maxima line pointing towards each singularity [10,11,16].

Scanning Singularities with the Wavelet
TransformModulus Maxima

The strength of the singularity of a function f at point x0
is given by the Hölder exponent, i. e., the largest exponent
such that there exists a polynomial Pn(x � x0) of order
n < h(x0) and a constant C > 0, so that for any point x
in a neighborhood of x0, one has [7,8,9,10,11,13,16]:

j f (x)� Pn(x � x0)j � C jx � x0jh : (3)

If f is n times continuously differentiable at the point x0,
then one can use for the polynomial Pn (x � x0), the order-
n Taylor series of f at x0 and thus prove that h(x0) > n.
Thus h(x0) measures how irregular the function f is at the
point x0. The higher the exponent h(x0), the more regular
the function f .

The main interest in using the WT for analyzing the
regularity of a function lies in its ability to be blind to
polynomial behavior by an appropriate choice of the an-
alyzing wavelet  . Indeed, let us assume that according
to Eq. (3), f has, at the point x0, a local scaling (Hölder)
exponent h(x0); then, assuming that the singularity is not
oscillating [11,102,103], one can easily prove that the local
behavior of f is mirrored by the WT which locally behaves
like [7,8,9,10,11,12,13,14,15,16,17,18]:

T [ f ](x0; a) � ah(x0) ; a! 0C ; (4)

provided n > h(x0), where n is the number of vanish-
ing moments of  (Eq. (2)). Therefore one can extract the
exponent h(x0) as the slope of a log-log plot of theWT am-
plitude versus the scale a. On the contrary, if one chooses
n < h(x0), the WT still behaves as a power-law but with
a scaling exponent which is n :

T [ f ](x0; a) � an ; a! 0C : (5)

Thus, around a given point x0, the faster theWT decreases
when the scale goes to zero, the more regular f is around
that point. In particular, if f 2 C1 at x0 (h(x0) D C1),
then the WT scaling exponent is given by n , i. e. a value
which is dependent on the shape of the analyzing wavelet.
According to this observation, one can hope to detect the
points where f is smooth by just checking the scaling be-
havior of the WT when increasing the order n of the an-
alyzing wavelet [12,13,14,15,16].

Remark 1 A very important point (at least for practical
purpose) raised by Mallat and Hwang [10] is that the local
scaling exponent h(x0) can be equally estimated by looking
at the value of the WT modulus along a maxima line con-
verging towards the point x0. Indeed one can prove that
both Eqs. (4) and (5) still hold when following a maxima
line from large down to small scales [10,11].
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TheWavelet TransformModulus Maxima Method

As originally defined by Parisi and Frisch [104], the mul-
tifractal formalism of multi-affine functions amounts to
compute the so-called singularity spectrum D(h) defined
as the Hausdorff dimension of the set where the Hölder
exponent is equal to h [12,13,16]:

D(h) D dimH fx; h(x) D hg ; (6)

where h can take, a priori, positive as well as negative real
values (e. g., the Dirac distribution ı(x) corresponds to the
Hölder exponent h(0) D �1) [17].

A natural way of performing a multifractal analysis
of fractal functions consists in generalizing the “classi-
cal” multifractal formalism [105,106,107,108,109] using
wavelets instead of boxes. By taking advantage of the free-
dom in the choice of the “generalized oscillating boxes”
that are the wavelets, one can hope to get rid of possible
smooth behavior that could mask singularities or perturb
the estimation of their strength h. But the major difficulty
with respect to box-counting techniques [48,106,110,111,
112] for singular measures, consists in defining a covering
of the support of the singular part of the function with our
set of wavelets of different sizes. As emphasized in [12,13,
14,15,16], the branching structure of the WT skeletons of
fractal functions in the (x; a) half-plane enlightens the hi-
erarchical organization of their singularities (Figs. 2e, 2f).
The WT skeleton can thus be used as a guide to position,
at a considered scale a, the oscillating boxes in order to
obtain a partition of the singularities of f . The wavelet
transform modulus maxima (WTMM) method amounts
to compute the following partition function in terms of
WTMM coefficients [12,13,14,15,16]:

Z(q; a) D
X

l2L(a)

�
sup

(x;a0)2l
a0�a

ˇ̌
T [ f ](x; a0)

ˇ̌q
; (7)

where q 2 R and the sup can be regarded as a way to
define a scale adaptative “Hausdorff-like” partition. Now
from the deep analogy that links the multifractal formal-
ism to thermodynamics [12,113], one can define the ex-
ponent �(q) from the power-law behavior of the partition
function:

Z(q; a) � a�(q) ; a! 0C ; (8)

where q and �(q) play respectively the role of the inverse
temperature and the free energy. The main result of this
wavelet-basedmultifractal formalism is that in place of the
energy and the entropy (i. e. the variables conjugated to q
and �), one has h, the Hölder exponent, and D(h), the sin-
gularity spectrum. This means that the singularity spec-
trum of f can be determined from the Legendre transform

of the partition function scaling exponent �(q) [13,17,18]:

D(h) D min
q

(qh � �(q)) : (9)

From the properties of the Legendre transform, it is easy to
see that homogeneous monofractal functions that involve
singularities of unique Hölder exponent h D @� /@q, are
characterized by a �(q) spectrum which is a linear func-
tion of q. On the contrary, a nonlinear �(q) curve is the
signature of nonhomogeneous functions that exhibitmul-
tifractal properties, in the sense that the Hölder exponent
h(x) is a fluctuating quantity that depends upon the spatial
position x.

Defining Our Battery of AnalyzingWavelets

There are almost as many analyzing wavelets as applica-
tions of the continuous WT [3,4,5,12,13,14,15,16]. In the
present work, we will mainly used the class of analyzing
wavelets defined by the successive derivatives of theGauss-
ian function:

g(N)(x) D
dN

dxN
e�x

2/2 ; (10)

for which n D N and more specifically g(1) and g(2) that
are illustrated in Figs. 1a, 1b.

Remark 2 The WT of a signal f with g(N) (Eq. (10)) takes
the following simple expression:

Tg(N) [ f ](x; a) D
1
a

C1Z

�1

f (y)g(N)

 y � x

a

�
dy ;

D aN
dN

dxN
Tg(0) [ f ](x; a) :

(11)

Equation (11) shows that the WT computed with g(N)

at scale a is nothing but the Nth derivative of the sig-
nal f (x) smoothed by a dilated version g(0)(x/a) of the
Gaussian function. This property is at the heart of vari-
ous applications of the WT microscope as a very efficient
multi-scale singularity tracking technique [20].

With the specific goal of disentangling the contributions to
the nucleotide composition strand asymmetry coming re-
spectively from transcription and replication processes, we
will use in Sect. “AWavelet-BasedMethodology to Disen-
tangle Transcription- and Replication-Associated Strand
Asymmetries Reveals a Remarkable Gene Organization in
the Human Genome”, an adapted analyzing wavelet of the
following form (Fig. 1c) [101,114]:

�R(x) D �
�
x �

1
2

�
; for x 2

�
�
1
2
;
1
2

�

D 0 elsewhere :
(12)
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 1
Set of analyzingwavelets (x) that can be used in Eq. (1). a g(1) and b g(2) as defined in Eq. (10). c�R as defined in Eq. (12), that will be
used in Sect. “AWavelet-BasedMethodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries Reveals
a RemarkableGeneOrganization in theHumanGenome” todetect replication domains.dBox function�T thatwill be used in Sect. “A
Wavelet-Based Methodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries Reveals a Remarkable
Gene Organization in the Human Genome” to model step-like skew profiles induced by transcription

By performing multi-scale pattern recognition in the
(space, scale) half-plane with this analyzing wavelet, we
will be able to define replication domains bordered by pu-
tative replication origins in the human genome and more
generally in mammalian genomes [101,114].

Test Applications of the WTMMMethod on Mono-
fractal and Multifractal Synthetic Random Signals

This section is devoted to test applications of the WTMM
method to random functions generated either by addi-
tive models like fractional Brownian motions [115] or by
multiplicativemodels like randomW -cascades on wavelet
dyadic trees [21,22,116,117]. For each model, we first
wavelet transform 1000 realizations of length L D 65 536
with the first order (n D 1) analyzing wavelet g(1). From
the WT skeletons defined by the WTMM, we compute the

mean partition function (Eq. (7)) from which we extract
the annealed �(q) (Eq. (8)) and, in turn, D(h) (Eq. (9))
multifractal spectra. We systematically test the robustness
of our estimates with respect to some change of the shape
of the analyzing wavelet, in particular when increasing
the number n of zero moments, going from g(1) to g(2)

(Eq. (10)).

Fractional Brownian Signals Since its introduction by
Mandelbrot and van Ness [115], the fractional Brownian
motion (fBm) BH has become a very popular model in
signal and image processing [16,20,39]. In 1D, fBm has
proved useful for modeling various physical phenomena
with long-range dependence, e. g., “1/ f ” noises. The fBm
exhibits a power spectral density S(k) � 1/kˇ , where the
spectral exponent ˇ D 2H C 1 is related to the Hurst ex-
ponent H. fBm has been extensively used as test stochas-
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 2
WT of monofractal andmultifractal stochastic signals. Fractional Brownianmotion: a a realization of B1/3 (L D 65 536); cWT of B1/3 as
coded, independently at each scale a, using 256 colors from black (jT j D 0) to red (maxb jT j); eWT skeleton defined by the set
of all the maxima lines. Log-normal randomW -cascades: b a realization of the log-normalW -cascade model (L D 65536) with the
following parameter valuesm D �0:355 ln 2 and � 2 D 0:02 ln 2 (see [116]); dWT of the realization in b represented with the same
color coding as in c; fWT skeleton. The analyzing wavelet is g(1) (see Fig. 1a)

tic signals for Hurst exponent measurements. In Figs. 2, 3
and 4, we report the results of a statistical analysis of fBm’s
using the WTMM method [12,13,14,15,16]. We mainly
concentrate on B1/3 since it has a k�5/3 power-spectrum
similar to the spectrum of the multifractal stochastic sig-
nal we will study next. Actually, our goal is to demon-

strate that, where the power spectrum analysis fails, the
WTMM method succeeds in discriminating unambigu-
ously between these two fractal signals. The numerical
signals were generated by filtering uniformly generated
pseudo-random noise in Fourier space in order to have the
required k�5/3 spectral density. A B1/3 fractional Brownian
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 3
Determination of the �(q) and D(h) multifractal spectra of fBm B1/3 (red circles) and log-normal randomW -cascades (green dots)
using the WTMMmethod. a log2 Z(q; a) vs. log2 a: B1/3. b log2 Z(q; a) vs. log2 a: Log-normalW -cascades with the same parameters
as in Fig. 2b. c �(q) vs. q; the solid lines correspond respectively to the theoretical spectra (13) and (16). d D(h) vs. h; the solid lines
correspond respectively to the theoretical predictions (14) and (17). The analyzingwavelet is g(1). The reported results correspond to
annealed averaging over 1000 realizations of L D 65536

trail is shown in Fig. 2a. Figure 2c illustrates theWT coded,
independently at each scale a, using 256 colors. The ana-
lyzing wavelet is g(1) (n D 1). Figure 3a displays some
plots of log2 Z(q; a) versus log2(a) for different values of q,
where the partition function Z(q; a) has been computed
on theWTMM skeleton shown in Fig. 2e, according to the
definition (Eq. (7)). Using a linear regression fit, we then
obtain the slopes �(q) of these graphs. As shown in Fig. 3c,

when plotted versus q, the data for the exponents �(q) con-
sistently fall on a straight line that is remarkably fitted by
the theoretical prediction:

�(q) D qH � 1 ; (13)

with H D 1/3. From the Legendre transform of this linear
�(q) (Eq. (9)), one gets a D(h) singularity spectrum that
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 4
Probability distribution functions of wavelet coefficient values of fBm B1/3 (open symbols) and log-normal randomW -cascades (filled
symbols) with the same parameters as in Fig. 2b. a �a vs. Tg(1) for the set of scales a D 10 (4), 50 (�), 100 (�), 1000 (˙), 9000 (O);
a0 aH�a(aHTg(1) ) vs. Tg(1) with H D 1/3; The symbols have the same meaning as in a. b �a vs. Tg(1) for the set of scales a D 10 ( ),
50 ( ), 100 ( ), 1000 ( ), 9000 ( ); (b0) aH�a(aHTg(1) ) vs. Tg(1) with H D �m/ ln 2 D 0:355. The analyzing wavelet is g(1) (Fig. 1a)

reduces to a single point:

D(h) D 1 if h D H ;
D �1 if h ¤ H :

(14)

Thus, as expected theoretically [16,115], one finds that the
fBm B1/3 is a nowhere differentiable homogeneous fractal
signal with a unique Hölder exponent h D H D 1/3. Note
that similar good estimates are obtained when using ana-
lyzing wavelets of different order (e. g. g(2)), and this what-
ever the value of the index H of the fBm [12,13,14,15,16].

Within the perspective of confirming the monofractal-
ity of fBm’s, we have studied the probability density func-
tion (pdf) of wavelet coefficient values �a(Tg(1) (:; a)), as
computed at a fixed scale a in the fractal scaling range. Ac-
cording to the monofractal scaling properties, one expects

these pdfs to satisfy the self-similarity relationship [20,
27,28]:

aH�a(aHT) D �(T) ; (15)

where �(T) is a “universal” pdf (actually the pdf obtained
at scale a D 1) that does not depend on the scale param-
eter a. As shown in Figs. 4a, 4a0 for B1/3, when plotting
aH�a(aHT) vs. T, all the �a curves corresponding to dif-
ferent scales (Fig. 4a) remarkably collapse on a unique
curve when using a unique exponent H D 1/3 (Fig. 4a0).
Furthermore the so-obtained universal curve cannot be
distinguished from a parabola in semi-log representation
as the signature of the monofractal Gaussian statistics of
fBm fluctuations [16,20,27].
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Random W -Cascades Multiplicative cascade models
have enjoyed increasing interest in recent years as
the paradigm of multifractal objects [16,19,48,105,107,
108,118]. The notion of cascade actually refers to a self-
similar process whose properties are defined multiplica-
tively from coarse to fine scales. In that respect, it occupies
a central place in the statistical theory of turbulence [48,
104]. Originally, the concept of self-similar cascades was
introduced to model multifractal measures (e. g. dissipa-
tion or enstrophy) [48]. It has been recently generalized
to the construction of scale-invariant signals (e. g. longi-
tudinal velocity, pressure, temperature) using orthogonal
wavelet basis [116,119]. Instead of redistributing the mea-
sure over sub-intervals with multiplicative weights, one
allocates the wavelet coefficients in a multiplicative way
on the dyadic grid. This method has been implemented
to generate multifractal functions (with weights W) from
a given deterministic or probabilistic multiplicative pro-
cess. Along the line of the modeling of fully developed tur-
bulent signals by log-infinitely divisible multiplicative pro-
cesses [120,121], we will mainly concentrate here on the
log-normalW -cascades in order to calibrate the WTMM
method. If m and �2 are respectively the mean and the
variance of lnW (where W is a multiplicative random
variable with log-normal probability distribution), then, as
shown in [116], a straightforward computation leads to the
following �(q) spectrum:

�(q) D � log2hW
qi � 1 ; 8q 2 R

D �
�2

2 ln 2
q2 �

m
ln 2

q � 1 ;
(16)

where h: : :i means ensemble average. The correspond-
ing D(h) singularity spectrum is obtained by Legendre
transforming �(q) (Eq. (9)):

D(h) D �
(hC m/ ln 2)2

2�2/ ln 2
C 1 : (17)

According to the convergence criteria established
in [116], m and �2 have to satisfy the conditions: m < 0
and jmj/� >

p
2 ln 2. Moreover, by solving D(h) D 0, one

gets the following bounds for the support of the D(h) sin-
gularity spectrum: hmin D �m/ ln 2 � (

p
2�)/
p
ln 2 and

hmax D �m/ ln 2C (
p
2�)/
p
ln 2.

In Fig. 2b is illustrated a realization of a log-normal
W -cascade for the parameter valuesm D �0:355 ln 2 and
�2 D 0:02 ln 2. The corresponding WT and WT skeleton
as computed with g(1) are shown in Figs. 2d and 2f re-
spectively. The results of the application of the WTMM
method are reported in Fig. 3. As shown in Fig. 3b, when
plotted versus the scale parameter a in a logarithmic rep-

resentation, the annealed average of the partition func-
tions Z(q; a) displays a well defined scaling behavior over
a range of scales of about 5 octaves. Note that scaling
of quite good quality is found for a rather wide range
of q values: �5 � q � 10. When processing to a linear
regression fit of the data over the first four octaves, one
gets the �(q) spectrum shown in Fig. 3c. This spectrum
is clearly a nonlinear function of q, the hallmark of mul-
tifractal scaling. Moreover, the numerical data are in re-
markable agreement with the theoretical quadratic predic-
tion (Eq. (16)). Similar quantitative agreement is observed
on the D(h) singularity spectrum in Fig. 3d which displays
a single humped parabola shape that characterizes inter-
mittent fluctuations corresponding to Hölder exponents
values ranging from hmin D 0:155 to hmax D 0:555. Un-
fortunately, to capture the strongest and the weakest sin-
gularities, one needs to compute the �(q) spectrum for
very large values of jqj. This requires the processing of
many more realizations of the considered log-normal ran-
dom W -cascade. The multifractal nature of log-normal
W -cascade realizations is confirmed in Figs. 4b, 4b0 where
the self-similarity relationship (Eq. (15)) is shown not to
apply. Actually there does not exist a H value allowing to
superimpose onto a single curve theWT pdfs computed at
different scales.

The test applications reported in this section demon-
strate the ability of the WTMM method to resolve mul-
tifractal scaling of 1D signals, a hopeless task for classi-
cal power spectrum analysis. They were used on purpose
to calibrate and to test the reliability of our methodology,
and of the corresponding numerical tools, with respect to
finite-size effects and statistical convergence.

Bifractality of Human DNA Strand-Asymmetry
Profiles Results from Transcription

During genome evolution, mutations do not occur at ran-
dom as illustrated by the diversity of the nucleotide sub-
stitution rate values [122,123,124,125]. This non-random-
ness is considered as a by-product of the various DNA
mutation and repair processes that can affect each of the
two DNA strands differently. Asymmetries of substitution
rates coupled to transcription have been mainly observed
in prokaryotes [88,89,91], with only preliminary results in
eukaryotes. In the human genome, excess of T was ob-
served in a set of gene introns [126] and some large-scale
asymmetry was observed in human sequences but they
were attributed to replication [127]. Only recently, a com-
parative analysis of mammalian sequences demonstrated
a transcription-coupled excess of G+T over A+C in the
coding strand [95,96,97]. In contrast to the substitution
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biases observed in bacteria presenting an excess of C!T
transitions, these asymmetries are characterized by an ex-
cess of purine (A!G) transitions relatively to pyrimidine
(T!C) transitions. These might be a by-product of the
transcription-coupled repair mechanism acting on uncor-
rected substitution errors during replication [128]. In this
section, we report the results of a genome-wide multifrac-
tal analysis of strand-asymmetry DNA walk profiles in the
human genome [129]. This study is based on the compu-
tation of the TA and GC skews in non-overlapping 1 kbp
windows:

STA D
nT � nA
nT C nA

; SGC D
nG � nC
nG C nC

; (18)

where nA, nC, nG and nT are respectively the numbers of
A, C, G andT in the windows. Because of the observed cor-
relation between the TA andGC skews, we also considered
the total skew

S D STA C SGC : (19)

From the skews STA(n), SGC(n) and S(n), obtained along
the sequences, where n is the position (in kbp units) from
the origin, we also computed the cumulative skew profiles
(or skew walk profiles):

˙TA(n) D
nX

jD1

STA( j) ; ˙GC(n) D
nX

jD1

SGC( j) ; (20)

and

˙(n) D
nX

jD1

S( j) : (21)

Our goal is to show that the skew DNA walks of the
22 human autosomes display an unexpected (with respect
to previous monofractal diagnosis [27,28,29,30]) bifractal
scaling behavior in the range 10 to 40 kbp as the signature
of the presence of transcription-induced jumps in the LRC
noisy S profiles. Sequences and gene annotation data (“ref-
Gene”) were retrieved from the UCSC Genome Browser
(May 2004). We used RepeatMasker to exclude repetitive
elements thatmight have been inserted recently andwould
not reflect long-term evolutionary patterns.

Revealing the Bifractality of Human Skew DNAWalks
with theWTMMMethod

As an illustration of our wavelet-based methodology, we
show in Fig. 5 the S skew profile of a fragment of human
chromosome 6 (Fig. 5a), the corresponding skew DNA

walk (Fig. 5b) and its space-scale wavelet decomposition
using the Mexican hat analyzing wavelet g(2) (Fig. 1b).
When computing Z(q; a) (Eq. (7)) from theWT skeletons
of the skew DNA walks ˙ of the 22 human autosomes,
we get convincing power-law behavior for �1:5 � q � 3
(data not shown). In Fig. 6a are reported the �(q) expo-
nents obtained using a linear regression fit of ln Z(q; a)
vs. ln a over the range of scales 10 kbp � a � 40 kbp.
All the data points remarkably fall on two straight lines
�1(q) D 0:78q � 1 and �2(q) D q � 1 which strongly sug-
gests the presence of two types of singularities h1 D 0:78
and h2 D 1, respectively on two sets S1 and S2 with the
sameHaussdorf dimension D D ��1(0) D ��2(0) D 1, as

Fractals and Wavelets: What Can We Learn on Transcription and
Replication . . . ?, Figure 5
a Skew profile S(n) (Eq. (19)) of a repeat-masked fragment of hu-
man chromosome 6; red (resp. blue) 1 kbp window points corre-
spond to (+) genes (resp. (�) genes) lying on the Watson (resp.
Crick) strand; black points to intergenic regions. b Cumulated
skew profile˙ (n) (Eq. (21)). cWT of˙ ; Tg(2) (n;a) is coded from
black (min) to red (max); the WT skeleton defined by themaxima
lines is shown in solid (resp. dashed) lines corresponding to posi-
tive (resp. negative) WT values. For illustration yellow solid (resp.
dashed) maxima lines are shown to point to the positions of 2
upward (resp. 2 downward) jumps in S (vertical dashed lines in a
and b) that coincide with gene transcription starts (resp. ends).
In green are shownmaxima lines that persist above a � 200kbp
and that point to sharp upward jumps in S (vertical solid lines
in a and b) that are likely to be the locations of putative repli-
cation origins (see Sect. “From the Detection of Relication Ori-
gins Using theWavelet TransformMicroscope to theModeling of
Replication inMammalianGenomes”) [98,100]; note that 3 out of
those 4 jumps are co-located with transcription start sites [129]
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 6
Multifractal analysis of˙ (n) of the 22 human (filled symbols) and 19 mouse (open circle) autosomes using the WTMMmethod with
g(2) over the range 10 kbp � a � 40kbp [129].a�(q) vs. q.bD(h) vs. h. cWTMMpdf:� is plotted versus jTj/aH whereH D h1 D 0:78,
in semi-log representation; the inset is an enlargement of the pdf central part in linear representation. d Same as in c but with
H D h2 D 1. In c and d, the symbols correspond to scales a D 10 ( ), 20 ( ) and 40kbp ( )

confirmed when computing theD(h) singularity spectrum
in Fig. 6b. This observation means that Z(q; a) can be split
in two parts [12,16]:

Z(q; a) D C1(q)aqh1�1 C C2(q)aqh2�1 ; (22)

where C1(q) and C2(q) are prefactors that depend on q.
Since h1 < h2, in the limit a 7! 0C, the partition function
is expected to behave like Z(q; a) � C1(q)aqh1�1 for q > 0
and like Z(q; a) � C2(q)aqh2�1 for q < 0, with a so-called
phase transition [12,16] at the critical value qc D 0. Sur-
prisingly, it is the contribution of the weakest singularities
h2 D 1 that controls the scaling behavior of Z(q; a) for
q > 0 while the strongest ones h1 D 0:78 actually domi-
nate for q < 0 (Fig. 6a). This inverted behavior originates
from finite (1 kbp) resolution which prevents the observa-
tion of the predicted scaling behavior in the limit a 7! 0C.

The prefactors C1(q) and C2(q) in Eq. (22) are sensitive to
(i) the number of maxima lines in the WT skeleton along
which the WTMM behave as ah1 or ah2 and (ii) the rela-
tive amplitude of these WTMM. Over the range of scales
used to estimate �(q), the WTMM along the maxima lines
pointing (at small scale) to h2 D 1 singularities are signifi-
cantly larger than those along the maxima lines associated
to h1 D 0:78 (see Figs. 6c, 6d). This implies that the larger
q > 0, the stronger the inequality C2(q)	 C1(q) and the
more pronounced the relative contribution of the second
term in the r.h.s. of Eq. (22). On the opposite for q < 0,
C1(q)	 C2(q) which explains that the strongest singular-
ities h1 D 0:78 now control the scaling behavior of Z(q; a)
over the explored range of scales.

In Figs. 6c, 6d are shown the WTMM pdfs computed
at scales a D 10, 20 and 40 kbp after rescaling by ah1 and
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ah2 respectively. We note that there does not exist a value
of H such that all the pdfs collapse on a single curve as
expected from Eq. (15) for monofractal DNA walks. Con-
sistently with the �(q) data in Fig. 6a and with the in-
verted scaling behavior discussed above, when using the
two exponents h1 D 0:78 and h2 D 1, one succeeds in su-
perimposing respectively the central (bump) part (Fig. 6c)
and the tail (Fig. 6d) of the rescaled WTMM pdfs. This
corroborates the bifractal nature of the skew DNA walks
that display two competing scale-invariant components
of Hölder exponents: (i) h1 D 0:78 corresponds to LRC
homogeneous fluctuations previously observed over the
range 200 bp . a . 20 kbp in DNA walks generated with
structural codings [29,30] and (ii) h2 D 1 is associated to
convex _ and concave ^ shapes in the DNA walks ˙ in-
dicating the presence of discontinuities in the derivative
of˙ , i. e., of jumps in S (Figs. 5a, 5b). At a given scale a, ac-
cording to Eq. (11), a large value of the WTMM in Fig. 5c
corresponds to a strong derivative of the smoothed S pro-
file and the maxima line to which it belongs is likely to
point to a jump location in S. This is particularly the case
for the colored maxima lines in Fig. 5c: Upward (resp.
downward) jumps (Fig. 5a) are so-identified by the max-
ima lines corresponding to positive (resp. negative) values
of the WT.

Transcription-Induced Step-like Skew Profiles
in the Human Genome

In order to identify the origin of the jumps observed in
the skew profiles, we have performed a systematic inves-

Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 7
TA ( ) and GC (green ) skew profiles in the regions surrounding 50 and 30 gene extremities [96]. STA and SGC were calculated in 1 kbp
windows starting from each gene extremities in both directions. In abscissa is reported the distance (n) of each 1 kbp window to the
indicated gene extremity; zero values of abscissa correspond to 50- (a) or 30- (b) gene extremities. In ordinate is reported the mean
value of the skews over our set of 14 854 intron-containing genes for all 1 kbp windows at the corresponding abscissa. Error bars
represent the standard error of the means

tigation of the skews observed along 14 854 intron con-
taining genes [96,97]. In Fig. 7 are reported the mean val-
ues of STA and SGC skews for all genes as a function of
the distance to the 50- or 30- end. At the 50 gene extremi-
ties (Fig. 7a), a sharp transition of both skews is observed
from about zero values in the intergenic regions to finite
positive values in transcribed regions ranging between 4
and 6% for S̄TA and between 3 and 5% for S̄GC. At the
gene 30- extremities (Fig. 7b), the TA and GC skews also
exhibit transitions from significantly large values in tran-
scribed regions to very small values in untranscribed re-
gions. However, in comparison to the steep transitions ob-
served at 50- ends, the 30- end profiles present a slightly
smoother transition pattern extending over �5 kbp and
including regions downstream of the 30- end likely reflect-
ing the fact that transcription continues to some extent
downstream of the polyadenylation site. In pluricellular
organisms, mutations responsible for the observed biases
are expected to have mostly occurred in germ-line cells. It
could happen that gene 30- ends annotated in the databank
differ from the poly-A sites effectively used in the germ-
line cells. Such differences would then lead to some broad-
ening of the skew profiles.

From Skew Multifractal Analysis to Gene Detection

In Fig. 8 are reported the results of a statistical analysis
of the jump amplitudes in human S profiles [129]. For
maxima lines that extend above a� D 10 kbp in the WT
skeleton (see Fig. 5c), the histograms obtained for up-
ward and downward variations are quite similar, especially
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 8
Statistical analysis of skew variations at the singularity positions determined at scale 1 kbp from the maxima lines that exist at scales
a � 10 kbp in the WT skeletons of the 22 human autosomes [129]. For each singularity, we computed the variation amplitudes
	S D S̄(30)� S̄(50) over two adjacent 5 kbp windows, respectively in the 30 and 50 directions and the distances	n to the closest
TSS (resp. TES). a Histograms N(j	Sj) for upward (	S > 0, red) and downward (	S < 0, black) skew variations. b Histograms of the
distances	n of upward (red) or downward (black) jumps with j	Sj � 0:1 to the closest TSS ( , red ) and TES (�, red �)

their tails that are likely to correspond to jumps in the S
profiles (Fig. 8a). When computing the distance between
upward or downward jumps (j
Sj � 0:1) to the closest
transcription start (TSS) or end (TES) sites (Fig. 8b), we
reveal that the number of upward jumps in close prox-
imity (j
nj . 3 kpb) to TSS over-exceeds the number of
such jumps close to TES. Similarly, downward jumps are
preferentially located at TES. These observations are con-
sistent with the step-like shape of skew profiles induced
by transcription: S > 0 (resp. S < 0) is constant along
a (+) (resp. (�)) genes and S D 0 in the intergenic regions
(Fig. 7) [96]. Since a step-like pattern is edged by one up-
ward and one downward jump, the set of human genes
that are significantly biased is expected to contribute to an
even number of 
S > 0 and 
S < 0 jumps when explor-
ing the range of scales 10 . a . 40 kbp, typical of human
gene size. Note that in Fig. 8a, the number of sharp up-
ward jumps actually slightly exceeds the number of sharp
downward jumps, consistently with the experimental ob-
servation that whereas TSS are well defined, TES may ex-
tend over 5 kbp resulting in smoother downward skew
transitions (Fig. 7b). This TES particularity also explains
the excess of upward jumps found close to TSS as com-
pared to the number of downward jumps close to TES
(Fig. 8b).

In Fig. 9a, we report the analysis of the distance of
TSS to the closest upward jump [129]. For a given up-
ward jump amplitude, the number of TSS with a jump

within j
nj increases faster than expected (as compared
to the number found for randomized jump positions) up
to j
nj ' 2 kbp. This indicates that the probability to
find an upward jump within a gene promoter region is
significantly larger than elsewhere. For example, out of
20 023 TSS, 36% (7228) are delineated within 2 kbp by
a jump with 
S > 0:1. This provides a very reasonable
estimate for the number of genes expressed in germline
cells as compared to the 31.9% recently experimentally
found to be bound to Pol II in human embryonic stem
cells [130].

Combining the previous results presented in Figs. 8b
and 9a, we report in Fig. 9b an estimate of the effi-
ciency/coverage relationship by plotting the proportion
of upward jumps (
S > 
S�) lying in TSS proximity as
a function of the number of so-delineated TSS [129]. For
a given proximity threshold j
nj, increasing 
S� results
in a decrease of the number of delineated TSS, charac-
teristic of the right tail of the gene bias pdf. Concomi-
tant to this decrease, we observe an increase of the effi-
ciency up to a maximal value corresponding to some opti-
mal value for
S�. For j
nj < 2 kbp, we reach a maximal
efficiency of 60% for 
S� D 0:225; 1403 out of 2342 up-
ward jumps delineate a TSS. Given the fact that the actual
number of human genes is estimated to be significantly
larger (� 30 000) than the number provided by refGene,
a large part of the the 40% (939) of upward jumps that have
not been associated to a refGene could be explained by this
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 9
a Number of TSS with an upward jump within j	nj (abscissa) for jump amplitudes	S > 0.1 (black), 0.15 (dark gray) and 0.2 (light
gray). Solid lines correspond to true jump positions while dashed lines to the same analysis when jump positions were randomly
drawn along each chromosome [129]. b Among the Ntot(	S�) upward jumps of amplitude larger than some threshold 	S�, we
plot the proportion of those that are found within 1 kbp ( ), 2 kbp ( ) or 4 kbp ( ) of the closest TSS vs. the number NTSS of the so-
delineated TSS. Curveswere obtained by varying	S� from0.1 to 0.3 (from right to left).Open symbols correspond to similar analyzes
performed on random upward jump and TSS positions

limited coverage. In other words, jumps with sufficiently
high amplitude are very good candidates for the location
of highly-biased gene promoters. Let us point that out of
the above 1403 (resp. 2342) upward jumps, 496 (resp. 624)
jumps are still observed at scale a� D 200 kbp. We will
see in the next section that these jumps are likely to also
correspond to replication origins underlying the fact that
large upward jumps actually result from the cooperative
contributions of both transcription- and replication- as-
sociated biases [98,99,100,101]. The observation that 80%
(496/624) of the predicted replication origins are co-lo-
cated with TSS enlightens the existence of a remarkable
gene organization at replication origins [101].

To summarize, we have demonstrated the bifractal
character of skew DNA walks in the human genome.
When using the WT microscope to explore (repeat-
masked) scales ranging from 10 to 40 kbp, we have iden-
tified two competing homogeneous scale-invariant com-
ponents characterized by Hölder exponents h1 D 0:78
and h2 D 1 that respectively correspond to LRC colored
noise and sharp jumps in the original DNA composi-
tional asymmetry profiles. Remarkably, the so-identified
upward (resp. downward) jumps are mainly found at the
TSS (resp. TES) of human genes with high transcription
bias and thus very likely highly expressed. As illustrated in
Fig. 6a, similar bifractal properties are also observed when
investigating the 19 mouse autosomes. This suggests that
the results reported in this section are general features of
mammalian genomes [129].

From the Detection of RelicationOrigins Using
theWavelet TransformMicroscope to theModeling
of Replication inMammalianGenomes

DNA replication is an essential genomic function re-
sponsible for the accurate transmission of genetic infor-
mation through successive cell generations. According
to the so-called “replicon” paradigm derived from pro-
karyotes [131], this process starts with the binding of
some “initiator” protein to a specific “replicator” DNA se-
quence called origin of replication. The recruitment of ad-
ditional factors initiate the bi-directional progression of
two divergent replication forks along the chromosome.
One strand is replicated continuously (leading strand),
while the other strand is replicated in discrete steps to-
wards the origin (lagging strand). In eukaryotic cells, this
event is initiated at a number of replication origins and
propagates until two converging forks collide at a termi-
nus of replication [132]. The initiation of different repli-
cation origins is coupled to the cell cycle but there is
a definite flexibility in the usage of the replication ori-
gins at different developmental stages [133,134,135,136,
137]. Also, it can be strongly influenced by the distance
and timing of activation of neighboring replication ori-
gins, by the transcriptional activity and by the local chro-
matin structure [133,134,135,137]. Actually, sequence re-
quirements for a replication origin vary significantly be-
tween different eukaryotic organisms. In the unicellular
eukaryote Saccharomyces cerevisiae, the replication ori-
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gins spread over 100–150 bp and present some highly con-
served motifs [132]. However, among eukaryotes, S. cere-
visiae seems to be the exception that remains faithful to the
replicon model. In the fission yeast Schizosaccharomyces
pombe, there is no clear consensus sequence and the repli-
cation origins spread over at least 800 to 1000 bp [132].
In multicellular organisms, the nature of initiation sites of
DNA replication is evenmore complex. Metazoan replica-
tion origins are rather poorly defined and initiation may
occur at multiple sites distributed over a thousand of base
pairs [138]. The initiation of replication at random and
closely spaced sites was repeatedly observed in Drosophila
and Xenopus early embryo cells, presumably to allow for
extremely rapid S phase, suggesting that any DNA se-
quence can function as a replicator [136,139,140]. A de-
velopmental change occurs around midblastula transition
that coincides with some remodeling of the chromatin
structure, transcription ability and selection of preferen-
tial initiation sites [136,140]. Thus, although it is clear that
some sites consistently act as replication origins in most
eukaryotic cells, the mechanisms that select these sites and
the sequences that determine their location remain elu-
sive in many cell types [141,142]. As recently proposed by
many authors [143,144,145], the need to fulfill specific re-
quirements that result from cell diversification may have
led multicellular eukaryotes to develop various epigenetic
controls over the replication origin selection rather than to
conserve specific replication sequence. This might explain
that only very few replication origins have been identified
so far in multicellular eukaryotes, namely around 20 in
metazoa and only about 10 in human [146]. Along the line
of this epigenetic interpretation, one might wonder what
can be learned about eukaryotic DNA replication from
DNA sequence analysis.

Replication Induced Factory-Roof Skew Profiles
in Mammalian Genomes

The existence of replication associated strand asymmetries
has been mainly established in bacterial genomes [87,90,
92,93,94]. SGC and STA skews abruptly switch sign (over
few kbp) from negative to positive values at the replica-
tion origin and in the opposite direction from positive to
negative values at the replication terminus. This step-like
profile is characteristic of the replicon model [131] (see
Fig. 13, left panel). In eukaryotes, the existence of compo-
sitional biases is unclear and most attempts to detect the
replication origins from strand compositional asymmetry
have been inconclusive. Several studies have failed to show
compositional biases related to replication, and analysis of
nucleotide substitutions in the region of the ˇ-globin repli-

cation origin in primates does not support the existence
of mutational bias between the leading and the lagging
strands [92,147,148]. Other studies have led to rather op-
posite results. For instance, strand asymmetries associated
with replication have been observed in the subtelomeric
regions of Saccharomyces cerevisiae chromosomes, sup-
porting the existence of replication-coupled asymmetric
mutational pressure in this organism [149].

As shown in Fig. 10a for the TOP1 replication ori-
gin [146], most of the known replication origins in the
human genome correspond to rather sharp (over sev-
eral kbp) transitions from negative to positive S (STA as
well as SGC) skew values that clearly emerge from the
noisy background. But when examining the behavior of
the skews at larger distances from the origin, one does
not observe a step-like pattern with upward and down-
ward jumps at the origin and termination positions, re-
spectively, as expected for the bacterial replicon model
(Fig. 13, left panel). Surprisingly, on both sides of the up-
ward jump, the noisy S profile decreases steadily in the
50 to 30 direction without clear evidence of pronounced
downward jumps. As shown in Figs. 10b–10d, sharp up-
ward jumps of amplitude 
S & 15%, similar to the ones
observed for the known replication origins (Fig. 10a), seem
to exist also at many other locations along the human
chromosomes. But the most striking feature is the fact
that in between two neighboring major upward jumps, not
only the noisy S profile does not present any compara-
ble downward sharp transition, but it displays a remark-
able decreasing linear behavior. At chromosome scale, we
thus get jagged S profiles that have the aspect of “factory
roofs” [98,100,146]. Note that the jagged S profiles shown
in Figs. 10a–10d look somehow disordered because of the
extreme variability in the distance between two succes-
sive upward jumps, from spacing � 50–100 kbp (� 100–
200 kbp for the native sequences) mainly in GC rich re-
gions (Fig. 10d), up to 1–2Mbp (� 2–3Mbp for native se-
quences) (Fig. 10c) in agreement with recent experimental
studies [150] that have shown that mammalian replicons
are heterogeneous in size with an average size � 500 kbp,
the largest ones being as large as a few Mbp. But what is
important to notice is that some of these segments between
two successive skew upward jumps are entirely intergenic
(Figs. 10a, 10c), clearly illustrating the particular profile
of a strand bias resulting solely from replication [98,100,
146]. In most other cases, we observe the superimposi-
tion of this replication profile and of the step-like pro-
files of (+) and (�) genes (Fig. 7), appearing as upward
and downward blocks standing out from the replication
pattern (Fig. 10c). Importantly, as illustrated in Figs. 10e,
10f, the factory-roof pattern is not specific to human se-
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 10
S profiles along mammalian genome fragments [100,146].a Fragment of human chromosome 20 including the TOP1 origin (red ver-
tical line). b and c Human chromosome 4 and chromosome 9 fragments, respectively, with low GC content (36%). d Human chromo-
some 22 fragment with larger GC content (48%). In a and b, vertical lines correspond to selected putative origins (see Subsect. “De-
tecting Replication Origins from the Skew WT Skeleton”); yellow lines are linear fits of the S values between successive putative
origins. Black intergenic regions; red, (+) genes; blue, (�) genes. Note the fully intergenic regions upstream of TOP1 in a and from
positions 5290–6850kbp in c. e Fragment of mouse chromosome 4 homologous to the human fragment shown in c. f Fragment of
dog chromosome 5 syntenic to the human fragment shown in c. In e and f, genes are not represented

quences but is also observed in numerous regions of the
mouse and dog genomes [100]. Hence, the presence of
strand asymmetry in regions that have strongly diverged
during evolution further supports the existence of com-
postional bias associated with replication in mammalian
germ-line cells [98,100,146].

Detecting Replication Origins
from the SkewWT Skeleton

We have shown in Fig. 10a that experimentally deter-
mined human replication origins coincide with large-am-
plitude upward transitions in noisy skew profiles. The
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corresponding 
S ranges between 14% and 38%, ow-
ing to possible different replication initiation efficiencies
and/or different contributions of transcriptional biases
(Sect. “Bifractality of Human DNA Strand-Asymmetry
Profiles Results from Transcription”). Along the line of the
jump detection methodology described in Sect. “Bifrac-
tality of Human DNA Strand-Asymmetry Profiles Results
from Transcription”, we have checked that upward jumps
observed in the skew S at these known replication origins
correspond to maxima lines in the WT skeleton that ex-
tend to rather large scales a > a� D 200 kbp. This obser-
vation has led us to select the maxima lines that exist above
a� D 200 kbp, i. e. a scale which is smaller than the typi-
cal replicon size and larger than the typical gene size [98,
100]. In this way, we not only reduce the effect of the
noise but we also reduce the contribution of the upward
(50 extremity) and backward (30 extremity) jumps associ-
ated to the step-like skew pattern induced by transcription
only (Sect. “Bifractality of Human DNA Strand-Asym-
metry Profiles Results from Transcription”), to the ben-
efit of maintaining a good sensitivity to replication in-
duced jumps. The detected jump locations are estimated
as the positions at scale 20 kbp of the so-selected max-
ima lines. According to Eq. (11), upward (resp. down-
ward) jumps are identified by the maxima lines corre-
sponding to positive (resp. negative) values of the WT as
illustrated in Fig. 5c by the green solid (resp. dashed) max-
ima lines. When applying this methodology to the total
skew S along the repeat-masked DNA sequences of the
22 human autosomal chromosomes, 2415 upward jumps

Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 11
Statistical analysis of the sharp jumps detected in the S profiles of the 22 human autosomal chromosomes by the WTmicroscope at
scale a� D 200kbp for repeat-masked sequences [98,100]. j	Sj D jS̄(30)� S̄(50)j, where the averages were computed over the two
adjacent 20 kbp windows, respectively, in the 30 and 50 direction from the detected jump location. a Histograms N(j	Sj) of j	Sj
values. b N(j	Sj > 	S�) vs.	S�. In a and b, the black (resp. red) line corresponds to downward	S < 0 (resp. upward	S > 0)
jumps. R D 3 corresponds to the ratio of upward over downward jumps presenting an amplitude j	Sj � 12:5% (see text)

are detected and, as expected, a similar number (namely
2686) of downward jumps. In Fig. 11a are reported the
histograms of the amplitude j
Sj of the so-identified up-
ward (
S > 0) and downward (
S < 0) jumps respec-
tively. These histograms no longer superimpose as previ-
ously observed at smaller scales in Fig. 8a, the former be-
ing significantly shifted to larger j
Sj values. When plot-
ting N(j
Sj > 
S�) versus 
S� in Fig. 11b, we can see
that the number of large amplitude upward jumps overex-
ceeds the number of large amplitude downward jumps.
These results confirm that most of the sharp upward tran-
sitions in the S profiles in Fig. 10 have no sharp downward
transition counterpart [98,100]. This excess likely results
from the fact that, contrasting with the prokaryote repli-
con model (Fig. 13, left panel) where downward jumps
result from precisely positioned replication terminations,
in mammals termination appears not to occur at specific
positions but to be randomly distributed. Accordingly the
small number of downward jumps with large j
Sj is likely
to result from transcription (Fig. 5) and not from replica-
tion. These jumps are probably due to highly biased genes
that also generate a small number of large-amplitude up-
ward jumps, giving rise to false-positive candidate repli-
cation origins. In that respect, the number of large down-
ward jumps can be taken as an estimation of the number
of false positives. In a first step, we have retained as ac-
ceptable a proportion of 33% of false positives. As shown
in Fig. 11b, this value results from the selection of up-
ward and downward jumps of amplitude j
Sj � 12:5%,
corresponding to a ratio of upward over downward jumps
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Fractals and Wavelets: What CanWe Learn on Transcription and
Replication . . . ?, Figure 12
Mean skew profile of intergenic regions around putative repli-
cation origins [100]. The skew S was calculated in 1 kbp win-
dows (Watson strand) around the position (˙300kbp without
repeats) of the 1012detected upward jumps; 50 and 30 transcript
extremities were extended by 0.5 and 2 kbp, respectively ( ),
or by 10 kbp at both ends (�). The abscissa represents the dis-
tance (in kbp) to the corresponding origin; the ordinate repre-
sents the skews calculated for thewindows situated in intergenic
regions (mean values for all discontinuities and for 10 consec-
utive 1 kbp window positions). The skews are given in percent
(vertical bars, SEM). The lines correspond to linear fits of the val-
ues of the skew (�) for n < �100kbp and n > 100kbp

Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 13
Model of replication termination [98,100]. Schematic representation of the skew profiles associated with three replication origins
O1, O2, and O3; we suppose that these replication origins are adjacent, bidirectional origins with similar replication efficiency. The
abscissa represents the sequence position; the ordinate represents the S value (arbitrary units). Upward (or downward) steps corre-
spond to origin (or termination) positions. For convenience, the termination sites are symmetric relative to O2. (Left) Three different
termination positions Ti , Tj , and Tk , leading to elementary skew profiles Si, Sj, and Sk as predicted by the replicon model [146]. (Cen-
ter) Superposition of these three profiles. (Right) Superposition of a large number of elementary profiles leading to the final factory-
roof pattern. In the simple model, termination occurs with equal probability on both sides of the origins, leading to the linear pro-
file (thick line). In the alternative model, replication termination is more likely to occur at lower rates close to the origins, leading to
a flattening of the profile (gray line)

R D 3. Let us notice that the value of this ratio is highly
variable along the chromosome [146] and significantly
larger than 1 for GCC . 42%.

In a final step, we have decided [98,100,146] to re-
tain as putative replication origins upward jumps with
j
Sj � 12:5% detected in regions with G+C � 42%. This
selection leads to a set of 1012 candidates among which
our estimate of the proportion of true replication origins
is 79% (R D 4:76). In Fig. 12 is shown the mean skew pro-
file calculated in intergenic windows on both sides of the
1012 putative replication origins [100]. This mean skew
profile presents a rather sharp transition from negative to
positive values when crossing the origin position. To avoid
any bias in the skew values that could result from incom-
pletely annotated gene extremities (e. g. 50 and 30 UTRs),
we have removed 10-kbp sequences at both ends of all an-
notated transcripts. As shown in Fig. 12, the removal of
these intergenic sequences does not significantly modifies
the mean skew profile, indicating that the observed val-
ues do not result from transcription. On both sides of the
jump, we observe a linear decrease of the bias with some
flattening of the profile close to the transition point. Note
that, due to (i) the potential presence of signals implicated
in replication initiation and (ii) the possible existence of
dispersed origins [151], one might question the meaning-
fulness of this flattening that leads to a significant underes-
timate of the jump amplitude. Furthermore, according to
our detection methodology, the numerical uncertainty on
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the putative origin position estimate may also contribute
to this flattening. As illustrated in Fig. 12, when extrapo-
lating the linear behavior observed at distances > 100 kbp
from the jump, one gets a skew of 5.3%, i. e. a value consis-
tent with the skew measured in intergenic regions around
the six experimentally known replication origins namely
7:0˙ 0:5%. Overall, the detection of sharp upward jumps
in the skew profiles with characteristics similar to those
of experimentally determined replication origins and with
no downward counterpart further supports the existence,
in human chromosomes, of replication-associated strand
asymmetries, leading to the identification of numerous pu-
tative replication origins active in germ-line cells.

AModel of Replication in Mammalian Genomes

Following the observation of jagged skew profiles simi-
lar to factory roofs in Subsect. “Replication Induced Fac-
tory-Roof Skew Profiles in Mammalian Genomes”, and
the quantitative confirmation of the existence of such
(piecewise linear) profiles in the neighborhood of 1012
putative origins in Fig. 12, we have proposed, in Tou-
chon et al. [100] and Brodie of Brodie et al. [98], a rather
crude model for replication in the human genome that
relies on the hypothesis that the replication origins are
quite well positioned while the terminations are randomly
distributed. Although some replication terminations have
been found at specific sites in S. cerevisiae and to some ex-
tent in Schizosaccharomyces pombe [152], they occur ran-
domly between active origins inXenopus egg extracts [153,
154]. Our results indicate that this property can be ex-
tended to replication in human germ-line cells. As illus-
trated in Fig. 13, replication termination is likely to rely
on the existence of numerous potential termination sites
distributed along the sequence. For each termination site
(used in a small proportion of cell cycles), strand asym-
metries associated with replication will generate a step-
like skew profile with a downward jump at the position
of termination and upward jumps at the positions of the
adjacent origins (as in bacteria). Various termination po-
sitions will thus correspond to classical replicon-like skew
profiles (Fig. 13, left panel). Addition of these profiles will
generate the intermediate profile (Fig. 13, central panel).
In a simple picture, we can reasonably suppose that ter-
mination occurs with constant probability at any position
on the sequence. This behavior can, for example, result
from the binding of some termination factor at any posi-
tion between successive origins, leading to a homogeneous
distribution of termination sites during successive cell cy-
cles. The final skew profile is then a linear segment de-
creasing between successive origins (Fig. 13, right panel).

Let us point out that firing of replication origins during
time interval of the S phase [155] might result in some
flattening of the skew profile at the origins as sketched
in Fig. 13 (right panel, gray curve). In the present state,
our results [98,100,146] support the hypothesis of random
replication termination in human, and more generally in
mammalian cells (Fig. 10), but further analyzes will be nec-
essary to determine what scenario is precisely at work.

AWavelet-BasedMethodology to Disentangle
Transcription- and Replication-AssociatedStrand
Asymmetries Reveals a Remarkable Gene
Organization in the Human Genome

During the duplication of eukaryotic genomes that occurs
during the S phase of the cell cycle, the different replica-
tion origins are not all activated simultaneously [132,135,
138,150,155,156]. Recent technical developments in ge-
nomic clone microarrays have led to a novel way of de-
tecting the temporal order of DNA replication [155,156].
The arrays are used to estimate replication timing ratios
i. e. ratios between the average amount of DNA in the S
phase at a locus along the genome and the usual amount
of DNA present in the G1 phase for that locus. These ra-
tios should vary between 2 (throughout the S phase, the
amount of DNA for the earliest replicating regions is twice
the amount during G1 phase) and 1 (the latest replicating
regions are not duplicated until the end of S phase). This
approach has been successfully used to generate genome-
wide maps of replication timing for S. cerevisiae [157],
Drosophila melanogaster [137] and human [158]. Very re-
cently, two new analyzes of human chromosome 6 [156]
and 22 [155] have improved replication timing resolution
from 1Mbp down to � 100 kbp using arrays of overlap-
ping tile path clones. In this section, we report on a very
promising first step towards the experimental confirma-
tion of the thousand putative replication origins described
in Sect. “From the Detection of Relication Origins Using
the Wavelet Transform Microscope to the Modeling of
Replication in Mammalian Genomes”. The strategy will
consist in mapping them on the recent high-resolution
timing data [156] and in checking that these regions repli-
cate earlier than their surrounding [114]. But to provide
a convincing experimental test, we need as a prerequisite
to extract the contribution of the compositional skew spe-
cific to replication.

Disentangling Transcription- and
Replication-Associated Strand Asymmetries

The first step to detect putative replication domains
consists in developing a multi-scale pattern recognition
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Fractals and Wavelets: What CanWe Learn on Transcription and
Replication . . . ?, Figure 14
Wavelet-based analysis of genomic sequences. a Skew profile S
of a 9Mbp repeat-masked fragment of human chromosome 21.
b WT of S using 'R (Fig. 1c); T
R [S](n;a) is color-coded from
dark-blue (min; negative values) to red (max; positive values)
through green (null values). Light-blue and purple lines illustrate
the detection of two replication domains of significantly differ-
ent sizes. Note that in b, blue cone-shape areas signing upward
jumps point at small scale (top) towards the putative replica-
tion origins and that the vertical positions of the WT maxima
(red areas) corresponding to the two indicated replication do-
mains match the distance between the putative replication ori-
gins (1.6Mbp and 470kbp respectively)

methodology based on the WT of the strand compo-
sitional asymmetry S using as analyzing wavelet �R(x)
(Eq. (12)) that is adapted to perform an objective segmen-
tation of factory-roof skew profiles (Fig. 1c). As illustrated
in Fig. 14, the space-scale location of significant max-
ima values in the 2D WT decomposition (red areas in
Fig. 14b) indicates the middle position (spatial location)
of candidate replication domains whose size is given by
the scale location. In order to avoid false positives, we then
check that there does exist a well-defined upward jump at
each domain extremity. These jumps appear in Fig. 14b as
blue cone-shape areas pointing at small scale to the jumps
positions where are located the putative replication ori-
gins. Note that because the analyzing wavelet is of zero
mean (Eq. (2)), the WT decomposition is insensitive to
(global) asymmetry offset.

But as discussed in Sect. “Bifractality of Human DNA
Strand-Asymmetry Profiles Results from Transcription”,
the overall observed skew S also contains some contri-
bution induced by transcription that generates step-like

blocks corresponding to (+) and (�) genes [96,97,129].
Hence, when superimposing the replication serrated and
transcription step-like skew profiles, we get the following
theoretical skew profile in a replication domain [114]:

S(x0) D SR(x0)C ST (x0)

D �2ı �
�
x0 �

1
2

�
C
X

gene
cg�g

�
x0

;

(23)

where position x0 within the domain has been rescaled
between 0 and 1, ı > 0 is the replication bias, �g is the
characteristic function for the gth gene (1 when x0 points
within the gene and 0 elsewhere) and cg is its transcrip-
tional bias calculated on the Watson strand (likely to be
positive for (+) genes and negative for (�) genes). The ob-
jective is thus to detect human replication domains by de-
lineating, in the noisy S profile obtained at 1 kbp resolution
(Fig. 15a), all chromosomal loci where S is well fitted by the
theoretical skew profile Eq. (23).

In order to enforce strong compatibility with themam-
malian replicon model (Subsect. “A Model of Replication
in Mammalian Genomes”), we will only retain the do-
mains the most likely to be bordered by putative repli-
cation origins, namely those that are delimited by up-
ward jumps corresponding to a transition from a nega-
tive S value< �3% to a positive S value > C3%. Also, for
each domain so-identified, we will use a least-square fitting
procedure to estimate the replication bias ı, and each of
the gene transcription bias cg . The resulting �2 value will
then be used to select the candidate domains where the
noisy S profile is well described by Eq. (23). As illustrated
in Fig. 15 for a fragment of human chromosome 6 that
contains 4 adjacent replication domains (Fig. 15a), this
method provides a very efficient way of disentangling the
step-like transcription skew component (Fig. 15b) from
the serrated component induced by replication (Fig. 15c).
Applying this procedure to the 22 human autosomes,
we delineated 678 replication domains of mean length
hLi D 1:2˙ 0:6Mbp, spanning 28.3% of the genome and
predicted 1060 replication origins.

DNA Replication Timing Data Corroborate in silico
Human Replication Origin Predictions

Chromosome 22 being rather atypical in gene and GC
contents, we mainly report here on the correlation analy-
sis [114] between nucleotide compositional skew and tim-
ing data for chromosome 6 which is more representative
of the whole human genome. Note that timing data for
clones completely included in another clone have been re-
moved after checking for timing ratio value consistency
leaving 1648 data points. The timing ratio value at each
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Fractals and Wavelets: What CanWe Learn on Transcription and
Replication . . . ?, Figure 15
a Skew profile S of a 4.3Mbp repeat-masked fragment of human
chromosome 6 [114]; each point corresponds to a 1 kbp win-
dow: Red, (+) genes; blue, (�) genes; black, intergenic regions
(the color was defined by majority rule); the estimated skew
profile (Eq. (23)) is shown in green; vertical lines correspond to
the locations of 5 putative replication origins that delimit 4 ad-
jacent domains identified by the wavelet-based methodology.
b Transcription-associated skew ST obtained by subtracting the
estimated replication-associated profile (green lines in c) from
the original S profile in a; the estimated transcription step-like
profile (second term on the rhs of Eq. (23)) is shown in green.
c Replication-associated skew SR obtained by subtracting the es-
timated transcription step-like profile (green lines in b) from the
original S profile in a; the estimated replication serrated profile
(first term in the rhs of Eq. (23)) is shown in green; the light-blue
dots correspond to high-resolution tr data

point has been chosen as themedian over the 4 closest data
points to remove noisy fluctuations resulting from clone
heterogeneity (clone length 100˙ 51 kbp and distance be-
tween successive clone mid-points 104˙ 89 kbp), so that
the spatial resolution is rather inhomogeneous � 300 kbp.
Note that using asynchronous cells also results in some
smoothing of the data, possibly masking local maxima.

Our wavelet-based methodology has identified 54
replication domains in human chromosome 6 [114]; these
domains are bordered by 83 putative replication origins
among which 25 are common to two adjacent domains.
Four of these contiguous domains are shown in Fig. 15.
In Fig. 15c, on top of the replication skew profile SR, are

reported for comparison the high-resolution timing ratio
tr data from [156]. The histogram of tr values obtained
at the 83 putative origin locations displays a maximum
at tr ' htri ' 1:5 (data not shown) and confirms what is
observed in Fig. 15c, namely that a majority of the pre-
dicted origins are rather early replicating with tr & 1:4.
This contrasts with the rather low tr ('1.2) values ob-
served in domain central regions (Fig. 15c). But there is
an even more striking feature in the replication timing
profile in Fig. 15c: 4 among the 5 predicted origins cor-
respond, relatively to the experimental resolution, to lo-
cal maxima of the tr profile. As shown in Fig. 16a, the
average tr profile around the 83 putative replication ori-
gins decreases regularly on both sides of the origins over
a few (4–6) hundreds kbp confirming statistically that do-
main borders replicate earlier than their left and right sur-
roundings which is consistent with these regions being
true replication origins mostly active early in S phase. In
fact, when averaging over the top 20 origins with a well-de-
fined local maximum in the tr profile, htri displays a faster
decrease on both sides of the origin and a higher max-
imum value � 1.55 corresponding to the earliest repli-
cating origins. On the opposite, when averaging tr pro-
files over the top 10 late replicating origins, we get, as ex-
pected, a rather flat mean profile (tr � 1:2) (Fig. 16a). In-
terestingly, these origins are located in rather wide regions
of very low GC content (. 34%, not shown) correlat-
ing with chromosomal G banding patterns predominantly
composed of GC-poor isochores [159,160]. This illustrates
how the statistical contribution of rather flat profiles ob-
served around late replicating origins may significantly af-
fect the overall mean tr profile. Individual inspection of
the 38 replication domains with L � 1Mbp shows that, in
those domains that are bordered by early replicating ori-
gins (tr & 1:4 �1:5), the replication timing ratio tr and the
absolute value of the replication skew jSR j turn out to be
strongly correlated. This is quantified in Fig. 16b by the
histogram of the Pearson’s correlation coefficient values
that is clearly shifted towards positive values with a maxi-
mum at � 0.4. Altogether the results of this comparative
analysis provide the first experimental verification of in
silico replication origins predictions: The detected puta-
tive replication domains are bordered by replication ori-
gins mostly active in the early S phase, whereas the central
regions replicate more likely in late S phase.

Gene Organization
in the Detected Replication Domains

Most of the 1060 putative replication origins that bor-
der the detected replication domains are intergenic (77%)
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 16
a Average replication timing ratio (˙SEM) determined around the 83 putative replication origins ( ), 20 origins with well-defined
local maxima (�) and 10 late replicating origins (4). 	x is the native distance to the origins in Mbp units [114]. b Histogram of
Pearson’s correlation coefficient values between tr and the absolute value of SR over the 38 predicted domains of length L � 1Mbp.
The dotted line corresponds to the expected histogram computed with the correlation coefficients between tr and jSj profiles over
independent windows randomly positioned along chromosome 6 andwith the same length distribution as the 38 detected domains

and are located near to a gene promoter more often than
would be expected by chance (data not shown) [101]. The
replication domains contain approximately equal num-
bers of genes oriented in each direction (1511 (+) genes
and 1507 (�) genes). Gene distributions in the 50 halves
of domains contain more (+) genes than (�) genes, re-
gardless of the total number of genes located in the half-
domains (Fig. 17b). Symmetrically, the 30 halves contain
more (�) genes than (+) genes (Fig. 17b). 32.7% of half-
domains contain one gene, and 50.9% contain more than
one gene. For convenience, (+) genes in the 50 halves
and (�) genes in the 30 halves are defined as R+ genes
(Fig. 17a): their transcription is, in most cases, oriented in
the same direction as the putative replication fork progres-
sion (genes transcribed in the opposite direction are de-
fined as R� genes). The 678 replication domains contain
significantly more R+ genes (2041) than R� genes (977).
Within 50 kbp of putative replication origins, the mean
density of R+ genes is 8.2 times greater than that of R�
genes. This asymmetryweakens progressively with the dis-
tance from the putative origins, up to� 250 kbp (Fig. 17b).
A similar asymmetric pattern is observed when the do-
mains containing duplicated genes are eliminated from
the analysis, whereas control domains obtained after ran-
domization of domain positions present similar R+ and
R� gene density distributions (Supplementary in [101]).

The mean length of the R+ genes near the putative ori-
gins is significantly greater (� 160 kbp) than that of the
R� genes (� 50 kbp), however both tend towards similar
values (� 70 kbp) at the center of the domain (Fig. 17c).
Within 50 kbp of the putative origins, the ratio between
the numbers of base pairs transcribed in the R+ and R� di-
rections is 23.7; this ratio falls to� 1 at the domain centers
(Fig. 17d). In Fig. 17e are reported the results of the anal-
ysis of the breadth of expression, Nt (number of tissues in
which a gene is expressed) of genes located within the de-
tected domains [101]. As measured by EST data (similar
results are obtained by SAGE or microarray data [101]),
Nt is found to decrease significantly from the extremities
to the center in a symmetrical manner in the 50 and 30 half-
domains (Fig. 17e). Thus, genes located near the putative
replications origins tend to be widely expressed whereas
those located far from them are mostly tissue-specific.

To summarize, the results reported in this section pro-
vide the first demonstration of quantitative relationships
in the human genome between gene expression, orienta-
tion and distance from putative replication origins [101].
A possible key to the understanding of this complex archi-
tecture is the coordination between replication and tran-
scription [101]. The putative replication origins would
mostly be active early in the S phase in most tissues. Their
activity could result from particular genomic context in-
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Fractals andWavelets: What CanWe Learn on Transcription and Replication . . . ?, Figure 17
Analysis of the genes located in the identified replication domains [101]. a Arrows indicate the R+ orientation, i. e. the same orienta-
tion as the most frequent direction of putative replication fork progression; R� orientation (opposed direction); red, (+) genes; blue,
(�) genes. b Gene density. The density is defined as the number of 50 ends (for (+) genes) or of 30 ends (for (�) genes) in 50-kbp
adjacent windows, divided by the number of corresponding domains. In abscissa, the distance, d, in Mbp, to the closest domain
extremity. c Mean gene length. Genes are ranked by their distance, d, from the closest domain extremity, grouped by sets of 150
genes, and themean length (kbp) is computed for each set. d Relative number of base pairs transcribed in the + direction (red),� di-
rection (blue) and non-transcribed (black) determined in 10-kbp adjacent sequence windows. eMean expression breadth using EST
data [101]

volving transcription factor binding sites and/or from the
transcription of their neighboring housekeeping genes.
This activity could also be associated with an open chro-
matin structure, permissive to early replication and gene
expression in most tissues [161,162,163,164]. This open
conformation could extend along the first gene, possi-
bly promoting the expression of further genes. This ef-
fect would progressively weaken with the distance from
the putative replication origin, leading to the observed
decrease in expression breadth. This model is consistent
with a number of data showing that in metazoans, ORC
and RNA polymerase II colocalize at transcriptional pro-
moter regions [165], and that replication origins are deter-
mined by epigenetic information such as transcription fac-
tor binding sites and/or transcription [166,167,168,169]. It
is also consistent with studies in Drosophila and humans
that report correlation between early replication timing
and increased probability of expression [137,155,156,165,
170]. Furthermore, near the putative origins bordering
the replication domains, transcription is preferentially ori-
ented in the same direction as replication fork progres-

sion. This co-orientation is likely to reduce head-on colli-
sions between the replication and transcription machiner-
ies, which may induce deleterious recombination events
either directly or via stalling of the replication fork [171,
172]. In bacteria, co-orientation of transcription and repli-
cation has been observed for essential genes, and has been
associated with a reduction in head-on collisions between
DNA and RNA polymerases [173]. It is noteworthy that
in human replication domains such co-orientation usu-
ally occurs in widely-expressed genes located near puta-
tive replication origins. Near domain centers, head-on col-
lisions may occur in 50% of replication cycles, regardless
of the transcription orientation, since there is no prefer-
ential orientation of the replication fork progression in
these regions. However, in most cell types, there should be
few head-on collisions due to the low density and expres-
sion breadth of the corresponding genes. Selective pres-
sure to reduce head-on collisions may thus have con-
tributed to the simultaneous and coordinated organization
of gene orientation and expression breadth along the de-
tected replication domains [101].
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Future Directions

From a statistical multifractal analysis of nucleotide strand
asymmetries in mammalian genomes, we have revealed
the existence of jumps in the noisy skew profiles result-
ing from asymmetries intrinsic to the transcription and
replication processes [98,100]. This discovery has led us
to extend our 1D WTMM methodology to an adapted
multi-scale pattern recognition strategy in order to de-
tect putative replication domains bordered by replication
origins [101,114]. The results reported in this manuscript
show that directly from the DNA sequence, we have been
able to reveal the existence in the human genome (and very
likely in all mammalian genomes), of regions bordered by
early replicating origins in which gene position, orienta-
tion and expression breadth present a high level of organi-
zation, possibly mediated by the chromatin structure.

These results open new perspectives in DNA sequence
analysis, chromatin modeling as well as in experiment.
From a bioinformatic and modeling point of view, we
plan to study the lexical and structural characteristics of
our set of putative origins. In particular we will search for
conserved sequence motifs in these replication initiation
zones. Using a sequence-dependent model of DNA-his-
tones interactions, we will develop physical studies of nu-
cleosome formation and diffusion along the DNA fiber
around the putative replication origins. These bioinfor-
matic and physical studies, performed for the first time on
a large number of replication origins, should shed light on
the processes at work during the recognition of the replica-
tion initiation zone by the replication machinery. From an
experimental point of view, our study raises new opportu-
nities for future experiments. The first one concerns the
experimental validation of the predicted replication ori-
gins (e. g. bymolecular combing of DNAmolecules [174]),
which will allow us to determine precisely the existence of
replication origins in given genome regions. Large scale
study of all candidate origins is in current progress in
the laboratory of O. Hyrien (École Normale Supérieure,
Paris). The second experimental project consists in us-
ing Atomic Force Microscopy (AFM) [175] and Surface
Plasmon Resonance Microscopy (SPRM) [176] to visu-
alize and study the structural and mechanical properties
of the DNA double helix, the nucleosomal string and
the 30 nm chromatin fiber around the predicted replica-
tion origins. This work is in current progress in the ex-
perimental group of F. Argoul at the Laboratoire Joliot–
Curie (ENS, Lyon) [83]. Finally the third experimental
perspective concerns in situ studies of replication origins.
Using fluorescence techniques (FISH chromosome paint-
ing [177]), we plan to study the distributions and dynam-

ics of origins in the cell nucleus, as well as chromosome
domains potentially associated with territories and their
possible relation to nuclear matrix attachment sites. This
study is likely to provide evidence of chromatin rosette
patterns as suggested in [146]. This study is under progress
in the molecular biology experimental group of F. Monge-
lard at the Laboratoire Joliot–Curie.
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Glossary

Degree of a node Number of edges incident to the node.
Scale-free network Network that exhibits a wide (usually

power-law) distribution of the degrees.
Small-world network Network for which the diameter

increases logarithmically with the number of nodes.
Distance The length (measured in number of links) of the

shortest path between two nodes.
Box Group of nodes. In a connected box there exists a path

within the box between any pair of nodes. Otherwise,
the box is disconnected.

Box diameter The longest distance in a box.

Definition of the Subject

The explosion in the study of complex networks during
the last decade has offered a unique view in the structure
and behavior of a wide range of systems, spanning many

different disciplines [1]. The importance of complex net-
works lies mainly in their simplicity, since they can rep-
resent practically any system with interactions in a uni-
fied way by stripping complicated details and retaining the
main features of the system. The resulting networks in-
clude only nodes, representing the interacting agents and
links, representing interactions. The term ‘interactions’ is
used loosely to describe any possible way that causes two
nodes to form a link. Examples can be real physical links,
such as the wires connecting computers in the Internet or
roads connecting cities, or alternatively theymay be virtual
links, such as links in WWWhomepages or acquaintances
in societies, where there is no physical medium actually
connecting the nodes.

The field was pioneered by the famous mathematician
P. Erdős many decades ago, when he greatly advanced
graph theory [27]. The theory of networks would have per-
haps remained a problem of mathematical beauty, if it was
not for the discovery that a huge number of everyday life
systems share many common features and can thus be de-
scribed through a unified theory. The remarkable diver-
sity of these systems incorporates artificially or man-made
technological networks such as the Internet and theWorld
Wide Web (WWW), social networks such as social ac-
quaintances or sexual contacts, biological networks of nat-
ural origin, such as the network of protein interactions of
Yeast [1,36], and a rich variety of other systems, such as
proximity of words in literature [48], items that are bought
by the same people [16] or the way modules are connected
to create a piece of software, among many others.

The advances in our understanding of networks, com-
bined with the increasing availability of many databases,
allows us to analyze and gain deeper insight into the main
characteristics of these complex systems. A large number
of complex networks share the scale-free property [1,28],
indicating the presence of few highly connected nodes
(usually called hubs) and a large number of nodes with
small degree. This feature alone has a great impact on the
analysis of complex networks and has introduced a new
way of understanding these systems. This property carries
important implications in many everyday life problems,
such as the way a disease spreads in communities of indi-
viduals, or the resilience and tolerance of networks under
random and intentional attacks [19,20,21,31,59].

Although the scale-free property holds an undisputed
importance, it has been shown to not completely deter-
mine the global structure of networks [6]. In fact, two net-
works that obey the same distribution of the degrees may
dramatically differ in other fundamental structural prop-
erties, such as in correlations between degrees or in the av-
erage distance betweennodes. Another fundamental prop-
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erty, which is the focus of this article, is the presence of
self-similarity or fractality. In simpler terms, we want to
know whether a subsection of the network looks much the
same as the whole [8,14,29,66]. In spite of the fact that
in regular fractal objects the distinction between self-sim-
ilarity and fractality is absent, in network theory we can
distinguish the two terms: in a fractal network the num-
ber of boxes of a given size that are needed to completely
cover the network scales with the box size as a power law,
while a self-similar network is defined as a network whose
degree distribution remains invariant under renormaliza-
tion of the network (details on the renormalization process
will be provided later). This essential result allows us to
better understand the origin of important structural prop-
erties of networks such as the power-law degree distribu-
tion [35,62,63].

Introduction

Self-similarity is a property of fractal structures, a concept
introduced by Mandelbrot and one of the fundamental
mathematical results of the 20th century [29,45,66]. The
importance of fractal geometry stems from the fact that
these structures were recognized in numerous examples in
Nature, from the coexistence of liquid/gas at the critical
point of evaporation of water [11,39,65], to snowflakes, to
the tortuous coastline of the Norwegian fjords, to the be-
havior of many complex systems such as economic data,
or the complex patterns of human agglomeration [29,66].

Typically, real world scale-free networks exhibit the
small-world property [1], which implies that the num-
ber of nodes increases exponentially with the diameter of
the network, rather than the power-law behavior expected
for self-similar structures. For this reason complex net-
works were believed to not be length-scale invariant or
self-similar.

In 2005, C. Song, S. Havlin and H. Makse presented an
approach to analyze complex networks, that reveals their
self-similarity [62]. This result is achieved by the applica-
tion of a renormalization procedure which coarse-grains
the system into boxes containing nodes within a given
size [62,64]. As a result, a power-law relation between the
number of boxes needed to cover the network and the
size of the box is found, defining a finite self-similar expo-
nent. These fundamental properties, which are shown for
the WWW, cellular and protein-protein interaction net-
works, help to understand the emergence of the scale-free
property in complex networks. They suggest a common
self-organization dynamics of diverse networks at different
scales into a critical state and in turn bring together pre-
viously unrelated fields: the statistical physics of complex

networks with renormalization group, fractals and critical
phenomena.

Fractality in Real-World Networks

The study of real complex networks has revealed that
many of them share some fundamental common proper-
ties. Of great importance is the form of the degree distribu-
tion for these networks, which is unexpectedly wide. This
means that the degree of a node may assume values that
span many decades. Thus, although the majority of nodes
have a relatively small degree, there is a finite probability
that a few nodes will have degree of the order of thou-
sands or even millions. Networks that exhibit such a wide
distribution P(k) are known as scale-free networks, where
the term refers to the absence of a characteristic scale in
the degree k. This distribution very often obeys a power-
law form with a degree exponent � , usually in the range
2 < � < 4 [2],

P(k) � k�� : (1)

A more generic property, that is usually inherent in scale-
free networks but applies equally well to other types of
networks, such as in Erdős–Rényi random graphs, is the
small-world feature. Originally discovered in sociological
studies [47], it is the generalization of the famous ‘six de-
grees of separation’ and refers to the very small network
diameter. Indeed, in small-world networks a very small
number of steps is required to reach a given node start-
ing from any other node. Mathematically this is expressed
by the slow (logarithmic) increase of the average diame-
ter of the network, ¯̀, with the total number of nodes N,
¯̀� ln N, where ` is the shortest distance between two
nodes and defines the distance metric in complex net-
works [2,12,27,67], namely,

N � e
¯̀/`0 ; (2)

where `0 is a characteristic length.
These network characteristics have been shown to ap-

ply in many empirical studies of diverse systems [1,2,28].
The simple knowledge that a network has the scale-free
and/or small-world property already enables us to quali-
tatively recognize many of its basic properties. However,
structures that have the same degree exponents may still
differ in other aspects [6]. For example, a question of fun-
damental importance is whether scale-free networks are
also self-similar or fractals. The illustrations of scale-free
networks (see, e. g,. Figs. 1 and 2b) seem to resemble tra-
ditional fractal objects. Despite this similarity, Eq. (2) def-
initely appears to contradict a basic property of fractality:
fast increase of the diameter with the system size. More-
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over, a fractal object should be self-similar or invariant un-
der a scale transformation, which is again not clear in the
case of scale-free networks where the scale has necessarily
limited range. So, how is it even possible that fractal scale-
free networks exist? In the following, we will see how these
seemingly contradictory aspects can be reconciled.

Fractality and Self-Similarity

The classical theory of self-similarity requires a power-law
relation between the number of nodes N and the diame-
ter of a fractal object ` [8,14]. The fractal dimension can
be calculated using either box-counting or cluster-growing
techniques [66]. In the first method the network is covered
with NB boxes of linear size `B. The fractal dimension or
box dimension dB is then given by [29]:

NB � `
�dB
B : (3)

In the second method, instead of covering the network
with boxes, a random seed node is chosen and nodes cen-
tered at the seed are grown so that they are separated by
a maximum distance `. The procedure is then repeated
by choosing many seed nodes at random and the average
“mass” of the resulting clusters, hMci (defined as the num-

Fractal and Transfractal Scale-Free Networks, Figure 1
Representation of the Protein Interaction Network of Yeast. The colors show different subgroups of proteins that participate in dif-
ferent functionality classes [36]

ber of nodes in the cluster) is calculated as a function of `
to obtain the following scaling:

hMci � `
df ; (4)

defining the fractal cluster dimension df [29]. If we use
Eq. (4) for a small-world network, then Eq. (2) readily im-
plies that df D 1. In other words, these networks cannot
be characterized by a finite fractal dimension, and should
be regarded as infinite-dimensional objects. If this were
true, though, local properties in a part of the network
would not be able to represent the whole system. Still, it
is also well established that the scale-free nature is simi-
lar in different parts of the network. Moreover, a graphi-
cal representation of real-world networks allows us to see
that those systems seem to be built by attaching (following
some rule) copies of itself.

The answer lies in the inherent inhomogeneity of the
network. In the classical case of a homogeneous system
(such as a fractal percolation cluster) the degree distribu-
tion is very narrow and the two methods described above
are fully equivalent, because of this local neighborhood
invariance. Indeed, all boxes in the box-covering method
are statistically similar with each other as well as with the
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Fractal and Transfractal Scale-Free Networks, Figure 2
The renormalization procedure for complex networks. aDemon-
stration of the method for different `B and different stages in
a network demo. The first column depicts the original network.
The system is tiled with boxes of size `B (different colors corre-
spond to different boxes). All nodes in a box are connected by
a minimum distance smaller than the given `B. For instance, in
the case of `B D 2, one identifies four boxes which contain the
nodes depicted with colors red, orange, white, and blue, each
containing 3, 2, 1, and 2 nodes, respectively. Then each box is re-
placed by a single node; two renormalized nodes are connected
if there is at least one link between the unrenormalized boxes.
Thus we obtain the network shown in the second column. The
resulting number of boxes needed to tile the network, NB(`B), is
plotted in Fig. 3 vs. `B to obtain dB as in Eq. (3). The renormaliza-
tion procedure is applied again and repeated until the network is
reduced to a single node (third and fourth columns for different
`B). b Three stages in the renormalization scheme applied to the
entire WWW. We fix the box size to `B D 3 and apply the renor-
malization for four stages. This corresponds, for instance, to the
sequence for the network demo depicted in the second row in
part a of this figure. We color the nodes in the web according to
the boxes to which they belong

boxes grown when using the cluster-growing technique, so
that Eq. (4) can be derived from Eq. (3) and dB D df.

In inhomogeneous systems, though, the local environ-
ment can vary significantly. In this case, Eqs. (3) and (4)

are no longer equivalent. If we focus on the box-covering
technique then we want to cover the entire network with
the minimum possible number of boxes NB(`B), where
the distance between any two nodes that belong in a box
is smaller than `B. An example is shown in Fig. 2a using
a simple 8-node network. After we repeat this procedure
for different values of `B we can plot NB vs. `B.

When the box-covering method is applied to real
large-scale networks, such as the WWW [2] (http://www.
nd.edu/~networks), the network of protein interaction
of H. sapiens and E. coli [25,68] and several cellular
networks [38,52], then they follow Eq. (3) with a clear
power-law, indicating the fractal nature of these systems
(Figs. 3a,b,c). On the other hand when the method is
applied to other real world networks such as the Inter-
net [24] or the Barabási–Albert network [7], they do not
satisfy Eq. (3), which manifests that these networks are not
fractal.

The reason behind the discrepancy in the fractality of
homogeneous and inhomogeneous systems can be better
clarified studying the mass of the boxes. For a given `B
value, the average mass of a box hMB(`B)i is

hMB(`B)i �
N

NB(`B)
� `

dB
B ; (5)

as also verified in Fig. 3 for several real-world networks.
On the other hand, the average performed in the clus-
ter growing method (averaging over single boxes without
tiling the system) gives rise to an exponential growth of the
mass

hMc(`)i � e`/`1 ; (6)

in accordance with the small-world effect, Eq. (2). Corre-
spondingly, the probability distribution of the mass of the
boxesMB using box-covering is very broad, while the clus-
ter-growing technique leads to a narrow probability distri-
bution of Mc.

The topology of scale-free networks is dominated by
several highly connected hubs—the nodes with the largest
degree—implying that most of the nodes are connected
to the hubs via one or very few steps. Therefore, the av-
erage performed in the cluster growing method is biased;
the hubs are overrepresented in Eq. (6) since almost every
node is a neighbor of a hub, and there is always a very large
probability of including the same hubs in all clusters. On
the other hand, the box covering method is a global tiling
of the system providing a flat average over all the nodes,
i. e. each part of the network is covered with an equal prob-
ability. Once a hub (or any node) is covered, it cannot be
covered again.

http://www.nd.edu/~networks
http://www.nd.edu/~networks
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Fractal and Transfractal Scale-Free Networks, Figure 3
Self-similar scaling in complex networks. a Upper panel: Log-log plot of theNB vs.`B revealing the self-similarity of theWWWaccord-
ing to Eq. (3). Lower panel: The scaling of s(`B) vs. `B according to Eq. (9). b Same as a but for two protein interaction networks: H.
sapiens and E. coli. Results are analogous to b butwith different scaling exponents. c Same as a for the cellular networks ofA. fulgidus,
E. coli and C. elegans.d Internet. Log-log plot ofNB(`B). The solid line shows that the internet [24] is not a fractal network since it does
not follow the power-law relation of Eq. (5). e Same as d for the Barabási–Albert model network [7] withm D 3 andm D 5
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In conclusion, we can state that the two dominant
methods that are routinely used for calculations of frac-
tality and give rise to Eqs. (3) and (4) are not equivalent
in scale-free networks, but rather highlight different as-
pects: box covering reveals the self-similarity, while cluster
growth reveals the small-world effect. The apparent con-
tradiction is due to the hubs being used many times in the
latter method.

Scale-free networks can be classified into three groups:
(i) pure fractal, (ii) pure small-world and (iii) a mixture
between fractal and small-world. (i) A fractal network sat-
isfies Eq. (3) at all scales, meaning that for any value of `B,
the number of boxes always follows a power-law (exam-
ples are shown in Fig. 3a,b,c). (ii)When a network is a pure
small-world, it never satisfies Eq. (3). Instead, NB follows
an exponential decay with `B and the network cannot be
regarded as fractal. Figures 3d and 3e show two examples
of pure small-world networks. (iii) In the case of mixture
between fractal and small-world, Eq. (3) is satisfied up to
some cut-off value of `B, above which the fractality breaks
down and the small-world property emerges. The small-
world property is reflected in the plot of NB vs. `B as an
exponential cut-off for large `B.

We can also understand the coexistence of the small-
world property and the fractality through a more intuitive
approach. In a pure fractal network the length of a path
between any pair of nodes scales as a power-law with the
number of nodes in the network. Therefore, the diam-
eter L also follows a power-law, L � N1/dB . If one adds
a few shortcuts (links between randomly chosen nodes),
many paths in the network are drastically shortened and
the small-world property emerges as L � LogN. In spite
of this fact, for shorter scales, `B 
 L, the network still
behaves as a fractal. In this sense, we can say that glob-
ally the network is small-world, but locally (for short
scales) the network behaves as a fractal. As more short-
cuts are added, the cut-off in a plot of NB vs. `B appears
for smaller `B, until the network becomes a pure small-
world for which all paths lengths increase logarithmically
with N .

The reasons why certain networks have evolved to-
wards a fractal or non-fractal structure will be described
later, together with models and examples that provide ad-
ditional insight into the processes involved.

Renormalization

Renormalization is one of the most important techniques
in modern Statistical Physics [17,39,58]. The idea behind
this procedure is to continuously create smaller replicas
of a given object, retaining at the same time the essen-

tial structural features, and hoping that the coarse-grained
copies will be more amenable to analytic treatment.

The idea for renormalizing the network emerges nat-
urally from the concept of fractality described above. If
a network is self-similar, then it will look more or less
the same under different scales. The way to observe these
different length-scales is based on renormalization princi-
ples, while the criterion to decide on whether a renormal-
ized structure retains its form is the invariance of the main
structural features, expressed mainly through the degree
distribution.

The method works as follows. Start by fixing the value
of `B and applying the box-covering algorithm in order
to cover the entire network with boxes (see Appendix). In
the renormalized network each box is replaced by a single
node and two nodes are connected if there existed at least
one connection between the two corresponding boxes in
the original network. The resulting structure represents
the first stage of the renormalized network. We can apply
the same procedure to this new network, as well, resulting
in the second renormalization stage network, and so on
until we are left with a single node.

The second column of the panels in Fig. 2a shows this
step in the renormalization procedure for the schematic
network, while Fig. 2b shows the results for the same pro-
cedure applied to the entire WWW for `B D 3.

The renormalized network gives rise to a new proba-
bility distribution of links, P(k0) (we use a prime 0 to de-
note quantities in the renormalized network). This distri-
bution remains invariant under the renormalization:

P(k)! P(k0) � (k0)�� : (7)

Fig. 4 supports the validity of this scale transformation by
showing a data collapse of all distributions with the same
� according to (7) for the WWW.

Here, we present the basic scaling relations that char-
acterize renormalizable networks. The degree k0 of each
node in the renormalized network can be seen to scale with
the largest degree k in the corresponding original box as

k! k0 D s(`B)k : (8)

This equation defines the scaling transformation in the
connectivity distribution. Empirically, it was found that
the scaling factor s(< 1) scales with `B with a new expo-
nent, dk, as s(`B) � `

�dk
B , so that

k0 � `�dkB k ; (9)

This scaling is verified for many networks, as shown in
Fig. 3.
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Fractal and Transfractal Scale-Free Networks, Figure 4
Invariance of the degree distribution of the WWW under the
renormalization for different box sizes,`B. We show the data col-
lapse of the degree distributions demonstrating the self-similar-
ity at different scales. The inset shows the scaling of k0 D s(`B)k
for different `B, from where we obtain the scaling factor s(`B).
Moreover, renormalization for a fixed box size (`B D 3) is ap-
plied, until the network is reduced to a few nodes. It was found
that P(k) is invariant under these multiple renormalizations pro-
cedures

The exponents � , dB, and dk are not all independent
from each other. The proof starts from the density balance
equation n(k)dk D n0(k0)dk0, where n(k) D NP(k) is the
number of nodes with degree k and n0(k0) D N 0P(k0) is
the number of nodes with degree k0 after the renormaliza-
tion (N 0 is the total number of nodes in the renormalized
network). Substituting Eq. (8) leads to N 0 D s��1N. Since
the total number of nodes in the renormalized network is
the number of boxes needed to cover the unrenormalized
network at any given `B we have the identityN 0 D NB(`B).
Finally, from Eqs. (3) and (9) one obtains the relation be-
tween the three indexes

� D 1C
dB
dk
: (10)

The use of Eq. (10) yields the same � exponent as that ob-
tained in the direct calculation of the degree distribution.
The significance of this result is that the scale-free prop-
erties characterized by � can be related to a more fun-
damental length-scale invariant property, characterized by
the two new indexes dB and dk.

We have seen, thus, that concepts introduced orig-
inally for the study of critical phenomena in statistical
physics, are also valid in the characterization of a different
class of phenomena: the topology of complex networks.
A large number of scale-free networks are fractals and an
even larger number remain invariant under a scale-trans-

formation. The influence of these features on the network
properties will be delayed until the sixth chapter, after we
introduce some algorithms for efficient numerical calcu-
lations and two theoretical models that give rise to fractal
networks.

Models: Deterministic Fractal
and Transfractal Networks

The first model of a scale-free fractal network was pre-
sented in 1979 when N. Berker and S. Ostlund [9] pro-
posed a hierarchical network that served as an exotic ex-
ample where renormalization group techniques yield ex-
act results, including the percolation phase transition and
the q! 1 limit of the Potts model. Unfortunately, in those
days the importance of the power-law degree distribu-
tion and the concept of fractal and non-fractal complex
networks were not known. Much work has been done
on these types of hierarchical networks. For example, in
1984, M. Kaufman and R. Griffiths made use of Berker and
Ostlund’s model to study the percolation phase transition
and its percolation exponents [22,37,40,41].

Since the late 90s, when the importance of the power-
law degree distribution was first shown [1] and after the
finding of C. Song, S. Havlin and H. Makse [62], many
hierarchical networks that describe fractality in complex
networks have been proposed. These artificial models are
of great importance since they provide insight into the ori-
gins and fundamental properties that give rise to the frac-
tality and non-fractality of networks.

The Song–Havlin–Makse Model

The correlations between degrees in a network [46,49,
50,54] are quantified through the probability P(k1; k2) that
a node of degree k1 is connected to another node of de-
gree k2. In Fig. 5 we can see the degree correlation profile
R(k1; k2) D P(k1; k2)/Pr (k1; k2) of the cellular metabolic
network of E. coli [38] (known to be a fractal network) and
for the Internet at the router level [15] (a non-fractal net-
work), where Pr (k1; k2) is obtained by randomly swapping
the links without modifying the degree distribution.

Figure 5 shows a dramatic difference between the two
networks. The network of E. coli, that is a fractal network,
presents an anti-correlation of the degrees (or dissasorta-
tivity [49,50]), which means that mostly high degree nodes
are linked to low degree nodes. This property leads to
fractal networks. On the other hand, the Internet exhibits
a high correlation between degrees leading to a non-fractal
network.

With this idea in mind, in 2006 C. Song, S. Havlin
and H. Makse presented a model that elucidates the way
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Fractal and Transfractal Scale-Free Networks, Figure 5
Degree correlation profile for a the cellularmetabolic network of
E. coli, and b the Internet at the router level

new nodes must be connected to the old ones in order to
build a fractal, a non-fractal network, or amixture between
fractal and non-fractal network [63]. This model shows
that, indeed, the correlations between degrees of the nodes
are a determinant factor for the fractality of a network.
This model was later extended [32] to allow loops in the
network, while preserving the self-similarity and fractality
properties.

The algorithm is as follows (see Fig. 6): In generation
n D 0, start with two nodes connected by one link. Then,
generation nC 1 is obtained recursively by attaching m
new nodes to the endpoints of each link l of generation n.
In addition, with probability e remove link l and add x new
links connecting pairs of new nodes attached to the end-
points of l.

The degree distribution, diameter and fractal dimen-
sion can be easily calculated. For example, if e D 1 (pure
fractal network), the degree distribution follows a power-
law P(k) � k�� with exponent � D 1C log(2mCx)/logm
and the fractal dimension is dB D log(2mC x)/logm. The
diameter L scales, in this case, as power of the number of
nodes as L � N1/dB [63,64]. Later, in Sect. “Properties
of Fractal and Transfractal Networks”, several topological
properties are shown for this model network.

(u; v)-Flowers

In 2006, H. Rozenfeld, S. Havlin and D. ben-Avraham
proposed a new family of recursive deterministic scale-
free networks, the (u; v)-flowers, that generalize both, the
original scale-free model of Berker and Ostlund [9] and
the pseudo-fractal network of Dorogovstev, Goltsev and
Mendes [26] and that, by appropriately varying its two
parameters u and v, leads to either fractal networks or
non-fractal networks [56,57]. The algorithm to build the
(u; v)-flowers is the following: In generation n D 1 one
starts with a cycle graph (a ring) consisting of u C v � w
links and nodes (other choices are possible). Then, gener-
ation nC 1 is obtained recursively by replacing each link

Fractal and Transfractal Scale-Free Networks, Figure 6
The model grows from a small network, usually two nodes con-
nected to each other. During each step and for every link in the
system, each endpoint of a link producesm offspring nodes (in
this drawingm D 3). In this case, with probability e D 1 the orig-
inal link is removed and x new links between randomly selected
nodes of the new generation are added. Notice that the case of
x D 1 results in a tree structure, while loops appear for x > 1

by two parallel paths of u and v links long. Without loss
of generality, u � v. Examples of (1; 3)- and (2; 2)-flow-
ers are shown in Fig. 7. The DGM network corresponds
to the special case of u D 1 and v D 2 and the Berker and
Ostlund model corresponds to u D 2 and v D 2.

An essential property of the (u; v)-flowers is that they
are self-similar, as evident from an equivalent method
of construction: to produce generation n C 1, make
w D u C v copies of the net in generation n and join them
at the hubs.

The number of links of a (u; v)-flower of generation n
is

Mn D (u C v)n D wn ; (11)

and the number of nodes is

Nn D

w � 2
w � 1

�
wn C


 w
w � 1

�
: (12)

The degree distribution of the (u; v)-flowers can also be
easily obtained since by construction, (u; v)-flowers have
only nodes of degree k D 2m , m D 1; 2; : : : ; n. As in the
DGM case, (u; v)-flowers follow a scale-free degree distri-
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Fractal and Transfractal Scale-Free Networks, Figure 7
(u; v)-flowers with uC v D 4(� D 3). a uD 1 (dotted line) and
v D 3 (broken line). b u D 2 and v D 2. The graphs may also be
iterated by joining four replicas of generation n at the hubs A
and B, for a, or A and C, for b

bution, P(k) � k�� , of degree exponent

� D 1C
ln(u C v)

ln 2
: (13)

Recursive scale-free treesmay be defined in analogy to the
flower nets. If v is even, one obtains generation nC 1 of
a (u; v)-tree by replacing every link in generation n with
a chain of u links, and attaching to each of its endpoints
chains of v/2 links. Figure 8 shows how this works for the
(1; 2)-tree. If v is odd, attach to the endpoints (of the chain
of u links) chains of length (v ˙ 1)/2. The treesmay be also
constructed by successively joiningw replicas at the appro-
priate hubs, and they too are self-similar. They share many
of the fundamental scaling properties with (u; v)-flowers:
Their degree distribution is also scale-free, with the same
degree exponent as (u; v)-flowers.

The self-similarity of (u; v)-flowers, coupled with the
fact that different replicas meet at a single node, makes
them amenable to exact analysis by renormalization tech-
niques. The lack of loops, in the case of (u; v)-trees, further
simplifies their analysis [9,13,56,57].

Fractal and Transfractal Scale-Free Networks, Figure 8
The (1;2)-tree. a Each link in generation n is replaced by a chain
of u D 1 links, to which ends one attaches chains of v/2 D 1
links. b Alternative method of construction highlighting self-
similarity: uC v D 3 replicas of generation n are joined at the
hubs. c Generations n D 1;2;3

Dimensionality of the (u; v)-Flowers There is a vast
difference between (u; v)-nets with u D 1 and u > 1. If
u D 1 the diameter Ln of the nth generation flower scales
linearly with n. For example, Ln for the (1; 2)-flower [26]
and Ln D 2n for the (1; 3)-flower. It is easy to see that the
diameter of the (1; v)-flower, for v odd, is Ln D (v�1)nC
(3�v)/2, and, in general one can show that Ln � (v�1)n.

For u > 1, however, the diameter grows as a power
of n. For example, for the (2; 2)-flower we find Ln D 2n ,
and, more generally, the diameter satisfies Ln � un . To
summarize,

Ln �

(
(v � 1)n u D 1 ;
un u > 1 ;

flowers : (14)

Similar results are quite obvious for the case of (u; v)-trees,
where

Ln �

(
vn u D 1 ;
un u > 1 ;

trees : (15)
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Since Nn � (u C v)n (Eq. (12)), we can recast these rela-
tions as

L �

(
ln N u D 1 ;
N ln u/ ln(uCv) u > 1 :

(16)

Thus, (u; v)-nets are small world only in the case of u D 1.
For u > 1, the diameter increases as a power ofN, just as in
finite-dimensional objects, and the nets are in fact fractal.

For u > 1, the change of mass upon the rescaling of
length by a factor b is

N(bL) D bdBN(L) ; (17)

where dB is the fractal dimension [8]. In this case,
N(uL) D (u C v)N(L), so

dB D
ln(u C v)

ln u
; u > 1 : (18)

Transfinite Fractals Small world nets, such as (1; v)-
nets, are infinite-dimensional. Indeed, their mass (N, or
M) increases faster than any power (dimension) of their
diameter. Also, note that a naive application of (4) to
u! 1 yields df !1. In the case of (1; v)-nets one can
use their weak self-similarity to define a new measure of
dimensionality, d̃f, characterizing howmass scales with di-
ameter:

N(LC `) D e`d̃fN(L) : (19)

Instead of a multiplicative rescaling of length, L 7! bL,
a slower additive mapping, L 7! LC `, that reflects the
small world property is considered. Because the exponent
d̃f usefully distinguishes between different graphs of in-
finite dimensionality, d̃f has been termed the transfinite
fractal dimension of the network. Accordingly, objects that
are self-similar and have infinite dimension (but finite
transfinite dimension), such as the (1; v)-nets, are termed
transfinite fractals, or transfractals, for short.

For (1; v)-nets, we see that upon ‘zooming in’ one gen-
eration level the mass increases by a factor of w D 1C v,
while the diameter grows from L to LC v � 1 (for flow-
ers), or to LC v (trees). Hence their transfractal dimen-
sion is

d̃f D

(
ln(1Cv)

v (1; v)-trees ;
ln(1Cv)
v�1 (1; v)-flowers :

(20)

There is some arbitrariness in the selection of e as the
base of the exponential in the definition (19). However
the base is inconsequential for the sake of comparison be-
tween dimensionalities of different objects. Also, scaling
relations between various transfinite exponents hold, irre-
spective of the choice of base: consider the scaling relation

of Eq. (10) valid for fractal scale-free nets of degree expo-
nent � [62,63]. For example, in the fractal (u; v)-nets (with
u > 1) renormalization reduces lengths by a factor b D u
and all degrees are reduced by a factor of 2, so bdk D 2.
Thus dk D ln 2/ ln u, and since dB D ln(u C v)/ ln u
and � D 1C ln(u C v)/ ln 2, as discussed above, the rela-
tion (10) is indeed satisfied.

For transfractals, renormalization reduces distances by
an additive length, `, and we express the self-similarity
manifest in the degree distribution as

P0(k) D e`d̃kP(e�`d̃k k) ; (21)

where d̃k is the transfinite exponent analogous to dk.
Renormalization of the transfractal (1; v)-nets reduces the
link lengths by ` D v � 1 (for flowers), or ` D v (trees),
while all degrees are halved. Thus,

d̃k D

(
ln 2
v (1; v)-trees ;
ln 2
v�1 (1; v)-flowers :

Along with (20), this result confirms that the scaling rela-
tion

� D 1C
d̃f
d̃k

(22)

is valid also for transfractals, and regardless of the choice
of base. A general proof of this relation is practically iden-
tical to the proof of (10) [62], merely replacing fractal with
transfractal scaling throughout the argument.

For scale-free transfractals, following m D L/` renor-
malizations the diameter and mass reduce to order one,
and the scaling (19) implies L � m`, N � em`d̃f , so that

L �
1
d̃f

lnN ;

in accordance with their small world property. At the same
time the scaling (21) implies K � em`d̃k , or K � Nd̃k/d̃f .
Using the scaling relation (22), we rederive K � N1/(��1),
which is indeed valid for scale-free nets in general, be they
fractal or transfractal.

Properties of Fractal and Transfractal Networks

The existence of fractality in complex networks immedi-
ately calls for the question of what is the importance of
such a structure in terms of network properties. In gen-
eral, most of the relevant applications seem to be modified
to a larger or lesser extent, so that fractal networks can be
considered to form a separate network sub-class, sharing
the main properties resulting from the wide distribution
of regular scale-free networks, but at the same time bear-
ing novel properties. Moreover, from a practical point of
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view a fractal network can be usually more amenable to
analytic treatment.

In this section we summarize some of the applications
that seem to distinguish fractal from non-fractal networks.

Modularity

Modularity is a property closely related to fractality. Al-
though this term does not have a unique well-defined defi-
nition we can claim that modularity refers to the existence
of areas in the network where groups of nodes share some
common characteristics, such as preferentially connecting
within this area (the ‘module’) rather than to the rest of
the network. The isolation of modules into distinct areas
is a complicated task and in most cases there are many
possible ways (and algorithms) to partition a network into
modules.

Although networks with significant degree of modu-
larity are not necessarily fractals, practically all fractal net-
works are highly modular in structure. Modularity natu-
rally emerges from the effective ‘repulsion’ between hubs.

Since the hubs are not directly connected to each other,
they usually dominate their neighborhood and can be con-
sidered as the ‘center of mass’ for a given module. The
nodes surrounding hubs are usually assigned to this mod-
ule.

The renormalization property of self-similar networks
is very useful for estimating how modular a given net-
work is, and especially for how this property is modified
under varying scales of observation. We can use a simple
definition for modularity M, based on the idea that the
number of links connecting nodes within a module, Lini ,
is higher than the number of link connecting nodes in dif-
ferent modules, Louti .

For this purpose, the boxes that result from the box-
covering method at a given length-scale `B are identified
as the network modules for this scale. This partitioning as-
sumes that the minimization of the number of boxes cor-
responds to an increase of modularity, taking advantage of
the idea that all nodes within a box can reach each other
within less than `B steps. This constraint tends to assign
the largest possible number of nodes in a given neighbor-
hood within the same box, resulting in an optimized mod-
ularity function.

A definition of the modularity function M that takes
advantage of the special features of the renormalization
process is, thus, the following [32]:

M(`B) D
1
NB

NBX

iD1

Lini
Louti

; (23)

where the sum is over all the boxes.

The value of M through Eq. (23) for a given `B value
is of small usefulness on its own, though. We can gather
more information on the network structure if we mea-
sure M for different values of `B. If the dependence of M
on `B has the form of a power-law, as if often the case in
practice, then we can define the modularity exponent dM
through

M(`B) � `dMB : (24)

The exponent dM carries the important information of
howmodularity scales with the length, and separatesmod-
ular from non-modular networks. The value of dM is easy
to compute in a d-dimensional lattice, since the number of
links within any module scales with its bulk, as Lini � `

d
B

and the number of links outside the module scale with the
length of its interface, i. e. Louti � `

d�1
B . So, the resulting

scaling is M � `B i. e. dM D 1. This is also the border-
line value that separates non-modular structures (dM < 1)
from modular ones (dM > 1).

For the Song–Havlin–Makse fractal model introduced
in the previous section, a module can be identified as the
neighborhood around a central hub. In the simplest ver-
sion with x D 1, the network is a tree, with well-defined
modules. Larger values of x mean that a larger number
of links are connecting different modules, creating more
loops and ‘blurring’ the discreteness of the modules, so
that we can vary the degree of modularity in the network.
For this model, it is also possible to analytically calculate
the value of the exponent dM .

During the growth process at step t, the diame-
ter in the network model increases multiplicatively as
L(t C 1) D 3L(t). The number of links within a module
grows with 2mC x (each node on the side of one link
gives rise tom new links and x extra links connect the new
nodes), while the number of links pointing out of a mod-
ule is by definition proportional to x. Thus, the modularity
M(`B) of a network is proportional to (2m C x)/x. Equa-
tion (24) can then be used to calculate dM for the model:

2mC x
x

� 3dM ; (25)

which finally yields

dM D
ln
�
2m
x C 1



ln 3
: (26)

So, in this model the important quantity that determines
the degree of modularity in the system is the ratio of the
growth parameters m/x.

Most of the real-life networks that have beenmeasured
display some sort of modular character, i. e. dM > 1, al-
though many of them have values very close to 1. Only in
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a few cases we have observed exponents dM < 1. Most in-
teresting is, though, the case of dM valuesmuch larger than
1, where a large degree of modularity is observed and this
trend is more pronounced for larger length-scales.

The importance of modularity as described above can
be demonstrated in biological networks. There, it has been
suggested that the boxes may correspond to functional
modules and in protein interaction networks, for exam-
ple, there may be an evolution drive of the system behind
the development of its modular structure.

Robustness

Shortly after the discovery of the scale-free property,
the first important application of their structure was
perhaps their extreme resilience to removal of random
nodes [3,10,19,21,57,60,61]. At the same time such a net-
work was found to be quite vulnerable to an intentional
attack, where nodes are removed according to decreasing
order of their degree [20,30]. The resilience of a network is
usually quantified through the size of the largest remaining
connected cluster Smax(p), when a fraction p of the nodes
has been removed according to a given strategy. At a criti-
cal point pc where this size becomes equal to Smax(pc) ' 0,
we consider that the network has been completely disin-
tegrated. For the random removal case, this threshold is
pc ' 1, i. e. practically all nodes need to be destroyed. In
striking contrast, for intentional attacks pc is in general of
the order of only a few percent, although the exact value
depends on the system details.

Fractality in networks considerably strengthens the ro-
bustness against intentional attacks, compared to non-
fractal networks with the same degree exponent � . In
Fig. 9 the comparison between two such networks clearly
shows that the critical fraction pc increases almost 4 times
from pc ' 0:02 (non-fractal topology) to pc ' 0:09 (frac-
tal topology). These networks have the same � exponent,
the same number of links, number of nodes, number of
loops and the same clustering coefficient, differing only in
whether hubs are directly connected to each other. The
fractal property, thus, provides a way of increasing resis-
tance against the network collapse, in the case of a targeted
attack.

Themain reason behind this behavior is the dispersion
of hubs in the network. A hub is usually a central node that
helps other nodes to connect to the main body of the sys-
tem. When the hubs are directly connected to each other,
this central core is easy to destroy in a targeted attack lead-
ing to a rapid collapse of the network. On the contrary, iso-
lating the hubs into different areas helps the network to re-
tain connectivity for longer time, since destroying the hubs

Fractal and Transfractal Scale-Free Networks, Figure 9
Vulnerability under intentional attack of a non-fractal Song–
Makse–Havlin network (for e D 0) and a fractal Song–Makse–
Havlin network (for e D 1). Theplot shows the relative size of the
largest cluster, S, and the average size of the remaining isolated
clusters, hsi as a function of the removal fraction f of the largest
hubs for both networks

now is not similarly catastrophic, with most of the nodes
finding alternative paths through other connections.

The advantage of increased robustness derived from
the combination of modular and fractal network charac-
ter, may provide valuable hints on why most biological
networks have evolved towards a fractal architecture (bet-
ter chance of survival against lethal attacks).

Degree Correlations

We have already mentioned the importance of hub-hub
correlations or anti-correlations in fractality. Generalizing
this idea to nodes of any degree, we can ask what is the
joint degree probability P(k1; k2) that a randomly chosen
link connects two nodes with degree k1 and k2, respec-
tively. Obviously, this is a meaningful question only for
networks with a wide degree distribution, otherwise the
answer is more or less trivial with all nodes having simi-
lar degrees. A similar and perhaps more useful quantity is
the conditional degree probability P(k1jk2), defined as the
probability that a random link from a node having degree
k2 points to a node with degree k1. In general, the follow-
ing balance condition is satisfied

k2P(k1jk2)P(k2) D k1P(k2jk1)P(k1) : (27)

It is quite straightforward to calculate P(k1jk2) for com-
pletely uncorrelated networks. In this case, P(k1jk2) does
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not depend on k2, and the probability to chose a node with
degree k1 becomes simply P(k1jk2) D k1P(k1)/hk1i. In the
case where degree-degree correlations are present, though,
the calculation of this function is very difficult, even when
restricting ourselves to a direct numerical evaluation, due
to the emergence of huge fluctuations.

We can still estimate this function, though, using again
the self-similarity principle. If we consider that the func-
tion P(k1; k2) remains invariant under the network renor-
malization scheme described above, then it is possible to
show that [33]

P(k1; k2) � k�(��1)1 k��2 (k1 > k2) ; (28)

and similarly

P(k1jk2) � k�(��1)1 k�(���C1)
2 (k1 > k2) ; (29)

In the above equations we have also introduced the corre-
lation exponent �, which characterizes the degree of corre-
lations in a network. For example, the case of uncorrelated
networks is described by the value � D � � 1.

The exponent � can be measured quite accurately us-
ing an appropriate quantity. For this purpose, we can in-
troduce a measure such as

Eb(k) �
R1
bk P(kjk2)dk2R1

bk P(k)dk
; (30)

which estimates the probability that a node with degree k
has neighbors with degree larger than bk, and b is an arbi-
trary parameter that has been shown not to influence the
results. It is easy to show that

Eb(k) �
k1��

k1��
D k�(���) : (31)

This relation allows us to estimate � for a given network,
after calculating the quantity Eb(k) as a function of k.

The above discussion can be equally applied to both
fractal and non-fractal networks. If we restrict ourselves to
fractal networks, then we can develop our theory a bit fur-
ther. If we consider the probability E(`B) that the largest
degree node in each box is connected directly with the
other largest degree nodes in other boxes (after optimally
covering the network), then this quantity scales as a power
law with `B:

E(`B) � `�deB ; (32)

where de is a new exponent describing the probability
of hub-hub connection [63]. The exponent �, which de-
scribes correlations over any degree, is related to de , which

refers to correlations between hubs only. The resulting re-
lation is

� D 2C
de
dk
D 2C (� � 1)

de
dB
: (33)

For an infinite fractal dimension dB !1, which is the
onset of non-fractal networks that cannot be described by
the above arguments, we have the limiting case of � D 2.
This value separates fractal from non-fractal networks, so
that fractality is indicated by � > 2. Also, we have seen that
the line � D � � 1 describes networks for which correla-
tions are minimal. Measurements of many real-life net-
works have verified the above statements, where networks
with � > 2 having been clearly characterized as fractals
with alternate methods. All non-fractal networks have val-
ues of � < 2 and the distance from the � D � � 1 line de-
termines how much stronger or weaker the correlations
are, compared to the uncorrelated case.

In short, using the self-similarity principle makes it
possible to gain a lot of insight on network correlations,
a notoriously difficult task otherwise. Furthermore, the
study of correlations can be reduced to the calculation of
a single exponent �, which is though capable of deliver-
ing a wealth of information on the network topological
properties.

Diffusion and Resistance

Scale-free networks have been described as objects of infi-
nite dimensionality. For a regular structure this statement
would suggest that one can simply use the known diffu-
sion laws for d D 1. Diffusion on scale-free structures,
however, is much harder to study, mainly due to the lack
of translational symmetry in the system and different local
environments. Although exact results are still not avail-
able, the scaling theory on fractal networks provides the
tools to better understand processes, such as diffusion and
electric resistance.

In the following, we describe diffusion through the av-
erage first-passage time TAB, which is the average time for
a diffusing particle to travel from node A to node B. At the
same time, assuming that each link in the network has an
electrical resistance of 1 unit, we can describe the electrical
properties through the resistance between the two nodes
A and B, RAB.

The connection between diffusion (first-passage time)
and electric networks has long been established in ho-
mogeneous systems. This connection is usually expressed
through the Einstein relation [8]. The Einstein relation is
of great importance because it connects a static quantity
RAB with a dynamic quantity TAB. In other words, the be-
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havior of a diffusing particle can be inferred by simply hav-
ing knowledge of a static topological property of the net-
work.

In any renormalizable network the scaling of T and R
follows the form:

T 0

T
D `
�dw
B ;

R0

R
D `
��
B ; (34)

where T 0(R0) and T(R) are the first-passage time (resis-
tance) for the renormalized and original networks, respec-
tively. The dynamical exponents dw and � characterize the
scaling in any lattice or network that remains invariant
under renormalization. The Einstein relation relates these
two exponents through the dimensionality of the substrate
dB, according to:

dw D � C dB : (35)

The validity of this relation in inhomogeneous complex
networks, however, is not yet clear. Still, in fractal and
transfractal networks there are many cases where this
relation has been proved to be valid, hinting towards
a wider applicability. For example, in [13,56] it has been
shown that the Einstein Relation [8] in (u; v)-flowers and
(u; v)-trees is valid for any u and v, that is for both frac-
tal and transfractal networks. In general, in terms of the
scaling theory we can study diffusion and resistance (or
conductance) in a similar manner [32].

Because of the highly inhomogeneous character of the
structure, though, we are interested in how these quanti-
ties behave as a function of the end-node degrees k1 and
k2 when they are separated by a given distance `. Thus,
we are looking for the full dependence of T(`; k1; k2) and
R(`; k1; k2). Obviously, for lattices or networks with nar-
row degree distribution there is no degree dependence and
those results should be a function of ` only.

For self-similar networks, we can rewrite Eq. (34)
above as

T 0

T
D

�
N 0

N

�dw /dB
;

R0

R
D

�
N 0

N

��/dB
; (36)

where we have taken into account Eq. (3). This approach
offers the practical advantage that the variation of N 0/N is
larger than the variation of `B, so that the exponents calcu-
lation can be more accurate. To calculate these exponents,
we fix the box size `B and we measure the diffusion time T
and resistance R between any two points in a network be-
fore and after renormalization. If for every such pair we
plot the corresponding times and resistances in T 0 vs. T
and R0 vs. R plots, as shown in Fig. 10, then all these points
fall in a narrow area, suggesting a constant value for the ra-
tio T 0/T over the entire network. Repeating this procedure

Fractal and Transfractal Scale-Free Networks, Figure 10
Typical behavior of the probability distributions for the resis-
tance R vs. R0 and the diffusion time T vs. T0 , respectively, for
a given `B value. Similar plots for other `B values verify that
the ratios of these quantities during a renormalization stage are
roughly constant for all pairs of nodes in a given biological net-
work

Fractal and Transfractal Scale-Free Networks, Figure 11
Average value of the ratio of resistances R/R0 and diffusion times
T/T0 , as measured for different `B values (each point corre-
sponds to a different value of `B). Results are presented for both
biological networks, and two fractal network models with differ-
ent dM values. The slopes of the curves correspond to the expo-
nents �/dB (top panel) and dw/dB (bottom panel)

for different `B values yields other ratio values. The plot of
these ratios vs. N 0/N (Fig. 11) finally exhibits a power-law
dependence, verifying Eq. (36). We can then easily calcu-
late the exponents dw and � from the slopes in the plot,
since the dB exponent is already known through the stan-
dard box-covering methods. It has been shown that the
results for many different networks are consistent, within
statistical error, with the Einstein relation [32,56].

The dependence on the degrees k1, k2 and the dis-
tance ` can also be calculated in a scaling form using the
self-similarity properties of fractal networks. After renor-
malization, a node with degree k in a given network, will
have a degree k0 D `�dkB k according to Eq. (9). At the



3938 F Fractal and Transfractal Scale-Free Networks

same time all distances ` are scaled down according to
`0 D `/`B. This means that Eqs. (36) can be written as

R0(`0; k01; k
0
2) D `

��
B R(`; k1; k2) (37)

T 0(`0; k01; k
0
2) D `

�dw
B T(`; k1; k2) : (38)

Substituting the renormalized quantities we get:

R0(`�1B `; `�dkB k1; `
�dk
B k2) D `

��
B R(`; k1; k2) : (39)

The above equation holds for all values of `B, so we can
select this quantity to be `B D k1/dk2 . This constraint allows
us to reduce the number of variables in the equation, with
the final result:

R

0

@ `

k
1
dk
2

;
k1
k2
; 1

1

A D k
��
dk
2 R(`B; k1; k2) : (40)

This equation suggests a scaling for the resistance R:

R(`; k1; k2) D k
�
dk
2 fR

0

@ `

k
1
dk
2

;
k1
k2

1

A ; (41)

Fractal and Transfractal Scale-Free Networks, Figure 12
Rescaling of a the resistance and b the diffusion time accord-
ing to Eqs. (41) and (42) for the protein interaction network of
yeast (upper symbols) and the Song–Havlin–Makse model for
e D 1 (lower filled symbols). The data for PIN have been verti-
cally shifted upwards by one decade for clarity. Each symbol cor-
responds to a fixed ratio k1/k2 and the different colors denote
a different value for k1. Inset: Resistance R as a function of dis-
tance `, before rescaling, for constant ratio k1/k2 D 1 and differ-
ent k1 values

where fR() is an undetermined function. All the above ar-
guments can be repeated for the diffusion time, with a sim-
ilar expression:

T(`; k1; k2) D k
dw
dk
2 fT

0

@ `

k
1
dk
2

;
k1
k2

1

A ; (42)

where the form of the right-hand function may be dif-
ferent. The final result for the scaling form is Eqs. (41)
and (42), which is also supported by the numerical data
collapse in Fig. 12. Notice that in the case of homoge-
neous networks, where there is almost no k-dependence,
the unknown functions in the rhs reduce to the forms
fR(x; 1) D x� , fT(x; 1) D xdw , leading to the well-estab-
lished classical relations R � `� and T � `dw .

Future Directions

Fractal networks combine features met in fractal geometry
and in network theory. As such, they present many unique
aspects. Many of their properties have been well-studied
and understood, but there is still a great amount of open
and unexplored questions remaining to be studied.

Concerning the structural aspects of fractal networks,
we have described that in most networks the degree dis-
tribution P(k), the joint degree distribution P(k1; k2) and
a number of other quantities remain invariant under
renormalization. Are there any quantities that are not in-
variable, and what would their importance be?

Of central importance is the relation of topological
features with functionality. The optimal network cover-
ing leads to the partitioning of the network into boxes.
Do these boxes carry a message other than nodes proxim-
ity? For example, the boxes could be used as an alternative
definition for separated communities, and fractal methods
could be used as a novel method for community detection
in networks [4,5,18,51,53].

The networks that we have presented are all static, with
no temporal component, and time evolution has been ig-
nored in all our discussions above. Clearly, biological net-
works, the WWW, and other networks have grown (and
continue to grow) from some earlier simpler state to their
present fractal form. Has fractality always been there or
has it emerged as an intermediate stage obeying certain
evolutionary drive forces? Is fractality a stable condition
or growing networks will eventually fall into a non-fractal
form?

Finally, we want to know what is the inherent rea-
son behind fractality. Of course, we have already described
how hub-hub anti-correlations can give rise to fractal net-
works. However, can this be directly related to some un-
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derlying mechanism, so that we gain some information on
the process? In general, in Biology we already have some
idea on the advantages of adopting a fractal structure. Still,
the question remains: why fractality exists in certain net-
works and not in others? Why both fractal and non-fractal
networks are needed? It seems that we will be able to in-
crease our knowledge for the network evolutionary mech-
anisms through fractality studies.

In conclusion, a deeper understanding of the self-sim-
ilarity, fractality and transfractality of complex networks
will help us analyze and better understand many funda-
mental properties of real-world networks.
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Appendix: The Box Covering Algorithms

The estimation of the fractal dimension and the self-simi-
lar features in networks have become standard properties
in the study of real-world systems. For this reason, in the
last three years many box covering algorithms have been
proposed [64,69]. This section presents four of the main
algorithms, along with a brief discussion on the advantages
and disadvantages that they offer.

Recalling the original definition of box covering by
Hausdorff [14,29,55], for a given network G and box size
`B, a box is a set of nodes where all distances `i j between
any two nodes i and j in the box are smaller than `B. The
minimum number of boxes required to cover the entire
network G is denoted by NB. For `B D 1, each box en-
closes only 1 node and therefore, NB is equal to the size of
the network N . On the other hand, NB D 1 for `B � `max

B ,
where `max

B is the diameter of the network plus one.
The ultimate goal of a box-covering algorithm is to

find the minimum number of boxes NB(`B) for any `B. It
has been shown that this problem belongs to the family
of NP-hard problems [34], which means that the solution
cannot be achieved in polynomial time. In other words,
for a relatively large network size, there is no algorithm
that can provide an exact solution in a reasonably short
amount of time. This limitation requires treating the box
covering problem with approximations, using for example
optimization algorithms.

The Greedy Coloring Algorithm

The box-covering problem can be mapped into another
NP-hard problem [34]: the graph coloring problem.

An algorithm that approximates well the optimal solu-
tion of this problemwas presented in [64]. For an arbitrary
value of `B, first construct a dual network G0, in which
two nodes are connected if the distance between them in
G (the original network) is greater or equal than `B. Fig-
ure 13 shows an example of a networkG which yields such
a dual network G0 for `B D 3 (upper row of Fig. 13).

Vertex coloring is a well-known procedure, where la-
bels (or colors) are assigned to each vertex of a network,
so that no edge connects two identically colored vertices.
It is clear that such a coloring in G0 gives rise to a natu-
ral box covering in the original network G, in the sense
that vertices of the same color will necessarily form a box
since the distance between them must be less than `B. Ac-
cordingly, the minimum number of boxes NB(G) is equal
to the minimum required number of colors (or the chro-
matic number) in the dual network G0, �(G0).

In simpler terms, (a) if the distance between two nodes
in G is greater than `B these two neighbors cannot belong
in the same box. According to the construction ofG0, these
two nodes will be connected in G0 and thus they cannot
have the same color. Since they have a different color they
will not belong in the same box in G. (b) On the contrary,
if the distance between two nodes in G is less than `B it
is possible that these nodes belong in the same box. In G0

these two nodes will not be connected and it is allowed

Fractal and Transfractal Scale-Free Networks, Figure 13
Illustration of the solution for the network covering problem via
mapping to the graph coloring problem. Starting from G (upper
left panel) we construct the dual network G0 (upper right panel)
for a given box size (here `B D 3), where two nodes are con-
nected if they are at a distance ` � `B. We use a greedy algo-
rithm for vertex coloring in G0 , which is then used to determine
the box covering in G, as shown in the plot
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for these two nodes to carry the same color, i. e. they may
belong to the same box in G, (whether these nodes will ac-
tually be connected depends on the exact implementation
of the coloring algorithm).

The algorithm that follows both constructs the dual
network G0 and assigns the proper node colors for all `B
values in one go. For this implementation a two-dimen-
sional matrix ci` of size N � `max

B is needed, whose values
represent the color of node i for a given box size ` D `B.

1. Assign a unique id from 1 to N to all network nodes,
without assigning any colors yet.

2. For all `B values, assign a color value 0 to the node with
id=1, i. e. c1` D 0.

3. Set the id value i D 2. Repeat the following until i D N.
(a) Calculate the distance `i j from i to all the nodes in

the network with id j less than i.
(b) Set `B D 1
(c) Select one of the unused colors c j`i j from all nodes

j < i for which `i j � `B. This is the color ci`B of
node i for the given `B value.

(d) Increase `B by one and repeat (c) until `B D `max
B .

(e) Increase i by 1.

The results of the greedy algorithm may depend on the
original coloring sequence. The quality of this algorithm
was investigated by randomly reshuffling the coloring se-
quence and applying the greedy algorithm several times
and in different models [64]. The result was that the prob-
ability distribution of the number of boxes NB (for all
box sizes `B) is a narrow Gaussian distribution, which in-
dicates that almost any implementation of the algorithm
yields a solution close to the optimal.

Strictly speaking, the calculation of the fractal dimen-
sion dB through the relation NB � `

�dB
B is valid only for

the minimum possible value of NB, for any given `B value,
so any box covering algorithm must aim to find this min-
imum NB. Although there is no rule to determine when
this minimum value has been actually reached (since this
would require an exact solution of the NP-hard coloring
problem) it has been shown [23] that the greedy coloring
algorithm can, in many cases, identify a coloring sequence
which yields the optimal solution.

Burning Algorithms

This section presents three box covering algorithms based
on more traditional breadth-first search algorithm.

A box is defined as compact when it includes the max-
imum possible number of nodes, i. e. when there do not
exist any other network nodes that could be included in
this box. A connected box means that any node in the box

Fractal and Transfractal Scale-Free Networks, Figure 14
Our definitions for a box that is a non-compact for `B D 3, i. e.
could include more nodes, b compact, c connected, and d dis-
connected (the nodes in the right box are not connected in the
box). e For this box, the values `B D 5 and rB D 2 verify the re-
lation `B D 2rB C 1. f One of the pathological cases where this
relation is not valid, since `B D 3 and rB D 2

can be reached from any other node in this box, without
having to leave this box. Equivalently, a disconnected box
denotes a box where certain nodes can be reached by other
nodes in the box only by visiting nodes outside this box.
For a demonstration of these definitions see Fig. 14.

Burning with the Diameter `B, and the Compact-Box-
Burning (CBB) Algorithm

The basic idea of the CBB algorithm for the generation of
a box is to start from a given box center and then expand
the box so that it includes the maximum possible number
of nodes, satisfying at the same time the maximum dis-
tance between nodes in the box `B. The CBB algorithm is
as follows (see Fig. 15):

1. Initially, mark all nodes as uncovered.
2. Construct the set C of all yet uncovered nodes.

Fractal and Transfractal Scale-Free Networks, Figure 15
Illustration of the CBB algorithm for `B D 3. a Initially, all nodes
are candidates for the box. b A random node is chosen, and
nodes at a distance further than `B from this node are no longer
candidates. c The node chosen in b becomes part of the box and
another candidate node is chosen. The above process is then re-
peated until the box is complete
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3. Choose a random node p from the set of uncovered
nodes C and remove it from C.

4. Remove from C all nodes i whose distance from p is
`pi � `B, since by definition they will not belong in the
same box.

5. Repeat steps (3) and (4) until the candidate set is empty.
6. Repeat from step (2) until all the network has been

covered.

Random Box Burning

In 2006, J. S. Kim et al. presented a simple algorithm for the
calculation of fractal dimension in networks [42,43,44]:

1. Pick a randomly chosen node in the network as a seed
of the box.

2. Search using breath-first search algorithm until dis-
tance lB from the seed. Assign all newly burned nodes
to the new box. If no new node is found, discard and
start from (1) again.

3. Repeat (1) and (2) until all nodes have a box assigned.

This Random Box Burning algorithm has the advantage of
being a fast and simplemethod. However, at the same time
there is no inherent optimization employed during the
network coverage. Thus, this simple Monte-Carlo method
is almost certain that will yield a solution far from the op-
timal and one needs to implement many different realiza-
tions and only retain the smallest number of boxes found
out of all these realizations.

Burning with the Radius rB, and the Maximum-
Excluded-Mass-Burning (MEMB) Algorithm

Abox of size `B includes nodes where the distance between
any pair of nodes is less than `B. It is possible, though, to

Fractal and Transfractal Scale-Free Networks, Figure 16
Burning with the radius rB from a a hub node or b a non-hub
node results in very different network coverage. In a we need
just one box of rB D 1while in b 5 boxes are needed to cover the
same network. This is an intrinsic problem when burning with
the radius. c Burning with the maximumdistance `B (in this case
`B D 2rB C 1 D 3) we avoid this situation, since independently
of the starting point wewould still obtain NB D 1

grow a box from a given central node, so that all nodes
in the box are within distance less than a given box ra-
dius rB (the maximum distance from a central node). This
way, one can still recover the same fractal properties of
a network. For the original definition of the box, `B corre-
sponds to the box diameter (maximum distance between
any two nodes in the box) plus one. Thus, `B and rB are
connected through the simple relation `B D 2rB C 1. In
general this relation is exact for loopless configurations,
but in general there may exist cases where this equation
is not exact (Fig. 14).

The MEMB algorithm always yields the optimal solu-
tion for non scale-free homogeneous networks, since the
choice of the central node is not important. However, in
inhomogeneous networks with wide-tailed degree distri-
bution, such as scale-free networks, this algorithm fails
to achieve an optimal solution because of the presence of
hubs.

The MEMB, as a difference from the Random Box
Burning and the CBB, attempts to locate some optimal
central nodes which act as the burning origins for the
boxes. It contains as a special case the choice of the hubs as
centers of the boxes, but it also allows for low-degree nodes
to be burning centers, which sometimes is convenient for
finding a solution closer to the optimal.

In the following algorithm we use the basic idea of box
optimization, in which each box covers themaximumpos-
sible number of nodes. For a given burning radius rB, we
define the excludedmass of a node as the number of uncov-
ered nodes within a chemical distance less than rB. First,
calculate the excluded mass for all the uncovered nodes.
Then, seek to cover the network with boxes of maximum
excluded mass. The details of this algorithm are as follows
(see Fig. 17):

1. Initially, all nodes are marked as uncovered and non-
centers.

2. For all non-center nodes (including the already cov-
ered nodes) calculate the excluded mass, and select the
node p with the maximum excluded mass as the next
center.

3. Mark all the nodes with chemical distance less than rB
from p as covered.

4. Repeat steps (2) and (3) until all nodes are either cov-
ered or centers.

Notice that the excluded mass has to be updated in each
step because it is possible that it has been modified during
this step. A box center can also be an already covered node,
since it may lead to a larger box mass. After the above pro-
cedure, the number of selected centers coincides with the
number of boxes NB that completely cover the network.
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Fractal and Transfractal Scale-Free Networks, Figure 17
Illustration of the MEMB algorithm for rB D 1. Upper row: Calcu-
lation of the box centers a We calculate the excluded mass for
each node. b The node with maximum mass becomes a center
and the excludedmasses are recalculated. c A new center is cho-
sen. Now, the entire network is covered with these two centers.
Bottom row: Calculation of the boxesd Eachbox includes initially
only the center. Starting from the centers we calculate the dis-
tance of each network node to the closest center. e We assign
each node to its nearest box

However, the non-center nodes have not yet been assigned
to a given box. This is performed in the next step:

1. Give a unique box id to every center node.
2. For all nodes calculate the “central distance”, which is

the chemical distance to its nearest center. The central
distance has to be less than rB, and the center identi-
fication algorithm above guarantees that there will al-
ways exist such a center. Obviously, all center nodes
have a central distance equal to 0.

3. Sort the non-center nodes in a list according to increas-
ing central distance.

4. For each non-center node i, at least one of its neighbors
has a central distance less than its own. Assign to i the
same id with this neighbor. If there exist several such
neighbors, randomly select an id from these neighbors.
Remove i from the list.

5. Repeat step (4) according to the sequence from the list
in step (3) for all non-center nodes.

Comparison Between Algorithms

The choice of the algorithm to be used for a problem de-
pends on the details of the problem itself. If connected
boxes are a requirement, MEMB is the most appropriate
algorithm; but if one is only interested in obtaining the
fractal dimension of a network, the greedy-coloring or the
random box burning are more suitable since they are the
fastest algorithms.

As explained previously, any algorithm should intend
to find the optimal solution, that is, find the minimum
number of boxes that cover the network. Figure 18 shows

Fractal and Transfractal Scale-Free Networks, Figure 18
Comparison of the distribution of NB for 104 realizations of the
four network covering methods presented in this paper. Notice
that three of these methods yield very similar results with nar-
row distributions and comparable minimum values, while the
random burning algorithm fails to reach a value close to this
minimum (and yields a broad distribution)

the performance of each algorithm. The greedy-coloring,
the CBB andMEMB algorithms exhibit a narrow distribu-
tion of the number of boxes, showing evidence that they
cover the network with a number of boxes that is close to
the optimal solution. Instead, the Random Box Burning
returns a wider distribution and its average is far above
the average of the other algorithms. Because of the great
ease and speed with which this technique can be imple-
mented, it would be useful to show that the average num-
ber of covering boxes is overestimated by a fixed propor-
tionality constant. In that case, despite the error, the pre-
dicted number of boxes would still yield the correct scaling
and fractal dimension.
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Glossary

Feedforward control The block diagram of a feedforward
control structure is shown in Fig. 1 [4]. The behavior of
process P can be influenced by the control inputs. As
a result the outputs (measurements or observations)
show a given behavior. The controller C determines
the control inputs in order to reach a given desired
behavior of the outputs, taking into account the dis-
turbances that act on the process. In the feedforward
structure the controller C translates the desired behav-
ior and the measured disturbances into control actions
for the process.
The term feedforward refers to the fact that the direc-
tion of the information flow in the system contains no
loops, i. e., it propagates only “forward”.
The main advantages of a feedforward controller are
that the complete system is stable if the controller and
the process are stable, and that its design is in general
simple.

Feedback control In Fig. 2 the feedback control structure
is shown [4]. In contrast to the feedforward control
structure, here the behavior of the outputs is coupled
back to the controller (hence the name feedback). This
structure is also often referred to as “closed-loop” con-
trol.
The main advantages of a feedback controller over
a feedforward controller are that (1) it may have
a quicker response (resulting in better performance),
(2) it may correct undesired offsets in the output, (3) it
may suppress unmeasurable disturbances that are ob-

Freeway Traffic Management and Control, Figure 1
The feedforward control structure

Freeway Traffic Management and Control, Figure 2
The feedback control structure

servable through the output only, and (4) it may stabi-
lize an unstable system.

Optimal control Optimal control is a control method-
ology that formulates a control problem in terms of
a performance function, also called an objective func-
tion [73]. This function expresses the performance of
the system over a given period of time, and the goal
of the controller is to find the control signals that re-
sult in optimal performance. Depending on the math-
ematical description of the control problem there exist
several methods for the optimization of the control in-
put including analytic and numerical approaches. Op-
timal control can be considered as a feedforward con-
trol approach.

Model predictive control Model predictive control
(MPC) is an extension of the optimal control frame-
work [15,79]. In Fig. 3 the block diagram of MPC is
shown.
In MPC, at each time step k the optimal control sig-
nal is computed (by numerical optimization) over
a prediction horizon of Np steps. A control horizon
Nc(< Np) can be selected to reduce the number of
variables and to improve the stability of the system.
Beyond the control horizon the control signal is usu-
ally taken to be constant. From the resulting opti-
mal control signal only the first sample of the com-
puted control signal is applied to the process. In the
next time step k C 1, a new optimization is performed
with a prediction horizon that is shifted one time step
ahead, and of the resulting control signal again only
the first sample is applied, and so on. This scheme,
called rolling horizon, allows for updating the state
from measurements, or even for updating the model
in every iteration step.
In other words, MPC is equivalent to optimal control
extended with feedback. The advantage of updating
the state through feedback is that this results in a con-
troller that has a low sensitivity to prediction errors.
Regularly updating the prediction model results in an
adaptive control system, which could be useful in sit-
uations where the model significantly changes, such as
in case of incidents or changing weather conditions.
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Freeway Traffic Management and Control, Figure 3
The model predictive control (MPC) structure

Acronyms and Abbreviations

MPC Model Predictive Control
OD Origin-Destination
ADAS Advanced Driver Assistance Systems
AHS Automated Highway System
IVHS Intelligent Vehicle/Highway System

Definition of the Subject

The goal of this chapter is to provide an overview of dy-
namic traffic control techniques described in the literature
and applied in practice. Dynamic traffic control is the term
to indicate a collection of tools, procedures, and methods
that are used to intervene in traffic in order to improve
the traffic flow on the short term, i. e., ranging from min-
utes to hours. The nature of the improvement may include
increased safety, higher traffic flows, shorter travel times,
more stable traffic flows, more reliable travel times, or re-
duced emissions and noise production.

The tools used for this purpose are in general change-
able signs (including traffic signals, dynamic speed limit
signs, and changeable message signs), radio broadcast
messages, or human traffic controllers at the location of
interest. Moreover, currently the possibilities of assisting,
informing, and guiding drivers via in-car systems are also
being explored.

The term dynamic trafficmanagement includes besides
dynamic traffic control also themanagement of emergency
services and non-automated procedures (such as the im-
plementation of predefined traffic control scenarios dur-
ing special events), typically performed in traffic control
centers. However, in this chapter the focus is on automatic
control methods. Furthermore, this chapter deals exclu-

sively with dynamic freeway traffic control techniques.
Given the differences in traffic operation (e. g., higher
speed limits) and in traffic infrastructure (e. g., intersec-
tions versus on-ramps and off-ramps), the control mea-
sures that can be implemented for urban and for freeway
traffic differ. The interested reader is referred to [28,35,90]
for an overview of urban traffic control.

Introduction

The number of vehicles and the need for transportation
is continuously growing, and nowadays cities around the
world face serious traffic congestion problems: Almost ev-
ery weekday morning and evening during rush hours the
capacity of many main roads is exceeded. Traffic jams
do not only cause considerable costs due to unproductive
time losses; they also augment the probability of accidents
and have a negative impact on the environment (air pollu-
tion, lost fuel) and on the quality of life (health problems,
noise, stress).

One solution to the ever growing traffic congestion
problem is to extend the road network. Extending the free-
way infrastructure is rather expensive, and in many coun-
tries this option is currently not considered to be a viable
solution. Moreover, in densely populated areas building
new roads is sometimes even unfeasible due to spacial lim-
itations. Furthermore, there are often also other socio-eco-
nomic objectives to be achieved, such as environmental
objectives, which are considered alongside the objective of
reducing congestion. Dynamic traffic control is an alterna-
tive that aims at increasing the safety and efficiency of the
existing traffic networks without the necessity of adding
new road infrastructure.
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Since the 1960s traffic control is applied on freeway
systems. However, during the last decades there have been
developments in traffic science, traffic technology, con-
trol theory, and in the typical traffic patterns that all have
consequences for the most appropriate traffic control ap-
proach. These developments will be discussed in the next
sections.

The Need for Network-Oriented
Automatic Traffic Control: Developments

The increasing complexity of the congested traffic patterns
and the increasing availability of traffic control measures
motivate the increasing usage of automatic traffic control
systems and the increasing interest in network-oriented
control over the last decades. The interest in network-ori-
ented control from the practitioners’ point of view is also
motivated from policies aiming at socioeconomic goals,
such as the efficient transport over important network
corridors.

The fact that the length, the duration, and the num-
ber of traffic jams continues to grow has consequences
for traffic control. When there are more locations with
congestion, the available control measures have to solve
more problems, which implies a higher complexity. Since
nowadays the chances are higher that a vehicle encounters
more than one traffic jam during one trip, the traffic con-
trol measures influencing a vehicle in one traffic jam will
also influence the other jam(s) that the vehicle encounters.
Therefore, the spatial interrelations between traffic situa-
tions at different locations in the network get stronger, and
consequently the interrelations between the traffic con-
trol measures at different locations in the network also get
stronger. These interrelationsmay differ per situation (and
depend on, e. g., network topology, traffic demand, etc.)
and the control measures may even counteract each other.
For the various traffic management agencies or local gov-
ernments that are responsible for different parts of the traf-
fic network, this means that there is a need for a stronger
cooperation and agreement on how the common network
goals should be achieved. Similarly, for the automatic con-
trol methods, coordinated control strategies are required
in these cases, to ensure that all available control measures
serve the same objective, or at least that they do not coun-
teract each other.

Another development is that freeways are equipped
with more and more traffic control measures. The in-
creasing number of control measures augments the con-
trollability of the freeways. However, with this develop-
ment the number of possible combinations of control
measures also increases drastically, which in its turn in-

creases the complexity of the dynamic traffic management
problem.

On modern freeways often a large amount of data is
available on-line and off-line. This data can serve as a basis
for choices about appropriate control measures given the
actual and expected traffic situation. However, the avail-
able data is currently not fully utilized either by traffic
control center operators, whose actions are typically based
on heuristic reasoning, or by automatic control measures,
which mostly use local data only. Traffic data may also
contain information about the current disturbances of the
network (incidents, weather influences, unexpected de-
mands) and information about the traffic system at a net-
work level (about route choice and origin-destination rela-
tionships). The origin-destination (OD) matrix describes
the traffic demand (vehicles per hour) appearing at each
origin in a traffic network towards each destination in the
network. An OD matrix may be time-varying, and can be
calculated at different levels of temporal aggregation, e. g.,
hourly, peak or interpeak, 24 hour, etc. Methods have been
developed to estimate such OD relationships from traf-
fic measurements, and to estimate the traffic state (e. g.,
speeds, flows and densities) in networks that are incom-
pletely equipped with detectors [43,124]. The methods can
be used to supply a traffic control system with more accu-
rate data, leading to better control actions.

These developments motivate the application of auto-
matic control systems that can handle complex traffic sce-
narios, multiple control measures, and a large amount of
data, and that can benefit from the network-oriented in-
formation by selecting appropriate control measures for
given OD patterns and disturbances.

Regardless of these developments the three effects that
cause the majority of suboptimal traffic network perfor-
mances – in terms of travel time – have remained the same.
Therefore, the primary goal of traffic control was and is to
resolve the following effects/issues:

� Bottlenecks. Typical bottlenecks are freeway sections
with an on-ramp, bridges, tunnels, curves, grades, and
merge and diverge areas. The performance degrada-
tion typically originates from the phenomenon that the
maximum achievable outflow from a traffic jam cre-
ated at a bottleneck is often lower than the capacity of
the road. This phenomenon is often called the capac-
ity drop. A special case of a bottleneck is an upstream
propagating jam that is growing at the tail by the in-
coming vehicles and resolving at the head by the leav-
ing vehicles. A moving jam can be a serious bottleneck
as it could reduce the maximum outflow to 70% of the
capacity [59], while the capacities of the other bottle-
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necks are in the range of 85–100% [37,59]. Dynamic
traffic control measures may help to prevent a traffic
breakdown at a bottleneck, or to improve the flowwhen
a breakdown has occurred.

� Suboptimal route choice. In a dynamically chang-
ing network with jams, incidents, and road works the
driver may not always be informed sufficiently well
to make the optimal route choice. Furthermore, even
if each individual driver has found the quickest (or
in general, least costly) route to his or her destina-
tion, it may not lead to optimal performance at the
network level, as known from the famous example of
Braess [11]. Systems that influence the drivers’ route
choice may contribute to a better performance for the
users, the network, or even both.

� Blocking. The tail of a traffic jam on a freeway may
propagate so far upstream that it blocks traffic on
a route that is not leading over the bottleneck that has
caused the jam. A typical case is when a traffic jam cre-
ated on the freeway at an on-ramp propagates back to
an upstream off-ramp and blocks the traffic that wants
to leave via the off-ramp. Figure 4 illustrates a situation
where off-ramp traffic is blocked by a jam originating
from the downstream on-ramp. All control measures
that can limit the length of a traffic jam may in princi-
ple be applied to prevent blocking.

Automatic traffic control strategies try to optimize traffic
network performance. A simplified, idealized description
of the operation of traffic in the network links is given
by what is known in traffic theory as the fundamental di-
agram [81]. The fundamental diagram describes steady-
state traffic operation on a homogeneous freeway (i. e., the
spatial gradients of speed, flow and density are equal to
zero) as illustrated in Fig. 5. For low traffic densities, the
relation between traffic density and traffic flow is nearly
linear. For traffic densities smaller than the critical density
�crit, the traffic flow on the freeway increases with increas-
ing traffic density (Fig. 5), despite the fact that the average
speed decreases with increasing traffic density. Traffic op-
eration is in a stable regime for traffic densities lower than
the critical density. The maximal flow that can be achieved

Freeway Traffic Management and Control, Figure 4
Congestion caused by high on-ramp demand could also result in
the blocking of an upstream off-ramp

Freeway Traffic Management and Control, Figure 5
A flow-density fundamental diagram for a three lane freeway. As
long as the traffic density on the freeway is smaller than the crit-
ical density �crit, the traffic flow on the freeway increases with
increasing traffic density. If the traffic density reaches the criti-
cal density, the flow is maximal and equal to the freeway capac-
ity qcap. If the traffic density further increases, the traffic flow on
the freeway starts to decrease with increasing traffic density un-
til the traffic stalls at the jam density�jam

on the freeway, the capacity qcap, is reached for a traffic
density equal to the critical density and the resulting aver-
age speed of the vehicles is called the critical speed. If the
critical density is exceeded, the average speed continues to
decrease and the traffic flow decreases with increasing den-
sity. For traffic densities higher than the critical density,
congestion sets in and an unstable traffic regime results.
Typical values of �crit and qcap for a three-lane highway are
33.5 vehicles per kilometer and per lane and 6000 vehicles
per hour respectively [94].

Based on the discussion of the fundamental diagram
presented above, it can be observed that automatic con-
trol strategies can try to prevent or to reduce congestion by
steering the state of traffic operation towards the stable re-
gion of operation. Here the fundamental diagram ismerely
presented as a seminal approach to traffic state analysis.
However, in the literature alternative approaches to traf-
fic state analysis have been reported. e. g., Kerner [60] has
proposed the three phase theory, introducing the concepts
“wide moving jams” and “synchronized traffic”. The work
by Treiber et al. [117] and Lee et al. [70] has added addi-
tional traffic states to the analysis such as “oscillating con-
gested traffic” and “homogeneous congested traffic”.

Automatic Traffic Control

Dynamic trafficmanagement systems typically operate ac-
cording to the feedback control concept known from con-
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Freeway Traffic Management and Control, Figure 6
Schematic representation of the dynamic traffic management control loop. Based on the measurements provided by the sensors
the controller determines the control signals sent to the actuators. Since the control loop is closed, the deviations from the desired
traffic system behavior are observed and appropriate control actions are taken

trol systems theory, as shown in Fig. 6. The traffic sen-
sors provide information about the current traffic state,
such as speed, flow, density, or occupancy. The controller
determines appropriate control signals that are sent to
the actuators (depending on the system the changes in
the control signal may be implemented instantly or may
need to be phased in). The reaction of the traffic system
is measured by the sensors again, which closes the con-
trol loop. If the new measurements show a deviation from
the desired behavior (caused, e. g., by unforeseen distur-
bances), the new control signals are adapted accordingly.
Note that there also exist traffic control systems that have
a feedforward structure, e. g., the demand-capacity ramp
metering approach that will be discussed in Sect. “Ramp
Metering”.

We define an “appropriate control” signal in terms of
a control objective. From the network operator’s point of
view typical objectives are:

� Efficiency. Efficiency is often expressed in terms of
throughput or travel time. This objective is shared by
the network operators and the individual drivers. Nev-
ertheless, situations may arise when the network opera-
tor and the individual driver have conflicting interests,
e. g., minimizing the total travel time in a network (net-
work optimum) may be conflicting with individually
minimizing the travel times (user optimum). This will
be discussed in more detail in Sect. “Route Guidance”.

� Safety. In traffic control, safety may be a direct goal of
the control or it may be a constraint (boundary con-
dition) that should be satisfied. For example, dynamic
speed limits or variable message signs may reduce the
speed limit or give a warning under adverse weather
conditions or poor visibility conditions in order to im-
prove safety. Other systems may have other primary

goals, such as improving the flow, and in these cases the
control systems are often still required to be safety-neu-
tral compared with the situation without control. There
may also be an interaction between safety and effi-
ciency, which has to be taken into account in the design
of the control system. This interaction may be related
to the following three processes. First, a safer traffic
system in general results in fewer accidents and there-
fore more often higher flowsmay occur. Second, if con-
gestion is prevented by an appropriate control method
safety may be increased due to the more homogeneous
flows. Third, lower speeds and densities in general pos-
itively influence safety. More specifically, Brownfield et
al. [13] observed that for freeway sites, the accident rate
in congested conditions was nearly twice the rate in un-
congested conditions. However, the proportion of acci-
dents that were serious or fatal was lower in congested
conditions than in uncongested conditions. Hence, de-
pending on the network operator’s definition of safety,
safety and efficiencymay be conflicting or non-conflict-
ing objectives.

� Network reliability. Even if not every traffic jam
can be prevented, it is valuable for drivers when the
travel time to their destinations is predictable, since
good arrival time estimations make departure time
choices easier. Therefore, improving the network reli-
ability/predictability serves the economic efficiency of
the network and improves driver comfort. Traffic con-
trol in general can improve reliability (predictability)
by aiming at the realization of predicted travel times,
or the reverse, by predicting realizable travel times, or
both. Furthermore, network reliability can be improved
by measures that aim at synchronization of the traf-
fic demand and the capacity supply of the network,
and at a better distribution traffic of flows over the
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network. For a more elaborate discussion on network
reliability we refer the interested reader to [6,21,78,
113,114].

� Low fuel consumption, low air and noise pollu-
tion. In general, congestion contributes to less smooth
journeys (more deceleration-acceleration movements),
which increases emissions. In or near urban areas the
environmental effects of trafficmay be consideredmore
important than, efficiency, for example, which can re-
sult in a different trade-off between the two objectives.
An example of such a trade-off is between travel speed
and air pollution [3]. The typical measure for these pur-
poses is speed limitation.

Another important aspect of a traffic control system
are the constraints due to physical, technical, or policy-
based limitations. Such constraints may include minimum
and maximum ramp metering rates, maximum on-ramp
queue length, minimum and maximum dynamic speed
limit values, etc. The automatic traffic controller is re-
quired to cope with these constraints.

Chapter Overview

The remainder of this chapter is organized as follows.
We discuss the sensor technologies used in the context of
freeway traffic control in Sect. “Sensor Technologies”. In
Sect. “Traffic FlowModeling” we address traffic flowmod-
els, which play an important role in the design and evalua-
tion of traffic control strategies. Next, the most frequently
used freeway control measures are discussed in Sect. “Free-
way Traffic Control Measures”. While in Sect. “Freeway
Traffic Control Measures” the focus is on the individ-
ual control measures, in Sect. “Network-Oriented Traffic
Control Systems” we discuss the approaches to combine
and to integrate several control measures for network-ori-
ented control. We conclude in Sect. “Future Directions”
by considering the new developments that are expected to
play a role in future freeway traffic control systems.

Sensor Technologies

In order to implement traffic responsive freeway control,
traffic measurements need to be collected at different lo-
cations throughout the freeway network. This section first
deals with the most common traffic variables and traffic
sensors to collect them. Next, the need for traffic demand
and traffic routing data, and the way these data can be ob-
tained using common traffic measurements, is briefly ad-
dressed. New data collection technologies, that will play an
important role in future freeway control systems are dis-
cussed in Sect. “Future Directions”.

Measurements

Traditionally the following traffic variables are measured
to determine the traffic state on a freeway [81]: the traf-
fic flow or the traffic intensity on the freeway, the aver-
age speed of the vehicles, the traffic density, the occupancy
level of the freeway, the time headways (and in some cases
the distance headways) and the speed variance. Note that
occupancy is defined as the relative time (percentage) that
the traffic sensor is occupied by a vehicle. In practice, it is
often used as a surrogate measure for traffic density since
it is directly related to density (as long as the average ve-
hicle length is constant) and can be measured more easily
than density.

Depending on the application and on the traffic mea-
surement system, several levels of detail can be distin-
guished. The traffic variables can either be measured for
every freeway lane separately or a value averaged over all
lanes of the freeway can be obtained. Some measurement
systems allow for a classification of the vehicles in cate-
gories based on their size (e. g., trucks versus cars) and
provide the traffic variables per category. Furthermore, in-
stantaneous values of the measured traffic variables can be
provided or values averaged over a time period. The pe-
riod over which the measurements are averaged can range
from seconds over minutes to hours. As a rule of thumb,
one can assume that the higher the level of detail of the
data collected, the higher the cost of the measurement sys-
tem involved.

In real-life situations, the measurements that are pro-
vided by the traffic sensors will contain measurement er-
rors. These errors include incidental missing values, in-
cidental faulty measurements, biased measurements, and
missing values over a period of time. Given the importance
of the trafficmeasurements in the dynamic trafficmanage-
ment control loop (Fig. 6), these errors need to be detected.
Depending on the application, the controller may or may
not be able to deal with erroneous or missing values. Tech-
niques to estimate missing values that have been reported
in the literature include reference days [24], multiple im-
putation [77], time series analysis [24], and Kalman and
particle filtering [43,124].

For the purpose of freeway traffic control the most
commonly measured traffic variables are the traffic flow,
the speed, and the occupancy of the freeway traffic. The
choice of these variables is influenced by their impor-
tance in traffic theory as well as by the ease by which they
can be measured with most common traffic detector tech-
nologies.

There exists a wide variety of technologies [58] to mea-
sure traffic variables such as, pneumatic sensors, inductive
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loops, cameras, ultrasonic sensors, microwave sensors, ac-
tive and passive infrared sensors, passive acoustic arrays,
and magnetometers.

Inductive loops are the most widespread detection sys-
tems to date and were introduced as traffic detection sys-
tems in the 60s [85]. The main advantages of inductive
loops are their wide application range, the flexible design,
and the availability of the common traffic variables. The
main disadvantages of inductive loop technology are the
sensitivity to wear and tear due to physical stress on the
loops induced by traffic, the susceptibility of the loops to
damage by roadmaintenance works, and the special instal-
lation andmaintenance requirements (such as lane closure
during maintenance) [58].

Traffic detection using video cameras emerged during
the 80s and is a non-intrusive technology that is becoming
more and more popular [85]. A fixed camera is mounted
above the freeway and its images are sent to a video pro-
cessing unit that extracts the desired variables using image
processing algorithms. Camera traffic detection technol-
ogy can provide the common traffic variables, is less prone
to wear and tear by traffic, and generally requires less lane
closures for maintenance and reconfiguration. The main
disadvantages of traffic cameras are the higher upfront cost
of the installation compared to inductive loops and the de-
pendence on visibility conditions (such as fog, heavy snow,
sunlight shining directly into the camera could heavily im-
pair the quality of the images taken by the traffic cameras).
Other factors that adversely affect the detection accuracy
are vibrations caused by wind and traffic, lack of contrast
between vehicle and road color, and varying lighting con-
ditions (such as during dusk and dawn) [33,63,64].

In addition to the registration of the traditional traffic
variables, video camera technology is also applied to reg-
ister travel times on corridors or to obtain information re-
garding the routes followed throughout the network. This
information can be obtained by tracking the vehicles at
strategic locations (such as at large junctions or at the en-
trances and the exits of the area under consideration) us-
ing automated license plate recognition algorithms, for ex-
ample. These systems consist of video image processing
units connected to video cameras monitoring the traffic.
Often, these systems are implemented at sites where the
hardware to register the vehicles is already available (e. g.,
automated toll booths) [19,111].

Estimation

In order to coordinate or to integrate traffic control mea-
sures, the spatial aspect of the traffic network needs to be
taken into account such that the impact of control mea-

sures on distant parts of the traffic network can be ac-
counted for. However, the traffic sensors discussed above
are traffic sensors that are localized in space, and as a con-
sequence, they only yield information on the evolution
of the traffic state on the freeway through time and at
the sensor locations. Implementing traffic detectors very
densely on the freeway in order to register the traffic
states for every freeway section would be inconvenient
and costly. However, data fusion techniques (such as ex-
tended Kalman filtering or particle filtering) allow one to
combine traffic measurements scattered over the traffic
network in order to obtain network traffic state estima-
tion [43,124,126]. Traffic state estimation and prediction
can be used in the implementation of control measures as
is illustrated by simulation in [9].

The similarities between traffic flows and flows of com-
pressible fluids have since long been documented in the
literature [75,102] (see also Sect. “Traffic Flow Modeling”
below). However, when it comes to the routing of traffic
flows in networks, a major difference emerges; while the
particles in a fluid have no predetermined destination, the
vehicles traveling through a traffic network are traveling
from a particular origin to a particular destination. Hence,
the destination of the vehicles constrains the alternative
routes that can be chosen. It is clear that route guidance
control measures have an impact on the routing process.
However, since travel times are typically an important fac-
tor in the routing process of well-informed travelers, other
traffic measures, in combination with the traffic demands,
influence the routing behavior as well. In order to assess
the impact of traffic measures on the traffic states in the
traffic network, the traffic demands (ODmatrices) and the
routing process need to be modeled. As the traffic demand
cannot be measured directly, it needs to be estimated us-
ing the traffic measurements in the traffic network. Sev-
eral techniques to estimate the traffic demands (OD ma-
trices) that correspond to the measured traffic states in the
traffic network have been developed. For an overview of
the literature, the interested reader is referred to [76]. The
route choice process, which influences the impact of con-
trol measures through rerouting effects, is also the subject
of research [57].

Traffic FlowModeling

Traffic flow models can be classified according to various
criteria such as area of application, level of detail, determin-
istic versus stochastic [49].

An example of the application of traffic flowmodels for
the design of traffic control measures is model predictive
control, which makes use of an internal prediction model
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in order to find the best traffic control measures to be ap-
plied to the real traffic process. Since these models are op-
erated in real-time, and are often used to evaluate several
control scenarios, they should allow for fast execution on
a computer.

For the assessment of traffic control strategies often
a simulation model is used instead of (or before) a real-
world test. Simulation has several advantages. Above all,
simulation is cheaper and faster, and it does not require
real human drivers as test subjects. It also provides an en-
vironment where the unpredictable disturbances of a field
test, such as weather influences, traffic demand variations,
and incidents, can be excluded, or if necessary simula-
tions can be repeated under exactly the same disturbance
scenario.

Since none of the available traffic models perfectly de-
scribes the real traffic behavior, one has to keep in mind
the intended application, whenmaking the choice between
the available traffic flow models. As Papageorgiou [89] ar-
gues for macroscopic traffic flow models an important cri-
terion is that the model should have sufficient descrip-
tive power to reproduce all important phenomena for the
intended application. Similar arguments are also used by
Kerner [60] but for different phenomena.

Traffic models can also be classified according to the
level of detail with which they describe the traffic process:
� Microscopic models describe the behavior of individ-

ual vehicles. Important aspects of microscopic models
are the so-called car following and lane changing behav-
ior. Car following and lane changing behavior is gener-
ally described as a function of the distance to and (rel-
ative) speed of the surrounding vehicles, and the de-
sired speed. Since the vehicles are modeled individually
in microscopic traffic models, it is easy to assign differ-
ent characteristics to each vehicle. These characteristics
can be related to the driving style of the driver (aggres-
sive, patient), vehicle type (car, truck), its destination,
and route choice.
A special type of microscopic traffic models are the cel-
lular-automatonmodels [60,80,130] in which the free-
way is discretized into cells of about 7.5m length. Each
cell can contain only one vehicle and the traffic dynam-
ics is described by a probabilistic model of the hopping
behavior of the vehicles through the cells.
In general, it is difficult to calibrate microscopic models
with real traffic data, due to the large number of param-
eters in this type of models and the poor availability of
appropriate traffic data.
We refer the interested reader to [2] for an exten-
sive comparison of commercialmicroscopic simulation
models and to [49] for a more theoretical overview.

� Mesoscopic models do not track individual vehicles,
but describe the behavior of individual vehicles in
probabilistic terms. Examples of mesoscopic models
are headway distribution models [12] and gas-kinetic
models [48]. Typically, these models are not used for
traffic control.

� Macroscopic models use a high level of aggregation
without distinguishing between individual vehicle be-
havior. Instead, traffic is described in aggregate terms
as average speed, average flow, and average density.
Macroscopic traffic flow modeling started when
Lighthill and Whitham [75] presented in 1955 a model
based on the analogy between traffic flows and flows
in rivers. Independently of Lighthill and Whitham one
year later Richards [102] published a similar model.
Therefore, this model is usually referred to as the
Lighthill–Whitham–Richards (LWR) model.
Since 1955 a large variety of macroscopic traffic flow
models have evolved from the LWR model with differ-
ences in the order of the model, the phenomena that
they (re)produce (such as capacity drop, stop-and-go
waves, and other congestion phenomena or patterns),
and the effects of heterogeneous traffic (cars and trucks,
etc.) [26,44,48,99].
Another approach has been followed by Kerner [60]
who developed a qualitative traffic flow theory based on
empirical observation. This theory distinguishes three
so-called traffic phases: free-flow, synchronized flow,
and jammed traffic, and describes the transition be-
tween these phases qualitatively in probabilistic terms.

A last classification that is relevant in the context of traffic
control is whether the model is deterministic or stochas-
tic. Deterministic models define a relationship between
model inputs, variables, and outputs that typically describe
the average behavior of traffic. Stochastic models describe
traffic behavior in terms of relationships between random
variables, e. g., random reaction time of drivers, random-
ness in equilibrium speed-density (or car following) rela-
tionships, route choice, etc. These stochastic effects can re-
produce phenomena such as the creation of traffic jams by
random fluctuations in traffic flows [109], and can be used
for the stochastic evaluation of traffic control approaches.
Another application of stochastic traffic flow models is in
the area of state estimation, which is an essential part of
control approaches such as optimal control or model pre-
dictive control [43,124].

Freeway Traffic Control Measures

In this section we give an overview of control measures
that are used or could be used to improve traffic perfor-
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mance. We focus on control measures that are currently
applied, or could be applied in the near future, such as
ramp metering, speed limits, and route guidance. For each
control measure we present the principle of operation in-
cluding the control approaches, and the existing field tests
and simulation results. At the end of this section some
other traffic control measures are presented that may also
be used to improve the performance of traffic systems.

RampMetering

Principle of Operation Ramp metering is one of the
most investigated and applied freeway traffic control mea-
sures. A ramp metering set-up is implemented as a traf-
fic signal that is placed at the on-ramp of a freeway as
shown in Fig. 7. The required metering rate is imple-
mented by appropriately choosing the phase lengths of the
traffic signal. Several ramp metering implementations can
be distinguished [20], e. g., single-lane with one vehicle per
green ramp metering, single-lane with multiple vehicles
per green ramp metering (bulk metering), and dual-lane
ramp metering.

Ramp metering can be used in two modes: the traf-
fic spreading mode and the traffic restricting mode. In the
traffic spreading mode ramp metering smooths the merg-
ing process of on-ramp traffic by breaking the platoons
and by spreading the on-ramp traffic demand over time
as observed by Elefteriadou [31]. This mitigates the shock
waves that can occur under high traffic density conditions.
In this application the metering rate equals the average ar-
rival rate of the vehicles.

Freeway Traffic Management and Control, Figure 7
Ramp metering at the freeway A13 in Delft, The Netherlands.
One car may pass per green phase. To prevent red-light running
the control is enforced

Restrictive ramp metering can be used for three differ-
ent purposes:

� Prevention of breakdowns. When traffic is dense,
ramp metering can prevent a traffic breakdown on the
freeway by adjusting the metering rate such that the
density on the freeway remains below the critical value.
Preventing a traffic breakdown has not only the ad-
vantage that it results in a higher flow, but also that
it prevents the creation of a jam that could block the
off-ramp upstream the on-ramp (as shown in Fig. 4).
These effects are studied in detail by Papageorgiou and
Kotsialos [92]. Daganzo [27] has quantified the role of
ramp metering in avoiding the activation of freeway
gridlocks.

� Influencing route choice. Ramp metering can be im-
plemented to influence the traffic demand and traffic
routing. The impact of ramp metering on the traffic
state and on the travel times is taken into account by
the drivers in their routing behavior [132]. Banks [5]
has described a theory to apply rampmetering to influ-
ence traffic routing to avoid freeway bottlenecks. Based
on a similar idea Middelham [83] has performed a syn-
thetic study on the route choice effects of ramp meter-
ing.

� Localization of traffic jams. According to Kerner [60]
ramp metering can prevent the backpropagation of
traffic jams and shock waves occurring at on-ramps.
This could be beneficial on the network level since it
could localize the traffic jam, and it could also be bene-
ficial to the traffic throughput.

The control strategies that have been developed for restric-
tive ramp metering can be classified as static or dynamic,
fixed-time or traffic-responsive, and local or coordinated.

Fixed-time strategies use (time-dependent) fixed me-
tering rates that are determined off-line based on histor-
ical demands. This approach was first suggested by Wat-
tleworth [127], and was extended to a dynamic traffic
model by Papageorgiou [87]. The disadvantage of fixed-
time strategies is that they do not take into account the
day-to-day variations in the traffic demand or the varia-
tions in the demand during a period with a constant me-
tering rate, which may result in underutilization of the
freeway or inability to prevent congestion.

Traffic-responsive strategies solve these issues by ad-
justing on-line the metering rate as a function of the pre-
vailing traffic conditions. These strategies also aim at the
same objectives as the fixed-time strategies, but use direct
traffic measurements instead of historical data to prevent
or to reduce congestion. One of the best known strategies
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is the demand-capacity strategy [91]:

qramp(k) D

(
qcap � qin(k � 1) if omeas(k � 1) � ocr
qr;min otherwise

with qramp(k) the admitted ramp flow at time step k, qcap
the downstream freeway capacity, qin(k) the freeway flow
measured upstream of the on-ramp at time step k, qr;min
the minimal on-ramp flow during congestion, omeas(k) the
occupancy downstream the on-ramp at time step k, and ocr
is the critical occupancy (at which the flow is maximal).
Since the traffic state on the freeway cannot be determined
based on the measurement of the traffic flow alone, the
downstream occupancy is measured in order to determine
whether congestion is present (omeas(k � 1) > ocr) or not.

A similar strategy is occupancy-based ramp meter-
ing, where the upstream traffic flow measurement from
demand-capacity ramp metering is replaced by an occu-
pancy measurement. The measured occupancies are re-
lated to traffic flows based on historical measurements.
Next, the demand-capacity approach described above can
be applied [18]. A common disadvantage of both demand-
capacity formulations is that they have an (open-loop)
feedforward structure, which is known to perform poorly
under unknown disturbances and cannot guarantee a zero
offset in the output under steady-state conditions.

A better approach is to use a (closed-loop) feedback
structure, because it allows for controller formulations that
can reject disturbances and have zero steady-state error.
ALINEA [96] is such a rampmetering strategy and its con-
trol law is defined as follows:

qramp(k) D qramp(k � 1)C K (ô � omeas(k)) ;

where qramp(k) is the metered on-ramp flow at time step k,
K is a positive constant, ô is a set-point for the occupancy,
and omeas(k) is the measured occupancy on the freeway
downstream of the on-ramp at time step k. ALINEA tries
to maintain the occupancy on the freeway equal to a set-
point ô, which is chosen in the region of stable opera-
tion. Given the probabilistic nature of traffic operation,
the set-point ô is often chosen somewhat smaller than the
critical occupancy in order to guarantee free-flow traffic
operation.

More advanced ramp metering strategies are the
traffic-responsive coordinated strategies such as MET-
ALINE [95], FLOW[55], ormethods that use optimal con-
trol [66] or model predictive control [7].

The ramp metering strategies discussed above attempt
to conserve free-flow traffic on the freeway. However,
given the probabilistic nature of traffic operation, con-
gestion can set in at lower or higher densities than the

critical density. Based on these insights, Kerner [60,61]
defined a congested-pattern control approach to ramp me-
tering called ANCONA. The basic idea of ANCONA is to
allow congestion to set in, but to keep congested traffic
conditions to the minimum level possible. Once conges-
tion sets in, ANCONA tries to reestablish free-flow con-
ditions on the freeway by reducing the on-ramp meter-
ing rate. Kerner claims that, by allowing congestion to set
in, ANCONAutilizes the available freeway capacity better.
The control rule of ANCONA is given by [60]:

qramp(k) D

(
q1 if vdet(k) � vcong
q2 if vdet(k) > vcong

;

where qramp(k) is the on-ramp flow at time step k, q1
and q2 are heuristically determined constant flows with
q1 < q2, vdet(k) is the traffic speed on the freeway just up-
stream of the on-ramp at time step k, and vcong is the speed
threshold that separates the free and the synchronized (lo-
cally congested) traffic flow phases.

Field Tests and Simulation Studies Several field tests
and simulation studies have shown the effectiveness of
ramp metering. In Paris on the Boulevard Périphérique
and in Amsterdam several ramp metering strategies have
been tested [97]. The demand-capacity, occupancy, and
ALINEA strategies were applied in the field tests at a single
ramp in Paris. It was found that ALINEAwas clearly supe-
rior to the other two in all the performance measures (total
time spent, total traveled distance, mean speed, mean con-
gestion duration). At the Boulevard Périphérique in Paris
the multi-variable (coordinated) feedback strategy MET-
ALINE was also applied and was compared with the lo-
cal feedback strategy ALINEA. Both strategies resulted in
approximately the same performance improvement [95].
One of the largest field tests was conducted in the Twin
Cities metropolitan area of Minnesota. In this area 430 op-
erational ramp meters were shut down to evaluate their
effectiveness. The results of this test show that ramp me-
tering not only serves the purposes of improving traffic
flow and traffic safety, but also improves travel time reli-
ability [16,72].

A number of studies have simulated ramp meter-
ing for different transportation networks and traffic sce-
narios, with different control approaches, and with the
use of microscopic and macroscopic traffic flow mod-
els [39,45,66,94,96,112]. Generally the total network travel
time is considered as the performance measure and is im-
proved by about 0.39–30% when using ramp metering.
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The validation of ANCONA versus ALINEA is per-
formed by simulation by Kerner [61], who found that AN-
CONA in some cases can lead to higher flows.

Also note that Kerner has criticized modeling ap-
proaches to simulations of freeway traffic control strategies
in [62] (see also [98] for some comments).

Dynamic Speed Limits

Dynamic speed limits are used to reduce the maximum
speed on freeways according to given performance, safety,
or environmental criteria. An example of a dynamic speed
limit gantry is shown in Fig. 8.

Principle of Operation The working principle of speed
limit systems can be categorized based on their in-
tended effects: improving safety, improving traffic flow, or
their environmental effects, such as reducing noise or air
pollution.

It is generally accepted that speed reduction on free-
ways leads to improved safety [106,116,128]. Lower speeds
in general are associated with lower crash rates and with
a lower impact in case of a collision. If the environmen-
tal conditions or traffic conditions are such that the posted
maximum speeds are considered to be unsafe, the speed
limit can be lowered to match the given conditions. Dy-
namic speed limits may function as a warning that an in-
cident or jam is present ahead.

In the literature, basically two approaches to dy-
namic speed limit control can be found for flow im-
provement. The first emphasizes the homogenization ef-
fect [1,38,69,109,122], whereas the second is more focused

Freeway Traffic Management and Control, Figure 8
A variable speed limit gantry on the A13 freeway nearOverschie,
TheNetherlands. In this particular case themaximumspeed limit
is 80 km/h due to environmental reasons, and the limit may drop
to 70 km/h or 50 km/h in case of a downstream jam

on preventing traffic breakdown by reducing the flow by
means of speed limits [23,42,71].

� The basic idea of homogenization is that speed limits
can reduce the speed (and/or density) differences, by
which a more stable (and safer) flow can be achieved.
The homogenizing approach typically uses speed lim-
its that are above the critical speed (i. e., the speed that
corresponds to the maximal flow). So, these speed lim-
its do not limit the traffic flow, but only slightly reduce
the average speed (and slightly increase the density). In
theory this approach can increase the time to break-
down slightly [109], but it cannot suppress or resolve
shock waves. An extended overview of speed limit sys-
tems that aim at reducing speed differentials is given by
Wilkie [128].

� The traffic breakdown prevention approach focuses
more on preventing too high densities, and also al-
lows speed limits that are lower than the critical speed
in order to limit the inflow to these areas. By resolv-
ing the high-density areas (bottlenecks) higher flow
can be achieved in contrast to the homogenization ap-
proach [42].

Currently, the main purpose of most of the existing prac-
tical dynamic speed limit systems is to increase safety by
lowering the speed limits in potentially dangerous situa-
tions, such as upstream of congested areas or during ad-
verse weather conditions [106,116,128]. Although these
systems primarily aim at safety, in general they also have
a positive effect on the flow, due to the fact that preventing
accidents results in a higher flow. There are also some ex-
amples of practical systems that are designed with the pur-
pose of flow improvement [101,104] – with varying suc-
cess. These practical systems in general use a switching
scheme based on traffic conditions, weather conditions,
visibility conditions, or pavement conditions [100,129].

Several control methodologies are used in the liter-
ature to find a control law for speed control, such as
multi-layer control [74], sliding-mode control [71], and
optimal control [1]. In [29] optimal control is approxi-
mated by a neural network in a rolling horizon frame-
work. Other authors use, or simplify their control law to,
a control logic where the switching between the speed
limit values is based on traffic volume, speed, or den-
sity [38,69,71,109,122]. We refer the interested reader for
further reading about the various control methodologies
to the references at the end of this chapter.

Some authors recognize the importance of anticipa-
tion in the speed control scheme. A pseudo-anticipative
scheme is used in [71] by switching between speed limits
based on the density of the neighboring downstream seg-
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ment. Explicit predictions are used in [1,29] and this is the
only approach that results in a significant flow improve-
ment. The heuristic algorithm proposed in [128] also con-
tains anticipation to shock waves being formed.

Another concept of dynamic speed limits is their use
in combination with ramp metering to prevent a break-
down on the freeway at the on-ramp and to prevent the
ramp queue to propagate back to the urban network [41]
by taking over the flow limitation function from the ramp
metering when the ramp queue has reached its limit.

Field Tests and Simulation Studies Field data evalu-
ations show that in general homogenization results in
a more stable and safer traffic flow, but no significant
improvement of traffic volume is expected nor mea-
sured [104,122]. Since the introduction of speed control
on the M25 in the United Kingdom, an increase of flow of
1.5% per year is reported for the morning peaks, but no
improvement is found in the afternoon peaks [101].

The effect of dynamic speed limits on traffic behav-
ior strongly depends on whether the speed limits are en-
forced or not, and on whether the speed limits are advi-
sory or mandatory, which also determines the suitability
for a certain application. Most application oriented stud-
ies [110,122,128] enforce speed limits, except for [69]. En-
forcement is usually accepted by the drivers if the speed
limit system leads to a more stable traffic flow.

Route Guidance

Principle of Operation Route guidance systems assist
drivers in choosing their route when alternative routes ex-
ist to their destination. The systems typically display traf-
fic information such as congestion length, the delay on
the alternative routes, or the travel time to the next com-
mon point on the alternative routes (an example is given
in Fig. 9). Recently, in-car navigation system manufactur-
ers have shown interest in providing route advice taking
the traffic jams and travel times on the alternative routes
into account.

In route guidance the notions of system optimum and
user equilibrium (or user optimum) play an important role.
The system optimum is achieved when the vehicles are
guided such that the total costs of all drivers (typically
the total travel time) is minimized. However, the system
optimum does not necessarily minimize the travel time
(or some generalized cost measure) for each individual
driver. So, some drivers may select another route that has
a shorter individual travel time (lower cost). The traffic
network is in user equilibrium when on each utilized route
the costs are equal, and on routes that are not utilized the

Freeway Traffic Management and Control, Figure 9
A route guidance system in TheNetherlands showing traffic jams
lengths on alternative routes to Schiphol Airport (Photo courtesy
of Peek Traffic B.V.)

cost is higher than that on the utilized routes. This means
that no driver has the possibility to find another route that
reduces his or her individual cost.

The cost function is typically defined as the travel
time, either as the predicted travel time or as the instan-
taneous travel time. The predicted travel time is the time
that the driver will experience when he or she drives along
the given route, while the instantaneous travel time is the
travel time determined based on the current speeds on the
route. In a dynamic setting the speeds in the network may
change during a trip, and consequently the instantaneous
travel timemay be different from the predicted travel time.

Papageorgiou andMessmer [93] have developed a the-
oretical framework for route guidance in traffic networks.
Three different traffic control problems are formulated: an
optimal control problem to achieve the system optimum
(minimize the total time that is spent in the network),
an optimal control problem to achieve a user optimum
(equalize travel times), and a feedback control problem to
achieve a user optimum (equalize travel times). The result-
ing control strategies are demonstrated on a test network
with six pairs of alternative routes. The feedback control
strategy is tested with instantaneous travel times and re-
sults in a user equilibrium for most alternative routes, and
the resulting total time spent by the vehicles in the network
is very close to the system optimum.

Wang et al. [125] combine the advantages of a feed-
back approach (relatively simple, robust, fast) and
predicted travel times. The resulting predictive feedback
controller is compared with optimal control and with
a feedback controller based on instantaneous travel times.
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When the disturbances are known the simulation results
show that the predictive feedback results in nearly opti-
mal splitting rates, and is clearly superior to the feedback
based on instantaneous travel times. The robustness of the
feedback approach is shown for several cases: incorrectly
predicted demand, an (unpredictable) incident, and an in-
correct compliance rate.

Field Tests and Simulation Studies In several studies it
is assumed that the turning rates can be directly manipu-
lated by route guidance messages [93,125]. In the case of
in-car systems it is plausible that by giving direct route
advice to individual drivers the splitting rates can be in-
fluenced sufficiently. However, in the case of route guid-
ance by variable message signs the displayed messages do
not directly determine the splitting rates: The driversmake
their own decisions. Therefore, empirical studies about
the reaction of drivers to dynamic route information mes-
sages, and the effectiveness of route guidance can provide
useful information.

Kraan et al. [68] present an extensive evaluation of the
impact on network performance of variable message signs
on the freeway network around Amsterdam, The Nether-
lands. Several performance indicators are compared be-
fore and after the installation of 14 new variable message
signs (of which seven are used as incident management
signs and seven as dynamic route information signs). The
performance indicators, such as the total traveled distance,
the total congestion length and duration, and the instanta-
neous travel time delay are compared for alternative routes
and for most locations a small but statistically significant
improvement is found. The day-to-day standard devia-
tion of these indicators decreased after the installation of
the variable message signs, which indicates that the travel
times have become more reliable.

Another field test is reported by Diakaki et al. [30] in
which a combination of route guidance, ramp metering,
and urban traffic control is applied to the M8 corridor net-
work in Glasgow, UK. The applied control methodology
resulted in an increased network throughput and in a re-
duced average travel time.

Other Control Measures

Besides ramp metering, dynamic speed limits, and route
guidance, there are also other dynamic traffic control mea-
sures that can potentially improve the traffic performance.
In this section we describe a selection of such measures,
and describe in which situations they are useful (cf. [84]).

� Peak lanes. During peak hours the hard shoulder lane
of a freeway (which is normally used only by vehi-

cles in emergency) is opened for traffic. Whether the
lane is opened or closed is communicated by variable
message signs showing a green arrow or a red cross.
Due to the extra lane the capacity of the road is in-
creased, which could prevent congestion. The disad-
vantage of using the emergency lane as a normal lane
is that the safety may be reduced. For this reason, of-
ten extra conditions ensuring safety are required, such
as the creation of emergency refuges adjacent to the
hard shoulder lane, or the requirement that emergency
services should be able to access the incident location
over or through the guard rail. Furthermore, there may
be CCTV surveillance or vehicle patrols to detect inci-
dents early. This traffic control measure is useful where
the additional capacity prevents congestion and the
downstream infrastructure can accommodate the in-
creased traffic flow.

� Dedicated lanes. During congestion the shoulder lane
may be opened for dedicated vehicles, such as public
transport, freight transport, or high occupancy vehicles
(with more than two passengers). This reduces the hin-
drance that congestion causes to these vehicles. Fur-
thermore, public transport can be made more reliable
and thus more attractive by this measure. A dedicated
freight transport lane increases the stability and homo-
geneity of the traffic flow.

� Tidal flow. Tidal flow allows one to use a freeway lane
in the one or the other direction. Depending on the di-
rection of the highest traffic demand the direction of
operation is determined. This direction is communi-
cated by a variable message sign showing a red cross
or a green arrow. This traffic control measure is useful
when the traffic demand is typically not high in both
directions simultaneously.

� The “keep your lane” directive. When the “keep your
lane” directive is displayed, the drivers are not allowed
(not recommended) to change lanes. This results in less
disturbances in the freeway traffic flow, which may pre-
vent congestion. This traffic control measure is useful
when the traffic flow is nearly unstable (close to the crit-
ical density) and may be a good alternative to homoge-
nizing speed limits.

Network-Oriented Traffic Control Systems

The integration of traffic control measures in freeway net-
works is essential in order to ensure that the control ac-
tions taken at different locations in the network reinforce
rather than counteract or even cancel each other. While
in the previous section individual traffic control measures
were discussed along with the most prevalent local con-
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trol strategies, this section explicitly considers the inte-
gration of several control measures in a freeway network
context.

Although the focus in this chapter is on automatic con-
trol systems, it must be noted that in practice in traffic
control centers there is also often a human controller with
“oversight” of the system as a safeguard against problems
with the system and in view of the complexity of the con-
trol problem.

In network-oriented traffic control two ingredients
play an important role: coordination and prediction. Since
in a dense network the effect of a local control measure
could also influence the traffic flows in more distant parts
of the network, the control measures should be coordi-
nated such that they serve the same objectives. Taking into
account the effects of control measures on distant parts
of the network often also involves prediction, due to the
fact that the effect of a control measure has a delay that
is at least the travel time between the two control mea-
sures in the downstream direction, and at least the propa-
gation time of shock waves in the upstream direction. An
advantage of control systems that use explicit predictions
is that by anticipating on predictable future events the con-
trol system can also prevent problems instead of only re-
acting to them. However, it must be noted that while all
network-oriented control approaches apply some form of
coordination, many approaches do not explicitly make use
of predictions.

Network-oriented traffic control has several advan-
tages compared to local control since it ensures that local
traffic problems are solved with the aim of achieving an
improvement on the network level. For example, solving
a local traffic jam only can have as consequence that the ve-
hicles run faster into another (downstream) jam, whereas
still the same amount of vehicles have to pass the down-
stream bottleneck (with a given capacity). In such a case,
the average travel time on the network level will still be the
same, regardless of whether or not the jam is solved. How-
ever, a global approach would take into account both jams
and, if possible, solve both of them.

Furthermore, network-oriented control approaches
can utilize network-related historical information. For ex-
ample, if dynamic OD data is available, control on the net-
work level can take advantage of the predictions of the
flows in the network. Local controllers are not able to op-
timize the network performance even if the dynamic OD
data is available, because the effect of the control actions
on downstream areas is not taken into account.

In the literature basically three approaches exist for co-
ordinating traffic control measures: model-based optimal
control methods, knowledge-based methods, and meth-

ods that use simple feedback or switching logic, for which
the parameters are optimized. In some approaches differ-
ent methods are combined in a hierarchical control struc-
ture. We discuss these approaches in the following sub-
sections.

Model-Based Control Methods

Model-based traffic control techniques use a traffic flow
model for predicting the future behavior of the traffic sys-
tem based on

� the current state of traffic,
� the expected traffic demand on the network level, possi-

bly including OD relationships and external influences,
such as weather conditions,

� the planned traffic control measures.

Since the first two items cannot be influenced (except for
the possibility that based on real-time congestion infor-
mation people cancel their planned trip, change the de-
parture time, or travel via another modality), the future
performance of the traffic system is optimized by selecting
an appropriate scenario for the traffic control measures.
Methods that use optimal control or model predictive con-
trol explicitly take the complex nonlinear nature of traf-
fic into account. For example, they take into account the
fact that the effect of ramp metering on distant on-ramps
will be delayed by the (time-varying) travel time between
the two on-ramps. In general, the other existing methods
(such as knowledge-based methods, or control parame-
ter optimization) do not explicitly take this kind of delay
into account. Furthermore, other advantages of themodel-
based methods are that traffic demand predictions can be
utilized, constraints on the ramp metering rate and the
ramp queues can be included easily, and a user-supplied
objective function can be optimized.

Optimal control has been successfully applied in sim-
ulation studies to integrated control of rampmetering and
freeway-to-freeway control [66], to route guidance [47]
and to integration of ramp metering and route guidance
[66,67]. In [66,67] the integrated controller performed bet-
ter than route guidance or ramp metering alone.

The model predictive control (MPC) approach is an
extension of the optimal control, which uses a rolling
horizon framework. This results in a closed-loop (feed-
back) controller, which has the advantage that it can han-
dle demand prediction errors and disturbances (such as
incidents). MPC is computationally more efficient than
optimal control due to the shorter prediction and control
horizons, and it can be made adaptive by updating the pre-
diction model on-line.
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MPC-based control has been applied in simulations
to coordinated ramp metering [8], to integrated control
of ramp metering and dynamic speed limits [41], and
to integrated control of ramp metering and route guid-
ance [57,121]. An illustration of the ability of MPC-based
traffic control to deal with a model mismatch was given
in [9]. In [7], it was illustrated by simulation of a sim-
ple proof-of-concept network that MPC can be imple-
mented to account for the rerouting behavior of vehicles
due to changing travel times caused by applying rampme-
tering.

Knowledge-Based Methods

Knowledge-based traffic control methods typically de-
scribe the knowledge about the traffic system in combi-
nation with the control system in terms that are compre-
hensible for humans. Given the current traffic situation
the knowledge-based system generates a solution (control
measure) via reasoning mechanisms. A typical motivation
for these systems is to help traffic control center opera-
tors to find good (not necessarily the best) combinations of
control measures. The operators often suffer from cogni-
tive overload by the large number of possible actions (con-
trol measures) or by time pressure in case of incidents. The
possibility for the operators to track the reasoning path of
the knowledge-based system makes these systems attrac-
tive and more convincing.

An example of a knowledge-based system is the TRYS
system [25,46,86], which uses knowledge about the phys-
ical structure of the network, the typical traffic problems,
and about effects of the available control measures. The
TRYS system has been installed in traffic control centers
in Madrid and Barcelona, Spain.

Another knowledge-based system is the freeway in-
cident management system [36] developed in Massachu-
setts, which assists in the management of non-recurrent
congestion. The system contains a knowledge base and
a reasoning mechanism to guide the traffic operators
through the appropriate questions to manage incidents.
Besides incident detection and verification, the system as-
sists in notifying the necessary agencies (such as, ambu-
lance, clean-up forces, towing company) and in applying
the appropriate diversion measures. The potential bene-
fits (reduced travel times by appropriate diversion) are il-
lustrated by a case study on the Massachusetts Turnpike.
The knowledge-based expert system called freeway real-
time expert-system demonstration [103,131] has similar
functionalities and is illustrated by applying it to a sec-
tion of the Riverside Freeway (SR-91) in Orange County,
California.

Control Parameter Optimization Methods

Allessandri and Di Febbraro [1] follow another approach:
A relatively simple control law is used for speed limit con-
trol and ramp metering, and the parameters of the control
law are found by simulating a large number of scenarios
and optimizing the average performance. In [1] a dynamic
speed limit switching scheme is developed. The speed lim-
its switch between approximately 70 km/h and 90 km/h,
and the switching is based on the density of the segment
to be controlled and two thresholds (to switch up and to
switch down). The switching scheme uses a hysteresis loop
to prevent too frequent switching. Optimizing the thresh-
olds for several objectives resulted in a slight increase of
the average throughput, a decrease of the sum of squared
densities – which can be considered as a measure of inho-
mogeneity (since a non-uniform distribution of vehicles
over a freeway stretch results in a higher sum of squared
densities) – and a small decrease of the total time spent by
the vehicles in the network.

Hierarchical Control

The increasing number of traffic control measures that
need to be controlled in a network-control context, as well
as their interactions, drastically increases the computa-
tional complexity of computing the optimal control sig-
nals. Hierarchical control was introduced by some authors
in order to tackle this problem [22,65,88]. In hierarchical
control the controlled process is partitioned in several sub-
processes, and the control task is performed by a high-level
controller and several low-level controllers. The high-level
controller determines centrally the set-points or trajecto-
ries representing the desired behavior of the subprocesses.
The low-level controllers are used to steer the subprocesses
according to the set-points or trajectories supplied by the
high-level controller. Usually, the high-level controller op-
erates at a slower time scale than the low-level controllers.
Hierarchical systems do not only enable coordination of
control for large networks, but they also provide high reli-
ability and robustness [50].

Future Directions

Although there is a large interest in developing freeway
traffic control systems, there is by no means a consen-
sus about the most suitable approaches or methods. One
of the reasons is that traffic phenomena, such as traffic
breakdown and jam resolution, are not perfectly under-
stood [60] and different views lead to different approaches.
In addition, technological developments such as advanced
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sensor technologies and intelligent vehicles open new pos-
sibilities that enable or require new control approaches.

Advanced Sensor Technologies

Given the complexity of traffic state estimation, traffic de-
mand estimation, and the collection of routing informa-
tion based on conventional traffic measurement data, new
data collection methods are being investigated.

Instead of registering vehicles at certain locations us-
ing hardware on the freeway network, floating car data can
be collected. The collection of floating car data, where in-
dividual vehicles are tracked during their journey through
the network, provides valuable route choice and traffic de-
mand information. The evolution in mobile computing
and in mobile communication has enabled the incorpora-
tion of these technologies in the field of traffic data collec-
tion, allowing more detailed and more cost-effective data
collection. In contrast to the traditional data collection
methods that were discussed in Sect. “Measurements”, this
section deals with two data collection methodologies that
are enabled by mobile computing and communication.

Cell phone service providers collect data regarding the
base station each cell phone connects to and the time in-
stant the connection is initiated. Since cell phones regu-
larly connect to their current base station and since the lo-
cation of these base stations is known, information about
the journey of the cell phone can be extracted from the
service provider’s database. By monitoring a large number
of cell phones, and more in particular their hands-off pro-
cesses when hopping from one base station to the next, an
impression of the traffic speeds and the travel times can be
obtained [108].

The global positioning system (GPS) is well-suited for
tracking probe vehicles through space and time in order to
obtain route information and travel times [14,115]. With
the further miniaturization of electronics, the processing
power available in mainstream navigation units and mo-
bile data communication facilities (e. g., GPRS) the cost
of instrumenting fleets of probe vehicles decreases. For
example, fleets of taxis, buses, and trucks can be used as
probe vehicles as they are often readily equipped with GPS
and data communication technology. When dealing with
probe vehicles, care must be taken to ensure that the num-
ber of probe vehicles is large enough in order to be able to
accurately determine the traffic state [56].

Although the technologies presented above are readily
available and have been used in the past, their structural
deployment as a source for traffic measurements for dy-
namic traffic control systems still needs to break through.
Some issues that may determine whether floating car data

becomes a viable option for large-scale data collection are
the accuracy of the data obtained, privacy concerns related
to registering the whereabouts of individuals, operational
communication and computation costs, and standardized
mobile or in-vehicle availability of communication and
GPS functionality.

Intelligent Vehicles and Traffic Control

We now discuss recent and future developments in con-
nection with intelligent vehicles that can further improve
the performance of traffic management and control sys-
tems by offering better and more accurate ways to collect
traffic data and to apply traffic control measures.

Advanced Driver Assistance Systems The increasing
demand for safer passenger cars has stimulated the de-
velopment of advanced driver assistance systems (ADAS).
An ADAS is a control system that uses environment sen-
sors to improve comfort and traffic safety by assisting
the driver. Some examples of ADAS are cruise control,
forward collision warning, lane departure warning, park-
ing systems, and pre-crash systems for belt-pretension-
ing [10]. Although traffic management is not the primary
goal of ADAS, they can contribute to a better traffic per-
formance [120], either in a more passive way by avoiding
incidents and by providing smoother traffic flows, or in
an active way by coordination and communication with
neighboring vehicles and roadside infrastructure.

The increasing market penetration and use of ADAS
and of other in-car navigation, telecommunication, and
information systems offer an excellent opportunity to im-
plement a next level of traffic control and management,
which shifts away from the road-side traffic management
toward a vehicle-oriented trafficmanagement. In this con-
text both inter-vehicle management and road-side/vehicle
traffic management and interaction can be considered.
The goal is to use the additional measures and control han-
dles offered by intelligent vehicles and to develop control
and management methods to substantially improve traf-
fic performance in terms of safety, throughput, reliability,
environment, and robustness.

Some examples of new traffic control measures that are
made possible by intelligent vehicles are cooperative adap-
tive cruise control [119] (allowing one to control interve-
hicle distances), intelligent speed adaptation [17] (allow-
ing one to better and more dynamically control vehicle
speeds), and route guidance [82] (where the traffic con-
trol centers could on the one hand get data about planned
routes and destinations, and on the other hand also send
real-time information and control data to the on-board
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route planners, for instance, to warn about current and
predicted congestion and possibly also to spread the traffic
flows more evenly over the network).

These individual ADAS-based traffic control measures
could be integrated with roadside traffic control mea-
sures such as ramp metering, traffic signals, lanes closures,
shoulder lane openings, etc. The actual control strategy
could then also make use of a model-based control ap-
proach such as MPC.

Cooperative Vehicle-Infrastructure Systems The new
intelligent-vehicle technologies allow communication and
coordination between vehicles and the roadside infras-
tructure and among vehicles themselves. This results in
cooperative vehicle-infrastructure systems, which can also
be seen as a first step towards fully automated highway
systems, which will be discussed below. CVIS (Cooper-
ative Vehicle-Infrastructure Systems) [52] is a European
research project that aims to design, develop, and test
technologies that allow communication between the cars
and with the roadside infrastructure, which improves road
safety and efficiency, and reduces environmental impact.
This project allows drivers to influence the traffic con-
trol system directly and also to get information about
the quickest route to their destination, speed limits on
the road, as well as warning messages via wireless tech-
nologies.

Automated Highway Systems ADAS and cooperative
vehicle-infrastructure systems can even be extended sev-
eral steps further towards complete automation. Indeed,
one approach to augment the throughput on highways is
to implement a fully automated system called Automated
Highway System (AHS) or Intelligent Vehicle/Highway
System (IVHS) [40,123], in which cars travel on the high-
way in platoons with small distances (say, 2m) between
vehicles within the platoon, and much larger distances
(say, 30–60m) between different platoons. Due to the very
short intra-platoon distances this approach requires auto-
mated distance-keeping since human drivers cannot react
fast enough to guarantee adequate safety. So in AHS every
vehicle contains an automated system that can take over
the driver’s responsibilities in steering, braking, and throt-
tle control. Due to the short spacing between the vehicles
within the platoons, the throughput of the highway can in-
crease, allowing it to carry as much as twice or three times
as many vehicles as in the present situation. The other
major advantages of the platooning system are increased
safety and fuel efficiency. Safety is increased by the au-
tomation and close coordination between the vehicles, and
is enhanced by the small relative speed between the cars in

the platoon. Because the cars in the platoon travel together
at the same speed, a small distance apart, even high accel-
erations and decelerations cannot cause a severe collision
between the cars (due to the small relative speeds). The
short spacing between the vehicles also produces a signifi-
cant reduction in aerodynamic drag for the vehicles, which
leads to improvements in fuel economy and emissions re-
ductions.

Automated platooning has been investigated very
thoroughly within the PATH program [54,105]. Related
programs are the Japanese Dolphin framework [118] and
the Auto21 Collaborative Driving System framework [51,
53].

Although certain authors argue that only full automa-
tion can achieve significant capacity increases on high-
ways and thus reduce the occurrences of traffic conges-
tion [123], AHS do not appear to be feasible on the short
term. The AHS approach requires major investments to
be made by both the traffic authority and the constructors
and owners of the vehicles. Since few decisions are left to
the driver, and since the AHS assumes almost complete
control over the vehicles, which drive at high speeds and
at short distances from each other, a strong psychological
resistance to this traffic congestion policy is to be expected.
Another important question is how the transition of the
current highway system to an AHS-based system should
occur, and – once it has been installed – what has to be
done with vehicles that are not yet equipped for AHS. So
before such systems can be implemented, many financial,
legislative, political and organizational issues still have to
be resolved [34].

Conclusion

In this chapter we have presented an overview of freeway
traffic control theory and practice. In this context we have
discussed traffic measurements and estimation, individual
traffic control measures, and the approaches behind them
that relate the control signals to the given traffic situa-
tion. The trend of the ever-increasing traffic demands and
the appearance of new control technologies have led to
the new field of network-oriented traffic control systems.
Although there have been many interesting publications
about the theory and practice of integrated traffic control,
several challenges remain, such as the integration of traf-
fic state estimation and dynamic OD information in the
control approaches.

The lively research in freeway traffic control shows that
this field is still practically relevant and theoretically chal-
lenging. Facing these challenges can be expected to lead
to new freeway traffic control approaches in theory and
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practice resulting in higher freeway performance in terms
of efficiency, reliability, safety and environmental effects.
Furthermore, future developments in the field of in-car
systems and advanced sensor technologies are expected
to enable new traffic management approaches that may
measure and control traffic in more detail and with higher
performance.
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Glossary

Tiling microarray A microarray containing probes rep-
resenting the entire genome in an unbiased, uniform
pattern. The resolution of a tiling microarray is deter-
mined by the length of probes and the amount of over-
lap between adjacent probes to the genome.
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Non-coding RNA (ncRNA) RNA that is not translated
into protein. The term ncRNA encompasses differ-
ent classes of RNA including small nucleolar RNA
(snoRNA), small inhibitory RNA (siRNA), ribosomal
RNA (rRNA), transfer RNA (tRNA) and microRNA
(miRNA).

Pyrosequencing A DNA sequencing method that utilizes
enzymatic reactions and light detection as a readout
for base incorporation.

Complex trait A heritable trait conditioned by multiple
genetic and/or environmental factors.

RNA interference (RNAi) The process by which double
strand RNA (dsRNA) targets and degrades a comple-
mentary transcript.

Epigenetics A class of heritable traits that are stable over
multiple cell divisions but are not associatedwith DNA
sequence changes.

Phylogenetics The study of evolutionary relationships
among organisms.

ChIP-chip Shorthand terminology for chromatin-im-
munoprecipitation with microarray detection; a tech-
nique to identify regions of DNAbound by a protein of
interest. Following immunoprecipitation of a protein-
DNA hybrid, the DNA is released from the protein, la-
beled, and detected on a DNAmicroarray.

Genotyping The process of measuring the genetic differ-
ences (genotype) between individuals within a popula-
tion.

Linkage disequilibrium The non-random association of
two or more alleles caused primarily by population
structure and the absence of recombination in a region
of the chromosome.

Epistasis A type of genetic interaction between two or
more loci in which the phenotype of the mutant com-
bination deviates from the expectation based on the
phenotype of the single mutants.

Chromatin The tightly bundled complex of DNAand nu-
cleosomes (made up of histone proteins) that packages
the nuclear genome in eukaryotic cells.

Definition of the Subject

Complete genome sequences have been determined for
hundreds of organisms ranging in complexity from bacte-
ria to human. However, sequence data alone is currently
of limited use for identifying the functional elements of
a genome and for elucidating how these elements interact
to control physiological processes.

The field of functional genomics aims to meet these
challenges using the sequence data as a blueprint. In
a broad sense, functional genomics is defined as the large-

scale experimental study of gene function and interactions.
In this article, we introduce the reader to the techniques
and challenges in functional genomics in the context of
an ever more common case scenario: given a complete
genome sequence, how does one figure out what the se-
quence means? By highlighting the relevant literature, we
go through the current state of the art as to what one would
do to arrive at function given a genome sequence. We fo-
cus primarily on nucleic acid based technologies though
connect in the Future Directions to similar analyzes at the
protein and metabolite level.

Introduction

The field of functional genomics is relatively new com-
pared to other molecular biology disciplines such as bio-
chemistry, classical genetics, and cell biology. The tech-
nological advances and milestones that laid the ground-
work for the completion of genome sequences have oc-
curred primarily over the last 25 years (Fig. 1). In par-
ticular, advances related to DNA sequencing deserve spe-
cial attention as sequence data is the backbone of func-
tional genomics and the ability to generate large amounts
of this data has paved the way for many of the techniques
described in this article. Foremost among these advances
were the development of chain termination basedDNA se-
quencing by Sanger and colleagues [99] and the automa-
tion of DNA sequencing by Hood and coworkers [109].
The ability to automate sequencing ushered in a new era
of biology, one in which the completion of genomes was
technically feasible.

The drive to sequence complete genomes was initi-
ated in the late 1980’s with the establishment of the Hu-
man Genome Project. However, given that the size of
the human genome is immense at 3 billion nucleotides
and the optimal techniques for completing a genome se-
quence were unknown at the time, it was necessary to
develop whole genome sequencing in model organisms.
In 1995, the first genome of a free living organism, the
bacteriumHaemophilus influenzae, was published [35]. In
subsequent years, the genomes of themodel genetic organ-
isms Saccharomyces cerevisiae (yeast) [45], Caenorhabditis
elegans (worm) (C. elegans Sequencing Consortium 1998),
Drosophila melanogaster (fruit fly) [2], and mouse [123]
were completed by international consortia. Paramount to
the success of these projects was the development of au-
tomation and robotics for handling large numbers of reac-
tions and software for the analysis and assembly of vast
amounts of sequence data. The lessons learned by se-
quencing model organisms laid the technological foun-
dation for the completion of the draft human sequence
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Functional Genomics for Characterization of Genome Sequences, Figure 1
Landmarks in functional genomics. The timeline indicates select technological breakthroughs (in greenboxes) in functional genomics
and highlights the genome completion date of important model organisms (in red boxes). References are in parentheses

in 2001 [73]. In some respects, the finishing of the hu-
man genome marked the end of the first generation of
DNA sequencing. Today, advances in sequencing technol-
ogy promise a second generation of DNA sequencing, one
in which the majority of the earth’s living (and some ex-
tinct) organisms will have complete genome sequences in
the near future (see Future Directions).

The initial analysis of the early genomes was greeted
with two harsh realizations. First, current algorithms for
gene finding, partly based on the availability of many com-
plete genome sequences, were not yet available. The re-
sult was that many predicted genes were later demon-
strated not to be genes and conversely, many currently
predicted genes were missed by these early, somewhat ar-
bitrary gene prediction methods. Second, the majority of
predicted genes identified from the sequence alone had
no known function. For example, over 60% of the �6000
yeast genes identified from the genome sequence were un-
characterized in 1996 despite 20 years of active molecular
genetics research [45]. To fill this void, higher-throughput,
so called “post-genomic” techniques aimed at the elucida-
tion of gene function at a genome-scale were developed.
The subsequent application of these post-genomic tech-
niques to model organisms marked the beginning of mod-
ern functional genomics. Today, functional genomic tools
such as microarrays for gene expression [103] and whole-
genome reverse genetics have increased the percentage of
characterized yeast genes to over 80% [92].

Here we describe some major topics in functional ge-
nomics in the context of how one would analyze a newly

completed genome sequence today. We begin with a de-
scription of in silico comparative genomic approaches for
finding genes, assigning putative gene function, and in-
ferring regulatory elements.We then describe microarray-
based gene expression profiling and high-throughput mu-
tant analysis before ending with a discussion of intraspe-
cific genetic variation. In each instance we highlight recent
literature to illustrate the utility and shortcomings of dif-
ferent techniques. To avoid organism-bias and to reflect
the universal challenges associated with assigning gene
function based on DNA sequence data, we discuss liter-
ature from a range of organisms, spanning bacteria to hu-
man. Finally, in the Future Directions, we link our discus-
sion of functional genomics to future challenges includ-
ing data integration, genetic interactions, and the impact
of technology.

Computational and ComparativeGenomics

A newly completed genome sequence is simply a file
containing millions (or even billions) of A, T, C, and
G nucleotides. Taken in isolation, the task of identify-
ing functional elements from this file of nucleotides can
seem like an insurmountable problem. While the field of
functional genomics aims to uncover the functionality of
the genome through experiment, one can learn a great
deal about a new genome sequence using purely com-
putational tools. Inherent in the development, applica-
tion, and success of computational genomic analyzes are
the wealth of already completed genome sequences with
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which one can compare a genome sequence for similar-
ities and differences (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Genome). This field of research, comparative
genomics, has two broad aims: to identify functional el-
ements such as genes and regulatory sequences and to
infer the evolutionary mechanisms that gave rise to dif-
ferent species [51]. Here we concentrate on computa-
tional and comparative genomics in the context of finding
functional DNA elements and direct the reader to addi-
tional reading on the use of comparative genomics to infer
evolutionary relationships in prokaryotes [1], yeast [26],
Drosophila [17], and human [14].

Concepts

The premise of comparative genomics is relatively
straightforward. DNA sequences that are shared between
two distinct species are likely to be functional. From an
evolutionary perspective, these are genomic regions that
are conserved since the species’ last common ancestor
and represent genomic regions that are more intolerant
to mutation. Conversely, since mutations are assumed to
accumulate in genomic regions that are under no func-
tional constraint, sequences that are significantly diverged
since the last common ancestor represent nonfunctional
regions. In practice, identifying conserved (functional)
versus nonconserved (nonfunctional) genomic regions is
a steep challenge due to a myriad of complicating factors
including non-uniform mutation rates both within [125]
and between [72] genomes and the fact that the premise
is not always true; even highly diverged regions between
species can retain similar functions [34]. Furthermore, the
success of a comparative genomic analysis is dependent
on the marriage of the right biological question and the
use of an appropriate phylogenetic range of organisms. For
instance, one would have a difficult time identifying con-
served gene regulatory elements by comparing worm and
human orthologous genes. Worm and human diverged
too long ago to make such an analysis fruitful. Conversely,
in order to detect positively selected genes in the human
lineage a comparison between human and other closely
related primate genomes is most appropriate (for exam-
ple [29]).

Applications

The protein-coding gene is a principle functional unit of
the genome. Therefore, computationally predicting genes
is usually the first task in any genome-level analysis. While
software exists to predict genes using single genomes
and gene structure modeling, usually a comparative ap-
proach to gene finding is utilized based on the knowl-

edge that genes are more likely to be conserved in related
species [82] . In the yeast Saccharomyces cerevisiae, the ini-
tial prediction of the number of genes was over 6000 [45].
By comparing the genome sequence of S. cerevisiae to that
of other related Saccharomyces species, an additional �50
small protein-coding genes were predicted to exist based
on high sequence conservation while �500 of the orig-
inally annotated genes were deemed not to be protein-
coding genes based on frameshift and nonsense mutations
in the orthologs of closely related species [18,68]. Similar
approaches are being applied in mammals, where high-
genome complexity and extensive gene splicing make the
task of gene identification challenging. In one example,
gene prediction software [70] based on the sequence con-
servation between genes was used to predict over 1000
genes in mouse and human [48].

There is growing appreciation for the important reg-
ulatory and structural functions of non-coding RNA
(ncRNA). Unfortunately, the ability to computationally
identify ncRNA is complicated by the absence of de-
fined sequence signatures similar to what is available for
protein-coding genes [27]. However, if ncRNA are func-
tionally relevant, then they should be under evolution-
ary constraint and conserved at least structurally across
related species. Using this rationale, programs to detect
ncRNA have been developed using comparisons across
species [95]. For instance, an algorithm that combines
RNA structure prediction and comparative sequence anal-
ysis identified both known and novel conserved ncRNA
when applied to the genomes of human, mouse, rat, ze-
brafish, and pufferfish [122].

Genes by themselves are static stretches of DNAwhich
encode information on the chromosome. It is the regu-
lation of these genes that guides development, maintains
homeostasis, and contributes significantly to the diversity
in nature. Therefore, the identification of the non-coding
sequences that transcription factors bind to regulate gene
expression is an active area of research. However, the chal-
lenges associated with computationally identifying func-
tional regulatory elements are substantial. Most impor-
tantly, the DNA sequences that regulate transcription are
often small and degenerate. Therefore, the identification
of these elements is often hampered by a large number
of false positive results. Even more critical than for iden-
tifying protein coding regions, identifying regulatory ele-
ments requires comparative genomics across an appropri-
ate range of phylogenetic distances. For example, a search
for common regulatory motifs in humans via phylogenetic
comparisons with orthologous sequences in mouse, rat,
and dog identified 105 previously unknown promoter reg-
ulatorymotifs and 106motifs present in 3’ untranslated re-

http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome
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gions [126]. As more genome sequences become available,
the ‘phylogenetic footprinting’ approach for identifying
regulatory elements should increase in power. In a broad
sense, the promise of all comparative genomics techniques
as described here is dependent onmore genome sequences
than are currently available. This is a principle reason why
genome sequencing will stay at the forefront of genetics
research in the near future.

Summary

What have we learned about our genome using computa-
tional and comparative genomics? Without setting foot in
the laboratory, we have successfully predicted many pro-
tein-coding genes, ncRNAs, and regulatory elements, via
comparison with previously sequenced genomes. Further-
more, using sequence similarity tools such as BLAST, we
could assign putative biochemical and biological functions
to many genes by homology to genes of known function.
However, despite this progress, the majority of genes in
most newly sequenced species remain partially or com-
pletely uncharacterized at a functional level. It must be em-
phasized that computational predictions are dependent on
the availability of data and thus can have limited power
(for example, see [28] for review of computational predic-
tion versus experimental validation of transcription factor
binding sites). Conservation of DNA across an evolution-
ary distance does not necessarily mean that the sequences
are functional [86] and conversely, the lack of sequence
conservation does not necessarily imply a lack of func-
tion [34]. Therefore, computational predictions must be
interpreted carefully. Finally, simply identifying the loca-
tions of putative functional elements on the chromosome
provides little information on the dynamic functionality of
the genome. Experimental functional genomic techniques
aim to fill these voids. In the remaining sections we will de-
scribe analyzes at different levels with the goal of enriching
this view of genome function.

Transcription

Cells regulate the transcription of RNA from genes to
control biological processes. Therefore, a thorough under-
standing of transcriptional architecture is a chief require-
ment for the elucidation of organism physiology. Taken
together, the transcription of a single gene is a highly com-
plicated process involving genomic DNA, transcription
factors, RNA polymerases, and epigenetic modifications
such as chromatin dynamics. The functional genomics of
transcription aims to analyze each of these phenomena in
the context of the entire genome. Here we discuss whole-
genome techniques to dissect transcription and their ap-

plications to transcript identification, RNA quantification,
gene regulation by transcription factor binding localiza-
tion, and epigenetics.

Before entering into the functional genomics of gene
transcription, it is necessary to briefly introduce the pri-
mary technology used in the majority of these studies:
the microarray. The microarray is a surface (typically
glass) with thousands or even millions of unique immobi-
lized molecules (most commonly DNA) systematically ar-
rayed as ‘probes’. DNA microarrays come in two primary
types: ‘spotted’ arrays printed with PCR products (or long
oligonucleotides) and ‘oligo’ arrays with short (usually 25
to 70 nucleotide) in situ synthesized probes. Regardless of
their construction, one hybridizes a complex mixture of
usually fluorescently labeled target nucleic acid to the mi-
croarray. The abundance of each nucleic acid species in the
target sample is then monitored by the fluorescent inten-
sity of the corresponding probe on the microarray.

Transcript Mapping Using Tiling Microarrays

The identification of transcripts is a logical starting point
for any global study of transcription. Using unbiased
whole-genome tiling arrays that interrogate every base of
the genome, one can get a global view of the transcrip-
tional architecture of an organism [7]. The application of
this technique to various organisms including Arabidop-
sis [127], yeast [22], and human [30] has revealed a num-
ber of fundamental insights both at the global and single-
gene level. At the single-gene level, genome tiling arrays
provide a high-resolution view of the expression architec-
ture of individual genes (see Fig. 2 for examples). In par-
ticular, the start/stop sites and exon/intron boundaries of
individual transcripts can be localized to within a hand-
ful of base pairs. Importantly, these insights enable the
reannotation of the original computational predictions of
gene structure [22,132] and demonstrate how experimen-
tal methods can be used to systematically update original
genome-wide predictions based on computation.

More importantly than the insights into single genes,
tiling arrays are revolutionizing our global perspective on
transcription [67]. First, there exists considerably more
transcription than had previously been thought. Tran-
scriptional elements (e. g. genes) are not arranged as
beads-on-a-string along the genome. Strikingly, it appears
that nearly every base in the yeast genome is transcribed,
often from both strands [22]. In humans, 93% of ge-
nomic regions examined in detail (encompassing 1% of
the total human genome) appear to be transcribed in an
least one condition or tissue [30]. Second, in all organ-
isms examined with tiling arrays to date, the vast major-
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Functional Genomics for Characterization of Genome Sequences, Figure 2
Transcriptmapping using tiling microarrays. The top panel shows data for a 100 kb region from a diploid and a haploid yeast strain.
Probes on the array are 25 bases long and are tiled every 8 bases on each strand of the genome, the forward strand shown on top
and the reverse strand on the bottom. Gene features, such as open reading frames, as annotated in the yeast genome database are
shown by boxes. Expression signal is plotted with a color gradient for probes across the region and allows expressed transcripts to
be detected. The bottom panel shows a close-up of the region around IME4. The Ime4 protein is expressed only in diploids cells. In
haploids, an IME4 antisense transcript inhibits the expression of Ime4 protein by transcriptional interference [56]

ity of this novel transcription does not appear to encode
protein, rather the transcription is likely to be ncRNA.
Often this ncRNA is in the form of antisense transcrip-
tion that either physically overlaps the transcription of
genes on the opposite strand (the sense strand) forming
cis-encoded sense/antisense transcript pairs, or matches
to sequence transcribed elsewhere in the genome form-
ing trans-encoded sense/antisense pairs . Lastly, in hu-
mans, primary transcripts appear to be extensively over-
lapping (or ‘interleaved’) which may provide a mecha-
nism for increasing the number of possible human pro-
teins [30]. Overall, these findings imply the potential in-
hibitory function of antisense transcription, the regulatory
roles of small ncRNA, and challenge the view that each hu-
man gene is its own modular entity.

There are several clues that suggest that natural an-
tisense transcription (in cis or in trans) is an important
mode of gene regulation. First, genome-wide assessments
demonstrate that antisense transcription is prevalent in
most (if not all) organisms. Second, complementary sense
and antisense transcripts are often conserved across evolu-
tion [16]. Given the appreciation for the extent of antisense
transcription, a challenge today is to decipher the mech-
anism(s) through which antisense transcripts contribute
to gene regulation [74]. One possibility is that that two

transcripts encoded in cis with opposite orientations col-
lide during RNA polymerase-based elongation [94]. This
model provides a mechanism to modulate gene expres-
sion from the sense strand by altering the relative strengths
of the two promoters. Such a transcriptional interference
mechanism has recently been proposed to contribute to
the entry of yeast into sporulation [56] (See Fig. 2 for
details). Alternatively, antisense transcription might ex-
ert its effect through double-stranded RNA pathways such
as RNAi [9]. Often these short trans encoded antisense
transcripts are found to be expressed in alternate tissues
and developmental stages than their sense targets, sug-
gesting that some miRNAs may help maintain and define
cell types by dampening the expression of unwanted tran-
scripts [13].

The unbiased view of transcription derived from tiling
microarrays has profound implications. First, the notion
that the non protein-coding portion of genomes is ‘junk’
requires reassessment. The extent of (and presumably reg-
ulation of) transcription in these regions suggests that
they serve a functional role. Second, many mechanisms
of gene regulation are likely to exist. In addition to the
antisense transcription described above, other modes of
regulation including complex intercalated transcription,
chimeric transcripts, and the action of microRNAs on
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chromatin for example underscore the complexity of tran-
scriptional architecture. Lastly, it has been proposed that
the aberrant lack of correlation between organism com-
plexity and gene number can be partially reconciled with
an increase in ncRNA regulation in more complex organ-
isms [114]. This view contends that an expansion of trans-
acting regulatory ncRNA (together with an increase in cis-
acting regulatory DNA) provides a substantial increase in
genome information content.

Gene Expression (mRNA Quantification)

The most common functional genomic experiment is the
(relative) quantification of mRNA levels using microar-
rays, typically referred to as gene expression or ‘transcrip-
tome’ profiling. The reasons for this are twofold. The first
is that this type of experiment is relatively straightfor-
ward to perform. All one needs is a microarray (many of
which can be purchased commercially), the infrastructure
to process the microarray, and an RNA sample. The sec-
ond reason why gene expression experiments are popular
is that they can provide substantial insights into transcrip-
tion and its regulation, particularly when a large number
of experiments are performed (the rationale is identical to
the increasing power of comparative genomics with more
complete genome sequences).

What can gene expression experiments tell us about
the function of the genome? First, gene expression ex-
periments can be used to infer the functionality of un-
known genes under the hypothesis that genes with similar
expression patterns are more likely to have similar func-
tions [11]. Likewise, mutants with similar expression pat-
tern are likely mutant for genes of similar function [57].
Second, gene expression data are useful for identifying
regulatory sites that control transcription. This is accom-
plished by a computational analysis of the genomic re-
gion surrounding a set of genes identified as co-regulated.
Lastly, gene expression experiments can provide insight
into the gene regulatory network of an organism. For ex-
ample, an expression compendium of over 100 diverse
conditions in E. coli was sufficient to identify 1079 regu-
latory interactions including a novel relationship between
iron transport and central carbon metabolism [31].

Gene Regulation

Gene expression data and comparative genomic ap-
proaches are insufficient in isolation to identify all of the
genomic regulatory elements that control transcription.
To identify these elements, multiple experiment-based ap-
proaches have been developed. The in vivo ChIP-chip
method involves the cross-linking of a transcription factor

of interest (often epitope-tagged) to the DNA. Following
immunoprecipitation of the transcription factor-DNA hy-
brid, the DNA is released from the protein, labeled, and
detected on a DNA microarray. The consensus sequence
bound by the transcription factor is identified by a com-
parative sequence analysis of all ‘hits’ on the microarray.
In one example, ChIP-chip was used to associate the bind-
ing of the Rap1 transcription factor to 294 loci in the yeast
genome, the majority of which were intergenic regions
with a high probability of containing promoters [78]. On
a more global level, Harbison et al. analyzed the genomic
binding of 203 yeast transcription factors in rich media
and across a range of diverse conditions [50]. The results
of this work provided the first comprehensive regulatory
map for a eukaryotic genome and demonstrated the dy-
namic nature of transcriptional regulation in the response
to environmental change.

There are a number of design and analysis considera-
tions that go into a successful ChIP-chip experiment [12].
One parameter of note is the density of the microarray
used in the experiment. In general, a tiling microarray is
superior to a conventional microarray because all genome
coordinates are covered, and multiple, overlapping probes
can interrogate a single genomic region. The principle ad-
vantage is that an increase in microarray signal across
a number of overlapping probes provides both increased
statistical significance and an increased ability to identify
the actual binding sequences. However, even with tiling
microarrays it is often difficult to determine the cutoff sig-
nificance value for which microarray probes are enriched
in the experiment (and hence, which genomic locations
the transcription factor binds to). Another disadvantage
of ChIP-chip is that tiling microarrays for large genomes
are currently expensive (because multiple microarrays are
necessary to adequately tile large genomes). Therefore,
other approaches for the detection of DNA from chro-
matin immunoprecipitation experiments have been ex-
plored. One promising avenue is the use of massively par-
allel sequencing technology (see Future Directions) for the
detection of DNA (ChIP-seq). ChIP-seq requires no mi-
croarray and provides a direct count of DNA sequences
contained in the immunoprecipitated sample. Results ob-
tained using human STAT1 [96] and NRSF [64] indicate
that ChIP-seq can detect weakly bound sites that are likely
to be missed by microarray based methods.

A promoter array is an in vitro method for identifying
transcription factor binding sites [5]. Here, an oligonu-
cleotide microarray with double stranded probes is di-
rectly bound by a labeled target protein. A primary ad-
vantage of a promoter array over ChIP-chip or ChIP-seq
is that all combinations of short sequences (for example,
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10mers in [5]) can be assayed for binding associations
of different affinities. Additionally, the actual identifica-
tion of the binding site is more straightforward than the
computational analysis required for ChIP-chip or ChIP-
seq experiments. Conversely, as an entirely in vitro assay,
some positive promoter array results may be physiologi-
cally irrelevant.

Epigenetics

In the context of transcription, the regulation of chro-
matin represents the primary mode of epigenetic inher-
itance. In eukaryotic genomes, DNA ins packaged into
chromatin, which consists of DNA wound around pro-
tein (histone) complexes known as nucleosomes. The po-
sitioning and regulation (via the modification of their his-
tone subunits) of nucleosomes along the chromosome play
a crucial role in gene expression, by ‘exposing’ regions of
the genome for transcriptional activity. Given its impor-
tance to gene regulation, the localization and dynamics of
nucleosome positioning are an active area of investigation.
An early genome-level investigation of nucleosome posi-
tions showed that active promoters and their associated
transcription factor binding sites are largely devoid of nu-
cleosomes [129]. A second study demonstrated that, dur-
ing the cell cycle, the occupancy of nucleosomes is reduced
at the specific time when the gene is transcribed [54].
These results indicate that chromosome accessibility via
nucleosome positioning is an important mechanism for
regulating the expression state of genes. Using nucleo-
some localization data, Segal and colleagues developed
a nucleosome-DNA interaction model suggesting that nu-
cleosome positioning is an intrinsic feature of eukaryotic
genomes [106]. Interestingly, this model takes advantage
of the tendency of DNA to bend sharply around the nucle-
osome at periodic intervals. More recently, tiling micoar-
rays were used to construct a comprehensive, high-reso-
lution “atlas” of over 70,000 nucleosome sites in the yeast
genome [77].

In addition to the physical localization of nucleosomes,
the modification state of the individual histone subunits
is thought to be linked to the expression state of the cell.
To test the hypothesis that histone methylation marks
the expression state of differentiated cells in mammals,
Mikkelsen et al. analyzed the genomic pattern of histone
methylation in mouse pluripotent cells (capable of differ-
entiating into multiple lineages) and terminal differenti-
ated cells using ChIP-seq [83]. The authors demonstrate
that specific histone methylations, such as those on lysine
positions 4 and 27 of histone subunit H3, discriminate
the expression state of genes and hence provide insight

into the lineage potential of different cell types. It is antic-
ipated that future genome-wide epigenetic investigations
of the kind described above will provide additional insight
into the importance of epigenetics in gene regulation and
disease.

Summary

Given that microarray design and construction requires
only DNA sequence data, we can learn a lot about the ar-
chitecture and regulation of transcription of our genome
using the approaches described above. However, there are
limitations to using transcription data alone to dissect the
functionality of an entire genome. Most importantly, nei-
ther the presence of transcription, the expression level of
genes, nor the identification of regulatory elements tell us
much about what biological processes genes are actually
involved in. For instance, the majority of genes that are
differentially expressed under stress conditions in yeast
display no obvious phenotype under the same condition
when disrupted [42]. Taking into consideration these limi-
tations, additional genome-wide approaches are necessary
to more directly elucidate gene function.

Genetics Analysis

The field of genetics is largely the analysis of mutations. By
studying the phenotypic effects of mutations, one can gain
insight into the biological processes to which a gene con-
tributes. Classically, in the absence of complete genome
sequences, geneticists had to map interesting mutations
to the causative gene. While this ‘forward’ genetic ap-
proach is still relevant, today more often mutagenesis ap-
proaches are being applied that take advantage of the com-
plete genome sequence of an organism. In this article, we
will primarily focus on these ‘reverse’ genetic techniques.

The mutations discussed below come in two main fla-
vors: heritable and transient. Heritable mutations are per-
manent changes to the DNA sequence and are induced
using techniques such as targeted gene ‘knockouts’ by
homologous recombination and random mutagenesis by
a mobile element (such as a transposon). Transient tech-
niques are largely based on the ability of certain molecules
to inhibit the expression of specific genes and conse-
quently ‘turning them down’ for as long as the molecules
are active. The most important of these techniques is RNA
interference (RNAi). In RNAi, a short double strand RNA
molecule degrades its specific complementary transcript.
Therefore, RNAi mimics a loss-of-function mutation. The
term ‘transient’ here can be misleading as the effects of the
mutagenesis can last for multiple cell divisions. However,
because the genomic DNA sequence is left untouched, the
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effects of RNAi are not permanent. Additionally, transient
perturbations can be introduced via small molecule per-
turbations, a field referred to as “chemical genomics”. In
yeast, chemical genomics has proved successful in identi-
fying the targets of small molecules and the mode of action
of small molecules[43,90].

Systematic Analysis of Single-Gene Mutations

Essential genes are a special class whose disruption results
in a loss of organismal viability. In a number of microor-
ganisms, comprehensive surveys have been undertaken to
determine the catalog of essential genes in order to deter-
mine which core functions the cell needs to survive [44]
and to identify potential drug targets [98]. Approximately
300 genes are essential in the genomes of the bacteria E.
coli [3] and B. subtilis [69] (less than 10% of the total
gene complement in each organism). Of these�300 genes,
about one-half are orthologous (derived from a common
ancestor) between these distantly related bacteria demon-
strating the fundamental importance of these genes across
evolution. In yeast, �18% of the genome is essential [42].
Reflecting the critical role of these genes in fundamen-
tal eukaryotic cellular processes, the essential gene class is
more likely to have homologs in other organisms than the
nonessential gene class [42].

As described above, only a small fraction of the to-
tal genome complement is essential for viability. For the
nonessential gene class, the systematic determination of
mutant phenotypes provides insight into all of the biolog-
ical processes intrinsic to the organism, not just viability.
For a large number of microorganisms, genome-wide ap-
proaches have been applied to determine which genes are
‘conditionally essential’ (required and presumably func-
tional under specific conditions). In bacteria, techniques
for the parallel analysis of mutant pools such as signature
taggedmutagenesis [52] and transposon site hybridization
with microarrays [100] are successful at identifying bacte-
rial genes required for pathogenesis in a host. The con-
ditionally essential gene sets identified from these studies
represent attractive targets for novel antibiotics.

In 2002, an international consortium of yeast re-
searchers completed a systematic knockout library of the
entire yeast genome [42]. An important aspect to this
project was the incorporation of unique molecular bar-
codes into each deletion strain that enabled pooling and
analysis of the entire collection in a single microarray hy-
bridization. Since its completion, the yeast knockout li-
brary has been profiled in hundreds of conditions both
in pools with microarrays and as individual strains us-
ing miniaturized growth assays on plates and in liquid

media [104]. The results of these studies have provided
tantalizing clues into the putative function of hundreds
of uncharacterized yeast genes. For example, an unbiased
survey of genes required for sporulation identified vir-
tually all known regulators of the process in addition to
hundreds of genes previously unknown to be involved in
sporulation [25]. In addition, the evolutionary conserva-
tion of many genes permits the reinterpretation of the
yeast results across all eukaryotes, including human. For
instance, a comprehensive screen for yeast mitochondrial
genes was used to identify candidate human disease genes
based on sequence homology and disease linkage map in-
tervals [111].

The systematic examination of mutant phenotypes in
multicellular eukaryotes is more difficult and costly than
that inmicroorganisms. Using RNAi, however, an increas-
ing number of genome-wide mutagenesis studies have
demonstrated the utility and power of reverse genetics
in worm [65], fly [37], and human [6,88]. The worm,
where the capability of dsRNA to silence complemen-
tary transcripts was first demonstrated in 1998 [33], led
the genome-wide RNAi initiative due to the early com-
pletion of its genome sequence and the ease with which
dsRNA can be delivered to the whole organism (by feed-
ing). By targeting 86% of the �19,000 worm genes by
RNAi, Kamath and colleagues identified mutant pheno-
types for 1722 genes, two-thirds of which had not been
previously associated with a phenotype [65].

In contrast to worm RNAi which is performed
against the entire organism, genome-wide RNAi efforts
in Drosophila and human have been applied to cultured
cells, primarily with well known signaling pathways as the
focus. A number of lessons emerge from these studies.
First, the number of unknown regulators of ‘well’ char-
acterized pathways is large. For example, Friedman and
Perrimon identified hundreds of potential regulators of
the receptor tyrosine kinase/extracellular regulated kinase
(RTK/ERK) pathway using a quantitative RNAi screen in
Drosophila [37]. Second, the limitations of RNAi target-
ing efficiency in humans can be largely reduced by using
multiple, unique inhibitory RNA molecules against a sin-
gle transcript [6]. Lastly, molecular barcodes incorporated
into the human RNAi libraries enable the pooling and par-
allel analysis of thousands of cultured cell lines using a bar-
code microarray [6,88]. Importantly, the use of molecular
barcodes will facilitate the systematic profiling of the hu-
man RNAi collection across a wide range of cell types, cel-
lular states, and drug conditions using methods analogous
to the yeast deletion system.

Given the relatively recent awareness of the extent and
importance of ncRNA, the studies described above all fo-
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cus on protein-coding genes. However, a future challenge
is the functional dissection of complex transcription in-
cluding ncRNA across a number of species. At this point,
it is unclear how to systematically dissect the function of
ncRNA and what the expected outcomes are. Similar to
its application to protein-coding genes, mutagenesis is an
attractive method to assess the functional role of ncRNA.
However, only 2 of 50 ncRNA transcripts in yeast exhib-
ited a mutant phenotype when disrupted under rich me-
dia conditions [22]. In contrast, over one-third of protein-
coding yeast genes are either essential or required for op-
timal growth under the same condition [24]. One inter-
pretation of these results is that ncRNA is not as impor-
tant to the cell as protein-coding genes. An alternative ex-
planation is that this ncRNA plays an important cellular
role but that more complex arrangements of mutations are

Functional Genomics for Characterization of Genome Sequences, Figure 3
Physical interpretation of genetic interactions. a Relative fitness of two genes, A and B, in combination. Uppercase letter refers to
the functional (wildtype) copy of the gene. Lowercase letter refers to a complete loss of function (null) mutation in that gene. Single
mutations of both A (genotype aB) and B (Ab) have no effect on fitness. A strain harboring mutations in both A and B (ab) exhibits
a severe fitness defect. This deviation is referred to as synergistic epistasis. Synthetic lethality is a special instance of synergistic
epistasis in which the double mutant is lethal. b Themost common physical explanation for synergistic epistasis is that genes A and
B act in separate pathways with redundant functions (function A). The loss of either A and B is compensated by the other, intact
gene. c Using the same terminology in a, single gene mutants in both A and B have moderate effects on fitness. The theoretical
expectation for genes acting in independent pathways is that the fitness of the double mutant (ab) should be the product of the
individual fitness effects. Therefore, the fitness of the double mutant should be less than the fitness of the single mutants. In this
example, however, the fitness of the double mutant is equal to the fitness of the single mutants. This deviation is referred to as
antagonistic (or alleviating) epistasis. d Antagonistic epistasis occurs when two genes act in the same pathway. The loss of either
gene singly abolishes the function of the pathway; therefore the loss of both genes would have an identical effect on fitness

necessary to observe phenotypes for these transcripts (see
below).

Genetic Interactions

Single gene mutant studies of the kind described above
are limited in that many genes will not display a pheno-
type under any tested condition. Therefore, despite exten-
sive profiling of a single-gene mutant library across a wide
number of conditions, a sizeable fraction of the genome
will escape functional annotation. This limitation of single
gene mutant studies can be partially reconciled by the fact
that the genome encodes a network of interacting proteins,
RNA, metabolites, and other macromolecules that control
complex physiological processes. One implication of this
cellular complexity is genetic redundancy at the gene or
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pathway level. A mutated gene with an intact, functional
copy elsewhere in the genome will not exhibit a mutant
phenotype under most conditions. A second implication
of cellular complexity is that the network structure itself
has evolved robustness against mutations in many of its
constituent components. Robustness against mutation is
evident in the metabolic network of E. coli, where dis-
ruptions in many genes are managed by alternative routes
through metabolism [61].

One attractive option for unraveling the complexity of
these cellular networks and for assigning putative func-
tions to genes is to analyze strains harboring multiple
mutations. In instances where the phenotype of the mu-
tant combination deviates from the expected phenotype of
combining the single mutants, a genetic interaction is said
to exist between the two genes (Fig. 3). Given the potential
of genetic interactions to reveal novel functional linkages
between genes, researchers have started to systematically
identify these interactions at the genome-level. In yeast,
techniques have been developed to probe a query mu-
tation against all systematically deleted genes using both
automated analysis of individual double mutants [115]
and usingmolecular barcodes, mutant pools, andmicroar-
rays [89]. These findings indicate that the average yeast
gene has a genetic interaction with�34 other nonessential
genes. Furthermore, gene pairs that exhibit a genetic inter-
action are more likely to be functionally related providing
evidence that these interactions are biologically meaning-
ful and can be used to assign putative gene functions [115].

Summary

At the current stage, our genome is computationally an-
notated, transcripts have been mapped using tiling arrays,
we have profiled a number of conditions using gene ex-
pression microarrays, and we have started to undertake
systematic loss-of-function screens to uncover phenotypes
for genes. This pattern of experimentation describes an
increasingly common scenario for how new genome se-
quences are analyzed today.What did the mutant profiling
screens add?Most importantly, at both the single and dou-
ble mutant level, mutant phenotypes seems to be more di-
rect indicators of gene function than gene expression data.
Therefore, despite the cost and difficulty, it is imperative
that systematic mutant collections are tested for a num-
ber of model organisms. Additionally, given the effort to
generate these collections, novel phenotyping technology
needs to be developed such that the value of each mutant
collection is maximized. Nevertheless, the experiments de-
scribed thus far have focused on elucidating genome func-
tion in the context of a single representative individual of

a species. Natural populations within species, however, ex-
hibit substantial phenotypic diversity due to the presence
of genetic variation in the population (polymorphisms) or
environmental effects. Consequently, the precise function-
ality of a gene in a species can be dependent on the indi-
vidual that is sampled. In the next section, we therefore
describe the nature of intraspecific variation and how the
tools of functional genomics are being used to tackle this
problem.

Functional Genomics and Complex Traits

Most intraspecific phenotypic variation is conditioned by
multiple genes and the environment. Furthermore, these
genes can interact with each other and the environment
both additively and epistatically to determine phenotype.
For these reasons, this class of traits is often referred to
as complex (referring to the underlying genetics) or quan-
titative (referring to the effect of each contributing gene
or quantitative trait locus to the overall phenotype). Find-
ing the genetic variation that contributes to quantitative
phenotypic variation is amajor challenge in contemporary
genetics. The susceptibility to many common human dis-
eases including type II diabetes, bipolar disorder, and heart
disease is a genetically complex, quantitative trait. Here we
present the challenge of complex genetics and discuss how
the techniques of transcript profiling and mutant analysis
are being applied to address this issue both in human and
in model organisms.

Genotyping, Linkage, and Association

A primary goal of quantitative genetics is to identify the
genetic variation that contributes to differences in observ-
able traits among the population. Most genetic variation
within species is single base pair differences commonly
referred to as single nucleotide polymorphisms (SNPs).
Therefore, it is necessary that one is able to genotype SNPs
within a population and relate this information to pheno-
typic measurements. SNPs that correlate with a particu-
lar phenotypic value (for instance, tall height in humans)
are potentially causative. In practice, there are two fun-
damental approaches for mapping SNPs that contribute
to phenotypic variation: mapping based approaches such
as linkage analysis and association studies and candidate
gene approaches. Following a discussion of modern geno-
typing techniques, we will first describe the experimental
design and application of linkage and association.

There are numerous techniques for genotyping indi-
viduals within a population. One can directly sequence
a known SNP of interest using terminator chemistry or
pyrosequencing. Additionally, single nucleotide extension
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assays can be used to genotype known SNPs. The ad-
vantages of these techniques are the accuracy of the SNP
calls and the simplicity of doing the experiment. The pri-
mary disadvantage is the cost and labor required to geno-
type thousands of SNPs from a single individual. Given
the availability and necessity of dense SNP (marker) maps
in humans and other model organisms, it is imperative
that genotyping techniques be both rapid (so that numer-
ous individuals can be genotyped) and massively parallel
(so that thousands of SNPs can be genotyped at once).
Microarray-based approaches for genotyping fit these cri-
teria and are available from a number of commercial sup-
pliers [32].

Linkage methods rely on known family history (in
human) or controlled laboratory crosses (in model or-
ganisms) to map causative genetic variation. The basic
premise behind linkage is that the causative allele will seg-
regate preferentially amongmembers of the family sharing
a certain phenotypic value and not in those without this
phenotype. In model organisms, the advantages of linkage
techniques include experimental control and the capabil-
ity to detect genetic loci with major effects on the pheno-
type. In one classic example, linkage mapping led to the
discovery of fw2.2, a major effect QTL that contributes sig-
nificantly to the size of tomatoes [36]. In humans, the pri-
mary disadvantages of linkage mapping are small family
sizes and the absence of a detailed genealogy for most pop-
ulations. The population of Iceland, in which an isolated
population kept detailed records of family history, is an
exception; linkage methodology applied to this population
has led to the discovery of allelic variants that contribute
to a number of diseases including type II diabetes [46].

Given the lack of family history for most human pop-
ulations, the majority of human mapping efforts are cur-
rently focused on association. In association studies, a case
group (with the phenotype of interest) and an appropri-
ately chosen control are genotyped for a large number of
SNPs. In association studies, the case and control groups
rarely contain family members, rather the participants are
chosen from broader populations. The goal of associa-
tion studies is to identify SNPs that are statistically over-
represented in the case group compared to the control
group. These SNPs represent candidate chromosomal re-
gions that may contain causative genetic variation. Tech-
nological advances underlie the recent success of human
association studies. First, a haplotype map of the human
genome [60] has reduced the number of SNPs that need
to genotyped (due to linkage disequilibrium) to achieve
genome-wide coverage. Second, hundreds of thousands of
SNPs can be genotyped in parallel using microarray-based
approaches. With these resources in hand, researchers

have used association-based methods to identify genetic
variants associated with a number of multigenic diseases
including type II diabetes [101,105,131] and bipolar disor-
der [124].

The successful application of linkage and association
studies described above emphasizes the complexity of
quantitative traits. As such, a number of fundamental
questions remain to be answered: how many genes con-
dition a quantitative trait, what are the effect sizes of each
of the genes, is the causative variation more likely to be
at the regulatory or protein level, and finally, how does
genetic variation interact at the molecular level to deter-
mine phenotype? In a recurrent theme during the history
of molecular biology, the use of model organisms is nec-
essary to uncover fundamental principles of biology. In
addition to novel insights into the genetic architecture of
quantitative traits, it is anticipated that the techniques used
to dissect quantitative variation in model organisms will
be applied to the same class of traits in humans. Below we
briefly discuss some research developments in model or-
ganism quantitative genetics (by primarily candidate gene
approaches) using the functional genomic techniques de-
scribed in this article as a framework.

Application of Transcription

Differences in transcript levels contribute to observable
phenotypic variation (for review, [97]). Consequently, re-
searchers have looked into the genetics of gene expres-
sion variation in a number of species including yeast [10],
mouse, and human [102]. Because each gene and its tran-
script level can be considered an individual trait, the ge-
netic analysis of gene expression is a powerful model for
QTL studies as thousands of traits can be considered si-
multaneously. A number of lessons emerge from these
studies. Early work in yeast suggests that, for the majority
of genes, the underlying genetics controlling gene expres-
sion is multigenic and complex [10]. Additionally, the ma-
jority of loci that affect gene expression are distant acting
factors, not local regulatory sequences linked to the gene
under investigation. Finally, the majority of causative dis-
tant acting factors do not appear to be transcription fac-
tors [130]. This argues that the genetic network that con-
tributes to gene expression variation is affected by many
global biological processes, not just those directly related
to gene transcription.

In mouse and human, the genetic analysis of gene ex-
pression is aiding in the identification of QTLs (by propos-
ing candidate genes) and providing insight into disease
mechanisms. Schadt et al. examined the transcript levels
of 111 mice derived from a cross between two laboratory
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Functional Genomics for Characterization of Genome Sequences, Figure 4
Reciprocal hemizygosity analysis. a Reciprocal hemizygosity analysis (RHA) is the quantitative profiling of hemizygous (one allele is
deleted), hybrid diploid strains. Illustrated is a hybrid diploid yeast strain derived from a cross between two divergent strains; shown
here for S288c (green) and SK1 (red). The asterisks along the SK1 chromosome represent single nucleotide polymorphisms (SNPs)
between the two strains. b In RHA, two reciprocal deletion strains are compared directly for their contribution to the phenotype
(in the example here, fitness). The two strains are completely isogenic except each carries a single gene from a different genetic
background. For Gene1 and Gene2, the reciprocal deletion strains harbor identical phenotypes. One can conclude that the SK1 and
S288c versions of these alleles contribute equally to fitness in the S288c/SK1 hybrid background. For Gene3, the strainwith a deletion
in the SK1 allele has a significantly lower fitness than the S288c deletion strain. The interpretation is that the SK1 allele has a larger
effect on fitness than the S288c allele in the hybrid background. The SNPs in and around Gene3 are candidates for the causative
genetic variation
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strains segregating for obesity [102]. Over 2000 genes with
transcript level differences between the parents signifi-
cantly linked to quantitative trait loci which may influence
gene expression levels or contribute to obesity. Among
the progeny two distinct obesity gene expression subtypes
could be defined. Interestingly, the two subtypes are un-
der the genetic control of different QTLs suggesting that
multiple molecular mechanisms can contribute to what
appears to be a single phenotype (obesity). These results
demonstrate that the genetic dissection of gene expression
in mammals can classify disease subtypes, identify novel
interactions between loci, and identify potential therapeu-
tic targets. However, it is important to note that not all
phenotypic variation will be the result of transcript level
differences. The importance of other molecular mecha-
nisms, including structural mutations in proteins, implies
that multiple, complementary techniques are required to
fully understand intraspecific phenotypic variation.

Application of Genetics Analysis

Mutants can provide substantial insight into the genes un-
derlying phenotypic variation because they can mirror the
effects of certain types of allelic variation present in the
natural population. The analysis of mutants can be used
as a verification tool for the identification of the causative
locus or as a technique for generating a list of candidate
genes for future investigation. In mouse, large forward ge-
netic approaches are being applied to isolate interesting
mutants that have phenotypes relevant to human health
including obesity, diabetes, and heart disease [85]. While
this approach is promising, it is not amenable to high-
throughput and the mapping of mutations is still time-
consuming. Therefore, reverse-genetic efforts to system-
atically mutate every gene in the mouse genome, although
a monumental task, are likely to provide better coverage
for the entire genome in the long run [19].

Mutant screening for QTL detection has limitations
similar to those of loss-of-function phenotype screens
in model systems, in that redundant gene products are
missed, more complex interactions not tested, and expec-
tations are unclear when natural, causative SNPs do not
elicit the same effects as the laboratory induced muta-
tions. For these reasons, the power of mutant analysis is in-
creasedwhen it is applied so that amutant is not compared
to a wildtype, but instead a mutation enables a compar-
ison between one allele and another. This technique has
been established in yeast by reciprocal hemizygosity anal-
ysis (Fig. 4). After linkage mapping, reciprocal hemizygos-
ity analysis was applied to identify the causative genes in
each QTL region for the complex traits of high-temper-

ature growth and sporulation efficiency [4,23,112]. These
studies highlight the complexity of quantitative traits in-
cluding the presence of multiple causative genes in a sin-
gle mapped interval and the non-intuitive genetic interac-
tions between the causative genes. In addition, the yeast
work suggests that regulatory and protein coding poly-
morphisms in both candidate and non-candidate genes
contribute to quantitative phenotypic variation. One im-
plication of these results is that new techniques for the
high-resolution dissection of QTLs are required in mul-
ticellular model organisms to truly understand the genetic
basis of phenotype variation.

Summary

We argue that a complete understanding of gene func-
tion requires an understanding of how gene function
varies (often subtly) among individuals within a popu-
lation, not just a single representative isolate. To fulfill
this promise, two substantial challenges need to be ad-
dressed. The first challenge is the identification of the ge-
netic variants that influence any particular phenotype. In
model organisms, genome-wide techniques based on link-
age/association combined with transcription and muta-
tion analysis are proving successful. Further application of
mutant approaches requires substantial infrastructure to
generate libraries of strains and reagents for the systematic
identification of interesting phenotypes but have promise
for circumventing the need for linkage mapping (Fig. 4).
The second challenge is to unravel the complexity of ge-
netic and environmental interactions at a molecular level.
This will first be accomplished in model systems although
it is anticipated that the lessons learned from these stud-
ies will be applicable to humans. Functional genomic tech-
niques (combined with non-nucleic based approaches, see
a) provide the necessary global views into gene function
and hence are perhaps most promising for dissecting the
genetic interactions underlying phenotypic variation.

Future Directions

Technology and Implications

The relationship between technology and biological in-
sight is circular: biology drives technology development
and new technology enables new biology. For example,
the desire to sequence human genomes has driven the ef-
forts to develop novel, ultra high-throughput sequencing
technology. In turn, functional genomic techniques such
as automated DNA sequencing and the DNA microarray
have revealed numerous unexpected insights into the bi-
ology and functioning of genomes. No doubt, the data de-



3978 F Functional Genomics for Characterization of Genome Sequences

rived from novel technology, such as ultra high-through-
put sequencing of millions of humans, will revolutionize
our view of living systems (and so on). Given the impor-
tance of technology in functional genomics (and biology in
general), we discuss here novel techniques and their impli-
cations for discovery.

Ultra high-throughput sequencing encompass meth-
ods capable of sequencing millions of molecules in par-
allel in reaction volumes far lower than used for conven-
tional Sanger sequencing [80,107]. Given the central role
of DNA sequence data in functional genomics, this new
generation of technology has important implications for
genome-level research and comparative genomics in par-
ticular. The increased throughput of DNA sequencing will
allow researchers to sample more of the natural varia-
tion present on earth. It is anticipated that the genome
sequences for most commonly known multicellular or-
ganisms will be completed in the next 20 years. Further-
more, novel sequencing technologies may have utility in
the analysis of extinct organisms as well. In one example,
partial Neanderthal genome sequences were obtained us-
ing template derived from a fossil bone [47,87]. Such an-
alyzes of extinct organisms can provide insights into the
evolutionary past that is not possible using the DNA se-
quence data from contemporary species. Lastly, the envi-
ronmental sequences (metagenome) of largely uncultivat-
able microbial communities are reshaping the way we view
ecosystems [120], biogeochemical cycles [118], and even
human health [117].

Above all, novel DNA sequencing technologies have
the potential to revolutionize human health by cost-ef-
fectively providing the genome sequence of many indi-
viduals within the human population. The realization of
such promise would usher in a new era of personalized
medicine based on one’s genome sequence. The identifi-
cation of all polymorphisms amongmillions of individuals
would increase the power of association studies for finding
common disease genes (particularly those with small ef-
fect). Additionally, the resequencing of tumor samples will
aid in the identification of the responsible mutations and
perhaps suggest the appropriate therapeutic treatment.

As described in this review, our ability to sequence
genomes far exceeds our ability to systematically deter-
mine genome function. Therefore, the development of
ultra high-throughput DNA sequencing emphasizes the
need for novel functional genomic techniques to deci-
pher gene function. For the analysis of gene expression,
we believe two major trends will dominate. First, microar-
rays will trend towards higher density, multiplexing, and
custom design. Higher density of probes on microarrays
will enable higher-resolution measurements of transcrip-

tional architecture. The multiplexing of arrays will lower
costs per experiment by reducing the amount of necessary
reagents. Custom in situ synthesized microarrays will al-
low researchers to keep experimentation up to the pace of
genome sequencing. The second major trend in gene ex-
pression promises to be the use of ultra high-throughput
sequencing as a ‘digital’ readout of gene expression by di-
rectly counting the number of individual RNA molecules
in a sample (even at the single cell level). The advantages of
this approach are that no microarray is needed, data anal-
ysis is more straightforward, and most cellular RNA is as-
sayed in an unbiased manner.

Despite the cost and effort, we anticipate that genome-
wide resources (such as defined mutant libraries for all
genes) will become available for a number of organisms.
Such resources offer the potential to systematically deter-
mine gene function on a number of levels from genetic
to biochemical. However, we believe the full potential of
these resources can only be realized with concurrent ad-
vances in experimentation such as robotic automation,
assay miniaturization, and labeling/detection systems for
monitoring phenotypes and individual molecules (for re-
views, see [55,81]). Most importantly, increasing accuracy
and throughput of experimentation while simultaneously
reducing cost will enable the application of novel technol-
ogy in the individual laboratory and hence spread the im-
pact of these approaches [110].

Data Integration and Systems Biology

In order to understand cellular function one also needs
to examine the dynamics and interactions of biological
data types beyond DNA, such as proteins, metabolites,
and lipids. Like for DNA, high-throughput technologies
have been developed to increase the speed and decrease the
cost of obtaining this information, andmethods have been
developed to integrate diverse data types. These develop-
ments characterize the fields of proteomics, metabolomics,
modeling, and systems biology, to name but a few. While
each of these topics are subjects of other chapters in this
book, we touch upon them briefly here to provide a con-
text in which all genomic DNA data needs to be analyzed
today. The key is to incorporate all of the available infor-
mation together, to gain a picture of biological function
greater than the sum of the individual parts.

Cells are enormously complex and each of the thou-
sands of biochemical reactions carried out by genes is part
of a large network of connected reactions – encoded by
information in the genome but regulated by cues from
the environment. Conceptually, disturbances in cells, like
what happens during any type of disease, can be viewed
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as a disturbance in the network, and in order to predict
the effect of disturbances we need to identify all molecular
components, know where they localize, with whom they
interact, and how their activity is regulated.

Among biological entities other than DNA, proteins
have beenmost amenable to high-throughput study (often
employing genetic manipulation) and their global char-
acterization is perhaps furthest along. High-throughput
technologies have been developed to analyze the expres-
sion of proteins [41], their localization [58], phosphory-
lation patterns [21], protein-DNA interactions [50], and
protein-protein interactions [39,40,53,62,71,119]. Any
dataset that defines a relationship between proteins can
be used for the purpose of making a network. Thus, inter-
action linkages have been defined based on physical pro-
tein-protein interactions [39,40,53,62,71,119], expression
regulation [76,113], mutant phenotypes [111,115], phylo-
genetic profiles [91], literature mining [79], and orthol-
ogy transfer of interaction evidence across species [128].
Not surprisingly, we now know at least some of the pu-
tative interrelationships among most of the proteome of
yeast (and other organisms are following) [38]. While
many of the interactions are suggestive and need to be
confirmed, already they provide a context to functionally
characterize proteins and enable an understanding of the
whole that goes beyond knowledge from the components
in isolation.

Because individual large scale datasets are often in-
complete, more information is obtained by integrating
datasets. Integrating heterogeneous but complementary
interaction data types has improved the accuracy and
the coverage in detecting protein associations [121] and
has been implemented globally [20,49,59,63,75,84,116]. In
one example, integrated protein networks have been con-
structed for mitochondria, where they have enabled func-
tional predictions to be made for hundreds of previously
uncharacterized components, providing a survey of sys-
tems properties and enabling the prediction of disease can-
didate genes [93,108].

Currently, we are still far away from being able to de-
velop any complete models of eukaryotic cells. In order
to identify and understand the function of biological net-
works we need to move from static to dynamic models,
from defining the parts to understanding the biological
processes in the context of the entire system. Knowledge
about systems biology can then fuel the next series of ap-
plications, to enable the design and construction of bio-
logical systems that can (for example) process informa-
tion, generate energy, fabricate materials, provide food,
or maintain and enhance human health and our environ-
ment. For these reasons, as well as for the insights obtained

from cracking the code itself, understanding the blueprint
of the genome using functional genomics is a fascinating
quest, and will remain so for some time to come.
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Glossary

Cointension A qualitativemeasure of proximity of mean-
ings/input-output relations.

Extension principle A principle which relates to propa-
gation of generalized constraints.

f-validity fuzzy validity.
Fuzzy if-then rule A rule of the form: if X isA then Y is B.

In general, A and B are fuzzy sets.
Fuzzy logic (FL) A precise logic of imprecision, uncer-

tainty and approximate reasoning.
Fuzzy logic gambit Exploitation of tolerance for impreci-

sion through deliberate m-imprecisiation followed by
mm-precisiation.

Fuzzy set A class with a fuzzy boundary.
Generalized constraint A constraint of the form X isr R,

where X is the constrained variable, R is the constrain-
ing relation and r is an indexical variable which defines
the modality of the constraint, that is, its semantics. In
general, generalized constraints have elasticity.

Generalized constraint language A language generated
by combination and propagation of generalized con-
straints.

Graduation Association of a scale of degrees with a fuzzy
set.

Granuland Result of granulation.
Granular variable A variable which takes granules as

variables.
Granulation Partitioning of an object/set into granules.
Granule A clump of attribute values drawn together by

indistinguishability, equivalence, similarity, proximity
or functionality.

Linguistic variable A granular variable with linguistic la-
bels of granular values.

m-precision Precision of meaning.
mh-precisiand m-precisiand which is described in a nat-

ural language (human-oriented).
mm-precisiand m-precisiand which is described in

a mathematical language (machine-oriented).
p-validity provable validity.
Precisiand Result of precisiation.
Precisiend Object of precisiation.
v-precision Precision of value.

Definition of the Subject

Viewed in a historical perspective, fuzzy logic is closely re-
lated to its precursor – fuzzy set theory [70]. Conceptually,
fuzzy logic has a much broader scope and a much higher
level of generality than traditional logical systems, among
them the classical bivalent logic, multivalued logics, model
logics, probabilistic logics, etc. The principal objective of
fuzzy logic is formalization – and eventual mechaniza-
tion – of two remarkable human capabilities. First, the ca-
pability to converse, communicate, reason and make ra-
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tional decisions in an environment of imprecision, uncer-
tainty, incompleteness of information, partiality of truth
and partiality of possibility. And second, the capability to
perform a wide variety of physical and mental tasks – such
as driving a car in city traffic and summarizing a book –
without any measurement and any computations.

A concept which has a position of centrality in fuzzy
logic is that of a fuzzy set. Informally, a fuzzy set is a class
with a fuzzy boundary, implying a gradual transition from
membership to nonmembership. A fuzzy set is precisi-
ated through graduation, that is, through association with
a scale of grades of membership. Thus, membership in
a fuzzy set is a matter of degree. Importantly, in fuzzy log-
ic everything is or is allowed to be graduated, that is, be
a matter of degree. Furthermore, in fuzzy logic every-
thing is or is allowed to be granulated, with a granule be-
ing a clump of attribute-values drawn together by indis-
tinguishability, equivalence, similarity, proximity or func-
tionality. Graduation and granulation form the core of
fuzzy logic. Graduated granulation is the basis for the con-
cept of a linguistic variable – a variable whose values are
words rather than numbers [73]. The concept of a linguis-
tic variable is employed in almost all applications of fuzzy
logic.

During much of its early history, fuzzy logic was an
object of controversy stemming in part from the pejora-
tive connotation of the term “fuzzy”. In reality, fuzzy logic
is not fuzzy. Basically, fuzzy logic is a precise logic of im-
precision and uncertainty.

An important milestone in the evolution of fuzzy logic
was the development of the concept of a linguistic vari-
able and the machinery of fuzzy if-then rules [73,90]. An-
other important milestone was the conception of possi-
bility theory [79]. Possibility theory and probability the-
ory are complimentary. A further important milestone
was the development of the formalism of computing with
words (CW) [93]. Computing with words opens the door
to a wide-ranging enlargement of the role of natural lan-
guages in scientific theories.

In the following, fuzzy logic is viewed in a nontradi-
tional perspective. In this perspective, the cornerstones of
fuzzy logic are graduation, granulation, precisisation and
the concept of a generalized constraint. The concept of
a generalized constraint serves to precisiate the concept
of granular information. Granular information is the ba-
sis for granular computing (GrC) [2,29,37,81,91,92]. In
granular computing the objects of computation are granu-
lar variables, with a granular value of a granular variable
representing an imprecise and/or uncertain information
about the value of the variable. In effect, granular com-
puting is the computational facet of fuzzy logic. GrC and

CW are closely related. In coming years, GrC and CW are
likely to play increasingly important roles in the evolution
of fuzzy logic and its applications.

Introduction

Science deals not with reality but with models of reality. In
large measure, scientific progress is driven by a quest for
better models of reality.

In the real world, imprecision, uncertainty and com-
plexity have a pervasive presence. In this setting, con-
struction of better models of reality requires a better un-
derstanding of how to deal effectively with imprecision,
uncertainty and complexity. To a significant degree, de-
velopment of fuzzy logic has been, and continues to be,
motivated by this need.

In essence, logic is concerned with formalization of
reasoning. Correspondently, fuzzy logic is concerned with
formalization of fuzzy reasoning, with the understanding
that precise reasoning is a special case of fuzzy reasoning.

Humans have many remarkable capabilities. Among
them there are two that stand out in importance. First, the
capability to converse, communicate, reason and make ra-
tional decisions in an environment of imprecision, uncer-
tainty, incompleteness of information, partiality of truth
and partiality of possibility. And second, the capability
to perform a wide variety of physical and mental tasks –
such as driving a car in heavy city traffic and summariz-
ing a book – without any measurements and any compu-
tations. In largemeasure, fuzzy logic is aimed at formaliza-
tion, and eventual mechanization, of these capabilities. In
this perspective, fuzzy logic plays the role of a bridge from
natural to machine intelligence.

There are many misconceptions about fuzzy logic.
A common misconception is that fuzzy logic is fuzzy. In
reality, fuzzy logic is not fuzzy. Fuzzy logic deals precisely
with imprecision and uncertainty. In fuzzy logic, the ob-
jects of deduction are, or are allowed to be fuzzy, but the
rules governing deduction are precise. In summary, fuzzy
logic is a precise system of reasoning, deduction and com-
putation in which the objects of discourse and analysis are
associated with information which is, or is allowed to be,
imprecise, uncertain, incomplete, unreliable, partially true
or partially possible. For illustration, here are a few simple
examples of reasoning in which the objects of reasoning
are fuzzy.

First, consider the familiar example of deduction in
Aristotelian, bivalent logic.

all men are mortal
Socrates is a man

Socrates is mortal
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In this example, there is no imprecision and no un-
certainty. In an environment of imprecision and uncer-
tainty, an analogous example – an example drawn from
fuzzy logic – is

most Swedes are tall
Magnus is a Swede

it is likely that Magnus is tall

with the understanding that Magnus is an individual
picked at random from a population of Swedes. To deduce
the answer from the premises, it is necessary to precisiate
the meaning of “most” and “tall,” with “likely” interpreted
as a fuzzy probability which, as a fuzzy number, is equal
to “most”. This simple example points to a basic charac-
teristic of fuzzy logic, namely, in fuzzy logic precisiation of
meaning is a prerequisite to deduction. In the example un-
der consideration, deduction is contingent on precisiation
of “most”, “tall” and “likely”. The issue of precisiation has
a position of centrality in fuzzy logic.

In fuzzy logic, deduction is viewed as an instance of
question-answering. Let I be an information set consisting
of a system of propositions p1; : : : ; pn , I D S(p1; : : : ; pn).
Usually, I is a conjunction of p1; : : : ; pn . Let q be a ques-
tion. A question-answering schema may be represented as

I
q

ans(q/I)

where ans(q/I) denotes the answer to q given I. The fol-
lowing examples are instances of the deduction schema

I : most Swedes are tall
Magnus is a Swede

q : what is the probability that Magnus is tall?

ans(q/I) is likely, likely=most

(1)

I : most Swedes are tall
q : what fraction of Swedes are not tall?

ans(q/I) is (1 �most)
(2)

I : most Swedes are tall
q : what fraction of Swedes are short?

ans(q/I)
(3)

I : most Swedes are tall
q : what is the average height of Swedes?

ans(q/I)
(4)

I : a box contains balls of various sizes
most are small
there are many more small balls than large balls

q : what is the probability that a ball
drawn at random is neither large nor small?

ans(q/I) :
(5)

In these examples, rules of deduction in fuzzy logic
must be employed to compute ans(q/I). For (1) and (2) de-
duction is simple. For (3)–(5) deduction requires the use of
what is referred to as the extension principle [70,75]. This
principle is discussed in Sect. “The Concept of a General-
ized Constraint”.

A less simple example of deduction involves interpola-
tion of an imprecisely specified function. Interpolation of
imprecisely specified functions, or interpolative deduction
for short, plays a pivotal role in many applications of fuzzy
logic, especially in the realm of control.

For simplicity, assume that f is a function from reals
to reals, Y D f (X). Assume that what is known about f is
a collection of input-output pairs of the form

� f D ((�a1; �b1); : : : ; (�an ; �bn)) ;

where �a is an abbreviation of “approximately a”. Such
a collection is referred to as a fuzzy graph of f [74]. A fuzzy
graph of f may be interpreted as a summary of f . In many
applications, a fuzzy graph is described as a collection of
fuzzy if-then rules of the form

if X is �ai then Y is �bi ; i D 1; : : : ; n :

Let a be a value of X. Viewing � f as an information
set, I, interpolation of f may be expressed as a question-
answering schema

I : � f
q : � f (�a)

ans(q/(� f ; �a))

A very simple example of interpolative deduction is
the following. Assume that �a1, �a2, �a3 are labeled small,
medium and large, respectively. A fuzzy graph of f may be
expressed as a calculus of fuzzy if-then rules.

� f : if X is small then Y is small
if X is medium than Y is large
if X is large then Y is small:

Given a value of X, X D a, the question is: What is
� f (�a)? The so-called Mamdani rule [39,74,78] provides
an answer to this question.
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More generally, in an environment of imprecision and
uncertainty, fuzzy if-then rules may be of the form

if X is �ai ; then usually (Y is �bi ) ; i D 1; : : : ; n :

Rules of this form endow fuzzy logic with the capabil-
ity to model complex causal dependencies, especially in
the realms of economics, social systems, forecasting and
medicine.

What is not widely recognized is that fuzzy logic is
more than an addition to the methods of dealing with
imprecision, uncertainty and complexity. In effect, fuzzy
logic represents a paradigm shift. More specifically, it is
traditional to associate scientific progress with progression
from perceptions to numbers. What fuzzy logic adds to
this capability are four basic capabilities.

(a) Nontraditional. Progression from perceptions to pre-
cisiated words

(b) Nontraditional. Progression from unprecisiated
words to precisiated words

(c) Countertraditional. Progression from numbers to pre-
cisiated words

(d) Nontraditional. Computing with words (CW)/NL-
computation.

These capabilities open the door to a wide-ranging en-
largement of the role of natural languages in scientific the-
ories.

Our brief discussion of deduction in the context of
fuzzy logic is intended to clarify the nature of problems
which fuzzy logic is designed to address. The principal
concepts and techniques which form the core of fuzzy
logic are discussed in the following. Our discussion draws
on the concepts and ideas introduced in [102].

Conceptual Structure of Fuzzy Logic

There are many logical systems, among them the classi-
cal, Aristotelian, bivalent logic, multivalued logics, model
logics, probabilistic logic, logic, dynamic logic, etc. What
differentiates fuzzy logic from such logical systems is that
fuzzy logic is much more than a logical system.

The point of departure in fuzzy logic is the concept of
a fuzzy set. Informally, a fuzzy set is a class with a fuzzy
boundary, implying that, in general, transition frommem-
bership to nonmembership in a fuzzy set is gradual rather
than abrupt. A set is a class with a crisp boundary (Fig. 1).
A set, A, in a space U, U D fug, is precisiated through as-
sociation with a characteristic function which mapsU into
f0; 1g. More generally, a fuzzy set,A, is precisiated through
graduation, that is, through association with A of a mem-
bership function, �A – a mapping from U to a grade of

Fuzzy Logic, Figure 1
The concepts of a set and a fuzzy set are derived from the con-
cept of a class through precisiation. A fuzzy set has a fuzzy
boundary. A fuzzy set is precisiated through graduation

membership space, G, with �A(u) representing the grade
of membership of u in A. In other words, membership in
a fuzzy set is a matter of degree. A familiar example of
graduation is the association of Richter scale with the class
of earthquakes. A fuzzy set is basic if G is the unit interval.
More generally, G may be a partially ordered set. L-fuzzy
sets [23] fall into this category. A basic fuzzy set is of Type
1. A fuzzy set, A, is of Type 2 if �A(u) is a fuzzy set of
Type 1. Recursively, a fuzzy set, A, is of Type n if �A(u) is
a fuzzy set of Type n � 1, n D 2; 3; : : : [75]. Fuzzy sets of
Type 2 have become an object of growing attention in the
literature of fuzzy logic [40]. Unless stated to the contrary,
a fuzzy set is assumed to be of Type 1 (basic).

Note. A clarification is in order. Consider a concate-
nation of two words, A and B, with A modifying B, e. g.
A is an adjective and B is a noun. Usually, A plays the role
of an s-modifier, that is, a modifier which specializes B
in the sense that AB is a subset of B, as in convex set. In
some instances, however, A plays the role of a g-modifier,
that is, a modifier which generalizes B. In this sense, fuzzy
in fuzzy set, fuzzy logic and, more generally, in fuzzy B,
is a g-modifier. Examples: fuzzy topology, fuzzy measure,
fuzzy arithmetic, fuzzy stability, etc. Manymisconceptions
about fuzzy logic are rooted in incorrect interpretation of
fuzzy as an s-modifier.

What is important to note is that (a) �A(u) is name-
based (extensional) if u is the name of an object in U,
e. g., �middle-aged(Vera); (b) �A(u) is attribute-based (in-
tensional) if the grade of membership is a function of an
attribute of u, e. g., age; and (c) �A(u) is perception-based
if u is a perception of an object, e. g., Vera’s grade of mem-
bership in the class of middle-aged women, based on her
appearance, is 0.8.
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It should be observed that a class of objects, A, has
two basic attributes: (a) the boundary of A; and (b) the
cardinality (count) or, more generally, the measure of A
(Fig. 1). In this perspective, fuzzy set theory is, in the
main, boundary-oriented, while probability theory is, in
the main, measure-oriented. Fuzzy logic is, in the main,
both boundary- and measure-oriented. The concept of
a membership function is the centerpiece of fuzzy set
theory.

With the concept of a fuzzy set as the point of depar-
ture, different directions may be pursued, leading to var-
ious facets of fuzzy logic. More specifically, the following
are the principal facets of fuzzy logic: the logical facet, FLl;
the fuzzy-set-theoretic facet, FLs, the epistemic facet, Fle;
and the relational facet, FLr (Fig. 2).

The logical facet of FL, FLl, is fuzzy logic in its nar-
row sense. FLl may be viewed as a generalization of mul-
tivalued logic. The agenda of FLl is similar in spirit to the
agenda of classical logic [17,22,25,44,45].

The fuzzy-set-theoretic facet, FLs, is focused on fuzzy
sets. The theory of fuzzy sets is central to fuzzy logic. His-
torically, the theory of fuzzy sets [70] preceded fuzzy logic
[77]. The theory of fuzzy sets may be viewed as an en-
try to generalizations of various branches of mathematics,
among them fuzzy topology, fuzzy measure theory, fuzzy
graph theory, fuzzy algebra and fuzzy differential equa-
tions. Note that fuzzy X is a fuzzy-set-theory-based or,
more generally, fuzzy-logic-based generalization of X.

The epistemic facet of FL, FLe, is concerned with
knowledge representation, semantics of natural languages
and information analysis. In FLe, a natural language is
viewed as a system for describing perceptions. An impor-
tant branch of FLe is possibility theory [15,79,83]. Another
important branch of FLe is the computational theory of
perceptions [93,94,95].

The relational facet, FLr, is focused on fuzzy relations
and, more generally, on fuzzy dependencies. The concept
of a linguistic variable – and the associated calculi of fuzzy

Fuzzy Logic, Figure 2
Principal facets of fuzzy logic (FL). The nucleus of fuzzy logic is
the concept of a fuzzy set

Fuzzy Logic, Figure 3
The cornerstones of a nontraditional view of fuzzy logic

if-then rules – play pivotal roles in almost all applications
of fuzzy logic [1,3,6,8,12,13,18,26,28,32,36,40,48,52,65,66,
67,69].

The cornerstones of fuzzy logic are the concepts of
graduation, granulation, precisiation and generalized con-
straints (Fig. 3). These concepts are discussed in the
following.

The Basics of Fuzzy Set Theory

The grade of membership, �A(u), of u in A may be in-
terpreted in various ways. It is convenient to employ the
proposition p: Vera is middle-aged, as an example, with
middle-age represented as a fuzzy set shown in Fig. 4.
Among the various interpretations of p are the following.

Assume that q is the proposition: Vera is 43 years old;
and r is the proposition: the grade of membership of Vera
in the fuzzy set of middle-aged women is 0.8.

(a) The truth value of p given r is 0.8.
(b) The possibility of q given p and r is 0.8.
(c) The degree to which the concept of middle-age has to

be stretched to apply to Vera is (1–0.8).
(d) 80% of voters in a voting group vote for p given q

and r.
(e) The probability of p given q and r is 0.8.

Of these interpretations, (a)–(c) are most compatible with
intuition.

If A and B are fuzzy sets in U, then their intersection
(conjunction), A\ B, and union (disjunction), A[ B, are
defined as

�A\B (u) D �A(u) ^ �B(u) ; u 2 U
�A[B (u) D �A(u) _ �B(u) ; u 2 U

where ^ D min and _ D max. More generally, conjunc-
tion and disjunction are defined through the concepts of
t-norm and t-conorm, respectively [48].

When U is a finite set, U D fu1; : : : ; ung, it is conve-
nient to represent A as a union of fuzzy singletons,

�A(ui )/ui ; i D 1; : : : ; n :
Specifically; AD �A(u1)/u1 C � � � C �A(un)/un
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Fuzzy Logic, Figure 4
Precisiation of middle-age through graduation

in whichC denotes disjunction. More compactly,

AD ˙i�A(ui )/ui ; i D 1; : : : ; n :

When U is a continuum, Amay be expressed as
Z

U
�A(u)/u :

A basic concept in fuzzy set theory is that of a level
set [70], commonly referred to as an ˛-cut [48]. Specifi-
cally, if A is a fuzzy set in U, then an ˛-cut, A˛ , is defined
as (Fig. 5)

A˛ D fuj�A(u) > ˛g ; 0 < ˛ 6 1 :

The core of A is the ˛-cut with ˛ D 1.
A fuzzy set, A, is a fuzzy interval if all of its ˛-cuts are

intervals. A fuzzy set, A, is convex if all of its ˛-cuts are
convex [70].

Fuzzy Logic, Figure 5
Definition of˛-cut

In most practical applications, a membership function
is assumed to have a simple form, e. g. a triangle or a trape-
zoid (Fig. 6). For convenience, triangular and trapezoidal
fuzzy sets are abbreviated as tr-sets and tp-sets, respec-
tively. It should be noted that a singleton is associated with
one parameter, an interval with two parameters, a tr-set
with three parameters and a tp-set with four parameters.
The number of parametersmay be interpreted as the num-
ber of degrees of freedom. In general, the number of de-
grees of freedom is covariant with closeness of approxi-
mation.

A concept which plays an important role in fuzzy set
theory is that of cardinality, that is, the count of elements
in a fuzzy set [25,51,64,86]. Basically, there are two ways
in which cardinality can be defined: (a) crisp (scaler) car-
dinality and (b) fuzzy (stratified) cardinality. In the case of
(a), the count of elements in a fuzzy set is a crisp number;
in the case of (b) it is a fuzzy set.

More specifically, consider a fuzzy set, A, defined
in U D fu1; : : : ; ung through its membership function,

Fuzzy Logic, Figure 6
Triangular and trapezoidal fuzzy sets. tr-sets and tp-sets
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�A(u). The sigma-count of A is defined as

˙Count(A) D
nX

iD1

�A(ui ) :

If A and B are fuzzy sets defined in U, then the relative
sigma-count,˙Count(A/B), is defined as

˙Count(A/B) D
˙Count(A\ B)
˙Count(B)

D

nP

iD1
�A(ui ) ^ �B(ui )

nP

iD1
�B(ui )

;

where ^ D min, and summations are arithmetic.
A stratified count, S Count(A), is a fuzzy set. As such,

it is more informative then˙Count(A) but has the disad-
vantage of greater complexity. A stratified count is defined
in terms of ˛-cuts of A [86]. Specifically, let A˛1; : : : ;A˛n
be ˛-cuts of A, with ˛1 < ˛2 < � � � < ˛n � 1. Then

SCount(A) D ˛1/ Count(A˛2)C � � �C ˛n/ Count(A˛n)

or equivalently,

S Count(A) D f(˛i ;A˛ i )g ; i D 1; : : : ; n :

As a simple illustration, consider the fuzzy set

AD 0:4/u1 C 0:8/u2 C 1/u3 C 0:9/u4 C 0:3/u5 :

Fuzzy Logic, Figure 7
Declaredmembership functions and associated fuzzy if-then rules in Honda’s fuzzy logic transmission

In this case,

A0:3 D fu1; u2; u3; u4; u5g ; Count(A0:3) D 5
A0:4 D fu1; u2; u3; u4g ; Count(A0:4) D 4
A0:8 D fu2; u3; u4g ; Count(A0:8) D 3
A0:9 D fu3; u4g ; Count(A0:9) D 2
A1 D fu3g ; Count(A1) D 1

SCount(A) D 1/1C 0:9/2C 0:8/3C 0:4/4C 0:3/5
˙Count(A) D 3:4 :

The concept of a membership function has a position
of centrality in fuzzy logic. In this context, a natural ques-
tion is: How can a membership function be constructed?
There are three basic approaches: graduation through dec-
laration; graduation through composition/deduction; and
graduation through exemplification/ostention/elicitation.

Graduation through declaration is employed in many
applications of fuzzy logic, especially in the realm of con-
trol systems. In this mode of graduation, a membership
function is declared (specified) by the designer of a system.
An example is the Honda fuzzy logic transmission (Fig. 7).

Declarative graduation has the potential for important
applications in the realm of precisiation/standardization
of many concepts and terms in various fields of science, es-
pecially in the realms of medicine and economics. A very
simple example is standardization of the meaning of nor-
mal temperature, mild fever, high fever, etc. It is conve-
nient to standardize the meaning of such terms through
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Fuzzy Logic, Figure 8
Declarative graduation/standardization of normal temperature,
fever and high fever

the use of trapezoidal membership functions, that is, tp-
sets (Fig. 8).

In many cases, a membership function is associated
with a number of adjustable parameters, e. g. the four pa-
rameters which define a tp-set. The parameters are ad-
justed through experimentation or self-learning. For this
purpose, techniques drawn from neurocomputing and
evolutionary computing are commonly employed [54,55].

In construction through composition/deduction,
a membership function is composed from other mem-
bership functions. Composition/deduction may be simple
e. g. a combination of conjunctive or disjunctive opera-
tions. More generally, composition/deduction is associ-
ated with a chain of deductions which involve generalized
constraint propagation. Propagation of generalized con-
straints is discussed in Sect. “The Concept of a Generalized
Constraint”.

A special case of composition which plays an impor-
tant role in fuzzy set theory involves the concept of a con-
vex combination [70]. More specifically, let A1; : : : ;An be
a collection of crisp or fuzzy sets in U. Let a1; : : : ; an be
numbers in [0,1] which add up to unity. A fuzzy set, A, is
a convex combination of the Ai , i D 1; : : : ; n, if

AD a1A1 C � � � C anAn ;

with the understanding that

�A(u) D a1�A1 (u)C � � � C an�An (u) :

What is important to note is that a convex combina-
tion of crisp sets is a fuzzy set. If the coefficients a1; : : : ; an
are interpreted as probabilities, then A may be inter-
preted as the expected value of a random set. This con-
nection between fuzzy sets and random sets has been an
object of considerable attention in the literature of fuzzy
logic [24,46,47].

Underlying graduation through exemplification is the
remarkable human capability to rank-order perceptions. It

should be noted that humans learn the meaning of terms
and concepts mostly through exemplification.

It is convenient to employ an example to describe
graduation through exemplification. Assume that A tells B
that Vera is middle-aged. B can elicit A’s meaning of mid-
dle-aged by asking A to mark on the scale [0; 1] the de-
gree to which a particular age, say 43, fits A’s meaning
of middle-aged. The process is repeated for various values
of age. Eventually, the collected data are employed to ap-
proximate to A’s meaning of middle-aged by a trapezoidal
membership function. In the case of fuzzy sets of Type 2,
the mark is a fuzzy point.

A basic feature of fuzzy logic is: In fuzzy logic every-
thing is or is allowed to be graduated.

The Concept of Granulation

The concept of granulation is unique to fuzzy logic and
plays a pivotal role in its applications [81,91]. The concept
of granulation is inspired by the way in which humans deal
with imprecision, uncertainty and complexity.

Granulation is rooted in the concept of a granule. In-
formally, a granule, G, in a universe of discourse, U, is
a clump of elements of U which are drawn together by
indistinguishability, equivalence, similarity, proximity or
functionality (Fig. 9). For example, an interval is a gran-
ule. So is a Gaussian distribution, and so is a fuzzy interval.
A granule, G, is precisiated through association of G with
a generalized constraint – a concept which will be defined
in Sect. “The Concept of a Generalized Constraint”. The
concept of a generalized constraint is more general than
that of a membership function.

A singular variable takes singletons in U as values.
A granular variable, X, is a variable which takes granules
as values. For example, age is a granular variable if its val-

Fuzzy Logic, Figure 9
Singular and granular values
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ues are young, middle-aged and old. A linguistic variable is
a granular variable whose granular values carry linguistic
labels (Fig. 10). The concept of a linguistic variable [73,75]
is employed in almost all applications of fuzzy logic.

Granulation is an operation which maps singletons
in U into granules. Granulation applied to a singular vari-
able, X, transforms X into a granular variable, �X. For ex-
ample, if age is a real-valued variable taking values in the
interval [0; 120], granulation of X transforms X into a lin-
guistic variable, �X, with values young, middle-aged and
old. When convenient, the result of granulation is referred
to as the granuland.

Granulation of a set, A, results in a partition of A into
granules. For example, granulation applied to the inter-
val [0; l20] results in the granules young, middle-aged and
old.

The membership function of a fuzzy set takes values in
the interval [0; 1]. Not infrequently, the grade of member-
ship is not known precisely. In this case, it may be expedi-

Fuzzy Logic, Figure 10
Granulation of age; young, middle-aged and old are linguistic (granular) values of age

Fuzzy Logic, Figure 11
Granulation of a function. S (small),M (medium) and L (large) are fuzzy sets. The granuland of f , *f , may be viewed as a summary of f

ent to granulate the interval [0; 1], with the granular values
of membership being zero, low, medium, high and 1. Such
granular values of membership are particularly useful in
dealing with fuzzy sets of Type 2.

Granulation may be applied to arbitrarily complex ob-
jects. Application of granulation to an expression involves
replacement of one or more singular variables in the ex-
pression with granular variables. For example, if

Z D X C Y

is an arithmetic expression, then its granuland may be ex-
pressed as

�Z D �X C �Y

in which the starred variables are granular variables. In this
sense, interval arithmetic may be viewed as the result of
granulation of numerical arithmetic. Figure 11 shows an
application of granulation to a function, f . The result of
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Fuzzy Logic, Figure 12
Granulation and interpolation of a probability distribution

granulation, � f , is the fuzzy graph of f [74,78]. The fuzzy
graph of f may be described as a collection of fuzzy if-then
rules; � f may be viewed as a summary of f . Describing
a function as a collection of fuzzy if-then rules may be re-
garded as a form of information compression.

Application of granulation to probability distributions
is illustrated in Fig. 12. The granules of X play the role
of fuzzy events and the Pi are their granular probabili-
ties [99].

It should be pointed out that in the case of probability
distributions it is necessary to differentiate between granu-
lar probability distributions and granule-valued probabil-

Fuzzy Logic, Figure 13
Granular vs. granule-valued distributions

ity distributions [96,101] (Fig. 13). It should be noted that
there is a connection between the concept of a granular
probability distribution and the notion of Perfilieva trans-
form [49].

An instance of a granule-valued distribution is a ran-
dom set. There is a close connection between granule-val-
ued distributions and the Dempster–Shafer theory of evi-
dence [11,56,57]. More about granular and granule-valued
distributions will be said in Sect. “The Concept of a Gen-
eralized Constraint”.

In addition to the concepts of graduation and granu-
lation there are two basic concepts which play important
roles in fuzzy logic. These are the concepts of precisia-
tion [87,97] and generalized constraint [89,93]. These con-
cepts along with the concepts of graduation and granula-
tion form the cornerstones of fuzzy logic. The concepts of
precisiation and cointensive precisiation are discussed in
the following section. The concept of a generalized con-
straint is discussed in Sect. “The Concept of a Generalized
Constraint”.

The Concepts of Precisiation
and Cointensive Precisiation

There are not many concepts in science that are as per-
vasive as the concept of precision. There is an enormous
literature. And yet, there are some important facets of the
concept of precision which have received little if any at-
tention. In particular, an issue that appears to have been
overlooked relates to the need for differentiation between
two forms of precision: precision of value, v-precision,
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and precision of meaning, m-precision [101]. Specifically,
consider a variable,X, whose value is not known precisely.
In this event, the proposition a 6 X 6 b, where a and b
are precisely specified numbers, is v-imprecise and m-pre-
cise. Similarly, the proposition: X is a normally distributed
random variable with mean a and variance b, is v-impre-
cise and m-precise. On the other hand, the proposition: X
is small, is both v-imprecise andm-imprecise if small is not
defined precisely. If small is defined precisely as a fuzzy set,
then the proposition in question is v-imprecise andm-pre-
cise.

Informally, precisiation is an operation which trans-
forms an object, p, into another object, p�, which is more
precisely defined, in some specified sense, than p. The re-
verse applies to imprecisiation. In the realm of our dis-
course p is a proposition, predicate, question, command
or, more generally, a linguistic expression which has a se-
mantic identity. Unless stated to the contrary, p will be as-
sumed to be a proposition. For convenience, the object and
the result of precisiation are referred to as precisiend and
precisiand, respectively (Fig. 14).

As in the case of precision/imprecision, there is a need
for differentiation between v-precisiation/imprecisiation
and m-precisiation/imprecisiation. Example:

X D 5
v-imprecisiation

!
m-imprecisiation

X is small

X is small
m-precisiation

! X is small
(small is defined as a fuzzy set) :

It should be noted that data compression and summariza-
tion are forms of v-imprecisiation.

Fuzzy Logic, Figure 14
Basic concepts relating to precisiation and cointension

Fuzzy Logic, Figure 15
Modalities of precisiation. mh-precisiation D nonmathematical
precisiation of meaning; mm-precisiation D mathematical pre-
cisiation of meaning

In the case of m-precisiation, there is a need for ad-
ditional differentiation between m-precisiation which is
human-oriented (non-mathematical), or mh-precisiation
for short, and m-precisiation which is machine-oriented
(mathematical), or mm-precisiation for short (Fig. 15). In
this sense, a dictionary definition is a form of mh-precisi-
ation, with the definiens and the definiendum playing the
roles of precisiend and precisiand, respectively. A mathe-
matical definition of a concept, say stability, is an instance
of mm-precisiation.

A convenient illustration of mh-precisiation and mm-
precisiation is provided by the concept of “bear market”.
mh-precisiand declining stock market with expectation

of further decline
mm-precisiand 30 percent decline after 50 days, or a 13

percent decline after 145 days (Robert Shuster).
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Fuzzy Logic, Figure 16
Disambiguation of P: most tall Swedes

It is of interest to note that disambiguation is a form of
m-precisiation. As an illustration, alternative interpreta-
tions of the predicate, P: Most tall Swedes, are shown in
Fig. 16.

So far as v-imprecisiation is concerned, there is a need
for differentiation between (a) v-imprecisiation which is
forced; and (b) v-imprecisiation which is deliberate. To il-
lustrate, if the value of X is described imprecisely because
the precise value of X is not known, then what is involved
is forced v-imprecisiation. On the other hand, if the value
of X is described imprecisely even though the precise value
of X is known, then v-imprecisiation is deliberate.

Fuzzy Logic, Figure 17
a Alternative modes of mm-precisiation of “approximately a,” �a, within the framework of bivalent logic; b Alternative modes of
mm-precisiation of “approximately a,” �a, within the framework of fuzzy logic

What is the point of deliberate v-imprecisiation? The
rationale is that in many cases precision carries a cost. In
such cases, deliberate v-imprecisiation serves a useful pur-
pose if it provides a way of reducing cost. Familiar exam-
ples of deliberate v-imprecisiation are data compression
and summarization. As will be seen at a later point, de-
liberate v-imprecisiation underlies the fuzzy logic gambit
(Sect. “The Concept of a Generalized Constraint”). The
fuzzy logic gambit plays an important role in many ap-
plications of fuzzy logic, especially in the realm of con-
sumer products – a realm in which cost is an important
parameter.

A precisiend may be precisiated in a large, perhaps un-
bounded, number of ways. As an illustration, Fig. 17a and
b shows some of the simpler mm-precisiands of the predi-
cate “approximately a,” or �a for short. Note that the sim-
plest mm-precisiand is a. This very simple mode of mm-
precisiation is widely employed in many fields of science.
Probability theory is a case in point. Most real-world prob-
abilities are based on perceptions rather than on measure-
ments. Perceptions are intrinsically imprecise. As a conse-
quence, so are most real-world probabilities. And yet, in
most computations involving probabilities, probabilities
are treated as exact numbers. For example, �0:7 is treated
as 0.7000.

The Concept of Cointension

Let p� be a precisiand of p. It is expedient to associate with
p� two basic metrics: (a) cointension – a qualitative mea-
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sure of the proximity of the meanings of p and p�; and
(b) the computational complexity of p�. In general, coin-
tension and computational complexity are covariant in the
sense that an increase in the cointension of p� is associated
with an increase in the computational complexity of p�.

Cointension is a new term which is in need of clarifi-
cation [101]. In logic, intension and extension are defined,
respectively, as attribute-based meaning, or i-meaning for
short, and name-based meaning, or e-meaning for short
[5,10,35]. For our purposes, it is helpful to interpret at-
tribute-based as measurement-based and, name-based as
perception-based. What this means is that a precisiend, p,
is viewed as a perception of a concept, while its mm-pre-
cisiand, p�, is viewed as a measurement-based definition
of p. For example, in the case of the concept of bear mar-
ket, we have
mm-precisiand 30 percent decline after 50 days, or a 13

percent decline after 145 days (Robert Shuster).
More concretely, if p� is an mm-precisiand of p, then the
cointension of p� in relation to p, C(p�; p), is a qualitative
measure of the degree of proximity of the i-meanings of
p� and p, or the proximity of the i-meaning of p� and the
e-meaning of p. p� is cointensive if the degree of proxim-
ity is high. In the case of the bear market example, coin-
tension is a measure of the degree to which the mm-pre-
cisiand fits our perception of “bear market”. Although this
degree cannot be assessed precisely, it is evident that the
degree is not high.

It should be noted that there is a close analogy between
the concept of mm-precisiation and mathematical mod-
eling. More specifically, the analog of mm-precisiation is
mathematical modeling; the analog of precisiend is the ob-
ject of modeling; the analog of precisiand is themodel; and
the analog of meaning is the input/output relation.

In the context of modeling, cointension is a measure
of proximity of the input/output relations of the object
of modeling and the model. A model is cointensive if its
proximity is high.

The concept of cointension highlights an important
issue. Specifically, what should be noted is that, in gen-
eral, mm-precisiation of p is not the final objective. What
matters is the cointension of an mm-precisiand of p. In
general, what are sought are mm-precisiands which have
high cointension. In other words, the desideratum in not
merely mm-precisiation but, more importantly, cointen-
sive mm-precisiation. As will be seen at a later point,
a striking feature of fuzzy logic is its high power of coin-
tensive precisiation.

The concept of cointensive mm-precisiation has an
important implication for scientific theories. In large mea-
sure, scientific theories are based on bivalent logic. As

a consequence, definitions of concepts are, generally, bi-
valent, in the sense that no degrees of truth are allowed.
An example is the definition of bear market. The same
applies to the definitions of recession, stability, indepen-
dence, causality, stationarity, etc. The problem is that most
of the concepts which are associated with bivalent defini-
tions are in fact fuzzy, that is, are a matter of degree. For
instance, the reason why the mm-precisiand of bear mar-
ket is not cointensive is rooted in the fact that bear market
is a fuzzy concept. What can be said in a general way is that
bivalent-logic-based definitions of fuzzy concepts cannot
be expected to be cointensive, just as linear models of non-
linear systems cannot be expected to be good models. In
summary, an important conclusion relating to the concept
of cointension may be stated as the Cointension Principle:
To Achieve high cointesion it is necessary, in general, to
associate a fuzzy precisiend with a fuzzy precisiand.

Note. In the sequel, unless stated to the contrary, pre-
cisiation should be understood as cointensive mm-precisi-
ation.

In the foregoing discussion, we talked about mm-pre-
cisiation but have not addressed a basic question: How can
a proposition, p, be mm-precisiated? In fuzzy logic, a con-
cept which plays a pivotal role in mm-precisiation is that
of a generalized constraint. A brief discussion of this con-
cept is presented in the following section.

The Concept of a Generalized Constraint

The concept of a constraint is high on the list of basic
concepts in science. There is an extensive literature in the
realms of mathematical programming and optimal con-
trol. Particularly worthy of note is the rapid growth of in-
terest in constraint programming within computer science
and related fields [53].

A basic assumption which is commonly made in the
literature is that constraints are hard (inelastic) and are
precisely defined. This assumption is not a good fit to re-
ality. In most realistic settings, constraints have some elas-
ticity and are not precisely defined. Familiar examples are:

� Check-out time is l pm. A constraint on check-out
time.

� Speed limit is l00 km/h. A constraint on speed.
� Vera has a son in mid-twenties and a daughter in mid-

thirties. A constraint on Vera’s age.

A first step toward precisiation of such constraints was
taken in [4]. A further step was taken in [76]. The concept
of a generalized constraint was introduced in [89]. A more
detailed description was given in [93] and in [96,98,101].
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Fuzzy Logic, Figure 18
Principal features of a generalized constraint

The principal features of the concept of generalized
constraint are summarized in Fig. 18 and et seq.

Constrained Variable

The constraint variable, X, can assume a variety of forms.
Among the principal forms are the following.
X is an n-ary variable, X D (X1; : : : ; Xn)
X is a proposition, e. g., Leslie is tall
X is a relation
X is a function of another variable: X D f (Y)
X is conditioned on another variable, X/Y
X is conditioned on another generalized constraint, X isr

if Y iss S
X has a structure, e. g., X D Location (Residence(Carol))
X is a generalized constraint; X : Y isr R
X is a group variable. In this case, there is a group,

G : (Name1; : : : ;Namen), with each member of the
group, Namei ; i D 1; : : : ; n, associated with an at-
tribute-value, hi , of attribute H. hi may be vector-val-
ued. Symbolically
G D (Name1; : : : ;Namen),
G[H] D (Name1/h1; : : : ;Namen/hn),
G[H is A] D (�A(hi )/Name1; : : : ; �A(hn)/Namen) :
Basically, G[H] is a relation and G[H is A] is a fuzzy
restriction of G[H] [73,75,76]
The concept of a group variable is closely related to the
concept of a fuzzy relation.

Modalities of Generalized Constraints

The indexical variable, r, defines the modality of a general-
ized constraint, that is, its semantics. The principal modal-
ities are listed below.
r :D equality constraint: X D R is an abbreviation

of X isD R
r :6 inequality constraint: X 6 R

r :� subsethood constraint: X � R
r : blank possibilistic constraint; X is R; R is the possibil-

ity distribution of X
r : p probabilistic constraint; X isp R; R is the proba-

bility distribution of X
r : v veristic constraint; X isv R; R is the verity (truth)

distribution of X
Standard constraints bivalent possibilistic, bivalent ver-

istic and probabilistic
r : rs random set constraint; X isrs R; R is the set-val-

ued probability distribution of X
r : f g fuzzy graph constraint; X isfg R; X is a function

and R is its fuzzy graph
r : u usuality constraint; X isu R means usually (X

is R)
r : g group constraint; X isg R means that R con-

strains the attribute-values of the group
r : i iterated constraint; X isi R means that X iss S

and S ist T.
To define the semantics of various modalities it is con-
venient to assume that the constrained variable, X, takes
values in a finite set U D (u1; : : : ; un). With this assump-
tion, the semantics of various constraints may be defined
as follows.

Possibilistic Constraint

Consider the possibilistic constraint

X is A ;

where A is a fuzzy set in U, defined as [73,75].

AD �1/u1 C � � � C �n /un ;

with the understanding thatC is a separator and �i is the
grade of membership of ui in A, i D 1; : : : ; n. The mean-
ing of the possibilistic constraint, X is A, is defined as

X is A
definition

! Poss(X D ui ) D �i ; i D 1; : : : ; n :

Probabilistic Constraint

Let P be a probability distribution defined on U. Pmay be
expressed as [96,101]

P D p1nu1 C � � � C pnnun :

In this case, X isp P
definition

! Prob(X D ui ) D pi , i D
1; : : : ; n.

It should be noted that pi and ui are allowed to take
granular values, Pi and Ui , respectively, meaning that

pi is Pi and ui is Ui ; i D 1; : : : ; n :
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In this case, the probability distribution

P D P1nU1 C � � � C PnnUn

is a granule-valued probability distribution in the sense de-
fined in Sect. “The Concept of Granulation”. Alternatively,
a granule-valued distribution may be viewed as the result
of granulation of the expression

P D p1nu1 C � � � C pnnun :

A granular probability distribution may be defined as an
iterated generalized constraint. More specifically,

X isp P
P : Prob(X is Ai ) is Pi ; i D 1; : : : ; n ;

where the Ai are granules of X and the Pi are granular
probabilities (Fig. 5). In this case, as in the case of gran-
ule-valued distributions, P is expressed as

P D P1nU1 C � � � C PnnUn :

Note. Two examples will help to clarify the distinction be-
tween granular probability distributions and granule-val-
ued probability distributions.

Example (a): Granular probability distribution. X is
a real-valued random variable with probability distribu-
tion P. What is known about P is: Prob(X is small) is low;
Prob(X is medium) is high; Prob(X is large) is low. Exam-
ple (b): Granule-valued probability distribution.X is a ran-
dom variable taking the values small, medium and large
with respective granular probabilities low, high and low.
Question: What are the expected values of these probabil-
ity distributions?

Note. The concepts of granular and granule-valued
probability distributions are closely related to the concepts
of granular and granule-valued possibility distributions.

Veristic Constraint [93,98]

In this case, the semantics of X isv A is defined by

X isv A
definition

! Ver(X D ui ) D �i ; i D 1; : : : ; n :

where Ver(X D ui ) is the verity (truth) of the proposition
X D ui .

Fuzzy Graph Constraint

In this case, X is a function, f , fromU toV . Assume thatU
and V are granulated, with the granules of U and V being
A1; : : : ;Am and B1; : : : ; Bn , respectively. The fuzzy graph,

Fuzzy Logic, Figure 19
Fuzzy graph

R, of f is defined as the disjunction of Cartesian products
of the Ai and the Bj(i) [73,74,78,90] (Fig. 19).

R D A1 � Bj(1) C � � � C Am � Bj(m) :

The fuzzy graph constraint is defined as the possibilistic
constraint

f isfg R
definition

! f is (A1 � Bj(1) C � � � C Am � Bj(m)) :

Usuality Constraint [93,96]

The constraint X isu A is defined by

X isu A
definition

! Prob(X is A) is usually ;

where usually is a fuzzy set in [0; 1] which represents
a fuzzy probability.

Primary Constraints

Every conceivable constraint can be viewed as an instance
of a generalized constraint. In practice, such generality is
rarely needed. What is sufficient for most practical pur-
poses is a subset of generalized constraints which can
be generated from so-called primary constraints through
combination, projection, qualification, propagation and
counterpropagation. The primary constraints are: (a) pos-
sibilistic; (b) probabilistic; and (c) veristic. The primary
constraints are somewhat analogous to the primary colors:
red, green and blue.

Standard Constraints

In large measure, scientific theories are based on what
may be called standard constraints – constraints which are



4000 F Fuzzy Logic

a subset of primary constraints. The standard constraints
are: (a) bivalent possibilistic; (b) probabilistic; and (c) bi-
valent veristic.

What is important to note is that generality of gener-
alized constraints goes far beyond the generality of stan-
dard constraints. What this points to is that the concept of
a generalized constraint opens the door to a wide-ranging
generalization of scientific theories.

Generalized Constraint Language (GCL) [93,98]

The concept of a generalized constraint serves as a basis for
construction of what is referred to as the Generalized Con-
straint Language (GCL). More specifically, GCL is gener-
ated by combination, projection, qualification, propaga-
tion and counterpropagation of generalized constraints.
For example, combination of the probabilistic constraint

X isp R ;

where X is a variable which takes values in a finite set, and
the possibilistic constraint

(X;Y) is S ;

generates the fuzzy random set constraint [96,98,101]

Y isfrs T :

Fuzzy random sets are closely related to fuzzy-set-val-
ued random variables. There is an extensive literature on
fuzzy-set-valued random variables [9,24,43,46,47,50,60].
Random sets and set-valued random variables are
closely related to the Dempster–Shafer theory of evi-
dence [11,56,57]. An extension of the Dempster–Shafer
theory to fuzzy sets and fuzzy probabilities is sketched
in [81,83].

GCL is an open language in the sense that generalized
constraints may be added to GCL at will. Simple examples
of generalized constraints in GCL are:

(X is R) and ((X;Y) isp S)
(X isu R) and (Y isu S)
(X is R) isp S
(Y isu B) if (X is A) :

In relation to GCL, PCL (Primary Constraint Lan-
guage) and SCL (Standard Constraint Language) are sub-
sets of GCL which are generated, respectively, by primary
and standard constraints (Fig. 20).

Note. GCL is more than a language – it is a language
system. A language has descriptive capability. A language

Fuzzy Logic, Figure 20
GCL, PCL and SCL

system has deductive capability in addition to descriptive
capability. GCL has both capabilities.

The concept of a generalized constraint plays a pivotal
role in fuzzy logic. In particular, it serves to precisiate the
concepts of information and meaning. More specifically,
the fundamental thesis of fuzzy logic is that information
may be represented as a generalized constraint.

information D generalized constraint ;

with the understanding that information relates to the
value of a variable, X, to which the generalized constraint
applies. For example, if the information aboutX is thatX is
small, then this information may be represented as a pos-
sibilistic constraint

X is small ;

with small being a granular value of X. It should be noted
that the traditional view that information is statistical in
nature is a special, albeit important case, of viewing infor-
mation as a generalized constraint. Another point which
should be noted is that in information theory the primary
concern is not with the substance of information but with
its measure. The fundamental thesis relates to substance
rather than measure [16,33].

An important corollary of the fundamental thesis is the
meaning postulate of fuzzy logic. More specifically, let p
be a proposition. A proposition is a carrier of information.
Consequently,

meaning of p D generalized constraint :

More concretely,

meaning of proposition D closed generalized constraint
meaning of predicate D open generalized constraint :
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The meaning postulate leads to an important connec-
tion between the concept of a generalized constraint and
the concept of mm-precisiation. More specifically, what
can be concluded is the equality

mm-precisiand D generalized constraint :

Equivalently,

mm-precisiation D translation into GCL :

This equality may be viewed as a more concrete statement
of themeaning postulate. Transparency of translationmay
be enhanced through annotation. Details may be found
in [101].

The meaning postulate points to an important aspect
of translation into GCL.

Let SCL denote the subset of GCL which is associ-
ated with standard constraints, that is, bivalent possibilis-
tic, probabilistic and bivalent veristic constraints. Let p be
a proposition. Anmm-precisiand of p, p�, is an element of
GCL.

Let C(p�; p) be the cointension of p� in relation
to p, and let supGCLC(p�; p) and supSCLC(p�; p) be the
suprema of C(p�; p) over GCL and SCL, respectively.
Since SCL is a subset of GCL, we have

supGCLC(p
�; p) > supSCLC(p

�; p) :

This obvious inequality has an important implication.
Specifically, as a meaning representation language, fuzzy
logic dominates bivalent logic. As a very simple example
consider the proposition p: Speed limit is 65mph. Realisti-
cally, what is the meaning of p? The inequality implies that
employment of fuzzy logic for precisiation of p would lead
to a precisiand whose cointension is at least as high – and
generally significantly higher – than the cointension which
is achievable through the use of bivalent logic.

More concretely, assume that A tells B that the speed
limit is 65mph, with the understanding that 65mph
should be interpreted as “approximately 65mph”.B asksA
to precisiate what is meant by “approximately 65mph”,
and stipulates that no imprecise numbers and no proba-
bilities should be used in precisiation. With this restric-
tion, A is not capable of formulating a realistic meaning of
“approximately 65mph”. Next,B allowsA to use imprecise
numbers but no probabilities. B is still unable to formulate
a realistic definition. Next, B allows A to employ imprecise
numbers but no imprecise probabilities. Still, A is unable
to formulate a realistic definition. Finally, B allowsA to use
imprecise numbers and imprecise probabilities. This al-
lowsA to formulate a realistic definition of “approximately

65mph”. This simple example is intended to demonstrate
the need for the vocabulary of fuzzy logic to precisiate the
meaning of terms and concepts which involve imprecise
probabilities.

In addition to serving as a basis for precisiation of
meaning, GCL serves another important function – the
function of a deductive question-answering system [100].
In this role, what matters are the rules of deduction. In
GCL, the rules of deduction coincide with the rules which
govern constraint propagation and counterpropagation.
Basically, these are the rules which govern generation
of a generalized constraint from other generalized con-
straints [100,101].

The principal rule of deduction in fuzzy logic is the so-
called extension principle [70,75]. The extension principle
can assume a variety of forms, depending on the gener-
alized constraints to which it applies. A basic form which
involves possibilistic constraints is the following. An anal-
ogous principle applies to probabilistic constraints.

Let X be a variable which takes values inU, and let f be
a function from U to V . The point of departure is a possi-
bilistic constraint on f (X) expressed as

f (X) is A ;

where A is a fuzzy relation in V which is defined by its
membership function �A(v), v 2 V .

Let g be a function fromU toW. The possibilistic con-
straint on f (X) induces a possibilistic constraint on g(X)
which may be expressed as

g(X) is B ;

where B is a fuzzy relation. The question is: What is B?
The extension principle reduces the problem of com-

putation of B to the solution of a variational problem.
Specifically,

f (X) is A

g(X) is B

where

�B(w) D supu�A( f (u))

subject to

w D g(u) :

The structure of the solution is depicted in Fig. 21. Basi-
cally, the possibilistic constraint on f (X) counterpropa-
gates to a possibilistic constraint on X. Then, the possi-
bilistic constraint on X propagates to a possibilistic con-
straint on g(X).
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Fuzzy Logic, Figure 21
Structure of the extension principle

There is a version of the extension principle – referred
to as the fuzzy-graph extension principle – which plays an
important role in control and systems analysis [74,78,90].
More specifically, let f be a function from reals to reals,
Y D f (X). Let � f and �X be the granulands of f and X,
respectively, with � f having the form of a fuzzy graph
(Sect. “The Concept of Granulation”).

� f D A1 � Bj(1) C � � � C Am � Bj(m) ;

where the Ai , i D 1; : : : ;m and the Bj , j D 1; : : : ; n, are
granules of X and Y , respectively; × denotes Cartesian
product; andC denotes disjunction (Fig. 22).

Fuzzy Logic, Figure 22
Fuzzy-graph extension principle. B D �f (A)

In this instance, the extension principle may be ex-
pressed as follows.

X is A
f is (A1 � Bj(1) C � � � C Am � Bj(m))

Y is (m1 ^ Bj(1) C � � � C mm ^ Bj(m))

where the mi are matching coefficients, defined as [78]

mi D sup(A\ Ai ) ; i D 1; : : : ;m

and ^ denotes conjunction (min). In the special case
where X is a number, a, the possibilistic constraint on Y
may be expressed as

Y is (�A1 (a) ^ Bj(1) C � � � C �Am (a) ^ Bj(m)) :

In this form, the extension principle plays a key role in the
Mamdani–Assilian fuzzy logic controller [39].

Deduction

Assume that we are given an information set, I, which con-
sists of a system of propositions (p1; : : : ; pn). I will be re-
ferred to as the initial information set. The canonical prob-
lem of deductive question-answering is that of computing
an answer to q, ans(qjI), given I [100,101].

The first step is to ask the question: What informa-
tion is needed to answer q? Suppose that the needed infor-
mation consists of the values of the variables X1; : : : ; Xn .
Thus,

ans(qjI) D g(X1; : : : ; Xn) ;
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where g is a known function.
Using GCL as a meaning precisiation language, one

can express the initial information set as a generalized con-
straint on X1; : : : ; Xn . In the special case of possibilistic
constraints, the constraint on the Xi may be expressed as

f (X1; : : : ; Xn) is A ;

where A is a fuzzy relation.
At this point, what we have is (a) a possibilistic con-

straint induced by the initial information set, and (b) an
answer to q expressed as

ans(qjI) D g(X1; : : : ; Xn) ;

with the understanding that the possibilistic constraint
on f propagates to a possibilistic constraint on g. To com-
pute the induced constraint on g what is needed is the ex-
tension principle of fuzzy logic [70,75].

As a simple illustration of deduction, it is convenient
to use an example which was considered earlier.

Initial information set; p : most Swedes are tall
Question; q : what is the average height

of Swedes?

What information is needed to compute the answer
to q? Let P be a population of n Swedes, Swede1; : : : ;
Sweden . Let hi be the height of Swedei ; i D 1; : : : ; n.
Knowing the hi , one can express the answer to q as

av(h) : ans(qjp) D
1
n
(h1 C � � � C hn) :

Turning to the constraint induced by p, we note that
the mm-precisiand of pmay be expressed as the possibilis-
tic constraint

p
mm-precisiation

!
1
n

X
Count(tall.Swedes) is most ;

where ˙Count(tall.Swedes) is the number of tall.Swedes
in P, with the understanding that tall.Swedes is a fuzzy
subset of P. Using this definition of˙Count [86], one can
write the expression for the constraint on the hi as

1
n
(�tall(h1)C � � � C �tall(hn)) is most :

At this point, application of the extension principle leads
to a solution which may be expressed as

�av(h)(v) D suph

�
1
n
�most(�tall(h1)C � � � C �tall(hn))

�
;

h D (h1; : : : ; hn)

subject to

v D
1
n
(h1 C � � � C hn) :

In summary, the Generalized Constraint Language is,
by construction, maximally expressive. Importantly, what
this implies is that, in realistic settings, fuzzy logic, viewed
as a modeling language, has a significantly higher level of
power and generality than modeling languages based on
standard constraints or, equivalently, on bivalent logic and
bivalent-logic-based probability theory.

Principal Contributions of Fuzzy Logic

As was stated earlier, fuzzy logic is much more than an ad-
dition to existing methods for dealing with imprecision,
uncertainty and complexity. In effect, fuzzy logic repre-
sents a paradigm shift. The structure of the shift is shown
in Fig. 23.

Contributions of fuzzy logic range from contributions
to basic sciences to applications involving various types
of systems and products. The principal contributions are
summarized in the following.

Fuzzy Logic as the Basis for Generalization
of Scientific Theories

One of the principal contributions of fuzzy logic to basic
sciences relates to what is referred to as FL-generalization.

By construction, fuzzy logic has a much more general
conceptual structure than bivalent logic. A key element in
the transition from bivalent logic to fuzzy logic is the gen-
eralization of the concept of a set to a fuzzy set. This gen-
eralization is the point of departure for FL-generalization.

More specifically, FL-generalization of any theory, T,
involves an addition to T of concepts drawn from fuzzy

Fuzzy Logic, Figure 23
Fuzzy logic as a paradigm shift
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logic. In the limit, as more and more concepts which are
drawn from fuzzy logic are added to T, the foundation of T
is shifted from bivalent logic to fuzzy logic. By construc-
tion, FL-generalization results in an upgraded theory, TC,
which is at least as rich and, in general, significantly richer
than T.

As an illustration, consider probability theory, PT –
a theory which is bivalent-logic-based. Among the basic
concepts drawn from fuzzy logic which may be added to
PT are the following [96].

setC fuzzy set
eventC fuzzy event
relationC fuzzy relation
probabilityC fuzzy probability
random setC fuzzy random set
independenceC fuzzy independence
stationarityC fuzzy stationarity
random variableC fuzzy random variable
etc.

As a theory, PTC is much richer than PT. In particu-
lar, it provides a basis for construction of models which are
much closer to reality than those that can be constructed
through the use of PT. This applies, in particular, to com-
putation with imprecise probabilities.

A number of scientific theories have already been FL-
generalized to some degree, and many more are likely to
be FL-generalized in coming years. Particularly worthy of
note are the following FL-generalizations.

control! fuzzy control
[12,18,20,69,72]

linear programming! fuzzy linear programming
[19,103]

probability theory! fuzzy probability theory
[96,98,101]

measure theory! fuzzy measure theory
[14,62]

topology! fuzzy topology
[38,68]

graph theory! fuzzy graph theory
[34,41]

cluster analysis! fuzzy cluster analysis
[7,27]

Prolog! fuzzy Prolog
[21,42]

etc.

FL-generalization is a basis for an important rationale
for the use of fuzzy logic. It is conceivable that eventually

the foundations of many scientific theories may be shifted
from bivalent logic to fuzzy logic.

Linguistic Variables and Fuzzy If-Then Rules The
most visible, the best understood and themost widely used
contribution of fuzzy logic is the concept of a linguis-
tic variable and the associated machinery of fuzzy if-then
rules [90].

The machinery of linguistic variables and fuzzy if-then
rules is unique to fuzzy logic. This machinery has played
and is continuing to play a pivotal role in the concep-
tion and design of control systems and consumer prod-
ucts. However, its applicability is much broader. A key
idea which underlies the machinery of linguistic variables
and fuzzy if-then rules is centered on the use of informa-
tion compression. In fuzzy logic, information compression
is achieved through the use of graduated (fuzzy) granu-
lation.

The Concepts of Precisiation and Cointension The
concepts of precisiation and cointension play pivotal roles
in fuzzy logic [101]. In fuzzy logic, differentiation is made
between two concepts of precision: precision of value,
v-precision; and precision of meaning, m-precision. Fur-
thermore, differentiation is made between precisiation of
meaning which is (a) human-oriented, or mh-precisia-
tion for short; and (b) machine-oriented, or mm-precisi-
ation for short. It is understood that mm-precisiation is
mathematically well defined. The object of precisiation, p,
and the result of precisiation, p�, are referred to as pre-
cisiend and precisiand, respectively. Informally, cointen-
sion is defined as a measure of closeness of the meanings
of p and p�. Precisiation is cointensive if themeaning of p�

is close to the meaning of p. One of the important features
of fuzzy logic is its high power of cointensive precisiation.
What this implies is that better models of reality can be
achieved through the use of fuzzy logic.

Cointensive precisiation has an important implication
for science. In large measure, science is bivalent-logic-
based. In consequence, in science it is traditional to de-
fine concepts in a bivalent framework, with no degrees of
truth allowed. The problem is that, in reality, many con-
cepts in science are fuzzy, that is, are a matter of degree.
For this reason, bivalent-logic-based definitions of scien-
tific concepts are, in many cases, not cointensive. To for-
mulate cointensive definitions of fuzzy concepts it is nec-
essary to employ fuzzy logic.

As was noted earlier, one of the principal contributions
of fuzzy logic is its high power of cointensive precisiation.
The significance of this capability of fuzzy logic is under-
scored by the fact that it has always been, and continues
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to be, a basic objective of science to precisiate and clarify
what is imprecise and unclear.

Computing with Words (CW), NL-Computation and
Precisiated Natural Language (PNL) Much of human
knowledge is expressed in natural language. Traditional
theories of natural language are based on bivalent logic.
The problem is that natural languages are intrinsically im-
precise. Imprecision of natural languages is rooted in im-
precision of perceptions. A natural language is basically
a system for describing perceptions. Perceptions are in-
trinsically imprecise, reflecting the bounded ability of hu-
man sensory organs, and ultimately the brain, to resolve
detail and store information. Imprecision of perceptions is
passed on to natural languages.

Bivalent logic is intolerant of imprecision, partiality of
truth and partiality of possibility. For this reason, bivalent
logic is intrinsically unsuited to serve as a foundation for
theories of natural language. As the logic of imprecision
and approximate reasoning, fuzzy logic is a much better
choice [71,80,84,85,86,88].

Computing with words (CW), NL-computation and
precisiated natural language (PNL) are closely related for-
malisms [93,94,95,97]. In conventional modes of compu-
tation, the objects of computation are mathematical con-
structs. By contrast, in computing with words the objects
of computation are propositions and predicates drawn
from a natural language. A key idea which underlies com-
puting with words involves representing the meaning of
propositions and predicates as generalized constraints.
Computing with words opens the door to a wide-ranging
enlargement of the role of natural languages in scientific
theories [30,31,36,58,59,61].

Computational Theory of Perceptions Humans have
a remarkable capability to perform a wide variety of phys-
ical and mental tasks without any measurements and any
computations. In performing such tasks humans employ
perceptions. To endow machines with this capability what
is needed is a formalism in which perceptions can play
the role of objects of computation. The fuzzy-logic-based
computational theory of perceptions (CTP) serves this
purpose [94,95]. A key idea in this theory is that of com-
puting not with perceptions per se, but with their descrip-
tions in a natural language. Representing perceptions as
propositions drawn from a natural language opens the
door to application of computing with words to compu-
tation with perceptions. Computational theory of percep-
tions is of direct relevance to achievement of human level
machine intelligence.

Possibility Theory Possibility theory is a branch of fuzzy
logic [15,79]. Possibility theory and probability theory are
distinct theories. Possibility theory may be viewed as a for-
malization of perception of possibility, whereas probabil-
ity theory is rooted in perception of likelihood. In large
measure, possibility theory and probability theory are
complementary rather than competitive. Possibility theory
is of direct relevance to, knowledge representation, seman-
tics of natural languages, decision analysis and computa-
tion with imprecise probabilities.

Computation with Imprecise Probabilities Most real-
world probabilities are perceptions of likelihood. As such,
real-world probabilities are intrinsically imprecise [75].
Until recently, the issue of imprecise probabilities has been
accorded little attention in the literature of probability the-
ory. More recently, the problem of computation with im-
precise probabilities has become an object of rapidly grow-
ing interest [63,99].

Typically, imprecise probabilities occur in an environ-
ment of imprecisely defined variables, functions, relations,
events, etc. Existing approaches to computation with im-
precise probabilities do not address this reality. To address
this reality what is needed is fuzzy logic and, more particu-
larly, computing with words and the computational theory
of perceptions. A step in this direction was taken in the
paper “Toward a perception-based theory of probabilis-
tic reasoning with imprecise probabilities”; [96] followed
by the 2005 paper “Toward a generalized theory of uncer-
tainty (GTU) – an outline”, [98] and the 2006 paper “Gen-
eralized theory of uncertainty (GTU) –principal concepts
and ideas” [101].

Fuzzy Logic as a Modeling Language Science deals not
with reality but with models of reality. More often than
not, reality is fuzzy. For this reason, construction of real-
istic models of reality calls for the use of fuzzy logic rather
than bivalent logic.

Fuzzy logic is a logic of imprecision, uncertainty and
approximate reasoning [82]. It is natural to employ fuzzy
logic as a modeling language when the objects of model-
ing are not well defined [102]. But what is somewhat para-
doxical is that in many of its practical applications fuzzy
logic is used as a modeling language for systems which are
precisely defined. The explanation is that, in general, pre-
cision carries a cost. In those cases in which there is a tol-
erance for imprecision, reduction in cost may be achieved
through imprecisiation, e. g., data compression, informa-
tion compression and summarization. The result of im-
precisiation is an object of modeling which is not precisely
defined. A fuzzymodeling language comes into play at this
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point. This is the key idea which underlies the fuzzy logic
gambit. The fuzzy logic gambit is widely used in the de-
sign of consumer products – a realm in which cost is an
important consideration.

A Glimpse ofWhat Lies Beyond Fuzzy Logic

Fuzzy logic has a much higher level of generality than tra-
ditional logical systems – a generality which has the ef-
fect of greatly enhancing the problem-solving capability of
fuzzy logic compared with that of bivalent logic.

What lies beyond fuzzy logic? What is of relevance
to this question is the so-called incompatibility princi-
ple [73]. Informally, this principle asserts that as the com-
plexity of a system increases a point is reached beyond
which high precision and high relevance become incom-
patible. The concepts of mm-precisiation and cointension
suggest an improved version of the principle: As the com-
plexity of a system increases a point is reached beyond
which high cointension and mm-precision become in-
compatible. What it means in plain words is that in the
realm of complex systems – such as economic systems –
it may be impossible to construct models which are both
realistic and precise.

As an illustration consider the following problem. As-
sume that A asks a cab driver to take him to address B.
There are two versions of this problem. (a) A asks the
driver to take him to B the shortest way; and (b) A asks
the driver to take him to B the fastest way. Based on his ex-
perience, the driver decides on the route to take to B. In the
case of (a), a GPS system can suggest a route that is prov-
ably the shortest way, that is, it can come up with a prov-
ably valid (p-valid) solution. In the case of (b) the uncer-
tainties involved preclude the possibility of constructing
a model of the system which is cointensive and mm-pre-
cise, implying that a p-valid solution does not exist. The
driver’s solution, based on his experience, has what may be
called fuzzy validity (f-validity). Thus, in the case of (b) no
p-valid solution exists. What exists is an f-valid solution.

In fuzzy logic, mm-precisiation is a prerequisite to
computation. A question which arises is: What can be
done when cointensive mm-precisiation is infeasible? To
deal with such problems what is needed is referred to as
extended fuzzy logic (FLC). In this logic, mm-precisiation
is optional rather than mandatory.

Very briefly, what is admissible in FLC is f-validity.
Admissibility of f-validity opens the door to construction
of concepts prefixed with f, e. g. f-theorem, f-proof, f-prin-
ciple, f-triangle, f-continuity, f-stability, etc. An example
is f-geometry. In f-geometry, figures are drawn by hand
with a spray can. An example of f-theorem in f-geometry is

the f-version of the theorem: The medians of a triangle are
concurrent. The f-version of this theorem reads: The f-me-
dians of an f-triangle are f-concurrent. An f-theorem can
be proved in two ways. (a) empirically, that is, by drawing
triangles with a spray can and verifying that the medians
intersect at an f-point. Alternatively, the theorem may be
f-proved by constructing an f-analogue of its traditional
proof.

At this stage, the extended fuzzy logic is merely an idea,
but it is an idea which has the potential for being a point
of departure for construction of theories with important
applications to the solution of real-world problems.
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Glossary

Type-1 fuzzy sets Are the underlying component in fuzzy
logic where uncertainty is represented by a number be-
tween one and zero.

Type-2 fuzzy sets Are where the uncertainty is repre-
sented by a type-1 fuzzy set.

Interval type-2 fuzzy sets Are where the uncertainty is
represented by a type-1 fuzzy set where the member-
ship grades are unity.

Definition of the Subject

Type-2 fuzzy logic was first defined in 1975 by Zadeh and
is an increasingly popular area for research and applica-
tions. The reason for this is because it appears to tackle
the fundamental problem with type-1 fuzzy logic in that
it is unable to handle the many uncertainties in real sys-
tems. Type-2 fuzzy systems are conceptually and mathe-
matically more difficult to understand and implement but
the proven applications show that the effort is worth it
and type-2 fuzzy systems are at the forefront of fuzzy logic
research and applications. These systems rely on the no-
tion of a type-2 fuzzy set where the membership grades
are type-1 fuzzy sets.

Introduction

Fuzzy sets [1] have, over the past forty years, laid the basis
for a successful method of modeling uncertainty, vague-
ness and imprecision in a way that no other technique has
been able. The use of fuzzy sets in real computer systems is
extensive, particularly in consumer products and control
applications.

Fuzzy logic (a logic based on fuzzy sets) is now amain-
stream technique in everyday use across the world. The
number of applications is many, and growing, in a vari-
ety of areas, for example, heat exchange, warm water pres-
sure, aircraft flight control, robot control, car speed con-
trol, power systems, nuclear reactor control, fuzzy mem-
ory devices and the fuzzy computer, control of a cement
kiln, focusing of a camcorder, climate control for build-
ings, shower control and mobile robots. The use of fuzzy
logic is not limited to control. Successful applications, for
example, have been reported in train scheduling, system
modeling, computing, stock tracking on the Nikkei stock
exchange and information retrieval.

Type-1 fuzzy sets represent uncertainty using a num-
ber in [0; 1] whereas type-2 fuzzy sets represent uncer-
tainty by a function. This is discussed in more detail later
in the article. Essentially, the more imprecise or vague the
data is, then type-2 fuzzy sets offer a significant improve-
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Fuzzy Logic, Type-2 and Uncertainty, Figure 1
Relationships between imprecision, data and fuzzy technique

ment on type-1 fuzzy sets. Figure 1 shows the view taken
here of the relationships between levels of imprecision,
data and technique.

As the level of imprecision increases then type-2 fuzzy
logic provides a powerful paradigm for potentially tack-
ling the problem. Problems that contain crisp, precise data
do not, in reality, exist. However some problems can be
tackled effectively using mathematical techniques where
the assumption is that the data is precise. Other problems
(for example, in control) use imprecise terminology that
can often be effectively modeled using type-1 fuzzy sets.
Perceptions, it is argued here, are at a higher level of im-
precision and type-2 fuzzy sets can effectively model this
imprecision.

The reason for this lies in some of the problems associ-
ated with type-1 fuzzy logic systems. Although successful
in the control domain they have not delivered as well in
systems that attempt to replicate human decision making.
It is our view that this is because a type-1 fuzzy logic sys-
tem (FLS) has some uncertainties which cannot be mod-
eled properly by type-1 fuzzy logic. The sources of the un-
certainties in type-1 FLSs are:

� The meanings of the words that are used in the an-
tecedents and consequents of rules can be uncertain
(words mean different things to different people).

� Consequents may have a histogram of values associ-
ated with them, especially when knowledge is extracted
from a group of experts who do not all agree.

� Measurements that activate a type-1 FLS may be noisy
and therefore uncertain.

� The data that are used to tune the parameters of
a type-1 FLS may also be noisy.

The uncertainties described all essentially have to do with
the uncertainty contained in a type-1 fuzzy set. A type-1
fuzzy set can be defined in the following way:

Let X be a universal set defined in a specific problem,
with a generic element denoted by x. A fuzzy set A in X is
a set of ordered pairs:

AD f(x; �A(x) j x 2 X)g ;

where �A : X ! [0; 1] is called the membership func-
tion A of and �A(x) represents the degree of membership
of the element x in A.

The key points to draw from this definition of a fuzzy
set are:

� The members of a fuzzy set are members to some de-
gree, known as a membership grade or degree of mem-
bership.

� A fuzzy set is fully determined by the membership
function.

� Themembership grade is the degree of belonging to the
fuzzy set. The larger the number (in [0; 1]) themore the
degree of belonging.

� The translation from x to �A(x) is known as fuzzi-
fication.

� A fuzzy set is either continuous or discrete.
� Graphical representation of membership functions is

very useful. For example, the fuzzy set ‘Tall’ might be
represented as shown in Fig. 2 where someone who is
of height five feet has a membership grade of zero while
someonewho is of height seven feet is tall to degree one,
with heights in between having membership grade be-
tween one and zero. The example shown is linear but,
of course, it could be any function.

Fuzzy sets offer a practical way of modeling what one
might refer to as ‘fuzziness’. The real world can be charac-
terized by the fact that much of it is imprecise in one form
or other. For a clear exposition (important to the notion
of, and argument for, type-2 sets) two ideas of ‘fuzziness’

Fuzzy Logic, Type-2 and Uncertainty, Figure 2
The fuzzy set ‘Tall’
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Fuzzy Logic, Type-2 and Uncertainty, Figure 3
The fuzzy number ‘About 35’

can be considered important – imprecision and vagueness
(linguistic uncertainty).

Imprecision

As has already been discussed, in many physical systems
measurements are never precise (a physical property can
always be measured more accurately). There is impreci-
sion inherent in measurement. Fuzzy numbers are one
way of capturing this imprecision by having a fuzzy set
represent a real number where the numbers in an inter-
val near to the number are in the fuzzy set to some degree.
So, for example, the fuzzy number ‘About 35’ might look
like the fuzzy set in Fig. 3 where the numbers closer to 35
have membership nearer unity than those that are further
away from 35.

Vagueness or Linguistic Uncertainty

Another use of fuzzy sets is where words have been used
to capture imprecise notions, loose concepts or percep-
tions. We use words in our everyday language that we, and
the intended audience, know what we want to convey but
the words cannot be precisely defined. For example, when
a bank is considering a loan application somebody may be
assessed as a good risk in terms of being able to repay the
loan. Within the particular bank this notion of a good risk
is well understood. It is not a black and white decision as
to whether someone is a good risk or not – they are a good
risk to some degree.

Type-2 Fuzzy Systems

A type-1 fuzzy system uses type-1 fuzzy sets in either the
antecedent and/or the consequent of type-1 fuzzy if-then
rules and a type-2 fuzzy system deploys type-2 fuzzy sets
in either the antecedent and/or the consequent of type-2
fuzzy rules.

Fuzzy systems usually have the following features:

� The fuzzy sets as defined by their membership func-
tions. These fuzzy sets are the basis of a fuzzy system.
They capture the underlying properties or knowledge
in the system.

� The if-then rules that combine the fuzzy sets – in a rule
set or knowledge base.

� The fuzzy composition of the rules. Any fuzzy system
that has a set of if-then rules has to combine the rules.

� Optionally, the defuzzification of the solution fuzzy set.
In many (most) fuzzy systems there is a requirement
that the final output be a ‘crisp’ number. However, for
certain fuzzy paradigms the output of the system is
a fuzzy set, or its associated word. This solution set is
‘defuzzified’ to arrive at a number.

Type-1 fuzzy sets are, in fact, crisp and not at all fuzzy, and
are two dimensional. A domain value x is simply repre-
sented by a number in [0; 1] – the membership grade. The
methods for combining type-1 fuzzy sets in rules are also
precise in nature.

Type-2 fuzzy sets, in contrast, are three dimensional.
The membership grade for a given value in a type-2 fuzzy
set is a type-1 fuzzy set. A formal definition of a type-2
fuzzy set is given in the following:

A type-2 fuzzy set, Ã, is characterized by a type-2mem-
bership function �Ã(x; u), where x 2 X and u 2 Jx subset
JM[0; 1], and Jx is called the primary membership, i. e.

ÃD f((x; u); �Ã(x; u)) j 8x 2 X;8Jx subset JM[0; 1]g :
(1)

A useful way of looking at a type-2 fuzzy set is by con-
sidering its Footprint of Uncertainty (FOU). This is a two
dimensional view of a type-2 fuzzy set. See Fig. 4 for a sim-
ple example. The shaded area represents the Union of all
the Jx.

Fuzzy Logic, Type-2 and Uncertainty, Figure 4
A typical FOU of a type-2 set
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An effective way to compare type-1 fuzzy sets and
type-2 fuzzy sets is by use of a simple example. Suppose,
for a particular application, we wish to describe the impre-
cise concept of ‘tallness’. One approach would be to use
a type-1 fuzzy set tall1. Now suppose we are only consid-
ering three members of this set – Michael Jordan, Danny
Devito and Robert John. For the type-1 fuzzy approach
one might say that Michael Jordan is tall1 to degree 0.95,
Danny Devito to degree 0.4 and Robert John to degree 0.6.
This can be written as

tall1 D 0:95/Michael Jordan
C 0:4/Danny DevitoC 0:6/Robert John :

A type-2 fuzzy set (tall2) that models the concept of ‘tall-
ness’ could be

tall2 D High1/Michael Jordan
C Low1/Danny DevitoCMedium1/Robert John ;

where High1, Low1 andMedium1 are type-1 fuzzy sets.
Figure 5 shows what the sets High1, Low1 and

Medium1 might look like if represented graphically. As can
be seen the x axis takes values between 0 and 1, as does the
y axis (�).

Type-1 sets have an x axis representing the domain –
in this case the height of an individual. Type-2 sets employ
type-1 sets as the membership grades. Therefore, these
fuzzy sets of type-2 allow for the idea that a fuzzy approach
does not necessarily have membership grades [0; 1] in but
the degree of membership for the member is itself a type-1
fuzzy set. As can be seen, by the simple example, there is an
inherent extra fuzziness offered by type-2 fuzzy sets over
and above a type-1 approach. So, a type-2 fuzzy set could
be called a fuzzy-fuzzy set.

Real situations do not allow for precise numbers in
[0; 1]. In a control application, for instance, can we say that
a particular temperature, t, belongs to the type-1 fuzzy set

Fuzzy Logic, Type-2 and Uncertainty, Figure 5
The Fuzzy Sets High1, Low1 andMedium1

hot1 with a membership grade x precisely? No. Firstly it
is highly likely that the membership could just as well be
x � 0:1 for example. Different experts would attach dif-
ferent membership grades and, indeed, the same expert
might well give different values on different days! On top
of this uncertainty there is always some uncertainty in the
measurement of t. So, we have a situation where an uncer-
tain measurement is matched precisely to another uncer-
tain value!! Type-2 fuzzy sets on the other hand, for cer-
tain appropriate applications, allow for this uncertainty to
be modeled by not using precise membership grades but
imprecise type-1 fuzzy sets.

So that type-2 sets can be used in a fuzzy system (in
a similar manner to type-1 fuzzy sets) a method is required
for computing the intersection (AND) and union (OR) of
two type-2 sets. Suppose we have two type-2 fuzzy sets, Ã
and B̃ in X and �Ã(x) and �B̃(x) are two secondary mem-
bership functions of Ã and B̃ respectively, represented as:

�Ã(x) D f (u1)/u1 C f (u2)/u2 C � � � C f (un)/un

D
X

i

f (ui )/ui ;

�B̃(x) D g(w)/w1 C f (w2)/w2 C � � � C f (wm)/wm

D
X

j

g(wj)/wj ;

where the functions f and g are membership functions
of fuzzy grades and fui ; i D 1; 2; : : : ; ng, fwj; j D 1; 2;
: : : ;mg, are the members of the fuzzy grades.

Union of Type-2 Fuzzy Sets

The union ([) of two type-2 fuzzy sets (Ã; B̃) correspond-
ing to ÃOR B̃ is given by:

Ã[ B̃, �Ã[B̃(x) D Ã join JM B̃

D
X

i j

( f (ui )JMg(wj))
(ui JMwj)

:

Intersection of Type-2 Fuzzy Sets

The intersection (\) of two type-2 fuzzy sets (Ã; B̃) corre-
sponding to ÃAND B̃ is given by:

Ã\ B̃, �Ã\B̃(x) D Ã meet JM B̃

D
X

i j

( f (ui )JMg(wj))
(ui JMwj)

;

where join JM denotes join and meet JM denotesmeet.
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Thus the join and meet allow for us to combine type-2
fuzzy sets for the situation where we wish to ‘AND’ or
‘OR’ two type-2 fuzzy sets. Join and meet are the building
blocks for type-2 fuzzy relations and type-2 fuzzy inferenc-
ing with type-2 if-then rules.

Type-2 fuzzy if-then rules (type-2 rules) are similar to
type-1 fuzzy if-then rules. An example type-2 if-then rule
is given by

IF x is Ã and y is B̃ then z is C̃ : (2)

Obviously the rule could have a more complex an-
tecedent connected by AND. Also the consequent of the
rule could be type-1 or, indeed, crisp.

Type-2 output processing can be done in a number
of ways through type-reduction (e. g. Centroid, Centre of
Sums, Height, Modified Height and Center-of-Sets) that
produces a type-1 fuzzy set, followed by defuzzification of
that set.

Generalized Type-2 Fuzzy Systems

So far we have been discussing type-2 fuzzy systems where
the secondary membership function can take any form –
these are known as generalized type-2 fuzzy sets. Histor-
ically these have been difficult to work with because the
complexity of the calculations is too high for real appli-
cations. Recent developments [2,3,4] mean that it is now
possible to develop type-2 fuzzy systems where, for exam-
ple, the secondary membership functions are triangular in
shape. This is relatively new but offers an exciting oppor-
tunity to capture the uncertainty in real applications. We
expect the interest in this area to grow considerably but for
the purposes of this article we will concentrate on the de-
tail of interval type-2 fuzzy systems where the secondary
membership function is always unity.

Interval Type-2 Fuzzy Sets and Systems

As of this date, interval type-2 fuzzy sets (IT2 FSs) and
interval type-2 fuzzy logic systems (IT2 FLSs) are most
widely used because it is easy to compute using them. IT2
FSs are also known as interval-valued FSs for which there
is a very extensive literature (e. g., [1], see the many refer-
ences in this article, [5,6,16,28]). This section focuses on
IT2 FSs and IT2 FLSs.

Interval Type-2 Fuzzy Sets

An IT2 FS Ã is characterized as (much of the back-
ground material in this sub-section is taken from [23]; see

also [17]):

ÃD
Z

x2X

Z

u2Jx�[0;1]
1/(x; u)

D

Z

x2X

�Z

u2Jx�[0;1]
1/u
� ı

x ;
(3)

where x, the primary variable, has domain X; u 2 U , the
secondary variable, has domain Jx at each x 2 X; Jx is
called the primary membership of x and is defined be-
low in (9); and, the secondary grades of Ã all equal 1.
Note that for continuous X and U, (3) means: Ã : X !
f[a; b] : 0 6 a 6 b 6 1g.

The bracketed term in (3) is called the secondary MF,
or vertical slice, of Ã, and is denoted�Ã(x), i. e.

�Ã(x) D
Z

u2Jx�[0;1]
1/u ; (4)

so that Ã can be expressed in terms of its vertical slices as:

ÃD
Z

x2X
�Ã(x)/x : (5)

Uncertainty about Ã is conveyed by the union of all
the primary memberships, which is called the footprint of
uncertainty (FOU) of Ã (see Fig. 6), i. e.

FOU(Ã) D [
8x2X

Jx D f(x; u) : u 2 Jx � [0; 1]g : (6)

The upper membership function (UMF) and lower
membership function (LMF) of Ã are two type-1 MFs that
bound the FOU (Fig. 6). UMF(Ã) is associatedwith the up-
per bound of FOU(Ã) and is denoted �̄Ã(x);8x 2 X, and
LMF(Ã) is associatedwith the lower bound of FOU(Ã) and
is denoted �

Ã
(x);8x 2 X, i. e.

UMF(Ã) � �̄Ã(x) D FOU(Ã) 8x 2 X ; (7)

LMF(Ã) � �
Ã
(x) D FOU(Ã) 8x 2 X : (8)

Fuzzy Logic, Type-2 and Uncertainty, Figure 6
FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS
(wavy line) for IT2 FS Ã
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Note that Jx is an interval set, i. e.

Jx D
h
�Ã(x); �̄Ã(x)

i
: (9)

This set is discrete when U is discrete and is continuous
when U is continuous. Using (9), the FOU(Ã) in (6) can
also be expressed as

FOU(Ã) D
[

8x2X

h
�
Ã
(x); �̄Ã(x)

i
: (10)

A very compact way to describe an IT2 FS is [22]:

ÃD 1/FOU(Ã) ; (11)

where this notation means that the secondary grade equals
1 for all elements of FOU(Ã).

For continuous universes of discourseX andU, an em-
bedded IT2 FS Ãe is

Ãe D

Z

x2X
[1/u] /x u 2 Jx : (12)

Note that (12) means: Ãe : X ! fu : 0 6 u 6 1g. The set
Ãe is embedded in Ã such that at each x it only has one
secondary variable (i. e., one primary membership whose
secondary grade equals 1). Examples of Ãe are 1/�̄Ã(x)
and 1/�

Ã
(x), 8x 2 X. In this notation it is understood

that the secondary grade equals 1 at all elements in �Ã(x)
or �̄Ã(x).

For discrete universes of discourseX andU, in which x
has been discretized into N values and at each of these val-
ues u has been discretized intoMi values, an embedded IT2
FS Ãe has N elements, where Ãe contains exactly one ele-
ment from Jx1 ; Jx2 ; : : : ; JxN , namely u1; u2; : : : ; uN , each
with a secondary grade equal to 1, i. e.,

Ãe D

NX

iD1

[1/ui ]/xi ; (13)

where ui 2 Jxi . Set Ãe is embedded in Ã, and, there are
a total of nA D

QN
iD1 Mi embedded T2 FSs.

Associated with each Ãe is an embedded T1 FS Ae,
where

Ae D

Z

x2X
u/x u 2 Jx : (14)

The set Ae, which acts as the domain for Ãe (i. e.,
Ãe D 1/Ae) is the union of all the primary memberships
of the set Ãe in (12). Examples of Ae are �̄Ã(x) and�Ã

(x),
8x 2 X.

When the universes of discourse X and U are contin-
uous then there is an uncountable number of embedded

IT2 and T1 FSs in Ã. Because such sets are only used for
theoretical purposes and are not used for computational
purposes, this poses no problem.

For discrete universes of discourse X and U, an em-
bedded T1 FS Ae has N elements, one each from Jx1 ;
Jx2 ; : : : ; JxN , namely u1; u2; : : : ; uN , i. e.,

Ae D

NX

iD1

ui /xi : (15)

Set Ae is the union of all the primary memberships of set
Ae and, there are a total of

QN
iD1 Mi embedded T1 FSs.

Theorem 1 (Representation Theorem (RT) [19]
Specialized to an IT2 FS [22]) For an IT2 FS, for which X
and U are discrete, Ã is the union of all of its embedded IT2
FSs. Equivalently, the domain of Ã is equal to the union of
all of its embedded T1 FSs, so that Ã can be expressed as

ÃD
nAX

jD1

Ãj
e D 1/FOU(Ã) D 1

ı nAX

jD1

Aj
e D 1

ı NX

iD1

u j
i /xi

D 1
ı [

8x2X

n
�
Ã
(x); : : : ; �̄Ã(x)

o
(16)

and if X is a continuous universe, then the infinite
set f�

Ã
(x); : : : ; �̄Ã(x)g is replaced by the interval set

[�
Ã
(x); �̄Ã(x)].

This RT is arguably the most important result in IT2 FS
theory because it can be used as the starting point for solv-
ing all problems involving IT2 FSs. It expresses an IT2 FS
in terms of T1 FSs, so that all results for problems that use
IT2 FSs can be solved using T1 FS mathematics [22]. Its
use leads to the structure of the solution to a problem, af-
ter which efficient computational methods must be found
to implement that structural solution. Table 1 summarizes
set theoretic operations and uncertainty measures all of
which were computed using the RT. Additional results for
similarity measures are in [25].

Interval Type-2 Fuzzy Logic Systems

An interval type-2 fuzzy logic system (IT2 FLS), which is
a FLS that uses at least one IT2 FS, contains five com-
ponents – fuzzifier, rules, inference engine, type-reducer
and defuzzifier – that are inter-connected, as shown in
Fig. 7 (the backgroundmaterial in this sub-section is taken
from [23]). The IT2 FLS can be viewed as a mapping from
inputs to outputs (the path in Fig. 7, from “Crisp Inputs”
to “Crisp Outputs”), and this mapping can be expressed
quantitatively as y D f (x), and is also known as interval
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Fuzzy Logic, Type-2 and Uncertainty, Table 1
Results for IT2 FSs

Set Theoretic Operations [22]

Union Ã[ B̃ D 1/
S
8x2X

h
�

Ã
(x)_�

B̃
(x); �̄Ã(x)_ �̄B̃(x)

i

Intersection Ã\ B̃ D 1/
S
8x2X

h
�

Ã
(x) ^�

B̃
(x); �̄Ã(x) ^ �̄B̃(x)

i

Complement ¯̃A D 1/
S
8x2X

h
1��

Ã
(x); 1� �̄Ã(x)

i

Uncertainty Measures [9,21,24]

Centroid CÃ D [cl(Ã); cr (Ã)] D
�PL

iD1 xi�̄Ã(xi )C
PN

iDLC1 xi�Ã(xi )PL
iD1 �̄Ã(xi )C

PN
iDLC1�Ã(xi )

;

PR
iD1 xi�Ã(xi )C

PN
iDRC1 xi�̄Ã (xi )

PR
iD1�Ã(xi )C

PN
iDRC1 �̄Ã (xi )

�

L and R computed using the KM Algorithms in Table 2.

Cardinality PÃ D [pl(Ã); pr(Ã)] D [p(�
Ã
(x)); p(�̄Ã(x))]; p(B) D jXj

PN
iD1 �B(xi)/N

Fuzziness FÃ D [f1(Ã); f2(Ã)] D [f1(Ae1); f2(Ae2)]; f (A)D h

PN

iD1 g(�A (xi))
�

Ae1 : �Ae1 (x) D

8
<

:
�̄Ã(x) �̄Ã(x) is further away from 0.5 than�

Ã
(x)

�
Ã
(x) otherwise

Ae2 : �Ae2 (x) D

8
ˆ̂
<

ˆ̂:

�̄Ã(x) both �̄Ã(x) and�Ã
(x) are below 0.5

�
Ã
(x) both �̄Ã(x) and�Ã

(x) are above 0.5

0:5 otherwise

Variance VÃ D [vl(Ã); vr(Ã)] D
�
min8Ae vÃ(Ae);max8Ae vÃ(Ae)

�

vÃ(Ae) D
PN

iD1[xi � c(Ã)]2�Ae (xi) /
PN

iD1 �Ae (xi) ; c(Ã) D [cl(Ã)C cr (Ã)]/2

KM Algorithms are used to compute vl(Ã) and vr (Ã)

Skew SÃ D [sl(Ã); sr(Ã)] D
�
min8Ae sÃ(Ae);max8Ae sÃ(Ae)

�

sÃ(Ae) D
PN

iD1[xi � c(Ã)]3�Ae (xi) /
PN

iD1�Ae (xi) ; c(Ã) D [cl(Ã)C cr(Ã)]/2

KM Algorithms are used to compute sl(Ã) and sr(Ã)

Fuzzy Logic, Type-2 and Uncertainty, Figure 7
Type-2 fuzzy logic system

type-2 fuzzy logic controller (IT2 FLC) [7], interval type-2
fuzzy expert system, or interval type-2 fuzzy model.

The inputs to the IT2 FLS prior to fuzzification may
be certain (e. g., perfect measurements) or uncertain (e. g.,

noisy measurements). T1 or IT2 FSs can be used to model
the latter measurements.

The IT2 FLS works as follows: the crisp inputs are first
fuzzified into either type-0 (known as singleton fuzzifica-
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tion), type-1 or IT2 FSs, which then activate the inference
engine and the rule base to produce output IT2 FSs. These
IT2 FSs are then processed by a type-reducer (which com-
bines the output sets and then performs a centroid calcula-
tion), leading to an interval T1 FS called the type-reduced
set. A defuzzifier then defuzzifies the type-reduced set to
produce crisp outputs.

Rules are the heart of a FLS, and may be provided by
experts or can be extracted from numerical data. In either
case, rules can be expressed as a collection of IF-THEN
statements. Amulti-input multi-output (MIMO) rule base
can be considered as a group of multi-input single-output
(MISO) rule bases; hence, it is only necessary to concen-
trate on a MISO rule base. Consider an IT2 FLS having p
inputs x1 2 X1; : : : ; xp 2 Xp and one output y 2 Y . We
assume there areM rules where the ith rule has the form

Ri : IF x1 is F̃ i
1 and : : : and xp is F̃ i

p;

THEN y is G̃i i D 1; : : : ;M : (17)

This rule represents a T2 relation between the input space,
X1 � � � � � Xp , and the output space, Y , of the IT2 FLS.
Associated with the p antecedent IT2 FSs, F̃ i

k , are the IT2
MFs �F̃ i

k
(xk)(k D 1; : : : ; p), and associated with the con-

sequent IT2 FS G̃i is its IT2 MF �G̃ i (y).
The major result for an interval singleton T2 FLS, i. e.

an IT2 FLS in which inputs are modeled as perfect mea-
surements (type-0 FSs, singleton defuzzification) is sum-
marized in the following:

Theorem 2 [11,15] In an interval singleton T2 FLS using
product or minimum t-norm, for input x D x0:

(a) The result of the input and antecedent operations, is an
IT1 set called the firing set, i. e.,

F i(x0) D [ f i(x0); f
i
(x0)] � [ f i ; f

i
]

D

�
�
F̃ i
1
(x01)  � � �  �F̃ i

p
(x0p); �̄F̃ i

1
(x01)  � � �  �̄F̃ i

p
(x0p)

�
:

(18)

(b) The rule Ri fired output consequent set, �B̃ i (y), is the
IT2 FS

�B̃ i (y) D
Z

b i2
h
f i��G̃ i (y); f

i
��̄G̃ i (y)

i 1/bi ; y 2 Y ;

(19)

where �
G̃ i (y) and �̄G̃ i (y) are the lower and upper

membership grades of �G̃ i (y).
(c) Suppose that N of the M rules in the IT2 FLS fire, where

N 6 M, and the combined output fuzzy set, �B̃(y), is
obtained by combining the fired output consequent sets

by taking the union of the rule Ri fired output conse-
quent sets; then,

�B̃(y) D
Z

b2

2

4

h
f 1 ��

G̃1
(y)
i
_ � � � _

h
f N ��

G̃N (y)
i
;

h
f
1
� �̄G̃1 (y)

i
_ � � � _

h
f
N
� �̄G̃N (y)

i

3

5
1/b ;

y 2 Y :
(20)

We do not necessarily advocate taking the union of these
sets. Part (c) of this theorem merely illustrates the calcu-
lations if one chooses to do this. Generalizations of this
theorem to an input that is a T1 or an IT2 FS are also given
in [11,15] and [22].

In Fig. 7, the type-reduced set provides an interval of
uncertainty for the output of an IT2 FLS, in much the same
way that a confidence interval provides an interval of un-
certainty for a probabilistic system. The more uncertain-
ties that occur in an IT2 FLS, which translate into more
uncertainties about its MFs, the larger will be the type-re-
duced set, and vice-versa.

Five different type-reduction (TR) methods are de-
scribed in [10,15]. Each is inspired by what is done in a T1
FLS [when the (combined) output of the inference engine
is defuzzified using a variety of defuzzification methods
that all do some sort of centroid calculation] and are based
on computing the centroid of an IT2 FS. Center-of-sets,
centroid, center-of-sums, and height type-reduction can
all be expressed as

YTR(x0) D
�
yl (x0); yr(x0)

�
�
�
yl ; yr

�

D

Z

y12
�
y1l ;y

1
r
� : : :

Z

yM2
�
yMl ;y

M
r
�

Z

f 12
h
f 1; f

1i

: : :

Z

f M2
h
f M ; f

Mi 1
ı
PM

iD1 f
i yi

PM
iD1 f i

;

(21)

where the multiple integral signs denote the union opera-
tion. For a detailed explanation of (21) see [15] and [10].
The most widely used TR is center-of-sets (COS) TR, for
which: yil and yir are the left and right end points of the
centroid of the consequent of the ith rule [the centroids
of all consequent IT2 FSs can be pre-computed using the
KM Algorithms (Table 2) and stored for COS TR]; f i and
f i are the lower and upper firing degrees of the ith rule,
computed using (18); and M is the number of fired rules.
For other kinds of TR methods, yil , y

i
r , f i , f i andM have

different meanings, and are summarized in Table I of [23].
The defuzzified output of the IT2 FLS is simply the av-

erage of yl and yr , i. e.

y(x0) D [yl (x0)C yr(x0)]/2 : (22)
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Fuzzy Logic, Type-2 and Uncertainty, Table 2
KMAlgorithms for computing the centroid end-points of an IT2 FS, Ã, and their properties [9,15,20]. Note that x1 6 x2 6 � � � 6 xN

Step KM Algorithm for cl
cl D min8�i2�Ã(xi );�̄Ã (xi )


PN
iD1 xi�i/

PN
iD1 �i

� KM Algorithm for cr
cr D max8�i2�Ã (xi );�̄Ã(xi )


PN
iD1 xi�i/

PN
iD1 �i

�

1 Initialize � i by setting �i D
�
�

Ã
(xi)C �̄Ã(xi)

�
/2; i D 1; : : : ;N (or �i D �Ã

(xi); i 6 b(nC 1)/2c and �i D �̄Ã(xi); i > b(nC 1)/2c,

where b�c denotes the first integer equal to or smaller than �), and then compute c0 D c(�1; : : : ; �N) D
PN

iD1 xi�i/
PN

iD1 �i

2 Find k(1 6 k 6 N � 1) such that xk 6 c0 6 xkC1

3 Set �i D �̄Ã(xi) when i 6 k, and �i D �Ã
(xi) when i > kC 1,

and then compute cl(k) �
Pk

iD1 xi�̄Ã (xi )C
PN

iDkC1 xi�Ã(xi )Pk
iD1 �̄Ã (xi )C

PN
iDkC1�Ã(xi )

Set �i D �Ã
(xi) when i 6 k, and �i D �̄Ã(xi) when i > kC 1,

and then compute cr(k) D
Pk

iD1 xi�Ã(xi )C
PN

iDkC1 xi�̄Ã(xi )
Pk

iD1�Ã(xi )C
PN

iDkC1 �̄Ã(xi )

4 Check if cl(k) D c0. If yes, stop and set cl(k) D cl and call k kL.
If no, go to Step 5

Check if cr(k) D c0. If yes, stop and set cr(k) D cr and call k kR .
If no, go to Step 5

5 Set c0 D cl(k) and go to Step 2 Set c0 D cr(k) and go to Step 2

Properties of the KMAlgorithms [20]

Convergence is monotonic and super-exponentially fast.

Because TR is iterative, it may not be possible to use it
in a real-time application.Wu andMendel [26] introduced
a method to approximate the TR set by minimax uncer-
tainty bounds. Doing this avoids the computational over-
heads associated with TR and, as shown in [26] and [12],
provides very similar outputs to the IT2 FLSs using
TR. These uncertainty bounds are yl (x0) 6 yl (x0) 6 ȳ l (x0)
and yr(x0) 6 yr (x0) 6 ȳr(x0), where:

ȳ l (x0) D min

( PM
iD1 f

i yil
PM

iD1 f i
;

PM
iD1 f̄

i y ilPM
iD1 f̄ i

)

; (23)

ȳr(x0) D max

( PM
iD1 f

i yir
PM

iD1 f i
;

PM
iD1 f̄

i y irPM
iD1 f̄ i

)

; (24)

yl (x0) D ȳ l (x0) �

" PM
iD1( f̄

i � f i )
PM

iD1 f̄ i
PM

iD1 f i

�

PM
iD1 f

i �yil � y1l
PM

iD1 f̄
i �yMl � yil



PM
iD1 f i

�
yil � y1l


C
PM

iD1 f̄ i
�
yMl � yil



#

; (25)

ȳr(x0) D yr(x0)C

" PM
iD1( f̄

i � f i )
PM

iD1 f̄ i
PM

iD1 f i

�

PM
iD1 f̄

i �yir � y1r
PM

iD1 f
i �yMr � yir



PM
iD1 f̄ i

�
yir � y1r


C
PM

iD1 f
i �yMr � yir



#

: (26)

Observe that the four bounds in (23)–(26) can be com-
puted without having to perform TR.Wu andMendel [26]
then approximate the TR set, as [yl (x0); yr(x0)] �

[(yl (x0)C ȳ l (x0))/2; (yr(x0)C ȳr(x0))/2] and compute the

output of the IT2 FLS as

y(x0) D
1
2

"
yl (x0)C ȳ l (x0)

2
C

yr(x0)C ȳr(x0)

2

#

(27)

(instead of as in (22)). So, by using the uncertainty bounds,
they obtain both an approximate TR set as well as a de-
fuzzified output.

Wu and Mendel [26] still use TR during the design
of an IT2 FLS. They define a new objective function that
trades off some RMSE with not having to perform TR dur-
ing the real-time operation of the IT2 FLS. The drawback
to this approach is that TR is still performed during the
design step. Lynch et al. [12,13] abandon TR completely
where they replace all of the IT2 FLS computations with
those in (23)–(26) which gave very similar outputs to the
IT2 FLSs using TR. Doing this leads to an IT2 FLS real-
time architecture.

Applications

Applications for IT2 FLSs or IT2 FSs are very numer-
ous. Those that have appeared in the literature prior to
2001 can be found in (see pp 13–14 in [15]), and those
that have appeared between 2001 and 2006 can be found
in [16] and (see Table 24.8 in [18]). It is worth mentioning
that applications have now appeared for the following gen-
eral classes of problems: approximation, clustering, com-
munications, control, databases, decision making embed-
ded agents, health care, hidden Markov models, knowl-
edge mining, neural networks, pattern classification, qual-
ity control, scheduling, signal and image processing, and
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spatial query. Control applications, which were the origi-
nal bread-and-butter ones for T1 FLSs, are now amajor fo-
cus of attention for IT2 FLSs, and even general T2 FLSs. [8]
provides three important applications that demonstrate
that an IT2 FLS can significantly outperform a T1 FLS.
Recently, IT2 FLSs have also been implemented in hard-
ware [14]; this should make them more attractive and ac-
cessible for industrial applications.

Future Directions

There is much work still to be done in type-2 fuzzy re-
search. But, we see that particular areas for fruitful and in-
teresting work will include:

1. Applications. The two broad areas that fuzzy logic is
used we can categorize as control and non-control. As
discussed there is already some work in using type-2 for
control and we expect this to grow. However, the weak-
ness in type-1 fuzzy logic applications is in non-control
where we are trying to emulate human expertise. Type-
2 fuzzy sets are well placed to help here.

2. Generalized type-2 fuzzy systems. The relatively new
approaches for allowing generalized type-2 fuzzy sys-
tems is exciting and we expect many researchers to ex-
ploit these approaches in interesting applications and
provide new theoretical results.

3. Computing with Words. Because words mean dif-
ferent things to different people, we strongly believe
that type-2 fuzzy sets must be used to model words
when implementing Zadeh’s Computing with Words
paradigm.
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Glossary

Fuzzy set A set whose membership is characterized by
gradualness and uniquely described by a membership
function which measures the degree of membership
that domain values possess with respect to belonging
to the set in question.

Fuzzy set theory The theory of uncertainty associated
with sets characterized by gradual membership.

Possibility theory The theory of uncertainty associated
with deficiency of information.

Fuzzy number A fuzzy set whose membership function is
upper semi-continuous with a unique modal value and
whose domain is the set of real numbers.

Possibilistic number A variable described by a possi-
bilistic distribution whose domain is the set of real
numbers.

Optimization The mathematical field that studies nor-
mative processes.

Definition of the Subject

Fuzzy optimization is normative and as a mathematical
model deals with transitional uncertainty and information
deficiency uncertainty. Some literature calls these uncer-
tainties vagueness and ambiguity respectively. Transitional
uncertainty is the domain of fuzzy set theory while uncer-
tainty resulting from information deficiency is the domain
of possibility theory. Suppose one is told by one’s employer
to go to the airport and meet a tall female visitor at the
baggage claim of the airport. The notion of “tall” is transi-
tional uncertainty. As the passengers arrive at the baggage
claim, one compares each female passenger to the ascribed
characteristic (tall woman) as determined by one’s evalua-
tion of what the boss’ function is for “tall woman” and all
the information one might have regarding “tall women”.
The resulting function is used to obtain a possibility value
for each female that appears at the baggage claim. This un-
certainty arises from information deficiency.

An example of fuzzy and possibilistic uncertainty in
optimization is in the radiation treatment plan of tumors
which is a problem that seeks to deposit a tumorcidal dose
to cells that are cancerous while sparing all other cells and

at the same time minimizing the total amount of radiation
used for the treatment. In this context fuzzy uncertainty
arises in cell classification because a cell may be precan-
cerous in which case it is both healthy and cancerous at
the same time to some degree. Typically, radiation treat-
ment modeling discretizes a CT-scan of a patient into pix-
els (voxels in three dimensions) where a pixel is a position
in space relative to a fixed coordinate system containing
the patient and the radiationmachine. The nature of a par-
ticular pixel in space may be two (or more) things at once.
That is, a particular pixel may be precancerous and thus
cancerous and healthy at the same time. Classification into
discrete states leaves open transitional states. Continuous
states are often intractable. That is, given a discrete clas-
sification of cells, what type of cell a pixel models is often
transitional and thus fuzzy. Optimization models that in-
corporate uncertainty of these types are confronted with
a wider spectrum of uncertainty than merely uncertainty
due to probability, that is, frequency.

Possibilistic uncertainty arises when there is the speci-
fication, “deposit 60 units of radiation at every tumor cell”.
The minimal radiation that kills a tumor cell is consid-
ered 60 units of radiation by the community of radiation
oncologists. The number 60 is derived from mathemati-
cal models, research, experience, and expert knowledge.
It (60 units) represents the best available information as
to a minimum radiation dose that will kill a tumor cell.
Of course, if a radiation oncologist were able to attain
59.999 or 60.001 but not 60 units at a tumor cell, this
would undoubtedly be satisfactory. The 60 units is “infor-
mational” since it is derived from research results and ex-
perience whose value as a single mathematical entity, the
real number 60, is not precise in fact. It is not just a mat-
ter of measurement or probabilistic/statistical uncertainty
though both statistics and probability theory may play
a part in the determination of the number 60. The num-
ber 60 is possibilistic rather than probabilistic (or fuzzy)
since the uncertainty associated with the death of a cancer
cell given a precise amount of radiation, 60 in this case, as
cause/effect (certainly killing a cancerous cell as a result of
delivering precisely 60 units of radiation to the cell) is de-
rived from sources beyond frequency analysis. The death
of a cancer cell, as a result of radiation, certainly must de-
pend on the type of cancer, its stage of growth, personal
genetic characteristics, amount of food in the blood sup-
ply at the time of radiation, and so on.

Mathematical models may be considered as being of
two types – descriptive (such as simulation) and norma-
tive. Optimization models and problems, including fuzzy
optimization, are normative in that they impose upon the
mathematical system criteria that seek to extract a “best”.
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This exposition will clearly identify fuzzy optimization
as a distinct optimization approach. While it is not ex-
haustive, this presentation will focus on the salient fea-
tures of fuzzy optimization most related to optimization
under uncertainty. In particular, fuzzy multiobjective pro-
gramming, fuzzy stochastic programming, and fuzzy dy-
namic programming are not discussed (see, for exam-
ple [62,65,86,87,112]). Since intervals (and real numbers)
may be considered as fuzzy sets, interval optimization is
not covered separately but considered within the family of
fuzzy optimization.

Mathematical analyzes that include the normative
must embody the idea of order, measure, and distance.
The notion of “best” requires an order andmeasuring with
respect to that order. Professor Lothar Collatz in a lec-
ture titled, “Monotonicity and Optimization”, given to the
Mathematics Department at Oregon State University, Au-
gust 5, 1974, stated, “The idea of ordering is more funda-
mental than distance because from ordering we can get
distance but not the other way around”. (my notes) The
real number system contains within itself the most fun-
damental mathematical order. Optimal control, stochas-
tic dominance, [97,138], and mean-variance, [89,97,117],
are approaches to order functions. Since fuzzy intervals
from their definition (see below) relate themselves to sets
of real numbers, that is, graphs in R2 (membership func-
tions), the order of fuzzy intervals will need to be derived
from that associatedwith real-valued functions. Moreover,
since fuzzy sets model uncertainty on one hand and am-
plification and flexibility on the other, it is clear that the
idea of order and its derived distance (measure) generated
will be flexible, that is, require choices, as we shall see. The
choice that needs to be made is dependent on the seman-
tics of the problem to a greater extent than in the deter-
ministic setting.

Mathematical modeling involves simplification, the
transformation from reality to symbols. Even after a sym-
bolic representation of a system, the process being mod-
eled may, for example, be nonlinear, but is only tractable
if linearized. Moreover, a nonlinear process may be the
correct model but its linear counterpart may yield accept-
able solutions. In the case of radiation therapy models
(see [82,83]), scatter, which causes nonlinearities, is typ-
ically ignored in developing radiation therapy models that
determine the angles and intensities for a given radiation
machine and a given patient being treated. Without scat-
ter, the resulting model is a linear model whose results
usually produce acceptable treatment plans as long as the
breathing of the patient is ignored. On the other hand, ob-
taining the mathematical model for the location of a cell
(in a fixed coordinate system that includes both the patient

and the radiation machine) of a patient undergoing radi-
ation therapy, is important to include (while scatter may
not be as important in the determination of acceptable an-
gles and intensities). Location of points in the body that
are or have been affected by breathing is not a determinis-
tic model. Nor is it a probabilistic model.

The mathematical model development for radiation
therapy planning of a particular patient tumor for a partic-
ular machine not only is designed to “do the job” (kill all
tumor cells while sparing healthy cells) but often adds var-
ious “normative” criteria. For example, a radiation oncol-
ogist might seek a mathematical model which will, when
used, kill the tumor cells, spare the healthy cells, andmin-
imize total radiation used to do this. The “minimize total
radiation used” is a normative criterion. Of course, there
could be many other normative criteria imposed, such as
“minimize the probability that healthy cells will become
cancerous by the radiation deposited from the radiation
treatment”.

The thesis of this presentation is two-fold. First, not all
uncertainty that occurs and is incorporated in optimiza-
tion models can be described by the frequency with which
its parameters take on various values (probability). Fuzzy
and possibility theory are necessary components in some
cases (such as in radiation of tumor models). Secondly,
optimization under uncertainty models at their most gen-
eral symbolic level try to capture the true complexity of the
systems being modeled so that it is crucial to model tran-
sitional processes as fuzzy sets, frequencies as probabilis-
tic distributions, and information deficiencies as possibil-
ity distributions. Once this is done, a further simplifica-
tion may be (usually is) involved, but at the highest sym-
bolic level, it is crucial to be faithful to the nature of the
uncertainty, since this will ultimately determine the cor-
rect semantics and correct simplifying assumptions. For
example, a normative probability model may be translated
into a stochastic recourse model which is transformed into
a real-valued nonlinear programming problem. Knowing
that the underlying process is probabilistic means that
the input data must be faithful to the laws of probability
even though in the end, the model is a real-valued non-
linear programming model. The solution semantics in this
case are those arising from probability and thus frequency
based. A fuzzy linear optimization model is often trans-
lated into a real-valued linear programmingmodel. Know-
ing that the underlying processes being modeled are fuzzy
means that the nature of both the input data and the se-
mantic interpretation of the output solution are based on
the laws of fuzzy set theory and not of probability. Fuzzy
optimization models are frequently solved as a real-valued
linear or nonlinear programming problems just as in the
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case of stochastic optimization. This process, insuring that
at the highest symbolic level of mathematical modeling
the correct uncertainty is used and only then transform-
ing it into a real-value model, is analogous to first model-
ing a nonlinear system as a nonlinear system of relations
and then linearizing it. It is crucial to create the nonlin-
ear model first (at least in principle) and then to linearize
it so that the approximation that is being used is explicit.
When one is clear about these steps, one is able to take
into account the correct associated approximation errors
and underlying assumptions which enable the appropriate
interpretation of the solution output.

Likewise, normativemodels of fuzzy processes require,
at the level of mathematical abstraction, fuzzy modeling
before approximation and transformation to an equiva-
lent real-valued model because the fuzzy model is most
faithful to the underlying uncertainty and thus is able to
adhere to the basic assumptions associated with its un-
certainty type. Moreover, if the starting point is a fuzzy
model, when approximations and translations are made,
the sources and magnitudes of associated errors are ex-
plicit. Lastly, the solution semantics are determined by the
context of the input uncertainty. The modeling of norma-
tive processes that contain transitional and/or information
deficiency uncertainty should utilize fuzzy and/or possi-
bilistic optimization. The symbolic representation faith-
fully executed according to the associated axioms gov-
erning the uncertainty type and its semantics is a neces-
sary first step. That is, mathematics (or any science) tries
to bare all of its underlying assumptions. Since mathe-
matical models objectify relationships occurring in real-
ity via symbols, the nature of uncertainty must first be
made explicit and then approximated, not the other way
around.

Fuzzy optimization, which for this exposition encom-
passes models affected by both fuzzy and possibilistic un-
certainty, is one of the newest optimization fields. Its place
is along side stochastic optimization within the field of
optimization under uncertainty. Fuzzy optimization be-
gan in 1970 with the publication of the seminal Bellman
and Zadeh paper [5]. It took three years before the next
fuzzy optimization article was published in 1973 by H.
Tanaka, T. Okuda, and K. Asai, [1,119], (with the full
version [120]). These researchers seem to have been the
first to realize the importance of alpha-levels in the math-
ematical analysis of fuzzy sets in general and fuzzy op-
timization in particular. The Tanaka, Okuda, Asai arti-
cle operationalized the theoretical approach developed by
Bellman and Zadeh. Independently, in 1974, H.-J. Zim-
mermann presented a paper at the ORSA/TIMS confer-
ence in Puerto Rico [147] (with the full version [148])

that not only operationalized the Bellman and Zadeh ap-
proach, but greatly simplified and clarified fuzzy optimiza-
tion, so much so that Zimmermann’s approach is a stan-
dard to this day. In this same period, the book by C.V.
Negoita and D.A. Ralescu [92] contained a description of
fuzzy optimization. C.V. Negoita andM. Sularia published
in 1976 a set containment approach to fuzzy optimiza-
tion [93]. From this beginning, fuzzy optimization has be-
come a field of study in its own right with a journal devoted
to the subject, Fuzzy Optimization and Decision Making,
whose first issue came out in February of 2002. More-
over, there have been special sessions devoted solely to
fuzzy/possibilistic optimization at the international fuzzy
society meetings (IFSA05, July 2005, Beijing, China and
IFSA07 June 2007, Cancun, Mexico). There have been
two special editions of the journal Fuzzy Sets and Systems
dealing with fuzzy/possibilistic optimization, the latest be-
ing [73]. Two books with edited articles have appeared –
[12,54] and there are at least six authored books devoted
to fuzzy optimization – [4,60,62,65,103,116].

Thirty-five years of fuzzy optimization research has
yielded a wide-ranging set of applications. It is beyond
the scope of this exposition to cover applications, but, the
interested reader may wish to consult the following set
of references: Chap. 6 and 8 in [12], Chap. III in [54],
and [4,28,33,36,41,47,53,70,72,73,75,82,83,104,105,107,
112,123,125,129,132,133].

The general fuzzy optimization model considered in
this presentation is to find a fuzzy optimum of a fuzzy ob-
jective function subject to a fuzzy constraint,

fopt
x

z̃ D f (c̃; x) (1)

x 2̃ X̃ (2)

where the tilde, ~, represents fuzzy and/or possibilistic en-
tities or relationships which is made clear by the context
and assumptions of the problem. When fuzzy uncertainty
needs to be distinguished from possibilistic uncertainty,
the tilde, ~, will denote fuzzy uncertainty and the circum-
flex, b , will denote possibilistic uncertainty. For (1), c̃ is
considered to be a known vector of uncertainty parameters
characterized by a fuzzy membership function or a pos-
sibilistic distribution. The variables (unknown quantities
whose values are to be determined by themodel) which are
denoted here by x, are often called the “decision variables”
because in optimization models, it is the value of x that is
being computed. For example, x may denote a quantity to
be produced by a manufacturing process, or the amount
to be transported from a production point to a consum-
ing point, or the intensity of radiation for the angle repre-
sented by the variable, and so on.
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Introduction

It is assumed that the reader has a basic knowledge of fuzzy
set theory at the level of [59] though the basics that are
needed for this exposition are set forth. Much of the intro-
ductory exposition can also be found in [71].

Basics of Fuzzy Set Theory

Fuzzy set and possibility theory were defined and de-
veloped by L. Zadeh beginning with [142] and subse-
quently [143], and [144]. As is now well-known, the idea
was to mathematize and develop analytical tools to solve
problems whose uncertainty went beyond probability the-
ory. Classical mathematical sets, for example a set A, have
the property that either an element x 2 A or x … A but
not both. There are no other possibilities for classical sets
which are also called crisp sets. An interval is a classical set.
L. Zadeh’s idea was to relax this “all or nothing” member-
ship in a set to allow for grades of belonging to a set. When
grades of belonging are used, a fuzzy set ensues. To each
fuzzy set, Ã, L. Zadeh associated a real-valuedmembership
function�Ã(x),which takes x in the domain of interest, the
universe ˝ , to a value in the interval [0, 1]. The member-
ship function �Ã(x) quantifies the degree to which x be-
longs to Ã where a value of zero means that x certainly
does not belong to Ã and a value of one means that x cer-
tainly belongs to Ã.

�Ã(x) : R! [0; 1] :

Another way of looking at a fuzzy set is as a set in R2

as follows.

Definition 1 A fuzzy set Ã, as a crisp set in R2, is the set
of ordered pairs

ÃD f(x; �Ã(x))g � f(�1;1) � [0; 1]g : (3)

The ˛ � cut of a fuzzy set is the set

Ã˛ D fx j�Ã(x) � ˛g :

Definition 2 Amodal value of a membership function is
a domain value at which the membership function is one.
A fuzzy set with at least one modal value is called nor-
mal. The support of a membership function is the closure
of fx j�Ã(x)) > 0g.

Definition 3 (see [29]) A fuzzy interval, M̃, defined by
its membership function �M̃(�), is a fuzzy continuous sub-
set of the real line such that, if x; y; z 2 R; z 2 [x; y], then

�M̃(z) � minf�M̃(x); �M̃(y)g :

Like a fuzzy set, a fuzzy interval M is said to be normal if
9x 2 R such that �M̃(x) D 1. The set fx j�M̃(x) D 1g is
called the core (of the fuzzy interval).

Definition 4 A fuzzy number is a fuzzy interval with
a unique modal value, that is, the core is a singleton.

For all that follows, fuzzy intervals will be assumed to
be normal fuzzy intervals with upper semi-continuous
membership functions. This means that the ˛ � cut of
a fuzzy interval, M˛ , is a closed interval. Let M1 D fx j
�M̃(x) D 1g D [m�1 ;m

C
1 ], be the core of a fuzzy inter-

val M̃ and the open support M0 D fx j�M(x) > 0g D
(m�0 ;m

C
0 ). For a fuzzy intervalM, �M(x), is non-decreas-

ing for x 2 (�1;m�1 ] and �M(x) is non-increasing for
x 2 [mC1 ;1).

The fact that we have closed intervals at each ˛ � cut
means that fuzzy arithmetic can be defined by interval
arithmetic (see [90]) on each ˛ � cut. Unbounded inter-
vals can be handled by extended interval arithmetic. In
fact, when dealing with fuzzy intervals, the operations and
analysis can be considered as interval operations and anal-
ysis on ˛ � cuts [71]. We define the most common types
of fuzzy intervals next.

Definition 5 A triangular fuzzy number, ÃD (˛; ˇ; � ),
has a membership function �A centered at a value ˛, with
a support (ˇ; � ) such that

�A(x) D

8
ˆ̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
:̂

1; x D ˛;
0; x � ˛ � ˇ;
0; x � ˛ C �;
1 � x�˛

ˇ
; x 2 (˛ � ˇ; ˛)

1 � ��x
�
; x 2 (˛; ˛ C � ) :

Definition 6 A symmetric triangular fuzzy number,
Ã D (˛; ˇ), has a membership function �A centered at
a value ˛, with a spread ˇ such that

�A(x) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

1; x D ˛;
0; x � ˛ � ˇ;
0; x � ˛ C ˇ;
1 � jx�˛j

ˇ
; x 2 (˛ � ˇ; ˛ C ˇ) :

Definition 7 A trapezoidal fuzzy interval, Ã D (˛; ˇ;
�; ı), has amembership function�A with a core (˛; ˇ) and
a support (�; ı) such that

�A(x) D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

1; x 2 [˛; ˇ];
0; x … (�; ı);
1 � ˛�x

˛��
; x 2 (�; ˛);

1 � x�ˇ
ı�ˇ

; x 2 (ˇ; ı) :
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Definition 8 A L-R fuzzy interval, Ã D (˛R ; ˛L ; ˇR ;

ˇL)LR has a membership function �A and reference func-
tions L and R. L : [0; inf)! [0; 1] and R : [0; inf)! [0; 1]
are upper semi-continuous and strictly decreasing in the
range (0,1], and �A is defined as follows:

�A(x) D

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

1; x 2 [˛L ; ˛R ];
0; x … (˛L � ˇL; ˛R C ˇR);

L


˛L�x
ˇ L

�
; x 2 [˛L � ˇL; ˛L];

R


x�˛R

ˇ R

�
; x 2 [˛R ; ˇ C ˛R] :

The following relations are applicable to fuzzy intervals:

Definition 9 (Equality) Two fuzzy sets, Ã and B̃ are said
to be equal if and only if �A(x) D �B(x) for all x 2 X.

This definition, given by Bellman and Zadeh [5], is gen-
erally accepted. We explore broader interpretations of
ÃD B̃ in Subsect. “Fuzzy Relations”.

Definition 10 (Containment) A fuzzy set Ã is said to be
a subset of fuzzy set B̃ if and only if �A(x) � �B(x) for all
x 2 X.

Definition 11 (Intersection) The intersection of Ã and B̃
is defined as the largest fuzzy set contained in both Ã and
B̃. The membership function of Ã^ B̃ is given by

�A^B(x) D min(�A(x); �B(x)) ; x 2 X :

Minimum is only one of a continuum of operators that
define intersection, but this discussion is beyond the scope
of this paper. The t � norms (see [59]) define a family of
intersection operators.

Definition 12 (Relation) A fuzzy relation R in the prod-
uct space X � Y is a fuzzy set characterized by a member-
ship function �R which associates with each ordered pair
a grade of membership �R (x; y) inR.

Definition 13 (Non-Interactivity) Consider a fuzzy
number C̃ where C � R2 which is a direct product of
two fuzzy numbers Ã 2 R and B̃ 2 R such that for all
(x; y) 2 R2,

�C (x; y) D �A(x) ^ �B(y) : (4)

If condition (4) holds for Ã and B̃, then Ã and B̃, are said
to be non-interactive. Semantically, two numbers are non-
interactive if they can be assigned values independently of
each other [18]. Every fuzzy and possibilistic model exam-
ined in this paper operates on the assumption of non-in-
teractivity of all uncertain entities.

A different and more recent approach to fuzzy entities is
possible. Instead of considering a fuzzy interval as a spe-
cialized fuzzy set over the set of real numbers, R, Dubois
and Prade (see [26]) and Fortin, Dubois, and Fargier
(see [29]) introduce the concept of gradual numbers to re-
vise the theory of fuzzy intervals so that a (real-valued)
fuzzy interval is to a (real-valued) interval what a fuzzy set
is to a (classical) set. This restores the algebraic structure
of the real numbers to fuzzy arithmetic. (In particular, the
usual fuzzy arithmetic which uses interval arithmetic on
˛ � cuts [57] lacks an additive identity, a multiplicative
identity, and the distributive law, all properties of algebra
of real numbers.) An earlier approach to fuzzy arithmetic
which also restores the algebraic structure of real num-
bers to fuzzy arithmetic is constraint interval arithmetic
on ˛ � cuts [69,71].

Gradual numbers were developed by [26,29] not only
to restore a richer algebraic structure to fuzzy intervals, but
to put fuzzy intervals on a firmer foundation. The theory of
gradual numbers is one in which the relationship between
real-valued intervals and fuzzy intervals is made quite ap-
parent, clear, and compelling. Special (extreme) gradual
numbers serve as endpoints of fuzzy intervals in the same
way that real numbers serve as the endpoints of real in-
tervals. The theory of gradual numbers also allows one to
deal with the concept of a fuzzy element (of a fuzzy set)
in a theoretically sound and meaningful way. The special
gradual numbers associated with the endpoints of a fuzzy
interval may be thought of as being composed of two parts.
The left gradual number endpoint of a fuzzy interval Ã is
the inverse of the membership function �Ã restricted to
(�1;m�1 ]. That is, it is the inverse of

��Ã (x) D �Ã(x) ; x 2 (�1;m�1 ] ; (5)

where [m�1 ;m
C
1 ] is the core as before, which is non-empty

by definition. The second part, the right gradual number
endpoint of Ã, is the inverse of the membership function
restricted to [mC1 ;1). That is, it is the inverse of

�CÃ (x) D �Ã(x) ; x 2 [mC1 ;1) : (6)

Definition 14 (see [29]) A gradual number r̃ is defined
by an assignment Ar̃ from (0, 1] toR.

Note that for a fuzzy interval, Ã, the functions that de-
fine the endpoints, (��Ã )

�1(˛) (5), and (�CÃ )
�1(˛) (6)

are special cases of gradual numbers. Briefly, a grad-
ual number in fuzzy interval Ã is simply the inverse re-
lation of any unique assignment r(x) : x 2 Ã such that
��Ã (x) � r(x) � �CÃ (x). For the purpose of optimization,
continuous strictly-monotonic assignment functions are
of interest. Fuzzy intervals may be defined from the point
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of view of gradual numbers and and in this context, we
have the following.

Definition 15 (see [29]) Using the notion of gradual
number, a fuzzy interval M is an ordered pair of grad-
ual numbers (m̃�; m̃C) where m̃� is called the fuzzy lower
bound or left profile and m̃C is called the fuzzy upper
bound or right profile.

To ensure that the left and right profiles adhere to what has
been previously defined as a fuzzy interval, several proper-
ties of m̃� and m̃C must hold. In particular (see [29]):

1. The domains of the assignment functions, Ãm̃� and
Ãm̃C , must be in (0, 1].

2. Ãm̃� must be increasing and Ãm̃C must be decreasing.
3. m̃� and m̃C must be such that Ãm̃� � Ãm̃C .

Remark 16 Fuzzy intervals with properties 1–3 above
possess well-defined inverses which are functions. Note
that the endpoints of a crisp interval [a; b] have constant
assignments, that is, Ãm̃� (˛) D a and Ãm̃C (˛) D b; 0 <
˛ � 1. These are the left and right profiles of the fuzzy
interval membership function of a real-valued interval,

�[a;b](x) D

(
1 for x 2 [a; b]
0 otherwise :

Since it is constant, it has no fuzziness in it and is sim-
ply an interval, not a fuzzy interval. An interval that pos-
sesses fuzziness has a non-decreasing, non-constant left
profile and a non-increasing, non-constant right profile,
but a crisp interval has no fuzziness in the left/right profiles
(they are horizontal line segments as gradual numbers).
That is, the left and right membership function segments
are vertical line segments (no fuzziness), whose inverses
are horizontal line segments. Each gradual number that is
a horizontal line segment, y D f (x) D a:0 � x � 1, rep-
resents the real number (written as a fuzzy set),

�a(x) D

(
1 for x D a
0 otherwise :

The application of gradual numbers to optimization is just
beginning. Two of these are [56] and [127].

Extension Principles

Fuzzy extension principles show how to transform real-
valued functions into functions of fuzzy sets on one
hand and how to compute fuzzy algebraic or fuzzy tran-
scendental expressions on the other. The meaning of
fuzzy arithmetic depends directly on the extension prin-
ciple since arithmetic operations are (continuous) func-

tions over the reals, assuming division by zero is not al-
lowed, and over the extended real numbers, when divi-
sion by zero is allowed. The fuzzy arithmetic that results
from Zadeh’s extension principle [142] and its relation-
ship to interval analysis has an extensive recent develop-
ment (see [70,71,75]). Moreover, there is an intimate in-
terrelationship between the extension principle being used
and the analysis that ensues. Since t-norms and t-conorms
capture the way trade-offs among decisions are made in
constrained optimization (see [58]), the way one extends
union and intersection via t-norms and t-conorms will de-
termine the constraint set.

The extension principle within the context of fuzzy set
theory was first proposed, developed, and defined in [142]
and [144].

Definition 17 (Extension Principle of L. Zadeh [142,
144]) Given a real-valued function f : X ! Y , the func-
tion over fuzzy sets f : S(X)! S(Y), where S(X) (respec-
tively S(Y)) is the set of all fuzzy sets of X (respectively Y)
is given by

� f (Ã)(y) D supf�Ã(x) j y D f (x)g (7)

for all fuzzy subsets A of S(X). In particular, if (X1; : : : ;

Xn) is a vector of fuzzy intervals, and f (x1; : : : ; xn) a real-
valued function, then

� f (X1;:::;Xn) D sup
(x1;:::;xn)

min
1�i�n

f�Xi
(xi)g j z

D f (x1; : : : ; xn) : (8)

The extension principle is used to define functions of fuzzy
sets by taking a function over the real numbers and ex-
tending it to a fuzzy-set-valued function with fuzzy set ar-
guments in place of the real numbers. If X � R, the set-
valued function F : A � P(X)! P(Y), where P(X) is the
power-set of X and P(Y) is the power-set of Y , is an exten-
sion function of real-valued function f : X ! Y � R if:

F(A) D f f (x) j x 2 Ag ; (9)

and
�
inf
x2A

f (x); sup
x2A

f (x)
�
� F(A) : (10)

This latter condition (10) needs to be imposed when
these set-valued extension functions are approximated on
a computer so that even computationally, it is always true
that when a set is “retracted” to a point,

F(fxg) D f (x) 8x 2 X

where F is the (set-valued) extension of (the real-valued)
f . Now, if we have a set of fuzzy subsets Ã of X, to ob-
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tain a resulting fuzzy set within the set of all fuzzy subsets
of Y under the mapping f , the extension function of f over
fuzzy sets is denoted F̃ and the membership function (re-
call that a fuzzy set is uniquely defined by its membership
function) �F̃(Ã) is defined by:

�F̃(Ã)(y) D supf�Ã(x) j y D f (x); x 2 X; y 2 Yg

The definition (8) of the extension principle has led to
fuzzy arithmetic. Moreover, it is one of the main mech-
anisms used for fuzzy (interval) analysis. Various re-
searchers have dealt with the issue of the extension princi-
ple and amplified its applicability. H. Nguyen [98] pointed
out, in his 1978 paper, that a fuzzy set needs to be defined
to be what Dubois and Prade later called a fuzzy interval
(see [26,29]) in order that

[ f (Ã; B̃)]˛ D f (A˛; B˛)

where the function f is assumed to be continuous. In par-
ticular A˛ and B˛ need to be compact (that is closed/
bounded intervals) for each ˛-cut. Thus, H. Nguyen de-
fined a fuzzy number as one whose membership function
is upper semi-continuous and for which the closure of the
support is compact. In this case, the ˛-cuts generated are
closed and bounded (compact) sets, that is, real-valued in-
tervals. This is a well-known result in real analysis. That
is, when f is continuous, the decomposition by ˛ � cuts
can be used to compute f (X̃1; : : : ; X̃n) via interval analy-
sis by [98] as

[ f (X̃1; : : : ; X̃n)]˛ D f ([X1]˛; : : : ; [Xn]˛) :

It should be noted that the gradual number representa-
tion of fuzzy intervals allows use of the extension principle
without resorting to ˛ � cuts.

R. Yager [141] pointed out that by looking at functions
as graphs (in the Euclidean plane), the extension principle
could be extended to include all graphs thus allowing for
analysis of what he calls “non-deterministic” mappings,
that is, graphs which are not functions. Now, “non-deter-
minism” as is used by Yager can be considered as point-
to-set mappings. Thus, Yager implicitly restores the ex-
tension principle to a more general setting of point-to-set
mappings.

J. Ramik [100] points out that we can restore L. Zadeh’s
extension principle to its most general setting of set-to-
set mappings explicitly. In fact, a fuzzy mapping is indeed
a set-to-set mapping. He defines the image of a fuzzy set-
to-set mapping as being the set of ˛’s generated by the
function on the ˛ � cuts of the domain.

Lastly, T.Y. Lin’s paper [61] is concerned with deter-
mining the function space in which the fuzzy set gener-
ated by the extension principle “lives”. That is, to what

space does the range of the fuzzy function belong? The ex-
tension principle generates a resultant membership func-
tion in the range space. Suppose one is interested in stable
controls, then one way to extend is to generate resultant
(range-space) membership functions that are continuous.
The definition of continuous function states that small
perturbations in the input, that is, domain, cause small
perturbations in the output, that is, range, which is one
way to view the definition of stability. T.Y. Lin develops
conditions that are necessary in order that the range mem-
bership function has some desired characteristics (such as
continuity or smoothness).

The essential purpose of fuzzy extension principles is
to define functions over fuzzy sets so that the resulting
range maintains various properties of interest specific to
both the function and its fuzzy set input. In optimization,
this is crucial in computing the output of objective and
constraint functions (1) and (2). The theory and compu-
tational methods associated with distribution arithmetic
including fuzzy and possibilistic arithmetic is discussed in
detail in [71].

Basics of Possibility Theory

Possibilistic distributions (of fuzzy intervals or sets) en-
capsulate the most knowledgeable estimate of the possible
values of an entity given the available information. This
theory was articulated in [145]. Fuzzy membership func-
tion values (of fuzzy intervals or sets) describe the degree
to which an entity is that value. Note that if the possibility
distribution at x is one, this signifies that the best evidence
available indicates x is indeed the entity that the distribu-
tion describes. Possibility distributions constructed from
first principles require nested sets (see, for example [51])
and normalization. Possibility distributions are normal-
ized since their semantics are tied to existent entities. Since
the entity exists, it is always possible for at least one x. For
example, if one is hiking from an elevation of 2,000m to
an elevation of 3,000m, one must traverse the 2,500m iso-
line (at least once). That there is a spot at which this oc-
curs is not in question. The location of the spot is and will
be dependent on the information at hand (accuracy of the
maps, possibly of a global positioning system, compass, al-
timeter, expert knowledge). Nevertheless, one knows with
certainty in this case that the 2,500m isoline is traversed
but not where it is traversed.

On the other hand, normalization is not required of
fuzzy membership functions. Thus, not all fuzzy sets can
give rise to possibility distributions.

Possibility theory may be derived in at least one of the
following ways:
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1. Via normalized fuzzy sets (see [145]),
2. Axiomatically from fuzzy measures g that satisfy

g(A[ B) D maxfg(A); g(B)g (see [25,59] for example),
3. Via belief functions of Dempster–Shafer theory whose

focal elements are normalized and nested (see [59]),
4. By construction (via nested sets with normalization, for

example nested ˛ � l evel sets, see [25,51] and [59]).

The most general derivation of possibility theory
(method 2 above) sets up an order among variables with
respect to their being an entity. The magnitudes associ-
ated with this ordering have no significance other than
an indication of order. Thus, if possibilityA(x) D 0:75 and
possibilityA(y) D 0:25 all that can be said is that x more
likely to be the entityA than y. One cannot conclude that x
is three timesmore likely to beA than y is. This means that
for optimization problems, if the possibility distributions
were constructed using the most general assumptions,
then comparisons among several distributions is problem-
atic. In particular, setting the possibility level to be greater
than or equal to a certain fixed value, say 0 � ˛ � 1, does
not have the same meaning as setting a probability level or
a membership function to be at least ˛. In the former case
the ˛ has no inherently meaning (other than if one has
a ˇ > ˛ one prefers the decision that generated ˇ to that
which generated ˛) whereas in the former, the value of ˛
is meaningful. Because of this, optimization methodsmust
assume that the possibility distributions are constructed
according to probability based possibility (see [51]) since
the possibilities that are so constructed do have meaning-
ful distribution value levels. That is, if the possibility level
is ˛, the the value of ˛ has a quantitative (not just order)
meaning in relation to all values in [0, 1].

There is a companion set-valued function to possibility
called necessity, when the measure of the underlying space
is finite. The necessity set-valued function is defined by

necessity(Ã) D 1 � possibility(ÃC ) ;

where ÃC denotes the complement of the fuzzy set Ã. Se-
mantically, the necessity of an event measures the impos-
sibility of the opposite event.

Semantics of Fuzzy Sets and Possibility Distributions
in Fuzzy Optimization

This study restricts uncertainty to parameters (input data)
whose fuzzy membership functions or possibilistic distri-
butions are over intervals of real numbers, that is, fuzzy
or possibilistic intervals. That semantics is crucial in the
context of fuzzy sets was known early in the development
of fuzzy/possibility theory [19] and subsequently elabo-
rated [23,27].

Fuzzy optimization is distinguished from possibilistic
optimization by both semantics and optimization proce-
dures. As will be seen below, fuzzy optimization optimizes
over sets of real numbers while possibilistic optimization
optimizes over sets of (possibility) distributions. In addi-
tion, optimization procedures are influenced by the fact
that fuzzy and possibilistic distributions have different de-
velopment when they are derived from first principles.

The semantic distinctions between fuzzy and possi-
bilistic optimization can be found in [37,45] and [47]
where it is noted that, for optimization models, ambigu-
ity in the coefficients of the model leads to possibility op-
timization, while vagueness in the decision maker’s prefer-
ence is modeled by fuzzy optimization. When this vague-
ness represents a willingness on the part of the decision
maker to relax his or her requirements in order to at-
tain better results, this type of fuzzy optimization is some-
times called flexible programming. It has also been said
that, in the context of optimization, possibilistic uncer-
tainty is information-based uncertainty and fuzzy uncer-
tainty is preference-based uncertainty [60]. Another point
of view on the semantic distinction between fuzzy and pos-
sibilistic uncertainty in optimization is evinced in [45].

The membership grade of a fuzzy goal (fuzzy con-
straint) represents the degree of satisfaction, whereas
that of a possibility distribution represents the de-
gree of occurrence.

The semantics of an optimization problem are also in-
fluenced by where in the optimization problem the uncer-
tainty occurs. Suppose an optimization problem is known
to have fuzzy uncertainty in the inequality constraints. In
the case of soft constraints, it is the inequality (or equality)
itself which is viewed to be fuzzy (i. e. Ax �̃ b for a linear
programming problem). This is distinct from the case in
which the right hand side has vague value, in which case
the right hand side is viewed to be fuzzy (i. e. Ax � b̃). To
illuminate the difference between fuzzy inequalities and
fuzzy right hand sides, consider the example of a com-
puter dating service. Suppose woman A specifies that she
would like to date a “medium-height” man. Woman A de-
fines “medium” as a fuzzy set characterized by a triangu-
lar membership function, centered at 6900, with a spread of
300. This is a hard constraint because the man is required
to be medium-height, but medium-height is a fuzzy set.
This is, therefore, an example of a fuzzy right-hand side
(i. e. Ax D b̃). Now consider woman B, who desires to date
a man of about 6900 in height. Unlike woman A, woman B
is willing to compromise a little on the height requirement
in order to be matched with a date who meets some of her
other requirements. Her satisfaction level with a 6900 man
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is 1, with a 6800 or 7000 man is 2
3 , and with a 67

00 or 7100 man
is 1

3 . This is an example of a soft constraint, represented by
a fuzzy equality (i. e. Ax D̃ b). Notice that the membership
functions in the two fuzzy cases are the same (symmetric
triangular centered at 6900 with a spread of 300), but the se-
mantics are different.

One result of the distinction between fuzziness and
possibilistic uncertainty is that they manifest themselves
in different regions of the optimization problem. Given the
basic linear program,

min z D cTx
subject to: Ax � b ;

x � 0 ;

(11)

fuzziness can occur in the right-hand-side(b̃), and/or in
the inequality (�̃). To date, no model has been proposed
which deals with fuzzy objective function coefficients of
fuzzy constraint matrix coefficients. However, suppose
a constraint, ai jx � bi ; i 2 [1; n], is meant to apply only
to members of a particular fuzzy set, Ỹ . Now suppose that
the element represented by row i of the constraint matrix
is a member of set Y to a degree defined by �Y (y). Then
the constraint i should be multiplied by the membership
value of yi, resulting in fuzzy coefficients. A similar ar-
gument can be applied for objective function coefficients.
Possibilistic values can occur in the objective function co-
efficients ĉ, in the constraint matrix coefficients Â, and/or
in the right-hand-side b̂. To date, there is neither semantic
nor model for a possibilistic inequality.

Fuzzy Relations

Optimization models usually involve constraints consist-
ing of equalities, inequalities, or both. For determinis-
tic optimization, the meaning and computation of the
constraint set is clear. In optimization under uncer-
tainty, however, the meaning and computation of “equal-
ity” and “inequality” must be determined. To this end,
Dubois and Prade, [22,24], give a comprehensive anal-
ysis of fuzzy relations with four possible interpretations
of fuzzy equalities, called modalities, and four possible
interpretations of fuzzy inequalities. Inuiguchi [45] adds
two more modalities. However, only the original four
modalities are outlined below, using fuzzy intervals M̃ D
[m�(˛);mC(˛)]; 0 � ˛ � 1, and Ñ D [n�(˛); nC(˛)];
0 � ˛ � 1.

The statement M̃ � Ñ can be interpreted in any of the
four following ways:

i. 8x 2 M̃; 8y 2 Ñ; x > y.
This is equivalent to m�(˛) > nC(˛).

ii. 8x 2 M̃; 9y 2 Ñ; x � y.
This is equivalent to m�(˛) � n�(˛).

iii. 9x 2 M̃; 8y 2 Ñ; x > y.
This is equivalent to mC(˛) > nC(˛).

iv. 9(x; y) 2 M̃ � Ñ; x � y.
This is equivalent to mC(˛) � n�(˛).

Inequality relation (i) indicates that x is necessarily
greater than y, This is the pessimistic view. The decision
maker who requires that m� > nC in order to satisfy
M̃ > Ñ is taking no chances [67]. (iv) indicates that x is
possibly greater than y. This is the optimistic view. The de-
cision maker who merely requires that mC > n� in order
to satisfy M̃ > Ñ has a hopeful outlook. Inequality rela-
tions (ii) and (iii) fall somewhere between the optimistic
and pessimistic views.

The statement M̃ D Ñ can be interpreted in any of the
following four ways:

i. Zadeh’s fuzzy set equality: �M D �N
ii. 8x 2 M̃; 9y 2 Ñ; x D y

(which is equivalent to M̃ � Ñ).
iii. 8y 2 Ñ; 9x 2 M̃; x D y

(which is equivalent to Ñ � M̃).
iv. 9(x; y) 2 M̃ � Ñ; x D y

(which is equivalent to Ñ \ M̃ ¤ ;).

Equality relation (i) indicates that x is necessarily equal
to y (the pessimistic view), (iv) indicates that x is possibly
equal to y (the optimistic view), and (ii) and (iii) fall some-
where in between.

Basics of Fuzzy Sets and Possibility Theory
in Optimization

The general fuzzy optimization model (1), (2), has
two parts – the objective (normative criteria), fopt z̃ D
f (c̃; x) (1), and the constraints, x 2̃ X̃ (2). This corre-
sponds to what Kacprzyk andOrlovski state (p. 50 in [55]):

The analysis of real decision making situation is vir-
tually based on two types of information:

� information on feasible alternative decisions
(options, choices, alternatives, variants, . . . ),

� information making possible the comparison of
alternative decisions with each other in terms of
“better”, “worse”, “indifferent”, etc.

The set of “feasible alternative decisions” is defined by
the constraints while “the comparison of alternative de-
cisions with each other” is accomplished by the objec-



4028 F Fuzzy Optimization

tive. When the objective is a utility function that takes
a given fuzzy set (or possibility distribution) and maps it
to a subset of the real numbers and the constraints are
transformed into equations and/or inequalities, the opti-
mization model is a mathematical programming model.
“Mathematical programming problems can be considered
as decision making problems in which preferences be-
tween alternatives are described by means of objective
function(s) on a set of alternatives given by constraints in
such a way that more preferable alternatives have higher
values” [102].

A key component of any mathematical programming
problem is the input data. In our radiation therapy plan-
ning example, the input data includes the amount of ra-
diation required to kill a cancerous cell, the maximum
radiation a healthy cell can tolerate, and how much ra-
diation a beam at some angle will deposit at a particu-
lar location in the body. When the input parameters of
a mathematical programming model are described by un-
certainty distributions (membership functions or possibil-
ity distributions), the mathematical programming prob-
lem becomes a fuzzy or possibilistic optimization prob-
lem. Recall that the decision-maker’s flexibility is modeled
by fuzzy relations, which results in fuzzy optimization. In
addition, we sometimes see fuzzy and possibilistic param-
eters combined in the same problem, or possibilistic pa-
rameters occurring in the statement of fuzzy goals. These
situations result in a mixed fuzzy and possibilistic opti-
mization problem. We note that for the models consid-
ered here, while parameters, relations, and even the value
of the objective function might be fuzzy or possibilistic, all
decisions are “crisp”. In practice, the solution to a mathe-
matical programming problem is useless if it is not imple-
mentable.

There have been many superb surveys of the area of
fuzzy optimization. Among all of these, the following are
noted: [7,12,38,39,40,41,44,46,55,60,65,85,102,108,109,
112,125,130,137], and [150].

It is clear that the fuzzy optimization model (1), (2)
is ill-defined. The resolution of this ill-definition depends
upon the function space in which the fuzzy optimization
problem is solved. To date, two types of function spaces in
which fuzzy optimization is “housed” have been used.

1. Fuzzy Banach Spaces (see [16,17,48,113])
2. Real Euclidean Space Rn (all other approaches)

Each of these two approaches has its own way of map-
ping the associated transitional and/or information defi-
ciency uncertainty onto an ordered field. This order is nec-
essary for the determination of optimality given the inher-
ent normativeness of optimization.

Key Issues for Fuzzy Optimization Mapped to Fuzzy
Banach Spaces Methods for solving optimization prob-
lems often involve iteration and/or approximation. For
fuzzy optimization problems, a Banach space facilitates
the convergence analysis of iterative or approximation al-
gorithms. When each successive iterate or approximation
remains a fuzzy entity in a fuzzy Banach space, the con-
vergent entity or approximation is also in the fuzzy Ba-
nach space – it is again a fuzzy entity. Once convergence
is achieved, a decision can be based on this fuzzy entity.
When the problem is solved in a fuzzy Banach space, the
fuzzy sets in the optimization problem remain fuzzy sets
throughout the solution process and no translation is nec-
essary except that of inclusion into an appropriate Banach
space. Diamond and Kloeden [16,17] use a space in which
their set of fuzzy sets, which they denoted En , over Rn

is endowed with a neighborhood system and metric that
renders it a Banach space. They then find the Karush–
Kuhn–Tucker (KKT) conditions for optimality (see [17]).
Saito and Ishii [113] also develop the KKT conditions
for optimization over fuzzy numbers. Diamond [15] and
Jamison [48,49] consider equivalence classes in develop-
ing a Banach space of fuzzy sets. Jamison [48] goes on
to use the Banach space developed from the equivalence
classes to solve optimization problems. After the fuzzy op-
timization problem embedded in the fuzzy Banach space
is solved, crisp decisions must be made based on fuzzy so-
lution. This mapping from a fuzzy solution to the decision
space is often called defuzzification. But up to the point
of defuzzification all fuzzy entities from the model (1), (2)
retain their fuzziness. Further discussion of fuzzy Banach
space methods in fuzzy optimization is beyond the scope
of this presentation.

Key Issues for Fuzzy Optimization Mapped to Real Eu-
clidean Spaces The ill-definition of (1), (2) may be re-
solved by mapping the ambiguity and/or vagueness into
a complete ordered lattice, namely, the real numbers. This
is accomplished by translating the fuzzy objective and
fuzzy constraint into real numbers or vectors, and real-val-
ued relations. The various possible mappings distinguish
among the types of fuzzy optimization. For a particular op-
timization problem in the form (1), (2), the answers to the
following questions will determinewhichmapping is used.

1. Is the optimization fuzzy, possibilistic or a mixture?
2. What is meant by fuzzy/possibilistic function f (c̃; x)

and how does one compute z̃ D f (c̃; x)?
3. What is meant by a fuzzy/possibilistic relation x 2̃ X̃?

How does one compute the resulting constraint set
from fuzzy relations?
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4. What is meant by fuzzy/possibilistic optimization of
a fuzzy-valued function fopt z̃?

Is the Optimization Fuzzy, Possibilistic, or a Mixture?
The first issue is the nature of the uncertainty itself. This
depends upon the semantics of the problem, as discussed
in Subsect. “Semantics of Fuzzy Sets and Possibility Dis-
tributions in Fuzzy Optimization”. Recall that fuzzy en-
tities are sets with non-sharp boundaries in which there
is a transition between elements that belong and elements
that don’t belong to the set. Possibilistic entities are known
to exist but the evidence associated with whether a partic-
ular element belongs to the set or not is incomplete or hard
to obtain.

With these definitions in mind, we briefly consider
fuzzy, possibilistic, and mixed decision making. Much of
what is presented next can be found in [77] and [81].

Fuzzy Decision Making: Given the set of (crisp) deci-
sions,˝ , and fuzzy sets, fF̃i j i D 1 to ng, find the optimal
decision in the set˝ . That is,

sup
x2˝

h
�
F̃1(x); : : : ; F̃n(x)


; (12)

where h : [0; 1]n ! [0; 1] is an aggregation operator, of-
ten taken to be the min function, and F̃i(x) 2 [0; 1] is
the fuzzy membership of x in fuzzy set F̃i . Note that
the decision space ˝ is a crisp set (a set of real num-
bers) and the optimal decision satisfies a mutual mem-
bership condition defined by the aggregation operator h.
The methods of Bellman and Zadeh [5], Tanaka, Okuda
and Asai [120], and Zimmermann [147,148], who were
the first to develop fuzzy mathematical programming fall
into this category. While the aggregation operator h his-
torically has been the min operator, it can be, for exam-
ple, any t � norm that is consistent with the context of the
problem and/or decision methods, for example, risk aver-
sion (see [58,106], or [136]). For a discussion of aggrega-
tion operators see [59].

Possibilistic Decision Making: Given the set of (crisp)
decisions, ˝ , and the set of possibility distributions rep-
resenting the uncertain outcomes from selecting decision
Ex D (x1; : : : ; xn)T denoted �x D fF̂ i

x ; i D 1; : : : ; ng, find
the optimal decision that produces the best set of possible
outcomes with respect to an ordering U of the outcomes.
That is,

sup
F̂ i
x2�

U(F̂1
x ; : : : ; F̂

n
x ) ; (13)

whereU(F̂1
x ; : : : ; F̂n

x ) represents a “utility” of the set of dis-
tributions of possible outcomes � D f�x j x 2 ˝g. Note
that the decision space � is a set of (possibility) dis-

tributions F̂ i
x : ˝ ! [0; 1] resulting from taking decision

x 2 ˝ . This semantic is represented by the possibilistic
optimization of [37,45,47,50].

Very simply, fuzzy decision making selects from a set
of crisp elements ordered by an aggregation operator on
corresponding membership functions while possibilistic
decision making selects from a set of distributions mea-
sured by a utility operator that orders the corresponding
distributions. These approaches have two different order-
ing operators (an aggregation operation like min for fuzzy
sets and a utility function for possibility) which lead to
different optimization methods (see [72]). The underlying
sets associated with fuzzy decision making are fuzzy and
the decision space consists of crisp elements from opera-
tions on these fuzzy sets. The underlying sets associated
with possibilistic decision making are crisp and the de-
cision space consists of distributions from operations on
crisp sets.

Mixed Fuzzy/Possibilistic Decision Making: The issue
of mixed fuzzy and possibility optimization problems has
been studied as early as 1989 (see [11,44]). In both these
early models the same ˛ -cut defines the level of ambiguity
in the possibilistic coefficients and the level at which the
decision-maker’s requirements are satisfied. We interpret
the solution to these models to mean that we have a pos-
sibility ˛ of obtaining a solution that satisfies the decision
maker to degree ˛. A recently proposed model [126] al-
lows a trade-off between the fuzzy ˛-level and the possi-
bilistic ˛-level. This allows the decision-maker to balance
the likelihood of a solution with how satisfactory the solu-
tion is.

The use of distinct approaches for mathematical pro-
gramming problems in which each constraint contains
only one single kind of uncertainty is found in [77]
and [81]. They aggregate all fuzzy constraint rows accord-
ing to (12) and find a utility for the possibilistic rows
according to (13). If a mixture of uncertainty occurs
within one constraint, they apply interval-valued probabil-
ity measure (IVPM) [78] and [79] to optimization. IVPM
applied to optimization is discussed as a separate topic in
Sect. “Future Directions”.

What is Meant by a Fuzzy-Valued Function and How
Does one Compute z̃ D f (c̃; x)? Any function of fuzzy
sets (fuzzy-valued function) or possibility distributions
must rely on an extension principle, as described in
Subsect. “Extension Principles” [71,76], and indepen-
dently [3]. These authors present practical methods for
computing the output of a fuzzy – or possibilistic-valued
functions. For this presentation, it is assumed that (8) is
used to evaluate fuzzy functions.
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What is Meant by a Fuzzy/Possibilistic relation? There
are several possible interpretations of fuzzy and possibilis-
tic equalities and inequalities as detailed in Subsect. “Fuzzy
Relations”. Other comparisons of fuzzy sets may be found
in [22,140]. The choice of optimization model for a partic-
ular problem depends heavily on which of these relations
is used.

What is Meant by Fuzzy Optimization of a Fuzzy-Valued
Function? There are three distinct kinds of optimality
a fuzzy mathematical program might pursue. First, a pro-
gram might seek to find, among a collection of fuzzy sets,
the optimal fuzzy set. This optimality depends on the or-
der dictated by the fuzzy relations described in the previ-
ous section.

Secondly, a program may seek to maximize the mem-
bership function (or possibility) of the solution chosen for
the problem. This typically happens when no fuzzy set
satisfies the constraint at a full membership level. Note
that x 2̃ X̃ occurs in the transformation of the objective as
well as the constraints. This is because some models allow
constraint violations at a cost (to the objective function).
There are several possible interpretations of fuzzy and pos-
sibilistic equalities and inequalities, as detailed in Sub-
sect. “Fuzzy Relations”. The choice of optimization model
for a particular problem depends heavily on which of these
relations is used.

Thirdly, fuzzy optimization problems that use Rn as
the basic space require a mapping of (1) and (2) from fuzzy
sets and/or possibility distributions to real numbers and
vectors.When the sense of optimization is fuzzy, fopt, opti-
mization is interpreted as a goal, that is, the objective func-
tion is considered as a goal. Typically, a target is set and the
objective is to come as close as possible to the target. For
this presentation, fopt will be considered as optimization
over real numbers. Thus, the general fuzzy optimization
problem is:

opt
x

z̃ D f (c̃; x) (14)

x 2̃ X̃ : (15)

To transform (14) and (15) to Rn , a mapping T : En !

RnC1 is defined by:

opt
x

T
�

f (c̃; x)
x 2̃ X̃

�
D opt

x

�
T1( f (c̃; x); x 2̃ X̃)

T2(x 2̃ X̃)

�

D

"
opt
x

F(c; x) 2 R

x 2 ˝ � Rn
:

#

(16)

Note that x 2̃ X̃ occurs in the transformation of the
objective as well as the constraints. This is because some

fuzzy/possibilistic models consider violations of con-
straints as possible but at a penalty or cost (to the objec-
tive function). To make the discussion clearer, the gen-
eral fuzzy optimization problem (1), (2) is restricted to the
fuzzy linear programming model

min z̃ D c̃Tx

subject to: Ãx �̃ b̃
x � 0 :

(17)

In this context, the objective fopt z̃ D f (c̃; x) becomes

min z̃ D f (c̃; x) D c̃Tx : (18)

The constraint x 2̃ X̃ is

X̃ D fÃx �̃ b̃g [ fx � 0g : (19)

Interactivity To date, most fuzzy optimization models
assume that the fuzzy and possibilistic parameters are non-
interactive. Inuiguchi has studied fuzzy optimization with
interactivity (dependencies) [39,43]. The issue of interac-
tivity is especially important for mathematical program-
ming models in finance, such as portfolio models where
groups of stocks are in fact known to be dependent. How-
ever, for this presentation, it is assumed that all uncertain-
ties are non-interactive.

Classical Approaches to Fuzzy Optimization

There have been numerous formulations set forth for
modeling imprecise objectives and constraints, each with
associated input semantics and solution interpretations.
This chapter organizes and reviews a representative selec-
tion of fuzzy and possibilistic formulations.

Fuzzy Programming

Vague parameter values leads to fuzzy programming.
When the vagueness represents a willingness on the part
of the decision-maker to bend the constraints, fuzzy pro-
gramming can also be called flexible programming. In
these cases, the decision-maker is willing to lower the fea-
sibility requirements in order to obtain a more satisfactory
objective function value, or, in some cases, simply in order
to reach a feasible solution. Such flexible constraints are
commonly referred to as soft constraints.

Bellman and Zadeh The landmark paper [5] by Bell-
man and Zadeh is the first to propose an approach to
mathematical programming with fuzzy components. Con-
ventional mathematical programming has three principal
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Fuzzy Optimization, Figure 1
Fuzzy Decision Membership Function�D

components: A set of alternatives, X, a set of constraints,
C, which limit the choice of alternatives, and an objec-
tive function, z, which measures the desirability of each
alternative. Bellman and Zadeh propose that, in a fuzzy
environment, a more natural framework is one in which
goal(s) replace the objective function(s), and a symme-
try between goals and constraints erases the differences
between them. (For this reason, flexible programming is
sometimes called symmetric programming.)

Each fuzzy goal, G̃i , or constraint, C̃ j , is defined as
a fuzzy subset of the solution alternatives, X, via a mem-
bership function (�Gi (x) or �C j (x)). Then a fuzzy deci-
sion, D̃, is defined as a fuzzy set resulting from the inter-
section of C̃ and G̃, and is characterized by membership
function �D as follows:

�D(x) D �C (x) ^ �G (x)
D min[�C (x); �G (x)] : (20)

An optimal decision, in turn, is one which maximizes �D.
Figure 1 illustrates and provides a visual interpretation of
�G, �C , and �D.

Fuzzy Optimization, Figure 2
Illustration of a Bellman/Zadeh Fuzzy Decision Set

Tanaka, Okuda, and Asai [120] Tanaka, Okuda, and
Asai suggested an implementation of Bellman and Zadeh’s
fuzzy decision using ˛-cuts [120]. In the literature, ˛-cut,
˛-level, and ˛-set are used synonymously. If C̃ is a fuzzy
constraint in X, then an ˛-cut of C̃, denoted by C˛ , is the
following crisp set in X:

C˛ D fx j�C (x) � ˛g for ˛ 2 (0; 1]
C˛ D clsfx j�(x) > 0g for ˛ D 0

(21)

where clsfAg denotes the closure of set fAg. Tanaka,
Okuda and Asai [120] make the following remarkable ob-
servation:

sup
x
�D(x) D sup

˛
[˛ ^max

C˛
�G (x)] :

For illustration, consider two fuzzy sets, C̃ and G̃, depicted
in Fig. 2.

In case (i), ˛ D ˛1, and C˛ is the interval between the
end-points of the ˛-cut, [C�(˛1);CC(˛1)]. Themaximum
�G in this interval is shown in the example. In this case,
˛1 < maxC˛1 �G (x)], so [˛1 ^ maxC˛1 �G (x)] D ˛1. In
case (ii), ˛2 > maxC˛2 �G (x), so [˛2 ^maxC˛2 �G (x)] D
maxC˛2 �G (x). In case (iii), ˛� D maxC˛� �G (x). It
should be apparent from Fig. 2 that ˛� D supx �D . In
case (iii), ˛ D ˛� is also sup˛[˛ ^maxC˛ �G (x)]. For any
˛ < ˛�, we have case (i), where [˛1 ^ maxC˛1 �G (x)] D
˛1 < ˛� ; and for any ˛ > ˛�, we have case (ii), where
[˛2 ^maxC˛2 �G (x)] D maxC˛2 �G (x) < ˛�. The formal
proof, which follows the reasoning illustrated here pictori-
ally, is omitted for brevity’s sake. However, the interested
reader is referred to Tanaka, Okuda, and Asai [120].

This result allows the following reformulation of the
fuzzy mathematical problem:

Determine (˛�; x�)
˛� ^ f (x�) D sup

˛
[˛ ^ max

x2C˛
f (x)] : (22)
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The researchers suggest an iterative algorithm which
solves the problem. The algorithm cycles through a se-
ries of steps, each of which brings it closer to a solution
to the relation ˛� D maxC�˛ f (X). When ˛� is determined
to within a tolerable degree of uncertainty, it is used to find
x� such that f (x) D maxC�˛ f (X).

This cumbersome solution method is impractical for
large-scale problems. It should be noted that Negoita [93]
suggested an alternative, but similarly complex, algorithm
for the flexible programming problem based on Tanaka’s
findings.

Zimmermann Just two years after Tanaka, Okuda, and
Asai [120] suggested the use of ˛-cuts to solve the fuzzy
mathematical problem, Zimmermann published a linear
programming equivalent to the ˛-cut formulation.

Beginning with the crisp programming problem,

minZ D cx
subject to:Ax � b

x � 0 ;
(23)

the decisionmaker introduces flexibility in the constraints,
and sets a target value for the objective function, Z,

cx �̃ Z
Ax �̃ b
x � 0 :

(24)

A linear membership function �i is defined for each
flexible right hand side, including the goal Z as

�i

0

@
X

j

ai j x j

1

A

D

8
ˆ̂
<

ˆ̂:

1
P

j ai j x j � bi ;
1�

P

j a i jx j�bi
�

di

P
j ai j x j 2 (bi ; bi C di );

0
P

j ai j x j � bi C di :

where di is the decision maker’s maximum allowable vio-
lation of constraint (or goal) i.

According to the convention set forth by Bellman and
Zadeh, the fuzzy decision D is characterized by

�D D min
i
�i

0

@
X

j

ai jx j

1

A ; (25)

and

max
x�0

min
i
�i

0

@
X

j

ai j x j

1

A (26)

is the decision with the highest degree of membership.

The problem of finding the solution is therefore

max�D(x)
subject to: x � 0:

(27)

In the membership functions �i from (25), Zimmer-
mann substitutes b0i for bi /di and B0i for

P
j ai j/di . He

also drops the 1 (which does not change the solution to
the problem) to obtain the simplification �i D b0i � B0i x.
Equation (27) then becomes

min
i
(b0i � B0i x)

x � 0:
(28)

This is equivalent to the following linear program:

max˛
˛ � b0i � B0i x 8 i
x � 0; 0 � ˛ � 1 :

(29)

Equation (29) can easily be solved via the simplex or inte-
rior point methods.

Verdegay The solutions examined so far for the
fuzzy programming problem have been crisp solutions.
Ralescu [99] first suggested that a fuzzy problem should
have a fuzzy solution and Verdegay [130] proposes
a method for obtaining a fuzzy solution. Verdegay consid-
ers a problem with fuzzy constraints,

max z D f (x)
subject to: x � C̃ ;

(30)

where the set of constraints have a membership function
�C̃ , with alpha-cuts C̃˛ .

Verdegay defines x˛ as the set of solutions that satisfy
constraints C̃˛ . Then a fuzzy solution to the fuzzy linear
programming problem is

max
x2C̃˛

z D f (x)

8 ˛ 2 [0; 1] :
(31)

Verdegay proposes solving (31) parametrically for ˛ 2
[0; 1] to obtain a fuzzy solution X̃, with ˛-cut x˛ , which
yields fuzzy objective value z̃, with ˛ -cut z˛ .

It should be noted that the (crisp) solution obtained via
Zimmermann’s method corresponds to Verdegay’s solu-
tion in the following way: If the objective function is trans-
formed into a goal, with membership function �G, then
Zimmermann’s optimal solution, x�, is equal to Verde-
gay’s optimal value x(˛) for the value of ˛ which satisfies

�G (z�˛ D cx�˛) D ˛ :
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In other words, when a particular ˛-cut of the fuzzy so-
lution, (x˛) yields an objective value (z˛ D cTx˛) whose
membership level for goalG, (�G (z˛)) is equal to the same
˛, then that solution x˛ corresponds to Zimmermann’ op-
timal solution, x�.

Surprise Recently, Neumaier suggested a way to model
fuzzy right-hand side values with crisp inequality con-
straints (Ax � b̃) based on the concept of surprise [83,94].
Neumaier defines a surprise function, s(x j E), which cor-
responds to the amount of surprise a variable x produces,
given a statement E. The range of s is [0;1), with s D 0
corresponding to an entirely true statement E, and s D 1
corresponding to an entirely false statement E.

The most plausible values are those values of x for
which s(x j E) is minimal, so Neumaier proposes that the
best compromise solution for an optimization problem
with fuzzy goals and constraints can be found by mini-
mizing the sum of the surprise functions of the goals and
constraints. Each fuzzy constraint,

(Ax)i � b̃i ;

is translated into a fuzzy equality constraint,

(Ax)i D �̃i ;

where the membership function �i (�) of �̃i is the possi-
bility that b̃i � � . These membership functions are subse-
quently translated into surprise functions by

si(�) D (�i (�)�1 � 1)2;

and the contribution of all constraints are added to give
the total surprise
X

i

si (�) D
X

i

si ((Ax)i ) :

Fuzzy Optimization, Figure 3
Surprise Function

Thus, the fuzzy optimization problem is

min z D
X

i

si ((Ax)i )

subject to: x � 0 :
(32)

Figure 3 illustrates a surprise function associated with
a corresponding fuzzy goal. For triangular and trapezoidal
numbers, the surprise function is simple, smooth, and
convex, leading to a tractable non-linear programming
problem.

The surprise approach is a fuzzy optimization method
since the optimization is over sets of crisp values derived
from fuzzy sets. In contrast to flexible programming, the
constraints are not restricted such that all satisfy a min-
imal level. The salient feature is that surprise uses a dy-
namic penalty for falling outside distribution/membership
values of one. Because the individual penalties are convex
functions which become infinite as the values approach the
endpoints of the support, this method lends itself to con-
vex programming solution techniques.

It is noted that the surprise approach may be used
to handle soft constraints of flexible programming since
these soft constraints can be viewed as fuzzy numbers
(trapezoidal fuzzy numbers when linear interpolation is
used). However, if soft constraints are handled using sur-
prise functions, the sum of the failure to meet the con-
straints is minimized rather than forcing each constraint
to meet a minimal feasibility level. One could add a hard
constraint to the surprise approach to attain this minimal
level of feasibility. The modeler might choose to translate
soft constraints to surprise functions (with perhaps a fixed
minimal feasibility level) because surprise is usually more
computationally efficient than Zimmermann’s method of
handling soft constraints (see [72]). Therefore, the surprise
approach is quite flexible both in terms of semantics as well
as in computational robustness.
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Possibilistic Programming

Recall that fuzzy imprecision arises when elements of a set
(for instance, a feasible set) are members of the set to vary-
ing degrees, which are defined by the membership func-
tion of the set. Possibilistic imprecision arises when ele-
ments of a set (say, again, a feasible set) are known to exist
as either full members or non-members, but whether they
aremembers or non-members is known with a varying de-
gree of certainty, which is defined by the possibility distri-
bution of the set. This possibilistic uncertainty arises from
a lack of information. In this section, we examine possi-
bilistic programming formulations.

Buckley J.J. Buckley has suggested an algorithm for deal-
ing with possibilistic cost coefficients, constraint coeffi-
cients, and right hand sides. Consider the possibilistic lin-
ear program

min Z D ĉx

subject to: Âx � b̂; x � 0 :
(33)

where Â = [ãi j] is an m � n matrix of trapezoidal
possibilistic intervals âi j D (ai j˛ ; ai jˇ ; ai j� ; ai jı ), b̂ D
(b̃1; : : : ; b̃m )T is anm � 1 vector of trapezoidal fuzzy num-
bers b̂i D (bi˛ ; biˇ ; bi� ; biı ), and ĉ D (c̃1; : : : ; c̃n) is
a 1 � n vector of trapezoidal possibilistic intervals c̃i D
(ci˛ ; ciˇ ; ci� ; ciı ). The possibilistic intervals are the pos-
sibility distributions associated with the variables, and
place a restriction on the possible values the variables may
assume [145]. For example, Poss[ãi j D a] = �a(ãi j) is
the possibility that ãi j is equal to a. Stated another way,
Poss[ãi j D a] D x means that, given the current state of
knowledge about the value of ai j, we believe that x is the
possibility that variable ai j could take on value a.

Because this is a possibilistic linear programming
problem, the objective function will be governed by a pos-
sibilistic distribution, Poss[Z D z]. Let us consider this
simple example as we follow Buckley’s derivation of
Poss[Z D z]:

min z D d̃x1 C ẽx2
subject to f̃ x1 C g̃x2 � h̃

{̃x1 C j̃x2 � 0
x1; x2 � 0

(34)

To derive the possibility function, Poss[Z D z], Buckley
first specifies the possibility that x satisfies the ith con-
straint. Let

˘ (âi ; b̂i ) D min(�ai1 (ãi1); : : : ; �ain (ãin); �bi (b̃i )) ;
(35)

which is the simultaneous distribution of ãi j; 1 � j � n,
and b̃i . In our example (34) this corresponds to

˘ ( f̂ ; ĝ; ĥ) D min(�F ( f ); �G (g); �H(h)) :

Then the possibility that x � 0 is feasible with respect
to the ith constraint is:

Poss[x 2 Fi] D sup
ai ;bi

(˘ (ai ; bi ) j ai x � bi ) :

In our example (34) this corresponds to

Poss[x 2 F1] D sup
f ;g;h

(˘ ( f ; g; h) j f x1 C gx2 � h)

Poss[x 2 F2] D sup
i; j;k

(˘ (i; j; k) j ix1 C jx2 � k) :
(36)

Now the possibility that x � 0 is feasible with respect
to all constraints is

[x 2 F] D min
1�i�m

([x 2 Fi])

In our example (34),

[x 2 F] D min([x 2 F1]; [x 2 F2])

Buckley next constructs Poss[Z D z j x], which is the
conditional possibility that the objective function Z ob-
tains a particular value z, given values for x. The joint dis-
tribution of the possibilistic cost coefficients c̃ j is

˘ (c) D min(�c1 (c̃1); : : : ; �cn (c̃n)) : (37)

In our example (34),

˘ (c) D min(�D(d̃); �E (ẽ)) :

Therefore

Poss[Z D z j x] D sup
c
(˘ (c) j cx D z) : (38)

In our example (34), to obtain the possibility that the
objective function will take on a particular value z, given
the solution x, (i. e. Poss[Z D z j x]), we consider all the
values of d and e for which dx1 C ex2 D z. Of these, the
pair with the highest simultaneous possibility values will
yield an objective function value of z with the same pos-
sibility level. For example, consider the case illustrated in
Fig. 4.

When d̃ D (2; 2) and ẽ D (3; 2) are symmetric tri-
angular fuzzy numbers, (x1; x2) D (1; 1) and z D 7. We
consider values of d and e such that d � 1C e � 1 D 7.
We could select d D 2 and e D 5 with �D(2) D 1 and
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Fuzzy Optimization, Figure 4
Buckley Example

�E (5) D 0. The joint possibility of d D 2 and e D 5 is
min(�D(2); �E (5)) D 0. The maximum joint possibility
of d and e such that d � 1C e � 1 D 7 occurs when
d D 3 and e D 4. The joint possibility that d D 3 and
e D 4, which is min(�D(3); �E (4)) D :5, we set equal to
the possibility that z D 7 given that (x1; x2) D (1; 1). So
Poss[z D 7 j (1; 1)] D :5]. A combination of (37) and (38)
yields the possibility distribution of the objective function:

Poss[Z D z] D sup
x�0

[min(Poss[Z D z j x];Poss[x 2 F])] :

(39)

In our example (34), to obtain the possibility that the
objective function will take on a particular value z (that
is Poss[Z D z], we consider Poss[Z D z j x], as described
above, for all positive x’s, and select the xwhich maximizes
Poss[Z D z j x].

This definition of the possibility distribution motivates
Buckley’s solution method. Recall that because we are
dealing with a possibilistic problem, the solution will be
governed by a possibilistic distribution. Buckley’s method
depends upon a static ˛, chosen a priori. The decision
maker defines an acceptable level of uncertainty in the ob-
jective outcome, 0 < ˛ � 1. For a given ˛, we define the
left and right end-points of the ˛-cut of a fuzzy number
x̃ as x�(˛) and xC(˛), respectively. Using these, Buckley
defines a new objective function:

min Z(˛) D c�(˛)x

subject to:AC(˛)x � b�(˛) :
(40)

Since both x and ˛ are variables, this is a non-lin-
ear programming problem. When ˛ is fixed in advance,
however, it becomes linear. We can use either the simplex
method or an interior point method to solve for a given

a priori chosen value of ˛. If a maximal value for ˛ is
desired, the linear programming method must be applied
iteratively.

It should be noted that this linear program is con-
strained upon the best-case scenario. That is, for a given ˛-
level, each variable is multiplied by the largest possible co-
efficient aCi j (˛), and is required to be greater than the the
smallest possible right hand side b�i (˛). We should inter-
pret z(˛) accordingly. If the solution to the linear program
is implemented, the possibility that the objective function
will attain the level z(˛) is given by ˛. Stated another way,
the best-case scenario is that the objective function attains
a value of z(˛), and the possibility of the best case scenario
occurring is ˛.

Tanaka, Asai, Ichihashi In the mid 1980s, Tanaka and
Asai [118] and Tanaka, Ichahashi, and Asai [121] pro-
posed a technique for dealing with ambiguous coefficients
and right hand sides based upon a possibilistic definition
of “greater than zero”. The reader will note that this ap-
proach bears many similarities to the flexible program-
ming proposed by Tanaka, Okuda, and Asai a decade
earlier, which was discussed in Subsect. “Tanaka, Okuda,
and Asai”. Indeed, the 1984 publications refer to fuzzy
variables. This approach has subsequently been classi-
fied [44,60] as possibilistic programming because the im-
precision it represents stems from a lack of information
about the values of the coefficients.

Consider a programming problem with non-interac-
tive possibilistic Â, b̂, and ĉ, whose possible values are de-
fined by fuzzy matrix Ã, fuzzy vector b̃, and fuzzy vector c̃,
respectively:

min z̃ D c̃x

subject to: Ãx � b̃
x � 0 :

(41)

Tanaka, Asai, and Ichihashi transform the problem
in several steps. First, the objective function is viewed
as a goal. As in flexible programming, the goal becomes
a constraint, with the aspiration level for the objective
function on the right-hand-side of the inequality. Next,
a new decision variable x0 is added. Finally, the b’s are
moved to the left hand side, so that the possibilistic linear
programming problem is

ã0i x
0
i � 0, i D 1; 2; : : : ;m
x0 � 0

(42)

where x0 D (1; xT)T D (1; x1; x2; : : : ; xn)T, and ãi D (b̃i ;
ãi1; : : : ãin).
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Note that all the parameters, A; b, and c are now
grouped together in the new constraint matrix Ã. Because
the objective function(s) have become goals, the cost co-
efficients, c, are part of the constraint coefficient matrix A.
Furthermore, because the right-hand side values have been
moved to the left-hand side, the b’s are also part of the
constraint coefficient matrix. The right-hand-sides corre-
sponding the former objective functions are the aspiration
levels of the goals.

Each constraint becomes

Ỹi D ãi x � 0 ;

where

ãi D (b̃i ; ãi1; : : : ; ãin) :

“Ỹi is almost positive”, denoted by Ỹi �̃ 0, is defined by

Ỹi �̃ 0
,

�Yi (0) � 1 � h;

xT˛i � 0:

(43)

The measure of the non-negativity of Ỹi is h: The
greater the value of h, the stronger the meaning of “almost
positive” (see Fig. 5). Actually, h is 1 � ˛, where ˛ is the
level of membership used by Bellman and Zadeh.

Tanaka and Asai [118] developed this theory for tri-
angular fuzzy numbers, and Tanaka and Asai extended
it to trapezoidal fuzzy numbers in [122]. Inuiguchi, Ichi-
hashi, and Tanaka, [44] generalized the approach for L-R
fuzzy numbers. For the sake of simplicity, our discussion
here will deal with trapezoidal fuzzy numbers, denoted

Fuzzy Optimization, Figure 5
h-Level

x̃ D (�; ˛; ˇ; ı), where (�; ı) is the support of x̃, and (˛; ˇ)
is the core of x̃.

Using (43), we can rewrite each constraint from (42) as

�Yi (0) D 1 �
˛Ti x

(˛i � �i)Tx
� 1 � h

˛Ti x � 0 ;

(44)

where x > 0. Then (44) reduces to

(˛i � h(˛i � �i))Tx � 0 :

Since we wish to find the largest h that satisfies these con-
ditions, the linear program becomes

max z D h

subject to: (˛i � h(˛i � �i))Tx � 0 ; 8i
h 2 [0; 1] :

(45)

Since both x and h are variables, this is a non-linear
programming problem.When h is fixed, it becomes linear.
We can use the simplex method or an interior point algo-
rithm to solve for a given value of h. If the decision maker
wishes to maximize h, the linear programming method
must be applied iteratively.

Fuzzy Max Dubois and Prade [19] suggested that the
concept of “fuzzy max” could be applied to constraints
with fuzzy parameters. The “fuzzy max” concept was used
to solve possibilistic linear programs with triangular pos-
sibilistic coefficients by Tanaka, Ichihashi, and Asai [121].
Ramik and Rimanek [101] applied the same technique to
L-R fuzzy numbers. For consistency, we will discuss the
fuzzy max technique with respect to trapezoidal numbers.

The fuzzy max, illustrated in Fig. 6 where C D

max[A; B], is the extended maximum operator between
real numbers, and defined by the extension principle (8)
as

�C (c) D max
fa;b : cDmax(a;b)g

min[�Ã(a); �B̃(b)] :

Using fuzzy max, we can define an inequality relation
as

Ã � B̃
,

max(Ã; B̃) D Ã :
(46)

Applying (46) to a fuzzy inequality constraint:

f (x; ã) � g(x; b̃)
,

max( f (x; ã); g(x; b̃)) D f (x; ã) :

(47)
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Fuzzy Optimization, Figure 6
Illustration of FuzzyMax

Fuzzy Optimization, Figure 7
Illustration of Ã � B̃

Observe that the inequality relation defined by (46) yields
only a partial ordering. That is, it is sometimes the case that
neither Ã � B̃ nor B̃ � Ã holds. To improve this, Tanaka,
Ichihashi, and Asai, introduce a level h, corresponding to
the decision maker’s degree of optimism. They define an
h-level set of Ã � B̃ as

Ã �h B̃
,

max[Ã]˛ � max[B̃]˛
min[Ã]˛ � min[B̃]˛

˛ 2 [1 � h; 1] :

(48)

This definition of Ã � B̃ requires that two of Dubois’ in-
equalities from Subsect. “Fuzzy Relations”, (ii) and (iii),
hold at the same time, and is illustrated in Fig. 7.

Tanaka, Ichihashi, and Asai, [118] suggest a similar
treatment for a fuzzy objective function. A problem with

the single objective function, Maximize z(x; c̃), becomes
a multi-objective problem with objective functions:

maximize

(
inf(z(x; c̃)˛) ˛ 2 [0; 1]
sup(z(x; c̃)˛) ˛ 2 [0; 1]:

(49)

Clearly, since ˛ can assume an infinite number of val-
ues, (49) has an infinite number of parameters. Since (49)
is not tractable, Inuiguchi, Ichihashi, and Tanaka, [44]
suggest using the following approximation using a finite
set of ˛i 2 [0; 1]:

maximize

(
min(z(x; c̃))˛i i D 1; 2; : : : ; p
max(z(x; c̃))˛i i D 1; 2; : : : ; p

: (50)

Jamison and Lodwick Jamison and Lodwick [50,74] de-
velop a method for dealing with possibilistic right hand
sides that is a possibilistic generalization of the recourse
models in stochastic optimization. Violations of con-
straints are allowable, at a cost determined a priori by the
decision maker.

Jamison and Lodwick choose the utility (that is, valua-
tion) of a given interval of possible values to be its expected
average (a concept defined by Yager [139].) The expected
average (or EA) of a possibilistic distribution of ã is de-
fined to be

EA(ã) D
1
2

Z 1

0
(ã�(˛)C ãC(˛))d˛: (51)

It should be noted that the expected average of a crisp
value is the value itself, since ã�(˛) D ãC(˛) D a,
EA(a) D 1

2
R 1
0 (aC a)dx D a

R 1
0 dx D a.

Jamison and Lodwick start from the following possi-
bilistic linear program:

max z D cTx

Ax � b̂ ;
x � 0 :

(52)

By subtracting a penalty term from the objective function,
they transform (52) into the following possibilistic non-
linear program:

max z D cTx C pT max(0;Ax � b̂)
x � 0 :

(53)

The “max” in the penalty is taken component-wise and
each pi < 0 is the cost per unit violation of the right hand
side of constraint i. The utility, which is the expected av-
erage, of the objective function is chosen to be minimized.
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The possibilistic programming problem becomes

max z D cTx C pEA(max(0;Ax � b̂))
x 2 [0;U]:

(54)

A closed-form objective function (for the purpose of
differentiating when solving) is achieved in [72] by replac-
ing

max (0;Ax � b̂)

with
q
(Ax � b̂)C �2 C Ax � b̂

2
:

Jamison and Lodwick’s method can be extended, [50],
to account for possibilistic values for A, b, c, and even the
penalty coefficients p with the following formulation:

EAf̃ (x) D
1
2

Z 1

0

n
ĉ�(˛)Tx C ĉC(˛)Tx

�
�
p̂C(˛)max(0; Â�(˛)x � b̂C(˛)

�

�
�
p̂�(˛)max(0; ÂC(˛)x � b̂�(˛)

�o
d˛ : (55)

This approach differs significantly from the others
we’ve examined in several regards. First, many of the ap-
proaches we’ve seen have incorporated the objective func-
tion(s) as goals into the constraints in the Bellman and
Zadeh tradition. Jamison and Lodwick, on the other hand,
incorporate the constraints into the objective function.
Bellman and Zadeh create a symmetry between constraints
and objective, while Jamison and Lodwick temper the ob-
jective with the constraints. A second distinction of the
expected average approach is the nature of the solution.
The other formulations we have examined to this point
have produced either (1) a crisp solution for a particu-
lar value of ˛, (namely, the maximal value of ˛), or, (2)
a fuzzy/possibilistic solution which encompasses all possi-
ble ˛ values. The Jamison and Lodwick approach provides
a crisp solution via the expected average utility which en-
compasses all alpha values. This may be a desirable quality
to the decision maker who wants to account for all possi-
bility levels and still reach a crisp solution.

Luhandjula Luhanjula’s [84] formulation of the possi-
bilistic mathematical program depends upon his concept
of “more possible” values. He first defines a possibility dis-
tribution˘X with respect to constraint F as

˘X D �F (u) ;

where �F (u) is the degree to which the constraint F is sat-
isfied when u is the value assigned to the solution X.

Then the set of more possible values for X, denoted by
Vp(X), is given by

Vp(X) D ˘�1X (max
u
˘X(u)) :

In other words, Vp(X) contains elements of U which
are most compatible with the restrictions defined by ˘X .
It follows from intuition, and from Luhanjula’s formal
proof [84], that when ˘X is convex, Vp(X) is a real-val-
ued interval, and when ˘X is strongly convex, Vp(X) is
a single real number.

Luhandjula considers the mathematical program

max z̃ D ĉx

subject to: Âi � b̂i ;
x � 0 :

(56)

By replacing the possibilistic numbers ĉ, Âi , and b̂i with
their more possible values, Vp(ĉ), Vp(Âi ), and Vp(b̂i ), re-
spectively, Luhandjula arrives at a deterministic equivalent
to Eq. (56):

max z D kx
subject to: ki 2 Vp(ĉi )
X

i

ti xi � si

ti 2Vp(âi j)

si 2Vp(b̂i )
x � 0 :

(57)

This formulation varies significantly from the other
approaches considered thus far. The possibility of each
possibilistic component is maximized individually. Other
formulations have required that each possibilistic compo-
nent c̃ j , Ãi j , and b̃i achieve the same possibility level de-
fined by ˛. This formulation also has a distinct disadvan-
tage over the others we’ve considered, since to date there
is no proposed computational method for determining the
“more possible” values, Vp, so there is no way to solve the
deterministic MP.

Programming with Fuzzy
and Possibilistic Components

Sometimes the values of an optimization problem’s com-
ponents are ambiguous and the decision-makers are vague
(or flexible) regarding feasibility requirements. This sec-
tions explores a couple of approaches for dealingwith such
fuzzy/possibilistic problems.



Fuzzy Optimization F 4039

One type of mixed programming problem that arises
(see [20,91]) is a mathematical program with possibilis-
tic constraint coefficients âi j whose possible values are de-
fined by fuzzy numbers of the form ãi j :

max cx

subject to: â0i x
0 � b̃i

x0 D (1; xt)t � 0:

(58)

Zadeh [142] defines the set-inclusion relation M̃ � Ñ as
�M̃(r) � �Ñ (r)8r 2 R. Recall that Dubois [18] interprets
the set-inclusive constraint ã0i x

0 � b̃i as a fuzzy exten-
sion of the crisp equality constraint. Mixed programming,
however, interprets the set-inclusive constraint to mean
that the region in which ã0i x

0 can possibly occur is re-
stricted to b̃i , a region which is tolerable to the decision
maker. Therefore, the left side of (58) is possibilistic, and
the right side is fuzzy.

Negoita [91] defines the fuzzy right hand side as fol-
lows:

b̃i D fr j r � big : (59)

As a result, we can interpret ã0i x
0 � b̃i as an extension of

an inequality constraint. The set-inclusive constraint (58)
is reduced to

aCi (˛)x � bCi (˛)
a�i (˛)x � b�i (˛)
for all ˛ 2 (0; 1]:

(60)

If we abide by Negoita’s definition of b̃ (59), bCi D 1 for
all values of ˛, so we can drop the first constraint in (60).
Nonetheless, we still have an infinitely (continuum) con-
strained program, with two constraints for each value of
˛ 2 (0; 1]. Inuiguchi observes [44] that if the left-hand side
of the membership functions for ai0; ai1; : : : ain; bi are
identical for all i, and the right-hand side of the member-
ship functions for ai0; ai1; : : : ain; bi are identical for all i,
the constraints are reduced to the finite set,

ai;˛ � bi;˛
ai;� � bi;�
ai;ˇ � bi;ˇ
ai;ı � bi;ı :

(61)

As per our usual notation, (�; ı) is the support of the
fuzzy number, and (˛; ˇ) is its core. In application, con-
straint formulation (61) has limited utility because of the
narrowly defined sets of memberships functions it admits.
For example, if ai0; ai1; : : : ain; bi are defined by trape-
zoidal fuzzy numbers, they must all have the same spread,

and therefore the same slope, on the right-hand side; and
they must all have the same spread, and therefore the same
slope, on the left-hand side if (61) is to be implemented.
Recall that in this kind of mixed programming, the ai j’s are
possibilistic, reflecting a lack of information about their
values, and the bi are fuzzy, reflecting the decision maker’s
degree of satisfaction with their possible values. It is pos-
sible that n possibilistic components and 1 fuzzy compo-
nent will share identically-shaped distribution, but it is not
something likely to happen with great frequency.

Delgado, Verdegay and Vila Delgado, Verdegay, and
Villa [11] propose the following formulation for deal-
ing with ambiguity in the constraint coefficients and
right-hand sides, as well as vagueness in the inequality
relationship:

max cx

subject to: Âx �̃ b̂
x � 0 :

(62)

In addition to (62), membership functions �ai j are de-
fined for the possible values of each possibilistic element of
Â, membership functions �bi are defined for the possible
values of each possibilistic element of b̂, and membership
function�i gives the degree to which the fuzzy constraint i
is satisfied. Stated another way,�i is themembership func-
tion of the fuzzy inequality. The uncertainty in the ãi j and
the b̃i is due to ambiguity concerning the actual value of
the parameter, while the uncertainty in the �̃ is due to the
decision maker’s flexibility regarding the necessity of sat-
isfying the constraints in full.

Delgado, Verdegay, and Vila do not define the fuzzy
inequality, but leave that specification to decision maker.
Any ranking index that preserves ranking of fuzzy num-
bers when multiplied by a positive scalar is allowed. For
instance, one could select any of Dubois’ four inequalities
from Subsect. “Fuzzy Relations”. Once the ranking index is
selected, the problem is solved parametrically, as in Verde-
gay’s earlier work [130] (see Subsect. “Verdegay”).

To illustrate this approach, let us choose Dubois’ pes-
simistic inequality (i), which interprets Ã � b̃ to mean
8x 2 A;8y 2 B; x � y. This is equivalent to aC � b�.
Then (62) becomes

max cx

subject to: aCi j (˛)x � b�i (˛)

x � 0 :

(63)

Fuzzy/Robust Programming The approach covered so
far in this section, has the same˛ cut define the level of am-
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biguity in the coefficients and the level at which the deci-
sion-maker’s requirements are satisfied. These ˛, however,
mean very different things. The fuzzy ˛ represents the level
at which the decision-maker’s requirements are satisfied.
The possibilistic ˛, on the other hand, represents the like-
lihood that the parameters will take on values which will
attain that level. The solution is interpreted to mean that
for any value ˛ 2 (0; 1] there is a possibility ˛ of obtain-
ing a solution that satisfies the decision maker to degree ˛.
Using the same ˛ value for both the possibilistic and fuzzy
components of the problem is convenient, but does not
necessarily provide a meaningful model of reality.

A recent model [126] based on Markowitz’s mean-
variance approach to portfolio optimization (see [89,117])
differentiates between the fuzzy ˛ and the possibilistic ˛.
Markowitz introduced an efficient combination, which has
the minimum risk for a return greater than or equal to
a given level; or one which has the maximum return for
a risk less than or equal to a given level. The decision
maker can move among these efficient combinations, or
along the efficient frontier, according to her/his degree of
risk aversion.

Similarly, in mixed possibilistic and fuzzy program-
ming, one might wish to allow a trade-off between the po-
tential reward of the outcome and the reliability of the out-
come, with the weights of the two competing objectives de-
termined by the decision maker’s risk aversion. The desire
is to obtain an objective function like the following:

max
�
rewardC (risk aversion) � (reliability)

�
: (64)

The reward variable is the ˛-level associated with the
fuzzy constraints and goal(s). It tells the decision maker
how satisfactory the solution is. The reliability variable is
the ˛-level associated with the possibilistic parameters. It
tells the decision maker how likely it is that the solution
will actually be satisfactory. To avoid confusion, let us refer
to the fuzzy constraint membership parameter as ˛ and
the possibilistic parameter membership level as ˇ.

In addition, let � 2 [0; 1] be an indicator of the de-
cision maker’s valuation of reward and risk-avoidance,
with 0 indicating that the decision maker cares exclusively
about the reward, and 1 indicating the only risk avoidance
is important. Using this notation, the desired objective is

max(1 � �)˛ C �ˇ : (65)

Suppose we begin with the mixed problem:

max ĉTx

subject to Âx �̃ b
x � 0:

(66)

Incorporating fuzziness from soft constraints in the
tradition of Zimmermann and incorporating a pessimistic
view of possibility results in the following formulation:

max (1 � �)˛ C �ˇ (67)

subject to ˛ � �
g
d0
C
X

j

u j

d0
x j C

X

j

u j � wj

d0
x jˇ

˛ �
bi
di
�
X

j

vi j
di

x j �
X

j

zi j � vi j
di

x jˇ

x � 0
˛; ˇ 2 [0; 1] :

(68)

The last terms in each of the constraints contain ˇx,
so the system is non-linear. It can be fairly easily refor-
mulated as an optimization program with linear objective
function and quadratic constraints, but the feasible set is
non-convex, so finding to solution to this mathematical
programming problem is very difficult.

Possibilistic, Interval, Cloud, and Probabilistic
OptimizationUtilizing IVPM

This section is taken from [79,80] and begins by defin-
ing what is meant by an IVPM. This generalization of
a probability measure includes probability measures, pos-
sibility/necessity measures, intervals, and clouds (see [95])
which will allow a mixture of uncertainty within one con-
straint (in)equality. The previous mixed methods was re-
stricted to a single type of uncertainty for any particular
(in)equality and are unable to handle cases in which amix-
ture of fuzzy and possibilistic parameter occurs in the same
constraint (in)equality.

The IVPM set function may be thought of as a method
for giving a partial representation for an unknown proba-
bility measure. Throughout, arithmetic operations involv-
ing set functions are in terms of interval arithmetic [90]
and the set of all intervals contained in [0, 1] is denoted,
Int[0;1] �

˚�
a; b

�
j 0 � a � b � 1

�
. Moreover, S is used to

denote the universal set and a set of subsets of the universal
set is denoted asA � S. In particularA is a set of subset
on which a structure has been imposed on it as will be seen
and a generic set of the structureA is denoted by A.

Definition 18 (Weichselberger [135]) Givenmeasurable
space (S;A), an interval valued function im : A � A !
Int[0;1] is called an R-probability if:

(a) im (A) D
�
i�m (A) ; iCm (A)

�
� [0; 1] with i�m (A) �

iCm (A),
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(b) 9 a probability measure Pr on A such that 8A 2A,
Pr (A) 2 im (A). By an R-probability field we mean
the triple (S;A; im).

Definition 19 (Weichselberger [135]) Given an R-prob-
ability fieldR D (S;A; im) the set

M (R)DfPr j Pr is a probability measure onA
such that 8A 2A;Pr (A) 2 im (A)g

is called the structure ofR.

Definition 20 (Weichselberger [135]) An R-probabil-
ity field R D (S;A; im) is called an F-probability field if
8A 2A:

(a) iCm (A) D sup fPr (A) j Pr 2M (R)g,
(b) i�m (A) D inf fPr (A) j Pr 2M (R)g.

It is interesting to note that given a measurable space
(S;A) and a set of probability measures P, then defining
iCm (A) D sup fPr (A) j Pr 2 Pg and i�m (A) D inffPr (A) j
Pr 2 Pg gives an F-probability and that P is a subset of the
structure.

The following examples show how intervals, possibil-
ity distributions, clouds and (of course) probability mea-
sures can define R-probability fields on B, the Borel sets
on the real line.

Example 21 (An interval defines an F-probability field) Let
I D

�
a; b

�
be a non-empty interval on the real line. On the

Borel sets define

iCm (A) D
�

1 if I \ A¤ ;
0 otherwise

and

i�m (A) D
�

1 if I � A
0 otherwise

then

im (A) D
�
i�m (A) ; iCm (A)

�

defines an F-probability fieldR D (R;B; im). To see this,
simply let P be the set of all probability measures onB such
that Pr (I) D 1.

This example also illustrates that any set A, not just an in-
terval I, can be used to define an F-probability field.

Example 22 (A probability measure is an F-probability
field) Let Pr be a probability measure over (S;A). Define

im (A) D [Pr (A) ;Pr (A)] :

This definition of a probability as an IVPM is equivalent
to having total knowledge about a probability distribution
over S. The concept of a cloud was introduced by Neu-
maier in [95] as follows:

Definition 23 A cloud over set S is a mapping c such that:

1) 8s 2 S, c(s) D
�
n
¯
(s); p̄(s)

�
with 0 � n

¯
(s) � p̄(s) � 1

2) (0; 1) � [s2S c(s) � [0; 1] In addition, random vari-
able X taking values in S is said to belong to cloud c
(written X 2 c) iff

3) 8˛ 2 [0; 1] ;Pr (n
¯
(X) � ˛) � 1 � ˛ � Pr

�
p̄ (X) > ˛



Property 3) above defines when a random variable belongs
to a cloud. That any cloud contains a random variable X
is proved in section 5 of [96]. This is a significant result as
will be seen, since among other things, it means that clouds
can be used to define IVPMs. Clouds are closely related to
possibility theory.

It is shown in [51] that possibility distributions can be
constructed which satisfy the following consistency defini-
tion.

Definition 24 ([51]) Let p : S ! [0; 1] be a possibility
distribution function with associated possibility measure
Pos and necessity measure Nec. Then p is said to be
consistent with random variable X if 8measurable sets A,
Nec (A) � Pr (X 2 A) � Pos (A).

Possibility distributions constructed in a consistent man-
ner are able to bound (unknown) probabilities of interest.
The reason this is significant is twofold. Firstly, possibility
and necessity distributions are easier to construct since the
axioms they satisfy are more general. Secondly, the algebra
on possibility and necessity pairs are much simpler since
they are min/max algebras akin to the min/max algebra
of interval arithmetic (see, for example, [76]). In particu-
lar, they avoid convolutions which are requisite for prob-
abilistic arithmetic. The concept of a cloud can be stated
in terms of certain pairs of consistent possibility distribu-
tions as shown by the following proposition (which means
that clouds may be considered as pairs of consistent possi-
bilities – possibility and necessity pairs, see [51]).

Proposition 25 Let p̄; p
¯
be a pair of regular possibility

distribution functions over set S such that 8s 2 Sp̄(s) C
p
¯
(s) � 1. Then the mapping c(s) D

�
n
¯
(s); p̄(s)

�
where

n
¯
(s) D 1 � p

¯
(s) (i. e. the dual necessity distribution func-

tion) is a cloud. In addition, if X is a random variable tak-
ing values in S and the possibility measures associated with
p̄; p
¯
are consistent with X then X belongs to cloud c. Con-

versely, every cloud defines such a pair of possibility distri-
bution functions and their associated possibility measures
are consistent with every random variable belonging to c.
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Proof (see [52,78,79]) �

Example 26 (A cloud defines an R-probability field) Let c
be a cloud over the real line. Let Pos1;Nec1;Pos2;Nec2 be
the possibility measures and their dual necessity measures
relating to p̄(s) and p

¯
(s) (where p̄ and p

¯
are as in Proposi-

tion 18). Define

im (A) D
�
max

˚
Nec1 (A) ;Nec2 (A)

�
;

min
˚
Pos1 (A) ;Pos2 (A)

� �
:

Neumaier [96] proved that every cloud contains a random
variable X. Since consistency requires that Pr (X 2 A) 2
im (A), the result that every cloud contains a random vari-
able X shows consistency. Thus every cloud defines an
R-probability field because the inf and sup of the probabil-
ities are bounded by the lower and upper bounds of im (A).

Example 27 (A possibility distribution defines an R-prob-
ability field) Let p : S ! [0; 1] be a possibility distri-
bution function and let Pos be the associated possibil-
ity measure and Nec the dual necessity measure. Define
im (A) D [Nec (A) ;Pos (A)]. Defining a second possibility
distribution, p

¯
(x) D 18x means that the pair p; p

¯
define

a cloud for which im (A) defines the R-probability. Since
a cloud defines an R-probability field, this means that this
possibility in turn generates a R-probability.

Note that the above example means that every pair of
possibility p(x) and necessity n(x) such that n(x) � p(x)
has an associated F-probability field. This is because such
a pair defines a cloud and in every cloud there exists
a probability distribution. The F-probability field can then
be constructed from a inf /sup over all such enclosed prob-
abilities that are less than or equal to the bounding neces-
sity/possibility distributions.

The application of these concepts to mixed fuzzy
and possibilistic optimization is as follows. Suppose the
optimization problem is to maximize f (Ex; Ea) subject to
g(Ex; Eb) D 0 (where Ea and Eb are parameters). Assume Ea and
Eb are vectors of independent uncertain parameters, each
with an associated IVPM. Assume the constraint may be
violated at a cost Ep > 0 so that the problem becomes one
to maximize

h
�
Ex; Ea; Eb


D f

�
Ex; Ea


� Ep

ˇ̌
g
�
Ex; Eb

ˇ̌
:

Given the independence assumption, form an IVPM for
the product space i

Ea�Eb for the joint distribution (see the
example below and [52,78,79]) and calculate the inter-
val-valued expected value (see [48,140]) with respect to
this IVPM. The interval-valued expected value is denoted

(there is a lower expected value and an upper expected
value)

Z

R
h
�
Ex; Ea; Eb


di
Ea�Eb : (69)

To optimize (69) requires an ordering of intervals, a val-
uation function denoted by v : IntR ! Rn . One such or-
dering is the midpoint of the interval on the principle that
in the absence of additional data, the midpoint is the best
estimate for the true value so that for this function (mid-
point and width), v : IntR ! R2. Thus, for I D

�
a; b

�
, this

particular valuation function is v(I) D ((aC b)/2; b � a).
Next a utility function of a vector inRn is required which is
denote by u : Rn ! R. A utility function operating on the
midpoint and width valuation function is u : R2 ! R and
particular utility is a weighted sum of the midpoint and
width u(c; d) D ˛c C ˇd. Using the valuation and utility
functions, the optimization problem is:

max
x

u
�
v

 Z

R
h(x; a; b)dia�b

��
: (70)

Thus there are four steps to obtaining a real-valued opti-
mization problem from an IVPM problem. The first step is
to obtain interval probability h(x; a; b). The second step is
to obtain the IVPM expected value

R
R h(Ex; Ea; Eb)di

Ea�Eb . The
third step is to obtain the vector value of v : IntR ! Rn .
The fourth step is to obtain the utility function value of
a vector u : Rn ! R.

Example 28 Consider the problem

max f (x; a) D 8x1 C 7x2
subject to:
g1(x; b) D 3x1 C [1; 3]x2 � 4 D 0
g2(x; b) D 2̃x1 C 5x2 � 1 D 0

Ex 2 [0; 2]

where 2̃ D 1/2/3, that is, 2̃ is a triangular possibilistic
number with support [1,3] and modal value at 2. For
Ep D (1; 1)T,

h(x; a; b) D 5x1 � 2̃x1 C [3; 5]x2 � 6

so that
Z

R
h(x; a; b)dia�b

D 5x1 C
�Z 1

0
(˛ � 3)d˛;

Z 1

0
(�1 � ˛)d˛

�
x1

C [3; 5]x2 � 6

D 5x1 C
�
�
5
2
;�

3
2

�
x1 C [3; 5]x2 � 5 :
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Since the constant -5 will not affect the optimization, it will
be removed (then added at the end), so that

v
�Z

R
h (x; a; b) dia�b

�
D v

��
5
2
;
7
2

�
x1 C [3; 5]x2

�

D (3; 1)x1 C (4; 2)x2 :

Let u(Ey) D
Pn

iD1 yi which for the context of this problem
yields

max
x

z D u
�
v
�Z

R
h (x; a; b) dia�b

��

D max
Ex2[0;2]

(4x1 C 6x2)� 5

D 20 � 5 D 15
x�1 D 2; x�2 D 2 :

Example 29 (see [124]) Consider

max z D 2̂x1 � 0̄x2 C [3; 5]x3
4̂x1 C [1; 5]x2 � 2x3 � [0; 2] D 0

6x1 � 2̄x2 C 9x3 � 9 D 0

�2x1 � [1; 4]x2 � 8̂x3 C 5̄ D 0
0 � x1 � 3; 1 � x2; x3 � 2 :

Here the 0̄; 2̄, and 5̄ are probability distributions. Note the
mixture of three uncertainty types in the third constraint
equation. Using the same approach as in the previous ex-
ample, the optimal values are:

z� D 3:9179
x�1 D 0 ; x�2 D 0:4355 ; x�3 D 1:0121 :

In [124] it is shown that these mixed problems arising
from linear programs remain linear programs. Thus, the
complexity of mixed problems is equivalent to that of lin-
ear programming.

Future Directions

The applications of fuzzy optimization seems to be headed
toward “industrial strength” problems. Increasingly, each
year there are a greater number of applications that ap-
pear. Given that greater attention is being given to the se-
mantics of fuzzy optimization and as fuzzy optimization
becomes increasingly used in applications, associated al-
gorithms that are more sophisticated, robust, and efficient
will need to be developed to handle these more complex
problems. It would be interesting to developmodeling lan-
guages like GAMS [6], MODLER [34], or AMPL [30], that
support fuzzy data structures. From the theoretical side,

the flexibility that fuzzy optimization has with working
with uncertainty data that is fuzzy, flexible, and/or possi-
bilistic (or a mixture of these via IVPM), means that fuzzy
optimization is able to provide an ample approach to opti-
mization under uncertainty. Further research into the de-
velopment of more robust methods that use fuzzy Banach
spaces would certainty provide a deeper theoretical foun-
dation to fuzzy optimization. Fuzzy optimization that uti-
lize fuzzy Banach spaces have the advantage that the prob-
lem remains fuzzy throughout and only when one needs to
make a decision or implement the solution does one map
the solution to a real number (defuzzify). The methods
that map fuzzy optimization problems to their real num-
ber equivalent defuzzify first and then optimize. Fuzzy op-
timization problems that optimize in fuzzy Banach spaces
keep the solution fuzzy and defuzzify as a last step.

Continued development of clear input and output se-
mantics of fuzzy optimization will greatly aid fuzzy opti-
mization’s applicability and relevance. When fuzzy opti-
mization is used in, for example, an assembly-line schedul-
ing problem and one’s solution is a fuzzy three, how does
one convey this solution to the assembly-line manager?
Lastly, continued research into handling dependencies in
an efficient way would amplify the usefulness and applica-
bility of fuzzy optimization.
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Glossary

Fuzzy set and fuzzy vector LetX represent a universal set
and x be the elements of X, then

ÃD f(x; �A(x)) j x 2 Xg; �A(x) � 0 8x 2 X (1)

is referred to as fuzzy set Ã onX.�A(x) is themember-
ship function (characteristic function) of the fuzzy set
Ã and represents the degree with which the elements x
belong to Ã. If

sup
x2X

[�A(x)] D 1 ; (2)

the membership function and the fuzzy set Ã are called
normalized; see Fig. 1. In case of a limitation to the Eu-
clidean space X D Rn and normalized fuzzy sets, the
fuzzy set Ã is also referred to as fuzzy vector denoted
by x̃ with its membership function�(x), or, in the one-
dimensional case, as fuzzy variable x̃ with �(x).

˛-Level set and support The crisp sets

A˛k D fx 2 X j�A(x) � ˛kg (3)

extracted from the fuzzy set Ã for real numbers
˛k 2 (0; 1] are called ˛-level sets. These comply with
the inclusion property

A˛k � A˛i 8˛i ; ˛k 2 (0; 1] with ˛i � ˛k : (4)

The largest ˛-level set A˛k!C0 is called support S(Ã);
see Fig. 1.

	 -Algebra A family M(X) of sets Ai on the universal set
X is referred to as �-algebra S(X) on X, if

X 2 S(X) ; (5)

Ai 2 S(X)) AC
i 2 S(X) ; (6)

Fuzzy Probability Theory, Figure 1
Normalized fuzzy set with˛-level sets and support
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and if for every sequence of sets Ai

Ai 2 S(X); i D 1; 2; : : :)
1[

i

Ai 2 S(X) : (7)

In this definition, AC
i is the complementary set of Ai

with respect to X, a family M(X) of sets Ai refers to
subsets and systems of subsets of the power set P(X)
on X, and the power set P(X) is the set of all subsets
Ai of X.

Definition of the Subject

Fuzzy probability theory is an extension of probability the-
ory to dealing with mixed probabilistic/non-probabilistic
uncertainty. It provides a theoretical basis to model un-
certainty which is only partly characterized by random-
ness and defies a pure probabilistic modeling with cer-
tainty due to a lack of trustworthiness or precision of
the data or a lack of pertinent information. The fuzzy
probabilistic model is settled between the probabilistic
model and non-probabilistic uncertainty models. The sig-
nificance of fuzzy probability theory lies in the treatment
of the elements of a population not as crisp quantities but
as set-valued quantities or granules in an uncertain fash-
ion, which largely complies with reality in most every-
day situations. Probabilistic and non-probabilistic uncer-
tainty can so be transferred adequately and separately to
the results of a subsequent analysis. This enables best case
and worst case estimates in terms of probability taking ac-
count of variations within the inherent non-probabilistic
uncertainty. The development of fuzzy probability theory
was initiated by H. Kwakernaak with the introduction of
fuzzy random variables in [47] in 1978. Subsequent de-
velopments have been reported in different directions and
from different perspectives including differences in ter-
minology. The usefulness of the theory has been under-
lined with various applications beyond mathematics and
information science, in particular, in engineering. The ap-
plication fields are not limited and may be extended in-
creasingly, for example, to medicine, biology, psychology,
economy, financial sciences, social sciences, and even to
law.

Introduction

The probably most popular example of fuzzy probability
is the evaluation of a survey on the subjective assessment
of temperature. A group of test persons are asked – un-
der equal conditions – to give a statement on the current
temperature as realistically as possible. If the scatter of the

statements is considered as random, the mean value of
the statements provides a reasonable statistical point esti-
mate for the actual temperature. The statements are, how-
ever, naturally given in an uncertain form. The test persons
enunciate their perception in a form such as about 25°C,
possibly 27°C, between 24°C and 26°C, or they even only
come up with linguistic assessments such as warm, very
warm, or pleasant. This uncertainty is non-probabilistic
but has to be taken into account in the statistical evalua-
tion. It is transferred to the estimated mean value, which
is no longer obtained as a crisp number but as a value
range or a set of values corresponding to the possibilities
within the range of uncertainty of the statements. If the
uncertain statements are initially quantified as fuzzy val-
ues, the mean value is obtained as a fuzzy value, too; and
the probability of certain events is also computed as a fuzzy
quantity – referred to as fuzzy probability. This example
is a typical materialization of the following general real-
world situation.

The numerical representation of a physical quantity
with the aid of crisp numbers x 2 R or sets thereof is fre-
quently interfered by uncertainty regarding the trustwor-
thiness of measured, or otherwise specified, values. The
perceptions of physical quantities may appear, for exam-
ple, as imprecise, diffuse, vague, dubious, or ambiguous.
Underlying reasons for this phenomenon include the lim-
ited precision of any measurement (digital or analog), in-
direct measurements via auxiliary quantities in conjunc-
tion with a – more or less trustworthy – model to even-
tually determine the value wanted, measurements under
weakly specified or arbitrarily changing boundary condi-
tions, and the specification of values by experts in a lin-
guistic manner. The type of the associated uncertainty is
non-frequentative and improper for a subjective proba-
bilistic modeling; hence, it is non-probabilistic. This un-
certainty is unavoidable and may always be made evident
by a respective choice of scale.

If a set of uncertain perceptions of a physical quan-
tity is present in the form of a random sample, then the
overall uncertainty possesses a mixed probabilistic/non-
probabilistic character. Whilst the scatter of the realiza-
tions of the physical quantity possesses a probabilistic
character (frequentative or subjective), each particular re-
alization from the population may, additionally, exhibit
non-probabilistic uncertainty. Consequently, a realistic
modeling in those cases must involve both probabilistic
and non-probabilistic uncertainty. This modeling with-
out distorting or ignoring information is the mission of
fuzzy probability theory. A pure probabilistic modeling
would introduce unwarranted information in the form
of a distribution function that cannot be justified and
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would thus diminish the trustworthiness of the probabilis-
tic results.

Mathematical Environment

Fuzzy probability is part of the framework of generalized
information theory [38] and is covered by the umbrella
of granular computing [50,62]. It represents a special case
of imprecise probabilities [15,78] with ties to concepts of
random sets [52]. This is underlined byWalley’s summary
of the semantics of imprecise probabilities with the term
indeterminacy, which arises from ignorance about facts,
events, or dependencies. Within the class of mathematical
models covered by the term imprecise probabilities, see [15,
38,78], fuzzy probability theory has a relationship to con-
cepts known as upper and lower probabilities [28], sets of
probability measures [24], distribution envelops [7], inter-
val probabilities [81], and p-box approach [23]. Also, sim-
ilarities exist with respect to evidence theory (or Demp-
ster–Shafer theory) [20,70] as a theory of infinitely mono-
tone Choquet capacities [39,61]. The relationship to the
latter is associated with the interpretation of the mea-
sures plausibility and belief, with the special cases of pos-
sibility and necessity, as upper and lower probabilities,
respectively, [8].

Fuzzy probability shares the common feature of all
imprecise probability models: the uncertainty of an event
is characterized with a set of possible measure values
in terms of probability, or with bounds on probability.
Its distinctive feature is that set-valued information, and
hence the probability of associated events, is described
with the aid of uncertain sets according to fuzzy set the-
ory [83,86]. This represents a marriage between fuzzy
methods and probabilistics with fuzziness and random-
ness as special cases, which justifies the denotation as fuzzy
randomness. Fuzzy probability theory enables a consider-
ation of a fuzzy set of possible probabilistic models over
the range of imprecision of the knowledge about the un-
derlying randomness. The associated fuzzy probabilities
provide weighted bounds on probability – the weights of
which are obtained as the membership values of the fuzzy
sets. Based on ˛-discretization [86] and the representa-
tion of fuzzy sets as sets of ˛-level sets, the relationship of
fuzzy probability theory to various concepts of imprecise
probabilities becomes obvious. For each ˛-level a com-
mon interval probability, crisp bounds on probability, or
a classical set of probability measures, respectively, are
obtained. The ˛-level sets of fuzzy events can be treated as
random sets. Further, a relationship of these random sets
to evidence theory can be constructed if a respective basic
probability assignment is selected; see [21]. Consistency

with evidence theory is obtained if the focal sets are speci-
fied as fuzzy elementary events and if the basic probability
assignment follows a discrete uniform distribution over
the fuzzy elementary events.

The model fuzzy randomness with its two compo-
nents – fuzzy methods and probabilistics – can utilize
a distinction between aleatory and epistemic uncertainty
with respect to the sources of uncertainty [29]. This is par-
ticularly important in view of practical applications. Ir-
reducible uncertainty as a property of the system associ-
ated with fluctuations/variability may be summarized as
aleatory uncertainty and described probabilistically, and
reducible uncertainty as a property of the analysts, or its
perception, associated with a lack of knowledge/precision
may be understood as epistemic uncertainty and described
with fuzzy sets. The model fuzzy randomness then com-
bines, without mixing, both components in the form of
a fuzzy set of possible probabilistic models over some par-
ticular range of imprecision. This distinction is retained
throughout any subsequent analysis and reflected in the
results.

The development of fuzzy probability was initiated
with the introduction of fuzzy random variables by Kwak-
ernaak [47,48] in 1978/79. Subsequent milestones were set
by Puri and Ralescu [63], Kruse andMeyer [46],Wang and
Zhang [80], and Krätschmer [43]. The developments show
differences in terminology, concepts, and in the associ-
ated consideration of measurability; and the investigations
are ongoing [11,12,14,17,35,36,37,45,73]. Krätschmer [43]
showed that the different concepts can be unified to a cer-
tain extent. Generally, it can be noted that ˛-discretization
is utilized as a helpful instrument. An overview with spe-
cific comments on the different developments is provided
in [43] and [57]. Investigations were pursued on indepen-
dent and dependent fuzzy random variables for which pa-
rameters were defined with particular focus on variance
and covariance [22,32,40,41,60]. Fuzzy random processes
were examined to reveal properties of limit theorems and
martingales associated with fuzzy randomness [44,65]; see
also [71,79] and for a survey [49]. Particular interest was
devoted to the strong law of large numbers [10,33,34]. Fur-
ther, the differentiation and the integration of fuzzy ran-
dom quantities was investigated in [51,64].

Driven by the motivation for the establishment of
fuzzy probability theory considerable effort was made
in the modeling and statistical evaluation of imprecise
data. Fundamental achievements were reported by Kruse
and Meyer [46], Bandemer and Näther [2,5], and by
Viertl [75]. Classical statistical methods were extended in
order to take account of statistical fluctuations/variability
and imprecision simultaneously, and the specific fea-
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tures associated with the imprecision of the data were
investigated. Ongoing research is reported, for example,
in [58,74] in view of evaluating measurements, in [51,66]
for decision making, and in [16,42,59] for regression anal-
ysis. Methods for evaluating imprecise data with the aid
of generalized histograms are discussed in [9,77]. Also, the
application of resampling methods is pursued; bootstrap
concepts are utilized for statistical estimations [31] and
hypothesis testing [26] based on imprecise data. Another
method for hypothesis testing is proposed in [27], which
employs fuzzy parameters in order to describe a fuzzy
transition between rejection and acceptance. Bayesian
methods have also been extended by the inclusion of fuzzy
variables to take account of imprecise data; see [75] for
basic considerations. A contribution to Bayesian statis-
tics with imprecise prior distributions is presented in [76].
This leads to imprecise posterior distributions, imprecise
predictive distributions, andmay be used to deduce impre-
cise confidence intervals. A combination of the Bayesian
theorem with kriging based on imprecise data is described
in [3]. A Bayesian test of fuzzy hypotheses is discussed
in [72], while in [67] the application of a fuzzy Bayesian
method for decision making is presented.

In view of practical applications, probability distri-
bution functions are defined for fuzzy random quanti-
ties [54,75,77,85] – despite some drawback [6]. These dis-
tribution functions can easily be formulated and used
for further calculations, but they do not uniquely de-
scribe a fuzzy random quantity. This theoretical lack is,
however, generally without an effect in practical applica-
tions so that stochastic simulations may be performed ac-
cording to the distribution functions. Alternative simu-
lation methods were proposed based on parametric [13]
and non-parametric [6,55] descriptions of imprecision.
The approach according to [55] enables a direct gener-
ation of fuzzy realizations based on a new concept for
an incremental representation of fuzzy random quanti-
ties. This method is designed to simulate and predict fuzzy
time series; it circumvents the problems of artificial un-
certainty growth or bias of non-probabilistic uncertainty,
which is frequently concerned with numerical simula-
tions.

This variety of theoretical developments provides rea-
sonable margins for the formulation of fuzzy probabil-
ity theory but does not allow the definition of a unique
concept. Choices have to be made within the elaborated
margins depending on the envisaged application and en-
vironment. For the subsequent sections these choices are
made in view of a broad spectrum of possible applications,
for example, in civil/mechanical engineering [54]. These
choices concern the following three main issues.

First, measurability has to be ensured according to
a sound concept. According to [43], the concepts of mea-
surable bounding functions [47,48], of measurable map-
pings of ˛-level sets [63], and of measurable fuzzy valued
mappings [17,36] are available; or the unifying concept
proposed in [43] itself, which utilizes a special topology
on the space of fuzzy realizations, may be selected. From
a practical point of view the concept of measurable bound-
ing functions is most reasonable due to its analogy to tra-
ditional probability theory. On this basis, a fuzzy random
quantity can be regarded as a fuzzy set of traditional, crisp,
random quantities, each one carrying a certain member-
ship degree. Each of these crisp random quantities is then
measurable in the traditional fashion, and their member-
ship degrees can be transferred to the respective mea-
sure values. The set of the obtained measure values in-
cluding their membership degrees then represents a fuzzy
probability.

Second, a concept for the integration of a fuzzy-valued
function has to be selected from the different available ap-
proaches [86]. This is associated with the computation of
the probability of a fuzzy event. An evaluation in a mean
sense weighted by the membership function of the fuzzy
event is suggested in [84], which leads to a scalar value
for the probability. This evaluation is associated with the
interpretation that an event may occur partially. An ap-
proach for calculating the probability of a fuzzy event as
a fuzzy set is proposed in [82]; the resulting fuzzy prob-
ability then represents a set of measure values with asso-
ciated membership degrees. This complies with the inter-
pretation that the occurrence of an event is binary but it is
not clearly indicated if the event has occurred or not. The
imprecision is associated with the observation rather than
with the event. The latter approach corresponds with the
practical situation in many cases, provides useful informa-
tion in form of the imprecision reflected in the measure
values, and follows the selected concept of measurability.
It is thus taken as a basis for further consideration.

Third, the meaning of the distance between fuzzy sets
as realizations of a fuzzy random quantity must be defined,
which is of particular importance for the definition of the
variance and of further parameters of fuzzy random quan-
tities. An approach that follows a set-theoretical point of
view and leads to a crisp distance measure is presented
in [40]. It is proposed to apply the Hausdorff metric to
the ˛-level sets of a fuzzy quantity and to average the re-
sults over the membership scale. Consequently, parame-
ters of a fuzzy random quantity which are associated with
a distance between fuzzy realizations reflect the variabil-
ity within the imprecision merely in an integrated form.
For example, the variance of a fuzzy random variable is
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obtained as a crisp value. In contrast to this, the applica-
tion of standard algorithms for operations on fuzzy sets,
such as the extension principle, [4,39,86] leads to fuzzy
distances between fuzzy sets. Parameters, including vari-
ances, of fuzzy random quantities are then obtained as
fuzzy sets of possible parameter values. This corresponds
to the interpretation of fuzzy random quantities as fuzzy
sets of traditional, crisp, random quantities. The latter ap-
proach is thus pursued further.

These three selections comply basically with the def-
initions in [46] and [47]; see also [57]. Among all the
possible choices, this set-up ensures the most plausible
settlement of fuzzy probability theory within the frame-
work of imprecise probabilities [15,38,78] with ties to ev-
idence theory and random set approaches [21,30]. Fuzzy
probability is obtained in the form of weighted plausi-
ble bounds on probability. Moreover, in view of prac-
tical applications, the treatment of fuzzy random quan-
tities as fuzzy sets of traditional random quantities en-
ables the utilization of established probabilistic methods
as kernel solutions in the environment of a fuzzy analy-
sis. For example, sophisticated methods of Monte Carlo
simulation [25,68,69] may be combined with a generally
applicable fuzzy analysis based on an global optimization
approach using ˛-discretization [53]. If some restricting
conditions are complied with, numerically efficient meth-
ods from interval mathematics [1] may be employed for
the ˛-level mappings instead of a global optimization ap-
proach; see [56]. The selected concept, eventually, enables

Fuzzy Probability Theory, Figure 2
Fuzzy random variable

best-case and worst-case studies within the range of possi-
ble probabilistic models.

Fuzzy RandomQuantities

With the above selections, the definitions from traditional
probability theory can be adopted and extended to deal-
ing with imprecise outcomes from a random experiment.
Let ˝ be the space of random elementary events ! 2 ˝
and the universe on which the realizations are observed
be the n-dimensional Euclidean space X D Rn. Then,
a membership scale � is introduced perpendicular to the
hyperplane ˝ � X. This enables the specification of fuzzy
sets on X for given elementary events ! from ˝ with-
out interaction between˝ and �. That is, randomness in-
duced by˝ and fuzziness described by� – only in x-direc-
tion – are not mixed with one another. Let F(X) be the set
of all fuzzy quantities onX D Rn; that is,F(X) denotes the
collection of all fuzzy sets Ã on X D Rn, with Ã according
to Eq. (1). Then, the imprecise result of the mapping

X̃ : ˝ ! F(X) (8)

is referred to as fuzzy random quantity X̃. In con-
trast to real-valued random quantities, a fuzzy realization
x̃(!) 2 F(X), or x̃(!) � X, is now assigned to each ele-
mentary event ! 2 ˝ ; see Fig. 2. These fuzzy realizations
may be understood as a numerical representation of gran-
ules. Generally, a fuzzy random quantity can be discrete
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or continuous with respect to both fuzziness and random-
ness. The further consideration refers to the continuous
case, from which the discrete case may be derived.

Without a limitation in generality, the fuzzy realiza-
tions may be restricted to normalized fuzzy quantities,
thus representing fuzzy vectors. Further restrictions can
be defined in view of a convenient numerical treatment
if the application field allows for. This concerns, for ex-
ample, a restriction to connected and compact ˛-level sets
A˛ D x˛ of the fuzzy realizations, a restriction to convex
fuzzy sets as fuzzy realizations (a fuzzy set Ã is convex if
all its ˛-level sets A˛ are convex sets), or a restriction to
fuzzy realizations with only one element xi carrying the
membership �(x i) D 1 as in [47].

For the treatment of the fuzzy realizations, a respective
algorithm for operations on fuzzy sets has to be selected.
Following the literature and the above selection, the stan-
dard basis is employed with the min-operator as a special
case of a t-norm and the associated max-operator as a spe-
cial case of a t-co-norm [18,19,86]. This leads to the min-
max operator and the extension principle [4,39,86].

With the interpretation of a fuzzy random quantity
as a fuzzy set of real-valued random quantities, according
to the above selection, the following relationship to tradi-
tional probability theory is obtained. Let x ji be a realiza-
tion of a real-valued random quantity X j and x̃ i be a fuzzy
realization of a fuzzy random quantity X̃ with x ji and x̃ i
be assigned to the same elementary event ! i. If x ji 2 x̃ i ,
then x ji is called contained in x̃ i . If, for all elementary
events !i 2 ˝; i D 1; 2; : : :, the x ji are contained in the
x̃ i , the set of the x ji ; i D 1; 2; : : :, then constitutes an orig-
inal X j of the fuzzy random quantity X̃; see Fig. 2. The
original X j is referred to as completely contained in X̃,
X j 2 X̃. Each real-valued random quantity X that is com-
pletely contained in X̃ is an original X j of X̃ and carries the
membership degree

�(X j) D max[˛j x ji 2 xi˛8i:] : (9)

That is, in the˝-direction, each original X j must be con-
sistent with the fuzziness of X̃. Consequently, the fuzzy
random quantity X̃ can be represented as the fuzzy set of
all originals X j contained in X̃,

X̃ D
˚
(X j; �(X j))j x ji 2 x̃ i8i:

�
: (10)

Each fuzzy random quantity X̃ contains at least one
real-valued random quantity X as an original X j of X̃. Each
fuzzy random quantity X̃ that possesses precisely one orig-
inal is thus a real-valued random quantity X. That is, real-
valued random quantities are a special case of fuzzy ran-
dom quantities. This enables a simultaneous treatment of

real-valued random quantities and fuzzy random quanti-
ties within the same theoretical environment and with the
same numerical algorithms. Or, vice versa, it enables the
utilization of theoretical results and established numerical
algorithms from traditional probability theory within the
framework of fuzzy probability theory.

If ˛-discretization is applied to the fuzzy random
quantity X̃, random ˛-level sets X˛ are obtained,

X˛ D fX D X j j�(X j) � ˛g : (11)

Their realizations are ˛-level sets xi˛ of the respective
fuzzy realizations x̃ i of the fuzzy random quantity X̃.
A fuzzy random quantity can thus, alternatively, be rep-
resented by the set of its ˛-level sets,

X̃ D
˚
(X˛; �(X˛)) j �(X˛) D ˛8˛ 2 (0; 1]

�
: (12)

In the one-dimensional case and with the restriction to
connected and compact ˛-level sets of the realizations, the
random ˛-level sets X˛ of the fuzzy random variable X̃ be-
come closed random intervals [X˛ l ;X˛r ].

Fuzzy Probability

Fuzzy probability is derived as a fuzzy set of probability
measures for events the occurrence of which depends on
the behavior of a fuzzy random quantity. These events
are referred to as fuzzy random events with the following
characteristics.

Let X̃ be a fuzzy random quantity according to Eq. (8)
with the realizations x̃ and S(X) be a �-algebra of sets Ai
defined on X. Then, the event

Ẽi : X̃ hits Ai (13)

is referred to as fuzzy random event, which occurs if
a fuzzy realization x̃ of the fuzzy random quantity X̃ hits
the set Ai . The associated probability of occurrence of Ẽi is
referred to as fuzzy probability P̃(Ai ). It is obtained as the
fuzzy set of the probabilities of occurrence of the events

Ei j : X j 2 Ai (14)

associated with all originals X j of the fuzzy random quan-
tity X̃ with their membership values �(X j). Specifically,

P̃(Ai ) D f(P(X j 2 Ai); �(P(X j 2 Ai)))

jX j 2 X̃; �(P(X j 2 Ai )) D �(X j) 8 jg : (15)

Each of the involved probabilities P(X j 2 Ai) is a tradi-
tional, real-valued probability associated with the tradi-
tional probability space [X;S; P] and complying with all



Fuzzy Probability Theory F 4053

Fuzzy Probability Theory, Figure 3
Fuzzy event x̃k hits Ai in the one-dimensional case

established theorems and properties of traditional prob-
ability. For a formal closure of fuzzy probability theory,
the membership scale � is incorporated in the probability
space to constitute the fuzzy probability space denoted by
[X;S; P; �] or [X;S; P̃].

The evaluation of the fuzzy random event Eq. (13)
hinges on the question whether a fuzzy realization x̃ k hits
the set Ai or not. Due to the fuzziness of the x̃, these events
appear as fuzzy events Ẽi k : x̃k hits Ai with the following
three options for occurrence; see Fig. 3:

� The fuzzy realization x̃ k lies completely inside the set
Ai , the event Ẽi k has occurred.

� The fuzzy realization x̃ k lies only partially inside Ai , the
event Ẽi k may have occurred or not occurred.

� The fuzzy realization x̃ k lies completely outside the set
Ai , the event Ẽi k has not occurred.

The fuzzy probability P̃(Ai ) takes account of all three op-
tions within the range of fuzziness. The fuzzy random
quantity X̃ is discretized into a set of random ˛-level sets
X˛ according to Eq. (11), and the events Ẽi and Ẽi k , re-

Fuzzy Probability Theory, Figure 4
Events for determining P˛l(Ai) and P˛r(Ai) in the one-dimensional case

spectively, are evaluated ˛-level by ˛-level. In this evalua-
tion, the event Ei k˛ : xk˛ hits Ai admits the following two
“extreme” interpretations of occurrence:

� Ei k˛ l : “xk˛ is contained in Ai : xk˛ � Ai”, and
� Ei k˛r : “xk˛ and Ai possess at least one element in com-

mon: xk˛ \ Ai ¤ ;”.

Consequently, the events Ei k˛ l are associated with the
smallest probability

P˛ l (Ai ) D P(X˛ � Ai ) ; (16)

and the events Ei k˛r correspond to the largest probability

P˛r(Ai) D P(X˛ \ Ai ¤ ;) : (17)

The probabilities P˛ l (Ai ) and P˛r (Ai ) are bounds on the
probability P̃(Ai ) on the respective ˛-level associated with
the random ˛-level set X˛ of the fuzzy random quantity X̃;
see Fig. 4. As all elements of X˛ are originals X j of X̃, the
probability that an X j 2 X˛ hits Ai is bounded according
to

P˛ l (Ai ) � P(X j 2 Ai ) � P˛r(Ai) 8X j 2 X˛ : (18)

This enables a computation of the probability bounds
directly from the real-valued probabilities P(X j 2 Ai) as-
sociated with the originals X j ,

P˛ l (Ai ) D min
X j2X˛

P(X j 2 Ai) ; (19)

P˛r(Ai) D max
X j2X˛

P(X j 2 Ai ) : (20)
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If the fuzzy random quantity X̃ represents a fuzzy set of
continuous real-valued randomquantities and if themem-
bership functions of all fuzzy realizations x̃i of X̃ are at
least segmentally continuous, then the probability bounds
P˛ l (Ai) and P˛r(Ai) determine closed connected intervals
[P˛ l (Ai); P˛r (Ai )]. In this case, the fuzzy probability P̃(Ai )
is obtained as a continuous and convex fuzzy set, which
may be specified uniquely with the aid of ˛-discretization,

P̃(Ai) D
˚
(P˛(Ai ); �(P˛(Ai )))jP˛(Ai )
D [P˛ l (Ai ); P˛r (Ai )] ; �(P˛(Ai)) D ˛

8˛ 2 (0; 1]
�
: (21)

The properties of the fuzzy probability P̃(Ai ) result
from the properties of the traditional probability measure
in conjunction with fuzzy set theory. For example, a com-
plementary relationship may be derived for P̃(Ai ) as fol-
lows. The equivalence

(X˛ � Ai),
�
X˛ \ AC

i D ;


(22)

with AC
i being the complementary set of Ai with respect to

the universe X, leads to

P(X˛ � Ai ) D P
�
X˛ \ AC

i D ;


(23)

for each ˛-level. If the event X˛ \ AC
i D ; is expressed in

terms of its complementary event X˛ \ AC
i ¤ ;, Eq. (23)

can be rewritten as

P(X˛ � Ai ) D 1 � P
�
X˛ \ AC

i ¤ ;

: (24)

This leads to the relationships

P˛ l (Ai ) D 1 � P˛r
�
AC
i

; (25)

P˛r(Ai) D 1 � P˛ l
�
AC
i

; (26)

and

P̃(Ai) D 1 � P̃
�
AC
i

: (27)

In the special case that the set Ai contains only one
element Ai D xi , the fuzzy probability P̃(Ai ) changes
to P̃(xi ). The event X˛ \ Ai ¤ ; is then replaced by
xi 2 X˛ , and X˛ � Ai becomes X˛ D xi . The probability
P˛ l (xi ) D P(X˛ D xi) may take values greater than zero
only if a realization of X˛ exists that possesses exactly one
element X˛ D t with t D xi and if this element t repre-
sents a realization of a discrete original of X˛ . Otherwise,
P˛ l (xi ) D 0, and the fuzziness of P̃(xi) is exclusively spec-
ified by P˛r(xi ).

In the one-dimensional case with

Ai D fx j x 2 X; x1 � x � x2g (28)

the fuzzy probability P̃(Ai ) can be represented in a simpli-
fied manner. If the random ˛-level sets X˛ are restricted
to be closed random intervals [X˛ l ;X˛r], the associated
fuzzy random variable X̃ can be completely described by
means of the bounding real-valued random quantities X˛ l
and X˛r ; see Fig. 4. X˛ l and X˛r represent specific origi-
nals X j of X̃. This enables the specification of the probabil-
ity bounds for each ˛-level according to

P˛ l (Ai ) D max
�
0; P(X˛r D tr j x2; tr 2 X; tr � x2)

� P(X˛ l D tl j x1; tl 2 X; tl < x1)
�
; (29)

and

P˛r (Ai ) D P(X˛ l D tl j x2; tl 2 X; tl � x2)
� P(X˛r D tr j x1; tr 2 X; tr < x1) : (30)

From the above framework, the special case of real-val-
ued random quantities X, may be reobtained as a fuzzy
random quantity X̃ that contains precisely one original
X j D X1,

X1 D (X jD1; �(X jD1) D 1) ; (31)

see Eq. (10). Then, all X˛ contain only the sole original X1,
and both X˛ \ Ai ¤ ; and X˛ � Ai reduce to X1 2 Ai .
That is, the event X1 hits Ai does no longer provide op-
tions for interpretation reflected as fuzziness,

P˛ l (Ai) D P˛r (Ai ) D P(Ai) D P(X1 2 Ai ) : (32)

In the above special one-dimension case, Eqs. (29) and
(30), the setting X D X˛ l D X˛r leads to

P˛ l (Ai ) D P˛r(Ai )
D P(X1 D t j x1; x2; t 2 X; x1 � tl � x2) ; (33)

Further properties and computation rules for fuzzy
probabilities may be derived from traditional probability
theory in conjunction with fuzzy set theory.

Representation of Fuzzy RandomQuantities

The fuzzy probability P̃(Ai ) may be computed for each
arbitrary set Ai 2 S(X). If – as a special family of sets
S(X) – the Borel �-algebra S0(Rn) of the Rn is selected,
the concept of the probability distribution function may
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be applied to fuzzy random quantities. That is, the system
S0(Rn) of the open sets

Ai0 D
˚
t D (t1; : : : ; tk ; : : : ; tn)jx D xi ; x; t 2 Rn;

tk < xk ; k D 1; : : : ; n
�

(34)

on X D Rn is considered; S0(Rn) is a Boolean set algebra.
The concept of fuzzy probability according to Sect.

“Fuzzy Probability” applied to the sets from Eq. (34) leads
to fuzzy probability distribution functions; see Fig. 5. The
fuzzy probability distribution function F̃(x) of the fuzzy
random quantity X̃ onX D Rn is obtained as the set of the
fuzzy probabilities P̃(Ai0) with Ai0 according to Eq. (34)
for all xi 2 X,

F̃(x) D fP̃(Ai0)8xi 2 Xg : (35)

It is a fuzzy function. Bounds for the functional values
F̃(x) are specified for each ˛-level depending on x D xi
in Eq. (34) and in compliance with Eqs. (19) and (20),

F˛ l
�
x D (x1; : : : ; xn)



D 1� max
X j2X˛

P
�
X j D t D (t1; : : : ; tn)jx; t 2 X D Rn ;

9tk � xk ; 1 � k � n

; (36)

F˛r(x D (x1; : : : ; xn))

D max
X j2X˛

P


X j D t D (t1; : : : ; tn)jx; t 2 X D Rn ;

tk < xk ; k D 1; : : : ; n
�
: (37)

For the determination of F˛ l (x) the relationship in
Eq. (25) is used. If F˛ l (x) and F˛r(x) form closed con-
nected intervals [F˛ l (x); F˛r(x)] – see Sect. “Fuzzy Proba-
bility” for the conditions – the functional values F̃(x) are
determined based on Eq. (21),

F̃(x) D
˚
(F˛(x); �(F˛(x)))jF˛(x) D [F˛ l (x); F˛r(x)];

�(F˛(x)) D ˛ 8˛ 2 (0; 1]
�
; (38)

Fuzzy Probability Theory, Figure 5
Fuzzy probability density function f̃ (x) and fuzzy probability distribution function F̃(x) of a continuous fuzzy random variable X̃

In this case, the functional values of the fuzzy probabil-
ity distribution function F̃(x) are continuous and convex
fuzzy sets.

In correspondence with Eq. (15), the fuzzy probability
distribution function F̃(x) of X̃ represents the fuzzy set of
the probability distribution functions Fj(x) of all originals
X j of X̃ with the membership values�(Fj(x)),

F̃(x) D
˚
(Fj(x); �(Fj(x))) jX j 2 X̃; �(Fj(x))

D �(X j) 8 j
�
: (39)

Each original X j determines precisely one trajectory Fj(x)
within the bunch F̃(x) of weighted functions Fj(x) 2 F̃(x).

In the one-dimensional case and with the restriction
to closed random intervals [X˛ l ;X˛r ] for each ˛-level, the
fuzzy probability distribution function F̃(x) is determined
by

F˛ l (x) D P(X˛r D tr j x; tr 2 X; tr < x) ; (40)

F˛r(x) D P(X˛ l D tl j x; tl 2 X; tl < x) : (41)

In correspondence with traditional probability theory,
fuzzy probability density functions f̃ (t) or f̃ (x) are defined
in association with the F̃(x); see Fig. 5. The f̃ (t) or f̃ (x)
are fuzzy functions which – in the continuous case with
respect to randomness – are integrable for each original
X j of X̃ and satisfy the relationship

Fj(x) D
Z t1Dx1

t1D�1
: : :

Z tkDxk

tkD�1
: : :

Z tnDxn

tnD�1
f j(t) dt ; (42)

with t D (t1; : : : ; tn) 2 X. For each original X j the inte-
gration of the associated trajectory f j(x) 2 f̃ (x) leads to
the respective trajectory Fj(x) 2 F̃(x).

For the description of a fuzzy random quantity X̃, pa-
rameters in the form of fuzzy quantities p̃t(X̃) may be
used. These fuzzy parameters may represent any type of
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parameters known from real-valued random quantities,
such as moments, weighting factors for different distribu-
tion types in a compound distribution, or functional pa-
rameters of the distribution functions. The fuzzy parame-
ter p̃t(X̃) of the fuzzy random quantity X̃ is the fuzzy set
of the parameter values pt(X j) of all originals X j with the
membership values �(pt(X j)),

p̃t(X̃) D
˚
(pt(X j); �(pt (X j))) jX j 2 X̃;

�(pt(X j)) D �(X j) 8 j
�
: (43)

For each ˛-level, bounds are given for the fuzzy parameter
p̃t(X̃) by

pt;˛ l (X̃) D min
X j2X˛

[pt(X j)] ; (44)

pt;˛r(X̃) D max
X j2X˛

[pt(X j)] : (45)

If the fuzzy random quantity X̃ represents a fuzzy set of
continuous real-valued random quantities, if all fuzzy re-
alizations x̃ i of X̃ are connected sets, and if the parameter
pt is defined on a continuous scale, then the fuzzy param-
eter p̃t(X̃) is determined by its ˛-level sets

pt;˛(X̃) D [pt;˛ l (X̃); pt;˛r(X̃)] ; (46)

p̃t(X̃) D
˚
(pt;˛(X̃); �(pt;˛(X̃))) j

�(pt;˛(X̃)) D ˛ 8 ˛ 2 (0; 1]
�
; (47)

and represents a continuous and convex fuzzy set.
If a fuzzy random quantity X̃ is described by more than

one fuzzy parameter p̃t(X̃), interactive dependencies are
generally present between the different fuzzy parameters.
If this interaction is neglected, a fuzzy random quantity
X̃hull is obtained, which covers the actual fuzzy random
quantity X̃ completely. That is, for all realizations of X̃hull
and X̃ the following holds,

x̃i hull � x̃i 8i : (48)

Fuzzy parameters and fuzzy probability distribution
functions do not enable a unique reproduction of fuzzy
realizations based on the above description. But they are
sufficient to compute fuzzy probabilities correctly for any
events defined according to Eq. (13).

The presented concept of fuzzy probability can be ex-
tended to fuzzy random functions and processes.

Future Directions

Fuzzy probability theory provides a powerful key to solv-
ing a broad variety of practical problems that defy an
appropriate treatment with traditional probabilistics due

to imprecision of the information for model specifica-
tion. Fuzzy probabilities reflect aleatory uncertainty and
epistemic uncertainty of the underlying problem simul-
taneously and separately and provide extended informa-
tion and decision aids. These features can be utilized in
all application fields of traditional probability theory and
beyond. Respective developments can be observed, pri-
marily, in information science and, increasingly, in en-
gineering. Potential for further extensive fruitful applica-
tions exists, for example, in psychology, economy, finan-
cial sciences, medicine, biology, social sciences, and even
in law. In all cases, fuzzy probability theory is not consid-
ered as a replacement for traditional probabilistics but as
a beneficial supplement for an appropriate model specifi-
cation according to the available information in each par-
ticular case.

The focus of further developments is seen on both
theory and applications. Future theoretical developments
may pursue a measure theoretical clarification of the em-
bedding of fuzzy probability theory in the framework of
imprecise probabilities under the umbrella of generalized
information theory. This is associated with the ambition
to unify the variety of available fuzzy probabilistic con-
cepts and to eventually formulate a consistent generalized
fuzzy probability theory. Another important issue for fu-
ture research is the mathematical description and treat-
ment of dependencies within the fuzziness of fuzzy ran-
dom quantities such as non-probabilistic interaction be-
tween fuzzy realizations, between fuzzy parameters, and
between fuzzy probabilities of certain events. In parallel to
theoretical modeling, further effort is worthwhile towards
a consistent concept for the statistical evaluation of impre-
cise data including the analysis of probabilistic and non-
probabilistic dependencies of the data.

In view of applications, the further development of
fuzzy probabilistic simulation methods is of central im-
portance. This concerns both theory and numerical algo-
rithms for the direct generation of fuzzy random quan-
tities – in a parametric and in a non-parametric fash-
ion. Representations and computational procedures for
fuzzy random quantities must be developed with focus on
a high numerical efficiency to enable a solution of real-
world problems. For a spread into practice it is further
essential to elaborate options and potentials for an in-
terpretation and evaluation of fuzzy probabilistic results
such as fuzzy mean values or fuzzy failure probabilities.
The most promising potentials for a utilization are seen in
worst-case investigations in terms of probability, in a sen-
sitivity analysis with respect to non-probabilistic uncer-
tainty, and in decision-making based on mixed probabilis-
tic/non-probabilistic information.
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In summary, fuzzy probability theory and its further
developments significantly contribute to an improved un-
certainty modeling according to reality.
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Glossary

Fuzzy set A mathematical tool that can formally charac-
terize an imprecise concept. Whereas a conventional
set to which elements can either belong or not, ele-
ments in a fuzzy set can belong to some extent, from
zero, which stands for a full nonbelongingness) to one,
which stands for a full belongingness, through all in-
termediate values.

Fuzzy relation A mathematical tool that can formally
characterize that which is imprecisely specified, no-
tably by using natural language, relations between vari-
ables, for instance, similar, much greater than, almost
equal, etc.

Extension principle Makes it possible to extend relations,
algorithms, etc. defined for variables that take on non-
fuzzy (e. g. real) values to those that take on fuzzy val-
ues.

Linguistic variable, fuzzy conditional statement, com-
positional rule of inference Make it possible to use vari-

ables, which take on linguistic (instead of numeric)
values to represent relations between such variables,
by using fuzzy conditional statements and use them in
inference by using the compositional rule of inference.

Fuzzy event and its probability Make it possible to for-
mally define events which are imprecisely specified,
like “high temperature” and calculate their probabili-
ties, for instance the probability of a “high temperature
tomorrow”.

Fuzzy logic Provides formal means for the representa-
tion of, and inference based on imprecisely specified
premises and rules of inference; can be understood
in different ways, basically as fuzzy logic in a narrow
sense, being some type of multivalued logic, and fuzzy
logic in a broad sense, being a way to formalize infer-
ence based on imprecisely specified premises and rules
of inference.

Definition of the Subject

We provide a brief exposition of basic elements of
Zadeh’s [95] fuzzy sets theory.We discuss basic properties,
operations on fuzzy sets, fuzzy relations and their compo-
sitions, linguistic variables, the extension principle, fuzzy
arithmetic, fuzzy events and their probabilities, fuzzy logic,
fuzzy dynamic systems, etc. We also outline Bellman and
Zadeh’s [8] general approach to decisionmaking in a fuzzy
environment which is a point of departure for virtually all
fuzzy decision making, optimization, control, etc. models.

Introduction

This paper is meant to briefly expose a novice reader to
basic elements of theory of fuzzy sets and fuzzy systems
viewed for our purposes as an effective and efficient means
and calculus to deal with imprecision in the definition of
data, information and knowledge, and to provide tools
and techniques for dealing with imprecision therein. Our
exposition will be as formal as necessary, of more intu-
itive and constructive a character, so that fuzzy tools and
techniques can be useful for the multidisciplinary audi-
ence of this encyclopedia. For the readers requiring or in-
terested in a deeper exposition of fuzzy sets and related
concepts, we will recommend many relevant references,
mainly books. However, as the number of books and vol-
umes on this topic and its applications in a variety of fields
is huge, we will recommend some of them only, mostly
those better known ones. For the newest literature entries
the readers should consult the most recent catalogs of ma-
jor scientific publishers who have books and edited vol-
umes on fuzzy sets/logic and their applications.

Our discussion will proceed, on the other hand, in the
pure fuzzy setting, and we will not discuss possibility the-
ory (which is related to fuzzy sets theory). The reader in-
terested in possibility theory is referred to, e. g., Dubois
and Prade [29,30] or their article in this encyclopedia.

We will consecutively discuss the idea of a fuzzy set,
basic properties of fuzzy sets, operations on fuzzy sets,
some extensions of the basic concept of a fuzzy set, fuzzy
relations and their compositions, linguistic variables, fuzzy
conditional statements, and the compositional rule of in-
ference, the extension principle, fuzzy arithmetic, fuzzy
events and their probabilities, fuzzy logic, fuzzy dynamic
systems, etc.We also outline Bellman and Zadeh’s [8] gen-
eral approach to decision making in a fuzzy environment
which is a point of departure for virtually all fuzzy decision
making, optimization, control, etc. models.

Fuzzy Sets – Basic Definitions and Properties

Fuzzy sets theory, introduced by Zadeh in 1965 [95], is
a simple yet very powerful, effective and efficient means to
represent and handle imprecise information (of vagueness
type) exemplified by tall buildings, large numbers, etc. We
will present fuzzy sets theory as some calculus of impreci-
sion, not as a new set theory in the mathematical sense.

The Idea of a Fuzzy Set

From our point of view, the main purpose of a (conven-
tional) set in mathematics is to formally characterize some
concept (or property). For instance, the concept of “in-
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teger numbers which are greater than or equal three and
less than or equal ten” may be uniquely represented just
by showing all integer numbers that satisfy this condition;
that is, given by the following set: fx 2 I : 3 � x � 10g D
f3; 4; 5; 6; 7; 8; 9; 10g where I is the set of integers. Notice
that we need to specify first a universe of discourse (uni-
verse, universal set, referential, reference set, etc.) that con-
tains all those elements which are relevant for the particu-
lar concept as, e. g., the set of integers I in our example.

A conventional set, say A, may be equated with its
characteristic function defined as

'A : X �! f0; 1g (1)

which associates with each element x of a universe of
discourse X D fxg a number '(x) 2 f0; 1g such that:
'A(x) D 0 means that x 2 X does not belong to the set A,
and 'A(x) D 1 means that x belongs to the set A.

Therefore, for the set verbally defined as integer num-
bers which are greater than or equal three and less than or
equal ten, its equivalent set AD f3; 4; 5; 6; 7; 8; 9; 10g, list-
ing all the respective integer numbers, may be represented
by its characteristic function

'A(x) D

(
1 for x 2 f3; 4; 5; 6; 7; 8; 9; 10g
0 otherwise :

Notice that in a conventional set there is a clear-cut differ-
entiation between elements belonging to the set and not,
i. e. the transition from the belongingness to nonbelong-
ingness is clear-cut and abrupt.

However, it is easy to notice that a serious difficulty
arises when we try to formalize by means of a set vague
concepts which are commonly encountered in everyday
discourse and widely used by humans as, e. g., the state-
ment “integer numbers which aremore or less equal to six.”
Evidently, the (conventional) set cannot be used to ade-
quately characterize such an imprecise concept because an
abrupt and clear-cut differentiation between the elements
belonging and not belonging to the set is artificial here.

This has led Zadeh [95] to the idea of a fuzzy set which
is a class of objects with unsharp boundaries, i. e. in which
the transition from the belongingness to nonbelonging-
ness is not abrupt; thus, elements of a fuzzy set may be-
long to it to partial degrees, from the full belongingness to
the full nonbelongingness through all intermediate values.
Notice that this is presumably the most natural and simple
way to formally define the imprecision of meaning.

We should therefore start again with a universe of dis-
course (universe, universal set, referential, reference set,
etc.) containing all elements relevant for the (imprecise)

concept we wish to formally represent. Then, the charac-
teristic function ' : X �! f0; 1g is replaced by amember-
ship function defined as

�A : X �! [0; 1] (2)

such that �A(x) 2 [0; 1] is the degree to which an element
x 2 X belongs to the fuzzy set A: From �A(x) D 0 for the
full nonbelongingness to�A(x) D 1 for the full belonging-
ness, through all intermediate (0 < �A(x) < 1) values.

Now, if we consider as an example the concept of in-
teger numbers which aremore or less six. Then x D 6 cer-
tainly belongs to this set so that �A(6) D 1, the numbers
five and seven belong to this set almost surely so that�A(5)
and �A(7) are very close to one, and the more a number
differs from six, the less its �A(:). Finally, the numbers be-
low one and above ten do not belong to this set, so that
their �A(:) D 0. This may be sketched as in Fig. 1 though
we should bear in mind that although in our example the
membership function is evidently defined for the integer
numbers (x’s) only, it is depicted in a continuous form to
be more illustrative.

In practice the membership function is usually as-
sumed to be piecewise linear as shown in Fig. 2 (for the
same fuzzy set as in Fig. 1, i. e. the fuzzy set integer num-
bers which aremore or less six). To specify themembership
function we then need four numbers only: a, b, c, and d as,
e. g., a D 2, b D 5, c D 7, and d D 10 in Fig. 2.

Notice that the particular form of a membership func-
tion is subjective as opposed to an objective form of a char-
acteristic function. However, this may be viewed as quite
natural as the underlying concepts are subjective indeed
as, e. g., the set of integer numbers more or less six de-
pend on an individual opinion. Unfortunately, this inher-
ent subjectivity of the membership function may lead to
some problems in many formal models in which users
would rather have a limit to the scope of subjectivity. We
will comment on this issue later on.

Fuzzy Sets Theory, Foundations of, Figure 1
Membership function of a fuzzy set, integer numbers which are
more or less six
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Fuzzy Sets Theory, Foundations of, Figure 2
Membership function of a fuzzy set, integer numbers which are
more or less six

We will now define formally a fuzzy set in a form that
is very often used.

A fuzzy set A in a universe of discourse X D fxg, writ-
ten A in X, is defined as a set of pairs

AD f(�A(x); x)g (3)

where �A : X �! [0; 1] is the membership function of A
and �A(x) 2 [0; 1] is the grade of membership (or a mem-
bership grade) of an element x 2 X in a fuzzy set A.

Needless to say that our definition of a fuzzy set (3)
is clearly equivalent to the definition of the membership
function (2) because a functionmay be represented by a set
of pairs argument–value of the function for this argument.
For our purposes, however, the definition (3) is more set-
theoretic-like which will often be more convenient.

So, in this paper we will practically equate fuzzy sets
with their membership functions saying, e. g., a fuzzy set,
�A(x), and also very often we will equate fuzzy sets with
their labels saying, e. g., a fuzzy set, large numbers, with the
understanding that the label large numbers is equivalent
to the fuzzy set mentioned, written AD large numbers.
However, we will use the notation �A(x) for the member-
ship function of a fuzzy set A in X, and not an abbreviated
notation A(x) as in somemore technical papers, to be con-
sistent with ourmore-set-theoretic-like convention.

For practical reasons, it is very often assumed (also
in this paper) that all the universes of discourse are fi-
nite as, e. g., X D fx1; : : : ; xng. In such a case the pair
f(�A(x); x)g will be denoted by �A(x)/x which is called
a fuzzy singleton.

Then, the fuzzy set A in X will be written as

AD f(�A(x); x)g D f�A(x)/xg

D �A(x1)/x1 C : : :C �A(xn)/xn D
nX

iD1

�A(xi)/xi ;

(4)

where C and
P

are meant in the set-theoretic sense. By
convention, the pairs�A(x)/x with�A(x) D 0 are omitted
here.

A conventional (nonfuzzy) set may obviously be writ-
ten in the fuzzy sets notation introduced above, for in-
stance the (non-fuzzy) set, integer numbers greater than
or equal three and less than or equal ten, may be written as

AD 1/3C 1/4C 1/5C 1/6C 1/7C 1/8C 1/9C 1/10 :

The family of all fuzzy sets defined in X is denoted
by A; it includes evidently also the empty fuzzy set to be
defined by (9), i. e. AD ; such that �A(x) D 0, for each
x 2 X, and the whole universe of discourse X written as
X D 1/x1 C : : :C 1/xn .

The concept of a fuzzy set as defined above has been
the point of departure for the theory of fuzzy sets (or fuzzy
sets theory) which will be briefly sketched below. We will
again follow a more intuitive and less formal presentation,
which is better suited for this encyclopedia.

Some Extensions of the Concept of Zadeh’s Fuzzy Set

The concept of Zadeh’s [95] fuzzy set introduced in the
previous section is the by far the simplest and most nat-
ural way to fuzzify the concept of a (conventional) set,
and clearly provides what we mean to represent and han-
dle imprecision. However, its underlying elements are the
most straightforward possible. This concerns above all the
membership function. Therefore, it is quite natural that
some extensions have been presented to this basic concept.
We will just briefly mention some of them.

First, it is quite easy to notice that though the defini-
tion of a fuzzy set by the membership function of the type
�A : X �! [0; 1] is the simplest and most straightforward
one, allowing for a gradual transition from the belong-
ingness and nonbelongingness, it can readily be extended.
The same role is namely played by a generalized definition
by a membership function of the type

�A : X �! L ; (5)

where L is some (partially) ordered set as, e. g., a lattice.
This obvious, but powerful extension was introduced

by Goguen [37] as an L-fuzzy set, where l stands for a lat-
tice. Notice that by using a lattice as the set of values of the
membership function we can accommodate situations i
which we can encounter elements of the universe of dis-
course which are not comparable.

Another quite and obvious extension, already men-
tioned but not developed by Zadeh [95,101] is the con-
cept of a type 2 fuzzy set. The rationale behind this con-
cept is obvious. One can easily imagine that the values of
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grades of membership of the particular elements of a uni-
verse of discourse are fuzzy sets themselves. And further,
these fuzzy sets may have grades of membership which are
type 2 fuzzy sets, which leads to type 3 fuzzy sets, and one
can continue arriving at type n fuzzy sets.

The next, natural extension is that instead of assuming
that the degrees of membership are real numbers from the
unit interval, one can go a step further and replace these
real numbers from [0; 1] by intervals with endpoints be-
longing to the unit interval. This leads to interval valued
fuzzy setswhich are attributed to Dubois and Gorzałlczany
(cf. Klir and Yuan [53]). Notice that by using intervals as
values of degrees of membership we significantly increase
our ability to represent imprecision.

Amore radical extension to the concept of Zade’s fuzzy
set is the so-called intuitionistic fuzzy set introduced by
Atanassov [1,2].

An intuitionistic fuzzy set A0 in a universe of dis-
course X is defined as

A0 D fhx; �A0 (x); �A(x)ijx 2 Xg (6)

where:

� The degree of membership is

�A0 : X ! [0; 1] ;

� the degree of non-membership is

�A0 : X ! [0; 1] ;

� and the condition holds

0 � �A0 (x)C �A0 (x) � 1 ; for each x 2 X :

Obviously, each (conventional) fuzzy set A in X cor-
responds to the following intuitionistic fuzzy set A0 in X:

AD fhx; �A0 (x); 1 � �A0 (x)ijx 2 Xg (7)

For each intuitionistic fuzzy set A0 in X, we call

�A0 (x) D 1 � �A0 (x) � �A0 (x) ; for each x 2 X (8)

the intuitionistic fuzzy index (or a hesitation margin) of x
in A0. The intuitionistic fuzzy index expresses a lack of
knowledge of whether an element x 2 X belongs to an in-
tuitionistic fuzzy set A0 or not.

Notice that the concept of an intuitionistic fuzzy set
is a substantial departure from the concept of a (conven-
tional) fuzzy set as it assumes that the degrees of mem-
bership and non-membership do not sum up to one, as it
is the case in virtually all traditional set theories and their

extensions. For more information, we refer the reader to
Atanassov’s [3] book.

We will not use these extensions in this short intro-
ductory article, and the interested readers are referred to
the source literature cited.

Basic Definition and Properties Related to Fuzzy Sets

We will now provide a brief account of basic definitions
and properties related to fuzzy sets. We illustrate them
with simple examples.

A fuzzy set A is said to be empty, written AD ;, if and
only if

�A(x) D 0 ; for each x 2 X (9)

and since we omit the pairs 0/x, an empty fuzzy set is really
void in the notation (4) as there are no singletons in the
right-hand side.

Two fuzzy sets A and B defined in the same universe
of discourse X are said to be equal, written AD B, if and
only if

�A(x) D �B(x) ; for each x 2 X (10)

Example 1 Suppose that X D f1; 2; 3g and

AD 0:1/1C 0:5/2C 1/3
B D 0:2/1C 0:5/2C 1/3
C D 0:1/1C 0:5/2C 1/3

then AD C but A ¤ C and B ¤ C.

It is easy to see that this classic definition of the equality of
two fuzzy sets by (10) is rigid and clear-cut, contradicting
in a sense our intuitive feeling that the equality of fuzzy
sets should be softer, and not abrupt, i. e. should rather be
to some degree, from zero to one. We will show below one
of possible definitions of such an equality to a degree.

Two fuzzy setsA and B defined inX are said to be equal
to a degree e(A; B) 2 [0; 1], written ADeB, and the degree
of equality e(A; B) may be defined in many ways exempli-
fied by those given below (cf. Bandler and Kohout [6]).

First, to simplify, we denote:
Case 1: AD B in the sense of (10);
Case 2: A¤ B in the sense of (10) and T D fx 2 X :

�A(x) ¤ �B(x)g;
Case 3: A¤ B in the sense of (10) and there exists an

x 2 X such that

�A(x) D 0 and �B(x) ¤ 0
or �A(x) ¤ 0 and �B(x) D 0 :
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Case 4: A¤ B in the sense of (10) and there exists an
x 2 X such that

�A(x) D 0 and �B(x) D 1
or �A(x) D 1 and �B(x) D 0 :

Now, the following degrees of equality of two fuzzy sets, A
and B, may be defined:

e1(A; B) D

8
<̂

:̂

1 for case 1
V

x2T [�A(x) ^ �B(x)] for case 2
0 for case 3

(11)

e2(A; B) D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

1 for case 1
V

x2T [�A(x)/�B (x)
��B(x)/�A(x)] for case 2
0 for case 3

(12)

e3(A; B) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

1 for case 1
1 �maxx2X j �A(x)
��B(x) j for case 2
0 for case 4

(13)

e4(A; B) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

1 for case 1
maxx2Xf[(1 � �A(x)]
^[�A(x) _ (1 � �B(x))]g for case 2
0 for case 4 :

(14)

Nowwe will proceed to the second basic concept of the
containment between two fuzzy sets.

A fuzzy set A defined in X is said to be contained in
or, alternatively, is said to be a subset of a fuzzy set B in X,
written A � B, if and only if

�A(x) � �B(x) ; for each x 2 X : (15)

Example 2 Suppose that X D f1; 2; 3g and

AD 0:1/1C 0:5/2C 1/4
B D 0:1/1C 0:4/2C 0:9/3
C D 0:1/1C 0:6/2C 1/3 ;

then only B � A.

This traditional definition of containment is clearly rigid
and clear-cut, and hence there have been proposed many
other softer definitions in which a degree of containment,
c(A; B) 2 [0; 1], has been employed. Once again, Ban-
dler and Kohout’s [6] definitions can be mentioned here,
and these basically follow the line of reasoning analo-
gous to that behind the degree of equality, i. e. (11)–

(14). The above definitions of the degree of equality and
containment are popular but not the only possible ones,
some remarks can be found in the books by Dubois and
Prade [28]!, Klir and Folger [51], Klir and Yuan [53].

Let us proceed now to some further relevant founda-
tional notions.

A fuzzy set A defined in X is said to be normal if and
only if

max
x2X

�A(x) D 1 (16)

i. e. when the membership function takes on the value of
one for at least one argument. Otherwise, the fuzzy set is
said to be subnormal.

Example 3 If X D f1; 2; 3g, AD 0:1/1C 0:5/2C 1/3 and
B D 0:1/1C 0:6/2C 0:9/3, then A is normal and B is sub-
normal.

Normally, it is desirable to work with normal fuzzy sets
since they may provide for some sort of context-free com-
parability, or a common ground or denominator. How-
ever, in many instances we obtain in the course of algo-
rithms or procedures subnormal fuzzy sets. They are then
often normalized although, unfortunately, the normaliza-
tion is not a straightforward solution and should be ap-
plied with care after some consideration.

We have now some important concepts of nonfuzzy
sets associated with a fuzzy set.

The support of a fuzzy set A in X, written suppA, is the
following (nonfuzzy) set

suppAD fx 2 X : �A(x) > 0g (17)

and, evidently, ; � suppA � X.

Example 4 If X D f1; 2; : : : ; 7g and A D 0:1/3 C 0:5/4
C 0:8/5C 1/6, then suppAD f3; 4; 5; 6g � f1; 2; : : : ; 7g.

The ˛-cut, or ˛-level set, of a fuzzy set A in X, written A˛ ,
is defined as the following (nonfuzzy) set

A˛ D fx 2 X : �A(x) � ˛g; for each ˛ 2 (0; 1] (18)

and if � in (18) is replaced by >, then we have the strong
˛-cut, or strong ˛-level set, of a fuzzy set A in X. In prin-
ciple, we will use the ˛-cuts given by (18) if not otherwise
specified.

Example 5 If X D f1; 2; 3; 4g and A D 0:1/1 C 0:5/2 C
0:8/3C 1/4, then we obtain the following ˛-cuts

A0:1 D f1; 2; 3; 4g A0:5 D f2; 3; 4g
A0:8 D f3; 4g A1 D f4g :
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The ˛-cuts have many interesting and relevant properties,
and among them one can mention the following one

˛1 � ˛2 () A˛1 � A˛2 : (19)

The ˛-cuts play an extremely relevant role in both for-
mal analysis and applications as they make it possible to
uniquely replace a fuzzy set by a sequence of nonfuzzy sets.
We will widely use them in the sequel, and the interested
reader is referred for details and properties to any book on
fuzzy sets theory as, e. g., Dubois and Prade [28], Klir and
Folger [51] or Klir and Yuan [53].

The following theorem, called the representation theo-
rem (cf. Negoita and Ralescu [67]), is very relevant both in
theoretical analysis and applications.

Theorem 1 Each fuzzy set A in X can be represented as

AD
X

˛2(0;1]

˛A˛ ; (20)

where A˛ is an ˛-cut of A defined as (19), ˙ is in the set-
theoretic sense, and ˛A˛ denotes the fuzzy set whose degrees
of membership are

�˛A˛ (x) D

(
˛ for x 2 A˛
0 otherwise :

(21)

The expression (20) is also called the resolution identity.

Example 6 Let X D f1; 2; : : : ; 10g, and A D 0:1/2 C
0:3/3C 0:6/4C 0:8/5C 1/6C 0:7/7C 0:4/8C 0:2/9.

Then:

AD
X

˛2(0;1]

˛A˛ D 0:1(1/2C 1/3C 1/4C 1/5C 1/6

C 1/7C 1/8C 1/9)C 0:3(1/3C 1/4C 1/5
C 1/6C 1/7C 1/8C 1/9)C 0:6(1/4C 1/5
C 1/6C 1/7)C 0:7(1/5C 1/6C 1/7)
C 0:8(1/5C 1/6)C 1(1/6) D 0:1/2C 0:3/3
C 0:6/4C 0:8/5C 1/6C 0:7/7C 0:4/8C 0:2/9 :

Notice that the very essence of the presentation theorem is
that each fuzzy sets can be uniquely represented by a set of
its ˛-cuts.

An important issue, both in theory and application, is
to be able to define the cardinality of a fuzzy set, i. e. to
define how many elements it contains. Unfortunately, this
is a difficult problem, and the definitions proposed have
been criticized. We will discuss below two of them which
are presumably the most widely used.

A nonfuzzy cardinality of a fuzzy set AD �A(x1)/x1C
: : : C �A(xn)/xn , the so-called sigma-count, denoted
˙Count(A), is defined as (cf. Zadeh [100,101])

˙Count(A) D
nX

iD1

�A(xi) : (22)

Example 7 If AD 1/x1C0:8/x2C0:6/x3C0:2/x4C0/x5,
then

˙Count(A) D 1C 0:8C 0:6C 0:2 D 2:6 :

The ˙Count is very simple, and is hence widely used.
However, an immediate objection may be that the set is
fuzzy but its cardinality is not. A solution in this respect,
a fuzzy cardinality, was proposed by Zadeh [101], and it is
shown below. Unfortunately, it is more complicated than
a nonfuzzy cardinality defined by (22).

Let A be a fuzzy set defined in X, and A˛ , for each
˛ 2 (0; 1], its ˛-cuts defined by (19). First, Zadeh [101] in-
troduces the FGCount(A) as the fuzzy integer defined as

FGCount(A) D f1/0g
X

˛2(0;1]

˛/card(A˛) (23)

where
P

is in the set-theoretic [cf. (4)], card(A˛) is the
usual number of elements inA˛ , and 1/0means the integer
number 0.

Equivalently, if A is defined in X such that card(X) D
n, then for each non-negative integer i D 0; 1; : : : ; n, we
denote

FGCount(A)i D
X

˛2(0;1]

f˛ : card(A˛) � ig : (24)

Semantically, FGCount(A)i is the truth of the propo-
sition A contains at least i elements.

Next, Zadeh [101] introduces the FLCount(A) which
is defined as the truth of the proposition, “A contains at
most i elements”, i. e.

FLCount(A) D :[FGCount(A)] � 1 ; (25)

where:[:] is the complement to be defined by (32), and�
is the subtraction in the sense of fuzzy numbers (64).

Similarly as in (24), ifA is defined in X D f1; 2; : : : ; ng,
then we can denote

FLCount(A)i D sup
˛2(0;1]

f˛ : card(A˛) � n � ig : (26)

Notice that

FGCount(A)i D 1 � FLCount(A)iC1 ;

for i D 1; 2; : : : ; n (27)
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Finally, Zadeh [101] introduces the FECount(A) as

FECount(A) D FGCount(A) \ FLCount(A) (28)

or, similarly as above,

FECount(A)i D FGCount(A)i ^ FLCount(A)i ;
i D 1; 2; : : : ; n (29)

where \ and ^ denote the intersection of two fuzzy sets
and the minimum operations, respectively, as in (34).

Example 8 For the same fuzzy set as in Example 7, i. e.
AD 1/x1 C 0:8/x2 C 0:6/x3 C 0:2/x4 C 0/x5, we obtain

FGCount(A) D 1/0C 1/1C 0:8/2C 0:6/3C 0:2/4
C 0/5

FLCount(A) D 0/0C 0:2/1C 0:4/2C 0:6/3
C 0:2/4C 0/5

FECount(A) D 0/0C 0:2/1C 0:4/2C 0:6/3
C 0:2/4C 0/5 :

The above classical definitions of the cardinality of a fuzzy
set are widely employed, in particular the nonfuzzy cardi-
nality˙Count. However, the problem of how to define the
cardinality of a fuzzy set is conceptually difficult, and the
best source are here Wygalak’s [89,90] books.

An important issue, which is widely used in applica-
tions, is a distance between two fuzzy sets. In practice, nor-
malized distances are clearly more interesting. In the liter-
ature [42], and in this book too, the following two basic
definitions are used.

Suppose that we have two fuzzy sets, A and B, both
defined in X D fx1; : : : ; xng. Then, we have the following
two basic (normalized) distances:

� The normalized linear (Hamming) distance between A
and B in X defined as

l(A; B) D
1
n

nX

iD1

j �A(xi) � �B(xi) j : (30)

� The normalized quadratic (Euclidean) distance be-
tween A and B in X defined as

q(A; B) D

vu
ut 1

n

nX

iD1

[�A(xi) � �B(xi)]2 (31)

Example 9 If X D f1; 2; : : : ; 7g, A D 0:7/1 C 0:2/2 C
0:6/4C 0:5/5C 1/6 and B D 0:2/1C 0:6/4C 0:8/5C 1/7,
then:

l(A; B) D 0:37 q(A; B) D 0:49 :

Now we will proceed to the basic set-theoretic and alge-
braic operations on fuzzy sets. They are clearly crucial for
both theoretical analysis and applications.

Basic Operations on Fuzzy Sets

Similarly as in the conventional (nonfuzzy) set theory, the
basic operations in fuzzy set theory are also the comple-
ment, intersection and union which will be defined below.

The complement of a fuzzy set A in X, written :A, is
defined as

�:A(x) D 1 � �A(x) ; for each x 2 X (32)

and the complement corresponds to the negation, not.

Example 10 If X D f1; 2; 3g and AD 0:1/1C0:7/2C1/3,
then :AD 0:9/1C 0:3/2.

The idea of the complement can be portrayed as in Fig. 3.
This definition is the most widely used due to its

simplicity and some important mathematical properties.
Sometimes different definitions can be justified and useful
in specific contexts as, for instance when X D [0; 1], we
have the following

�:A(x) D �A(1 � x) ; for each x 2 [0; 1] : (33)

The intersection of two fuzzy sets A and B in X, written
A\ B, is defined as

�A\B (x) D �A(x) ^ �B(x) ; for each x 2 X (34)

where^ is the minimumoperation, i. e. a^b D min(a; b);
the intersection of two fuzzy sets corresponds to the con-
nective and

Example 11 If X D f1; 2; 3; 4g, and A D 0:2/1 C 0:5/2
C 0:8/3 C 1/4 and B D 1/1 C 0:8/2 C 0:5/3 C 0:2/4,
then we obtain by (34) A \ B D 0:2/1 C 0:5/2 C 0:5/3
C 0:2/4.

Fuzzy Sets Theory, Foundations of, Figure 3
The complement of a fuzzy set
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Fuzzy Sets Theory, Foundations of, Figure 4
Membership function of a fuzzy set, integer numbers which are
more or less six

Fuzzy Sets Theory, Foundations of, Figure 5
The union of two fuzzy sets

The intersection can be illustrated as in Fig. 4 where
�A\B (x) is shown in bold line.

The union of two fuzzy sets A and B in X, written
AC B, is defined as

�ACB(x) D �A(x) _ �B(x) ; for each x 2 X (35)

where_ is themaximumoperation, i. e. a_b D max(a; b);
the union of two fuzzy sets corresponds to the connective
“or”.

Example 12 If X D f1; 2; 3; 4g, and A D 0:2/1 C 0:5/2
C 0:8/3C 1/4 and B D 1/1C 0:8/2C 0:5/3C 0:2/4, then
AC B D 1/1C 0:8/2C 0:8/3C 1/4.

The union can be portrayed as in Fig. 5 in which �ACB(x)
is shown in bold line.

The above definitions of the basic operations are
widely used, and justified. However, other definitions are
often employed too. In particular, for the intersection and
union the t-norms and s-norms are popular.

A t-norm is defined as

t : [0; 1] � [0; 1] �! [0; 1] (36)

such that, for each a; b; c 2 [0; 1]:

1. It has 1 as the unit element, i. e. t(a; 1) D a,
2. It is monotone, i. e. a � b H) t(a; c) � t(b; c),

3. It is commutative, i. e. t(a; b) D t(b; a), and
4. It is associative, i. e. t[a; t(b; c)] D t[t(a; b); c].

Some more relevant examples of t-norms are:

� The minimum (which is the most widely used)

t(a; b) D a ^ b D min(a; b) ; (37)

� the algebraic product

t(a; b) D a � b ; (38)

� the Łukasiewicz t-norm

t(a; b) D max(0; aC b � 1) (39)

and notice that we have written above both t(a; b) and atb.
An s-norm (or a t-conform) is defined as

s : [0; 1; ] � [0; 1] �! [0; 1] (40)

such that, for each a; b; c 2 [0; 1]:

1. It has 0 as the unit element, i. e. s(a; 0) D a,
2. it is monotone, i. e. a � b H) s(a; c) � s(b; c),
3. it is commutative, i. e. s(a; b) D s(b; a), and
4. it is associative, i. e. s[a; s(b; c)] D s[s(a; b); c].

Some more relevant examples of s-norms are:

� The maximum (which is the most widely used)

s(a; b) D a _ b D max(a; b) ; (41)

� the probabilistic product

s(a; b) D aC b � ab ; (42)

� the Łukasiewicz s-norm

s(a; b) D min(a C b; 1) : (43)

Notice that a t-norms is dual to an s-norms in that
s(a; b) D 1 � t(1 � a; 1 � b).

The t-norms and s-norms are very important for fuzzy
sets theory, and among a multitude of works dealing with
them, the most complete reference is provided by Kle-
ment, Mesiar and Pap’s [49] book.

Notice that while defining the basic concepts and op-
erations on fuzzy sets we have always referred to their lin-
guistic sense. This is very important because without such
a linguistic connection it would have been very difficult to
provide semantics of both the very concept of a fuzzy set
and the operations. This is very relevant and has great im-
plications for the development of fuzzy sets related tools
and techniques as we will see later.
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As to some other operations on fuzzy sets that may be
of use in this book, one should also mention the following
ones.

The product of a scalar a 2 R and a fuzzy set A in X,
written aA, is defined as

�aA(x) D a�A(x) ; for each x 2 X (44)

where, by necessity, 0 � a � 1/�A(x), for each x 2 X.
The kth power of a fuzzy set A in X, written Ak, is de-

fined as

�Ak (x) D [�A(x)]k ; for each x 2 X ; (45)

where k 2 R and, evidently, 0 � [�A(x)]k � 1.
An important issue is the adequacy of the operations

on fuzzy sets, i. e. whether they do reflect the real human
perception of their essence, i. e. whether they really re-
flect the semantics of “not,” “and,” “or,” etc. Diverse ap-
proaches have been used to find and justify a particular
definition. These approaches may be classified as:

� Intuitive as the original Zadeh’s [95,97] works in which
it is shown by a rational argument that the operations
defined are proper,

� axiomaticwhose line of reasoning is to assume some set
of plausible conditions to be fulfilled, and then to show
using some analytic tools that definitions assumed are
the only possible ones; this may be exemplified by Bell-
man and Giertz [7],

� experimental whose essence is to devise some psycho-
logical tests for a group of certain individuals, and then
use the responses to find which operation is best jus-
tified; this may be exemplified by Zimmermann and
Zysno [111].

Now we will present the concept of a fuzzy relation which
is, as its nonfuzzy counterpart, crucial for the theory and
applications.

Fuzzy Relations

The concept of a relation is crucial for virtually all areas of
mathematics and its applications, and the same holds true
for fuzzy sets theory and its applications.

A fuzzy relation R between two (nonfuzzy) sets
X D fxg and Y D fyg is defined as a fuzzy set in the Carte-
sian product X � Y , i. e.

R D f(�R (x; y); (x; y))g D f�R (x; y)/(x; y)g ;
for each (x; y) 2 X � Y (46)

where �R (x; y) : X � Y �! [0; 1] is the membership
function of the fuzzy relation R, and �R (x; y) 2 [0; 1]

gives the degree to which the elements x 2 X and y 2 Y
are between each other in relation R.

The above fuzzy relation is defined in the Cartesian
product of (nonfuzzy!) two sets, X and Y , and is called
a binary fuzzy relation. In general, a fuzzy relation may be
defined in the Cartesian product of k sets, X1 � : : : � Xk ,
and is then called a k-ary fuzzy relation. In this perspective,
a fuzzy set is an unary fuzzy relation.

Example 13 If X D fhorse; donkeyg and Y D fmule;
cowg, then the fuzzy relation R labeled similarity may be
exemplified by

R D similarityD 0:8/(horse, mule)C 0:4/(horse, cow)
C 0:9/(donkey, mule)
C 0:2/(donkey, cow)

to be read as: The horse and the mule are similar (with
respect to our own subjective aspects!) to degree 0.8, i. e.
to a very high extent, the horse and the cow are similar to
degree 0.4, i. e. to quite a low extent, etc.

It may easily be seen that the concept of a fuzzy relation
makes it possible to express an imprecise, or imprecisely
specified, relationship between elements of some sets, as
opposed to a precise and abrupt one in the case of a non-
fuzzy relation in which any two elements can either be or
not in relation.

A fuzzy relation R in X � Y for X and Y of a suf-
ficiently low dimensionality may be conveniently repre-
sented in matrix form exemplified, for the fuzzy relation
R D similarity in Example 13, by

R D similarityD
y D mule cow

x D horse 0:8 0:4
donkey 0:9 0:2

Since a fuzzy relation is a fuzzy set, all the defini-
tions, properties, operations, etc. on fuzzy sets presented
in Sects. “The Idea of a Fuzzy Set” – “Basic Operations on
Fuzzy Sets” hold as well, and we will concentrate below on
those more specific ones.

The max-min composition of two fuzzy relations R in
X � Y and S in Y � Z, written R ımax�min S is defined as
a fuzzy relation in X � Z such that

�Rımax�minS(x; y) D max
y2Y

[�R (x; y) ^ �S (y; z)] ;

for each x 2 X ; z 2 Z (47)

and since this type of composition will be used throughout
this paper, if not otherwise specified, then it will be briefly
denoted as R ı S.
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Example 14 If X D f1; 2g, Y D f1; 2; 3g and Z D f1;
2; 3; 4g, and the fuzzy relations R and S are as below. Its
resulting max-min composition, R ı S, is then:

R ı S D
y D 1 2 3

x D 1 0:3 0:8 1
2 0:9 0:7 0:4

ı

z D 1 2 3 4
y D 1 0:7 0:6 0:4 0:1

2 0:4 1 0:7 0:2
3 0:5 0:9 0:6 0:8

D

z D 1 2 3 4
x D 1 0:5 0:9 0:7 0:8

2 0:7 0:7 0:7 0:4

This max-min composition of fuzzy relations is the origi-
nal Zadeh’s definition (cf. Zadeh [97]), and is certainly the
most widely used. However, if we notice that the two ba-
sic operations involved in the definition of their composi-
tion, i. e.min (^) andmax (_) are just specific examples of
the t-norm and s-norm (t-conorm) discussed in Sect. “Ba-
sic Operations on Fuzzy Sets”, then one can well define
a much more general type of composition given below.

The s � t-norm composition of two fuzzy relations R
in X � Y and S in Y � Z, written R ıs�t S, is defined as
a fuzzy relation in X � Z such that

�Rıs�t S (x; z) D sy2Y [�R (x; y)t�S (y; z)] ;
for each x 2 X ; z 2 Z : (48)

Fuzzy relations, similar to their nonfuzzy counterparts,
play a crucial role in virtually all aspects of the theory and
application of fuzzy sets, notably in tule based fuzzy mod-
eling discussed later in this paper. An important issue is
related to so-called fuzzy relational equations. We will not
deal with this due to lack of space, and we refer the inter-
ested reader to, for instance, the recent book by Peeva and
Kyosev [72].

Finally, let us mention two concepts concerning the
fuzzy sets that are related to fuzzy relations.

The Cartesian product of two fuzzy sets A in X and B
in Y , written A� B, is defined as a fuzzy set in X � Y such
that

�A�B (x; y) D [�A(x) ^ �B(y)] ;
for each x 2 X ; y 2 Y : (49)

A fuzzy relation R in X � Y � : : : � Z is said to be de-
composable if and only if it can be represented as

�R(x; y; : : : ; z) D �Rx (x) ^ �Ry (y) ^ : : : ^ �Rz (z) ;

for each x 2 X ; y 2 Y ; : : : ; z 2 Z ; (50)

where �Rx (x); �Ry (y); : : : ; �Rz (z) are projections of the
fuzzy relation �R(x; y) on X, Y ; : : : ; Z, respectively, de-
fined as

�Rx (x) D sup
fy;:::;zg2Y�Z

�R (x; y; : : : ; z) ;

for each x 2 X (51)

Fuzzy relations play a major role in fuzzy sets theory
and its applications, and will also be relevant for some of
our next considerations.

Linguistic Variable, Fuzzy Conditional Statement,
and Compositional Rule of Inference

We have already mentioned that while defining various
concepts and properties of fuzzy sets it is expedient to
use natural language because linguistic terms and descrip-
tions best provide semantics. Now we will briefly present
the essence of Zadeh’s [97] linguistic approach in which
this fact has been exploited to an even greater extent. This
approach has inspired and triggered many new areas of
research, notably fuzzy control which has resulted in so
many real-world applications in diverse areas and has been
a decisive factor in the so-called fuzzy boom which was
started in the mid-1980s by the launching of a multitude
of domestic appliances and professional products exem-
plified by fuzzy logic-controlled washing machines, cam-
eras, automobile automatic transmissions, cranes, subway
trains, etc. These applications have been decisive for a wide
acceptance of fuzzy logic as a powerful and potentially use-
ful tool.

Basically, the rationale behind Zadeh’s [97] linguistic
approach to the analysis of complex systems and decision
(and control) processes is that the basic element is a lin-
guistic variable exemplified by “temperature” which takes
on as their values not conventional numerical values as,
e. g., 150°C, but linguistic values as, e. g., “high,” “low,” etc.
that are in turn equated semantically with some fuzzy sets.
Notice that such linguistic values are common in human
discourse as natural language is the only fully natural hu-
manmeans of communication. Clearly, one can then form
more complex linguistic expressions as, e. g., “not very low
and not very high,” “more or less medium,” etc. by using
some connectives (e. g., and, or, . . . ), modifiers (e. g., more
or less, very, . . . ), etc. (see also Sect. “Fuzzy Logic – Basic
Issues”), and employing a syntactic analysis.

To represent a relationship between linguistic vari-
ables, fuzzy conditional statements are employed. For in-
stance, if we have two linguistic variables, a primary one L
and a secondary one K , such that the value of L is a fuzzy
set A in X, and the value of K is a fuzzy set B in Y , then
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a relationship between L and K , in terms of their values A
and B, respectively, may be written as

IF L D A THEN K D B (52)

or, shortly

IF A THEN B : (53)

This fuzzy conditional statement is now assumed to be
equivalent to

IF A THEN B D A� B (54)

i. e. to the Cartesian product (49) of the two fuzzy sets A
and B which is in turn a fuzzy relation in X � Y .

Notice that this is what Mamdani [61] used in his con-
troller, and which is often called Mamdani’s implication
(though it is not an implication!). This definition is the
simplest one, and we can devise more sophisticated ones
by using, e. g., various definitions of implication (80)–(85).

It is easy to see that the fuzzy conditional statement
(53) may be extended to account for multiple values of A
and B obtaining, if we use (54),

IF A1 THEN B1 ELSE : : : ELSE
IF An THEN Bn D A1 � B1C : : :C An � Bn ;

(55)

where Ai’s are fuzzy sets in X and Bi’s are fuzzy sets in
Y ; i D 1; : : : ; n.

Notice that in (53) and (55) we only specify what hap-
pens if the primary variable takes on some value. It is of-
ten, however, also relevant to explore what happens if that
value is not taken. In such a case (53) becomes

IF A THEN B ELSE C (56)

and it is represented as

IF A THEN B ELSE C D A�BC:A�C : (57)

Evidently, one can generalize the above fuzzy condi-
tional statements to involve more than one primary vari-
able. For details, we refer the reader to, e. g., Zadeh [97].

We therefore have some tool to represent a relation be-
tween a primary and secondary variable that is represented
by some fuzzy relation. An immediate question is then:

If the primary variable takes on some fuzzy value,
say A0, and we have a (fuzzy) relation, IF A THEN
B, then what will be the implied (inferred) value of
the secondary variable B0?

This may be represented by the inference scheme

A0

IF A THEN B

B0 D ?

(58)

and, what is the very essence, the fuzzy values A0 and A
need not be the same (notice that this prohibits the use of
conventional logical inference tools).

The answer to the question (58) is provided by the
compositional rule of inference which states that if R in
X � Y is a fuzzy relation representing a dependence be-
tween a primary and secondary variable, represented by
a fuzzy conditional statement, and the primary variable
takes on a fuzzy value A0 in X, then the implied fuzzy value
of the secondary variable B0 in Y is given by the (max-min)
composition (47) of A0 and R, i. e.

�B0 (y) D max
x2X

[�A(x)^�R (x; y)]; for each y 2 Y (59)

and notice that A0 is here considered to be a unary fuzzy
relation as mentioned in Sect. “Fuzzy Relations”.

Example 15 Suppose that X D fxg D f1; 2; 3g and
Y D fyg D f1; 2; 3; 4g, and the fuzzy conditional state-
ment representing the dependence between L and K is

IF L D low THEN K D high D (low) ı (high)

where

low D 1/1C 0:7/2C 0:3/3
high D 0:2/1C 0:5/2C 0:8/3C 1/4

and is equivalent to the following fuzzy relation

R D (low)ı (high) D

y D 1 2 3 4
x D 1 0:2 0:5 0:8 1

2 0:2 0:5 0:7 0:7
3 0:2 0:3 0:3 0:3

If now L D medium D 0:5/1C 1/2C 0:5/3, then theK in-
duced is given by

K D (medium) ı R D max
x2f1;2;3g

[�L(x) ^ �R (x; y)]

D 0:2/1C 0:5/2C 0:7/3C 0:7/4

The fuzzy conditional statementsmay be used to represent
simple dependencies and relations between linguistic vari-
ables. For more complicated dependencies and relations,
fuzzy algorithms may be used (cf. Zadeh [97]) which will
not be dealt with here.
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A further extension in the spirit of the linguistic ap-
proach presented in this section is Zadeh’s computing with
words or, more generally, computing with words and per-
ceptions.Wewill not deal with this andwill refer the reader
to a comprehensive coverage of main theoretical issues,
and many applications, related to this approach which is
given in Zadeh and Kacprzyk [105,106].

The Extension Principle

Now we will briefly present the essence of Zadeh’s clas-
sic extension principle (cf. Zadeh [97]) which is one of
the most important and powerful tools in fuzzy sets the-
ory. The extension principle addresses the following fun-
damental issue:

If there is some relationship (e. g., a function) be-
tween conventional (nonfuzzy) entities (e. g., vari-
ables taking on nonfuzzy values, then what is its
equivalent relationship between fuzzy entities (e. g.,
variables taking on fuzzy values)?

The extension principle makes it therefore possible, for
instance, to extend some known conventional models, al-
gorithms, etc. involving nonfuzzy variables to the case of
fuzzy variables.

Let A1; : : : ;An be fuzzy sets in X1 D fx1g; : : : ; Xn D

fxng, respectively, and

f : X1 � : : : � Xn �! Y (60)

be some (nonfuzzy) function such that y D f (x1; : : : ; xn).
Then, according to the extension principle, the fuzzy

set B in Y D fyg induced by the fuzzy sets A1; : : : ;An via
the function f (60) is

�B(y) D max
(x1;:::;xn)2X1�:::�Xn : yD f (x1;:::;xn)

n̂

iD1

�Ai (xi ) :

(61)

Example 16 Suppose that: X1 D f1; 2; 3g, X2 D f1; 2;
3; 4g, f represents the addition, i. e. y D x1 C x2, A1 D

0:1/1C 0:6/2C 1/3 and A2 D 0:6/1C 1/2C 0:5/3C 0:1/4,
then

B D A1 C A2

D 0:1/2C 0:6/3C 0:6/4C 1/5C 0:5/6C 0:1/7

and notice that C is used here in both the arithmetic (the
sum of real and fuzzy numbers – cf. Sect. “Fuzzy Num-
bers”) and set-theoretic sense which should not lead to
confusion.

Equivalently, the extension principle (61) may also be
written in terms of the ˛-cuts (18). Namely, suppose for
simplicity that f : X �! Y , X D fxg, Y D fyg, and A˛ ,
for each ˛ 2 (0; 1], are ˛-cuts of A. Then, the fuzzy set B
in Y , induced by A via the extension principle is given as

B D f (A) D f

0

@
X

˛2(0;1]

˛ � A˛

1

A D
X

˛

˛ f (A˛) (62)

which is clearly implied by the representation theorem
(Theorem 1).

Notice that the extension principle plays an extraordi-
nary role in the sense that we have a multitude of non-
fuzzy tools like algorithms, procedures, etc. which have
beenwidely used to solve various problems. However, they
need precise information, notably real or integer numbers,
real intervals, etc. We have neither fuzzy computers nor
fuzzy tools of the type mentioned above so that we are not
in a position to directly use imprecise information to solve
our problems. However, by virtu of the extension princi-
ple we can extend our known nonfuzzy tools and tech-
niques (their related algorithms and procedures) to their
fuzzy counterparts.

Fuzzy Numbers

The same fundamental role as played by nonfuzzy (real,
integer, . . . ) numbers in conventional models, the fuzzy
numbers play in fuzzy models.

A fuzzy number is defined as a fuzzy set in R, the real
line. Usually, but not always, it is assumed to be a normal
and convex fuzzy set. For example, the membership func-
tion of a fuzzy number that is more or less six may be as
shown in Fig. 6, i. e. as a bell-shaped function.

For our purposes, operations on fuzzy numbers are
the most relevant. It is easy to notice that their definitions
may readily be obtained by applying the extension princi-
ple (61).

Suppose therefore that A and B are two fuzzy numbers
in R D fxg characterized by their membership functions

Fuzzy Sets Theory, Foundations of, Figure 6
The membership function of a fuzzy numbermore or less six



4072 F Fuzzy Sets Theory, Foundations of

�A(x) and �B(x), respectively. Then the extension princi-
ple yields the following definitions of the four basic arith-
metic operations on fuzzy numbers:

� Addition

�ACB(z) D max
xCyDz

[�A(x)^�B(y)] ; for each z 2 R ;

(63)

� Subtraction

�A�B (z) D max
x�yDz

[�A(x)^�B (y)] ; for each z 2 R ;

(64)

� Multiplication

�A�B (z) D max
x �yDz

[�A(x)^�B(y)] ; for each z 2 R ;

(65)

� Division

�A/B (z) D max
x/yDz;y¤0

[�A(x)^�B (y)]; for each z 2 R :

(66)

In some applications, the following one-argument op-
erations on fuzzy numbers may also be of use:

� The opposite of a fuzzy number

��A(x) D �A(�x) ; for each x 2 R ; (67)

� the inverse of a fuzzy number

�A�1 (x) D �A

�
1
x

�
; for each x 2 R n f0g : (68)

In practice, however, such a general definition of fuzzy
numbers and operations on them is seldom used. Nor-
mally a further simplification is made, namely the fuzzy
numbers are assumed to be triangular and eventually
trapezoid fuzzy numbers whose membership functions are
sketched in Fig. 7.

For triangular and trapezoid fuzzy numbers, for the
four basic operations, i. e. the addition, subtraction, mul-
tiplication and division, special formulas can be devised
whose calculation is simpler than that of (63)–(66). More-
over, a crucial problem of comparison of two fuzzy num-
bers may also be simplified. For details, we will refer
the reader to a rich literature exemplified by Dubois and
Prade [28], Kaufmann and Gupta [48], Klir and Fol-
ger [51], Klir and Yuan [53], Maresš [62], Hanss [41], etc.

Fuzzy Sets Theory, Foundations of, Figure 7
Triangular (about four) and trapezoid (more or less between six
and seven) fuzzy numbers

Fuzzy Events and Their Probabilities

Fuzziness and randomness are meant, in our perspective,
as two aspects of imperfect information. Fuzziness is meant
to concern entities and relations which are not crisply de-
fined, with gradual transition between the elements be-
longing and not belonging to a class. Randomness con-
cerns situations in which the event is well defined but it
occurrence is uncertain.

However, in practice and in everyday discourse there
is an abundance of situations in which there jointly oc-
cur fuzziness and randomness, for instance, when we ask
about the probability of cold weather tomorrow or of a high
inflation in the next year, we have an imprecise (fuzzy)
event – cold weather and high inflation, respectively. To be
able to formally deal with such problems, we need a con-
cept of a fuzzy event, and that of a probability of a fuzzy
event.

The first approach in this respect is due to Zadeh [96].
Its point of departure is the concept of a fuzzy event
which is simply a fuzzy set A in X D fxg D fx1; : : : ; xng
whose membership function is Borel measurable. We
assume that the probabilities of the (nonfuzzy) ele-
mentary events x1; : : : ; xn 2 X are known and equal to
p(x1); : : : ; p(xn) 2 [0; 1], respectively, with p(x1)C : : :C
p(xn) D 1.

As to some more important concepts related to fuzzy
events, the following may be stated.

Two fuzzy events A and B in X are independent if and
only if

p(AB) D p(A)p(B) : (69)

The conditional probability of a fuzzy eventA inX with
respect to a fuzzy event B in X is denoted p(A j B) and
defined as

p(A j B) D
p(AB)
p(B)

; p(B) > 0 (70)
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and if the fuzzy events A and A are independent, then

p(A j B) D p(A) (71)

Notice that both of the above concepts are analogous to
their nonfuzzy counterparts.

The (nonfuzzy) probability of a fuzzy event A
in X D fx1; : : : ; xng is denoted p(A) and defined by
Zadeh [96] as

p(A) D
nX

iD1

�A(xi)p(xi ) (72)

i. e. as the expected value of the membership function ofA,
�A(x).

Example 17 Suppose that X D f1; 2; : : : ; 5g, p(x1) D 0:1,
p(x2) D 0:1, p(x3) D 0:1, p(x4) D 0:3, p(x5) D 0:4, and
AD 0:1/2C 0:5/3C 0:7/4C 0:9/5.

Then

p(A) D 0:1�0:1C0:1�0:5C0:3�0:7C0:4�0:9 D 0:73:

Notice that Zadeh’s [96] (nonfuzzy) probability of a fuzzy
event (72) satisfies:

1. p(;) D 0,
2. p(:A) D 1 � p(A),
3. p(AC B) D p(A)C p(B) � p(A\ B),
4. and

p

 rX

iD1

Ai

!

D

rX

iD1

p(Ai )�
rX

jD1

rX

kD1;k< j

p(Aj \ Ak)

C

rX

jD1

rX

kD1;k< j

rX

lD1;l<k

p(Aj \ Ak \ Al )

C : : :C (�1)rC1p(A1 \ A2 \ : : : \ Ar)

so it does make sense to term the expression (72) a “prob-
ability.”

The above Zadeh’ [96] classic definition of a (non-
fuzzy) probability of a fuzzy event is by far the most pop-
ular and most widely used. However, though the event is
fuzzy, its probability is nonfuzzy, i. e. is a real number from
the unit interval. This may be viewed counter-intuitive but
provides simplicity. For some approaches to a fuzzy prob-
ability of a fuzzy event, see, e. g., Klir and Folger [51] or
Klir and Yuan [53].

Defuzzificationof Fuzzy Sets

In many applications we arrive at a fuzzy result. However,
in it is a crisp (non-fuzzy) result that should be applied.

A notable example is fuzzy control (cf. Driankov, Hellen-
doorn and Reinfrank [27] or Kacprzyk [44].

Suppose that we have a fuzzy set A defined in X D
fx1; x2; : : : ; xng, i. e. AD �A(x1)/x1C�A(x2)/x2C : : :C
�A(xn)/xn . We need to find a crisp number a 2 [x1; xn]
which best representsA. Notice that we assume here thatA
is defined in a finite universe of discourse, but its corre-
sponding defuzzified number a need not be in general any
of the finite values of X but should be between the lowest
and highest elements of X (evidently, this requires some
ordering of xi’s but this is clearly satisfied as xi’s are in vir-
tually all practical cases just real numbers).

The most commonly used defuzzification procedure is
certainly the center-of-area, also called the center-of-grav-
ity, method whose essence is

a D
Pn

iD1 xi�A(xi )Pn
iD1 �A(xi )

: (73)

The above defuzzification (73) is however often too com-
plex if our analysis involves, e. g., some optimization (cf.
Kacprzyk [44]). In such a case one needs to resort to
an even simpler defuzzification method which simply
assumes that the defuzzified value of a fuzzy value is
xi 2 X D fx1; : : : ; xng for which �A(x) takes on its maxi-
mum values, i. e.

�A(a) D max
xi2X

�A(x) (74)

with an obvious extension that if the A determined in (74)
is not unique, then we take, say, the mean value of such
equivalent a’s.

In Sect. “Bellman and Zadeh’s General Approach to
Decision Making Under Fuzziness” we will provide a jus-
tification of the above maximizing-value-type defuzzifica-
tion procedure in the framework of decision making.

There is a whole array of other defuzzification pro-
cedures, and the reader is referred to, e. g., Driankov,
Hellendorn and Reinfrank [27], Kacprzyk [44], Klir and
Yuan [53] or Yager and Filev [92].

Fuzzy Logic – Basic Issues

The concept of a fuzzy logic is not uniquely understood.
Basically, it may be meant in (at least) the three following
ways:

� As a foundation of reasoning based on ambiguous,
vague and imprecise statements (cf. Goguen [38]),

� as a foundation of reasoning based on ambiguous,
vague and imprecise statements in which fuzzy set-the-
oretic tools are used (see, e. g., Zadeh [98]; or Zadeh and
Kacprzyk [104]), and
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� as a multivalued logic with truth values in the unit
interval in which the logical operations of negation,
union, intersection, implication, equivalence, etc. are
chosen in a special way, and have some fuzzy in-
terpretation (cf. Hájek [40] or Nová, Perfilieva and
Močkoř [71]).

It is easy to notice that the meaning of fuzzy logic in the
first and second sense is similar, though the generality of
the former is clearly higher, while its meaning in the third
way is different.

For the purposes of this paper, we will assume the third
view on fuzzy logic, and will present a very limited sur-
vey of basic issues. The interested reader is referred for
more detail on various aspects of fuzzy logic to Zadeh and
Kacprzyk’s [104] volume which is practically the only up-
to-date and exhaustive treatise on fuzzy logic available to-
day.

Notice what some authors mean by fuzzy logic is the
whole theory of fuzzy sets and related topics. We will not
follow this line of reasoning, and view fuzzy sets theory as
more set-theoretic while fuzzy logic as more logical.

Suppose that we have a statement (predicate) u is P de-
noted, for brevity, as P and exemplified by temperature
(u) is high (P), where u is a variable taking on its values
in a universe of discourse U D fug, and P is an imprecise
term equated with a fuzzy set in U, P D f�P(u)/ug.

For a specified value u 2 U the truth of u is P (or of P)
is denoted �(P) and meant to be �(u is P) D �(P) D
�P (u), for each u 2 U .

The following general definitions of basic logical oper-
ations (in terms of their respective truth values) are usually
employed:

� The negation of P, i. e. not P, denoted by :P:

�(:P) D 1 � �(P) ; (75)

� the intersection of P and Q, i. e. P and Q, denoted by
P \ Q:

�(P \ Q) D t[�(P); �(Q)] (76)

where t : [0; 1] � [0; 1] �! [0; 1] is a t-norm (36); the
original Zadeh’s definition is

�(P \ Q) D �(P) ^ �(Q) D min[�(P); �(Q)] ; (77)

� the union of P and Q, i. e. P or Q, denoted by P [ Q:

�(P [ Q) D s[�(P); �(Q)] (78)

where s : [0; 1] � [0; 1] �! [0; 1] is an s-norm (40); the
original Zadeh’s definition is

�(P [ Q) D �(P)_ �(Q) D max[�(P); �(Q)] ; (79)

� the implication, i. e. if P then Q, denoted by P H) Q,
which may be defined as, e. g.:
1. The Łukasiewicz implication

�(P H) Q) D minf1 � �(P)C �(Q); 1g ; (80)

2. the Gödel implication

�(P H) Q) D

(
1 if �(P) � �(Q)
�(Q) otherwise ;

(81)

3. the Goguen implication

�(P H) Q) D

(
1 if �(P) D 0

min
n
1; �(Q)
�(P)

o
otherwise ;

(82)

4. the Kleene–Dienes implication

�(P H) Q) D maxf1 � �(P); �(Q)g ; (83)

5. the Zadeh implication

�(P H) Q) D maxf1� �(P);minf�(P); �(Q)gg ;
(84)

6. the Reichenbach implication

�(P H) Q) D 1 � �(P)C �(P) � �(Q) ; (85)

� The equivalence, i. e. P is equivalent to Q or if P then Q
and if Q then P, denoted by P() Q:

�(P() Q) D �[(P H) Q) \ (Q H) P)] (86)

and we can assume an appropriate definition of the in-
tersection \ (34), and the implication H) (80)–(85).

Among some other important aspects of fuzzy logic, one
should mention the use of (fuzzy) linguistic quantifiers,
exemplified by most, almost all, a few, etc. which are com-
mon in everyday discourse but cannot be handled by con-
ventional logic in which only the two quantifiers are in
principle employed, i. e. the universal quantifier for all and
the existential quantifier for at least one.

A linguistically quantified statement is exemplified by
most experts are convinced andmay be generally written as

Qy0s are F ; (87)

where Q is a linguistic quantifier (e. g., most), Y D fyg is
a set of objects (e. g., experts) and F is a property (e. g., con-
vinced).
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Importance B may also be added to the linguistically
quantified statement (87) yielding

QBy0s are F (88)

exemplified by most (Q) of the important (B) experts (y0s)
are convinced (F).

For our purposes, the problem is to find the (degree
of) truth of such linguistically quantified statements (87)
and (88), denoted �(Qy0s are F) in the former case and
�(QBy0s are F) in the latter case, knowing the truth of
the statements, y is F, denoted �(y is F), for all y 2 Y .
Evidently, all these degrees of truth (truths) will be meant
as real numbers from the unit interval.

Fortunately enough these truth values may be found
by some fuzzy logic calculi [cf. Kacprzyk [44], Yager [91]
or Zadeh [101]. For lack of space we are unable to discuss
these issues here, and refer the reader to, e. g., the source
papers or Kacprzyk’s [44] book.

Fuzzy linguistic quantifiers are very relevant both for
theory and applications (ranging from decision analy-
sis, social choice, optimization and control to database
queries). The fuzzy linguistic quantifiers have a relation to
the so-called ordered weighted averaging (OWA) opera-
tors introduced by Yager in 1982, and we refer the reader
for a comprehensive coverage of their theory and applica-
tions to Yager and Kacprzyk’s [93] volume.

Bellman and Zadeh’s General Approach
to DecisionMaking Under Fuzziness

Fuzzy logic, the essence of which has been presented in
previous sections, has found applications in a multitude
of areas of science and technology, and a full coverage is
beyond the scope of our exposition.

Since decision making is by far the most well known,
omnipresent problem, we will just sketch the application
of fuzzy sets theory to the broadly perceived decision
making.

The purpose of this section is to provide the reader
with a brief introduction to Bellman and Zadeh’s [8] gen-
eral approach to decision making under fuzziness, orig-
inally termed decision making in a fuzzy environment,
a simple yet extremely powerful framework within which
virtually all fuzzy models related to decision making, opti-
mization and control have been dealt with.

In Bellman and Zadeh’s [8] setting the imprecision
(fuzziness) of the environment within which the deci-
sion making (control, . . . ) process proceeds is modeled
by the introduction of the so-called fuzzy environment
which consists of fuzzy goals, fuzzy constraints, and fuzzy
decision.

Suppose that we have some set of possible options
(or alternatives, variants, choices, decisions, . . . ), X D fxg,
which contains all the possible (relevant, feasible, . . . ) val-
ues, courses of action, etc.

The fuzzy goal is now defined as a fuzzy set in the setG
in the set of options X, characterized by its membership
function �G : X �! [0; 1] such that �G (x) 2 [0; 1] speci-
fies the grade of membership of a particular option x 2 X
in the fuzzy goal G.

The fuzzy constraint is similarly defined as a fuzzy setC
in the set of options X, characterized by its membership
function �C : X �! [0; 1] such that �C (x) 2 [0; 1] speci-
fies the grade of membership of a particular option x 2 X
in the fuzzy constraint C.

The fuzzy goal and fuzzy constraint are illustrated in
Example 18.

As to the interpretation of fuzzy goals and/or con-
straints (notice that their definitions do indicate an intrin-
sic analogy!), in some, mostly earlier, works as, e. g., in
Bellman and Zadeh [8], the following view on the essence
of the fuzzy goal is advocated. Suppose that f : X �! R
is a conventional performance (objective) function which
associates with each option x 2 X a real number f (x) 2 R,
and which is bounded, i. e. f (x) � M <1, for each
x 2 X, where M D maxx2X f (x).

Then the membership function of the fuzzy goal G can
be defined as a normalized performance function f , i. e.

�G (x) D
f (x)
M
D

f (x)
maxx2X f (x)

; for each x 2 X : (89)

A fuzzy goal may however be also viewed from a dif-
ferent perspective that is often convenient, i. e. in terms
of Simon’s satisfaction levels, in particular in view of the
representation of the fuzzy goal’s membership function in
a piecewise linear form as usually assumed, also here. Then
the piecewise linear membership function of a fuzzy goal
in Fig. 8 should be understood as follows: If the value of x
attained is at least xG(D 8), which is the satisfaction level
of x, i. e. for x � xG , then�G (x) D 1 which means that we
are fully satisfied with the x attained. On the other hand, if
the x attained does not exceed xG (D 5), which is the low-
est possible value of x, then �G (x) D 0 which means that
we are fully dissatisfied with such a value of x or, in other
words, this value is impossible. For the intermediate val-
ues, xG < x < xG , we have 0 < �G (x) < 1 which means
that our satisfaction as to a particular value of x is interme-
diate. The interpretation of a fuzzy constraint is analogous.

It is now easy to see that the above interpretation
provides a common denominator for the fuzzy goal and
fuzzy constraint. They may be treated in an analogous
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Fuzzy goal, fuzzy constraint, fuzzy decision, and the optimal
(maximizing) decision

way which is one of merits of Bellman and Zadeh’s [8]
approach.

The above suggests the following general formulation
of the decision making problem in a fuzzy environment

“Attain G and satisfy C” (90)

which should be meant as to determine a decision (an op-
tion or a set of options) which simultaneously fulfills the
fuzzy goal and fuzzy constraint, and which belongs to the
available (or, maybe, relevant, feasible, . . . ) ones.

The fuzziness of the fuzzy goal and fuzzy constraint
implies the above decision, a fuzzy decision, to be a fuzzy
set defined in the set of options which results from the
intersection (34) of the fuzzy goal and fuzzy constraint.
Formally, if G is a fuzzy goal and C is a fuzzy constraint,
both defined as fuzzy sets in the set of options X D fxg,
the fuzzy decision D is a fuzzy set defined in X given as

�D(x) D �G (x) ^ �C (x) ; for each x 2 X (91)

where^ is theminimum operation, i. e. a^b D min(a; b).
The fuzzy decision (91) is most widely used, but^may

clearly be replaced by another operation as, e. g., a t-norm
(36).

Example 18 Suppose that G is x should be much larger
than five, and C is x should be about 5, as in Fig. 8.

The membership function of the fuzzy decision is
given in heavy line and interpreted as follows. The set of
possible options is the interval [5; 10] because �D(x) > 0
for 5 � x � 10. The value of �D(x) 2 [0; 1] is meant as
the degree of satisfaction from the choice of a particular
x 2 X, from zero for full dissatisfaction (impossibility of x)
to one for full satisfaction, though all intermediate values,
and the higher the value of �D(x), the higher the satisfac-
tion from x.

Notice that in Fig. 8, �D(x) < 1 which means that there
is no option which fully satisfies both the fuzzy goal and
fuzzy constraint. In other words, there is a discrepancy or
conflict between the fuzzy goal and constraint.

In practice, however, we need to find a nonfuzzy solu-
tion to be implemented. The above interpretation of the
fuzzy decision immediately suggests that the best (non-
fuzzy) choice in this case would be the one corresponding
to the highest value of �D(x).

The maximizing decision is therefore defined as an
x� 2 X such that

�D(x�) D max
x2X

�D(x) (92)

and an example may be found in Fig. 8 where x� D 7:5.
Notice that the above is clearly equivalent to the de-

fuzzification of the fuzzy decision (cf. Sect. “Defuzzifica-
tion of Fuzzy Sets”), and other defuzzification procedures
may also be used in principle. However, (92) is often the
only practical choice (cf. Kacprzyk [44]), and will be as-
sumed here.

In non-trivial real problems there are multiple fuzzy
goals and fuzzy constraints, and they may be handled
within the above framework in quite a straightforward
manner.

Suppose a more general situation than the fuzzy con-
straint C is defined as a fuzzy set in X D fxg, and the fuzzy
goal G is defined as a fuzzy set in Y D fyg. Moreover, sup-
pose that a function f : x �! Y , y D f (x), is known. Typ-
ically, X and Y may be sets of options and outcomes, no-
tably causes and effects.

Now, the induced fuzzy goal G0 in X generated by the
given fuzzy goal G in Y is defined as

�G0 (x) D �G [ f (x)] ; for each x 2 X : (93)

Example 19 Let X D f1; 2; 3; 4g, Y D f2; 3; : : : ; 10g, and
y D 2x C 1. If now

G D 0:1/2C 0:2/3C 0:4/4C 0:5/5C 0:6/6C 0:7/7
C 0:8/8C 1/9C 1/10

then

G0 D �G (3)/1C �G (5)/2C �G (7)/70:2/1C 0:5/2
C 0:7/3C 1/4 :

The fuzzy decision is now defined analogously as (91), i. e.

�D(x) D �G0(x) ^ �C (x) ; for each x 2 X : (94)
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Clearly, for n > 1 fuzzy goalsG1; : : : ;Gn defined in Y ,
m > 1 fuzzy constraints C1; : : : ;Cm defined in X, and
a function f : X �! Y , y D f (x), we analogously have

�D(x) D �G01 (x)^: : :^�G0n (x)^�C1 (x)^: : :^�Cn (x);

for each x 2 X : (95)

Themaximizing decision is defined as (92), i. e.

�D(x�) D max
x2X

�D(x) :

The basic conceptual fuzzy decisionmakingmodel can
be used in many specific areas, notably in fuzzy optimiza-
tion which will be covered elsewhere in this volume.

The models of decision making under fuzziness devel-
oped above can also be extended to the case of multiple cri-
teria, multiple decision makers, and multiple stage cases.
We will present the last extension, to fuzzy multistage de-
cision making (control) case whichmakes it possible to ac-
count for dynamics.

Multistage Decision Making (Control) Under Fuzziness

In this case it is convenient to use control-related notation
and terminology. In particular, decisions will be referred
to as controls, the discrete time moments at which deci-
sions are to be made – as control stages, and the input-
output (or cause-effect) relationship – as a system under
control.

The essence of multistage control in a fuzzy environ-
ment may be portrayed as in Fig. 9.

First, suppose that the control space is U D fug D
fc1; : : : ; cmg and the state space is X D fxg D fs1; : : : ; sng.
Initially we are in some initial state x0 2 X. We apply
a control u0 2 U subjected to a fuzzy constraint �C0 (u0).
We attain a state x1 2 X via a known cause-effect rela-
tionship (i. e. S); a fuzzy goal �G1 (x1) is imposed on x1.

Fuzzy Sets Theory, Foundations of, Figure 9
Essence of the multistage control in a fuzzy environment (under fuzziness)

Next, we apply a control u1 subjected to a fuzzy constraint
�C1 (u1), and attain a fuzzy state x2 on which a fuzzy goal
�G2 (x2) is imposed, etc.

Suppose for simplicity that the system under control
is deterministic and its temporal evolution is governed by
a state transition equation

f : X � U �! X ; (96)

such that

xtC1 D f (xt; ut) ; t D 0; 1; : : : (97)

where xt; xtC1 2 X D fs1; : : : ; sng are the states at con-
trol stages t and t C 1, respectively, and ut 2 U D

fc1; : : : ; cmg is the control at t.
At each t, ut 2 U is subjected to a fuzzy constraint

�Ct (ut), and on the state attained xtC1 2 X a fuzzy goal
is imposed; t D 0; 1; : : :. The initial state is x0 2 X and
is assumed to be known, and given in advance. The
termination time (planning, or control, horizon), i. e. is
the maximum number of control stages, is denoted by
N 2 f1; 2; : : :g, and may be finite or infinite.

The performance (goodness) of the multistage control
process under fuzziness is evaluated by the fuzzy decision

�D(u0; : : : ; uN�1 j x0) D �C0 (u0) ^ �G1 (x1) ^ : : :
^ �CN�1 (uN�1) ^ �GN (xN ) : (98)

In most cases, however, a slightly simplified form of
the fuzzy decision (98) is used, namely it is assumed
all the subsequent fuzzy controls, u0; u1; : : : ; uN�1, are
subjected to the fuzzy constraints, �C0 (u0); �C1 (u1); : : : ;
�CN�1 (uN�1, while the fuzzy goal is just imposed on the
final state xN , �GN (xN ). In such a case the fuzzy decision
becomes

�D(u0; : : : ; uN�1 j x0) D �C0 (u0) ^ : : :
^ �CN�1 (uN�1) ^ �GN (xN ) : (99)
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The multistage control problem in a fuzzy environ-
ment is now formulated as to find an optimal sequence of
controls u�0 ; : : : ; u

�
N�1, u

�
t 2 U , t D 0; 1; : : : ;N � 1, such

that:

�D(u�0 ; : : : ; u
�
N�1 j x0)

D max
u0;:::;uN�12U

�D(u0; : : : ; uN�1 j x0) : (100)

Usually it is more convenient to express the solu-
tion, i. e. the controls to be applied, as a control policy
at : X �! U , such that ut D at(xt), t D 0; 1; : : :, i. e. the
control to be applied at t is expressed as a function of the
state at t.

The above basic formulation of multistage control in
a fuzzy environment may readily be extended with respect
to:

� The type of the termination time (fixed and specified,
implicitly specified, fuzzy, and infinite), and

� the type of the system under control (deterministic,
stochastic, and fuzzy).

For a detailed analysis of resulting problems and their
solutions (by employing dynamic programming, branch-
and-bound, genetic algorithms, etc.) we refer the reader to
Kacprzyk’s [42,44] books.

Concluding Remarks

We provided a brief survey of basic elements of
Zadeh’s [95] fuzzy sets theory, mainly of basic proper-
ties of fuzzy sets, operations on fuzzy sets, fuzzy relations
and their compositions, linguistic variables, the extension
principle, fuzzy arithmetic, fuzzy events and their prob-
abilities, fuzzy logic, and Bellman and Zadeh’s [8] general
approach to decisionmaking in a fuzzy environment. Var-
ious aspects of fuzzy sets theory will be expanded in other
papers in this part of the volume.
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Glossary

Z-FRB Zadeh’s linguistic fuzzy rule base.
TS-FR Takagi–Sugeno fuzzy rule base.
c� the number of rules in the rule base.
nv the number of input variables in the system.
X D (x1; x2; : : : ; xnv) input vector.
x j the input (explanatory variable), for j D 1; : : : ; nv.
Aji the linguistic label associated with jth input variable

of the antecedent in the ith rule.
Bi the consequent linguistic label of the ith rule.
Ri ith rule with membership function �i (x j) : x j !

[0; 1].
Ai multidimensional type 1 fuzzy set to represent the ith

antecedent part of the rules defined by themembership
function �i (x) : x ! [0; 1].

ai D (ai;1; : : : ; ai;nv ) the regression coefficient vector
associated with the ith rule.

bi the scalar associated with the ith rule in the regression
equation.

SFF-LSE “Special Fuzzy Functions” that are generated by
the Least Squares Estimation.

SFF-SVM “Special Fuzzy Functions” estimated by Sup-
port Vector Machines.

The estimate of yi would be obtained as Y�i Dˇ
�
i0Cˇ

�
i1�i

C ˇ�i2X with SFF-LSE
y the dependent variable, assumed to be a linear func-

tion.
ˇ j0 j D 0; 1; : : : ; nv, indicate how a change in one of the

independent variables affects the dependent variable.
X D (x j;k j j D 1; : : : ; nv; k D 1; : : : ; nd) the set of

observations in a training data set.
m the level of fuzziness, m D 1:1; : : : ; 2:5.
c the number of clusters, c D 1; : : : ; 10.
J the objective function to be minimized.
k:kA a norm that specifies a distance-based similarity be-

tween the data vector xk and a fuzzy.
A D I the Euclidean norm.
A D COV�1 the Mahalonobis norm.
COV the covariance matrix.
m�, c� the optimal pair.
vXjY;i
m�

D (x1;i ; x2;i ; : : : ; xnv;i ; yi ) the cluster centers for

m D m� and each cluster i D 1; : : : ; c�.
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vX;i
m�

D (x1;i ; x2;i ; : : : ; xnv;i ) the cluster centers of the

“input space” for m D m� and c D 1; : : : ; c�.
i k(xk) the normalizedmembership values of x data sam-

ple in the ith cluster, i D 1; : : : ; c�.
�i D (i k j i D 1; : : : ; c�; k D 1; : : : ; nd) the member-

ship values of x in the ith cluster.
X0i ; X

00
i ; X

000
i potential augmented input matrices in SFF-

LSE.
f (Exk) D ŷk D hEw; Exki C b linear Support Vector Re-

gression (SVR) equation.
l" D jyk � f (Exk)j" D maxf0; jy � f (x)j � "g "-insen-

sitive loss function.
Ew; b the weight vector and bias term.
c > 0 the tradeoff between the empirical error and the

complexity term.
�k � 0 and ��k � 0 the slack variables.
˛k and ˛�k Lagrange multipliers.
KhExk0; Exki the kernel mapping of the input vectors.

ŷ�i k0
D f̂

�
Exik0; ˛i ; ˛

�
i
�
D

ndP

kD1

�
˛i k � ˛

�
i k

�
KhExik0; ExikiCbi

output value of kth data sample in ith cluster with SFF-
SVM.

ÃDf(x; (u; fx (u)))jx 2 X;u 2 Jx � [0; 1]g type 2 fuzz-
y set, Ã.

fx (u) : Jx ! [0; 1];8u 2 Jx � [0; 1];8x 2 X secondary
membership function.

fx (u) D 1;8x 2 X;8u 2 Jx ; Jx � [0; 1] interval value
type 2 membership function.
[27] the domain of the primary membership is discrete
and the secondary membership values are fixed to 1.
Thus, the proposed method is utilizing discrete inter-
val valued type 2 fuzzy sets in order to represent the
linguistic values assigned to each fuzzy variable in each
rule. These fuzzy sets can be mathematically defined as
follows:

Ã D
R
x2X

hP
u2Jx 1/u

i
/x Discrete Interval Valued Type

2 Fuzzy Sets (DIVT2FS)
x 2 X � <; u 2 Jx D fJxrg ; r D 1; : : : ;NM a system

variable in continuous domain.
u the primary membership value with discrete domain.
Jxr rth primary membership value associated with x.

Definition of the Subject

Fuzzy System Modeling (FSM) is one of the most promi-
nent tools that can be used to identify the behavior of
highly nonlinear systems with uncertainty. In the past,
FSM techniques utilized type 1 fuzzy sets in order to cap-
ture the uncertainty in the system. However, since type 1
fuzzy sets express the belongingness of a crisp value x0 of

an input variable x in a fuzzy set A by a crisp member-
ship value�A(x0), they cannot fully capture the uncertain-
ties associated with higher order imprecision in identify-
ing membership functions. In the future, we are likely to
observe higher types of fuzzy sets, such as type 2 fuzzy sets.
The use of type 2 fuzzy sets and linguistic logical connec-
tives drew a considerable amount of attention in the realm
of fuzzy system modeling in the last two decades. In this
paper, we first review type 1 fuzzy systemmodels known as
Zadeh, Takagi–Sugeno and Türkşen models; then we re-
view potentially future realizations of type 2 fuzzy systems
again under the headings of Zadeh and Takagi–Sugeno
and Türkşen fuzzy system models, in contrast to type 1
fuzzy system models. Type 2 fuzzy system models have
a higher predictive power. One of the essential problems of
type 2 fuzzy system models is computational complexity.
In data-driven fuzzy system modeling methods discussed
here, Fuzzy C-Means (FCM) clustering algorithm is used
in order to identify the system structure.

Introduction

Fuzzy system models are the most successful models to
handle uncertainties in decision-making. The major ad-
vantages of fuzzy system models are their robustness and
transparency. Fuzzy system modeling achieves robustness
by using fuzzy sets which incorporates imprecision in sys-
tem models. In addition, unlike some other system mod-
els, such as neural networks, the fuzzy system models are
highly descriptive, i. e., transparent.

In the last two decades, researchers proposed several
data driven type 1 fuzzy system modeling approaches that
can extract the hidden rules of a system behavior au-
tomatically by using historical data. The system model-
ing methods, proposed by Nakanishi et al. [31], Takagi–
Sugeno [39], Sugeno and Yasukawa [38], Emami et al. [17],
are among the most notable ones. Since these methods
utilize only the historical data, i. e., since they do not re-
quire expert knowledge, they are strictly data-drivenmod-
eling techniques. Thus, in addition to being robust and
transparent, these system-modeling techniques can iden-
tify system model structure objectively for a given perfor-
mance measure.

In these traditional fuzzy systemmodels of the past, the
structure is characterized by type 1 fuzzy sets. Type 1 fuzzy
sets, defined on a universe of discourse, maps an element
onto a precise number in the unit interval [0; 1]. This con-
flicts with the basic philosophy of fuzzy set and logic the-
ory. In the future, it is expected, fuzzy system models will
be formedwith higher order fuzzy sets, such as type 2 fuzzy
sets, which was first proposed by Zadeh [50]. They will be
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used more and more in order to capture the uncertainty
associated with membership functions. A type 2 fuzzy set
can be informally defined as a fuzzy set that is character-
ized by a fuzzy membership function, i. e., membership
values also are in the unit interval [0; 1] in the computa-
tional level.

In this paper, we propose to review first the type 1
fuzzy systemmodels as the historically significant but suc-
cessful modeling activity of the past in the domain of fuzzy
control system problems. Next we review the type 2 fuzzy
system models as the potential future modeling activity in
the domain of fuzzy decision support system problems.

In an historical sense, Zadeh [50], and Takagi–Su-
geno [39] versions of type 1 fuzzy system models are typ-
ically basic fuzzy rule base models. In contrast, type 1
“special fuzzy function” models, recently proposed by
Türkşen [46], are alternate models to fuzzy rule base mod-
els. They give better predictions in comparison to type 1
fuzzy rule basemodels [3,46]. Furthermore, fuzzy rule base
models, in general, can not capture the interactive nature
of a problem space due to projection deficiency. Whereas
fuzzy function models are able to capture the interactions
of all variables since they are not subject to projection
deficiencies.

For future developments, currently there are mainly
two essentially different schools of thought in type 2
fuzzy system modeling research. The first one is based
on the properties of the linguistic connectives which
causes the generation of interval valued type 2 fuzzy sets.
Türkşen [42,43,44,45] mathematically showed that Fuzzy
Conjunctive Canonical Forms (FCCF) and Fuzzy Dis-
junctive Canonical Forms (FDCF) are no longer equiva-
lent to each other for the 16 basic linguistic expressions
formed with linguistic connectives “AND”, “OR”, etc. Fur-
thermore, it is shown that FCCF contains FDCF for cer-
tain families of t-norms and t-co-norms. Zimmerman
and Zysno [51] empirically showed that linguistic con-
nectives were characterized differently by different people
and Türkşen [44] provided the groundwork for this with
the Interval Valued type 2 fuzzy sets. These type 2 system
models represent uncertainties generated by different lin-
guistic connectives that combine type 1membership func-
tions. Such combinations generate their FDCF and FCCF
expressions and hence identify a particular sort of Interval
Valued type 2 representations of systems.

In the second school of thought in type 2 fuzzy sys-
tem modeling, traditional connectives, i. e., t-norms and
co-norms, are utilized directly with the assumption that
a t-norm directly corresponds to a linguistic “AND” in its
FDCF and a t-co-norm directly corresponds to an “OR”
in its FCCF while ignoring FCCF of “AND” and FDCF of

“OR”. But, each variable is represented by using a type 2
fuzzy set at the beginning of computations. In a series
of papers Mendel, Karnik and Lian [23,24,25] extended
traditional type 1 system models to type 2 fuzzy system
models and proposed inference methods in order to pro-
cess type 2 fuzzy sets. These studies were explained thor-
oughly by Mendel in [28]. Several other researchers such
as, Starczewski and Rutkowski [37], John and C. Czar-
necki [20,21], and Chen and Kawase [10] worked on type 2
fuzzy system models and inference methods.

In general the main inhibitor of the use of the type 2
fuzzy system models is the computational complexity of
the inference mechanism that is used to infer a model out-
put by using type 2 fuzzy system models for a given in-
put data vector. Liang and Mendel [26] proposed Inter-
val-Valued (IV) type 2 fuzzy system models in place of
full type 2 fuzzy system models together with inference
methods to remedy this problem. Thus they use a simpli-
fied version of type 2 fuzzy sets, namely, Interval-Valued
type 2 fuzzy sets (IVT2FS) rather than full type 2 fuzzy sets
(FT2FS).

Recently, Uncu and Türkşen [48] proposed discrete
“interval valued type 2 fuzzy sets (DIVT2FS)” which are
generated by a variation of the level of fuzziness around
fixed cluster centers in applications of FCM. The proposed
model representation enables us to identify a computa-
tionally efficient inference mechanism.

The rest of this paper is organized as follows: the ba-
sic notation, terminology and the three well-known type 1
fuzzy system model structures will be briefly reviewed in
Sect. “Introduction” with an emphasis on the more recent
“special fuzzy functions”. Then the extensions of these
well-known fuzzy system modeling structures in type 2
formation will be discussed for potential future studies
in Sect. “Future of Fuzzy System Models”. Finally, the
conclusions will be drawn and the future research direc-
tions will be provided in Sect. “Conclusions and Future
Directions”.

Type 1 Fuzzy SystemModels of the Past

In general fuzzy system models identify an underlying re-
lationship between input and output variables of a sys-
tem. In this paper, we deal with Multi-Input Single Output
(MISO) version fuzzy system models. Generally fuzzy sys-
tem models represent relationships between the input and
output variables as a collection of: (a) either if-then rules
that utilize linguistic labels (i. e., fuzzy sets) or (b) “special
fuzzy functions” that takes on membership values and/or
their transformations as well as selected input variables as
their arguments.
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Type 1 Fuzzy Rulebases

In general, the fuzzy rule base structure can be written as
follows:

R :
c�

ALSO
iD1

( IF antecedenti THEN consequenti) ; (1)

where c� is the number of rules in the rule base. There
are several well known fuzzy rule base structures which
mainly differ in the representation of their consequents. If
the consequent is represented with fuzzy sets then the rule
base can be categorized as the Zadeh Fuzzy Rule base, Z-
FRB [50] Whereas, if the consequent is represented with
a linear equation of input variables, then the rule base
structure is known as Takagi–Sugeno Fuzzy Rulebase (TS-
FRB) structure [39]. The Z-FRB and TS-FRB structures
can be formalized as follows:

Let nv be the number of input variables in the system.
Then, the multidimensional antecedent, X, can be defined
as X D (x1; x2; : : : ; xnv), where xj is the jth input variable
of the antecedent in the domain of X. X, can be defined
as X D X1 � X2 � : : : � Xnv , where Xj � < is the domain
of variable xj. Similarly, the domain of the output variable,
will be denoted as Y � <. Then, the ith rule, ri, and rule-
base, R, in Z-FR structure can be defined as:

Ri : IF
NV

AND
jD1

(x j 2 Xj isr Aji) THEN y 2 Y isr Bi ;

8i D 1; : : : ; c� (2)

R :
c�

ALSO
iD1

�
IF

NV
AND
jD1

(x j 2 Xj isr Aji)

THEN y 2 Y isr Bi

�
; (3)

where Aji is the linguistic label associated with jth input
variable of the antecedent in the ith rule, Ri, with member-
ship function �i (x j) : x j ! [0; 1] and similarly Bi is the
consequent linguistic label of the ith rule with member-
ship function �i (y) : y! [0; 1], and c� is the number of
rules in the model. The above structure assumes non-in-
teractivity between input variables because the member-
ship functions of every Aji is obtained by the projection of
nv+1 dimensional internal system representation. In order
to eliminate the non-interactivity assumption, Delgado et
al. [12], Babuska et al. [1], and Uncu and Türkşen [48]
used multidimensional type 1 fuzzy sets to represent the
antecedent part of the rules. Hence, the Z-FRB structure
can be expressed as follows:

R :
c�

ALSO
iD1

( IF x 2 X isr Ai THEN y 2 Y isr Bi) ; (4)

where the multidimensional antecedent fuzzy set of ith
rule is defined as�i (x) : x ! [0; 1]. The other well-known

fuzzy rulebase structures, namely Takagi–Sugeno (TS-
FRB) fuzzy rulebase structure, can be expressed, respec-
tively, as follows:

c�
ALSO
iD1

�
IF antecedenti THEN yi D ai xT C bi


; (5)

where, ai D (ai;1 ; : : : ; ai;nv) is the regression coefficient
vector associated with the ith rule, bi is the scalar associ-
ated with the ith rule.

Type 1 “Special Fuzzy Functions” of the Recent Past

There are at least two ways to form special fuzzy functions:
(i) “Special Fuzzy Functions” that are generated by the
Least Squares Estimation, SFF-LSE, of Türkşen [46] and
(ii) “Special Fuzzy Functions” estimated by Support Vec-
torMachines, SFF-SVM’s, of Çelikyilmaz and Türkşen [3].
These “Special Fuzzy Functions” are structurally differ-
ent from (1) Zadeh’s [50] linguistic fuzzy rule bases (Z-
FRB), (2) Takagi–Sugeno fuzzy rule base TS-FR [39] (3)
“Fuzzy Regression” models of Tanaka et al. [40,41] and its
variations, and (5) Hathaway and Bezdek [18] model. Be-
cause the proposed “Special Fuzzy Functions” introduces
membership values and their transformations as new in-
put variables in addition to the original scalar input vari-
ables in function estimations. In particular, these “Special
Fuzzy Functions” are structurally different from (1) “Fuzzy
Regression” models of Tanaka, et al. [40,41], and its vari-
ations, and (2) Hathaway and Bezdek [18] models. This is
why we call them “Special Fuzzy Functions”.

It ought to be noted that the introduction of member-
ship values and their transformations as new input vari-
ables are acceptable since the membership values are ob-
tained from FCM which is a highly nonlinear transforma-
tion of the original scalar input variable. Hence there is
no co-linearity and thus they can be included in the pro-
posed LSE and SVM structure. For this purpose, first one
executes a fuzzy clustering algorithm such as FCM with
original selected input variables after an execution of a fea-
ture selection algorithm; and then determines (local) opti-
mum number of fuzzy clusters and hence the associated
membership values. Then a special fuzzy function to rep-
resent each fuzzy cluster, i. e., fuzzy rule, separately can be
identified. Thus there are as many fuzzy functions as there
are fuzzy clusters similar to Hathaway and Bezdek’s [18]
Fuzzy C-Regression model (FCRM). But Hathaway and
Bezdek use membership values as the weights to be used
in the estimation of the functions using weighted least
squares algorithm. FCRM updates the membership values
as the similarity measure by using estimation error from
these functions.
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“Special Fuzzy Functions”, SFF, are estimated after one
generates membership values of each cluster from FCM
algorithm. Therefore it is structurally a new and unique
approach for the determination of fuzzy system mod-
els in place of fuzzy rule bases. This the reason we call
them “Special Fuzzy Functions”, SFF. These “Special Fuzzy
Functions” represent fuzzy rule bases in functional form
and structure. When the relationship between input vari-
ables and the output variable of the system can be linearly
explained in the original dimension space of the data, it is
quite reasonable and faster to estimate such “Special Fuzzy
Functions” using least squares estimation. When this re-
lationship is more complex and there needs to be a non-
linear transformation of the original input variables, it is
better to map the input dataset into a higher dimensional
space, e. g., a hyper-space, where the input dimension is
large (maximum n). One of the powerful methods to find
these “Special Fuzzy Functions” which define a linear rela-
tion between input and output variables in the higher di-
mension, but a non-linear relationship in the original di-
mension is the support vector machines which was first
proposed by Vapnik [49]. For the regression case, support
vector machines for regression algorithm can be applied
to find these “Special Fuzzy Functions”. Hence, in the next
sections, we are going to specify the details of these “Spe-
cial Fuzzy Functions” estimated using the Least Squares,
LSE, and Support Vector machine for Regression, SVR, al-
gorithms.

It is to be noted for the sake of emphasis that the es-
timated parameters of the inputs are not fuzzy sets in our
proposed approach. It should be recalled that membership
values and their transformations are augmented into the
original selected input set as new and additional variables.
In our experience, it is found that this approach is most
suitable for those analysts who are familiar with a function
estimation technology, e. g., the least squares technology,
support vector machines, ridge regression, etc. They only
need to develop an understanding of some fuzzy clustering
algorithm without studying many aspects of fuzzy theory.
All they have to understand is the notion of membership
values and how they can be obtained from a fuzzy clus-
tering algorithm such as FCM and/or its variations in ad-
dition to their usual background knowledge of a function
estimation technique, e. g., LSE, or SVR, etc.

Thus this is a novel approach in order to provide an
easy entry into fuzzy systemmodeling for mathematicians
and statisticians who are working in industry and for other
novices. For this purpose, we present next our general-
ization of the LSE algorithm, which includes membership
values and their transformations in addition to the original
scalar input variables.

Special Fuzzy Functions with LSE (SFF-LSE) Method

In Ordinary LSE (OLSE) method, the dependent variable,
y, is assumed to be a linear function of one or more inde-
pendent, input, variables, x, plus an error component as
follows:

y D ˇ0 C ˇ1x1 C : : :C ˇnv xnv C " ;

where y is the dependent output, xj’s are the inputs (ex-
planatory variables), for j D 1; : : : ; nv, nv is the number of
selected inputs and " is the independent error term which
is typically assumed to be normally distributed. The goal of
the least squares method is to obtain estimates of the un-
known parameters, ˇ j ’s, j D 0; 1; : : : ; nv, which indicate
how a change in one of the independent variables affects
the dependent variable as follows:

ˇ D (X 0X)�1X 0Y ; (6)

where ˇ D (ˇ0; ˇ1; : : : ; ˇnv).
The proposed generalization of OLSE as SFF-LSE, re-

quires that a fuzzy clustering algorithm, such as FCM [2],
be available to determine the interactive (joint) member-
ship values of input-output variables in each of the fuzzy
clusters that can be identified for a given training data set.

Let (xk ; yk); k D 1; : : : ; nd, be the set of observations
in a training data set, such that

X D (x j;k j j D 1; : : : ; nv; k D 1; : : : ; nd) : (7)

First, one determines the optimal (m�; c�) pair for a par-
ticular performance measure, i. e., a cluster validity index,
with an iterative search and an application of FCM al-
gorithm, where m is the level of fuzziness (in our exper-
iments, we usually take m D 1:1; : : : ; 2:5), and c is the
number of clusters (in our experiments, we usually take
c D 2; : : : ; 10). The well known FCM algorithm can be
stated as follows:

min J(U;V ) D
ndX

kD1

cX

iD1

(uik )m(kxk � vik)A

s.t. 0 � uik � 1 ; 8i; k
cX

iD1

uik D 1 ; 8k

0 �
ndX

kD1

uik � nd ; 8i ;

where J is objective function to be minimized, k:kA is
a norm that specifies a distance-based similarity between
the data vector xk and a fuzzy cluster center vi. In par-
ticular, AD I is the Euclidean norm and AD COV�1 is
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the Mahalonobis norm, etc., where COV is the covariance
matrix.

The optimal pair, (m�; c�), can be determined with
a user defined cluster validity index, partition entropy or
partition coefficient [2]. Another alternative of selecting
the optimum pair would be running the overall SFF-LSE
model for every (m; c) pair specified by the user and de-
termining the optimal pair from the training RMSE values
of each model. The following definitions adopt the idea of
using a user defined cluster validity index for the determi-
nation of the optimal pair. The experiments in this paper
follow the second alternative.

Once the optimal pair (m�; c�) is determined with the
application of FCM algorithm, one next identifies the clus-
ter centers for m D m� and each cluster i D 1; : : : ; c� as:

vXjY;i
m�
D (x1;i ; x2;i ; : : : ; xnv;i ; yi ) : (8)

From this, we identify the cluster centers of the “input
space” for m D m� and c D 1; : : : ; c� as:

vX;i
m�
D (x1;i ; x2;i ; : : : ; xnv;i) : (9)

Next, one computes the normalized membership values of
each data sample in the training data set with the use of
the cluster center values determined in the previous step.
There are generally two steps in these calculations:

(a) first we determine the (local) optimum member-
ship values uik’s and then determine �i k ’s that are above
an ˛-cut in order to eliminate harmonics generated by
FCM as:

uik D

 cX

jD1

�
kxk � vX;ik
kxk � vX; jk

� 2
m�1

!�1
;

�i k D fuik � ˛g ; (10)

where �i k denotes the membership value of the kth vec-
tor, k D 1; : : : ; nd, in the ith rule, i D 1; : : : ; c� and xk
denotes the kth vector.

(b) next, we normalize them as:

�i k(xk) D
�i k(xk)
cP

i 0D1
�i 0k(xk)

; (11)

where �i k(xk)’s are the normalized membership values
of x data sample in the ith cluster, i D 1; : : : ; c�, which
in turn indicate the membership values that will constitute
as a new input variable in our proposed scheme of func-
tion identification for the representation of ith cluster. Let

�i D (�i kji D 1; : : : ; c�; k D 1; : : : ; nd) be the member-
ship values of x; a data sample, in the ith cluster, i. e., ith
rule.

Next we determine a new augmented input matrix of x
for each of the clusters, which could take on several forms
depending on which transformation of membership val-
ues we want to or need to include in our system structure
identification for our intended system analyses. Examples
of possible augmented input matrices are:

X 0i D [1; �i ; X] ; or

X 00i D
�
1; � 2

i ; X
�
; or

X 000i D
�
1; � 2

i ; �
m
i ; exp(�i ); X

�
; etc. ;

(12)

where X 0i ; X
00
i ; X
000
i are potential augmented input matri-

ces to be used in least squares estimation of a new system
structure identification and �i D (�i k ji D 1; : : : ; c�; k D
1; : : : ; nd). The choice amongst X 0i ; X

00
i ; X
000
i depends on

whether we want to or need to include just the member-
ship values or some of their transformations as new in-
put variables in order to obtain the best representation of
a system behavior. A new augmented input matrix hav-
ing a single input variable in the original input space when
only membership values themselves are augmented to the
dataset, i. e., Xi

0 may look like this:

X 0i D [1; �i ; X] D

2

6
4

1
:::

1

�i;1
:::

�i;nd

xi;1
:::

xi;nd

3

7
5

Up to this point, in the proposed system modeling ap-
proach, we have defined how the augmented input ma-
trix for each cluster could be formed with the output of
an FCM algorithm. Both the proposed SFF-LSE and SFF-
SVM approaches implement these steps. From this point
forward, the estimation of “Special Fuzzy Functions” takes
place for each cluster, where one can implement any func-
tion estimation methodology, e. g., LSE or SMV. Differ-
ent approaches are followed in the estimation of “Special
Fuzzy Functions” using a augmentedmatrix. Here we con-
tinue to specify the SFF-LSE models. In the next section
the SFF-SVM models will be introduced.

Thus the function of a single input single output
model, which includes only the membership values as the
additional input variable, Yi D ˇi0 C ˇi1�i C ˇi2X, that
represents the ith rule corresponding to the ith interactive
(joint) cluster in(Yi ; �i ; X) space, would be estimated with
SFF-LSE approach as follows:

ˇ�i D
�
X 0Ti X 0i

�1�X 0Ti Yi

; (13)
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Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy
Functions, Figure 1
A fuzzy cluster in [U� X � Y] space

where ˇ�i D (ˇ�i0; ˇ
�
i1; ˇ

�
i2) and X 0i D [1; �i ; X], provided

the inverse of covariance, (X 0Ti X 0i )
�1, exists. The estimate

of yi would be obtained as:

Y�i D ˇ
�
i0 C ˇ

�
i1�i C ˇ

�
i2X : (14)

The single output value is calculated using each output
value, one from each cluster, and weighting them with
their corresponding membership values as follows:

Y�i D

c�P

iD1
�i Y�i

c�P

iD1
�i

: (15)

Within the proposed framework, the general form of the
shape of a cluster for the case of a single input variable
Xj and for the ith cluster can be conceptually captured, in
a stylistic, imaginarymanner, say, by a second order (cone)
function when one introduces the square of membership
values into the augmented input matrix in the space of
[U � X � Y] which can be illustrated with a prototype
shown in Fig. 1.

In a number of real life case studies, we have in fact
found out that generally some second order or exponen-
tial function provide a good approximation from amongst
some 20 alternatives we have experimented with in the
past.

Before we specify the details of the proposed SFF-SVM
method, we first review briefly the background of the sup-
port vector machines for regression algorithm.

Support Vector Machines for Regression

Support Vector Machine, SVM, is a data-mining tool to
build a model of a given system. The foundations of SVM
have been developed by Vapnik [49]. SVM is a type of op-
timization technique in which prediction error and model
complexity are simultaneouslyminimized. Let the training
samples be denoted as:

X D f(Exk ; Eyk)jk D 1; : : : ; ndg ; (16)

where X denotes the space of input-output patterns Exk D
(x jk j j D 1; : : : ; jnv ; k D 1; : : : ; knd ) represents each in-
put data vector, and yk is the output value of the kth, data
vector in the dataset. Support vector machines are used to
solve classification problems as well as regression models
where the output variable is scalar. In linear Support Vec-
tor Regression (SVR), the aim is to find a pair( Ew; b), where
Ew is the weight vector, and b is the bias term in this regres-
sion equation, such that the value of the point, yk, can be
predicted according to a real-valued function:

f (Exk) D ŷk D h Ew; Exki C b ; (17)

where h:i is the dot product representation. The goal is to
find a function, that has at most " deviation from the actu-
ally obtained targets, yk; for all the training data. This con-
cept of "-insensitive loss function, l", was first introduced
by Vapnik [28] as follows:

l" D jyk � f (Exk)j" D maxf0; jy � f (x)j � "g : (18)

The loss function does not penalize errors below some er-
ror, " � 0. Thus the goal of learning is to find a function
with a small risk on test samples. This would mean good
generalization. This type of SVR is called the "-insensitive
which embodies the Structural Risk Minimization (SRM)
as displayed as follows:

Rexp[ f ] � Remp[ f ]C Rcomplexity[ f ] : (19)

In SRM of SVM, the aim is not only minimize the empiri-
cal risk from training samples, Remp, but also find a sim-
ple function to minimize the complexity of the model,
Rcomplexity. The more flat the functions are, the less com-
plex they would be, in other words they would get simpler,
and therefore they would be closer to the linear functions.
The more flat function, the smaller the complexity term
of the expected risk in SRM, Rexp; gets and the smaller
would be the weight vector. In support vector regression
the complexity term is expressed as weights assigned to all
points in the training sample. In order to ensure that the
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weight vector is small, Euclidean Norm, i. e., kwk2 is used.
In mathematical terms the objective function of SVM for
regression with two conditions can be stated as follows.

min
Ew;b;�k ;��k

&( Ew; �; ��) D 1
2k Ewk

2
C C

nd

ndP

kD1

�
�k C �

�
k


subject to yk � h Ew; Exki � b � "C �k
h Ew; Exki C b � yk � "C ��k
�
�
k 0
��k � 0 ;

(20)

where " represents the " insensitive value which does
not penalize the points whose estimated deviations are
lesser/greater than ", and Ew; b unknown values that
represent the weight vector and bias term, respectively.
The c > 0 determines the tradeoff between the empiri-
cal error and the complexity term. The slack variables
�k � 0 and ��k � 0 are introduced to the model to soften
the optimization problem in order to prevent infeasible so-
lutions. The assumption in (20) is that, it is possible to find
such a function that approximates all pairs (Exk ; yk) with "
precision. The optimization problem is a convex quadratic
program, which can be solved by using the well-known La-
grange multiplier method. Therefore by introducing La-
grange multipliers ˛i and ˇi , one can construct Lagrange
function, and the solution to the optimization theorem
is given by the saddle point of the Lagrange function us-
ing the Karush–Kuhn–Tucker theorem [49] where the pri-
mal model is translated into dual quadratic programming
problem as follows:

max
˛;˛�
D
1
2

ndX

k;k0D1

�
˛k � ˛

�
k
�
˛k0 � ˛

�
k0

hExk ; Exk0i

�"

ndX

kD1

�
˛k C ˛

�
k

C

ndX

kD1

�
˛k � ˛

�
k

yk

subject to
ndX

kD1

�
˛k � ˛

�
k

D 0

˛k ; ˛
�
k 2 [0;C] :

(21)

In model (21), we search for the parameters ˛k and ˛�k ,
which are Lagrange multipliers. The weight vector can
now be explained using the Lagrange multipliers as:

Ew D
ndX

kD1

�
˛k � ˛

�
k

Exk ; (22)

where, Exk is the kth observation and ˛k and ˛�k are the La-
grange multipliers for the kth observation, and the estima-

tion function of a vector is given as follows:

f (Exk0) D
ndX

kD1

�
˛k � ˛

�
k

hExk0 ; Exki C b

D

ndX

kD1

�
˛k � ˛

�
k

ExTk Exk0 C b ; (23)

where Exk0 is the new vector whose output is to be pre-
dicted, T represents the transpose operation on vectors
and ˛k and ˛�k are the Lagrange multipliers for the kth ob-
servation.

In most cases, there is a non-linear relationship be-
tween input and output variables and a non-linear sup-
port vector regression algorithm is needed. In order to
make the support vector model non-linear, the input vec-
tors are mapped into a higher dimensional feature space
using a mapping function, �(x). However, in most of the
cases, explicit mapping results in infeasible solutions that
are computationally hard to obtain. The feasible way to
convert a linear SMV’s into non-linear SMV is to use ker-
nel mapping which maps the input vectors into a higher
dimensional feature space, i. e., k(x; x0) D h�(x); �(x0)i
which changes the SMV algorithm as:

max
˛;˛�
D
1
2

ndX

k;k0D1

�
˛k � ˛

�
k
�
˛k0 � ˛

�
k0

khExk ; Exk0i

�"

ndX

kD1

�
˛k C ˛

�
k

C

ndX

kD1

�
˛k � ˛

�
k

yk

subject to
ndX

kD1

�
˛k � ˛

�
k

D 0

˛k ; ˛
�
k 2 [0;C] :

(24)

Note that one may choose various different kernel func-
tions, e. g., Gaussian radial base kernel, polynomial kernel,
satisfying theMercer’s condition [49] and the output value
of the k0th input vector is calculated using the following
function:

ŷk0 D f̂
�
Exk0 ; ˛; ˛�


D

ndX

kD1

�
˛k�˛

�
k

KhExk0 ; ExkiCb; (25)

where the KhExk0 ; Exki represents the kernel mapping of
the input vectors. From Eq. (25), the dependent variable
is estimated using the kernel mapping of the input vec-
tors and their Lagrange multipliers of each vector that are
calculated from the optimization algorithm. Note that in
Eq. (25), it is not required to calculate the weight vector
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explicitly, the input vectors who’s Lagrange multipliers are
not zero are used in estimating the output and they are
called the “support vectors”. In a sense, the complexity of
the functions, i. e., the 1

2k Ewk
2 term, represented by support

vectors is independent of the dimensionality of the input
space x, and only depends on the number of support vec-
tors.

An additional result of the application of Karush–
Kuhn–Tucker (KKT) theorem in SVR is:

(C � ˛k)�k D 0
(C � ˛�k )�

�
k D 0 : (26)

One of the several conclusions one might make from (26)
is that ˛k˛�k D 0, i. e., there can never be a set of dual vari-
ables for an observation k which are both simultaneously
non-zero as this would require non-zero slacks in both
directions. Since c > 0, then �k��k D 0 must also be true.
In the same sense, there can never be two slack variables
�k ; �

�
k > 0 which are both non-zero and equal.

Special Fuzzy Functions with SVM (FF-SVM)Method

As one can build ordinary least squares for the estimation
of the Special Fuzzy Functions when the relationship be-
tween input variables and the output variable can be lin-
early defined in the original input space, one may also
build support vector regression models to estimate the pa-
rameters of the non-linear Special Fuzzy Functions using
support vector regression methods. The augmented input
matrix is determined from FCM algorithm such that there
is one SVR in SFF-SVM for each cluster same as SFF-LSE
model. One may choose any membership transformation
depending on the input dataset. Then one can apply sup-
port vector regression, SVR, algorithm instead of LSE to
each augmented matrix, which are comprised of the orig-
inal selected input variables and the membership values
and/or their transformations. Support vector machines’
optimization algorithm is applied to each augmented ma-
trix of each cluster (rule) i; i D 1; : : : ; c�, to optimize
their Lagrange multipliers, ˛i k and ˛�i k , and find the can-
didate support vectors, k D 1; : : : ; nd. Hence, using SFF-
SVM, one finds Lagrange multipliers of each kth train data
sample one for each cluster, i. Then the output value of kth
data sample in ith cluster is estimated using the Equation
(27) as follows:

ŷ�i k0 D f̂
�
Exik0 ; ˛i ; ˛�i



D

ndX

kD1

�
˛i k � ˛

�
i k

KhExik0 ; Exiki C bi : (27)

Where the ŷ�i k0 is the estimated output of the k0th vector
in ith cluster which is estimated using the support vec-
tor regression function with the Lagrange multipliers of
the ith cluster. The augmented kernel matrix denotes the
kernel mapping of the augmented input matrix (as de-
scribed in SFF-LSE approach) where the membership val-
ues and their transformations are used as additional input
variables. After the optimization algorithm finds the op-
timum Lagrange multipliers, one can estimate the output
value of each data point in each cluster using Eq. (27).

The inference structure of SFF-SVM is adapted from
the Special Fuzzy Functions with least squares where one
can estimate a single output of a data point (see Eq. (15)
by taking the membership value weighted averages of its
output values calculated for each cluster using Eq. (27).

Future of Fuzzy SystemModels

In the future, fuzzy system models are expected to be
structured by type 2 fuzzy sets. For this purpose, we next
present basic definitions.

Basic Definitions

Definition 1 A type 2 fuzzy set Ã on universe of dis-
course, x, is a fuzzy set which is characterized by a fuzzy
membership function, �̃A(x), where �̃A(x) is a mapping
as shown below:

�̃A(x) : X ! [0; 1][0;1] : (28)

Then type 2 fuzzy set, Ã, can be characterized as follows:

ÃD f(x; (u; fx (u)))jx 2 X; u 2 Jx � [0; 1]g : (29)

Where u is defined as the primary membership value,
Jx � [0; 1] is the domain of u and fz(u) is the secondary
membership function. An alternative definition of type 2
fuzzy set Ã, used by Mendel [28] and inspired by Mizu-
moto and Tanaka [30], can be given as follows:

Given that x is a continuous universe of discourse, the
same type 2 fuzzy set can be defined as:

ÃD
Z

x2X

�Z

u2Jx
fx (u)/u

�
/x : (30)

And for discrete case, the same type 2 fuzzy set can be de-
fined as:

ÃD
X

x2X

hX

u2Jx
fx (u)/u

i
/x : (31)

The secondarymembership function, fx (u),can be defined
as follows:
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Definition 2 Secondary membership function, fx (u), is
a function that maps membership values of universe of
discourse x onto unit interval [0; 1]. Thus, fx (u) can be
characterized as follows:

fx (u) : Jx ! [0; 1];8u 2 Jx � [0; 1] ; 8x 2 X : (32)

With the secondary membership function defined as
above, the membership function of type 2 fuzzy set
Ã; �̃A(x), can then be written for continuous and discrete
cases, respectively, as follows:

�̃A(x) D
Z

u2Jx
fx (u)/u ; 8x 2 X ; (33)

�̃A(x) D
X

u2Jx
fx (u)/u ; 8x 2 X : (34)

An Interval Valued Type 2 Fuzzy Set (IVT2FS), which is
a special case of type 2 fuzzy set, can be defined as follows:

Definition 3 Let Ã be a linguistic label with type-2 mem-
bership function on the universe of discourse of base vari-
able x, �̃A(x) : X ! fx (u)/u; u 2 Jx ; Jx � [0; 1]. The fol-
lowing condition needs to be satisfied in order to consider
�̃A(x) as an interval value type 2 membership functions:

fx (u) D 1;8x 2 X;8u 2 Jx ; Jx � [0; 1] : (35)

Thus, the interval valued type 2 membership function is
a mapping as shown below:

�̃A(x) : X ! 1/u; u 2 Jx ; Jx � [0; 1] : (36)

General Structure of Type 2 Fuzzy SystemModels

In a series of papers, Mendel, Karnik and Liang [22,23,
24,25] extended traditional type 1 inference methods such
that these methods can process type 2 fuzzy sets. These
studies were explained thoroughly by Mendel in [28]. The
classical Zadeh and Takagi–Sugeno type 1 models are
modified as type 2 fuzzy rule bases (T2Z-FR and T2TS-
FR,), respectively, as follows:

c�
ALSO
iD1

h
IF

NV
AND
jD1

�
x j 2 Xj isr Ã ji



THEN y 2 Y isr B̃i

i
; (37)

c�
ALSO
iD1

h
IF

NV
AND
jD1

�
x j 2 Xj isr Ã ji



THEN yi D ai xT C bi
i
: (38)

Mendel, Karnik and Liang [22,23,24,25] assumed that the
antecedent variables are separable (i. e., non-interactive).
After formulating the inference for a full type 2 fuzzy
system model, Karnik et al. [22,23,24,25] simplified their
proposed methods for the interval values case. In order
to identify the structure of the IVT2FS, it was assumed
that the membership functions are Gaussian. A clustering
method was utilized to identify the mean parameters for
the Gaussian functions. However, the clustering method
has not been specified. It was assumed that the standard
error parameters of the Gaussian membership functions
are exactly known. The number of rules was assigned as
eight due to the nature of their application. However, the
problem of finding the suitable number of rules was not
discussed in the paper.

Liang and Mendel [26] proposed another method to
identify the structure of IVT2FS. It has been suggested
to initialize the inference parameters and to use steepest-
descent (or other optimization) method in order to tune
these parameters of an IVT2FS. Two different approaches
for the initialization phase have been suggested in [26].
Partially dependent approach utilizes a type 1 fuzzy sys-
temmodel to provide a baseline for the type 2 fuzzy system
model design. Totally independent approach starts with
assigning random values to initialize the inference param-
eters. Liang andMendel [26] indicated that the main chal-
lenge in their proposed tuning method is to determine the
active branches.

Mendel [28] indicated that several structure identifica-
tion methods, such as one-pass, least-squares, back-prop-
agation (steepest descent), singular value-QR decomposi-
tion, and iterative design methods, can be utilized in order
to find the most suitable inference parameters of the type 2
fuzzy system models. Mendel [28] provided an excellent
summary of the pros and cons of each method.

Several other researchers such as Starczewski and
Rutkowski [37], John and Czarnecki [20,21] and Chen
and Kawase [10] worked on T2-FSM. Starczewski and
Rutkowski [37] proposed a connectionist structure to im-
plement interval valued type 2 fuzzy structure and infer-
ence. It was indicated that methods such as, back propa-
gation, recursive least squares or Kalman algorithm-based
methods, can be used in order to determine the inference
parameters of the structure. John and Czarnecki [20,21]
extended the ANFIS structure such that it can process the
type 2 fuzzy sets.

All of the above methods assume non-interactivity be-
tween antecedent variables. Thus, the general steps of the
inference can be listed as: fuzzification, aggregation of the
antecedents, implication, and aggregation of the conse-
quents, type reduction and defuzzification.
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With the general structure of type 2 fuzzy systemmod-
els and inference techniques, we next propose discrete in-
terval valued type 2 rule base structures.

Discrete Interval Valued Type 2 Fuzzy Sets (DIVT2FS)

In Discrete Interval Valued Type 2 Fuzzy Sets (DIVT2FS)
[48] the domain of the primary membership is discrete
and the secondary membership values are fixed to 1. Thus,
the proposed method is utilizing discrete interval valued
type 2 fuzzy sets in order to represent the linguistic values
assigned to each fuzzy variable in each rule. These fuzzy
sets can be mathematically defined as follows:

ÃD
Z

x2X

hX

u2Jx
1/u
i
/x ; (39)

where x 2 X � <; u 2 Jx D fJxrg ; r D 1; : : : ;NM; x
is a system variable with continuous domain, u is the pri-
mary membership value with discrete domain and Jxr is
the rth primary membership value associated with x. The
discrete interval valued type 2 fuzzy set Ã, can be consid-
ered as the union of type 1 fuzzy sets ar , r D 1; : : : ; nm,
where nm is the number of embedded type 1 fuzzy sets that
form the “discrete interval valued type 2 fuzzy set Ã”. (for
the purposes of this paper, we assume that nm is known.
Currently we are conducting further research to determine
nm at the Knowledge-Intelligence Laboratory, University
of Toronto). Consequently, the membership function of
discrete interval type 2 fuzzy set Ã; �Ã(x), can be repre-
sented as a collection of type 1 membership functions as
follows:

�Ã(x) D f�
r
A(x)g ; r D 1; : : : ;NM ; (40)

where nm is the number of discrete membership values
assigned to each value of system variable x, �r

A(x) is the
membership function associated with rth embedded type
1 fuzzy set, which can be defined as follows:

�r
A(x) : X ! Jxr ; x 2 X � < : (41)

One of the goals of this study is to eliminate the non-inter-
activity assumption used in the existing type 2 fuzzy sys-
tem models. Hence, we have extended the fuzzy rule base
structure proposed byDelgado et al. [12], Babuska et al. [1]
and Uncu and Türkşen [48]. Thus, the proposed Discrete
Interval Type 2 ZadehFuzzy Rule base (DIT2-Z-FR) struc-
ture can be written as follows:

R :
�

c�
ALSO
iD1

�
IF x 2 X isr Ar

i THEN y 2 Y isr Br
i
�
;

r D 1; : : : ;NM ; (42)

where, Ar
i is the rth embedded type 1 multidimensional

fuzzy set associated with the antecedent of the ith rule. Ar
i

will be represented with the membership function �r
i (x)

in the membership value domain. Similarly, Br
i is the rth

embedded type 1 fuzzy set associated with the consequent
of the ith rule. Br

i will be represented with the membership
function �r

i (y) in the membership value domain.
The rule base structure given in (42) can be thought

as a collection of embedded type 1 fuzzy rule bases. Hence,
the proposed fuzzy rule base structure is named asDiscrete
Interval Type 2 Fuzzy Rule base (DIT2-Z-FR) structure.

The other well-known fuzzy rule base structures are
also extended to type 2 by using the above idea. Hence,
Discrete Interval Valued Type 2 Takagi–Sugeno Fuzzy
Rule base (DIT2-TS-FR) can be written respectively as fol-
lows:

R :
�

c�
ALSO
iD1

�
IF x 2 X isr Ar

i THEN y D ari x
TC bri

�
;

r D 1; : : : ;NM ; (43)

where, ari D
�
ari;1; : : : ; a

r
i;NV


is the regression coefficient

vector associated with the ith rule of the rth embedded
type 1 fuzzy system model and bri is the scalar associated
with the ith rule of the rth embedded type 1 fuzzy system
model. As one can observe the Takagi–Sugeno structure
is not only extended by representing the antecedent fuzzy
sets with discrete type 2 fuzzy sets but also by letting uncer-
tainty in crisp inference parameters in consequents. Thus,
the problem of building type 2 fuzzy system models is re-
duced to finding embedded type 1 fuzzy system models.

Discrete Interval Valued Type 2
“Special Fuzzy Functions”, (SFF)

In a similar manner to Discrete Interval Valued Type 2
Fuzzy Rule bases, we could construct Discrete Interval
Valued Type 2 “Special Fuzzy Functions” for the cases
of SFF-LSE and SFF-SVR. For example, the function of
a single input single output model, which includes only
the membership values as the additional input variable,
Yr
i D ˇ

r
i0 C ˇ

r
i1�

r
i C ˇr

i2X; r D 1; : : : ;NM that repre-
sents the rth “Special Fuzzy Function” to the ith interactive
(joint) type 2 cluster in (Yr

i ; �
r
i ; X

r); i D 1; : : : ; c�; r D
1; : : : ;NM space, would be estimated with SFF-LSE ap-
proach as follows:

ˇr�
i D



Xr0T
i Xr0

i

��1

Xr
i
TYr

i

�
; r D 1; : : : ;NM ; (44)

where ˇr�
i D (ˇr

i0
�; ˇr�

i1 ; ˇ
r�
i2 ) and Xr

i
0 D

�
1; � r

i ; X
�
, pro-

vided the inverse of covariance, (Xr0T
i Xr0

i )
�1, exists. The
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estimate of yi would be obtained as:

Yr�
i D ˇ

r�
i0 C ˇ

r�
i1 �

r
i C ˇ

r�
i2 X : (45)

The single output value is calculated using each output
value, one from each cluster, and weighting them with
their corresponding membership values as follows:

Yr�
i D

c�P

iD1
� ri Y

r�
i

c�P

iD1
� ri

; i D 1; : : : ; c�; r D 1; : : : ;NM : (46)

The development of such Discrete Interval Valued Type 2
“Special Fuzzy Functions” with LSE will be studied in our
future investigations. In a similar manner, we propose to
develop Discrete Interval Valued Type 2 “Special Fuzzy
Functions” with SVM methodology.

Case Study Applications

In order to test the proposed model performances as
opposed to fuzzy rule base systems three input-output
datasets are considered in this investigation. These are:

(i) Daily price of a stock in stock market.
(ii) Customer Income Prediction model for a major

bank.
(iii) The amount of chemicals for a desulphurization pro-

cess for a steel processing company.

The specifications of each datasets are displayed in the
following parts:

Daily Stock Price Dataset

Daily stock price dataset comprises of the daily trend data
of stock prices. This dataset was introduced by Sugeno and
Yasukawa [38]. The same dataset has been used in vari-
ous other studies one of which compares six different fuzzy
reasoning methods using this dataset.

Out of 100 observations, 50 of them are used for the
training purposes and the other 50 was hold-out for test-
ing purposes. There were originally 11 input variables
and single output variable in the dataset [48]. Preliminary
input selection was applied using Random Forests (RF)
method, [48] which estimates variable importance. Based
on the results of RF method, only 4 of input variables i. e.,
x2; x4; x8; x10, were found to have importance on the out-
put variable. The rest of the variables had insignificant ef-
fect on the output.

Income Prediction Dataset

The purpose of the Income Prediction Model was to pre-
dict the income of the future customers based on the cur-
rent customer information and 1996 year census data.
There were more than 200 variables and hundred of thou-
sands of customers. According to business needs, the
dataset was partitioned into 9 different parts based on age,
number of different types of investment accounts hold by
the customer and different regions of residency. In this
study, only one partition was investigated.

We have only selected 10% of the i.i.d. data samples
to do our research on using only single partition explained
above. The data was cleaned form the outliers using the ex-
pert’s knowledge and 900 training and 900 testing observa-
tions are selected randomly. The dataset was comprised of
11 input variables [48]. Based on the correlation analysis,
3 input variables were discarded from the dataset resulting
in 8 input variables. There were no census variables among
the selected input variables.

Desulphurization Dataset

A torpedo car desulphurization facility removes sulfur
from hot metal leaving the blast furnaces before it is sent to
the next process. Generally, desulphurization is carried out
by injecting two different powered reagents directly into
the hot metal via a lance. The reagents react with the sul-
fur in the hot metal and residue, which is rich in sulfur, is
separated from the iron.

The aim of the data-mining project was to determine
the right amounts of the reagents to be added into the hot
metal. These regents are expensive materials and precise
estimation is required. There are vast quantities of data
available on the desulphurization process, which has vari-
ous characteristics. The original input and output variables
are shown in [27]. There are 750 training and 900 verifica-
tion samples used in the experiments. Based in the variable
selection using random forest regression method, only 5
variables are found to be important.

Experimental Design

Using the three different input-output datasets, we build
four different fuzzy system model structures, SFF-LSE,
SFF-SVM, SY-FRB and TS-FRB. In order to keep the con-
sistency between each model structure, the same training
and testing datasets are used for the four fuzzy system
models with the same input variables. The categorical vari-
ables are transformed into probabilities using logistic re-
gression and are used as additional inputs only in Income
Prediction and Desulphurization Datasets in all of the four
models.



4092 F Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy Functions

Sugeno–Yasukawa Models and Takagi–SugenoModels

The proposed FSM models are compared to two well
known Fuzzy Rule Base Models: (i) Sugeno and Ya-
sukawa’s fuzzy logic based approach using Partition Type
FuzzyModel, SY-FRB, [38] (ii) Takagi and Sugeno’s fuzzy
system modeling approach, TS-FRB [39]. In Sugeno and
Yasukawa’s FSM approach, they use linguistic variables
for both the consequent and the antecedent part of the
fuzzy rules and the system learns all inference parameters
from the data without the expert intervention. The vari-
able selection method defined in their paper is not applied
to these 3 datasets in order to compare the models on the
same basis.

In Takagi and Sugeno’s FRB (TS-FRB) structure [39],
they assume that the antecedentmembership functions are
to be characterized with triangular membership functions.
In their approach, each input variable space is assumed
to be partitioned into two clusters and logical connective
AND is taken as MIN. Then, the structure identification
problem is just to identify the regression equation coef-
ficients for each rule and the antecedent parameters for
each input variable in each rule. Researchers proposed sev-
eral structure identification methods to identify the mem-
bership functions from the data, e. g., Delgado et al. [12],
Babuska and Verbruggen, etc. In this paper we have used
Babuska et al.’s [1] modified Takagi–Sugeno study where
themembership functions of the antecedents are identified
using fuzzy c-means clustering and projected onto each in-
put vector. The degree of fulfillment of each rule is then
calculated using a t-norm operator, i. e. product. Only one
aggregate input membership function is identified for each
rule. The inference parameters are same as the traditional
Takagi–Sugeno inference method [39].

Special Fuzzy Functions Models (SFFM)

In this paper, the modeling performance from the Spe-
cial Fuzzy Functions with LSE and SVM models, SFF-LSE
and SFF-SVM, are compare to the Fuzzy Rule Base struc-
tures. Instead of using cluster validity indices to select the
optimum model parameters, we measured the optimum
model based on the best model performance using RMSE
by applying a grid search for each parameter. Note that
fuzzy functions with LSE system models have 2 parame-
ters, which are the FCM parameters, i. e., degree of fuzzi-
ness and cluster size. Special Fuzzy Functions with SVR
models have 4 parameters: FCM parameters and the SVR
parameters which are C-regularization and "-insensitive
value (epsilon).

In both of these special fuzzy function models, mem-
bership values and their exponential transformations are

used as additional input variables. We applied the LIB-
SVM program [6] within our special fuzzy function codes
for support vector optimization in estimating the “Spe-
cial Fuzzy Functions”. We chose Gaussian RBF as the
kernel function, K(x; x0) D exp(��kx � x0k2) in all the
experiments and the default values of the kernel pa-
rameters in LIBSVM [10] are used. Recall that the SVR
regression has two parameters that is set by the user:
"-insensitive zone (epsilon or ") and the regularization
parameter, C). The parameters of SVM regression, C
and ", are generated by the grid search, i. e., C D f2�3;
2�1; : : : ; 23; 25g; epsi lon(") D f0:1; : : : ; 0:5g, as well
as the FCM parameters, i. e., c D 3; 5; : : : ; 10; m D

1:1; : : : ; 2:5 in all the experiments. Hence, for the fuzzy
functions with LSE models 2 parameters are specified for
each model, and for the fuzzy functions using SVM mod-
els, 4 parameters, m, c, C, and � are determined using
a grid search where the model performance of each model
is determined using Root Mean Square Error of the mod-
els as follows:

RMSE D

vu
ut 1

n

NX

iD1

(yi�ŷ i)2 (47)

yi, and ŷ i are the actual and estimated output values of
a single observation,N is the total number of observations
in the dataset.

Experimental Model Results

The 4 fuzzy system models are applied on the daily stock
price of a stock market, income prediction, and reagents
estimation in desulphurization process datasets. The re-
sults are displayed in Tables 1,2 and 3.

Special Fuzzy Function (SFF) models, when estimated
with either SVM or LSE algorithms, show better general-
ization than the fuzzy rule basemodels. The fuzzy function
models can increase the model performance by up to 35%
depending on the dataset.

Table 4 displays the optimum parameters of the mod-
els from each experiment whose results are displayed in
Tables 1–3. In Table 4, C-reg indicates the regularization
parameter, " is the "-insensitive region (epsilon), m refers

Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy
Functions, Table 1
Daily Stock Price of a Stock in Stock Market

SFF-SVM SFF-LSE TS-FRB SY-FRB
RMSE(train) 2.43 3.82 2.76 7.16
RMSE(test) 3.64 5.61 5.68 9.93
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Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy
Functions, Table 2
Income Prediction Dataset*

SFF-SVM SFF-LSE TS-FRB SY-FRB
RMSE(train) 0.40 0.52 0.49 0.58
RMSE(test) 0.64 0.64 0.80 0.70

* The RMSE values are calculated from standardized
output values.

Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy
Functions, Table 3
Reagent Estimation for Desulphurization Process

SFF-SVM SFF-LSE TS-FRB SY-FRB
Reagent1
RMSE(train) 30 40 35 69
RMSE(test) 42 45 45 72
Reagent2
RMSE(train) 4.80 6.49 5.62 10.01
RMSE(test) 6.59 7.19 7.19 10.80

Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy
Functions, Table 4
OptimumModel Parameters of three datasets

Dataset Model Type Optimummodel Parameters
Daily Stock
Price

SFF-SVM C � reg D 32; "D 0:2; c D 8;
m D 1:9; #sv D 28(
sv D 1:5)

SFF-LSE c D 8; m D 1:6
Income
Prediction

SFF-SVM C � reg D 64; "D 0:2; c D 7;
m D 1:2; #sv D 264(
sv D 5:7)

SFF-LSE c D 8; m D 1:6
Desulphur-
ization

SFF-SVM Reagent 1:
C � reg D 64; "D 0:2; c D 7;
m D 1:4; #sv D 121(
sv D 4:8)
Reagent 2:
C � reg D 64; "D 0:2; c D 7;
m D 1:5; #sv D 101(
sv D 7:7)

SFF-LSE Reagent 1:
c D 5; m D 1:4
Reagent 2:
c D 6; m D 1:5

to the degree of fuzziness (weighting exponent) of the
fuzzy c-mean clustering algorithm, c indicates the number
of cluster, and #sv refers to the average number of support
vectors from each support vector regression model build
for each cluster of the SFF-SVM models. In order to show
the dispersion of the number of support vectors among
each cluster we also included the standard deviation (�sv )
of the support vectors of the optimum models.

The grid search algorithms applied in this paper try
to find the best RMSE value from training data in each

experiment and assign these parameters as the optimum
model parameters. The algorithm searches for the min-
imum regression error. Then, verification dataset output
is inferred using the optimum parameters. The issue with
these grid search algorithms is that, sometimes, the mod-
els get stuck in the local minimum which is smaller than
the global minimum and this might cause generalization
problems. An example to this concept is shown in income
prediction dataset (Table 2). Themodel parameters best fit
to the training data when FF-SVM is used but this causes
generalization problems. It should also be reminded that,
when there is a linear relationship between the inputs and
the output, then LSE model performances will be as good
as the other model performances. On the other hand, FF-
LSEmodels, in three of the datasets, showmore reliable re-
sults than the SVM models. One should run both models
and determine the optimum model parameters after ob-
serving the results from both models.

Conclusions and Future Directions

In this paper, we have outlined basic well known three type
1 system models of the recent past and suggested that type
2 fuzzy systemmodels are likely to be studied more exten-
sively in the future. In particular, we have reviewed: (1)
Type 1 Fuzzy Rule bases and (2) Type 1 “Special Fuzzy
Functions”. Furthermore we discussed the Type 2 Fuzzy
Rule bases. But we left the Type 2 “Special Fuzzy Func-
tions” for a future study after providing a structure for
their development . As well, we have demonstrated that
“Type 1 Special Fuzzy Functions” provide better results
then “Type 1 Fuzzy Rule Base” models in three specific
case studies.
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